
Implementing Dynamic Network Variables
August 2000

Echelon Corporation

The purpose of this document is to provide correct and complete information for
LonWorks® software developers who are implementing dynamic network variables
(NVs). This document is not intended to be a comprehensive guide, but rather the
definitive guide that includes correct information and contains references to other correct
information. When the product documentation is updated, this document will no longer
be distributed.

Overview

A device that implements dynamic NVs has the ability to create and delete NVs on
demand, at any time. LonWorks devices that implement dynamic NVs thus are more
flexible (and consequently more complicated) than devices with a fixed network interface
(the “static NVs”). LonWorks devices with dynamic NVs are typically used to build
gateways to legacy control systems, to build large monitoring and control devices, and
for large data logging devices.

Since LNS™ fully supports devices with dynamic NVs, any LNS-based network
management tool can instruct a device to add or remove any of its dynamic NVs.

Dynamic NV Protocol

The dynamic NV protocol is documented in the LonMark Application Layer
Interoperability Guidelines, in the chapter about Host Based Nodes. However, the
guidelines currently do not mention that the version 2 SI data structure is required in the
device in order for the protocol to work. The dynamic NV protocol is also documented
in the EIA 709.1-A specification, in section 13.7.16. The EIA specification does not
include documentation on the version 2 SI data structure; therefore the specification too
is incomplete in this regard.

The dynamic NV protocol uses an extension of the Wink command, and requires that the
device implement the Self-Identification (SI) to version 2 or greater. Section 13.7.16 of
the EIA specification covers the Wink extensions (called App commands or Install
commands). The following is a list of the install commands:

APP_WINK
APP_INSTALL
APP_NV_DEFINE
APP_NV_REMOVE
APP_QUERY_NV_INFO
APP_QUERY_NODE_INFO
APP_UPDATE_NV_INFO

These commands are sent by LNS to a device instructing it to add or remove or query
information about one of its NVs.

Version 2 SI Data Structure

The SI data structure diagram shown immediately below is a representation of the data
structures outlined in section B.5 of the EIA 709.1-A specification. The structures
outlined in the EIA specification are version 0 and version 1, and are for use with the
Neuron Chip as well as host-based devices using a static NV interface (i.e. not using
dynamic NVs).

The version 0 and version 1 SI data structures consists of several sections arranged as
follows (from EIA 709.1-A, section B.5):

SI Header
(snvt_struct)

NV Descriptor Table
(snvt_desc_struct[])

Node SD String
(null-terminated ASCII)

NV Extension Records
(bit-field)

SNVT Alias Field
(alias_field)

However, the version 2 SI data structure (required for dynamic NVs) is arranged as
follows:

SI Header
(snvt_struct_v2)

NV Descriptor Table
(user defined)

Node SD String
(null-terminated ASCII) NV Extension Records

(user defined)

Note that each of the sections is separate from the others, and that organization and
implementation is left to the device developer. This is because three of the four
structures are only accessed using the dynamic NV protocol.

The Descriptor Table, SD String, and Extension records are accessed via dynamic NV
protocol commands that the application must process. The device’s responses to these
commands are sent back to the network must follow the Dynamic NV protocol. Thus the
developer is free to choose the most appropriate method of internal representation.

However, the header of the SI data containing the version of the SI data used must be
formatted as follows. This structure is requested multiple bytes at a time by the Query
SNVT command, and is then parsed by LNS. The data types given are NeuronC types.
You should know whether your processor and environment are big-endian or little-
endian, so that the correct responses are sent back to the Query SNVT command.

typedef struct
{
 unsigned length_hi; /* length of header only. Others
 are read via the WINK’s
 subcommands */
 unsigned length_lo; /* APP_QUERY_NV_INFO and
 APP_QUERY_NODE_INFO */
 unsigned num_netvars_lo; /* Max # of NVs which can be
 defined (static + dynamic) */
 unsigned version; /* version 2 format */
 unsigned num_netvars_hi; /* Max # of NVs which can be
 defined (static + dynamic) */
 unsigned mtag_count;
 unsigned long static_nv_count;
 unsigned long current_nv_count; /* Number of currently defined
 NVs */
 unsigned long max_nv_in_use; /* Maximum NV index. 0xffff
 indicates none defined */
 unsigned long alias_count;
 unsigned long node_sd_text_length;
#ifdef LITTLE_ENDIAN
 unsigned unused :6;
 unsigned query_stats :1;
 unsigned binding_II :1;
#else
 unsigned binding_II :1;
 unsigned query_stats :1;
 unsigned unused :6;
#endif
} snvt_struct_v2;

