
LonTalk® Stack
Developer's Guide

078-0483-01A

Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron,
3120, 3150, LNS, ShortStack, and the Echelon logo are
trademarks of Echelon Corporation registered in the United
States and other countries. OpenLDV and LonScanner are
trademarks of Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Smart Transceivers, Neuron Chips, and other OEM Products
were not designed for use in equipment or systems, which
involve danger to human health or safety, or a risk of
property damage and Echelon assumes no responsibility or
liability for use of the Smart Transceivers, Neuron Chips, and
other OEM Products in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2012 Echelon Corporation.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

LonTalk Stack Developer’s Guide iii

Table of Contents
Welcome... ix
Audience .. ix
Related Documentation .. ix

1 Introduction to LonTalk Stack ...1
Overview... 2

A LONWORKS Device with a Single Processor Chip 3
A LONWORKS Device with Two Processor Chips 4

ShortStack Developer’s Kit .. 4
LonTalk Stack Developer’s Kit... 6

Comparing Neuron-Hosted, ShortStack, and LonTalk Stack
Devices.. 7

Requirements and Restrictions for LonTalk Stack...................................... 9
Development Tools for LonTalk Stack.. 10
LonTalk Stack Architecture .. 10
Overview of the LonTalk Stack Development Process 12

2 Getting Started with the LonTalk Stack Developer’s Kit19
LonTalk Stack Overview ... 20
Installing the LonTalk Stack Developer’s Kit.. 20

Hardware Requirements... 20
Software Requirements... 20
Installing the LonTalk Stack Developer’s Kit 21

LonTalk Stack Files ...21
LonTalk Interface Developer... 21
Example LonTalk Stack Applications .. 22

3 Loading the Echelon Smart Transceiver or Neuron Chip25
Loading Overview .. 26
Integrating a Custom Network Interface ... 28

Defining Incoming Layer 2 Packet Buffers.. 29
Functions..29

4 Designing the Serial I/O Hardware Interface31
Overview of the Hardware Interface .. 32

Reliability... 32
Serial Communication Lines .. 32
The RESET~ Pin ... 33
Selecting the Link-Layer Bit Rate.. 34
Host Latency Considerations..36

SCI Interface .. 36
Performing an Initial Echelon Smart Transceiver Health Check 37

5 Creating a LonTalk Stack Serial MIP Driver....................................39
Overview of the Link Layer Protocol .. 40

Code Packet Layout... 40
Type Code Values.. 42
Acknowledgment Rules .. 44
Sequence Number Cycling and Duplicate Detection 45

Supported MIP Command Set .. 45
Layer 2 / Layer 5 Modes.. 46
Product Query Network Management ... 47

iv

Serial MIP Driver Example... 47
Serial MIP Driver API ... 47

Structures ..47
Functions..48

6 Creating a Model File ..51
Model File Overview .. 52
Defining the Device Interface.. 53

Defining the Interface for a LonTalk Stack Application..................... 53
Choosing the Data Type ... 54

Defining a Functional Block ... 55
Declaring a Functional Block... 56

Defining a Network Variable.. 56
Defining a Changeable-Type Network Variable 58

Defining a Configuration Property... 59
Declaring a Configuration Property .. 59
Responding to Configuration Property Value Changes................ 62
Defining a Configuration Property Array 62
Sharing a Configuration Property ... 64
Inheriting a Configuration Property Type 66

Declaring a Message Tag .. 67
Defining a Resource File ... 68

Implementation-Specific Scope Rules.. 70
Writing Acceptable Neuron C Code .. 70

Anonymous Top-Level Types .. 71
Legacy Neuron C Constructs ..71

Using Authentication for Network Variables .. 71
Specifying the Authentication Key... 72
How Authentication Works... 73

Managing Memory ... 74
Address Table .. 74
Alias Table ...75
Domain Table...75
Network Variable Configuration Table.. 76

Example Model files...76
Simple Network Variable Declarations ... 76
Network Variables Using Standard Types .. 76
Functional Blocks without Configuration Properties 77
Functional Blocks with Configuration Network Variables................. 78
Functional Blocks with Configuration Properties Implemented
in a Configuration File .. 79

7 Using the LonTalk Interface Developer Utility81
Running the LonTalk Interface Developer... 82

Specifying the Project File .. 82
Specifying the Echelon Smart Transceiver or Neuron Chip
Configuration ...83
Configuring the LonTalk Stack .. 84
Configuring the Buffers .. 85
Configuring the Application.. 86
Configuring Support for Non-Volatile Data... 87
Specifying the Device Program ID ... 88
Specifying the Model File.. 89
Specifying Neuron C Compiler Preferences... 90

LonTalk Stack Developer’s Guide v

Specifying Code Generator Preferences... 91
Compiling and Generating the Files .. 92

Using the LonTalk Interface Developer Files .. 93
Copied Files.. 94
LonNvTypes.h and LonCpTypes.h ... 94
FtxlDev.h.. 95
FtxlDev.c .. 95
project.xif and project.xfb.. 95

Using Types ..95
Bit Field Members ... 97
Enumerations .. 98
Floating Point Variables ... 98

Network Variable and Configuration Property Declarations 100
Constant Configuration Properties...102
The Network Variable Table ... 103

Network Variable Attributes ..103
The Message Tag Table ...104

8 Developing a LonTalk Stack Device Application...........................105
Overview of a LonTalk Stack Device Application....................................106

Using the LonTalk API ...106
Callbacks and Events ..108
Integrating the Application with an Operating System 108
Providing Persistent Storage for Non-Volatile Data......................... 109

Restoring Non-Volatile Data ..110
Writing Non-Volatile Data ... 111

Tasks Performed by a LonTalk Stack Application 112
Initializing the LonTalk Stack Device ... 113
Periodically Calling the Event Pump...113
Sending a Network Variable Update ...115
Receiving a Network Variable Update from the Network................ 117
Handling a Network Variable Poll Request from the Network........ 120
Handling Changes to Changeable-Type Network Variables 120

Validating a Type Change ..121
Processing a Type Change..122
Processing a Size Change ...123
Rejecting a Type Change .. 124

Handling Dynamic Network Variables ..124
Communicating with Other Devices Using Application
Messages ..125

Sending an Application Message to the Network 126
Receiving an Application Message from the Network................ 126

Handling Management Commands.. 126
Handling Local Network Management Tasks 127
Handling Reset Events..127
Querying the Error Log...127

Working with ECS Devices.. 127
Using Direct Memory Files..128

The DMF Memory Window... 129
File Directory ... 130

Shutting Down the LonTalk Stack device.. 131
9 Developing an IP-852 Router Application..133

Developing an IP-852 Router Application .. 134

vi

LtLogicalChannel ..134
LtIp852Router ...134

10 Porting a LonTalk Stack Application ...137
Porting Overview ...138

OSAL ..138
LonLink Driver ..138
Service LED ...139
Socket Interfaces ... 139
LonTalkStack Source Files ... 139
Application-Specific Files for LonTalk Stack Devices....................... 141

Application-Specific Code for IP-852 Interfaces.......................................141
Selecting the Device Type..141
File System Requirements .. 142

Appendix A LonTalk Interface Developer Command Line
Usage ..143

Overview...144
Command Usage ..144
Command Switches..145

Specifying Buffers.. 147
Appendix B Model File Compiler Directives151

Using Model File Compiler Directives.. 152
Acceptable Model File Compiler Directives.. 152

Appendix C Neuron C Syntax for the Model File................................157
Functional Block Syntax..158

Keywords..158
Examples..160

Functional Block Properties Syntax ... 161
Keywords..161
Examples..162

Network Variable Syntax ..164
Keywords..164

The Network Variable Modifier ... 164
The Network Variable Storage Class .. 166
The Network Variable Type ... 166
The Network Variable Connection Information 167
The Network Variable Initializer... 170
The Network Variable Property List ... 170

Configuration Property Syntax ... 171
Keywords..171

The Configuration Property Type .. 172
The Configuration Property Modifiers .. 172
The Configuration Property Initializer174

Declaring a Configuration Network Variable.................................... 175
Defining a Device Property List ... 175

Message Tag Syntax ..177
Keywords..177

Appendix D LonTalk API ..179
Introduction.. 180
The LonTalk API, Event Handler Functions, and Callback Handler
Functions ..180

LonTalk Stack Developer’s Guide vii

LonTalk API Functions... 180
Commonly Used LonTalk API Functions.................................... 181
Other LonTalk API Functions.. 181
Application Messaging API Functions .. 182
Non-Volatile Data API Functions .. 182
Extended API Functions... 183

Event Handler Functions.. 184
Commonly Used Event Handler Functions................................. 184
Dynamic Network Variable Event Handler Functions 185
Application Messaging Event Handler Functions 186
Non-Volatile Data Event Handler Functions.............................. 186

LonTalk Stack Callback Handler Functions 187
Commonly Used Callback Handler Functions 187
Direct Memory Files Callback Handler Functions 188
Non-Volatile Data Callback Handler Functions 188

The Operating System Abstraction Layer..189
Managing Critical Sections... 190
Managing Binary Semaphores ... 190
Managing Operating System Events ...190
Managing System Timing ... 191
Managing Operating System Tasks ... 191
Debugging Operating System Functions ... 191

Appendix E Determining Memory Usage for LonTalk Stack
Applications..193

Overview...194
Memory Use for Code ..194
Memory Use for Transactions...194
Memory Use for Buffers ..195
Memory for LONWORKS Resources ... 195
Memory for Non-Volatile Data ... 196
Memory Usage Examples for Data... 198

Appendix F Downloading a LonTalk Stack Application Over
the Network..201

Overview...202
Custom Application Download Protocol ... 202
Application Download Utility..203
Download Capability within the Application ... 203

Appendix G Example LonTalk Stack Applications205
Overview of the Example Applications... 206

Building the Example Applications.. 207
Running the Examples..207

Running the SimpleLtDevice Example 208
Running the SimpleIp852Device Example.................................. 208
Running the Ip852Router Example... 208

SimpleLtDevice and SimpleIp852Device Example Application
Details...208

Main Function..209
Application Task Function.. 211
Event Handler Function ... 212
Application-Specific Utility Functions ...213
Callback Handler Function... 213

viii

Model File...214
Extending the SimpleLtDevice and SimpleIp852 Examples............ 214

IP-852 Router Example Application Details ..215
Appendix H LonTalk Interface Developer Utility Error and
Warning Messages...219

Introduction.. 220
Error Messages...220
Warning Codes ...226
Hint Codes .. 228

Appendix I Glossary ...231

LonTalk Stack Developer’s Guide ix

Welcome
Echelon’s LonTalk® Stack enables you to add a high-performance ISO/IEC
14908-1 control networking interface to any product that contains a
microprocessor, microcontroller, or embedded processor. The LonTalk Stack
includes a simple host application programming interface (API), a complete
ISO/IEC 14908-1 protocol stack implementation, a link-layer driver, a simple
hardware interface, and comprehensive tool support.

This document describes how to port the LonTalk Stack to your processor and
how to develop an application for a LONWORKS device using the LonTalk Stack.
It describes the architecture of a LonTalk Stack device, and how to develop the
device’s software. Software development of a LonTalk Stack device includes
creating a model file, running the LonTalk Interface Developer utility, and using
the LonTalk Stack API functions to program your LonTalk Stack application for
the host processor.

Audience
This document assumes that the reader has a good understanding of the
LONWORKS platform and programming for embedded processors.

Related Documentation
In addition to this manual, the LonTalk Stack documentation suite includes the
following manuals:

• Neuron C Programmer’s Guide. This manual describes the key concepts
of programming using the Neuron® C programming language and
describes how to develop a LONWORKS application.

• Neuron C Reference Guide. This manual provides reference information
for writing programs that use the Neuron C language.

• Neuron Tools Errors Guide. This manual describes error codes issued by
the Neuron C compiler.

The LonTalk Stack also includes the reference documentation for the LonTalk
API, which is delivered as a set of HTML files.

After you install the LonTalk Stack software, you can view these documents from
the Windows Start menu: select Programs → Echelon LonTalk Stack
Developer’s Kit, and then select the document that you want to view.

The following manuals are available from the Echelon Web site
(www.echelon.com/docs) and provide additional information that can help you
develop LONWORKS applications:

• Introduction to the LONWORKS Platform. This manual provides an
introduction to the ISO/IEC 14908 1 Control Network Protocol, and
provides a high-level introduction to LONWORKS networks and the tools
and components that are used for developing, installing, operating, and
maintaining them.

http://www.echelon.com/docs

x

• LONMARK® Application Layer Interoperability Guidelines. This manual
describes design guidelines for developing applications for open
interoperable LONWORKS devices, and is available from the LONMARK
Web site, www.lonmark.org.

• FT 3120 / FT 3150 Echelon Smart Transceiver Data Book. This manual
provides detailed technical specifications on the electrical interfaces,
mechanical interfaces, and operating environment characteristics for the
FT 3120 and FT 3150® Echelon Smart Transceivers.

• PL 3120®/PL 3150®/PL 3170™ Power Line Smart Transceiver Data
Book. Provides detailed technical specifications on the electrical
interfaces, mechanical interfaces, and operating environment
characteristics for the PL 3120®, PL 3150® and PL 3170™ Power Line
Smart Transceivers. This data book also provides guidelines for
migrating applications to the PL Smart Transceiver using the
NodeBuilder® FX Development Tool, the Mini FX Evaluation Kit, or the
ShortStack® Developer’s Kit.

• Series 5000 Chip Data Book. Provides detailed specifications on the
electrical interfaces, mechanical interfaces, and operating environment
characteristics for the FT 5000 Smart Transceiver and Neuron 5000
Processor.

• OpenLNS Commissioning Tool User’s User's Guide. This manual
describes how to use the OpenLNS Commissioning Tool to design,
commission, monitor and control, maintain, and manage a network.

All of the LonTalk Stack documentation, and related product documentation, is
available in Adobe® PDF format. To view the PDF files, you must have a current
version of the Adobe Reader®, which you can download from Adobe at:
http://get.adobe.com/reader/.

http://www.lonmark.org/
http://get.adobe.com/reader/

LonTalk Stack Developer’s Guide xi

LonTalk Stack Developer’s Guide 1

1

Introduction to LonTalk Stack

This chapter introduces LonTalk Stack for embedded
processors. It describes the architecture of a LonTalk Stack
device, including a comparison with other LONWORKS device
development solutions. It also describes attributes of a
LonTalk Stack device, and the requirements and restrictions
of the LonTalk Stack.

2 Introduction to the LonTalk Stack

Overview
Automation solutions for buildings, homes, utility, transportation, and industrial
applications include sensors, actuators, and control systems. A LONWORKS
network is a peer-to-peer network that uses an international-standard control
network protocol for monitoring sensors, controlling actuators, communicating
with devices, and managing network operation. In short, a LONWORKS network
provides communications and complete access to control network data from any
device in the network.

The communications protocol used for LONWORKS networks is the ISO/IEC
14908-1 Control Network Protocol. This protocol is an international standard
seven-layer protocol that has been optimized for control applications and is based
on the Open Systems Interconnection (OSI) Basic Reference Model (the OSI
Model, ISO standard 7498-1). The OSI Model describes computer network
communications through seven abstraction layers. The implementation of these
seven layers in a LONWORKS device provides standardized interconnectivity for
devices within a LONWORKS network. The following table summarizes the CNP
layers.

OSI Layer Purpose Services Provided

7 Application Application compatibility Network configuration, self-installation,
network diagnostics, file transfer,
application configuration, application
specification, alarms, data logging,
scheduling

6 Presentation Data interpretation Network variables, application messages,
foreign frame transmission

5 Session Control Request/response, authentication

4 Transport End-to-end
communication reliability

Acknowledged and unacknowledged
message delivery, common ordering,
duplicate detection

3 Network Destination addressing Unicast and multicast addressing,
routers

2 Data Link Media access and framing Framing, data encoding, CRC error
checking, predictive carrier sense
multiple access (CSMA), collision
avoidance, priority, collision detection

1 Physical Electrical interconnect Media-specific interfaces and modulation
schemes

Echelon’s implementation of the ISO/IEC 14908-1 Control Network Protocol is
called the LonTalk protocol. Echelon has implementations of the LonTalk
protocol in several product offerings, including the Neuron firmware (which is
included in a ShortStack® Micro Server), OpenLNS Server, SmartServers, i.LON

LonTalk Stack Developer’s Guide 3

600 IP-852 Routers, and the LonTalk Stack. This document refers to the
ISO/IEC 14908-1 Control Network Protocol as the LonTalk protocol, although
other interoperable implementations exist.

A LONWORKS Device with a Single Processor Chip
A basic LONWORKS device consists of four primary components:

1. An application processor that implements the application layer, or both
the application and presentation layers, of the LonTalk protocol.

2. A protocol engine that implements layers 2 through 5 (or 2 through 7) of
the LonTalk protocol.

3. A network transceiver that provides the physical interface for the
LONWORKS network communications media, and implements the physical
layer of the LonTalk protocol.

4. Circuitry to implement the device I/O.

These components can be combined in a physical device. For example, an
Echelon Smart Transceiver product can be used as a single-chip solution that
combines all four components in a single chip. When used in this way, the
Echelon Smart Transceiver runs the device’s application, implements the
LonTalk protocol, and interfaces with the physical communications media
through a transformer. The following figure shows the seven-layer LonTalk
protocol on a single Neuron Chip or Echelon Smart Transceiver.

Physical layer

Data link layer

Network layer

Transport layer

Session layer

Presentation layer

Application layer

Transceiver and
wiring

Neuron C
Application

(NodeBuilder FX,
Mini Kit)

Traditional single-chip approach
(Neuron Chip or Smart Transceiver)

N
eu

ro
n

Fi
rm

w
ar

e

4 Introduction to the LonTalk Stack

A LONWORKS device that uses a single processor chip is called a Neuron-hosted
device, which means that the Neuron-based processor (the Echelon Smart
Transceiver) runs both the application and the LonTalk protocol.

For a Neuron-hosted device that uses a Neuron Chip or Echelon Smart
Transceiver, the physical layer (layer 1) is handled by the Neuron Chip or
Echelon Smart Transceiver. The middle layers (layers 2 through 6) are handled
by the Neuron firmware. The application layer (layer 7) is handled by your
Neuron C application program. You can create the application program using the
Neuron C programming language in either the NodeBuilder® FX Development
Tool or the Mini FX.

A LONWORKS Device with Two Processor Chips
Some LONWORKS devices run applications that require more memory or
processing capabilities than a single Neuron Chip or Echelon Smart Transceiver
can provide. Other LONWORKS devices are implemented by adding a transceiver
to an existing processor and application. For these applications, the device uses
two processor chips working together:

• An Echelon Smart Transceiver or Neuron Chip.

• A microprocessor, microcontroller, or embedded processor. This is
typically called the host processor.

A LONWORKS device that uses two processor chips is called a host-based device,
which means that the device includes an Echelon Smart Transceiver or Neuron
Chip plus a host processor.

Compared to the single-chip device, the Echelon Smart Transceiver or Neuron
Chip implements only a subset of the LonTalk protocol layers. The host
processor implements the remaining layers and runs the device’s application
program. The Echelon Smart Transceiver or Neuron Chip and the host processor
communicate with each other through a link-layer interface.

For a single-chip, Neuron-hosted, device you write the application program in
Neuron C. For a host-based device, you write the application program in ANSI C,
C++, or other high-level language, using a common application framework and
application programming interface (API). This API is called the LonTalk API. In
addition, for a host-based device, you select a suitable host processor and use the
host processor’s application development environment, rather than the
NodeBuilder FX Development Tool or the Mini FX application, to develop the
application.

Echelon provides the following solutions for creating host-based LONWORKS
devices:

• ShortStack Developer’s Kit

• LonTalk Stack Developer’s Kit

ShortStack Developer’s Kit
The ShortStack Developer’s Kit is a set of development tools, APIs, and firmware
for developing host-based LONWORKS devices that use the LonTalk Compact API
and a ShortStack Micro Server.

LonTalk Stack Developer’s Guide 5

A ShortStack Micro Server is an Echelon Smart Transceiver or Neuron Chip with
ShortStack firmware that implements layers 2 to 5 (and part of layer 6) of the
LonTalk protocol. The host processor implements the application layer (layer 7)
and part of the presentation layer (layer 6). The Echelon Smart Transceiver or
Neuron Chip provides the physical interface for the LONWORKS communications
channel. The ShortStack firmware allows you to use almost any host processor
for your device’s application and I/O. The following figure displays the
ShortStack solution for a host-based LONWORKS device.

A simple serial communications interface provides communications between the
ShortStack Micro Server and the host processor. Because a ShortStack Micro
Server can work with any host processor, you must provide the serial driver
implementation, although Echelon does provide the serial driver API and an
example driver for some host processors. An example driver is available for an
Atmel® ARM7 microprocessor.

For ShortStack device development, you use the C or C++ programming
language. Alternatively, you can develop ShortStack devices using any
programming language supported by the host processor if you port the LonTalk
Compact API and the application framework generated by the LonTalk Interface
Developer utility to that language.

You use the Echelon LonTalk Interface Developer (LID) utility to create the
application framework. Your application uses the Echelon LonTalk Compact

Application

Serial I/O Driver

ShortStack

ISO/IEC 14908-1
Layers 2 – 6

ISO/IEC 14908-2 or 3
Layer 1 PHY

Smart Transceiver

Host Processor

Communications Channel

LonTalk API

ISO/IEC 14908-1
Layer 7

6 Introduction to the LonTalk Stack

API, which is an ANSI C API, to manage communications with the ShortStack
Micro Server and devices on the LONWORKS network.

LonTalk Stack Developer’s Kit
The LonTalk Stack Developer’s Kit is a set of development tools, APIs, and
firmware for developing host-based LONWORKS devices that use the Echelon
Smart Transceiver or Neuron Chip, a Layer 2 Microprocessor Interface Program
(MIP), and the LonTalk API. You can also use the LonTalk Stack to create
controllers that are attached to IP-852 channels, and IP-852 routers that route
packets between IP-852 and native LonTalk channels.

The Echelon Smart Transceiver or Neuron Chip includes Neuron firmware that
implements the data link layer (layer 2) of the LonTalk protocol. The LonTalk
Stack provides a Layer 2 MIP that transforms the Echelon Smart Transceiver or
Neuron Chip into a network interface that can transmit and receive any packet
from the host processor. The LonTalk Stack includes source code that
implements layers 3 to 6 and part of layer 7 of the LonTalk protocol that you port
to your host processor. The LonTalk Stack also includes a LonTalk API
implementation that you port to your host processor that you integrate with your
application. This solution enables you to develop high-performance controllers
with up to 4,096 network variables and 32,767 address table entries.

To develop the application for your host processor, you use a C or C++ compiler
that supports the embedded processor. You will use the Echelon LonTalk
Interface Developer utility to create the application framework, and then you can

ISO/IEC 14908-1
Layers 3 – 7

With ECS

Application

Serial I/O Driver

Layer 2 MIP

ISO/IEC 14908-1
Layer 2

ISO/IEC 14908-2 or 3
Layer 1 PHY

Smart Transceiver

Host Processor

Communications Channel

LonTalk API

LonTalk Stack Developer’s Guide 7

develop your application using the Echelon LonTalk API to manage
communications between the LonTalk Host stack, Echelon Smart Transceiver or
Neuron Chip, and other LONWORKS devices on the network.

The LonTalk Stack includes an example communications interface driver for the
serial link layer that manages communications between the LonTalk Host stack
within the host processor and the Echelon Smart Transceiver or Neuron Chip
with Layer 2 MIP. You need to include the physical implementation of the serial
link layer in your LonTalk Stack device design, and you need to create the
software implementation of the serial interface driver.

Comparing Neuron-Hosted, ShortStack, and LonTalk
Stack Devices

The following table compares some of the key characteristics of the
Neuron-hosted and host-based solutions for LONWORKS devices.

Characteristic
Neuron-Hosted
Solution

ShortStack
FX LonTalk Stack

Maximum
number of
network
variables

254 254 [1] 4096

Maximum
number of aliases

254 127 [2] 8192

Maximum
number of
addresses

15 15 32767

Maximum
number of
dynamic network
variables

0 0 4096

Maximum
number of receive
transaction
records

16 16 32767

Maximum
number of
transmit
transaction
records

2 2 32767

Support for the
LonTalk
Extended
Command Set

No No Yes [3]

8 Introduction to the LonTalk Stack

File access
methods
supported

FTP [4] , DMF FTP [4], DMF FTP [4], DMF [5]

Link-layer type N/A 4- or 5-line
SCI
or
6- or 7-line SPI

2-line SCI

Typical host API
runtime footprint

N/A 5-6 KB code
with 1 KB
RAM (includes
serial driver,
but does not
include
optional API
or ISI API)

Native LonTalk
protocol stack.

Includes LonTalk
API, Linux Serial
MIP driver, and the
SimpleDevice
example application.

850 KB

IP-852 LonTalk
protocol stack.

Includes LonTalk
API, Linux Serial
MIP driver, and the
SimpleIp852Device
example application.

955 KB

Native LonTalk to
IP-852 Router.

Includes Linux Serial
MIP driver, and the
Ip852Router example
application.

965 KB

Host processor
type

N/A Any 8-, 16-,
32-, or 64-bit
microprocessor
or
microcontroller

Any 32- or 64-bit microprocessor or
microcontroller

Application
development
language

Neuron C Any (typically
ANSI C)

ANSI C or C++ for the embedded
processor

LonTalk Stack Developer’s Guide 9

Notes:

1. ShortStack Micro Servers running on FT 3150 or PL 3150 Echelon Smart
Transceivers support up to 254 network variables. ShortStack Micro Servers
running on FT 3120 Echelon Smart Transceivers support up to 240 network
variables, and ShortStack Micro Servers running on PL 3120 Echelon Smart
Transceivers support up to 62 network variables. A custom Micro Server can
support up to 254 network variables, depending on available resources.

2. ShortStack Micro Servers running on FT 3150 or PL 3150 Echelon Smart
Transceivers support up to 127 aliases. ShortStack Micro Servers running on FT
3120 Echelon Smart Transceivers support up to 120 aliases. ShortStack Micro
Servers running on PL 3120 Echelon Smart Transceivers support up to 62 aliases.
A custom Micro Server can support up to 127 aliases, depending on available
resources.

3. See the ISO/IEC 14908-1 Control Network Protocol Specification for more
information about the extended command set (ECS) network management
commands. This document is available from ISO:
www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60203

4. An implementation of the LONWORKS file transfer protocol (FTP) is not provided
with the product.

5. For more information about the direct memory files (DMF) feature, see Using Direct
Memory Files.

The LonTalk Stack solution provides support for any host processor with the
highest performance and highest network capacity, and it can be used on native
LONWORKS and IP-852 channels. The ShortStack solution provides support for
any host processor, and supports TP/FT-10 and PL-20 channels. The ShortStack
solution supports fewer network variables and aliases that the LonTalk Stack
solution.

Requirements and Restrictions for LonTalk Stack
The LonTalk Stack requires that the application on the host processor use either
an embedded operating system or software that implements a minimum set of
operating system services.

The LonTalk Stack require about 850 KB of program memory on the host
processor, not including the application program or the operating system. In
addition, you must provide sufficient additional non-volatile memory for device
configuration data and any non-volatile data that you include in your application.

You can implement configuration properties as configuration network variables
or in configuration files. To access configuration files, you can implement the
LONWORKS file transfer protocol (FTP) or use the direct memory files (DMF)
feature. See Using Direct Memory Files for more information about when to use
FTP or the DMF feature.

10 Introduction to the LonTalk Stack

Development Tools for LonTalk Stack
To develop an application for a device that uses the LonTalk Stack, you need a
development system for the host processor. In addition, you need the LonTalk
Stack Developer’s Kit, which includes:

• LonTalk API

• LonTalk Host Stack

• LonTalk Interface Developer utility for defining the interface for your
LonTalk Stack device and generating the application framework

• Example LonTalk Stack applications

If you are not using an FT 5000 Smart Transceiver with serial interface to your
host, you will also need a NodeBuilder FX Development Tool or Mini FX
Evaluation Kit to develop the MIP image for your network interface.

You also need a network management tool to install and test your LonTalk Stack
device. You can use the OpenLNS Commissioning Tool, or any other tool that
can install and monitor LONWORKS devices. See the OpenLNS Commissioning
Tool User’s Guide for more information on the OpenLNS Commissioning Tool.

You can use NodeBuilder Code Wizard that is included with the NodeBuilder FX
tool, version 3 or later, to help develop your Neuron C model file. The model file
is used to define the device’s interoperable interface.

LonTalk Stack Architecture
A LonTalk Stack device consists of the following components:

• Echelon Smart Transceiver or Neuron Chip with a Layer 2 MIP.

• A microprocessor, microcontroller, or embedded processor running the
following software:

• Host application that uses the LonTalk API.

• LonTalk API

• LonTalk host stack.

• Non-volatile data (NVD) driver.

• Operating system abstraction layer (OSAL).

• Embedded operating system.

• Serial I/O driver.

The following figure shows the basic architecture of a LonTalk Stack device.

LonTalk Stack Developer’s Guide 11

The LonTalk Stack includes source code for the LonTalk API and the LonTalk
host stack. The kit also includes source code for additional operating system and
hardware APIs that you compile and link with your application. The LonTalk
API defines the functions that your application calls to communicate with other
devices on a LONWORKS network. The API code provides ANSI C interfaces for
the host application.

The LonTalk API consists of the following types of functions:

• Functions to initialize the host device after each reset.

• A function that the application must call periodically. This function
processes messages pending in any of the data queues.

• Various functions to initiate typical operations, such as the propagation
of network variable updates.

• Event handler functions to notify the application of events, such as the
arrival of network variable data or an error in the propagation of an
application message.

• Functions to interface with the operating system.

12 Introduction to the LonTalk Stack

Overview of the LonTalk Stack Development
Process

The development process for a LonTalk Stack application includes the following
steps:

1. Load the Neuron firmware and the Layer 2 MIP on the Echelon Smart
Transceiver or Neuron Chip.

2. Create the serial I/O hardware interface between your host processor and
the Echelon Smart Transceiver or Neuron Chip.

3. Develop a LonTalk Stack serial driver for your host processor that
manages the handshaking and data transfers between the host processor
and the Echelon Smart Transceiver or Neuron Chip.

4. Create a model file that defines the interoperable interface of your
LonTalk Stack device, including its network inputs and outputs.

5. Use the LonTalk Interface Developer utility to generate application
framework files and interface files from the model file.

6. Use a C/C++ development tool to create the LonTalk Stack application,
with input from:

• The application framework files generated by the LonTalk Interface
Developer utility

• The operating system abstraction layer (OSAL) files, which you might
need to modify

• The non-volatile data (NVD) driver files, which you might need to
modify

• The LonTalk host stack

• The LonTalk API

A LonTalk Stack device is comprised of both hardware and software components;
therefore, different people can be involved in the various steps, and these steps
can occur in parallel or sequentially. The figure does not imply a required order
of steps.

LonTalk Stack Developer’s Guide 13

This manual describes the software development process for creating a LonTalk
Stack device, which includes the general tasks listed in the following table.

Task Additional Considerations Reference

Install the LonTalk
Developer’s Kit and become
familiar with it

 Chapter 2, Getting
Started with the
LonTalk Stack
Developer’s Kit

Load an application image
file with the Neuron
firmware and Layer 2 MIP
onto an Echelon Smart
Transceiver or Neuron Chip.

 Chapter 3, Loading
the Echelon Smart
Transceiver or
Neuron Chip

Create the hardware
interface between your host
processor and the Echelon
Smart Transceiver or
Neuron Chip.

 Chapter 4,
Designing the Serial
I/O Hardware
Interface

14 Introduction to the LonTalk Stack

Task Additional Considerations Reference

Develop a LonTalk Stack
serial driver for your host
processor that manages the
handshaking and data
transfers between the host
processor and the Echelon
Smart Transceiver or
Neuron Chip.

 Chapter 5, Creating
a LonTalk Stack
Serial Driver

Select a microprocessor,
microcontroller, or
embedded processor.

The LonTalk Stack application runs
on any microprocessor,
microcontroller, or embedded
processor. You must meet the
LonTalk Stack hardware and software
requirements to ensure that the
LonTalk Stack device has sufficient
RAM and non-volatile memory.

Integrate the LonTalk Stack
application with your device
hardware

You integrate the Echelon Smart
Transceiver or Neuron Chip with the
device hardware. You can reuse many
parts of a hardware design for
different applications to create
different LonTalk Stack devices.

Test and verify your
hardware design

You must ensure that the host
processor and the Echelon Smart
Transceiver or Neuron Chip can
communicate using the serial
interface.

Select and define the
functional profiles and
resource types for your
device using tools such as
the NodeBuilder Resource
Editor and the SNVT and
SCPT Master List

You must select profiles and types for
use in the device’s interoperable
interface for each application that you
plan to implement. This selection can
include the definition of user-defined
types for network variables,
configuration properties or functional
profiles. A large set of standard
definitions is also available and is
sufficient for many applications.

Chapter 6, Creating
a Model File

LonTalk Stack Developer’s Guide 15

Task Additional Considerations Reference

Structure the layout and
interoperable interface of
your LonTalk Stack device
by creating a model file

You must define the interoperable
interface for your device in a model
file, using the Neuron C (Version 2.1)
language, for every application that
you implement. You can write this
code by hand, derive it from an
existing Neuron C application, or use
the NodeBuilder Code Wizard
included with the NodeBuilder
Development Tool to create the
required code using a graphical user
interface.

Chapter 6, Creating
a Model File

Appendix C, Neuron
C Syntax for the
Model File

Use the LonTalk Interface
Developer utility to generate
device interface data, device
interface files, and a
skeleton application
framework

You must execute this utility, a simple
click-through wizard, whenever the
model file changes or other
preferences change. The utility
generates the interface files (including
the XIF file) and source code that you
can compile and link with your
application. This source code includes
data that is required for initialization
and for complete implementations of
some aspects of your device.

Chapter 7, Using the
LonTalk Interface
Developer Utility

Complete the LonTalk API
event handler functions and
callback handler functions to
process application-specific
LONWORKS events

You must complete the event handler
functions and callback handler
functions for every application that
you implement, because they provide
input from network events to your
application, and because they are part
of your networked device’s control
algorithm.

Chapter 8,
Developing a
LonTalk Stack
Device Application

Appendix D,
LonTalk API

Modify the Operating
System Abstraction Layer
(OSAL) files for your
application’s operating
system

 Integrating the
Application with an
Operating System in
Chapter 8,
Developing a
LonTalk Stack
Device Application

Modify the non-volatile data
(NVD) driver files

Depending on the type of non-volatile
memory that your device uses, you
can use one of the non-volatile data
drivers provided with the LonTalk
Stack, make minor modifications to
one of these drivers, or implement
your own driver.

Providing Persistent
Storage for
Non-Volatile Data in
Chapter 8,
Developing a
LonTalk Stack
Device Application

16 Introduction to the LonTalk Stack

Task Additional Considerations Reference

Modify your application to
interface with a LONWORKS
network by using the
LonTalk API function calls

You must make these function calls
for every application that you
implement. These calls include, for
example, calls to the
LonPropagateNv() function that
propagates an updated network
variable value to the network.
Together with the completion of the
event and callback handler functions,
this task forms the core of your
networked device’s control algorithm.

Chapter 8,
Developing a
LonTalk Stack
Device Application

Appendix D,
LonTalk API

Test, install, and integrate
your LonTalk Stack device
using a LONWORKS network
tool such as the OpenLNS
Commissioning Tool

 OpenLNS
Commissioning Tool
User’s Guide

LonTalk Stack Developer’s Guide 17

LonTalk Stack Developer’s Guide 19

2

Getting Started with the
LonTalk Stack Developer’s Kit

This chapter describes the LonTalk Stack and how to install it.

20 Getting Started with the LonTalk Stack Developer’s Kit

LonTalk Stack Overview
The LonTalk Stack Developer’s Kit contains the source code, firmware, and
documentation required to add a high-performance ISO/IEC 14908-1 control
networking interface to any smart device. The LonTalk Stack Developer’s Kit
includes the following components:

• C and C++ source code for the LonTalk host stack and LonTalk API

• Neuron image for a Layer 2 MIP for devices that use an FT 5000 for the
network interface

• Library with the Layer 2 MIP for devices that do not use an FT 5000 for
the network interface

• A set of example programs that demonstrate how to use the LonTalk API
to communicate with a LONWORKS network

• The LonTalk Interface Developer utility, which defines parameters for
your host application program and generates required device interface
data for your device

• Documentation, including this guide and HTML documentation for the
LonTalk API

Installing the LonTalk Stack Developer’s Kit
The following sections describe the hardware and software requirements, and
how to install the LonTalk Stack.

Note: The LonTalk Stack Developer’s Kit is not compatible with the FTXL
Developer’s Kit. You must uninstall the FTXL Developer’s Kit before installing
the LonTalk Stack Developer’s Kit on your computer.

Hardware Requirements
For the LonTalk Stack Developer’s Kit, your computer system must meet the
following minimum requirements:

• 1 gigahertz (GHz) or faster 32-bit (x86) or 64-bit (x64) processor

• 1 gigabyte (GB) RAM (32-bit) or 2 GB RAM (64-bit)

• 5 GB available hard disk space

In addition, you must have the following hardware for LONWORKS connectivity:

• LONWORKS compatible network interface, such as a U10 USB Network
Interface, SmartServer, or i.LON 600 IP-852 Router.

Software Requirements
For the LonTalk Stack, your computer system must meet one of the following
minimum requirements:

• Microsoft Windows 7 (32-bit or 64-bit).

• Microsoft Windows Vista.

LonTalk Stack Developer’s Guide 21

• Microsoft® Windows® XP, plus Service Pack 3 or later.

Installing the LonTalk Stack Developer’s Kit
To install the LonTalk Stack Developer’s Kit, perform the following steps:

1. Download and install the LonTalkStack200.exe file from the Echelon
Web site.

2. Follow the installation dialogs to install the LonTalk Stack Developer’s
Kit onto your computer.

In addition to the LonTalk Stack, the installation program also installs:

• LONMARK® Resource Files

• NodeBuilder Resource Editor

LonTalk Stack Files
The LonTalk host stack and LonTalk API are provided as portable ANSI C and
C++ files. These files are contained in the [LonTalkStack]\Source directory (the
LonTalk Stack Developer’s Kit typically installs the LonTalkStack directory in
the C:\LonWorks directory). The LonTalk Interface Developer utility
automatically copies these files from the LonTalkStack\Templates folder into
your project folder, but does not overwrite existing files with the same names.

The following table lists the files included in the LonTalk host stack and LonTalk
API. Many of the files are also used by the FTXL Developer’s Kit and therefore
have an FTXL prefix in their name.

File Name Description

FtxlApi.h Function definitions for the LonTalk API

FtxlHandlers.c

Function definitions for the event handler functions and
callback handler functions

FtxlNvdFlashDirect.c

FtxlNvdFlashFs.c

FtxlNvdUserDefined.c

Functions for managing non-volatile data

FtxlTypes.h C type definitions that are used by the LonTalk API

LonPlatform.h Definitions for adjusting your compiler and development
environment to the requirements of the LonTalk API

LonTalk Interface Developer
The LonTalk Interface Developer utility generates the device interface data and
device interface files required to implement the device interface for your LonTalk
Stack device. It also creates a skeleton application framework that you can

22 Getting Started with the LonTalk Stack Developer’s Kit

modify and link with your application. This framework contains most of the code
that is needed for initialization and other required processing.

The executable for the LonTalk Interface Developer utility is named LID.exe,
and is installed in the LonTalk Interface Developer directory (usually,
C:\LonWorks\InterfaceDeveloper).

The LonTalk Interface Developer utility also includes a command-line interface
that allows make-file and script-driven use of the utility. For more information
about the command-line interface, see Appendix A, LonTalk Interface Developer
Command Line Usage.

For more information about the LonTalk Interface Developer utility, see Chapter
7, Using the LonTalk Interface Developer Utility.

Example LonTalk Stack Applications
The LonTalk Stack Developer’s Kit includes three example applications that are
stored in the LonWorks\LonTalkStack\Examples directory. You can build
these example applications with Microsoft Visual Studio 2008, and then run
them on Windows. To run the examples, you must install OpenLDV 4.0, which
you can download for free from the Echelon Web site at
www.echelon.com/support/downloads. The following table describes these three
example applications:

Function Description

SimpleLtDevice Simulates a voltage amplifier device. This device receives
an input voltage value, multiplies the value by 2, and
outputs the new value.

This simulated device connects to a native LonTalk
channel via OpenLDV 4.0 (or later), using a standard
LONWORKS network interface.

This example requires a Layer 2 network interface such
as the Echelon U10 USB Network Interface.

SimpleIp852Device Identical to the SimpleLtDevice example, but it
connects to an IP-852 channel rather than a native
LONWORKS channel.

This example requires the Echelon IP-852 Configuration
Server (you can download from this app for free from the
Echelon Web site at
www.echelon.com/support/downloads).

Ip852Router A router that connects an IP-852 channel to a native
LONWORKS channel.

This example uses OpenLDV 4.0 (or later) and a standard
Layer 2 LONWORKS network interface to communicate
with the native LONWORKS channel (for example, U10
USB network interface or PCC-10, PCLTA-20, or
PCLTA-21 network interface card).

http://www.echelon.com/support/downloads
http://www.echelon.com/support/downloads

LonTalk Stack Developer’s Guide 23

See Appendix G, Example LonTalk Stack Applications, for more information
about these examples.

24 Getting Started with the LonTalk Stack Developer’s Kit

LonTalk Stack Developer’s Guide 25

3

Loading the Echelon Smart
Transceiver or Neuron Chip

This chapter describes how to load an application image
with the Neuron firmware and Layer 2 MIP onto an Echelon
Smart Transceiver or Neuron Chip.

26 Loading the Echelon Smart Transceiver or Neuron Chip

Loading Overview
To create a LonTalk Stack device, you first need to load an Echelon Smart
Transceiver or Neuron Chip with an application image file. The application
image contains Neuron firmware that implements the data link layer of the
LonTalk protocol (layer 2), and a Layer 2 MIP that enables the Echelon Smart
Transceiver or Neuron Chip to transmit and receive any packet to and from the
host processor.

You can load the Echelon Smart Transceiver or Neuron Chip using one of the
following three options:

1. Load an Echelon-provided pre-compiled application image file onto an
Echelon FT 5000 Smart Transceiver or PL 3120 Smart Transceiver.

• The FT 5000 Smart Transceiver must be running Neuron Firmware
Version 19, using a 20 MHz clock speed, and be attached to a
TP/FT-10 channel.

• The PL 3120 Chip must be running Neuron Firmware Version 14 and
be attached to a PL-20 channel.

The application images files are stored in the
LonWorks\LonTalkStack\Source\Target\Neuron\SMIP directory.
This folder includes .NME and .NDL files for the FT 5000 Smart
Transceiver (SMIP FT5000.NME or SMIP FT5000.NDL) and the PL
3120 Smart Transceiver (SMIP PL3100.NME or SMIP PL3100.NDL)

You can program the .NME file directly on the serial EEPROM of the FT
5000 Smart Transceiver. You can load the .NDL file on the FT 5000
Smart Transceiver or PL 3120 Smart Transceiver using OpenLNS
Commissioning Tool or the NodeLoad utility.

2. Create your own application image with the NodeBuilder FX
Development Tool or the Mini FX Evaluation Kit and load it onto a FT
5000 Echelon Smart Transceiver, Series 5000 chip, or Neuron 3120E4
Chip with the appropriate programming tool. For more information on
the NodeBuilder tool and the Mini kit, go the Echelon Web site at
www.echelon.com/products/tools/development.

In this scenario, you create your own Neuron C application that specifies
the baud rate and the network buffering for the Echelon Smart
Transceiver or Neuron Chip. Specify a baud rate of 115,200 to make your
Echelon Smart Transceiver compatible with the provided Serial MIP
driver example. If you use a different baud rate, update the baud rate in
the Serial MIP driver example to make it compatible with your Echelon
Smart Transceiver.

You then generate an application image that includes your Neuron C
application and the Layer 2 MIP library (smip_ft5000.lib or
smip_pl3100.lib), and load the application image onto the Echelon
Smart Transceiver or Neuron Chip. The LonTalk Stack Developer’s Kit
includes a Neuron C application example that can be used to build the
SMIP (SMIP PDT.NC).

LonTalk Stack Developer’s Guide 27

The following table lists the Neuron processor and memory combinations,
and it lists the application image files and tools that you use to program
each onto an Echelon Smart Transceiver or Neuron Chip

Echelon
Smart
Transceiver

Memory
Type

Image File
Extension

Programming
Tool

Example
Programming
Tools

APB, NDL,
or NEI

Network
management
tool

NodeLoad utility

OpenLNS CT

Neuron
3120E4 Chip

On-chip
EEPROM

NFI PROM
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

APB or
NDL

Network
management
tool

NodeLoad utility

OpenLNS CT

FT 5000
Echelon
Smart
Transceiver

Off-chip
EEPROM
(minimum
4K) or
flash. NME or

NMF
EEPROM or
flash
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

In-circuit
programmer, such
as Total Phase™
Aardvark™
I2C/SPI Host
Adapter

Notes:

• Information about the NodeLoad utility and OpenLNS CT is available
from www.echelon.com.

• Information about BPM Microsystems programmer models is available
from www.bpmicro.com. The Forced Programming option in the menu is
provided only to refresh the internal memory contents and should not be
used to program new devices. In this mode, the programmer simply
reads out the contents of the memory and rewrites them.

• Information about HiLo Systems manual programmer models is available
from www.hilosystems.com.tw.

• Information about TotalPhase programmers is available from
www.totalphase.com.

http://www.echelon.com/
http://www.bpmicro.com/
http://www.hilosystems.com.tw/
http://www.totalphase.com/

28 Loading the Echelon Smart Transceiver or Neuron Chip

 Notes:

• If you load an NDL file with the NodeLoad Utility, the last step of the
process may generate errors when the final network management
status checks are performed.

• To prevent link errors, you need to copy an updated symbol file to the
appropriate Neuron firmware folder on your development computer,
and then specify them as custom system images in the Hardware
Template Editor. This file has additional symbols for low-level serial
interrupt modifications, and access to the network buffer queues.

The following table lists where the updated symbol files are stored for
the FT 5000 Smart Transceiver and the PL 3120 Smart Transceiver,
and to where they need to be copied on your development computer.

Echelon Smart
Transceiver Updated Symbol File

Destination Folder on
Development Computer

PL 3120 Smart
Transceiver

Source/Target/Neuron/
Ver14/ b3120E4Xl2smip.sym

C:/LonWorks/Images/Ver19

FT 5000 Smart
Transceiver

Source/Target/Neuron/
Ver19/bft5000l2smip.sym

C:/LonWorks/Images/Ver14

• Before you load an application image onto the Echelon Smart
Transceiver or Neuron Chip, you must reset the node and hold the
service pin low for 5 seconds to put the node into the application-less
state.

Alternatively, your host application can send the niMODE_L5 local
network interface command to the Layer 2 MIP to switch it to Layer 5
mode. The Layer 2 MIP can then process most network management
commands so that a network loader can load the application image.

3. The same as option 2, but you also develop code that implements the
network interface with your host processor. See the next section,
Integrating a Custom Network Interface, for more information.

Integrating a Custom Network Interface
You can create your own network interface and integrate it with your host
processor. The following sections describe the APIs included in the l2mlib.h file
that you can use to create a custom network interface.

Before creating your network interface, you need to copy two additional updated
symbol files to the Version 14 Neuron firmware folder on your development
computer, and then specify them as custom system images in the Hardware
Template Editor. The following table lists where the updated symbol files are
stored, and to where they need to be copied on your development computer.

LonTalk Stack Developer’s Guide 29

Updated Symbol File
Destination Folder on
Development Computer

Source/Target/Neuron/L2ML
IB/ Ver14/sys3150l2mlib.sym

C:/LonWorks/Images/Ver14

Source/Target/Neuron/L2ML
IB/ Ver14/sys3150l2mlib.nx

C:/LonWorks/Images/Ver14

Defining Incoming Layer 2 Packet Buffers
You can define incoming Layer 2 packet buffers using the following syntax:
[length] [miCOMM|miINCOMINGL2] [backlog/altpath] NPDU [CRC_HI]
[CRC_LO]

The length field includes the 2 bytes before the NPDU, the NPDU itself, and the
two CRC bytes.

Functions
The following table describes the functions included in the l2mlib.h file that you
can use to create a custom network interface.

Function Syntax Description

l2ml_gol2() extern system far void
l2ml_gol2(void);

Switches the network
processing to L2 mode. If it
is already in L2 mode, this
method does nothing. You
can return to the scheduler
when in L2 mode as the
network processor believes
there is no incoming traffic.

l2ml_gol5() extern system far void
l2ml_gol5(void);

Switches the network
processing to L5 mode. If it
is already in L5 mode, this
method does nothing.

l2ml_getl2packet() extern system far
unsigned
*l2ml_getl2packet(void);

Returns any L2 packet
buffers in the receive queue.
This method returns NULL
if there are no L2 packet
buffers available.

30 Loading the Echelon Smart Transceiver or Neuron Chip

Function Syntax Description

l2ml_freel2packet() extern system far void
l2ml_freel2packet(unsigne
d *mp);

Frees any packet buffers
returned by
l2ml_getl2packet()
method. This method does
not check for NULL
pointers. You can only free
packet buffers after
processing.

l2ml_allocl2buffer() extern system far
unsigned
*l2ml_allocl2buffer(void)
;

The length field indicates the
size of the packet buffer
(including overhead).

The miCOMM field is
[miCOMM|miTQ] 0x12.

The format of this buffer is
[length] [miCOMM|miTQ]
[backlog/altpath] NPDU.

Allocates a L2 packet buffer
for transmitting. This
method returns NULL if
there are no L2 packet
buffers available.

l2ml_sendl2packet() extern system far void
l2ml_sendl2packet(unsigne
d *mp);

Queues the packet buffer
allocated by
l2ml_allocl2buffer()
method for transmission.
This method does not check
for NULL pointers.

l2ml_l2buffsize() extern system far
unsigned
l2ml_l2txbuffsize(void);

Returns the largest possible
size that the NPDU can be
for transmission to a
like-sized device (same
network input buffer size).
This is a better
measurement than the size
passed in from
l2ml_allocl2buffer()
method because it accounts
for internal overhead and
the receiver's capabilities

LonTalk Stack Developer’s Guide 31

4

Designing the Serial I/O
Hardware Interface

This chapter describes what you need to design the serial
I/O hardware interface between your host processor and the
Echelon Smart Transceiver or Neuron Chip for devices that
use the Serial MIP.

32 Designing the Serial I/O Hardware Interface

Overview of the Hardware Interface
This chapter describes the hardware interface, including the requirement for
pull-up resistors, selecting a minimum communications interface bit rate,
considerations for host latency, specifying the SCI interface, and how to perform
an initial health check of the Echelon Smart Transceiver.

Reliability
The LonTalk Stack link layer protocol assumes a reliable serial link and does not
include error detection or error recovery. Instead, error detection and recovery
are implemented by the LonTalk protocol, and this protocol detects and recovers
from errors.

To minimize possible link-layer errors, be sure to design the hardware interface
for reliable and robust operations. For example, use a star-ground configuration
for your device layout on the device’s printed circuit board (PCB), limit entry
points for electrostatic discharge (ESD) current, provide ground guarding for
switching power supply control loops, provide good decoupling for VDD inputs, and
maintain separation between digital circuitry and cabling for the network and
power. See the FT 3120 / FT 3150 Echelon Smart Transceiver Data Book, the PL
3120 / PL 3150 / PL 3170 Power Line Echelon Smart Transceiver Data Book, or
the Series 5000 Chip Data Book for more information about PCB design
considerations for an Echelon Smart Transceiver.

The example applications contain example implementations of the link layer
driver, including examples and recommendations for time-out guards within the
various states of that driver.

Serial Communication Lines
For the SCI serial interfaces, you must add 10 kΩ pull-up resistors to the two
communication lines between the host processor and the Echelon Smart
Transceiver or Neuron Chip. These pull-up resistors prevent invalid transactions
on start-up and reset of the host processor or the Echelon Smart Transceiver or
Neuron Chip. Without a pull-up resistor, certain I/O pins can revert to a floating
state during start-up, which can cause unpredictable results.

High-speed communication lines should also include proper back termination.
Place a series resistor with a value equal to the characteristic impedance (Z0) of
the PCB trace minus the output impedance of the driving gate (the resistor value
should be approximately 50 Ω) at the driving pin. In addition, the trace should
run on the top layer of the PCB, over the inner ground plane, and should not
have any vias to the other side of the PCB. Low-impedance routing and correct
line termination is increasingly important with higher link layer bit rates, so
carefully check the signal quality for both the Echelon Smart Transceiver or
Neuron Chip and the host when you design and test new LonTalk Stack device
hardware, or when you change the link-layer parameters for existing LonTalk
Stack device hardware.

LonTalk Stack Developer’s Guide 33

The RESET~ Pin
The Echelon Smart Transceiver and Neuron Chip have no special requirements
for the RESET~ (or RST~) pin. See the FT 3120 / FT 3150 Echelon Smart
Transceiver Data Book, the PL 3120 / PL 3150 / PL 3170 Power Line Echelon
Smart Transceiver Data Book, or the Series 5000 Chip Data Book for information
about the requirements for this pin.

However, because a LonTalk Stack device uses two processor chips, the Echelon
Smart Transceiver or Neuron Chip and the host processor, you have an
additional consideration for the RESET~ pin: Whether to connect the host
processor’s reset pin to the Echelon Smart Transceiver or Neuron Chip RESET~
pin.

For most LonTalk Stack devices, you should not connect the two reset pins to
each other. It is usually better for the Echelon Smart Transceiver or Neuron
Chip and the host application to be able to reset independently. For example,
when the Echelon Smart Transceiver or Neuron Chip encounters an error that
causes a reset, it logs the reset cause (see Querying the Error Log); if the host
processor resets the Echelon Smart Transceiver or Neuron Chip directly, possibly
before the Echelon Smart Transceiver or Neuron Chip can detect and log the
error, your application cannot query the Echelon Smart Transceiver or Neuron
Chip error log after the reset to identify the problem that caused the reset. The
Echelon Smart Transceiver or Neuron Chip also resets as part of the normal
process of integrating the device within a network; there is normally no need for
the host application to reset at the same time.

In addition, the host processor should not reset the Echelon Smart Transceiver or
Neuron Chip while it is starting up (that is, before it sends the
LonResetNotification uplink reset message to the host processor).

For devices that require the host application to be able to control all operating
parameters of the Echelon Smart Transceiver or Neuron Chip, including reset,
you can connect one of the host processor’s general-purpose I/O (GPIO) output
pins to the Echelon Smart Transceiver or Neuron Chip RESET~ pin, and drive
the GPIO pin to cause an Echelon Smart Transceiver or Neuron Chip reset from
within your application or within your serial driver. Alternatively, you can
connect one of the host processor’s GPIO input pins to the Echelon Smart
Transceiver or Neuron Chip RESET~ pin so that the host application can be
informed of Echelon Smart Transceiver or Neuron Chip resets.

A host processor’s GPIO output pin should not actively drive the Echelon Smart
Transceiver’s RESET~ pin high, but instead should drive the pin low. You can
use one of the following methods to ensure that the GPIO pin cannot drive the
RESET~ pin high:

• Ensure that the GPIO pin is configured as an open-drain (open-collector)
output

• Ensure that the GPIO pin is configured as a tri-state output

• Place a Schottky diode between the GPIO pin and the RESET~ pin, with
the cathode end of the diode connected to the GPIO pin

Configuring the GPIO pin as either open drain or tri-state ensures that the GPIO
pin is in a high-impedance state until it is driven low. Using a Schottky diode is
preferable to using a regular diode because a Schottky diode has a low forward
voltage drop (typically, 0.15 to 0.45 V), whereas a regular diode has a much

34 Designing the Serial I/O Hardware Interface

higher voltage drop (typically, 0.7 V), that is, the Schottky diode ensures that the
voltage drop is low enough to ensure a logic-low signal.

Host-driven reset of the Echelon Smart Transceiver or Neuron Chip should only
be an emergency means to recover from some serious error. In addition, the host
application or serial driver should always log the reason or cause for the reset,
along with timestamp information. An unrecoverable error that requires a reset
of the Echelon Smart Transceiver or Neuron Chip is generally evidence of a
malfunction in the host driver, the Echelon Smart Transceiver or Neuron Chip,
or the physical link layer, and should be investigated.

Selecting the Link-Layer Bit Rate
The serial link bit rate for the pre-built Layer 2 MIP images is fixed at 115, 200
bps. If you build a custom Layer 2 MIP image, you can specify a lower bit rate if
required for your hardware. The minimum bit rate for the serial link between
the Echelon Smart Transceiver or Neuron Chip and the host processor is most
directly determined by the expected number of packets per second, the type of
packets, and the size of the packets. Another factor that can significantly
influence the required bit rate is support for explicit addressing, an optional
feature that the LonTalk Stack application can enable and disable.

Recommendations: The following recommendations apply to general-use
LONWORKS devices:

• Echelon Smart Transceiver or Neuron Chip external clock frequency

o 10 MHz or higher for TP/FT-10 devices (for Series 5000 devices,
specify a minimum 5 MHz system clock rate)

o 5 MHz or higher for power-line devices

• Bit rate

o 38 400 bps or higher for TP/FT-10 devices

o 9600 bps or higher for power-line devices

To generate a more precise estimate for the minimum bit rate for the serial
interface, use the following formula:

() exp**5 PPSBPTPEAPMinBitRate Interfacesizetype +++=

where:

• The constant 5 represents general communications overhead

• typeP is the packet-type overhead, and has one of the following values:

o 3 for network-variable messages

o 1 for application messages

• EA is the explicit-addressing overhead, and has one of the following
values:

o 0 for no explicit-addressing support

o 11 for explicit-addressing support enabled

• sizeP is the packet size of the payload, and has one of the following values:

LonTalk Stack Developer’s Guide 35

o sizeof(network_variable)

o sizeof(message_length)

• InterfaceBPT represents data transfer overhead for the serial interface, and
has one of the following values:

o 1 bit per transfer for SPI

o 10 bits per transfer for SCI

• expPPS is the expected packet-per-second throughput value

Example: For an average network variable size of 3 bytes, no explicit messaging
support, and a TP/FT-10 channel that delivers up to 180 packets per second, the
minimum bit rate for an SCI interface is 19 200 bps. To allow for larger NVs,
channel noise, and other systemic latency, you should consider setting the device
bit rate at the next greater value above the minimum calculated from the
formula. Thus, for this example, a bit rate of 38 400 or 76 800 bps is
recommended.

To calculate the expected packet-per-second throughput value for a channel, you
can use the Echelon Perf utility, available from www.echelon.com/downloads.

However, the bit rate is not the only factor that determines the link-layer transit
time. Some portion of the link-layer transit time is spent negotiating handshake
lines between the host and the Echelon Smart Transceiver. For faster bit rates,
the handshaking overhead can increase, thus your application might require a
faster clock speed for the Echelon Smart Transceiver to handle the extra
processing.

Example: For a Series 3100 Echelon Smart Transceiver running at 10 MHz and
an ARM7 host running at 20 MHz, the link-layer transit for a 4-byte network
variable fetch, the handshaking overhead can be as much as 22% of the total
link-layer transit time at 19 200 bps, and as much as 40% at 38 400 bps.

Even though a Series 3100 Echelon Smart Transceiver running at 5 MHz can be
sufficient for the demands of a power-line channel, a typical Echelon Smart
Transceiver operates at 10 MHz even when used exclusively with a power line
channel. The maximum clock rate for an Echelon Smart Transceiver based on a
PL 3120, PL 3150, or PL 3170 Echelon Smart Transceiver is 10 MHz.

For a performance test application that attempts to maximize the number of
propagated packets, the application is likely to show approximately 3% increased
throughput when operating with a 40 MHz Series 3100 Echelon Smart
Transceiver compared to a 10 MHz Series 3100 Echelon Smart Transceiver (for
FT 5000 Echelon Smart Transceivers, the comparison is between the 20 MHz
system clock setting and the 5 MHz system clock setting). However, for a
production application, which only occasionally transmits to the network and has
unused output buffers available on the Echelon Smart Transceiver, a faster
Echelon Smart Transceiver reduces the time required for the handshake
overhead (by up to a factor of 4 for Series 3100 devices – or up to a factor of 16 for
Series 5000 devices, compared to Series 3100 devices) so that a downlink packet
can be delivered to the Echelon Smart Transceiver more quickly, which can
improve overall application latency. Thus, depending on the needs of your
application, you can use a slower or faster Echelon Smart Transceiver.

http://www.echelon.com/downloads

36 Designing the Serial I/O Hardware Interface

Host Latency Considerations
The processing time required by the host processor for an Echelon Smart
Transceiver or Neuron Chip can have a significant impact on link-layer transit
time for network communications and on the total duration of network
transactions. This impact is the host latency for the LonTalk Stack application.

To maintain consistent network throughput, a host processor must complete each
transaction as quickly as possible. Operations that take a long time to complete,
such as flash memory writes, should be deferred whenever possible. For
example, an ARM7 host processor running at 20 MHz can respond to a
network-variable fetch request in less than 60 µs, but typically requires 10-12 ms
to erase and write a sector in flash memory.

The following formula shows the overall impact of host latency on total
transaction time:

()() hostlinklayerrMicroServechanneltrans ttttt +++= *2

where:

• transt is the total transaction time

• channelt is the channel propagation time

• rMicroServet is the Echelon Smart Transceiver or Neuron Chip latency
(approximately 1 ms for a Series 3100 Echelon Smart Transceiver
running at 10 MHz; approximately 65 µs for a FT 5000 Echelon Smart
Transceiver running with an 80 MHz system clock)

• linklayert is the link-layer transit time

• hostt is the host latency

The channel propagation time and the Echelon Smart Transceiver latency are
fairly constant for each transaction. However, link-layer transit time and host
latency can be variable, depending on the design of the host application.

You must ensure that the total transaction time for any transaction is much less
than the LONWORKS network transmit timer. For example, the typical transmit
timer for a TP/FT-10 channel is 64 ms, and the transmit timer for a PL-20
channel is 384 ms.

Typical host processors are fast enough to minimize link-layer transit time and
host latency, and to ensure that the total transaction time is sufficiently low.
Nonetheless, your application might benefit from using an asynchronous design
of the host serial driver and from deferring time-consuming operations such as
flash memory writes.

SCI Interface
The LonTalk Stack Serial Communications Interface (SCI) is an asynchronous
serial interface between the Echelon Smart Transceiver or Neuron Chip and the
host processor. The communications format is:

• 1 start bit

LonTalk Stack Developer’s Guide 37

• 8 data bits (least-significant bit first)

• 1 stop bit

The SCI link-layer interface uses two serial data lines: RXD (receive data) and
TXD (transmit data). The following diagram summarizes the two serial data
lines and their I/O pin assignments. The signal directions are from the point of
view of the Echelon Smart Transceiver. An uplink transaction describes data
exchange from the Echelon Smart Transceiver to the host processor, and uses the
TXD line. A downlink transaction refers to data exchange from host processor to
the Echelon Smart Transceiver, and uses the RXD line.

Performing an Initial Echelon Smart Transceiver
Health Check

After you load the Layer 2 MIP image into an Echelon Smart Transceiver or
Neuron Chip, the Echelon Smart Transceiver or Neuron Chip enters quiet mode
(also known as flush mode). While the Echelon Smart Transceiver or Neuron
Chip is in quiet mode, all network communication is paused.

The Echelon Smart Transceiver or Neuron Chip enters quiet mode to ensure that
only complete implementations of the LonTalk protocol stack attach to a
LONWORKS network. In a functioning LonTalk Stack device, the application
initializes the Echelon Smart Transceiver or Neuron Chip. After that
initialization is complete, the Echelon Smart Transceiver or Neuron Chip leaves
quiet mode and enables regular network communication.

To check that the Echelon Smart Transceiver or Neuron Chip is functioning
correctly before the host processor has initialized it, you can use an oscilloscope
or a logic analyzer to observe the activity on the TXD (IO10) pin that reflects the
uplink LonNiReset message transfer that follows an Echelon Smart Transceiver
or Neuron Chip reset, as shown in the following figure.

38 Designing the Serial I/O Hardware Interface

PL 3120
FT 5000

Echelon Smart
Transceiver TXD

RXD

RESET~

VDD

9 x 10 kΩ

Your hardware design should include a switch that connects the RESET~ pin to
ground; you press this switch to reset the Echelon Smart Transceiver or Neuron
Chip.

When you press the reset switch for a LonTalk Stack device, the Neuron
firmware performs reset processing, as described in the data books for the
Echelon Smart Transceiver and Neuron Chips. Then, the Echelon Smart
Transceiver or Neuron Chip performs reset processing that is generally
independent of the host processor.

LonTalk Stack Developer’s Guide 39

5

Creating a LonTalk Stack Serial
MIP Driver

This chapter describes the link-layer protocol (LLP) and how
to develop a LonTalk Stack Serial MIP driver for your host
processor. This driver manages the handshaking and data
transfers between the host and the Echelon Smart
Transceiver or Neuron Chip. The driver also manages the
buffers in the host for communication with the Echelon
Smart Transceiver or Neuron Chip.

40 Creating a LonTalk Stack Serial MIP Driver

Overview of the Link Layer Protocol
The LonTalk Serial MIP driver communicates with the host processor over the
built-in SCI serial interface hardware of the FT 5000 Echelon Smart Transceiver,
Series 5000 chip, and the PL 3120 Echelon Smart Transceiver. The Serial MIP
driver uses the Serial MIP link-layer protocol (LLP), which is a two-signal serial
protocol with no extra requirements for handshake signals. The Serial MIP LLP
features quick recovery from serial communication errors such as dropped bytes
or corrupted serial frames.

Code Packet Layout
The basic component of the Serial MIP LLP is the code packet, which starts with
an escape code. If an escape code appears in a normal data stream it is followed
by another escape code and interpreted as a single data byte value rather than
the start of the code packet. The following figure illustrates the code packet
layout.

BYTE 0 BYTE 1 BYTE 2 BYTE 3

Escape:
0x7E

Sequence #,
ACK bit,
Type Code
(excludes
0x7E)

Param Data Packet
Checksum

Sequence
[D7-D5]

Ack
[D4]

Type Code
[D3-D0]

The second byte contains a 3-bit sequence number in the sequence bits (D5-D7), a
single ACK bit (D4), and a 4-bit Type Code bits (D0-D3). You cannot form the
escape code by combining a Type Code value with the sequence number (0x0E is
not allowed). As a result, you can create 15 different codes.

The sequence number is cycled through between values ‘1’ and ‘7’, with ‘0’ being
an initialization value. When a code packet is received that has the same
sequence number as the previous code packet received that packet (and any
following data) is rejected (this transfer will be acknowledged if necessary). The
exception is if the sequence number is zero. The zero sequence number may be
used for any idempotent code packet or message.

The third and fourth bytes may contain the escape code value, but they will not
interpreted as escape codes. This may cause minor re-synchronization issues if
this packet is broken; however, it ensures a constant code packet size.

LonTalk Stack Developer’s Guide 41

The packet sum is an 8-bit value that, when added to the first three bytes, results
in an 8-bit zero result.

The code packet hast the following features:

• Asynchronous method of presenting itself at any time (by using an escape
sequence).

• Checksum verification.

• Data transfer initiation.

• Duplication detection using a sequence number. Duplicates may be sent
when an expected response is lost or broken and does not occur within a
time-out period.

Data outside of the code packet is restricted to either a message or a multi-byte
local network interface command or response and is always enclosed with a length
byte in the front and a checksum at the end. The length byte does not account for
the checksum at the end—the inclusion of the checksum is implied. The
checksum covers the data that preceded it; therefore, it does include the length
byte.

Note: All data outside a code packet must include an escape prefix before any
escape data values. For example, if a 0x7E value appears in the sequence it must
be followed by another 0x7E (the first 0x7E value is the escape prefix).
Checksum bytes and length bytes must be preceded with escape prefixes.

The following table summarizes the layout of the data message used in Layer 5
mode and for the niNETMGMT local network interface command (Layer 2 mode
is required for the LonTalk Stack). When sending local network interface
commands (NI Commands other than the niCOMM or niNETMGMT) that have
additional data, the commands are contained in a data message and they are
preceded by a CpMsg code packet.

BYTE 0 BYTE 1 BYTE 2..N BYTE N+1

Length
(bytes to
follow
except
checksum)

NI
Command

SICB starting w/ message header Message
Checksum
of bytes 0-N

The following table summarizes the layout of the data message used in Layer 2
mode.

BYTE 0 BYTE 1 BYTE 2..N BYTE N+1

Length
(bytes to
follow
except
checksum)

NI
Command

Priority/AltPath/DeltaBacklog byte,
NPDU,
CRC (2 Bytes)

Message
Checksum
of bytes 0-N

42 Creating a LonTalk Stack Serial MIP Driver

Type Code Values
The following table lists the values for the Type Code byte. Uplink means that
data is transferred from the Echelon Smart Transceiver or Neuron Chip to the
host processor. Downlink mans that data is transferred from the host processor
to the Echelon Smart Transceiver or Neuron Chip.

Value Type Description Uplink /
Downlink

0 CpNull No data is being sent. Use this value for
acknowledge-only packets, or for pinging.

U/D

1 CpFail The previous transfer was broken or in
error. This is typically due to checksum
errors or fragmented transfers. The
correct response to this command is to
resend the previous transfer.

U/D

2 CpMsg One message follows. A message is any
multi-byte network interface transfer and
requires an application output buffer or
packet buffer in the downlink case. The
number of messages is stored in the
Param Data field.

This value is limited to one in both the
downlink and uplink case.

The message follows the code packet
checksum byte, and consists of a length
byte, the NI command, the message itself,
and a checksum.

U/D

3 CpMsgReq Optional. Sent by the host for requesting
both the attention of the Serial MIP and
requesting an uplink CpMsgAck.

The Param Data field contains either a 0
or a 1 informing the Serial MIP that the
following message is either a non-priority
message (0) or a priority message (1).
The MIP Serial driver does not use
priority messaging; therefore, this value
is ignored. This allows the Serial MIP to
respond to the CpMsgReq based on
actual buffer availability.

Alternatively, you can send the entire
CpMsg plus message to the MIP and a
CpMsgReject may be sent uplink if
there are no available buffers.

D

LonTalk Stack Developer’s Guide 43

Value Type Description Uplink /
Downlink

4 CpMsgAck The Serial MIP is entering the
ready-receive state. This is the Serial
MIP’s response to the CpMsgReq.

U

5 CpMsgReject An attempt to transfer a message
downlink is rejected because of a lack of
buffer space.

This code packet will be a response to a
downlink CpMsgReq code packet or a
response to a CpMsg without the
CpMsgReq being sent.

This code indicates that the offered
downlink traffic is more than the Serial
MIP can handle (it has no more APP or
NET output buffers).

Upon receiving this code, the device
driver should repeat the message send
process until it succeeds.

U

6 CpNiCmdShort Sends a single byte local network
interface command. The command is
stored in the Param Data field.

U/D

7 CpResync This command is sent by the host to start
a new session with the Serial MIP. When
received it will reset the transmit and
receive sequence numbers to zero so that
any subsequent sequence numbers will be
accepted rather than rejected.

This command is also a good way to
establish that communications are
functioning with the Serial MIP.

The Serial MIP always responds to this
command with a CpNull packet, so the
host can determine that the serial link is
not simply echoing data.

D

Notes:

• Use symmetrical timeouts on the host processor. There is an inter-byte
timeout on the client side of 40ms when receiving either a code packet or
a message body. There is a timeout of 250ms when waiting for the start
of a downlink message CpMsg following a CpMsgReq / CpMsgAck
sequence.

44 Creating a LonTalk Stack Serial MIP Driver

• All length fields do not count for escape prefixes. Instead, they reflect the
length of the real data stream above the link-layer protocol. All length
fields do not account for the checksum.

• Broken code packets (code packets with missing or corrupt bytes) are not
responded to at all, and they rely on time-out mechanisms for
re-transmission.

• Broken message streams are responded to as soon as the error condition
is observed. The response is the CpFail code packet.

Acknowledgment Rules
The Ack bit is used to send a success response to a previous transfer, specifically
transfers that send data that is above the LLP (non-LLP data). These are
transfers of messages and transfers of local network interface commands.

To reduce traffic, not all data transfers require acknowledgement. Following are
the acknowledgement rules:

• If a transfer requires an acknowledgment and there is no other data that
needs to be sent, a CpNull packet is sent with the Pass/Ack bit set.
Otherwise, if there is outgoing traffic to be sent the Ack bit will be
included in the following transfer. This is true for both uplink and
downlink data messages.

• Code packets that do not require an acknowledgment via the Ack bit are
packets that result in an immediate response anyway. The response
implies acknowledgment. The following table lists these types of code
packets:

Code Packet Description

CpMsgReq The Serial MIP will respond with either the
CpMsgAck, or a criss-cross could occur and an
unrelated code packet will be sent by the Serial
MIP.

CpMsgAck The host does not need to acknowledge this
message. Instead it provides an implied
acknowledgement by sending the CpMsg code
packet followed by a message packet

• Data that is sent and requires acknowledgement will persist in the source
until the acknowledgment is received. While the persistent data is
waiting for acknowledgement, the Acknowledge Wait timeout, which is
300ms for the Serial MIP and the driver, causes the persistent data to be
re-sent.

LonTalk Stack Developer’s Guide 45

Sequence Number Cycling and Duplicate
Detection

The sequence number is used to reject duplicate non-LLP data. Duplicate LLP
data does not effect the LLP; therefore, the sequence number is only cycled for
each transfer of non-LLP data. For example, two consecutive CpMsgReq
packets have no effect—the second CpMsgReq packet reinstates the
ready-receive state and the CpMsgAck is re-sent.

Supported MIP Command Set
The following table lists the MIP commands you can use in your LonTalk Stack
Serial MIP driver.

Uplink local network interface commands that must also convey additional data
(for example, the niL2MODE response command) will always result in a data
message that is at least 3 bytes in length. This is because the host driver expects
at least 4 bytes of data (3 bytes plus checksum) to appear following a code packet.

Uplink means that data is transferred from the Echelon Smart Transceiver to the
host processor. Downlink mans that data is transferred from the host processor
to the Echelon Smart Transceiver

Value Name Description Uplink /
Downlink

0x1x niCOMM Passes completion events to the
host processor.

0x2x niNETMGMT Performs local network
management or network
diagnostic commands on the
network interface.

0x31 niERROR|niCRC The Layer 2 mode MIP will
convey this command uplink
whenever it senses an error – in
this implementation it is limited
to receive CRC errors (0x31).

U

0x50 niRESET When sent downlink this will
reset the MIP. Following any
reset the MIP will send this
uplink.

U/D

0x60 niFLUSH_CANCEL Exits the flush state. D

0x70 niONLINE Sets the MIP state to soft-online. D

0x80 niOFFLINE Sets the MIP state to soft-offline.
No messaging can be handled in
this state.

D

46 Creating a LonTalk Stack Serial MIP Driver

Value Name Description Uplink /
Downlink

0x90 niFLUSH Sets the MIP to the “flush” state. D

0xA0 niFLUSH_IGNORE Sets the MIP to the “flush ignore
comm” state.

D

0xCx niIO_SET Directly controls the MIP’s four
I/O pins, IO0 – IO3, for general
purpose I/O control from the
Neuron. The L.S. 4 bits are used
to control these pins.

D

0xD0 niMODE_L5 Sets the MIP to Layer 5 mode. If
already in this mode the MIP will
reply with this command.
Otherwise the MIP will reset and
resume in the new mode. This
change is persistent across resets.
Layer 5 mode is not compatible
with the LonTalk host stack.

U/D

0xD1 niMODE_L2 Sets the MIP to Layer 2 mode. If
already in this mode the MIP will
reply with this command.
Otherwise the MIP will reset and
resume in the new mode. This
change is persistent across resets.

U/D

0xE0 niSSTATUS Provides status information.

When sent downlink, the MIP
responds with the niSSTATUS
command followed by the
following 4 bytes of data:

[TXID Value],
[MIP Version],
[Layer 2:1 or Layer 5:0 Mode],
[Serial checksum error count]

U/D

0xE6 niSERVICE In Layer 5 mode, sends a Service
Pin message.

D

Layer 2 / Layer 5 Modes
The default mode for the Serial MIP is L2 mode. The L2/L5 mode is maintained
in non-volatile memory.

LonTalk Stack Developer’s Guide 47

Product Query Network Management
The Serial MIP supports the Product Query network management command
from the host only. The code for this command is the Network Management
Escape code [0x7D] followed by the sub-command and command values of [0x01],
[0x01]. The response includes PRODUCT and MODEL values based on
whether the MIP is currently in L2 or L5 mode. The App Version is 3.1 (31); the
TXID is defined when the Serial MIP image is built, and is 4 for a TP/FT-10
channel.

Serial MIP Driver Example
The LonTalk Stack Developer’s Kit includes a Linux Serial MIP driver example
in the LonTalkStack/Source/Target/Drivers/Linux/SMIP folder that
demonstrates how to create a LonTalk Stack Serial MIP driver. You can use this
example for your LonTalk Stack device, or you can customize it to meet your
specifications.

Serial MIP Driver API
The following sections describe the structures and functions in the Serial MIP
driver API.

Structures

Structure Description
#define MAXLONMSG 114
typedef struct LDV_Message {
 BYTE NiCmd;
 BYTE Length;
 BYTE ExpAppMessage[MAXLONMSG];
} LDV_Message;

Standard structure for handling
messages. This structure is used for
passing network interface commands,
SICBs, and L2 packet buffers.

The NiCmd byte is the network
interface command.

The Length byte is the size of
ExpAppMessage.

typedef struct LLPStats {
 DWORD AckTMOs;
 DWORD RxTmos;
 DWORD CsumErrors;
 DWORD CpFails;
 DWORD ULDuplicates;
 DWORD UlDiscarded;}
LLPStats;

Structure for handling LLP statistics.
The following describes each statistic:

AckTMOs. Number of Acknowledged
timeouts.

RxTmos. Number of receive
timeouts.

CsumErrors. Number of uplink
checksum errors.

CpFails. Number of uplink CpFail
messages received (implies downlink
cs error).

ULDuplicates Number of duplicates

48 Creating a LonTalk Stack Serial MIP Driver

Structure Description

sensed.

UlDiscarded. Number of tossed
uplinks.

Functions

Function Syntax Description

SciMipOpen
LdvRetVal SciMipOpen(
 WORD iComPort,
 DWORD baudrate,
 HANDLE hNotifier);

Opens the serial interface
driver.

iComPort. The index to
the serial port.

baudrate. The serial port
baud rate,

hNotifier. A handle to an
event that will be set by the
driver whenever received
messages are available. The
driver never closes this
handle.

If the driver is already open,
then the SciMipClose()
function is called first.

This function returns
LDV_OK or
LDV_DEVICE_ERR (if
there was a failure with the
serial port or thread
creation).

SciMipClose
LdvRetVal
SciMipClose(void);

Closes the serial interface
driver by closing the serial
port and deleting any
threads created during
SciMipOpen().

Returns LDV_OK or
LDV_NOT_OPEN (if the
driver was not open).

LonTalk Stack Developer’s Guide 49

Function Syntax Description

SciMipRead LdvRetVal SciMipRead (
 LDV_Message *pMsg,
 int size);

De-queues one uplink
message or local network
interface command if there
is one available.

size. Indicates the size of
the structure of pMsg.

This function returns one of
the following vlaues:

LDV_OK. Successful.

LDV_NO_MSG_AVAIL.
No messages are available.

LDV_NOT_OPEN. The
driver is not open

LDV_INVALID_BUF_LEN
The value of size is too
small for the message.

SciMipWrite
LdvRetVal SciMipWrite(
 LDV_Message *pMsg);

Queues a message or local
network interface command
to the driver.

Returns one of the following
values:

LDV_NOT_OPEN. The
driver is not open.

LDV_INVALID_BUF_LEN
The length embedded in the
structure at pMsg is too
large for the driver buffers.

LDV_NO_BUFF_AVAIL.
The driver buffers are full.

LDV_OK if successful.

Messages that are queued
have not necessarily been
delivered to the MIP yet.
The queue depth is
currently set to 4.

50 Creating a LonTalk Stack Serial MIP Driver

Function Syntax Description

SciMipStatistics
LdvRetVal
SciMipStatistics(
 LLPStats *pLlps,
 int size,
 BOOL bIfClear);

Returns a structure
containing device driver
statistics.

Set the size argument to
sizeof(LLPStats).

To clear the internal
statistics, set bIfClear to
TRUE.

SciMipSetMode
LdvRetVal SciMipSetMode(
 LLPMode mode);

This Serial MIP driver
supports a mode where
downlink messages are
transmitted without the
normal CpMsgReq request.
This mode works under
controlled downlink traffic
conditions.

To enable this mode, set the
mode argument to
S10LLP_MODE_
NOREQUESTS.

SciMipSetKeys
LdvRetVal SciMipSetKeys(
 SCMKeys *pKeys);

Sets the two keys used for
MIP/Host authentication.

If the driver is currently
open, the driver will initiate
the authentication process
when this API is called.

The actual keys used by the
MIP are not embedded in
the driver; they must be
supplied by the client
software.

LonTalk Stack Developer’s Guide 51

6

Creating a Model File

You use a model file to define your device’s interoperable
interface, including its network inputs and outputs. The
LonTalk Interface Developer utility converts the information
in the model file into device interface data and a device
interface file for your application. This chapter describes
how to create a model file using the Neuron C programming
language.
Syntax for the Neuron C statements in the model file is
described in Appendix C, Neuron C Syntax for the Model
File.

52 Creating a Model File

 Model File Overview
The interoperable application interface of a LONWORKS device consists of its
functional blocks, network variables, configuration properties, and their
relationships. The network variables are the device’s means of sending and
receiving data using interoperable data types. The configuration properties are
the device’s means of providing externally exposed configuration data, again
using interoperable data types. The configuration data items can be read (and
typically also written) by a network tool. The device interface is organized into
functional blocks, each of which groups together a collection of network variables
and configuration properties that are used to perform one task. These network
variables and configuration properties are called the functional block members.

The model file describes the functional blocks, network variables, configuration
properties, and their relationships, that make up the interoperable interface for a
LonTalk Stack device, using the Neuron C programming language. Neuron C is
based on ANSI C, and is designed for creating a device’s interoperable interface
and implementing its algorithms to run on Neuron Chips and Echelon Smart
Transceivers. However, you do not need to be proficient in Neuron C to create a
model file for a LonTalk Stack application because the model file does not include
executable code. All tools required to process model files are included with the
LonTalk Stack; you do not need to license another Neuron C development tool to
work with a LonTalk Stack model file. The model file uses Neuron C Version 2.1
declaration syntax.

The LonTalk Interface Developer utility included with the LonTalk Stack
Developer’s Kit uses the model file to generate device interface data and device
interface files. You can use any of the following methods to create a model file:

• Manually create a model file
A model file is a text file that you can create with any text or
programming editor, including Windows Notepad. Model files have the
.nc file extension. This chapter describes the types of Neuron C
statements you can include in a model file. Appendix C describes the
syntax for the Neuron C statements.

• Reuse existing Neuron C code
You can reuse an existing Neuron C application that was originally
written for a Neuron Chip or an Echelon Smart Transceiver as a model
file. The LonTalk Interface Developer utility uses only the device
interface declarations from a Neuron C application program, and ignores
all other code. You might have to delete some code from an existing
Neuron C application program, or exclude this code using conditional
compilation, as described later in this chapter.

• Automatically generate a model file
You can use the NodeBuilder Code Wizard, included with the
NodeBuilder FX Development Tool, to automatically generate a model
file. Using the NodeBuilder Code Wizard, you can define your device
interface by dragging functional profiles and type definitions from a
graphical view of your resource catalog to a graphical view of your device
interface, and refine them using a convenient graphical user interface.
When you complete the device interface definition, click the Generate
Code and Exit button to automatically generate your model file. Use
the main file produced by the NodeBuilder Code Wizard as your model

LonTalk Stack Developer’s Guide 53

file. NodeBuilder software is not included with the LonTalk Stack, and
must be licensed separately. See the NodeBuilder FX User’s Guide for
details about using the NodeBuilder Code Wizard.

See Appendix C, Neuron C Syntax for the Model File, for the detailed Neuron C
syntax for each type of statement that can be included in the model file.

Defining the Device Interface
You use a model file to define the device interface for your device. The device
interface for a LONWORKS device consists of its:

• Functional blocks

• Network variables

• Configuration properties

A functional block is a collection of network variables and configuration
properties, which are used together to perform one task. These network
variables and configuration properties are called the functional block members.

Functional blocks are defined by functional profiles. A functional profile is used
to describe common units of functional behavior. Each functional profile defines
mandatory and optional network variables and configuration properties. Each
functional block implements an instance of a functional profile. A functional
block must implement all of the mandatory network variables and configuration
properties defined by the functional profile, and can also implement any of the
optional network variables and configuration properties defined by the functional
profile. In addition, a functional block can implement network variables and
configuration properties that are not defined by the functional profile – these are
called implementation-specific network variables and configuration properties.

The primary inputs and outputs to a functional block are provided by network
variables. A network variable is a data item that a device application expects to
get from other devices on a network (an input network variable) or expects to
make available to other devices on a network (an output network variable).
Network variables are used for operational data such as temperatures, pressures,
switch states, or actuator positions.

A configuration property is a data item that specifies the configurations for a
device (its network variables and functional blocks). Configuration properties are
used for configuration data such as set points, alarm thresholds, or calibration
factors. Configuration properties can be set by a network management tool (such
as OpenLNS Commissioning Tool or a customized plug-in created for the device),
and allow a network integrator to customize a device’s behavior.

These interface components, and the resource files used to define them, are
described in the following sections.

Defining the Interface for a LonTalk Stack Application
Within the model file, you define a simple input network variable with the
following syntax:

network input type name;

54 Creating a Model File

Example: The following declaration defines an input network variable of type
“SNVT_type” with the name “nviAmpere”.

network input SNVT_amp nviAmpere;

You define a simple output network variable using the same syntax, but with the
output modifier:

network output type name;

Example: The following declaration defines an output network variable of type
“SNVT_type” with the name “nvoAmpere”.

network output SNVT_amp nvoAmpere;

By convention, input network variable names have an nvi prefix and output
network variables have an nvo prefix.

See Network Variable Syntax for the full network variable declaration syntax.

The LonTalk Interface Developer utility reads the network variable declarations
in the model file to generate device-specific code. For the example of the
nviAmpere and nvoAmpere pair of network variables above, the utility generates
a standard ANSI C type definition for the SNVT_amp network variable type and
implements two global C-language variables:

typedef ncsLong SNVT_amp;
…
volatile SNVT_amp nviAmpere;
SNVT_amp nvoAmpere;

The ncsLong data type defines the host equivalent of a Neuron C signed long
variable. This type is defined in the LonPlatform.h file.

Your LonTalk Stack application can simply read the nviAmpere global C variable
to retrieve the most recently received value from that input network variable.
Likewise, your application can write the result of a calculation to the nvoAmpere
global C variable, and call the appropriate LonTalk API function to propagate the
network variable to the LONWORKS network.

Choosing the Data Type
Many functional profiles define the exact type of each member network variable.
The SNVT_amp type used in the previous section is such a type. Using a
different network variable type within a functional profile that requires this
network variable type renders the implementation of the profile not valid.

Other profiles are generic profiles that allow various network variable types to
implement a member. The SFPTopenLoopSensor functional block (described in
Defining a Functional Block) is an example for such a generic functional profile.
This profile defines the nvoValue member to be of type SNVT_xxx, which means
“any standard network variable type.”

Implementing a generic profile allows you to choose the standard network
variable type from a range of allowed types when you create the model file.

For added flexibility, if the specific functional profile allows it, your application
can implement changeable-type network variables. A changeable-type network
variable is network variable that is initially declared with a distinct default type
(for example, SNVT_volt), but can be changed during device installation to a
different type (for example, SNVT_volt_mil).

LonTalk Stack Developer’s Guide 55

Using changeable-type network variables allows you to design a generic device
(such as a generic proportional-integral-derivative (PID) controller) that supports
a wide range of numeric network variable types for set-point, control, and
process-value network variables.

See Defining a Changeable-Type Network Variable or more information about
implementing changeable-type network variables for LonTalk Stack applications.

You can also define your own nonstandard data types. The NodeBuilder
Resource Editor utility, which is included with the LonTalk Stack Developer’s
Kit, allows you to define your own, nonstandard data types for network variables
or configuration properties, and allows definition of your own, nonstandard
functional profiles. These nonstandard types are called user-defined types and
user-defined profiles.

Defining a Functional Block
The first step for defining a device interface is to select the functional profile, or
profiles, that you want your device to implement. You can use the NodeBuilder
Resource Editor included with the LonTalk Stack Developer’s Kit to look through
the standard functional profiles, as described in Defining a Resource File. You
can find detailed documentation for each of the standard functional profiles at
types.lonmark.org.

For example, if your device is a simple sensor or actuator, you can use one of the
following standard profiles:

• Open-loop sensor (SFPTopenLoopSensor)

• Closed-loop sensor (SFPTclosedLoopSensor)

• Open-loop actuator (SFPTopenLoopActuator)

• Closed-loop actuator (SFPTclosedLoopActuator).

If your device is more complex, look through the other functional profiles to see if
any suitable standard profiles have been defined. If you cannot find an existing
profile that meets your needs, you can define a user functional profile, as
described in Defining a Resource File.

Example: The following example shows a simple functional block declaration.
network output SNVT_amp nvoAmpere;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpMeter;

This functional block:

• Is named fbAmpMeter (network management tools use this name unless
you include the external_name keyword to define a more
human-readable name)

• Implements the standard profile SFPTopenLoopSensor

• Includes a single network variable, named nvoAmpere, which implements
the nvoValue network variable member of the standard profile

http://types.lonmark.org/

56 Creating a Model File

Declaring a Functional Block
A functional block declaration, by itself, does not cause the LonTalk Interface
Developer utility to generate any executable code, although it does create data
that implements various aspects of the functional block. Principally, the
functional block creates associations among network variables and configuration
properties. The LonTalk Interface Developer utility uses these associations to
create the self-documentation (SD) and self-identification (SI) data in the device
and in its associated device interface file (.xif or .xfb extension).

The functional block information in the device interface file, or the SD and SI
data, communicates the presence and names of the functional blocks contained in
the device to a network management tool.

Network-variable or configuration members of a functional block also have
self-documentation data, which is also automatically generated by the LonTalk
Interface Developer utility. This self-documentation data provides details about
the particular network variable or configuration property, including whether the
network variable or configuration property is a member of a functional block.

Functional blocks can be implemented as single blocks or as arrays of functional
blocks. In a functional block array, each member of the array implements the
same functional profile, but has different network variables and typically has
different configuration properties that implement its network variable and
configuration property members.

Example: The following example shows a simple array of 10 functional blocks.
network output SNVT_amp nvoAmpere[10];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpMeter[10];

This functional block array:

• Contains ten functional blocks, fbAmpMeter[0] to fbAmpMeter[9], each
implementing the SFPTopenLoopSensor profile.

• Distributes the ten nvoAmpere network variables among the ten
functional blocks, starting with the first network variable (at network
variable array index zero). Each member of the network variable array
applies to a different network variable member of the functional block
array.

Defining a Network Variable
Every network variable has a type, called a network variable type, that defines
the units, scaling, and structure of the data contained within the network
variable. To connect a network variable to another network variable, both must
have the same type. This type matching prevents common installation errors
from occurring, such as connecting a pressure output to a temperature input.

Type translators are also available to convert network variables of one type to
another type. Some type translators can perform sophisticated transformations
between dissimilar network variable types. Type translators are special
functional blocks that require additional resources, for example, a dedicated
type-translating device in your network.

LonTalk Stack Developer’s Guide 57

You can minimize the need for type translators by using standard network
variable types (SNVTs) for commonly used types, and by using changeable-type
network variables, where appropriate. You can also define your own user
network variable types (UNVTs).

You can use the NodeBuilder Resource Editor to look through the standard
network variable types, as described in Defining a Resource File, or you can
browse the standard profiles online at types.lonmark.org.

You can connect network variables on different devices that are of identical type,
but opposite direction, to allow the devices to share information. For example, an
application on a lighting device could have an input network variable of the
switch type, while an application on a dimmer-switch device could have an
output network variable of the same type. You can use a network tool, such as
OpenLNS Commissioning Tool, to connect these two devices, allowing the switch
to control the lighting device, as shown in the following figure.

A single network variable can be connected to multiple network variables of the
same type but opposite direction. The following figure shows the same switch
being used to control three lights.

The LonTalk Stack application in a device does not need to know anything about
where input network variables come from or where output network variables go.
After the LonTalk Stack application updates a value for an output network
variable, it uses a simple API function call to have the LonTalk host stack
propagate it.

Through a process called binding that takes place during network design and
installation, the LonTalk Stack is configured to know the logical address of the

http://types.lonmark.org/index.html

58 Creating a Model File

other devices (or groups of devices) in the network that expect a specific network
variable, and the LonTalk Stack assembles and sends the appropriate packets to
these devices. Similarly, when the LonTalk Stack receives an updated value for
an input network variable required by its application program, it reads the data
from the network and passes the data to the application program.

The binding process creates logical connections between an output network
variable in one device and an input network variable in another device or group
of devices. You can think of these connections as “virtual wires.” For example,
the dimmer-switch device in the dimmer-switch-light example above could be
replaced with an occupancy sensor, without requiring any changes to the lighting
device.

Network variable processing is transparent, and typical networked applications
do not need to know whether a local network variable is bound (“connected”) to
one or more network variables on the same device, to one or more other devices,
or not bound at all. For those applications that do require such knowledge, API
functions (such as LonQueryNvConfig(), LonQueryAliasConfig(),
LonNvIsBound(), and LonMtIsBound()) are supplied to query the related
information.

Defining a Changeable-Type Network
Variable
A changeable-type network variable is a network variable that supports
installation-time changes to its type and its size.

You can use a changeable-type network variable to implement a generic
functional block that works with different types of inputs and outputs. Typically,
an integrator uses a network management tool plug-in that you create to change
network variable types.

For example, you can create a general-purpose device that can be used with a
variety of sensors or actuators, and then create a functional block that allows the
integrator to select the network variable type depending on the physical sensor or
actuator that is attached to the device during installation.

Restrictions:

• Each changeable-type network variable must be declared with an initial
type in the model file. This initial type defines the default type and the
maximum size of the network variable.

• A changeable-type network variable must be a member of a functional
block.

• Only network variables that are not bound can change their type. To
change the type of a bound network variable, you must first unbind
(disconnect) the network variable.

• Only a network management tool, such as OpenLNS Commission Tool,
can change the type of a changeable-type network variable. The LonTalk
Stack device does not initiate type changes.

To create a changeable-type network variable for a LonTalk Stack application,
perform the following tasks:

LonTalk Stack Developer’s Guide 59

1. Declare the network variable with the changeable_type keyword. You
must declare an initial type for the network variable, and the size of the
initial type must be equal to the largest network variable size that your
application supports. The initial type must be one of the interoperable
standard or user network variable types.

2. Select Has Changeable Interface in the LONMARK Standard Program
ID Calculator (included with the LonTalk Interface Developer utility) to
set the changeable-interface bit in the program ID when you create the
device template.

3. Declare a SCPTnvType configuration property that applies to the
changeable-type network variable. This configuration property is used by
network management tools to notify your application of changes to the
network variable type.

4. You can optionally also declare a SCPTmaxNVLength configuration
property that applies to the changeable-type network variable. This
configuration property informs network management tools of the
maximum type length supported by the changeable-type network
variable. This value is a constant, so declare this configuration property
with the const modifier.

5. Implement code in your LonTalk Stack application to process changes to
the SCPTnvType value. This code can accept or reject a type change.
Ensure that your application can process all possible types that the
changeable-type network variable might use at runtime.

6. Implement code to provide information about the current length of the
network variable.

The OpenLNS CT Browser provides integrators with a user interface to change
network variable types. However, you can provide a custom interface for
integrators to change network variable types on your device. For example, the
custom interface could restrict the available types to those types supported by
your application, thus preventing configuration errors.

See Handling Changes to Changeable-Type Network Variables for information
about how your application should handle changes to changeable-type network
variables.

Defining a Configuration Property
Like network variables, configuration properties have types, called configuration
property types, that determine the units, scaling, and structure of the data that
they contain. Unlike network variable types, configuration property types also
specify the meaning of the data. For example, standard network variable types
represent temperature values, whereas configuration property types represent
specific types of temperature settings, such as the air temperature weighting
used during daytime control, or the weighting of an air temperature sensor when
calculating an air temperature alarm.

Declaring a Configuration Property
You declare a configuration property in a model file. Similar to network variable
types, there are standard and user-defined configuration property types. You can

60 Creating a Model File

use the NodeBuilder Resource Editor to look through the standard configuration
property types, as described in Defining a Resource File, or you can browse the
standard profiles online at types.lonmark.org. You can also define your own
configuration property type, if needed.

You can implement a configuration property using either of the following
techniques:

• A configuration property network variable

• A configuration file

A configuration network variable (also known as a configuration property
network variable or configuration NV) uses a network variable to implement the
configuration property. In this case, a LONWORKS device can modify the
configuration property, just like any other network variable. A configuration NV
can also provide your application with detailed notification of updates to the
configuration property. However, a configuration NV is limited to a maximum of
31 bytes, and a LonTalk Stack application is limited to a maximum of 4096
network variables, including configuration NV s. Use the network …
config_prop syntax described in to implement a configuration property as a
configuration network variable. By convention, configuration NV names start
with an nci prefix, and configuration properties in files start with a cp prefix.

A configuration file implements the configuration properties for a device as one or
two blocks of data called value files, rather than as separate externally exposed
data items. A value file consists of configuration property records of varying
length concatenated together. Each value file must fit as contiguous bytes into
the memory space in the device. When there are two value files, one contains
writeable configuration properties, and the second contains read-only data. To
allow a network management tool to access the data items in the value file, you
specify a provided template file, which is an array of text characters that
describes the elements in the value files. When you use the Direct Memory Files
feature, the total size of the directory, template file, and value files cannot exceed
65 535 bytes (64 KB -1). When you use FTP, individual files cannot exceed 2 147
483 647 bytes (2 GB -1, or 231 -1 bytes).

Other devices cannot connect to or poll a configuration property implemented in a
configuration file. To modify a configuration property implemented in a
configuration file, a network management tool must modify the configuration file,
for which your application must provide an appropriate access method.

You must implement configuration properties within a configuration file if any of
the following apply to your application:

• The total number of network variables (including configuration network
variables and dynamic network variables) exceeds the total number of
available network variables (a maximum of 4096 for a LonTalk Stack
device, but potentially fewer than 4096 depending on the resources
available).

• The size of a single configuration property exceeds the maximum size of a
configuration network variable (31 bytes).

• Your device cannot use a configuration network variable (CPNV). For
example, for a device that uses a configuration property array that
applies to several network variables or functional blocks with one
instance of the configuration property array each, the configuration

http://types.lonmark.org/index.html

LonTalk Stack Developer’s Guide 61

property array must be shared among all network variables or functional
blocks to which it applies. In this case, the device must implement the
configuration properties within a configuration file.

In addition, you might decide whether to implement configuration properties
within a configuration file for performance reasons. Using the direct memory
files (DMF) feature can be faster than using configuration network variables if
you have more than a few configuration properties because multiple
configuration properties can be updated during a single write to memory
(especially during device commissioning). However, FTP can be faster than DMF
if there are many configuration properties to be updated.

Use the cp_family syntax described in The Configuration Property Type to
implement a configuration property as a part of a configuration file.

When implementing configuration property files, the LonTalk Interface
Developer utility combines all configuration properties declared using the
cp_family keyword, and creates the value files and a number of related data
structures.

However, you must provide one of two supported mechanisms to access these
files:

• An implementation of the LONWORKS file transfer protocol

• Support for the direct memory files feature

The LonTalk Interface Developer utility provides most of the required code to
support direct memory files. However, if you use FTP, you must also implement
the LONWORKS file transfer protocol within your application program. You would
typically implement the LONWORKS file transfer protocol only if the total amount
of related data exceeds (or is likely to exceed) the size of the direct memory file
window.

See the File Transfer engineering bulletin at www.echelon.com/docs for more
information about the LONWORKS file transfer protocol; see Using Direct Memory
Files for more information about the direct memory files feature.

To indicate which file access method the application should use, you must declare
the appropriate network variables in your model file:

• For direct memory files, declare an output network variable of type
SNVT_address. If your device implements the SFPTnodeObject
functional profile, you use this network variable to implement the
profile’s nvoFileDirectory member. If your device does not implement
the SFPTnodeObject functional profile, simply add this network
variable to the model file. You do not need to initialize this network
variable (any initial value is ignored – the LonTalk Interface Developer
utility calculates the correct value).

• For FTP, declare at least two mandatory network variables, an input
network variable of type SNVT_file_req, and an output network variable
of type SNVT_file_status. You also need to define a message tag for the
transfer of the data. In addition, you need an input network variable of
type SNVT_file_pos to support random access to the various files. You
must also implement the LONWORKS file transfer protocol within your
application program.

http://www.echelon.com/docs

62 Creating a Model File

The LONWORKS file transfer protocol and the direct memory files features are
mutually exclusive; your device cannot implement both.

Responding to Configuration Property
Value Changes
Events are not automatically generated when a configuration property
implemented in a configuration file is updated, but you can declare your
configuration property so that a modification to its value causes the related
functional block to be disabled and re-enabled, or causes the device to be taken
offline and brought back online after the modification, or causes the entire device
to reset. These state changes help to synchronize your application with new
configuration property values.

Your application could monitor changes to the configuration file, and thus detect
changes to a particular configuration property. Such monitoring would be
implemented in the FTP server or direct memory files driver.

However, many applications do not need to know that a configuration property
value has changed. For example, an application that uses a configuration
property to parameterize an algorithm that uses some event as a trigger (such as
a network variable update or a change to an input signal) would not typically
need to know of the change to the configuration property value, but simply
consider the most recent value.

Defining a Configuration Property Array
You can define a configuration property as:

• A single configuration property

• An array of configuration properties

• A configuration property array

A single configuration property either applies to one or more network variables or
functional blocks within the model file for the device, or the configuration
property applies to the entire device.

When you define an array of configuration properties, each element of the array
can apply to one or more network variables or functional blocks within the model
file.

When you define a configuration property array, the entire array (but not each
element) applies to one or more network variables or functional blocks within the
model file. That is, a configuration property array is atomic, and thus applies in
its entirety to a particular item.

Assuming that the device has sufficient resources, it is always possible to define
arrays of configuration properties. However, configuration property arrays are
subject to the functional profile definition. For each member configuration
property, the profile describes whether it can, cannot, or must be implemented as
a configuration property array. The profile also describes minimum and
maximum dimensions for the array. If you do not implement the configuration
property array as the profile requires, the profile’s implementation becomes
incorrect.

LonTalk Stack Developer’s Guide 63

Example:

This example defines a four-channel analog-to-digital converter (ADC), with the
following properties:

• Four channels (implemented as an array of functional blocks)

• One gain setting per channel (implemented as an array of configuration
properties)

• A single offset setting for the ADC (implemented as a shared
configuration property)

• A linearization setting for all channels (implemented as a configuration
property array)

#include <s32.h>
#define CHANNELS 4

network output SNVT_volt nvoAnalogValue[CHANNELS];

network input cp SCPTgain nciGain[CHANNELS];
network input cp SCPToffset nciOffset;
network input cp SCPTsetpoint nciLinearization[5];

fblock SFPTopenLoopSensor {
 // the actual network variable that implements the
 // mandatory 'nvoValue' member of this profile:
 nvoAnalogValue[0] implements nvoValue;
} fbAdc[CHANNELS] external_name("Analog Input")
fb_properties {
 // one gain factor per channel:
 nciGain[0],
 // one offset, common to all channels:
 static nciOffset,
 // one linearization array for all channels:
 static nciLinearization = {
 {0, 0}, {2, 0}, {4, 0}, {6, 0}, {8, 0}
 };
};

This example implements a single output network variable, of type SNVT_volt,
per channel to represent the most recent ADC reading. This network variable
has a fixed type, defined at compile-time, but could be defined as a
changeable-type network variable if needed for the application.

There is one gain setting per channel, implemented as an array of configuration
network variables, of type SCPTgain, where the elements of the array are
distributed among the four functional blocks contained in the functional block
array. Because the SCPTgain configuration property has a default gain factor of
1.0, no explicit initialization is required for this configuration property network
variable.

There is a single offset setting, implemented as a configuration network variable,
of type SCPToffset. This configuration NV applies to all channels, and is shared
among the elements of the functional block array. The SCPToffset
configuration property has a default value of zero.

The SCPToffset configuration property is a type-inheriting configuration
property. The true data type of a type-inheriting property is the type of the

64 Creating a Model File

network variable to which the property applies. For an SFPTopenLoopSensor
standard functional profile, the SCPToffset configuration property applies to the
functional block, and thus implicitly applies to the profile's primary member
network variable. In this example, the effective data type of this property is
SNVT_volt (inherited from nvoAnalogValue).

The example also includes a five-point linearization factor, implemented as a
configuration property array of type SCPTsetpoint. The SCPTsetpoint
configuration property is also a type-inheriting configuration property, and its
effective data type is also SNVT_volt in this example.

Because the SCPTsetpoint linearization factor is a configuration property
array, it applies to the entire array of functional blocks, unlike the array of
SCPTgain configuration property network variables, whose elements are
distributed among the elements of the functional block array. In this example,
the linearization configuration property array is implemented with configuration
property network variables, and must be shared among the elements of the
functional block array.

To implement the linearization array of configuration properties such that each
of the four functional blocks has its own linearization data array, you must
implement this configuration property array in files, and declare the
configuration property with the cp_family modifier.

The following table shows the relationships between the members of the
functional-block array. As the table shows, each channel has a unique gain
value, but all channels share the offset value and linearization factor.

Channel Gain Offset Linearization

fbAdc[0] nciGain[0]

fbAdc[1] nciGain[1]

fbAdc[2] nciGain[2]

fbAdc[3] nciGain[3]

nciOffset nciLinearization[0..4]

Sharing a Configuration Property
The typical instantiation of a configuration property is unique to a single device,
functional block, or network variable. For example, a configuration property
family whose name appears in the property list of five separate network variables
has five instantiations, and each instance is specific to a single network variable.
Similarly, a network variable array of five elements that includes the same
configuration property family name in its property list instantiates five members
of the configuration property family, and each one applies to one of the network
variable array elements.

Rather than creating extra configuration property instances, you can specify that
functional blocks or network variables share a configuration property by
including the static or global keywords in the configuration property
declaration.

LonTalk Stack Developer’s Guide 65

The global keyword causes a configuration property member to be shared among
all the functional blocks or network variables whose property list contains that
configuration property family name. The functional blocks or network variables
in the configuration property family can have only one such global member.
Thus, if you specify a global member for both the functional blocks and the
network variables in a configuration property family, the global member shared
by the functional blocks is a different member than the global member shared by
the network variables.

The static keyword causes a configuration property family member to be shared
among all elements of the array it is associated with (either network variable
array or functional block array). However, the sharing of the static member does
not extend to other network variables or functional blocks outside of the array.

Example 1:
// CP for throttle (default 1 minute)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };

// NVs with shared throttle:
network output SNVT_lev_percent nvoValue1
 nv_properties {
 global cpMaxSendT
 };
network output SNVT_lev_percent nvoValue2
 nv_properties {
 global cpMaxSendT // the same as the one above
 };
network output SNVT_lev_percent nvoValueArray[10]
 nv_properties {
 static cpMaxSendT // shared among the array
 // elements only
 };

In addition to sharing members of a configuration property family, you can use
the static or global keywords for a configuration network variable to specify
sharing. However, a shared configuration property network variable cannot
appear in two or more property lists without the global keyword because there is
only one instance of the network variable (configuration property families can
have multiple instances).

A configuration property that applies to a device cannot be shared because there
is only one device per application.

Example 2:

The following model file defines a three-phase ammeter, implemented with an
array of three SFPTopenLoopSensor functional blocks. The hardware for this
device contains a separate sensor for each phase, but a common analog-to-digital
converter for all three phases. Each phase has individual gain factors, but shares
one property to specify the sample rate for all three phases.

#define NUM_PHASES 3

SCPTgain cp_family cpGain;
SCPTupdateRate cp_family cpUpdateRate;

network output SNVT_amp nvoAmpere[NUM_PHASES];

66 Creating a Model File

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_PHASES] external_name("AmpereMeter")
 fb_properties {
 cpGain,
 static cpUpdateRate
 };

Inheriting a Configuration Property Type
You can define a configuration property type that does not include a complete
type definition, but instead references the type definition of the network variable
to which it applies. A configuration property type that references another type is
called a type-inheriting configuration property. When the configuration property
family member for a type-inheriting configuration property appears in a property
list, the instantiation of the configuration property family member uses the type
of the network variable. Likewise, a configuration network variable can be
type-inheriting; however, for configuration network variable arrays and arrays of
configuration network variables, each element of the array must inherit the same
type.

Type-inheriting configuration properties that are listed in an nv_properties
clause inherit the type from the network variable to which they apply.
Type-inheriting configuration properties that are listed in an fb_property clause
inherit their type from the functional profile’s principal network variable
member, an attribute that is assigned to exactly one network variable member.

Recommendation: Because the type of a type-inheriting configuration property
is not known until instantiation, specify the configuration property initializer
option in the property list rather than in the declaration. Likewise, specify the
range-mod string in the property list because different range-mod strings can
apply to different instantiations of the property.

Restrictions:

• Type-inheriting configuration network variables that are also shared can
only be shared among network variables of identical type.

• A type-inheriting configuration property cannot be used as a device
property, because the device has no type from which to inherit.

A typical example of a type-inheriting configuration property is the
SCPTdefOutput configuration property type. Several functional profiles list the
SCPTdefOutput configuration property as an optional configuration property,
and use it to define the default value for the sensor's principal network variable.
The functional profile itself, however, might not define the type for the principal
network variable.

The following example implements a SFPTopenLoopSensor functional block
with an optional SCPTdefOutput configuration property. The configuration
property inherits the type from the network variable it applies to, SNVT_amp in
this case.

Example 1:
SCPTdefOutput cp_family cpDefaultOutput;

network output SNVT_amp nvoAmpere nv_properties {

LonTalk Stack Developer’s Guide 67

 cpDefaultOutput = 123
};

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpereMeter;

The initial value (123) must be provided in the instantiation of the configuration
property, because the type for cpDefaultOutput is not known until it is
instantiated.

You can also combine type-inheriting configuration properties with network
variables that are of changeable type. The type of such a network variable can be
changed dynamically by a network integrator when the device is installed in a
network.

Example 2:
SCPTdefOutput cp_family cpDefaultOutput;
SCPTnvType cp_family cpNvType;

network output changeable_type SNVT_amp nvoValue
 nv_properties {
 cpDefaultOutput = 123,
 cpNvType
 };

fblock SFPTopenLoopSensor {
 nvoValue implements nvoValue;
} fbGenericMeter;

The nvoValue principal network variable, although it is of changeable type,
must still implement a default type (SNVT_amp in the example). The
SCPTdefOutput type-inheriting configuration property inherits the type
information from this initial type. Therefore, the initializer for
cpDefaultOutput must be specific to this instantiation. Furthermore, the
initializer must be valid for this initial type.

If the network integrator decides to change this type at runtime, for example, to
SNVT_volt, then it is in the responsibility of the network management tool to
apply the formatting rules that apply to the new type when reading or writing
this configuration property. However, your application has the responsibility to
propagate the new type to this network variable’s type-inheriting configuration
properties (if any).

Declaring a Message Tag
You can declare a message tag in a model file. A message tag is a connection
point for application messages. Application messages are used for the
LONWORKS file transfer protocol, and are also used to implement standard and
proprietary interfaces to LONWORKS devices as described in Chapter 8,
Developing a LonTalk Stack Device Application.

Message tag declarations do not generate code, but result in a simple
enumeration, whose members are used to identify individual tags. There are two
basic forms of message tags: bindable and nonbindable.

Example:

68 Creating a Model File

msg_tag myBindableMT;
msg_tag bind_info(nonbind) myNotBindableMT;

Similar to network variables, you can connect bindable message tags together,
thus allowing applications to communicate with each other through the message
tags (rather than having to know specific device addressing details). Each
bindable message tag requires one address-table space for its exclusive use.

Sending application messages through bindable message tags is also known as
sending application messages with implicit addressing.

Nonbindable message tags enable (and require) the use of explicit addresses,
which the sending application must provide. However, these addresses do not
require address-table space.

Defining a Resource File
Functional profiles, network variable types, and configuration property types are
defined in resource files. LONWORKS resource files use a standard format that is
recognized by all interoperable network management tools, such as the OpenLNS
Commissioning Tool. This standard format enables device manufacturers to
create definitions for user functional profiles, user network variable types
(UNVTs), and user configuration property types (UCPTs) that can be used during
installation by a network integrator using any interoperable network
management tool.

A set of standard functional profiles, standard network variable types (SNVTs),
and standard configuration property types (SCPTs) is defined by a standard
resource file set distributed by LONMARK International (www.lonmark.org). A
functional profile defined in a resource file is also called a functional profile
template.

Resource files are grouped into resource file sets, where each set applies to a
specified range of program IDs. A complete resource file set consists of a type file
(.TYP extension), a functional profile definitions file (.FPT extension), a format
file (.FMT extension), and one or more language files (.ENG, .ENU, or other
extensions).

Each set defines functional profiles, network variable types, and configuration
properties for a particular type of device. The program ID range is determined by
a program ID template in the file, and a scope value for the resource file set. The
scope value specifies which fields of the program ID template are used to match
the program ID template to the program ID of a device. That is, the range of
device types to which a resource file applies is the scope of the resource file.

The program ID template has an identical structure to the program ID of a
device, except that the applicable fields might be restricted by the scope. The
scope value is a kind of filter that indicates the relevant parts of the program ID.
For example, the scope can specify that the resource file applies to an individual
device type, or to all device types.

You can specify a resource file for any of the following scopes:

0 – Standard
Applies to all devices.

1 – Device Class
Applies to all devices with the specified device class.

http://www.lonmark.org/

LonTalk Stack Developer’s Guide 69

2 – Device Class and Subclass
Applies to all devices with the specified device class and subclass.

3 – Manufacturer
Applies to all devices from the specified manufacturer.

4 – Manufacturer and Device Class
Applies to all devices from the specified manufacturer with the specified
device class.

5 – Manufacturer, Device Class, and Device Subclass
Applies to all devices from the specified manufacturer with the specified
device class and device subclass.

6 – Manufacturer, Device Class, Device Subclass, and Device Model
Applies to all devices of the specified type from the specified
manufacturer.

For scopes 1 through 6, the program ID template included in the resource file set
specifies the components. Network management tools match this template
against the program ID for a device when searching for an appropriate resource
file.

For a device to be able to use a resource file set, the program ID of the device
must match the program ID template of the resource file set to the degree
specified by the scope. Thus, each LONWORKS manufacturer can create resource
files that are unique to their devices.

Example: Consider a resource file set with a program ID template of
81:23:45:01:02:05:04:00, with manufacturer and device class scope (scope 4). Any
device with the manufacturer ID fields of the program ID set to 1:23:45 and the
device class ID fields set to 01:02 would be able to use types defined in this
resource file set. However, resources on devices of the same class, but from a
different manufacturer, could not access this resource file set.

A resource file set can also use information in any resource file set that has a
numerically lower scope, as long as the relevant fields of their program ID
templates match. For example, a scope 4 resource file set can use resources in a
scope 3 resource file set, assuming that the manufacturer ID components of the
resource file sets’ program ID templates match.

Scopes 0 through 2 are reserved for standard resource definitions published by
Echelon and distributed by LONMARK International. Scope 0 applies to all
devices, and scopes 1 and 2 are reserved for future use. Because scope 0 applies
to all devices, there is a single scope 0 resource file set called the standard
resource file set.

The LonTalk Stack includes the scope 0 standard resource file set that defines
the standard functional profiles (SFPTs), SNVTs, and SCPTs (updates are also
available from LONMARK International at www.lonmark.org). The kit also
includes the NodeBuilder Resource Editor that you can use to view the standard
resource file set, or use to create your own user functional profiles (UFPTs),
UNVTs, and UCPTs.

You can define your own functional profiles, types, and formats in scope 3
through 6 resource files.

Most OpenLNS tools, including the OpenLNS Commissioning Tool assume a
default scope of 3 for all user resources. OpenLNS automatically sets the scope to

http://www.lonmark.org/

70 Creating a Model File

the highest (most specific) applicable scope level. See the NodeBuilder FX User’s
Guide for information about developing a plug-in to set the scope, or see the
OpenLNS Commissioning Tool User’s Guide (or online help) for information
about modifying a device shape to set the scope.

Implementation-Specific Scope Rules
When you add implementation-specific network variables or configuration
properties to a standard or user functional profile, you must ensure that the
scope of the resource definition for the additional item is numerically less than or
equal to the scope of the functional profile, and that the member number is set
appropriately. For example:

• If you add an implementation-specific network variable or configuration
property to a standard functional block (SFPT, scope 0), it must be
defined by a standard type (SNVT, or SCPT).

• If you implement a functional block that is based on a manufacturer
scope resource file (scope 3), you can add an implementation-specific
network variable or configuration property that is defined in the same
scope 3 resource file, and you can also add an implementation-specific
network variable or configuration property that is defined by a SNVT or
SCPT (scope 0).

You can add implementation-specific members to standard functional profiles
using inheritance by performing the following tasks:

1. Use the NodeBuilder Resource Editor to create a user functional profile
with the same functional profile key as the standard functional profile.

2. Set Inherit Members from Scope 0 in the functional profile definition.
This setting makes all members of the standard functional profile part of
your user functional profile.

3. Declare a functional block based on the new user functional profile.

Add implementation-specific members to the functional block.

Writing Acceptable Neuron C Code
When processing the model file, the LonTalk Interface Developer utility
distinguishes between three categories of Neuron C statements:

• Acceptable

• Ignored – ignored statements produce a warning

• Unacceptable – unacceptable statements produce an error

Appendix B, Model File Compiler Directives, lists the acceptable and ignored
compiler directives for model files. All other compiler directives are not accepted
by the LonTalk Interface Developer utility and cause an error if included in a
model file. A statement can be unacceptable because it controls features that are
meaningless in a LonTalk Stack device, or because it refers to attributes that are
determined by the LonTalk protocol stack or by other means.

The LonTalk Interface Developer utility ignores all executable code and I/O
object declarations. These constructs cause the LonTalk Interface Developer
utility to issue a warning message. The LonTalk Interface Developer utility

LonTalk Stack Developer’s Guide 71

predefines the _FTXL and _MODEL_FILE macros, so that you can use #ifdef or
#ifndef compiler directives to control conditional compilation of source code that
is used for standard Neuron C compilation and as an LonTalk Stack model file.

All constructs not specifically mentioned as unacceptable or ignored are
acceptable.

Anonymous Top-Level Types
Anonymous top-level types are not valid. The following Neuron C construct is
not valid:

network output struct {int a; int b;} nvoZorro;

This statement is not valid because the type of the nvoZorro network variable
does not have a name. The LonTalk Interface Developer utility issues an error
when it detects such a construct.

Using a named type solves the problem, for example:
typedef struct {
 int a;
 int b;
} Zorro;
network output Zorro nvoZorro;

The use of anonymous sub-types is permitted. For example, the LonTalk
Interface Developer utility allows the following type definition:

typedef struct {
 int a;
 int b;
 struct {
 long x;
 long y;
 long z;
 } c;
} Zorro;
network output Zorro nvoZorro;

Legacy Neuron C Constructs
You must use the Neuron C Version 2.1 syntax described in this manual. You
cannot use legacy Neuron C constructs for defining LONMARK-compliant
interfaces. That is, you cannot use the config modifier for network variables,
and you cannot use Neuron C legacy syntax for declaring functional blocks or
configuration properties. The legacy syntax used an sd_string() modifier
containing a string that starts with a ‘&’ or ‘@’ character.

Using Authentication for Network Variables
Authentication is a special acknowledged service between one source device and
one or more (up to 63) destination devices. Authentication is used by the
destination devices to verify the identity of the source device. This type of service
is useful, for example, if a device containing an electronic lock receives a message
to open the lock. By using authentication, the electronic lock device can verify

72 Creating a Model File

that the “open” message comes from the owner, not from someone attempting to
break into the system.

Authentication doubles the number of messages per transaction. An
acknowledged message normally requires two messages: an update and an
acknowledgment. An authenticated message requires four messages, as
illustrated in the next section. These extra messages can affect system response
time and capacity.

A device can use authentication with acknowledged updates or network variable
polls. However, a device cannot use authentication with unacknowledged or
repeated updates.

For a program to use authenticated network variables or send authenticated
messages, you must perform the following steps:

1. Declare the network variable as authenticated, or allow the network
management tool to specify that the network variable is to be
authenticated.

2. Specify the authentication key to be used for this device using a network
management tool, and enable authentication. You can use the OpenLNS
Commissioning Tool to install a key during network integration, or your
application can use the LonQueryDomainConfig() and
LonUpdateDomainConfig() API functions to install a key locally.

Specifying the Authentication Key
All devices that read or write a given authenticated network variable connection
must have the same authentication key. This 48-bit authentication key is used
in a special way for authentication, as described in the next section, How
Authentication Works. If a device belongs to more than one domain, you must
specify a separate key for each domain.

The key itself is transmitted to the device only during the initial configuration.
All subsequent changes to the key do not involve sending it over the network.
The network management tool can modify a device’s key over the network, in a
secure fashion, with a network management message.

Alternatively, your application can use a combination of the
LonQueryDomainConfig() and LonUpdateDomainConfig() API calls to
specify the authentication keys during application start-up.

If you set the authentication key during device manufacturing, you must perform
the following tasks to ensure that the key is not exposed to the network during
device installation:

1. Specify that the device should use network-management authentication
(set the configuration data in the LonConfigData data structure, which
is defined in the FtxlTypes.h file).

2. Set the device’s state to configured. An unconfigured device does not
enforce authentication.

3. Set the device’s domain to a unique domain value to avoid address
conflicts during device installation.

If you do not set the authentication key during device manufacturing, the device
installer can specify authentication for the device using the network management

LonTalk Stack Developer’s Guide 73

tool, but must specify an authentication key because the device has only a default
key.

How Authentication Works
The following figure illustrates the authentication process:

Device B
(reader)

1

2

3

4

ACKD Message or

Request

Challenge

Reply to challenge

ACK or Response

Device A
(Writer)

1. Device A uses the acknowledged service to send an update to a network
variable that is configured with the authentication attribute on Device B.
If Device A does not receive the challenge (described in step 2), it sends a
retry of the initial update.

2. Device B generates a 64-bit random number and returns a challenge
packet that includes the 64-bit random number to Device A. Device B
then uses an encryption algorithm (part of the LonTalk host stack) to
compute a transformation on that random number using its 48-bit
authentication key and the message data. The transformation is stored
in Device B.

3. Device A then also uses the same encryption algorithm to compute a
transformation on the random number (returned to it by Device B) using
its 48-bit authentication key and the message data. Device A then sends
this computed transformation to Device B.

4. Device B compares its computed transformation with the number that it
receives from Device A. If the two numbers match, the identity of the
sender is verified, and Device B can perform the requested action and
send its acknowledgment to Device A. If the two numbers do not match,
Device B does not perform the requested action, and an error is logged in
the error table.

If the acknowledgment is lost and Device A tries to send the same message again,
Device B remembers that the authentication was successfully completed and
acknowledges it again.

If Device A attempts to update an output network variable that is connected to
multiple readers, each receiver device generates a different 64-bit random
number and sends it in a challenge packet to Device A. Device A must then
transform each of these numbers and send a reply to each receiver device.

The principal strength of authentication is that it cannot be defeated by simple
record and playback of commands that implement the desired functions (for
example, unlocking the lock). Authentication does not require that the specific

74 Creating a Model File

messages and commands be secret, because they are sent unencrypted over the
network, and anyone who is determined can read those messages.

It is good practice to connect a device directly to a network management tool
when initially installing its authentication key. This direct connection prevents
the key from being sent over the network, where it might be detected by an
intruder. After a device has its authentication key, a network management tool
can modify the key, over the network, by sending an increment to be added to the
existing key.

You can update the device’s address without having to update the key, and you
can perform authentication even if the devices’ domains do not match. Thus, a
LonTalk Stack device can set its key during device manufacturing, and you can
then use a network management tool to update the key securely over the
network.

Managing Memory
The LonTalk Interface Developer Neuron C compiler generates four tables that
affect memory usage. The LonTalk host stack and network management tools
use these tables to define the network configuration for a device. The LonTalk
Interface Developer utility allocates space for the following tables:

• Address table

• Alias table

• Domain table

• Network variable configuration table

See the ISO/IEC 14908-1 Control Network Protocol Specification for more
information about these tables. This document is available from ISO:

www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60203.

See Appendix E, Determining Memory Usage for LonTalk Stack Applications, for
information about how to calculate the memory requirements for you LonTalk
Stack application.

Address Table
The address table contains the list of network addresses to which the device
sends network variable updates or polls, or sends implicitly-addressed
application messages. You can configure the address table through network
management messages from a network management tool.

By default, the LonTalk Interface Developer utility calculates the size of the
address table. The utility calculates the required number of address table entries
based on parameters defined in the device’s interface, such as the number of
static polling input network variables, static non-constant output network
variables, bindable message tags, the number of aliases, and the number of
dynamic network variables. The utility always allocates at least 15 address table
entries. Within the LonTalk Interface Developer utility, you can override the
automatic calculation of the table size and specify any number of entries, from 0
to 4096.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60203

LonTalk Stack Developer’s Guide 75

The maximum number of address table entries that a device could require is
determined by the expected maximum number of different destination entries
that the device requires for connections (network variables and bindable message
tags).

The size of the address table affects the amount of RAM and non-volatile memory
required for the device. When the LonTalk Interface Developer utility calculates
the size of the address table, it attempts to balance the need to limit the amount
of resources required (small address table) and the need for comprehensive
coverage (large address table). Although you generally do not need to, you can
override the automatically calculated value with one that reflects the use of the
device.

Alias Table
An alias is an abstraction for a network variable that is managed by network
management tools and the LonTalk host stack. Network management tools use
aliases to create connections that cannot be created solely with the address and
network variable tables. Aliases provide network integrators with more
flexibility for how devices are installed into networks.

The alias table has no default size, and can contain up to 8192 entries. The
LonTalk Interface Developer utility calculates the size of the alias table. The
utility calculates the required number of alias table entries based on parameters
defined in the device’s interface, such as the number of static network variables
and the number of supported dynamic network variables. The utility always
allocates at least 5 alias table entries, unless the device does not support any
network variables. Within the LonTalk Interface Developer utility, you can
override the automatic calculation of the table size and specify any number of
entries, from 0 to 8192.

The maximum number of aliases that a device could require depends on its
involvement in network variable connections and the characteristics of these
connections. The size of the alias table also affects the performance of the device,
because the alias table must be searched whenever network variable updates
arrive. When the LonTalk Interface Developer utility calculates the size of the
alias table, it attempts to balance the need for performance (small alias table)
and the need for comprehensive coverage (large alias table). Although you
generally do not need to, you can override the automatically calculated value
with one that reflects the use of the device.

Domain Table
The number of domain table entries is dependent on the network in which the
device is installed; it is not dependent on the application.

The LonTalk Interface Developer utility always allocates 2 domain table entries.
From the command-line interface for the LonTalk Interface Developer utility, you
can override the number of entries. However, LONMARK International requires
all interoperable LONWORKS devices to have two domain table entries. Reducing
the size of the domain table to one entry will prevent certification.

76 Creating a Model File

Network Variable Configuration Table
This table contains one entry for each network variable that is declared in the
model file. Each element of a network variable array counts separately.

The maximum size of the network variable configuration table is 4096 entries.
You cannot change the size of this table, except by adding or deleting static
network variables or by increasing or decreasing the number of dynamic network
variables.

Example Model files
This section describes a few example model files, with increasing levels of
complexity.

See Network Variable and Configuration Property Declarations for information
about mapping types and items declared in the model file to those shown in the
LonTalk Interface Developer utility-generated application framework.

Simple Network Variable Declarations
This example declares one input network variable and one output network
variable. Both network variables are declared with the SNVT_count type. The
names of the network variables (nviCount and nvoCount) are arbitrary.
However, it is a common practice to use the “nvi” prefix for input network
variables and the "nvo" prefix for output network variables.

network input SNVT_count nviCount;
network output SNVT_count nvoCount;

The LonTalk Interface Developer utility compiles this model file into an
application framework that contains, among other things, two global C variables
in the FtxlDev.c file:

volatile SNVT_count nviCount;
SNVT_count nvoCount;

When an update occurs for the input network variable (nviCount), the LonTalk
host stack stores the updated value in the global variable. The application can
use this variable like any other C variable. When the application needs to update
the output value, it updates the nvoCount variable, so that the LonTalk Host
stack can read the updated value and send it to the network.

For more information about how the LonTalk Interface Developer
utility-generated framework represents network variables, see Using Types.

Important: This example is not interoperable because it does not use functional
blocks to define the purpose of these network variables. However, this type of
declaration can define a functioning device for an initial test application.

Network Variables Using Standard Types
A more complete example includes the use of more complex standard network
variable types and declarations. This example provides the model for a simple
electricity meter, where all input data is retrieved from the network through the
nviAmpere, nviVolt, and nviCosPhi input network variables. The result is

LonTalk Stack Developer’s Guide 77

posted to the nvoWattage output network variable. A second nvoUsage output
network variable is polled and uses non-volatile storage to count the meter's total
lifetime.

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network input SNVT_angle nviCosPhi;
network output SNVT_power nvoWattage;
network output polled eeprom SNVT_elapsed_tm nvoUsage;

The LonTalk Interface Developer utility generates type definitions in the
LonNvTypes.h file for all of the above network variables. However, it does not
generate type definitions in the LonCpTypes.h file because there are no
configuration properties.

In addition to the type definitions and other data, the LonTalk Interface
Developer utility generates the following global C variables for this model file:

volatile SNVT_amp nviAmpere;
volatile SNVT_volt nviVolt;
volatile SNVT_angle nviCosPhi;
SNVT_power nvoWattage;
SNVT_elapsed_tm nvoUsage;

The declaration of the nvoUsage output network variable uses the network
variable modifiers polled and eeprom. The LonTalk Interface Developer utility
stores these attributes in the network-variable table (nvTable[]) in the
FtxlDev.c file. The API uses this table to access the network variables when the
application runs. In addition, the application can query the data in this table at
runtime.

Important: This example is not interoperable because it does not use functional
blocks to define the purpose of these network variables. However, this type of
declaration can define a functioning device for an initial test application.

Functional Blocks without Configuration Properties
The following model file describes a similar meter application as in the previous
example, but implements it using functional blocks to provide an interoperable
interface:

• A node object based on the SFPTnodeObject functional profile to manage
the entire device

• An array of three meters, each based on the same user-defined
UFPTenergyMeter profile, implementing three identical meters.

Configuration properties are not used in this example.
// Node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
} NodeObject external_name("NodeObject");

// UFPTenergyMeter

78 Creating a Model File

// Implements the meter from the previous example.
network input SNVT_amp nviAmpere[3];
network input SNVT_volt nviVoltage[3];
network input SNVT_angle nviCosPhi[3];
network output SNVT_power nvoWattage[3];
network output polled eeprom SNVT_elapsed_tm nvoUsage[3];

fblock UFPTenergyMeter {
 nvoWattage[0] implements nvoWattage;
 nviAmpere[0] implements nviAmpere;
 nviVoltage[0] implements nviVoltage;
 nviCosPhi[0] implements nviCosPhi;
 nvoUsage[0] implements nvoUsage;
} Meter[3] external_name("Meter");

Because functional blocks only provide logical grouping of network variables and
configuration properties, and meaning to those groups, but do not themselves
contain executable code, the functional blocks appear only in the
self-documentation data generated by the LonTalk Interface Developer utility,
but not in any generated executable code.

Functional Blocks with Configuration Network
Variables

The following example takes the above example and adds a few configuration
properties implemented as configuration network variables. A cp modifier in the
network variable declaration makes the network variable a configuration
network variable. The nv_properties and fb_properties modifiers apply the
configuration properties to specific network variables or the functional block.

// Configuration properties for the node object
network input cp SCPTlocation nciLocation;

// Network variables for the node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
} NodeObject external_name("NodeObject")
fb_properties {
 nciLocation
};

// Config properties for the Meter
network input cp SCPTminSendTime nciMinSendTime[3];
network input cp SCPTmaxSendTime nciMaxSendTime[3];
network input cp UCPTcoupling nciCoupling;

// Network variables for the meter
network input SNVT_amp nviAmpere[3];
network input SNVT_volt nviVoltage[3];
network input SNVT_angle nviCosPhi[3];
network output SNVT_power nvoWattage[3] nv_properties {
 nciMinSendTime[0],

LonTalk Stack Developer’s Guide 79

 nciMaxSendTime[0]
};

network output polled eeprom SNVT_elapsed_tm nvoUsage;

fblock UFPTenergyMeter {
 nvoWattage[0] implements nvoWattage;
 nviAmpere[0] implements nviAmpere;
 nviVoltage[0] implements nviVoltage;
 nviCosPhi[0] implements nviCosPhi;
 nvoUsage[0] implements nvoUsage;
} Meter external_name("Meter") fb_properties {
 static nciCoupling
};

This example implements two arrays of configuration network variables,
nciMinSendTime and nciMaxSendTime. Each element of these two arrays
applies to one element of the nvoWattage array, starting with nciMinSendTime[0]
and nciMaxSentTime[0]. Each element of the nvoWattage array of network
variables in turn implements the nvoWattage member of one element of the Meter
array of functional blocks, again starting with nvoWattage[0].

The user-defined UCPTcoupling configuration property nciCoupling is shared
among all three meters, configuring the meters as three single-phase meters or
as one three-phase meter in this example. There is only a single nciCoupling
configuration property, and it applies to every element of the array of three
UFPTenergyMeter functional blocks.

The LonTalk Interface Developer utility creates a network variable table for the
configuration network variables and the persistent nvoUsage network variable.

Functional Blocks with Configuration Properties
Implemented in a Configuration File

This example implements a device similar to the one in the previous example,
with these differences:

1. All configuration properties are implemented within a configuration file
instead of as a configuration network variable

2. A SNVT_address type network variable is declared to enable access to
these files through the direct memory files feature

3. An SFPTnodeObject node object has been added to support the SNVT
address network variable

// Config properties for the node object
SCPTlocation cp_family cpLocation;

// Network variables for the node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;
const network output polled SNVT_address nvoFileDirectory;

// Node object
fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;

80 Creating a Model File

 nvoNodeStatus implements nvoStatus;
 nvoFileDirectory implements nvoFileDirectory;
} NodeObject external_name("NodeObject") fb_properties {
 cpLocation
};

// Config properties for the Meter
SCPTminSendTime cp_family cpMinSendTime;
SCPTmaxSendTime cp_family cpMaxSendTime;
UCPTcoupling cp_family cpCoupling;

// Network variables for the meter
network input SNVT_amp nviAmpere[3];
network input SNVT_volt nviVoltage[3];
network input SNVT_angle nviCosPhi[3];
network output SNVT_power nvoWattage[3] nv_properties {
 cpMinSendTime,
 cpMaxSendTime
};

network output polled eeprom SNVT_elapsed_tm nvoUsage[3];

fblock UFPTenergyMeter {
 nvoWattage[0] implements nvoWattage;
 nviAmpere[0] implements nviAmpere;
 nviVoltage[0] implements nviVoltage;
 nviCosPhi[0] implements nviCosPhi;
 nvoUsage[0] implements nvoUsage;
} Meter[3] external_name("Meter") fb_properties {
 static cpCoupling
};

The addition of the SNVT_address typed network variable nvoFileDirectory is
important for enabling the direct memory files feature for access to the
configuration property files. The LonTalk Interface Developer initializes this
network variable’s value correctly, and creates all required structures and code
for direct memory file access; see Using Direct Memory Files for more
information.

Alternatively, you can use the LONWORKS File Transfer Protocol (FTP) to access
the file directory and the files in the directory. In this case, you need to
implement the network variables and message tags as needed for the
implementation of a LONWORKS FTP server in the model file, and provide
application code in your host to implement the protocol. See the File Transfer
engineering bulletin at www.echelon.com/docs for more information about the
LONWORKS file transfer protocol.

http://www.echelon.com/docs

LonTalk Stack Developer’s Guide 81

7

Using the LonTalk Interface
Developer Utility

You use the model file, described in Chapter 6, and the
LonTalk Interface Developer utility to define the network
inputs and outputs for your device, and to create your
application’s skeleton framework source code. You use this
skeleton application framework as the basis for your
LonTalk Stack application development.
The utility also generates device interface files that are used
by a network management tool when designing a network
that uses your device.
This chapter describes how to use the LonTalk Interface
Developer utility and its options, and describes the files that
it generates and how to use them.

82 Using the LonTalk Interface Developer Utility

Running the LonTalk Interface Developer
You use the LonTalk Interface Developer utility to create the application
framework files that are required for your LonTalk Stack application. The
LonTalk Interface Developer utility also generates the device interface files (*.xif
and *.xfb) that can be used by network management tools to design a network
that uses your device.

To create the device interface data and device interface files for your device,
perform the following tasks:

1. Create a model file as described in Chapter 6, Creating a Model File.

2. Start the LonTalk Interface Developer utility: from the Windows Start
menu, select Programs → Echelon LonTalk Stack → LonTalk
Interface Developer.

3. In the LonTalk Interface Developer utility, specify the program ID, the
model file for the device, and other preferences for the utility. The utility
uses this information to generate a number of files that your application
uses. See Using the LonTalk Interface Developer Files.

4. Add the FtxlDev.h ANSI C header file to your LonTalk Stack application
with an include statement:

#include "FtxlDev.h"

The LonTalk Interface Developer utility creates the application framework files
and copies other necessary files (such as the LonTalk API files and the LonTalk
host stack) to your project directory.

If you modify the LonTalk Interface Developer utility-generated files without
first copying them, any changes that you make will be overwritten the next time
you run the utility. However, the LonTalk Interface Developer utility does not
overwrite or modify the LonTalk API files.

After you have created the LonTalk Interface Developer utility-generated files,
modify and add code to your application using the LonTalk API to implement
desired LONWORKS functionality into your LonTalk Stack application. See
Chapter 8, Developing a LonTalk Stack Device Application, for information about
how to use the LonTalk API calls to implement LONWORKS tasks.

Note: The LonTalk Interface Developer, source code, and examples include many
instances of “FTXL”. This is because the LonTalk Interface Developer was
initially developed for the FTXL Development Kit and the LonTalk Stack uses
the same API as FTXL.

Specifying the Project File
From the Welcome to LonTalk Interface Developer page of the utility, you can
enter the name and location of a new or existing LonTalk Stack project file
(.lidprj extension). The LonTalk Interface Developer utility uses this project file
to maintain your preferences for this project. The base name of the project file is
also used as the base name for the device interface files that the utility generates.

LonTalk Stack Developer’s Guide 83

You can include a project version number in the name of the project to facilitate
version control and project management for your LonTalk Interface Developer
projects.

The utility creates all of its output files in the same directory as the project file.
Your application’s model file does not need to be in this directory; from the
utility’s Model File Selection page, you can specify the name and location of the
model file.

The location of the LonTalk Interface Developer project file can be the same as
your application’s project folder, but you can also generate and maintain the
LonTalk Interface Developer’s project in a separate folder, and manually link the
latest generated framework with your application by copying or referencing the
correct location.

Click Next and then click Yes to confirm the creation of the new project.

Specifying the Echelon Smart Transceiver or Neuron
Chip Configuration

From the Echelon Smart Transceiver or Neuron Chip Configuration page of the
utility, you can specify the clock speed for the Echelon Smart Transceiver or
Neuron Chip.

84 Using the LonTalk Interface Developer Utility

Select a clock speed and then click Next.

In the System Preferences dialog, click Next (the LonTalk Stack does not have
access to the service pin; therefore, the options in this dialog do not affect your
LonTalk Stack device application).

Configuring the LonTalk Stack
From the Stack Configuration page of the utility, you can specify override values
for the following system definitions:

LonTalk Stack Developer’s Guide 85

• The size of the address table (the number of addresses)

• The size of the alias table (the number of aliases)

• The number of receive transaction records

• The number of transmit transaction records

• The maximum lifetime of a transmit transaction

If you do not specify an override value, the LonTalk Interface Developer utility
generates appropriate values based on other preferences that you specify for the
project.

You can select the options to automatically calculate values to have the LonTalk
Interface Developer utility calculate appropriate values for the stack
configuration.

See Managing Memory for more information about these values.

Click Next.

Configuring the Buffers
From the Buffer Configuration page of the utility, you can specify the number for
each of the following application buffer types:

• Input buffers

• Non-priority output buffers

• Priority output buffers

You can also specify the number of link-layer buffers.

In addition, you can specify both the size and number for the transceiver buffers:

• Input buffers

86 Using the LonTalk Interface Developer Utility

• Non-priority output buffers

• Priority output buffers

You can select the options to automatically calculate values to have the LonTalk
Interface Developer utility calculate appropriate values for the buffer
configuration.

Click Next.

Configuring the Application
From the Application Configuration page of the utility, you can specify the
following parameters for the application:

• The number of dynamic network variables

• The average amount of memory to reserve for self-documentation data for
dynamic network variables

By default, the number of supported dynamic network variables is zero, but you
can specify up to 4096. During compilation, the utility verifies that the sum of
static and dynamic network variables does not exceed a total of 4096 for the
device.

LonTalk Stack Developer’s Guide 87

The average amount of memory to reserve for dynamic network variable
self-documentation strings is used, along with the number of dynamic network
variables, to calculate the maximum amount of non-volatile data that might be
required for the LonTalk Stack device. The actual size of a particular dynamic
variable’s self-documentation string can exceed the specified average, as long as
the actual average size is less than or equal to the specified average size.

The default size for the dynamic network variable self-documentation data is 16
bytes, but you can specify up to 128 bytes.

Click Next.

Configuring Support for Non-Volatile Data
From the Non-Volatile Data Support page of the utility, you can specify the
following parameters for the application:

• Non-volatile data driver model

• Non-volatile data flush guard timeout value

• Name for the top-level root segment for the non-volatile data

The non-volatile data driver model can be one of the following types, depending
on your application’s requirements:

• Flash file system (such as Linux)

• Flash direct memory (with no file system) if you do not have, or do not
want to use, a flash file system for your non-volatile data

• User defined if you have another non-volatile data support model that
your application uses

You can only select one driver model for the specified application.

88 Using the LonTalk Interface Developer Utility

The non-volatile data flush timeout value determines how long the LonTalk host
stack waits to receive additional updates before writing them to the non-volatile
data.

The non-volatile root name is used to configure the non-volatile data support
driver. If you use the flash file system, the non-volatile root name is used as a
file system directory name in which to create non-volatile data files. If you use
the direct flash model, the name represents a host processor flash device name.
If you use unstructured flash memory, leave the Root field blank.

Within the host processor development environment, the system.h file defines
the root name. For the examples that are included with the LonTalk Stack, the
root name is /dev/cfi_flash, which is the root directory for the flash file system.

The source files that handle non-volatile data (FtxlNvdFlashDirect.c,
FtxlNvdFlashFs.c, and FtxlNvdUserDefined.c) use conditional compilation
based on the selected model to include the appropriate code. If you select a
user-defined model, the related callback handler functions are not defined and
cause a linker error if they are not implemented.

Click Next.

Specifying the Device Program ID
From the Program ID Selection page of the utility, you specify the device
program ID or use the LONMARK Standard Program ID Calculator to specify the
device program ID. The program ID is a 16-digit hexadecimal number that
uniquely identifies the device interface for your device.

The program ID can be formatted as a standard or non-standard program ID.
When formatted as a standard program ID, the 16 hexadecimal digits are
organized into six fields that identify the manufacturer, classification, usage,
channel type, and model number of the device. The LONMARK Standard Program
ID Calculator simplifies the selection of the appropriate values for these fields by

LonTalk Stack Developer’s Guide 89

allowing you to select from lists contained in a program ID definition file
distributed by LONMARK International. A current version of this list is included
with the LonTalk Stack.

Within the device’s program ID, you must include your manufacturer ID. If your
company is a member of LONMARK International, you have a permanent
Manufacturer ID assigned by LONMARK International. You can find those listed
within the Standard Program ID Calculator utility, or online at
www.lonmark.org/mid.

If your company is not a member of the LONMARK International, you can obtain a
temporary manufacturer ID from www.lonmark.org/mid. You do not have to join
LONMARK International to obtain a temporary manufacturer ID.

For prototypes and example applications, you can use the F:FF:FF manufacturer
ID, but you should not release a device that uses this non-unique identifier into
production.

If you want to specify a program ID that does not follow the standard program ID
format, you must use the command-line interface for the LonTalk Interface
Developer utility. LONMARK International requires all interoperable LONWORKS
devices to use a standard-format program ID. Using a non-standard format for
the program ID will prevent the use of functional blocks and configuration
properties, and will prevent certification.

Click Next.

Specifying the Model File
From the Model File Selection page of the utility, you specify the model file for
the device. You can also click Edit to open the model file in whatever editor is
associated with the .nc file type, for example, Notepad or the NodeBuilder
Development Tool.

http://www.lonmark.org/mid
http://www.lonmark.org/mid

90 Using the LonTalk Interface Developer Utility

The model file is a simple source file written using a subset of the Neuron C
Version 2.1 programming language. The model file contains declarations of
network variables, configuration properties, functional blocks, and their
relationships.

The LonTalk Interface Developer utility uses the information in the model file,
combined with other user preferences, to generate the application framework
files and the interface files. You must compile and link the application
framework files with the host application.

See Chapter 6, Creating a Model File, for more information about the model file.

Click Next.

Specifying Neuron C Compiler Preferences
From the Neuron C Compiler Preferences page of the utility, you can specify
macros for the Neuron C compiler preprocessor and extend the include search
path for the compiler.

For the preprocessor macros (#define statements), you can only specify macros
that do not require values. These macros are optional. Use separate lines to
specify multiple macros.

The _FTXL macro is always predefined by the LonTalk Interface Developer
utility, and does not need to be specified explicitly. You can use this macro to
control conditional compilation for LonTalk Stack applications. In addition, the
utility predefines the _MODEL_FILE macro for model file definitions and the
_LID3 macro for LonTalk Interface Developer utility macros.

For the search path, you can specify additional directories in which the compiler
should search for user-defined include files (files specified within quotation
marks, for example, #include "my_header.h").

LonTalk Stack Developer’s Guide 91

Specifying additional directories is optional. Use separate lines to specify
multiple directories.

The LonTalk Interface Developer project directory is automatically included in
the compiler search path, and does not need to be specified explicitly. Similarly,
the Neuron C Compiler system directories (for header files specified with angled
brackets, for example, #include <string.h>) are also automatically included in
the compiler search path.

Click Next.

Specifying Code Generator Preferences
From the Interface Developer Code Generator Preferences page of the utility, you
can specify preferences for the LonTalk Interface Developer compiler, such as
whether to generate verbose source-code comments.

92 Using the LonTalk Interface Developer Utility

Click Next.

Compiling and Generating the Files
From the Summary and Confirmation page of the utility, you can view all of the
information that you specified for the project.

When you click Next, the LonTalk Interface Developer utility compiles the model
file and generates a number of C source files and header files, as described in
Using the LonTalk Interface Developer Files.

LonTalk Stack Developer’s Guide 93

The Build Progress and Summary page shows the results of compilation and
generation of the LonTalk Stack project files.

Any warning or error messages have the following format:

Error-type: Model_file_name Line_number(Column_number): Message

Example: A model file named “tester.nc” includes the following single network
variable declaration:

network input SNVT_volt nviVolt

Note the missing semi-colon at the end of the line. When you use this file to build
a project from the LonTalk Interface Developer utility, the compiler issues the
following message:

Error: TESTER.NC 1(32):
 Unexpected END-OF-FILE in source file [NCC#21]

The message type is error, the line number is 1, the column number is 32 (which
corresponds to the position of the error, in this case, the missing semi-colon), and
the compiler message number is NCC#21. To fix this error, add a semi-colon to
the end of the line.

See the Neuron Tools Errors Guide for information about the compiler messages.

Using the LonTalk Interface Developer Files
The LonTalk Interface Developer utility takes all of the information that you
provide and automatically generates the following files that are needed for your
LonTalk Stack application:

• LonNvTypes.h

• LonCpTypes.h

• FtxlDev.h

94 Using the LonTalk Interface Developer Utility

• FtxlDev.c

• project.xif

• project.xfb

These files form the LonTalk Stack application framework, which defines the
LonTalk Stack device initialization data and self-identification data for use in
initialization phase, including communication parameters and everything you
need to begin device development. The framework includes ANSI C type
definitions for network variable and configuration property types used with the
application, and implements them as global application variables.

To include these files in your application, include the FtxlDev.h file in your
LonTalk Stack application using an ANSI C #include statement, and add the
FtxlDev.c file to your project so that it can be compiled and linked.

The following sections describe the copied and generated files.

Copied Files
The LonTalk Interface Developer utility copies the following files into your
project directory if no file with the same name already exists:

• FtxlApi.h

• FtxlHandlers.c

• FtxlNvdFlashDirect.c

• FtxlNvdFlashFs.c

• FtxlNvdUserDefined.c

• FtxlTypes.h

• LonPlatform.h

Existing files with the same name, even if they are not write-protected, are not
overwritten by the utility.

Other than FtxlDev.h, you do not normally have to explicitly include any of the
header files with your application source, because the FtxlDev.h file already
includes the required files.

You must ensure that the files in the Source directory and the various
LID-generated C files are available to your project so that they can be compiled
and linked with your application.

LonNvTypes.h and LonCpTypes.h
The LonNvTypes.h file defines network variable types, and includes type
definitions for standard or user network variable types (SNVTs or UNVTs). See
Using Types for more information on the generated types.

The LonCpTypes.h file defines configuration property types, and includes
standard or user configuration property types (SCPTs or UCPTs) for
configuration properties implemented within configuration files.

Either of these files might be empty if your application does not use either
network variables or configuration properties.

LonTalk Stack Developer’s Guide 95

FtxlDev.h
The FtxlDev.h file is the main header file that the LonTalk Interface Developer
utility produces. This file provides the definitions that are required for your
application code to interface with the application framework and the LonTalk
API, including C extern references to public functions, variables, and constants
generated by the LonTalk Interface Developer utility.

You should include this file with all source files that your application uses, but
you do not normally have to edit this file. Any manual changes to this file are not
retained when you rerun the LonTalk Interface Developer utility. The file
contains comments that describe how you can override some of the preferences
and assumptions made by the utility.

FtxlDev.c
The FtxlDev.c file is the main source file that the LonTalk Interface Developer
utility produces. This file includes the FtxlDev.h file header file, declares the
network variables, configuration properties, and configuration files (where
applicable).

It defines the device’s LonInit() function. It also defines variables and
constants, including the network variable table, the device’s initialization data
block, and a number of utility functions.

You must compile and link this file with your application, but you do not
normally have to edit this file. Any manual changes to this file are not retained
when you rerun the LonTalk Interface Developer utility, but the file contains
comments that describe how you can override some of the preferences and
assumptions made by the utility.

project.xif and project.xfb
The LonTalk Interface Developer utility generates the device interface file for
your project in two formats:

• project.xif (a text file)

• project.xfb (a binary file)

For both files, project is the name of the LonTalk Stack project that you specified
in the Welcome to LonTalk Interface Developer window of the LonTalk Interface
Developer utility. Thus, these files have the same name as the LonTalk Stack
project file (.lidprj extension).

These files comply with the LONMARK device interface revision 4.401 format.

If your device is defined with a non-standard program ID, the device interface file
cannot contain interoperable LONMARK constructs such as functional blocks and
configuration properties.

Using Types
The LonTalk Interface Developer utility produces type definitions for the network
variables and configuration properties in your model file. For maximum
portability, all types defined by the utility are based on a small set of host-side

96 Using the LonTalk Interface Developer Utility

equivalents to the built-in Neuron C types. For example, the LonPlatform.h file
contains a type definition for a Neuron C signed integer equivalent type called
ncsInt. This type must be the equivalent of a Neuron C signed integer, a signed
8-bit scalar. For most target platforms, the ncsInt type is defined as signed char
type.

A network variable declared by a Neuron C built-in type does not require a
host-side type definition in the LonNvTypes.h file, but is instead declared with
its respective host-side Neuron C equivalent type as declared in LonPlatform.h.

Network variables that use ordinary C types, such as int or long, are not
interoperable. For interoperability, network variables must use types defined
within the device resource files. These network variable types include standard
network variable types (SNVTs) and user-defined network variable types
(UNVTs). You can use the Resource Editor tool to define your own UNVT.

Example:

A model file contains the following declarations:
network input int nviInteger;
network output SNVT_count nvoCount;
network output SNVT_switch nvoSwitch;

• The nviInteger declaration uses a built-in Neuron-C type, so the
LonTalk Interface Developer utility uses the ncsInt type defined in
LonPlatform.h.

• The nvoCount declaration uses a type that is not a built-in Neuron C
type. The utility produces the following type definition:
typedef ncuLong SNVT_count;

The ncuLong type represents the host-side equivalent of a Neuron C
unsigned long, a 16-bit unsigned scalar. It is defined in LonPlatform.h,
and typically maps to the LonWord type. LonWord is a
platform-independent definition of a 16-bit scalar in big-endian notation:

typedef struct {
 LonByte msb;
 LonByte lsb;
} LonWord;

To use this platform-independent type for numeric operations, you can
use the optional LON_GET_UNSIGNED_WORD or
LON_SET_UNSIGNED_WORD macros. Similar macros are provided
for signed words (16 bit), and for signed and unsigned 32-bit scalars
(DOUBLE).

If a network variable or configuration property is defined with an
initializer in your device’s model file, and if you change the default
definition of multi-byte scalars (such as the ncuLong type), you must
modify the initializer generated by the LonTalk Interface Developer
utility if the type is a multi-byte scalar type.

• The nvoSwitch declaration is based on a structure. The LonTalk
Interface Developer utility redefines this structure using built-in Neuron
C equivalent types:

LonTalk Stack Developer’s Guide 97

typedef LON_STRUCT_BEGIN(SNVT_switch){
 ncuInt value;
 ncsInt state;
} LON_STRUCT_END(SNVT_switch);

Type definitions for structures assume a padding of 0 (zero) bytes and a packing
of 1 byte. The LON_STRUCT_BEGIN and LON_STRUCT_END macros
enforce platform-specific byte packing and padding. These macros are defined in
the LonPlatform.h file, which allows you to adjust them for your compiler.

Bit Field Members
For portability, none of the types that the LonTalk Interface Developer utility
generates use bit fields. Instead, the utility defines bit fields with their enclosing
bytes, and provides macros to extract or manipulate the bit field information.

By using macros to work directly with the bytes of the bit field, your code is
portable to both big-endian and little-endian platforms (that is, platforms that
represent the most-significant bit in the left-most position and platforms that
represent the most-significant bit in the right-most position). The macros also
reduce the need for anonymous bit fields to achieve the correct alignment and
padding.

Example: The following macros and structure define a simple bit field of two
flags, a 1-bit flag alpha and a 4-bit flag beta:

typedef LON_STRUCT_BEGIN(Example) {
 LonByte flags_1; // contains alpha, beta
} LON_STRUCT_END(Example);

#define LON_ALPHA_MASK 0x80
#define LON_ALPHA_SHIFT 7
#define LON_ALPHA_FIELD flags_1
#define LON_BETA_MASK 0x70
#define LON_BETA_SHIFT 4
#define LON_BETA_FIELD flags_1

When your program refers to the flags_1 structure member, it can use the bit
mask macros (LON_ALPHA_MASK and LON_BETA_MASK), along with the
bit shift values (LON_ALPHA_SHIFT and LON_BETA_SHIFT), to retrieve the
two flag values. These macros are defined in the LonNvTypes.h file. The
LON_STRUCT_* macros enforce platform-specific byte packing.

To read the alpha flag, use the following example assignment:
Example var;
alpha_flag = (var.LON_ALPHA_FIELD & var.LON_ALPHA_MASK) >>
 var.LON_ALPHA_SHIFT;

You can also use the LON_GET_ATTRIBUTE() and
LON_SET_ATTRIBUTE() macros to access flag values. For example, for a
variable named var, you can use these macros to get or set the attributes:

alpha_flag = LON_GET_ATTRIBUTE(var, LON_ALPHA);
…
LON_SET_ATTRIBUTE(var, LON_ALPHA, alpha_flag);

These macros are defined in the FtxlTypes.h file.

98 Using the LonTalk Interface Developer Utility

Enumerations
The LonTalk Interface Developer utility does not produce enumerations. The
LonTalk Stack requires an enumeration to be of size byte. The ANSI C standard
requires that an enumeration be an int, which is larger than one byte for many
platforms.

The LonTalk Stack enumeration uses the LON_ENUM_BEGIN and
LON_ENUM_END macros. For many compilers, these macros can be defined to
generate native enumerations:

#define LON_ENUM_BEGIN(name) enum
#define LON_ENUM_END(name) name

Some compilers support a colon notation to define the enumeration’s underlying
type:

#define LON_ENUM_BEGIN(name) enum : signed char
#define LON_ENUM_END(name)

When your program refers to an enumerated type in a structure or union, it
should not use the enumeration’s name, but should use the LON_ENUM_*
macros.

For those compilers that support byte-sized enumerations, it can be defined as:
#define LON_ENUM(name) name

For other compilers, it can be defined as:
#define LON_ENUM(name) signed char

The following table shows an example enumeration using the LonTalk Stack
LON_ENUM_* macros, and the equivalent ANSI C enumeration.

LonTalk Stack Enumeration Equivalent ANSI C Enumeration

LON_ENUM_BEGIN(Color) {
red, green, blue

} LON_ENUM_END(Color);

typedef struct {

…
LON_ENUM(Color) color;

} Example;

enum {
red, green, blue

} Color;

typedef struct {

…
Color color;

} Example;

Floating Point Variables
Floating point variables receive special processing, because the Neuron C
compiler does not have built-in support for floating point types. Instead, it offers
an implementation for floating point arithmetic using a set of floating-point
support functions operating on a float_type type. The LonTalk Interface
Developer utility represents this type as a float_type structure, just like any
other structured type.

This floating-point format can represent numbers with the following
characteristics:

• 103810*1± approximate maximum value

LonTalk Stack Developer’s Guide 99

• 710*1 −± approximate relative resolution

The float_type structure declaration represents a floating-point number in IEEE
754 single-precision format. This format has one sign bit, eight exponent bits,
and 23 mantissa bits; the data is stored in big-endian order. The float_type type
is identical to the type used to represent floating-point network variables.

For example, the LonTalk Interface Developer utility generates the following
definitions for the floating point type SNVT_volt_f:

/*
 * Type: SNVT_volt_f
 */
typedef LON_STRUCT_BEGIN(SNVT_volt_f)
{
 LonByte Flags_1; /* Use bit field macros, defined
 below */
 LonByte Flags_2; /* Use bit field macros, defined
 below */
 ncuLong LS_mantissa;
} LON_STRUCT_END(SNVT_volt_f);

/*
 * Macros to access the sign bit field contained in
 * Flags_1
 */
#define LON_SIGN_MASK 0x80
#define LON_SIGN_SHIFT 7
#define LON_SIGN_FIELD Flags_1

/*
 * Macros to access the MS_exponent bit field contained in
 * Flags_1
 */
#define LON_MSEXPONENT_MASK 0x7F
#define LON_MSEXPONENT_SHIFT 0
#define LON_MSEXPONENT_FIELD Flags_1

/*
 * Macros to access the LS_exponent bit field contained in
 * Flags_2
 */
#define LON_LSEXPONENT_MASK 0x80
#define LON_LSEXPONENT_SHIFT 7
#define LON_LSEXPONENT_FIELD Flags_2

/*
 * Macros to access the MS_mantissa bit field contained in
 * Flags_2
 */
#define LON_MSMANTISSA_MASK 0x7F
#define LON_MSMANTISSA_SHIFT 0
#define LON_MSMANTISSA_FIELD Flags_2

See the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
754-1985) documentation for more information.

100 Using the LonTalk Interface Developer Utility

Network Variable and Configuration Property
Declarations

The LonTalk Interface Developer utility generates network variables and
configuration properties using the built-in types defined in LonPlatform.h along
with the types defined in LonNvTypes.h and LonCpTypes.h. Both network
variables and configuration properties are declared in the FtxlDev.c file, where
input network variables (including configuration network variables) appear as
volatile variables of the relevant type, and configuration properties that are not
implemented with network variables appear as members of configuration files.

Example:

A model file contains the following Neuron C declarations:
SCPTlocation cp_family cpLocation;

network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;
const network output polled SNVT_address nvoFileDir;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
 nvoFileDir implements nvoFileDirectory;
} NodeObject external_name("NodeObject") fb_properties {
 cpLocation
};

The LonTalk Interface Developer utility generates the following variables in the
FtxlDev.c file for the nviNodeRequest, nvoNodeStatus, and nvoFileDir
network variables:

volatile SNVT_obj_request nviNodeRequest;
SNVT_obj_status nvoNodeStatus;
SNVT_address nvoFileDir = {
 LON_DMF_WINDOW_START/256u, LON_DMF_WINDOW_START%256u
};

The LonTalk API, upon receipt of an incoming network variable update,
automatically moves data into the corresponding input network variable and
signals this event by calling an event handler function, which allows your
application to respond to the arrival of new network variable data. Your
application then reads the input variable to obtain the latest value.

To send an update to the nvoNodeStatus output network variable, your
application writes the new value to the nvoNodeStatus variable, and then calls
the LonPropagateNv() function to propagate the new value onto the network.

See Chapter 8, Developing a LonTalk Stack Device Application, for information
about the development of a LonTalk Stack application using the LonTalk
Interface Developer utility-generated code.

The utility generates the following configuration file in FtxlDev.c for the
cpLocation configuration property:

/*
 *
 * Writable configuration parameter value file

LonTalk Stack Developer’s Guide 101

 */
volatile LonWriteableValueFile lonWriteableValueFile = {
 {{'\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0'}}
};

/*
 * CP template file
 */
const char lonTemplateFile[] = \
 "1.1;" \
 "1,0,0\x80,17,31;";

#ifndef LON_FILEDIR_USER_DEFINED
/*
 * Variable: File Directory
 */

const LonFileDirectory lonFileDirectory =
{
 LON_FILE_DIRECTORY_VERSION,
 LON_FILE_COUNT,
 {
 LON_REGISTER_FILE("template",
 sizeof(lonTemplateFile), LonTemplateFileType,
 LON_DMF_WINDOW_START+sizeof(lonFileDirectory)),
 LON_REGISTER_FILE("rwValues",
 sizeof(lonWriteableValueFile), LonValueFileType,
 LON_DMF_WINDOW_START+sizeof(lonFileDirectory)
 +sizeof(lonTemplateFile)),
 LON_REGISTER_FILE("roValues", 0, LonValueFileType,
 0)
 }
};
#endif /* LON_FILEDIR_USER_DEFINED */

The LonWriteableValueFile data structure is defined in the FtxlDev.h header
file:

typedef LON_STRUCT_BEGIN(LonWriteableValueFile)
{
 SCPTlocation cpLocation_1;
 /* sd_string("1,0,0\x80,17,31;") */
} LON_STRUCT_END(LonWriteableValueFile);

extern volatile LonWriteableValueFile
 lonWriteableValueFile;

Similarly, a LonReadOnlyValueFile type is defined and used to declare a
lonReadOnlyValueFile variable if the model file declares read-only
configuration properties.

The LonTalk Interface Developer utility generates resource definitions for
configuration properties and network variables defined with the eeprom
keyword. Your application must provide sufficient persistent storage for these

102 Using the LonTalk Interface Developer Utility

resources. You can use any type of non-volatile memory, or any other media for
persistent data storage. The template file and the read-only value file would
normally be declared as const, and can be linked into a code segment, which
might relate to non-modifiable memory such as PROM or EPROM (these files
must not be changed at runtime). However, writable, non-volatile storage must
be implemented for the writable configuration property value file.

The details of such persistent storage are subject to the host platform
requirements and capabilities; persistent storage options include: flash memory,
EEPROM memory, non-volatile RAM, or storage in a file or database on a hard
drive.

You can specify initializers for network variables or configuration properties in
the model file. Alternatively, you can specify initializers for configuration
properties in the resource file that defines the configuration property type or
functional profile. For network variables without explicit initialization, the rules
imposed by your host development environment apply. These values might have
random content, or might automatically be preset to a well-defined value.

Constant Configuration Properties
In general, a configuration property can be modifiable, either from within the
LonTalk Stack application or from a network management tool. However, the
LonTalk Interface Developer utility declares constant configuration property files
as constants (using the C const keyword), so that they are allocated in
non-modifiable memory.

A special class of configuration properties is the device-specific configuration
property. A device-specific configuration property is considered variable to the
application (that is, your application can change it), but constant to the external
interface. These properties might, for example, be used to store calibration data
that is gathered during the device’s auto-tuning procedure.

However, a paradox arises because the network manager expects this
configuration property within the read-only value file, but the read-only value file
must be writable from the local application. This paradox is known as the
writeable read-only value file.

The LonTalk Stack presents the following solution to resolve this paradox:

• Before the inclusion of the FtxlDev.h header file into the FtxlDev.c file,
you can define the LON_READONLY_FILE_IS_WRITEABLE macro to
a value of 1 (one). If you do not define this macro, or define it to equate to
zero, the read-only value file is constant. This is the default state. The
LON_READONLY_FILE_IS_WRITEABLE macro is used within the
FtxlDev.h header to define the read-only file’s storage type with the
LON_READONLY_FILE_STORAGE_TYPE macro, which in turn is
used in declaration and specification of the lonReadOnlyValueFile
variable.

• Defining the LON_READONLY_FILE_IS_WRITEABLE macro to 1
causes the read-only value file to be writeable by the local application.
Because it is now allocated in volatile memory, your driver for
non-volatile data must also be able to read and write the read-only value
file.

LonTalk Stack Developer’s Guide 103

For the network management tool, however, the read-only file remains
non-writeable. If your application uses the direct memory files feature to access
the files, the LonTalk Interface Developer utility generates code that declares
this direct memory files window segment as non-modifiable. If your application
uses LONWORKS FTP to access the files, your implementation of the LONWORKS
file transfer protocol and server must prevent write operations to the read-only
value file under all circumstances.

The Network Variable Table
The network variable table lists all the network variables that are defined by
your application. It contains a pointer to each network variable and the initial
(or declared) length of each network variable, in bytes. It also contains an
attribute byte that contains flags which define the characteristics of each
network variable.

The network variable table acts as a bridge between your application and the
LonTalk API. The LonTalk Interface Developer utility generates the network
variable table, along with the LonInit() function that reads the table and
register the network variables with the LonTalk API.

A LonTalk Stack application typically accesses a network variable value through
the C global variable that implements the network variable. However, the
LonTalk API also provides a function that returns the pointer to a network
variable’s value as a function of its index:

void* const LonGetNvValue(unsigned index);

You can use this function for any network variable, including static network
variables, dynamic network variables, and configuration property network
variables. The LonGetNvValue() function returns NULL for an invalid index,
or returns a pointer to the value.

For dynamic network variables, you must use the LonGetNvValue() function
because there is no global C variable or network variable table entry for a
dynamic network variable.

Network Variable Attributes
The network variable table (nvTable[])in the FtxlDev.c file includes a bitmask
for each network variable to define the network variable’s attributes, including,
for example, whether the network variable is:

• An output network variable

• Persistent

• Polled

• Synchronous

• Of changeable type

The FtxlTypes.h file defines the bitmasks for these attributes. For example,
LON_NV_IS_OUTPUT is the mask for an output network variable,
LON_NV_POLLED is the mask for a polled network variable, and so on.

The LonTalk API does not propagate a polled output network variable's value to
the network when your application calls the LonPropagateNv() function. For

104 Using the LonTalk Interface Developer Utility

input network variables, the polled attribute changes the behavior of the
network management tool’s binder, which determines how a network variable
connection is managed.

See Developing a LonTalk Stack Device Application for more information about
propagation of network variable updates.

The Message Tag Table
Although the LonTalk Host stack does not use the message tag table, the
LonTalk Interface Developer utility declares the message tag table in FtxlDev.c
if you declare one or more message tags in the model file.

The message tag table lists all the message tags that are defined by your
application. It contains a flag for each message tag which indicates that the
message tag is not associated with an address table entry and therefore can only
be used for sending explicitly addressed application messages. This flag is set for
all message tags declared with the bind_info(nonbind) modifier in the model
file.

See Communicating with Other Devices Using Application Messages for more
information about using message tags.

LonTalk Stack Developer’s Guide 105

8

Developing a LonTalk Stack
Device Application

This chapter describes how to develop a LonTalk Stack
device application. It also describes the various tasks
performed by the application.

106 Developing a LonTalk Stack Device Application

Overview of a LonTalk Stack Device Application
This chapter describes how to use the LonTalk API and the application
framework produced by the LonTalk Interface Developer utility to perform the
following tasks:

• Use the LonTalk API and LonTalk Host stack

• Integrate the application with an operating system

• Provide persistent storage for non-volatile data

• Initialize the LonTalk Stack device

• Periodically call the LonTalk Stack event pump

• Send information to other devices using network variables

• Receive information from other devices using network variables

• Handle network variable poll requests from other devices

• Handle updates to changeable-type network variables

• Handle dynamic network variables

• Communicate with other devices using application messages

• Handle management tasks and events

• Handle local network management commands

• Handle reset events

• Query the error log

• Use the direct memory files feature

• Shut down the LonTalk Stack device

Most LonTalk Stack applications need to perform only the tasks that relate to
persistent storage, initialization, calling the event pump, and sending and
receiving network variables.

This chapter shows you the basic control flow for each of the above tasks. It also
provides a simple code example to illustrate some of the basic tasks.

Using the LonTalk API
Within the seven-layer OSI Model protocol, the LonTalk API forms the majority
of Layer 6 (the Presentation layer), and provides the interface between the
LonTalk host stack in Layer 5 (the Session layer) and the host application in
Layer 7 (the Application layer), as shown in the following figure.

LonTalk Stack Developer’s Guide 107

Echelon Smart
Transceiver

or
Neuron

Processor

Host Application

LonTalk API

Application Framework

Operating System Abstraction Layer
Hardware Abstraction Layer

LonWorks Channel

FtxlApi.h
FtxlDev.h

LonTalk Protocol Stack

The [LonTalkStack]\Source folder contains the LonTalk Host stack, the
LonTalk API, and the serial interface driver example, which together allow your
LonTalk Stack application to handle network events, propagate network
variables, respond to network variable poll requests, and so on.

A LonTalk Stack application must include the FtxlDev.h file to be able to use
the LonTalk API. This file is generated by the LonTalk Interface Developer
utility, and is located in your application project directory. The FtxlDev.h file
includes the [LonTalkStack]\Source\FtxlApi.h file, which contains definitions
for accessing the LonTalk API.

The [LonTalkStack]\Source\FtxlHandlers.c source file contains stubs for the
event handler functions and callback handler functions that the LonTalk API
calls. You must add code to these stubs to respond to specific events. For
example, the LonNvUpdateOccurred() event handler function could inform the
application of the arrival of new data for a set-point value, and the related code
could re-calculate the device’s response, assign output values to peripheral I/O
devices, update the appropriate network variables, and propagate the changes to
the network.

The following recommendations can help you manage your LonTalk Stack
application project:

• Keep edits to LonTalk Interface Developer utility-generated files to a
minimum, that is, do not edit the LonNvTypes.h, LonCpTypes.h,
FtxlDev.h or FtxlDev.c files unless necessary

• Add #include “FtxlDev.h” to your application source files to provide
access to network variable types and instantiations and the LonTalk API

• Keep changes to the FtxlHandlers.c file to a minimum

o Add calls to your own functions in files that you create and
maintain

108 Developing a LonTalk Stack Device Application

o Future versions or fixes to the LonTalk Stack might affect these
API files

Callbacks and Events
The LonTalk API uses two types of notifications for occurrences within the
system: callbacks and events.

The LonTalk API uses a callback when the API needs a return value from the
application immediately. A callback can occur in one of the LonTalk host stack
contexts (tasks or threads).

When you implement a callback handler function to process a callback, you must
ensure that the function completes its work as quickly as possible. Generally, a
callback handler function must not call LonTalk API functions or perform
time-intensive operations.

The LonTalk API uses an event to deliver a one-way notification to the
application. The protocol stack does not wait for the processing of the event to
complete before continuing.

The LonTalk host stack holds events in an internal queue for processing. Thus,
the application program must periodically call the LonEventPump() function to
process the event queue. This function also calls the related event handler
functions.

Because event processing in the event handler functions is not tied to the context
of the protocol stack, an event handler function can call LonTalk API functions or
perform time-intensive operations. An event handler function runs within the
same context (task or thread) as its caller (the LonEventPump() function).

See Appendix D, LonTalk API, for a list of the callback handler functions and
event handler functions.

Integrating the Application with an Operating System
The LonTalk host stack requires a LonTalk Stack application to use an operating
system or include code that implements key operating system services. The
LonTalk Host stack does not require the operating system to be a real-time
operating system.

To allow the LonTalk Host stack to use any operating system, the LonTalk Host
stack library is linked with the Operating System Abstraction Layer (OSAL)
files, Osal.h and Osal.c (Windows) or PosixOsal.c (Linux). The OSAL files
provide macros and C functions for general operating system functions, such as
creating semaphores and waiting for events. The OSAL functions also include
error handling and basic debug tracing for the operating system functions.

Your LonTalk Stack application can call the OSAL functions when it needs to call
operating system functions, or it can call the operating system functions directly.
By calling OSAL functions, your LonTalk Stack application can be more easily
ported to another operating system, if needed.

The OSAL function prototypes are generic, and do not depend on the operating
system’s syntax. For example, to create a binary semaphore, your application
can call the OsalCreateBinarySemaphore() function, which in turn calls the
operating system’s function to create the semaphore. The OSAL function assigns

LonTalk Stack Developer’s Guide 109

a pointer to the created semaphore and returns a status variable that indicates
whether the function was successful.

The LonTalk Stack includes source code for OSAL files that interface with
Windows and Linux. To use a different operating system or provide your own
operating system services, you must modify the OSAL files to implement the API
for that operating system.

For more information about the OSAL functions, see The Operating System
Abstraction Layer. For information about configuring the operating system, see
Configuring the Operating System.

Providing Persistent Storage for Non-Volatile Data
The LonTalk host stack provides an API for managing non-volatile data (NVD).
Because non-volatile data is stored and managed by the host processor rather
than the Echelon Smart Transceiver, the LonTalk Stack application must
implement the API’s functions so that both the LonTalk host stack and the
application can read and write NVD to non-volatile memory (typically, flash
memory). Two example implementations, one using a flash file system, and one
using raw flash access (through the HAL flash access routines) are provided in
the FtxlNvdFlashDirect.c and FtxlNvdFlashFs.c files.

The implementations of the NVD-management functions are contained in one of
the following files (all of which are copied to the project directory by the LonTalk
Interface Developer utility):

• FtxlNvdFlashDirect.c for direct-access flash memory management

• FtxlNvdFlashFs.c for file-system flash memory management

• FtxlNvdUserDefined.c for your own flash memory management

Typically, if you select either the direct flash model or the flash file system model,
you need only specify the appropriate value for the non-volatile root in the
LonTalk Interface Developer Utility. This section describes how the LonTalk API
uses the non-volatile memory driver, in case you need to implement your own
user-defined non-volatile data driver or modify one of the provided drivers.

Non-volatile data is stored in segments. Two of the segments are used to store
data maintained by the LonTalk host stack, and the third segment is used to
store data maintained by the application. Examples of data maintained by the
LonTalk host stack include network variable configuration and address tables.
Examples of data maintained by the application include configuration network
variable values and persistent memory files (used for configuration property
value files and user files). Each data segment is identified by an enumeration of
type LonNvdSegmentType, defined in the FtxlTypes.h file.

The LonTalk host stack reads non-volatile data (loads it into RAM) only during
device initialization. Included with the data is a header that the LonTalk host
stack uses for validation. Within this header is an application identifier,
generated by the LonTalk Interface Developer utility, that allows the LonTalk
host stack to ensure that the data belongs to the current application. The header
also includes a checksum to ensure that the data is free of errors. If any of these
validations fails, the LonTalk host stack deletes all non-volatile data in the
segment and sets the device to the unconfigured state.

110 Developing a LonTalk Stack Device Application

When data that must be stored persistently is updated in RAM, the LonTalk host
stack does not immediately update the corresponding persistent memory.
Instead, the LonTalk host stack defers writing the data to persistent memory so
that it can continue to respond to network management commands in a timely
fashion. The reasons for deferred writing of persistent memory include:

• Flash sectors sizes tend to be large and can take a long time to write.

• Each network management update generally affects only a small amount
of data, and typically, a single logical operation consists of many
messages (commissioning of the device generally being the most common
and most extensive).

• The LonTalk host stack supports large configurations.

If the LonTalk host stack has not received any updates to a particular segment
for a short (configurable) time (for example, 1 second), it uses the application
callback handler functions to write the data to persistent memory. If the
LonTalk host stack is shut down by calling the LonExit() function, the LonTalk
host stack completes the write process before returning from the function.
However, a sudden power outage or an unexpected CPU reset can prevent an
orderly shutdown. The LonTalk host stack maintains a set of flags (one for each
segment) that survive an unorderly shutdown so that the LonTalk host stack can
detect the unorderly shutdown at the next restart.

The LonTalk host stack checks the flag, by calling the
LonNvdIsInTransaction() callback handler function, during device startup
before it reads the non-volatile data. If the flag is set, integrity of the
non-volatile data has been compromised. Even if the configuration is internally
consistent, the LonTalk Stack device has likely lost updates from a network
manager that it has already acknowledged. If the LonTalk Stack device reverted
to the last known configuration, this inconsistency would likely be undetected
and could result in errors that are difficult to isolate. Instead, the LonTalk host
stack deletes the configuration data, logs a configuration checksum error, and
goes unconfigured. You can restore the configuration by recommissioning the
device from network management tool.

If you use either of the standard non-volatile drivers, you can enable tracing by
setting the global variable nvdTraceEnabled to a non-zero value. If you create
your own custom non-volatile data driver, be sure to add some tracing capability
to it.

Restoring Non-Volatile Data
During device startup, the LonTalk host stack reads the non-volatile data for
each segment and initializes the corresponding data structures stored in RAM by
performing the following steps:

1. Calling the LonNvdIsInTransaction() callback handler function. The
application returns whether an NVD transaction for this segment was in
progress when the LonTalk host stack was stopped. Typically, this
function returns FALSE, but if the device was reset while a transaction
was in progress, this function returns TRUE and the non-volatile data
segment is considered corrupt, so the restore fails.

2. Calling the LonNvdOpenForRead() callback handler function to open
the segment that corresponds to the specified type.

LonTalk Stack Developer’s Guide 111

3. Calling the LonNvdRead() callback handler function to read the header
of the NVD image. This function verifies the header and, if it is valid,
uses the size information in the header to allocate the appropriate
buffers.

4. Calling the LonNvdRead() callback handler function again (perhaps
many times) to read the entire configuration and de-serialize the image.

5. Deserializing the image and updating the LonTalk host stack’s control
structures.

6. Calling the LonNvdClose() callback handler function to close the file.

If, at any time during this process any error occurs, the LonTalk host stack sets
the device to the unconfigured state, generates a configuration checksum error,
and calls the LonNvdDelete() callback handler function.

The LonTalk host stack handles the deserialization of the data for the
LonNvdSegNetworkImage and LonNvdSegNodeDefinition segments, but
not for the application-defined LonNvdSegApplicationData segment. Instead,
the LonTalk host stack calls the LonNvdDeserializeSegment() callback
handler function during step 5 above when it processes the
LonNvdSegApplicationData segment. The LonNvdDeserializeSegment()
callback handler function is generated by the LonTalk Interface Developer
utility.

Writing Non-Volatile Data
When the LonTalk host stack processes a network management message that
affects any of its configuration data, the LonTalk host stack checks whether there
is an NVD transaction for the affected segment. If not, LonTalk host stack starts
a timer and calls the LonNvdEnterTransaction() callback handler function for
the segment. If there is already a transaction pending, the LonTalk host stack
simply resets the timer.

When the timer expires, the LonTalk host stack writes the data to persistent
memory by performing the following steps:

1. Determining the size of the serialized image.

2. Allocating a buffer large enough to hold the serialized image.

3. Serializing the data.

4. Calling the LonNvdOpenForWrite() callback handler function to open
the segment with write access. If the segment does not already exist, this
function must create it. If the segment exists, but is the wrong size, the
application might need to delete it before writing to it.

5. Calling the LonNvdWrite() callback handler function one or more times
to write the image.

6. Calling the LonNvdClose() callback handler function to close the file.

7. Calling the LonNvdExitTransaction() callback handler function to
clear the transaction.

8. Freeing the buffer that contains the serialized image.

The LonTalk host stack determines the size of the serialized image and handles
the serialization of the data for the LonNvdSegNetworkImage and

112 Developing a LonTalk Stack Device Application

LonNvdSegNodeDefinition segments, but not for the application-defined
LonNvdSegApplicationData segment. Instead, the LonTalk host stack calls
the LonNvdGetApplicationSegmentSize() callback handler function in step 1
above, and the LonNvdSerializeSegment() callback handler function during
step 3 above when it processes the LonNvdSegApplicationData segment.
Both of these callback handler functions are generated by the LonTalk Interface
Developer utility.

The LonTalk host stack uses a low-priority operating system task or thread
(typically lower than the application task) to write NVD to persistent memory.
By using a low-priority task or thread, writing NVD should not block the running
of the application or the LonTalk host stack. In addition, LonTalk host stack
ensures that these NVD-management functions are never called by more than
one task or thread at a time.

The application can update configuration network variables (CPNVs) and user
files directly, without the LonTalk host stack’s knowledge. The application must
inform the LonTalk host stack when this occurs so that the LonTalk host stack
can manage the write transaction. Thus, the application should call the
LonNvdAppSegHasBeenUpdated() function to initiate an NVD transaction
for the application segment.

Tasks Performed by a LonTalk Stack Application
The main() function of a LonTalk Stack application typically performs only the
following actions:

1. Creates one or more operating system contexts (tasks or threads)

2. Starts the operating system (if it is not already started)

Within one of the newly created tasks, the application life cycle includes two
phases:

• Initialization

• Normal processing

The initialization phase of a LonTalk Stack application includes a call to the
LonInit() API function to initialize the LonTalk host stack and the Echelon
Smart Transceiver or Neuron Chip. The initialization phase defines basic
parameters for LONWORKS network communication, such as the communication
parameters for the physical transceiver in use, and defines the application’s
external interface: its network variables, configuration properties, and
self-documentation data. Successful completion of the initialization phase causes
the Echelon Smart Transceiver or Neuron Chip to leave Quiet mode, after which
it can send and receive messages over the network. During the initialization
phase, the application also creates at least one operating system event (or other
protected shared resource).

During normal processing, which is often implemented within an infinite loop,
the application waits for an operating system event whenever it is not busy.
When the event occurs, the application calls the LonEventPump() API function
to process LonTalk Stack events. This function then calls event handler
functions (such as LonNvUpdateOccurred() or LonNvUpdateCompleted()).

The following sections describe the tasks that a LonTalk Stack application
performs during its life cycle.

LonTalk Stack Developer’s Guide 113

Initializing the LonTalk Stack Device
Before your application initializes the LonTalk host stack, it must initialize the C
runtime environment and the operating system.

If your LonTalk Stack device uses a native LonTalk interface, your application
must implement the LonGetMyNetworkInterface() function in the
FtxlHandlers.c file to specify the name of the network interface to be used by
the driver. If your LonTalk Stack device uses an IP-852 interface, your
application must implement the LonGetMyIpAddress() fucntion in the
FtxlHandlers.c file to return the IP address and port to be used by the IP-852
interface.

Your application must call the LonInit() function once during device startup.
The implementation of this function is generated by the LonTalk Interface
Developer utility, and is included in the FtxlDev.c file. This function initializes
the LonTalk API, the LonTalk host stack, and the Echelon Smart Transceiver or
Neuron Chip. The main application thread must call this function before it calls
any other LonTalk API functions.

LonInit() registers the LonTalk Stack device interface data with the LonTalk
host stack. This data defines the network parameters and device interface. If
your application needs to change the network parameters or change the device
interface, it can call the LonExit() function to shut down the LonTalk host stack,
and then call the LonInit() function to restart the LonTalk host stack with the
updated interface.

Add a call the LonInit() function to the beginning of the application’s main
thread. If this function is successful, your application can begin normal
operations, including calling the event pump, as described in Periodically Calling
the Event Pump.

Example:
void myMainThread(void) {
 LonApiError sts;
 sts = LonInit();
 if (sts == LonApiNoError) {
 // begin normal operations
 }
}

Periodically Calling the Event Pump
As described in Callbacks and Events, your LonTalk Stack application must
periodically call the LonEventPump() function to check if there are any
LONWORKS events to process. This function calls specific API functions based on
the type of event, then calls event handler functions to notify the application
layer of these network events. You can call this function from the idle loop
within the main application thread or from any point in your application that is
processed periodically. However, you must call this function from the same
application context (task or thread) that called the LonInit() function.

The LonTalk API calls the LonEventReady() callback handler function
whenever an event has been posted. This function is typically called from a
LonTalk host stack task or thread, and you must not call the LonEventPump()
function directly from the callback. However, your application could define an

114 Developing a LonTalk Stack Device Application

operating system event which is signaled by the LonEventReady() callback
handler function. From within your application’s main thread, the application
should implement an infinite loop that waits on this operating system event.
Whenever the event is signaled, the application should call the
LonEventPump() API function to process LonTalk Stack events.

You can signal this same operating system event to schedule your main
application thread to perform other functions as well. For example, you could
signal the operating system event from within an interrupt handler to signal the
main application task to process application I/O. Calling the LonEventPump()
function when there are no LonTalk Stack events is acceptable.

The host application should be prepared to process the maximum rate of
LONWORKS traffic delivered to the device. Although events are enqueued within
the LonTalk host stack, your application should call the LonEventPump()
function frequently to process events. Use the following formula to determine the
minimum call rate for the LonEventPump() function:

1−
=

rCountInputBuffe
ateMaxPacketRrate

where MaxPacketRate is the maximum number of packets per second arriving for
this device, and InputBufferCount is the number of input buffers defined for your
application (that is, buffers that hold incoming data until your application is
ready to process it). The formula subtracts one from the number of available
buffers to allow new data to arrive while other data is being processed.
However, the formula also assumes that your application has more than one
input buffer; having only one input buffer is generally not recommended.

If the application expects periods of inactivity, it can simply wait for the LonTalk
host stack to post an event. If the application expects periods where it is busy for
several milliseconds at a time, it should call the LonEventPump() function
during the busy time to ensure that events are processed. Use the formula above
to determine a baseline for how often to call the LonEventPump() function.

If you do not have measured data for your typical network and you are
developing a device for the TP/FT-10 channel, assume 90 packets per second
arriving for the device. This packet rate meets the TP/FT-10 channel’s
throughput figures, assuming that most traffic uses acknowledged or
request/response service. Use of other service types will increase the required
packet rate, but not every packet on the network is necessarily addressed to this
device.

Using the formula, devices that implement two input buffers and are attached to
a TP/FT-10 network that expect high throughput should call the
LonEventPump() function approximately once every 10 ms.

When an event occurs, the LonEventPump() function calls the appropriate
event function for your host application to handle the event. Your event handler
functions must be designed for this minimum call rate, and should defer
time-consuming operations (such as lengthy flash writes) whenever possible, or
manage them in separate contexts (tasks or threads).

See Appendix D, LonTalk API, for a list of the available event handler and
callback handler functions.

LonTalk Stack Developer’s Guide 115

Example:
while (1) {
 // process application-specific data
 ...
 if (OsalWaitForEvent(readyHandle, OSAL_WAIT_FOREVER) ==
 OSALSTS_SUCCESS)
 LonEventPump();
}

...

void LonEventReady(void)
{
 OsalSetEvent(readyHandle);
}

In the example, the readyHandle variable is the handle to an OSAL event; this
handle is defined using the OsalCreateEvent() function during the application’s
initialization phase, and is signaled by the LonEventReady() callback handler
function whenever an event is ready to be processed.

Sending a Network Variable Update
Your LonTalk Stack device typically communicates with other LONWORKS
devices by sending and receiving network variables. Each static network
variable is represented by a global variable declared by the LonTalk Interface
Developer utility in the FtxlDev.c file, with extern declarations provided in the
FtxlDev.h file. To send an update for a static output network variable, first
write the new value to the network variable declared in FtxlDev.c, and then call
the LonPropagateNv() function to send the network variable update. The
LonPropagateNv() function uses the index of the network variable, which is
defined in the LonNvIndex enumeration in FtxlDev.h. The index names use
the following format:

LonNvIndexName

Example: A network variable that is named nviRequest has the index name
LonNvIndexNviRequest.

For dynamic network variables, the application must call the LonGetNvValue()
function to retrieve the address of the value of a dynamic network variable.

The LonPropagateNv() function forwards the update to the LonTalk host stack,
which in turn transmits the update to the network. This function returns an
error status that indicates whether the update was delivered to the LonTalk host
stack, but does not indicate successful completion of the update itself.

The LonTalk Stack device must be configured and online to be able to propagate
a network variable value. If the LonPropagateNv() function is called when the
LonTalk Stack device is not configured or not online, the function returns
LonApiOffline.

After the update is complete, the LonTalk host stack informs the
LonEventReady() callback handler function in the LonTalk Stack application.
The application then calls the LonEventPump() function, which in turn calls
your LonNvUpdateCompleted() callback handler function, to notify your
application of the success or failure of the update. You can use this function for

116 Developing a LonTalk Stack Device Application

any application-specific processing of update completion. The following figure
shows the control flow for processing a network variable update.

LonPropagateNv()

Host Processor
Application

LonTalk Protocol Stack
and API

Send Network Variable
Update to Network

Add “Update Complete”
Event to Queue

LonEventPump()

LonNvUpdateCompleted()

LonEventReady()

In the case of an unacknowledged or repeated service type, the LonTalk host
stack considers the update complete when it has finished sending the update to
the network. In the case of an acknowledged service type, the LonTalk host stack
considers the update complete when it receives acknowledgements from all
receiving devices, or when the retry timer expires n times (where n is the retry
count for the network variable + 1).

To process an update failure, edit the LonNvUpdateCompleted() callback
handler function in the FtxlHandlers.c file. This function is passed the network
variable index (the same one that you passed to the LonPropagateNv()
function), and is also passed a success flag. The function is initially empty, but
you can edit it to add your application-specific processing. The function initially
appears as:

void LonNvUpdateCompleted(const unsigned index, const
 LonBool success)
{
 /* TBD */
}

LonTalk Stack Developer’s Guide 117

Do not handle an update failure with a repeated propagation; the LonTalk host
stack automatically retries a number of times based on the network variable’s
retry count. A completion failure generally indicates a problem that should be
signaled to the user interface (if any), flagged by an error or alarm output
network variable (if any), or by signaled as a comm_failure error through the
nvoStatus network variable of the Node Object functional block (if there is one).

Example: The following model file defines the device interface for a simple
power converter. This converter accepts current and voltage inputs on its
nviAmpere and nviVolt input network variables. It computes the power and
sends the value on its nvoWatt output network variable:

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network output SNVT_power nvoWatt;

fblock UFPTpowerConverter {
 nvoWatt implements nvoPower;
 nviAmpere implements nviCurrent;
 nviVolt implements nviVoltage;
} powerConverter;

The following code fragment, implemented in your application’s code, uses the
data most recently received by either of the two input network variables,
computes the product, and stores the result in the nvoWatt output network
variable. It then calls the LonPropagateNv() function to send the computed
value.

#include "FtxlDev.h"

void myController(void)
{
 nvoWatt = nviAmpere * nviVolt;
 if (LonPropagateNv(LonNvIndexNvoWatt)!= LonApiNoError) {
 // handle propagation error here
 // such as lack of buffers or validation
 ...
 }
}

Receiving a Network Variable Update from the
Network

When the LonTalk host stack receives a network variable update from the
network, it enqueues the event and signals the arrival of the event by calling the
LonEventReady() callback handler function. When the application calls the
LonEventPump() function, the LonTalk host stack writes the update to your
network variable (by using the variable’s address stored in the network variable
table), and then calls the LonNvUpdateOccurred() event handler function to
inform your application that the update occurred. The application can read the
current value of any input network variable by reading the value of the variable
declared in the FtxlDev.c file.

If a network variable update is received while the LonTalk Stack device is offline,
the value of the network variable is updated, but the LonNvUpdateOccurred()
event handler function is not called.

118 Developing a LonTalk Stack Device Application

To process notification of a network variable update, modify the
LonNvUpdateOccurred() event handler function (in the FtxlHandlers.c file)
to call the appropriate functions in your application. The API calls this function
with the index of the updated network variable. The following figure shows the
control flow for receiving a network variable update.

LonEventPump()

LonNvUpdateOccurred()

Host Processor
Application

LonTalk Protocol Stack
and API

Receive Network
Variable Update from

Network

Add “Update Received”
Event to Queue

nviCount
Update

Configuration network variables are used much in the same way as input
network variables, with the exception that the values must be kept in persistent
storage, and the application does not always respond to changes immediately.
Example 1, below, shows the processing flow for regular network variable
updates, and example 2 shows the same flow but with the addition of a
configuration network variable.

Example 1:

This example uses the same power converter model file from the example in the
previous section, Sending a Network Variable Update. That example
demonstrated how to read the network variable inputs asynchronously by
reading the latest values from the network variables declared in the FtxlDev.c
file.

This example extends the previous example and shows how your application can
be notified of an update to either network variable. To receive notification of a
network variable update, modify the LonNvUpdateOccurred() callback
function.

In FtxlHandlers.c:

LonTalk Stack Developer’s Guide 119

extern void myController(void);

void LonNvUpdateCompleted(unsigned index, const LonBool
 success) {

 switch (index) {
 case LonNvIndexNviAmpere: /* fall through */
 case LonNvIndexNviVolt:
 myController();
 break;
 default:
 /* handle other NV updates (if any) */
 }
}

In your application source file:
#include "FtxlDev.h"

void myController(void) {
 // nvoWatt = nviAmpere * nviVolt;
 LON_SET_UNSIGNED_WORD(nvoWatt,
 LON_GET_UNSIGNED_WORD(nviAmpere)
 * LON_GET_UNSIGNED_WORD(nviVolt));
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError)
 {
 // handle propagation error here
 ...
 }
}

This modification calls the myController() function defined in the example in
the previous section, Sending a Network Variable Update. Because network
variable types are defined as type LonWord, this example uses the
LON_GET_UNSIGNED_WORD macros to get the nviAmpere and nviVolt
network variable values, and LON_SET_UNSIGNED_WORD to set the value
for the nvoWatt network variable.

Example 2:

This example adds a configuration network variable to Example 1. A SCPTgain
configuration property is added to the device interface in the model file:

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network output SNVT_power nvoWatt;

network input cp SCPTgain nciGain;

fblock UFPTpowerConverter {
 nvoWatt implements nvoPower;
 nviAmpere implements nviCurrent;
 nviVolt implements nviVoltage;
} powerConverter fb_properties {
 nciGain
};

You can enhance the myController() function to implement the new gain factor:
void myController(void)

120 Developing a LonTalk Stack Device Application

{
 // nvoWatt = nviAmpere * nviVolt * nciGain.multiplier;
 LON_SET_UNSIGNED_WORD(nvoWatt,
 LON_GET_UNSIGNED_WORD(nviAmpere)
 * LON_GET_UNSIGNED_WORD(nviVolt)
 * LON_GET_UNSIGNED_WORD(nciGain.multiplier));
 // nvoWatt /= nciGain.divider;
 LON_SET_UNSIGNED_WORD(nvoWatt,
 LON_GET_UNSIGNED_WORD(nvoWatt)
 / LON_GET_UNSIGNED_WORD(nciGain. divider));
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError)
 {
 // handle propagation error here
 ...
 }
}

Configuration network variables must be persistent, that is, their values must
withstand a power outage.

Handling a Network Variable Poll Request from the
Network

Devices on the network can request the current value of a network variable on
your device by polling or fetching the network variable. The LonTalk host stack
responds to poll of fetch requests by sending the current value of the requested
network variable.

Handling Changes to Changeable-Type Network
Variables

When a network management tool plug-in or the OpenLNS CT Browser changes
the type of a changeable-type network variable, it informs your application of the
change by describing the new type in the SCPTnvType configuration property
that is associated with the network variable.

When your application detects a change to the SCPTnvType value:

• It determines if the change is valid.

• If the change is valid, it processes the change.

• If the change is not valid, it reports an error.

Valid type changes are those that the application can support. For example, an
implementation of a generic PID controller might accept any numerical
floating-point typed network variables (such as SNVT_temp_f, SNVT_rpm_f, or
SNVT_volt_f), but can reject other types of network variables. Or a data logger
device might support all types that are less than 16 bytes in size, and so on.

See The Dynamic Interface Example Application for an example application that
handles changeable-type network variables.

LonTalk Stack Developer’s Guide 121

Validating a Type Change
The SCPTnvType configuration property is defined by the following structure:

typedef LON_STRUCT_BEGIN(SCPTnvType) {
 ncuInt type_program_ID[8];
 ncuInt type_scope;
 ncuLong type_index;
 ncsInt type_category;
 ncuInt type_length;
 ncsLong scaling_factor_a;
 ncsLong scaling_factor_b;
 ncsLong scaling_factor_c;
} LON_STRUCT_END(SCPTnvType);

When validating a change to a network variable, an application can check five of
the fields in the SCPTnvType configuration property:

• The program ID template of the resource file that contains the network
variable type definition (type_program_ID[8])

• The scope of the resource file that contains the network variable type
definition (type_scope)

• The index within the specified resource file of the network variable type
definition (type_index)

• The category of the network variable type (type_category)

• The length of the network variable type (type_length)

The type_program_ID and type_scope values specify a program ID template
and a resource scope that together uniquely identify a resource file set. The
type_index value identifies the network variable type within that resource file
set. If the type_scope value is 0, the type_index value is a SNVT index. For
example, checking the type_scope and type_program_ID fields lets you accept
only types that you created.

The type_category enumeration is defined in the <snvt_nvt.h> include file as:
typedef enum nv_type_category_t {
 NVT_CAT_INITIAL = 0, // Initial (default) type
 NVT_CAT_SIGNED_CHAR, // Signed Char
 NVT_CAT_UNSIGNED_CHAR, // Unsigned Char
 NVT_CAT_SIGNED_SHORT, // 8-bit Signed Short
 NVT_CAT_UNSIGNED_SHORT, // 8-bit Unsigned Short
 NVT_CAT_SIGNED_LONG, // 16-bit Signed Long
 NVT_CAT_UNSIGNED_LONG, // 16-bit Unsigned Long
 NVT_CAT_ENUM, // Enumeration
 NVT_CAT_ARRAY, // Array
 NVT_CAT_STRUCT, // Structure
 NVT_CAT_UNION, // Union
 NVT_CAT_BITFIELD, // Bitfield
 NVT_CAT_FLOAT, // 32-bit Floating Point
 NVT_CAT_SIGNED_QUAD, // 32-bit Signed Quad
 NVT_CAT_REFERENCE, // Reference
 NVT_CAT_NUL = -1 // Invalid Value
} nv_type_category_t;

122 Developing a LonTalk Stack Device Application

This enumeration describes the type (signed short or floating-point, for example),
but does not provide information about structure or union fields. To support all
scalar types, test for a type_category value between
NVT_CAT_SIGNED_CHAR and NVT_UNSIGNED_LONG, plus
NVT_CAT_SIGNED_QUAD.

The type_length field provides the size of the type in bytes.

Multiple changeable-type network variables can share the SCPTnvType
configuration property. In this case, the application must process all network
variables from the property’s application set, because just as the SCTPnvType
configuration property applies to all of these network variables, so does the type
change request. The application should accept the type change only if all related
network variables can perform the required change.

If one or more type-inheriting configuration properties apply to changing
configuration network variables, these type-inheriting configuration NVs also
change their type at the same time. If this type-inheriting configuration NV is
shared among multiple network variables, all related network variables must
change to the new type. Sharing a type-inheriting configuration property among
both changeable and non-changeable network variables is not supported.

Processing a Type Change
After validating a type change request, the application performs the type change.
The type-dependent part of your application queries these details when required
and processes the network variable data accordingly.

Some type changes require additional processing, while others do not. For
example, if your application supports changing between different floating-point
types, perhaps no additional processing is required. But if your application
supports changing between different scalar types, it might require the use of
scaling factors to convert the raw network variable value to a scaled value. You
can use the three scaling factors defined in the SCPTnvType configuration
property (scaling_factor_a, scaling_factor_b, and scaling_factor_c) to
convert from raw data to scaled fixed-point data according to the following
formula:

()()crawascaled b += *10*

where raw is the value before scaling is applied, and a, b, and c are the values for
scaling_factor_a, scaling_factor_b, and scaling_factor_c.

To convert the scaled data back to a raw value for an output network variable,
use the following inverted scaling formula:

c
a
scaledraw b −⎟

⎠
⎞

⎜
⎝
⎛=

10*

For example, the SNVT_lev_cont type is an unsigned short value that
represents a continuous level from 0 to 100 percent, with a resolution of 0.5%.
The actual data values (the raw values) are in the variable range from 0 to 200.
The scaling factors for SNVT_lev_cont are defined as a=5, b= -1, c=0.

If the network variable is a member of an inheriting configuration property’s
application set that implements the property as a configuration network variable,

LonTalk Stack Developer’s Guide 123

then the application must process the type changes for both the network variable
and the configuration network variable.

If the network variable is a member of a configuration property’s application set
where the configuration property is shared among multiple network variables,
the application must process the type and length changes for all network
variables involved.

However, if the configuration property is implemented within a configuration file,
no change to the configuration file is required. The configuration file states the
configuration property’s initial and maximum size (in the CP
documentation-string length field), and network management tools derive the
current and actual type for type-inheriting CPs from the associated network
variable.

Your application must always support the NVT_CAT_INITIAL type category. If
the requested type is of that category, your application must ignore all other
content of the SCPTnvType configuration property and change the related
network variable’s type back to its initial type. The network variable’s initial
type is the type declared in the model file.

Processing a Size Change
If a supported change to the SCPTnvType configuration property results in a
change in the size of a network variable type, your application must provide code
to inform the LonTalk host stack about the current length of the changeable-type
network variable. The current length information must be kept in non-volatile
memory.

The LonTalk API provides a callback handler function, LonGetNvSize(), that
allows you to inform the API of the network variable’s current size. The following
code shows an example implementation for the callback handler function.

unsigned LonGetNvSize(const unsigned index) {
 const LidNvDefinition* const nvTable = LonGetNvTable();
 unsigned size = LonGetDeclaredNvSize(index);

 if (index < LonNvCount &&
 nvTable[index].Definition.Flags & LON_NV_CHANGEABLE)
 {
 const SCPTnvType* pNvType = myGetNvTypeCp(index);
 // if the NV uses the initial type, its size is
 // the declared size set above
 if (pNvType->type_category != NVT_CAT_INITIAL) {
 size = pNvType->type_length;
 }
 }
 return size;
}

The example uses a myGetNvTypeCp() function (that you provide) to determine
the type of a network variable, based on your knowledge of the relationships
between the network variables and configuration properties implemented.

If the changeable-type network variable is member of an inheriting configuration
property that is implemented as a configuration property network variable, the
type information must be propagated from the changeable-type network variable
to the type-inheriting configuration property, so that the LonGetNvSize()

124 Developing a LonTalk Stack Device Application

callback handler function can report the correct current size for any implemented
network variable. Your myGetNvTypeCp() function could handle that
mapping.

For the convenience of network management tools, you can also declare a
SCPTmaxNVLength configuration property to inform the tools of the maximum
type length supported by the changeable-type network variable. For example:

network input cp SCPTnvType nciNvType;
const SCPTmaxNVLength cp_family nciNvMaxLength;

network output changeable_type SNVT_volt_f nvoVolt
 nv_properties {
 nciNvType,
 nciNvMaxLength=sizeof(SNVT_volt_f)
};

Rejecting a Type Change
If a network management tool attempts to change the type of a changeable-type
network variable to a type that is not supported by the application (or is an
unknown type), your application must do the following:

• Report the error within a maximum of 30 seconds from the receipt of the
type change request. The application should signal an invalid_request
through the Node Object functional block and optionally disable the
related functional block. If the application does not include a Node Object
functional block, the application can set an application-specific error code
and take the device offline (use the offline parameter with the
LonSetNodeMode() function).

• Reset the SCPTnvType value to the last known good value.

• Reset all other housekeeping data, if any, so that the last known good
type is re-established.

Handling Dynamic Network Variables
To define the maximum number of supported dynamic network variables for your
LonTalk Stack device, you use the LonTalk Interface Developer utility (the
Application Configuration page) to specify the total number of dynamic variables
that the application supports. This number represents the application’s capacity
for dynamic network variables; the actual dynamic network variables are created
or deleted when the application is running. The process of managing dynamic
network variables is handled by the LonTalk host stack and the API, but to use
the dynamically created network variables, your application must respond to
related events.

The application must be able to handle the addition, modification, or deletion of
dynamic network variables. Dynamic network variable requests can come from a
network management tool or from another LONWORKS device on the network.
You must add code to the following event handler functions to support dynamic
network variables:

• LonNvAdded()

The LonTalk host stack calls this function when a dynamic network

LonTalk Stack Developer’s Guide 125

variable is added. On device startup, it calls this function for each
dynamic network variable that had been previously defined.

• LonNvTypeChanged()

The LonTalk host stack calls this function when a dynamic network
variable definition is changed.

• LonNvDeleted()

The LonTalk host stack calls this function when a dynamic network
variable is deleted.

For the LonNvAdded() and LonNvTypeChanged() event handler functions,
the LonTalk host stack passes the index value for the dynamic network variable,
and a pointer to the network variable’s attributes, such as direction, size, name,
and self-documentation string.

When a dynamic network variable is first added, the name and the
self-documentation string for the network variable might be blank. A network
management tool can update the name or the self-documentation string in a
subsequent network management message, for which the LonTalk host stack
calls the LonNvTypeChanged() event handler.

Communicating with Other Devices Using Application
Messages

Application messages are used to create both standard and proprietary (that is,
non-interoperable) interfaces for a device. You can use application messages for
standard interfaces such as LONWORKS FTP or LonMark data log transfer, and
you can use application messages if your device needs a proprietary interface
that does not need to interoperate with devices from other manufacturers, for
example, to implement a manufacturing-test interface that is only used during
manufacturing test of your device. You can also use the same mechanism that is
used for application messaging to create foreign-frame messages (for proprietary
gateways) and explicitly addressed network variable messages.

One interoperable use for application messages is to implement the LONWORKS
file transfer protocol. This protocol is used to exchange large blocks of data
between devices or between devices and tools, and is also used to access
configuration files on some devices.

The content of an application message is defined by a message code that is sent as
part of the message. The message codes that are available for use by your
application are standard application messages and user-defined application
messages. User-defined application messages use message codes 0 to 47 (0x0 to
0x2F). Your application must define the meaning of each user-defined message
code. Standard application messages are defined by LONMARK International,
and use message codes 48 to 62 (0x30 to 0x3E).

The message code is followed by a variable-length data field, that is, a message
code could have one byte of data in one instance and 25 bytes of data in another
instance.

126 Developing a LonTalk Stack Device Application

Sending an Application Message to the
Network
Call the LonSendMsg() function to send an application message. This function
forwards the message to the LonTalk host stack, which in turn transmits the
message on the network. After the message is sent, the LonTalk host stack calls
the LonEventReady() callback handler function to inform the application that
an event has been enqueued. When the application calls the LonEventPump()
function, the LonTalk API calls your LonMsgCompleted() event handler
function. This function notifies your application of the success or failure of the
transmission. You can use this function for any application-specific processing of
message transmission completion.

To be able to send an application message, the LonTalk Stack device must be
configured and online. If the application calls the LonSendMsg() function when
the device is either not configured or not online, the function returns the
LonApiOffline error code.

You can send an application message as a request message that causes the
generation of a response by the receiving device or devices. If you send a request
message, the receiving device (or devices) sends a response (or responses) to the
message. When the Echelon Smart Transceiver or Neuron Chip receives a
response, it enqueues the response and calls the LonEventReady() callback
handler function to inform that application that an event has been enqueued.
When the application calls the LonEventPump() function, the LonTalk API
calls your LonResponseArrived() event handler function for each response it
receives.

Receiving an Application Message from the
Network
When the LonTalk host stack receives an application message from the network,
it forwards the message to the LonEventPump() function in the LonTalk API,
which in turn calls your LonMsgArrived() callback handler function. Your
implementation of this function must process the application message.

The LonTalk host stack does not call the LonMsgArrived() callback handler
function if an application message is received while the LonTalk Stack device is
either unconfigured or offline.

If the message is a request message, your implementation of the
LonMsgArrived() callback handler function must determine the appropriate
response and send it using the LonSendResponse() function.

Handling Management Commands
LONWORKS installation and maintenance tools use network management
commands to set and maintain the network configuration for a device. The
LonTalk host stack automatically handles most network management commands
that are received from these tools. A few network management commands might
require additional application-specific processing, so the LonTalk API forwards
the request to your application through the network management callbacks.
These commands are requests for your application to wink, go offline, go online,

LonTalk Stack Developer’s Guide 127

or reset, and are handled by your LonWink(), LonOffline(), LonOnline(), and
LonReset() callback handler functions.

Handling Local Network Management Tasks
There are various network management tasks that a device can choose to initiate
on its own. These are local network management tasks, which are initiated by
the LonTalk Stack application and implemented by the LonTalk host stack.
Local network management commands are never propagated to the network.
The Extended LonTalk APIs allow you to include handling of these local network
management commands if your LonTalk Stack application requires it.

Handling Reset Events
A network management tool can send a reset message to the LonTalk Stack
device for a variety of reasons. For example, to reset the device after changing
the communication parameters (including setting the priority), or following an
update to a configuration property that is declared with a restriction flag which
indicates that the network manager must reset the device after an update. The
LonTalk host stack processes reset messages and manages everything that is
required by the protocol. It also calls the LonReset() event handler function to
inform the application, so that the application can perform any application
specific processing.

The LonReset() callback handler function returns a pointer to the
LonResetNotification structure, but this pointer is always NULL. The pointer
is included for code compatibility with ShortStack applications. Whenever the
LonTalk Stack device is reset, the state of the device is set to configured, and the
mode of the device is changed to online, but no LonOnline() event is generated.

Resetting a LonTalk Stack device from the network affects only the LonTalk
Stack, and does not cause a processor or application software reset.

Querying the Error Log
The LonTalk host stack writes application errors to the system error log. The
LonStatus structure, which is returned by the LonQueryStatus() function
contains complete statistics information, such as the number of transmit errors,
transaction timeouts, missed and lost messages, and so on.

Working with ECS Devices
A LonTalk Stack device is an extended command set (ECS) device (that is, the
ver_nm_max field of the Capability Info Record in the device’s self-identification
string is greater than 0). A LonTalk Stack device supports both the extended
command set and legacy network management commands. However, after a
device receives any extended commands, it operates in the extended mode, and
returns a negative response to legacy commands.

Any OpenLNS-based tool communicates with a LonTalk Stack device using ECS
commands (for example, during device commissioning), and thus places the
device in extended mode. Some tools that are not based on OpenLNS, such as the
NodeUtil utility, might not be able to communicate with a device that is in the
extended mode.

128 Developing a LonTalk Stack Device Application

To return a LonTalk Stack device to the legacy mode, rather than the extended
mode, perform one of the following tasks:

• Re-run the LonTalk Interface Developer utility to generate a new
signature for the device, and rebuild and load the application image.

• Send the NM_NODE::NM_INITIALIZE extended network management
command to the device.

• Erase the non-volatile memory for the device.

• If the device is currently commissioned in an OpenLNS database,
de-commission it.

You should not need to perform any of these tasks often because most network
management tools use OpenLNS or are compatible with ECS.

For more information about the LonTalk extended command set (ECS) network
management commands, see the ISO/IEC 14908-1 Control Network Protocol
Specification. This document is available from ISO:
www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60203

Using Direct Memory Files
To use configuration properties in files, your host application program must
implement a method that allows the network management tool to access those
files. You can support either one of the following:

• The LONWORKS FTP protocol

• The host direct memory files (DMF) feature

The FTP protocol is appropriate when large amounts of data need to be
transferred between the host processor and Echelon Smart Transceiver or
Neuron Chip. The host DMF feature is appropriate for most other cases.

By supporting direct memory files, your application allows the network
management tool to use standard memory read and write network messages to
access configuration property files located on the host. Direct memory files
appear to the network management tool as if they were located within the
Echelon Smart Transceiver or Neuron Chip’s native address space, but the
LonTalk host stack routes memory read and write requests within the DMF
memory window to the LonMemoryRead() and LonMemoryWrite() callback
handler functions provided in the FtxlHandlers.c file. These functions use the
LonTranslateWindowArea() support function, which is generated by the
LonTalk Interface Developer utility to translate between Echelon Smart
Transceiver or Neuron Chip addresses and host addresses.

If the model file contains a network variable of type SNVT_address, the
LonTalk Interface Developer utility automatically generates all necessary code
and data for the memory read and write requests, including code in the
LonInit() function to register the virtual memory window with the LonTalk Host
stack.

You do not generally need to modify the code that the LonTalk Interface
Developer utility generates (in FtxlDev.c) or the LonMemoryRead() and
LonMemoryWrite() callback handler functions (in FtxlHandlers.c).

LonTalk Stack Developer’s Guide 129

The DMF Memory Window
To the network management tool, all content of the DMF memory window is
presented as a continuous area of RAM memory in the virtual DMF memory
space. The DMF memory space is virtual because it appears to the network
management tool to be located within the Echelon Smart Transceiver or Neuron
Chip’s native address space, even though it is not. In the code that the LonTalk
Interface Developer utility generates, the content of the DMF memory window,
which can be physically located in different parts, or even types, of the host
processor’s memory, is presented as a continuous area of memory. Another part
of the generated code identifies the actual segment within the host memory that
is shown at a particular offset within the virtual address space of the DMF
memory window, and allows the DMF memory driver to correctly access the
corresponding data within the host processor’s address space.

Data that appears in the DMF memory window includes the following:

• File directory

• Template file

• Writeable CP value files (if any)

• Read-only CP value files (if any)

The following figure shows how the different memory address spaces relate to
each other.

130 Developing a LonTalk Stack Device Application

Echelon Smart
Transceiver or Neuron

Chip

Registered Memory
Window

Maximum range:
0x0001 – 0xFFFF

File directory

Template file

Writable value file

Read-only value
file

unused

SNVT_address
File directory

Template file

Writable value file

Read-only value
file

Echelon Smart Transceiver or Neuron Chip
network address space

(Neuron addresses in big-endian notation)

Virtual address space: defined host-side,
using virtual Smart Transceiver
addresses in host’s byte order

Physical host address space

Address translation provided by the Interface Developer;
address translation static (by correct declaration of

SNVT_address and file directory)

Address translation provided by Interface Developer
in FtxlDev.c; translation dynamic.

LON_DMF_WINDOW_START

LO
N

_D
M

F_
W

IN
D

O
W

_U
SA

G
E

The LonTalk Interface Developer utility defines three macros in the
generated FtxlDev.h file for working with the DMF window:

• LON_DMF_WINDOW_START

• LON_DMF_WINDOW_SIZE

• LON_DMF_WINDOW_USAGE

The LON_DMF_WINDOW_USAGE macro helps you keep track of the DMF
window fill level. The LonTalk Interface Developer utility uses this value when
it registers the actual window, whereas LON_DMF_WINDOW_SIZE defines
only the maximum window size.

You can modify the DMF framework that the LonTalk Interface Developer utility
generates to include support for user-defined files. However, all of the data must
fit within the DMF memory window.

When your data exceeds the size of the DMF memory window, you must perform
one of the following tasks:

• Reduce the amount of data

• Implement the LONWORKS File Transfer Protocol

File Directory
The LonTalk Interface Developer utility produces a configurable file directory
structure, which supports:

LonTalk Stack Developer’s Guide 131

• Using named or unnamed files (the DMF framework uses unnamed files
by default, whereas FTP uses named files)

• Up to 64 KB of data for each file

• For the DMF framework: Up to a total of 64 KB for all files plus the file
directory itself

• For FTP: unlimited size

The utility initializes the file directory depending on the chosen access method.
The directory can be used with an FTP server implementation or the file access
host memory window implementation. The initialization that the utility provides
works for both little-endian and big-endian host processors.

The FtxlDev.h header file allows you to customize the file directory structure, if
needed.

Shutting Down the LonTalk Stack device
To perform an orderly shutdown of a LonTalk Stack device, your application can
call the LonExit() API function. The implementation of this function is
generated by the LonTalk Interface Developer utility, and is included in the
FtxlDev.c file. This function calls the LonLidDestroyStack() API function to
stop the LonTalk Host stack and free its resources. In addition, the LonExit()
function can perform any clean-up for the application, such as deleting operating
system events and other resources.

After your application calls the LonExit() function, it can call the LonInit()
function again. However, if you want to change the LonTalk host stack’s
interface, you must reboot the device.

132 Developing a LonTalk Stack Device Application

LonTalk Stack Developer’s Guide 133

9

Developing an IP-852 Router
Application

This chapter describes how to develop a LonTalk Stack
IP-852 router application.

134 Developing an IP-852 Router Application

Developing an IP-852 Router Application
You can develop an IP-852 router application using the LonTalk Stack. The
IP-852 router application does not require model files, a code framework
generated by the LonWorks Interface Developer, or the LonTalk API. To create
an IP-852 router application you use the following two C++ classes:

Class Description File

LtLogicalChannel Represents the
network interface
used to access a native
LonWorks channel.

LonTalkStack\Source\
Shared\include\
LtChannel.h

LtIp852Router Represents the router
object.

LonTalkStack\Source\
Shared\include\
LtRourterApp.h

LtLogicalChannel
The LtLogicalChannel class represents the network interface used to access a
native LonWorks channel. You must instantiate and open this class before
starting the IP-852 router.

You can call its constructor with either no parameters (if there is only one
possible native network interface supported by the platform), or with a single
parameter representing the name of the network interface.

LtIp852Router
The LtIp852Router class represents the router object. Its constructor takes no
parameters. This class has the following functions:

Function Syntax Description

Start
LtErrorType Start(
int ltAppIndex,
LtUniqueId <Uid,
LtLtLogicalChannel
*pLtChannel,
int ipAppIndex,
LtUniqueId &ipUid,
int ipAddress,
int ipPort)

Creates the IP-852 channel and
starts both sides of the router.

The following describes this
method’s parameters:

ltAppIndex. The application
index of the native LonWorks
side of the router.

The LonTalk Stack requires an
application index whenever
there is more than one stack. It
is mainly used to store the
unique ID of the stack and to

LonTalk Stack Developer’s Guide 135

Function Syntax Description

name persistence files.

The index is arbitrary, but it
may need to be between 0 and n,
where n is platform dependent
(depending on how unique IDs
and other items are stored).

LtUniqueId. The uniqueId of
the native LonWorks side of the
router.

pLtChannel. The
LtLogicalChannel
representing the native
LonWorks channel

ipAppIndex. The application
index of the IP-852 router side.

ipUid. The unique ID of the
IP-852 router side.

ipAddress. The 32-bit
representation of the IP address
of the IP-852 router side in
network order.

ipPort. The port number on
which the IP-852 router side
will be listening.

Shutdown Shutdown() Closes the router.

SendServicePin
Message

SendServicePin
Message()

Sends a service pin message
from both sides of the router.

136 Developing an IP-852 Router Application

LonTalk Stack Developer’s Guide 137

10

Porting a LonTalk Stack
Application

This chapter describes how to port a LonTalk Stack device
or IP-852 router application to your platform.

138 Porting a LonTalk Stack Application

Porting Overview
You can port your LonTalk Stack device or IP-852 router application to your own
platform. Porting your application may require one to all of the following
components:

1. A version of the OSAL for your operating system.
2. A LON-link driver.
3. Socket interfaces.
4. The LonTalk Stack source files.
5. Application-specific files for LonTalk Stack devices.
6. Your own application-specific files.

The following sections provide tips for creating these components.

OSAL
This LonTalk Stack Developer’s Kit contains the following two example
implementations of the OSAL in the Source\VxLayer directory:

File Description

Osal.c The Windows OSAL used by the LonTalk Stack
example applications.

PosixOsal.c The Linux version of the OSAL that uses
p-threads.

LonLink Driver
If your application uses a native LonWorks interface, you need to create a class
that is derived from the LonLink class to enable the stack to communicate with
the network interface. The LonLink class is defined in the
Source\Shared\LonLink.h file.

The LonTalk Stack Developer’s Kit contains the two example LonLink base
classes.

File/Folder Description

Shared\LonLinkWin.cpp The Windows version, which uses
OpenLDV to communicate with any
OpenLDV compatible network interface
that includes a Layer 2 MIP.

Source\Target\Drivers
\Linux\SMIP

The Linux version which communicates
with an Echelon Smart Transceiver or
Neuron Chip running the Layer 2 Serial

LonTalk Stack Developer’s Guide 139

File/Folder Description

MIP. The LonLink derived class is
implemented in LonLinkDcx.cpp and
LonLinkDcx.h.

By default, Linux will automatically use the provided Linux driver for the Serial
MIP. If you are using a different operating system, you need to modify the
#define LtLinkDefault statement in the
Source\Shared\include\LtLinkDefault.h file to reference your LonLink
derived class.

Service LED
To control the service LED, you need to override the virtual
setServicePinState() method of the LtLink object. The LonLink class is
derived from the LtLink base class.

Socket Interfaces
If your platform supports IP-852 interfaces, you need to provide target-specific
code to interface with sockets. The LonTalk Stack Developer’s Kit contains two
socket interface examples:

Socket Interface Example Files

Source\ShareIp\VxSockets.c

Source\VxLayer\VxWinSockets.c

LonTalkStack Source Files
The LonTalk Stack source files you need depends on whether your LonTalk Stack
device is an application device using a native LonWorks interface, an application
device using an IP-852 interface, an IP-852 Router, or a combination of these.
The follow table lists the files required for each device type (files are relative to
the Source directory):

File

App Device
(Native
LonWorks
Interface)

App Device
(IP-852
Interface)

IP-852
Router

FtxlApi\FtxlApi.cpp X X
FtXlApi\FtXlStack.cpp X X
Lre\LtIpPortClient.cpp X X X
Lre\LtLre.cpp X X X
Router\LtRouterApp.cpp X
Shared\LonLink.cpp X X X
Shared\LtBlob.cpp X X X

140 Porting a LonTalk Stack Application

Shared\LtChannel.cpp X X X
Shared\LtCUtil.c X X X
Shared\LtDomain.cpp X X X
Shared\LtFailSafeFile.cpp X X
Shared\LtHashTable.cpp X X X
Shared\LtLinkBase.cpp X X X
Shared\LtNetwork.cpp X X X
Shared\LtNvRam.cpp X X
Shared\LtPersistence.cpp X X X
Shared\LtPktAllocator.cpp X X X
Shared\LtPktAllocatorOne.cpp X X X
Shared\LtPktInfo.cpp X X X
Shared\LtProgramId.cpp X X X
Shared\LtTaskOwner.cpp X X X
Shared\LtUniqueId.cpp X X X
Shared\LtVector.cpp X X X
Shared\RefQues.cpp X X X
ShareIp\iLonSntp.cpp X X
ShareIp\IpLink.cpp X X
ShareIp\LtIpBase.cpp X X
ShareIp\LtIpChannel.cpp X X
ShareIp\LtIpEchPackets.cpp X X
ShareIp\LtIpMaster.cpp X X
ShareIp\LtIpPackets.cpp X X
ShareIp\LtIpPersist.cpp X X
ShareIp\LtIpPlatform.cpp X X
ShareIp\LtLreIpClient.cpp X X
ShareIp\LtMD5.cpp X X
ShareIp\LtPktReorderQue.cpp X X
ShareIp\md5c.c X X
ShareIp\Segment.cpp X X
ShareIp\SegSupport.cpp X X
ShareIp\sntpcLib.c X X
ShareIp\vxlTarget.c X X X
Stack\DynamicNvs.cpp X X X
Stack\LonTalkde.cpp X X X
Stack\LonTalkStack.cpp X X X
Stack\LtaBase.cpp X X X
Stack\LtAddressConfiguration.c
pp X X X

Stack\LtAddressConfigurationT
able.cpp X X X

Stack\LtApdu.cpp X X X
Stack\LtBitMap.cpp X X X
Stack\LtConfigData.cpp X X X
Stack\LtConfigurationEntity.cpp X X X
Stack\LtDescription.cpp X X X
Stack\LtDeviceStack.cpp X X X
Stack\LtDomainConfiguration.c
pp X X X

Stack\LtDomainConfigurationTa X X X

LonTalk Stack Developer’s Guide 141

ble.cpp
Stack\LtLayer4.cpp X X X
Stack\LtLayer6.cpp X X X
Stack\LtMip.cpp X X X
Stack\LtMipApp.cpp X X X
Stack\LtMsgOverride.cpp X X X
Stack\LtNetworkImage.cpp X X X
Stack\LtNetworkManager.cpp X X X
Stack\LtNetworkManager2.cpp X X X
Stack\LtNetworkStats.cpp X X X
Stack\LtNetworkVariable.cpp X X X
Stack\LtNetworkVariableConfig
uration.cpp X X X

Stack\LtNetworkVariableConfig
urationTable.cpp X X X

Stack\LtOutgoingAddress.cpp X X X
Stack\LtPlatform.cpp X X X
Stack\LtProXy.cpp X X X
Stack\LtReadOnlyData.cpp X X X
Stack\LtRouteMap.cpp X X X
Stack\LtStackClient.cpp X X X
Stack\LtStatus.cpp X X X
Stack\LtTransactions.cpp X X X
Stack\LtXcvrId.cpp X X X
Stack\NdNetworkVariable.cpp X X X
Stack\dedef.cpp X X X
VXLayer\VxLayer.c X X X
VXLayer\VxLQues.c X X X
VXLayer\VxMsgQ.c X X X
VXLayer\VxSemaph.c X X X
VXLayer\VxTimers.c X X X

Application-Specific Files for LonTalk Stack Devices
If you are building an application device that uses a native LonWorks or IP-852
interface, you need to include the LID-generated files that customize your
application interface, and modify the templates as appropriate.

Application-Specific Code for IP-852 Interfaces
If you define an IP-852 interface, you must include a valid, unique ID for the
IP-852 interface. If you are defining an application device, you must register this
unique ID (prior to calling the LonInit() method) using the
LonResgisterUniqueId() method. This method is defined in the
Source\FtxlApi\FtxlApi.h file.

Selecting the Device Type
Your build process must define one of the following preprocessor definitions that
are used by LonTalk Stack to control the type of device that is being built:

142 Porting a LonTalk Stack Application

Preprocessor Definition Description

LONTALK_STACK_PLATFORM An application device using a
native LonWorks network
interface.

LONTALK_IP852_STACK_PLATFORM An application device using
an IP-852 network interface.

LONTALK_ROUTER_PLATFORM An IP-852 to native LonWorks
router.

These preprocessor definitions control which features to be included in the
LonTalk Stack by defining other preprocessor definitions that are stored in the
Source\Shared\include\LtaDefine.h file. You generally use these
definitions with the FEATURE_INCLUDED or PRODUCT_IS macros, which
are also defined in the LtaDefine.h file.

File System Requirements
The LonTalk API defines callback handlers for various forms of non-volatile
memory. For example, a native LonWorks application device may store its
non-volatile data directly to flash without a file system.

The IP-852 portions of the LonTalk Stack source, however, do require a file
system. If your application is an IP-852 device or IP-852 router, you must either
provide a file system or port the file system references used by the IP-852 source
as necessary. For more information, you can view the
Source\Shared\LtFailSafe.cpp and Source\Stack\LtPlatform.cpp files.

LonTalk Stack Developer’s Guide 143

Appendix A

LonTalk Interface Developer
Command Line Usage

This appendix describes the command-line interface for the
LonTalk Interface Developer utility. You can use this
interface for script-driven or other automation uses of the
LonTalk Interface Developer utility.

144 Appendix A: Appendix A

LonTalk Interface Developer Command Line Usage

Overview
The LonTalk Interface Developer utility consists of two main components:

• The LonTalk Interface Developer graphical user interface (GUI), which
collects your preferences and displays the results

• The LonTalk Stack Interface Developer, which processes the data from
the GUI and generates the required output files

If you plan to run the LonTalk Interface Developer utility in an unattended
mode, for example as part of an automated build process, you can use the
command-line interface to the LonTalk Stack Interface Developer part of the
LonTalk Interface Developer utility.

All commonly used project preferences are available through either the GUI or
the command line interface. However, a few less common preferences (such as
specifying the number of domain table entries, or setting the DMF window size or
starting address) are available only through the command line interface.

To run the LonTalk Stack Interface Developer, open a Windows command
prompt (Start → Programs → Accessories → Command Prompt), and enter
the following command from the [LonWorks]\InterfaceDeveloper directory:

libf

Command Usage
The following command usage notes apply to running the libf command:

• If no command switches or arguments follow the command name, the tool
responds with usage hints and a list of available command switches.

• Most command switches come in two forms: A short form and a long
form.

The short form consists of a single, case-sensitive, character that
identifies the command, and must be prefixed with a single forward slash
'/' or a single dash '-'. Short command switches can be separated from
their respective values with a single space or an equal sign. Short
command switches do not require a separator; the value can follow the
command identifier immediately.

The long form consists of the verbose, case-sensitive, name of the
command, and must be prefixed with a double dash '- -'. Long command
switches require a separator, which can consist of a single space or an
equal sign.

Examples:
Short form: libf –n …

Long form: libf --source …

• Multiple command switches can be separated by a single space.

LonTalk Stack Developer’s Guide 145

• Commands of a Boolean type need not be followed by a value. In this
case, the value yes is assumed. Possible values for Boolean commands
are yes, on, 1, +, no, off, 0, - (a minus sign or dash).

Examples:
libf -–verbosecomments=yes
libf --verbosecomments

• Commands can be read from the command line or from a command file
(script file). A command file contains empty lines, lines starting with a
semicolon (comment lines), or lines containing one command switch on
each line (with value as applicable). The file extension can be any
characters, but it is recommended that you use the “.libf” extension.

Example command file:

; LIBF command file for myProject
--source=myModelFile.nc
--basename=myProjectVer1
--clock=10
--pid=9F:FF:FF:00:00:00:04:00
--out=C:\myFolder\ProjectVer1

• Command switches can appear at any location within the command line
or in any order (on separate lines) within a script.

Command Switches
The following table lists the available command switches for the libf command.
Only the following switches are required for the command:

• --source (–n)

• --pid (-i)

• --basename (-b)

• --clock (-c)

Other command switches are optional.

Command Switch

Long Form
Short
Form Description

--addresses -A Implement address table with the specified number of
entries

--aliases -L Implement alias table with specified number of entries

--avgdynsd -g Set the average dynamic network variable
self-documentation string size (0..128)

--basename -b Set the project's base name

146 Appendix A: Appendix A

LonTalk Interface Developer Command Line Usage

Command Switch

Long Form
Short
Form Description

--buffer -B Implement specified number of buffers of the specified
type

--clock -c Set the Echelon Smart Transceiver or Neuron Chip
clock rate (in MHz)

--define -D Define a specified preprocessor symbol (without value)

--defloc Location of an optional default command file

--dmfsize -z Override size of the direct memory file memory window

--dmfstart -a Override start address of the direct memory file
memory window

--domains -d Implement domain table with specified number of
entries

--dynamicnvs -y Provide support for specified number of dynamic
network variables

--file -@ Include a command file

--help -? Display usage hint for command

--include -I Add the specified folder to the include search path

--mkscript Generate command script in specified location

--nodefaults Disable processing of default command files

--nvdflush -N Flush non-volatile date after specified timeout period
(1, 5, 10, or 20 seconds)

--nvdmodel -M Use specified model for non-volatile data (flash, file, or
user)

--nvdroot -R Use the specified root for the non-volatile driver

--out -o Generate all output files in the specified location

--pid -i Use the specified program ID (in colon-separated
format)

--rxdb -r Manage specified number of receive transaction records

LonTalk Stack Developer’s Guide 147

Command Switch

Long Form
Short
Form Description

--silent Suppress banner message display

--source -n Use the specified model file

--spdelay -p Set the service pin notification delay (255=default,
0=off)

--txdb -t Manage specified number of transmit transaction
records

--txttl -T Let transmit transactions expire after specified number
of microseconds

--verbose -v Run with verbosity level 0 (normal), 1 (verbose), or 2
(trace)

--verbosecomments -V Generate verbose comments

--warning Display specified message type as a warning

Specifying Buffers
The --buffer (-B) command switch specifies a number of buffers of a specified
type. The supported types of buffers are:

• Application input buffers

• Application output buffers

• Application output priority buffers

• Link-layer buffers

• Network input buffers

• Network output buffers

• Network input buffer size

• Network output buffer size

• Network output priority buffers

For each of these buffer types, you can specify a number of buffers using the
following syntax:

--buffer=buffer_type.number

where buffer_type can be any of the specifications listed in the following table,
and number is the number of that type of buffer. Each of the specifications has
several allowable values; the table lists the primary specification and allowable
alternate specifications.

148 Appendix A: Appendix A

LonTalk Interface Developer Command Line Usage

The type and number for the --buffer switch are separated by a period. You can
include several buffer specifications within a single --buffer switch, separated by
commas, or with multiple --buffer switches. For example:

--buffer=ai.5,ao.3
--buffer=ai.5 --buffer=ao.3

Buffer Type
Primary
Specification

Alternate
Specifications Valid Values

Application input
buffers

ai appinput

appin

application-input

1 to 100

Default: 5

Application output
buffers

ao appoutput

appout

application-output

1 to 100

Default: 3

Application output
priority buffers

aop appoutputprio

appoutprio

appprio

application-priority-output

1 to 100

Default: 2

Link-layer buffers ll linklayer

link-layer

link

1 to 100

Default: 2

Network input
buffers

nis netinsize

network-input-size

1 to 100

Default: 11

Network output
buffers

nos netoutsize

network-output-size

1 to 100

Default: 3

Network input
buffer size

ni netinput

netin

network-input

1 to 100

Default: 11

Network output
buffer size

no netoutput

netout

network-output

1 to 100

Default: 3

LonTalk Stack Developer’s Guide 149

Buffer Type
Primary
Specification

Alternate
Specifications Valid Values

Network output
priority buffers

nop netoutputprio

netoutprio

netprio

network-priority-output

1 to 100

Default: 3

The application buffers (ai, ao, and aop) all have a range of 1 to 100 for the
allowable number of buffers.

You can set priority buffers to a count of 0 (zero), but you must specify at least
one non-priority buffer in both directions (input and output). However,
LONMARK International requires all interoperable LONWORKS devices to have at
least one priority buffer. Eliminating priority buffers will prevent certification.

The LonTalk Interface Developer utility issues messages that relate to the buffer
configuration. For example, the utility issues messages for the following
situations:

• If the configuration exceeds the available buffer space, the utility issues
error LID#62 (Insufficient buffer space).

• If additional netin or netout buffers of the currently configured size could
be added to the configuration, the utility issues warning LID#4026
(Unused buffer space).

• If at least one 20-byte buffer could be added to the configuration, the
utility issues hint LID#8005 (Unused buffer space).

LonTalk Stack Developer’s Guide 151

Appendix B

Model File Compiler Directives

This Appendix lists the compiler directives that can be
included in a model file. Model files are described in
Chapter 6, Creating a Model File.

152 Appendix B: Appendix B

Model File Compiler Directives

Using Model File Compiler Directives
ANSI C permits compiler extensions through the #pragma directive. These
directives are implementation-specific. The ANSI standard states that a
compiler can define any sort of language extensions through the use of these
directives. Unknown directives can be ignored or discarded. The Neuron C
compiler issues warning messages for unrecognized directives.

In the Neuron C compiler, pragmas can be used to set certain Neuron firmware
system resources and device parameters such as code generation options,
debugging options, error reporting options, and other miscellaneous features. In
general, these directives can appear anywhere in the model file.

Any compiler directive that is not described in this appendix is not accepted by
the LonTalk Interface Developer utility, and causes an error if included in a
model file. You can use conditional compilation to exclude unsupported
directives.

Acceptable Model File Compiler Directives
You can specify the following compiler directives in a model file. These directives
can appear anywhere in the model file, and control the output produced by the
LonTalk Interface Developer utility.

#pragma codegen option

This pragma allows control of certain features in the compiler's code
generator. Application timing and code size might be affected by use of these
directives. Valid values for option include:

• cp_family_space_optimization

• no_cp_template_compression

The Neuron C compiler can attempt to compact the configuration property
template file by merging adjacent family members that are scalars into
elements of an array. Any CP family members that are adjacent in the
template file and value file, and that have identical properties, except for the
item index to which they apply, are merged. Using optional configuration
property re-ordering and merging can achieve additional compaction beyond
what is normally provided by automatic merging of whatever CP family
members happen to be adjacent in the files. To enable this re-ordering
feature, specify #pragma codegen cp_family_space_optimization in your
model file. With this feature enabled, the Neuron C compiler optimizes the
layout of CP family members in the value and template files to make merging
more likely.

You can specify #pragma codegen no_cp_template_compression in your
program to disable the automatic merging and compaction of the
configuration property template file. Use of this directive can cause your
program to consume more of the device’s memory, and is intended only to
provide compatibility with the NodeBuilder 3.0 Neuron C compiler.

You cannot use both the no_cp_template_compression option and the
cp_family_space_optimization option in the same model file.

LonTalk Stack Developer’s Guide 153

Important: Configuration property re-ordering and merging can reduce the
memory required for the template file, but can also result in slower access to
the application’s configuration properties by network management tools.
This can potentially cause a significant increase in the time required to
commission your device, especially on low-bandwidth channel types. You
should typically only use configuration property re-ordering and merging if
you must conserve memory. If you use configuration property re-ordering
and merging, be sure to test the effect on the time required to commission
and configure your device.

#pragma enable_sd_nv_names

Causes the LonTalk Interface Developer utility to include the network
variable names in the self-documentation (SD) information when
self-identification (SI) data is generated. This pragma can only appear once
in the model file.

#pragma fyi_off
#pragma fyi_on

Controls the compiler's printing of informational messages. Informational
messages are less severe than warnings, yet can indicate a problem in the
model file. Informational messages are off by default at the start of
compilation. These pragmas can be intermixed multiple times throughout a
program to turn informational message printing on and off as needed.

#pragma hidden

This pragma is for use only in the <echelon.h> standard include file.

#pragma ignore_notused symbol

Requests that the compiler ignore the symbol-not-referenced flag for the
named symbol. The compiler normally prints warning messages for any
variables, functions, I/O objects, and so on, that are declared but are never
used in the model file. This pragma can be used one or more times to
suppress the warning on a symbol-by-symbol basis.

The pragma should appear after the variable declaration. A good coding
convention is to place this pragma on the line that immediately follows the
variable's declaration. For automatic scope variables, the pragma must
appear no later than the line preceding the close brace character '}', which
terminates the scope containing the variable. There is no terminating brace
for any variable declared at file scope.

#pragma no_hidden

This pragma is for use only in the <echelon.h> standard include file.

#pragma relaxed_casting_off
#pragma relaxed_casting_on

These pragmas control whether the compiler treats a cast that removes the
const attribute as an error or as a warning. The cast can be explicit or
implicit (for example, an automatic conversion due to assignment).
Normally, the compiler considers any conversion that removes the const
attribute to be an error. Turning on the relaxed casting feature causes the
compiler to treat this condition as a warning instead. These pragmas can be
intermixed throughout a program to enable and disable the relaxed casting
as needed.

154 Appendix B: Appendix B

Model File Compiler Directives

#pragma set_guidelines_version string

The Neuron C 2.1 compiler generates LONMARK information in the device’s
XIF file and in the device’s SIDATA (stored in device program memory). By
default, the compiler uses “3.3” as the string to identify the LONMARK
guidelines version to which the device conforms. To override this default,
specify the overriding value in a string constant following the pragma name,
as shown. For example, a program could specify #pragma
set_guidelines_version “3.2” to indicate that the device conforms to the 3.2
guidelines. This directive is useful for backward compatibility with older
versions of the Neuron C compiler.

This directive can be used to state compatibility with a guidelines version
that is not actually supported by the compiler. Future versions of the
guidelines that require a different syntax for SI/SD data are likely to require
an update to the compiler. This directive has only the effect described above,
and does not change the syntax of SD strings generated.

#pragma set_id_string "ssssssss"

Provides a legacy mechanism for setting the device’s 8-byte program ID. This
directive is allowed for legacy application support, and should not be used in
a model file. Use the LonTalk Interface Developer utility to set the program
ID.

#pragma set_node_sd_string C-string-const

Specifies and controls the generation of a comment string in the
self-documentation (SD) data in a device's application image. Most devices
have an SD string. The first part of this string documents the functional
blocks for the device. This part is automatically generated by the LonTalk
Interface Developer utility. This first part is followed by a comment string
that documents the purpose of the device. This comment string defaults to a
NULL string and can have a maximum of 1023 bytes, minus the first part of
the SD string generated by the LonTalk Interface Developer utility, including
the zero termination character. This pragma explicitly sets the comment
string. Concatenated string constants are not allowed. This pragma can only
appear once in the model file.

#pragma set_std_prog_id hh:hh:hh:hh:hh:hh:hh:hh

Provides a legacy mechanism for setting the device’s 8-byte program ID. This
directive is allowed for legacy application support, and should not be used in
a model file. Use the LonTalk Interface Developer utility to set the program
ID.

#pragma warnings_off
#pragma warnings_on

Controls the compiler's printing of warning messages. Warning messages
generally indicate a problem in the model file, or a place where the code could
be improved. Warning messages are on by default. These pragmas can be
intermixed multiple times throughout a model file to turn informational
message printing on and off as needed.

LonTalk Stack Developer’s Guide 155

#pragma disable_warning number
#pragma enable_warning number

Controls the compiler's printing of individual warning messages. Warning
messages generally indicate a problem in the model file, or a place where the
code could be improved. Warning messages are on by default. These
pragmas can be intermixed multiple times throughout a model file to turn
informational message printing on and off as needed.

The number parameter refers to a specific warning number, for example
#pragma disable_warning 123. Alternatively, you can use an asterisk to
select all warnings, for example #pragma enable_warning *. This pragma
is ignored if you specify #pragma warnings_off or #pragma fyi_off.

LonTalk Stack Developer’s Guide 157

Appendix C

Neuron C Syntax for the Model File

This Appendix lists the Neuron C syntax for the allowable
statements of a model file.

158 Appendix C: Appendix C

Neuron C Syntax for the Model File

Functional Block Syntax
fblock FPT-identifier { fblock-member-list } identifier [array-bounds]

 [ext-name] [fb-property-list] ;

fblock-member-list : fblock-member-list ; fblock-member

 fblock-member

fblock-member : nv-reference implements member-name

 nv-reference impl-specific

impl-specific : implementation_specific (const-expr) member-name

nv-reference : nv-identifier array-index

 nv-identifier

array-index : [const-expr]

array-bounds : [const-expr]

ext-name : external_name (concatenated-string-const)

 external_resource_name (concatenated-string-const)

 external_resource_name (const-expr : const-expr)

fb-property-list : See Functional Block Properties Syntax.

Keywords
fblock

Declares the functional block for the FPT-identifier functional-profile-type
identifier and the identifier functional block identifier.
The functional block declaration begins with the fblock keyword, followed by
the name of a functional profile from a resource file. The functional block is
an implementation of the functional profile. The functional profile defines
the network variable and configuration property members, a unique key
called the functional profile key, and other information. The network variable
and configuration property members are divided into mandatory members
and optional members. Mandatory members must be implemented, and
optional members may or may not be implemented.
The functional block declaration then includes a member list. In this
member list, network variables are associated with the abstract member
network variables of the profile. These network variables must have been
previously declared in the model file. The association between the members
of the functional block declaration and the abstract members of the profile is
performed with the implements keyword.
After the member list, the functional block declaration continues with the
name of the functional block itself. A functional block can be a single
declaration, or it can be a singly-dimensioned array.
If you do not specify an external name for the functional block, the functional
block identifier is limited to 16 characters.

LonTalk Stack Developer’s Guide 159

If the fblock is implemented as an array, each network variable that is to be
referenced by the fblock must be declared as an array of at least the same
size. When implementing an fblock array's member with an array network
variable element, the starting index of the first network variable array
element in the range of array elements must be provided in the implements
statement. The Neuron C compiler automatically adds the following network
variable array elements to the fblock array elements, distributing the
elements consecutively.

external_name

Defines an optional external name for the functional block.
The external name is part of the device interface that is exposed to network
management tools. The external name is limited to 16 characters. You can
specify an external name using either the external_name or
external_resource_name keyword. If you do not specify either keyword,
the functional block identifier (supplied in the declaration) is used as the
default external name.
The external_name keyword is used to specify an external name as a string.
The string must follow the external_name keyword, and must be enclosed
in parentheses.

external_resource_name

Defines an optional external name for the functional block. This external
name is defined in a language file that is part of a resource file set.
The external_resource_name keyword is followed by a scope and index
pair (the first number is a scope, followed by a colon character, and the
second number is an index) enclosed in parentheses. The scope and index
pair identifies a language string in a resource file, which a network
management tool can access for a language-dependent name of the functional
block. You can use the scope and index pair to reduce memory requirements
and to provide language-dependent names for your functional blocks.
Alternatively, you can specify a string argument for the
external_resource_name keyword. The LonTalk Interface Developer
utility uses this string to look up the appropriate string in the resource files
that apply to the device. The string must exist in an accessible resource file.
Whether you specify a scope and index pair or a string name, the device
interface information uses the scope and index pair rather than the string.

implements

Defines the association between the members of the functional block
declaration and the abstract members of the profile.
At a minimum, every mandatory abstract member network variable of the
profile must be implemented by an actual network variable in the model file.
Each network variable (or, in the case of a network variable array, each array
element) can implement no more than one profile member, and can be
associated with at most one functional block.

implementation_specific

Defines additional network variables in the functional block that are not in
the list of optional members of the profile. Such additional network variable
members beyond the profile are called implementation-specific members.

160 Appendix C: Appendix C

Neuron C Syntax for the Model File

These extra members are declared in the member list using the
implementation_specific keyword, followed by a unique index number,
and a unique name. Each network variable in a functional profile assigns an
index number and a member name to each abstract network variable
member of the profile, and the implementation-specific member cannot use
any of the index numbers or member names that the profile has already used.

Examples
Example 1: The following example declares a functional block with a single
network variable.

network output SNVT_amp nvoAmpere;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpereMeter;

Example 2: The following example implements the nvoValue mandatory
network variable of the SFPTopenLoopSensor functional profile, and adds an
implementation-specific SNVT_time_stamp network variable with a member
name of nvoInstall.

If you include the compiler directive #pragma enable_sd_nv_names, the name
of the network variable, nvoInstallDate, is exposed to the network integrator by
means of network variable self-documentation (SD) data and device interface
files. In a network management tool, the name nvoInstall appears as the
member of the functional block, wherever the network tool uses the profile
definition.

network output SNVT_amp nvoAmpere;
network output polled SNVT_time_stamp nvoInstallDate;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
 nvoInstallDate implementation_specific(128)
 nvoInstall;
} fbAmpereMeter;

Example 3: The following example declares a functional block array, and
defines an external name for the functional block.

#define NUM_AMMETERS 4

network output SNVT_amp nvoAmpere[NUM_AMMETERS];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_AMMETERS] external_name("AmpereMeter");

LonTalk Stack Developer’s Guide 161

Functional Block Properties Syntax
fb_properties { property-reference-list }

property-reference-list :

 property-reference-list , property-reference

 property-reference

property-reference : property-identifier [= initializer] [range-mod]

 property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier : [property-modifier] identifier [constant-expression]

 [property-modifier] identifier

property-modifier : static | global

Keywords
fb_properties

Declares a functional block property list.
The functional block property list begins with the fb_properties keyword. It
contains a list of property references, separated by commas, exactly like the
device property list and the network variable property list. Each property
reference must be the name of a previously declared CP family or the name of
a previously declared configuration network variable.
Following the property-identifier, there can be an optional initializer, and an
optional range-mod. These optional elements can occur in either order if both
are given. If present, the instantiation initializer for a CP family member
overrides any initializer provided at the time of declaration of the family;
thus, using this mechanism, some CP family members can be initialized
specially, with the remaining family members having a more generic initial
value. If a network variable is initialized in multiple places (in other words,
in its declaration as well as in its use in a property list), the initializations
must match.

range_mod_string

Defines an optional range modification string following the property
identifier.
The range-mod modifier allows you to specify a range-modification string that
modifies the valid range for the configuration property defined by the
resource file. The range-modification string can only be used with fixed-point
and floating-point types, and consists of a pair of either fixed-point or
floating-point numbers delimited by a colon. The first number is the lower
limit while the second number is the high limit. If either the high limit or the
low limit is the maximum or minimum specified in the configuration property
type definition, then the field is empty to specify this.
In the case of a structure or an array, if one member of the structure or array

162 Appendix C: Appendix C

Neuron C Syntax for the Model File

has a range modification, then all members must have a range modification
specified. In this case, each range modification pair is delimited by the ASCII
vertical bar character '|'. To specify no range modification for a member of a
structure (that is, revert to the default for that member), encode the field as
'|'. Use the same encoding for structure members that cannot have their
ranges modified due to their data type. The '|' encoding is only allowed for
members of structures.
Whenever a member of a structure is not a fixed or floating-point number, its
range cannot be restricted. Instead, the default ranges must be used.
In the case of an array, the specified range modifications apply to all
elements of the array. For example, to specify a range modification for a
3-member structure where the second member has the default ranges, and
the third member only has an upper limit modification, the range
modification string is encoded as: "n:m||:m;". Positive values for range
modifications and their exponents (if any) are implicit, while negative
numbers and negative exponents must be explicitly designated as such with a
preceding negative sign '-' character. Floating-point numbers use a decimal
point '.' character for the decimal point. Fixed-point numbers must be
expressed as a signed 32-bit integer. Floating-point numbers must be within
the range of an IEEE 32-bit floating-point number. To express an exponent,
precede the exponent by an 'e' or an 'E' and then follow with an integer value.
A range modification string provided in the instantiation of a CP family
member overrides any range modification string provided in the declaration
of the CP family.

static | global

The elements of an fblock array all share the same set of configuration
properties as listed in the associated fb-property-list. Without special
keywords, each element of the fblock array obtains its own set of
configuration properties.
Special modifiers can be used to share individual properties among members
of the same fblock array (through use of the static keyword), or among all
the functional blocks on the device that have the particular property (through
use of the global keyword).
Like network variable properties, functional block properties can be shared
between two or more functional blocks. The use of the global keyword
creates a CP family member that is shared among two or more functional
blocks. (This global member is a different member than a global member that
would be shared among network variables, because no single configuration
property can apply to both network variables and functional blocks.)
The use of the static keyword creates a CP family member that is shared
among all the members of a functional block array, but not with any other
functional blocks outside the array. See the discussion of functional block
properties in the Neuron C Programmer’s Guide for more information on this
topic.

Examples
Example 1: The following example instantiates four heartbeat
(SCPTminSndT) and four throttle (SCPTmaxSndT) CP family members (one

LonTalk Stack Developer’s Guide 163

pair for each member of the nvoData network variable array), and four offset CP
family members (SCPToffset), one for each member of each fblock array.

It also instantiates a total of two gain control CP family members (SCPTgain),
one for MyFb1, and one for MyFb2. Finally, it instantiates a single location CP
family member (SCPTlocation) that is shared by MyFb1 and MyFb2.

// CP Family Declarations:
SCPTgain cp_family cpGain;
SCPTlocation cp_family cpLocation;
SCPToffset cp_family cpOffset;
SCPTmaxSndT cp_family cpMaxSendT;
SCPTminSndT cp_family cpMinSendT;

// NV Declarations:
network output SNVT_lev_percent nvoData[4]
 nv_properties {
 cpMaxSendT, // throttle interval
 cpMinSendT // heartbeat interval
};

// Four open loop sensors, implemented as two arrays of
// two sensors, each. This might be beneficial in that
// this software layout might meet the hardware design
// best, for example with regards to shared and individual
// properties.

fblock SFPTopenLoopSensor {
 nvoData[0] implements nvoValue;
} MyFb1[2]
 fb_properties {
 cpOffset, // offset for each fblock
 static cpGain, // gain shared in MyFb1
 global cpLocation // location shared in all 4
 };

fblock SFPTopenLoopSensor {
 nvoData[2] implements nvoValue;
} MyFb2[2]
 fb_properties {
 cpOffset, // offset for each fblock
 static cpGain, // gain shared in MyFb2
 global cpLocation // location shared in all 4
 };

Example 2: This example implements an open loop sensor as an ammeter. The
nvoValue mandatory network variable is implemented, but no optional network
variables are. The SCPTdefOutput optional configuration property is
implemented, and a second, implementation-specific, SCPTbrightness
configuration property is also implemented.

The names in the example for the CP families (cpDefaultOutput and
cpDisplayBrightness) have no external relevance; these names are only used
within the device's source code in order to reference the configuration property.

SCPTdefOutput cp_family cpDefaultOutput;
SCPTbrightness cp_family cpDisplayBrightness;

164 Appendix C: Appendix C

Neuron C Syntax for the Model File

network output SNVT_amp nvoAmpere;
network output polled SNVT_time_stamp nvoInstallDate;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
 nvoInstallDate implementation_specific(128)
 nvoInstall;
} fbAmpereMeter external_name("AmpereMeter")
 fb_properties {
 cpDefaultOutput, // optional CP
 cpDisplayBrightness = {50.0, 1} // impl-specific
 };

Network Variable Syntax
The syntax for declaring a single network variable object is:

network input | output [netvar-modifier] [storage-class] type

 [connection-info] identifier

 [= initial-value] [nv-property-list] ;

The syntax for declaring an array of network variables is:

network input | output [netvar-modifier] [storage-class] type

 [connection-info] identifier [array-bound]

 [= initializer-list] [nv-property-list] ;

The brackets around array-bound are shown in bold type. The brackets do not,
in this case, indicate an optional field. They are a required part of the syntax for
declaring an array, and must be entered into the program code.

Network variable arrays can only be single dimension. The array-bound must be
a constant. Each element of the array is treated as a separate network variable
for purposes of events, transmissions on the network, and so on. Therefore, each
element counts individually towards the maximum number of network variables
on a given device. Each element of the array is a separately bindable network
variable.

Keywords
network

Declares a network variable of a specific type and with a specific identifier.

input | output

Defines the direction (input or output) for the network variable, from the
point of view of the Echelon Smart Transceiver or Neuron Chip.

The Network Variable Modifier
The optional netvar-modifier specification for a network variable includes the
following keywords:

LonTalk Stack Developer’s Guide 165

sync | synchronized

Specifies that all values assigned to this network variable must be
propagated, and in their original order. This flag is passed on to your
LonTalk Stack application, and must be enforced by your application.
This keyword is mutually exclusive with the polled keyword.

polled

For an output network variable, specifies that the value of the network
variable is to be sent only in response to a poll request from a device that
reads this network variable. When this keyword is omitted for an output
network variable, its value is propagated over the network every time the
variable is assigned a value. However, any reader device can always poll the
outputs of writer devices to which it is connected, whether or not the output
is declared as polled.
Unlike for native Neuron C, the polled network modifier is permitted for
input network variables (as well as output network variables) in model files.
The polled modifier, when used with the declaration of an input network
variable, indicates that the application uses the LonPollNv() LonTalk API
function with this network variable.
If you use the NodeBuilder Code Wizard to generate your model file, the code
wizard does not insert the polled modifier for input network variables. You
can edit the code produced by the code wizard to add the polled modifier.
You can perform all normal network variable operations with a polled input
network variable; however, the LonPollNv() function requires the network
variable to be connected to one or more output network variables. If you call
LonPollNv() without having made such a connection, you will not receive
any data. If you call LonPollNv() for a network variable that is not an input
network variable and that has not been declared with the polled modifier,
the LonPollNv() function returns an error.
The polled modifier can cause an address table entry to be used to allow the
input to poll a group connection to the input.
This keyword is mutually exclusive with the sync keyword.

changeable_type

Declares that the network variable can have its type changed by a network
management tool. The changeable_type modifier can only appear once per
network variable declaration, and must appear after the sync or polled
modifiers, if either is used.

sd_string (C-string-const)

Sets a network variable's self-documentation (SD) string of up to 1023
characters. This modifier can only appear once per network variable
declaration. If any of the sync, polled, or changeable_type keywords is
used, then the sd_string must follow these other keywords. Concatenated
string constants are permitted. Each variable's SD string can have a
maximum length of 1023 bytes.
The use of any of the following Neuron C keywords causes the compiler to
take control over the generation of self-documentation strings: fblock,
config_prop, cp, device_properties, nv_properties, fblock_properties,
or cp_family.

166 Appendix C: Appendix C

Neuron C Syntax for the Model File

In an application that uses compiler-generated SD data, you can still specify
additional SD data with the sd_string() modifier. The compiler appends this
additional SD information to the compiler-generated SD data, but it will be
separated from the compiler-generated information with a semicolon. SD
data that appears after the semicolon is treated as a comment and is not
included in the device’s interoperable interface.

The Network Variable Storage Class
Network variables constitute one of the storage classes in Neuron C. The
optional storage-class specification for a network variable includes the following
keywords:

const

Specifies a network variable that cannot be changed by the application
program. Output network variables declared with const can be placed in
PROM or EPROM. Input network variables declared with const can be
updated over the network, and should therefore be placed in RAM.
When const is used with output network variables, the polled modifier
should also be considered.
Important: If specified, the const keyword must appear as the first
keyword for the network variable declaration in a model file. For example:

const network output polled SNVT_address nvoFileDir;

eeprom

Allows the application program to indicate network variables whose values
are stored in non-volatile memory and therefore are preserved across power
outages.

config

This modifier is obsolete and has been replaced by the config_prop keyword.

config_prop | cp

This keyword declares the network variable to be a configuration property.
If no class is specified for a network variable, the network variable is a global
variable. Global variables should be stored in RAM and need not be
preserved across power outages.

The Network Variable Type
Network variable types serve two purposes. First, typing ensures proper use of
the variable in the device's application. Second, typing ensures proper connection
of network variables so that a sending device and a receiving device can agree on
the representation of data within the network variable. A network variable can
be declared using any of the following types:

• A standard network variable type (SNVT) or standard configuration
property type (SCPT) defined in the standard resource file. You can use
the NodeBuilder Resource Editor to view all available SNVTs and SCPTs,
along with their definitions.

LonTalk Stack Developer’s Guide 167

Use a SNVT or SCPT if one is available that matches your data because
SNVTs and SCPTs can provide interoperability with other devices.

• A user network variable type (UNVT) or user configuration property type
(UCPT) defined in a user resource file. You can use the NodeBuilder
Resource Editor to create custom UNVTs and UCPTs, and to view the
available UNVTs and UCPTs in your resource files. Use a UNVT or
UCPT if you cannot find an appropriate SNVT or SCPT for your data.

• Any of the following built-in types (including single-dimension arrays,
unions, structures, or named types of the following types):

[signed] long int
unsigned long int
signed char
[unsigned] char
[signed] [short] int
unsigned [short] int
enum (an enum is int type)

In general, built-in types should not be used because they cannot be
verified by network management tools when creating connections.
Network variables based on built-in types are not interoperable.

The Network Variable Connection
Information
The optional connection-info specification for a network variable defines options
in the network variable table and the SI and SD data for a LonTalk Stack
application. If the nonconfig keyword is not specified, these connection
information assignments can be overridden by a network management tool when
a device is installed.

The syntax for the connection-info specification is:

bind_info (

[expand_array_info]
[offline]
[unackd | unackd_rpt | ackd [(config | nonconfig)]]
[authenticated | nonauthenticated [(config | nonconfig)]]
[priority | nonpriority [(config | nonconfig)]]
[rate_est (const-expr)]
[max_rate_est (const-expr)]

)

The following keywords can be specified in any order:

expand_array_info

Includes individual names for each element of an array in the device’s SI and
SD data, and in the device interface file. The names of the array elements
have unique identifying characters postfixed. These identifying characters
are typically the index of the array element. For example, an xyz[4] network
variable array becomes four separate xyz__0, xyz__1, xyz__2, and xyz__3

168 Appendix C: Appendix C

Neuron C Syntax for the Model File

network variables.
This keyword is not required for model files. Names of array elements are
automatically expanded by the LonTalk Interface Developer compiler.

offline

Specifies that a network management tool must take this device offline, or
ensure that the device is already offline, before updating the network
variable.
Do not use this feature in the bind_info for a configuration network variable
that is declared using the config_prop or cp keyword. Instead, use the
offline option in the cp_info.

unackd | unackd_rpt | ackd [(config | nonconfig)]

Selects the LonTalk protocol service to use for updating this network
variable. The allowed types are:
unackd — unacknowledged service; the update is sent once and no
acknowledgment is expected.
unackd_rpt — repeated service; the update is sent multiple times and no
acknowledgments are expected.
ackd (the default) — acknowledged service with retry; if acknowledgments
are not received from all receiving devices before the layer 4 retransmission
timer expires, the message is sent again, up to the retry count.
An unacknowledged (unackd) network variable uses minimal network
resources to propagate its values to other devices. As a result, propagation
failures are more likely to occur, and failures are not detected by the device.
This class might be used for variables that are updated on a frequent,
periodic basis, where loss of an update is not critical, or in cases where the
probability of a collision or transmission error is extremely low.
The repeated (unackd_rpt) service is typically used when a message is
propagated to many devices, and a reliable delivery is required. This service
reduces the network traffic caused by a large number of devices sending
acknowledgements simultaneously and can provide the same reliability as
the acknowledged service by using a repeat count equal to the retry count.
The config keyword indicates that this service type can be changed by a
network management tool. This option allows the tool to change the service
specification during installation. config is the default.
The nonconfig keyword indicates that this service cannot be changed by a
network management tool.

authenticated | nonauthenticated [(config | nonconfig)]

Specifies whether the network variable update requires authentication. With
authentication, the identity of the sending device is verified by all receiving
devices. Abbreviations for authenticated and nonauthenticated are auth
and nonauth.
The config keyword indicates that this service type can be changed by a
network management tool. This option allows the tool to change the service
specification during installation. config is the default
The nonconfig keyword indicates that this service cannot be changed by a
network management tool.

LonTalk Stack Developer’s Guide 169

A network variable connection is authenticated only if the readers and
writers have the authenticated keywords specified. However, if only the
originator of a network variable update or poll uses the keyword, the
connection is authenticated (although the update does take place). See Using
Authentication for Network Variables for more information about
authentication.
The default is nonauth (config).
You must the acknowledged service with authenticated updates. Do not use
the unacknowledged or repeated services.

priority | nonpriority [(config | nonconfig)]

Specifies whether the network variable update has priority access to the
communications channel. This field specifies the default value.
All priority network variables in a device use the same priority time slot
because each device is configured to have no more than one priority time slot.
The config keyword indicates that this service type can be changed by a
network management tool. This option allows the tool to change the service
specification during installation. config is the default
The nonconfig keyword indicates that this service cannot be changed by a
network management tool.
The default is nonpriority (config).
The priority keyword affects output or polled input network variables.
When a priority network variable is updated, its value is propagated on the
network within a bounded amount of time as long as the device is configured
to have a priority slot by a network management tool. The exact bound is a
function of the bit rate and priority. The delay before propagation for a
nonpriority network variable update is unbounded.

rate_est (const-expr)

The estimated sustained update rate, in tenths of updates per second, that
the associated network variable is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 updates per second).

max_rate_est (const-expr)

The estimated maximum update rate, in tenths of messages per second, that
the associated network variable is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 updates per second).

It might not always be possible to determine rate_est and max_rate_est. For
example, update rates are often a function of the particular network where the
device is installed. These values can be used by a network management tool to
perform network load analysis and are optional.

Although you can specify any value in the range 0 to 18780, not all values are
used. The values are mapped into encoded values in the range 0 to 127. Only the
encoded values are stored in the device's self-identification (SI) data. The actual
value can be reconstructed from the encoded value. If the encoded value is zero,
the actual value is undefined. If the encoded value is in the range 1 to 127, the

actual value is
5)8/(2 −= na , rounded to the nearest tenth. The value a, produced

by the formula, is in units of messages per second.

170 Appendix C: Appendix C

Neuron C Syntax for the Model File

The Network Variable Initializer
initial-value

or

initializer-list

Specifies an initial value (or values) for the network
variable. All network variables, especially input network
variables, should be initialized to a reasonable default
value.

The initial value should be chosen such that if a device is reset, the initial value
can be used for subsequent calculations prior to the variable’s being updated from
the network, and these calculations will not cause the device to create a
hazardous condition or to create an error condition. Initializers should not be
propagated over the network, regardless of whether the network variables are
declared input or output. See Network Variable and Configuration Property
Declarations for more information about initializers.

Example:
network input SNVT_temp nv_temp = 2960; // 23 C, 73.4 F

The Network Variable Property List
A network variable property list declares instances of configuration properties
defined by CP family declarations and configuration network variable
declarations that apply to a network variable.

The syntax for the nv-property-list specification is:

nv_properties { property-reference-list }

property-reference-list :

 property-reference-list , property-reference

 property-reference

property-reference :

 property-identifier [= initializer] [range-mod]

 property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier : [property-modifier] identifier [constant-expression]

 [property-modifier] identifier

property-modifier : static | global

The network variable property list begins with the nv_properties keyword. It
then contains a list of property references, separated by commas, exactly like the
device property list and functional block property lists. Each property reference
must be the name of a previously declared CP family or the name of a previously
declared configuration network variable. The rest of the syntax is very similar to
the device property list and functional block property list syntax.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod.

You cannot have more than one configuration property of any given SCPT or
UCPT type that applies to the same network variable.

LonTalk Stack Developer’s Guide 171

Network variable properties can be shared between two or more network
variables. The use of the global keyword creates a CP family member that is
shared between two or more network variables. The use of the static keyword
creates a CP family member that is shared between all the members of a network
variable array, but not with any other network variables outside the array.

Example:
// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:
network output SNVT_lev_percent nvoValue
nv_properties {
 cpMaxSendT,
 // override default for minSendT to 30 seconds:
 cpMinSendT = { 0, 0, 0, 30, 0 }
};

Configuration Property Syntax
 [const] type cp_family [cp-modifiers] identifier

 [[array-bound]] [= initial-value] ;

The declaration for a configuration property is similar to a C language typedef
declaration because no actual variables are created as a result of the declaration.
In the case of a type definition, variables are instantiated when the type
definition is used in a later declaration that is not, itself, another typedef. At
that time, variables are instantiated, which means that variables are declared
and memory is allocated for and assigned to the variables. The variables can
then be used in later expressions in the executable code of the program.

The instantiation of CP family members occurs when the CP family declaration’s
identifier is used in a property list. However, a configuration network variable is
already instantiated at the time it is declared. For a configuration network
variable, the property list serves only to identify the association between the
configuration property and the object or objects to which it applies.

Configuration properties can apply to a device, one or more functional blocks, or
one or more network variables. In each case, a configuration property is made to
apply to its respective objects through a property list.

The brackets around array-bound are shown in bold type. The brackets do not,
in this case, indicate an optional field. They are a required part of the syntax for
declaring an array, and must be entered into the program code.

Keywords
const

Declares the configuration property as a constant, so that it is allocated in
non-modifiable memory.
In general, a configuration property can be modifiable, either from within the
LonTalk Stack application or from a network management tool, and thus is
not declared with this keyword.

172 Appendix C: Appendix C

Neuron C Syntax for the Model File

cp_family

Declares the configuration property as part of a configuration file.
The cp_family declaration is repeatable. The declaration can be repeated
two or more times, and, as long as the duplicated declarations match in every
regard, the compiler treats these as a single declaration.
The alternative to declaring a configuration property as part of a
configuration file is to declare a configuration network variable, as described
in Declaring a Configuration Network Variable.

The Configuration Property Type
The type for a CP family cannot be a built-in Neuron C type such as int or char.
Instead, the declaration must use a standard configuration property type (SCPT)
or a user configuration property type (UCPT) defined in a resource file. There
are several hundred SCPT definitions available, and you can create your own
types using UCPTs. The SCPT definitions are stored in the standard.typ file,
which is part of the standard resource file. There can be many similar resource
files containing UCPT definitions, and these are managed by the NodeBuilder
Resource Editor.

In contrast to an ANSI C typedef, a configuration property type also defines a
standardized semantic meaning for the type. The configuration property
definition in a resource file contains information about the default value,
minimum and maximum valid values, a designated (optional) invalid value, and
language string references that permit localized descriptive information,
additional comments, and units strings to be associated with the configuration
property type.

The Configuration Property Modifiers
The configuration property modifiers are an optional part of the CP family and
configuration network variable declarations.

The syntax for the cp-modifiers specification is:

cp-modifiers : [cp_info (cp-option-list)] [range-mod]

cp-option-list : cp-option-list , cp-option

 cp-option

cp-option : device_specific | manufacturing_only |
object_disabled

 | offline | reset_required

range-mod : range_mod_string (concatenated-string-constant)

The cp-option keywords can occur in any order. There must be at least one
keyword. For multiple keywords, a keyword must not appear more than once,
and keywords must be separated by commas.

The cp-modifiers begin with the cp_info keyword followed by a parenthesized list
of one or more of the following option keywords:

device_specific

Specifies a configuration property that is always read from the device instead

LonTalk Stack Developer’s Guide 173

of relying upon the value in the device interface file or a value stored in a
network database. This specification is used for configuration properties that
must be managed by the device, such as a setpoint that is updated by a local
operator interface on the device. This option requires the CP family or
configuration property network variable to be declared as const.

manufacturing_only

Specifies a factory setting that can be read or written when the device is
manufactured, but is not normally (or ever) modified in the field. In this way,
a standard network management tool can be used when a device is
manufactured to calibrate the device, whereas a field installation tool would
observe the flag in the field and prevent updates or require a password to
modify the value.

object_disabled

Specifies that a network management tool must disable the functional block
containing the configuration property, take the device offline, or ensure that
the functional block is already disabled or the device is already offline, before
modifying the configuration property.
After the network management tool modifies the configuration property, the
application might have to take some action based on the modified value. The
application should check the configuration property value in the
LonResetOccurred() and LonOnline() callback handler functions.

offline

Specifies that a network management tool must take this device offline before
modifying the configuration property.
After the network management tool modifies the configuration property, the
application might have to take some action based on the modified value. The
application should check the configuration property value in the
LonResetOccurred() and LonOnline() callback handler functions.

reset_required

Specifies that a network management tool must reset the device after
changing the value of the configuration property.
After the network management tool modifies the configuration property, the
application might have to take some action based on the modified value. The
application should check the configuration property value in the
LonResetOccurred() callback handler function.

range_mod_string

Defines an optional range modification string following the property
identifier.
The range-mod modifier allows you to specify a range-modification string that
modifies the valid range for the configuration property defined by the
resource file. The range-modification string can only be used with fixed-point
and floating-point types, and consists of a pair of either fixed-point or
floating-point numbers delimited by a colon. The first number is the lower
limit while the second number is the high limit. If either the high limit or the
low limit is the maximum or minimum specified in the configuration property
type definition, then the field is empty to specify this.
In the case of a structure or an array, if one member of the structure or array

174 Appendix C: Appendix C

Neuron C Syntax for the Model File

has a range modification, then all members must have a range modification
specified. In this case, each range modification pair is delimited by the ASCII
vertical bar character '|'. To specify no range modification for a member of a
structure (that is, revert to the default for that member), encode the field as
'|'. Use the same encoding for structure members that cannot have their
ranges modified due to their data type. The '|' encoding is only allowed for
members of structures.
Whenever a member of a structure is not a fixed or floating-point number, its
range cannot be restricted. Instead, the default ranges must be used.
In the case of an array, the specified range modifications apply to all
elements of the array. For example, to specify a range modification for a
3-member structure where the second member has the default ranges, and
the third member only has an upper limit modification, the range
modification string is encoded as: "n:m||:m;". Positive values for range
modifications and their exponents (if any) are implicit, while negative
numbers and negative exponents must be explicitly designated as such with a
preceding negative sign '-' character. Floating-point numbers use a decimal
point '.' character for the decimal point. Fixed-point numbers must be
expressed as a signed 32-bit integer. Floating-point numbers must be within
the range of an IEEE 32-bit floating-point number. To express an exponent,
precede the exponent by an 'e' or an 'E' and then follow with an integer value.
A range modification string provided in the instantiation of a CP family
member overrides any range modification string provided in the declaration
of the CP family.

The Configuration Property Initializer
The initial-value in the declaration of a CP family is optional. If initial-value is
not provided in the declaration, the default value specified by the resource file is
used. The initial-value given is an initial value for a single member of the family,
but the LonTalk Interface Developer utility replicates the initial value for each
instantiated family member. See Network Variable and Configuration Property
Declarations for more information about initializers.

Initialization for a CP family member is performed according to the following
rules:

1. If the configuration property is initialized explicitly in the instantiation,
then this is the initial value that is used.

2. If the configuration property is initialized explicitly in the CP family
declaration, then the family initializer is used.

3. If the configuration property applies to a functional block, and the
functional profile that defines the functional block specifies a default
value for the associated configuration property member, then the
functional profile default is used.

4. If the configuration property type for the configuration property defines a
default value, then that default value is used as the initial value. This
rule does not apply for a configuration property type that is
type-inheriting; see Inheriting a Configuration Property Type for more
information.

LonTalk Stack Developer’s Guide 175

5. If no initial value is available from any of the preceding rules, a value of
all zeros is used.

The compiler uses the first rule in this list that applies to the configuration
property.

These initialization rules are used to set the initial value that are loaded in the
value file from the linked image, as well as the value file stored in the device
interface file. A network management tool can use the initial value as a default
value, and might at times reset the configuration properties (or a subset of them)
back to the default values. Consult the documentation of the particular network
management tool, for example, the OpenLNS Commissioning Tool User’s Guide,
for more information on the use of configuration property default values.

Declaring a Configuration Network Variable
The configuration network variable declaration syntax is similar to the
declaration syntax of a non-configuration network variable.

The declaration of a configuration network variable is distinct from other
network variable declarations by the inclusion of the config_prop keyword
following the type of the network variable declaration. The config_prop
keyword can be abbreviated as cp.

The syntax for declaring a configuration network variable is:

network input [netvar-modifier] [storage-class] type

 config_prop [cp-modifiers]

 [connection-info] identifier [[array-bound]]

 [= initial-value] ;

The netvar-modifier, storage-class, connection-info, array-bound, and initial-value
portions of this syntax are described in Network Variable Syntax, and they apply
equally to a configuration network variable as they do to any other network
variable.

Similar to the configuration CP family members, configuration network variables
must be declared with a type that is defined by a standard configuration property
type (SCPT) or a user configuration property type (UCPT) defined within a
resource file.

The cp-modifiers clause that can optionally follow the config_prop keyword is
described in The Configuration Property Modifiers.

Example:
network input SCPTupdateRate config_prop nciUpdateRate;
network input SCPTbypassTime cp nciBypassTime = ...

Defining a Device Property List
A device property list declares instances of configuration properties defined by
CP family declarations and configuration network variables declarations that
apply to a device.

176 Appendix C: Appendix C

Neuron C Syntax for the Model File

The syntax for declaring a device property list is:

device_properties { property-reference-list } ;

property-reference-list :

 property-reference-list , property-reference

 property-reference

property-reference :

 property-identifier [= initializer] [range-mod]

 property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier : identifier [constant-expression]

 identifier

The device property list begins with the device_properties keyword. It then
contains a list of property references, separated by commas. Each property
reference must be the name of a previously declared CP family or the name of a
previously declared configuration network variable. If the network variable is an
array, only a single array element can be chosen as the device property, so an
array index must be given as part of the property reference in that case.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod.

The device property list appears at file scope. This is the same level as a function
declaration, a task declaration, or a global data declaration. A model file can
have multiple device property lists. These lists are merged together by the
LonTalk Interface Developer utility to create one combined device property list.
However, you cannot have more than one configuration property of any given
SCPT or UCPT type that applies to the device.

Example 1:
SCPTlocation cp_family cpLocation;

device_properties {
 cpLocation = { "Unknown" }
};

Example 2:
network input SCPTlocation cp cpLocation[5];

device_properties {
 cpLocation[0] = { "Unknown" }
};

Example 3:
UCPTsomeDeviceCp cp_family cpSomeDeviceCp;
SCPTlocation cp_family cpLocation = {""};

device_properties {
 cpSomeDeviceCp,
 cpLocation = { "Unknown" }
 // This instantiation overrides the

LonTalk Stack Developer’s Guide 177

 // empty string initializer with its own
};

Message Tag Syntax
msg_tag [connection-info] tag-identifier [, tag-identifier ...] ;

Keywords
The connection-info field is an optional specification for connection options, and
includes the following keywords:

msg_tag

Declares a message tag with the specified tag-identifier.

bind_info (options)

The following connection options apply to message tags:

nonbind

Specifies a message tag that carries no addressing information and does not
consume an address table entry. It is used as a destination tag when
creating explicitly addressed messages.

rate_est (const-expr)

The estimated sustained message rate, in tenths of messages per second, that
the associated message tag is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 messages/second).

max_rate_est (const-expr)

The estimated maximum message rate, in tenths of messages per second,
that the associated message tag is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 messages/second).

It might not always be possible to determine rate_est and max_rate_est. For
example, update rates are often a function of the particular network where the
device is installed. These values can be used by a network management tool to
perform network load analysis and are optional.

Although you can specify any value in the range 0 to 18780, not all values are
used. The values are mapped into encoded values in the range 0 to 127. Only the
encoded values are stored in the device's self-identification (SI) data. The actual
value can be reconstructed from the encoded value. If the encoded value is zero,
the actual value is undefined. If the encoded value is in the range 1 to 127, the

actual value is
5)8/(2 −= na , rounded to the nearest tenth. The value a, produced

by the formula, is in units of messages per second.

LonTalk Stack Developer’s Guide 179

Appendix D

LonTalk API

This Appendix describes the API functions, event handler
functions, and callback handler functions that are included
with the LonTalk API. It also describes the operating
system abstraction layer (OSAL) functions.

180 Appendix D: LonTalk API

Introduction
The LonTalk API provides the functions that you call from your LonTalk Stack
application to send and receive information to and from a LONWORKS network.
The API also defines the event handler functions and callback handler functions
that your LonTalk Stack application must provide to handle LONWORKS events
from the network and LonTalk Host stack. Because each LonTalk Stack
application handles these events and callbacks in its own specific way, you need
to modify the event and callback handler functions.

To provide operating system independence, the LonTalk API includes the
operating system abstraction layer (OSAL) API. To provide non-volatile data
independence, the LonTalk API provides two complete (and one skeletal)
non-volatile data driver (NVD) APIs.

Typically, you use the LonTalk API functions with the event handler functions
for LonTalk Stack device initialization and for sending and receiving network
variable updates. See Chapter 8, Developing a LonTalk Stack Device Application,
for more information about using these functions.

The implementations of the LonTalk API are contained in the following files:

• FtxlHandlers.c, stub functions for the LonTalk API event handler
functions and callback handler functions

• FtxlNvdFlashDirect.c, the direct-access model for working with flash
memory

• FtxlNvdFlashFs.c, the file-system model for working with flash memory

• FtxlNvdUserDefined.c, a skeletal implementation for a user-defined
non-volatile memory model

See LonTalk API Files for a list of the files that are included with the LonTalk
Stack.

The LonTalk API, Event Handler Functions, and
Callback Handler Functions

This section provides an overview of the LonTalk API functions, event handler
functions, and callback handler functions. For detailed information about these
functions, see the HTML API documentation and the API source code:

• HTML API documentation: Start → Programs → Echelon LonTalk
Stack Developer’s Kit → Documentation → API Reference

• API source code for the example applications: Start → Programs →
Echelon LonTalk Stack Developer’s Kit→ LonTalk Stack Example
Applications

LonTalk API Functions
The LonTalk API includes functions for managing network data, the LonTalk
Stack device, and non-volatile data.

LonTalk Stack Developer’s Guide 181

Commonly Used LonTalk API Functions
The following table lists API functions that you will most likely use in your
LonTalk Stack application.

Function Description

LonEventPump() Processes any messages received by the LonTalk host stack. If
messages are received, it calls the appropriate event handler
functions.

See Periodically Calling the Event Pump for more information
about this function.

LonExit() Stops the LonTalk host stack for an orderly shutdown of the
LonTalk Stack device.

LonInit() Initializes the LonTalk API and the LonTalk host stack. This
function downloads LonTalk Stack device interface data from the
LonTalk Stack application to the Echelon Smart Transceiver or
Neuron Chip.

The LonTalk Stack application must call LonInit() once on
startup.

LonPropagateNv() Propagates a network variable value to the network.

This function propagates a network variable if all of the following
conditions are met:

• The network variable is declared with the output modifier

• The network variable must be bound to the network

• The network variable must not be declared with the
polled modifier.

Other LonTalk API Functions
The following table lists other LonTalk API functions that you can use in your
LonTalk Stack application. These functions are not typically used by most
LonTalk Stack applications, or are used only for specific application functionality
(for example, including support for changeable-type network variables).

Function Description

LonFreeNvTypeData() Frees internal buffers that were allocated by a call to the
LonQueryNvType() function.

LonGetDeclaredNvSize() Gets the declared size for a network variable.

LonGetNvValue() Gets a pointer to the value for a network variable. This
function is required for dynamic network variables, but could
be used for any network variable.

182 Appendix D: LonTalk API

Function Description

LonGetUniqueId() Gets the unique ID (Neuron ID) value of the Echelon Smart
Transceiver or Neuron Chip.

LonGetVersion() Gets the version number of the LonTalk API.

LonPollNv() Requests a network variable value from the network. A
LonTalk Stack application can call LonPollNv() to request
that another LONWORKS device (or devices) send the latest
value (or values) for network variables that are bound to the
specified input variable. To be able to poll a network
variable, it must be declared in the model file as an input
network variable and include the polled modifier.

LonQueryNvType() Queries the information about a network variable.

LonSendServicePin() Broadcasts a service-pin message to the network. The
service-pin message is used during configuration,
installation, and maintenance of a LONWORKS device. The
LonTalk host stack automatically broadcasts service-pin
messages when needed.

Application Messaging API Functions
The following table lists the LonTalk API functions that are used for
implementing application messaging and for responding to an application
message. Application messages can be used to implement a standard interface or
a proprietary interface that does not need to interface to devices from other
manufacturers. Support for application messaging is optional.

Function Description

LonReleaseCorrelator() Releases a request correlator for an application message
without sending a response.

LonSendMsg() Sends an application message.

LonSendResponse() Sends an application message response to a request message.

The LonTalk Stack application calls LonSendResponse() in
response to a LonMsgArrived() event handler function.

Non-Volatile Data API Functions
The following table lists the LonTalk API functions that are used for
implementing support for non-volatile data.

LonTalk Stack Developer’s Guide 183

Function Description

LonNvdAppSegmentHasBeenUpdated() Indicates that the application data segment
in non-volatile data memory has been
updated.

LonNvdFlushData() Requests that the LonTalk host stack flush
all non-volatile data to persistent memory.

LonNvdGetMaxSize() Gets the number of bytes required to store
persistent data.

Extended API Functions
The LonTalk API includes an extended API that provides additional local
network management commands listed in the following table.

Function Description

LonClearStatus() Clears the status statistics on the LonTalk Stack device.

LonGoConfigured() Sets the state for the LonTalk Stack device as
configured.

LonGoOffline() Sets the state for the LonTalk Stack device as offline.

lonGoOnline() Sets the state for the LonTalk Stack device as online.

LonGoUnconfigured() Sets the state for the LonTalk Stack device as
unconfigured.

LonMtIsBound() Queries whether a message tag is bound.

LonNvIsBound() Queries whether a network variable is bound.

LonQueryAddressConfig() Queries configuration data for the LonTalk Stack
device’s address table.

LonQueryAliasConfig() Queries configuration data for the LonTalk Stack
device’s alias table.

LonQueryConfigData() Queries local configuration data on the LonTalk Stack
device.

LonQueryDomainConfig() Retrieves a copy of the local domain table record from
the LonTalk Stack device.

LonQueryNvConfig() Queries configuration data for theLonTalk Stack device’s
network variable table.

LonQueryStatus() Requests local status and statistics.

184 Appendix D: LonTalk API

Function Description

LonQueryTransceiverStatus() Requests the local status of the Echelon Smart
Transceiver or Neuron Chip.

LonSetNodeMode() Sets the operating mode for the LonTalk Stack device:

• Online: An online device executes its application
and responds to all network messages.

• Offline: An offline device does not execute its
application or respond to network messages. It
will respond to network management messages.

• Configured: The device is ready for network
operation.

• Unconfigured: The device is not ready for
network operation.

LonUpdateAddressConfig() Sets configuration data for the LonTalk Stack device’s
address table.

LonUpdateAliasConfig() Sets configuration data for the LonTalk Stack device’s
alias table.

LonUpdateConfigData() Sets configuration data on the LonTalk Stack device.

LonUpdateDomainConfig() Sets a domain table record on the LonTalk Stack device.

LonUpdateNvConfig() Sets configuration data for the LonTalk Stack device’s
network variable table.

Event Handler Functions
The LonTalk API provides event handler functions for managing network and
device events.

Commonly Used Event Handler Functions
The following table lists the event handler functions that you will most likely
need to define so that your application can perform application specific processing
for certain LONWORKS events. You do not need to modify these callback
functions if you have no application-specific processing requirements.

Function Description

LonNvUpdateCompleted() Indicates that either an update network variable or a poll
network variable call is completed.

LonTalk Stack Developer’s Guide 185

Function Description

LonNvUpdateOccurred() Indicates that a network variable update request from the
network has been processed by the LonTalk API. This call
indicates that the network variable value has already been
updated, and allows your host application to perform any
additional processing, if necessary.

LonOffline() A request from the network that the device go offline.

Installation tools use this message to disable application
processing in a device. An offline device continues to
respond to network management messages, but the
interaction between the application and the control network
is suspended. When this function is called, the Echelon
Smart Transceiver or Neuron Chip is already offline and the
LonTalk Stack application need only take
application-specific action.

LonOnline() A request from the network that the device go online.

Installation tools use this message to enable application
processing in a device. When this function is called, the
Echelon Smart Transceiver or Neuron Chip is already
online and the LonTalk Stack application need only take
application-specific action.

LonReset() A notification that the device has been reset.

LonServicePinHeld() An indication that the service pin on the device has been
held for some number of seconds (default is 10 seconds).
Use it if your application needs notification of the service
pin’s being held.

LonServicePinPressed() An indication that the service pin on the device has been
pressed. Use it if your application needs notification of the
service pin’s being pressed.

LonWink() A wink request from the network.

Installation tools use the Wink message to help installers
physically identify devices. When a device receives a Wink
message, it should provide some visual, audio, or other
indication for an installer to be able to physically identify
this device.

Dynamic Network Variable Event Handler
Functions
The following lists the event handler functions that are called by the LonTalk
API to process dynamic network variables. See Handling Dynamic Network
Variables for more information about using these functions.

186 Appendix D: LonTalk API

Function Description

LonNvAdded() Indicates that a dynamic network variable has been added.

LonNvDeleted() Indicates that a dynamic network variable has been deleted.

LonNvTypeChanged() Indicates that one or more attributes of a dynamic network
variable have changed.

Application Messaging Event Handler
Functions
The following table lists the event handler functions that are called by the
LonTalk API for application messaging transactions. Customize these functions
if you use application messaging in your LonTalk Stack device. Application
messaging is optional.

If you choose not to support application messaging, you do not need to customize
these functions.

Function Description

LonMsgArrived() Indicates that an application message has arrived from the
network to be processed. This function performs any
application-specific processing required for the message. If the
message is a request message, the function must deliver a
response using the LonSendMsgResponse() function.

Application messages are always delivered to the application,
regardless of whether the message passed authentication. The
application decides whether authentication is required for a
message.

LonMsgCompleted() Indicates that message delivery, initiated by a LonSendMsg()
call, was completed.

If a request message has been sent, this event handler is called
only after all responses have been reported by the
LonResponseArrived() event handler.

LonResponseArrived() Indicates that an application message response has arrived
from the network. This function performs any
application-specific processing required for the message.

Non-Volatile Data Event Handler Functions
The LonTalk API provides the event handler function listed in the following table
to support non-volatile data.

LonTalk Stack Developer’s Guide 187

Function Description

LonNvdStarvation() Indicates that a write request to non-volatile data has taken more
than 60 seconds.

The application should call the LonNvdFlushData() API function
to ensure that non-volatile data is written.

LonTalk Stack Callback Handler Functions
In addition to providing event handler functions, the LonTalk API also provides
callback handler functions, mainly for managing memory on the LonTalk Stack
device.

Commonly Used Callback Handler
Functions
In addition to processing events, the LonTalk API provides the callback handler
functions listed in the following table.

Function Description

LonGetCurrentNvSize() Indicates a request for the network variable size.

The LonTalk Host stack calls this callback handler
function to determine the current size of a
changeable-type network variable.

For non-changeable-type network variables, this
function should return the value of the
LonGetDeclaredNvSize() function. For
changeable-type network variables, you must modify
this function in the FtxlHandlers.c file.

LonEventReady() Indicates that a network event is ready to be processed.

The LonTalk Host stack calls this callback handler
function to indicate that a network event is ready to be
processed, and that the main application should call the
LonEventPump() function. However, the
LonEventReady() function should not call the
LonEventPump() function directly. Typically, the
LonEventReady() callback signals an operating
system event that the main application task waits upon.
When the main application task wakes up, it should call
the LonEventPump() function.

LonGetMyIpAddress()

Gets the IP address and port number of an IP-852
interface. This method has the following syntax:

void LonGetMyIpAddress(int *pAddress, int *pPort);

188 Appendix D: LonTalk API

Function Description

LonGetMyNetworkInterface() Gets the name of the network interface used to open the
native LonTalk interface. This method returns the
name of the network interface, such as the serial port
name. This method has the following syntax:

const char *LonGetMyNetworkInterface(void);

Direct Memory Files Callback Handler
Functions
The LonTalk API provides the callback handler functions listed in the following
table to support the direct memory files (DMF) feature. These functions rely on
utility functions generated by the LonTalk Interface Developer utility.

Function Description

LonMemoryRead() Indicates a request to read memory in the LonTalk Stack device’s
memory space.

LonMemoryWrite() Indicates a request to write memory in the LonTalk Stack device’s
memory space.

Non-Volatile Data Callback Handler
Functions
The following table lists the callback handler functions that support non-volatile
data. For the functions listed in the table, the LonTalk Interface Developer
utility generates the following callback handler functions, which are also listed in
the table:

• LonNvdDeserializeSegment()

• LonNvdGetApplicationSegmentSize()

• LonNvdSerializeSegment()

The remaining non-volatile data callback handler functions are implemented in
the FtxlFlashDirect.c and FtxlFlashFs.c files.

Function Description

LonNvdClose() Indicates a request to close a non-volatile data
segment.

LonNvdDelete() Indicates a request to delete a non-volatile data
segment.

LonTalk Stack Developer’s Guide 189

Function Description

LonNvdDeserializeSegment() Indicates a request to update the LonTalk
Stack device’s control structures from the
serialized application’s data segment.

LonNvdEnterTransaction() Indicates a request to begin a transaction for
the non-volatile data segment.

LonNvdExitTransaction() Indicates a request to complete a transaction
for the non-volatile data segment.

LonNvdGetApplicationSegmentSize() Indicates a request to determine the number of
bytes required to store the application’s
non-volatile data segment.

LonNvdIsInTransaction() Indicates a request to determine if a
transaction for the non-volatile data segment
was in progress during the device’s previous
shutdown.

LonNvdOpenForRead() Indicates a request to open a non-volatile data
segment for reading.

LonNvdOpenForWrite() Indicates a request to open a non-volatile data
segment for writing.

LonNvdRead() Indicates a request to read a section of a
non-volatile data segment.

LonNvdWrite() Indicates a request to write a section of a
non-volatile data segment.

LonNvdSerializeSegment() Indicates a request to create a serialized image
of the application’s non-volatile data segment.

The Operating System Abstraction Layer
The LonTalk Stack includes an operating system abstraction layer (OSAL),
which allows the LonTalk host stack and LonTalk Stack applications to be ported
to any operating system that is supported for the embedded processor.

Example OSAL implementations are included for Linux and Windows. The
OSAL is provided as source code so that you can modify either of the
implementations to support other operating systems.

For detailed information about the OSAL, see the HTML API documentation and
the API source code:

• HTML API documentation: Start → Programs → Echelon LonTalk
Stack → Documentation → API Reference

• API source code for the example applications: Start → Programs →
Echelon LonTalk Stack → Source Code

190 Appendix D: LonTalk API

The following sections provide an overview of the functions that the OSAL
provides.

Managing Critical Sections
To manage critical sections, the OSAL provides the functions listed in the
following table:

Function Description

OsalCreateCriticalSection() Creates a critical section.

OsalDeleteCriticalSection() Deletes a critical section.

OsalEnterCriticalSection() Enters a critical section.

OsalLeaveCriticalSection() Leaves a critical section.

Managing Binary Semaphores
To manage binary semaphores, the OSAL provides the functions listed in the
following table:

Function Description

OsalCreateBinarySemaphore() Creates a binary semaphore.

OsalDeleteBinarySemaphore() Deletes a binary semaphore.

OsalReleaseBinarySemaphore() Releases a binary semaphore.

OsalWaitForBinarySemaphore() Waits for binary semaphore.

Managing Operating System Events
To manage operating system events, the OSAL provides the functions listed in
the following table:

Function Description

OsalCreateEvent() Creates an event.

OsalDeleteEvent() Deletes an event.

OsalSetEvent() Sets an event.

OsalWaitForEvent() Waits for an event.

LonTalk Stack Developer’s Guide 191

Managing System Timing
To manage system timing, the OSAL provides the functions listed in the
following table:

Function Description

OsalGetTickCount() Gets the current system tick count.

OsalGetTicksPerSecond() Gets the number of ticks in a second.

Managing Operating System Tasks
To manage operating system tasks or threads, the OSAL provides the functions
listed in the following table.

Function Description

OsalCreateTask() Creates a task.

OsalCloseTaskHandle() Closes the handle for a task.

OsalGetTaskId() Gets the task ID of the current task.

OsalGetTaskIndex() Gets the task index of the current task.

OsalSleep() Causes a task to sleep for a specified number of ticks.

OsalTaskEntryPoint() Sets the entry point for a task.

Debugging Operating System Functions
To provide debugging capability for the OSAL, including tracing and statistics,
the OSAL provides the functions listed in the following table.

Function Description

OsalClearStatistics() Clears the current operating system statistics.

OsalGetLastOsError() Gets the most recent error from the operating system.

OsalGetStatistics() Gets operating system statistics.

OsalGetTraceLevel() Gets the current OSAL tracing level.

OsalSetTraceLevel() Sets the OSAL tracing level.

192 Appendix D: LonTalk API

LonTalk Stack Developer’s Guide 193

Appendix E

Determining Memory Usage for
LonTalk Stack Applications

This Appendix describes how much volatile and non-volatile
memory a LonTalk Stack application requires, and how to
determine the application’s memory requirements.

194 Appendix E: Appendix E

Determining Memory Usage for LonTalk Stack Applications

Overview
The LonTalk Host stack allocates memory dynamically, so a direct measurement
of the memory usage might lead to an underestimate for memory usage,
especially for peak usage conditions. This appendix provides both static code
analysis and runtime measurements so that you can calculate more reliable
memory usage estimates.

Memory Use for Code
The following table lists the estimated memory required for the LonTalk Stack
code. The values will vary depending on the processor, operating system, and
compiler that you use.

Code Type Bytes Required

Native LonTalk protocol stack and
LonTalk API

750 KB

IP-852 LonTalk protocol stack and
LonTalk API

855 KB

Native LonTalk to IP-852 Router 880 KB

Serial MIP driver 70 KB

SimpleDevice and SimpleIp852Device
example applications

30 KB

Ip852Router example application 15 KB

Memory Use for Transactions
The LonTalk host stack allocates memory for transactions at runtime, as they are
needed. On the Stack Configuration page of the LonTalk Interface Developer
utility, you can specify maximum allowed values for the number of simultaneous
receive transactions and for the number of simultaneous transmit transactions.
These values limit the amount of memory that the LonTalk host stack allocates
for transactions.

The following table lists the estimated amount of memory required for each type
of transaction. .

Transaction Type Bytes Required

Transmit transaction 196

Receive transaction 400

LonTalk Stack Developer’s Guide 195

Memory Use for Buffers
The Buffer Configuration page of the LonTalk Interface Developer utility allows
you to specify the number of input, output, and priority output application
buffers that your LonTalk Stack application should use. The values that you
specify in the utility are defined in the FtxlDev.h file that the utility generates.

The LonTalk host stack uses the number of application buffers that you specify to
allocate memory for both the application buffers and related internal buffers.
Some of the internal buffers are allocated in advance, and some are allocated on
an as-needed basis.

The following table lists the estimated amount of memory required for each type
of application buffer.

Application Buffer Type Bytes Required

Input buffer 1710

Output nonpriority buffer 1118

Output priority buffer 1118

The default numbers for each type of buffer are: 5 input buffers, 5 output
nonpriority buffers, and 1 output priority buffer. The RAM usage for the default
number of application buffers is approximately 15 KB.

Memory for LONWORKS Resources
Each LonTalk Stack device uses LONWORKS resources, such as network variables
defined for the device, address table entries, and aliases supported by the device.

The LonTalk host stack allocates memory only for resources that are in use. For
example, it allocates memory for address table entries only if the address is
bound. To calculate maximum memory requirements, assume that all resources
are in use.

The following table lists the estimated amount of memory required for each type
of LONWORKS resource. For example, network variables can vary in their actual
sizes, so the table uses an average value.

Resource Type Bytes Required

Static network variable 320 + SD_length + NV_length

Dynamic network variable 331 + SD_length + NV_length

Alias 220

Address table entry 67

196 Appendix E: Appendix E

Determining Memory Usage for LonTalk Stack Applications

Resource Type Bytes Required

Notes:

• SD_length is the length of the self-documentation string for the network
variable

• NV_length is the declared size of the network variable (for
changeable-type network variables, NV_length is the maximum size of
the network variable)

In addition to RAM, LONWORKS resources also require memory for constant data.
This constant data must be included in both the total RAM size and the total
flash memory size, because all of the constant data is typically loaded from flash
memory into RAM.

The following table lists the estimated amount of flash memory required for each
type of LONWORKS resource.

Resource Type Bytes Required

Static network variable 24 + SD_length + NV_name_length

Dynamic network variable Dyn_NV_count

Alias Alias_count

Address table entry Address_count

Notes:

• SD_length is the length of the self-documentation string for the network
variable

• NV_name_length is the length of the network variable’s name, as defined
in the device’s model file

• Dyn_NV_count is the number of dynamic network variables that are
defined for the application

• Alias_count is the number of aliases that are defined for the application

• Address_count is the number of address table entries that are defined for
the application

In addition to storing constant data, flash memory stores non-volatile data for the
application, as described in Memory for Non-Volatile Data.

Memory for Non-Volatile Data
A LonTalk Stack application typically has some non-volatile data that it must
maintain across device reset (see Providing Persistent Storage for Non-Volatile
Data). The LonTalk host stack stores only non-volatile data that is in use. For
example, it does not store address table and alias table entries that are not used.
Therefore, the actual amount of non-volatile memory used can be smaller than
the maximum amount required. The example direct flash implementation of the

LonTalk Stack Developer’s Guide 197

non-volatile data functions calculates the maximum use configuration, and
reserves flash memory space so that if one segment grows, it does not interfere
with other segments.

This section describes the amount of non-volatile data space required for the
following application elements:

• Network image (LonNvdSegNetworkImage)

• Node definition (LonNvdSegNodeDefinition)

• Application data (LonNvdSegApplicationData)

The flash memory implementation in the FtxlNvdFlashDirect.c file requires
that each data segment begin on a flash sector boundary. Depending on the flash
sector size, this requirement can increase the total flash memory needed for the
application.

The following table describes the amount of non-volatile memory required for the
network image.

Network Data Bytes Required

Header 16

Overhead 102

Domain 21 (for each domain)

Network variables and aliases 15 (for each network variable [static or
dynamic] and each alias)

Address table 11 (for each address table entry)

The following table describes the amount of non-volatile memory required for the
node definition.

Node Data Bytes Required

Header 16

Overhead 100

Node self-documentation string length Node_SD_length

Static network variable
self-documentation string length

NV_SD_length

Network variables 37 (for each network variable [static or
dynamic])

198 Appendix E: Appendix E

Determining Memory Usage for LonTalk Stack Applications

Node Data Bytes Required

Notes:

• Node_SD_length is the length of the self-documentation string for the
node

• NV_SD_length is the length of the self-documentation string for all
network variables (both static and dynamic)

The following table describes the amount of non-volatile memory required for the
application data.

Application Data Bytes Required

Header 16

Configuration Network Variables ()∑
j

jCPNVlen

File-based CPs File_length

Application-specific data Data_length

Notes:

• File-based CPs are configuration properties that are defined in
configuration files

• CPNVlenj is the configuration network variable length of a specific
configuration NV value – the application data includes the sum of the
configuration NV lengths of all configuration NV values

• File_length is the size of the writeable configuration file for the
configuration properties

• Data_length is the length of any addition application-specific data

Memory Usage Examples for Data
The following table shows the approximate amount of RAM that is required for
various example LonTalk Stack applications. Each row of the table represents a
different application by varying the number of network variables, transmit
transactions, receive transactions, aliases, and address table entries. The values
for all columns except the network variable column represent values calculated
by the LonTalk Interface Developer utility.

Note: The listed amounts of memory are based on FTXL device application
requirements. These numbers may vary for LonTalk Stack device applications,
and the may differ based on the host processor and the compliler.

The table assumes that each network variable has a length of 2 bytes, and has a
5-byte self-documentation string associated with it. The table also assumes the
default number of application buffers (5 input buffers, 5 output nonpriority
buffers, and 1 output priority buffer). Varying the number of application buffers

LonTalk Stack Developer’s Guide 199

does not siginificantly alter the amount of RAM that the application requires.
The number of buffers can affect the application’s performance.

You can observe that as the number of network variables for the LonTalk Stack
application grows, the RAM requirement grows significantly. These memory
requirements do not include the requirements for application-specific data.

200 Appendix E: Appendix E

Determining Memory Usage for LonTalk Stack Applications

Number
of
Network
Variables

Number of
Transmit
Transactions

Number of
Receive
Transactions

Number
of
Aliases

Number
of
Address
Table
Entries

RAM
Required
for Data
(in KB)

10 15 20 3 15 202

100 20 20 33 20 228

250 50 20 83 50 277

500 101 20 166 101 361

1000 203 25 333 203 528

2000 407 50 666 407 870

4000 814 100 1333 814 1552

LonTalk Stack Developer’s Guide 201

Appendix F

Downloading a LonTalk Stack
Application Over the Network

This Appendix describes considerations for designing a
LonTalk Stack application that allows application updates
over the network.

202 Appendix F: Appendix F

Downloading a LonTalk Stack Application Over the Network

Overview
For a Neuron-hosted device, you can update the application image over the
network using OpenLNS or another network management tool. However, you
cannot use the same tools or technique to update a LonTalk Stack application
image over the network. Many LonTalk Stack devices do not require application
updates over the network, but for those that do, this appendix describes
considerations for adding this capability to the device.

If a LonTalk Stack device has sufficient non-volatile memory, it can hold two (or
more) application images: one image for the currently running application, and
the other image to control downloaded updates to the application. The device
then switches between these images as necessary. Because neither the LonTalk
API nor the LonTalk Host stack directly supports updating the LonTalk Stack
application over the network, you must:

1. Define a custom application download protocol.

2. Implement an application download utility.

3. Implement application download capability within your LonTalk Stack
application.

For the application download process:

• The application must be running and configured for the duration of the
download.

• There must be sufficient volatile and non-volatile memory to store the
new image without affecting the current image.

• The application must be able to boot the new image at the end of the
download. During this critical period, the application must be able to
tolerate device resets and boot either the old application image or the new
one, as appropriate.

This appendix decribes some of the considerations for designing a LonTalk Stack
application download function.

Important: This appendix does not describe how to download updates to the
firmware image into the Ecehlon Free Topology Echelon Smart Transceiver. It
only describes updates to the application image running on the host processor.

Custom Application Download Protocol
The custom LonTalk Stack application protocol that you define for downloading a
LonTalk Stack application over the network should support the following steps:

1. Prepare for application download.

When the application download utility informs the current LonTalk Stack
application that it needs to start an application download, the application
should respond by indicating whether it is ready for the utility to begin
the download. The utility must be able to wait until the application is
ready, or abort download preparation after a timeout period. The utility
should also inform the user of its state.

LonTalk Stack Developer’s Guide 203

During this stage, the LonTalk Stack device should verify that the
application to be downloaded can run on the device platform (using the
FPGA ID or similar mechanism), and verify that the application image is
from a trusted source (for example, by using an encrypted signature).

2. Download the application.

A reliable and efficient data transfer mechanism should be used. The
interoperable file transfer protocol (FTP) can be used, treating the entire
application image as a file.

The download utility and the application must support long flash write
times during this portion of the download process. The LonTalk Stack
application should update the flash in the background (see Download
Capability within the Application), however, it might be necessary for the
protocol to define additional flow control to allow the LonTalk Stack
application to complete flash writes before accepting new data.

3. Complete download.

The application download utility informs the current application that the
download is complete. The LonTalk Stack application should verify the
integrity of the image, and either:

a. Accept the image, and proceed to the final steps below.

b. Request retransmission of some sections of the image.

c. Reject the download.

4. Boot the new application.

To boot the new application, you must implement a custom boot loader
(or boot copier) so that the embedded processor can load the new
application and restart the processor with the new image.

Important: For the duration of the first three steps, the application must be
running, the LonTalk Host stack must be started, and the LonTalk Stack device
must be configured.

Application Download Utility
This tool needs to read the application image to be loaded, and run the
application download protocol described in Custom Application Download
Protocol. You can write the utility as an OpenLNS Plugin or as any type of
network-aware application.

Download Capability within the Application
Your application must implement the custom application protocol, and provide
sufficient non-volatile storage for the new application image. The application
also must tolerate time consuming writes to flash during the transfer. At a
minimum, the LonTalk Stack application should reserve enough RAM to buffer
two flash sectors. When one sector has been completely received, the application
should write it to flash in a background process. If the write is not complete
when the second buffer is filled, the LonTalk Stack application must tell the

204 Appendix F: Appendix F

Downloading a LonTalk Stack Application Over the Network

application download utility to delay additional updates until the application is
ready to receive the data.

After the transfer is complete and all data has been written to non-volatile
memory, the application must prepare the image so that the boot loader can
reboot the embedded processor from the new image. This preparation must be
defined so that a device or processor reset at any point will result in a functioning
LonTalk Stack device. For example, the reset could always cause a boot from the
old application image, or from the new application image, or from some
temporary boot application that can complete the transition (possibly with user
intervention).

Another issue to consider is whether the entire image will be loaded or only a
partial image. It is far simpler, and more flexible, if the entire image, including
the LonTalk host stack and the operating system can be replaced. However,
loading the entire image can take several minutes (for example, loading an
application such as the simple example application could require 10 minutes or
longer). Loading only the application portion of the image is possible if you
structure your application very carefully. For example, you might need to
provide patchable linkage stubs that allow your loaded application image to
interact with the pre-loaded LonTalk host stack library and operating system.

LonTalk Stack Developer’s Guide 205

Appendix G

Example LonTalk Stack
Applications

This Appendix describes the example applications that are
included in the LonTalk Stack. This Appendix describes
each application’s design, main() and event handler
functions, and model file. It also describes how to build and
load the application images and run the example
applications.

206 Appendix G: Appendix G

Example LonTalk Stack Applications

Overview of the Example Applications
The LonTalk Stack Developer’s Kit includes three example applications that are
stored in the LonWorks\LonTalkStack\Examples directory. You can build
these example applications with Microsoft Visual Studio 2008, and then run
them on Windows. To run the examples, you must install OpenLDV 4.0, which
you can download for free from the Echelon Web site at
www.echelon.com/support/downloads. The following table describes these three
example applications:

Function Description

SimpleLtDevice Simulates a voltage amplifier device. This device receives
an input voltage value, multiplies the value by 2, and
outputs the new value.

This simulated device connects to a native LonWorks
channel via OpenLDV 4.0 (or later), using a standard
LonTalk network interface.

This example requires a Layer 2 network interface such
as the Echelon U10 USB Network Interface or PCC-10,
PCLTA-20, or PCLTA-21 network interface card. This
network interface cannot be shared with the OpenLNS
Commissioning Tool or any other application.

SimpleIp852Device Identical to the SimpleLtDevice example, but it
connects to an IP-852 channel.

To connect the SimpleLtDevice to an IP-852 channel,
you need to install the Echelon IP-852 Configuration
Server (you can download this app for free from the
Echelon Web site at
www.echelon.com/support/downloads).

In the IP-852 Configuration Server, you will define the
IPv4 address and port number of the
SimpleIp852Device and any other IP-852 devices that
it communicates with.

For example, to test the SimpleIp852Device with
OpenLNS CT, you can define an IP-852 channel that
consists of two IP-852 devices: the SimpleIp852Device
and OpenLNS CT.

http://www.echelon.com/support/downloads
http://www.echelon.com/support/downloads

LonTalk Stack Developer’s Guide 207

Function Description

Ip852Router A router that connects an IP-852 channel to a native
LonTalk channel.

For the native LonWorks channel attached to this router,
this example requires OpenLDV 4.0 (or later) and a Layer
2 network interface such as the Echelon U10 USB
Network Interface or PCC-10, PCLTA-20, or PCLTA-21
network interface card. This network interface cannot be
shared with the OpenLNS Commissioning Tool or any
other application.

For the IP-852 channel, you need to install the Echelon
IP-852 Configuration Server (you can download this app
for free from the Echelon Web site at
www.echelon.com/support/downloads).

In the IP-852 Configuration Server, you will define the
IPv4 address and port number of the Ip852Router and
any other IP-852 devices that it communicates with.

For example, to test the Ip852Router with the OpenLNS
Commissioning Tool, you can define an IP-852 channel
that consists of two IP-852 devices: the Ip852Router and
the OpenLNS Commissioning Tool.

The following sections describe the three example applications, including their
design, how to build them, and how to run them.

Building the Example Applications
To build the example applications, start Visual Studio 2008, open the
Examples\Examples.sln file, and then click Build and click Build Solution.
This will build a project for each of the three example applications.

Running the Examples
Each example application is implemented as a simple Windows console
application with a command line parameters to specify the network interfaces.
Invoking the application with no parameters prints help information.

Starting an example application automatically runs the application and displays
the following options on the console:

Command Description

S Sends service pin message.

E Exit.

Q Quit.

? Print this screen.

http://www.echelon.com/support/downloads

208 Appendix G: Appendix G

Example LonTalk Stack Applications

To test the example application, you can use the OpenLNS Commissioning Tool
or another OpenLNS installation tool to install the device or router.

Running the SimpleLtDevice Example
The console application takes one argument: niName (the network interface
name). If you run the console application without entering any parameters, the
application prints the following message and then exits:
SimpleLtDevice <niName>

 <niName> is the name of the native LonTalk network interface

Running the SimpleIp852Device Example
The command takes two arguments: ipAddress (the IPV4 address in decimal
dotted format) and port (the port used by the device). If you run the console
application without entering any parameters, the application prints the following
message and then exits:
 SimpleIp852Device <ipAddress> <ipPort>

 <ipAddress> is the IPv4 dotted-decimal address to use
 for the IP852 interface

 <port> is a decimal port number to use for the
IP852 interface

Running the Ip852Router Example
The command takes three arguments: niName (the network interface name),
ipAddress (the IPV4 address in decimal dotted format), and port (the port used
by the device). If you run the console application without entering any
parameters, the application prints the following message and then exits:

 Ip852Router <niName> <ipAddress> <ipPort>

<niName> is the name of the native LonWorks network
 Interface

 <ipAddress> is the IPv4 dotted-decimal address to use for
 the IP-852 interface

 <port> is a decimal port number to use for the IP-852
 interface

SimpleLtDevice and SimpleIp852Device Example
Application Details

The SimpleLtDevice example is a simple voltage amplifier application that
simulates a voltage actuator with a built-in gain of 2. This device receives an
input voltage value, multiplies the value by 2, and updates the simulated output
feedback value. For a real voltage actuator device, the input value would be used
to set a voltage level. After the device updated the voltage level, the application
would read the actual level and use that value to set the feedback value.

LonTalk Stack Developer’s Guide 209

The model file for this example includes a single SFPTclosedLoopActuator
functional block for the two network variables. It does not include a Node Object
functional block.

The SimpleLtDevice project is stored in the Examples\SimpleLtDevice
directory.

The SimpleIp852 example is the same as the SimpleLtDevice example except
that it communicates over an IP-852 channel instead of a native LONWORKS
channel.

The SimpleIp852 project is stored in the Examples\SimpleIp852 directory.
The

The SimpleLtDevice and SimpleIp852 example applications use a single C
source file (main.c), the LonTalk API files generated by the LonTalk Interface
Developer utility (FtxlDev.c, FtxlDev.h, LonCpTypes.h, and LonNvTypes.h),
and a version of FtxlHandlers.c that has been customized for this example
application.

The files used by the SimpleLtDevice and SimpleIp852 projects are the same;
therefore, they are stored in the Examples\SimpleDevice directory.

The following sections describe the main() function, the application task
(appTask()) function, event handler functions, callback handler functions, and
model file used by these example applications.

Main Function
The main() function is in the main.c file. The main() function performs the
following tasks:

1. Processes the network interface name (niName) and stores it in static
variables. These variables are later retrieved by the LonTalk Stack using the
GetMyNetworkInterface() or GetMyIpAddress() callback methods. If
the arguments are invalid, it displays the help and returns.

2. Creates an Osal event that is used to signal the application task that there is
something to do.

3. Creates an application task that initializes and runs the LonTalk Stack

4. Runs a simple command console signaling the app task to send a service pin
message or exit.

5. On exit, waits for the app task to complete, and then destroys the Osal event.

 The main() function is shown below.
/* The main function processes command parameters, creates the application
 * task to the main stack loopand then runs a simple console to
 * allow sending a service pin messages and shutting down the application
 */
int main(int argc, char* argv[])
{
 #if FEATURE_INCLUDED(IP852)
 if (argc < 3 || !SetMyIpAddress(argv[1], argv[2]))
 {
 printf("Run a simple LonTalk Device using an IP-852 interface\n\n"
 "Syntax:\n"
 " SimpleIp852Device <ipAddress> <ipPort>\n"

210 Appendix G: Appendix G

Example LonTalk Stack Applications

 "\n"
 " <ipAddress> is the IPv4 dotted-decimal address to use
for the IP-852\n"
 " interface\n"
 " <port> is a decimal port number to use for the
IP852 interface\n"
 "\n");
 return 1;
 }
 #else
 if (argc < 2)
 {
 printf("Run a simple LonTalk Device using a standard LonTalk
network interface\n\n"
 "Syntax:\n"
 " SimpleLtDevice <niName>"
 "\n"
 " <niName> is the name of the native LonTalk
network interface\n"
 "\n");
 return 1;
 }
 else
 {
 SetMyNetworkInterface(argv[1]);
 }
 #endif

 if (OsalCreateEvent(&eventReadyHandle) == OSALSTS_SUCCESS)
 {
 OsalHandle taskHandle;
 OsalTaskId taskId;
 appTaskRunning = TRUE;
 if (OsalCreateTask(appTask, 0 /* Not used */, 64*1024, 11,
&taskHandle, &taskId) == OSALSTS_SUCCESS)
 {

 printHelp();
 printf("> ");
 while (appTaskRunning)
 {
 char c = toupper(getchar());
 if (c == 'S')
 {
 sendServicPin = TRUE;
 printf("Sending service pin...\n");
 OsalSetEvent(eventReadyHandle);
 }
 else if (c == 'Q' || c == 'E')
 {
 shutdownApp = TRUE;
 printf("Exiting...\n");
 OsalSetEvent(eventReadyHandle);
 break;
 }
 else if (c == 0x0a)
 {
 printf("> ");
 ;
 }
 else
 {
 if (c != '?')
 {
 printf("Unrecognized command\n");
 }
 printHelp();
 }
 }
 while (appTaskRunning)
 {

LonTalk Stack Developer’s Guide 211

 OsalSleep(10);
 }
 OsalCloseTaskHandle(taskHandle);
 }
 OsalDeleteEvent(&eventReadyHandle);
 }

 return 0;
}

Application Task Function
The appTask() function is contained in the main.c file, and it performs the
following tasks:

1. If the device is an IP-852 device, registers the devices unique ID. The
example registers a dummy unique ID. A real IP-852 device must register a
valid unique ID obtained from Echelon.

2. Calls the LonInit() function to initialize the LonTalk protocol stack. If this
function fails, the appTask() function prints an error and terminates.

3. If the LonInit() function succeeds, the appTask() function begins a loop to
wait for LonTalk Stack network events or for the main task to signal that it
is time to shutdown. When a LonTalk Stack network event occurs, it does
the following:

a. Calls the LonEventPump() function to process the event.

b. If the sendServicePin variable was set by the main task, calls
LonSendServicePin() to send a service pin message.

4. Upon termination, the appTask() function does the following:

a. Calls the LonExit() function to destroy the LonTalk protocol stack.

b. Sets the appTaskRunning flag to false to signal the main task that it is
done.

c. Returns.

You can use the same basic algorithmic approach with the main() and
appTask() functions for a production-level application.

The appTask() function is shown below.
/* The application task initializes the LonTalk protocol stack and
 * implements the main control loop. The bulk of the application processing
 * is performed in the myNvUpdateOccurred event handler.
 */
void appTask(int taskIndex)
{
 /* Create the "event ready" event, which is signaled by the myEventReady
 * callback to wake this task up to process LonTalkStack events.
 */
 /* Initialize the LonTalk Stack */
 LonApiError sts;
#if FEATURE_INCLUDED(IP852)
 #pragma message ("Warning: TBD - Must set a valid UniqueID for IP-852
interface!!!")
 // TBD - Set the unique ID.
 LonUniqueId uid = { 0xBA, 0xDB, 0xAD, 0xBA, 0xDB, 0xAD };

212 Appendix G: Appendix G

Example LonTalk Stack Applications

 LonResgisterUniqueId(&uid);
#endif

 sts = LonInit();
 if (sts == LonApiNoError)
 {
 /* This is the main control loop, which runs forever. */

 while (!shutdownApp)
 {
 /* Whenever the ready event is fired, process events by calling
 * LonEventPump. The ready event is fired by the myEventReady
 * callback.
 */
 if (OsalWaitForEvent(eventReadyHandle, OSAL_WAIT_FOREVER) ==
OSALSTS_SUCCESS)
 {
 LonEventPump();
 }
 if (sendServicPin)
 {
 LonSendServicePin();
 sendServicPin = FALSE;
 }
 }
 }
 else
 {
 printf("Error: LonInit failed with error #%d\n", sts);
 }
 LonExit();
 appTaskRunning = FALSE;

Event Handler Function
To signal to the main application the occurrence of certain types of events, the
LonTalk API calls specific event handler functions. For the simple voltage
amplifier example application, only one of the API’s event handler functions has
been implemented to provide application-specific behavior.

The FtxlHandlers.c file contains the modified LonNvUpdateOccurred()
function, which is called when the host processor receives a network-variable
update. This function simply calls the myNvUpdateOccurred() function in the
main.c file that provides the application-specific behavior. This functional
separation approach keeps changes to the LonTalk Interface Developer
utility-generated files to a minimum. For a production-level application, you can
place application-specific code wherever your application design requires it.

The myNvUpdateOccurred() function contains a C switch statement, which
contains a single case statement because the VoltActuator functional block
includes only a single input network variable, nviVolt.

The case statement for the nviVolt network variable (specified by the
LonNvIndexNviVolt network variable index) calls the
ProcessNviVoltUpdate() utility function to perform the following tasks:

• Perform range checking for the network variable

• Set the output network variable to double the value of the input network
variable

• Propagate the output network variable to the network

LonTalk Stack Developer’s Guide 213

The two network variables are defined in the model file, which is described in
Model File.

The myNvUpdateOccurred() function is shown below.
/*
 * This function is called by the FTXL LonNvUpdateOccurred
 * event handler, indicating that a network variable input
 * has arrived.
 */
void myNvUpdateOccurred(const unsigned nvIndex,
 const LonReceiveAddress* const pNvInAddr) {
 switch (nvIndex) {
 case LonNvIndexNviVolt:
 {
 /* process update to nviVolt. */
 ProcessNviVoltUpdate();
 break;
 }
 /* Add more input NVs here, if any */

 default:
 break;
 }
}

Application-Specific Utility Functions
The simple example application includes the following application-specific utility
functions:

• ProcessNviVoltUpdate(): Performs range checking for the network
variables, sets the output network variable to double the value of the
input network variable, and propagates the output network variable to
the network.

• ProcessOnlineEvent(): Calls the ProcessNviVoltUpdate() function
when the device goes online.

These functions are defined in the main.c file.

Callback Handler Function
To signal to the main application the occurrence of certain types of events, the
LonTalk API calls specific callback handler functions. For the simple voltage
actuator example application, only one of the API’s callback handler functions
has been implemented to provide application-specific behavior.

The FtxlHandlers.c file contains the modified LonEventReady() function,
which is called when the LonTalk Host stack receives a network event. This
function simply calls the myEventReady() function in the main.c file that
provides the application-specific behavior. This functional separation approach
keeps changes to the LonTalk Interface Developer utility-generated files to a
minimum. For a production-level application, you can place application-specific
code wherever your application design requires it.

214 Appendix G: Appendix G

Example LonTalk Stack Applications

The myEventReady() function calls the OSAL OsalSetEvent() function to
signal the application task so that it can process the network event.

The myEventReady() function is shown below.
/* This function is called by the FTXL LonEventReady
 * callback, signaling that an event is ready to be
 * processed.
 */
void myEventReady(void) {
 /* Signal application task so that it can process the
 * event. */
 OsalSetEvent(eventReadyHandle);
}

Model File
The model files for the SimpleLtDevice and SimpleIp852Device example
application define the LONWORKS interface for the example LonTalk Stack
devices.

The model file defines one functional block, VoltActuator. The VoltActuator
functional block includes two network variables, nviVolt and nvoVoltFb. The
functionality for these network variables is implemented in the
myNvUpdateOccurred() function described in Event Handler Function.

The model file is shown below.
#pragma enable_sd_nv_names

network input SNVT_volt nviVolt;
network output SNVT_volt bind_info(unackd) nvoVoltFb;

fblock SFPTclosedLoopActuator {
 nviVolt implements nviValue;
 nvoVoltFb implements nvoValueFb;
} VoltActuator
external_name("VoltActuator");

For more information about creating and using a model file, see Creating a Model
File.

Extending the SimpleLtDevice and SimpleIp852
Examples

You can configure the LONWORKS interface and functionality of the
SimpleLtDevice and SimpleIp852 example applications. To do this, perform
the following steps:

1. Copy the files in the Examples\SimpleDevice directory to your
project’s directory. This ensures that you have a backup of the examples’
original source files.

2. Clear the read-only flag for each of the copied files.

3. Modify the device interface by adding network variables to the Simple
Example.nc model file.

LonTalk Stack Developer’s Guide 215

4. Run the LonWorks Interface Developer by double-clicking the Simple
Example.lidprj file. This generates an updated application framework.

5. Modify the callback handler functions in the FtxlHandlers.c and
main.c files as required.

6. Rebuild the project.

7. Optionally, load the generated XIF file into the Echelon Smart
Transceiver or Neuron Chip.

8. Load the new executable file into the host processor.

IP-852 Router Example Application Details
The IP-852 router example implements an IP-852 to native LonWorks router.
Router applications do not implement functional blocks, network variables, or
configuration properties or other objects used by device applications; therefore,
the IP-852 router project does not include a model file or a LID project.

The Ip852Router project is stored in the Examples\Ip852Router directory.
This folder contains the main application file (main.cpp), the Visual Studio
project file (Ip852Router.vcproj), and a ReadMe (Readme.txt).

The main.cpp file contains the main() function. The main() function performs
the following tasks:

1. Processes the command parameters: niName (the network interface name),
ipAddress (the IPV4 address in decimal dotted format), and port (the port
used by the device). Prints an error and returns if the parameters are
invalid.

2. Creates a LtLogicalChannel object, passing in the name of the network
interface. Essentially, this opens the native LonTalk network interface.

3. Reads the unique ID from the native LonWorks interface.

4. Creates a LtIp852Router object and starts the router by calling the object’s
Start() method with the following parameters:

• An ltAppIndex of 0. This the application index of the native LonWorks
side of the router. The LonTalk Stack requires an application index
whenever there is more than one stack. It is mainly used to store the
unique ID of the stack and to name persistence files.

• LtUniqueId. The uniqueId of the native LonWorks side of the router.

• pLtChannel. The pointer to the native LonWorks channel

• An ipAppIndex of 1. This is the application index of the IP-852 router
side.

• ipUid. The unique ID of the IP-852 router side. This example uses a
dummy unique ID.

• ipAddress. A 32-bit integer representing the IP address of the IP-852
router side.

• ipPort. The port number on which the IP-852 router side is listening.

216 Appendix G: Appendix G

Example LonTalk Stack Applications

5. Runs a simple command console:

• When the S command is pressed, sends a service pin messages from both
router halves by calling the sendServicePinMsg() method of the
LtIp852Router object.

• When the E or Q command is pressed, breaks out of the console loop

6. On exit, does the following:

• Shuts down the router by calling the Shutdown() method of the
LtIp852Router object.

• Closes the native LonWorks network interface by deleting the
LtLogicalChannel object.

The main() function is shown below.
/* The main function just initializes the router and then runs a simple
command line interface. */
int main(int argc, char* argv[])
{
 const char *pNiName = NULL;
 int ipAddress;
 int ipPort;
 LtIp852Router router;
 LtLtLogicalChannel *pLtChannel = NULL;

 LtErrorType sts;
 if (argc < 4 || sscanf(argv[3], "%d", &ipPort) != 1)
 {
 printf("Run an IP-852 to native LonTalk Router\n\n"
 "Syntax:\n"
 " Ip852Router <niName> <ipAddress> <ipPort>\n"
 "\n"
 " <niName> is the name of the native LonTalk network
interface\n"
 " <ipAddress> is the IPv4 dotted-decimal address to use
for the IP-852\n"
 " interface\n"
 " <port> is a decimal port number to use for the
IP-852 interface\n"
 "\n");
 return 1;
 }
 else
 {
 pNiName = argv[1];
 ipAddress = htonl(inet_addr(argv[2]));
 }

 pLtChannel = new LtLtLogicalChannel(pNiName);

 sts = pLtChannel->getStartError();
 if (sts == LT_NO_ERROR && !pLtChannel->getLonLink()->isOpen())
 {
 sts = LT_CANT_OPEN_PORT;
 }

 if (sts == LT_NO_ERROR)
 {
#pragma message ("Warning: TBD - Must set a valid unique ID for IP-852
interface!!!")
 const byte data[6] = { 0xBA, 0xDB, 0xAD, 0xBA, 0xD0, 0x00 };
 LtUniqueId ltUid;
 LtUniqueId ipUid(data);
 pLtChannel->getLonLink()->getUniqueId(ltUid);

LonTalk Stack Developer’s Guide 217

 sts = router.Start(0, ltUid, pLtChannel,
 1, ipUid, ipAddress, ipPort);
 }

 if (sts == LT_NO_ERROR)
 {

 printHelp();
 printf("> ");
 while (TRUE)
 {
 char c = toupper(getchar());
 if (c == 'S')
 {
 printf("Sending service pin...\n");
 router.sendServicePinMsg();
 }
 else if (c == 'Q' || c == 'E')
 {
 printf("Exiting...\n");
 break;
 }
 else if (c == 0x0a)
 {
 printf("> ");
 ;
 }
 else
 {
 if (c != '?')
 {
 printf("Unrecognized command\n");
 }
 printHelp();
 }
 }
 }
 else
 {
 printf("Initialization error %d\n", sts);
 }

 router.Shutdown();

 delete pLtChannel;

 return 0;
}

LonTalk Stack Developer’s Guide 219

Appendix H

LonTalk Interface Developer Utility
Error and Warning Messages

This Appendix lists the LonTalk Interface Developer utility
error and warning messages, and offers suggestions on how
to correct the indicated problems.

220 Appendix H: Appendix H

LonTalk Interface Developer Utility Error and Warning Messages

Introduction
All messages, errors, and warnings, come with a standard Echelon message
identifier LID#zzz, where zzz is a unique decimal number.

All messages shown below are not actually given with the precise language
shown at runtime. Instead, a summary of the message meaning is given for each
message, followed by a brief discussion of possible reasons and remedies. In all
cases, make sure to consult the actual message as produced by the tool at
runtime, as the actual message is likely to contain more details (for example, the
name of the offending file, or more detailed language about the precise failure
reason).

See the Neuron Tools Errors Guide for information about errors issued by the
Neuron C compiler (warning and error messages with NCC#zzz identifiers).

Error Messages

LID# Description

1 An NV, CP, or MT item was expected but not present – internal error

Remove the device interface files (.xif and .xfb extension), and re-run
the LonTalk Interface Developer utility to see if the problem persists.
Use the Trace verbosity level to help track down the problem.

2 A file cannot be opened for read access

See the error message received for details of the offending file. Make
sure the file is available and readable and the path is accessible.

3 A file cannot be opened for write access

See the error message received for details of the offending file. Make
sure the file is available and writable and the path is accessible.

4 A property value is required but has not been obtained from any data
source

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure

LonTalk Stack Developer’s Guide 221

LID# Description

5 An error occurred when reading a device interface file

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

6 An error occurred when reading a device interface file

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

(This error is similar to LID#5, but refers to a different internal
component recognizing the error.)

7 A device interface file appears malformed

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

8 An unrecognized escape character has been detected in a file or
NVVAL data record

This is an internal error, probably a result of an earlier failure
during the creation of an intermediate file with a .bif file extension.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure. After
the build, make sure the file with the .bif extension exists and can be
read.

9 A FILE or NVVAL value record cannot be read due to an
unsupported construct

This is an internal error, probably a result of an earlier failure
during the creation of an intermediate file with a .bif file extension.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure. After
the build, make sure the file with the .bif extension exists and can be
read.

222 Appendix H: Appendix H

LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

10 Failure to attach to LONUCL32 service DLL

The LonTalk Interface Developer utility or one of its components
failed to locate a file by name of “LONUCL32.DLL.” This file usually
resides in the same folder that contains the LID.exe application, but
can be in any folder in your current user search path. This file is
typically installed into the LonWorks Bin folder.

18 An error occurred when composing the application XIF file: the data
merge target is ill-chosen (must be the BIF file)

This is an internal error that should not normally occur. However, it
could be a result of an earlier failure. For example, a non-fatal error
during the creation of the device interface file might lead to this
error. Re-run the LonTalk Interface Developer utility in Trace
verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

19 File I/O error when writing XIF file

Refer to the error message for details about the failure cause. The
error message contains details such as “disk full,” or “file access
denied”.

20 Error (non-file I/O) when writing XIF file

Refer to the error message for details about the failure cause. The
error message contains details such as “disk full,” or “file access
denied”.

21 The xif32bin.exe utility returned an error, indicating failure when
converting XIF to XFB

The binary device interface file (.xfb extension) could not be created.
Make sure a previously existing binary device interface file is not
write-protected. Also make sure the XIF32Bin.exe utility, which is
used to create the binary device interface file, is available in a folder
that is part of the system or current user search path. By default,
the utility can be found in your LONWORKS Bin folder.

22 An error occurred when reading a type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the ShortStack Wizard.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure.

LonTalk Stack Developer’s Guide 223

LID# Description

23 An error occurred when reading a type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the ShortStack Wizard.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure. This
error is similar to LID#22, but refers to different internal software
components.

24 Type info (.NCT) file seems corrupted

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the LonTalk Interface
Developer utility. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

25 Unexpected end of type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the LonTalk Interface
Developer utility. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

27 Unexpected file I/O error when reading a file

Refer to the error message for details of the failure cause.

28 Unexpected error (not a file I/O error) when reading a file

Refer to the error message for details of the failure cause.

29 Unexpected file I/O error when writing a file

Refer to the error message for details of the failure cause.

30 Unexpected error (not a file I/O error) when writing a file

Refer to the error message for details of the failure cause. The error
message contains details such as “disk full” or “file access denied”.

224 Appendix H: Appendix H

LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

31 A type definition cannot be generated: the type is referenced but not
defined

A type that you have referenced is missing from the NCT file, and
intermediate file used by the LonTalk Interface Developer utility.
This is an internal error. Delete all intermediate files. Re-run the
LonTalk Interface Developer utility in Trace verbosity mode and
carefully examine the LonTalk Interface Developer utility Summary
window to determine the root cause of the failure. If the problem
persists, contact Echelon technical support, submitting all files
produced by the LonTalk Interface Developer utility when running in
Trace verbosity level.

32 A type definition is provided but seems incomplete –an element is
missing

This is an internal error. Delete all intermediate files. Re-run the
LonTalk Interface Developer utility in Trace verbosity mode and
carefully examine the LonTalk Interface Developer utility Summary
window to determine the root cause of the failure. If the problem
persists, contact Echelon technical support, submitting all files
produced by the LonTalk Interface Developer utility when running in
Trace verbosity level.

33 Anonymous types are not supported

Any type used for network variables or configuration properties must
have a name. The use of constructs such as, “network input struct {
int a, b; } nviZorro;” is not permitted.

34 A compiler feature cannot be selected

Refer to the error message for details of the failure cause. This error
might be the result of conflicting preferences in the default command
file, LonNCC32.def, located in the LonTalk Interface Developer
utility's project file. Refer to the Neuron C Programmer's Guide and
Neuron C Reference Guide for more details about the command line
tools and script files.

35 Configuration parameters are in use, but no template file has been
found

This might be the result of an earlier error. Delete all intermediate
files. Re-run the LonTalk Interface Developer utility in Trace
verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

If the problem persists, contact Echelon technical support,
submitting all files produced by the LonTalk Interface Developer
utility when running in Trace verbosity level.

LonTalk Stack Developer’s Guide 225

LID# Description

36 The program ID found in the XIF file seems malformed and cannot
be used to produce the niAppinit data

Use the LonTalk Interface Developer utility and the Standard
Program ID calculator to produce a good program ID record. Delete
all intermediate files. Re-run the LonTalk Interface Developer
utility in Trace verbosity mode and carefully examine the LonTalk
Interface Developer utility Summary window to determine the root
cause of the failure. If the problem persists, contact Echelon
technical support, submitting all files produced by the LonTalk
Interface Developer utility when running in Trace verbosity level.

42 A type definition cannot be generated –the type definition has more
elements than expected

Delete all intermediate files. Re-run the LonTalk Interface
Developer utility in Trace verbosity mode and carefully examine the
LonTalk Interface Developer utility Summary window to determine
the root cause of the failure. If the problem persists, contact Echelon
technical support, submitting all files produced by the LonTalk
Interface Developer utility when running in Trace verbosity level.

46 One or more configuration properties implemented within a file are
present, FTP or DMF must be implemented

Alternatively, you can declare configuration properties as
configuration network variables.

47 The file transfer protocol (FTP) and direct memory files (DMF) access
mechanisms are mutually exclusive

49 The FTP server interface is partially implemented, missing the
specified member of the node object

50 Data files and file directory are too big for the available space.
Available: <n> bytes, required: <m> bytes (missing: <p> bytes)
[LID#50]

Possible remedies: reduce the size of files by removing extraneous
data files, or by sharing CP, or implement FTP.

51 Malformed XML data (cannot convert to expected type)

52 The specified application framework type is unknown

53 No target framework has been supplied, or the requested framework
is not registered with, or not known to, the Builder

54 No code generator found for the selected target framework

226 Appendix H: Appendix H

LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

55 The specified framework is not yet supported

This is an internal error.

57 Required source file missing

59 Too many network variables. The sum of static and dynamic
variables cannot exceed 4096.

60 Insufficient number of addresses

This message includes how many addresses are require for the
application, and how many were specified.

61 The DMF window specification is invalid, as it exceeds the 64 KB
address range

62 Insufficient buffer space

The message includes the total number of bytes available for
transceiver buffers and how many additional bytes your selected
configuration requires.

Warning Codes

LID# Description

4001 An XIF file contains more fields than expected

Refer to the warning message for line # and filename. This might
result in an automatic downgrading of the device interface file to the
version supported by the LonTalk Stack or ShortStack tools. Check
www.echelon.com for available updates.

4002 An intermediate file cannot be removed in the sweep-phase. See
message for details

Refer to the warning message for details about the warning cause.
The sweep occurs when the utility’s operation is complete and the
utility did not run in the Trace verbosity level. The warning
indicates that an intermediate file cannot be removed.

http://www.echelon.com/

LonTalk Stack Developer’s Guide 227

LID# Description

4006 A file cannot be copied

This is possibly, but not necessarily, fatal. When the LonTalk
Interface Developer utility creates the host framework, it produces
several files based on input provided by the user. It also copies the
necessary files into the destination folder. The utility-generated files
refer to these files, which are required to build the host application.
Thus, this issue is non-fatal for the LonTalk Interface Developer
utility, but probably fatal when building the host application. See
also warning LID#4017.

4011 The .NCT file references a built-in type with no host equivalent
known to LonTalk Interface Developer utility

This condition is unlikely to occur and does report an internal error.
Check www.echelon.com for available software updates that address
the problem, or contact LonSupport@Echelon.com. This message is a
warning rather than an error because the condition does not prevent
your application from working. Check the type definitions provided
in LonNvTypes.h and LonCpTypes.h (both generated by LonTalk
Interface Developer utility) and correct the offending type. Continue
using these files and build your LonTalk Stack device.

4014 Explicit addressing specified but not required

This warning reminds you that you have requested support for
explicit addressing, although it does not seem to be required.
Explicit addressing requires larger buffers on the host, therefore
support for explicit addressing is advisable only when needed.
Message tag declarations that are intended for use with explicit
addressing should be marked with the bind_info(nobind) modifier
to signal the use of explicit messaging. See also the LID#4013 and
LID#4015 warnings.

4015 Explicit addressing specified but neither supported nor required

Although support for explicit addressing has been requested, it does
not appear to be required. See also the LID#4013 and LID#4014
warnings.

4016 FTP implementation suspect –no message tag but SNVT_file_*
implemented

The implementation of the file transfer protocol is suspect, as the
FTP-related network variables are present but no message tag has
been declared.

http://www.echelon.com/
mailto:LonSupport@Echelon.com

228 Appendix H: Appendix H

LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

4017 Files cannot be made writable

When the LonTalk Interface Developer utility creates the host
framework, it produces several files based on input provided by the
user. It copies the necessary files into the destination folder. These
files are made writable after they are copied, unless this warning
indicates it is not possible. See also the LID#4006 warning.

4023 Insufficient addresses are implemented for the specified number of
network variables

For more robust device behavior, increase the number of addresses.

4025 The program ID's channel identifier should be set to 0x04 (TP/FT-10)

4026 Your transceiver buffer configuration leaves a number of bytes
unused

Hint Codes

LID# Description

8001 Your device supports the file transfer protocol, but no configuration
property files are available. This is not an error if your application
has other uses for the file transfer protocol.

8005 Your transceiver buffer configuration leaves a number of bytes
unused

LonTalk Stack Developer’s Guide 229

LonTalk Stack Developer’s Guide 231

Appendix I

Glossary

This appendix defines many of the common terms used for
LonTalk Stack device development.

232 Appendix I: Glossary

D
downlink

Link-layer data transfer from the host to the Echelon Smart Transceiver or
Neuron Chip.

E
Echelon Smart Transceiver or Neuron Chip

A chip that is used as a transceiver to attach a host processor to a LONWORKS
network; the Echelon Smart Transceiver or Neuron Chip runs the Neuron
Firmware and implements layers 1 and 2 of the ISO/IEC 14908-1 Control
Network Protocol.

execution context

A general term for a thread of execution for an operating system. Depending
on the operating system and hardware, this could be a process, task, thread,
or fiber.

F
Firmware

The firmware embedded within an Echelon Smart Transceiver or Neuron
Chip.

LonTalk Stack Developer’s Guide 233

H
host processor

A microcontroller, microprocessor, or embedded processor that is integrated with
the LonTalk API and an Echelon Smart Transceiver or Neuron Chip to create a
LONWORKS device.

L
link layer

A protocol and interface definition for communication between a host
processor and either an Echelon Smart Transceiver or Neuron Chip or
ShortStack Micro Server.

link layer protocol

The protocol that is used for data exchange across the link layer.

LonTalk API

A C language interface that can be used by a LonTalk application to send and
receive network variable updates and LonTalk messages. Two
implementations are available: a full version for LonTalk Stack devices and
a compact version for ShortStack devices.

LonTalk application

An application for a LONWORKS device that communicates with other devices
using the ISO/IEC 14908-1 Control Network Protocol and is based on the
LonTalk API or the LonTalk Compact API.

LonTalk application framework

Application code and device interface data structures created by the LonTalk
Interface Developer based on a model file.

LonTalk Compact API

A compact version of the LonTalk API for ShortStack devices with support for
up to 254 network variables.

LonTalk host stack

A high-performance implementation of layers 3 through 6 of the ISO/IEC
14908-1 Control Network Protocol that runs on an embedded processor.

LonTalk Interface Developer

A utility that generates an application framework for a LonTalk application;
the LonTalk Interface Developer is included with both the LonTalk Stack
Developer’s Kit and the ShortStack Developer's Kit.

LonTalk Platform

Development tools, APIs, firmware, and chips for developing LONWORKS
devices that use the LonTalk API or LonTalk Compact API. Two versions are
available as part of the LonTalk Stack Developer’s Kit and the ShortStack
Developer’s Kit.

234 Appendix I: Glossary

LonTalk Stack application

An application for a LONWORKS device based on the LonTalk API and
Echelon Smart Transceiver or Neuron Chip.

LonTalk Stack

Software required todevelop high-performance LonTalk applications for a
host processor with an Echelon Smart Transceiver or Neuron Chip. The
LonTalk Stack includes a simple host application programming interface
(API), a complete ISO/IEC 14908-1 protocol stack implementation, a
link-layer driver, a simple hardware interface, and comprehensive tool
support.

LonTalk Stack device

A LONWORKS device based on the LonTalk API and an Echelon Smart
Transceiver or Neuron Chip.

M
model file

A Neuron C application that is used to define the network interface for an
FTXL or ShortStack application.

N
Neuron C

A programming language based on ANSI C with extensions for control
network communication, I/O, and event-driven programming; also used for
defining a network interface when used for a model file.

U
uplink

Link-layer data transfer from the Echelon Smart Transceiver or Neuron Chip
to the host.

www.echelon.com

	Table of Contents
	Welcome
	Audience
	Related Documentation
	1 Introduction to LonTalk Stack
	Overview
	A LonWorks Device with a Single Processor Chip
	A LonWorks Device with Two Processor Chips
	ShortStack Developer’s Kit
	LonTalk Stack Developer’s Kit

	Comparing Neuron Hosted, ShortStack, and LonTalk Stack Devices

	Requirements and Restrictions for LonTalk Stack
	Development Tools for LonTalk Stack
	LonTalk Stack Architecture
	Overview of the LonTalk Stack Development Process

	2 Getting Started with the LonTalk Stack Developer’s Kit
	LonTalk Stack Overview
	Installing the LonTalk Stack Developer’s Kit
	Hardware Requirements
	Software Requirements
	Installing the LonTalk Stack Developer’s Kit

	LonTalk Stack Files
	LonTalk Interface Developer
	Example LonTalk Stack Applications

	3 Loading the Echelon Smart Transceiver or Neuron Chip
	Loading Overview
	Integrating a Custom Network Interface
	Defining Incoming Layer 2 Packet Buffers
	Functions

	4 Designing the Serial I/O Hardware Interface
	 Overview of the Hardware Interface
	Reliability
	Serial Communication Lines
	The RESET~ Pin
	Selecting the Link Layer Bit Rate
	Host Latency Considerations

	SCI Interface
	Performing an Initial Echelon Smart Transceiver Health Check

	5 Creating a LonTalk Stack Serial MIP Driver
	 Overview of the Link Layer Protocol
	Code Packet Layout
	Type Code Values
	Acknowledgment Rules
	Sequence Number Cycling and Duplicate Detection

	Supported MIP Command Set
	Layer 2 / Layer 5 Modes
	Product Query Network Management

	Serial MIP Driver Example
	Serial MIP Driver API
	Structures
	Functions

	6 Creating a Model File
	 Model File Overview
	Defining the Device Interface
	Defining the Interface for a LonTalk Stack Application
	Choosing the Data Type

	Defining a Functional Block
	Declaring a Functional Block

	Defining a Network Variable
	Defining a Changeable Type Network Variable

	Defining a Configuration Property
	Declaring a Configuration Property
	Responding to Configuration Property Value Changes
	Defining a Configuration Property Array
	Sharing a Configuration Property
	Inheriting a Configuration Property Type

	Declaring a Message Tag
	Defining a Resource File
	Implementation Specific Scope Rules

	Writing Acceptable Neuron C Code
	Anonymous Top Level Types
	Legacy Neuron C Constructs

	Using Authentication for Network Variables
	Specifying the Authentication Key
	How Authentication Works

	Managing Memory
	Address Table
	Alias Table
	Domain Table
	Network Variable Configuration Table

	Example Model files
	Simple Network Variable Declarations
	Network Variables Using Standard Types
	Functional Blocks without Configuration Properties
	Functional Blocks with Configuration Network Variables
	Functional Blocks with Configuration Properties Implemented in a Configuration File

	7 Using the LonTalk Interface Developer Utility
	 Running the LonTalk Interface Developer
	Specifying the Project File
	Specifying the Echelon Smart Transceiver or Neuron Chip Configuration
	Configuring the LonTalk Stack
	Configuring the Buffers
	Configuring the Application
	Configuring Support for Non Volatile Data
	Specifying the Device Program ID
	Specifying the Model File
	Specifying Neuron C Compiler Preferences
	Specifying Code Generator Preferences
	Compiling and Generating the Files

	Using the LonTalk Interface Developer Files
	Copied Files
	LonNvTypes.h and LonCpTypes.h
	FtxlDev.h
	FtxlDev.c
	project.xif and project.xfb

	Using Types
	Bit Field Members
	Enumerations
	Floating Point Variables

	Network Variable and Configuration Property Declarations
	Constant Configuration Properties
	The Network Variable Table
	Network Variable Attributes

	The Message Tag Table

	8 Developing a LonTalk Stack Device Application
	 Overview of a LonTalk Stack Device Application
	Using the LonTalk API
	Callbacks and Events
	Integrating the Application with an Operating System
	Providing Persistent Storage for Non Volatile Data
	Restoring Non Volatile Data
	Writing Non Volatile Data

	Tasks Performed by a LonTalk Stack Application
	Initializing the LonTalk Stack Device
	Periodically Calling the Event Pump
	Sending a Network Variable Update
	Receiving a Network Variable Update from the Network
	Handling a Network Variable Poll Request from the Network
	Handling Changes to Changeable Type Network Variables
	Validating a Type Change
	Processing a Type Change
	Processing a Size Change
	Rejecting a Type Change

	Handling Dynamic Network Variables
	Communicating with Other Devices Using Application Messages
	Sending an Application Message to the Network
	Receiving an Application Message from the Network

	Handling Management Commands
	Handling Local Network Management Tasks
	Handling Reset Events
	Querying the Error Log

	Working with ECS Devices
	Using Direct Memory Files
	The DMF Memory Window
	File Directory

	Shutting Down the LonTalk Stack device

	9 Developing an IP 852 Router Application
	Developing an IP 852 Router Application
	LtLogicalChannel
	LtIp852Router

	10 Porting a LonTalk Stack Application
	Porting Overview
	OSAL
	LonLink Driver
	Service LED
	Socket Interfaces
	LonTalkStack Source Files
	Application Specific Files for LonTalk Stack Devices

	Application Specific Code for IP 852 Interfaces
	Selecting the Device Type
	File System Requirements

	Appendix A LonTalk Interface Developer Command Line Usage
	 Overview
	Command Usage
	Command Switches
	Specifying Buffers

	Appendix B Model File Compiler Directives
	 Using Model File Compiler Directives
	Acceptable Model File Compiler Directives

	Appendix C Neuron C Syntax for the Model File
	 Functional Block Syntax
	Keywords
	Examples

	Functional Block Properties Syntax
	Keywords
	Examples

	Network Variable Syntax
	Keywords
	The Network Variable Modifier
	The Network Variable Storage Class
	The Network Variable Type
	The Network Variable Connection Information
	The Network Variable Initializer
	The Network Variable Property List

	Configuration Property Syntax
	Keywords
	The Configuration Property Type
	The Configuration Property Modifiers
	The Configuration Property Initializer

	Declaring a Configuration Network Variable
	Defining a Device Property List

	Message Tag Syntax
	Keywords

	Appendix D LonTalk API
	 Introduction
	The LonTalk API, Event Handler Functions, and Callback Handler Functions
	LonTalk API Functions
	Commonly Used LonTalk API Functions
	Other LonTalk API Functions
	Application Messaging API Functions
	Non Volatile Data API Functions
	Extended API Functions

	Event Handler Functions
	Commonly Used Event Handler Functions
	Dynamic Network Variable Event Handler Functions
	Application Messaging Event Handler Functions
	Non Volatile Data Event Handler Functions

	LonTalk Stack Callback Handler Functions
	Commonly Used Callback Handler Functions
	Direct Memory Files Callback Handler Functions
	Non Volatile Data Callback Handler Functions

	The Operating System Abstraction Layer
	Managing Critical Sections
	Managing Binary Semaphores
	Managing Operating System Events
	Managing System Timing
	Managing Operating System Tasks
	Debugging Operating System Functions

	Appendix E Determining Memory Usage for LonTalk Stack Applications
	 Overview
	Memory Use for Code
	Memory Use for Transactions
	Memory Use for Buffers
	Memory for LonWorks Resources
	Memory for Non Volatile Data
	Memory Usage Examples for Data

	Appendix F Downloading a LonTalk Stack Application Over the Network
	 Overview
	Custom Application Download Protocol
	Application Download Utility
	Download Capability within the Application

	Appendix G Example LonTalk Stack Applications
	 Overview of the Example Applications
	Building the Example Applications
	Running the Examples
	Running the SimpleLtDevice Example
	Running the SimpleIp852Device Example
	Running the Ip852Router Example

	SimpleLtDevice and SimpleIp852Device Example Application Details
	Main Function
	Application Task Function
	Event Handler Function
	Application Specific Utility Functions
	Callback Handler Function
	Model File
	Extending the SimpleLtDevice and SimpleIp852 Examples

	IP 852 Router Example Application Details

	Appendix H LonTalk Interface Developer Utility Error and Warning Messages
	Introduction
	Error Messages
	Warning Codes
	Hint Codes

	Appendix I Glossary

