
FTXL Hardware Guide

0 7 8 - 0 3 6 4 - 0 1 A

®

Echelon, LONWORKS, LONMARK, LonTalk, Neuron, 3120, 3150,
and the Echelon logo are trademarks of Echelon
Corporation registered in the United States and other
countries. FTXL, 3190, and ShortStack are trademarks of
Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed
for use in equipment or systems, which involve danger to
human health or safety, or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2008 Echelon Corporation.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

FTXL Hardware Guide iii

Welcome
Echelon’s FTXL™ products enable any product that contains an Altera® Nios® II
processor to quickly and inexpensively become a networked smart device. An
FTXL device includes a complete ANSI/CEA 709.1-B (EN14908.1)
implementation that runs on the Nios II embedded processor. Thus, the FTXL
3190™ Smart Transceiver Chip provides a simple way to add LONWORKS®
networking to new or existing smart devices. The FTXL Transceiver is easy to
use because it has a simple host application programming interface (API), a pre-
built link-layer driver, a simple hardware interface, and comprehensive tool
support.

This document describes the hardware interfaces for an FTXL device and the
development boards for which the FTXL Developer’s Kit provides reference
designs.

See the FTXL User’s Guide for a description of the architecture of an FTXL
device and how to develop the software for an FTXL device.

Audience
This document assumes that the reader has a good understanding of the
LONWORKS platform, FPGA device design, and programming for the Altera Nios
II processor.

Related Documentation
In addition to this manual and the FTXL User’s Guide (078-0363-01A), the FTXL
Developer’s Kit includes recent editions of the following manuals:

• Neuron C Programmer’s Guide (078-0002-02G). This manual describes
the key concepts of programming in Neuron® C Version 2 and describes
how to develop a LONWORKS application.

• Neuron C Reference Guide (078-0140-02E). This manual provides
reference information for writing programs that use the Neuron C
language.

• NodeBuilder Errors Guide (078-0193-01B). This manual describes error
codes issued by the Neuron C compiler.

The FTXL Developer’s Kit also includes the reference documentation for the
FTXL LonTalk API, which is delivered as a set of HTML files.

After you install the FTXL software, you can view all of these documents from
the Windows Start menu: select Programs → Echelon FTXL Developer’s Kit →
Documentation, then select the document that you want to view.

The following manuals are available from the Echelon Web site
(www.echelon.com) and provide additional information that can help you to
develop applications for an FTXL Transceiver:

• Introduction to the LONWORKS System (078-0183-01A). This manual
provides an introduction to the ANSI/CEA-709.1 (EN14908) Control

http://www.echelon.com/

iv

Networking Protocol, and provides a high-level introduction to
LONWORKS networks and the tools and components that are used for
developing, installing, operating, and maintaining them.

• LONMARK Application Layer Interoperability Guidelines. This manual
describes design guidelines for developing applications for open
interoperable LONWORKS devices, and is available from the LONMARK®
Web site, www.lonmark.org.

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D). This
manual provides detailed technical specifications on the electrical
interfaces, mechanical interfaces, and operating environment
characteristics for the FT 3120®, FT 3150®, and FTXL 3190 Smart
Transceivers.

All of the FTXL documentation, and related product documentation, is available
in Adobe® PDF format. To view the PDF files, you must have a current version of
the Adobe Reader®, which you can download from Adobe at:
www.adobe.com/products/acrobat/readstep2.html.

Related Altera Product Documentation
For information about the Altera Nios II family of embedded processors and
associated tools, see the Altera Nios II Literature page:
www.altera.com/literature/lit-nio2.jsp.

Table 1 lists Altera product documents that are particularly useful for the FTXL
Developer’s Kit.

Table 1. Related Altera Documentation

Product Category Documentation Titles

Quartus® II software Introduction to Quartus II Software

Quartus II Quick Start Guide

Quartus II Development Software Handbook v7.2

Nios II processor Nios II Hardware Development Tutorial

Nios II Software Development Tutorial (included in the
online help for the Nios II EDS integrated development
environment)

Nios II Flash Programmer User Guide

Nios II Processor Reference Handbook

Nios II Software Developer's Handbook

http://www.lonmark.org/
http://www.adobe.com/products/acrobat/readstep2.html
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/mnl_qts_quick_start.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

FTXL Hardware Guide v

Product Category Documentation Titles

Cyclone® II and Cyclone III
FPGA and device
configuration

Cyclone II Device Handbook

Cyclone III Device Handbook

Configuration Handbook

USB-Blaster™ download
cable

USB-Blaster Download Cable User Guide

Software licensing Quartus II Installation & Licensing for Windows

AN 340: Altera Software Licensing

Related devboards.de Product Documentation
The FTXL Developer’s Kit uses the devboards.de DBC2C20 Altera Cyclone II
Development Board for its examples and reference designs. For information
about the DBC2C20 Altera Cyclone II Development Board, including the most
current data sheet for the board, see the DBC2C20 page:
www.devboards.de/index.php?mode=products&kategorie=14.

http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf
http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/ug/ug_usb_blstr.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/an/an340.pdf
http://www.devboards.de/index.php?mode=products&kategorie=14

vi

FTXL Hardware Guide vii

Table of Contents
Welcome...iii
Audience ..iii
Related Documentation ..iii

Related Altera Product Documentation .. iv
Related devboards.de Product Documentation...................................... v

FTXL Hardware Overview .. 1
Overview... 2
The FTXL Developer’s Kit ... 3
The FTXL Development Process... 3

Hardware Design... 4
FPGA Design ...5
Software Design... 5

FTXL Developer’s Kit Hardware... 7
Overview of the FTXL Developer’s Kit Hardware 8
The DBC2C20 Development Board .. 8

Buttons and LEDs ... 9
Jumper Settings... 11
Connectors and Headers ... 11

The FTXL Adapter Board.. 13
Jumper Settings... 13
Connectors and Headers ... 13

The FTXL Transceiver Board.. 15
LEDs...16
Jumper Settings... 16
Connectors and Headers ... 16

FTXL Transceiver Hardware Interface... 19
Overview of the Hardware Interface .. 20

DC-DC Converter .. 20
Control Signal Buffer .. 20
Data Bus Isolation... 20
Pull-Up Resistors for Communications Lines...................................... 21

The Parallel Communications Interface... 21
Token Passing and Handshaking... 23
Transferring Data.. 23

FTXL Transceiver Pin Characteristics... 24
I/O Pins...24
IRQ Pin...24
Reset Pin ..25

Reset Function ..25
Power-Up Sequence .. 26
Software Controlled Reset.. 27
Watchdog Timer .. 27
LVI Considerations ... 27
Reset Processes and Timing ... 27

Service Pin ...27
Clock Pins...27

FPGA Pin Assignments for the FTXL Transceiver 28
Control Flow: Host Receiving Data from the FTXL Transceiver.............. 29
Control Flow: Host Sending Data to the FTXL Transceiver..................... 32

viii

FPGA Design for the FTXL Transceiver ... 37
Overview... 38
Using the Reference Design .. 38
Developing a New FPGA Design... 38

FPGA Device Requirements ... 39
Nios II Processor..40
FPGA Configuration Device.. 40
FTXL Components...41

FTXL Parallel Interface Delay... 42
FTXL Parallel I/O Transceiver Interface 43
FTXL Service LED..46
FTXL Service Pin .. 47
FTXL Transceiver Interrupt .. 47
FTXL Transceiver Reset...47

Phase-Locked Loop .. 48
DBC2C20 Components.. 48
Timers ..48
External Memory... 48
Addressing, Size, and IRQ Requirements.. 49

FTXL Hardware Abstraction Layer.. 50
Other Hardware Design Considerations .. 51

Working with the Altera Development Environments 53
Development Tools... 54
Using a Device Programmer for the FPGA Device 55
Setting Component Search Paths ... 56
Adding FTXL Components to an Existing Design..................................... 57

Modifying the SOPC Builder Design.. 57
Modifying the Quartus II Design ... 60

Building the Application Image .. 61
Loading the Application Image into the FPGA Device.............................. 62

Using the Bring-Up Application to Verify FTXL Hardware Design 63
Overview... 64

Application Framework... 64
Interrupt Functions from the FTXL HAL.. 64

FTXL Transceiver Interface ..65
Reset Signal ...65
Status Signals.. 66
Data Register ... 66
Interrupt...68

Working with the Nios IDE for the Bring-Up Application........................ 69
Creating a New Application Project ... 69
Building the Application Image.. 70
Running the Application from the Nios IDE 70

Running the Tests.. 70
Reset Test...71
Token Passing Test.. 73
Data Passing Test.. 76
Interrupt Test ..78
Service Pin and LED Test... 79

Designing Additional Tests ... 80
Index... 81

FTXL Hardware Guide 1

1

FTXL Hardware Overview

This chapter provides an overview of the FTXL Developer’s
Kit and the development process for developing a device
based on the FTXL Transceiver Chip.

2 FTXL Hardware Overview

Overview
Echelon’s Free Topology Smart Transceivers provide a well-tested and cost-
effective platform for many distributed control applications that are built on
LONWORKS technology. For high value sensors, smart actuators, or terminal
equipment controllers, an FT Smart Transceiver provides a well matched cost-to-
capability ratio. For more complex applications, the Echelon FTXL Transceiver
Chip provides an alternate processing platform for high-performance LONWORKS
applications.

The FTXL solution includes the following elements:

• The FTXL LonTalk protocol stack
The FTXL stack is a C++ implementation of the ANSI/CEA 709.1-B
protocol stack that has been ported to run on the Altera Nios II processor,
implemented on an Altera Cyclone II FPGA.

• FTXL Transceiver Chip
The FTXL 3190 Smart Transceiver Chip is an FT 3120 Smart
Transceiver that includes a firmware image that allows it to run as a
layer 2 parallel interface network transceiver.

• FTXL Design Components
The FTXL Developer’s Kit includes the FTXL design components for the
Altera SOPC Builder tool and Quartus II software.

• FTXL Reference Design
The reference design includes an Altera Quartus II project that targets a
specific Cyclone II development board, and provides the necessary VHDL
modules and configuration files to build an example Nios II target for the
FTXL LonTalk stack and FTXL Transceiver.

The FTXL Transceiver Chip can be configured to run at any of the following clock
frequencies, depending on the requirements of the FTXL device:

• 5 MHz

• 10 MHz

• 20 MHz

• 40 MHz

The FTXL LonTalk protocol stack provides support for the following
configurations:

• Up to 4096 addresses

• Up to 200 receive transactions

• Up to 2500 transmit transactions

• Up to 4096 network variables

• Up to 8192 alias table entries

FTXL Hardware Guide 3

The FTXL Developer’s Kit
The FTXL Developer’s Kit is a development toolkit that contains the hardware
designs, software designs, and documentation needed for developing applications
that use an FTXL Transceiver. The kit includes the following components:

• Hardware and software design files for the FPGA design, including
Quartus II files, SOPC Builder files, and Nios IDE files

• Hardware component files for the FPGA development board

• The FTXL LonTalk protocol stack, delivered as a C object library

• Software source files for the LonTalk application programming interface
(API)

• A set of example programs that demonstrate how to use the FTXL
LonTalk stack and LonTalk API to communicate with a LONWORKS
network

• The LonTalk Interface Developer utility, which defines parameters for
your FTXL application program and generates required device interface
data for your device

• Documentation, including this FTXL Hardware Guide, the FTXL User’s
Guide, and HTML documentation for the LonTalk API

The FTXL Developer’s Kit is available as a free download from
www.echelon.com/ftxl. See the FTXL User’s Guide for information about the
software components of the FTXL Developer’s Kit.

The FTXL Developer’s Kit also refers to three hardware development boards that
are available from devboards GmbH, www.devboards.de. You can also contact
EBV Elektronik GmbH, www.ebv.com. The FTXL Developer’s Kit uses these
boards for its examples and reference designs. These boards are:

• The DBC2C20 Altera Cyclone II Development Board, which provides the
FPGA device and peripheral I/O

• The FTXL Adapter Board, which primarily provides voltage regulation
between the DBC2C20 development board and the FTXL Transceiver
Board

• The FTXL Transceiver Board, which includes the FTXL Transceiver Chip
and a LONWORKS network connector

See Chapter 2, FTXL Developer’s Kit Hardware, on page 7, for more information
about the hardware for the FTXL Developer’s Kit.

The FTXL Development Process
An FTXL device is comprised of the following basic elements:

• An Echelon FTXL Transceiver Chip that communicates with a
LONWORKS network

• An FPGA device, running an Altera Nios II processor, that runs the
FTXL application program

http://www.echelon.com/ftxl
http://www.devboards.de/
http://www.ebv.com/

4 FTXL Hardware Overview

• RAM, read/write non-volatile memory (such as flash) to store
configuration data, and non-volatile memory (such as flash) to store the
FTXL application

• The associated FPGA design and printed-circuit board (PCB) design for
the device

Thus, the development process for an FTXL device includes the following tasks:

1. Gather the requirements for the device

2. Based on those requirements, determine the necessary functionality of
the FPGA device, including the Nios II processor, on-chip memory, and
any intellectual property (IP) cores

3. Implement the FPGA design using the Altera Quartus II software

4. Choose the physical FPGA device, along with its corresponding
configuration device, and load the design into the device

5. Design and implement a prototype PCB design for the FPGA device and
FTXL Transceiver (this step can be deferred if you use the reference
designs for the DBC2C20 development board for prototyping)

6. Design the FTXL application program, using the FTXL LonTalk protocol
stack

7. Load the software into the FPGA device

8. Test the completed FTXL device

9. Integrate the FTXL device into a LONWORKS network

10. Design and implement the final PCB design for the FPGA device and
FTXL Transceiver

This book describes many of these tasks. See the appropriate Altera
documentation for additional design considerations for an FPGA device; see the
FT 3120 / FT 3150 Smart Transceiver Data Book for design considerations for an
FT 3120 Smart Transceiver, which shares electrical and physical characteristics
with the FTXL Transceiver; and see the FTXL User’s Guide for information
about software design for an FTXL device.

Hardware Design
A minimal hardware design for an FTXL device includes the following elements:

• An Echelon FTXL 3190 Smart Transceiver Chip

• An Echelon FT-X1 or FT-X2 Communication Transformer

• A crystal oscillator for the FTXL Transceiver Chip

• Associated circuitry for communications, as described in the FT 3120 / FT
3150 Smart Transceiver Data Book

• A charge pump DC-DC converter (or similar device) to allow the FTXL
Transceiver Chip and FPGA device to share a common power supply

• A FPGA device, such as an Altera Cyclone II or Cyclone III device

• An FPGA serial configuration device

FTXL Hardware Guide 5

• External memory (such as external RAM) for the FTXL application
program

• Non-volatile memory (such as flash memory) for network configuration
data

• Associated user I/O, such as a service pin and LED, reset button and
LED, and other I/O for the device

• A power supply

A more robust or complex design includes additional hardware components, such
as additional user I/O, support for a USB or other network interface, signal
processors, or other coprocessors.

Because an FTXL device is a communications device, its design must include
considerations for electromagnetic compatibility (EMC), including electrostatic
discharge (ESD), radio frequency (RF) immunity, and resistance to
electromagnetic interference (EMI).

See the FT 3120 / FT 3150 Smart Transceiver Data Book for overall design
considerations for an FT Smart Transceiver, including the FTXL Transceiver.

FPGA Design
A minimal FPGA design for an FTXL device includes the following elements:

• An Altera Nios II processor

• One or more phase-locked loop (PLL) components

• Definitions for the FTXL parallel communications interface (see The
Parallel Communications Interface on page 21)

• A definition for the FTXL Transceiver reset signal

• A definition for the FTXL Transceiver interrupt signal

• A definition for the FTXL service pin

• A definition for the FTXL service LED

• Definitions for user I/O

• An interface for both on-chip and external memory

Because an FPGA device can include multiple processors and many intellectual
property (IP) cores, a more robust or complex design can include any number of
additional design elements. These additional design elements, in turn, help
determine the specific type of FPGA device that your FTXL device requires.

Chapter 4, FPGA Design for the FTXL Transceiver, on page 37, describes
requirements for the FPGA design for an FTXL device.

Software Design
Software design for an FTXL device requires a host application program that
runs on the Nios II processor and uses the FTXL LonTalk protocol stack to
manage the FTXL Transceiver for communications with a LONWORKS network.

The LonTalk application programming interface (API) provides essential
functions for managing an FTXL Transceiver. This API shares many features

6 FTXL Hardware Overview

and functions with the LonTalk Compact API, so that it is possible to migrate a
ShortStack™ device to use an FTXL Transceiver.

An FTXL host program uses an embedded operating system (generally, a real-
time operating system (RTOS)) for intra-processor communications and task
management. In addition to the LonTalk API, the FTXL Developer’s Kit provides
an operating system abstraction layer (OSAL) so that your host program can use
any RTOS that meets your system’s requirements. The example programs that
are included with the FTXL Developer’s Kit use the Micrium μC/OS-II operating
system.

See the FTXL User’s Guide for more information about software design for an
FTXL device.

FTXL Hardware Guide 7

2

FTXL Developer’s Kit Hardware

This chapter describes the three development boards that comprise
the hardware for the FTXL Developer’s Kit.

8 FTXL Developer’s Kit Hardware

Overview of the FTXL Developer’s Kit Hardware
The FTXL Developer’s Kit requires the three hardware development boards
listed in Table 2. These boards are available from devboards GmbH,
www.devboards.de. You can also contact EBV Elektronik GmbH, www.ebv.com.

Table 2. FTXL Developer’s Kit Hardware

Board Name Description devboards Order Code

DBC2C20 Altera
Cyclone II Development
Board

Development board that includes the
Cyclone II FPGA device and user I/O

DBC2C20USBB or
DBC2C20USBB-IPN

FTXL Adapter Board Adapter board between the 3.3 V
FPGA board and the 5 V FTXL
Transceiver board

DBE-ADAP

FTXL Transceiver Board Development board for the FTXL
Transceiver Chip

DBE-FT-PAR

The DBC2C20 development board includes an Altera USB-Blaster download
cable. Contact your Altera representative for information about acquiring a Nios
II development license.

For information about the DBC2C20 development board, see the Datasheet
DBC2C20 Cyclone II Development Board document, available from the
devboards Web site.

The DBC2C20 Development Board
To work with the Nios II processor for an FTXL device, you can use any of the
many available tools that support the Nios II family of embedded processors.
However, this document describes only the devboards GmbH DBC2C20 Altera
Cyclone II Development Board which is part of the FTXL Developer’s Kit, as
described in Table 3 on page 9.

The FTXL Developer’s Kit was built for the DBC2C20 development board. You
could use another development board, such as the Altera Nios II Development
Board, Cyclone II Edition, but because the connectors on the FTXL Adapter
Board were designed to match connectors on the DBC2C20 development board,
you must create ribbon-cable connections to match a different development
board. In addition, you must create your own hardware and software projects for
a different development environment.

The DBC2C20USBB-IPN package includes a 9.6 VA, 800 mA power supply that
is appropriate for European installations; for other geographies, you can use any
input power supply with a 2.1 mm pin, center-negative barrel connector, from 7.5
V to 24 V, such as the 9 V Echelon 78010R power supply.

http://www.devboards.de/
http://www.ebv.com/

FTXL Hardware Guide 9

Table 3. Hardware Development Platform for the Nios II Processor

devboards DBC2C20 Altera Cyclone II Development Board

The DBC2C20 Cyclone II Development Board includes an Altera Cyclone II
EP2C20 FPGA with 20 000 logic elements (LEs) that provides flexibility and
performance for a wide range of applications. The board also includes:

• 16 MB SDRAM

• 8 MB flash memory

• 16 Mbit EPCS16 configuration device

• 1 MB SRAM

• Twenty-four 3.3 V I/O ports

• For communication tasks, one RS-232, four RS-485, and two Controller
Area Network (CAN) transceivers are available

• Two 10/100 Mbps Ethernet PHYs are available for Ethernet-based
communication

• A 24 V, 16-bit wide I/O port can connect the DBC2C20 board directly to
industrial control systems

• Two low-voltage differential signaling (LVDS) ports, available on RJ-45
connectors, can be used for high-speed board communication

• For visualization tasks, an LVDS-based thin-film transistor (TFT)
interface is available

Buttons and LEDs
The DBC2C20 development board includes four pushbuttons (P24, P25, P26, and
P28) and eight light-emitting diodes (LEDs – D17 through D24). However, the
FTXL Developer’s Kit uses only one button and one LED, as shown in Figure 1 on
page 10 and listed in Table 4 on page 10.

10 FTXL Developer’s Kit Hardware

Figure 1. Service Pin Button and LED on the DBC2C20 Development Board

Table 4. FTXL Developer’s Kit Button and LED on the DBC2C20 Development Board

FTXL Function DBC2C20 Function DBC2C20 Name
Cyclone II Pin
Assignment

Service Pin Button Button 0 P25 U1

Service Pin LED LED 4 D17 U8

The FTXL Developer’s Kit does not use the two-digit seven-segment display
(U24) or the navigation key (P2) on the DBC2C20 development board.

FTXL Hardware Guide 11

Jumper Settings
The DBC2C20 development board includes three sets of jumpers (P10, P19, and
P21). For the FTXL Developer’s Kit, all of these jumpers remain unmounted.

Connectors and Headers
The DBC2C20 development board includes 15 connectors and headers. The
FTXL Developer’s Kit uses only the connectors that are shown in Figure 2 and
listed in Table 5.

Figure 2. Connectors and Headers on the DBC2C20 Development Board

Table 5. FTXL Developer’s Kit Connectors and Headers on the DBC2C20 Development Board

FTXL Function DBC2C20 Function
DBC2C20
Name

Header for programming the Cyclone
II FPGA and flash memory

JTAG Connector for the Altera
USB-Blaster download cable

P1

12 FTXL Developer’s Kit Hardware

FTXL Function DBC2C20 Function
DBC2C20
Name

Main power Power supply connector P11

FTXL Transceiver Chip I/O 3.3 V I/O Connector P22

FTXL Transceiver Chip I/O 3.3 V I/O Connector P23

Figure 3 shows the connections for the P22 and P23 headers. The names in
parentheses are the Cyclone II pin assignments for the I/O lines. The FTXL
Developer’s Kit does not use pins 8-14 (PIO17-PIO23) on the P22 header.

P22 Header

1412108642

1 3 5 7 9 11 13

G
N

D

PIO
12 C

TS (C
19)

PIO
14 R

TS (C
20)

PIO
16 TX

D
 (D

19)

P
IO

18 Q
SP

I_D
IN

 (E
18)

PIO
20 Q

SP
I_C

S_M
U

X0 (E
19)

PIO
22 Q

SP
I_C

S_M
U

X2 (E
20)

E
X

TV
D

D
3.3

(J17) H
R

D
Y PIO

13

(H
18) R

X
D

 P
IO

15

(H
19) Q

S
P

I_D
O

U
T P

IO
17

(F20) Q
S

P
I_C

LK
 P

IO
19

(G
20) Q

S
P

I_C
S

_M
U

X
1 P

IO
21

(G
18) A

1 P
IO

23

P23 Header

1412108642

1 3 5 7 9 11 13

G
N

D

PIO
0 D

0 (P15)

PIO
2 D

2 (F14)

PIO
4 D

4 (F15)

PIO
6 D

6 (E18)

PIO
8 C

S~ (H
15)

P
IO

10 A
0 (H

14)

E
XTV

D
D

3.3

(J14) D
1 PIO

1

(J15) D
3 PIO

3

(H
17) D

5 PIO
5

(G
17) D

7 PIO
7

(H
16) R

/W
~ PIO

9

(G
16) R

ST PIO
11

Figure 3. FTXL Transceiver Chip I/O Header Connections for P22 and P22 Headers

For more information about the pins used for the FTXL Transceiver, see FTXL
Transceiver Pin Characteristics on page 24.

FTXL Hardware Guide 13

The FTXL Adapter Board
The primary function of the FTXL Adapter Board is to provide the 5 V power to
the FTXL Transceiver Board from the 3.3 V power of the DBC2C20 development
board. The FTXL Adapter Board also provides access to all of the FTXL
Transceiver I/O lines through headers on the board.

Connect the FTXL Adapter Board to the DBC2C20 development board by joining
the FTXL Adapter Board’s J7 and J5 connectors to the DBC2C20 development
board’s P22 and P23 headers.

Jumper Settings
The FTXL Adapter Board includes two sets of jumpers (J4 and J9). However, the
FTXL Developer’s Kit uses only the J9 jumper, as described in Table 6.

Table 6. FTXL Adapter Board Jumper Settings

Function Jumper Description

Interface Selector (J4)

This jumper is not used for
the FTXL Developer’s Kit.

Leave this jumper
unmounted.

Chip Select Signal Selector
(J9)

CS1

CS2

CS3

CS4

CS5

J9

This jumper selects which
Chip Select signal to use in
the J2 connector.

You can set this jumper in
any position, but the setting
for the J9 jumper on the
FTXL Adapter Board must
match the jumper setting for
the J7 jumper on the FTXL
Transceiver Board.

The factory shipped default
setting for this jumper is to
mount it across pins 5 and 6,
as shown.

Connectors and Headers
The FTXL Adapter Board includes eight connectors and headers, of which the
FTXL Developer’s Kit uses the ones listed in Table 7 on page 14.

The FTXL Developer’s Kit does not use the J3 or J10 headers.

14 FTXL Developer’s Kit Hardware

Table 7. FTXL Adapter Board Connectors and Headers

FTXL Developer’s Kit Function FTXL Adapter Board Function

FTXL
Adapter
Board Name

Connects FTXL Adapter Board with
FTXL Transceiver Board for FTXL
Transceiver Chip I/O

Hirose stacking header J1

Connects FTXL Adapter Board with
FTXL Transceiver Board for FTXL
Transceiver Chip I/O

Hirose stacking header J2

Provides access to FTXL Transceiver
Chip I/O

Header and connector for FTXL
Transceiver Chip I/O with
DBC2C20 development board

J5

Provides access to FTXL Transceiver
Chip I/O

Header and connector for FTXL
Transceiver Chip I/O with
DBC2C20 development board

J7

In addition, the FTXL Adapter Board provides an area for prototyping or
measurement through headers J6 and J8, which correspond functionally to
headers J5 and J7. See Figure 3 on page 12 for the pin assignments of the
DBC2C20 development board headers P22 and P23, which directly connect to the
FTXL Adapter Board headers J5 and J7.

Figure 4 on page 15 shows the connections for the J1 and J2 Hirose stacking
headers. Note that the FTXL Developer’s Kit does not use the connections for
pins 36-44 or pin 81 on the J2 header.

FTXL Hardware Guide 15

L2MIP_IRQ

CTS
HRDY
RST

A0

R/W-

J1

Hirose FX8C-120P-SV2

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99

101
103
105
107
109
111
113
115
117
119

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120

D0
D1

J2

Hirose FX8C-120P-SV2

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99

101
103
105
107
109
111
113
115
117
119

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120

D2
D3

Header Header

D4
D5

VDD5

J9 Header 2x5

1 2
3 4
5 6
7 8
9 10

D6
D7

FB_CS5

VDD5VDD5

FB_CS4
FB_CS3

VDD5

FB_CS2

VDD3.3

FB_CS1

VDD3.3VDD3.3 VDD3.3

CS-

A1

QSPI_DOUT
QSPI_DIN
QSPI_CLK

RXD

QSPI_CS_MUX0
QSPI_CS_MUX1

TXD

RTS

Figure 4. FTXL Adapter Board Hirose Stacking Headers J1 and J2

The FTXL Transceiver Board
The FTXL Transceiver Board is the development board for the FTXL Transceiver
Chip. It also provides LONWORKS network connectivity.

The FTXL Transceiver Chip on the FTXL Transceiver Board runs at 20 MHz.

Connect the FTXL Transceiver Board to the FTXL Adapter Board by joining the
two boards’ Hirose stacking headers.

16 FTXL Developer’s Kit Hardware

LEDs
The FTXL Transceiver Board includes two LEDs (D11 and D14). These LEDs
are active while the FTXL Transceiver Chip is sending or receiving network data.

User interaction with the FTXL Transceiver is controlled from the DBC2C20
development board.

Jumper Settings
The FTXL Transceiver Board includes one jumper set (J7), as described in Table
8.

Table 8. FTXL Transceiver Board Jumper Settings

Function Jumper Description

Chip Select Signal Selector
(J7)

C
S

5

C
S

4

C
S

3

C
S

2

C
S

1

J7

This jumper selects which
Chip Select signal to use in
the J4 connector.

You can set this jumper in
any position, but the setting
for the J7 jumper on the
FTXL Transceiver Board
must match the jumper
setting for the J9 jumper on
the FTXL Adapter Board.

The factory shipped default
setting for this jumper is to
mount it across pins 5 and
6, as shown.

Connectors and Headers
The FTXL Transceiver Board includes five connectors and headers, as listed in
Table 9.

Table 9. FTXL Transceiver Board Connectors and Headers

FTXL Developer’s Kit Function
FTXL Transceiver
Board Function

FTXL Transceiver
Board Name

Connects FTXL Transceiver Board with
FTXL Adapter Board for FTXL Transceiver
Chip I/O

Hirose stacking
header and receptacle

J1 and J3

Connects FTXL Transceiver Board with
FTXL Adapter Board for FTXL Transceiver
Chip I/O

Hirose stacking
header and receptacle

J2 and J4

LONWORKS Network Connector Network Connector J6

FTXL Hardware Guide 17

Figure 5 shows the connections for the J3 and J4 Hirose stacking headers; Figure
6 on page 18 shows the connections for their corresponding J1 and J2 receptacles.

NC_A24

NC_A3

NC_B7

NC_B37

VDD5

NC_B85

NC_A63

NC_A54

NC_A49

NC_A85

VDD5

NC_A5

NC_B53

NC_A21
NC_A23

NC_B59

NC_A95

D3

NC_A111

NC_A86

NC_A15

NC_A97

NC_B54

NC_A7

NC_B91

RST-

VDD5

J3

Hirose FX8C-120P-SV2

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99

101
103
105
107
109
111
113
115
117
119

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120

NC_A79

NC_A58

NC_B71

NC_B12

NC_B27

NC_B75

NC_B20

NC_A61

NC_B116

NC_B82

NC_A37

NC_B34

D5

NC_B28

NC_B4

NC_A89

NC_A45

NC_A62

RXD

NC_B44

NC_A17

VDD3.3

NC_B114

NC_A40

NC_B90

NC_B113
NC_B112

NC_B56

NC_B74

NC_B51

NC_B64

NC_A56

RTS

A0

NC_A28

NC_B88

NC_A108

NC_B77

NC_B14

J4

Hirose FX8C-120P-SV2

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99

101
103
105
107
109
111
113
115
117
119

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120

NC_A116

NC_B78

NC_A26

NC_B5

NC_A93

NC_A117

NC_B87

NC_B8

NC_A100

NC_A96

VDD3.3

NC_B100

VDD5

NC_A11

NC_B69

NC_B52

NC_B33

NC_A99

NC_A106NC_A105

NC_A52

NC_B24

NC_B108

NC_B62
NC_B60

NC_B105

NC_B43

NC_B6

D0

NC_A107

NC_A22

VDD3.3

NC_A91

D2

NC_A39

NC_A19

NC_A6

NC_B46

NC_B50

NC_B18

NC_B41

R/W-

D1

NC_A115

NC_A25

NC_B86

NC_B63

NC_A32

NC_B95

NC_A103

NC_A90

NC_A44

NC_A88

NC_B103

NC_A13

NC_B68

NC_B104

NC_B38

NC_A57

NC_A51

NC_A38

NC_B22

NC_B40

NC_A113

NC_B58

NC_A14 NC_B13

FB_CS3

CTS

NC_A94

NC_B67

NC_A114

NC_A81

NC_B99

TXD

NC_A109

D7

FB_CS5

NC_B55

NC_A16

NC_A98

NC_A36 NC_B36

NC_A118

NC_A18

NC_A34

NC_B26

FB_CS4

NC_A27

NC_B49

NC_A92

NC_B117

NC_B79

NC_B93

NC_A42NC_A41

NC_A55

FB_CS1

D6 NC_B70

NC_A4

NC_B94

NC_B115

NC_A59

NC_B107

NC_A43

NC_A31

NC_B61

NC_B57

NC_B11

NC_B118

NC_B98

NC_A60

FB_CS2

NC_B42

NC_B109

NC_A46

NC_A104

NC_B97

NC_A33
NC_B32

NC_B39

NC_B45

NC_A53

NC_B31

VDD3.3
NC_A12

NC_B111

NC_B3

NC_A20

D4

NC_A87

NC_B15

NC_B35

NC_B96

NC_B106

NC_B92

NC_B73
NC_B72

NC_A8

NC_B76

NC_B89

NC_B80

NC_A64

NC_A112
NC_B110

NC_A35

NC_A50

HRDY

RST-

Header Header

L2MIP_IRQ

Figure 5. FTXL Transceiver Board Hirose Stacking Headers J3 and J4

18 FTXL Developer’s Kit Hardware

J2

Hirose FX8C-120S-SV5

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99

101
103
105
107
109
111
113
115
117
119

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120

NC_B44

FB_CS1

TXD

VDD3.3

FB_CS4

D6

HRDY
D4

NC_B46

GND

NC_A3

NC_A116

Receptacle

NC_A5

NC_A118

NC_A7

VDD5

NC_B7
NC_B5
NC_B3

NC_A11

VDD5

NC_B6
NC_B4

NC_B8

NC_A13

NC_B67

NC_B71
NC_B69

NC_B73

NC_A15

NC_B34
NC_B32

NC_A17

NC_B75
NC_B77

NC_A19

NC_B11

NC_B15
NC_B13

NC_A21

NC_B27

D7

NC_A23

D5
D6

D4

D2
D3

D0
D1

NC_B28
NC_A25
NC_A27

R/W-

A0

NC_A31

GND

NC_A33

CS-

NC_A35
NC_A37
NC_A39
NC_A41
NC_A43
NC_A45

NC_A63

NC_A55

NC_A61
NC_A59

NC_A49

NC_A57

NC_A51
NC_A53

NC_A99

NC_A91

NC_A85

NC_A97
NC_A95
NC_A93

NC_A89
NC_A87

NC_A117

NC_A109

NC_A103

NC_A115

NC_A111
NC_A113

NC_A107
NC_A105

NC_A100

NC_A92

NC_A86

NC_A98
NC_A96
NC_A94

NC_A90
NC_A88

NC_A56

NC_A64
NC_A62

NC_A50

NC_A58
NC_A60

NC_A52
NC_A54

NC_A38

NC_A46

VDD5

NC_A40
NC_A42
NC_A44

NC_A32
NC_A34
NC_A36

VDD5

VDD5

NC_A20

NC_A28

NC_A22

NC_A26
NC_A24

NC_A14
NC_A16
NC_A18

J7 Header 2x5

1 2
3 4
5 6
7 8
9 10

NC_B45

NC_B37

NC_B41
NC_B39

NC_B31

NC_B43

NC_B35
NC_B33

NC_B55

NC_B63

NC_B57

NC_B61

NC_B49

NC_B59

NC_B53
NC_B51

NC_B99

NC_B91

NC_B85

NC_B97
NC_B95
NC_B93

NC_B89
NC_B87

NC_B117

NC_B109

NC_B103

NC_B111

NC_B115
NC_B113

NC_B107
NC_B105

NC_B64

NC_B56

NC_B60
NC_B62

NC_B58

NC_B50

NC_B54
NC_B52

NC_B74

NC_B82
NC_B80

NC_B68

NC_B78
NC_B76

NC_B70
NC_B72

NC_B92

NC_B100

NC_B94
NC_B96

NC_B86

NC_B98

NC_B88
NC_B90

NC_B110

NC_B118

NC_B114
NC_B112

NC_B116

NC_B104
NC_B106
NC_B108

NC_B26

NC_B18
NC_B20
NC_B22

NC_B12

NC_B24

L2MIP_IRQ
NC_B14

NC_A79
NC_A81

VDD3.3

VDD5
NC_A4
NC_A6

Receptacle

CS-

NC_A8

NC_A12VDD3.3

RST-

FB_CS3

D7

NC_B38

D1

FB_CS5

D2

NC_A104
NC_A106

J1

Hirose FX8C-120S-SV5

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99

101
103
105
107
109
111
113
115
117
119

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120

VDD3.3

VDD3.3

NC_A108

NC_B40

VDD3.3

NC_B36

A0

RTS
CTS

D5

D0
NC_B79

RXD

NC_B42

D3

R/W-

FB_CS2

NC_A112
NC_A114

L2MIP_IRQ

Figure 6. FTXL Transceiver Board Hirose Stacking Header Receptacles J1 and J2

FTXL Hardware Guide 19

3

FTXL Transceiver Hardware
Interface

This chapter describes the hardware interface for the FTXL
Transceiver Chip, which is primarily comprised of the parallel
communications interface.

20 FTXL Transceiver Hardware Interface

Overview of the Hardware Interface
The hardware interface for an FTXL Transceiver is comprised of the parallel
communications interface, the pin assignments and characteristics for the FTXL
Transceiver Chip, and the pin assignments and characteristics for the FPGA
device. This chapter describes the hardware interface.

The FTXL 3190 Free Topology Smart Transceiver shares electrical and physical
characteristics with the FT 3120 Smart Transceiver. For information about the
hardware interface for an FT 3120 Smart Transceiver, see the FT 3120 / FT 3150
Smart Transceiver Data Book.

DC-DC Converter
Because the Cyclone II FPGA requires 3.3 V input voltage, and the FTXL
Transceiver Chip requires 5 V input voltage, your hardware design must include
either a separate power supply for each of the two parts, or a DC-DC step-up or
step-down converter chip with a common power supply for both parts.

Important: The Cyclone II FPGA pins are not 5V-tolerant.

The FTXL Developer’s Kit reference design uses the power supply on the
DBC2C20 development board, and the FTXL Adapter Board uses a Texas
Instruments™ TPS60110 step-up, regulated charge pump DC-DC converter to
provide the necessary 5 V for the FTXL Transceiver Chip from the DBC2C20
development board’s 3.3 V power supply.

Control Signal Buffer
For an FPGA device that does not have 5V-tolerant input pins, you need to buffer
the control signals between the FTXL Transceiver and the FPGA device. The
control signals are the CS~, R/W~, A0, IRQ, and RESET~ signals described in
The Parallel Communications Interface on page 21.

The FTXL Adapter Board uses an NXP® Semiconductor 74AHC541 three-state
octal buffer/line driver to provide buffering for the FTXL control signals.

The FTXL RESET~ signal also requires an additional 100 Ω resistor in-series
between the FTXL Transceiver and the buffer/line driver device. See the FT
3120 / FT 3150 Smart Transceiver Data Book for other considerations for the
RESET~ signal, such as providing a comparator circuit that can monitor when
the power-supply voltage goes out of tolerance.

Data Bus Isolation
For an FPGA device that does not have 5V-tolerant input pins, you need to
provide isolation for the data bus signals between the FTXL Transceiver and the
FPGA device. The data bus signals are the D0..D7 signals described in The
Parallel Communications Interface on page 21.

The FTXL Adapter Board uses an NXP Semiconductor 74AHC245 three-state
octal bus transceiver to provide signal isolation for the FTXL data bus.

FTXL Hardware Guide 21

Pull-Up Resistors for Communications Lines
For the parallel communications interface, you must add 10 kΩ pull-up resistors
to all communication lines between the FPGA device and the FTXL Transceiver
Chip (the IO0-IO10 pins of the FTXL Transceiver). These pull-up resistors
prevent invalid transactions on start-up and reset of the FPGA device or the
FTXL Transceiver Chip. Certain I/O pins can revert to a floating state without a
pull-up resistor, which can cause unpredictable results.

The Parallel Communications Interface
An FT 3120 Smart Transceiver can connect to application-specific external
hardware through 11 pins, named IO0-IO10. The Smart Transceiver design
allows these pins to be configured as an I/O object that provides programmable
access to an I/O driver for a specified on-chip I/O hardware configuration and a
specified input or output waveform definition.

The FTXL 3190 Smart Transceiver Chip is an FT 3120 Smart Transceiver with a
firmware image that is configured to use the IO0-IO10 pins as a parallel I/O
object, which defines a bidirectional, half-duplex, 8-bit data port and a 3-bit
control port for connecting to the FPGA device. Because the FTXL Transceiver
communicates with an external host processor, the FPGA device, the parallel I/O
interface is configured in the Smart Transceiver’s slave B mode.

Table 10 summarizes the pin assignments for the FTXL Transceiver, and Figure
7 on page 23 shows the parallel interface for the FTXL Transceiver.

Table 10. FTXL Transceiver Pin Assignments for the Parallel Interface

FTXL Transceiver
Pin Number

FTXL Transceiver
Pin Name Signal Name Direction

4 IO0 D0/HS Input and output

3 IO1 D1 Input and output

2 IO2 D2 Input and output

43 IO3 D3 Input and output

42 IO4 D4 Input and output

36 IO5 D5 Input and output

35 IO6 D6 Input and output

32 IO7 D7 Input and output

31 IO8 CS~ Input

30 IO9 R/W~ Input

27 IO10 A0 Input

22 FTXL Transceiver Hardware Interface

FTXL Transceiver
Pin Number

FTXL Transceiver
Pin Name Signal Name Direction

Note: Signal direction is from the point of view of the FTXL Transceiver Chip.

When configured in slave B mode, the Smart Transceiver defines a 3-bit control
port:

• IO8 is the chip select pin (CS~), and when asserted (driven low), specifies
that a byte-transfer operation is in progress. This pin is driven by the
FPGA device.

• IO9 is the read/write control pin (R/W~), and determines the direction of
the bidirectional data bus. When asserted (driven low), this pin indicates
a write operation; when deasserted (driven high), it specifies a read
operation. This pin is driven by the FPGA device.

• IO10 is the address pin (A0), and controls the function of the IO0 pin,
which can be part of the data I/O (as D0) or can be the handshake signal
(as HS). This pin is driven by the FPGA device.

The FTXL LonTalk protocol stack running on the Nios II processor in the FPGA
device manages the control port for the communications protocol with the FTXL
Transceiver.

Pins IO0-IO7 form the bidirectional data bus (D0-D7) when the IO10 (A0) pin is
low, or when the IO10 (A0) pin is high and the IO9 (R/W~) pin is low. The IO0
pin is the HS (handshake) acknowledgment signal to the master when the IO10
(A0) pin is high and IO9 (R/W~) is high. Table 11 summarizes the states of the
control port for determining the function of the IO0 (D0/HS) pin.

Table 11. Controlling the Function of the IO0 Pin

IO0 Function CS~ State A0 State R/W~ State

D0 Low Low High or Low

D0 Low High Low

HS Low High High

The HS line is driven by the FTXL Transceiver. When it is high, it specifies that
the FTXL Transceiver is busy with an I/O operation, and cannot accept new
read/write requests. When it is low, the FPGA device can access the data bus. It
is possible for the state of the HS line to change before the CS~ pin becomes
inactive.

FTXL Hardware Guide 23

Figure 7. The FTXL Transceiver Parallel Interface

From the point of view of the host processor, the FTXL Transceiver appears as a
memory-mapped parallel I/O device with eight data bits and three control bits.
The FTXL LonTalk protocol stack communicates with the FTXL Transceiver
through two logical registers: an 8-bit read/write data register and a 1-bit read-
only status register. The FTXL LonTalk protocol stack reads the status register’s
HS bit before every read or write.

Token Passing and Handshaking
To eliminate the possibility of data bus contention, the FTXL LonTalk protocol
stack (the master) and the FTXL Transceiver pass a virtual token between them
to indicate which one of them can write to the data bus. Only the owner of the
token can write to the data bus. After the initial device synchronization (or
device resynchronization), the FTXL LonTalk protocol stack owns the token.

Whenever the FTXL LonTalk protocol stack reads data from the bus or writes
data to the bus, the FTXL Transceiver sets the HS signal high. Conversely,
whenever the FTXL Transceiver reads or writes data, it sets the HS signal low.
That is, when the FTXL LonTalk protocol stack owns the token, it waits for the
HS signal from the FTXL Transceiver before it writes data to the bus, and when
the FTXL Transceiver owns the token, the host program monitors the low
transition of the HS signal before it reads the bus.

The FTXL link-layer serial driver, included with the FTXL LonTalk protocol
stack, manages the token and the handshake protocol. Token ownership and
handshaking are transparent to your FTXL application.

Transferring Data
The data transfer operation between the FTXL LonTalk protocol stack (the
master) and the FTXL Transceiver uses the virtual write token passing protocol.

24 FTXL Transceiver Hardware Interface

The FTXL LonTalk protocol stack and the FTXL Transceiver pass the write
token alternatively between themselves on the bus in an infinite ping-pong
fashion. The owner of the token has the option to write a series of data bytes, or
alternatively, pass the write token without any data.

The owner of the token can transfer up to 255 bytes of data. The FTXL LonTalk
protocol stack reads the HS bit of the status register prior to reading or writing
each data byte. The token owner keeps possession of the token until all data
bytes have been written, after which it passes the token to the attached device.

The other device can then repeat the same process or it can pass the token back
without any data.

The FTXL LonTalk protocol stack reads or writes data by first asserting the CS~
signal, then deasserting it. For a host read operation, the assertion causes the
FTXL Transceiver to put data on the bus so that the FTXL LonTalk protocol
stack can read it. For a host write operation, the assertion causes the FTXL
Transceiver to read data on the bus and store it in its input buffer. In both cases,
the data is latched on the rising edge of the CS~ signal.

FTXL Transceiver Pin Characteristics
The FTXL Transceiver includes the following sets of pins:

• Eight I/O pins

• An interrupt request (IRQ) pin

• A reset pin

• A service pin

• Clock pins

• LONWORKS network I/O pins

The following sections describe the characteristics of the I/O, IRQ, Reset~,
Service~, and clock pins. See the FT 3120 / FT 3150 Smart Transceiver Data
Book for information about other pins, including the requirements for the VDD
and ground pins.

I/O Pins
The I/O pins (IO0-IO10) have a standard sink capability (1.4 mA @ 0.4 V), and
have TTL level inputs with hysteresis.

Because the CS~ line (IO8) is asynchronous, it should be kept as noise-free as
possible. For example, you should add a 100 pF debounce capacitor to this line.

Important: To ensure that noise-levels for all communications lines between the
FPGA device and the FTXL Transceiver are kept to a minimum, you should
ensure that the FPGA device and FTXL Transceiver are separated by no more
than 10 cm on the FTXL device’s PCB.

IRQ Pin
The IRQ pin (pin 24) is an output pin. For an FT 3120 Smart Transceiver, this
pin is the CP3 Sleep~ pin. However, for an FTXL 3190 Free Topology Smart

FTXL Hardware Guide 25

Transceiver, this pin is not part of the communications port, and does not
function as a sleep control pin, but acts as in interrupt control pin.

The FTXL LonTalk protocol stack uses the IRQ pin to receive an indication from
the FTXL Transceiver that the network is ready, either for uplink or for
downlink. The FTXL LonTalk protocol stack asserts the IRQ pin high to cause
the interrupt.

The downlink ready interrupt allows the FTXL Transceiver to inform the host
when it has read the first byte of the transfer. This interrupt accounts for the
latency of the parallel interface, that is, between a host write for a downlink
transfer and the FTXL Transceiver read for the transfer. This latency is on the
order of 110 microseconds (for an FTXL Transceiver running at 20 MHz), but it
could be longer if the FTXL Transceiver is busy processing an incoming network
frame. The FTXL LonTalk protocol stack initiates a downlink transfer by writing
only the length byte; it then lets the interrupt service routine handle the rest of
the transfer.

The uplink ready interrupt is an indication from the FTXL Transceiver that
uplink traffic needs to be transferred. The IRQ pin is asserted only when the
FTXL Transceiver does not own the write token.

The IRQ pin is deasserted during the downlink activity.

Although there are two interrupt cases, there is only a single interrupt request
line. The interrupt type is determined by the FTXL LonTalk protocol stack based
on the state of the FTXL Transceiver and token ownership.

Reset Pin
The RESET~ pin (pin 40) is both an input and an output. As an input, the
RESET~ pin is internally pulled high by a current source acting as a pull-up
resistor. The RESET~ pin becomes an output when any of the following events
occur:

• Software reset

• Watchdog Timer event

• Internal low-voltage inhibit (LVI) circuit detects a low voltage

• RESET~ pin drops below the internal trip point

Important: The Nios II processor must be able to detect changes to and assert
the FTXL Transceiver’s RESET~ pin.

Reset Function
The reset function is a critical operation for any embedded microcontroller. In
the case of an FTXL Transceiver, the reset function plays a key role in the
following conditions:

• Initial VDD power up
Reset ensures proper initialization of the FTXL Transceiver.

• VDD power fluctuations
Reset manages proper recovery of the FTXL Transceiver after VDD
stabilizes.

26 FTXL Transceiver Hardware Interface

• Program recovery
If an application experiences unexpected behavior because of address or
data corruption, a reset can recover.

• VDD power down
Reset ensures proper shutdown.

• Memory maintenance
Reset helps protect the EEPROM from major corruption.

The FTXL Transceiver has four mechanisms to initiate a reset:

• The RESET~ pin is asserted (pulled low) and then deasserted (returned
high).

• A software reset command from the parallel interface driver within the
FTXL LonTalk protocol stack.

• A watchdog timeout occurs during application execution (the timeout
period is approximately 840 ms when running at 10 MHz and
approximately 210 ms at 40 MHz; this figure scales inversely with clock
frequency).

• The LVI circuit detects a drop in the power supply below a set level.

During any of the reset functions, when the RESET~ pin is asserted (in the low
state), the FTXL Transceiver enters the following states:

• The oscillator continues to run

• All processor functions stop

• The SERVICE~ pin goes to high impedance

• The I/O pins go to high impedance

When the RESET~ pin is released back to a high state, the FTXL Transceiver
begins its initialization procedure.

Power-Up Sequence
During power up sequences, the RESET~ pin should be held low until the power
supply is stable, to prevent start-up malfunctioning. Likewise, when powering
down, the FTXL Transceiver RESET~ pin should be asserted before the power
supply goes below the minimum operating voltage of the FTXL Transceiver.

Important: If proper reset recovery circuitry is not used, the FTXL Transceiver
can go applicationless. The applicationless state occurs when the checksum
error-verification routine detects a corruption in memory; this corruption can be
falsely detected because of an improper reset sequence or noise on the power
supply. In general, the applicationless state is an unrecoverable state, so be sure
that your device’s reset circuitry is correct.

The total capacitance directly connected to the RESET~ pin, including stray and
external device input capacitance, must not exceed 1000 pF. This limit ensures
that the FTXL Transceiver can successfully output a reset down to below 0.8 V.
The 100 pF minimum capacitance is required for noise immunity.

Because the FTXL LonTalk protocol stack internally handles most reset events,
you do not generally need an external Reset button or switch connected to the
RESET~ pin.

FTXL Hardware Guide 27

Software Controlled Reset
When the CPU watchdog timer expires, or a software command to reset occurs,
the RESET~ pin is asserted (pulled low) for 256 CLK1 clock cycles. The RESET~
pin external capacitor (100 ≤ CE ≤ 1000 pF) begins charging and provides the
required duration of reset.

Watchdog Timer
The FTXL Transceiver is protected against malfunctioning software or memory
faults by three watchdog timers, one for each processor that makes up the
Neuron core. If the system software fails to reset these timers periodically, the
entire FTXL Transceiver automatically resets. The watchdog period is
approximately 840 ms when running at 10 MHz, approximately 210 ms at a 40
MHz input clock rate, and scales inversely with the input clock rate.

LVI Considerations
The FTXL Transceiver includes an internal LVI to ensure that it only operates
above the minimum voltage threshold. See the FT 3120 and FT 3150 Smart
Transceiver Datasheet for LVI trip points.

Reset Processes and Timing
During the reset period, the I/O pins are in a high-impedance state. The data
lines are undetermined but driven high or low, so that they do not float and draw
excess current. The SERVICE~ pin is high impedance during reset. After the
RESET~ pin is released, the FTXL Transceiver performs hardware and firmware
initialization before communicating with the host processor.

Service Pin
The service pin (pin 5) function for an FTXL device is controlled by the host
processor. The SERVICE~ pin on the FTXL Transceiver is not used.

Clock Pins
The FTXL Transceiver operates with an input clock of 5, 10, 20, or 40 MHz. The
FTXL Transceiver divides the input clock by a factor of two to provide a
symmetrical on-chip system clock. The input clock can be generated either by an
external free-running oscillator or by the on-chip oscillator in the FTXL
Transceiver using an external parallel-mode resonant crystal.

The accuracy of the input clock frequency of the FTXL Transceiver must be ±200
ppm or better; this requirement can be met with a suitable crystal, but cannot
generally be met with a ceramic resonator.

The FTXL Transceiver includes an oscillator that can be used to generate an
input clock using an external crystal. For 5 MHz, 10 MHz, and 20 MHz, either
an external clock source or the on-chip crystal oscillator can be used. For 40 MHz
operation, an external oscillator must be used.

28 FTXL Transceiver Hardware Interface

When an externally generated clock is used to drive the CLK1 CMOS input pin of
the FTXL Transceiver, CLK2 must be left unconnected or used to drive no more
than one external CMOS load. The accuracy of the clock frequency must be
±0.02% (200 ppm) or better, to ensure that devices can correctly synchronize their
bit clocks.

Figure 8 shows the crystal oscillator circuit. Use the load capacitance and
resistor values recommended by the manufacturer of the crystal for this circuit.
A 60/40 duty cycle or better is required when using an external oscillator. An
external oscillator must provide CMOS voltage levels to the CLK1 pin.

Figure 8. FTXL Transceiver Clock Generator Circuit

The FTXL Transceiver was designed to run at frequencies up to 40 MHz using an
external clock oscillator. External oscillators generally take several milliseconds
to stabilize after power-up. The FTXL Transceiver operating at 40 MHz must be
held in reset until the externally-generated CLK input is stable, so an external
power-on-reset-pulse stretching LVI chip/circuit is required. See the specification
for the oscillator for more information about startup stabilization times.

FPGA Pin Assignments for the FTXL Transceiver
The standard design that is included with the FTXL Developer’s Kit defines the
pins for communications with the FTXL Transceiver Chip, as listed in Table 12.

For your own FPGA design, you can assign the pins to any appropriate pins using
the Quartus II Pin Planner tool.

Table 12. FPGA Pin Assignments for the FTXL Transceiver

FPGA Design Pin
Name

FPGA Pin
Number Direction

Edge
Capture

Corresponding FTXL
Transceiver Pin

FTXL_IRQ E20 Input Rising
edge

Pin 24 (CP3/IRQ)

FTXL_SERVICE_PIN U1 Input Either
edge

Pin 5 (SERVICE~)

FTXL Hardware Guide 29

FPGA Design Pin
Name

FPGA Pin
Number Direction

Edge
Capture

Corresponding FTXL
Transceiver Pin

FTXL_RESET G16 Bidirectional Falling
edge

Pin 40 (RESET~)

FTXL_SERVICE_LED U8 Output N/A

FTXL_AO H14 Output Pin 27 (IO10/A0)

FTXL_CS H15 Output Pin 31 (IO8/CS~)

FTXL_RW H16 Output

N/A

Pin 30 (IO9/R/W~)

FTXL_D0 P15 Bidirectional Pin 4 (IO0/D0/HS)

FTXL_D1 J14 Bidirectional Pin 3 (IO1/D1)

FTXL_D2 F14 Bidirectional Pin 2 (IO2/D2)

FTXL_D3 J15 Bidirectional Pin 43 (IO3/D3)

FTXL_D4 F15 Bidirectional Pin 42 (IO4/D4)

FTXL_D5 H17 Bidirectional Pin 36 (IO5/D5)

FTXL_D6 E18 Bidirectional Pin 35 (IO6/D6)

FTXL_D7 G17 Bidirectional

Either
edge

Pin 32 (IO7/D7)

Notes:

• Signal direction is from the point of view of the FPGA device.

• All pins use the 3.3 V low-voltage transistor-transistor logic (LVTTL) I/O standard.

• The FTXL_AO and the FTXL_D[7..0] pins share an Avalon tri-state bridge.

The FPGA design also defines the pin assignments for the clock signals, SDRAM
controller, and CFI flash interface controller. These pin assignments apply
specifically to the DBC2C20 development board; your design will have different
hardware requirements, and thus define different pin assignments for these
functions.

Control Flow: Host Receiving Data from the FTXL
Transceiver

When the FTXL Transceiver is ready to send an uplink message to the host
program, it asserts the IRQ pin. The host then asserts the A0 pin to read the
handshake bit, and deasserts the pin to read data bit 0. The transceiver receives
the write token after the host writes a message (or a null token). The transceiver
informs the host that it has data to send by asserting IRQ. The host asserts CS~

30 FTXL Transceiver Hardware Interface

and A0, and waits for the assertion of D0/HS, and then deasserts A0, asserts CS~
and reads D0-D7 to receive the data.

Figure 9 shows an overview example logic analyzer trace1 of the timing control
flow when the host receives data from the FTXL Transceiver. In this example,
the host receives a query status request.

See Appendix A, Using the Bring-Up Application to Verify FTXL Hardware
Design, on page 63, for more detailed information about verifying the
communications between the host processor and the FTXL Transceiver.

Figure 9. Overview Timing Diagram: Host Receives Data from the FTXL Transceiver

Figure 10 on page 31 shows a more detailed timing diagram for reading the
length byte. The diagram also shows the read handshake.

1 The logic analyzer traces were generated using the TechTools DigiView™ Logic Analyzer.

FTXL Hardware Guide 31

Figure 10. Timing Diagram for Reading the Length Byte

Figure 11 shows a detailed timing diagram for reading the data. The figure also
shows the read handshake for each byte of data. However, the figure shows only
the first three bytes of the data.

Figure 11. Timing Diagram for Reading Data

32 FTXL Transceiver Hardware Interface

Control Flow: Host Sending Data to the FTXL
Transceiver

When the host program is ready to send a downlink message to the FTXL
Transceiver, it asserts the A0 pin. It receives the write token after the
transceiver has sent a complete message, or passed a null token. The transceiver
asserts IRQ after it has received the first byte of the message (the length byte),
and is ready to receive the rest of the bytes (in fast-I/O mode). It does not assert
IRQ if the host sends the null token.

Note: The transceiver never holds onto the token; when it gets the token, it
either writes a message or passes the token back to the host.

Figure 12 shows an overview example logic analyzer trace of the timing control
flow when the host sends data to the FTXL Transceiver. In this example, the
host sends a service-pin message.

See Appendix A, Using the Bring-Up Application to Verify FTXL Hardware
Design, on page 63, for more detailed information about verifying the
communications between the host processor and the FTXL Transceiver.

Write
length

Write 1st

data byte
Write 2nd

 data byte
Write remaining

bytes
Busy

Ready Busy Ready

Figure 12. Overview Timing Diagram: Host Sends Data to the FTXL Transceiver

Figure 13 on page 33 shows a more detailed timing diagram for writing the
length byte for the service-pin message. The diagram also shows the read
handshake.

FTXL Hardware Guide 33

Read Handshake

Handshake (D0)
ready

A0 high -> D0
is handshake

R/W~ low -> read

Write length = 0x13

R/W~high -> write A0 low -> D0 is
data

Figure 13. Timing Diagram for Writing the Length Byte

Figure 14 on page 34 shows a detailed timing diagram for writing the first two
bytes of the data. The figure also shows the read handshake for each byte of
data.

34 FTXL Transceiver Hardware Interface

Read
Handshake

(Ready)

Write Data (0x12)

Read Handshake
(Busy)

Read Handshake
(Ready)

Write Data
(0x00)

Figure 14. Timing Diagram for Writing the First Two Bytes of Data

Figure 15 shows a detailed timing diagram for writing the remaining bytes of the
data for the service-pin message.

Write Data (0x12) Write Data (0x00) Write Remaining Data:
(30, 00 80 00 7f 04 d1 cd d3 01 00 9f ff ff 06 00 0a 04 11)Busy

Ready

Figure 15. Timing Diagram for Writing Remaining Data

Figure 16 on page 35 shows an overview timing diagram for writing all of the
data bytes for the service-pin message, including the last byte.

FTXL Hardware Guide 35

D=0x00

D=0x30

D=0x80
D=0x00

D=0x7F

D=0xD1

D=0x04

D=0xCD
D=0xD3

D=0x01

D=0x9F

D=0x00

D=0xFF
D=0xFF

D=0x06

D=0x0A

D=0x00

D=0x04
D=0x11

D=0x00

Busy

Ready

Figure 16. Timing Diagram for Writing a Service-Pin Message

FTXL Hardware Guide 37

4

FPGA Design for the FTXL
Transceiver

This chapter describes FPGA design considerations for an
FTXL device.

38 FPGA Design for the FTXL Transceiver

Overview
The hardware for an FTXL device consists primarily of an FTXL Transceiver
Chip and an Altera FPGA device. When designing your FTXL device, you can
use the reference design that is included with the FTXL Developer’s Kit or you
can create your own FPGA design and include the required FTXL components.

Using the Reference Design
The FTXL Developer’s Kit provides a reference design for the FPGA hardware
design. You can use this design as is for an FTXL device that uses the same
underlying hardware as the DBC2C20 development board, or you can modify the
design for a different development board or production device.

The reference design is located in the
[NiosEDS]\examples\vhdl\DBC2C20_FTXL\Standard directory, where
[NiosEDS] is the directory to which you installed the Nios II Embedded Design
Suite (EDS), usually C:\altera\72\nios2eds. You should create a backup copy of
this design before modifying it.

To work with the reference design, you must use the Altera Quartus II software,
version 7.2 or later (either the Web Edition or the Subscription Edition). Within
the Quartus II software, you must:

• Set up the USB Blaster download cable so that you can load the design
into the FPGA device on the DBC2C20 development board; see Using a
Device Programmer for the FPGA Device on page 55.

• Add the FTXL and DBC2C20 components to the global or project search
path; see Setting Component Search Paths on page 56.

• If you modify the reference design, recompile the project; see Building the
Application Image on page 61.

• Load the design into the FPGA device on the DBC2C20 development
board; see Loading the Application Image into the FPGA Device on page
62.

Developing a New FPGA Design
During development of a new FPGA design for an FTXL Transceiver, your design
needs to address the following considerations:

• Which type of physical FPGA device to use

• Which type of Nios II processor to use

• Which FPGA configuration device to use

• How to design for the FTXL parallel interface

• How to modify the FTXL hardware abstraction layer (HAL) for the
software project

This chapter addresses these considerations for an FTXL device.

FTXL Hardware Guide 39

To develop a new FPGA design, you must use the Altera Quartus II software,
version 7.2 or later (either the Web Edition or the Subscription Edition). Within
the Quartus II software, you must:

• Add the FTXL components to the global or project search path; see
Setting Component Search Paths on page 56.

• Add the FTXL components to the project; see Adding FTXL Components
to an Existing Design on page 57.

• Compile the project; see Building the Application Image on page 61.

• Load the design into the FPGA device; see Loading the Application Image
into the FPGA Device on page 62.

In addition, your design also needs to address other hardware design
considerations for the FTXL 3190 Smart Transceiver Chip. These other
considerations are not described in this book; see the FT 3120 / FT 3150 Smart
Transceiver Data Book for information about these other considerations.

FPGA Device Requirements
The FTXL Transceiver reference design can use a Cyclone II or Cyclone III FPGA
device for its Nios II host processor. Table 13 lists the FPGA devices supported
as host FPGA devices for an FTXL Transceiver.

Table 13. Supported Cyclone II and Cyclone III FPGA Devices

Cyclone II FPGA Device Cyclone III FPGA Device Supported for FTXL?

EP2C5 EP3C5 Yes (see note)

EP2C8 EP3C10 Yes

EP2C15 EP3C16 Yes

EP2C20 EP3C25 Yes

EP2C35 EP3C40 Yes

EP2C50 EP3C55 Yes

EP2C70 EP3C80 Yes

 EP3C120 Yes

Note: A Cyclone II EP2C5 FPGA device or a Cyclone III EP3C5 FPGA device
might not have a sufficient number of logic elements (LEs) available for an FTXL
device design. The EP2C5 FPGA provides 4608 LEs and the EP3C5 provides
5136 LEs, whereas a simple FTXL device (such as the FTXL Transceiver
reference design) could require more than 3500 LEs.

The FTXL Developer’s Kit reference design uses an EP2C20 Cyclone II FPGA
device. Which FPGA device your FTXL device uses depends on your
requirements: including the number of logic elements (LEs), embedded

40 FPGA Design for the FTXL Transceiver

multipliers, embedded memory blocks, phase-locked loops (PLLs), and high-speed
differential I/O channels.

See the Altera Cyclone II Device Handbook or Cyclone III Device Handbook for
more information about these FPGA devices.

Although the FTXL Transceiver has not been tested with an Altera Stratix®,
Stratix GX, or Arria™ GX FPGA device, there is no restriction within the FTXL
hardware or software design that prevents your FTXL device from using one of
these types of FPGA device. Likewise, there is no restriction on porting your
FTXL device to an Altera Hardcopy® II or Hardcopy Stratix structured ASIC
device.

Nios II Processor
The FTXL Developer’s Kit reference design uses a Nios II/s processor with the
following characteristics:

• Embedded multipliers

• No hardware divide

• Reset vector set to the cfi_flash at offset 0x0

• Exception vector set to the sdram at offset 0x20

• 4 KB cache for the instruction master

• Bursts disabled for the instruction master

• No tightly coupled instruction master ports

• Default settings for the data master

• No advanced features selected

• JTAG Level 1

• No custom instructions

Your FTXL device design can use either a Nios II/s or Nios II/f processor with
similar settings as those of the FTXL Developer’s Kit. However, the Nios II/e
processor might not have sufficient resources for an FTXL device.

See the Altera Nios II Processor Reference Handbook for more information about
the Nios II processor.

FPGA Configuration Device
The FTXL Developer’s Kit reference design hardware uses an EPCS16 serial
configuration device. Your FTXL device design can use any configuration device
that is appropriate for your design’s FPGA device.

In the Quartus II Device and Pin Options dialog, the configuration device uses
the active serial configuration and generates compressed bit streams, as shown in
Figure 17 on page 41. The configuration device uses default settings.

FTXL Hardware Guide 41

Figure 17. Quartus II Device and Pin Options Dialog

See the Altera Configuration Handbook for more information about FPGA
configuration devices.

FTXL Components
The FTXL Developer’s Kit includes components for the Altera SOPC Builder tool
and the Quartus II software, as listed in Table 14. These components are
installed to the [NiosEDS]\components\FTXL directory. An FTXL device must
include all of these components.

Table 14. FTXL Components

Component
Name Class Name File Names Description

FTXL Parallel
Interface
Delay

FTXL_PIO_Delay FTXL_PIO_Delay.bsf

FTXL_PIO_Delay.bdf

Parallel interface
timing delay
circuit

42 FPGA Design for the FTXL Transceiver

Component
Name Class Name File Names Description

FTXL Parallel
I/O
Transceiver
Interface

FTXL_PIO FTXL_PIO_hw.tcl Parallel I/O
interface to the
FTXL Transceiver

FTXL Service
LED

FTXL_SERVICE_LED FTXL_SERVICE_LED.vhd

FTXL_SERVICE_LED_hw.tcl

Service LED for
the FTXL device

FTXL Service
Pin

FTXL_SERVICE_PIN FTXL_SERVICE_PIN.vhd

FTXL_SERVICE_PIN_hw.tcl

FTXL service pin
input and
interrupt

FTXL
Transceiver
Interrupt

FTXL_IRQ FTXL_IRQ.vhd

FTXL_IRQ_hw.tcl

Interrupt signal
from the FTXL
Transceiver

FTXL
Transceiver
Reset

FTXL_RESET FTXL_RESET.vhd

FTXL_RESET_hw.tcl

Bidirectional reset
signal used to
reset and detect
reset on the FTXL
Transceiver

None of these components has any parameters that you can set within the Altera
SOPC Builder tool.

The following sections describe each of the FTXL components.

FTXL Parallel Interface Delay
Because the Cyclone II FPGA device has low delay times for its signals, the
required timing for the parallel interface control port is achieved by adding a
separate time-delay function to the Quartus II design. Figure 18 shows the
Quartus II design view of the FTXL parallel interface delay component.

CS_IN

CLK_IN
RESET_IN

A0_IN
RW_IN

A0_OUT
CS_OUT
RW_OUT

FTXL_PIO_Delay

inst2

Figure 18. Quartus II Component for the FTXL Parallel Interface Delay

The delay circuit includes six D flip-flops, which provide the required delay for
the three control signals:

• The CS~ signal is delayed by three clock cycles. It is also inverted by a
NAND gate to ensure that it is active low.

FTXL Hardware Guide 43

• The A0 signal is delayed by two clock cycles.

• The R/W~ signal is delayed by one clock cycle.

Figure 19 shows the circuit detail for this component.

VCC
CS_IN INPUT

VCC
A0_IN INPUT

VCC
RW_IN INPUT

VCC
CLK_IN INPUT

VCC
RESET_IN INPUT

CS_OUTOUTPUT

A0_OUTOUTPUT

RW_OUTOUTPUT

CLRN

D
PRN

Q

DFF

inst
CLRN

D
PRN

Q

DFF

inst2
CLRN

D
PRN

Q

DFF

inst5
CLRN

D
PRN

Q

DFF

inst6

NAND2

inst7

VCC

CLRN

D
PRN

Q

DFF

inst9CLRN

D
PRN

Q

DFF

inst18

sy sclk

Figure 19. FTXL Parallel Interface Timing Delay Component

FTXL Parallel I/O Transceiver Interface
The FTXL parallel interface consists of a memory-mapped bus interface for an 8-
bit data bus and three 1-bit control signals, as described in The Parallel
Communications Interface on page 21.

The FTXL parallel I/O transceiver interface component defines the following
signals, as shown in Figure 20 on page 44:

• clk_out: Component clock signal

• clk: Nios II processor clock signal

• address: FTXL address (A0) signal, that controls the function of the IO0
pin, which can be part of the data I/O (as D0) or can be the handshake
signal (as HS)

• data: FTXL data bus

• RW: FTXL read/write (R/W~) signal, which determines the direction of
the bidirectional data bus

• CS: FTXL chip select (CS~) signal, which specifies whether a byte-
transfer operation is in progress

Figure 20 on page 44 shows the definitions for the signals that comprise the
FTXL parallel interface. The figure shows part of the Quartus II Component
Editor dialog for this component, open to the Signals tab.

44 FPGA Design for the FTXL Transceiver

Figure 20. Quartus II Component Editor Dialog for FTXL Parallel I/O Signals

The data and control parts of the interface share a common Avalon tri-state
bridge component. Figure 21 on page 45 shows part of the Quartus II Component
Editor dialog for this component, open to the Interfaces tab, with most of the
interface definitions expanded. Figure 22 on page 46 shows the same dialog,
with the last interface expanded.

FTXL Hardware Guide 45

Figure 21. Quartus II Component Editor Dialog for FTXL Parallel I/O Interfaces (Part 1)

46 FPGA Design for the FTXL Transceiver

Figure 22. Quartus II Component Editor Dialog for FTXL Parallel I/O Interfaces (Part 2)

FTXL Service LED
The FTXL service LED component defines the signals needed for an FTXL device
service-pin LED, including:

• clk: Nios II processor clock signal

• reset_n: Nios II processor reset signal

• address: 2-bit address signal for the LED

FTXL Hardware Guide 47

• chipselect: Select signal to enable access to the LED

• write_n: Write-select signal to write to the LED

• writedata: Data signal to the LED

• out_port: Output signal from the LED

FTXL Service Pin
The FTXL service pin component defines the signals needed for an FTXL device
service-pin button, including:

• clk: Nios II processor clock signal

• reset_n: Nios II processor reset signal

• address: 2-bit address signal for the service pin button

• chipselect: Select signal to enable access to the service pin button

• write_n: Write-select signal to write to the service pin button

• writedata: Data signal to the service pin button

• readdata: Data signal from the service pin button

• irq: Interrupt signal from the service pin button

• in_port: Input signal to the service pin button

FTXL Transceiver Interrupt
The FTXL Transceiver interrupt component defines the signals needed for the
FTXL Transceiver interrupt pin, including:

• clk: Nios II processor clock signal

• reset_n: Nios II processor reset signal

• address: 2-bit address signal for the interrupt pin

• chipselect: Select signal to enable access to the interrupt pin

• write_n: Write-select signal to write to the interrupt pin

• writedata: Data signal to the interrupt pin

• readdata: Data signal from the interrupt pin

• irq: Interrupt signal from the interrupt pin

• in_port: Input signal to the interrupt pin

FTXL Transceiver Reset
The FTXL Transceiver reset component defines the signals needed for the FTXL
Transceiver reset pin, including:

• clk: Nios II processor clock signal

• reset_n: Nios II processor reset signal

• address: 2-bit address signal for the reset pin

48 FPGA Design for the FTXL Transceiver

• chipselect: Select signal to enable access to the reset pin

• write_n: Write-select signal to write to the reset pin

• writedata: Data signal to the reset pin

• readdata: Data signal from the reset pin

• bidir_port: Bidirectional signal for the reset pin

Phase-Locked Loop
If your FPGA design includes a phase-locked loop (PLL) component, be sure to
connect one of its clock-out signals to the CLK_IN signal of the FTXL parallel I/O
transceiver interface component. The CLK_IN signal requires the following
characteristics for the PLL clock-out signal:

• Ratio: 1/1

• Phase shift: 0

• Clock duty cycle: 50%

If your FPGA design does not include a PLL component, be sure to connect the
CLK_IN signal to an external oscillator with the same characteristics and the
same clock speed as the Nios II processor clock.

DBC2C20 Components
Although the reference designs that are provided with the DBC2C20
development board include several SOPC Builder components, the FTXL
Developer’s Kit reference design uses only one of the SOPC Builder components
for the DBC2C20 development board: the DBC2C20 SRAM interface. This
component is installed to the [NiosEDS]\components\DBC2C20_sram_interface
directory.

You do not need to install any of the SOPC Builder components for the DBC2C20
development board from the CD-ROM that accompanies the DBC2C20
development board.

Your FTXL device can include any appropriate SRAM components, but a design
that uses the DBC2C20 development board must use the DBC2C20 SRAM
interface component.

Timers
The FTXL Developer’s Kit reference design includes a system timer (a 1 ms
timer) and a high-resolution timer (a 1 μs timer). The high-resolution timer is
not used by the FTXL software, but is included for applications that require a
timer with higher resolution than the system clock.

External Memory
The FTXL Developer’s Kit reference design includes the following external
memory:

• 1 MB SRAM

FTXL Hardware Guide 49

• 8 MB CFI flash memory

• 16 MB SDRAM

These numbers correspond to the external memory provided by the DBC2C20
development board. Your FTXL device design can include as much external
memory as required for your device.

Addressing, Size, and IRQ Requirements
For the FTXL Developer’s Kit reference design, the address assignments for the
instruction master and data master components were assigned by allowing the
Altera SOPC Builder tool to allocate and assign the address locations.

Table 15 lists the size requirements of each of the major components of the FTXL
Developer’s Kit reference design. The size specifications for general components
are the default sizes; the size specifications for the components whose names
begin with FTXL_ define the requirements for the hardware interface.

Table 15. Size Requirements for Components in the FTXL Reference Design

Component Component Name
Size
(Bytes)

FTXL Parallel I/O Transceiver
interface

FTXL_PIO_inst 8

JTAG UART jtag_uart 8

System ID sysid 8

FTXL service LED FTXL_SERVICE_LED_inst 16

FTXL service pin FTXL_SERVICE_PIN_inst 16

FTXL Transceiver interrupt FTXL_IRQ_inst 16

FTXL Transceiver reset FTXL_RESET_inst 16

High-resolution timer high_res_timer 32

System timer sys_timer 32

EPCS serial flash controller port epcs_controller 2 KB

JTAG debug module cpu.jtag_debug_module 2 KB

SRAM interface for the DBC2C20
development board

DBC2C20_sram_interface_0 1 MB

CFI flash interface for the DBC2C20
development board

cfi_flash 8 MB

50 FPGA Design for the FTXL Transceiver

Component Component Name
Size
(Bytes)

SDRAM interface for the DBC2C20
development board

sdram 16 MB

Table 16 lists the interrupt request (IRQ) numbers for each of the components
that can generate an interrupt. Your FTXL FPGA design can specify different
IRQ numbers, as long as the components retain the same relative interrupt
levels.

Table 16. IRQ Specifications for the FTXL Reference Design

Component Component Name
IRQ
Number

System timer sys_timer 0

JTAG UART jtag_uart 1

High-resolution timer high_res_timer 2

EPCS serial flash
controller port

epcs_controller 3

FTXL Transceiver
interrupt

FTXL_IRQ_inst 11

FTXL service pin FTXL_SERVICE_PIN_inst 13

FTXL Hardware Abstraction Layer
The FTXL software design provides a hardware abstraction layer (HAL) that acts
as an interface between the Nios IDE-generated system library (primarily the
system.h file) and the FTXL software. The FTXL HAL provides a number of
abstract functions and macro definitions that allow portability among various
FPGA designs.

When you create or modify the FPGA design and regenerate the Nios system
library, you must modify the FTXL HAL to use the component names defined in
your Nios system library. Thus, the FTXL LonTalk protocol stack library works
with any underlying hardware, and you do not need to modify your FTXL host
program when you modify the hardware design.

Recommendation: The FTXL Developer’s Kit reference design defines a number
of component names (names that begin with FTXL_) that you should retain in
your design so that you do not need to modify the FTXL HAL. However, if you do
modify these names, you must modify the FTXL HAL appropriately. If you add
new components, you should define a new HAL for those components.

Important: Because the FTXL LonTalk protocol stack library calls the functions
that the FTXL HAL defines, you can change the behavior of these functions, but
not the function names of the programmatic interface.

FTXL Hardware Guide 51

Within the FTXL software, the FTXL HAL is defined in two files: FtxlHal.h and
FtxlHal.c.

Other Hardware Design Considerations
The FTXL 3190 Free Topology Smart Transceiver Chip shares electrical and
physical characteristics with the FT 3120 Smart Transceiver Chip. For
information about hardware design for an FT 3120 Smart Transceiver, including
PCB design considerations, EMC considerations, electrical characteristics of the
chip, and networking requirements, see the FT 3120 / FT 3150 Smart
Transceiver Data Book.

For other FPGA design considerations, see the Altera Cyclone II Device
Handbook or the Cyclone III Device Handbook.

FTXL Hardware Guide 53

5

Working with the Altera
Development Environments

This chapter describes how to use the Altera Complete
Design Suite to build the hardware design and load it into
the FPGA device.

54 Working with the Altera Development Environments

Development Tools
To develop your FTXL application, you use version 7.2 or later of the Altera
Complete Design Suite, as listed in Table 17. You can obtain the Altera
Complete Design Suite on DVD-ROM from Altera Corporation, or you can
download the Web Edition of the tools from
https://www.altera.com/support/software/download/nios2/dnl-nios2.jsp.

Table 17. Altera Complete Design Suite

Quartus II Design Software for Windows

The Quartus II design software provides a suite of tools for system-level design,
embedded software programming, FPGA and CPLD design, synthesis, place-and-
route, verification, and device programming. Quartus II software supports all of
Altera's current device families.

The Quartus II Web Edition is a subset of the Quartus II design software that
provides support for selected Altera processors.

Both the Quartus II design software and the Quartus II Web Edition include the
SOPC Builder tool, which is an automated system development tool that
dramatically simplifies the task of creating high-performance system-on-a-
programmable-chip (SOPC) designs.

ModelSim®-Altera VHDL & Verilog HDL Simulation Tool

The ModelSim-Altera software is an Altera-specific version of the Model
Technology™ ModelSim simulation software, which supports behavioral
simulation and testbenches for VHDL or Verilog hardware description languages
(HDLs). The ModelSim-Altera software is included with Altera software
subscriptions.

MegaCore IP Library

The MegaCore IP library includes some of Altera’s most popular intellectual
property (IP) cores, including a finite impulse response (FIR) compiler, a
numerically controlled oscillator (NCO) compiler, a fast Fourier transform (FFT)
compiler, several DDR SDRAM controllers, a QDRII SDRAM controller, an
RLDRAM II controller, and a lightweight serial interconnect protocol. The
MegaCore IP library is included with Altera software subscriptions.

Nios II Embedded Design Suite

The Nios II integrated development environment (IDE) is a graphical user
interface (GUI) within which you can accomplish all Nios II embedded processor
software development tasks, including editing, building, managing, and
debugging embedded software programs. The Nios II IDE is included with Altera
software subscriptions.

For more information about installing the Altera Complete Design Suite, see
Quartus II Installation & Licensing for Windows, available from the Quartus II
Development Software Literature page at www.altera.com/literature/lit-qts.jsp.

https://www.altera.com/support/software/download/nios2/dnl-nios2.jsp
http://www.altera.com/literature/lit-qts.jsp

FTXL Hardware Guide 55

Using a Device Programmer for the FPGA Device
To load your hardware design, software application, and the FTXL LonTalk
protocol stack, into the FPGA device, you can use a device programmer, such as
the Altera USB-Blaster download cable, as described in Table 18.

Table 18. Device Programmer for the Nios II Processor

Altera USB-Blaster Download Cable

The USB-Blaster download cable interfaces to a standard PC USB port. This
cable drives configuration or programming data from the PC to the device. For
more information about the USB-Blaster, see the USB-Blaster Download Cable
User Guide.

The Windows driver for the USB-Blaster is in the [Altera]\quartus\drivers\usb-
blaster directory, where [Altera] is the directory in which you installed the Altera
Complete Design Suite, usually C:\altera\72.

To set up the programming hardware in the Quartus II software:

1. Start the Quartus II software.

2. Select Tools → Programmer to open the Chain Description File (*.cdf)
view for the project.

3. Click Hardware Setup to open the Hardware Setup window.

4. If you have already installed the Windows drivers for the USB-Blaster, it
should appear in the Available hardware items area of the Hardware
Setup window.

5. If the programming hardware that you want to use does not appear in the
Available hardware items area of the Hardware Setup window, click the
Add Hardware button to open the Add Hardware dialog.

a. Select the appropriate programming cable or programming
hardware from the Hardware Type dropdown list box.

b. Select the appropriate port, baud rate, and server information, if
necessary.

c. Click OK.

6. Select the programming hardware that you want to use from the
Currently selected hardware dropdown list box.

7. Click Close to close the Hardware Setup window.

8. Select JTAG from the Mode dropdown list box of the Chain Description
File view for the project.

9. Select File → Close to close the Chain Description File view for the
project.

You can save the Chain Description File (*.cdf) for use with other projects.

56 Working with the Altera Development Environments

Setting Component Search Paths
To work with an FPGA design that includes FTXL components, you must add the
components to the Quartus II and SOPC Builder library paths. In addition, for
the FTXL reference design, you must add the DBC2C20 components to the
library paths.

In the Quartus II software, you can add the FTXL components to the global
library paths so that all projects can access the FTXL components, or you can add
the FTXL components to the library path for a specific project.

To add FTXL components to the Quartus II global library path:

1. Start the Quartus II software.

2. Open a Quartus II project, such as the FTXL reference design.

3. Select Tools → Options to open the Options window.

4. In the Category area on the left side of the Options window, select Global
User Libraries (All Projects).

5. In the Global User Libraries (All Projects) page, click the browse button
(…) to the right of the Library name field to open the Select Directory
dialog.

6. In the Select Directory dialog, select the
[Altera]\nios2eds\components\FTXL directory, and click Open.

7. In the Global User Libraries (All Projects) page, click Add to add the
FTXL components to the Libraries area. Click OK to save the updated
library path setting and close the window.

If you want to add the DBC2C20 components to the global library path, specify
the [Altera]\nios2eds\components\DBC2C20_sram_interface directory in step 6.

To add FTXL components to a specific Quartus II project library path:

1. Start the Quartus II software.

2. Open a Quartus II project, such as the FTXL reference design.

3. Select Assignments → Settings to open the Settings window.

4. In the Category area on the left side of the Settings window, select
Libraries.

5. In the Libraries page, click the browse button (…) to the right of the
Project library name field to open the Select Directory dialog.

6. In the Select Directory dialog, select the
[Altera]\nios2eds\components\FTXL directory, and click Open.

7. In the Libraries page, click Add to add the FTXL components to the
Libraries area. Click OK to save the updated library path setting and
close the window.

If you want to add the DBC2C20 components to the project library path, specify
the [Altera]\nios2eds\components\DBC2C20_sram_interface directory in step 6.

You do not need to add components to the project library path if they are already
in the global library path.

FTXL Hardware Guide 57

To add FTXL components to the SOPC Builder library path:

1. Start the Quartus II software.

2. Open a Quartus II project, such as the FTXL reference design.

3. Select Tools → SOPC Builder to open the Altera SOPC Builder tool.

4. In the Altera SOPC Builder tool, select Tools → Options to open the
Options dialog.

5. In the Options dialog, select IP Search Path from the Category area.

6. In the IP Search Path Options page of the Options dialog, click Add to
open the Open dialog.

7. In the Open dialog, select the [Altera]\nios2eds\components\FTXL
directory and click Open.

8. Click Finish to save the updated search paths and close the Options
dialog.

If you want to add the DBC2C20 components to the SOPC Builder search path,
specify the [Altera]\nios2eds\components\DBC2C20_sram_interface directory
in step 7. You might also have to specify the [Altera]\quartus\bin directory to
allow the SOPC Builder to find standard Altera MegaCore IP Library functions.

Adding FTXL Components to an Existing Design
To add FTXL components to an existing FPGA device design, you must modify
your SOPC Builder design for the project and you must modify your Quartus II
block design file (*.bdf) design for the project.

After you modify both designs, you must regenerate the SOPC Builder design
and recompile the Quartus II project. See Building the Application Image on
page 61 for more information.

Modifying the SOPC Builder Design
Before you begin, ensure that the SOPC Builder IP search path includes the
FTXL components; see Setting Component Search Paths on page 56.

This section assumes that you have already added a Nios II processor and related
hardware components to the FPGA device design within the SOPC Builder tool.

Recommendation: Use the default component names (ComponentClass_inst)
whenever possible so that you do not need to modify the FTXL HAL file,
FtxlHal.c.

To add FTXL components to the design:

1. Start the Quartus II software.

2. Open your Quartus II project to which you plan to add the FTXL
components.

3. Select Tools → SOPC Builder to open the Altera SOPC Builder tool.

4. In the Altera SOPC Builder tool, select the System Contents tab.

5. Add an Avalon tristate bridge:

58 Working with the Altera Development Environments

a. Expand the Bridges and Adapters folder.

b. Expand the Memory Mapped folder.

c. Select Avalon-MM Tristate Bridge.

d. Click Add to open the MegaWizard for the component.

e. In the MegaWizard for the Avalon-MM Tristate Bridge, select
Registered on the Incoming Signals page. Click Finish to add the
component to the design.

6. Add the FTXL Parallel I/O Transceiver Interface component:

a. Expand the FTXL folder.

b. Select FTXL Parallel I/O Transceiver Interface.

c. Click Add to open the MegaWizard for the component.

d. In the MegaWizard for the FTXL Parallel I/O Transceiver
Interface, there are no parameters to set. Click Finish to add the
component to the design.

e. Connect FTXL_PIO_inst.avalon_tristate_slave_0 to
tristate_bridge.tristate_master.

7. Add the FTXL Service LED component:

a. Expand the FTXL folder.

b. Select FTXL Service LED.

c. Click Add to open the MegaWizard for the component.

d. In the MegaWizard for the FTXL Service LED, there are no
parameters to set. Click Finish to add the component to the
design.

8. Add the FTXL Service Pin component:

a. Expand the FTXL folder.

b. Select FTXL Service Pin.

c. Click Add to open the MegaWizard for the component.

d. In the MegaWizard for the FTXL Service Pin, there are no
parameters to set. Click Finish to add the component to the
design.

e. If necessary, modify the assigned IRQ number for the component;
see Addressing, Size, and IRQ Requirements on page 49 for
recommendations about the IRQ assignments.

9. Add the FTXL Transceiver Interrupt component:

a. Expand the FTXL folder.

b. Select FTXL Transceiver Interrupt.

c. Click Add to open the MegaWizard for the component.

d. In the MegaWizard for the FTXL Transceiver Interrupt, there are
no parameters to set. Click Finish to add the component to the
design.

FTXL Hardware Guide 59

e. If necessary, modify the assigned IRQ number for the component;
see Addressing, Size, and IRQ Requirements on page 49 for
recommendations about the IRQ assignments.

10. Add the FTXL Transceiver Reset component:

a. Expand the FTXL folder.

b. Select FTXL Transceiver Reset.

c. Click Add to open the MegaWizard for the component.

d. In the MegaWizard for the FTXL Transceiver Reset, there are no
parameters to set. Click Finish to add the component to the
design.

11. If necessary, set the base addresses of the newly added components.
Altera recommends that you let the SOPC Builder tool assign addresses:
select System → Auto-Assign Base Addresses.

12. Edit the Avalon MM-Tristate Bridge component for the FTXL Parallel I/O
Transceiver Interface component to verify that none of the signals are
shared:

a. Right-click the tristate_bridge component and select Edit to open
the MegaWizard for the Avalon MM-Tristate Bridge.

b. Verify that the bridge is registered on the Incoming Signals page.

c. Verify that none of the signals for
FTXL_PIO_inst.avalon_tristate_slave_0 are selected on the
Shared Signals page.

d. Click Finish to close the MegaWizard for the Avalon MM-Tristate
Bridge.

After you add the FTXL components, the design should look similar to Figure 23.

Figure 23. FTXL Components Added to the SOPC Builder Design

When you are satisfied with the SOPC Builder design, you must regenerate it:
click Generate at the bottom of the SOPC Builder window.

60 Working with the Altera Development Environments

Modifying the Quartus II Design
Before you begin, ensure that the Quartus II global library or project library
search path includes the FTXL components; see Setting Component Search Paths
on page 56.

After you generate the SOPC Builder design, you can update your Quartus II
design, including updating the symbol block for the Nios II processor in the block
design file (*.bdf) for the project. The updated Nios II block symbol should
include the signals shown in Figure 24 and Figure 25.

Figure 24. FTXL Signals within the Nios II Processor

Figure 25. FTXL Parallel I/O Signals within the Nios II Processor

Within the block design file (*.bdf) for the project, you need to add a symbol block
for the FTXL Parallel Interface Delay component:

1. Right-click the canvas and select Insert → Symbol to open the Symbol
dialog.

2. In the Symbol dialog, expand the [Altera]\nios2eds\components\ftxl
folder. If this folder does not display, be sure that you have added the
FTXL components to the SOPC Builder library path, as described in
Setting Component Search Paths on page 56.

3. Select FTXL_PIO_Delay from the [Altera]\nios2eds\components\ftxl
folder. Figure 18 on page 42 shows this component’s block symbol.

4. Click OK to close the Symbol dialog and to add the symbol to the canvas.

After you add the FTXL_PIO_Delay symbol to the canvas, you need to connect its
signals to the FTXL Parallel I/O signals within the Nios II processor:

• Connect CS_IN to CS_to_the_FTXL_PIO_inst

• Connect AO_IN to address_to_the_FTXL_PIO_inst

• Connect RW_IN to RW_to_the_FTXL_PIO_inst

• Connect RESET_IN to reset_n

In addition, you need to connect CLK_IN to the system clock signal for the Nios
II processor (for example, the clock output of a PLL). Figure 26 on page 61 shows
the main connections for the FTXL_PIO_Delay component.

FTXL Hardware Guide 61

Figure 26. Connections for FTXL_PIO_Delay Component

Finally, you need to add pins to the symbol blocks for the FTXL components:

1. Right-click each component’s symbol (for example, the FTXL_PIO_Delay
symbol and the Nios II processor symbol), and select Generate Pins for
Symbol Ports.

2. As necessary, rename the pins. The FTXL Hardware Abstraction Layer
(HAL) does not use the pin names, but instead uses the signal names, so
you can assign any valid names to the pins.

3. Modify pin assignments, as necessary, to match your hardware layout.

When you are satisfied with the design, you must recompile it: select Processing
→ Start Compilation to compile the design. Compilation can take a few minutes.

Building the Application Image
The FTXL Developer’s Kit includes the both hardware design for the Nios II
processor and the software for the FTXL LonTalk protocol stack, API, and
operating system. You must separately build the hardware image and the
software image. See the FTXL User’s Guide for information about working with
the FTXL software.

The FTXL Developer’s Kit includes a pre-compiled hardware reference design
image for the Nios II processor. To use the pre-compiled image, see Loading the
Application Image into the FPGA Device on page 62.

You might need to rebuild the hardware reference design image, for example, if
you want to modify the design, run the Nios II processor on a different device
than a Cyclone II FPGA, or if your Altera tools license requires you to rebuild the
image.

Before you rebuild the hardware image, ensure that the appropriate hardware
components are included in the library search path for the project; see Setting
Component Search Paths on page 56.

To rebuild the hardware image:

1. Start the Quartus II software.

2. Select File → Open Project to display the Open Project window.

3. In the Open Project window, select the Quartus Project File (*.qpf) for the
project, and click Open to add the project file to the Project Navigator.

4. Modify the design as desired.

5. Select Processing → Start Compilation (or click the Start Compilation
button on the toolbar) to compile the project. Compilation can take a few
minutes.

62 Working with the Altera Development Environments

6. Load the modified hardware design for the Nios II processor into the
FPGA device, as described in Loading the Application Image into the
FPGA Device.

Loading the Application Image into the FPGA
Device

You can choose to load the hardware and software images into the FPGA device’s
RAM at the same time, or you can choose to load them separately. To load both
images at the same time, or to load the images into the FTXL device’s flash
memory, use the Nios IDE; see the FTXL User’s Guide for more information.

To load the hardware image for the Nios II processor into the FPGA device:

1. Ensure that the FPGA device is powered on and that the USB-Blaster
download cable (or similar programming device) is connected to it.

2. Start the Quartus II software.

3. Select File → Open Project to display the Open Project window.

4. In the Open Project window, select the Quartus Project File (*.qpf) for the
project, and click Open to add the project file to the Project Navigator.

5. Select Tools → Programmer to open the Chain Description File view for
the project.

6. Ensure that the USB-Blaster download cable (or similar programming
device) is defined in the Chain Description File for the project.

If you have not defined the USB-Blaster download cable in the Chain
Description File for the project, click Hardware Setup. See Using a
Device Programmer for the FPGA Device on page 55 for more information
about setting up the USB-Blaster download cable.

7. Verify that the SRAM Object File (*.sof) for the project is already listed in
the Chain Description File view for the project.

If the SRAM Object File (*.sof) for the project is not listed in the Chain
Description File view for the project, click Add File to open the Select
Programming File dialog. From the Select Programming File dialog,
select the SRAM Object File (*.sof) for the project, and click Open to add
the file to the Chain Description File view for the project.

8. Verify that the Program/Configure checkbox is selected for the hardware
design file.

9. Click Start to load the hardware design into the FPGA device.

10. After the Quartus II software has finished loading the hardware image
into the FPGA device, perform a reset of the FPGA device.

11. Select File → Exit if you want to close the Quartus II software window.

FTXL Hardware Guide 63

A

Using the Bring-Up Application to
Verify FTXL Hardware Design

This chapter describes how to use the Bring-Up application
that is included with the FTXL Developer’s Kit to test and
verify a new or modified FTXL hardware design. The Bring-
Up application tests the communications interface between
the FTXL 3190 Free Topology Smart Transceiver and the
Nios II host processor.

64 Using the Bring-Up Application to Verify FTXL Hardware Design

Overview
This appendix describes the Bring-Up application that is included with the FTXL
Developer’s Kit. This application implements a series of tests that exercise the
hardware interface between the Nios II processor, the FTXL 3190 Free Topology
Smart Transceiver, the FTXL service pin, and the FTXL service LED. You
should run these tests to verify a new or modified FTXL device’s hardware
design.

The Bring-Up application requires a Nios II hardware design that contains the
FTXL components and a STDOUT display device. In addition, the device must
have a JTAG or similar interface between the device and the PC that will run the
Nios IDE. The Bring-Up application can run with or without the Micrium
μC/OS-II operating system.

Because the Bring-Up application is based on the FPGA hardware reference
design used by the example applications that are included with the FTXL
Developer’s Kit, you might have to modify the FtxlHal.c file if your hardware
design differs from the reference design (for example, if your hardware design
uses different signal names or different logic).

Recommendation: While running the tests, connect a digital analyzer to the
FTXL Transceiver communications pins, the service LED pin, and the service pin
so that you can externally verify the signals on the pins. The test descriptions in
Running the Tests on page 70 include logic analyzer traces that were generated
using the TechTools DigiView™ Logic Analyzer.

Application Framework
The Bring-Up application consists of one C source file (FtxlBringupApp.c) that
includes the series of tests. This file, in turn, includes the FtxlHal.h file and uses
functions from the FtxlHal.c file. All of these files are included in the Bring-Up
application project folder.

Interrupt Functions from the FTXL HAL
The FTXL interface defines interrupts from two sources: the FTXL Transceiver
and the service pin.

The FtxlBringupApp.c file defines the following callback handler functions to
process interrupts:

• LonDriverTransceiverIrq()

Called to process an interrupt from the FTXL Transceiver.

• LonIsrServicePin()

Called to process an interrupt from the service pin.

FTXL Hardware Guide 65

The FtxlHal.c file defines the following functions to handle interrupts:

• LonRegisterIsr()

Initializes the interrupt system, including registering the interrupt
handlers described in Application Framework on page 64.

• LonEnableInterrupt()

Used to enable either or both of the interrupts.

• LonDisableInterrupt()

Used to disable either or both of the interrupts.

FTXL Transceiver Interface
The interface between the Nios II processor and the FTXL Smart Transceiver
includes the following signals:

• A bi-direction reset signal

• A set of status signals that are used to determine when the FTXL
Transceiver is ready to accept data or has data to be read

• A bi-directional 8-bit data register

• An interrupt

These signals cannot be tested in isolation. For example, you cannot test the
data register without first verifying that the FTXL Transceiver has been properly
reset and that the status register is properly reporting its state. And you cannot
completely test the status register without transferring some data. Running the
Tests on page 70 describes the series of tests, to be performed in order, that fully
test communications between the Nios II processor and the FTXL Transceiver.

The following sections describe the interface. See Chapter 3, FTXL Transceiver
Hardware Interface, on page 19, for additional information about the FTXL
transceiver interface.

Reset Signal
The interface includes a bi-direction reset signal. For most of the time, this
signal is configured as an input. The input includes an edge-capture register,
which the Nios II processor can read to determine whether the FTXL Transceiver
has been reset. The FTXL function LonReadTransceiverReset() reads the reset
capture register.

To reset the FTXL Transceiver, the host processor configures this signal as an
output, asserts the signal, then reconfigures the signal as an input to deassert
the signal. The following FTXL HAL functions configure the reset signal:
LonAssertTransceiverReset() and LonDeassertTransceiverReset(). In addition,
the LonDeassertTransceiverReset() function also clears the reset capture
register.

The LonReadTransceiverReset() function reads the reset capture register, which
is set by the FTXL Transceiver reset pin. The LonAssertTransceiverReset() and

66 Using the Bring-Up Application to Verify FTXL Hardware Design

LonDeassertTransceiverReset() functions write to the FTXL Transceiver reset
pin.

Status Signals
The interface includes a set of status signals that are used to determine when the
FTXL Transceiver is ready to accept data or has data to be read. The status
signal can be read using the FTXL HAL function LonTransceiverIsBusy().

When the LonTransceiverIsBusy() function reads the status register, the
FTXL_PIO component affect FTXL Transceiver pins as listed in Table 19.

Table 19. Status Signals

Signal Name FTXL Transceiver Pin Action

CS~ 31 Asserted (low)

R/W~ 30 Deasserted (high)

A0 27 Asserted (high)

D0 4 Read as status (low =
busy)

Data Register
The interface includes a bi-directional 8-bit data register. This register is used
either to:

• Write data from the Nios II processor to the FTXL Transceiver using the
FTXL HAL function LonWriteTransceiverDataRegister()

• Read data from the FTXL Transceiver using the FTXL HAL function
LonReadTransceiverDataRegister()

The register must be read or written only when LonTransceiverIsBusy() returns
FALSE.

When LonWriteTransceiverDataRegister() writes to the data register, the
FTXL_PIO component affects FTXL Transceiver pins as listed in Table 20.

Table 20. Writing to the Data Register

Signal Name FTXL Transceiver Pin Action

CS~ 31 Asserted (low)

R/W~ 30 Asserted (low)

A0 27 Deasserted (low)

D0 4

D1 3

Asserted or deasserted as
data values

FTXL Hardware Guide 67

Signal Name FTXL Transceiver Pin Action

D2 2

D3 43

D4 42

D5 36

D6 35

D7 32

When LonReadTransceiverDataRegister() reads the data register, the FTXL_PIO
component affects FTXL Transceiver pins as listed in Table 21.

Table 21. Reading from the Data Register

Signal Name FTXL Transceiver Pin Action

CS~ 31 Asserted (low)

R/W~ 30 Deasserted (high)

A0 27 Deasserted (low)

D0 4

D1 3

D2 2

D3 43

D4 42

D5 36

D6 35

D7 32

Read as data values

As described in Token Passing and Handshaking on page 23, communications
between the Nios II processor and the FTXL Transceiver use a token passing
protocol. Initially after a reset, the Nios II processor has the token, and can
perform either of the following actions:

• Write a data packet consisting of a non-zero length, one or more data
bytes, and a “null” token byte (value of 0x0)

• Pass the token by writing two consecutive 0x0 data bytes

68 Using the Bring-Up Application to Verify FTXL Hardware Design

To write each byte, the application must first wait until LonTransceiverIsBusy()
returns FALSE, and then call LonWriteTransceiverDataRegister(). After the
write is complete, the FTXL Transceiver has the token, and either sends a data
packet or passes the token back. The application must read the data packet or
token by reading first the length byte (which indicates the number of data bytes)
and then reading all data bytes. If the length byte is 0x0, there is no data. To
read each byte, the application must first wait until LonTransceiverIsBusy()
returns FALSE, and then call LonReadTransceiverDataRegister().

The FTXL Transceiver enters a “fast I/O” mode during certain portions of a data
transfer. During these times, the host processor must read or write the next byte
within a certain amount of time, or the FTXL Transceiver assumes that it has
lost synchronization with the host and resets. The timeout period is a function of
the FTXL Transceiver clock speed. Table 22 lists the timeout values. Note that
the application must respond within the minimum time shown in the table to
ensure that the FTXL Transceiver does not timeout.

Table 22. Fast-I/O Mode Timeout Values

Transceiver Clock Rate Timeout

5 MHz 1.68 to 3.36 seconds

10 MHz 0.84 to 1.68 seconds

20 MHz 0.42 to 0.84 seconds

40 MHz 0.21 to 0.42 seconds

The FTXL Transceiver enters fast-I/O mode under the following conditions:

• After the application reads the first byte of a packet (the length byte), the
FTXL Transceiver enters fast-I/O mode until all bytes in the packet have
been read.

• After writing a zero length byte (to pass the NULL token), the FTXL
Transceiver enters fast-I/O mode until the token byte has been written.

• After writing the first data byte of a packet, the FTXL Transceiver enters
fast-I/O mode until all subsequent data bytes in the packet and the token
byte have been written. Note that the FTXL Transceiver does not go into
fast-I/O mode upon receiving the length byte – only after the first data byte
(second byte of the frame) has been written.

Interrupt
The interface includes an interrupt signal. The FTXL Transceiver interrupts the
Nios II processor under the following conditions:

• When the FTXL Transceiver has data to be sent to the host, whether it
has the token or not.

• If the FTXL Transceiver has the token, and is ready to pass the NULL
token.

• After the FTXL Transceiver has received a non-zero length byte from the
host.

FTXL Hardware Guide 69

The application uses the functions described in Interrupt Functions from the
FTXL HAL on page 64 to handle interrupts.

Working with the Nios IDE for the Bring-Up
Application

Although the Bring-Up application is designed to test the hardware design, it is a
software application, and thus uses the Nios II IDE. To set up the Nios II IDE
for the Bring-Up application, perform the following general steps:

1. Recommended: Create a new workspace for each example application
project.

2. Create a new application project based on the FTXL Bring-Up
Application project template.

3. Build the project.

The following sections describe these steps. After you build the project, you can
run it. There should be no need to load the application into the device’s flash
memory; instead, you can run the application from the Nios IDE.

Creating a New Application Project
Recommendation: Create the Bring-Up application project in a new workspace.
To work in a new workspace, select File → Switch Workplace to open the
Workspace Launcher window, from which you can specify a new workspace.

To create a new application project for the FTXL Bring-Up application:

1. Select File → New → Nios II C/C++ Application to open the New Project
window.

2. From the New Project window’s Select Project Template selection box,
select the FTXL Bring-Up Application project.

3. Optional: Enter a project name in the Name field. The default name is
FTXL_BringupApp_0.

4. Specify a location for this project (such as C:\MyFtxl) by selecting the
Specify Location checkbox and specifying the location in the Location
field. The directory name must not contain spaces. If you use the default
location, your source files will be placed in the project workspace
directory.

5. Specify the target hardware. Click Browse in the Select Target
Hardware area to open the Select Target Hardware dialog.

a. In the Select Target Hardware dialog, browse to your device’s
directory and select the SOPC Builder system file for the project.

b. Click Open to select the file and close the Select Target Hardware
dialog.

6. Click Finish to create the project and generate the project’s system
library.

70 Using the Bring-Up Application to Verify FTXL Hardware Design

Building the Application Image
To build the software image for Bring-Up application:

1. Start the Nios II EDS IDE.

2. Ensure that the workspace includes the Bring-Up application project.

3. Select Project → Build Project or Project → Build All. You can also right-
click the project folder from the Nios II C/C++ Projects pane and select
Build Project.

The first build for a new project can take a few minutes.

After you build the project, you can run it, as described in Running the
Application from the Nios IDE.

Running the Application from the Nios IDE
To run the Bring-Up application from the Nios II EDS IDE:

1. Ensure that your device’s board is powered on and that it is connected to
the PC through a JTAG-type connection, such as the USB-Blaster
download cable.

2. Start the Nios II EDS IDE.

3. Ensure that the workspace includes the Bring-Up application project.

4. Right-click the project from the Nios II C/C++ Projects pane and select
Run As → Nios II Hardware or Debug As → Nios II Hardware. The Nios
II EDS IDE recompiles the project.

The tests should start running, as described in Running the Tests.

Running the Tests
The Bring-Up application includes the following tests:

• Reset Test

• Token Passing Test

• Data Passing Test

• Interrupt Test

• Service-Pin and LED Test

You must run these tests in order, although after the Reset Test completes, you
can press the device’s service pin to run the Service-Pin and LED Test at any
time.

Each of these tests leaves the FTXL Transceiver running, with the Nios II
processor in possession of the token. All tests, except the Reset Test, expect the
FTXL transceiver to be in this state upon entry as well. If the last test performed
succeeds, you can call any of the other tests. Otherwise, you can restore the state
of the FTXL Transceiver by re-running the Reset Test.

FTXL Hardware Guide 71

The output of each test lists the test name together with an indication of whether
it passed or failed. For some of the tests, additional output describes specific
error conditions or wait states.

Reset Test
The Reset Test exercises the FTXL Transceiver’s reset line by asserting and
deasserting it, and then verifying that both the status register and reset capture
register behave as expected. All of the other tests in the suite require that the
reset and status register behave properly.

Figure 27 provides an overview of the signals during the entire test. The CS~,
R/W~, and A0 signals are in flux while the host polls the handshake register
waiting for the FTXL Transceiver to complete its reset.

Host asserts/
deasserts reset

Host reads busy status

Status is
ready

Figure 27. Reset Test Overview

Figure 28 on page 72 shows the detail of the far left-hand side of Figure 27, and
shows the signals when the host asserts and deasserts the reset line. In this
diagram, each time that the CS~ line goes low, the host reads the handshake
signal.

72 Using the Bring-Up Application to Verify FTXL Hardware Design

Read Status (Busy)

Host asserts reset Host deasserts reset

Figure 28. Host Asserts and Deasserts Reset and Checks Status

Figure 29 on page 73 shows the detail of the first read status from Figure 28.
The figure shows the CS~, R/W~, A0, and HS signals just after the reset line has
been asserted, and the host reads the status register. When CS~ is asserted
(low), a byte transfer is in progress. R/W~ controls whether the transfer is a read
or a write. In this case, R/W~ is deasserted (high), which indicates that this
transfer is a read. The A0 signal controls whether the D0 signal should report
the handshake (status) or the least significant bit of the data. In this case A0 is
high, which indicates that D0 represents the handshake signal.

FTXL Hardware Guide 73

Read Handshake

Handshake (D0) busy

A0 high -> D0 is handshake

CS~ low -> transfer in progress

RW~ high -> read

Figure 29. Reading Status Register during Reset

Token Passing Test
After the reset test runs successfully, the Token Passing Test repeatedly passes
the null token between the Nios II processor and the FTXL Transceiver under
program control (that is, without interrupts). This test verifies the status
register to ensure that it reports busy immediately after write operations, and
verifies that the reset capture register does not report reset during normal
operation. Reading and writing to the data register is partially verified.
However, in this test, both the application and the FTXL Transceiver write zero
bytes to the data register.

This test and the remaining tests use a utility function (waitUntilReady()) to
wait for the FTXL Transceiver to become ready. This function checks the reset
capture register to detect resets, and includes a basic timeout mechanism.

Figure 30 on page 74 shows the state of the signals while writing the length byte.

74 Using the Bring-Up Application to Verify FTXL Hardware Design

Read Handshake

Write length = 0

Handshake (D0)
busy

Handshake (D0)
ready

A0 low -> D0 is
data

A0 high -> D0
is handshake

Figure 30. Writing the Length Byte (0x00)

The CS~ signal is asserted (low) every time a byte operation is in progress. The
R/W~ signal is asserted (low) on a write, and deasserted (high) on a read. To
read the handshake (or status) register, the A0 signal is deasserted (high), in
which case D0 is the handshake signal. If A0 is asserted (low), the D0 signal is
the least significant data bit. The diagram shows the following four operations:

• Read status (CS~ low, R/W~ high, A0 high). The status register (D0) is
ready.

• Write data byte with value 0x0 (CS~ low, R/W~ low, A0 low, D0-D7 =
0x00).

• Read status (CS~ low, R/W~ high, A0 high). The status register (D0) is
busy.

• Read status (CS~ low, R/W~ high, A0 high). The status register (D0) is
busy.

Figure 31 on page 75 shows the state of the signals when the host passes the
token to the FTXL Transceiver. This process consists of the following steps:

1. Read the status register and determine that the FTXL Transceiver is
ready.

2. Write the length byte (0x00).

3. Repeatedly read the status register until the FTXL Transceiver is ready.

4. Write the token byte (0x00).

FTXL Hardware Guide 75

The figure also shows the status being read after the token is passed.

Read Status
(Ready)

Write
Length 0 Read Status (Busy)

Read
Status:
Ready

Write Token
Read Status

(Busy)

Figure 31. Passing the Token from the Host to the FTXL Transceiver

Figure 32 on page 76 shows the state of the signals while reading a null token
from the FTXL Transceiver. In this figure, the host reads the status three times.
The first two times the status is busy, which indicates that the transceiver has no
data to be read. On the third attempt, the status is ready (D0 is low). Then, the
host reads the data by deasserting A0 while asserting CS~ and R/W~. The data
to be read is in D0-D7, and represents the length of the packet. In this case, the
length is 0x00, and the host now has the token.

76 Using the Bring-Up Application to Verify FTXL Hardware Design

Read Handshake Read length = 0

Handshake (D0)
busy

Handshake (D0)
ready

A0 low -> D0 is
data

A0 high -> D0
is handshake

Read Null Token

Figure 32. Reading Null Token from the Transceiver

Data Passing Test
The Data Passing Test exercises full two-way communication between the Nios II
processor and the FTXL Transceiver. As with the previous test, this test is
dependent on the proper function of the reset and status registers. However, in
this test, both the Nios II processor and the FTXL Transceiver pass non-zero data
patterns that are sufficient to test each bit of the data register.

At the end of the test, the application purposely causes a transmission timeout,
which causes the FTXL Transceiver to reset, and verifies that the reset capture
register detects this condition. This test, like the others, restores the state of the
FTXL Transceiver so that it is ready for subsequent tests.

This test and the Interrupt Test use the following data declarations for the data
to be sent and received:

/* The host sends downlinkMessage to the */
/* FTXL Transceiver */
const byte downlinkMessage[] = {0x09, 0x52, 0x01, 0x02,
0x04, 0x08, 0x10, 0x20, 0x40, 0x80};

/* The FTXL Transceiver should respond by sending */
/* expectedReply */
const byte expectedReply[] = {0x09, 0x53, 0x69, 0xd8,
0xd7, 0x77, 0x14, 0xd7, 0x3d, 0xf6};

These messages are in the form of a message frame, starting with the length byte
and followed by the data bytes. The null terminator is not included.

These two tests also use a utility function (readUplinkMessage()) to read a
message from the FTXL Transceiver and verify its contents.

FTXL Hardware Guide 77

Figure 33 shows the signals while writing the downlink data.

Read Status
(Ready) Write

Length (9) Read
Status
(Busy)

Read Status
(Ready)

Write Data
(0x52)

Read
Status
(Busy)

Read Status
(Ready)

Write Data
(0x01)

Read
Status
(Busy)

Read Status
(Ready) Write 0x02, 0x04, 0x08, 0x10,

0x20, 0x40, 0x80. Read status
between each (ready)

Data bytes

Figure 33. Writing the Downlink Data

Note: You can read the data that is being written by looking at the line labeled
D, but because the D0 line switches it function between being a data line and
being the handshake line, be sure to interpret the D line as data only when A0 is
low.

Figure 34 on page 78 shows the signals while reading the uplink data.

78 Using the Bring-Up Application to Verify FTXL Hardware Design

Figure 34. Reading the Uplink Data

Interrupt Test
The Interrupt Test performs the same two-way communication as the Data
Passing Test, but uses an interrupt service routine rather than managing the
communications under program control. The test application initiates the
downlink transfer by writing the length of the downlink buffer, and enables the
FTXL Transceiver interrupt. The test then waits for the response to be
completed. The downlink transfer is completed by the interrupt service routine,
and when the FTXL Transceiver initiates an uplink transfer, the interrupt
service routine reads the message and validates the data contained in it.

In order to run this test, the application first calls the LonRegisterIsr() function
to initialize the interrupt system.

The test function and the interrupt service routine communicate with each other
using the following global variables:

• hostHasToken – TRUE if the host has the token, FALSE if the FTXL
Transceiver has the token.

FTXL Hardware Guide 79

• outputDataStream – To write a frame to the host, the frame is first
copied to this buffer (including the length byte), and then the length is
written to the host. The interrupt service routine writes the rest of the
data.

• uplinkReceived – TRUE when an uplink message has been received.

• unnexpectedUplink – TRUE if the uplink message does not match the
expected uplink message.

• pExpectedUplinkMsg – Pointer to the expected contents of the next
uplink message.

Figure 35 shows the signals during the Interrupt Test. On the left-hand side,
you can see the downlink transfer; on the right-hand side, you can see the uplink
transfer. At the bottom, you can see the interrupt line.

Write Downlink Read Uplink

Transceiver
ready for

downlink data

Transceiver
has data to be
read by host

Unserviced
interrupt from
previous tests

Figure 35. Signals during the Interrupt Test

Service Pin and LED Test
The service pin, service interrupt, and service LED are all tested in a single
simple test. This test can be performed independently or in conjunction with the
other FTXL Transceiver tests.

This test is performed entirely in the service pin interrupt routine, which
illuminates the service LED each time the service pin is pressed, and clears it
each time the service pin is released.

80 Using the Bring-Up Application to Verify FTXL Hardware Design

Designing Additional Tests
The tests described in Running the Tests on page 70 verify the FTXL hardware
design, focusing on communications between the Nios II processor and the FTXL
Transceiver. Other kinds of test that you should consider running include:

• One or more tests for managing the non-volatile data, including reading
and writing to flash

• One or more tests for verifying communications with the LONWORKS
network

These tests require a more complete (but still fairly simple) FTXL application,
including the operating system.

If you use either of the standard non-volatile drivers, you can enable tracing by
setting the global variable nvdTraceEnabled to a non-zero value. If create your
own custom non-volatile data driver, be sure to add some tracing capability to it
for use in the bring-up phase.

After you verify basic communication between the Nios II processor and the
FTXL Transceiver, you should be ready to verify that your FTXL device can
communicate on the LONWORKS network. The simplest approach is to create a
new application project in the Nios IDE using the FTXL Simple template, and
select your hardware design (SOPC Builder system PTF file) rather than the
reference design. If your FTXL Transceiver runs at a clock rate other than 20
MHz, you must run the LonTalk Interface Developer utility and specify the
correct clock rate for the device.

Within the Nios IDE:

1. Load the application into your hardware under debugger control.

2. Verify that your application is running and calls the LonEventPump()
function properly. For example, set a breakpoint on the call to
LonEventPump() and generate an event by pressing the device’s service
pin button.

3. Remove the breakpoint on the call to LonEventPump() and verify that
your FTXL device can send a service pin message. To see the service pin
message, you can use the Echelon LonScanner Protocol Analyzer or a
network management tool such as the LonMaker Integration tool. Press
and release the device’s service pin button to send the service pin
message.

4. If no service pin message is sent, verify that the clock rate used by the
FTXL Transceiver matches that defined in the LonTalk Interface
Developer utility. You should also verify that your channel is properly
wired, and that other devices can communicate on the channel.

5. After you have successfully sent a service pin message, commission the
device using a network manager such as LonMaker. Browse the device’s
network variables and observe that they work properly.

FTXL Hardware Guide 81

Index

A
A0 pin, 22
addressing requirements, 49
Altera Complete Design Suite, 54
application image

building, 61
loading, 62

B
bring-up application

additional tests, 80
building, 70
data register, 66
framework, 64
interface, 65
interrupt, 68
interrupt functions, 64
new project, 69
Nios IDE, 69
overview, 64
reset signal, 65
running, 70
status signals, 66
tests, 70

building, application image, 61
buttons, DBC2C20 development board, 9

C
clock pins, 27
communications lines, pull-ups, 21
components

adding, 57
DBC2C20, 48
FTXL, 41
requirements, 49
search paths, 56

configuration device, FPGA, 40
connectors

DBC2C20 development board, 11
FTXL Adapter Board, 13
FTXL Transceiver Board, 16

control flow
host from FTXL Transceiver, 32
host to FTXL Transceiver, 29

control signal buffer, 20
CS~ pin, 22

D
D0-D7 pins, 22

data bus isolation, 20
data register, bring-up application, 66
data transfer, 23
data-passing test, bring-up application, 76
DBC2C20 development board

buttons, 9
components, 48
connectors, 11
headers, 11
jumpers, 11
LEDs, 9
overview, 8

DC-DC converter, 20
design, modifying, 57, 60
devboards.de GmbH, 3
developer's kit. See FTXL Developer's Kit
development process

FPGA design, 5
hardware design, 4
overview, 3
software design, 5

development tools, 54
device programmer, 55
documentation

Altera, iv
devboards, v
Echelon, iii

downlink control flow, 32

E
EBV Elektronik GmbH, 3
external memory, 48

F
FPGA

configuration device, 40
design, 38
device requirements, 39

FTXL Adapter Board
connectors, 13
headers, 13
jumpers, 13
overview, 13

FTXL Developer's Kit
components, 41
DBC2C20 development board, 8
hardware, 8
overview, 3
reference design, 38

FTXL Transceiver Board
connectors, 16

82 Index

headers, 16
jumpers, 16
LEDs, 16
overview, 15

H
HAL, 50
handshaking, 23
hardware abstraction layer, 50
hardware interface

control signal buffer, 20
data bus isolation, 20
DC-DC converter, 20
overview, 20
pull-up resistors, 21

hardware, overview, 2
headers

DBC2C20 development board, 11
FTXL Adapter Board, 13
FTXL Transceiver Board, 16

host receive, control flow, 29
host send, control flow, 32
HS pin, 22

I
I/O pins, 24
interface. See parallel communications

interface, See hardware interface
interrupt test, bring-up application, 78
interrupt, bring-up application, 68
IO0-IO10 pins, 24
IRQ pin, 24
IRQ requirements, 49

J
jumpers

DBC2C20 development board, 11
FTXL Adapter Board, 13
FTXL Transceiver Board, 16

L
LEDs

DBC2C20 development board, 9
FTXL Transceiver Board, 16

loading, application image, 62
LVI, reset, 27

M
MegaCore IP library, 54
memory, external, 48
ModelSim simulation tool, 54
modifying the design

Quartus II, 60
SOPC Builder, 57

N
Nios II Embedded Design Suite, 54
Nios II processor, 40

P
parallel communications interface

handshake, 23
overview, 21
pin assignments, 21
token passing, 23
transferring data, 23

parallel I/O transceiver interface, 43
parallel interface delay, 42
phase-locked loop, 48
pins

A0, 22
assignments, 21, 28
characteristics, 24
clock, 27
CS~, 22
D0-D7, 22
FPGA, 28
HS, 22
I/O, 24
IRQ, 24
R/W~, 22
RESET~, 25
service, 27

PLL, 48
power-up sequence, 26
pull-up resistors, 21

Q
Quartus II software, 54

R
R/W~ pin, 22
reference design, 38
reset

bring-up application, 65
LVI, 27
overview, 25
power-up sequence, 26
software controlled, 27
timing, 27
watchdog timer, 27

reset test, bring-up application, 71
RESET~ pin, 25

S
search paths, 56
service LED, 46
service pin, 27, 47
service pin test, bring-up application, 79

FTXL Hardware Guide 83

signals. See pins
software-controlled reset, 27
SOPC Builder, 54
status signals, bring-up application, 66

T
test

data passing, 76
interrupt, 78
network communications, 80
reset, 71
service pin, 79
token passing, 73

timers, 48
timing, reset, 27

token passing, 23
token-passing test, bring-up application, 73
transceiver interrupt, 47
transceiver reset, 47
transferring data, 23

U
uplink control flow, 29
USB-Blaster download cable, 55

W
watchdog timer, 27

www.echelon.com

	Welcome
	Audience
	Related Documentation
	Related Altera Product Documentation
	Related devboards.de Product Documentation

	FTXL Hardware Overview
	Overview
	The FTXL Developer’s Kit
	The FTXL Development Process
	Hardware Design
	FPGA Design
	Software Design

	FTXL Developer’s Kit Hardware
	Overview of the FTXL Developer’s Kit Hardware
	The DBC2C20 Development Board
	Buttons and LEDs
	Jumper Settings
	Connectors and Headers

	The FTXL Adapter Board
	Jumper Settings
	Connectors and Headers

	The FTXL Transceiver Board
	LEDs
	Jumper Settings
	Connectors and Headers

	FTXL Transceiver Hardware Interface
	Overview of the Hardware Interface
	DC-DC Converter
	Control Signal Buffer
	Data Bus Isolation
	Pull-Up Resistors for Communications Lines

	The Parallel Communications Interface
	Token Passing and Handshaking
	Transferring Data

	FTXL Transceiver Pin Characteristics
	I/O Pins
	IRQ Pin
	Reset Pin
	Service Pin
	Clock Pins

	FPGA Pin Assignments for the FTXL Transceiver
	Control Flow: Host Receiving Data from the FTXL Transceiver
	Control Flow: Host Sending Data to the FTXL Transceiver

	FPGA Design for the FTXL Transceiver
	 Overview
	Using the Reference Design
	Developing a New FPGA Design
	FPGA Device Requirements
	Nios II Processor
	FPGA Configuration Device
	FTXL Components
	Phase-Locked Loop
	DBC2C20 Components
	Timers
	External Memory
	Addressing, Size, and IRQ Requirements

	FTXL Hardware Abstraction Layer
	Other Hardware Design Considerations

	Working with the Altera Development Environments
	 Development Tools
	Using a Device Programmer for the FPGA Device
	Setting Component Search Paths
	Adding FTXL Components to an Existing Design
	Modifying the SOPC Builder Design
	Modifying the Quartus II Design

	Building the Application Image
	Loading the Application Image into the FPGA Device

	Using the Bring-Up Application to Verify FTXL Hardware Design
	 Overview
	Application Framework
	Interrupt Functions from the FTXL HAL

	FTXL Transceiver Interface
	Reset Signal
	Status Signals
	Data Register
	Interrupt

	Working with the Nios IDE for the Bring-Up Application
	Creating a New Application Project
	Building the Application Image
	Running the Application from the Nios IDE

	Running the Tests
	Reset Test
	Token Passing Test
	Data Passing Test
	Interrupt Test
	Service Pin and LED Test

	Designing Additional Tests

	Index

