
LTS-20 LonTalk@ Serial
Adapter and PSG-20

User’s Guide

Version 2

I ECHELON’
Corporation

078-0181-OlC

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Echelon, LON, LONWORKS, LonTalk, Neuron, LONMARK,
3150, 3120, LonPoint, the Echelon and LonMark logos, and
LonBuilder are trademarks of Echelon Corporation
registered in the United States and other countries.
LonMaker is a trademark of Echelon. Other names may be
trademarks of their respective companies.

Printed in the United States of America.
Copyright 01999 - 2001 by Echelon Corporation.

Echelon Corporation
www.echelon.com

Preface

This document describes how to use an LTS-20 LonTalk Serial
Adapter and a host processor with an EIA-232 (formerly RS-232) serial
interface with a LONWORKS@ network.

LTS-20 User’s Guide

Audience
This user’s guide provides specifications and instructions for LTS-20 users.

Content
This manual provides detailed information about the hardware and software for the
LTS-20 and PSG-20.

l Chapter 1 introduces the LTS-20.

l Chapter 2 provides an overview of the LTS-20.

l Chapter 3 describes product development with the LTS-20 module.

l Chapter 4 describes EM1 and ESD issues for LTS-20 and PSG-20 modules.

l Chapter 5 describes the LTS-20 software.

l Chapter 6 discusses creating SLTA network driver.

l Chapter 7 discusses using the DOS network driver.

l Chapter 8 discusses using the UNIX network driver.

l Chapter 9 discusses using the LTS-NSI mode.

l Chapter 10 discusses the LTS-20 MIP mode software.

l Chapter 11 describes using the drivers and link manager with LTS-20 NSI mode.

l Chapter 12 discusses using the DOS driver with LTS-20 MIP mode.

l Chapter 13 explains how to create an LTS-20 MIP mode driver.

l Chapter 14 discusses initialization and installation.

l Chapter 15 explains how to use the LST-20 with a modem.

l Chapter 16 discusses using the host connect utility with the LTS-20 MIP mode.

l Chapter 17 details using a programmable serial gateway.

l Chapter 18 details modem troubleshooting.

l Appendix A lists the default communications parameters for LTS-20-based
products.

l Appendix B describes the Windows DLL files supplied with the LTS-20.

l Appendix C includes a copy of the software license agreements.

ii Preface

Related Manuals
The following Echelon documents are suggested reading for more information:

TheLNSm DDE Server User’s Guide is a manual for developers on how to create user
interface, monitoring, and control applications that communicate with LONWORKS
networks from computers running Microsoft Windows.

The LonMakef for Windows Integration Tool User’s Guide is a manual for users on
how to install networks using the integration tool.

The LonBuilder@ User’s Guide describes how to develop LONWORKS applications with
the LonBuilder Developer’s Workbench.

The NodeBuilderm User’s Guide describes how to develop LONWORKS applications with
the NodeBuilder Development Tool.

The LONWORKS Host Application Programmer’s Guide describes how to write a host
application that can be used with a serial adapter.

The Neuron’Chip Data Book describes the LonTalk message formats that can be used
with a serial adapter. It also describes the network management and network
diagnostic messages that can be sent with such an adapter.

Web Access
Engineering bulletins and data sheets supporting this product are available on the Echelon
Web site. General information regarding Echelon, its business, and its products also are
located on the site at http://www.echelon.com. The Developer’s Toolbox located at the Web
site includes drivers for the LTS-20.

LTS-20 User’s Guide

Preface

Contents

Preface
Audience
Content
Related ManuaIs
Web and FTP Access

ii
ii . . .

111
. . .
111

1 LTS-SO Introduction l-l

2 LTS-20 Overview 2-1
Mechanical Description 2-2
Power Requirements 2-5

Power Supply Decoupling and Filtering 2-5
Low Voltage Protection 2-5

Electrical Interface 2-5
NSI/MIP Mode Jumper R2 2-7
Autobaud 2-7
Baud(2..0) 2-7
CFGO 2-7
CFGl 2-8
CFG2 2-8
CFG3 2-8
CLK OUT 2-8
CP(4..0) 2-8
-CTS 2-8
-DCD IN 2-8
-DCD OUT 2-9
DCE 2-9
-DSR 2-9
-DTR 2-9
PKT 2-9
-RESET 2-9
-RI IN 2-10
-RI OUT 2-10
-RTS 2-10
SERIAL IN 2-10
SERIAL OUT 2-10
-SERVICE 2-11
-TEST 2-11
XID(4..0) 2-11

LTS-20 Software Configuration Options 2-12

3 Developing an SLTA with the LTS-20 Module
Overview
Using Predefined Transceivers

TPT/XF-78 and TPT/XF-1250 Twisted Pair Transceivers
FTT-1OA Free Topology and LPT-10 Link Power Transceivers

3-1
3-2
3-2
3-2
3-6

LTS-20 User’s Guide

PLT Power Line Transceiver 3-6
Using Custom Transceivers 3-7

4 LTS-20 Design Issues
EM1 Design Issues
Designing Systems for EMC (Electromagnetic Compatibility

EMC Design Tips
ESD Design Issues

Designing Systems for ESD Immunity

5 The LTS-20 Software 5-l
Software Overview 5-2
Installing LTS-20 Software 5-2

Installing the Windows DLL Software 5-6

4-1
4-2
4-2
4-2
4-3
4-3

6 Creating an LTS-20 MIP Mode Network Driver 6-1
Purpose of the Network Driver 6-2
Example Network Drivers 6-2
Implementing an SLTA Network Driver 6-2
Network Interface Protocol 6-5
Link Layer Protocol 6-5

ALERT/ACK Link Protocol 6-5
Buffered Link Protocol 6-7

Transport Layer Protocol 6-8
SLTA Timing Data 6-9

Downlink Byte-to-Byte Receive Timeout 6-10
Uplink Message Life 6-10
ACK/NACK Receive Timeout 6-10
Uplink Timeout Message Retry Count 6-10

Session Layer Protocol 6-10
Downlink Buffer Request Protocol 6-10
Uplink Flow Control Protocol 6-12

Presentation Layer Protocol 6-13

7 Using the DOS Network Driver
Installing the SLTA Network Driver for DOS

Buffer Options
Serial Bit Rate Options
DOS Device Options
Timing Options
Network Interface Protocol Options

Calling the Network Driver from a Host Application
Using the SLTA Driver under Microsoft Windows

8 Using the UNIX Network Driver 8-l
Installing the SLTA Network Driver for UNIX 8-2
Calling the Network Driver from a Host Application 8-2

ldv-open0 8-3
ldv-read0 8-3
ldv-write0 8-3

7-l
7-2
7-2
7-3
7-4
7-5
7-6
7-8

7-10

vi Preface

ldv-post-events0
ldv-close0

9 Using the LTS-20 NSI Mode Software
LTS-20 NSI Mode Software Overview

Windows 95 and Windows NT Software Installation Procedure
Windows 95,98, and NT Software Installation Instructions

10 The LTS-20 MIP Mode Software
LTS-20 MIP Mode Software Overview
Installing the LTS-20 MIP Mode Adapter Software

Installing the Windows 3.1x DLL Software
Other Drivers

11 Using the Windows 95 or NT Driver and SLTALink
Manager with LTS-20 NSI Mode
Software Overview

Establishing a Communications Line for Dialing in to a Network

a-3
8-4

9-1
9-2
9-2
9-4

10-l
10-2
10-2
10-5
10-5

11-l
11-2
11-3

Establishing a Communications Line for Calls Dialed Out to the PC 11-5
Establishing Remote and Local Network Sites 11-6
SLTALink Configuration Script Formats 11-7

Example 11-8
Name of Link 11-8
Remote Identifier 11-8
Link Type 11-9
Configuring the Modem Line 11-9
SLTA Password 11-9
Invoking an Application 11-9
Enabling a Callback 11-10
Configuration 11-10

Security 11-11
Password 11-11
Enable Callback 11-11

Timers 11-11
Hangup Timer, minutes 11-11
Guard Time, seconds 11-11

Modem Settings 11-11
Initialization String 11-11
Dial Prefix 11-12

Clear EE Poll on Apply 11-12
Dial Directories 11-12
Auto-dialout Configuration 11-12

NV Connect 11-12
NSI Connect 11-12

Diagnostics 11-13
The SLTALink Manager Programmatic Interface 11-13
Using the DOS “Stub” Driver 11-14
Characteristics of a Well-Designed System 11-15

Call Initiation 11-15
Dial-In to the Network Only 11-15
Dial-Out to the Remote PC Only 11-15

LTS-20 User’s Guide vii

Dial-In/Dial-Out
Callback

Call Termination
Monitoring: Application Termination Strategy
Monitoring: Missing Messages after a Dial-Out
Monitoring: LNS Application Design Issues

Good Practices/Schemes that Work

,

12 Using the DOS Driver with LTS-20 MIP Mode
Installing the LTS-20 MIP Mode Driver for DOS

Buffer Options
Serial Bit Rate Options
DOS Device Options
Timing Options
Network Interface Protocol Options

Calling the Network Driver from a Host Application
Using the LTS-20 MIP Mode under Microsoft Windows 3.1x

13 Creating an LTS-20 MIP Mode Driver 13-1
Purpose of the Network Driver 13-2
Example Network Drivers 13-2
Implementing an LTS-20 MIP Mode Network Driver 13-2
Network Interface Protocol 13-5
Link Layer Protocol 13-5

ALERT/ACK Link Protocol 13-5
Buffered Link Protocol 13-7

Transport Layer Protocol 13-8
LTS-20 Timing Data 13-10

Downlink Byte-to-Byte Receive Timeout 13-10
Uplink Message Life 13-10
ACK/NACK Receive Timeout 13-10
Uplink Timeout Message Retry Count 13-10

Session Layer Protocol 13-11
Downlink Buffer Request Protocol 13-11
Uplink Flow Control Protocol 13-13

Presentation Layer Protocol 13-14

14 Initialization and Installation
Initializing an LTS-20-based Node
Installing an LTS-20-based Node on a Network

Installing with LNS, the LonMaker for Windows Integration
Tool, or the LNS DDE Server
Installing with the LonBuilder Tool
Installing an LTS-20-based Node with LonManager API, the
DOS-based LonManager LonMaker for DOS Installation Tool,
or the LonManager DDE Server

11-16
11-16
11-17
11-18
11-18
11-19
11-20

12-1
12-2
12-2
12-3
12-4
12-5
12-5
12-8

12-10

14-1
14-2
14-3

14-4
14-4

14-5

Preface

15 Using the LTS-20 with a Modem
Overview
LTS-20 Connection States

Command Set Assumptions
Translated Characters
DTE Connections

Network Management Messages
EEPROM String Pool Management
Product Query
Send Modem String
Modem Response Query
Connection Status Query
Install Directory Entry
Dial from Directory
Hang-up
Install Password
Install Modem Configuration String
Install Hangup String (MIP Mode only)
Install Dial Prefix
Install Hangup Timer
Configure Modem
Request/Release SLTA
Clear EEPROM Pool
Install NVConnect (NSI mode only)
Install NSIConnect (NSI mode only)
Install CallbackEnable (NSI mode only)
Report SLTAEE (NSI mode only)

Modem Compatibility
Remote LTS-20 Deployment

Configuration
Software Setup
SLTALink Manager

16 Using the Host Connect Utility with the
LTS-20 MIP Mode
HCU Usage
Theory of Operation
Usage Examples
Suggested Modem Configurations
Status and Error Reporting

17 Using a Programmable Serial Gateway
Creating a Serial Gateway
LTWPSG History
Programmable Serial Gateway Hardware Resources
Developing a PSG Application with the NodeBuilder Development

Tool
PSG Software Installation
PSGBOR.DTM
Firmware Library Support
Usage

LTS-20 User’s Guide

15-1
15-2
15-3
15-4
15-4
15-4
15-5
15-7
15-9
15-9

15-10
15-11
15-11
15-12
15-12
15-13
15-13
15-14
15-15
15-15
15-16
15-16
15-16
15-17
15-17
15-17
15-17
15-18
15-19
15-19
15-19
15-20

16-1
16-2
16-3
16-4
16-5
16-6

17-1
17-2
17-2
17-3

17-4
17-4
17-5
17-5
17-6

ix

Code Development and Debugging 17-7
PSG.LIB Functions 17-7
Advanced Applications 17-9
UART Registers 17-10
PROM/FLASH Specification 17-10
Differences Between PSG-10 and PSG-20 17-10
Porting PSG-10 Code to the PSG-20 17-11

18 Modem Troubleshooting
Troubleshooting

LTS-20-based Node and Modem Do Not Answer or Pick Up
Modems Will Not Connect
LTS-20-based Node-to-Host Link Fails Completely
LTS-20-based Node-to-Host Link Fails Partially
LTS-20-based Node Sends Modem Configuration String,

But It Has No Effect

18-1
18-2
18-2
18-2
18-2
18-3

18-3

Appendix A Communications Parameters A-l

Appendix B Windows DLL Files for LTS-20 MIP Mode B-l
ldv-close B-2
ldvget-version B-3
ldv-open B-4
ldv-read B-5
ldv-write B-6

Appendix C Software License Agreements C-l

X Preface

LTS-20 Introduction

The LTS-20 LonTalk Serial Adapter Module is a network interface
that enables any host processor with an EIA-232 serial interface to
connect to a LONWORKS network. A replacement for the previous
generation LTS-10 Core Module, the LTS-20 is supplied with both
Network Services Interface (NSI) firmware to support LNS - the
standard LONWORKSB network operating system - as well as
Microprocessor Interface Program (MIP) firmware to support older
API-based tools. The LTS-20 extends the reach of LONWORKS
technology to a variety of hosts, including desktop, laptop, and palmtop
PCs, workstations, embedded microprocessors, and microcontrollers.

LTS-20 User’s Guide l-l

The LTS-20 enables the attached host to act as an application node on a LONWORKS
network. When used with a PC host and the LonMaker for Windows Integration Tool
(or an older generation tool using the LonManager API), or LNS DDE Server, the
LTS-20 can also be used to build sophisticated network management, monitoring,
and control tools for LONWORKS networks.

The LTS-20 is a direct replacement for Echelon’s model 65200-100 LTS-10 module.
The two modules are pin-for-pin compatible and also have identical physical
dimensions. The LTS-20 is equipped with an NSI to enable it to be used in
conjunction with LNS - the standard operating system for LONWORK~ control
networks. By default the LTS-20 is shipped with the NSI mode enabled. A jumper is
provided which, when cut by the customer, disables the NSI and enables the MIP
mode for emulating the behavior of the LTS-10.

Intended to be embedded within an OEM’s product, the LTS-20 and its associated
interface logic can be used to connect to a host through a pair of modems and the
telephone network. This allows the monitoring, control, or network management
application computer to be remote from the network. A node using the LTS-20,
associated logic, and modems can initiate a telephone call to a remote host computer,
and can be set up to answer incoming calls from a remote host.

A Connectivity Starter Kit (Model 58030-01) should be ordered for initial
development with an LTS-20. The kit includes both software and documentation.
The software includes network drivers for Windows@ 95,98, and NT. Supplied as a
single in-line module (SIM) form-factor building block, the LTS-20 can be used to
create custom serial interfaces to a wide range of network media.

l-2 Introduction

2

LTS-20 Overview

This chapter provides an overview of the model 65202 LTS-20 LonTalk
Serial Adapter Module.

LTS-20 User’s Guide 2-l

Mechanical Description
The LTS-20 Module consists of a 67mm by 28mm by 7mm (2.65” by 1.1” by 0.3”) module
with the core electronics and firmware required to implement a serial LonTalk
Adapter. The module is attached to a motherboard using a 40-position, 0.050-inch
spacing SIM socket. Two compatible sockets are available:

l Molex 15-82-1175 SIM Vertical Connector with metal latches, 0.050 Centerline
Single Row Connector - 40 position.

l AMP 4-382487-0, SIM II Right Angle Connector, 0.050 Centerline Single Row
Connector - 40 position.

For information about Molex parts call +l-708-969-4550 or fax +l-708-969-1352.

Within North America, AMP drawings can be obtained via FAX using the free AMP
FAX service. Call l-800-522-6752 from a touchtone phone and order customer prints
using the AMP part number. Additional information on the connectors is available in
AMP application note number AMP 114-1060 and reliability information is available in
AMP product specification 108-1297.

Figure 2.1 illustrates the mechanical footprint for the module and vertically mounted
socket. Figure 2.2 shows the recommended PCB pad layout for the vertically mounted
socket. Figures 2.3 and 2.4 provide the same information for the right-angle socket.

Decisions about component placement on the motherboard must consider
electromagnetic interference (EMI) and electrostatic discharge (ESD) issues discussed
in Chapter 4 of this document.

2-2 LTS-20 Overview

LTS-20 Footprint when using Molex Part
Number 15-82-1175

(Component Side, Vertical SIM Mounting)

74.!xh-ml
3.17mm ~

Notes:

1. Dimensions in mm (inches).
2. Tolerances + .13mm (0.0005)
3. Components standing higher that 3.81 mm(.l5) should not be closer than 12.4mm (0.5)

to this edge of the socket to allow clearance to insert the module.
4. Allow 33.02mm (1.3) clearance above PCB over the footprint area. Additional

clearance required to insert the module.
5. Socket dimensions are subject to change. Contact Molex for the most current

information.
6. Alternate AMP part is 822021-l.

Figure 2.1 LTS-20 Vertical Socket Mechanical Footprint

LTS-20 User’s Guide 2-3

LTS-20 PC6 Footprint when using AMP Part Number 4-382487-O
(Component Side, Horizontal Mounting)

4.32mm 74.93mm
9

E&k& Outline

f
15.4 2mm

(0.670)

_i

67.31 mm
fvbdule &erhang

g

Notes:

1. Dimensions in mm (inches).
2. Tolerances * .13mm (0.0005)
3. Do not position components in the overhang region.
4. Allow 12.7mm (0.5) clearance above PCB over the entire footprint area. Additional

clearance required during assembly to insert the module.
5. Socket dimensions are subject to change. Contact AMP for the most current

information.

Figure 2.2 LTS-20 Horizontal Socket Pad Layout

2-4 LTS-20 Overview

Power Requirements
The modules require a +5VDC *lo% power source with a minimum of 15OmA of current
capacity.

Power Supply Decoupling and Filtering

The design for the module power supply must consider filtering and decoupling
requirements of the module. The power supply filter must prevent noise generated by the
core module from conducting onto external wires. Switching power supply designs must
also consider the effects of radiated EMI.

The modules require a clean power supply to prevent RF noise from conducting onto
the network through active drive circuits. Power supply noise near the network
transmission frequency may degrade network performance.

The modules include 2.2pF and O.lpF power supply bypass capacitors close to pins 1,9,
and 31. In general, high-frequency decoupling capacitors valued at O.lpF or O.OlpF
placed near pins 1,9, and 31 on the motherboard are necessary to reduce EMI.

L 0 w Voltage Pro tee tion

It is necessary to include a low voltage indicator (LVI) circuit on the module
motherboard to drive the -RESET line of the core module. See the Neuron C~QJ Data
Book for details. Failure to include such protection may cause data corruption to
configuration data maintained in EEPROM on the module’s Neuron Chip. In the
sample circuit of figure 3.1, protection is provided via a Motorola MC33164.

Electrical Interface
The pinout of the modules is shown in table 2.1.

LTS-20 User’s Guide 2-5

Table 2.1 Pinout of the LTS-20

Name Function Pin #

AUTOBAUD
BAUD0
BAUD1
BAUD2

CFGO
CFGl
CFG2
CFG3
CLK OUT
CPO
CPl
CP2
CP3
CP4
-CTS
-DCD IN

-DCD OUT
DCE
-DSR
-DTR
PKT
-RESET
-RI IN
-RI OUT
-RTS
SERIAL IN
SERIAL OUT
-SERVICE
-TEST
XIDO
XIDl
XID2
XID3
XID4

vcc
GND

Automatic serial bit rate detect enable input 19
Serial bit rate 0 input (LSB) 16

Serial bit rate 1 input 15

Serial bit rate 2 input (MSB) 21

EIA-232 interface option (1 = 8 wire, 0 = 3 wire) 17

Network Disable (1 = disable after reset) 14

Modem Support (1 = remote host; 0 = local host) 20
Interface link protocol (1 = Buffered; 0 = ALERT/ACK) 18
Neuron Chip CLK2 output 11
Network communication port 0 6
Network communication port 1 5
Network communication port 2 4
Network communication port 3 7

Network communication port 4 3
EIA-232 clear to send output from UART 36
EIA-232 serial data carrier detect input (DTE only) 35
EIA-232 serial data carrier detect output (DCE only) 40
Indicates whether connected as DCE 22
EIA-232 data set ready output from UART 38
EIA-232 data terminal ready input to UART 37
Packet transmitted output 13
Neuron Chip reset input and output 8
EIA-232 ring indicator input (DTE only) 33
EIA-232 ring indicator output (DCE only) 34
EIA-232 request to send input to UART 39
EIA-232 serial data input to UART 26
EIA-232 serial data output to UART 27
Neuron Chip service pin input and output 12
Manufacturing test pin, tie to Vcc in final product 30
Transceiver ID 0 input (LSB) 25
Transceiver ID 1 input 23
Transceiver ID 2 input 29
Transceiver ID 3 input 28
Transceiver ID 4 input 24
+5VDC input 1,9,31

Ground 2, 10, 32

2-6 LTS-20 Overview

NSI/MIP MODE JUMPER R2

The NSI/MIP jumper R2 (a 2200 resistor) determines the start-up mode of the module.
The module is shipped in the NSI mode, with the jumper intact. Cutting jumper R2
disables the NSI mode and enables the MIP mode (for emulating the LTS-10 module).
DO NOT cut the jumper while the module is powered - only cut the jumper with the
module unpowered. Observe appropriate ESD protection suitable for CMOS devices
when handling the module or cutting jumper R2. To ensure reliable operation, RJ
should be removed in its entiretv and not simnlv cut at one end.

Figure 2.3 R2Jumper

AUTOBAUD

The AUTOBAUD input signal enables automatic baud rate detection on the LTS-20 as
described in Chapter 7. The input is a floating CMOS input and must be asserted high
to enable automatic baud rate detection or be asserted low to disable automatic baud
rate detection.

BAUD[2..0]

The BAUD[2..01 input signals set the EIA-232 serial bit rate on the LTS-20 module as
described in Chapter 7 and summarized in Table 2.2. The inputs are not used when
AUTOBAUD is enabled. The inputs are floating CMOS inputs and must be asserted
high to select a “1” and asserted low to select a “0”.

Table 2.2 LTS-20 Baud Rate Inputs

001
010 E4 011
100

BAUD[2..0]
000

101
110
111

1 Serial Bit Rate
14,400 bps
1,200 bps
2,400 bps
9,600 bps
19,200bps
38,400 bps
57,600 bps
115,200bps

CFGO

The CFGO input signal selects a full B-wire interface or 3-wire interface for the LTS-20
module as described in Chapter 7. The input is a floating CMOS input and must be
asserted high to select a full B-wire interface or asserted low to select a 3-wire interface.

LTS-20 User’s Guide 2-7

CFGl

The CFGl input signal enables or disables network communications after reset for the
LTS-20 module as described in Chapter 7. The input is a floating CMOS input and
must be asserted high to disable network communications after reset or asserted low to
enable network communications after reset.

CFG2

The CFG2 input signal controls the use of the LTS-20 module with a modem as
described in Chapter 12. The input is a floating CMOS input and must be asserted
high to enable modem support for a remote host or asserted low to enable local host
support.

CFG3

The CFG3 input signal controls the network interface link protocol used between the
LTS-20 module and a local host as described in Chapter 11. The input is a floating
CMOS input and must be asserted high to select the buffered link protocol or asserted
low to select the ALERT/ACK link protocol.

CLK OUT

The CLK OUT output signal is driven by the CLK2 pin of the core module Neuron
Chip. It can drive one HCMOS load, and can be used to interface to the FTT-1OA Free
Topology Transceiver or the LPT-10 Link Power Transceiver.

CP(4..0)

The CP[4..0] signals are connected to the CP[4..0] pins of the core module Neuron Chip.
The function of these pins is described in the Neuron Chip Data Book.

-CTS

EIA-232 clear to send output when the LTS-20 is connected as a DCE device. This
output should be used as the EIA-232 request to send (-RTS) output when the LTS-20
is connected as a DTE device. The output is driven by the core module UART and must
be connected to an EIA-232 driver if EIA-232 voltage levels are required, or can be
ignored for a 3-wire serial interface.

-DCD IN

EIA-232 data carrier detect input when the LTS-20 is connected as a DTE device. This
input is not used when the LTS-20 is connected as a DCE device. This input is not
used by the firmware when connected to a local host, and is used to detect incoming
calls when used with a remote host (i.e. when CFG2 is set to the Remote Host state).
The input is connected to the core module UART and must be externally connected to
an EIA-232 receiver if EIA-232 voltage levels are used, or should be connected to
ground for a 3-wire serial interface.

2-8 LTS-20 Overview

-DCD OUT

EIA-232 data carrier detect output when the LTS-20 is connected as a DCE device.
This output is not used when the LTS-20 is connected as a DTE device. This output is
always asserted high by the firmware. The output is driven by the core module UART
and must be connected to an EIA-232 driver if EIA-232 voltage levels are required, or
can be ignored for a 3-wire serial interface.

DCE

The input is a floating CMOS input. It is not used by the firmware. It should be pulled
high or low by the motherboard.

-DSR

EIA-232 data set ready output when the LTS-20 is connected as a DCE device. This
output should be used as the EIA-232 data terminal ready (-DTR) output when the
LTS-20 is connected as a DTE device. This output is always asserted high by the
firmware when used with a local host and is asserted low for 500ms to hang up the
modem when used with a remote host (i.e., when CFG2 is set to the Remote Host state).
The output is driven by the core module UART and must be connected to an EIA-232
driver if EIA-232 voltage levels are required, or can be ignored for a 3-wire serial
interface.

-DTR

EIA-232 data terminal ready input when the LTS-20 is connected as a DCE device.
This input should be used as the EIA-232 data set ready (-DSR) input when the LTS-
20 is connected as a DTE device. The input is connected to the core module UART and
must be externally connected to an EIA-232 receiver if EIA-232 voltage levels are used,
or should be externally connected to ground for a 3-wire serial interface.

PKT

The PKT output signal is asserted high when interface buffers are passed from the host
to LTS-20 module. PKT can be used to drive an activity LED, as in the example circuit
shown in figure 3.1. The output is controlled by writing to the memory mapped I/O at
location OxE7EOwrite 0x01 to drive the signal high, and 0x00 to drive the signal low.
PKT can source 2mA with VCH 2 2.4V, and it can sink 8mA with VCL I 0.45V.

-RESET

The -RESET signal is connected to the -RESET pin of the core module Neuron Chip.
The function of the -RESET pin is described in the Neuron Chip Data Book. The core
modules include a reset circuit as shown in figure 2.5.

The -RESET signal should be driven (open collector or open drain only) by a low
voltage protection circuit (LVI) on the core module motherboard as described under
Low Voltage Protection earlier in this chapter. The use of an LVI is critical for reliable
operation of the LTS-20.

LTS-20 User’s Guide 2-9

Figure 2.4 LTS-20 Reset Circuit

-RI IN

EIA-232 ring indicator input when the LTS-20 is connected as a DTE device. This
input is not used when the LTS-20 is connected as a DCE device. The output is
connected to the core module UART and must be externally connected to an EIA-232
receiver if EIA-232 voltage levels are used, or should be externally connected to ground
for a 3-wire serial interface.

-RI OUT

EIA-232 ring indicator output when the LTS-20 is connected as a DCE device. This
output is not used when the LTS-20 is connected as a DTE device. This output is
always set to the inactive state by the firmware. The output is driven by the core
module UART and must be connected to an EIA-232 driver if EIA-232 voltage levels
are required, or can be ignored for a 3-wire serial interface.

-RTS

EIA-232 request to send input when the LTS-20 is connected as a DCE device. This
input should be used as the EIA-232 clear to send (-CTS) output when the LTS-20 is
connected as a DTE device. The input is connected to the core module UART and must
be externally connected to an EIA-232 receiver if EIA-232 voltage levels are used, or
should be externally connected to ground for a S-wire serial interface.

SERIAL IN

EIA-232 received data (RXD) input. The input is connected to the core module UART
and must be externally connected to an EIA-232 receiver if EIA-232 voltage levels are
used.

SERIAL OUT

EIA-232 transmitted data (TXD) output. The output is driven by the core module
UART and must be connected to an EIA-232 driver if EIA-232 voltage levels are
required.

2-10 LTS-20 Overview

-SERVICE

The -SERVICE signal is connected to the -SERVICE pin of the module’s Neuron Chip.
The function of the -SERVICE pin is described in the Neuron Chip Data Book. The
internal pullup resistor for the service pin is enabled. A service LED will reflect the
firmware status: blinking means that the module is unconfigured, offmeans that it is
configured, and on steadily means that it is applicationless. If the service LED is on
steadily, a critical error has been detected by the firmware. A push-button connected to
this pin may be used during installation to broadcast the 4%bit Neuron ID on the
network.

Typical applications do not require debounce conditioning of momentary push buttons
attached to the -SERVICE pin. The software response time associated with this input
is long enough to effectively provide a software debounce for switches with a contact
bounce settling time as long as 20 milliseconds.

-TEST

The -TEST input signal is used to put an LTS-20 module in test mode during
manufacturing test. Use of this signal is described in the LTSMFT.NC Neuron C file in
the manufacturing test directory (MFT) of the software. This signal should be tied high
in a shipping, production-level node.

XID(4..0)

The LTS-20 comes preconfigured with many common LONWORKS transceiver
parameters. The XID[4..01 input signals specify a transceiver identification (ID) to select
the appropriate transceiver type.

The transceiver ID inputs eliminate a manufacturing step by automatically configuring
the LTS-20 for most transceivers. A special transceiver ID is reserved for programming
any custom transceiver type. This value causes the communication port pins to be
configured as all inputs so that no line will be driven by both the transceiver and LTS-20
Neuron Chip before the chip can be properly configured.

The LTS-20 firmware reads the transceiver ID inputs on both power-up and on reset. If
it is being powered-up for the first time, or if the transceiver ID is different from the last
time it was powered-up, the parameters specified in table 2.3 are loaded. If it is being re-
powered-up, and the transceiver ID is not 30, the LTS-20 firmware compares the network
bit rate and input clock for the specified transceiver to the current transceiver
parameters. If these parameters don’t match, then all transceiver parameters are
reinitialized. This allows a network management tool to change parameters, such as the
number of priority slots, without the new values being overwritten by the LTS-20
firmware.

LTS-20 User’s Guide 2-l 1

Table 2.3 LTS-20 Transceiver IDS

ID I XlD[4..0] I Name Media Bit Rate (bps)

01 00001 TPiXF-78 Isolated Twisted Pair 78k

03 00011 TP/XF-1250 Isolated Twisted Pair 1.25M

04 00100 FT-10 Free Topology, Link Power 78k

05 00101 TP/RS485-39 RS-485 Twisted Pair 39k

09 01001 PL-10 Power Line (FCC-band) 10k

10 01010 TP/RS485-625 RS-485 Twisted Pair 625k

11 01011 TP/RS485-1250 RS-485 Twisted Pair 1.25M

1 12 1 01100 1 TP/RS485-78 1 RS-485 Twisted Pair 1 78k

15 01111 PL90A 1 Power Line (narrow band A-band) 3.6k

16 10000 PL-POC

17 10001 PL90N

Power Line (C-band - CENELEC) 5k

Power Line (C-band - non-CENELEC) 5k

18 10010 PL-30

24 11000 FO-10

Power Line (A-band)

Fiber Optic

2k

1.25M

27 11011 DC-78

28 11100 DC-625

29 11101 DC-l 250

Direct Connect 78k

Direct Connect 625k

Direct Connect 1.25M

/ 30* Ill110 Custom Custom N/A

Notes: Type 30 can be used for any transceiver type; the communications port is
initially defined as all inputs to prevent circuit conflicts. When using type 30,
the transceiver parameters must be reprogrammed by establishing
communication over the serial port, as described in the next chapter.

See Appendix A for a listing of the communications parameters for each
transceiver type.

LTS-20 Software Configuration Options
The types of messages passed between the host and the LTS-20 are determined by
EEPROM configuration options. These options are described under Network Interface
Configuration Options in Chapter 3 of the LONWORKS Host Application Programmer’s
Guide. The Network Disable Option affects whether or not the LTS-20 can send and
receive application messages. This option is described in Chapter 7 under Initializing
an SLTA.

The buffer configuration parameters can be changed at any time by sending Write
Memory network management messages to the LTS-20, either from a host (using local
network management messages) or over the network from a network management tool.
See the Neuron Chip Data Book, Appendix A, for details of the data structures within
the Neuron Chip that control the partitioning of RAM for buffers.

2-12 LTS-20 Overview

The following table summarizes the memory usage of the default configuration. The
table also lists the maximum size of the buffer memory pool. If the LTS-20 is
configured to use more bytes than are available in the pool, it will most likely crash or
behave erratically since the remaining RAM is used by the system firmware.

The default MIP mode EEPROM configuration settings for the LTS-20 are as follows:

I Configuration Parameters I Default Setting I

I Initial State I Unconficlured

Explicit addressing

Network variable processing

Enabled’

Host Selection’

Program ID string 1 “SLTA”

‘These values apply to LTS-20 Neuron Chip application version 7 only
‘These values are fmed and cannot be modified

The amount of RAM memory available for buffers in the MIP mode is 25.75 bytes.
This total includes both on-chip and off-chip RAM. When calculating the total RAM
requirement for a given configuration, remember that there will be a fragmentation
boundary when going to the off-chip RAM as buffers are built. This fragmentation
may be up to a single buffer size in unusable RAM.

LTS-20 User’s Guide 2-13

Physblsgt; Part
RAM Ad&m NA,M..O,

x
2575KB

WFF

sas

J

Neuron Chip MIP Memory Map
64KR Total AddrssS lsyl%,

Lower H6a&fTi$cal ROM

Figure 2.5 LTSPO MIP Mode Memory Map

2-14 LTS-20 Overview

The default NSI mode EEPROM configuration settings for the LTS-20 are as follows:

Configuration Parameters Default Setting

Initial State Unconfigured I

Explicit addressing Enabled’

Network variable processing Host Selection’

Program ID string 1 “SLTA” I

Buffer Parameter
Receive transaction buffers
Transmit transaction buffers
Application input buffers
Application output buffers

Default Count Default Size Default Total
16 132 208
2 28’~’ 56’
3 255 765
3 255 765

Network input buffers 2 66 132
Network output buffers 2 66 132
Priority app. output buffers 3 255 765
Priority net. output buffers 2 66 132
Total bytes used for buffers 2,955

‘These values apply to LTS-20 Neuron Chip application version 7 only
2These values are fixed and cannot be modified

The amount of RAM memory available for buffers in the NSI mode is 2,955 bytes.
This total includes both on-chip and off-chip RAM. When calculating the total RAM
requirement for a given configuration, remember that there will be a fragmentation
boundary when going to the off-chip RAM as buffers are built. This fragmentation
may be up to a single buffer size in unusable RAM.

LTS-20 User’s Guide 2-15

Neuron Chip NSI Memory Map
64KB Total

ilxYhhSS

Upper f4dfTPogical ROM

Expand I : I

Figure 2.6 LTS-20 NSI Memory Map

The NODEUTIL node utility application available from the Developer’s Toolbox on
the Echelon web site (www.echelon.com) can be used to modify the buffer
configuration from a PC host. See the README.TXT file included with NODEUTIL
for details.

2-16 LTS-20 Overview

LTS-20 User’s Guide 3-l

3

Developing an SLTA with the
LTS-20 module

This chapter describes the process of developing a Serial LonTalk
Adapter based on the LTS-20 Module.

Overview
To create a complete serial interface (SLTA), with functions similar to Echelon’s
SLTA-10 Serial LonTalk Adapter, based on the LTS-20 Module, follow these steps:

Build an SLTA motherboard according to the specifications described in Chapter 2
and the guidelines described in Chapter 4. The motherboard may be part of custom
application hardware, or may be a standalone board. Figure 3.1 is a sample
motherboard schematic for an SLTA based on the use of the SMXTM transceivers.
Additional transceiver interfaces are described in the rest of this chapter.

Ensure that the communications parameters in the LTS-20 are compatible with
the transceiver. The transceivers listed in table 2.3 are supported directly by the
LTS-20 as predefined types. Set the transceiver ID lines to select the proper
transceiver type. For custom transceivers, modify the communications
parameters as described under Using Custom Transceivers in this chapter.

Install the SLTA on a network as described in Chapter 7. The network may be a
development network for initial testing, a manufacturing network for configuration
during manufacture, or a production network for field installation.

3-2 Developing an SLTA with the LTS-20

Using Predefined Transceivers
The LTS-20 includes pre-defined transceiver parameters for the transceivers listed in
table 2.3. When using any of these transceivers, the communications parameters are
automatically programmed as described in Chapter 2.

The following sections describe the hardware interface for standard LONWORKS
transceivers available from Echelon for twisted pair, link power, and power line
communications. The user’s guide for each transceiver contains documentation on
the interface requirements. The following sections provide additional information on
using these transceivers with the LTS-20.

TPT/XF-78 and TPT/XF- 7250 Twisted Pair Transceivers

The TPTKF-78 and TPTKF-1250 Twisted Pair Transceiver Modules support
transformer-isolated communications over a twisted pair cable. The transceiver ID
should be set to 1 for the TPTKF-78, and to 3 for the TPT/XF-1250.

See the LONWORKS TPT Twisted Pair Transceiver Module User’s Guide for details
on these channel types.

+SVDC Regulated

+IP”DC Unregulated

Figure 3.1 LTSPO Evaluation Board

LTS-20 User’s Guide 3-3

3-4

Figure 3.2 LTS-20 Evaluation Board Power Supply

Developing an SLTA with the LTS-20

JTJXPER BLOCK mm LEFI JUMPER BLOCK TOWARD RIGHT
CLTS-20 I OCE, tms-20 = DTE)

CONNECT To PC (DTE) CONNECT TO MODEM (DCE)

a >

LTS-20 User’s Guide

Figure 3.3 LTS-20 Evaluation Board Serial

3-5

FV- 70A Free Topology and LPT- 70 Link Power Transceivers

The FTT-1OA Free Topology Transceiver provides 78kbps signaling without regard
for cabling topology, and is by far the most popular twisted pair medium for
LONWORKS networks. The LPT-10 Link Power Transceiver Module supports free
topology communications over the same twisted pair cable that carries power for
application nodes. Power is supplied from a 48VDC power supply and is coupled to
the network via an LPI-10 Link Power Interface Module. Both a power supply and
an LPI-10 module are required to operate LPT-10 transceivers. The LPT-10
transceiver does not provide sufficient power for the LTS-20, which must be locally
powered and optically isolated from the LPT-10 transceiver. The transceiver ID
input must be set to 4 to support the LPT-10 and FTT-1OA transceivers.

Note that an FTT-1OA transceiver equipped with decoupling capacitors can operate
on a link power segment, but an LPT-10 transceiver cannot operate on an unpowered
FTT-1OA segment.

PLT Power Line Transceiver

A PLT Power Line Transceiver Module supports communications over AC or DC
power mains. It may be connected to the LTS-20 module and a coupling circuit as
shown in figure 3.2. The transceiver ID input must be set to support the correct PLT
transceiver. See the pertinent LONWORKS PLT power line transceiver module user’s
guide for additional information, including a description of the coupling circuits.

3-6 Developing an SLTA with the LTS-20

CPl

CP2

CP4

-RESET
LTS-20
Module

XID4

XID3

XID2

XIDI

XIDO

-1 CPO

CPI
TXOUT

PLT
cp2 Transceiver

RXIN

CP4

0
Power

0 Line
Media

0

Figure 3.4 Sample PLT Power Line Transceiver Interface

Using Custom Transceivers
The LTS-20 module can be used with transceivers not listed in table 2.3 as long as
the communications parameters are programmed to match the custom transceiver.
Since network communication is not possible before these parameters are set, they
must be programmed by the host over the EIA-232 link. The steps for programming
a custom transceiver type are:

1 Determine the appropriate transceiver parameters for your channel. A
discussion of transceiver modes and parameters may be found in Chapter 6 and
Appendix A, section 6 of the Neuron Ch@ Data BOOK. Transceiver parameters
may be modeled and fine-tuned using LonBuilder.

2 Select a transceiver ID of 30 (custom) on the LTS-20 transceiver ID inputs. The
pins should remain set to this value in the production SLTA.

3 Install the transceiver parameters using a network management tool such as the
LonMaker for Windows Integration Tool. The transceiver parameters are
programmed into non-volatile EEPROM so the module will retain the new
parameters after power is removed.

LTS-20 User’s Guide 3-7

3-8 Developing an SLTA with the LTS-20

LTS-20 Design Issues

This chapter examines a number of design issues, including a
discussion of electromagnetic interference (EMI) and electrostatic
discharge (ESD). These issues should be considered when designing
hardware based on the LTS-20 module.

I LTS-20 User’s Guide 4-l

EMI Design Issues
The high-speed digital signals associated with microcontroller designs can generate
unintentional Electromagnetic Interference (EMI). High-speed voltage changes
generate RF currents that can cause radiation from a product with a length of wire or
piece of metal that can serve as an antenna.

Products that use the LTS-20 module will generally need to demonstrate compliance
with EM1 limits enforced by various regulatory agencies. In the USA, the FCC
requires that unintentional radiators comply with Part 15 level “A” for industrial
products, and level “B” for products that can be used in residential environments.
Similar regulations are imposed in most countries throughout the world.

Echelon has designed the LTS-20 module with low enough RF noise levels for design
into level “B” products. This section describes design considerations to enable
products based on the core modules to meet EM1 regulations.

Designing Systems for EMC (Electromagnetic Compatibility)

The LTS-20 module has been designed so that products using them should be able to
meet both FCC and, based on radiated emissions, EN55022 level “B” limits. Careful
system design is important to ensure that a product based on the core modules will
achieve the desired EMC. Information on designing products for EMC is available in
several forms including books, seminars, and consulting services. This section
provides useful design tips for EMC.

EMC Design Tips

l Most of the EM1 will be radiated by the network cable and the power cable.

l Filtering is generally necessary to keep RF noise from getting out on the power
cable.

l EM1 radiators should be kept away from the LTS-20 module to prevent internal
RF noise from coupling onto the radiators.

l The LTS-20 module must be well grounded.

l Early EM1 testing of prototypes at a certified outdoor range is an extremely
important step in the design of level “B” products. This testing ensures that
grounding and enclosure design questions are addressed early enough to avoid
most last-minute changes.

ESD Design Issues

Electrostatic Discharge (ESD) is encountered frequently in industrial and commercial
use of electronic systems. Reliable system designs must consider the effects of ESD
and take steps to protect sensitive components. Static discharges occur frequently in
low-humidity environments when operators touch electronic equipment. The static

4-2 LTS-20 Design Issues

voltages generated by humans can easily exceed 1OkV. Keyboards, connectors, and
enclosures provide paths for static discharges to reach ESD sensitive components
such as the Neuron Chip. This section describes techniques to design ESD immunity
into products based on the LTS-20 modules.

Designing Systems for ESD Immunity

ESD hardening includes the following techniques:

l Provide adequate creepage and clearance distances to prevent ESD hits from
reaching sensitive circuitry;

l Provide low impedance paths for ESD hits to ground;

l Use diode clamps or transient voltage suppression devices for accessible, sensitive
circuits

The best protection from ESD damage is circuit inaccessibility. If all circuit
components are positioned away from package seams, the static discharges can be
prevented from reaching ESD sensitive components. There are two measures of
“distance” to consider for inaccessibility: creepage and clearance. Creepuge is the
shortest distance between two points along the contours of a surface. Clearance is
the shortest distance between two points through the air. An ESD hit generally arcs
farther along a surface than it will when passing straight through the air. For
example, a 20 kV discharge will arc about 0.4 inches (10 mm) through dry air, but the
same discharge can travel over 0.8 inches (20mm) along a clean surface. Dirty
surfaces can allow arcing over even longer creepage distances.

When ESD hits to circuitry cannot be avoided through creepage, clearance, and
ground guarding techniques, i.e., at external connector pins, explicit clamping of the
exposed lines is required to shunt the ESD current. Consult Protection of Electronic
Circuits from Overvoltages, by Ronald B. Standler, for advice about ESD and
transient protection for exposed circuit lines. In general, exposed lines require diode
clamps to the power supply rails or zener clamps to chassis ground in order to shunt
the ESD current to ground while clamping the voltage low enough to prevent circuit
damage. The Neuron Chip’s communications port lines are connected directly to the
LTS-20 edge connector without any ESD protection beyond that provided by the chip
itself. If these lines will be exposed to ESD in a custom SLTA, protection must be
added to the motherboard.

LTS-20 User’s Guide 4-3

4-4 LTS-20 Design Issues

5
The LTS-20 Software

This chapter describes the LTS-20 software that is shipped with the
Connectivity Starter Kit.

LTS-20 User’s Guide 5-l

Software Overview
The LTS-20 software includes ANSI C source code for HA, a sample host application
for MS-DOS that can be used as a basis for a user-developed host application on other
host platforms. This application provides examples of sending and receiving network
variable messages, as well as allowing a node based on an LTS-20 to be installed and
bound by a network management tool such as the LonManager LonMaker for
Windows Integration Tool or the LonBuilder network manager.

Two network drivers (Windows 95/98 and Windows NT) are included so that an LTS-
20 may be immediately used with LNS applications. Source code for DOS and UNIX
network drivers is also provided as a basis for a user-developed network driver for
other hosts or operating systems using the MIP. DLL software is provided to make it
easier to use the network driver under the Microsoft@ Windows operating system.

An executable program and source code is also provided for a Host Connection Utility
(HCU), which may be used to initiate and terminate the host to serial connection
when the LTS-20 is used with a remote host. An example written in Neuron C is also
provided as a basis for user-developed nodes on a LONWORKS network that need to
initiate outgoing calls to a remote host.

The LTS-20 includes NSI firmware that moves the upper layers of the LonTalk
Protocol off the Neuron Chip within a node onto a host processor. This firmware
allows the LTS-20 to be used by a host application to send and receive LonTalk
messages. The host application may be a custom application as described in the LNS
for Windows Developer’s Kit or LNS DDE Server User’s Guide. When using the LTS-
20 in the MIP mode, the host application may also be a network management
application based on tools using the now-discontinued LonManager API. The
firmware in an LTS-20 is fixed in ROM and need not be reprogrammed to use any of
the module’s capabilities.

Installing LTS-20 Software
The LTS-20 software is supplied on a diskette, together with an installation program.
To install the LTS-20 software, follow these steps:

1. Place the diskette in one of the disk drives of your PC. This will typically be the
A: or B: drive.

2. Start the automatic installation procedure by entering:

A: INSTALL [ENTER]

Substitute your disk drive name for the A: if you are using a different drive.

3. You will be asked to enter the name of your LONWORKS installation directory
The default is:

C:\ECHELON

5-2 LTS-20 Software

If you have other Echelon software products installed in the \LONWORKS directory,
rather than the \ECHELON directory, enter \LONWORKS in place of the default
directory name.

The LTS-20 software will be installed in the LTS - 2 0 sub-directory of your
LONWORKS directory, with the exception of the DOS network driver LDVSLTA. SYS.
This file will be installed in the BIN sub-directory of your LONWORKS directory. To
install the DOS network driver into your CONFIG. SYS file, follow the instructions in
Chapter 9.

The SLTA directory will contain the following files:

l Read-Me File. The README. TXT file includes a list of all the files on the
distribution disk, and also includes any updates to the documentation that
occurred since the documentation was printed.

l DOS Network Driver Sources. The DOS network driver source code is
contained in the LDVSLTA directory. These files can be used as the basis for
creating drivers for hosts other than PCs running DOS (see also the UNIX
network driver sources). See the README. TXT file for a description of the driver
files. See Chapter 8 for a description of the DOS network driver and Chapter 7
for a description of how to write a network driver for other hosts. See Chapter 4
of the LOhWORKS Host Application Programmer’s Guide for a description of the
services that must be supplied by a LONWORKS network driver.

The source files to build the DOS driver are:

LDVSLTA.CFG Configuration file for Borland C.

MAKEFILE Make file script for Borland C.

MDV-T1ME.C Code to manage the PC timer.

MDV-T1ME.H External interface definitions for the timer handler.

MSD-DEFS.H Data structure and literal definitions.

MSDmD1FC.C DOS driver interface functions.

MSD-DRVR.H DOS driver interface and literal definitions.

MSD-EXEC.C Main open, close, read, and write processing.

MSD-FRST.C Module to be linked first in the network driver.

MSD-IRQC.ASM Serial I/O interrupt procedure.

MSD-LAST.C Module to be linked last in the network driver.

MSD-RAW.C Direct serial I/O (modem) processing.

MSD-SEGD.ASM Defines data segment register for driver.

MSD-SI0.C PC/AT UART interface processing.

MSD-TXRX.C Single byte link layer processing.

MSD-UART.H Defines PC/AT UART registers.

l UNIX Network Driver Sources. The UNIX network driver source code is
contained in the UNIX directory. These files can be used as the basis for creating
drivers for any UNIX host, and can also be used as the basis for developing
drivers for other hosts. See Chapter 10 for a description of the UNIX network
driver and Chapter 8 for a description of how to write a network driver for other

LTS-20 User’s Guide 5-3

hosts. See Chapter 4 of the LONWORKS Host Application Programmer’s Guide for
a description of the services that must be supplied by a LONWORKS network
driver. The source files to build the UNIX driver are:

LDVSLTA.C UNIX driver functions.

LDVSLTA.H UNIX driver declarations.

l External Interface Files. External interface files included for use by network
management tools are contained in the LTS - 2 0 directories. Fifteen external
interface files are included for the standard transceiver types that are directly
supported by the LTS-20. See Binding to a Host Node in Chapter 3 of the
LONWORKS Host Application Programmer’s Guide for a description of how to use
these files to bind to an SLTA node. Appendix B of the LONWORKS Host
Application Programmer’s Guide provides a detailed description of how to modify
these files to incorporate network variables and message tags. These interface
files are provided in version 3 formats; version 2 formats are available by running
the utility XIF3T02 . EXE (available from Echelon’s ftp site) on the version 3 XIF
files. Version 3 external interface files are compatible with the latest releases of
all Echelon software products. External interface files in version 3 format are
containedinthe SLTA2\XIF-V3 and LTS-20\XIF-V3 directories.

Each SLTA/2 directory contains the following files:

NSLTA125.XIF For SLTA/2 with a TP/XF-1250 transceiver.

NSLTA78K.XIF For SLTA/2 with a TPKF-78 transceiver.

NSLTA485.XIF For SLTA/2 with a TP-RS485-39 transceiver.

NSLTAFTl.XIF For SLTtV2 with a TP/FT-10 transceiver.

Each LTS-20 directory contains the following files:

LTS1250.XIF

LTS78K.XIF

LTS485A.XIF

LTS485B.XIF

LTS485C.XIF

LTS485D.XIF

LTSFTlO.XIF

LTSPLlO.XIF

LTSPL20A.XIF

LTSPL20C.XIF
protocol on).

LTSPL20N.XIF
protocol off).

LTSPL30.XIF

LTSFOlO.XIF

For LTS-20s with a TP/XF-1250 transceiver.

For LTS-20s with a TP/XF-78 transceiver.

For LTS-20s with a TP-RS485-39 transceiver.

For LTS-20s with a TP-RS485-78 transceiver.

For LTS-20s with a TP-RS485-625 transceiver.

For LTS-20s with a TP-RS485-1250 transceiver.

For LTS-20s with a FT-10 or LPT-10 transceiver.

For LTS-20s with a PL-10 transceiver.

For LTS-20s with a PL-22 transceiver (A-band).

For LTS-20s with a PL-2l/PL-22 transceiver (CENELEC

For LTS-20s with a PL-2l/PL-22 transceiver (CENELEC

For LTS-20s with a PL-30 transceiver.

For LTS-20s with a FO-10 transceiver.

5-4 LTS-20 Software

LTSDC78.XIF For LTS-20s using Direct Connect at 78kbps.

LTSDC625.XIF For LTS-20s using Direct Connect at 625kbps.

LTSDC125.XIF For LTS-20s using Direct Connect at 1250kbps.

l Sample Host Application. A sample host application is contained in the HA
directory. See Appendix A of the LOhWORKS Host Application Programmer’s Guide
for a description of the example. The following files are included:

README.TXT

HA.EXE

HA.C

NI-MSG.C

APPLCMDS.C

NI-CALLB.C

APPLMSG.H

HA-C0MN.H

NI-CALLB.H

APPLMSG.C

HAU1F.C

1OCTL.C

LDV1NTFC.C

LDV1NTFC.H

NI-MSG.H

NI-MGMT.H

HAU1F.H

MAKEFILE

MSOFT.MAK

HA-V3.XIF

HA-TEST.NC

A description of the sample host application.

An executable version of the sample host application for DOS.
The SLTA DOS network driver must be installed to run this
application.

The main program for the example.

A general purpose network interface library that can be used
with any host application.

Functions to handle application layer network variable
commands

The host-bound network management dispatcher.

Application message handler function prototypes.

The HA common declarations.

The definitions for the network management dispatcher.

Functions to handle application network variable and explicit
messages.

Command-line user interface for the example.

L/O control function for Microsoft C.

Device interface driver.

Include file for device driver interface.

Definitions for network interface message structures.

Definitions for network management message structures
used by the example.

Definitions for the host application example user interface.

A make file script for Borland C.

A make file script for Microsoft C.

An external interface file which may be used to bind the
example with LonBuilder.

A Neuron C program which may be loaded into a Neuron
emulator and bound to the sample host application for testing.

LTS-20 User’s Guide 5-5

D1SPLAY.H A Neuron C include file to drive the Gizmo 2 I/O module for the
test example.

l Host Connect Utility. A sample host connection utility is contained in the HCU
directory, with source code. See Chapter 12 for details. The files supplied are:

HCU.EXE Executable file for the Host Connection Utility.

HCUJA1N.C The main C source program.

HCU.CFG Configuration file for Borland C.

MAKEFILE Make file script for Borland C.

MSD-DRVR.H Driver definition include file.

l Neuron C Connection Example. A sample Neuron C program is contained in
the NC-APPS directory. This program shows how a node on a network connected
to the SLTA can dial out and connect to a remote host computer. See Chapter 11
for details. The files supplied are:

DIALOUT.NC Neuron C source program to dial out with the SLTA.

GIZSETUP.NC An example Neuron C program for configuring the SLTA.
Configures the EEPROM directories of an SLTA using the
Gizmo 2 I/O module as the user interface.

SLTA-ANM.H Definitions of SLTA-specific network management messages.

l Manufacturing Test Files. The files supplied in the LTS - 2 0 \MFT directory
provide a Neuron C application example which can be used as a manufacturing
test aid for products based on the LTS-20. They are:

LTSMFT.NC Neuron C source file, including full documentation.

LTSMFT.H Include file.

This application is designed to aid in the testing of circuitry that is external to the
LTS-20 module, such as EIA-232 interface drivers and connectors. It may be
programmed into a LONWORKS device which then communicates with the LTS-20
module via the network. The LTS-20 circuitry is tested with some of its signals
connected in a loopback manner. The assertion of the TEST input (pin 30) will
cause the LTS-20 firmware to come up in the test mode.

Insfalling the Windows DLL Software

A second diskette contains the Windows Dynamic Link Library (DLL) files. These
files may be used when developing a host application to run under Microsoft
Windows. The file WLDV . DLL should be copied to your Windows directory (typically
C : \WINDOWS). The files LDV . H and LON . H should be copied to a directory in the
include file search path of your C compiler. The file WLDV . LIB should be copied to a
directory in the library search path of your application linker. See Appendix B for
information on using the Windows DLL.

5-6 LTS-20 Software

6
Creating an LTS-20 MIP Mode

Network Driver

This chapter describes the process of building a network driver for a
host that is to be connected to an LTS-20 operating in MIP mode. The
example network drivers for DOS, Windows, and UNIX are described.
Similar logic can be used on other host processors and operating
systems. This chapter also includes a description of the network
interface protocol for the LTS-20 operating in MIP mode. The network
interface protocol defines the format of the data passed across the EIA-
232 interface, and varies depending on the configuration of the LTS-20
and the network driver. If a LONWORKS standard network driver is
used, the format of the data passed between the driver and the
application is defined by the network driver protocol and is independent
of the network interface protocol; the driver is responsible for providing
the necessary translations. This chapter will therefore be of interest
only to those needing to develop a network driver for a host other than
DOS, Windows, or UNIX.

If you are using a DOS, Windows, or Unix host, you can skip this
chapter and instead read Chapters7 or 8, which describe the DOS and
UNIX network drivers.

LTS-20 User’s Guide 6-l

Purpose of the Network Driver
The network driver provides a hardware-independent interface between the host
application and the network interface. By using network drivers with consistent
calling conventions, host applications can be transparently moved between different
network interfaces. For example, the standard LTS-20 MIP mode DOS driver,
together with the Windows DLL software, allows DOS and Windows applications,
such as those based on the LonManager API, to be debugged using the network
driver for the LonBuilder Development Station. These applications can later be used
with the network driver for the SLTA-10 operating in MIP mode, without modifying
the host application.

For the purposes of this chapter, the term “SLTA” refers to the LTS-20
module operating in MIP mode.

A LONWORKS standard network driver must supply the functions defined under
Network Driver Services in Chapter 4 of the LONWORKS Host Application
Programmer’s Guide. The Windows DLL software is described in Appendix B.

Example Network Drivers
The SLTA is delivered with source code for example network drivers for DOS,
Windows, and UNIX. The DOS driver is used for both DOS and Windows
applications. See the comments in the source code of the network drivers for an
explanation of how the network drivers work. These drivers can be used as
templates for a LONWORKS standard network driver. The DOS network driver is
compatible with the LonManager APIs for DOS and Windows, LonMaker, and the
LonManager DDE Server. A sample host application for DOS is also supplied. The
functions ldv-open(),ldv-read(),ldv_write (),and ldv-close 0 forma
suitable operating-system independent definition for the network driver. These
functions support multiple network interfaces, and hide the DOS-specific aspects of
the DOS network driver.

The UNIX network driver is a source library that, uses the UNIX serial device driver.
It aho supports the ldv-open0 , ldv-read(), ldv-write(), andldv-close0
functions.

Implementing an SLTA Network Driver
The network driver manages the physical interface with the SLTA, implements the
network interface protocol, performs flow control, manages input and output buffers,
and provides a read/write interface to the host application.

Figure 6.1 illustrates how the network driver fits into the host application
architecture.

6-2 Creating an LTS-20 MIP Mode Network Driver

Host

Application Layer Interface

Host Application

Driver services:
open/close/ioctl/read/write

Output Buffers Input Buffers

I I I I
Downlink Flow Control

I I

Uplink Flow Control
Buffer Request Protocol XON/XOFF Protocol

I I I 1

I-~ I

Interface Transport Protocol
(Reliable or None)

Interface Link Protocol
(ALERT/ACK or Buffered)

Physical Layer Interface (RS-232)

t

SLTA

Network Driver

Network Interface

LONWORKS
Network

Figure 6.1 Host Application Architecture

To implement an SLTA network driver for a host other than DOS, Windows, or
UNIX, follow these steps:

1 Implement and test low-level serial I/O. Serial I/O may be performed directly to
the host’s UART as is done in the DOS network driver, or may be performed by a
serial I/O driver on the host as is done by the UNIX network driver. Serial I/O
should be interrupt driven for better performance.

The UNIX network driver uses the UNIX serial port driver for all low-level serial
I/O and interrupt support. This simplifies the driver and also simplifies porting
between different versions of UNIX. The serial device is opened by the
ldv-open () function and closed by the ldv-close () function. Data is read

LTS-20 User’s Guide 6-3

from and written to the serial device using the UNIX read () and write ()
system calls.

The UNIX network driver includes a ldv_pos t-event s () function that should
be called periodically from the client application in order to assure that the SLTA
traffic is being processed.

The DOS network driver serial I/O functions are implemented by MSD-SIO . C,
MSD-UART . H, and MSD-IRQC . ASM. These files may all be replaced as long as the
required serial I/O functions in MSD-SIO . c are provided. The definitions of the
UART registers are in MSD-UART . H. The DOS serial I/O interrupt service
routines arein MSD-IRQC.ASM.

The DOS network driver uses the DOS system timer tick interrupt (vector 0x10
and the serial I/O device interrupt for the relevant COM port to perform
background processing of the serial network interface. The driver hooks into
these interrupt vectors and executes driver code whenever the LON(n) device is
opened. Flags internal to the driver prevent the interrupt code thread from
interfering with the normal application foreground execution of functions within
the driver.

The smip-int-main () function in the DOS network driver services the serial
port connected to the network interface. The function tick-int-main ()
services the timer tick interrupt every 55 msec.

Both network drivers are fully buffered for both outgoing and incoming
messaging. Read and write functions work with circular buffers within the
driver. The host interrupt, service routine handles the other ends of these buffer
queues.

Both network drivers only support a single set of output buffers. An elaboration
on this design could implement a set of priority output buffers. The write
function could determine into which of the two buffer sets to place messages, and
the driver service function could service the priority buffers first.

2 Implement and test timer support functions. Timer support may be provided by
a hardware timer as is done in the DOS network driver, by a system service as is
done in the UNIX network driver, or by implementing a background software
task. The UNIX network driver uses a once per second signal that is handled by
the second-service () function. The DOS timer functions are implemented by
MDV-TIME.CandMDV-T1ME.H.

3 Implement and test the host side of the network interface protocol. The network
interface protocol is implemented by the rx-process () and tx-process (1
functions in the UNIX driver, and by the functions in MSD-TXRX . c for the DOS
network driver.

4 Implement and test raw modem I/O if you need to support a modem interface.
Raw I/O manages the serial interface to the modem when the modem is not
connected to a host and is used for modem initialization and control. The raw I/O
interface is implemented in MSD-RAW. c for the DOS network driver, and is not
implemented in the UNIX network driver.

5 Implement and test the buffer request states, buffer management, and read/write
interfaces. These functions are implemented by MSD-EXEC . c for the DOS

6-4 Creating an LTS-20 MIP Mode Network Driver

network driver. The read/write interface is implemented in the ldv-read () and
ldv-wr i te () functions for the UNIX network driver

The following files are unique to a DOS driver and would probably not be used in a
port to anotherhost: MSD-DRVR.H,MSD-DIFC.C,MSD_FRST.C,MSD_LAST.C,
MSD-SEGD.ASM.

Network Interface Protocol
The network driver implements the host side of the network interface protocol,
providing an easy-to-use and interface-independent read/write interface to the host
application. The network interface protocol is a layered protocol that includes the
following layers:

l Presentation Layer. Defines packet formats for network variables and explicit
messages. This is the only layer visible to the host application. The remaining
layers are managed by the network driver.

l Session Layer. Manages flow control, buffer requests, and grants.

l Transport Layer. Ensures end-to-end reliability between the host and the SLTA.

l Link Layer. Controls access to the serial link.

l Physical Layer. EIA-232 interface.

The physical layer is defined by the EIA RS-232 standard. The link, transport,
session, and presentation layers are described in the following sections.

Link Layer Protocol
The default interface link layer protocol is the ALERTIACKprotocol. This protocol
may be used when the host is a microcontroller or microprocessor such as a PC
running DOS or Windows. The alternative interface link protocol is the buffered
protocol. This protocol is used with computer hosts that can asynchronously buffer
an entire packet. All data are transmitted using 1 start bit, 8 data bits, no parity
bits, and 1 stop bit.

ALERT/ACK Link Protocol

The DOS network driver uses the ALERT/ACK link protocol by default (i.e. the /N
option is not specified). See Chapter 8 for a description of the network driver
options. The UNIX network driver uses the ALERT/ACK link protocol if the
alert-ack-prtcl variable is set to TRUE in the source code (this is not the
default). The CFG3 input of the SLTA, as described in Chapter 6, must be in the
ALERTlACK state.

When using this protocol, all transfers between the SLTA and the host consist of
serial data streams that start off with the link-layer header sequence described in
figure 6.2. Whenever one device, either the SLTA or the host, needs to send a
command or message, the sender starts the sequence by transmitting the ALERT
byte (value 01 hex). When this byte is received by the receiver, that device responds
by transmitting the ALERT ACK byte (value FE hex). This low level handshaking

LTS-20 User’s Guide 6-5

process prevents the sender from transmitting the rest of the sequence before the
receiving device is ready. Once the ALERT ACK byte is received by the sender it
sends the rest of the message without any other interactions.

Sender Receiver

Link-Layer
Header

i
1 1 not-length 1

6-6 Creating an LTS-20 MIP Mode Network Driver

I checksum I

Figure 6.2 SLTA ALERT/ACK Link Protocol

The link-layer header contains a length byte followed by a one’s complement of the
length byte. These values are always validated by the receiver before accepting the
rest of the message. Following the length bytes is the network interface command.
See Appendix D of the Host Application Programmer’s Guide for a description of the
command byte structure. If the message contains a data field it follows the command
byte. Finally, a checksum terminates the sequence.

The length byte value describes the length of the network interface command byte
plus the length of the data field. This value will always be at least 1. The checksum
is a two’s complement of the sum of the command byte and all of the bytes in the data
field, if it exists. Checksum errors detected by the host will cause an error to be
reported to the application, and checksum errors detected by the SLTA will cause the
message to be ignored.

The SLTA places the following requirements on the rate of the received serial data
stream. When receiving, the maximum wait period for the length byte following the
transmission of the ALERT ACK byte is 1OOms (or 1 second when attached to a
modem). All subsequent bytes received must occur within 1OOms after the previous
byte, otherwise the SLTA receive process will abort. Likewise, the SLTA uses a wait
period of 1OOms (or 1 second when attached to a modem) before aborting for the
reception of the ALERT ACK when transmitting a message. If the ALERT ACK is

not received in time, the SLTA repeats the process by transmitting another ALERT
byte.

The SLTA cannot support a full duplex communications process between it and the
host. The network driver included with the SLTA takes this into account. Data
frames transmitted to the SLTA while it is in the process of sending uplink messages
will be lost if more than 16 bytes are sent to the SLTA.

Buffered Link Protocol
The DOS network driver uses the buffered link protocol when the /N option is
specified. See Chapter 7 for a description of this option. The UNIX network driver
uses the buffered link protocol if the alert-ack-prtcl variable is set to FALSE in
the source code (this is the default). The CFG3 input of the SLTA, as described in
Chapter 6, must be in the buffered protocol state.

When using this protocol, the link-layer header contains a length byte followed by a
one’s complement of the length byte. These values are always validated by the
receiver before accepting the rest of the message. Following the length bytes is the
network interface command. See Appendix D of the Host Application Programmer’s
Guide for a description of the command byte structure. If the message contains a
data field it follows the command byte. Finally, a checksum terminates the sequence.

Sender Receiver

I Link-Layer <
pz-1

Header

Figure 6.3 SLTA Buffered Link Protocol

The length byte value describes the length of the network interface command byte
plus the length of the data field. This value will always be at least 1. The checksum
is a two’s complement of the sum of the command byte and all of the bytes in the data
field, if it exists. Checksum errors detected by the host will cause an error to be
reported to the application, and checksum errors detected by the SLTA will cause the
message to be ignored.

LTS-20 User’s Guide 6-7

This protocol is used when the host is capable of accepting asynchronously occurring
input data without losing characters. The host is also relieved of the obligation of
responding to an ALERT character within 50 ms. This protocol may therefore be
used by an application-level handler calling an interrupt-driven buffered serial device
driver. Drivers with these characteristics are typically provided with real time
operating systems such as VRTX or time-sharing operating systems such as UNIX or
VMS. In this case, these drivers should be set up for binary data communications
without software flow control.

The buffered link protocol should not be used when the SLTA is attached to a modem.

The buffered link protocol can only be used on multitasking operating systems such
as UNIX if the host application executes often enough to empty any incoming buffers.
For example, if the SLTA is receiving 70 packets per second, and each packet is 25
bytes, the host will receive 1750 bytes per second. If the host has a serial input buffer
of 256 bytes, the buffer will fill within 150 milliseconds if the host application is
preempted. If the host application is preempted for longer than 150 milliseconds,
incoming data will be lost due to lack of serial buffer space. In this case, the
ALERT/ACK protocol should be used, or the buffer space increased to handle the
worst case traffic during the maximum preemption period.

Transport layer Protocol
When used with a local host, the SLTA assumes a reliable connection and does not
use a transport layer protocol. When used with a remote host, the SLTA assumes
that the link may not be reliable and enables the reliable transport protocol. The
reliable transport protocol adds an ACWNACK transport protocol to the network
interface protocol. A sequence number is also added to the link-layer header. This
protocol can therefore recover from checksum errors on the host to SLTA link.

The reliable transport protocol is enabled on the SLTA with the Remote Host option
selected by the CFG2 input as described in Chapter 12. The reliable transport
protocol is enabled on the DOS network driver with the /M option as described in
Chapter 7. The reliable transport protocol is not supported by the UNIX network
driver.

The link-layer header contains an ALERT (0x01) byte, a sequence number, and a
length byte followed by a one’s complement of the length byte. These values are
always validated by the receiver before accepting the rest of the message. Following
the length bytes is the network interface command. See Appendix D of the Host
Application Programmer’s Guide for a description of the command byte structure. If
the message contains a data field it follows the command byte. Finally, a checksum
terminates the sequence.

The ALERT/ACK link protocol should be used with remote hosts. With this protocol,
the sender will start the sequence by transmitting the ALERT byte. When this byte
is received by the receiver, that device responds by transmitting the ALERT ACK
byte (value FE hex). This low level handshaking process prevents the sender from
transmitting the rest of the sequence before the receiving device is ready. Once the
ALERT ACK byte is received by the sender it sends the rest of the message without
any other interactions.

6-8 Creating an LTS-20 MIP Mode Network Driver

The length byte value describes the length of the network interface command byte
plus the length of the data field. This value will always be at least 1. The checksum
is a two’s complement of the sum of the command byte and all of the bytes in the data
field, if it exists. If the receiver receives a message in sequence, with a valid
checksum, it responds with an ACK (0x06). Otherwise it responds with a NACK
(0x15), requesting a re-transmission.

Link-Layer
Header

Sender Receiver

ACK: 0x06, NACK: 0x15

Figure 6.4 SLTA Reliable Transport Protocol

SLTA Timing Data
Certain aspects of the SLTA link and transport layer protocols implement fail-safe
timeouts in order to control the time spent waiting for protocol states to change when
errors occur. These timeouts are kept constant with either a 1OMHz or 5MHz
Neuron input clock.

LTS-20 User’s Guide 6-9

Downlink Byte-to-Byte Receive Timeout

The downlink byte-to-byte receive timeout is the maximum allowable period between
the end of a single byte data frame sent downlink to the SLTA, to the end of the next
single byte data frame sent downlink to the SLTA. This period is 1OOms in local host
mode and 1 second in remote host mode. When this timeout occurs, the SLTA
discards the downlink buffer and returns to the NORMAL state. If the reliable
transport protocol is enabled, the SLTA also sends a NACK byte after this timeout.

Up/ink Message Life

The uplink message life is the maximum allowable period between the SLTA sending
an ALERT byte to the host and the host responding with an ALERT ACK byte. This
period is 1OOms in local host mode and 1 second in remote host mode. When this
timeout occurs, the SLTA will resend the ALERT byte. This process is repeated until
3 seconds have elapsed, after which the uplink message is discarded. This timeout
only applies to the ALERT/ACK link protocol and is not used for the buffered link
protocol.

ACK/NACK Receive Timeout

When using the reliable transport protocol, the SLTA will wait for the ACK or NACK
byte to be sent downlink following the end of the uplink transmission of a message.
This period is 1 second, after which the SLTA will re-send the uplink message.

Uplink Timeout Message Retry Count
When using the reliable transport protocol the SLTA will re-send uplink messages
whenever the ACWNACK timeout period has elapsed. This retry process is limited
to 5 retries, after which the uplink message is discarded. There is no retry limit
applied to re-sends due to the reception of the NACK byte.

Session Layer Protocol
The network interface link and transport protocols described above are used for all
host-to-SLTA communications. Layered on top of these protocols is a downlink buffer
request protocol and an uplink flow control protocol.

Downlink Buffer Request Protocol
The network driver receives application buffers from the host application, translates
them to interface buffers, and passes the interface buffers to the SLTA. There are
two types of downlink commands from the host to the SLTA - commands that can be
executed directly by the SLTA, and commands that need to be buffered in the SLTA.

Downlink commands that are executed directly by the SLTA are:

6-10 Creating an LTS-20 MIP Mode Network Driver

niRESET,niFLUSH_CANCEL,niONLINE,niOFFLINE,niFLUSH,niFLUSH-IGN,
niPUPXOFF,niPUPXON,niSLEEP, and niSSTATUS.

See the Host Application Programmer’s Guide, Appendix D, for a description of these
commands.

Downlink commands that are buffered in the SLTA are niNETMGMT (for network
management commands to be executed by the SLTA itself) and niCOMM (for messages
to be sent out on the network, including network variables, explicit messages, and
network management messages addressed to other nodes). For these two commands,
a buffer request protocol is used to ensure that the SLTA has a free application buffer
for the data. The network driver must first request an output buffer before sending
the interface buffer. The network driver must hold the buffers in an output queue
until the SLTA is ready to receive them. The network driver takes the SLTA through
3 states to request a buffer and send the interface buffer. Figure 6.5 summarizes the
downlink state transitions.

Node
Reset

Recieve niCOMM
or niNETMGMT?

output
Buffer not
Available? output

Buffer
Available?

Receive niCOMM
or niNETMGMT
message? d send niACK

Note: niNETMGMT commands are allowed in the Flush state.

Figure 6.5 SLTA Downlink Flow Control States

Following is the sequence of events for transferring an niCOMM or niNETMGMT
command downlink to the SLTA:

1 The SLTA is initially in the NORMAL state.

2 The network driver requests an output buffer by sending a link-layer header (see
figures 6.2 and 6.3) with a niCOMM or niNETMGMT command and the appropriate
queue value (niTQ, niTQ_P, niNTQ, niNTQ_P). The data portion of the interface
buffer is not sent with the buffer request. This puts the SLTA in the OUTPUT
QUEUE REQUESTED State.

LTS-20 User’s Guide 6-l 1

3 If an output buffer is not available, the SLTA responds with a niNACK (OxCl)
command. The SLTA returns to the NORMAL state, and the driver starts again at
step 2.

4 When an output buffer is available, the SLTA responds with a niACK (OxCO)
command. The SLTA is now in the OUTPUT QUEUE ACKNOWLEDGED state. While
in this state, the network driver can only transfer downlink LonTalk messages,
uplink source quench commands (ni PUPXOFF), uplink source resume commands
(niPUPXON), or reset commands (niRESET) since the SLTA is waiting for a
message in this state. All other network interface commands sent downlink will
be ignored, and will return the SLTA to the NORMAL state.

5 Upon receiving the niACK acknowledgment, the network driver transfers the
entire interface buffer to the SLTA. This buffer has the same command and
queue value sent in step 2, and also contains the data and checksum. Upon
completion of this transfer, the SLTA returns to the NORMAL state.

The network driver must preserve the continuity of the type of buffer request and the
type of message sent downlink. For example, if the network driver sends the
niCOMM+niTQ-P command requesting a priority output buffer, and follows this with
a message transfer with the non-priority niCOMM+niTQ command, the SLTA will
incorrectly store the message in a priority output buffer, the type originally
requested.

Up/ink Flow Control Protocol

Uplink traffic may be incoming LonTalk messages, output buffer request
acknowledgments, completion events, or local commands. The network driver
translates the interface buffers to application buffer format and stores the buffers in
a queue until the host application is ready to read them.

There is no buffer request protocol for uplink traffic. The network driver is normally
assumed to have sufficient buffers. The network driver can suspend or resume
uplink traffic when no network driver input buffers are available by sending the
Uplink Source Quench (niPUPXOFF) command to the SLTA. This prevents the STLA
from sending any LonTalk messages uplink. When the network driver senses that
network driver input buffers are available, it sends the Uplink Source Resume
(niPUPXON) command to resume uplink transfers. Figure 6.6 summarizes the uplink
state transitions.

Receive
niPUPXOFF?

Receive
niPUPXON?

Note: Responses to niNETMGMT and niSSTATUS commands are allowed in the Flush state.

Figure 6.6 SLTA Uplink Flow Control States

6-12 Creating an LTS-20 MIP Mode Network Driver

Note that for SLTA firmware versions 7 or higher, the host may chose to sidestep the
downlink buffer request protocol. In this case, the complete message is sent
downlink without any buffer request step. If the SLTA has a free output buffer, then
the message will be transferred into the SLTA successfully. If not, there will be no
indication and the message will be lost. The exception to this case is when using the
transport layer protocol, in which case the SLTA will send the NACK to the host,
which should force the host to re-send the message. Otherwise, in order to use this
feature successfully, the host driver must manage the number of available output
buffers within the SLTA. This feature is included in the DOS driver for the SLTA.

Presentation layer Protocol
The network driver exchanges LonTalk packets with the host application at the
presentation layer. The LonTalk packet enclosed in a command of type niCOMM or
niNETMGMT is described in detail in the Host Application Programmer’s Guide. It is
summarized here for convenience.

ExpMsgHdr

NetVzr Hdr

Message
I Header

size = 3

SendAddrDtl

RcvAOdbrDtl

RespiLdrDtl

UnprocessedNV

Network
Address

L size = 11

Data
size

varies

Figure 6.7 Application Buffer Format

The SLTA firmware is configured with explicit addressing enabled, and therefore the
U-byte network address field is always present in an uplink or downlink buffer. The
firmware is also configured with host selection enabled, so the data field of the buffer
is either an unprocessed network variable or an explicit message. The processed
network variable option is not available with the SLTA.

LTS-20 User’s Guide 6-13

6-14 Creating an LTS-20 MIP Mode Network Driver

7
Using the DOS Network Driver

This chapter describes the DOS network driver supplied with the
Connectivity Starter Kit for use with the LTS-20 operating in MIP
mode. The DOS network driver provides a device-independent
interface between a DOS or Windows host application and the LTS-20.
The driver is configurable to use one of four PC/AT serial ports, COMl
through COM4, at one of eight serial bit rates.

LTS-20 User’s Guide 7-l

Installing the SLTA Network Driver for DOS

The DOS
driver is
supplied on
the floppy
diskette
included with
the Con-
nectivity
Starter Kit.
The latest
version of this
driver may be
obtained from
the Echelon
web site. See
the Preface of
this manual
for ftp site
access
information.

For the purposes of this chapter, the term “SLTA” refers to the LTS-20
module operating in MIP mode.

The SLTA network driver is installed by adding a DEVICE command to the DOS
CONFIG. SYS file. Edit the CONFIG. SYS file to include the line:

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS [options]

Substitute your drive and directory name if other than C : \LONWORKS\BIN.
Reboot the PC after adding this line to load the driver. For example, the
following command would be used with a locally attached SLTA installed on
COM2 as device LONl running at 38,400 bps with autobaud enabled (this is the
factory default):

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /P2 /Dl /B38400 /A

See Example Configurations in Chapter 11 for examples.

Warning! The /A option must be present in the CONFIG. SYS entry if Autobaud is
in enable, or the adapter will not function correctly. The IA option also may be
left in the CONFIG. SYS entry if Autobaud is disabled.

The available options for the DOS network driver are described in the following
sections.

Buffer Options
/Onn Sets the number of output (downlink) buffers within the driver to

an>. The buffer sizes within the driver are pre-set to accommodate
255 byte packets. The SLTA has application output buffers in the
RAM of the Neuron Chip which, by default, are smaller than this, but
may be increased to as large as 255 bytes. The default is eight buffers
in the network driver. There must be at least 2 buffers and the
maximum allowed number for <nn> is limited by the size of the buffer
(258) times the total number of input and output buffers within the
driver. The entire buffer space plus the driver code itself cannot
exceed 64Kbytes. The size of the driver code itself is 9Kbytes. The
number of output buffers required is determined by the char-
acteristics of the host application. If the host application always
waits for an outgoing message completion before sending another
message, then only two buffers are required. If the host application is
set up to overlap transactions, more buffers may be required. In this
case greater parallelism may be achieved at the expense of host
application code complexity.

/Inn Sets the number of input (uplink) buffers within the driver to an>.
The buffer sizes within the driver are pre-set to accommodate 255
byte packets. The SLTA has application input buffers in the RAM of
the Neuron Chip which, by default, are smaller than this, but may be
increased to as large as 255 bytes. The default is eight buffers in the

7-2 Using the DOS Network Driver

network driver. There must be at least 2 buffers and the maximum
allowed number for <RID is limited by the size of the buffer (258)
times the total number of input and output buffers within the driver.
The entire buffer space plus the driver code itself cannot exceed
64Kbytes. The number of input buffers required is determined by the
expected incoming traffic and the capability of the host application to
process it. If the incoming traffic is bursty, more input buffers are
required. If the application cannot process incoming traffic fast
enough, the input buffer pool will fill up with unprocessed packets. In
that case, the SLTA will not be able to pass any new data to the host,
and the input application buffers in the SLTA will start to fill up.
Once that occurs, messages will be lost, possibly causing incoming
LonTalk transactions to be retried, and eventually causing the sender
of the message to receive a failure indication.

Serial Bit Rate Options
/Bnnnnnn Sets the serial bit rate to <nnnnnn>. The available serial bit rates are

listed below. The default is 38,400 bps.

Available serial bit rates are:

1200, 2400, 9600, 14400, 19200, 38400, 57600,
115200.

This rate represents the serial bit rate between the PC and the SLTA
when using a direct serial connection, and between the PC and the
modem when using a remote connection. The 115,200 bps rate is only
available on the TPIXF-1250 SLTAI 2 and SLTAs based on the LTS-
10 module (SLTAs with a 10 MHz input clock). For remote
connections, the PC to modem serial bit rate, telephone line speed (i.e.
modem to modem serial bit rate), and the modem to SLTA serial bit
rate may be different. The PC to modem serial bit rate is controlled
by the network driver on the PC using the /B option; the telephone
line speed is selected by the modems based on modem configuration;
and the modem to SLTA serial bit rate is controlled by the hardware
configuration of the SLTA as described in Chapter 2 (autobaud cannot
be used in this configuration).

For local connections with the SLTA Autobaud option disabled, the
serial bit rate specified by this driver option must match the rate
specified by the Baud Rate inputs to the SLTA.

/A Enables the autobaud feature. This provides the autobaud

Warning: If you are using the sequence whenever the driver is opened. The default setting for

default hardware configuration the driver is autobaud disabled. If the Autobaud input on the
(autobaud enabled), the SLTA hardware is enabled, then this option must be specified This
autobaud option (/A) must be option may not be used with the modem support (/MI option.
enabled or the SLTA will not
function properly.

LTS-20 User’s Guide 7-3

DOS Device Options
/Pn Sets the serial port to cn> where <n> is l-4 for COMl - COM4. The

default is COMl.

/Dn Defines the device unit number as <n>, where cn> is between 1 and
9, so that the DOS device name is “LONl” through “LON9”. The
default is 1 for “LONl”. This option can be used to support multiple
network interfaces on a single PC. For example, this device name is
passed as a parameter to lxt-open () when using the LonManager
API. When invoking the sample host application HA, the device may
be specified with the -D option, for example:

HA -DLON2

/Un

/C

Sets the serial port interrupt request number (IRQ) to a non-standard
value <n>, where <n> is between 1 and 7. If the serial port in use is
COM3 or COM4, you may want to use a unique, unused IRQ for that
port. Many serial ports and internal modems allow the selection of a
non-standard IRQ such as IRQ2 or IRQ5.

Enables communications interrupt chaining. Some PCs may
incorporate up to four serial ports. If supported by the serial
hardware, COMl and COM3 may share the same interrupt (as do
COM2 and COM4). This option may enable the driver to support the
shared interrupt by “chaining” to the interrupt vector that was in
place when the driver was loaded. This option is not necessary if your
system does not use COM3 or COM4, or if COM3 or COM4 use a
different interrupt request number. When installing two SLTA
network drivers on a system on COMl and COM3 (or COM2 and
COM4 with the same interrupt request number), the last installation
of the driver should use this option. Here is an example of a
CONFIG. SYS file entry for such a system.

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /B38400 /A /PI

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /B38400 /A /P3 /C

Standard hardware configurations are used for the COMl - COM4 settings:

Device 170 Address

COMl Ox3F8

Interrupt (*)

4

I COM2 I Ox2F8 I 3

I COM3 I Ox3E8 I 4

I COM4 I Ox2E8 I 3

(*) May be changed with the /U option

7-4 Using the DOS Network Driver

Timing Options
/Rnn Defines the flush/retry count in 55ms intervals. This value is used in

error states for re-transmitting requests and for terminating receive
flushes when input errors occur. See Troubleshooting in Chapter 17.
Normally, this option should not be specified.

/Wnnn Includes a delay of <nnn> microseconds when transmitting downlink.
This parameter can be used to pace the rate at which bytes are
transmitted downlink to the SLTA, and may be required for high-
performance network management tools such as LonMaker. The
delay is executed following the transfer of each data byte to the host’s
UART, and only after the first 15 bytes have been sent. Since the
SLTA employs a Is-byte deep FIFO buffer in its UART, the first
group of bytes sent do not need to be paced. The pacing delay will
have no effect unless it is greater than the actual period it takes to
transmit a single byte at the given serial bit rate. The time taken to
transmit a byte is 173 ps at 57,600 bps, and 86 ps at 115,200 bps. For
a 10 MHz SLTA (TP/XF-1250 SLTA/2 or LTS-lo), this option should
be used at 115,200 bps if messages greater than 16 bytes are to be
transmitted. A value of /wl2 0 is suggested. For a 5 MHz SLTA
(TPKF-78, TP/FT-10, or TP-RS485 SLTA/2), this option should be
used at 57,600 bps, again if messages greater than 16 bytes are to be
transmitted. A value of / ~2 4 0 is suggested. This option is not
required at the default serial bit rate of 38,40Obps, or at slower serial
bit rates.

By default, the SLTA firmware disables network communications
after a reset by entering a FLUSH state. This state causes the SLTA
to ignore all incoming messages and prevents all outgoing messages,
even service pin messages. The DOS network driver for the SLTA
automatically enables network communications when the SLTA is
opened and when it receives an uplink message from the SLTA
indicating that it has been reset. However, the host application itself
must explicitly enable network communications if the /Z option is
specified and the CFGl input is set to Network Disabled. See
Chapter 8 for more information. If CFGl is set to Network Enabled,
the SLTA will go directly to the NORMAL state, thus allowing
communications.

The following table summarizes these options:

Network Disable DOS Driver/z When SLTA Enables Network
Input Option Communications

Disabled Specified Host application command

Disabled

Enabled

Not specified

Don’t care

Opening network driver

Immediately after reset

LTS-20 User’s Guide 7-5

Host applications which need to configure the SLTA prior to enabling
network communications should use this option. This option should
not be used with the LonManager API, LonManager LonMaker, or the
16-bit LonManager DDE Server. More information about the
niFLUSH_CANCEL message is provided in the LONWORKS Host
Application Programmer’s Guide.

Ne fwork Interface Protocol Options

/F Enables the full interrupt mode of the driver. If this option is not
specified, the driver will disable interrupts for the duration of each
link-layer transfer. This ensures that no data will be lost due to other
system interrupts, and is acceptable at high serial bit rates. The
driver will use interrupts for the first byte of each uplink interface
buffer. When the uplink interrupt is received, the driver reads the
rest of the message without interrupts via polled I/O. Interrupts are
disabled during the uplink transfer. This assures that no other
system interrupts will occur resulting in lost uplink data frames.
Downlink transmissions are sent directly via polled I/O of the serial
port from the write function call. The host write functions will not
return until the message has been sent downlink. When using the
ALERT/ACK link protocol, interrupt latency is not a problem, since
the SLTA-to-host protocol includes an acknowledgment of the start of
the message. The driver employs timeouts in order to prevent lockout
of the write function, and timeouts for clearing various states of the
transmitter/receiver when line errors occur.

When operating at lower serial bit rates, it becomes less desirable to
disable interrupts for long periods. The trade-off with using the full
interrupt mode is that other system interrupts may cause loss of data
in the serial port’s UART. If the /F option is specified, the driver uses
interrupts for every uplink and downlink byte transferred. Downlink
messages are buffered from the device write function and are sent
downlink under interrupt control. Uplink messages are received
under interrupt control and are buffered also. This option should be
used for serial bit rates of 9,600 bps or slower. Do not use this option
with the HP 95LX.

/M Enables modem support and the reliable transport protocol. This
option must be specified if the host is to communicate with the SLTA
via a modem connection. The SLTA must be configured with CFG2
input in the Remote Host setting. In this mode the driver relies on
the state of the DCD signal from the modem to determine if it is
connected to an SLTA through a modem connection or not. When
connected, the selected SLTA c-> Host network interface link protocol
is in effect. When disconnected the only allowable link layer traffic is
of the ‘modem direct’ type, where ASCII strings are being exchanged
between the host and the modem, for example, AT commands to dial
out. Any other network interface traf& is not allowed when
disconnected from the SLTA. Calls to the read function will result in
no network interface data messages (LDV-NO-MSG-AVAIL), and any
call to a write function that needs to communicate with the SLTA via

7-6 Using the DOS Network Driver

/N

/Q

lx

LTS-20 User’s Guide

the modems will result in a No Output Buffers Available error
(LDV-NO-BUFF-AVAIL). Once the connection is made, normal
network interface traftic may resume.

This option also enables the reliable transport protocol. This protocol
includes the addition of a message sequence number and the end of
message ACWNACK code. See Chapter 8 for a description of this
protocol.

Disables the ALERT/ACK network interface link protocol, and
enables the buffered network interface link protocol. Network
interface messages are sent without a wait for the ALERT ACK
response. Both sides of the interface (the SLTA and the driver) must
agree on this setting. This option should not be used with the lM
option.

Allows modem responses to be sent uplink to the host. When the
telephone link is disconnected, these messages are ASCII strings with
the network interface command type niDRIVER (OxFO). If/Q is
specified, the host application must be able to handle messages, such
as NO CARRIER, that might come from the modem itself if problems
occur in the connection.

Disables the the buffer request protocol. This option only works with
SLTA application versions 7 or later. When this option is enabled,
the driver requests the buffer count from the SLTA using the
~~SBUFC (OxE7) command whenever the interface is opened, or
when the interface is reset, and reports an niRESET to the host. The
driver keeps track of the number of available output buffers in the
SLTA by examining both uplink and downlink messages. This option
prevents the use of one message type: A local network management
command not using a request/response service. Normally this type of
message is not used. One exception could be the Set Node Mode :
Reset command, which would result in the node resetting and the
buffer management recovering on its own anyway. Otherwise, if this
type of message is used, no uplink response would occur and the
driver could not track the fact that a new output buffer has been
made available.

7-7

The following table summarizes the relationship between the CFG jumpers of the
SLTA and the driver options that control the network interface protocol.

Input

CFG 2

CFG 2

CFG 3

CFG 3

hput State

Local Host; No Transport Protocol

Remote Host; Reliable Transport
Protocol

ALERT/ACK Link Protocol

Buffered Link Protocol

Driver Option

/M not specified

/M specified

/N not specified

/N specified

7-8 Using the DOS Network Driver

Calling the Network Driver from a Host Application
The DOS network driver supports the open, close, read, write, and ioctl DOS
calls. All LONWORKS standard network drivers for DOS support these calls. See
Chapter 4 of the Host Application Programmer’s Guide for more details.

When the DOS SLTA network driver is loaded during execution of the CONFIG. SYS
file, it does not attempt to communicate with the SLTA.

When the network driver is opened with the DOS open call, it establishes
communications with the SLTA. The network driver returns an error if this fails, for
example, if the SLTA is disconnected, powered down, or configured incorrectly. If the
open call succeeds, the driver enables network communications by clearing the SLTA
FLUSH state, if configured to do so.

The DOS read call is defined to return the number of bytes read from the device.
Some LONWORKS standard network drivers return 0 if there are no uplink messages
available. DOS reports this as an end-of-file condition and prevents further reads
from succeeding. However, the SLTA driver returns a length of 2, and sets the first
byte of the caller’s buffer (the cmd/queue byte) to 0 to indicate that there is no uplink
message available.

Normally, the DOS read and write calls are not used with LONWORKS standard
network drivers. This is because any error from the network interface will display
the familiar Abort, Retry, Fail? error message from DOS, unless the caller has
installed a critical error device handler. Therefore, DOS applications using a
network device typically call direct entry points into the driver. This also allows
more detailed error status to be returned to the application. The addresses of these
entry points are obtained by calling the i oc t 1() function of the driver.

This function call is used as follows:

int ioctl(int handle, int func, void far *argdx, int argcx);

. handle is an integer returned by an earlier successful call to open () , specifying
the LONWORKS network driver LONn to be opened.

. f unc is the value 2, meaning that the application is reading information from the
driver. For LONWORKS standard DOS network drivers, the information
returned is the network interface direct call structure.

. argdx is a pointer to a caller-declared structure that will contain the direct entry
points into the driver. See the structure direct-Cal 1s in the file NI-MSG . C in
the supplied example host application for usage.

. argcx is the size of the structure.

Function code 2 is supported by all LONWORKS network drivers for DOS to return
three direct entry points into the driver code. The network driver for the SLTA
supports an additional option to function code 2, as well as function code 3, which is
used to manage the modem control state of the driver. These options are not used
when the SLTA is connected directly to a host. They are provided primarily for use
while establishing communications with a remote host. For example, the host
connect utility (HCU) described in Chapter 12 of this manual uses these functions.
Host applications that only communicate to the SLTA via an already-established
telephone connection do not need to concern themselves with these functions. If you
wish to establish or take down telephone connections during the execution of your
host application, use the source code of HCU as a guide.

When function code 2 is used, argdx points to the direct-calls structure defined
for all LONWORKS standard network drivers for DOS. If argcx is 13, the size of the
standard direct calls structure, then three direct entry point addresses are returned
as usual. If argcx is 4 (the size of the structure ioc t l-ge t-dcd-s) , then the state
of the modem’s DCD line is returned as a TRUE or FALSE value. Note that the
status field is 16 bits in this structure, but 8 bits in the direct calls structure.

struct ioctl-get-dcd-s {
unsigned ioctl-stat; // 16 bit status
unsigned dcd-state; // Data Carrier Detect (TRUE or FALSE)

Function code 3 is used when the application wishes to write information to the
driver. For the SLTA driver, argdx points to the following structure, and argcx is its
size:

struct ioctl-o-info-s {
unsigned ioctl-stat; // 16 bit status
unsigned sub-command; // use enum sub-command
unsigned mode;
unsigned mode-aux;

enum sub-command {
SUBC-set-opt = 1,
SUBC-set_DTR = 2,
SUBC-set-baud = 3,

// set driver options
// set DTR line
// set serial bit rate

There are three sub-commands, used to set the various modes of the driver, the state
of the DTR (Data Terminal Ready) line to the modem, and to set the serial bit rate of
the serial interface.

LTS-20 User’s Guide 7-9

When sub-command 1 is used, the mode field in the structure is a bit mask defining
which of the driver modes is to be changed, and the mode-aux field specifies bits
defining the new states of those modes. It is possible to set more than one of the
modes by OR’ing the following bit-masks together:

0x0001 Enables modem support.

0x0002 Allows modem responses to host - same as the /Q option.

0x0004 Forces direct modem mode. In this mode, the network driver is
communicating directly with the modem.

0x0010 Enables the buffered link protocol and disables the ALERTlACK
link protocol - same as the /N option.

0x0020 Enables the reliable transport protocol.

The /M option corresponds to 0x0021.

Sub-command 2 is used to set the state of the DTR line. In this case, the DTR signal
is enabled (on) if the mode field is true.

Sub-command 3 is used to set the serial bit rate of the serial interface. The mode
field determines the new bit rate as follows: 0:14,400; 1:1,200; 2:2,400; 3:9,600;
4:19,200; 538,400; 657,600; 7:1X,200.

Using the SLTA Driver under Microsoft Windows
In order to use the direct entry points to a LONWORKS standard network driver for
DOS under Microsoft Windows, an interface based on the DOS Protected Mode
Interface (DPMI) must be provided. This type of interface, in the form of Windows
DLL software, is supplied with the Connectivity Starter Kit, as well as with the 16-
bit LonManager DDE Server. See Appendix B for information on using the Windows
DLL directly.

8
Using the UNIX Network Driver

This chapter describes the UNIX network driver supplied with the
Connectivity Starter Kit for use with the LTS-20 operating in MIP
mode. The UNIX network driver provides a device-independent
interface between a UNIX host application and the LTS-20.

LTS-20 User’s Guide 8-l

Installing the SLTA Network Driver for UNIX

For the purposes of this chapter, the term “SLTA” refers to the LTS-20
module operating in MIP mode.

The SLTA network driver for UNIX is not a UNIX device driver. It is instead a
source library that provides an interface to an existing UNIX serial port driver. The
UNIX network driver handles the SLTA network interface protocol and runs on top
of the UNIX serial port driver, which in turn handles the interrupt processing and
buffering of uplink and downlink serial data. This greatly simplifies the SLTA
network driver and makes it more portable to different versions of UNIX, as well as
other operating systems.

The LDVSLTA . c and LDVSLTA . H files contain the C source code for the UNIX
network driver. This code has been tested with Sun UNIX (SunOS Release 4.1) and
SC0 UNIX (Release 4.2.0). Changes may be required for other versions of UNIX.
The source code must be compiled and linked with your application. The serial
device driver names may have to be changed for different versions of UNIX. For
example, Sun UNIX uses /dev/ ttya and /dev/ t tyb, and SC0 UNIX uses
/dev/ttylaand/dev/tty2a.

The UNIX network driver is implemented with the following defaults (these defaults
may be changed by modifying the source code):

l Link Layer Protocol. The buffered link protocol is used if the
alert-ack-prtcl variable is set to FALSE in the source code (this is the
default). The ALERT/ACK link protocol is used if the alert-ack_prtcl
variable is set to TRUE. See Buffered Link Protocol in Chapter 8 for warnings on
use of the buffered link protocol with UNIX. The buffered link protocol should
not be used with modems.

l Transport Layer Protocol. The reliable transport protocol is not supported.

l Physical Layer Protocol. The call to ioctl () in ldv-open () initializes the
serial link to 19,200bps. The code for the ioctl () call may have to be modified
for different versions of UNIX and serial port configurations.

l Modem Support. The UNIX network driver does not include modem support
for remote hosts.

l Buffers. The number of input and output buffers is controlled by the
ldv-buf f ers variable and defaults to 10 each.

Calling the Network Driver from a Host Application
The functions provided by the UNIX network driver are the same as those listed
under Standard Network Driver Services in chapter 4 of the LONWORKS Host
Application Programmer’s Guide, with the addition of a new service,
ldv_post-eventso.

8-2 Using the UNIX Network Driver

Idv-open0
typedef int LNI;

LNI handle = ldv-open(char *serial-device-name);

Initializes the SLTA and returns a handle for accessing it. Opens the serial device
and enables network communications (i.e. the FLUSH state is canceled). The
serial-device-name parameter must be the name of an installed serial device
such as /dev/ ttya. If the ldv-open () call succeeds, the SLTA will send an
niRESET command uplink to the host. Only one device may be open at a time.

Idv-read0
LDVCode error = ldv-read(LN1 handle, void *msg_p, unsigned length);

Reads an application buffer from the SLTA. The msg_p argument is a pointer to an
application buffer as defined in chapter 3 of the LONWORKS Host Application
Programmer’s Guide. If a buffer is not available, the LDV-NO-MSG-AVAIL error code
is returned.

Idv- write0
LDVCode error = ldv-write(LN1 handle, void *msg-p, unsigned length);

Writes an application buffer to the SLTA. The msg_p argument is a pointer to an
application buffer as defined in chapter 3 of the LONWORKS Host Application
Programmer’s Guide. If a buffer is not available within the SLTA to accept the
application buffer, the LDV-NO-BUFF-AVAIL error code is returned.

Idv-post-events0
void ldv_post-events(void);

This is the network interface background service function. Its purpose is to process
any uplink or downlink SLTA traffic. This function should be called periodically from
the host application in order to assure that the SLTA traffic is being processed. This
processing includes off-loading the UNIX serial port driver’s input buffers, and
moving downlink any messages that are buffered in the network driver’s output
buffers.

This function is also called from within the interface library’s ldv-read () and
ldv-wri te () functions. The host application does not have to explicitly call the
ldv-pos t-events () function if it is periodically polling the interface using the
ldv-read () function.

LTS-20 User’s Guide 8-3

LTS-20 LonTalk@ Serial
Adapter and PSG-20

User’s Guide

Version 2

I ECHELON’
Corporation

078-0181-OlC

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Echelon, LON, LONWORKS, LonTalk, Neuron, LONMARK,
3150, 3120, LonPoint, the Echelon and LonMark logos, and
LonBuilder are trademarks of Echelon Corporation
registered in the United States and other countries.
LonMaker is a trademark of Echelon. Other names may be
trademarks of their respective companies.

Printed in the United States of America.
Copyright 01999 - 2001 by Echelon Corporation.

Echelon Corporation
www.echelon.com

Preface

This document describes how to use an LTS-20 LonTalk Serial
Adapter and a host processor with an EIA-232 (formerly RS-232) serial
interface with a LONWORKS@ network.

LTS-20 User’s Guide

Audience
This user’s guide provides specifications and instructions for LTS-20 users.

Content
This manual provides detailed information about the hardware and software for the
LTS-20 and PSG-20.

l Chapter 1 introduces the LTS-20.

l Chapter 2 provides an overview of the LTS-20.

l Chapter 3 describes product development with the LTS-20 module.

l Chapter 4 describes EM1 and ESD issues for LTS-20 and PSG-20 modules.

l Chapter 5 describes the LTS-20 software.

l Chapter 6 discusses creating SLTA network driver.

l Chapter 7 discusses using the DOS network driver.

l Chapter 8 discusses using the UNIX network driver.

l Chapter 9 discusses using the LTS-NSI mode.

l Chapter 10 discusses the LTS-20 MIP mode software.

l Chapter 11 describes using the drivers and link manager with LTS-20 NSI mode.

l Chapter 12 discusses using the DOS driver with LTS-20 MIP mode.

l Chapter 13 explains how to create an LTS-20 MIP mode driver.

l Chapter 14 discusses initialization and installation.

l Chapter 15 explains how to use the LST-20 with a modem.

l Chapter 16 discusses using the host connect utility with the LTS-20 MIP mode.

l Chapter 17 details using a programmable serial gateway.

l Chapter 18 details modem troubleshooting.

l Appendix A lists the default communications parameters for LTS-20-based
products.

l Appendix B describes the Windows DLL files supplied with the LTS-20.

l Appendix C includes a copy of the software license agreements.

ii Preface

Related Manuals
The following Echelon documents are suggested reading for more information:

TheLNSm DDE Server User’s Guide is a manual for developers on how to create user
interface, monitoring, and control applications that communicate with LONWORKS
networks from computers running Microsoft Windows.

The LonMakef for Windows Integration Tool User’s Guide is a manual for users on
how to install networks using the integration tool.

The LonBuilder@ User’s Guide describes how to develop LONWORKS applications with
the LonBuilder Developer’s Workbench.

The NodeBuilderm User’s Guide describes how to develop LONWORKS applications with
the NodeBuilder Development Tool.

The LONWORKS Host Application Programmer’s Guide describes how to write a host
application that can be used with a serial adapter.

The Neuron’Chip Data Book describes the LonTalk message formats that can be used
with a serial adapter. It also describes the network management and network
diagnostic messages that can be sent with such an adapter.

Web Access
Engineering bulletins and data sheets supporting this product are available on the Echelon
Web site. General information regarding Echelon, its business, and its products also are
located on the site at http://www.echelon.com. The Developer’s Toolbox located at the Web
site includes drivers for the LTS-20.

LTS-20 User’s Guide

Preface

Contents

Preface
Audience
Content
Related ManuaIs
Web and FTP Access

ii
ii . . .

111
. . .
111

1 LTS-SO Introduction l-l

2 LTS-20 Overview 2-1
Mechanical Description 2-2
Power Requirements 2-5

Power Supply Decoupling and Filtering 2-5
Low Voltage Protection 2-5

Electrical Interface 2-5
NSI/MIP Mode Jumper R2 2-7
Autobaud 2-7
Baud(2..0) 2-7
CFGO 2-7
CFGl 2-8
CFG2 2-8
CFG3 2-8
CLK OUT 2-8
CP(4..0) 2-8
-CTS 2-8
-DCD IN 2-8
-DCD OUT 2-9
DCE 2-9
-DSR 2-9
-DTR 2-9
PKT 2-9
-RESET 2-9
-RI IN 2-10
-RI OUT 2-10
-RTS 2-10
SERIAL IN 2-10
SERIAL OUT 2-10
-SERVICE 2-11
-TEST 2-11
XID(4..0) 2-11

LTS-20 Software Configuration Options 2-12

3 Developing an SLTA with the LTS-20 Module
Overview
Using Predefined Transceivers

TPT/XF-78 and TPT/XF-1250 Twisted Pair Transceivers
FTT-1OA Free Topology and LPT-10 Link Power Transceivers

3-1
3-2
3-2
3-2
3-6

LTS-20 User’s Guide

PLT Power Line Transceiver 3-6
Using Custom Transceivers 3-7

4 LTS-20 Design Issues
EM1 Design Issues
Designing Systems for EMC (Electromagnetic Compatibility

EMC Design Tips
ESD Design Issues

Designing Systems for ESD Immunity

5 The LTS-20 Software 5-l
Software Overview 5-2
Installing LTS-20 Software 5-2

Installing the Windows DLL Software 5-6

4-1
4-2
4-2
4-2
4-3
4-3

6 Creating an LTS-20 MIP Mode Network Driver 6-1
Purpose of the Network Driver 6-2
Example Network Drivers 6-2
Implementing an SLTA Network Driver 6-2
Network Interface Protocol 6-5
Link Layer Protocol 6-5

ALERT/ACK Link Protocol 6-5
Buffered Link Protocol 6-7

Transport Layer Protocol 6-8
SLTA Timing Data 6-9

Downlink Byte-to-Byte Receive Timeout 6-10
Uplink Message Life 6-10
ACK/NACK Receive Timeout 6-10
Uplink Timeout Message Retry Count 6-10

Session Layer Protocol 6-10
Downlink Buffer Request Protocol 6-10
Uplink Flow Control Protocol 6-12

Presentation Layer Protocol 6-13

7 Using the DOS Network Driver
Installing the SLTA Network Driver for DOS

Buffer Options
Serial Bit Rate Options
DOS Device Options
Timing Options
Network Interface Protocol Options

Calling the Network Driver from a Host Application
Using the SLTA Driver under Microsoft Windows

8 Using the UNIX Network Driver 8-l
Installing the SLTA Network Driver for UNIX 8-2
Calling the Network Driver from a Host Application 8-2

ldv-open0 8-3
ldv-read0 8-3
ldv-write0 8-3

7-l
7-2
7-2
7-3
7-4
7-5
7-6
7-8

7-10

vi Preface

ldv-post-events0
ldv-close0

9 Using the LTS-20 NSI Mode Software
LTS-20 NSI Mode Software Overview

Windows 95 and Windows NT Software Installation Procedure
Windows 95,98, and NT Software Installation Instructions

10 The LTS-20 MIP Mode Software
LTS-20 MIP Mode Software Overview
Installing the LTS-20 MIP Mode Adapter Software

Installing the Windows 3.1x DLL Software
Other Drivers

11 Using the Windows 95 or NT Driver and SLTALink
Manager with LTS-20 NSI Mode
Software Overview

Establishing a Communications Line for Dialing in to a Network

a-3
8-4

9-1
9-2
9-2
9-4

10-l
10-2
10-2
10-5
10-5

11-l
11-2
11-3

Establishing a Communications Line for Calls Dialed Out to the PC 11-5
Establishing Remote and Local Network Sites 11-6
SLTALink Configuration Script Formats 11-7

Example 11-8
Name of Link 11-8
Remote Identifier 11-8
Link Type 11-9
Configuring the Modem Line 11-9
SLTA Password 11-9
Invoking an Application 11-9
Enabling a Callback 11-10
Configuration 11-10

Security 11-11
Password 11-11
Enable Callback 11-11

Timers 11-11
Hangup Timer, minutes 11-11
Guard Time, seconds 11-11

Modem Settings 11-11
Initialization String 11-11
Dial Prefix 11-12

Clear EE Poll on Apply 11-12
Dial Directories 11-12
Auto-dialout Configuration 11-12

NV Connect 11-12
NSI Connect 11-12

Diagnostics 11-13
The SLTALink Manager Programmatic Interface 11-13
Using the DOS “Stub” Driver 11-14
Characteristics of a Well-Designed System 11-15

Call Initiation 11-15
Dial-In to the Network Only 11-15
Dial-Out to the Remote PC Only 11-15

LTS-20 User’s Guide vii

Dial-In/Dial-Out
Callback

Call Termination
Monitoring: Application Termination Strategy
Monitoring: Missing Messages after a Dial-Out
Monitoring: LNS Application Design Issues

Good Practices/Schemes that Work

,

12 Using the DOS Driver with LTS-20 MIP Mode
Installing the LTS-20 MIP Mode Driver for DOS

Buffer Options
Serial Bit Rate Options
DOS Device Options
Timing Options
Network Interface Protocol Options

Calling the Network Driver from a Host Application
Using the LTS-20 MIP Mode under Microsoft Windows 3.1x

13 Creating an LTS-20 MIP Mode Driver 13-1
Purpose of the Network Driver 13-2
Example Network Drivers 13-2
Implementing an LTS-20 MIP Mode Network Driver 13-2
Network Interface Protocol 13-5
Link Layer Protocol 13-5

ALERT/ACK Link Protocol 13-5
Buffered Link Protocol 13-7

Transport Layer Protocol 13-8
LTS-20 Timing Data 13-10

Downlink Byte-to-Byte Receive Timeout 13-10
Uplink Message Life 13-10
ACK/NACK Receive Timeout 13-10
Uplink Timeout Message Retry Count 13-10

Session Layer Protocol 13-11
Downlink Buffer Request Protocol 13-11
Uplink Flow Control Protocol 13-13

Presentation Layer Protocol 13-14

14 Initialization and Installation
Initializing an LTS-20-based Node
Installing an LTS-20-based Node on a Network

Installing with LNS, the LonMaker for Windows Integration
Tool, or the LNS DDE Server
Installing with the LonBuilder Tool
Installing an LTS-20-based Node with LonManager API, the
DOS-based LonManager LonMaker for DOS Installation Tool,
or the LonManager DDE Server

11-16
11-16
11-17
11-18
11-18
11-19
11-20

12-1
12-2
12-2
12-3
12-4
12-5
12-5
12-8

12-10

14-1
14-2
14-3

14-4
14-4

14-5

Preface

15 Using the LTS-20 with a Modem
Overview
LTS-20 Connection States

Command Set Assumptions
Translated Characters
DTE Connections

Network Management Messages
EEPROM String Pool Management
Product Query
Send Modem String
Modem Response Query
Connection Status Query
Install Directory Entry
Dial from Directory
Hang-up
Install Password
Install Modem Configuration String
Install Hangup String (MIP Mode only)
Install Dial Prefix
Install Hangup Timer
Configure Modem
Request/Release SLTA
Clear EEPROM Pool
Install NVConnect (NSI mode only)
Install NSIConnect (NSI mode only)
Install CallbackEnable (NSI mode only)
Report SLTAEE (NSI mode only)

Modem Compatibility
Remote LTS-20 Deployment

Configuration
Software Setup
SLTALink Manager

16 Using the Host Connect Utility with the
LTS-20 MIP Mode
HCU Usage
Theory of Operation
Usage Examples
Suggested Modem Configurations
Status and Error Reporting

17 Using a Programmable Serial Gateway
Creating a Serial Gateway
LTWPSG History
Programmable Serial Gateway Hardware Resources
Developing a PSG Application with the NodeBuilder Development

Tool
PSG Software Installation
PSGBOR.DTM
Firmware Library Support
Usage

LTS-20 User’s Guide

15-1
15-2
15-3
15-4
15-4
15-4
15-5
15-7
15-9
15-9

15-10
15-11
15-11
15-12
15-12
15-13
15-13
15-14
15-15
15-15
15-16
15-16
15-16
15-17
15-17
15-17
15-17
15-18
15-19
15-19
15-19
15-20

16-1
16-2
16-3
16-4
16-5
16-6

17-1
17-2
17-2
17-3

17-4
17-4
17-5
17-5
17-6

ix

Code Development and Debugging 17-7
PSG.LIB Functions 17-7
Advanced Applications 17-9
UART Registers 17-10
PROM/FLASH Specification 17-10
Differences Between PSG-10 and PSG-20 17-10
Porting PSG-10 Code to the PSG-20 17-11

18 Modem Troubleshooting
Troubleshooting

LTS-20-based Node and Modem Do Not Answer or Pick Up
Modems Will Not Connect
LTS-20-based Node-to-Host Link Fails Completely
LTS-20-based Node-to-Host Link Fails Partially
LTS-20-based Node Sends Modem Configuration String,

But It Has No Effect

18-1
18-2
18-2
18-2
18-2
18-3

18-3

Appendix A Communications Parameters A-l

Appendix B Windows DLL Files for LTS-20 MIP Mode B-l
ldv-close B-2
ldvget-version B-3
ldv-open B-4
ldv-read B-5
ldv-write B-6

Appendix C Software License Agreements C-l

X Preface

LTS-20 Introduction

The LTS-20 LonTalk Serial Adapter Module is a network interface
that enables any host processor with an EIA-232 serial interface to
connect to a LONWORKS network. A replacement for the previous
generation LTS-10 Core Module, the LTS-20 is supplied with both
Network Services Interface (NSI) firmware to support LNS - the
standard LONWORKSB network operating system - as well as
Microprocessor Interface Program (MIP) firmware to support older
API-based tools. The LTS-20 extends the reach of LONWORKS
technology to a variety of hosts, including desktop, laptop, and palmtop
PCs, workstations, embedded microprocessors, and microcontrollers.

LTS-20 User’s Guide l-l

The LTS-20 enables the attached host to act as an application node on a LONWORKS
network. When used with a PC host and the LonMaker for Windows Integration Tool
(or an older generation tool using the LonManager API), or LNS DDE Server, the
LTS-20 can also be used to build sophisticated network management, monitoring,
and control tools for LONWORKS networks.

The LTS-20 is a direct replacement for Echelon’s model 65200-100 LTS-10 module.
The two modules are pin-for-pin compatible and also have identical physical
dimensions. The LTS-20 is equipped with an NSI to enable it to be used in
conjunction with LNS - the standard operating system for LONWORK~ control
networks. By default the LTS-20 is shipped with the NSI mode enabled. A jumper is
provided which, when cut by the customer, disables the NSI and enables the MIP
mode for emulating the behavior of the LTS-10.

Intended to be embedded within an OEM’s product, the LTS-20 and its associated
interface logic can be used to connect to a host through a pair of modems and the
telephone network. This allows the monitoring, control, or network management
application computer to be remote from the network. A node using the LTS-20,
associated logic, and modems can initiate a telephone call to a remote host computer,
and can be set up to answer incoming calls from a remote host.

A Connectivity Starter Kit (Model 58030-01) should be ordered for initial
development with an LTS-20. The kit includes both software and documentation.
The software includes network drivers for Windows@ 95,98, and NT. Supplied as a
single in-line module (SIM) form-factor building block, the LTS-20 can be used to
create custom serial interfaces to a wide range of network media.

l-2 Introduction

2

LTS-20 Overview

This chapter provides an overview of the model 65202 LTS-20 LonTalk
Serial Adapter Module.

LTS-20 User’s Guide 2-l

Mechanical Description
The LTS-20 Module consists of a 67mm by 28mm by 7mm (2.65” by 1.1” by 0.3”) module
with the core electronics and firmware required to implement a serial LonTalk
Adapter. The module is attached to a motherboard using a 40-position, 0.050-inch
spacing SIM socket. Two compatible sockets are available:

l Molex 15-82-1175 SIM Vertical Connector with metal latches, 0.050 Centerline
Single Row Connector - 40 position.

l AMP 4-382487-0, SIM II Right Angle Connector, 0.050 Centerline Single Row
Connector - 40 position.

For information about Molex parts call +l-708-969-4550 or fax +l-708-969-1352.

Within North America, AMP drawings can be obtained via FAX using the free AMP
FAX service. Call l-800-522-6752 from a touchtone phone and order customer prints
using the AMP part number. Additional information on the connectors is available in
AMP application note number AMP 114-1060 and reliability information is available in
AMP product specification 108-1297.

Figure 2.1 illustrates the mechanical footprint for the module and vertically mounted
socket. Figure 2.2 shows the recommended PCB pad layout for the vertically mounted
socket. Figures 2.3 and 2.4 provide the same information for the right-angle socket.

Decisions about component placement on the motherboard must consider
electromagnetic interference (EMI) and electrostatic discharge (ESD) issues discussed
in Chapter 4 of this document.

2-2 LTS-20 Overview

LTS-20 Footprint when using Molex Part
Number 15-82-1175

(Component Side, Vertical SIM Mounting)

74.!xh-ml
3.17mm ~

Notes:

1. Dimensions in mm (inches).
2. Tolerances + .13mm (0.0005)
3. Components standing higher that 3.81 mm(.l5) should not be closer than 12.4mm (0.5)

to this edge of the socket to allow clearance to insert the module.
4. Allow 33.02mm (1.3) clearance above PCB over the footprint area. Additional

clearance required to insert the module.
5. Socket dimensions are subject to change. Contact Molex for the most current

information.
6. Alternate AMP part is 822021-l.

Figure 2.1 LTS-20 Vertical Socket Mechanical Footprint

LTS-20 User’s Guide 2-3

LTS-20 PC6 Footprint when using AMP Part Number 4-382487-O
(Component Side, Horizontal Mounting)

4.32mm 74.93mm
9

Scxket Outline

f
15.4 2mm

(0.670)

_i

67.31 mm
Mule &erhang

g

Notes:

1. Dimensions in mm (inches).
2. Tolerances * .13mm (0.0005)
3. Do not position components in the overhang region.
4. Allow 12.7mm (0.5) clearance above PCB over the entire footprint area. Additional

clearance required during assembly to insert the module.
5. Socket dimensions are subject to change. Contact AMP for the most current

information.

Figure 2.2 LTS-20 Horizontal Socket Pad Layout

2-4 LTS-20 Overview

Power Requirements
The modules require a +5VDC *lo% power source with a minimum of 150mA of current
capacity.

Power Supply Decoupling and Filtering

The design for the module power supply must consider filtering and decoupling
requirements of the module. The power supply filter must prevent noise generated by the
core module from conducting onto external wires. Switching power supply designs must
also consider the effects of radiated EMI.

The modules require a clean power supply to prevent RF noise from conducting onto
the network through active drive circuits. Power supply noise near the network
transmission frequency may degrade network performance.

The modules include 2.2pF and O.lpF power supply bypass capacitors close to pins 1,9,
and 31. In general, high-frequency decoupling capacitors valued at O.lpF or O.OlpF
placed near pins 1,9, and 31 on the motherboard are necessary to reduce EMI.

L 0 w Voltage Pro tee tion

It is necessary to include a low voltage indicator (LVI) circuit on the module
motherboard to drive the -RESET line of the core module. See the Neuron C~QJ Data
Book for details. Failure to include such protection may cause data corruption to
configuration data maintained in EEPROM on the module’s Neuron Chip. In the
sample circuit of figure 3.1, protection is provided via a Motorola MC33164.

Electrical Interface
The pinout of the modules is shown in table 2.1.

LTS-20 User’s Guide 2-5

Table 2.1 Pinout of the LTS-20

Name Function Pin #

AUTOBAUD
BAUD0
BAUD1
BAUD2

CFGO
CFGl
CFG2
CFG3
CLK OUT
CPO
CPl
CP2
CP3
CP4
-CTS
-DCD IN

-DCD OUT
DCE
-DSR
-DTR
PKT
-RESET
-RI IN
-RI OUT
-RTS
SERIAL IN
SERIAL OUT
-SERVICE
-TEST
XIDO
XIDl
XID2
XID3
XID4

vcc
GND

Automatic serial bit rate detect enable input 19
Serial bit rate 0 input (LSB) 16

Serial bit rate 1 input 15

Serial bit rate 2 input (MSB) 21

EIA-232 interface option (1 = 8 wire, 0 = 3 wire) 17

Network Disable (1 = disable after reset) 14

Modem Support (1 = remote host; 0 = local host) 20
Interface link protocol (1 = Buffered; 0 = ALERT/ACK) 18
Neuron Chip CLK2 output 11
Network communication port 0 6
Network communication port 1 5
Network communication port 2 4
Network communication port 3 7

Network communication port 4 3
EIA-232 clear to send output from UART 36
EIA-232 serial data carrier detect input (DTE only) 35
EIA-232 serial data carrier detect output (DCE only) 40
Indicates whether connected as DCE 22
EIA-232 data set ready output from UART 38
EIA-232 data terminal ready input to UART 37
Packet transmitted output 13
Neuron Chip reset input and output 8
EIA-232 ring indicator input (DTE only) 33
EIA-232 ring indicator output (DCE only) 34
EIA-232 request to send input to UART 39
EIA-232 serial data input to UART 26
EIA-232 serial data output to UART 27
Neuron Chip service pin input and output 12
Manufacturing test pin, tie to Vcc in final product 30
Transceiver ID 0 input (LSB) 25
Transceiver ID 1 input 23
Transceiver ID 2 input 29
Transceiver ID 3 input 28
Transceiver ID 4 input 24
+5VDC input 1,9,31

Ground 2, 10, 32

2-6 LTS-20 Overview

NSI/MIP MODE JUMPER R2

The NSI/MIP jumper R2 (a 2200 resistor) determines the start-up mode of the module.
The module is shipped in the NSI mode, with the jumper intact. Cutting jumper R2
disables the NSI mode and enables the MIP mode (for emulating the LTS-10 module).
DO NOT cut the jumper while the module is powered - only cut the jumper with the
module unpowered. Observe appropriate ESD protection suitable for CMOS devices
when handling the module or cutting jumper R2. To ensure reliable operation, RJ
should be removed in its entiretv and not simnlv cut at one end.

Figure 2.3 R2Jumper

AUTOBAUD

The AUTOBAUD input signal enables automatic baud rate detection on the LTS-20 as
described in Chapter 7. The input is a floating CMOS input and must be asserted high
to enable automatic baud rate detection or be asserted low to disable automatic baud
rate detection.

BAUD[2..0]

The BAUD[2..01 input signals set the EIA-232 serial bit rate on the LTS-20 module as
described in Chapter 7 and summarized in Table 2.2. The inputs are not used when
AUTOBAUD is enabled. The inputs are floating CMOS inputs and must be asserted
high to select a “1” and asserted low to select a “0”.

Table 2.2 LTS-20 Baud Rate Inputs

001
010 E4 011
100

BAUD[2..0]
000

101
110
111

1 Serial Bit Rate
14,400 bps
1,200 bps
2,400 bps
9,600 bps
19,200bps
38,400 bps
57,600 bps
115,200bps

CFGO

The CFGO input signal selects a full &wire interface or 3-wire interface for the LTS-20
module as described in Chapter 7. The input is a floating CMOS input and must be
asserted high to select a full 8-wire interface or asserted low to select a 3-wire interface.

LTS-20 User’s Guide 2-7

CFGl

The CFGl input signal enables or disables network communications after reset for the
LTS-20 module as described in Chapter 7. The input is a floating CMOS input and
must be asserted high to disable network communications after reset or asserted low to
enable network communications after reset.

CFG2

The CFG2 input signal controls the use of the LTS-20 module with a modem as
described in Chapter 12. The input is a floating CMOS input and must be asserted
high to enable modem support for a remote host or asserted low to enable local host
support.

CFG3

The CFG3 input signal controls the network interface link protocol used between the
LTS-20 module and a local host as described in Chapter 11. The input is a floating
CMOS input and must be asserted high to select the buffered link protocol or asserted
low to select the ALERT/ACK link protocol.

CLK OUT

The CLK OUT output signal is driven by the CLK2 pin of the core module Neuron
Chip. It can drive one HCMOS load, and can be used to interface to the FTT-1OA Free
Topology Transceiver or the LPT-10 Link Power Transceiver.

CP(4..0)

The CP[4..0] signals are connected to the CP[4..0] pins of the core module Neuron Chip.
The function of these pins is described in the Neuron Chip Data Book.

-CTS

EIA-232 clear to send output when the LTS-20 is connected as a DCE device. This
output should be used as the EIA-232 request to send (-RTS) output when the LTS-20
is connected as a DTE device. The output is driven by the core module UART and must
be connected to an EIA-232 driver if EIA-232 voltage levels are required, or can be
ignored for a 3-wire serial interface.

-DCD IN

EIA-232 data carrier detect input when the LTS-20 is connected as a DTE device. This
input is not used when the LTS-20 is connected as a DCE device. This input is not
used by the firmware when connected to a local host, and is used to detect incoming
calls when used with a remote host (i.e. when CFG2 is set to the Remote Host state).
The input is connected to the core module UART and must be externally connected to
an EIA-232 receiver if EIA-232 voltage levels are used, or should be connected to
ground for a 3-wire serial interface.

2-8 LTS-20 Overview

-DCD OUT

EIA-232 data carrier detect output when the LTS-20 is connected as a DCE device.
This output is not used when the LTS-20 is connected as a DTE device. This output is
always asserted high by the firmware. The output is driven by the core module UART
and must be connected to an EIA-232 driver if EIA-232 voltage levels are required, or
can be ignored for a 3-wire serial interface.

DCE

The input is a floating CMOS input. It is not used by the firmware. It should be pulled
high or low by the motherboard.

-DSR

EIA-232 data set ready output when the LTS-20 is connected as a DCE device. This
output should be used as the EIA-232 data terminal ready (-DTR) output when the
LTS-20 is connected as a DTE device. This output is always asserted high by the
firmware when used with a local host and is asserted low for 500ms to hang up the
modem when used with a remote host (i.e., when CFG2 is set to the Remote Host state).
The output is driven by the core module UART and must be connected to an EIA-232
driver if EIA-232 voltage levels are required, or can be ignored for a 3-wire serial
interface.

-DTR

EIA-232 data terminal ready input when the LTS-20 is connected as a DCE device.
This input should be used as the EIA-232 data set ready (-DSR) input when the LTS-
20 is connected as a DTE device. The input is connected to the core module UART and
must be externally connected to an EIA-232 receiver if EIA-232 voltage levels are used,
or should be externally connected to ground for a 3-wire serial interface.

PKT

The PKT output signal is asserted high when interface buffers are passed from the host
to LTS-20 module. PKT can be used to drive an activity LED, as in the example circuit
shown in figure 3.1. The output is controlled by writing to the memory mapped I/O at
location OxE7EOwrite 0x01 to drive the signal high, and 0x00 to drive the signal low.
PKT can source 2mA with VGH 2 2.4V, and it can sink 8mA with VGL I 0.45V.

-RESET

The -RESET signal is connected to the -RESET pin of the core module Neuron Chip.
The function of the -RESET pin is described in the Neuron Chip Data Book. The core
modules include a reset circuit as shown in figure 2.5.

The -RESET signal should be driven (open collector or open drain only) by a low
voltage protection circuit (LVI) on the core module motherboard as described under
Low Voltage Protection earlier in this chapter. The use of an LVI is critical for reliable
operation of the LTS-20.

LTS-20 User’s Guide 2-9

Figure 2.4 LTS-20 Reset Circuit

-RI IN

EIA-232 ring indicator input when the LTS-20 is connected as a DTE device. This
input is not used when the LTS-20 is connected as a DCE device. The output is
connected to the core module UART and must be externally connected to an EIA-232
receiver if EIA-232 voltage levels are used, or should be externally connected to ground
for a 3-wire serial interface.

-RI OUT

EIA-232 ring indicator output when the LTS-20 is connected as a DCE device. This
output is not used when the LTS-20 is connected as a DTE device. This output is
always set to the inactive state by the firmware. The output is driven by the core
module UART and must be connected to an EIA-232 driver if EIA-232 voltage levels
are required, or can be ignored for a 3-wire serial interface.

-RTS

EIA-232 request to send input when the LTS-20 is connected as a DCE device. This
input should be used as the EIA-232 clear to send (-CTS) output when the LTS-20 is
connected as a DTE device. The input is connected to the core module UART and must
be externally connected to an EIA-232 receiver if EIA-232 voltage levels are used, or
should be externally connected to ground for a S-wire serial interface.

SERIAL IN

EIA-232 received data (RXD) input. The input is connected to the core module UART
and must be externally connected to an EIA-232 receiver if EIA-232 voltage levels are
used.

SERIAL OUT

EIA-232 transmitted data (TXD) output. The output is driven by the core module
UART and must be connected to an EIA-232 driver if EIA-232 voltage levels are
required.

2-10 LTS-20 Overview

Table 2.3 LTS-20 Transceiver IDS

ID I XlD[4..0] I Name Media Bit Rate (bps)

01 00001 TPiXF-78 Isolated Twisted Pair 78k

03 00011 TP/XF-1250 Isolated Twisted Pair 1.25M

04 00100 FT-10 Free Topology, Link Power 78k

05 00101 TP/RS485-39 RS-485 Twisted Pair 39k

09 01001 PL-10 Power Line (FCC-band) 10k

10 01010 TP/RS485-625 RS-485 Twisted Pair 625k

11 01011 TP/RS485-1250 RS-485 Twisted Pair 1.25M

1 12 1 01100 1 TP/RS485-78 1 RS-485 Twisted Pair 1 78k

15 01111 PL90A 1 Power Line (narrow band A-band) 3.6k

16 10000 PL-POC

17 10001 PL90N

Power Line (C-band - CENELEC) 5k

Power Line (C-band - non-CENELEC) 5k

18 10010 PL-30

24 11000 FO-10

Power Line (A-band)

Fiber Optic

2k

1.25M

27 11011 DC-78

28 11100 DC-625

29 11101 DC-l 250

Direct Connect 78k

Direct Connect 625k

Direct Connect 1.25M

/ 30* Ill110 Custom Custom N/A

Notes: Type 30 can be used for any transceiver type; the communications port is
initially defined as all inputs to prevent circuit conflicts. When using type 30,
the transceiver parameters must be reprogrammed by establishing
communication over the serial port, as described in the next chapter.

See Appendix A for a listing of the communications parameters for each
transceiver type.

LTS-20 Software Configuration Options
The types of messages passed between the host and the LTS-20 are determined by
EEPROM configuration options. These options are described under Network Interface
Configuration Options in Chapter 3 of the LONWORKS Host Application Programmer’s
Guide. The Network Disable Option affects whether or not the LTS-20 can send and
receive application messages. This option is described in Chapter 7 under Initializing
an SLTA.

The buffer configuration parameters can be changed at any time by sending Write
Memory network management messages to the LTS-20, either from a host (using local
network management messages) or over the network from a network management tool.
See the Neuron Chip Data Book, Appendix A, for details of the data structures within
the Neuron Chip that control the partitioning of RAM for buffers.

2-12 LTS-20 Overview

The following table summarizes the memory usage of the default configuration. The
table also lists the maximum size of the buffer memory pool. If the LTS-20 is
configured to use more bytes than are available in the pool, it will most likely crash or
behave erratically since the remaining RAM is used by the system firmware.

The default MIP mode EEPROM configuration settings for the LTS-20 are as follows:

I Configuration Parameters 1 Default Setting I

I Initial State 1 Unconficlured

Explicit addressing

Network variable processing

Enabled’

Host Selection’

Program ID string 1 “SLTA”

‘These values apply to LTS-20 Neuron Chip application version 7 only
‘These values are fmed and cannot be modified

The amount of RAM memory available for buffers in the MIP mode is 25.75 bytes.
This total includes both on-chip and off-chip RAM. When calculating the total RAM
requirement for a given configuration, remember that there will be a fragmentation
boundary when going to the off-chip RAM as buffers are built. This fragmentation
may be up to a single buffer size in unusable RAM.

LTS-20 User’s Guide 2-13

-SERVICE

The -SERVICE signal is connected to the -SERVICE pin of the module’s Neuron Chip.
The function of the -SERVICE pin is described in the Neuron Chip Data Book. The
internal pullup resistor for the service pin is enabled. A service LED will reflect the
firmware status: blinking means that the module is unconfigured, offmeans that it is
configured, and on steadily means that it is applicationless. If the service LED is on
steadily, a critical error has been detected by the firmware. A push-button connected to
this pin may be used during installation to broadcast the 4%bit Neuron ID on the
network.

Typical applications do not require debounce conditioning of momentary push buttons
attached to the -SERVICE pin. The software response time associated with this input
is long enough to effectively provide a software debounce for switches with a contact
bounce settling time as long as 20 milliseconds.

-TEST

The -TEST input signal is used to put an LTS-20 module in test mode during
manufacturing test. Use of this signal is described in the LTSMFT.NC Neuron C file in
the manufacturing test directory (MFT) of the software. This signal should be tied high
in a shipping, production-level node.

XID(4..0)

The LTS-20 comes preconfigured with many common LONWORKS transceiver
parameters. The XID[4..01 input signals specify a transceiver identification (ID) to select
the appropriate transceiver type.

The transceiver ID inputs eliminate a manufacturing step by automatically configuring
the LTS-20 for most transceivers. A special transceiver ID is reserved for programming
any custom transceiver type. This value causes the communication port pins to be
configured as all inputs so that no line will be driven by both the transceiver and LTS-20
Neuron Chip before the chip can be properly configured.

The LTS-20 firmware reads the transceiver ID inputs on both power-up and on reset. If
it is being powered-up for the first time, or if the transceiver ID is different from the last
time it was powered-up, the parameters specified in table 2.3 are loaded. If it is being re-
powered-up, and the transceiver ID is not 30, the LTS-20 firmware compares the network
bit rate and input clock for the specified transceiver to the current transceiver
parameters. If these parameters don’t match, then all transceiver parameters are
reinitialized. This allows a network management tool to change parameters, such as the
number of priority slots, without the new values being overwritten by the LTS-20
firmware.

LTS-20 User’s Guide 2-l 1

Physblsgt; Part
RAM Ad&m NA,M..O,

x
2575KB

WFF

sas

J

Neuron Chip MIP Memory Map
64KR Total AddrssS Fbyl%l,

Lower H6a&fTi$cal ROM

Figure 2.5 LTSPO MIP Mode Memory Map

2-14 LTS-20 Overview

The default NSI mode EEPROM configuration settings for the LTS-20 are as follows:

Configuration Parameters Default Setting

Initial State Unconfigured I

Explicit addressing Enabled’

Network variable processing Host Selection’

Program ID string 1 “SLTA” I

Buffer Parameter
Receive transaction buffers
Transmit transaction buffers
Application input buffers
Application output buffers

Default Count Default Size Default Total
16 132 208
2 28’~’ 56’
3 255 765
3 255 765

Network input buffers 2 66 132
Network output buffers 2 66 132
Priority app. output buffers 3 255 765
Priority net. output buffers 2 66 132
Total bytes used for buffers 2,955

‘These values apply to LTS-20 Neuron Chip application version 7 only
2These values are fixed and cannot be modified

The amount of RAM memory available for buffers in the NSI mode is 2,955 bytes.
This total includes both on-chip and off-chip RAM. When calculating the total RAM
requirement for a given configuration, remember that there will be a fragmentation
boundary when going to the off-chip RAM as buffers are built. This fragmentation
may be up to a single buffer size in unusable RAM.

LTS-20 User’s Guide 2-15

Neuron Chip NSI Memory Map
64KB Total

ilxYhhSS

Upper f4dfTPogical ROM

Expand I : I

Figure 2.6 LTS-20 NSI Memory Map

The NODEUTIL node utility application available from the Developer’s Toolbox on
the Echelon web site (www.echelon.com) can be used to modify the buffer
configuration from a PC host. See the README.TXT file included with NODEUTIL
for details.

2-16 LTS-20 Overview

LTS-20 User’s Guide 3-l

3

Developing an SLTA with the
LTS-20 module

This chapter describes the process of developing a Serial LonTalk
Adapter based on the LTS-20 Module.

Overview
To create a complete serial interface (SLTA), with functions similar to Echelon’s
SLTA-10 Serial LonTalk Adapter, based on the LTS-20 Module, follow these steps:

Build an SLTA motherboard according to the specifications described in Chapter 2
and the guidelines described in Chapter 4. The motherboard may be part of custom
application hardware, or may be a standalone board. Figure 3.1 is a sample
motherboard schematic for an SLTA based on the use of the SMXTM transceivers.
Additional transceiver interfaces are described in the rest of this chapter.

Ensure that the communications parameters in the LTS-20 are compatible with
the transceiver. The transceivers listed in table 2.3 are supported directly by the
LTS-20 as predefined types. Set the transceiver ID lines to select the proper
transceiver type. For custom transceivers, modify the communications
parameters as described under Using Custom Transceivers in this chapter.

Install the SLTA on a network as described in Chapter 7. The network may be a
development network for initial testing, a manufacturing network for configuration
during manufacture, or a production network for field installation.

3-2 Developing an SLTA with the LTS-20

Using Predefined Transceivers
The LTS-20 includes pre-defined transceiver parameters for the transceivers listed in
table 2.3. When using any of these transceivers, the communications parameters are
automatically programmed as described in Chapter 2.

The following sections describe the hardware interface for standard LONWORKS
transceivers available from Echelon for twisted pair, link power, and power line
communications. The user’s guide for each transceiver contains documentation on
the interface requirements. The following sections provide additional information on
using these transceivers with the LTS-20.

TPT/XF-78 and TPT/XF- 7250 Twisted Pair Transceivers

The TPTKF-78 and TPTKF-1250 Twisted Pair Transceiver Modules support
transformer-isolated communications over a twisted pair cable. The transceiver ID
should be set to 1 for the TPTKF-78, and to 3 for the TPT/XF-1250.

See the LONWORKS TPT Twisted Pair Transceiver Module User’s Guide for details
on these channel types.

+SVDC Regulated

+IP”DC Unregulated

Figure 3.1 LTSPO Evaluation Board

LTS-20 User’s Guide 3-3

3-4

Figure 3.2 LTS-20 Evaluation Board Power Supply

Developing an SLTA with the LTS-20

JTJXPER BLOCK mm LEFI JUMPER BLOCK TOWARD RIGHT
CLTS-20 I OCE, tms-20 = DTE)

CONNECT To PC (DTE) CONNECT TO MODEM (DCE)

a >

LTS-20 User’s Guide

Figure 3.3 LTS-20 Evaluation Board Serial

3-5

F7l- 70A Free Topology and LPT- 70 Link Power Transceivers

The FTT-1OA Free Topology Transceiver provides 78kbps signaling without regard
for cabling topology, and is by far the most popular twisted pair medium for
LONWORKS networks. The LPT-10 Link Power Transceiver Module supports free
topology communications over the same twisted pair cable that carries power for
application nodes. Power is supplied from a 48VDC power supply and is coupled to
the network via an LPI-10 Link Power Interface Module. Both a power supply and
an LPI-10 module are required to operate LPT-10 transceivers. The LPT-10
transceiver does not provide sufficient power for the LTS-20, which must be locally
powered and optically isolated from the LPT-10 transceiver. The transceiver ID
input must be set to 4 to support the LPT-10 and FTT-1OA transceivers.

Note that an FTT-1OA transceiver equipped with decoupling capacitors can operate
on a link power segment, but an LPT-10 transceiver cannot operate on an unpowered
FTT-1OA segment.

PLT Power Line Transceiver

A PLT Power Line Transceiver Module supports communications over AC or DC
power mains. It may be connected to the LTS-20 module and a coupling circuit as
shown in figure 3.2. The transceiver ID input must be set to support the correct PLT
transceiver. See the pertinent LONWORKS PLT power line transceiver module user’s
guide for additional information, including a description of the coupling circuits.

3-6 Developing an SLTA with the LTS-20

CPl

CP2

CP4

-RESET
LTS-20
Module

XID4

XID3

XID2

XIDI

XIDO

-1 CPO

CPI
TXOUT

PLT
cp2 Transceiver

RXIN

CP4

0
Power

0 Line
Media

0

Figure 3.4 Sample PLT Power Line Transceiver Interface

Using Custom Transceivers
The LTS-20 module can be used with transceivers not listed in table 2.3 as long as
the communications parameters are programmed to match the custom transceiver.
Since network communication is not possible before these parameters are set, they
must be programmed by the host over the EIA-232 link. The steps for programming
a custom transceiver type are:

1 Determine the appropriate transceiver parameters for your channel. A
discussion of transceiver modes and parameters may be found in Chapter 6 and
Appendix A, section 6 of the Neuron Ch@ Data BOOK. Transceiver parameters
may be modeled and fine-tuned using LonBuilder.

2 Select a transceiver ID of 30 (custom) on the LTS-20 transceiver ID inputs. The
pins should remain set to this value in the production SLTA.

3 Install the transceiver parameters using a network management tool such as the
LonMaker for Windows Integration Tool. The transceiver parameters are
programmed into non-volatile EEPROM so the module will retain the new
parameters after power is removed.

LTS-20 User’s Guide 3-7

3-8 Developing an SLTA with the LTS-20

LTS-20 Design Issues

This chapter examines a number of design issues, including a
discussion of electromagnetic interference (EMI) and electrostatic
discharge (ESD). These issues should be considered when designing
hardware based on the LTS-20 module.

I LTS-20 User’s Guide 4-l

EMI Design Issues
The high-speed digital signals associated with microcontroller designs can generate
unintentional Electromagnetic Interference (EMI). High-speed voltage changes
generate RF currents that can cause radiation from a product with a length of wire or
piece of metal that can serve as an antenna.

Products that use the LTS-20 module will generally need to demonstrate compliance
with EM1 limits enforced by various regulatory agencies. In the USA, the FCC
requires that unintentional radiators comply with Part 15 level “A” for industrial
products, and level “B” for products that can be used in residential environments.
Similar regulations are imposed in most countries throughout the world.

Echelon has designed the LTS-20 module with low enough RF noise levels for design
into level “B” products. This section describes design considerations to enable
products based on the core modules to meet EM1 regulations.

Designing Systems for EMC (Electromagnetic Compatibility)

The LTS-20 module has been designed so that products using them should be able to
meet both FCC and, based on radiated emissions, EN55022 level “B” limits. Careful
system design is important to ensure that a product based on the core modules will
achieve the desired EMC. Information on designing products for EMC is available in
several forms including books, seminars, and consulting services. This section
provides useful design tips for EMC.

EMC Design Tips

l Most of the EM1 will be radiated by the network cable and the power cable.

l Filtering is generally necessary to keep RF noise from getting out on the power
cable.

l EM1 radiators should be kept away from the LTS-20 module to prevent internal
RF noise from coupling onto the radiators.

l The LTS-20 module must be well grounded.

l Early EM1 testing of prototypes at a certified outdoor range is an extremely
important step in the design of level “B” products. This testing ensures that
grounding and enclosure design questions are addressed early enough to avoid
most last-minute changes.

ESD Design Issues

Electrostatic Discharge (ESD) is encountered frequently in industrial and commercial
use of electronic systems. Reliable system designs must consider the effects of ESD
and take steps to protect sensitive components. Static discharges occur frequently in
low-humidity environments when operators touch electronic equipment. The static

4-2 LTS-20 Design Issues

voltages generated by humans can easily exceed 1OkV. Keyboards, connectors, and
enclosures provide paths for static discharges to reach ESD sensitive components
such as the Neuron Chip. This section describes techniques to design ESD immunity
into products based on the LTS-20 modules.

Designing Systems for ESD Immunity

ESD hardening includes the following techniques:

l Provide adequate creepage and clearance distances to prevent ESD hits from
reaching sensitive circuitry;

l Provide low impedance paths for ESD hits to ground;

l Use diode clamps or transient voltage suppression devices for accessible, sensitive
circuits

The best protection from ESD damage is circuit inaccessibility. If all circuit
components are positioned away from package seams, the static discharges can be
prevented from reaching ESD sensitive components. There are two measures of
“distance” to consider for inaccessibility: creepage and clearance. Creepuge is the
shortest distance between two points along the contours of a surface. Clearance is
the shortest distance between two points through the air. An ESD hit generally arcs
farther along a surface than it will when passing straight through the air. For
example, a 20 kV discharge will arc about 0.4 inches (10 mm) through dry air, but the
same discharge can travel over 0.8 inches (20mm) along a clean surface. Dirty
surfaces can allow arcing over even longer creepage distances.

When ESD hits to circuitry cannot be avoided through creepage, clearance, and
ground guarding techniques, i.e., at external connector pins, explicit clamping of the
exposed lines is required to shunt the ESD current. Consult Protection of Electronic
Circuits from Overvoltages, by Ronald B. Standler, for advice about ESD and
transient protection for exposed circuit lines. In general, exposed lines require diode
clamps to the power supply rails or zener clamps to chassis ground in order to shunt
the ESD current to ground while clamping the voltage low enough to prevent circuit
damage. The Neuron Chip’s communications port lines are connected directly to the
LTS-20 edge connector without any ESD protection beyond that provided by the chip
itself. If these lines will be exposed to ESD in a custom SLTA, protection must be
added to the motherboard.

LTS-20 User’s Guide 4-3

4-4 LTS-20 Design Issues

5
The LTS-20 Software

This chapter describes the LTS-20 software that is shipped with the
Connectivity Starter Kit.

LTS-20 User’s Guide 5-l

Software Overview
The LTS-20 software includes ANSI C source code for HA, a sample host application
for MS-DOS that can be used as a basis for a user-developed host application on other
host platforms. This application provides examples of sending and receiving network
variable messages, as well as allowing a node based on an LTS-20 to be installed and
bound by a network management tool such as the LonManager LonMaker for
Windows Integration Tool or the LonBuilder network manager.

Two network drivers (Windows 95/98 and Windows NT) are included so that an LTS-
20 may be immediately used with LNS applications. Source code for DOS and UNIX
network drivers is also provided as a basis for a user-developed network driver for
other hosts or operating systems using the MIP. DLL software is provided to make it
easier to use the network driver under the Microsoft@ Windows operating system.

An executable program and source code is also provided for a Host Connection Utility
(HCU), which may be used to initiate and terminate the host to serial connection
when the LTS-20 is used with a remote host. An example written in Neuron C is also
provided as a basis for user-developed nodes on a LONWORKS network that need to
initiate outgoing calls to a remote host.

The LTS-20 includes NSI firmware that moves the upper layers of the LonTalk
Protocol off the Neuron Chip within a node onto a host processor. This firmware
allows the LTS-20 to be used by a host application to send and receive LonTalk
messages. The host application may be a custom application as described in the LNS
for Windows Developer’s Kit or LNS DDE Server User’s Guide. When using the LTS-
20 in the MIP mode, the host application may also be a network management
application based on tools using the now-discontinued LonManager API. The
firmware in an LTS-20 is fixed in ROM and need not be reprogrammed to use any of
the module’s capabilities.

Installing LTS-20 Software
The LTS-20 software is supplied on a diskette, together with an installation program.
To install the LTS-20 software, follow these steps:

1. Place the diskette in one of the disk drives of your PC. This will typically be the
A: or B: drive.

2. Start the automatic installation procedure by entering:

A: INSTALL [ENTER]

Substitute your disk drive name for the A: if you are using a different drive.

3. You will be asked to enter the name of your LONWORKS installation directory
The default is:

C:\ECHELON

5-2 LTS-20 Software

If you have other Echelon software products installed in the \LONWORKS directory,
rather than the \ECHELON directory, enter \LONWORKS in place of the default
directory name.

The LTS-20 software will be installed in the LTS - 2 0 sub-directory of your
LONWORKS directory, with the exception of the DOS network driver LDVSLTA. SYS.
This file will be installed in the BIN sub-directory of your LONWORKS directory. To
install the DOS network driver into your CONFIG. SYS file, follow the instructions in
Chapter 9.

The SLTA directory will contain the following files:

l Read-Me File. The README. TXT file includes a list of all the files on the
distribution disk, and also includes any updates to the documentation that
occurred since the documentation was printed.

l DOS Network Driver Sources. The DOS network driver source code is
contained in the LDVSLTA directory. These files can be used as the basis for
creating drivers for hosts other than PCs running DOS (see also the UNIX
network driver sources). See the README. TXT file for a description of the driver
files. See Chapter 8 for a description of the DOS network driver and Chapter 7
for a description of how to write a network driver for other hosts. See Chapter 4
of the LOhWORKS Host Application Programmer’s Guide for a description of the
services that must be supplied by a LONWORKS network driver.

The source files to build the DOS driver are:

LDVSLTA.CFG Configuration file for Borland C.

MAKEFILE Make file script for Borland C.

MDV-T1ME.C Code to manage the PC timer.

MDV-T1ME.H External interface definitions for the timer handler.

MSD-DEFS.H Data structure and literal definitions.

MSDmD1FC.C DOS driver interface functions.

MSD-DRVR.H DOS driver interface and literal definitions.

MSD-EXEC.C Main open, close, read, and write processing.

MSD-FRST.C Module to be linked first in the network driver.

MSD-IRQC.ASM Serial I/O interrupt procedure.

MSD-LAST.C Module to be linked last in the network driver.

MSD-RAW.C Direct serial I/O (modem) processing.

MSD-SEGD.ASM Defines data segment register for driver.

MSD-SI0.C PC/AT UART interface processing.

MSD-TXRX.C Single byte link layer processing.

MSD-UART.H Defines PC/AT UART registers.

l UNIX Network Driver Sources. The UNIX network driver source code is
contained in the UNIX directory. These files can be used as the basis for creating
drivers for any UNIX host, and can also be used as the basis for developing
drivers for other hosts. See Chapter 10 for a description of the UNIX network
driver and Chapter 8 for a description of how to write a network driver for other

LTS-20 User’s Guide 5-3

hosts. See Chapter 4 of the LONWORKS Host Application Programmer’s Guide for
a description of the services that must be supplied by a LONWORKS network
driver. The source files to build the UNIX driver are:

LDVSLTA.C UNIX driver functions.

LDVSLTA.H UNIX driver declarations.

l External Interface Files. External interface files included for use by network
management tools are contained in the LTS - 2 0 directories. Fifteen external
interface files are included for the standard transceiver types that are directly
supported by the LTS-20. See Binding to a Host Node in Chapter 3 of the
LONWORKS Host Application Programmer’s Guide for a description of how to use
these files to bind to an SLTA node. Appendix B of the LONWORKS Host
Application Programmer’s Guide provides a detailed description of how to modify
these tiles to incorporate network variables and message tags. These interface
tiles are provided in version 3 formats; version 2 formats are available by running
the utility XIF3T02 . EXE (available from Echelon’s ftp site) on the version 3 XIF
files. Version 3 external interface files are compatible with the latest releases of
all Echelon software products. External interface files in version 3 format are
containedinthe SLTA2\XIF-V3 and LTS-20\XIF-V3 directories.

Each SLTA/2 directory contains the following files:

NSLTA125.XIF For SLTA/2 with a TP/XF-1250 transceiver.

NSLTA78K.XIF For SLTA/2 with a TPKF-78 transceiver.

NSLTA485.XIF For SLTA/2 with a TP-RS485-39 transceiver.

NSLTAFTl.XIF For SLTtV2 with a TP/FT-10 transceiver.

Each LTS-20 directory contains the following files:

LTS1250.XIF

LTS78K.XIF

LTS485A.XIF

LTS485B.XIF

LTS485C.XIF

LTS485D.XIF

LTSFTlO.XIF

LTSPLlO.XIF

LTSPL20A.XIF

LTSPL20C.XIF
protocol on).

LTSPL20N.XIF
protocol off).

LTSPL30.XIF

LTSFOlO.XIF

For LTS-20s with a TP/XF-1250 transceiver.

For LTS-20s with a TP/XF-78 transceiver.

For LTS-20s with a TP-RS485-39 transceiver.

For LTS-20s with a TP-RS485-78 transceiver.

For LTS-20s with a TP-RS485-625 transceiver.

For LTS-20s with a TP-RS485-1250 transceiver.

For LTS-20s with a FT-10 or LPT-10 transceiver.

For LTS-20s with a PL-10 transceiver.

For LTS-20s with a PL-22 transceiver (A-band).

For LTS-20s with a PL-2l/PL-22 transceiver (CENELEC

For LTS-20s with a PL-2l/PL-22 transceiver (CENELEC

For LTS-20s with a PL-30 transceiver.

For LTS-20s with a FO-10 transceiver.

5-4 LTS-20 Software

LTSDC78.XIF For LTS-20s using Direct Connect at 78kbps.

LTSDC625.XIF For LTS-20s using Direct Connect at 625kbps.

LTSDC125.XIF For LTS-20s using Direct Connect at 125Okbps.

l Sample Host Application. A sample host application is contained in the HA
directory. See Appendix A of the LOhWORKS Host Application Programmer’s Guide
for a description of the example. The following files are included:

README.TXT

HA.EXE

HA.C

NI-MSG.C

APPLCMDS.C

NI-CALLB.C

APPLMSG.H

HA-C0MN.H

NI-CALLB.H

APPLMSG.C

HAU1F.C

1OCTL.C

LDV1NTFC.C

LDV1NTFC.H

NI-MSG.H

NI-MGMT.H

HAU1F.H

MAKEFILE

MSOFT.MAK

HA-V3.XIF

HA-TEST.NC

A description of the sample host application.

An executable version of the sample host application for DOS.
The SLTA DOS network driver must be installed to run this
application.

The main program for the example.

A general purpose network interface library that can be used
with any host application.

Functions to handle application layer network variable
commands

The host-bound network management dispatcher.

Application message handler function prototypes.

The HA common declarations.

The definitions for the network management dispatcher.

Functions to handle application network variable and explicit
messages.

Command-line user interface for the example.

L/O control function for Microsoft C.

Device interface driver.

Include file for device driver interface.

Definitions for network interface message structures.

Definitions for network management message structures
used by the example.

Definitions for the host application example user interface.

A make file script for Borland C.

A make file script for Microsoft C.

An external interface file which may be used to bind the
example with LonBuilder.

A Neuron C program which may be loaded into a Neuron
emulator and bound to the sample host application for testing.

LTS-20 User’s Guide 5-5

D1SPLAY.H A Neuron C include file to drive the Gizmo 2 I/O module for the
test example.

l Host Connect Utility. A sample host connection utility is contained in the HCU
directory, with source code. See Chapter 12 for details. The files supplied are:

HCU.EXE Executable file for the Host Connection Utility.

HCUJA1N.C The main C source program.

HCU.CFG Configuration file for Borland C.

MAKEFILE Make file script for Borland C.

MSD-DRVR.H Driver definition include file.

l Neuron C Connection Example. A sample Neuron C program is contained in
the NC-APPS directory. This program shows how a node on a network connected
to the SLTA can dial out and connect to a remote host computer. See Chapter 11
for details. The files supplied are:

DIALOUT.NC Neuron C source program to dial out with the SLTA.

GIZSETUP.NC An example Neuron C program for configuring the SLTA.
Configures the EEPROM directories of an SLTA using the
Gizmo 2 I/O module as the user interface.

SLTA-ANM.H Definitions of SLTA-specific network management messages.

l Manufacturing Test Files. The files supplied in the LTS - 2 0 \MFT directory
provide a Neuron C application example which can be used as a manufacturing
test aid for products based on the LTS-20. They are:

LTSMFT.NC Neuron C source file, including full documentation.

LTSMFT.H Include file.

This application is designed to aid in the testing of circuitry that is external to the
LTS-20 module, such as EIA-232 interface drivers and connectors. It may be
programmed into a LONWORKS device which then communicates with the LTS-20
module via the network. The LTS-20 circuitry is tested with some of its signals
connected in a loopback manner. The assertion of the TEST input (pin 30) will
cause the LTS-20 firmware to come up in the test mode.

Insfalling the Windows DLL Software

A second diskette contains the Windows Dynamic Link Library (DLL) files. These
files may be used when developing a host application to run under Microsoft
Windows. The file WLDV . DLL should be copied to your Windows directory (typically
C : \WINDOWS). The files LDV . H and LON . H should be copied to a directory in the
include file search path of your C compiler. The file WLDV . LIB should be copied to a
directory in the library search path of your application linker. See Appendix B for
information on using the Windows DLL.

5-6 LTS-20 Software

6
Creating an LTS-20 MIP Mode

Network Driver

This chapter describes the process of building a network driver for a
host that is to be connected to an LTS-20 operating in MIP mode. The
example network drivers for DOS, Windows, and UNIX are described.
Similar logic can be used on other host processors and operating
systems. This chapter also includes a description of the network
interface protocol for the LTS-20 operating in MIP mode. The network
interface protocol defines the format of the data passed across the EIA-
232 interface, and varies depending on the configuration of the LTS-20
and the network driver. If a LONWORKS standard network driver is
used, the format of the data passed between the driver and the
application is defined by the network driver protocol and is independent
of the network interface protocol; the driver is responsible for providing
the necessary translations. This chapter will therefore be of interest
only to those needing to develop a network driver for a host other than
DOS, Windows, or UNIX.

If you are using a DOS, Windows, or Unix host, you can skip this
chapter and instead read Chapters7 or 8, which describe the DOS and
UNIX network drivers.

LTS-20 User’s Guide 6-l

Purpose of the Network Driver
The network driver provides a hardware-independent interface between the host
application and the network interface. By using network drivers with consistent
calling conventions, host applications can be transparently moved between different
network interfaces. For example, the standard LTS-20 MIP mode DOS driver,
together with the Windows DLL software, allows DOS and Windows applications,
such as those based on the LonManager API, to be debugged using the network
driver for the LonBuilder Development Station. These applications can later be used
with the network driver for the SLTA-10 operating in MIP mode, without modifying
the host application.

For the purposes of this chapter, the term “SLTA” refers to the LTS-20
module operating in MIP mode.

A LONWORKS standard network driver must supply the functions defined under
Network Driver Services in Chapter 4 of the LONWORKS Host Application
Programmer’s Guide. The Windows DLL software is described in Appendix B.

Example Network Drivers
The SLTA is delivered with source code for example network drivers for DOS,
Windows, and UNIX. The DOS driver is used for both DOS and Windows
applications. See the comments in the source code of the network drivers for an
explanation of how the network drivers work. These drivers can be used as
templates for a LONWORKS standard network driver. The DOS network driver is
compatible with the LonManager APIs for DOS and Windows, LonMaker, and the
LonManager DDE Server. A sample host application for DOS is also supplied. The
functions ldv-open(),ldv-read(),ldv_write (),and ldv-close 0 forma
suitable operating-system independent definition for the network driver. These
functions support multiple network interfaces, and hide the DOS-specific aspects of
the DOS network driver.

The UNIX network driver is a source library that, uses the UNIX serial device driver.
It aho supports the ldv-open0 , ldv-read(), ldv-write(), andldv-close0
functions.

Implementing an SLTA Network Driver
The network driver manages the physical interface with the SLTA, implements the
network interface protocol, performs flow control, manages input and output buffers,
and provides a read/write interface to the host application.

Figure 6.1 illustrates how the network driver fits into the host application
architecture.

6-2 Creating an LTS-20 MIP Mode Network Driver

Host

Application Layer Interface

Host Application

Driver services:
open/close/ioctl/read/write

Output Buffers Input Buffers

I I I I
Downlink Flow Control

I I

Uplink Flow Control
Buffer Request Protocol XON/XOFF Protocol

I I I 1

I-~ I

Interface Transport Protocol
(Reliable or None)

Interface Link Protocol
(ALERT/ACK or Buffered)

Physical Layer Interface (RS-232)

t

SLTA

Network Driver

Network Interface

LONWORKS
Network

Figure 6.1 Host Application Architecture

To implement an SLTA network driver for a host other than DOS, Windows, or
UNIX, follow these steps:

1 Implement and test low-level serial I/O. Serial I/O may be performed directly to
the host’s UART as is done in the DOS network driver, or may be performed by a
serial I/O driver on the host as is done by the UNIX network driver. Serial I/O
should be interrupt driven for better performance.

The UNIX network driver uses the UNIX serial port driver for all low-level serial
I/O and interrupt support. This simplifies the driver and also simplifies porting
between different versions of UNIX. The serial device is opened by the
ldv-open () function and closed by the ldv-close () function. Data is read

LTS-20 User’s Guide 6-3

from and written to the serial device using the UNIX read () and write ()
system calls.

The UNIX network driver includes a ldv_pos t-event s () function that should
be called periodically from the client application in order to assure that the SLTA
traffic is being processed.

The DOS network driver serial I/O functions are implemented by MSD-SIO . C,
MSD-UART . H, and MSD-IRQC . ASM. These files may all be replaced as long as the
required serial I/O functions in MSD-SIO . c are provided. The definitions of the
UART registers are in MSD-UART . H. The DOS serial I/O interrupt service
routines arein MSD-IRQC.ASM.

The DOS network driver uses the DOS system timer tick interrupt (vector 0x10
and the serial I/O device interrupt for the relevant COM port to perform
background processing of the serial network interface. The driver hooks into
these interrupt vectors and executes driver code whenever the LON(n) device is
opened. Flags internal to the driver prevent the interrupt code thread from
interfering with the normal application foreground execution of functions within
the driver.

The smip-int-main () function in the DOS network driver services the serial
port connected to the network interface. The function tick-int-main ()
services the timer tick interrupt every 55 msec.

Both network drivers are fully buffered for both outgoing and incoming
messaging. Read and write functions work with circular buffers within the
driver. The host interrupt, service routine handles the other ends of these buffer
queues.

Both network drivers only support a single set of output buffers. An elaboration
on this design could implement a set of priority output buffers. The write
function could determine into which of the two buffer sets to place messages, and
the driver service function could service the priority buffers first.

2 Implement and test timer support functions. Timer support may be provided by
a hardware timer as is done in the DOS network driver, by a system service as is
done in the UNIX network driver, or by implementing a background software
task. The UNIX network driver uses a once per second signal that is handled by
the second-service () function. The DOS timer functions are implemented by
MDV-TIME.CandMDV-T1ME.H.

3 Implement and test the host side of the network interface protocol. The network
interface protocol is implemented by the rx-process () and tx-process (1
functions in the UNIX driver, and by the functions in MSD-TXRX . c for the DOS
network driver.

4 Implement and test raw modem I/O if you need to support a modem interface.
Raw I/O manages the serial interface to the modem when the modem is not
connected to a host and is used for modem initialization and control. The raw I/O
interface is implemented in MSD-RAW. c for the DOS network driver, and is not
implemented in the UNIX network driver.

5 Implement and test the buffer request states, buffer management, and read/write
interfaces. These functions are implemented by MSD-EXEC . c for the DOS

6-4 Creating an LTS-20 MIP Mode Network Driver

network driver. The read/write interface is implemented in the ldv-read () and
ldv-wr i te () functions for the UNIX network driver

The following files are unique to a DOS driver and would probably not be used in a
port to anotherhost: MSD-DRVR.H,MSD-DIFC.C,MSD_FRST.C,MSD_LAST.C,
MSD-SEGD.ASM.

Network Interface Protocol
The network driver implements the host side of the network interface protocol,
providing an easy-to-use and interface-independent read/write interface to the host
application. The network interface protocol is a layered protocol that includes the
following layers:

l Presentation Layer. Defines packet formats for network variables and explicit
messages. This is the only layer visible to the host application. The remaining
layers are managed by the network driver.

l Session Layer. Manages flow control, buffer requests, and grants.

l Transport Layer. Ensures end-to-end reliability between the host and the SLTA.

l Link Layer. Controls access to the serial link.

l Physical Layer. EIA-232 interface.

The physical layer is defined by the EIA RS-232 standard. The link, transport,
session, and presentation layers are described in the following sections.

Link Layer Protocol
The default interface link layer protocol is the ALERTIACKprotocol. This protocol
may be used when the host is a microcontroller or microprocessor such as a PC
running DOS or Windows. The alternative interface link protocol is the buffered
protocol. This protocol is used with computer hosts that can asynchronously buffer
an entire packet. All data are transmitted using 1 start bit, 8 data bits, no parity
bits, and 1 stop bit.

ALERT/ACK Link Protocol

The DOS network driver uses the ALERT/ACK link protocol by default (i.e. the /N
option is not specified). See Chapter 8 for a description of the network driver
options. The UNIX network driver uses the ALERT/ACK link protocol if the
alert-ack-prtcl variable is set to TRUE in the source code (this is not the
default). The CFG3 input of the SLTA, as described in Chapter 6, must be in the
ALERTlACK state.

When using this protocol, all transfers between the SLTA and the host consist of
serial data streams that start off with the link-layer header sequence described in
figure 6.2. Whenever one device, either the SLTA or the host, needs to send a
command or message, the sender starts the sequence by transmitting the ALERT
byte (value 01 hex). When this byte is received by the receiver, that device responds
by transmitting the ALERT ACK byte (value FE hex). This low level handshaking

LTS-20 User’s Guide 6-5

process prevents the sender from transmitting the rest of the sequence before the
receiving device is ready. Once the ALERT ACK byte is received by the sender it
sends the rest of the message without any other interactions.

Sender Receiver

Link-Layer
Header

i
1 1 not-length 1

6-6 Creating an LTS-20 MIP Mode Network Driver

I checksum I

Figure 6.2 SLTA ALERT/ACK Link Protocol

The link-layer header contains a length byte followed by a one’s complement of the
length byte. These values are always validated by the receiver before accepting the
rest of the message. Following the length bytes is the network interface command.
See Appendix D of the Host Application Programmer’s Guide for a description of the
command byte structure. If the message contains a data field it follows the command
byte. Finally, a checksum terminates the sequence.

The length byte value describes the length of the network interface command byte
plus the length of the data field. This value will always be at least 1. The checksum
is a two’s complement of the sum of the command byte and all of the bytes in the data
field, if it exists. Checksum errors detected by the host will cause an error to be
reported to the application, and checksum errors detected by the SLTA will cause the
message to be ignored.

The SLTA places the following requirements on the rate of the received serial data
stream. When receiving, the maximum wait period for the length byte following the
transmission of the ALERT ACK byte is 1OOms (or 1 second when attached to a
modem). All subsequent bytes received must occur within 1OOms after the previous
byte, otherwise the SLTA receive process will abort. Likewise, the SLTA uses a wait
period of 1OOms (or 1 second when attached to a modem) before aborting for the
reception of the ALERT ACK when transmitting a message. If the ALERT ACK is

not received in time, the SLTA repeats the process by transmitting another ALERT
byte.

The SLTA cannot support a full duplex communications process between it and the
host. The network driver included with the SLTA takes this into account. Data
frames transmitted to the SLTA while it is in the process of sending uplink messages
will be lost if more than 16 bytes are sent to the SLTA.

Buffered Link Protocol
The DOS network driver uses the buffered link protocol when the /N option is
specified. See Chapter 7 for a description of this option. The UNIX network driver
uses the buffered link protocol if the alert-ack-prtcl variable is set to FALSE in
the source code (this is the default). The CFG3 input of the SLTA, as described in
Chapter 6, must be in the buffered protocol state.

When using this protocol, the link-layer header contains a length byte followed by a
one’s complement of the length byte. These values are always validated by the
receiver before accepting the rest of the message. Following the length bytes is the
network interface command. See Appendix D of the Host Application Programmer’s
Guide for a description of the command byte structure. If the message contains a
data field it follows the command byte. Finally, a checksum terminates the sequence.

Sender Receiver

I Link-Layer <
pz-1

Header

Figure 6.3 SLTA Buffered Link Protocol

The length byte value describes the length of the network interface command byte
plus the length of the data field. This value will always be at least 1. The checksum
is a two’s complement of the sum of the command byte and all of the bytes in the data
field, if it exists. Checksum errors detected by the host will cause an error to be
reported to the application, and checksum errors detected by the SLTA will cause the
message to be ignored.

LTS-20 User’s Guide 6-7

This protocol is used when the host is capable of accepting asynchronously occurring
input data without losing characters. The host is also relieved of the obligation of
responding to an ALERT character within 50 ms. This protocol may therefore be
used by an application-level handler calling an interrupt-driven buffered serial device
driver. Drivers with these characteristics are typically provided with real time
operating systems such as VRTX or time-sharing operating systems such as UNIX or
VMS. In this case, these drivers should be set up for binary data communications
without software flow control.

The buffered link protocol should not be used when the SLTA is attached to a modem.

The buffered link protocol can only be used on multitasking operating systems such
as UNIX if the host application executes often enough to empty any incoming buffers.
For example, if the SLTA is receiving 70 packets per second, and each packet is 25
bytes, the host will receive 1750 bytes per second. If the host has a serial input buffer
of 256 bytes, the buffer will fill within 150 milliseconds if the host application is
preempted. If the host application is preempted for longer than 150 milliseconds,
incoming data will be lost due to lack of serial buffer space. In this case, the
ALERT/ACK protocol should be used, or the buffer space increased to handle the
worst case traffic during the maximum preemption period.

Transport layer Protocol
When used with a local host, the SLTA assumes a reliable connection and does not
use a transport layer protocol. When used with a remote host, the SLTA assumes
that the link may not be reliable and enables the reliable transport protocol. The
reliable transport protocol adds an ACWNACK transport protocol to the network
interface protocol. A sequence number is also added to the link-layer header. This
protocol can therefore recover from checksum errors on the host to SLTA link.

The reliable transport protocol is enabled on the SLTA with the Remote Host option
selected by the CFG2 input as described in Chapter 12. The reliable transport
protocol is enabled on the DOS network driver with the /M option as described in
Chapter 7. The reliable transport protocol is not supported by the UNIX network
driver.

The link-layer header contains an ALERT (0x01) byte, a sequence number, and a
length byte followed by a one’s complement of the length byte. These values are
always validated by the receiver before accepting the rest of the message. Following
the length bytes is the network interface command. See Appendix D of the Host
Application Programmer’s Guide for a description of the command byte structure. If
the message contains a data field it follows the command byte. Finally, a checksum
terminates the sequence.

The ALERT/ACK link protocol should be used with remote hosts. With this protocol,
the sender will start the sequence by transmitting the ALERT byte. When this byte
is received by the receiver, that device responds by transmitting the ALERT ACK
byte (value FE hex). This low level handshaking process prevents the sender from
transmitting the rest of the sequence before the receiving device is ready. Once the
ALERT ACK byte is received by the sender it sends the rest of the message without
any other interactions.

6-8 Creating an LTS-20 MIP Mode Network Driver

The length byte value describes the length of the network interface command byte
plus the length of the data field. This value will always be at least 1. The checksum
is a two’s complement of the sum of the command byte and all of the bytes in the data
field, if it exists. If the receiver receives a message in sequence, with a valid
checksum, it responds with an ACK (0x06). Otherwise it responds with a NACK
(0x15), requesting a re-transmission.

Link-Layer
Header

Sender Receiver

ACK: 0x06, NACK: 0x15

Figure 6.4 SLTA Reliable Transport Protocol

SLTA Timing Data
Certain aspects of the SLTA link and transport layer protocols implement fail-safe
timeouts in order to control the time spent waiting for protocol states to change when
errors occur. These timeouts are kept constant with either a 1OMHz or 5MHz
Neuron input clock.

LTS-20 User’s Guide 6-9

Downlink Byte-to-Byte Receive Timeout

The downlink byte-to-byte receive timeout is the maximum allowable period between
the end of a single byte data frame sent downlink to the SLTA, to the end of the next
single byte data frame sent downlink to the SLTA. This period is 1OOms in local host
mode and 1 second in remote host mode. When this timeout occurs, the SLTA
discards the downlink buffer and returns to the NORMAL state. If the reliable
transport protocol is enabled, the SLTA also sends a NACK byte after this timeout.

Up/ink Message Life

The uplink message life is the maximum allowable period between the SLTA sending
an ALERT byte to the host and the host responding with an ALERT ACK byte. This
period is 1OOms in local host mode and 1 second in remote host mode. When this
timeout occurs, the SLTA will resend the ALERT byte. This process is repeated until
3 seconds have elapsed, after which the uplink message is discarded. This timeout
only applies to the ALERT/ACK link protocol and is not used for the buffered link
protocol.

ACK/NACK Receive Timeout

When using the reliable transport protocol, the SLTA will wait for the ACK or NACK
byte to be sent downlink following the end of the uplink transmission of a message.
This period is 1 second, after which the SLTA will re-send the uplink message.

Uplink Timeout Message Retry Count
When using the reliable transport protocol the SLTA will re-send uplink messages
whenever the ACWNACK timeout period has elapsed. This retry process is limited
to 5 retries, after which the uplink message is discarded. There is no retry limit
applied to re-sends due to the reception of the NACK byte.

Session Layer Protocol
The network interface link and transport protocols described above are used for all
host-to-SLTA communications. Layered on top of these protocols is a downlink buffer
request protocol and an uplink flow control protocol.

Downlink Buffer Request Protocol
The network driver receives application buffers from the host application, translates
them to interface buffers, and passes the interface buffers to the SLTA. There are
two types of downlink commands from the host to the SLTA - commands that can be
executed directly by the SLTA, and commands that need to be buffered in the SLTA.

Downlink commands that are executed directly by the SLTA are:

6-10 Creating an LTS-20 MIP Mode Network Driver

niRESET,niFLUSH_CANCEL,niONLINE,niOFFLINE,niFLUSH,niFLUSH-IGN,
niPUPXOFF,niPUPXON,niSLEEP, and niSSTATUS.

See the Host Application Programmer’s Guide, Appendix D, for a description of these
commands.

Downlink commands that are buffered in the SLTA are niNETMGMT (for network
management commands to be executed by the SLTA itself) and niCOMM (for messages
to be sent out on the network, including network variables, explicit messages, and
network management messages addressed to other nodes). For these two commands,
a buffer request protocol is used to ensure that the SLTA has a free application buffer
for the data. The network driver must first request an output buffer before sending
the interface buffer. The network driver must hold the buffers in an output queue
until the SLTA is ready to receive them. The network driver takes the SLTA through
3 states to request a buffer and send the interface buffer. Figure 6.5 summarizes the
downlink state transitions.

Node
Reset

Recieve niCOMM
or niNETMGMT?

output
Buffer not
Available? output

Buffer
Available?

Receive niCOMM
or niNETMGMT
message? d send niACK

Note: niNETMGMT commands are allowed in the Flush state.

Figure 6.5 SLTA Downlink Flow Control States

Following is the sequence of events for transferring an niCOMM or niNETMGMT
command downlink to the SLTA:

1 The SLTA is initially in the NORMAL state.

2 The network driver requests an output buffer by sending a link-layer header (see
figures 6.2 and 6.3) with a niCOMM or niNETMGMT command and the appropriate
queue value (niTQ, niTQ_P, niNTQ, niNTQ_P). The data portion of the interface
buffer is not sent with the buffer request. This puts the SLTA in the OUTPUT
QUEUE REQUESTED State.

LTS-20 User’s Guide 6-l 1

3 If an output buffer is not available, the SLTA responds with a niNACK (OxCl)
command. The SLTA returns to the NORMAL state, and the driver starts again at
step 2.

4 When an output buffer is available, the SLTA responds with a niACK (OxCO)
command. The SLTA is now in the OUTPUT QUEUE ACKNOWLEDGED state. While
in this state, the network driver can only transfer downlink LonTalk messages,
uplink source quench commands (ni PUPXOFF), uplink source resume commands
(niPUPXON), or reset commands (niRESET) since the SLTA is waiting for a
message in this state. All other network interface commands sent downlink will
be ignored, and will return the SLTA to the NORMAL state.

5 Upon receiving the niACK acknowledgment, the network driver transfers the
entire interface buffer to the SLTA. This buffer has the same command and
queue value sent in step 2, and also contains the data and checksum. Upon
completion of this transfer, the SLTA returns to the NORMAL state.

The network driver must preserve the continuity of the type of buffer request and the
type of message sent downlink. For example, if the network driver sends the
niCOMM+niTQ-P command requesting a priority output buffer, and follows this with
a message transfer with the non-priority niCOMM+niTQ command, the SLTA will
incorrectly store the message in a priority output buffer, the type originally
requested.

Up/ink Flow Control Protocol

Uplink traffic may be incoming LonTalk messages, output buffer request
acknowledgments, completion events, or local commands. The network driver
translates the interface buffers to application buffer format and stores the buffers in
a queue until the host application is ready to read them.

There is no buffer request protocol for uplink traffic. The network driver is normally
assumed to have sufficient buffers. The network driver can suspend or resume
uplink traffic when no network driver input buffers are available by sending the
Uplink Source Quench (niPUPXOFF) command to the SLTA. This prevents the STIR
from sending any LonTalk messages uplink. When the network driver senses that
network driver input buffers are available, it sends the Uplink Source Resume
(niPUPXON) command to resume uplink transfers. Figure 6.6 summarizes the uplink
state transitions.

Receive
niPUPXOFF?

Receive
niPUPXON?

Note: Responses to niNETMGMT and niSSTATUS commands are allowed in the Flush state.

Figure 6.6 SLTA Uplink Flow Control States

6-12 Creating an LTS-20 MIP Mode Network Driver

Note that for SLTA firmware versions 7 or higher, the host may chose to sidestep the
downlink buffer request protocol. In this case, the complete message is sent
downlink without any buffer request step. If the SLTA has a free output buffer, then
the message will be transferred into the SLTA successfully. If not, there will be no
indication and the message will be lost. The exception to this case is when using the
transport layer protocol, in which case the SLTA will send the NACK to the host,
which should force the host to re-send the message. Otherwise, in order to use this
feature successfully, the host driver must manage the number of available output
buffers within the SLTA. This feature is included in the DOS driver for the SLTA.

Presentation layer Protocol
The network driver exchanges LonTalk packets with the host application at the
presentation layer. The LonTalk packet enclosed in a command of type nicom or
niNETMGMT is described in detail in the Host Application Programmer’s Guide. It is
summarized here for convenience.

ExpMsgHdr

NetVzr Hdr

Message
I Header

size = 3

SendAddrDtl

RcvAOdbrDtl

RespiLdrDtl

UnprocessedNV

Network
Address

L size = 11

Data
size

varies

Figure 6.7 Application Buffer Format

The SLTA firmware is configured with explicit addressing enabled, and therefore the
U-byte network address field is always present in an uplink or downlink buffer. The
firmware is also configured with host selection enabled, so the data field of the buffer
is either an unprocessed network variable or an explicit message. The processed
network variable option is not available with the SLTA.

LTS-20 User’s Guide 6-13

6-14 Creating an LTS-20 MIP Mode Network Driver

7
Using the DOS Network Driver

This chapter describes the DOS network driver supplied with the
Connectivity Starter Kit for use with the LTS-20 operating in MIP
mode. The DOS network driver provides a device-independent
interface between a DOS or Windows host application and the LTS-20.
The driver is configurable to use one of four PC/AT serial ports, COMl
through COM4, at one of eight serial bit rates.

LTS-20 User’s Guide 7-l

Installing the SLTA Network Driver for DOS

The DOS
driver is
supplied on
the floppy
diskette
included with
the Con-
nectivity
Starter Kit.
The latest
version of this
driver may be
obtained from
the Echelon
web site. See
the Preface of
this manual
for ftp site
access
information.

For the purposes of this chapter, the term “SLTA” refers to the LTS-20
module operating in MIP mode.

The SLTA network driver is installed by adding a DEVICE command to the DOS
CONFIG. SYS file. Edit the CONFIG. SYS file to include the line:

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS [options]

Substitute your drive and directory name if other than C : \LONWORKS\BIN.
Reboot the PC after adding this line to load the driver. For example, the
following command would be used with a locally attached SLTA installed on
COM2 as device LONl running at 38,400 bps with autobaud enabled (this is the
factory default):

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /P2 /Dl /B38400 /A

See Example Configurations in Chapter 11 for examples.

Warning! The /A option must be present in the CONFIG. SYS entry if Autobaud is
in enable, or the adapter will not function correctly. The IA option also may be
left in the CONFIG. SYS entry if Autobaud is disabled.

The available options for the DOS network driver are described in the following
sections.

Buffer Options
/Onn Sets the number of output (downlink) buffers within the driver to

an>. The buffer sizes within the driver are preset to accommodate
255 byte packets. The SLTA has application output buffers in the
RAM of the Neuron Chip which, by default, are smaller than this, but
may be increased to as large as 255 bytes. The default is eight buffers
in the network driver. There must be at least 2 buffers and the
maximum allowed number for <nn> is limited by the size of the buffer
(258) times the total number of input and output buffers within the
driver. The entire buffer space plus the driver code itself cannot
exceed 64Kbytes. The size of the driver code itself is 9Kbytes. The
number of output buffers required is determined by the char-
acteristics of the host application. If the host application always
waits for an outgoing message completion before sending another
message, then only two buffers are required. If the host application is
set up to overlap transactions, more buffers may be required. In this
case greater parallelism may be achieved at the expense of host
application code complexity.

/Inn Sets the number of input (uplink) buffers within the driver to an>.
The buffer sizes within the driver are pre-set to accommodate 255
byte packets. The SLTA has application input buffers in the RAM of
the Neuron Chip which, by default, are smaller than this, but may be
increased to as large as 255 bytes. The default is eight buffers in the

7-2 Using the DOS Network Driver

network driver. There must be at least 2 buffers and the maximum
allowed number for <nn> is limited by the size of the buffer (258)
times the total number of input and output buffers within the driver.
The entire buffer space plus the driver code itself cannot exceed
64Kbytes. The number of input buffers required is determined by the
expected incoming traffic and the capability of the host application to
process it. If the incoming traffic is bursty, more input buffers are
required. If the application cannot process incoming traffic fast
enough, the input buffer pool will fill up with unprocessed packets. In
that case, the SLTA will not be able to pass any new data to the host,
and the input application buffers in the SLTA will start to fill up.
Once that occurs, messages will be lost, possibly causing incoming
LonTalk transactions to be retried, and eventually causing the sender
of the message to receive a failure indication.

Serial Bit Rate Options
/Bnnnnnn Sets the serial bit rate to <nnnnnn>. The available serial bit rates are

listed below. The default is 38,400 bps.

Available serial bit rates are:

1200, 2400, 9600, 14400, 19200, 38400, 57600,
115200.

This rate represents the serial bit rate between the PC and the SLTA
when using a direct serial connection, and between the PC and the
modem when using a remote connection. The 115,200 bps rate is only
available on the TPIXF-1250 SLTAI 2 and SLTAs based on the LTS-
10 module (SLTAs with a 10 MHz input clock). For remote
connections, the PC to modem serial bit rate, telephone line speed (i.e.
modem to modem serial bit rate), and the modem to SLTA serial bit
rate may be different. The PC to modem serial bit rate is controlled
by the network driver on the PC using the /B option; the telephone
line speed is selected by the modems based on modem configuration;
and the modem to SLTA serial bit rate is controlled by the hardware
configuration of the SLTA as described in Chapter 2 (autobaud cannot
be used in this configuration).

For local connections with the SLTA Autobaud option disabled, the
serial bit rate specified by this driver option must match the rate
specified by the Baud Rate inputs to the SLTA.

/A Enables the autobaud feature. This provides the autobaud

Warning: If you are using the sequence whenever the driver is opened. The default setting for

default hardware configuration the driver is autobaud disabled. If the Autobaud input on the
(autobaud enabled), the SLTA hardware is enabled, then this option must be specified This
autobaud option (/A) must be option may not be used with the modem support (/MI option.
enabled or the SLTA will not
function properly.

LTS-20 User’s Guide 7-3

DOS Device Options
/Pn Sets the serial port to cn> where <n> is l-4 for COMl - COM4. The

default is COMl.

/Dn Defines the device unit number as <n>, where cn> is between 1 and
9, so that the DOS device name is “LONl” through “LON9”. The
default is 1 for “LONl”. This option can be used to support multiple
network interfaces on a single PC. For example, this device name is
passed as a parameter to lxt-open () when using the LonManager
API. When invoking the sample host application HA, the device may
be specified with the -D option, for example:

HA -DLON2

/Un

/C

Sets the serial port interrupt request number (IRQ) to a non-standard
value <n>, where <n> is between 1 and 7. If the serial port in use is
COM3 or COM4, you may want to use a unique, unused IRQ for that
port. Many serial ports and internal modems allow the selection of a
non-standard IRQ such as IRQ2 or IRQ5.

Enables communications interrupt chaining. Some PCs may
incorporate up to four serial ports. If supported by the serial
hardware, COMl and COM3 may share the same interrupt (as do
COM2 and COM4). This option may enable the driver to support the
shared interrupt by “chaining” to the interrupt vector that was in
place when the driver was loaded. This option is not necessary if your
system does not use COM3 or COM4, or if COM3 or COM4 use a
different interrupt request number. When installing two SLTA
network drivers on a system on COMl and COM3 (or COM2 and
COM4 with the same interrupt request number), the last installation
of the driver should use this option. Here is an example of a
CONFIG. SYS file entry for such a system.

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /B38400 /A /PI

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /B38400 /A /P3 /C

Standard hardware configurations are used for the COMl - COM4 settings:

Device 170 Address

COMl Ox3F8

Interrupt (*)

4

I COM2 I Ox2F8 I 3

I COM3 I Ox3E8 I 4

I COM4 I Ox2E8 I 3

(*) May be changed with the /U option

7-4 Using the DOS Network Driver

Timing Options
/Rnn Defines the flush/retry count in 55ms intervals. This value is used in

error states for re-transmitting requests and for terminating receive
flushes when input errors occur. See Troubleshooting in Chapter 17.
Normally, this option should not be specified.

/Wnnn Includes a delay of <nnn> microseconds when transmitting downlink.
This parameter can be used to pace the rate at which bytes are
transmitted downlink to the SLTA, and may be required for high-
performance network management tools such as LonMaker. The
delay is executed following the transfer of each data byte to the host’s
UART, and only after the first 15 bytes have been sent. Since the
SLTA employs a Is-byte deep FIFO buffer in its UART, the first
group of bytes sent do not need to be paced. The pacing delay will
have no effect unless it is greater than the actual period it takes to
transmit a single byte at the given serial bit rate. The time taken to
transmit a byte is 173 ps at 57,600 bps, and 86 ps at 115,200 bps. For
a 10 MHz SLTA (TP/XF-1250 SLTA/2 or LTS-lo), this option should
be used at 115,200 bps if messages greater than 16 bytes are to be
transmitted. A value of /wl2 0 is suggested. For a 5 MHz SLTA
(TPKF-78, TP/FT-10, or TP-RS485 SLTA/2), this option should be
used at 57,600 bps, again if messages greater than 16 bytes are to be
transmitted. A value of / ~2 4 0 is suggested. This option is not
required at the default serial bit rate of 38,40Obps, or at slower serial
bit rates.

By default, the SLTA firmware disables network communications
after a reset by entering a FLUSH state. This state causes the SLTA
to ignore all incoming messages and prevents all outgoing messages,
even service pin messages. The DOS network driver for the SLTA
automatically enables network communications when the SLTA is
opened and when it receives an uplink message from the SLTA
indicating that it has been reset. However, the host application itself
must explicitly enable network communications if the /Z option is
specified and the CFGl input is set to Network Disabled. See
Chapter 8 for more information. If CFGl is set to Network Enabled,
the SLTA will go directly to the NORMAL state, thus allowing
communications.

The following table summarizes these options:

Network Disable DOS Driver/z When SLTA Enables Network
Input Option Communications

Disabled Specified Host application command

Disabled

Enabled

Not specified

Don’t care

Opening network driver

Immediately after reset

LTS-20 User’s Guide 7-5

Host applications which need to configure the SLTA prior to enabling
network communications should use this option. This option should
not be used with the LonManager API, LonManager LonMaker, or the
16-bit LonManager DDE Server. More information about the
niFLUSH_CANCEL message is provided in the LONWORKS Host
Application Programmer’s Guide.

Ne fwork Interface Protocol Options

/F Enables the full interrupt mode of the driver. If this option is not
specified, the driver will disable interrupts for the duration of each
link-layer transfer. This ensures that no data will be lost due to other
system interrupts, and is acceptable at high serial bit rates. The
driver will use interrupts for the first byte of each uplink interface
buffer. When the uplink interrupt is received, the driver reads the
rest of the message without interrupts via polled I/O. Interrupts are
disabled during the uplink transfer. This assures that no other
system interrupts will occur resulting in lost uplink data frames.
Downlink transmissions are sent directly via polled I/O of the serial
port from the write function call. The host write functions will not
return until the message has been sent downlink. When using the
ALERT/ACK link protocol, interrupt latency is not a problem, since
the SLTA-to-host protocol includes an acknowledgment of the start of
the message. The driver employs timeouts in order to prevent lockout
of the write function, and timeouts for clearing various states of the
transmitter/receiver when line errors occur.

When operating at lower serial bit rates, it becomes less desirable to
disable interrupts for long periods. The trade-off with using the full
interrupt mode is that other system interrupts may cause loss of data
in the serial port’s UART. If the /F option is specified, the driver uses
interrupts for every uplink and downlink byte transferred. Downlink
messages are buffered from the device write function and are sent
downlink under interrupt control. Uplink messages are received
under interrupt control and are buffered also. This option should be
used for serial bit rates of 9,600 bps or slower. Do not use this option
with the HP 95LX.

/M Enables modem support and the reliable transport protocol. This
option must be specified if the host is to communicate with the SLTA
via a modem connection. The SLTA must be configured with CFG2
input in the Remote Host setting. In this mode the driver relies on
the state of the DCD signal from the modem to determine if it is
connected to an SLTA through a modem connection or not. When
connected, the selected SLTA c-> Host network interface link protocol
is in effect. When disconnected the only allowable link layer traffic is
of the ‘modem direct’ type, where ASCII strings are being exchanged
between the host and the modem, for example, AT commands to dial
out. Any other network interface traf& is not allowed when
disconnected from the SLTA. Calls to the read function will result in
no network interface data messages (LDV-NO-MSG-AVAIL), and any
call to a write function that needs to communicate with the SLTA via

7-6 Using the DOS Network Driver

/N

/Q

lx

LTS-20 User’s Guide

the modems will result in a No Output Buffers Available error
(LDV-NO-BUFF-AVAIL). Once the connection is made, normal
network interface traftic may resume.

This option also enables the reliable transport protocol. This protocol
includes the addition of a message sequence number and the end of
message ACWNACK code. See Chapter 8 for a description of this
protocol.

Disables the ALERT/ACK network interface link protocol, and
enables the buffered network interface link protocol. Network
interface messages are sent without a wait for the ALERT ACK
response. Both sides of the interface (the SLTA and the driver) must
agree on this setting. This option should not be used with the lM
option.

Allows modem responses to be sent uplink to the host. When the
telephone link is disconnected, these messages are ASCII strings with
the network interface command type niDRIVER (OxFO). If/Q is
specified, the host application must be able to handle messages, such
as NO CARRIER, that might come from the modem itself if problems
occur in the connection.

Disables the the buffer request protocol. This option only works with
SLTA application versions 7 or later. When this option is enabled,
the driver requests the buffer count from the SLTA using the
~~SBUFC (OxE7) command whenever the interface is opened, or
when the interface is reset, and reports an niRESET to the host. The
driver keeps track of the number of available output buffers in the
SLTA by examining both uplink and downlink messages. This option
prevents the use of one message type: A local network management
command not using a request/response service. Normally this type of
message is not used. One exception could be the Set Node Mode :
Reset command, which would result in the node resetting and the
buffer management recovering on its own anyway. Otherwise, if this
type of message is used, no uplink response would occur and the
driver could not track the fact that a new output buffer has been
made available.

7-7

The following table summarizes the relationship between the CFG jumpers of the
SLTA and the driver options that control the network interface protocol.

Input

CFG 2

CFG 2

CFG 3

CFG 3

hput State

Local Host; No Transport Protocol

Remote Host; Reliable Transport
Protocol

ALERT/ACK Link Protocol

Buffered Link Protocol

Driver Option

/M not specified

/M specified

/N not specified

/N specified

7-8 Using the DOS Network Driver

Calling the Network Driver from a Host Application
The DOS network driver supports the open, close, read, write, and ioctl DOS
calls. All LONWORKS standard network drivers for DOS support these calls. See
Chapter 4 of the Host Application Programmer’s Guide for more details.

When the DOS SLTA network driver is loaded during execution of the CONFIG. SYS
file, it does not attempt to communicate with the SLTA.

When the network driver is opened with the DOS open call, it establishes
communications with the SLTA. The network driver returns an error if this fails, for
example, if the SLTA is disconnected, powered down, or configured incorrectly. If the
open call succeeds, the driver enables network communications by clearing the SLTA
FLUSH state, if configured to do so.

The DOS read call is defined to return the number of bytes read from the device.
Some LONWORKS standard network drivers return 0 if there are no uplink messages
available. DOS reports this as an end-of-file condition and prevents further reads
from succeeding. However, the SLTA driver returns a length of 2, and sets the first
byte of the caller’s buffer (the cmd/queue byte) to 0 to indicate that there is no uplink
message available.

Normally, the DOS read and write calls are not used with LONWORKS standard
network drivers. This is because any error from the network interface will display
the familiar Abort, Retry, Fail? error message from DOS, unless the caller has
installed a critical error device handler. Therefore, DOS applications using a
network device typically call direct entry points into the driver. This also allows
more detailed error status to be returned to the application. The addresses of these
entry points are obtained by calling the i oc t 1() function of the driver.

This function call is used as follows:

int ioctl(int handle, int func, void far *argdx, int argcx);

. handle is an integer returned by an earlier successful call to open () , specifying
the LONWORKS network driver LONn to be opened.

. f unc is the value 2, meaning that the application is reading information from the
driver. For LONWORKS standard DOS network drivers, the information
returned is the network interface direct call structure.

. argdx is a pointer to a caller-declared structure that will contain the direct entry
points into the driver. See the structure direct-Cal 1s in the file NI-MSG . C in
the supplied example host application for usage.

. argcx is the size of the structure.

Function code 2 is supported by all LONWORKS network drivers for DOS to return
three direct entry points into the driver code. The network driver for the SLTA
supports an additional option to function code 2, as well as function code 3, which is
used to manage the modem control state of the driver. These options are not used
when the SLTA is connected directly to a host. They are provided primarily for use
while establishing communications with a remote host. For example, the host
connect utility (HCU) described in Chapter 12 of this manual uses these functions.
Host applications that only communicate to the SLTA via an already-established
telephone connection do not need to concern themselves with these functions. If you
wish to establish or take down telephone connections during the execution of your
host application, use the source code of HCU as a guide.

When function code 2 is used, argdx points to the direct-calls structure defined
for all LONWORKS standard network drivers for DOS. If argcx is 13, the size of the
standard direct calls structure, then three direct entry point addresses are returned
as usual. If argcx is 4 (the size of the structure ioc t l-ge t-dcd-s) , then the state
of the modem’s DCD line is returned as a TRUE or FALSE value. Note that the
status field is 16 bits in this structure, but 8 bits in the direct calls structure.

struct ioctl-get-dcd-s {
unsigned ioctl-stat; // 16 bit status
unsigned dcd-state; // Data Carrier Detect (TRUE or FALSE)

Function code 3 is used when the application wishes to write information to the
driver. For the SLTA driver, argdx points to the following structure, and argcx is its
size:

struct ioctl-o-info-s {
unsigned ioctl-stat; // 16 bit status
unsigned sub-command; // use enum sub-command
unsigned mode;
unsigned mode-aux;

enum sub-command {
SUBC-set-opt = 1,
SUBC-set_DTR = 2,
SUBC-set-baud = 3,

// set driver options
// set DTR line
// set serial bit rate

There are three sub-commands, used to set the various modes of the driver, the state
of the DTR (Data Terminal Ready) line to the modem, and to set the serial bit rate of
the serial interface.

LTS-20 User’s Guide 7-9

When sub-command 1 is used, the mode field in the structure is a bit mask defining
which of the driver modes is to be changed, and the mode-aux field specifies bits
defining the new states of those modes. It is possible to set more than one of the
modes by OR’ing the following bit-masks together:

0x0001 Enables modem support.

0x0002 Allows modem responses to host - same as the /Q option.

0x0004 Forces direct modem mode. In this mode, the network driver is
communicating directly with the modem.

0x0010 Enables the buffered link protocol and disables the ALERTlACK
link protocol - same as the /N option.

0x0020 Enables the reliable transport protocol.

The /M option corresponds to 0x0021.

Sub-command 2 is used to set the state of the DTR line. In this case, the DTR signal
is enabled (on) if the mode field is true.

Sub-command 3 is used to set the serial bit rate of the serial interface. The mode
field determines the new bit rate as follows: 0:14,400; 1:1,200; 2:2,400; 3:9,600;
4:19,200; 538,400; 657,600; 7:1X,200.

Using the SLTA Driver under Microsoft Windows
In order to use the direct entry points to a LONWORKS standard network driver for
DOS under Microsoft Windows, an interface based on the DOS Protected Mode
Interface (DPMI) must be provided. This type of interface, in the form of Windows
DLL software, is supplied with the Connectivity Starter Kit, as well as with the 16-
bit LonManager DDE Server. See Appendix B for information on using the Windows
DLL directly.

8
Using the UNIX Network Driver

This chapter describes the UNIX network driver supplied with the
Connectivity Starter Kit for use with the LTS-20 operating in MIP
mode. The UNIX network driver provides a device-independent
interface between a UNIX host application and the LTS-20.

LTS-20 User’s Guide 8-l

Installing the SLTA Network Driver for UNIX

For the purposes of this chapter, the term “SLTA” refers to the LTS-20
module operating in MIP mode.

The SLTA network driver for UNIX is not a UNIX device driver. It is instead a
source library that provides an interface to an existing UNIX serial port driver. The
UNIX network driver handles the SLTA network interface protocol and runs on top
of the UNIX serial port driver, which in turn handles the interrupt processing and
buffering of uplink and downlink serial data. This greatly simplifies the SLTA
network driver and makes it more portable to different versions of UNIX, as well as
other operating systems.

The LDVSLTA . c and LDVSLTA . H files contain the C source code for the UNIX
network driver. This code has been tested with Sun UNIX (SunOS Release 4.1) and
SC0 UNIX (Release 4.2.0). Changes may be required for other versions of UNIX.
The source code must be compiled and linked with your application. The serial
device driver names may have to be changed for different versions of UNIX. For
example, Sun UNIX uses /dev/ ttya and /dev/ t tyb, and SC0 UNIX uses
/dev/ttylaand/dev/tty2a.

The UNIX network driver is implemented with the following defaults (these defaults
may be changed by modifying the source code):

l Link Layer Protocol. The buffered link protocol is used if the
alert-ack-prtcl variable is set to FALSE in the source code (this is the
default). The ALERT/ACK link protocol is used if the alert-ack_prtcl
variable is set to TRUE. See Buffered Link Protocol in Chapter 8 for warnings on
use of the buffered link protocol with UNIX. The buffered link protocol should
not be used with modems.

l Transport Layer Protocol. The reliable transport protocol is not supported.

l Physical Layer Protocol. The call to ioctl () in ldv-open () initializes the
serial link to 19,200bps. The code for the ioctl () call may have to be modified
for different versions of UNIX and serial port configurations.

l Modem Support. The UNIX network driver does not include modem support
for remote hosts.

l Buffers. The number of input and output buffers is controlled by the
ldv-buf f ers variable and defaults to 10 each.

Calling the Network Driver from a Host Application
The functions provided by the UNIX network driver are the same as those listed
under Standard Network Driver Services in chapter 4 of the LONWORKS Host
Application Programmer’s Guide, with the addition of a new service,
ldv_post-eventso.

8-2 Using the UNIX Network Driver

Idv-open0
typedef int LNI;

LNI handle = ldv-open(char *serial-device-name);

Initializes the SLTA and returns a handle for accessing it. Opens the serial device
and enables network communications (i.e. the FLUSH state is canceled). The
serial-device-name parameter must be the name of an installed serial device
such as /dev/ ttya. If the ldv-open () call succeeds, the SLTA will send an
niRESET command uplink to the host. Only one device may be open at a time.

Idv-read0
LDVCode error = ldv-read(LN1 handle, void *msg_p, unsigned length);

Reads an application buffer from the SLTA. The msg_p argument is a pointer to an
application buffer as defined in chapter 3 of the LONWORKS Host Application
Programmer’s Guide. If a buffer is not available, the LDV-NO-MSG-AVAIL error code
is returned.

Idv- write0
LDVCode error = ldv-write(LN1 handle, void *msg-p, unsigned length);

Writes an application buffer to the SLTA. The msg_p argument is a pointer to an
application buffer as defined in chapter 3 of the LONWORKS Host Application
Programmer’s Guide. If a buffer is not available within the SLTA to accept the
application buffer, the LDV-NO-BUFF-AVAIL error code is returned.

Idv-post-events0
void ldv_post-events(void);

This is the network interface background service function. Its purpose is to process
any uplink or downlink SLTA traffic. This function should be called periodically from
the host application in order to assure that the SLTA traffic is being processed. This
processing includes off-loading the UNIX serial port driver’s input buffers, and
moving downlink any messages that are buffered in the network driver’s output
buffers.

This function is also called from within the interface library’s ldv-read () and
ldv-wri te () functions. The host application does not have to explicitly call the
ldv-pos t-events () function if it is periodically polling the interface using the
ldv-read () function.

LTS-20 User’s Guide 8-3

Idv-close()
LDVCode error = ldv-close(LN1 handle);

Closes the UNIX serial device, and frees the allocated buffer memory back to the
system.

8-4 Using the UNIX Network Driver

LTS-20 User’s Guide 9-l

9
The LTS-20 NSI Mode Software

This chapter describes the Windows 95,98, or NT software used with the
LTS-20 NSI mode. This software is available with the LonMaker for
Windows Integration Tool (Model 37000), in the Connectivity Starter Kit
(Model 58030-Ol), as part of the LNS Developer’s Kit for Windows (Model
34303), and on the Echelon web site (www.echelon.com).

Skip this Chapter if you are using the LTS-20 MIP mode.

LTS-20 NSI Mode Software Overview
The LTS-20 is not shipped with software drivers. The Windows NT driver and
SLTALink Manager software are available with the LonMaker for Windows
Integration Tool (Model 37000), in the Connectivity Starter Kit (Model 58030-Ol), as
part of the LNS Developer’s Kit for Windows (Model 34303) and on the Echelon web
site (www.echelon.com).

The LTS-20 NSI mode set-up installs three pieces of software:

l the LTS-20 NSI mode Windows 95 or NT Driver,

. a “stub” driver to run legacy DOS and Windows 3.1x applications, and

l the SLTALink Manager software.

The LTS-20 includes firmware that moves the upper layers of the LonTalk Protocol
from the Neuron Chip within an LTS-20 and onto a host processor. This firmware
allows theLTS-20 to be used by a host application to send and receive LonTalk
messages. The firmware in the LTS-20 is loaded in ROM and cannot be
reprogrammed.

Using the LTS-20 NSI mode, the host application may be one of two types. The first
type of host application is an LNS-based application, developed with the LNS
Developer’s Kit for Windows. The second type of application is a legacy DOS or
Windows 3. lx application. Under Windows NT, these applications make use of the
“stub” driver declared in the conf ig . sys . OS files, which in turn accesses the
Windows NT driver. Under Windows 95, Windows 3.1x applications should use the
DOS driver in conjunction with WLDV.DLL. Echelon only supports 32-bit Windows
applications based on LNS software accessing the Windows 95 or NT drivers.

Windows 95 and Windows NT Software Installation Procedure
Prior to installation, ensure that the computer is running the Windows 95 or NT
Operating System (Windows NT version 3.51 or higher for a direct connect interface;
Windows NT version 4.0 or higher for use with modems). The LTS-20 software
cannot be installed from DOS, or a DOS shell, nor can it be installed on Windows 3.1
or Windows 3.11.

The LTS-20 software is shared in common with the SLTA-10 Serial LonTalk
Adapter. Any references to the SLTA-10 NSI, including file names, apply to
the LTS-20.

1. Before installing the software, make sure that you have logged in as
Administrator (for Windows NT only).

2. Close all open programs.

3. Insert the installation diskette into the PC.

4. Click the Start button on the Windows task bar and select the run
command. (If using with Windows NT 3.51: Within Program
Manager, choose the Run command from the Pile menu.)

9-2 The LTS-20 NSI Mode Software

5. When prompted for a program name, enter the following:

If necessary, replace A : with the drive letter which corresponds to the
drive containing the SLTA-10 NSI mode installation diskette.

6.

7.

When prompted click the button marked ‘Next >“.

When prompted for a destination directory, enter the desired
installation directory. By default this directory is c : \lonworks,
unless previous LONWORKS products have been installed and have
registered a different path in the Windows Registry. The path may
be modified using the “Browse” button.

8. The next screen presented is shown in figure 9.1. This will determine
the LONWORKS naming convention used for the LTS-20.

Figure 9.1 LONWORKS Device Naming Convention

9. Clicking the “Next” button concludes installation. At the prompt to
restart the computer, remove the SLTA-10 NSI mode installation
diskette and restart the computer. Note that the Windows
operating system will not recognize a node using the LTS-20
until the computer is restarted.

LTS-20 User’s Guide 9-3

Windows 95, 98, and NT Software Installation Results

The Windows 95,98, and NT installation software loads a selection of new
files and updated Echelon files to different locations on the PC’s hard drive.
The function and location of these files can be found in readme.txt.

9-4 The LTS-20 NSI Mode Software

10
The LTS-20 MIP Mode Software

This chapter describes the LTS-20 MIP mode software shipped with
the Connectivity Starter Kit (Model 58030-01) and on the Echelon
web site at www.echelon.com. This software is an updated version
of the SLTA/2 and LTS-10 adapter software.

Echelon does not provide a 32-bit Windows driver for the LTS-20
MIP mode.

Skip this Chapter if you are using the LTS-20 NSI mode.

10-l

LTS-20 MIP Mode Software Overview
The LTS-20 is not shipped with software drivers. The LTS-20 MIP mode software
and drivers are supplied in the Connectivity Starter Kit and must be ordered
separately. The software includes ANSI C source code for HA, a sample host
application for MS-DOS that can be used as a basis for a user-developed host
application on other host platforms. This application provides examples of sending
and receiving network variable messages, as well as allowing a node based on an
LTS-20 to be installed and bound by a network management tool such as the
LonManager LonMaker Installation Tool or the LonBuilder network manager.

A network driver for DOS permits the LTS-20 (with its jumper cut to enable the MIP
mode) to be used with DOS applications. Source code for a DOS network driver is
provided as a basis for a user-developed network driver for other hosts or operating
systems. On a separate diskette, DLL software is provided to make it easier to use
the network driver under the Microsoft@ Windows 3.1x operating system.

An executable program and source code is also provided for a Host Connection Utility
(HCU), which may be used to initiate and terminate the host to LTS-20 connection
when the LTS-20 is used with a remote host. An example written in Neuron C is also
provided as a basis for user-developed nodes on a LONWORKS network that need to
initiate outgoing calls to a remote host.

The LTS-20 includes firmware that moves the upper layers of the LonTalk Protocol
off the Neuron Chip within an LTS-20 onto a host processor. This firmware allows
the LTS-20 to be used by a host application to send and receive LonTalk messages.
The host application may be a custom application as described in the LONWORKS
Host Application Programmer’s Guide. The host application may also be a network
management or monitoring application based on the LonManager API, LonManager
LonMaker installation tool, or LonManager DDE Server. The firmware in an LTS-20
is fmed in ROM and cannot be reprogrammed.

The LTS-20 software is shared in common with the SLTA-10 Serial LonTalk
Adapter. Any references to the SLTA-10 MIP, including file names, apply to
the LTS-20.

Installing the LTS-20 MIP Mode Adapter Software
The LTS-20 software is supplied in the Connectivity Starter Kit as a diskette. The
LTS-20 DOS driver (referred to as the SLTA-10 DOS driver) operates under DOS,
Windows 3.1x, and Windows 95 operating systems. To install the LTS-20 software,
follow these steps:

1. Place the diskette in one of the disk drives of your PC. This will typically be the
A: or B : drive. Under the Windows 95 operating system, open a DOS console.

2. Start the automatic installation procedure by entering:

A:INSTALL [ENTER]

Substitute your disk drive name for the A : if you are using a different drive.

1 o-2 The LTS-20 MIP Mode Software

MSD-SEGD.ASM

MSD-SI0.C

MSD-TXRX.C

MSD-UART.H

Defines data segment register for driver.

PC/AT UART interface processing.

Single byte link layer processing.

Defines PC/AT UART registers.

l External Interface Files. External interface files included for use by network
management tools are contained in the SLTA directory. External interface files
are included for the transceivers available for the LTS-20. See Binding to a Host
Node in Chapter 3 of the LONWORKS Host Application Programmer’s Guide for a
description of how to use these files to bind to an LTS-20/SLTA-10 Adapter node.
Appendix B of the LONWORKS Host Application Programmer’s Guide provides a
detailed description of how to modify these files to incorporate network variables

LTS-20 User’s Guide 1 o-3

3. You will be asked to enter the name of your LONWORKS installation directory.
C:\LONWORKS is the default.

The software will be installed in the SLTA sub-directory of your LONWORKS
directory, with the exception of the DOS network driver LDVSLTA . SYS. This file will
be installed in the BIN sub-directory of your LONWORKS directory. To install the
DOS network driver into your CONFIG. SYS file, follow the instructions in Chapter 8.

The SLTA directory will contain the following files:

l Read-Me File. The README. TXT file includes a list of all the files on the
distribution disk, and also includes any updates to the documentation that
occurred since the LTS-20/SLTA-10 Adapter documentation was printed.

l DOS Network Driver Sources. The SLTA-10 Adapter DOS network driver
source code is contained in the LDVSLTA directory. These files can be used as the
basis for creating drivers for hosts other than PCs running DOS (see also the
UNIX network driver sources). See Chapter 8 for a description of the SLTA-10
Adapter DOS network driver and Chapter 9 for a description of how to write an
SLTA-10 Adapter network driver for other hosts. See Chapter 4 of the
LONWORKS Host Application Programmer’s Guide for a description of the
services that must be supplied by a LONWORKS network driver.

The source files to build the DOS driver are:

LDVSLTA.CFG Configuration file for Borland C.

MAKEFILE Make file script for Borland C.

MDVmT1ME.C Code to manage the PC timer.

MDV-T1ME.H External interface definitions for the timer handler.

MSD-DEFS.H Data structure and literal definitions.

MSD-D1FC.C

MSD-DRVR.H

DOS driver interface functions.

DOS driver interface and literal definitions.

MSD-EXEC.C Main open, close, read, and write processing.

MSD-FRST.C Module to be linked first in the network driver.

MSD-IRQC.ASM

MSD-LAST.C

Serial I/O interrupt procedure.

Module to be linked last in the network driver.

MSD-RAW.C Direct serial I/O (modem) processing.

and message tags. These interface files are provided in version 3 formats.
External interface files in version 3 format are contained in the SLTA2 \XIF-V3
directory.

The SLTA directories contain at least the following files:

NSLTA125.XIF For SLTA-10 Adapter with a TP/XF-1250 transceiver.

NSLTA78K.XIF For SLTA-10 Adapter with a TP/XF-78 transceiver.

NSLTAFTl.XIF For SLTA-10 Adapter with a TP/FT-10 transceiver.

l Sample Host Application. A sample host application is contained in the HA
directory. See Appendix A of the LONWORKS Host Application Programmer’s Guide
for a description of the example. The following files are included:

README.TXT

HA.EXE

HA.C

NI-MSG.C

APPLCMDS.C

NI-CALLB.C

APPLMSG.H

HA-C0MN.H

NI-CALLB.H

APPLMSG.C

HAU1F.C

1OCTL.C

LDV1NTFC.C

LDV1NTFC.H

NI-MSG.H

NI-MGMT.H

HAU1F.H

MAKEFILE

MSOFT.MAK

A description of the sample host application.

An executable version of the sample host application for
DOS. The SLTA-10 Adapter DOS network driver must
be installed to run this application.

The main program for the example.

A general purpose network interface library that can be
used with any host application.

Functions to handle application layer network variable
commands.

The host-bound network management dispatcher.

Application message handler function prototypes.

The HA common declarations.

The definitions for the network management
dispatcher.

Functions to handle application network variable and
explicit messages.

Command-line user interface for the example.

I/O control function for Microsoft C.

Device interface driver.

Include file for device driver interface.

Definitions for network interface message structures.

Definitions for network management message
structures used by the example.

Definitions for the host application example user
interface.

A make file script for Borland C.

A make file script for Microsoft C.

1 o-4 The LTS-20 MIP Mode Software

HA-V3.XIF An external interface file which may be used to bind the
example with LonBuilder.

HA-TEST.NC A Neuron C program which may be loaded into a
Neuron emulator and bound to the sample host
application for testing.

D1SPLAY.H A Neuron C include file to drive the Gizmo 2 I/O module
for the test example.

l Host Connect Utility. A sample host connection utility is contained in the HCU
directory, with source code. See Chapter 12 for details. The files supplied are:

HCU.EXE Executable file for the Host Connection Utility.

HCUJA1N.C The main C source program.

HCU.CFG Configuration file for Borland C.

MAKEFILE Make file script for Borland C.

MSD-DRVR.H Driver definition include file.

l Neuron C Connection Example. A sample Neuron C program is contained in
the NC-APPS directory. This program shows how a node on a network connected
to the LTS-20 can dial out and connect to a remote host computer. The files
supplied are:

DIALOUT.NC Neuron C source program to dial out with the LTS-20.

GIZSETUP.NC An example Neuron C program for configuring the
LTS-20. Configures the EEPROM directories of an
LTS-20 using the Gizmo 2 I/O module as the user
interface.

SLTA-ANM.H Definitions of SLTA-specific network management
messages.

Installing the Windows 3.7x DLL Sotfware

A second diskette, labeled “LONWORKS Network Driver Interface for Windows
3. lx”, contains the 16-bit Windows Dynamic Link Library (DLL) files. These files
may be used when developing a host application to run under Microsoft Windows
3.1x. The file WLDV.DLL should be copied to your Windows directory (typically
c : \WINDOWS). The files LDV . H and LON . H should be copied to a directory in the
include file search path of your C compiler. The file WLDV . LIB should be copied to a
directory in the library search path of your application linker. See Appendix A for
information on using the Windows DLL.

0 ther Drivers

A UNIX network driver and source code for the LTS-20 MIP mode is available on the
Echelon web site (http://www.echelon.com).

Chapter 9 discusses creating an LTS-20 mode driver for any host.

LTS-20 User’s Guide 1 o-5

1 O-6 The LTS-20 MIP Mode Software

11
Using the Windows 95 or NT Driver

and SLTALink Manager with
LTS-20 NSI Mode

This chapter describes the SLTALink Manager software, which
establishes and configures local and remote links from the host PC to
the LTS-20 in NSI mode. A local link requires a direct cable
connection from the host PC to the LTS-20-based node. A remote link
requires a pair of modems: one attached to the LTS-20-based nodes
and the other attached to the host PC. The SLTALink Manager
software controls a remote LTS-20 via a pair of modems through
Windows’ Telephony Application Programming Interface (TAPI)
services under Windows 95 and NT 4.0 or later.

The SLTALink Manager determines when a standard driver open
call in a host application requires dialing and handles these cases.
Thus, the host application does not need to know if the network
services interface is a local LTS-20-based node or a remote LTS-20-
based node.

NOTE: Remote LTS90-based nodes cannot be used with Windows NT 3.51 because
Windows NT 3.51 does not include the 32-bit TAPI services used by the SLTALink

Manager software.

Skip this Chapter if you are using the LTS-20 MIP mode.

11-l

Software Overview
The LTS-20 software is shared in common with the SLTA-10 Serial LonTalk
Adapter. Any references to the SLTA-10 NSI, including file names, apply to
the LTS-20.

The SLTALink Manager is a standalone application that can monitor a modem line,
answer an incoming phone call, associate the incoming call’sLTS-20-based node (and
hence its network) with a LON device, and then launch a pre-determined application
for that particular network or LTS-20. Combined with properly designed LNS host
application, the SLTALink Manager lets a LONWORKS network establish a
connection to a remote PC through a pair of modems based on an event that occurs
locally to the network.

The SLTALink Manager provides a graphical user interface for creating, editing, and
diagnosing “links. ” Each link represents a particular LTS-20-based node and its
network. A link identifies several important aspects of the set-up, including the type
of connection (a remote connection via modems or a local, direct connection), the
COM port, the Remote Identifier (see below), the baud rate of the serial port on the
LTS-20-based node, and the dial-in password, if any. In addition, the link indicates if
a security callback is required and may be associated with a host application. The
link information is stored in a .slO file, located by default in the
c:\lonworks\bin\sltalO folder.

The SLTALink Manager application can associate a link with a LON device name
and then interface with the LTS-20 NSI mode driver. The SLTALink Manager
handles automatically dialing into the network from the PC host, providing the
ability for applications with no knowledge of modems or phone numbers to run
remotely through a pair of modems. The SLTALink Manager application can be used
to connect or disconnect to a remote LTS-20-based node. In addition, the SLTALink
Manager has a simple, programmatic way to interact with the LTS-20 NSI mode.
This programmatic interface allows an application cause theLTS-20-based node to
perform a number of functions, such as dial a phone number or hang up.

The SLTALink Manager includes many diagnostic functions.

11-2

NOTE: Remote LTS-20-based nodess cannot be used with Windows NT 3.51 because
Windows NT 3.51 does not include the 32-bit TAPI services used by the SLTALink
Manager software.

Upon invocation of the SLTALink Manager software (SLTALINK . EXE), the main
screen appears, shown in figure 11.1.

LTS-20 NSI Mode Software

Figure 11 .l SLTALink Manager Main Screen

Establishing a Communications Line for Dialing in to a Network

Establishing a communications line is the first task to be completed. Figure 11.2
displays the message that appears when Dialing Preferences is chosen from the Line
menu. This message will only appear when telephony information has not been
provided. This case usually occurs if the computer has never been configured to use a
modem.

Figure 11.2 First Time Use Message

LTS-20 User’s Guide 11-3

This message in figure 11.2 may not be visible due to being covered by the SLTALink
Manager Dialing Preferences window. Moving the Dialing Preferences window should
reveal the message-if it exists. This leftmost window, shown in figure 11.3, will display
“XV’ for the “Dialing from:” indicator if there has been no dialing location created/chosen. . . .

Figure 11.3 SLTALink Manager Dialing Preferences Window

Clicking on Dialing Properties will bring-up the Windows Location Information window
(figure 11.4) if the “Dialing from:” indicator reads “~~~” or if TAP1 information has been . . . ,
previously entered - as shown in figure 11.3 as “Dialing from: The Office” - the
Windows Dialing Properties window (figure 11.5) will be displayed instead. The Dialing
Properties window is a tabbed subset of the Windows Telephony Control Panel.

11-4

Figure 11.4 Windows Location Information Window

LTS-20 NSI Mode Software

Figure 11.5 Windows Dialing Properties Window

Establishing a Communications Line for Calls Dialed out to the PC

The next step is to select a line/modem to monitor for incoming calls. Figure 11.6
shows the Monitor Line window that is displayed when “Monitor for SLTA dial-in” is
chosen from the Line menu.

Multiple phone lines or modem can be monitored (for receiving incoming
calls) at the same time by the SLTALink Manager software.

LTS-20 User’s Guide 11-5

Figure 11.6 SLTALink Manager Monitor Line Window

The option list box will display the list of modems which have been set-up for use on
this computer. The list can be created/modified by using the Windows Modem
Control Panel. Select the line/modem to be used for incoming calls, then click OK.

Establishing Remote and Local Network Sites

Choosing Select/Action from the Link menu will display a screen similar to the screen
shown in figure 11.7. Figure 11.8 shows the default local setup.

Figure 11.7 Completed SLTALink Selection Window

Figure 11.8 Default SLTALink Selection

11-6 LTS-20 NSI Mode Software

Select “Local SLTA-10” and click Edit. This action will present a window allowing
the ability to customize the connection-including changing it from Local to Remote,
or modifying the name.

SLTALink Configuration Script Formats
The SLTALink Configuration dialog can accept a script file for importing values to
the dialog’s user interface. Following this step, the configuration values can then be
applied to the SLTA-10 by clicking Apply.

Individual configuration items are processed on a line-by-line basis. All values are not
required to be in the script file, and any duplicated assignments are simply overwritten,

Any line may start with a semi-colon, which is treated as a comment line. Line
length is limited to 80 characters. Assignments are structured as follows:

keyword=value (note that there are no blank spaces between the components).

Argument strings do not need to be quoted. Keywords are case-insensitive. Edit the
script file as a simple text file with carriage returns and line feeds terminating each
line.

The acceptable assignments are:

Keyword Format

Password=password string

Callback=switch value

HangupTimer=minutes value

Modemlnit=string

ModemDialPrefix=string

DialDirl =string to

DialDirEi=string

NVConnect=two digits

Argument Description

Password: Up to 8 characters.

Callback enable: Either a ‘1’ or a ‘0’ for enabled
or disabled

Hangup timer: A number between 0 and 255.

Modem initialization string: A string whose
length will be limited by the available EEPROM
pool space in the SLTA.

Modem dial prefix: A string whose length will be
limited by the available EEPROM pool space in
the SLTA.

Dial Directories 1 through 5: A string whose
length will be limited by the available EEPROM
pool space in the SLTA.

NV Auto-connect: Either two digits, or not digits
if disabled. The first digit represents the starting
dial directory number and the second digit
represents the last dial directory.

LTS-20 User’s Guide 11-7

NSIConnect=two digits NSI Auto-connect: either two digits, or no digits
if disabled. The first digit represents the starting
dial directory number, the second digit
represents the last dial directory number.

ClearEEPool=switch value Either a ‘1’ or a ‘0’ to enable or disable clearing
of the EE pool before applying.

Example

t. ; An SLTA-10 Configuration Scrip
Password=BIG DOG
Callback=1
HangupTimer=
GuardTimer=
ModemInit=ATEOVO&C1&D2SO=lMO
ModemDialPrefix=ATDT
DialDirl=l4155557001
DialDir2=14155557002
DialDir3=12155557003
Dialdir4=
DialdirS=
NVConnect=
NVConnect=l 2

Name of link

The name of the link should be descriptive enough to clearly define to users the
connection and remote location.

Remote Identifier

The Remote Identifier is used to identify a specific link when a dial-in to the
computer occurs. It represents the remote SLTA-lO/LTS-20-based node in a 12-byte - __ _- -
string of characters or hexadecimal numbers. This value here should match the value
stored in the remote SLTA-lO/LTS-20-based node. It can be entered here as a string
in single quotes, or as a series of hexadecimal numbers separated by dashes.

If this field is blank or all zeroes (00-00-00-00-00-00-00-00-00-00-00-00)
then the Remote Identifier will be captured and stored here the next time
this connection is made.

IfthisfieldisallFFs (FF-FF-FF-FF-FF-FF-FF-FF-FF-FF-FF-FF) thenany
Remote Identifier will be accepted. The identifier will not be stored on the
PC. This is known as the wildcard Remote Identifier. The question mark
(?) is also accepted as the wildcard Remote Identifier. The SLTALink
Manager software translates “?” to all FFS.

The Update Identifier checkbox indicates that the remote identifier will be read from
the SLTA-lO/LTS-20-based node by the SLTALink Manager and the new value will
be stored in the .slO file the next time this link is used.

11-8 LTS-20 NSI Mode Software

The SLTALink Manager software allows a user to create two links with different
names but the same Remote Identifier. However, when a network dials-out to a PC
with multiple links each with the Remote Identifier, the user has no control over
which link is selected, which could result in undesired behavior.

Link Type

The type of link specifies whether the SLTA-lO/LTS-20-based node is directly
connected to the PC (Local), or if the SLTA-lO/LTS-20-based node is at a different
location and must be accessed via a set of modems (Remote).

Configuring the Modem Line

Clicking on “Configure Line” will cause the selected modem’s property window to
appear. The property window will reflect the options available to the driver of the
modem such as volume control and dial-tone detection.

TAP1 services will handle the structuring of the call based on the Location
Information (see figure 11.4).

SLTA Password

The Password box allows the user to enter the password for a remote SLTA-lO/LTS-
20-based node. Up to eight characters may be entered. If entered, the password will
be sent to the remote SLTA-lO/LTS-20-based node when a connection is made.

The password is not encrypted when stored on the host computer.

Invoking an Application

The SLTALink Manager provides a space to enter the startup application for this
link. This may be a full executable path name, or the name of an application that
can be found in the system’s search path. Command line arguments may also added
- including the special macros for link connection variables:

%LINKNAME% Expands to the name of the link, enclosed in quotes.

%DEVNAME% Expands to the device name used by LONWORKS 32-bit
applications to access the logical device. This serves the same
purpose as %DOSNAME% does for DOS.

%NSSNAME% Expands to the device name used by LonWorks LNS application,
for SLTA-10s this will be “SLTALONn”.

%DOSNAME% Expands to the DOS device name for the logical device, provided the
virtual device driver (VDD) is installed, which would be “LONn”.

%ID% Expands to the remote identifier. This is expressed as either a
quoted ASCII string, or as a series of hexadecimal numbers if the
identifier contains non-ASCII data.

LTS-20 User’s Guide

Figure 11.9 Configuration Screen

1 l-10 LTS-20 NSI Mode Software

%RESULT% Expands to an unquoted word that represents the success or fail
reason of the connection.

The startup application will be launched when a dial-in occurs for this link, or
optionally, when a manual connection is made to the link. It will not start up if the
link is connected to due to an “auto-connect” case.

Enabling a Callback

If a remote LTS-20-based node has callback enabled then it will expect a callback
command whenever someone dials in to it. Check the Enable box if you need to
enable the callback feature.

The callback command includes a directory index that points to a phone number
stored in the remote SLTA-lO/LTS-20-based node. If callback is enabled then one of
the remote directory numbers (“Address 1” though “Address 5”) can be selected to be
used to call the host back.

See Characteristics of a Well-Designed System below for a description of how to
successfully implement callback.

Configuration

Use the following screen to configure your SLTA-lO/LTS-20-based node.

LTS-20 User’s Guide 11-11

Security

Password

The SLTA-lO/LTS-20-based node may be configured to accept incoming calls and
connect the network to the host. Incoming callers may be required to provide a
password before the SLTA-lO/LTS-20-based node will connect them to the network.

Enable Callback

Check this box if you need to enable callback.

If a remote SLTA-lO/LTS-20-based node has callback enabled then it will expect a
callback command whenever someone dials in to it. The callback command includes a
directory index that points to a phone number stored in the remote SLTA-lO/LTS-20-
based node.

Timers

Hangup Timer, minutes

Provides a space to enter a hangup timer value for the SLTA-lO/LTS-20-based node.
This must be within the range of O-255, for 0 (disabled) to 255 minutes.

The hangup timer controls how many minutes of inactivity must pass before the
SLTA-lO/LTS-20-based nodehangs up (disconnects the modem).

Guard Time, seconds

Provides a space to enter a guard time value for the SLTA-lO/LTS-20-based node, in
seconds. This must be within the range of O-255.

The guard timer controls how long to wait before attempting to dial the next number
for the auto-connect case.

Modem Settings

Initialization String

Provides a space to enter a modem initialization /configuration string for the SLTA-
lO/LTS-20-based node. This string is sent to the modem whenever the SLTA-lO/LTS-
20-based nodeis reset and it is not currently connected. Special characters may be
embedded in the string:

! Causes a carriage return to be sent.

Causes a 500ms pause.

The carriage return is not required at the end of the string.

11-12

Dial Prefix

Provides a space to enter a modem dial prefm for the SLTA-lO/LTS-20-based node.
This controls the characters sent to the modem before the actual phone number is
sent. The default is “ATDT” for tone dialing.

! Causes a carriage return to be sent.

Causes a 500ms pause.

The carriage return is not required at the end of the string.

Clear EE Pool on Apply

Check this box to clear the SLTA-lO/LTS-20-based node’s EEPROM pool before
applying the configuration. This will force the clearing and re-programming of the
strings that use the EEPROM pool: The Modem Initialization and Dial Prefer strings,
and the Dial Directories. If not checked then only the SLTA-lO/LTS-20-based node’s
strings that have been changed will be updated.

Use this feature if you are increasing the size of one string and decreasing the size of
another in one step.

Dial Directories

Provides a space to enter the dialout directory numbers, as strings. To chose which
directory entry to edit, simply select one of the buttons above.

! Causes a carriage return to be sent.

Causes a 500ms pause.

The carriage return is not required at the end of the string.

Auto-dialout Configuration

NY Connect

Check this box to enable the Network Variable update auto-connect feature. When
enabled, the SLTA-lO/LTS-20-based nodewill attempt to connect to a remote host
whenever the SLTA-lO/LTS-20-based nodeis not connected and a non-broadcast host-
bound NV update message is pending.

The SLTA-lO/LTS-20-based nodestarts with the directory number first specified on
the right. If this attempt fails then the next directory number is used, until the last
directory number has been used. To use a single number simply specify the same
directory number in both fields.

NSI Connect

Check this box to enable the Network Services (NSI) auto-connect feature. When
enabled, the SLTA-lO/LTS-20-based nodewill attempt to connect to a remote host

LTS-20 NSI Mode Software

whenever the SLTA-lO/LTS-20-based nodeis not connected and a host-bound NSI
message is pending.

The SLTA-lO/LTS-20-based nodestarts with the directory number first specified on
the right. If this attempt fails then the next directory number is used, until the last
directory number has been used. To use a single number simply specify the same
directory number in both fields.

Diagnostics

A number of Diagnostic and testing services are provided via the Diagnostic Screen,
accessed through the Devices menu (see figure 11.10). The Test button retrieves
status and error counts from the SLTA-lO/LTS-20-based node. The Service button
will cause the SLTA-lO/LTS-20-based node to broadcast a service pin message on the
network. The reset button causes a reset of the Neuron Chip in the SLTA-lO/LTS-
20-based node, but does not clear the Neuron Chip’s system image.

Some buttons are left for future releases of additional features,

Figure 11 .lO Diagnostic Screen

The SLTALink Manager Programmatic Interface
SLTALINK . EXE executes as a single process. If you try and run another copy of it, it
will defer itself to the original process. However, command line arguments may be
passed in this manner which will direct the existing process to perform certain types
of tasks. These command line options are:

LTS-20 User’s Guide 11-13

mLinkname"

/D

A link name is required for all actions. If the link name alone
is passed then that link will be connected to. It must be
enclosed in double quotes, since the link name can have
embedded spaces.

C:\lonworks\bin\sltalink.exe "Remote"

This causes the specified link to be disconnected.

C:\lonworks\bin\sltalink.exe "Remote" /D

/# Ynunber*~ This overrides the phone number for the link. If you have
checked the “Use Country Code and Area Code” option for
this link then the number must be in the ‘canonical’ format
without a ‘+’ sign and enclosed in double quotes. A canonical
number is defined as a country code followed by a space,
followed by an area code or city code enclosed in parenthesis,
followed by a space and the rest of the phone number. TAP1
will take this and decide how to translate it before performs
the dial-out, based on your dialing preferences. Even if the
call is local you should include the area code / city code. This
is the same format as the number that appears in the link
selection dialog under the Port/Number column.
Example: “l(800) 555-1213”

If you have not checked the “Use Country Code and Area
Code” option then the number will be used un-translated for
dial-out. In this case you probably won’t specify a canonical
number.

C:\lonworks\bin\sltalink.exe "Remote" /# "1 (650) 555 1213"

/P "passwd" This overrides the password for the link. It must be enclosed
in double quotes.

C:\lonworks\bin\sltalink.exe "Remote" /P "passwd"

Always include a space between each element of the command line arguments.

Using the DOS “Stub” Driver
The DOS stub driver, which is added as part of the install, allows DOS and Windows
3.1x applications to run on top of the drivers for Windows 95 and NT. The following
line is required in the CONFIG. SYS or CONFIG. NT file that is loaded on startup:

DEVICE=%SystemRoot%\system32\PCLTDOS.SYS /Dn

This makes the device ‘LONn’ available for DOS applications.

11-14 LTS-20 NSI Mode Software

When LONn is opened by an application and the SLTALink Manager has been
configured to associate LONn with a particular link, the SLTALink Manager will
auto-connect to the SLTA-lO/LTS-20-based node locally or remotely. That is, the
SLTALink Manager automatically dials-in to the network defined by the link if
required.

Characteristics of a Well-Designed System
Well understood strategies used with the SLTA-lO/LTS-20-based node and the
SLTALink Manager for the following system functions are essential for reliable
system design: Call Initiation, Call Termination, and Monitoring.

Call lnitia Ron

The four scenarios for call initiation are: dial-in to the network only, dial-out to the
remote PC only, dial-in / dial-out, and callback.

Dial-In to the Network Only

In the most straight-forward case, a user launches an application. The application
opens the driver, which is associated with a particular link. The SLTALink Manager
application dials the phone number in the link (or the phone number the application
passes down to the SLTALink Manager perhaps to a generic link) and establishes the
connection. Similarly, the user could select the link from within the SLTALink
Manager and cause a manual connection. At this point, either the SLTALink
Manager would launch the pre-determined application from the information stored in
the link file or the user could manually launch the application. In all of these cases,
the user is assumed to initiate the call. The user could be a human operator or
another application that initiates a dial-in based on a clock, for example.

For the dial-in only scenario, the system strategy issues primarily have to do with
associating the link or phone number with the application. Where there are only one
or two links, this is very easy. When one PC host can be connected to many different
networks, we offer two standard solutions. The first is to have the user navigate the
SLTALink Manager’s GUI. Under the Link menu, the Select item lists
approximately 40 links (of the 1000 possible). The second solution is a monitoring
application that programmatically interacts with the SLTALink Manager to send
down the appropriate phone number, perhaps to a generic out-going link.

Dial-Out to the Remote PC Only

The three common approaches for initiating a dial-out are: sending a network
variable update to the SLTA-lO/LTS-20-based node, sending an AddMyNSI message
to the SLTA-lO/LTS-20-based node, or sending an explicit message from a
“Helper/Dialer” node on the network.

In the first case, the remote host application needs to have an explicitly-bound input
network variable and the SLTA-lO/LTS-20-based node’s NSI mode EEPROM must be

LTS-20 User’s Guide 11-15

configured correctly. See the configuration section in this chapter or go to Chapter 17
for more information on configuring the SLTA-lO/LTS-20-based node’s EEPROM.
See also Call Termination below.

In the second case, the remote host PC is assumed to have the NSS engine and a
second NSI on the network (perhaps a service technician with a laptop running a
PCC-10 card) is required to send the AddMyNSI message. Also, SLTA-lO/LTS-20-
based noder’s NSI mode EEPROM must be configured correctly.

In the third case, a custom Neuron Chip application must be written.

All three cases could be used with the same SLTA-lO/LTS-20-based node.

In the dial-out only case, besides the call initiation, the SLTALink Manager must be
able to launch the appropriate application - with the correct database and device
driver name. One system solution is to create a separate link for each SLTA-lO/LTS-
20-based node. Each link then stores the Remote Identifier of its SLTA-lO/LTS-20-
based node after the first connection. Upon connection, the appropriate application
and command line arguments stored in the link get launched. A second viable
approach is to create a generic link that uses the wild card as a Remote Identifier to
launch a generic application using command line arguments to specify the
appropriate network or database and device driver name. These arguments are
available and described above under Invoking an Application.

Note: if the device driver information used in the application does not
match the device driver name being used by the link, the newly launched
application can open a second device driver - which may result in an
attempt to dial-in to the network. Since the modem is still presumably in
use with the original dial-out call to the host PC, the second call will fail.
The result is a system-level failure.

Dial-In / Dial-Out

These scenarios are the combinations and permutations of the above. However, it
needs to be pointed out that not all dial-in strategies can co-exist with all dial-out
strategies. For example, if the dial-out strategy involves having the SLTALink
Manager match the incoming call to the wild card Remote Identifier and if the dial-in
strategy requires a separate link for each Remote Identifier, then it is possible that a
call initiated from the network will be received by the SLTALink Manager and will
be matched with the link created for the dial-in case. The correct application may
not be launched and a system-level failure may occur.

Callback

The SLTA-lO/LTS-20-based node callback functionality works as follows: A call is
initiated from some remote PC to an SLTA-lO/LTS-20-based node on a network,
which must have its NSI mode EEPROM configured to require callback. The SLTA-
lO/LTS-20-based node answers; the remote PC identifies to the SLTA-lO/LTS-20-
based node one of the SLTA-lO/LTS-20-based node directory entries to use for the
callback. An SLTA-lO/LTS-20-based node configured to require a callback will not
accept any other direction from the host at this time. The original call is terminated,
and the SLTA-lO/LTS-20-based node calls the phone number indicated in its

11-16 LTS-20 NSI Mode Software

directory. Note: this does NOT need to be the phone number of the original remote
PC that initiated the call. Typically, the SLTALink Manager on the remote host
dialed answers the call and launches the appropriate application.

Several possible system-level failures include:

l The original remote host expects to receive the callback, but the directory index
reflects the phone number of another remote host.

l The original remote host application opens an LNS database and initiates the
first call. The callback is directed back to the original remote host PC. The
SLTALink Manager on this PC receives the callback just like any other normal
dial-out call and launches the application contained in the link. At this point
there may be two copies of the application open. Depending on sharing
configuration, the second application may fail because appropriate LNS database
in already opened.

To prevent these failures, Echelon recommends that the initial call should either be a
manual connection from within the SLTALink Manager or the initial call should
originate from a “dummy” application that terminates itself without opening the LNS
databases.

Call Termination

The four scenarios for call termination include: termination of the host application,
application controlled hang-up, a manual disconnect in the SLTALink Manager, and
time-out. In all of these cases, the important system-level issues involve making sure
that the termination strategy is compatible with the call initiation strategy.

The behavior of an application at termination is not always known. By default,
applications based on the Object Server of LNS 1.5 and higher should exhibit two
types of behavior. First, if the interface adapter is an SLTA-lO/LTS-20-based node in
NSI modem using modems and there are explicitly bound network variables to the
host application, then at the LNS application’s termination the host network
variables and their connections should not be removed from the LNS database. This
behavior facilitates the use of the first case described under Dial-Out to the Remote
PC Only where a network variable update addressed to the SLTA-lO/LTS-20-based
node’s NSI mode results in a call being initiated. Second, if the interface adapter is
not an SLTA-lO/LTS-20-based node in NSI modem using modems or there are no
explicitly-bound network variables to the host application, then at the LNS
application’s termination, any host network variables and their connections are
removed from the LNS database and the other nodes in the network. In addition, if
the interface does not host the LNS database, upon termination of the LNS
application the interface is deconfigured.

The second behavior described would be desirable in the event that multiple remote
host PCs needed to be able to dial-in to the same network. As long as no explicitly-
bound network variables were left when the host applications terminated, then
several remote PCs could share one SLTA-lO/LTS-20-based node. Note: this assumes
that the LNS Server exists somewhere on the network and is not located on one of
the remote PCs sharing the single SLTA-lO/LTS-20-based node.

Both an application controlled hang-up (using the SLTALINK . EXE programmatic
interface) and a manual disconnect in the SLTALink Manager will terminate the

LTS-20 User’s Guide 11-17

phone call; however, neither results in the termination of the host application. In
these scenarios the host application remains running as the call can be re-established
by the host application itself, by a manual connect in the SLTALink Manager, or a
dial-out initiated on the network. The disadvantage of these system solutions is that
they do not scale well to monitoring multiple networks on one PC. The result is
many applications continually and concurrently running on the same PC. Also, one
possible system failure to avoid is that the SLTALink Manager settings may result in
multiple copies of the host applications.

By default, the SLTA-lO/LTS-20-based node NSI mode will terminate a phone call
after three minutes with no traffic going across the modems. As with the application-
controlled hang-up and the manual disconnect in the SLTALink Manager, this
scenario does not result in the application terminating. This scenario therefore
carries the same advantages and disadvantages as those described in the previous
paragraph.

Monitoring: Application Termination Strategy

There are three strategies for terminating the remote LNS monitoring application.

The first strategy is to require user intervention to shut down or terminate the
application. No special software must be written for this case. For the dial-in to a
network scenario when the call is user initiated, the user is presumably available to
shut down or terminate the application. In the dial-out case, the requirement of user
intervention to terminate the application means that every call from a network is
seen by an user. If the network is sending alarms, user intervention is highly
desirable.

The second approach requires a node on the network to send a network variable
update to the host when the network no longer requires the host application to be up
and running. When the host application receives this network variable, it should
enter a shut-down routine. This approach places the responsibility on the network to
determine when the host application is needed and requires a hook in the monitoring
application, but provides a level of automation when dial-out is used.

The third approach is the most blunt. In this scenario, the remote host application
terminates itself either after completing a series of actions or based on a timer. We
do not recommend this scenario for the general scenario, but it has certain appeal for
some applications. For example, a connection may be established through dial-in or
dial-out based on a timer. The host application could then take a series of
measurements from the network, log them to a file, and then terminate itself.

Monitoring: Missing Messages atier a Dial-Out

In general, the message that triggers a dial-out from the SLTA-lO/LTS-20-based node
on the network to a remote PC host is lost.

When a network variable update is sent to the SLTA-lO/LTS-20-based node and no
phone connection is currently up and running, the SLTA-lO/LTS-20-based node is
typically configured to dial-out to the host. On the remote PC host, the incoming call
is answered by the SLTALink Manager application. The SLTALink Manager then

11-18 LTS-20 NSI Mode Software

reads the Remote Identifier in the SLTA-lO/LTS-20-based node and searches through
all the .slO files for a match. The SLTALink Manager application then typically
launches the application listed in the link with optional command line arguments
available, for example, to open the correct LNS database with the correct device
name. The process of opening the LNS application results in the buffers of the
SLTA-lO/LTS-20-based node being over-written; thus, the original message is lost.
Since this message network variable update is by definition important enough to
warrant establishing a connection to the host, a system strategy is required so that
this data reaches the host.

The two basic system strategies are: (1) to have the node on the network continue to
send out the network variable update until the host application sends a message to
the node telling it to stop, or (2) to have the host application seek out the information
upon being launched. The first approach places the burden on nodes in the network,
the second approach places the burden on the host application. The first is more
direct and is likely to result in the information getting to the host more quickly. The
second approach has the primary advantage that no special Neuron Chip application
code is required; also, since the call initiation and host application launch may
require minutes, the time it takes the host application to poll several network
variables is not significant. In the best scenario, upon being launched the host
application would first check with a datalogging node on the network that records
alarms and also the system state, mode, or health information.

Monitoring: L NS Application Design Issues

A well-designed LNS monitoring application using the SLTA-lO/LTS-20-based node
through modems should use the correct version and layer of LNS, should handle
initialization of the application with the correct LNS database and device driver
name, and should have a phone call session termination and an application
termination strategy.

The remote monitoring application is based on LNS Object Server of LNS 1.5 or
higher. Applications based on the LNS 1.0 and LNS 1.01 do not behave well by
default and do not allow for certain dial-out scenarios. Applications written at the
NSS layer are not supported for use with the SLTA-lO/LTS-20-based node across a
pair of modems.

The remote monitoring application should open the appropriate LNS and device
driver. Specifically, the mapping of the Remote ID to the LNS database should be
handled by the application. We suggest using the command line arguments with the
information available from the SLTALink Manager. Note LNS capacity keys may
need to be hard-coded in the monitoring application.

Finally, the LNS application needs to implement a termination strategy that meets
the needs of the application and the system.

LTS-20 User’s Guide 11-19

Good Practices / Schemes that Work
Use these guidelines to avoid the system-level failures detailed above:

l When expecting the SLTA-lO/LTS-20-based node to dial-out from the network to
a remote PC, dedicate one SLTA-lO/LTS-20-based node to dial-out and always
have that SLTA-lO/LTS-20-based node connect to the same remote PC. Make
sure that the NSI EEPROM is configured correctly. See figure 11.11.

l If an LNS-based application is connected to the network through modems,
dedicate one SLTA-lO/LTS-20-based node in the network to handle dial-out and
dial-in with this PC that has the LNS server. Make sure that the SLTA-lO/LTS-
20-based node’s EEPROM is configured correctly. See figure 11.12.

l Several PCs can share one SLTA-lO/LTS-20-based node as long as the calls are
all initiated on the remote PC hosts (i.e., dial-in only) and each remote LNS
application removes the bound connections to its host before terminating. See
figure 11.13.

1 l-20 LTS-20 NSI Mode Software

Monitoring Application

I Remote LCA
I

SLTALink Manager and
Network Driver

Modem

t

Dial-out

Modem 1

1 Null Modem Cable 1

SLTA-10 Adapter

fr Interface

LonWorks Devices

Figure 11 .l 1 Dedicated Adapter using Dial-out

LTS-20 User’s Guide 11-21

1 l-22

Host

Monitoring Application

LNS Server

SLTALink Manager and
Network Driver

Dial-in and
Dial-out to the
LNS Server

Modem

1 Null Modem Cable 1

SLTA-10 Adapter

t Transceiver Interface

LonWorks Devices

Figure 11.12 Dedicated Adapter hosting the NSS

LTS-20 NSI Mode Software

Host Host

Monitoring Application

Remote LCA

SLTALink Manager and
Network Driver

Modem

Monitoring Application

Remote LCA

SLTALink Manager and
Network Driver

I Modem I

Dial-in r(
I Modem I

SLTA-10 Adapter

.
Transceiver Interface

LonWorks Devices

Figure 11.13 Shared Adapter using Dial-in

LTS-20 User’s Guide 1 l-23

1 l-24 LTS-20 NSI Mode Software

12
Using the DOS Driver with

LTS-20 MIP Mode

This chapter describes the DOS network driver supplied with the
Connectivity Starter. The driver also is available from the Developer’s
Toolbox on Echelon’s web site at www.echelon.com. The DOS network
driver provides a device-independent interface between a DOS or
Windows 3.1x host application and the LTS-20 in MIP mode. The
driver is configurable to use one of four PC/AT serial ports, COMl
through COM4, at one of eight serial bit rates.

Skip this chapter if you are using the LTS-20 NSI mode.

LTS-20 User’s Guide 12-1

Installing the LTS-20 MIP Mode Driver for DOS

The DOS
driver is
supplied on
the POPPY
diskette
included with
the Con-
nectivity
Starter Kit.
The latest
version of this
driver may be
obtained from
the Echelon
web site.

The LTS-20 software is shared in common with the SLTA-10 Serial
LonTalk Adapter. Any references to the SLTA-10 NSI, including file
names, apply to the LTS-20.

The LTS-20 MIP mode network driver for DOS is installed by adding a DEVICE
command to the DOS CONFIG. SYS file. Edit the CONFIG. SYS file to include the
line:

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS [options]

Substitute your drive and directory name if other than c : \LONWORKS \BIN.
Reboot the PC after adding this line to load the driver. For example, the
following command would be used with a locally attached SLTA-lO/LTS-20-based
node in MIP mode installed on COM2 as device LONl running at 115,200 bps
with autobaud enabled:

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /P2 /Dl /B115200

Warning! The /A option must be present in the COiVFIG. SYS entry if the
AutoBaud function is Enabled, UP position, or the SLTA-lO/LTS-20-based node
will not function correctly. The IA option also may be left in the CONFIG. SYS
entry if the Autobaud function is disabled (default.

The available options for theMIP mode network driver for DOS are described in
the following sections.

Buffer Options
/OIlXl Sets the number of output (downlink) buffers within the driver to

<nn>. The buffer sizes within the driver are pre-set to accommodate
255 byte packets. The LTS-20 in MIP mode has application output
buffers that may be increased to as large as 255 bytes. There must be
at least 2 buffers and the maximum allowed number for <nn> is
limited by the size of the buffer (258) times the total number of input
and output buffers within the driver. The entire buffer space plus the
driver code itself cannot exceed 64Kbytes. The size of the driver code
itself is 9Kbytes. The number of output buffers required is
determined by the characteristics of the host application. If the host
application always waits for an outgoing message completion before
sending another message, then only two buffers are required. If the
host application is set up to overlap transactions, more buffers may be
required. In this case greater parallelism may be achieved at the
expense of host application code complexity.

/Inn Sets the number of input (uplink) buffers within the driver to <nn>.
The buffer sizes within the driver are pre-set to accommodate 255
byte packets. The LTS-20 has application output buffers may also be
increased to as large as 255 bytes. There must be at least 2 buffers

12-2 Using the DOS Driver with LTS-20 MIP Mode

and the maximum allowed number for an> is limited by the size of
the buffer (258) times the total number of input and output buffers
within the driver. The entire buffer space plus the driver code itself
cannot exceed 64Kbytes. The number of input buffers required is
determined by the expected incoming traffic and the capability of the
host application to process it. If the incoming traffic is bursty, more
input buffers are required. If the application cannot process incoming
traffic fast enough, the input buffer pool will fill up with unprocessed
packets. In that case, the LTS-20 will not be able to pass any new
data to the host, and the input application buffers in the LTS-20 will
start to fill up. Once that occurs, messages will be lost, possibly
causing incoming LonTalk transactions to be retried, and eventually
causing the sender of the message to receive a failure indication.

Serial Bit Rate Options
/Bnnnnnn

/A

Zf you are using the default
hardware configuration
(autobaud disabled), the
autobaud option (IA) does not
need to be enabled.

Sets the serial bit rate to <nnnnnn>. The available serial bit rates are
listed below.

Available serial bit rates are:

1200,2400,9600,14400,19200,38400,57600,115200.

This rate represents the serial bit rate between the PC and the SLTA-
lO/LTS-20-based node when using a direct serial connection, and
between the PC and the modem when using a remote connection. For
remote connections, the PC-to-modem serial bit rate, telephone line
speed, i.e., modem to modem serial bit rate, and the modem-to-SLTA-
lO/LTS-20-based node serial bit rate may be different. The PC-to-
modem serial bit rate is controlled by the network driver on the PC
using the /B option; the telephone line speed is selected by the
modems based on modem configuration; and the modem-to-SLTA-
lO/LTS-20-based node serial bit rate is controlled by the hardware
configuration of the SLTA-lO/LTS-20-based node as described in
Chapter 2 (Autobaud cannot be used in this configuration).

For local connections with the Autobaud option disabled, the serial bit
rate specified by this driver option must match the rate specified by
the configuration jumpers.

Enables the Autobaud feature. This provides the autobaud
sequence whenever the driver is opened. The default setting for
the driver is Autobaud Disabled. If the Autobaud input on the
SSLTA-lO/LTS-20-based node is enabled, then this option must be
specified. As described in Chapter 4, the default setting is
disabled, so the /A option does not need to be specified with the
default hardware configuration. This option may not be used with
the modem support (/M) option.

LTS-20 User’s Guide 12-3

DOS Device Options
/Pn Sets the serial port to cn> where cn> is l-4 for COMl - COM4. The

default is COMl.

/Dn Defines the device unit number as a>, where cn> is between 1 and
9, so that the DOS device name is “LONl” through “LON9”. The
default is 1 for “LONl”. This option can be used to support multiple
network interfaces on a single PC. For example, this device name is
passed as a parameter to lxt-open () when using the LonManager
API. When invoking the sample host application HA, the device may
be specified with the -D option, for example:

HA -DLON2

/Un

/C

Sets the serial port interrupt request number (IRQ) to a non-standard
value a>, where <n> is between 1 and 7. If the serial port in use is
COM3 or COM4, you may want to use a unique, unused IRQ for that
port. Many serial ports and internal modems allow the selection of a
non-standard IRQ such as IRQ2 or IRQ5.

Enables communications interrupt chaining. Some PCs may
incorporate up to four serial ports. If supported by the serial
hardware, COMl and COM3 may share the same interrupt (as do
COM2 and COM4). This option may enable the driver to support the
shared interrupt by “chaining” to the interrupt vector that was in
place when the driver was loaded. This option is not necessary if your
system does not use COM3 or COM4, or if COM3 or COM4 use a
different interrupt request number. When installing two drivers on a
system on COMl and COM3 (or COM2 and COM4 with the same
interrupt request number), the last installation of the driver should
use this option. Here is an example of a CONFIG. SYS file entry for
such a system.

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /B38400 /A /PI

DEVICE=C:\LONWORKS\BIN\LDVSLTA.SYS /B38400 /A /P3 /C

Table 12.1 Hardware Configurations COM Ports

12-4 Using the DOS Driver with LTS-20 MIP Mode

Device

COMl

I/O Address Interrupt (*)

Ox3F8 4

COM2 Ox2F8 3

COM3 Ox3E8 4

1 COM4 I Ox2E8 I 3 I

(*> May be changed with the /U option

Timing Options
/Rnn Defines the flush/retry count in 55ms intervals. This value is used in

error states for re-transmitting requests and for terminating receive
flushes when input errors occur. Normally, this option should not be
specified.

/Wnnn Includes a delay of <nnn> microseconds when transmitting downlink.
This parameter can be used to pace the rate at which bytes are
transmitted downlink to the SLTA-lO/LTS-20-based node, and may be
required for high-performance network management tools. The delay
is executed following the transfer of each data byte to the host’s
UABT, and only after the first 15 bytes have been sent. Since the
SLTA-lO/LTS-20-based node employs a 16-byte deep FIFO buffer in
its UABT, the first group of bytes sent do not need to be paced. The
pacing delay will have no effect unless it is greater than the actual
period it takes to transmit a single byte at the given serial bit rate.
The time taken to transmit a byte is 173 ps at 57,600 bps, and 86 ps
at 115,200 bps. This option should be used at 115,200 bps if messages
greater than 16 bytes are to be transmitted. A value of /~12 0 is
suggested. This option is not required at the serial bit rate of
38,400bps or slower.

By default, the MIP mode firmware disables network communications
after a reset by entering a FLUSH state. This state causes theSLTA-
lO/LTS-20-based node to ignore all incoming messages and prevents
all outgoing messages, even service pin messages. The MIP mode
network driver for DOS automatically enables network
communications when the SLTA-lO/LTS-20-based node is opened and
when it receives an uplink message from the SLTA-lO/LTS-20-based
node indicating that it has been reset. However, the host application
itself must explicitly enable network communications if the / z option
is specified and the CFGl input is set to Network Disabled.

Host applications which need to configure the SLTA-lO/LTS-20-based
node prior to enabling network communications should use this option.
This option should not be used with the LonManager API,
LonManager LonMaker Installation Tool, or the LonManager DDE
Server. More information about the niFLUSH_CANCEL message is
provided in the LONWORKS Host Application Programmer’s Guide.

Network Interface Protocol Options

/F Enables the full interrupt mode of the driver. If this option is not
specified, the driver will disable interrupts for the duration of each
link-layer transfer. This ensures that no data will be lost due to other
system interrupts, and is acceptable at high serial bit rates. The
driver will use interrupts for the first byte of each uplink interface
buffer. When the uplink interrupt is received, the driver reads the
rest of the message without interrupts via polled I/O. Interrupts are
disabled during the uplink transfer. This assures that no other
system interrupts will occur resulting in lost uplink data frames.
Downlink transmissions are sent directly via polled I/O of the serial

LTS-20 User’s Guide 12-5

/M

/N

/Q

port from the write function call. The host write functions will not
return until the message has been sent downlink. When using the
ALERT/ACK link protocol, interrupt latency is not a problem, since
the SLTA-to-host protocol includes an acknowledgment of the start of
the message. The driver employs timeouts in order to prevent lockout
of the write function, and timeouts for clearing various states of the
transmitter/receiver when line errors occur.

When operating at lower serial bit rates, it becomes less desirable to
disable interrupts for long periods. The trade-off with using the full
interrupt mode is that other system interrupts may cause loss of data
in the serial port’s UART. If the / F option is specified, the driver uses
interrupts for every uplink and downlink byte transferred. Downlink
messages are buffered from the device write function and are sent
downlink under interrupt control. Uplink messages are received
under interrupt control and are buffered also. This option should be
used for serial bit rates of 9,600 bps or slower.

Enables modem support and the reliable transport protocol. This
option must be specified if the host is to communicate with the SLTA-
lO/LTS-20-based node via a modem connection. The SLTA-lO/LTS-
20-based node must be configured with CFG2 input in the Remote
Host setting. When connected, the selected SLTA-lO/LTS-20-based
node and Host network interface link protocol is in effect. When
disconnected the only allowable link layer traffic is of the ‘modem
direct’ type, where ASCII strings are being exchanged between the
host and the modem, for example, AT commands to dial out. Any
other network interface traffic is not allowed when disconnected from
the SLTA-lO/LTS-20-based node. Calls to the read function will result
in no network interface data messages (LDV-NO-MSG-AVAIL), and
any call to a write function that needs to communicate with the
SLTA-lO/LTS-20-based node via the modems will result in a No
Output Buffers Available error (LDV-NO-BUFF-AVAIL). Once the
connection is made, normal network interface traffic may resume.

This option also enables the reliable transport protocol. This protocol
includes the addition of a message sequence number and the end of
message ACWNACK code. See Chapter 4 for a description of this
protocol.

Disables the ALERT/ACK network interface link protocol, and
enables the buffered network interface link protocol. Network
interface messages are sent without waiting for the ALERT ACK
response. Both sides of the interface (the SLTA-lO/LTS-20-based
node and the driver) must have the same setting. This option should
not be used with the /M option.

Allows modem responses to be sent uplink to the host. When the
telephone link is disconnected, these messages are ASCII strings with
the network interface command type niDRIVER (OxFO). If /Q is
specified, the host application must be able to handle messages, such
as NO CARRIER, that might come from the modem itself if problems
occur in the connection.

12-6 Using the DOS Driver with LTS-20 MIP Mode

/X Disables the buffer request protocol. When this option is enabled, the
driver requests the buffer count from the SLTA-lO/LTS-20-based node
using the ni SBUFC (OxE7) command whenever the interface is
opened, or when the interface is reset, and reports an niRESET to the
host. The driver keeps track of the number of available output
buffers in the SLTA-lO/LTS-20-based node by examining both uplink
and downlink messages. This option prevents the use of one message
type: A local network management command not using a
request/response service. Normally this type of message is not used.
One exception could be the Set Node Mode : Reset command,
which would result in the node resetting and the buffer management
recovering on its own anyway. Otherwise, if this type of message is
used, no uplink response would occur and the driver.could not track
the fact that a new output buffer has been made available.

Table 12.2 Configuration Settings and DOS Driver Options

Input input State Driver Option

1 CFG2 I Local Host; No Transport Protocol I /M not specified I

CFG 2 Remote Host; Reliable Transport
Protocol

/M specified

CFG 3 ALERT/ACK Link Protocol

CFG 3 Buffered Link Protocol

IN not specified

/N specified

LTS-20 User’s Guide 12-7

Calling the Network Driver from a Host Application
The MIP mode network driver for DOS supports the open, close, read, write, and
ioc tl DOS calls. See Chapter 4 of the Host Application Programmer’s Guide for
more details.

When the MIP mode network driver for DOS is loaded during execution of the
CONFIG. SYS file, it does not attempt to communicate with the SLTA-lO/LTS-20-
based node.

When the network driver is opened with the DOS open call, it establishes
communications with the SLTA-lO/LTS-20-based node. The network driver returns
an error if this fails, for example, if the SLTA-lO/LTS-20-based node is disconnected,
powered down, or configured incorrectly. If the open call succeeds, the driver enables
network communications by clearing the SLTA-lO/LTS-20-based node FLUSH state, if
configured to do so.

The DOS read call is defined to return the number of bytes read from the device.
Some LONWORKS standard network drivers return 0 if there are no uplink messages
available. DOS reports this as an end-of-file condition and prevents further reads
from succeeding. However, the SLTA-lO/LTS-20-based node driver returns a length
of 2, and sets the first byte of the caller’s buffer (the cmd/queue byte) to 0 to indicate
that there is no uplink message available.

Normally, the DOS read and write calls are not used with LONWORKS standard
network drivers. This is because any error from the network interface will display
thefamiliar Abort, Retry, Fail? error message from DOS, unless the caller has
installed a critical error device handler. Therefore, DOS applications using a
network device typically call direct entry points into the driver. This also allows
more detailed error status to be returned to the application, The addresses of these
entry points are obtained by calling the ioc t 1() function of the driver.

This function call is used as follows:

int ioctl(int handle, int func, void far *argdx, int argcx);

l handle is an integer returned by an earlier successful call to open () , specifying
the LONWORKS network driver LONn to be opened.

. f unc is the value 2, meaning that the application is reading information from the
driver. For LONWORKS standard DOS network drivers, the information
returned is the network interface direct call structure.

. argdx is a pointer to a caller-declared structure that will contain the direct entry
points into the driver. See the structure direct-Cal 1s in the file NI-MSG . C in
the supplied example host application for usage.

. argcx is the size of the structure.

Function code 2 is supported by network drivers for DOS to return three direct entry
points into the driver code. The network driver for the SLTA-lO/LTS-20-based node
supports an additional option to function code 2, as well as function code 3, which is
used to manage the modem control state of the driver. These options are not used
when the SLTA-lO/LTS-20-based node is connected directly to a host. They are

12-8 Using the DOS Driver with LTS-20 MIP Mode

provided primarily for use while establishing communications with a remote host.
For example, the host connect utility (HCU) described in Chapter 18 of this manual
uses these functions. Host applications that only communicate to the SLTA-lO/LTS-
20-based node via an already-established telephone connection do not need to concern
themselves with these functions. If you wish to establish or take down telephone
connections during the execution of your host application, use the source code of HCU
as a guide.

When function code 2 is used, argdx points to the direc t-call s structure defined
for all LONWORKS standard network drivers for DOS. If argcx is 13, the size of the
standard direct calls structure, then three direct entry point addresses are returned
as usual. If argcx is 4 (the size of the structure ioctl-get-dcd-s), then the state
of the modem’s DCD line is returned as a TRUE or FALSE value. Note that the status
field is 16 bits in this structure, but 8 bits in the direct calls structure.

struct ioctl-get-dcd-s {
unsigned ioctl-stat; // 16 bit status
unsigned dcd-state; // Data Carrier Detect (TRUE or FALSE)

Function code 3 is used when the application wishes to write information to the
driver. For the SLTA-lO/LTS-20-based node driver, argdx points to the following
structure, and argcx is its size:

struct ioctl-o-info-s {
unsigned ioctl-stat; // 16 bit status
unsigned sub-command; // use enum sub-command
unsigned mode;
unsigned mode-aux;

enum sub-command {
SUBC-set-opt = 1,
SUBC-set_DTR = 2,
SUBC-set-baud = 3,

I;

// set driver options
// set DTR line
// set serial bit rate

There are three sub-commands, used to set the various modes of the driver, the state
of the DTR (Data Terminal Ready) line to the modem, and serial bit rate of the serial
interface.

When sub-command 1 is used, the mode field in the structure is a bit mask defining
which of the driver modes is to be changed, and the mode-aux field specifies bits
defining the new states of those modes. It is possible to set more than one of the
modes by OR’ing the following bit-masks together:

0x0001

0x0002

0x0004

0x00 10

0x0020

Enables modem support.

Allows modem responses to host - same as the /Q option.

Forces direct modem mode. In this mode, the network driver is
communicating directly with the modem.

Enables the buffered link protocol and disables the ALERTlACK
link protocol - same as the /N option.

Enables the reliable transport protocol.

LTS-20 User’s Guide 12-9

The /M option corresponds to 0x0021.

Sub-command 2 is used to set the state of the DTR line. In this case, the DTR signal
is enabled (on> if the mode field is true.

Sub-command 3 is used to set the serial bit rate of the serial interface. The mode
field determines the new bit rate as follows: 0:14,400; 1:1,200; 2:2,400; 3:9,600;
4:19,200; 538,400; 6:57,600; 7:1X,200.

Using the LTS-20 MIP Mode under Microsoft Windows 3.1x
In order to use the MIP mode network driver for DOS under Microsoft Windows 3.1x,
an interface based on the DOS Protected Mode Interface (DPMI) must be provided.
This type of interface, in the form of Windows DLL software, is supplied with the
Connectivity Starter Kit, as well as with the LonManager API for Windows and
LonManager DDE Server. The interface software is called WLDV.DLL. See
Appendix A for information on using the Windows 3. lx DLL directly.

12-10 Using the DOS Driver with LTS-20 MIP Mode

13
Creating an LTS-20 MIP Mode

Driver

This chapter describes the process of building a network driver
for a host that is to be connected to an LTS-20 in MIP mode.
This chapter also includes a description of the network
interface protocol for the MIP mode. The network interface
protocol defines the format of the data passed across the EIA-
232 interface, and varies depending on the configuration of the
LTS-20 and the network driver. If a LONWORKS standard
network driver is used, the format of the data passed between
the driver and the application is defined by the network driver
protocol and is independent of the network interface protocol;
the driver is responsible for providing the necessary
translations. This chapter will therefore be of interest only to
those needing to develop a network driver for a host other than
DOS, Windows, or UNIX.

I Skip this Chapter if you are using the LTS-20 NSI mode.

LTS-20 User’s Guide 13-l

Purpose of the Network Driver
The LTS-20 software is shared in common with the SLTA-10 Serial LonTalk
Adapter. Any references to the SLTA-10 NSI, including file names, apply to the
LTS-20.

The network driver provides a hardware-independent interface between the host
application and the network interface. By using network drivers with consistent
calling conventions, host applications can be transparently moved between
different network interfaces. For example, the standard MIP mode DOS
network driver, together with the Windows 3.1x DLL software, allows DOS and
Windows 3.1x applications, such as those based on the LonManager API, to be
debugged using the network driver for the LonBuilder Development Station.
These applications can later be used with the network driver for the SLTA-
lO/LTS-20-based node, without modifying the host application.

A LONWORKS standard network driver must supply the functions defined under
Network Driver Services in Chapter 4 of the LONWORKS Host Application
Programmer’s Guide. The Windows 3.1x DLL software is described in Appendix
A.

Example Network Drivers
The Connectivity Starter Kit includes source code for an example DOS network
driver; the Echelon web site contains source code for an example UNIX network
driver. The DOS driver is used for both DOS and Windows 3.1x applications.
See the comments in the source code of the network drivers for an explanation of
how the network drivers work. These drivers can be used as templates for a
LONWORKS standard network driver. The DOS network driver is compatible
with the LonManager APIs for DOS and Windows, the LonManager LonMaker
installation tool, and the LonManager DDE Server. A sample host application
for DOSis also supplied. The functions ldv-open(), ldv-read(), ldv-write(),
and ldv-close0 form a suitable operating-system independent definition for
the network driver. These functions support multiple network interfaces, and
hide the DOS-specific aspects of the DOS network driver.

The UNIX network driver is a source library that uses the UNIX serial device
driver. Italsosupportsthe ldv-open(),ldv-read(),ldv-write(), and
ldv-close0 functions.

Implementing an LTS-20 MIP Mode Network Driver
The network driver manages the physical interface with the SLTA-lO/LTS-20-
based node, implements the network interface protocol, performs flow control,
manages input and output buffers, and provides a read/write interface to the
host application.

Figure 13.1 illustrates how the network driver tits into the host application
architecture.

13-2 Creating an LTS-20 MIP Mode Driver

Host

--

Host Application
r”‘-‘-“-““‘-“-“r
I
------ LmMawerAPL _ _ _ _ _ :

Host Application

________c----------------------------------

Application Layer Interface

Driver services:
open/close/ioctl/read/write

Output Buffers Input Buffers

Downlink Flow Control
I I

Uplink Flow Control
Buffer Request Protocol XON/XOFF Protocol

Interface Transport Protocol
(Reliable or None)

Interface Link Protocol
(ALERT/ACK or Buffered)

-- --------
Physical Layer Interface (EIA-232) - - - - - -

I
SLTA-10 Network Interface

LONWORKS
Network

1

Figure 13.1 Host Application Architecture

Network Driver

1

To implement a MIP mode network driver for a host other than DOS, Windows,
or UNIX, follow these steps:

Implement and test low-level serial I/O. Serial I/O may be performed directly to
the host’s UART as is done in the DOS network driver, or may be performed by a
serial I/O driver on the host as is done by the UNIX network driver. Serial UO
should be interrupt driven for better performance.

The UNIX network driver uses the UNIX serial port driver for all low-level serial
I/O and interrupt support. This simplifies the driver and also simplifies porting
between different versions of UNIX. The serial device is opened by the
ldv-open () function and closed by the ldv-close () function. Data are read

LTS-20 User’s Guide

from and written to the serial device using the UNIX read () and write ()
system calls.

The UNIX network driver includes a ldv-post-events () function that should
be called periodically from the client application in order to assure that the
SLTA-lO/LTS-20-based node traffic is being processed.

The DOS network driver serial I/O functions are implemented by MSD-SIO . C,
MSD-UART . H, and MSD-IRQC . ASM. These files may all be replaced as long as the
required serial I/O functions in MSD-~10 . c are provided. The definitions of the
UART registers are in MSDJJART . H. The DOS serial I/O interrupt service
routines arein MSD-IRQC.ASM.

The DOS network driver uses the DOS system timer tick interrupt (vector 0x10
and the serial I/O device interrupt for the relevant COM port to perform
background processing of the serial network interface. The driver hooks into
these interrupt vectors and executes driver code whenever the LON(n) device is
opened. Flags internal to the driver prevent the interrupt code thread from
interfering with the normal application foreground execution of functions within
the driver.

The smip-int-main () function in the DOS network driver services the serial
port connected to the network interface. The function tick-int-main ()
services the timer tick interrupt every 55 msec.

Both network drivers are fully buffered for both outgoing and incoming
messaging. Read and write functions work with circular buffers within the
driver, The host interrupt service routine handles the other ends of these buffer
queues.

Both network drivers only support a single set of output buffers. An elaboration
on this design could implement a set of priority output buffers. The write
function could determine into which of the two buffer sets to place messages,
and the driver service function could service the priority buffers first.

Implement and test timer support functions. Timer support may be provided by
a hardware timer as is done in the DOS network driver, by a system service as is
done in the UNIX network driver, or by implementing a background software
task. The UNIX network driver uses a once per second signal that is handled by
the second-service () function. The DOS timer functions are implemented by
MDV-TIME.CandMDV-T1ME.H.

Implement and test the host side of the network interface protocol. The network
interface protocol is implemented by the rx-process () and tx-process ()
functions in the UNIX driver, and by the functions in MSD-TXRX . c for the DOS
network driver.

4 Implement and test raw modem I/O if you need to support a modem interface.
Raw I/O manages the serial interface to the modem when the modem is not
connected to a host and is used for modem initialization and control. The raw I/O
interface is implemented in MSD-RAW. C for the DOS network driver, and is not
implemented in the UNIX network driver.

5 Implement and test the buffer request states, buffer management, and read/write
interfaces. These functions are implemented by MSD-EXEC . c for the DOS

13-4 Creating an LTS-20 MIP Mode Driver

network driver. The read/write interface is implemented in the ldv-read () and
ldv-wr i te () functions for the UNIX network driver

The following files are unique to a DOS driver and would probably not be used
inaporttoanotherhost: MSD-DRVR.H,MSD-DIFC.C,MSD-FRST.C,
MSD-LAST.C,MSD-SEGD.ASM.

Network Interface Protocol
The network driver implements the host side of the network interface protocol,
providing an easy-to-use and interface-independent read/write interface to the
host application. The network interface protocol is a layered protocol that
includes the following layers:

l Presentation Layer. Defines packet formats for network variables and explicit
messages. This is the only layer visible to the host application. The remaining
layers are managed by the network driver.

l Session Layer. Manages flow control, buffer requests, and grants.

l Transport Layer. Ensures end-to-end reliability between the host and the
SLTA-lO/LTS-20-based node.

l Link Layer. Controls access to the serial link.

l Physical Layer. EIA-232 interface.

The physical layer is defined by the EIA RS-232 standard. The link, transport,
session, and presentation layers are described in the following sections.

Link layer Protocol
The default interface link layer protocol is the ALERTIACKprotocol. This
protocol may be used when the host is a microcontroller or microprocessor such
as a PC running DOS or Windows. The alternative interface link protocol is the
buffered protocol. This protocol is used with computer hosts that can
asynchronously buffer an entire packet. All data are transmitted using 1 start
bit, 8 data bits, no parity bits, and 1 stop bit.

ALERT/ACK Link Protocol
The DOS network driver uses the ALERT/ACK link protocol by default (i.e. the
/N option is not specified). See Chapter 8 for a description of the network driver
options. The UNIX network driver uses the ALERT/ACK link protocol if the
alert-ack-prtcl variable is set to TRUE in the source code (this is not the
default). The CFG3 input of the SLTA-lO/LTS-20-based node must be in the
ALERTlACK state.

When using this protocol, all transfers between the SLTA-lO/LTS-20-based node
and the host consist of serial data streams that start off with the link-layer
header sequence described in figure 15.2. Whenever one device, either the
SLTA-lO/LTS-20-based node or the host, needs to send a command or message,
the sender starts the sequence by transmitting the ALERT byte (value 01 hex).

LTS-20 User’s Guide 13-5

, When this byte is received by the receiver, that device responds by transmitting
the ALERT ACK byte (value FE hex). This low level handshaking process
prevents the sender from transmitting the rest of the sequence before the
receiving device is ready. Once the ALERT ACK byte is received by the sender
it sends the rest of the message without any other interactions.

Sender Receiver

Link-Layer
Header M

c

ALERT (01) I

1 ALERT ACK (FE) 1

I length I

checksum I

Figure 13.2 LTS-20 Adapter ALERT/ACK Link Protocol

The link-layer header contains a length byte followed by a one’s complement of
the length byte. These values are always validated by the receiver before
accepting the rest of the message. Following the length bytes is the network
interface command. See Appendix D of the Host Application Programmer’s
Guide for a description of the command byte structure. If the message contains
a data field it follows the command byte. Finally, a checksum terminates the
sequence.

The length byte value describes the length of the network interface command
byte plus the length of the data field. This value will always be at least 1. The
checksum is a two’s complement of the sum of the command byte and all of the
bytes in the data field, if it exists. Checksum errors detected by the host will
cause an error to be reported to the application, and checksum errors detected
by the SLTA-lO/LTS-20-based node will cause the message to be ignored.

The SLTA-lO/LTS-20-based node places the following requirements on the rate
of the received serial data stream. When receiving, the maximum wait period
for the length byte following the transmission of the ALERT ACK byte is 1OOms
(or 1 second when attached to a modem). All subsequent bytes received must
occur within 1OOms after the previous byte, otherwise the SLTA-lO/LTS-20-
based node receive process will abort. Likewise, the SLTA-lO/LTS-20-based

Creating an LTS-20 MIP Mode Driver

node uses a wait period of 100ms (or 1 second when attached to a modem) before
aborting for the reception of the ALERT ACK when transmitting a message. If
the ALERT ACK is not received in time, the SLTA-lO/LTS-20-based node
repeats the process by transmitting another ALERT byte.

The SLTA-lO/LTS-20-based node cannot support a full duplex communications
process between it and the host. The network driver included with the SLTA-
lO/LTS-20-based node takes this into account. Data frames transmitted to the
SLTA-lO/LTS-20-based node while it is in the process of sending uplink
messages will be lost if more than 16 bytes are sent to the SLTA-lO/LTS-20-
based node.

Buffered link Protocol

The DOS network driver uses the buffered link protocol when the /N option is
specified. See Chapter 7 for a description of this option. The UNIX network
driver uses the buffered link protocol if the al er t-ac k-pr t c 1 variable is set to
FALSE in the source code (this is the default). The Switchl/CFG3 input of the
SLTA-lO/LTS-20-based node, as described in Chapter 4, must be in the buffered
protocol state (VP position).

When using this protocol, the link-layer header contains a length byte followed
by a one’s complement of the length byte. These values are always validated by
the receiver before accepting the rest of the message. Following the length bytes
is the network interface command. See Appendix D of the Host Application
Programmer’s Guide for a description of the command byte structure. If the
message contains a data field it follows the command byte. Finally, a checksum
terminates the sequence.

Sender Receiver

Link-Layer
Header

]pG---(

1 checksum 1

Figure 13.3 LTS-20 Adapter Buffered Link Protocol

LTS-20 User’s Guide 13-7

The length byte value describes the length of the network interface command
byte plus the length of the data field. This value will always be at least 1. The
checksum is a two’s complement of the sum of the command byte and all of the
bytes in the data field, if it exists. Checksum errors detected by the host will
cause an error to be reported to the application, and checksum errors detected
by the SLTA-lO/LTS-20-based node will cause the message to be ignored.

This protocol is used when the host is capable of accepting asynchronously
occurring input data without losing characters. The host is also relieved of the
obligation of responding to an ALERT character within 50 ms. This protocol
may therefore be used by an application-level handler calling an interrupt-
driven buffered serial device driver. Drivers with these characteristics are
typically provided with real time operating systems such as VRTX or time-
sharing operating systems such as UNIX or VMS. In this case, these drivers
should be set up for binary data communications without software flow control.

The buffered link protocol should not be used when the SLTA-lO/LTS-20-based
node is attached to a modem.

The buffered link protocol can only be used on multitasking operating systems
such as UNIX if the host application executes often enough to empty any
incoming buffers. For example, if the SLTA-lO/LTS-20-based node is receiving
70 packets per second, and each packet is 25 bytes, the host will receive 1750
bytes per second. If the host has a serial input buffer of 256 bytes, the buffer
will fill within 150 milliseconds if the host application is preempted. If the host
application is preempted for longer than 150 milliseconds, incoming data will be
lost due to lack of serial buffer space. In this case, the ALERT/ACK protocol
should be used, or the buffer space increased to handle the worst case traffic
during the maximum preemption period.

Transport layer Protocol
When used with a local host, the SLTA-lO/LTS-20-based node assumes a reliable
connection and does not use a transport layer protocol. When used with a
remote host, the SLTA-lO/LTS-20-based node assumes that the link may not be
reliable and enables the reliable transport protocol. The reliable transport
protocol adds an ACWNACK transport protocol to the network interface
protocol. A sequence number is also added to the link-layer header. This
protocol can therefore recover from checksum errors on the host to SLTA-
lO/LTS-20-based node link.

The reliable transport protocol is enabled on the SLTA-lO/LTS-20-based node
with the Remote Host option selected by the CFG2 input as described in Chapter
4. The reliable transport protocol is enabled on the DOS network driver with
the /M option as described in Chapter 8. The reliable transport protocol is not
supported by the UNIX network driver.

The link-layer header contains an ALERT (0x01) byte, a sequence number, and a
length byte followed by a one’s complement of the length byte. These values are
always validated by the receiver before accepting the rest of the message.
Following the length bytes is the network interface command. See Appendix D

13-8 Creating an LTS-20 MIP Mode Driver

of the Host Application Programmer’s Guide for a description of the command
byte structure. If the message contains a data field it follows the command byte.
Finally, a checksum terminates the sequence.

The ALERT/ACK link protocol should be used with remote hosts. With this
protocol, the sender will start the sequence by transmitting the ALERT byte.
When this byte is received by the receiver, that device responds by transmitting
the ALERT ACK byte (value FE hex). This low level handshaking process
prevents the sender from transmitting the rest of the sequence before the
receiving device is ready. Once the ALERT ACK byte is received by the sender
it sends the rest of the message without any other interactions.

The length byte value describes the length of the network interface command
byte plus the length of the data field. This value will always be at least 1. The
checksum is a two’s complement of the sum of the command byte and all of the
bytes in the data field, if it exists. If the receiver receives a message in
sequence, with a valid checksum, it responds with an ACK (0x06). Otherwise it
responds with a NACK (0x15), requesting a re-transmission.

Link-Layer
Header

pKzEi-ACK(OrNnCK,

ACK: 0x06, NACK: 0x15

Figure 13.4 LTS-20 Adapter Reliable Transport Protocol

LTS-20 User’s Guide 13-9 ’

LTS-20 Timing Data
Certain aspects of the SLTA-lO/LTS-20-based node link and transport layer
protocols implement fail-safe timeouts in order to control the time spent waiting
for protocol states to change when errors occur.

Downlink Byte-to-Byte Receive Timeout

The downlink byte-to-byte receive timeout is the maximum allowable period
between the end of a single byte data frame sent downlink to the SLTA-lO/LTS-
20-based node, to the end of the next single byte data frame sent downlink to the
SLTA-lO/LTS-20-based node. This period is 1OOms in local host mode and 1
second in remote host mode. When this timeout occurs, the SLTA-lO/LTS-20-
based node discards the downlink buffer and returns to the NORMAL state. If the
reliable transport protocol is enabled, the SLTA-lO/LTS-20-based node also
sends a NACK byte after this timeout.

Up/ink Message Life

The uplink message life is the maximum allowable period between the SLTA-
lO/LTS-20-based node sending an ALERT byte to the host and the host
responding with an ALERT ACK byte. This period is 1OOms in local host mode
and 1 second in remote host mode. When this timeout occurs, the SLTA-lO/LTS-
20-based nodewill resend the ALERT byte. This process is repeated until 3
seconds have elapsed, after which the uplink message is discarded. This timeout
only applies to the ALERT/ACK link protocol and is not used for the buffered
link protocol.

ACK/NACK Receive Timeout

When using the reliable transport protocol, the SLTA-lO/LTS-20-based node will
wait for the ACK or NACK byte to be sent downlink following the end of the
uplink transmission of a message. This period is 1 second, after which the
SLTA-lO/LTS-20-based node will re-send the uplink message.

Uplink Timeout Message Retry Count

When using the reliable transport protocol the SLTA-lO/LTS-20-based node will
re-send uplink messages whenever the ACWNACK timeout period has elapsed.
This retry process is limited to 5 retries, after which the uplink message is
discarded. There is no retry limit applied to resends due to the reception of the
NACK byte.

13-10 Creating an LTS-20 MIP Mode Driver

Session Layer Protocol
The network interface link and transport protocols described above are used for
all host-to-SLTA/LTS communications. Layered on top of these protocols is a
downlink buffer request protocol and an uplink flow control protocol.

Down/ink Buffer Request Protocol

The network driver receives application buffers from the host application,
translates them to interface buffers, and passes the interface buffers to the
SLTA-lO/LTS-20-based node. There are two types of downlink commands from
the host to the SLTA-lO/LTS-20-based node-commands that can be executed
directly by the SLTA-lO/LTS-20-based node, and commands that need to be
buffered in the SLTA-lO/LTS-20-based node.

Downlink commands that are executed directly by the SLTA-lO/LTS-20-based
node are:

niRESET, niFLUSH_CANCEL, niONLINE, niOFFLINE, niFLUSH,
niFLUSHJGN, niPUPXOFF, niPUPXON, niSLEEP, and niSSTATUS.

See the Host Application Programmer’s Guide, Appendix D, for a description of
these commands.

The niSStatus command, when sent downlink, will cause the SLTA-lO/LTS-20-
based node to respond with a niSStatus command plus one byte of data. In MIP
mode, this byte of data contains the settings of configuration switches, with
BAUD0 being the least significant bit. In NSI mode, this byte of data contains
011 in the least significant bits followed by the XID information, making the
SLTA-lO/LTS-20-based node NSI mode consistent with the PCNSI Adapter.

Downlink commands that are buffered in theSLTA-lO/LTS-20-based node are
niNETMGMT (for network management commands to be executed by the SLTA-
lO/LTS-20-based node itself) and niCOMM (for messages to be sent out on the
network, including network variables, explicit messages, and network
management messages addressed to other nodes). For these two commands, a
buffer request protocol is used to ensure that the SLTA-lO/LTS-20-based node
has a free application buffer for the data. The network driver must first request
an output buffer before sending the interface buffer. The network driver must
hold the buffers in an output queue until the SLTA-lO/LTS-20-based node is
ready to receive them. The network driver takes theSLTA-lO/LTS-20-based
node through 3 states to request a buffer and send the interface buffer. Figure
13.5 summarizes the downlink state transitions.

I LTS-20 User’s Guide 13-11

Available? output
Buffer
Available?

Receive niCOMM
or niNETMGMT
message?

send niACK

Note: niNETMGMT commands are allowed in the Flush state.

Figure 13.5 LTS-20 Adapter Downlink Flow Control States

1

2

The SLTA-lO/LTS-20-based node is initially in the NORMAL state.

The network driver requests an output buffer by sending a link-layer header
(see figures 15.2 and 15.3) with a niCOMM or niNETMGMT command and the
appropriate queue value (niTQ, niTQ_P, niNTQ, niNTQ_P). The data portion of
the interface buffer is not sent with the buffer request. This puts theSLTA-
lO/LTS-20-based node in the OUTPUT QUEUE REQUESTED state.

3 If an output buffer is not available, the SLTA-lO/LTS-20-based node responds
with a niNACK (OxCl) command. The SLTA-lO/LTS-20-based node returns to
the NORMAL state, and the driver starts again at step 2.

4 When an output buffer is available, the SLTA-lO/LTS-20-based node responds
with a niACK (OxCO) command. The SLTA-lO/LTS-20-based node is now in the
OUTPUT QUEUE ACKNOWLEDGED state. While in this state, the network driver
can only transfer downlink LonTalk messages, uplink source quench commands
(niPUPXoFF), uplink source resume commands (niPUPXON), or reset commands
(niRESET) since the SLTA-lO/LTS-20-based node is waiting for a message in this
state. All other network interface commands sent downlink will be ignored, and
will return the SLTA-lO/LTS-20-based node to the NORMAL state.

5 Upon receiving the niACK acknowledgment, the network driver transfers the
entire interface buffer to the SLTA-lO/LTS-20-based node. This buffer has the

13-12 Creating an LTS-20 MIP Mode Driver

Following is the sequence of events for transferring an niCOMM or niNETMGMT
command downlink to the SLTA-lO/LTS-20-based node:

same command and queue value sent in step 2, and also contains the data and
checksum. Upon completion of this transfer, the SLTA-lO/LTS-20-based node
returns to the NORMAL state.

The network driver must preserve the continuity of the type of buffer request
and the type of message sent downlink. For example, if the network driver
sends the niCOMM+niTQ-P command requesting a priority output buffer, and
follows this with a message transfer with the non-priority niCOMM+niTQ
command, theSLTA-lO/LTS-20-based node will incorrectly store the message in
a priority output buffer, the type originally requested.

Up/ink Flow Control Protocol
Uplink traffic may be incoming LonTalk messages, output buffer request
acknowledgments, completion events, or local commands. The network driver
translates the interface buffers to application buffer format and stores the
buffers in a queue until the host application is ready to read them.

There is no buffer request protocol for uplink traffic. The network driver is
normally assumed to have sufficient buffers. The network driver can suspend or
resume uplink traffic when no network driver input buffers are available by
sending the Uplink Source Quench (niPUPXOFF) command to the SLTA-lO/LTS-
20-based node. This prevents the STLA from sending any LonTalk messages
uplink. When the network driver senses that network driver input buffers are
available, it sends the Uplink Source Resume (~~PUPXON) command to resume
uplink transfers. Figure 13.6 summarizes the uplink state transitions.

Node

1

Reset Receive
niPUPXOFF? 1

; CANCEL

Note: Responses to niNETMGMT and niSSTATlJS commands are allowed in the Flush
state.

Figure 13.6 LTS-20 Uplink Flow Control States

The host may chose to sidestep the downlink buffer request protocol. In this
case, the complete message is sent downlink without any buffer request step. If
the SLTA-lO/LTS-20-based node has a free output buffer, then the message will
be transferred into the SLTA-lO/LTS-20-based node successfully. If not, there
will be no indication and the message will be lost. The exception to this case is
when using the transport layer protocol, in which case the SLTA-lO/LTS-20-
based node will send the NACK to the host, which should force the host to re-
send the message. Otherwise, in order to use this feature successfully, the host
driver must manage the number of available output buffers within the SLTA-

LTS-20 User’s Guide 13-13

lO/LTS-20-based node. This feature has been added to the DOS driver for the
SLTA-lO/LTS-20-based node.

Presentation layer Protocol
The network driver exchanges LonTalk packets with the host application at the
presentation layer. The LonTalk packet enclosed in a command of type niCOMM
or CNETMGMT is described in detail in the Host Application Programmer’s
Guide. It is summarized here for convenience.

ExpMsgHdr ExpMsgHdr
or or

NetVarHdr NetVarHdr

SendAddrDtl SendAddrDtl

RcvAydr Dtl RcvAydr Dtl

Respiidr Dtl Respiidr Dtl

UnprocessedNV UnprocessedNV
or or

ExplicitMsg ExplicitMsg

Message
Header
size = 3

Network
Address
size = 11

Data
size

varies

Figure 13.7 Application Buffer Format

The SLTA-lO/LTS-20-based node firmware is configured with explicit addressing
enabled, and therefore the 11-byte network address field is always present in an
uplink or downlink buffer. The firmware is also configured with host selection
enabled, so the data field of the buffer is either an unprocessed network variable
or an explicit message.

13-14 Creating an LTS-20 MIP Mode Driver

14

Initialization and Installation

This chapter describes initializing, communicating with, and installing
the LTS-20 as a network node.

LTS-20 User’s Guide 14-1

Initializing an LTS-20-based Node

The LTS-20 software is shared in common with the SLTA-10 Serial LonTalk
Adapter. Any references to the SLTA-10 NSI, including file names, apply to
the LTS-20.

After an SLTA-lO/LTS-20-based node and its host processor are powered, the host
application must initialize the SLTA-lO/LTS-20-based node. When an SLTA-lO/LTS-
20-based node is initially powered-up or reset, it disables network communications by
entering the FLUSH, unconfigured state, unless the CFGl input is set to Network
Enable. The FLUSH state prevents the SLTA-lO/LTS-20-based node from
responding to network management messages before the host application has
initialized the SLTA-lO/LTS-20-based node. The unconfigured state prevents the
SLTA-lO/LTS-20-based node from responding to application messages before the
node has been installed in a network. The host application will not be able to send or
receive application messages until after it cancels the FLUSH state and the SLTA-
lO/LTS-20-based node leaves the unconfigured state.

An SLTA-lO/LTS-20-based node leaves the unconfigured state when it is installed in
a network and assigned an address in one or two domains on that network. There
are two ways this can happen. If the SLTA-lO/LTS-20-based node is used as a
network interface for a network management tool, then the network management
application itself normally configures the network interface. For example, a network
management application based on LNS will configure the network interface (in this
case an SLTA-lO/LTS-20-based node in NSI mode) when the network interface device
is opened. Also, a network management application based on the LonManager API
or the LonMaker installation tool will configure the network interface when the
network interface device is opened. In this case the PC running the network
management application sends a local message to the SLTA-lO/LTS-20-based node to
change its state to configured.

Alternatively, the SLTA-lO/LTS-20-based node may be installed in a network by
some other network management tool. In this case, the network management tool
sends a message to the SLTA-lO/LTS-20-based node across the network to change its
state and to assign it an address.

Once theSLTA-lOiLTS-20-based node is in the configured state, it will retain that
state and its address assignment across power-cycles, because that information is
stored in the internal EEPROM. However, if CFGl is set to Network Disable, the
FLUSH state must be canceled each time the SLTA-lO/LTS-20-based node is reset.

If the host application attempts to send a message while the SLTA-lO/LTS-20-based
node is in the FLUSH state, the SLTA-lO/LTS-20-based node will return a failed
response for acknowledged messages and a success response for unacknowledged
messages. The message will not be sent in either case.

If the host application attempts to send a message while the SLTA-lO/LTS-20-based
node is in the NORMAL, unconfigured state, the SLTA-lO/LTS-20-based node will
always return a success response even though the message will not be sent.

To initialize an SLTA-lO/LTS-20-based node, follow these steps (for more detail, see
the LONWORKS Host Application Programmer’s Guide):

14-2 Initialization and Installation

1

2

3

4

Reset the SLTA-lO/LTS-20-based node from the host application by sending the
niRESET command. If installed correctly, the SLTA-lO/LTS-20-based node will
respond with an uplink niRESET message upon completion of the reset. The first
message from an SLTA-lOiLTS-20-based node after power-up will also be an
uplink niRESET message informing the host that the SLTA-lO/LTS-20-based
node has reset.

Cancel the FLUSH state in the SLTA-lO/LTS-20-based node. LNS applications
automatically handle this, and it is done automatically by the MIP mode DOS
network driver after an open command or uplink niRESET if the / Z flag is not
specified. The FLUSH state can be manually canceled by sending the
niFLUSH_CANCEL message. The FLUSH state can also be disabled by a
configuration switch on the SLTA-lO/LTS-20-based node as described earlier in
this chapter.

Install the network interface in one or two domains using the Update Domain
network management message. This may be done by a network management
tool across the network, or may be done directly by the host application by
sending the Update Domain message as a local network management command.

Change the state of the network interface to configured. This may be done by a
network management tool across the network, or may be done directly by the
host application by sending the Set Node Mode network management message.

Installing an LTS-20-based Node on a Network
An SLTA-lO/LTS-20-based node attached to a network appears as a standard
LONWORKS node to other nodes on the network. The SLTA-lO/LTS-20-based node
node is logically installed on a network with a network management tool.
Installation scenarios are described in the LONWORKS Installation Overview
engineering bulletin (number 005-0006-01). Unique installation requirements of host
applications are described in Chapter 3 of the LONWORKS Host Application
Programmer-$ Guide.

LTS-20 User’s Guide 14-3

Installing with LNS, the LonMaker for Windows Integration Tool, or the
LNS DDE Server

With an LNS-based application, the SLTA-lO/LTS-20-based node is initialized
automatically as part of the system open. Prior to the system open, the application
selects the desired network interface. See the Chapter 3 Initializing and
Terminating LCA Applications in the LCA Object and Data Server Programmer’s
Guide for code fragments.

Installing with the LonBuilder Tool
An SLTA-lOiLTS-20-based node node can be installed on a development network
using the LonBuilder Network Manager. Chapter 6 of the LonBuilder User’s Guide
describes how to define and install nodes in a development network using the
LonBuilder Network Manager. A prerequisite to creating application node target
hardware and node specifications is to define the channels that will be included in
the network as defined under Defining Channels in Chapter 10 of the LonBuilder
User’s Guide. Select the standard transceiver type compatible with the transceiver
on your SLTA-lO/LTS-20-based node node.

When creating a hardware properties definition for a custom node to represent the
SLTA-lO/LTS-20-based node, set the input clock rate to 10MHz. Then create a
hardware definition for the custom node specifying these hardware properties. The
SLTA-lO/LTS-20-based node will not accept an incorrect clock rate or hardware
properties. This may occur, for example, if you specify de f au1 t-hw-props instead
of the correct one. To install the SLTA-lO/LTS-20-based node in a LonBuilder
network using the service pin, you must either connect the SLTA-lO/LTS-20-based
node to a host, and open the network driver (for example, by running HA), or else set
CFGl to the Network Enable state.

When installing the SLTA-lO/LTS-20-based node, the channel definition must match
the transceiver on the SLTA-lO/LTS-20-based node. If it does not, the SLTA-lO/LTS-
20-based node will not accept the new values. A ‘NO’ response is required to the
prompt, Do you want to install communications parameters? DONOT
usetheyesresponsetotheprompt: Do you want to install communications
parameters ? unless the channel and hardware definitions are compatible with the
transceiver and input clock on the SLTA-10 Adapter.

When defining the application image, the App Image Origin field should be set to
Interface File, and the App Image Name should be set to the name of an
external interface file (XIF)created as described under Binding to a Host Node in
Chapter 3 of the LONWORKS Host Application Programmer’s Guide.

WARNING: This is NOT the default setting for the App Image Origin. If you
specify a Neuron C source file as the App Image Origin, the SLTA-10 Adapter may
be rendered unusable.

If the SLTA-lO/LTS-20-based node is accidentally configured with the wrong
communication parameters, it may be rebooted with the NODEUTIL application

14-4 Initialization and Installation

available on Echelon’s web site. See the README. TXT file included with NODEUTIL
for a description.

Installing an LTS-20-based Node with LonManager API, the DOS-
based LonManager LonMaker for DOS Installation Tool, or the
LonManager DDE Server

When an SLTA-lO/LTS-20-based node is used as a network interface for a host
application based on the LonManager API, these installation steps are automatically
handled by the LonManager API lxt-open () function call.

When an SLTA-lO/LTS-20-based node is used as a network interface for a network
management PC running LonMaker for DOS installation tool or a LonManager API-
based application, these installation steps are automatically handled by the
LonMaker for DOS Attach command or the LonManager API lxt-open0 function
call.

When an SLTA-lO/LTS-20-based node is used as a network interface for a control and
monitoring PC running the LonManager DDE Server, these installation steps are
automatically handled by the LonManager DDE Server.

LTS-20 User’s Guide 14-5

Initialization and Installation

15

Using the LTS-20 with a Modem

This chapter describes the operation of the LTS-20-based node when a
remote host computer is connected via a pair of modems to the LTS-20-
based node. In this set-up, any node on the network may request the
LTS-20-based node to initiate a dial-out operation to connect to the host.
In addition, if the LTS-20 is functioning in NSI mode, the LTS-20-based
node itself may be configured to initiate a dial-out operation to connect to
the host. The LTS-20 can store a telephone directory of commonly called
numbers, as well as accept commands to dial any other number.

The LTS-20 may also be configured to accept incoming calls and connect
the network to the host. Incoming callers may optionally be required to
provide a password before the LTS-20-based node will connect them to the
network.

See Chapter 11, Using the Windows 95 and NT Drivers and SLTALink
Manager with LTS-20 NSI Mode, for configuring the LTS-20 NSI mode
EEPROM through the SLTALink Manager application.

LTS-20 User’s Guide 15-1

Overview
The LTS-20 software is shared in common with the SLTA-10 Serial
LonTalk Adapter. Any references to the SLTA-10 NSI, including file
names, apply to the LTS-20.

The SLTA-lO/LTS-20-based node may be attached to the host processor using modems
and the switched telephone network. Figure 15.1 illustrates this option.

15-2 Using the LTS-20 with a Modem

Host

I I Network Driver I

EIA-232
Interface

v

Modem I

Telephone
Network

I Modem I

via null
modem

EIA-232
Interface

Network
Interface

transceiver LONWORKS
Network

Figure 15.1 Using the SLTA-1 O/LTS-20 with Modems

When the SLTA-lO/LTS-20-based node is configured for modem support, it will respond
to special network management messages that cause it to communicate with the attached
modem. The modem used must support the Hayes standard AT command set allowing it
to dial-out, auto-answer incoming calls, and set various parameters.

Once a connection is established, the host computer communicates transparently with
the network as though the LTS-20 were attached locally.

In NSI mode, the SLTA-lO/LTS-20-based node can be configured to initiate the
connection with the host PC when LNS network management messages and/or network
variable updates are addressed to the SLTA-lO/LTS-20-based node. Alternatively,
another node on the local network can command the SLTA-lO/LTS-20-based node to
initiate the connection.

In MIP mode, the SLTA-lO/LTS-20-based node cannot itself initiate any connection; it
must be commanded to do so by another node on the local network, or else by the
modem’s detection of an incoming call. This means, for example, another node on the
local network must initiate the dialing procedure when an alarm is detected that needs to
be reported to the host. Once a connection has been established, however, any node on
the local network can communicate with the host by addressing messages to the SLTA-
lO/LTS-20-based node.

In order to support the modem functions, the CFG2 input must be set to the Remote Host
state. CFG3 should be set to the default ALERT/ACK link protocol. This automatically
enables the reliable network interface transport protocol. See Chapter 2 for details of the
configuration inputs. See Chapter 11 for using the SLTALink Manager with the LTS-20
NSI mode or Chapter 7 for LTS-20 MIP mode DOS network driver options.
Note that the packet throughput of the SLTA-lO/LTS-20-based node is substantially
reduced when using a modem because of the overhead associated with modem support.

LTS-20 Connection States
When the SLTA-lO/LTS-20-based node is operating in the remote host mode, several
internal states (or connection states) will control its behavior:

The IDLE state is entered after power-up reset. In this state any uplink bound
messages are ignored since the SLTA-lO/LTS-20-based node is not connected to a
host. The IDLE state is also entered whenever the telephone connection is broken
and the modem drops the DCD (Data Carrier Detect) line.
The CALL-IN-PROCESS state is entered once a connection is initiated by a node on
the network connected to the SLTA-lO/LTS-20-based node. In this state uplink
traffic is still discarded while the SLTA-lO/LTS-20-based node monitors the modem
for connection completion or connection failed events to occur.
The CONNECTED state is entered once the connection is complete. The normal
network interface protocol resumes between the SLTA-lO/LTS-20-based node and
the remote host. This state may be entered as a result of a node on the local
network initiating a call, or as a result of a remote host calling up this SLTA-
lO/LTS-20-based node.
The FAILED state is entered if the connection process failed. This state is
operationally the same as IDLE.

The connection state of the SLTA-lO/LTS-20-based node is preserved across software
resets, allowing normal network management resets to occur without breaking the
connection. The SLTA-lO/LTS-20-based node will not preserve the connection state after
it has been through a power reset.

LTS-20 User’s Guide 15-3

Command Set Assumptions
The SLTA-lO/LTS-20-based node uses the following strings received from the modem to
interpret the connection state. These strings are consistent with all Hayes AT compatible
modems operating in the word response mode (alphabetic responses). [CR1 is the hex OD
character.

CONNECT [any text] [CR]
BUSY [CR1
VOICE [CR]
NO [any text] [CR]
ERROR [CR]

The "CONNECT" string may be, and typically is, followed by other informative text, such as
connection serial bit rate or error correction methods in use.
These other four states indicate a failure to make the connection.

Translated Characters
All strings that are sent specifically to the modem (as commands) by the SLTA-lO/LTS-
20-based node are scanned for certain characters by the SLTA-lO/LTS-20-based node
firmware. These characters are then translated into specific functions or characters
unless they are preceded by a backslash (“\“I. The characters are:

The tilde will cause the SLTA-lO/LTS-20-based node to pause
500ms before sending the next character to the modem. The tilde
itself is not sent.

! The exclamation point will cause the SLTA-lO/LTS-20-based node
to send a carriage return (OxOH) to the modem. The exclamation
point itself is not sent.

The tilde is provided for users familiar with existing modem packages. It can be used, for
example, in the command string which causes the modem to hang-up. When dialing out,
Hayes AT-compatible modems use the comma character to insert delays between portions
of a dial command; the comma character should continue to be used for dialing out.

DTE Connections
In addition to the basic three wire connections-Transmit Data (TXD), Receive Data
(RXD), and Signal Ground- there are two additional signals that must be connected:
Data Carrier Detect (DCD) and Data Terminal Ready (DTR). The modem must also be
configured to use these signals. DCD is used by the SLTA-lO/LTS-20-based node to
determine that a connection has been made and DTR is used to terminate a connection
by hanging up. Note that many modems default to ignore these two signals and must be
configured to enable them. The following AT command enables these two signals on
many modems.

15-4 Using the LTS-20 with a Modem

AT&Cl&D2[CR]

Table 15.1 LTSPO Network Management Messages

Message
Code

Ox7D

Ox7D

Message
Sub-code

1

1

Application Function
Command

1 Product Query

2 Send Modem String

Network Management Messages
Network management messages are used to configure the operation of the network, as
opposed to delivering application data during operation of the network. All LONWORKS
nodes respond to the standard network management messages as described in Appendix
B of the Neuron Chip Data Book. For nodes based on the SLTA-lO/LTS-20, additional
network management messages are defined to configure and control the SLTA-lO/LTS-
20-based node. The message codes for network management messages are reserved, and
therefore applications need not be concerned about possible conflicts in the choice of
message codes. The additional SLTA-lO/LTS-20-based node network management
messages use the reserved message code 7D hex. The first data byte is used as a sub-
code, and is 01 hex to indicate an SLTA-lO/LTS-20-based node function. The second data
byte is a specific application command code. Table 15.1 summarizes the network
management messages specific to the SLTA-lOiLTS-20-based node.

Ox7D

Ox7D

3

4

Modem Status Readback

Modem Response Query

Ox7D

Ox7D

5

6

Connection Status Query

Install Directory Entry

1 Dial From Directory

Ox7D 18 1 Harm-up
Ox7D

Ox7D

Ox7D

9

10

11

Install Password

Install Modem Configuration String

Install Hangup String

Ox7D I1 I12 I Install Dial Prefix

Ox7D

Ox7D

Ox7D

13

14

15

Install Hangup Timer

Configure Modem

Request/Release Modem

I Clear EEPROM Pool

Ox7D

Ox7D

Ox7D

17

18

19

Install NV Connect

Install NSI Connect

Install Callback Enable

Ox7D 11 I20 1 Report SLTA EEPROM contents 1

These network management messages may be sent from any node on the network to the
SLTA-lO/LTS-20-based node. If an application node wishes to send modem-control
network management messages to the SLTA-lO&TS-20-based node, it does so using
explicit messaging. See Chapter 4 of the Neuron C Programmer’s Guide for details on

LTS-20 User’s Guide

explicit messaging. The message should be delivered using request/response service, and
the message code for modem control messages is always 7D hex. The data portion of the
message always begins with a sub-code value of 1, indicating that the message is
addressed to an SLTA-lO/LTS-20-based node, followed by an application command byte
indicating which modem-control command this is. This is followed by parameters specific
to the application command. These messages may be sent by a Neuron C-based node, a
node based on the Microprocessor Interface Program (MIP), or a node based on another
SLTA-lO/LTS-20-based node.

See the supplied Neuron C program DIALOUT. NC for an example of an application that
sends a message to an SLTA-lO/LTS-20-based node to cause it to dial-out using an
attached modem. The example GI z SETUP . NC sends messages to an SLTA-lO/LTS-20-
based node to configure its modem strings using a Gizmo I/O module as the user
interface. A node can send these messages using either implicit or explicit addressing.
When implicit addressing is used, a network management tool binds the output message
tag in the node wishing to send the message to the SLTA-lO/LTS-20-based node as the
destination. When explicit addressing is used, the node wishing to send the message
must explicitly insert the destination address in the outgoing message.

Note that the SLTA-lO/LTS-20-based node will be unable to receive any messages,
including these network management messages, if network communications is disabled,
i.e., it is in the FLUSH state. This will normally be the case if it is not connected to a host.
Therefore, in order to be able to dial-out and connect to a host, the SLTA-lO/LTS-20-
based node must be configured to initialize with network communications enabled, i.e.,
the NORMAL state, with the CFGl input. See Chapter 4 for more details.

The messages should be sent with request/response service, and the response code should
be checked to see if the message was executed correctly - it will be Ox3D if there was no
error, and OxlD if there was. Possible failure conditions are noted under each message.
Some of these network management messages return data to the sender in the response
structure as noted below.

Note that some of these messages cause one or more bytes of EEPROM in the SLTA-
lO/LTS-20-based node to be written. Each byte of EEPROM takes 20ms to write, and the
response is not sent by the SLTA-lO/LTS-20-based node until after the command is
executed. This time should be taken into account when setting the transaction timer
(tx-t imer) in the message tag connection for implicit addressing, or in the destination
address for explicit addressing. If the LonBuilder or LonManager API binder is used to
create the connection, the transaction timer may be explicitly specified.

Example:

msg-tag SLTA-tag;

when (. . .) {

msg-out.code = Ox7D; // network mgmt msg code

msg-out.tag = SLTA-tag;

msg-out.service = REQUEST;

msg-out.data[O] = 1; // sub-code for SLTA-10

msg-out.data[ll = app-command; // specific command

Using the LTS-20 with a Modem

// additional parameters msg-out.data[2] =

msg-send();

I
when (msg-fails(SLTA-tag)) (

// SLTA-10 Adapter did not respond to the message

. . .

1

when (msg-succeeds) 1 . . .)

when (resp-arrives(SLTA-tag) {

// SLTA-10 Adapter did respond to the message

if (resp-in.code == Ox3D)

// command executed successfully

, . .

Certain SLTA-lO/LTS-20-based node network management messages which are designed
to send a command string directly to the modem will fail if the connection status is
CONNECTED. This applies to the following messages: Send Modem String, Dial From
Directory, and Configure Modem. The telephone connection must be broken and the
SLTA-lO/LTS-20-based node returned to the IDLE state for these messages to be issued.

Many of these network management messages, for example the “Install...” messages, may
be sent to the SLTA-lO/LTS-20-based node from the host computer via the telephone link
if the SLTA-lO/LTS-20-based node is in the CONNECTED state. In this case, they should
be sent using the niNETMGMT network interface command so that they are addressed to
the SLTA-lO/LTS-20-based node itself.

Structures are defined in the file SLTA-ANM . H for each of the application commands, and
include the sub-code and app-command fields, as well as any additional parameters for
the specific application command. If the response contains data other than the response
code, a structure for the returned data is also defined.

EEPROM String Pool Management

The SLTA-lO/LTS-20-based node’s EEPROM is used to store a number of varying-length
configurable strings which are used to control the modem. These strings can be set by
sending network management messages to the SLTA-lO/LTS-20-based node, either from
the modem side or the network side. Since the strings are varying in length and the
EEPROM space is limited, a pool management system is used to optimize the usage of
EEPROM. The MIP mode EEPROM string pool and the NSI mode EEPROM pool
are different! Changing the mode and cycling power will destroy the EEPROM
pool.

For the MIP mode, the EEPROM pool consists of the following strings:

I LTS-20 User’s Guide 15-7

l Up to eight dial-out directory entries. These may be used by index to initiate a
dial-out connection, and may contain any combination of AT commands and
numbers.

l One modem initialization string. This string is used to initialize the modem as
required.

l One modem hang-up string. This string is used to hang-up the modem and break
the connection when DTR control does not function.

l One dial-out prefx string. This string is sent as a prefix to any dial-out operation
to specify the modem dial command and to indicate whether tone or pulse dialing
should be used.

l An g-byte dial-in password string.

EEPROM storage and allocation for these strings is managed by the MIP mode EEPROM
pool. This allows flexible utilization of the MIP mode EEPROM space. The MIP mode
pool consists of 21 blocks, each with 9 bytes of data storage space. A string occupies one
or more blocks.

For the NSI mode, the EEPROM pool consists of the following strings:

l Up to five dial-out directory entries. These may be used by index to initiate a dial-
out connection, and may contain any combination of AT commands and numbers.

l One modem initialization string. This string is used to initialize the modem as
required.

l One dial-out prefm string. This string is sent as a prefer to any dial-out operation
to specify the modem dial command and to indicate whether tone or pulse dialing
should be used.

l An g-byte dial-in password string.
l A l-byte code that enables an auto dial-out on a network variable message.
l A l-byte code that enables an auto dial-out on a NSI message.
l A l-byte code that enables callback.

EEPROM storage and allocation for these strings is managed by the NSI mode EEPROM
pool. This allows flexible utilization of the NSI mode EEPROM space. The NSI mode pool
consists of 8 blocks, each with 12 bytes of data storage space. A string occupies one or
more blocks.

The NSI mode EEPROM pool does not require the exclamation point (translated to a
carriage return) in the dial directories; whereas, it is required in the MIP mode EEPROM
pool. In addition, the NSI mode EEPROM pool does not require a null terminator on
exact sector size strings. In the MIP mode EEPROM pool, if a string winds up ending on
the last byte of a sector, a subsequent sector is required to hold the null terminator.

The network management functions that install these strings allow incremental
EEPROM writes, and include a total-s i ze field. Incremental writes allow long strings
to be installed without the requirement of large buffer sizes on the SLTA-lO/LTS-20-
based node. If the total-size field is greater than the amount of EEPROM storage
space available then the network management message response will indicate a failed
status. In all cases the strings should include a null terminator.

The offset field in the install messages indicates the starting point in the complete
string of the current string piece to be installed. The first byte of the complete string is at

15-8 Using the LTS-20 with a Modem

offset zero. If the offset is such that the string piece would not fit in the allocated total
size for the string, the total size for that string is automatically extended, if space is
available.

All pieces of a string should specify the same value for total-s i ze. Otherwise it means
that you are starting over with a new string.
Once a particular string has been installed in the pool, it may be deleted by re-installing
it with a total size of 0. Alternatively, the Clear EEPROM Pool message may be issued to
clear the whole EEPROM string pool.

Product Query
This message may be used to check the type of interface product that the node is running.
The value returned for the SLTA-lO/LTS-20-based node is a ‘1’. Application nodes will
respond with a failed code of OxlD returned for this or any message where the request
message code is Ox7D.
typedef struct {

byte sub-code; // always #l

byte app-command; // value = 1

1 AN&-product-query-request;

typedef struct {

byte product;

1 ANM-product-query-response;

// for SLTA-10 Adapter, = 1

Send Modem String
This message is typically used to send AT command character strings to the modem from
another node on the local network. This provides full control of the modem and its
internal control registers and settings. Normal use of this feature is to dial-out to a
number that is not in the telephone directory of the SLTA-lO/LTS-20-based node, or to
change or set modem control registers and options. This puts complete control of the
modem in the hands of any application node on the network. The message definition is:

typedef enum (

NO-CHANGE = 0,
DIAL-OUT

HANGUP-DIAL-OUT = 2

1 STR-mode;

typedef struct {
byte sub-code;

byte app-command;

STR-mode mode;

char modem-string[l;

1 ANM-send-str-request;

= 1,

// always #1

// value = 2

LTS-20 User’s Guide 15-9

The length of modem-string is limited to the application and network buffer sizes
within the SLTA-lO/LTS-20-based node and the node with which it is communicating.
The SLTA-lO/LTS-20-based node as shipped has buffers sizes allowing for a maximum of
46 characters in the modem string sent with this message. The string must be null
terminated.

If a large string needs to be sent to the SLTA-lO/LTS-20-based node, use a series of these
requests with a single carriage return in the last string. Note that many modems have a
limited input buffer size, typically 32 to 80 bytes.

The mode parameter is used to control the connection state of the SLTA-lO/LTS-20-based
node. The values for this parameter are:

0 Make no change to the SLTA-lO/LTS-20-based node’s modem connection state. Send
only if not CONNECTED. Otherwise, respond with a failed status.

1 Initiate a dial-out connection. If the SLTA-lO/LTS-20-based node is already currently
connected, preserve that connection, and ignore the message. The SLTA-lO/LTS-20-
based node’s connection status changes from IDLE to CALL-IN-PROCESS, unless the
connection is already made, in which case the state stays at CONNECTED. The dial-
out prefm is sent first.

2 Same as ‘l’, but disconnect (hang-up) if currently connected before initiating the new
connection.

Modem Response Query

ASCII strings received from the modem when the SLTA-lO/LTS-20-based node is not
connected to a host will be buffered and may be read back by a node via this message.
The storage for this string is limited, and so it will contain only the first 16 characters
received from the modem in the disconnected state. Executing the Send Modem String
message will always clear this buffered string. It will not be cleared when the modem
disconnects, aiding in diagnosis of connection problems.

typedef struct {

byte sub-code; // always #I

byte app-command; // value = 4

byte max-length; // limits the size of the response.

) ANM-modem-response-query-request;

typedef struct {

char response[]; // null terminated string

} AIW-modem-response-query-response;

15-10 Using the LTS-20 with a Modem

Connection Status Query
The SLTA-lO/LTS-20-based node’s connection status may be polled with this message.
Most modems may be configured with various time-outs for the different stages of
establishing a connection. Consult your modem’s documentation for details.

typedef struct {

byte sub-code; // always #1

byte app-command; // value = 5

} ANM-connect-state-request;

typedef enum {

IDLE = 0,
FAILED = 1,

CALL-IN-PROCESS = 2,

CONNECTED = 3

) CONN-state;

typedef struct {

CONN-state connection-state;

} ANM-connect-state-response;

LTS-20 User’s Guide 15-11

Install Directory En try

This message stores a dial-out directory entry in the SLTA-lO/LTS-20-based node’s
EEPROM string pool. Up to 5 dial-out entries can be stored in the NSI mode EEPROM
pool; up to 8 can be stored in the MIP mode EEPROM pool. The entries are numbered 0
to 4 (or 0 to 7) as specified by the dir-num field.

typedef struct {

byte sub-code; // always #l

byte app-command; // value = 6

byte dir-num; // value = O-7 for MIP; O-4 for
NSI

byte total-size; // of the data string

byte offset; // for piecemeal writes

char dir-stringi];

1 AN&-install-dir-request;

See the section on EEPROM String Pool Management above for details on the EEPROM
string pool.

Dial From Directory
Using one of the directory entries specified by dir-num, dial-out to a remote host and
establish a connection. Based on the mode argument, the directory string may be sent to
the modem and the SLTA-lO/LTS-20-based node enters the CALL-IN-PROCESS state.
Connection progress may then be checked periodically by interested nodes using the
Connection Status Query message. The mode parameter is used to control the connection
state of the SLTA-lO/LTS-20-based node. The values for this parameter are:

1 Initiate a dial-out connection. If the SLTA-lO/LTS-20-based node is already
currently connected, preserve that connection, and ignore the message. The
SLTA-lO/LTS-20-based node’s connection status changes from IDLE to
CALL-IN-PROCESS, unless the connection is already made, in which case the
state stays at CONNECTED. The dial-out prefix is sent first.

2 Same as ‘l’, but disconnect (hang-up) if currently connected before initiating
the new connection.

typedef enum {

DIAL-OUT = 1,

HANGUP-DIAL-OUT = 2

} STR-mode;

typedef struct { .
byte sub-code; // always #1

byte app-command; // value = 7

STR-mode mode;

byte dir-num; // value = O-7 for MIP; O-4 for NSI

) ANM-dial-dir-request;

If the directory entry does not exist, the response to this message will indicate a failure.
A successful response to this message indicates that the SLTA-lO/LTS-20-based nodehas
sent the dial-out command to the modem, not that the modem has successfully dialed.
The Connection Status Query message should be sent to determine whether a successful
connection has been established.

Hang-up
This message causes the SLTA-lO/LTS-20-based node to pulse the EIA-232 DTR
signal (Data Terminal Ready) low for 500ms. If the DCD signal is still ON
following this step, then the SLTA-lO/LTS-20-based node will send the hangup
string (see below) if it is not a null string. This will terminate the connection, and
the SLTA-lO/LTS-20-based nodeenters the IDLE state. The response will not be
sent until this process is complete. Therefore the transaction timer for this
message should be set to at least 768ms if it is sent from a node on the network. If
this message is sent from a remote host, no response should be expected, since the
connection will have been broken before the response can be sent.

15-12 Using the LTS-20 with a Modem

typedef struct {

byte sub-code; // always #I

byte app-command; // value = a
boolean if-config;

} ANM-hangup-request;

If the SLTA-lO/LTS-20-based node is forced to send the hangup string, and this string
does not exist in the EEPROM configuration, the response to this message will indicate a
failure. If the i f-con f i g byte of this message is non-zero, the SLTA-lO/LTS-20-based
node sends the configuration string to the modem following the hangup process. This
provides a remote host with the ability to dial up a remote SLTA-lO/LTS-20-based node,
change the configuration string, hang-up, and reconfigure the modem.

Install Password
This message stores a dial-in password in EEPROM. The default setting for this string is
a null string, which results in no password requirement by the SLTA-lOiLTS-20-based
noder. Any node on the network may change the password, but an external host must
have already connected and used the existing password in order to change it, unless it
was blank. Any installed SLTA-lO/LTS-20-based node should use a password, otherwise
an intruder might change the password to another setting.

The password string is limited to 8 characters, and may be any sequence of non-zero
eight bit values. The string must be null-terminated.

typedef struct {

byte sub-code; // always #I

byte app-command; // value = 9

char passwd-string[81;

} ANM-install-passwd-request;

If a password is installed in the SLTA-lO/LTS-20-based node, the host must issue the
niPASSWD network interface command to the SLTA-lO/LTS-20-based node after the
connection is established. The code for this command is OxE4, and it should be followed
by up to eight password characters, null terminated. For details on sending network
interface commands, see the LONWORKS I-lost Application Programmer’s Guide.
If modem support is selected, a password is present in the SLTA-lO/LTS-20-based node’s
configuration, and the connection state changes from IDLE to CONNECTED, the SLTA-
lO/LTS-20-based node will not process any other network interface commands until the
correct password is sent downlink. If the password is correct theSLTA-lO/LTS-20-based
node will respond with the niACK code. Otherwise the SLTA-lO/LTS-20-based node will
respond with the niNACK code.

Install Modem Configuration String

Whenever the SLTA-lO/LTS-20-based node is either powered or reset, the connection
state is not CONNECTED, or is commanded to by the Configure Modem message, the SLTA-
lO/LTS-20-based node will send its modem configuration string to the modem. This

LTS-20 User’s Guide 15-13

string is stored in EEPROM, and may be changed by this message. The default setting
forthisstringis "ATEO&Cl&D2SO=l!". The commands specified in this string are:
. EO is the AT command to disable local echo of characters received by the modem.
. &cl is the AT command to enable the Data Carrier Detect (DCD) output of the

modem, which is active when the modem detects the carrier signal of another
modem on the line.

0 &D2 is the AT command to enable the Data Terminal Ready (DTR) input of the
modem. The modem will hang-up, enter command state, and disable auto-answer
when it detects an on-to-off transition of the DTR input.

l s 0 = I is the AT command to set register SO to 1, meaning that the modem should
auto-answer incoming calls on the first ring. This option should be used if remote
hosts will be dialing in to the SLTA-lO/LTS-20-based node. Use "S 0 = 0" if the
SLTA-lO/LTS-20-based node will only be used for dialing out to remote hosts.

See Modem Compatibility later in this chapter for additional sample modem
configuration strings.

typedef struct {

byte sub-code; // always #I

byte app-command; // value = 10

byte total-size; // of the data string

byte offset; // for incremental writes

char cfg-stringI];

} ANM-install-cfgs-request;

This message uses the EEPROM pool to store the modem configuration string. See the
section on EEPROM String Pool Management above for details.

Install Hangup String (MIP mode only)

This message installs a hang-up string, which is used to terminate a connection if the
DTR control fails to do so. The default setting for this string is "---+ + +---ATHO ! ‘I. This
particular sequence is useful for Hayes modems, or other modems that have licensed the
use of the Guard Time feature from Hayes Corporation. Some so-called Hayes-
compatible modems use other sequences. A 1.5 second pause, followed by the string
‘+++I, followed by another 1.5 second pause will cause a Hayes-compatible modem to
enter its command state if it is in the connected state. The command ATHO causes the
modem to hang-up.

typedef struct {
byte sub-code; // always #l

byte app-command; // value = 11

byte total-size; // of the data string

byte offset; // for incremental writes
char hups-string[];

] ANM-install-hups-request;

This message uses the EEPROM pool to store the hang-up string. See the section on
EEPROM String Pool Management above for details.

Install Dial Prefix

The default setting for this string is "ATDT". This string is sent as a prefx for any dial-
out operations. This particular sequence instructs the modem to dial using Touch-Tone
(DTMF) signaling. If pulse dialing is required, the prefer should be set to "ATDP."

typedef struct (
byte sub-code; // always #I

byte app-command; // value = 12

byte total-size; // of the data string

byte offset; // for incremental writes

char dpre-string[];

) ANM-install-dpre-request;

This message uses the EEPROM pool to store the dial prefm. See the section on
EEPROM String Pool Management above for details.

Install Hangup Timer

The hangup timer is controlled by an eight bit value in EEPROM. The default setting for
this value is zero, which results in no hangup timer action. If the hangup timer is a non-
zero value, the SLTA-lO/LTS-20-based node will hang-up and break a connection (if in
the CONNECTED state) when the number of minutes specified by timer-value have
elapsed and no uplink or downlink activity has occurred. The default value for this
timeout is zero, meaning that the phone connection will remain active indefinitely, even
if there is no activity on the link.

typedef struct 1:

byte sub-code; // always #l

byte app-command; // value = 13

byte timer-value;

} ANM-install-hangt-request;

LTS-20 User’s Guide 15-15

Configure Modem

This message will cause the SLTA-lO/LTS-20-based node to send its Modem
Configuration String to the modem provided it is not in the CONNECTED state. See the
Install Modem Configuration String message for further details. If the modem is in the
CONNECTED state, the failed status will be returned.

typedef struct {

byte sub-code; /I always #I

byte app-command; // value = 14

} ANM-modem-config-request;

Request/Release SLTA

This message may be used to grant ownership access of the SLTA-lO/LTS-20-based node
to any node on the local network. In a design where there may be more than one network
node that wishes to control the SLTA-lO/LTS-20-based node’s connection states,
Request/Release provides a method of managing this control. In this case a node will
request the SLTA-lO/LTS-20-based node, and the response to this request will be
successful (code Ox3D) if access was granted, or failure (code OxlD) if it was denied. At
the end of such a session the node which was granted ownership must release the SLTA-
lO/LTS-20-based node, allowing other nodes access to it. This process only works if all
nodes employ this mechanism. The request state is not preserved across resets of the
SLTA-lO/LTS-20-based node.

typedef struct {

byte sub-code; // always #I

byte app-command; // value = 15

boolean reel_rel; // TRUE if request, FALSE if release

} ANM-request-slta-request;

Clear EEPROM Pool
This message will clear the entire EEPROM pool usage, and will remove the following
configurable strings. The strings will be set to null strings, not their default values.

l Modem configuration string
l Hangup string
l Dial prefm string
l All dial-out directory entries

typedef struct {

byte sub-code; // always #I

byte app-command; // value = 16

1 ANM-clear-eepool-request;

15-16 Using the LTS-20 with a Modem

Install NVConnect (NSl mode only)

This message writes the NVConnect byte. A value of OxFF (the default) will disable this
feature. When this feature is enabled, the SLTA-lO/LTS-20-based node initiates a dial-
out when it receives a network variable update.

typedef struct {

byte sub-code;

byte app-command;

byte NVConnect;

} ANM-install-nvconnect;

// always #l

// value = 11

// two 4-bit fields

Install NSlConnect (NSI mode only)

This message writes the NSIConnect byte. A value of OxFF (the default) will disable this
feature. When this feature is enabled, the SLTA-lO/LTS-20-based node initiates a dial-
out when it receives an AddMyNSI message.

typedef struct {

byte sub-code; // always #I

byte app-command; // value = 18

byte NSIConnect; // two 4-bit fields

) ANM-install-nsiconnect;

install CallbackEnable (NSi mode on/y)
The CallbackEnable configuration byte is written as a Boolean value using this
command. A valus of zero (the default) will disable the callback configuration. When this
feature is enabled and a remote host dials-in to the SLTA-lO/LTS-20-based node, the
SLTA-lO/LTS-20-based node terminates the call and initiates a dial-out using the address
entry requested by the initial dial-in.
typedef struct {

byte sub-code; // always #l

byte app-command; // value = 19

byte NSIConnect; // Non-zero enables callback

} ANM~install~callbackenable;

Report SLTAEE (NSi mode only)
This command will result in a response that includes the address of the SltaEE data, the
revision of the data structure, and its length. This information can be used to read back
any portion of the structure for analysis and deconstruction.

LTS-20 User’s Guide 15-17

typedef struct 1

byte sub-code;

byte app-command;

} ANM-report-sltaee;

// always #I

// value = 20

The response is:

typedef struct {

word abs-address; // 16-bit absolute address of

// structure

byte version; // currently 1

byte length;

} ANM-report-sltaee-resp;

Modem Compatibility

Nodes based on the LTS-20 have been tested with the following modems:

Best Data Smart One external modem 33,600 bps Data/Fax modem

Diamond SupraExpress 336e external faxmodem

Hayes Accura 336 external fax modem

US Robotics Sportster Voice external 28.8 faxmodem

Synchronous communication should be disabled when synchronous modems are
connected at lower serial bit rates (less than 4800 bps). Alternatively, data compression
can be disabled at lower bit rates. For example, two V.42 or V.32bis modems connected
at 2400 bps will have very low throughput due to the slow serial bit rate.

You should disable XON/XOFF flow control in the modem when using it with
the LTS-20.

Note: When using the Hayes Accura external Fax Modem with Simultaneous Voice and
Data 33.6 modem with the US Robotics 28.8 Faxmodem with Personal Voice Mail, an
incompatibility in communication occurs. Testing the two modems via Hyperterminal
reveals that the CD signal (Carrier Detect) is incorrect. Due to this communication
incompatibility, do not use these two modems together with the SLTA-lO/LTS-20-based
node.

15-18 Using the LTS-20 with a Modem

Remote LTS-20 Deployment

The LTS-20 software is shared in common with the SLTA-10 Serial LonTalk Adapter.
Any references to the SLTA-10 NSI, including file names, apply to the LTS-20.
The LTS-20 is an NSI capable network interface that supports a wide variety of
application configurations to support several different network interface requirements for
LONWORKS networks. This application brief describes the steps to setup an LTS-20-based
node at a remote site to support dial-in access by a Windows 95,98, or Windows NT 4.0
hosted LNS application. The goal configuration is shown in figure 15.2.

-w j=+----’ SLTA-10

Windows NT 4.0
Windows 95

Modem
Null Modem*

*See SLTA-IO Adapter User’s Guide tables 3.3,3.4

Figure 15.2 LTS-20-based Node Remote Dial-in Setup

Configuration

The LTS-20-based node should be configured as follows:

ALERT/ACK Link Protocol
Remote Host (modem)
Network Enable
NSI Mode
Autobaud Disabled

115,200 bps (configured assuming the use of a Diamond SupraExpress 336e modem)

Software Setup

Your PC must have Windows 95, 98, NT installed. Chapter 5, The LTS-20 NSI Mode
SoftWare, describes how to install the software for Windows NT. This section describes
the procedure for Windows 95.

Run the setup. exe supplied for the SLTA-lO/LTS-20 Driver and SLTALink Manager
software. After common installation queries are addressed, the setup program prompts
you with the dialog box shown in figure 15.3. If you intend to access the SLTA-lO/LTS-
20-based node using 16-bit, LonManager API for Windows based tools you must answer
Yes’ to this prompt. If you intend to use current generation 32-bit LNS based
applications (LonMaker for Windows), you can click ‘No’ to this prompt.

LTS-20 User’s Guide 15-19

Figure 15.3. Answer ‘Yes’ if You Are Using 16-bit Windows Applications to Access the
SLTA-1 O/LTS90

Reboot the PC after installing the driver software.

SLTALink Manager
The SLTALink Manager software provides the interface to setup the SLTA-lO/LTS-20-
based node for different modes of operation. This section describes how to configure it for
remote dial-in access. The remote PC is assumed to have the an LNS 1.5 or higher
application. The LonMaker for Windows integration tool is the application used for this
description.

The SLTALink Manager (s 1 tal ink. exe) is installed to launch automatically from the
Start\Programs\StartUp folder when Windows starts up. This application must run
prior to accessing SLTA-lO/LTS-20-based node from the LonMaker for Windows tool.
The SLTALink Manager ‘s icon appears in the System Tray of the taskbar as shown in
figure 15.4.

SLTALink Manager Icon

Figure 15.4 SLTALink Manager Icon in the System Tray

Setting up an SLTA-lO/LTS-20-based node and modem to leave onsite for remote dial-in
access is accomplished as follows:

1. Temporarily connect the serial port of the network management PC directly to the
SLTA-lO/LTS-20-based node. You typically use the straight-through cable
described in Hardware Setup.

2. Click on the SLTALink Manager in the System Tray You should see the screen
shown in figure 15.5.

15-20 Using the LTS-20 with a Modem

Figure 15.5 SLTALink Manager Application

3. Confirm that the left panel of the SLTALink status bar shows the ‘Local SLTA-10’.
If not, click on the Link. select> menu to select the Local SLTA-10.

4. Click on the Manual Connect Link speed button (the left most button in the
toolbar) to establish a connection to the local SLTA-10. A successful connection will
immediately be reported in the trace frame of the SLTALink Manager.

5. In a dial-in only scenario, the main configuration concern is the password used to
gain access to the SLTA-lO/LTS-20-based node remotely. Using the
Device. Configure SLTA... dialog, you can set the password used to control access
to the SLTA-lO/LTS-20-based node. Figure 15.6 shows this dialog box. In this
example, we checked the Clear EE Pool on Apply, and unchecked the Auto-
dialout options. When Apply button is clicked, the appropriate portions of the
currently connected SLTA-lO/LTS-20-based node are modified.

LTS-20 User’s Guide 15-21

Figure 15.6 SLTA-1 O/LTS-20 Configuration Dialog Setup for Remote Dial-in

6. At this point you can test the SLTA-lO/LTS-20-based node by running the
LonMaker for Windows tool and selecting the SLTALONl network interface to use
the current active local SLTA-lO/LTS-20-based node as the network interface.
With the LonMaker for Windows tool, doing a LonMaker . Status Summary...
command will provide a quick confirmation that the SLTA-lO/LTS-20-based node
functions properly, and can reach all devices in the target network. With the
integrity of the adapter established, it is time to shutdown the LonMaker tool, and
manually disconnect the local SLTA-lOiLTS-20-based node using the SLTALink
Manager.

7. Connect the proper null modem cable between the SLTA-lO/LTS-20-based node and
the modem. Verify power to both devices.

8. From SLTALink Manager, use the Link. New... command to define the remote
connection description. See figures 15.6 - 15.8.

15-22 Using the LTS-20 with a Modem

Figure 15.7 Link Description Wizard Step 1

9. Provide the dialing information as shown in figure 15.8.

Figure 15.8 Dialing Information for the Remote Link

10. In the next screen of the Link description wizard you need to provide the password
that was configured during the local connection back in step 5.

LTS-20 User’s Guide 15-23

15-24 Using the LTS-20 with a Modem

Figure 15.9 Setting the Password for the Remote Link Description

11. Assuming the remote SLTA-lO/LTS-20-based node modem is attached to the
telephone network, you now can dial-in and perform all network management
functions required to diagnose and maintain the network as if you were present at
the site. To establish the remote connection, connect the network management PC’s
modem to the telephone network, select the remote link just defined using the
link. Select> menu function, and click on the Connect speed button. A successful
connection to the remote SLTA-lO/LTS-20-based node will be reported in the trace log
section of the link manager software. At this point, a network management tool such
as the LonMaker for Windows tool can attach to the SLTALONI device.

16

Using the Host Connect Utility
with the LTS-20 MIP Mode

The Host Connect Utility, or HCU, is a standalone DOS utility
designed to dial out and make a connection to a remote LTS-20-based
node in MIP mode. This utility may be used prior to executing an
application based on a LonManager product, or may be called directly
from such a product. The source code for HCU is supplied with the
Connectivity Starter Kit so that it may be used as a model for host
applications that need to establish connections directly with a remote
LTS-20-based node, as well as host applications on platforms other
than PCs running DOS.

The features provided by this program are:

l Dial Out or Hangup Operations

l User Defined Modem Strings, Used for Initialization or Dialing

l Modem Control via the LDVSLTA Network Driver

Skip this Chapter if you are using the LTS-20 NSI mode.

LTS-20 User’s Guide 16-1

HCU Usage

The LTS-20 software is shared in common with the SLTA-10 Serial LonTalk
Adapter. Any references to the SLTA-10 NSI, including file names, apply to
the LTS-20.

The command line arguments for HCU are:

HCU [options] [string1 . . string(n)] 1 [@flenamel

The optional [options] arguments may include:

-Cor -H To indicate to HCU that this is a Connection operation (the
default), or a Hangup operation. For example, a host
application that needs to communicate with a remote SLTA-
lO/LTS-20-based node can be invoked from a DOS batch file,
with preceding and subsequent calls to HCU. Prior to invoking
the application, HCU is called to connect to the remote SLTA-
lO/LTS-20-based node. Following execution of the host
application, HCU is called to disconnect from the remote
SLTA-lO/LTS-20-based node.

-Ddevname To select a non-default device name, where devname
is the device name, default LONl.

-Ppassword To indicate a password, where password is a string
of up to 8 characters, which will be sent downlink to the remote SLTA-lO/LTS-20-
based node once the connection is made. Each character in the password string
may be any eight bit value. Non printable characters may be represented by hex or
octal values in the same format as for C strings, such as “\xlO”, or “\020”.

-Tnnn To select a non-default connection wait time of nnn seconds;
the default is 60 seconds. This value limits the period for
which HCU will wait for a connection to be completed.

-Bbps To change the LDVSLTA network driver serial bit rate. The
default is the current setting of the network driver. This
controls the link rate between the host computer and the
modem. The acceptable values for the bps value are the same
as those available on the SLTA-lO/LTS-20-based node: 1200,
2400,9600,14400,19200,38400,57600, and 115200.

-N

-x

To enable the buffered link protocol and disable the
ALERT/ACK link protocol. This option is not recommended for
connection operations.
To exit HCU with the network driver’s modem support mode
disabled. Use with the -H option to disconnect from a remote
SLTA-lO/LTS-20-based node for subsequent connection to a local
SLTA-lO/LTS-20-based node.

16-2 Using the DOS Host Connect Utility with LTS-20 MIP Mode

All options must precede string arguments on the command line when evaluated
from left to right.

The string arguments are modem command strings, typically Hayes-compatible AT
commands. These strings are sent directly to the modem. For details of the
allowable commands, see the documentation supplied by your modem
manufacturer. If more than one string is included, HCU will wait for the OK
response from the modem before sending the next string. This requires that word
(alphabetic) modem responses are enabled in the modem. If the OK response does
not appear within 4 seconds, HCU will stop waiting and proceed to the next string.

In most cases the command string arguments need to be terminated with a carriage
return. The carriage return is represented by the “ ! ” character. HCU will
interpret the “ ! ” character by sending a carriage return (OxOD) to the modem.
HCU will also interpret the ((-” character by pausing 500ms. If either of these
characters themselves need to be sent to the modem they can be escaped with a
leading backslash, “\ ! ” or “\ -“. HCU does not send implied carriage returns at the
end of each string.

Spaces may be included in the string arguments. If you are including space in an
argument you must enclose the string in double quotes or else the DOS command
line interpreter will view the spaces as argument delimiters.

A filename may be used as a source of the string arguments. The filename should
be preceded by the “@” character, and may be any full pathname. The structure of
the file should be a series of text lines, where each line is a separate string
argument. Command line strings and filename arguments may be intermixed.

Theory of Operation
Upon execution, HCU will open the network driver, set the driver’s operational
mode to modem support on, force direct mode on (disables any SLTA-lO/LTS-20-
based node network interface protocols, enabling communications with the modem
itself), modem responses on (enables modem responses to be passed to the host),
and reliable transport protocol on. If a serial bit rate has been indicated, this also
is set within the driver.

Next, if the HCU hangup operation is selected, HCU will drop DTR for 500ms. See
Using the LTS-20 with a Modem, Chapter 15.

Next, all string arguments are sent to the modem. Acceptable modem responses to
these strings are OK or ERROR.

Next, if the HCU connection operation is selected, HCU will wait for the connection
to be established. This wait will be terminated by one of the following conditions:

l A response from the modem indicating either success or failure. These responses may
be one of the following. [CR] is the carriage return (OxOD) character.

CONNECT [any text] [CR1 This indicates a successful connection.

LTS-20 User’s Guide 16-3

These indicate a failed connection:

NO [any text1 [CR], BUSY [CR], VOICE [CR1

l Any keyboard action. This will abort the HCU process.

Once the connection is considered made, HCU will process any additional modem
responses for a few seconds. It will then change the operational mode of the
network driver to force direct mode off and modem responses off. If this is a
connection operation, the selected network interface protocol is enabled. If the -X
option is specified, modem support is disabled.

Finally, if the user has indicated that a password is to be used, HCU will send the
password command plus the password to the remote SLTA-lO/LTS-20-based node,
and wait for a response. If the response does not appear within five seconds, or if
the response is not an acknowledgment, the process is repeated up to two
additional times.

HCU will exit with a status of zero if the connection or hangup was successful.
Otherwise the exit status will be ‘1’. Upon successful exit the network driver state
will be set to modem responses off. This implies that if the connection is broken
during the course of a host application execution the network driver will not start
sending modem responses back to the host application, since it may not know how
to handle them.

If operating under Microsoft Windows 3.1x, dialing out to a remote SLTA-lO/LTS-
20-based node requires running the DOS program HCU . EXE in a session prior to
running the Windows API application. The HCU source code is available from
Echelon for integration into a DOS application.

When using HCU with the Windows 95 operating system, use the following
procedure:

l Start Windows 95.

l Start a DOS box. Make the DOS box a small window.

l Run HCU in the DOS box.

l After the message “successfully connected” and the DOS prompt appears, EXIT
(type c: \ >exit) DOS box.

l Then run the application.

Usage Examples
To connect at 9600 bps with a modem initialization string included in the process:

HCU -b9600 -pSLTA-2.0 “ATMlElS&l!” “ATDT9,555-1234!”

It is important to remember to include the carriage return (I!‘) at the end of each
command string argument.

Using the DOS Host Connect Utility with LTS-20 MIP Mode

To hangup:

HCU -h ” ---+++---ATHO!”

which includes the Hayes AT command mode escape sequence.

The following is a DOS batch file which will make the connection using a script
'dial . cmd', execute a host program 'hos tapp . exe’, and then hangup:

@echo off

hcu -b9600 -pSLTA-2.0 @dial.cmd

if not errorlevel 1 hostapp.exe
hcu -h ‘1 ---+++---athO ! ((

If using a Windows-based network management application, a connection can be
created by using HCU and then closing the DOS box before initializing the
connection with Ixt-open () .

Suggested Modem Configurations
Following is a list of configuration settings that are suggested for optimal operation
of both HCU and for SLTA-lO/LTS-20-based node to host phone links. These
should be included in the string arguments to HCU if they are not the modem
defaults. When possible, the corresponding AT command is included.

l Command echo: enabled ("~1"). This is a personal preference, and will result in
modem commands being included in the HCU display.

l Send modem responses: enabled (“QO”). This causes the modem to respond to
commands sent to it with a result code.

l Word responses (“~1”). The modem result codes will be expressed as full word codes
(alphabetical) rather than as numerical codes.

l Full response set ("~4" or "~2"). This will include the BUSY and NO DIALTONE
responses, which will expedite the process when these cases occur.

l Data Carrier Detect signal (DCD): reflects carrier state (“&Cl”).

l DTE flow control: disable ("S 5 8 = 0" for Telebit modems, "&KO" for Hayes modems). If
your modem uses software (XON/XOFF) flow control, you must disable it
since the SLTA-lO/LTS-20-based node link layer is a binary one.

l Auto-answer: enabled (“S 0 =l”>. If you need your Host modem to answer to an
incoming call from a remote SLTA-lO/LTS-20-based node and modem, you will need
to enable this feature.

LTS-20 User’s Guide 16-5

Status and Error Reporting
HCU will print its progress to the standard output device, which defaults to the
CRT screen. The format of this display is:

** HCU mmlddlyy hh/mm/ss progress string

where mm/dd/yy is the current month/day/year, and hh/mm/ ss is the current
time. All modem responses are also displayed.

Table 16.1 HCU Progress Strings

or Connection Failed Connection Failed appears following what appear
successful modem connection there may be a prob

16-6 Using the DOS Host Connect Utility with LTS-20 MIP Mode

Downlink Password Timeout

Hangup Failed, Still Connected

LTS-20 User’s Guide

Indicates no password acknowledgment or negative
acknowledgment was received. Either the remote SLTA-
lO/LTS-20-based node is not operational, or the SLTA-
lO/LTS-20-based node link layer protocol does not match, or
there is a problem with transferring binary data across the
modem connection.
Indicates HCU still thinks that the connection is made
following a hangup. This could be the result of a persistant
DCD ON level.

16-8 Using the DOS Host Connect Utility with LTS-20 MIP Mode

17

Using a Programmable Serial
Gateway

This chapter describes how to develop a gateway for a user-defined
ELI-232 serial protocol. The LTS-20 product is shipped with SLTA
firmware that allows it to be used as a LonTalk network interface
for network management, monitoring, and control. When the SLTA
firmware is installed, the data passed between the firmware and
the host application via the ELI-232 port is in the format of
LonTalk protocol application buffers. Serial gateways are
developed using the model 73390 PSG-20 Serial Gateway Core
Module. This gateway allows you to replace the SLTA firmware
with your own firmware, enabling custom protocols to be translated
into LonTalk.

LTS-20 User’s Guide 17-1

Creating a Serial Gateway
For applications of the LTS hardware platform, which cannot use the LonTalk
network interface protocol on the EIA-232 link, the LTS hardware may be
programmed for other data formats using Neuron C. For example, the LTS
hardware may be used to connect ASCII devices such as printers, modems, and
terminals to a LONWORKS network. The LTS hardware may also be programmed
to build a gateway between a foreign EIA-232-based protocol, such as the serial
port on a Programmable Logic Controller (PLC), and the LonTalk protocol. The
LTS hardware without the firmware (e.g., without the PROM) is called a
programmable serial gateway.

The programmable serial gateway is used to create a LONWORKS application
node, so all the standard Neuron Chip firmware features described in the Neuron
C Programmer’s Guide are available to the application programmer. The
firmware images for NSI and MIP mode, as well as capabilities described in the
LONWORKS Host Application Programmer’s Guide are not available. For
example, there is no support for modem control or for more than 62 bound
network variables on such a node. The serial gateway will also not be usable as a
network interface for LonMaker, LonManager DDE Server, or LNS-based
applications, although it can still be installed and managed by such an
application.

LTS / PSG History
Echelon manufactures (or has manufactured) the following LONWORKS serial
devices. Each device ships with firmware:

Product Description

LTS-10 First generation SIP

LTSQO Second generation SIP

Firmware

SLTA/2 functionality in SIP
package

SLTA-10 functionality in SIP
package

Status

Replaced by LTS-20

Current Product

17-2 Programmable Serial Gateway

Each of the serial adapters listed above may also be ordered without firmware.
The hardware is identical, but no firmware is shipped with the device. The user
must provide firmware using the functions described below.

Product

PSG-10

Description Firmware Status

First generation SIP; Hardware None Replaced by PSG-20
identical to SLTA-10

PSG-20 Second generation SIP;
hardware identical to LTS-20

None Current Product

Depending on the hardware you intend to use, one of the following #defines
must be defined in your source (. NC) just before the PSG . H file is included.

#define SLTASIP When targeting PSG-10

#define SLTA2 When targeting PSG/2

#define PSG20 When targeting PSG/3 or PSG-20

Programmable Serial Gateway Hardware Resources
The PSG-20 hardware includes a UART attached to the I/O pins of a Neuron
Chip, memory, oscillator, reset circuitry, and a twisted pair transceiver, as shown
in figure 17.1.

--------------,

EIA-232

I
I

Neuron
i

! UART I-
-3 _ I

LONWORKS
3150 Chip

I
Network

I Trans-

32K i ceiver

I EPROM I
L------------- J

Figure 17.1 PSG-20 Block Diagram (identical to an LTS-20)

LTS-20 User’s Guide 17-3

Developing a PSG Application with the NodeBuilder
Development Tool

Developing an application for the PSG-20 serial gateways is similar to developing
an application for any other custom device. Follow the device creation procedure
outlined in Chapter 5 of the NodeBuilder User’s Guide.

Warning: The PSG software relies on the software update provided in
NodeBuilder Patch 5. Use the following steps to make certain this patch has
been applied to your NodeBuilder development tool before building your PSG
images.

1. Select About NodeBuilder.. . in the NodeBuilder HELP menu.

2. Check to be sure the version listed in the “About” dialog box is
Version 1.5 Build 05.

PSG Software lnsfallation
The PSG/3 software diskette contains the following files:

PSG20R.DTM //Device Template for release

Readme.txt //Last minute notes

PSG.LIB //Neuron C library containing PSG functions

PSG.H //Function prototypes

PSGREGS.H UABT register and address definitions

To install the PSG software on your development tool:

1. Copy the device template (PSG2 OR. DTM) to your device template directory. By
default,thisdirectoryis c:\lonworks\template.

2. The two header files (PSG . H and PSGREG . H) should be copied to your
development tool include directory. By default, this directory is
c:\lonworks\neuronc\include.

3. The final step is to copy the PSG . LIB file to your development tool’s library
directory. By default, this directory is c : \ lonworks \ images.

17-4 Programmable Serial Gateway

PSG2OR. DTM

This template requires that the resistor described in Chapter 2 be in place (PSG-
20 in NSI mode).

Firm ware Library Support

To aid in programming the custom serial gateway application, a firmware library
(PSG. LIB) provides hardware access functions callable from Neuron C. (PSG. LIB
replaces and supercedes the SLTA . LIB library that shipped with the SLTA/2 and
PSG-10 products.) The include files also have been renamed to PSG . H and
PSGREG . H. The new include files contain functions that are backward compatible
with the functions declared in SLTA . H and SLTAREG . H.

In most cases, this library provides all the functions necessary to control the
UART hardware and to read and write data from the serial port. Your
application program will normally make use of some or all of the firmware
functions included in the library PSG . LIB. Prototypes for the following
functions, and the enumeration literals used in the following descriptions, are in
the include file PSG . H.

This library is available for free by downloading it from the licensed software
section of the Developer’s Toolbox at www.echelon.com. The library also is
provided with the NodeBuilder development tool.

LTS-20 User’s Guide 17-5

Usage

17-6

A single programmable serial gateway library (PSG . LIB) is included with the
PSG software. Depending on the hardware you intend to use, one of the
following #defines must be defined in your source (. NC).

#define SLTASIP When targeting PSG-10

#define SLTA2 When targeting PSG/2

#define PSG20 When targeting PSG/3 or PSG-20

This will control which low-level L/O access functions are used. Include the
#define before the #include <PSG . H> statement. For example:

#include <netdbg.h>

#define PSG20

#include <psg.h>

. . .

when (reset)

. . .

Programmable Serial Gateway

Code Development and Debugging
The PSG applications can be debugged only with the NodeBuilder Development
Tool. The LonBuilder Development Tool may be used to develop/load/export
applications, however no debugging facilities are available.

1. Use the NodeBuilder tool with PSGBOR.DTM device template described
above to create the following default [dummy] program:

#include <netdbg.h>

#define PSG20

#include <psg.h>

when (reset)

I

I

2. Export the program to Motorola S Records or Intel HEX format. See
Chapter 5 of the NodeBuilder User’s Guide for details.

3. Load an AT29COlO or AT29C512 FLASH part with your PROM
programmer.

4. Insert the FLASH into the PSG and power the PSG. Be sure that your
NodeBuilder tool is connected to the PSG using the LONWORKS network.
(The same way you would connect to any other custom node.)

5. It is now possible to create a real application and download it over the
LONWORKS network to the PSG. The NodeBuilder debugging features
are available if you included xnetdbg . h> in your source.

Note: You should remove the reference to cnetdbg . h> when creating your
final distribution build.

PSG.LIB Functions

void slta-init(slta-format, slta-baud, slta-intfc);
This function initializes the UART. It sets up the frame format, the serial
interface bit rate, and the modem handshake lines. The frame format parameters
are listed in PSG.H and may be set to:

LTS-20 User’s Guide 17-7

Format Parameter I Data Bits I Parity I Stop Bits I

format-8Nl I 8 I no I one I

format-7El I 7 I even I one I
format-701 I 7 I no I one I
format-7Nl I 7 I no I one I
format-8El I 8 I even I one I
format-801 I 8 I odd 1 one I
format-6Nl I 6 I no I one I
format-601

format-5Nl

6 even one

5 no one

format-5El

format-501

5 even one

5 odd one

The slta-baud parametermaybe settobaud~3OO,baud~6OO,baud~l200,
baud~2400,baud~4800,baud_9600,baud_1440038400,
baud-5 7 6 0 0, or baud-l 15 2 0 0. The EIA-232 interface parameter may be set to
intfc_3wire, or intfc-8wire. Configuration inputs are ignored-all
configuration information is taken from the parameters supplied to
s 1 ta-ini t () . This function should be called once in the reset clause of the
application program.

Example:
when (reset) {

slta-init(format_8Nl, baud-38400,
1

unsigned slta-config(void);

intfc-3wire);

This function reads the configuration inputs. Each input corresponds to a bit in
the value returned by s 1 ta-conf ig () . All of the configuration inputs are
available for application use. The PSG-20 input pin allocation described in
Chapter 3 is only valid for the standard LTS firmware.

An application that uses the software in PSG . LIB may allocate these inputs for
any purpose. To set the serial bit rate and other parameters, see the function
s 1 ta-ini t () . The PSG-20 inputs return a logic 0 when the input is low and a
logic 1 when the input is high. The BAUDO input corresponds to the least
significant bit, followed by the BAUD~, BAUD~, AUTOBAUD, and the CFGO through
CFG3 inputs. The CFG3 input corresponds to the most significant bit.

MSB LSB

CFG3 CFG2 CFGl CFGO AUTOBAUD BAUD2 BAUD1 BAUD0

17-8 Programmable Serial Gateway

boolean slta-txrdy(void);

This function returns TRUE if the UART is ready to accept a character to be
transmitted and FALSE otherwise.

void slta_putchar(unsigned data);

This function waits until the UART is ready, and then transmits the data character.
If the UART is busy, this can take up to one character time. Since the UART is
buffered, this function can return before the character is actually transmitted.

void slta_puts(const char *s)

This function waits until the UART is ready and then outputs a null-terminated
string to the UART. Since the UART is buffered, this function can return before
the string is completely transmitted. The terminating NUL is not transmitted.
For other useful string-manipulation functions, see the Neuron C Reference
Guide.

Example:
network input SNVT-str-asc text-message;
when(nv-update-occurs(text-message)) {

slta_puts(text-message.ascii);
slta_puts("\r\n");

I

boolean slta-rxrdy(void);

This function returns TRUE if the UART has one or more characters in its input
FIFO buffer and FALSE otherwise. The UART used in the programmable serial
gateways has a 16-character input FIFO buffer.

long slta-getchar(void);

This function tests to see if a character is waiting in the UART’s input FIFO
buffer. If there is no character waiting, the function returns - 1. If there is a
character waiting, it is returned in the least significant byte, and zero is returned
in the most significant byte.

Example:
when (slta-rxrdy()) { // keep polling UART

char c;
c = (char) slta_getcharO; // get the character

I

Advanced Applications
For most applications, the functions in PSG . LIB are all that is necessary to create
custom programs for a programmable serial gateway using Neuron C. However,
for specialized applications, the registers of the UART and the programmable
serial gateway may be accessed directly by the application software. This section

LTS-20 User’s Guide 17-9

describes these registers and how they are accessed. For complete
documentation, obtain a data sheet for the UART. The UART is an Exar Model
16C5501 (http://www.exar.com/products/stl6c550.html).

The registers are accessed using the s 1 t a-wr i t e-uar t () and
sl ta-read-uart () functions, which can be used to access any of the locations
in the PSG/3 or PSG-20 I/O space. When using these functions, include the file
PSGREG . H, which contains definitions for many of these locations.

void slta-write-uart (unsigned addr, unsigned data);

This function writes the data byte to the memory mapped I/O location defined by
addr.

extern unsigned slta-read-uart (unsigned addr);

This function reads the data byte from the memory mapped I/O location defined
by addr, and returns that value.

The map for the extended address space is shown in the following sub-sections.
Neuron C declarations for these addresses and bit assignments are provided in the
include file PSGREG . H on the PSG software diskette.

UART Registers

The UART registers are located at address OxE780 - OxE787. See the UART
datasheet for register usage information.

PROM / FLASH Specifications

The following specifications apply to PROM and FLASH.

PROM (90ns)

FLASH29CO10,29C512 (90ns)

Differences Between PSG-10 and PSG-20
The following differences exist between PSG-10 and PSG-20.

l PSG-20 uses a 29COlO or 29C512 flash.

l PSG-20 no longer supports STL-BYTE Board Control Register.

l PSG-20 no longer supports STAT-BYTE Board Status Byte.

l PSG-20 supports larger memory map with expanded RAM and ROM/FLASH
options.

17-10 Programmable Serial Gateway

. SLTA. H has been replaced by PSG . H.

. SLTAREG . H has been replaced by PSGREG . H.

. SLTA.LIBhasbeenreplacedbyPSG.LIB.

Porting PSG- 10 Code to the PSG-20
Use the following steps to port an existing application from a PSG-10 to a PSG-
20.

1. Use the device template supplied in the PSG-20 software distribution.

2. Change all references to es 1 ta . h> to reference cpsg . h>.

3. Change all references to es1 tareg . h> to reference cpsgreg . h>.

4. Change #define SLTASIP or #define SLTA2 to #define PSG.

5. Recompile your application and link with the PSG . LIB library.

LTS-20 User’s Guide 17-11

17-12 Programmable Serial Gateway

18-1

18

Modem Troubleshooting

This chapter provides solutions to problems that may arise with a modem
attached to an LTS-20-based node.

LTS-20 User’s Guide

18-2 Modem Troubleshooting

Troubleshooting
A Host/Modem - Modem/SLTA-LTS configuration has many user-selected options
including the choice of modems, configuration of the modems, the operating system of the
host, the network interface link protocol, and the serial bit rates of both the host/modem
link layer and the SLTA-lO/LTS-20-based node modem link layer.

The most common problem is a failure to use the correct cable between the
SLTA-lO/LTS-20-based node and the modem.

LTS-20-based Node and Modem Do Not Answer or Pick Up

The modem attached to the LTS-20-based node must be configured to auto-answer if you
want it to pick up and connect when dialed up. Set the modem’s SO register to a non-zero
value.

Modems Will Not Connect

This is an unusual case with modems which utilize modulation scheme fallbacks and error
control negotiation fallbacks. One rule for modem modulation speed configuration is that
if your modem can be configured to connect at the speed of the last ‘AT’ command, do so.
Also, be sure that the modem’s connect/carrier (Register S7) wait time is sufhcient. Start
with 60 seconds.

LTS-20-based Node- to-Host Link Fails Completely

This can be observed as repeated retries at the link layer when the first actual downlink
or uplink transfer is attempted. This can be due to any of the following conditions (in
order of likelihood):

l Mismatched network interface link protocols. One end is using the ALERT/ACK link
protocol and another is using the buffered link protocol. These settings are
determined by CFG3 and in the host by network driver switches. The ALERT/ACK
link protocol should be used.

l Using the Host Connect Utility in the wrong network interface link protocol. HCU
can and may modify the current configuration of the DOS network driver. Ensure
that the command line switches for the HCU maintain the desired network interface
link protocol and serial bit rate settings. For example, you may have used the /N

option with the DOS device driver, but did not use the -N switch with HCU.

l Using XONIXOFF flow control in your modem. Since the SLTA-lO/LTS-20-based
node network interface protocol is a binary one, this configuration will interfere
with, or lock up, your modem. Be sure that this feature is disabled in your modems.

LTS-20-based Node-to-Host Link Fails Partially
This can be observed as retries at the link layer when certain downlink or uplink transfers
are attempted. This can be due to any of the following conditions (in order of likelihood):

l Extreme-case delays in either the modem or the connection. In this case the DOS
network driver’s calculated timeout values are too short. Increase the basic timeout
value for the driver using the /Rnn option. Start with 10 for nn and go up.

l Use with Microsoft Windows 3.1x, particularly at higher serial bit rates (9600 or
greater). This is always a problematic case. The priority of the serial I/O interrupts
for PC/ATs is always lower than the DOS tick interrupt, which is used by Windows
to perform many multi-tasking services. During these services, the serial I/O
interrupts may not be serviced in time, resulting in lost uplink data. One solution is
to lower the serial bit rate. Another solution may be to replace the PC/AT’s UART
with the 16550 UART, which has a 16 byte FIFO buffer built into it. This only
works for external modem configurations, and will add about 16ms of interrupt
headroom at 9600 bps, because of the hardware FIFO buffer. Another suspect in
this area can be a disk caching program. These programs also perform services
under the DOS tick interrupt, such as flushing data onto the disk drive, which can
postpone serial I/O interrupts for lengthy periods.

l Modem serial bit rate overrun. For example, if the SLTA-lO/LTS-20-based node
serial bit rate is set to 38,400 bps and the modem telephone line speed is set to 2,400
bps, the modem will likely be overrun by sending it data faster than it can transmit
it. This can occur since no flow control schemes can be used to restrict the rate that
data is sent to the modem. In general, set the modem link rate equal to the
telephone line speed. In certain cases it will be acceptable to exceed the telephone
line speed - for instance, with a 14,400 bps V.32bis modem with data compression
enabled, it may be possible to run the modem link at 19,200 bps.

l Full duplex FIFO overrun. This is caused by excessive full duplex traffic when
using the buffered link protocol. The ALERT/ACK link protocol should be used
instead.

LTS-20-based Node Sends Modem Configuration String, But It Has No
Effect

Most modems will determine the serial bit rate based on the assumption that the first two
characters sent to them while in the command mode are the characters “AT”. This means
that a type of bit rate detection is being performed when these characters are sent to the
modem. If the modem has been power cycled it will need to repeat this process. Some
modems cannot handle being sent an entire configuration string following these first two
characters during this link rate sensing phase. One way to accommodate these modems is
to add an extra AT command, followed by a delay, to the front of the configuration string.
For example:

"AT!-ATEO&Cl&D2SO=l!"

This will allow the modem time to become fully synchronized with the new link bit rate
before sending any actual command strings to the modem.

LTS-20 User’s Guide 18-3

18-4 Modem Troubleshooting

A-l

Appendix A
Communications Parameters

The LTS-20 will automatically set the transceiver communication
parameters based on transceiver ID jumper settings. Parameters for
LON&!IARK-approved transceivers correspond to the parameters defined
by the LONMARK %ayers l-6 Interoperability Guidelines. The
parameters specified as “Configurable” may be changed by a network
management tool. The following table presents the transceiver IDS for
different channel types.

LTS-20 User’s Guide

Parameter

Transceiver ID

Media

Neuron Chip to Transceiver
Interface (Comm Mode)

Interface Bit Rate (Comm
Rate)

Input Clock

Minimum Clock

Number of Priority Slots

Average Packet Size

Oscillator Accuracy

Oscillator Wakeup

Collision Detect (CD)

CD Term after Preamble

CD Through Packet End

Bit Sync Threshold

Hysteresis

Filter

Channel Rate

Alternate Rate

Wakeup Pin Direction

XCVR Controls Preamble

General Purpose Data

Allow Node Override

Receive Start Delay

Receive End Delay

Indeterminate Time

Min. Interpacket Time

Turnaround Time

Missed Preamble

Preamble Length

Use Raw Data

TPflF-78

1 (01 hex)

Isolated
Twisted Pair

Differential

78kbps

5/l OMHz*

Default = 5MHz

Default =
4 slots

Default =
15 bytes

200ppm

Opsec

No

N/A

N/A

5 bits

2

1

N/A

N/A

N/A

N/A

N/A

N/A

2.9 bits

0.0 bits

24.0 bits

0.0 bits

Opsec

1 .O bits

N/A

No

TPLXF- 1250

3 (03 hex)

Isolated
Twisted Pair

Differential

1.25Mbps

1 OMHz

Default =
1 OMHz

Default =
16 slots

Default =
15 bytes

200ppm

Opsec

No

N/A

N/A

7 bits

0

0

N/A

N/A

N/A

N/A

N/A

N/A

14.0 bits

0.0 bits

25.0 bits

0.0 bits

Opsec

4.0 bits

N/A

No

FT-10

4 (04 hex)

Free Topology
/Link Power

Single-Ended

78kbps

5/l OMHz*

Default = 5MHz

Default =
4 slots

Default =
15 bytes

200ppm

Opsec

No

N/A

N/A

4 bits

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

9.0 bits

0.0 bits

24.0 bits

0.0 bits

Opsec

4.0 bits

N/A

No

TP-RS485-39

5 (05 hex)

RS-485 Twisted
Pair

Single-Ended

39 kbps

5/l OMHz*

Default = 5MHz

Default =
4 slots

Default =
15 bytes

200ppm

Opsec

No

N/A

N/A

4 bits

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

2.0 bits

0.0 bits

4.0 bits

0.0 bits

Opsec

1 .O bits

N/A

No

*The input clock rate is 10MHz.

A-2 Appendix A

parameter TP-RS485-625

rransceiver ID 10 (OA hex)

tiedia RS-485 Twisted Pair

\leuron Chip to Transceiver
nterface (Comm Mode)

nterface Bit Rate (Comm
3ate)

nput Clock

Minimum Clock

lumber of Priority Slots

Leverage Packet Size

Dscillator Accuracy

Dscillator Wakeup

Collision Detect (CD)

CD Term after Preamble

CD Through Packet End

Bit Sync Threshold

Hysteresis

Filter

Channel Rate

Alternate Rate

Wakeup Pin Direction

XCVR Controls Preamble

General Purpose Data

Allow Node Override

Receive Start Delay

Receive End Delay

Indeterminate Time

Min. Interpacket Time

Turnaround Time

Missed Preamble

Preamble Length

Jse Raw Data

Single-Ended

625kbps

5/l OMHz*

Default = 5MHz

Default = 4 slots

Default = 15 bytes

200ppm

Opsec

No

N/A

N/A

4 bits

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

2.0 bits

0.0 bits

4.0 bits

0.0 bits

Opsec

1 .O bit

N/A

No

*The input clock rate is 10MHz.

TP-RS485- 1250

11 (OB hex)

RS-485 Twisted Pair

Single-Ended

1.25Mbps

1 OMHz

Default = 5MHz

Default = 16 slots

Default = 15 bytes

200ppm

Opsec

No

N/A

N/A

4 bits

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

2.0 bits

0.0 bits

4.0 bits

0.0 bits

Opec

1 .O bit

N/A

No 1

TP-RS485-78

12 (OC hex)

RS-485 Twisted
2air

Single-Ended

78kbps

5/l OMHz*

Default = 5MHz

Default = 4 slots

Default = 15 bytes

200ppm

Dpsec

No

N/A

N/A

4 bits

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

2.0 bits

0.0 bits

4.0 bits

0.0 bits

Opsec

1 .O bit

N/A

No

LTS-20 User’s Guide A-3

Parameter PL-10

Transceiver ID 9 (09hex)

Media FCC Power Line

Neuron Chip to Transceiver
Interface (Comm Mode)

Interface Bit Rate (Comm
Rate)

Input Clock

Minimum Clock

Number of Priority Slots

Average Packet Size

Oscillator Accuracy

Oscillator Wakeup

Collision Detect (CD)

CD Term after Preamble

CD Through Packet End

Bit Sync Threshold

Hysteresis

Filter

Channel Rate

Alternate Rate

Wakeup Pin Direction

XCVR Controls Preamble

General Purpose Data

Allow Node Override

Receive Start Delay

Receive End Delay

Indeterminate Time

Min. Interpacket Time

Turnaround Time

Missed Preamble

Preamble Length

Use Raw Data

Special Purpose

625kbps

1 OMHz

Default = 5MHz

Default = 8 slots

Default = 15 bytes

200ppm

Opsec

Yes

Yes

N/A

N/A

N/A

N/A

9412bps

9412bps

output

Yes

00 OA 00 00 00 00 00

Yes

1 .O bit

10.4 bits

0.0 bits

0.0 bits

N/A

N/A

3900 psec

No

PL-20N

17(11 hex)

CENELEC C-band
Power Line, Protocol
Off

Special Purpose

1.25Mps

1 OMHz

Default = 2.5MHz

Default = 8 slots

Default = 15 bytes

200ppm

Opsec

N/A

N/A

N/A

N/A

N/A

N/A

3987bps

N/A

output

Yes

OEOl 0010000000

Yes

7.3 bits

1.6 bits

10.1 bits

17.5 bits

N/A

N/A

33.5 bits

No

PL-2oc

16 (10 hex)

CENELEC C-band
Power Line, Protocol
On

Special Purpose

1.25Mps

1 OMHz

Default = 2.5MHz

Default = 8 slots

Default = 15 bytes

200ppm

Opsec

N/A

N/A

N/A

N/A

N/A

N/A

3987bps

N/A

output

Yes

4A000010000000

Yes

7.3 bits

1.6 bits

10.1 bits

17.5 bits

N/A

N/A

33.5 bits

No

A-4 Appendix A

Parameter

Transceiver ID

Media

Neuron Chip to Transceiver
Interface (Comm Mode)

Interface Bit Rate (Comm
Rate)

Input Clock

Minimum Clock

Number of Priority Slots

Average Packet Size

Oscillator Accuracy

Oscillator Wakeup

Collision Detect (CD)

CD Term after Preamble

CD Through Packet End

Bit Sync Threshold

Hysteresis

Filter

Channel Rate

Alternate Rate

Wakeup Pin Direction

XCVR Controls Preamble

General Purpose Data

Allow Node Override

Receive Start Delay

Receive End Delay

Indeterminate Time

Min. Interpacket Time

Turnaround Time

Missed Preamble

Preamble Length

Use Raw Data

PL-20A

15 (OF hex)

CENELEC A-band
Power Line, Protocol
On

Special Purpose

1.25Mps

1 OMHz

Default = 2.5MHz

Default = 8 slots

Default = 15 bytes

200ppm

Opsec

N/A

N/A

N/A

N/A

N/A

N/A

3987bps

N/A

output

Yes

OE 01 00 10 00 00 00

Yes

6.8 bits

1.6 bits

0.0 bits

17.5 bits

N/A

N/A

33.5 bits

No

PL-30

18(12hex)

CENELEC A-band
Power Line

Special Purpose

625kbps

1 OMHz

Default = 5MHz

Default = 8 slots

Default = 15 bytes

300ppm

Opsec

Yes

Yes

N/A

N/A

N/A

N/A

1882bps

1882bps

output

Yes

00 8A 00 00 00

Yes

1 .O bit

10.4 bits

0 bits

0 bits

N/A

N/A

19500 flsec

No

Single-Ended

1.25Mbps

1 OMHz

Default = 1 OMHz

Default = 16 slots

Default = 15 bytes

200ppm

1 Opsec

Yes

Yes

Yes

4 bits

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

4.0 bits

4.0 bits

4.0 bits

8.0 bits

Opsec

4.0 bits

N/A

No

LTS-20 User’s Guide

Parameter

Transceiver ID

Media

Neuron Chip to Transceiver
Interface (Comm Mode)

Interface Bit Rate (Comm
Rate)

Input Clock

Minimum Clock

- DC-78

27 (1 B hex)

Direct Connect

Differential

78kbps

1 OMHz

Default = 1 OMHz

Number of Priority Slots Default = 0 slots

Average Packet Size Default = 15 bytes

Oscillator Accuracy

Oscillator Wakeup

Collision Detect (CD)

CD Term after Preamble

CD Through Packet End

Bit Sync Threshold

Hysteresis

Filter

Channel Rate

Alternate Rate

Wakeup Pin Direction

XCVR Controls Preamble

General Purpose Data

Allow Node Override

Receive Start Delay

Receive End Delay

Indeterminate Time

Min. Interpacket Time

Turnaround Time

Missed Preamble

Preamble Length

Use Raw Data

200ppm

Opsec

No

N/A

N/A

4 bits

0

0

N/A

N/A

N/A

N/A

N/A

N/A

1 .O bit

0.0 bits

0.0 bits

0.0 bits

Opsec

0.0 bits

N/A

No

I625kbps

1 OMHz

Default = 1OMHz

Default = 0 slots

Default = 15 bytes

200ppm

Opsec

No

N/A

N/A

4 bits

0

0

N/A

N/A

N/A

N/A

N/A

N/A

1 .O bit

0.0 bits

0.0 bits

0.0 bits

Opsec

0.0 bits

N/A

1 No

A-6 Appendix A

DC-1250

29 (1 D hex)

Direct Connect

Differential

1.25Mbps

1 OMHz

Default =
1 OMHz

Default = 0 slots

Default =
15 bytes

200 pm

Opsec

No

N/A

N/A

4 bits

0

0

N/A

N/A

N/A

N/A

N/A

N/A

1 .O bit

0.0 bits

0.0 bits

0.0 bits

Opsec

0.0 bits

N/A

No

Appendix B
Windows DLL Files for LTS-20 MIP Mode

This appendix describes the function and use of the LONWORKS DLL driver
software provided with Echelon’s Connectivity Starter Kit. Microsoft
Windows supports access to DOS drivers through an interface layer called
DOS Protected Mode Interface (DPMI). This interface standard defines the
requirements to switch the processor between protected (Windows) and
Real (DOS) mode operation, and also the mechanisms for proper data
transfer between code running in these operating environments. Using
DPMI, the same driver may be used in both DOS and Windows without
modification.

The DPMI layer that allows access to the LDVSLTA . SYS and other DOS
drivers provided by Echelon is contained in the Windows DLL, WLDV . DLL.
This DLL is part of the LonManager@ API for Windows, and the
LonManager DDE Server. It is also supplied on the Windows DLL
diskette. See Chapter 4 for information on installing the Windows DLL
software. The LonManager API provides high level functions for network
installation, maintanence, monitoring, and control. The LonManager DDE
Server provides a simple Dynamic Data Exchange (DDE) interface for other
client Windows applications to access to a LONWORKS based network for
monitoring and control.

Programs specify a logical network driver name when first requesting
access to the network. The WLDV. DLL supports simultaneous access to a
maximum of eight (8) DOS d rivers. The functions provided by WLDV . DLL
are described in the following section.

LTS-20 User’s Guide B-l

Idv-close

Purpose

Terminates access to the network interface hardware.

Syntax
#include <ldv.h>
short ldv-close(short handle);

See Also
ldv-open0

Returns

LDV-OK (0) Device closed successfully.
LDV-NOT-OPEN (3) Invalid handle or device not open.

Parameters

handle short
Device identifier returned by ldv-open () .

B-2 Appendix B

Idv-get-version

Purpose

Returns the current version of the driver DLL as a text string. Format of the version
string is “M.mm[.sssl” where M is the major release number, mm is the minor release
number, and [.sssl is an option sub-release number. All numbers are decimal. Using
this function allows your application to verify that a compatible version of the driver
WLDV.DLL isloaded.

Syntax

#include <ldv.h>
const char far *ldv-get-version(void);

See Also

None.

Returns

char far * Character pointer to text string containing the
WLDV . DLL version number.

Parameters

None.

LTS-20 User’s Guide B-3

Idv-open

Purpose

Initializes the network interface hardware for access by a Windows application. A
Windows application can open multiple network interfaces. In the case of DOS
drivers, this is done by loading multiple drivers in CONFIG. SYS. Initialization
required to prepare the LTS-20 in MIP mode, or any Echelon provided network
interface, for network messages is performed by this function. Different drivers and
hardware interfaces could require different initialization and configuration
requirements. Each driver must provide its own mechanism for providing these
services. In the case of DOS device drivers, this is assumed to be command line
options specified at the time the driver is loaded.

Note: A driver should only allow itself to be opened once. If the driver is already
open, it should return the error value 2.

Syntax

#include <ldv.h>
short ldv-open(char far *device-id-p, short far *handle)

See Also

ldv-close0

Returns

LDV-OK (0)
LDV-NOT-FOUND (1)
LDV-ALREADY-OPEN (2)
LDV-DEVICE-ERR (4)
LDV~INVALID~DEVICE~ID (5)
LDV-NO-RESOURCES (8)

Parameters

device-id-p char far *

Device successfully opened.
Hardware does not exist or is not accessible.
Device already open.
Error occurred accessing device.
Invalid device ID.
No device handles available.

handle

Pointer to a character string identifying the network
interface hardware device to be accessed. The
following naming conventions are used to identify the
type of device driver being used:

LONn DOS Device Driver named LOiVn,
where n is a number from 1 to 9.

short far *
Pointer to an integer in which the open function will
return a handle to be used to identify this device in
other driver functions.

B-4 Appendix B

Idv-read

Purpose

Retrieves an available message from the network interface hardware. The function
returns immediately when no messages are available. An error is returned when the
next available message is longer than the specified buffer length.

Syntax

#include <ldv.h>
short ldv-read(short handle, void far *msg_p, short len);

See Also

ldv-write0

Returns

LDV-OK (0) Message read and placed in the buffer
pointed to by msg-p.

LDV-NOT-OPEN (3) Invalid handle or device not open.
LDV-DEVICE-ERR (4) Error occurred accessing device.
LDV-NO-MSG-AVAIL (6) No message available.
LDV-INVALID-BUF-LEN (9) Invalid buffer length.

Parameters
handle

mw_p

len

short
Device identifier returned by ldv-open () .
void far *
Pointer to the buffer into which the message will be
placed.
short
Length of buffer, in bytes.

LTS-20 User’s Guide B-5

Idv-write

Purpose

Delivers a message to the network interface hardware.

Syntax

#include <ldv.h>
short ldv-write(short handle, void far *msg_p,

short len);

See Also

ldv-read0

Returns

LDV-OK (0) Message written successfully.
LDV-NOT-OPEN (3) Invalid handle or device not open.
LDV-DEVICE-ERR (4) Error occurred accessing device.
LDV-NO-BUFF-AVAIL (7) No message buffers available.

Parameters

handle

msg-p

len

short
Device identifier returned by ldv-open () .
void far *
Pointer to buffer containing the message to be
delivered to the network.
short
Length of outgoing message, in bytes.

B-6 Appendix B

Appendix C
Software License Agreements

Copies of the software license agreements for the LTS-20 products are
included in this appendix.

LTS-20 User’s Guide C-l

,

,

,
1

1
1

1

1
1
I

1

1

1
I
1

t

1

t

I

I

ATTENTION

By opening the bag and/or using the Echelon product contained in the bag you agree to be bound by all the
Terms and Conditions of the Software License Agreement below. If you do not so agree, you may return the
unused Echelon product (including documentation) within 15 days to the person from whom it was acquired
and receive a full refund.

SOFTWARE LICENSE AGREEMENT

LICENSE GRANT

The software incorporated in this Echelon product is proprietary to Echelon. You may use the software only on this product ant
only in the form in which it was delivered to you, and you may use the accompanying documentation. You may transfer tht
software, in the form provided to you, with the product to: (i) your customer for use with equipment sold or otherwise
distributed by you, or (ii) a third party that agrees in writing to be bound to the terms of this license.

You may not (i) copy, modify or translate the software or documentation, (ii) reverse engineer, disassemble, decompile oi
otherwise attempt to derive source code from the software or (iii) remove any proprietary notices, labels or marks on tht
product, software or documentation.

Echelon retains all right, title and interest in and to the software, including copyrights. Failure to comply with the abow
restrictions will result in automatic termination of this license and will make available to Echelon other legal remedies.

WARRANTY DISCLAIMER

Although Echelon has tested the software, and has sought to make the documentation accurate and reliable, THE SOFTWARE
AND DOCUMENTATION ARE PROVIDED TO YOU “AS IS”, AND YOU ASSUME THE ENTIRE RISK OF THEIR USE
ECHELON AND ITS SUPPLIERS MAKE AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS
[MPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON AND ITS SUPPLIER:
EXPRESSLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAP
PURPOSE OR NONINFRINGEMENT WITH RESPECT TO THE SOFTWARE OR DOCUMENTATION. No Echelor
distributors, agents or personnel are authorized to make any warranty inconsistent with this disclaimer.

From time to time, Echelon may modify the software and hardware described in the documentation, and reserves the right to dc
so without notifying you.

LIMITATION OF LIABILITY

1N NO EVENT WILL ECHELON OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA, LOST PROFITS, COST OE
COVER, OR OTHER SPECIAL, INCIDENTAL, PUNITIVE, CONSEQUENTIAL, OR INDIRECT DAMAGES ARISINC
FROM USE OF THE SOFTWARE OR ACCOMPANYING DOCUMENTATION, HOWEVER CAUSED AND ON AN1
I’HEORY OF LIABILITY. THIS LIMITATION WILL APPLY EVEN IF ECHELON, ITS SUPPLIERS, OR Ah
4UTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. YOI.
4CKNOWLEDGE THAT THE PRICE PAID REFLECTS SUCH ALLOCATION OF RISK. ECHELON AND IT5
3UPPLIERS BEAR NO LIABILITY FOR ANY PROGRAMS OR DATA STORED IN OR USED WITH THIS PRODUCT
INCLUDING THE COST OF RECOVERING SUCH PROGRAMS OR DATA.

GENERAL
Ihis Agreement will be governed by the laws of the State of California. This Agreement is the entire agreement held betweer
1s and supersedes any other communications or advertising with respect to the software and accompanying documentation. I
my provision of this Agreement is held invalid, the remainder of this Agreement shall continue in full force and effect. Use
duplication or disclosure by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights ir
Technical Data and Computer Software clause at DFARS 252.227-7013.

c-2 Appendix C

LONWORKS@ Windows Driver Interface
Software License Agreement

Echelon Corporation (“Echelon”) grants you a non-exclusive, non-transferable license to use the copy of the software and
documentation contained in this package and any updates or upgrades thereto provided by Echelon according to the terms set
forth below. As used herein, “Licensed Software” means all software contained in this package, “Network Interface” means
Echelon’s products known as the PCLTA, PCLTA-10, PCLTA-20 LonTalk Adapters, SLTA/2, SLTA-10 Serial LonTalk
Adapters, LTS-10, LTS-20 Module, NSS-10, NSI-10 Network Services Module, and any updates thereof and replacements
thereto, and “Host Application Software” means software that executes on a microprocessor attached to a Network Interface
and that, in conjunction with a Network Interface, acts as a device on a LONWORKS networks and which includes the Licensed
Software or modifications thereof made by Licensee. If the software contained in this package is being provided to you as an
update or upgrade to software which you have previously licensed, then you agree to destroy all copies of the prior release of
this software within thirty (30) days after opening this package; provided, however, that you may retain one copy of the prior
release for backup, archival and support purposes.

LICENSE
You may:
64 use and incorporate with additional software the Licensed Software to create Host Application Software, and use the

accompanying documentation to support such efforts,
(3) make a limited number of copies of the Licensed Software solely to exercise the rights granted above and for backup

purposes, provided that you reproduce, unaltered, all proprietary notices on or in the copies, and
(cl reproduce and distribute Host Application Software and the Licensed Software, in binary form only, solely for use

with a Network Interface, provided that you reproduce, unaltered, all proprietary notices on or in the copies. You
remain solely responsible for support, services, upgrades or other technical assistance with respect to your Host
Application Software, and will indemnify and hold Echelon harmless from all claims, liability and damages arising
from your use or distribution of your Host Application Software,

You may not:
(4 copy the Licensed Software (except as expressly permitted above), or copy the accompanying documentation,
0.J) modify, translate, reverse engineer, decompile or disassemble of the Licensed Software (except to the extent that

such activities may not be prohibited under applicable law), or
(cl distribute, rent, transfer or grant any rights in the Licensed Software or modifications thereof or accompanying

documentation (except as expressly permitted above) in any form to any person without the prior written consent of
Echelon.

This license is not a sale. Title and copyrights to the Licensed Software, accompanying documentation and any copy made by
you remain with Echelon. Unauthorized copying of the Licensed Software or the accompanying documentation, or failure to
comply with the above restrictions, will result in automatic termination of this license and will make available to Echelon other
legal remedies. You may not use Echelon’s name, logo or trademarks, except to state that your Host Applications Software
incorporates the Licensed Software in accordance with Echelon’s guidelines for use of its trademarks.

LIMITED WARRANTY AND DISCLAIMER
Echelon warrants that, for a period of ninety (90) days from the date of delivery to you, the diskettes on which the Licensed
Software is furnished under normal use will be free from defects in materials and workmanship and the Licensed Software
under normal use will perform substantially in accordance with the Licensed Software specifications contained in the Network
Interface documentation.

Echelon’s entire liability and your exclusive remedy under this warranty (which is subject to your returning the Licensed
Software to Echelon) will be, at Echelon’s option, to use reasonable commercial efforts to attempt to correct or work around
errors, to replace the Licensed Software or diskettes with functionally equivalent Licensed Software or diskettes, as applicable,
or to refund the purchase price and terminate this Agreement. EXCEPT FOR THE ABOVE EXPRESS LIMITED
WARRANTIES, ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS,
IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT AND THEIR EQUIVALENTS.

Echelon does not warrant that the operation of the Licensed Software will be uninterrupted or error free or that the Licensed
Software will meet your specific requirements.

I

LTS-20 User’s Guide c-3

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO
THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY
FROM STATE TO STATE AND JURISDICTION TO JURISDICTION.

LIMITATION OF LIABILITY
IN NO EVENT WILL ECHELON BE LIABLE FOR LOSS OF DATA, LOST PROFITS, COST OF COVER OR OTHER
SPECIAL, INCmENTAL, PUNITIVE, CONSEQUENTIAL OR INDIRECT DAMAGES ARISING FROM THE USE OF
THE LICENSED SOFTWARE OR ACCOMPANYING DOCUMENTATION, HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY. THIS LIMITATION WILL APPLY EVEN IF ECHELON OR AN AUTHORIZED
DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL
ECHELONS LIABILITY EXCEED THE AMOUNTS PAID FOR THE NETWORK INTERFACE. YOU ACKNOWLEDC!
THAT THE AMOUNTS PAID BY YOU FOR THE NETWORK INTERFACE REFLECT THIS ALLOCATION OF RISK.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY
FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS AND EXCLUSIONS MAY
NOT APPLY TO YOU.

LANGUAGE
The parties hereto confirm that it is their wish that this Agreement, as well as other documents relating hereto, have been and
shall be written in the English language only.

Les parties aux presentes confirment leur volonte que cette convention de mCme que tous les documents y compris tout avis qu
s’y rattache, soient r&ligCs en langue anglaise.

GENERAL
This Agreement shall not be governed by the 1980 U.N. Convention on Contracts for the International Sale of Goods; rather,
this Agreement shall be governed by the laws of the State of California, including its Uniform Commercial Code, without
reference to conflicts of laws principles. This Agreement is the entire agreement between us and supersedes the license
agreement on the box containing this package and any other communications or advertising with respect to the Licensed
Software and accompanying documentation. If any provision of this Agreement is held invalid or unenforceable, such
provision shall be revised to the extent necessary to cure the invalidity or unenforceability, and the remainder of the Agreemen
shall continue in full force and effect. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subdivision (c)(l)(ii) of the Rights in Technical Data and computer software clause at DFARS 252.227-7013, FAR
52.227-19 or equivalent rights under the regulations of any agency supplement.

Last Revised 03/29/95,279-0202-01 Rev 0295

c-4 Appendix C

	LTS-20 LonTalk Serial Adapter
	Preface
	Contents
	Ch1-LTS-20 Introduction
	Ch2-LTS-20 Overview
	Ch3-Developing an SLTA with the LTS- 20 module
	Ch4-LTS-20 Design Issues
	Ch5-The LTS-20 Software
	Ch6-Creating an LTS-20 MIP Mode Network Driver
	Ch7-Using the DOS Network Driver
	Ch8-Using the UNIX Network Driver
	Ch9-The LTS-20 NSI Mode Software
	Ch10-The LTS-20 MIP Mode Software
	Ch11-Using the Windows 95 or NT Driver and SLTALink Manager with LTS- 20 NSI Mode
	Ch12-Using the DOS Driver with LTS- 20 MIP Mode
	Ch13-Creating an LTS-20 MIP Mode Driver
	Ch14-Initialization and Installation
	Ch15-Using the LTS-20with a Modem
	Ch16-Using the Host Connect Utility with the LTS- 20 MIP Mode
	Ch17-Using a Programmable Serial Gateway
	Ch18-Modem Troubleshooting
	Appendix A-Communications Parameters
	Appendix B-Windows DLL Files for LTS-20 MIP Mode
	Appendix C-Software License Agreements

