< ECHELON

NodeBuilder® FX User’s Guide

aay
oy
-w ®

078-0405-01A

Echelon, LON, LonWorks, Neuron, 3120, 3150, Digital
Home, i.LON, LNS, LonMaker, LONMARK, LonPoint,
LonTalk, NodeBuilder, ShortStack, and the Echelon logo
are trademarks of Echelon Corporation registered in the
United States and other countries. FTXL, LonScanner,
LonSupport, OpenlDV, and LNS Powered by Echelon
are frademarks of Echelon Corporation.

Other brand and product names are trademarks or
registered frademarks of their respective holders.

Neuron Chips and other OEM Products were not
designed for use in equipment or systems which involve
danger to human health or safety or arisk of property
damage and Echelon assumes no responsibility or
liability for use of the Neuron Chips or LonPoint Modules
in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in
a refrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©1997-2009 by Echelon
Corporation.

Echelon Corporation
www.echelon.com

Table of Contents

Preface ... e e e e n s ix
PUIDOSE .ttt e e e e e e e e e e e X
0 Lo 1= T S X
Hardware ReqUIrEMENTS...... ... X
1070) 41 (=Y o | (RSP RR Xi
Related ManuUalS...........oooi e Xii
For More Information and Technical Support...........cccceeeiiieiiiiiieeeee e, Xiii

1 INtrodUCtion ... —————— 1
Introduction to the NodeBuilder TOOI..........ooo e 2
New Features in the NodeBuilder FX TOOl.........oooiiiiiiiiii e 2

5000 Series Chip SUPPOIT.......coeiiiiiiiiiieiee et 2
Backwards Compatibility for Device Applicationscccccvveeeee.nn. 3
Improved Memory ArchiteCtureoevvveiiiiiiiiiiiiiiieieeeeeee 3
Faster System CIOCKcooociiiiiiiee e 4
Improved Performance for Arithmetic Operations.............ccccccceeenee 4
User-Programmable Interrupts ..o 4
Additional 1/O Model SUPPOrtooviiiiiiei e 5

FT 5000 EVB Evaluation Boardccccooiiiiiiiiieeeeeeee e 5

Increased Network Variable Support ... 5

Neuron C Version 2.2 Enhancements ... 6
INtEITUPE SUPPOM....ooiiiiiee e 6
Non-Constant Device-Specific Configuration Property Support......... 6
New and Enhanced Compiler Directives...........cccccvvveeeieeiiiiiiiiieene... 6

Enhanced Hardware Template Editor...............ooovviiiiiiiiiiiiiiiiiiiiiiiiinns 6

Enhanced Code Wizard Framework Template.............ccccovveeeeeeeieicnnnnen, 6

Neuron C Debugger ... 7

LNS Plug-in Framework Developer’s Kit..........ccccoceiniiiiiiiiene e 7

Microsoft Windows Vista Support ... 7

What's Included with the NodeBuilder FX Toolcooviiiiiiiiiieiiiiieeeee, 7

NodeBuilder FX Development Tool CD ... 8

Development Platforms...... ..o 8
FT 5000 EVB Evaluation Board ... 8
LTM-10A Platform and NodeBuilder Gizmo 4 1/0 Board 9

LTM-10A Platformc.eeiiiiiiiieeeee e 10
NodeBuilder Gizmo 4 1/0O Boardccovevieeeiiiiieeeieee e, 10

LonMaker Integration TOOl CD...........ceevvieiiiiiiiiiiiieeee e 11

LonScanner Protocol Analyzer CDcooocciiiieieee e 11

U10/U20 USB Network Interfacecccceeeveiciiiiiiieeeeeceeeeee e 11

Introduction to NodeBuilder Device Development and LONWORKS
NEIWOTKS ...ttt e et e e e e e e e s et e e e e e e e essnnnraneeeaeeeaannnnes 12

ChaANNEIS ... 12

01U (= = USSR 13

F Y o] o] o= 11 1] 1 S 13

Program IDS ... 13

Network Variables ... 14

Configuration Propertiescoicuiieiiiiiiee it 16

Functional BIOCKScooiiiiiiiiiie e 16

Functional Profiles...........cooiiiiie e 16

Hardware Templates...........oeviiiiiiiiciiieee e 17

N LU] o o T SRR 17

Device Templatescooo i 17

NodeBuilder FX User's Guide

2

Installing the NodeBuilder FX Development Tool........................

Installing the NodeBuilder FX Development TOOL.............euuiiiiiiiiiiiiiieinn,
Installing the NodeBuilder Software.............cccccee i,
Connecting the NodeBuilder Hardwarecccccceeveiiiiiiiiiieeeee e,

Connecting the NodeBuilder FX/FT Hardware.........cccccccceeeevinnneee.
Connecting the NodeBuilder FX/PL Hardware.........cccccccceeeveinnneee.

NodeBuilder QUIiCK=-Start EXerCiSe.....cccceevirrermiirrernssirreenssarrernsssnen

NodeBuilder QuiCk-Start EXErciSe.........oocuiieiiiiieieiiiee e
Step 1: Creating a NodeBuilder Project...........cccooveivieiiiiiiciiiieeeee e,
Step 2: Creating a NodeBuilder Device Template............ccccoveeveeeeeennns
Step 3: Defining the Device Interface and Creating its Neuron C
Application Frameworkoocueiiiiiiiiiii e
Step 4: Developing the Device Application...........ccccoeiiiiiiiiii e

FT 5000 Evaluation Boards..........ccceeeiiiiiiiiiiieeeaeeeiieee e
LTM-10A Platform and Gizmo 4 I/O Boardcccoieeeieeiiiiee
Step 5: Compiling, Building, and Downloading the Application...............
Step 6: Testing the Device Interface...........ccoceeeviiiieiiiiiee e
Step 7: Debugging the Device Applicationcccccooviieiiiiiiee i,
Step 8: Connecting and Testing the Device in a Network
Additional Device Development Steps........ccccevvveeeiiiiiciiiiieeee e
Creating a LonMaker Stencilcoooooieiiiiiieiei e
Creating an LNS Device Plug-in.........ccooiiiiiiiiiiiiee e,
Developing an HMI ..o
Creating a Device Installation Application...........cccocoociiiinineen,
Submitting a LONWORKS OEM LiCense........ccoocveeiiiieeiiiiieeeeen,
Applying for LONMARK Certificationcccccvniiiiiniiiniee

Creating and Opening NodeBuilder Projectsccccceeeecencnnnnes

Introduction to the NodeBuilder Project Managercccovieeiiiiiciiiiinenn,
Using the Project Paneooouiiiiiiiiiiee e
Creating a NodeBuilder Project ...
Creating a NodeBuilder Project from the LonMaker Tool......................
Creating a NodeBuilder Project from the NodeBuilder Project
=T g = To = PP UPURPR
Creating a NodeBuilder Project from the New Device Wizard
Opening a NodeBUIlder Project..........cueiiiiiie i
Opening a NodeBuilder Project from the LonMaker Tool.......................
Opening a NodeBuilder Project from the NodeBuilder Project
/=T g =T = PPN
Copying NodeBuilder Projects. ...
Using the LonMaker Tool to Backup and Restore a NodeBuilder
PrOJECE ..o
Manually Copying NodeBuilder Project Files.............ccccoiiiiiiiiinennne
Copying NodeBuilder Device Templates..........ccccoiiiiiiiiniieieiiiie e
Copying User-Defined Resource Files........c.cccooviiiiiiiii i
Viewing and Printing NodeBuilder XML Files...........cccccoiiiiiiiiiiieie

Creating and Using Device Templates..........cccooeiieriiiiiiiciiccceccnnns

Introduction to Device Templates ...
Creating Device Templatescoooiiiiiiiiiiii e
Starting the New Device Template Wizardcccccoiiiiiiiiiieenne

Preface

Specifying the Device Template Name............ccccvvvveeeieiiiiicciiieeeee e, 97

Specifying the Program IDcooiiiiiiiiiee e 98
Specifying Target Platforms ..., 103
Managing and Editing Device Templates..........cccoocoeviiiiiiiiieee e 105
Managing Device Templatesccocueiiiiiiiiiiiie e 105
Viewing and Editing Device Templates..........ccocceiiiiiiiiinii i 106
Viewing Device Template Components..........ccccceeviiiiiiiiiieeeeeecee, 107
Managing Development and Release Targetsccccoooieiiiiiiiineee. 109
Setting Device Template Target Properties: Compiler................... 110
Setting Device Template Target Properties: Linker 113
Setting Device Template Target Properties: Exporter.................... 114
Setting Device Template Target Properties: Configuration............ 116
Inserting a Library into a NodeBuilder Device Template 118
Using Hardware Templates ... 121
Creating Hardware Templatescoocuiiiiiiiiiiiii e 122
Editing Hardware Templates..........coooiiiiiiiiiiiiee e 124
Setting Hardware Properties ... 124
Setting Memory Properties ... 127
5000 Series ChiPS...coeeeiiiiieieeee e 128
3150 NEeUron COrecueiveeiiiiee et et 129
3120 and 3170 Neuron COoreccceevcveeeeeiciieee e 129
Setting the Hardware Template Description............cccccevviiieeennne. 129
6 Defining Device Interfaces and Creating their Neuron C

Application Framework...........cccciiiiiiiiiin 131
Introduction to Device INterfaces..........cccveviciiee i 132
Starting the Code Wizard..........c.ooeoviiiiiiiiiie e 132
Using the Resource Pane..........ccccccooeiiiiiiiiiiee e 133
Introduction to Resource File Sets..........c.cocovviiiiiiiciecee 134
Introduction to ReSOUrCESeevviiiiiiiiiiiiie e 135
Using the NodeBuilder Resource Editor.........cccccoeevviiiiienennn. 137
Using the Program Interface Pane............cccoooeiiii i, 137
Defining the Device Interface...........coooeeiiiiiiiiiie e 139
Adding Functional BIOCKScoeiiiiiiiiiii e 142
Using Large Functional Block Arrays..........cccccovvieeiiiniienennne, 145
Editing Mandatory Network Variablescccccoooiiiiiniiiee, 145
Editing Mandatory Configuration Properties..........cccccccovvvveeeinnnn.. 152
Implementing Optional Network Variablesccccccooeviiiinnen.n. 158
Implementing Optional Configuration Properties............cccccvveee..... 160
Adding Implementation-specific Network Variables....................... 162
Adding Implementation-specific Configuration Properties 164

Setting Initial Values for Network Variables and Configuration
Propertieseeeiiiiiei s 167
Setting Initial Values for Structured Data Types..........cccueeee. 168
Setting Initial Values for Enumerations............cccccceivienenne 170
Setting Initial Values for Floating Point and s32 Data Types... 171
Using Changeable-Type Network Variablesccccccooevierennnnen.. 172
Generating Code with the Code Wizardcccoccveveiiiiieeeiiiee e, 173
Files Created by the Code Wizardccccoocveveiiiiieeeiiiee e, 173
Using Code Wizard Templates......ccveiceieiiie e 176
Version 3 Templates.........cccoeiiii 176
Version 2 TemMplatesooeeeiiieciiiiiieecce e 176
Version 1 Templatescoeeeiiiieciiiiiieeee e 177
Creating the Device Applicationcccccviiieiiie e, 177

NodeBuilder FX User's Guide

7 Developing Device Applications............ccoooriiiimiiiiiiieiinieeeeneeeeneees 179

Introduction to Neuron Co 180
Unique Aspects of Neuron C ... 180
Neuron C Variables..........cocuiiiiiiiiie e 182

Neuron C Variable TYPESc.uuiieiiiiiie e 182
Neuron C Storage ClasSes........ccovuviieiiiiiiieiiiiieeeeiiee e seee e 182
Variable Initialization............c.ccccoiiiii 183
Neuron C Declarationscccoruiiiiiiiiiienee e 183
Introduction to Neuron C Code Editing...........ccoociiiiiiiiieiiicceeeee e 184
Modifying Neuron C Code Generated by the Code Wizard.................. 185
Code ComMMANGS.......c.cuuiiiiiiee e e e e e 185
Code GUIENNESuiiiiiiie e 186
Add I/O and Timer Declarations.............occccoieiiiiiiiieeee. 186
Add when-tasks Responding to I/O and Timer Events............ 187
Add interrupt-tasks Responding to Interrupt Requests............ 187
Add Code to when(nv_update_occurs(<nv>)) when-task of
Functional Blocks with Input NVs.................., 187
Share Code with filexfer.nc when Handling Explicit
Messages on a Device Implementing FTPccccoviveeee.n. 187
Ignore NCC#310 and NC#463 Compiler Warnings................. 187

Implementing Changeable-Type Network Variables...................... 187

Neuron C Version 2 Features Not Supported by the Code

LA 2= T o OSSR 189
MESSAGE TAUS. . .eeeeieiiiieie ittt 189
/O MOAEIS.... .ot 189
Network Variables ... 189
Configuration Propertiesccocouveeiiiiiee i 189
WHEN() ClAUSES ..ot 190
LONMARK SEYI€eeiiiiiiiiie et 190
Director FUNCHONScooiiiiiiieecc e 190
INterrupt Taskscceiiiiieeee e 190

Using the NodeBuilder EQitoroooiiiiiiiiiiiiee e 190
Using Syntax Highlighting ..o 191
Searching Source Files ... 191

Searching a Single File for a String.........cccccvviiiiiiii 191

RePIacing TeXt.. ..o 192

Searching Multiple Files for a String..........cccccoviieiiiiiiieeee 192

USIiNG BOOKMAIKSueiiiiiiiiiie e 195

Setting Editor Optionscooviiviiiie e 195

8 Building and Downloading Device Applications........................ 197

Introduction to Building and Downloading Applicationscccccceeeeenee. 198

Building an Application IMagecooiiiiiiiiiii e 198
Excluding Targets from a Build ..o 203
Cleaning Build OUtput Filescc..oviiiiiiiiiiiiieecee e 203
Viewing Build Statusccooiiiiiiieie e 204
Setting Build Options..........cocciiiiiiiie e 206

Downloading an Application Imageccceeeveeeeiiiiciieeeee e 207
Programming 5000 Off-chip MemOry..........ccccoiiieieeeiiieciieeee e 208

Programming 5000 Series Chips In-Circuit...........ccccoceveeeeeiinnnen. 209
Programming 3150 Off-chip Memoryccccoiiiiiiiiiiieiee e 214
Programming 3150 On-chip Memorycccceviiiiiiiiiiiie e 215
Programming 3120 and 3170 On-chip Memory..........cccccovieeeiiiieeenne 216

Programming PL 3120 and PL 3170 Smart Transceiver

Parameters 216

vi

Preface

Upgrading Device Applications...........ccoeeviiiiiiiiiiiie e 217

Adding and Managing Target DeviCesccccccieeiieeiiiiccciieee e 217
Adding a Target Device with the LonMaker Tool.............cccceeiiiiinnnnnn 217

Adding a Target Device with the NodeBuilder Project Manager 221
Managing Target DeVICEScocuuiiiiiiiiiie e 223

Editing Target Device Settings..........ccueviiiiiiiiiiiiiee e 224

9 Testing a NodeBuilder Device Using the LonMaker Tool.......... 229
Introduction to Testing NodeBuilder Devicesccccevvvviciiiieeeieee e, 230
Monitoring and Controlling NodeBuilder Devicescccccceeeeviinnnneee. 230

Using the Data Point Shape ..., 230

Using the LonMaker BrOWSErcooiiiiiiiiiiiiieeeiiee e 232

Connecting NodeBuilder DeviCes ..o 235

10 Debugging a Neuron C Application..........ccccovriiiinmmmnnneinnnnssssnnnes 241
Introduction to Debuggingcoooiiiiiiiii 242
Starting the NodeBuilder Debugger ..., 242

Using the Debugger TooIbar..........ccoiuiiiiiiiiie e 244
Stopping an Applicationo 245

Halting an Application............c..ueiiiiii e 246

RUNNINg t0 the CUIrSOrccociiiiiiee e 246

Setting and Using Breakpointsccccoecieeeeiiiiie e 246

Stepping Through AppliCatioNScoociiiiiiiire e 247
Debugging Interrupts for 5000 Series Chipsccccoevveviiiiiiieeeeiieeee, 247

Using Statement EXpanSion..............eeeiieeiiiiciiiieeee e 247

Using the Watch List Pane...........cccovveiiiiiiiiiceec e 247

Using the Call Stack Panec.coooiiiiiiiii e 251

Using the Debug Device Manager Pane............cccccoviiieiiiiiiieiiiieeees 251
Peeking and PoKing MemOrycocuiiiiiiiiiiiiiiee e 252
Executing Code in Development Targets Only...........ccccoviiieiiiiiieenns 253

Using the Debug Error Log Tabccueeiiiiiiiiiiiiieeecceeee e 253

Setting Debugger OptioNS...........oocuiiiiiiiiiiiii e 253
Appendix A Using the Command Line Project Make Facility 257

Appendix B Using Source Control With a NodeBuilder Project.... 261
ApPPENdiX C GlOSSANY ... nnes 265
Appendix D NodeBuilder Software License Agreement................. 279

NodeBuilder FX User's Guide

Vi

viii Preface

Preface

The NodeBuilder FX Development Tool is a complete hardware and software
platform that is used to develop applications for Neuron® Chips and Echelon® Smart
Transceivers. The NodeBuilder tool lets you create, debug, test, and maintain
LoNWORKS® devices. It includes a suite of device development software that you
can use to develop device applications, and hardware platforms that you can use to
build and test prototype and production devices.

NodeBuilder FX User's Guide ix

Purpose

This document describes how to use the NodeBuilder tool to develop LONWORKS device applications
and build and test prototype and production LONWORKS devices.

Audience

This guide is intended for device and system designers with an understanding of control networks.

Hardware Requirements

Requirements for computers running the NodeBuilder tool are listed below:

Microsoft® Windows Vista or Microsoft Windows XP. Echelon recommends that you install the
latest service pack available from Microsoft for your version of Windows.

Intel® Pentium® 11T 600MHz processor or faster, and meeting the minimum Windows
requirements for the selected version of Windows.

300 to 550 megabytes (MB) free hard-disk space, plus the minimum Windows requirements for
the selected version of Windows.

o The NodeBuilder tool requires 100 MB of free space.

o The LonMaker” Integration Tool, which is included with the NodeBuilder software and is
required to install the NodeBuilder tool, requires 172 MB of free space.

o The LonScanner " Protocol Analyzer, which is included with the NodeBuilder software,
requires 26 MB of free space.

o Microsoft .NET Framework 3.5 SP1, which is required to run the NodeBuilder tool, requires
30 MB of free space.

o Ifyou install Acrobat® Reader 9.1 from the NodeBuilder FX Development Tool CD, you
need an additional 204 MB of free space.

512 MB RAM minimum.

Note: Vista testing for the NodeBuilder tool has been performed on computers that have a
minimum of 2 GB of RAM. For complete Vista requirements, refer to
www.microsoft.com/windows/windows-vista/get/system-requirements.aspx. You can use
Microsoft’s Vista Upgrade Advisor to determine upgrade requirements for a particular computer.
To download this tool, go to the Microsoft Web site at
www.microsoft.com/windows/windows-vista/get/upgrade-advisor.aspx.

CD-ROM drive.
1024x768 or higher-resolution display with at least 256 colors.
Mouse or compatible pointing device.

LNS" network interface or IP-852 router. If an LNS network interface is used, it may be a local or
remote interface.

o Compatible local network interfaces include the U10/U20 USB network interface (included
with the NodeBuilder FX/FT and FX/PL Development Kits); PCC-10, PCLTA-20, or
PCLTA-21 network interfaces; and the SLTA-10 Serial LonTalk Adapter.

o Compatible remote network interfaces include the i, LON® SmartServer, ;. LON 100 &3
Internet Server, i. LON 600 LONWORKS-IP Server, or i.LON 10 Ethernet Adapter.

Preface

http://www.microsoft.com/windows/windows-vista/get/system-requirements.aspx
http://www.microsoft.com/windows/windows-vista/get/upgrade-advisor.aspx

o Compatible IP-852 routers include the ;. LON SmartServer with IP-852 routing, i. LON 100 €3
Internet Server with IP-852 routing, or an i.LON 600 LONWORKS-IP Server. If you are using
an IP-852 router, your computer must have an IP network interface such as an Ethernet card
or modem with PPP software. In addition, the i. LON software must be installed on your
computer, and the IP-852 channel must be configured using the LONWORKS-IP Configuration
Server application software.

The LonMaker tool, which is included with the NodeBuilder software, automatically installs
drivers for all local and remote network interfaces, except the SLTA-10 Serial LonTalk Adapter.
The LonMaker CD includes an option for installing the driver for the SLTA-10 Serial LonTalk
Adapter.

Note: You must run the NodeBuilder software on the same computer with the LNS Server which
is installed by the LonMaker installer. You cannot run the NodeBuilder tool as a remote client to
an LNS Server running on another computer.

Content

This guide includes the following content:

Introduction: Lists the new features in the NodeBuilder FX tool, summarizes the components
included with the NodeBuilder tool, and provides an overview of NodeBuilder device
development and LONWORKS networks.

Installing the NodeBuilder FX Development Tool. Describes how to get started with your
NodeBuilder tool, including how to install the NodeBuilder software and connect the NodeBuilder
hardware.

NodeBuilder Quick-Start Exercise. Demonstrates how to create a LONWORKS device using the
NodeBuilder tool.

Creating and Opening NodeBuilder Projects. Describes how to create, open, and copy
NodeBuilder projects, and explains how to copy NodeBuilder projects and NodeBuilder device
templates to another computer.

Creating and Using Device Templates. Describes how to use the New Device Template wizard in
the NodeBuilder Project Manager to create, manage, and edit NodeBuilder device templates.
Explains how to manage development and release targets and insert libraries into a device
template. Describes how to use the Hardware Template Editor to create and edit hardware
templates.

Defining Device Interfaces and Creating their Neuron C Application Framework. Describes how
to use the NodeBuilder Code Wizard to define your device interface and generate Neuron C code
that implements it. Explains how to start the NodeBuilder Code Wizard, how to add functional
blocks, network variables, and configuration properties to your device template, and how to create
the Neuron C framework for your device interface.

Developing Device Applications. Provides an overview of the Neuron C Version 2.2
programming language. Describes how to edit the Neuron C source code generated by the
NodeBuilder Code Wizard to implement your device functionality. Explains how to use the
NodeBuilder Editor to edit, search, and bookmark Neuron C code.

Building and Downloading Device Applications. Describes how to compile Neuron C source
code, build an application image, and download the application image to a device. Explains how
to add target devices to a NodeBuilder project and how to manage them.

Testing a NodeBuilder Device Using the LonMaker Tool. Describes how to use the Data Point
shape and LonMaker Browser in the LonMaker tool to monitor and control your device. It
explains how to use the LonMaker tool to connect your NodeBuilder device to other LONWORKS
devices in a network.

NodeBuilder FX User's Guide xi

o Debugging a Neuron C Application. Describes how the use the NodeBuilder debugger to
troubleshoot your Neuron C application.

e Appendices. Provides information for using the command line project make facility and managing
a NodeBuilder project using a source control application. Includes a glossary with definitions for
many terms commonly used with NodeBuilder device development, and it includes the
NodeBuilder Software License agreement.

Note: Screenshots in this document were taken during the development of the NodeBuilder FX tool;
therefore, some images may vary slightly from the release version of the user interface.

Related Manuals

The documentation related to the NodeBuilder tool is provided as Adobe® PDF files and online help
files. The PDF files are installed in the Echelon NodeBuilder program folder when you install the
NodeBuilder tool. You can download the latest NodeBuilder documentation, including the latest
version of this guide, from Echelon’s Web site at www.echelon.com/docs.

The following manuals provide supplemental information to the material in this guide. You can
download these documents from Echelon’s Web site at www.echelon.com.

FT 5000 EVB Examples Guide

FT 5000 EVB Hardware Guide

Gizmo 4 User’s Guide

Introduction to the LONWORKS®
Platform

LNS®Plug-in Programmer’s Guide

LonMaker® User’s Guide

LONMARK® SNVT and SCPT Guide

LonScanner™ Protocol Analyzer
User’s Guide

Xii

Describes how to run the Neuron C example applications
included with the NodeBuilder FX/FT Development tool on an
FT 5000 EVB.

Describes how to connect the FT 5000 EVBs, and describes the
Neuron core, I/O devices, service pin and reset buttons and
LEDs, and jumper settings on the FT 5000 EVB hardware.

One or two FT 5000 EVBs are included with the NodeBuilder
FX/FT Development Tool.

Describes how to use the I/O devices on the Gizmo 4 1/0 Board,
and how to use the Gizmo 4 1/O Board to build your own I/O
hardware.

The Gizmo 4 1/O Board is included with the NodeBuilder FX/PL
Development Tool.

Provides a high-level introduction to LONWORKS networks and
the tools and components that are used for developing, installing,
operating, and maintaining them.

Describes how to write plug-ins using .NET programming
languages such as C# and Visual Basic .NET

Describes how to use the LonMaker Integration Tool to design,
commission, modify, and maintain LONWORKS networks.

Documents the standard network variable types (SNVTs),
standard configuration property types (SCPTs), and standard
enumeration types that you can declare in your applications.

Describes how to use the LonScanner Protocol Analyzer to
monitor, analyze, and diagnose ISO/IEC 14908-4,
LONWORKS/IP, and native ISO/IEC 14908-1 channels, and how
to interpret the data that the protocol analyzer collects.

Preface

http://www.echelon.com/docs
http://www.echelon.com/

LONWORKS® USB Network Interface
User’s Guide

LTM-10A4 User’s Guide

® .
Neuron~ C Programmer’s Guide

Neuron® C Reference Guide

Neuron® Tools Error Guide

NodeBuilder® FX/PL Examples Guide

NodeBuilder® Resource Editor User’s
Guide

Describes how to install and use the U10 and U20 USB Network
Interfaces, which are included with NodeBuilder FX/FT
Development Tool and NodeBuilder FX/PL Development Tool,
respectively.

Describes how to use the LTM-10A Platform for testing your
applications and I/O hardware prototypes. Also describes how
you can design the LTM-10A Flash Control Module into your
products.

The LTM-10A Platform is included with the NodeBuilder
FX/PL Development Tool.

Describes how to write programs using the Neuron®™ C Version
2.2 language.

Provides reference information for writing programs using the
Neuron C language.

Provides reference information for Neuron tool errors.

Describes how to run the Neuron C example application included
with the NodeBuilder FX/PL Development tool on the
LTM-10A Platform/Gizmo 4 1/O Board.

Describes how to use the NodeBuilder Resource Editor to create
and edit resource file sets and resources such as functional
profile templates, network variable types, and configuration

property types.

For More Information and Technical Support

The NodeBuilder ReadMe file provides descriptions of known problems, if any, and their
workarounds. To view the NodeBuilder ReadMe, click Start, point to Programs, point to
NodeBuilder, and then select NodeBuilder ReadMe First. You can also find additional information
about the NodeBuilder tool at the NodeBuilder Web page at www.echelon.com/nodebuilder.

If you have technical questions that are not answered by this document, the NodeBuilder online help,
or the NodeBuilder ReadMe file, you can contact technical support. To receive technical support from
Echelon, you must purchase support services from Echelon or an Echelon support partner. See
www.echelon.com/support for more information on Echelon support and training services.

You can also enroll in training classes at Echelon or an Echelon training center to learn more about
developing devices. You can find additional information about device development training at

www.echelon.com/training/.

You can obtain technical support via phone, fax, or e-mail from your closest Echelon support center.

The contact information is as follows:

Region Languages Supported Contact Information
The Americas English Echelon Corporation
Japanese Attn. Customer Support
550 Meridian Avenue

San Jose, CA 95126

Phone (toll-free):
1-800-258-4LON (258-4566)
Phone: +1-408-938-5200
Fax: +1-408-790-3801
lonsupport@echelon.com

NodeBuilder FX User's Guide

Xiii

http://www.echelon.com/nodebuilder
http://www.echelon.com/support
http://www.echelon.com/training/
mailto:lonsupport@echelon.com

Region Languages Supported Contact Information

Europe English Echelon Europe Ltd.

German Suite 12

French Building 6

Italian Croxley Green Business Park
Hatters Lane
Watford
Hertfordshire WD18 8YH
United Kingdom

Phone: +44 (0)1923 430200
Fax: +44 (0)1923 430300
lonsupport@echelon.co.uk

Japan Japanese Echelon Japan

Holland Hills Mori Tower, 18F
5-11-2 Toranomon, Minato-ku
Tokyo 105-0001

Japan

Phone: +81-3-5733-3320

Fax: +81-3-5733-3321
lonsupport@echelon.co.jp

China Chinese Echelon Greater China
English Rm. 1007-1008, IBM Tower
Pacific Century Place
2A Gong Ti Bei Lu
Chaoyang District

Beijing 100027, China
Phone: +86-10-6539-3750
Fax: +86-10-6539-3754
lonsupport@echelon.com.cn

Other Regions English Phone: +1-408-938-5200
Japanese Fax: +1-408-328-3801
lonsupport@echelon.com

Xiv Preface

mailto:sales@echelon.co.uk
mailto:lonsupport@echelon.co.jp
mailto:lonsupport@echelon.com.cn
mailto:lonsupport@echelon.com

Introduction

This chapter introduces the NodeBuilder Development Tool. It lists the new features
in the NodeBuilder FX tool, summarizes the components included with the
NodeBuilder tool, and provides an overview of NodeBuilder device development and

LONWORKS networks.

NodeBuilder FX User's Guide

Infroduction to the NodeBuilder Tool

The NodeBuilder FX Development Tool is a complete hardware and software platform for developing,
debugging, testing, and maintaining LONWORKS devices based on the Neuron 5000 Processor and FT
5000 Smart Transceiver and all previous-generation 3100 Series chips. You can use the NodeBuilder
tool all to create many types of devices, including VAV controllers, thermostats, washing machines,
card-access readers, refrigerators, lighting ballasts, blinds, and pumps. You can use these devices in a
variety of systems including building and lighting controls, factory automation, energy management,
and transportation.

You can use the NodeBuilder tool to do the following:

e View standard resource file definitions for standard network variable types (SNVTs), standard
configuration property (SCPTs), and standard functional profile templates (SFPTs).

e Create your own resource files with user-defined network variable types (UNVTs), user-defined
configuration property (UCPTs), and user-defined functional profile templates (UFPTs).

e Automatically generate Neuron C code that implements your device’s interface and provides the
framework for your device application.

e Edit your Neuron C code to implement your device’s functionality.
e Compile, build, and download your application to a development platform or to your own devices.

e Test with prototype I/O hardware on either the FT 5000 EVB Evaluation Boards included with the
NodeBuilder FX/FT tool and available separately, or LTM-10A Platform and Gizmo 4 1/0 Board
included with the NodeBuilder FX/PL tool and available separately, or use your own custom
device to build and test your own I/O hardware.

e Install your device into a LONWORKS network and test how your device interoperates with other
LONWORKS devices.

New Features in the NodeBuilder FX Tool

The NodeBuilder FX tool includes support for Echelon’s new 5000 Series chips (the term used to
collectively refer to the Neuron 5000 Processor and FT 5000 Smart Transceiver), support for
Echelon’s new FT 5000 EVB, and the following key features:

Increased network variable support.

Neuron C Version 2.2 Enhancements
Enhanced Hardware Template Editor
Enhanced Code Wizard Template

Enhanced Neuron C debugger

New LNS Plug-in Framework Developer’s Kit
Microsoft Windows Vista support

The following sections describe these new features.

5000 Series Chip Support

The NodeBuilder FX tool supports Echelon’s new Neuron 5000 Processor and FT 5000 Smart
Transceiver, which are designed for the LONWORKS 2.0 platform. The 5000 Series chips are faster,
smaller, and cheaper that previous-generation chips, as they include the following new features and
functions.

e Backwards compatibility for device applications.
e Improved memory architecture.
e Faster system clock.

2 Introduction

e Improved performance for arithmetic operations.
e User-programmable interrupts.
e Additional I/O model support.

The following sections describe these new features and functions.

Backwards Compatibility for Device Applications

The 5000 Series chips are compatible with device applications written for 3150 and 3120 Neuron
Chips and Smart Transceivers. You can use the NodeBuilder tool to port your old application to a
5000 Series chip. To do this, you open the device’s NodeBuilder project, update the Neuron Chip
model used by the hardware template to the Neuron 5000 processor or FT 5000 Smart Transceiver, and
then re-build the device application. See Editing Hardware Templates in Chapter 5 for more
information on using the Hardware Template Editor.

You can also use the NodeBuilder tool to upgrade your existing device applications to the new Version
3 code templates when porting them to a 5000 Series chip. The version 3 code templates include
improved code size, speed, and compliance with interoperability guidelines. To upgrade existing
device applications to the version 3 templates, see Using Code Wizard Templates in Chapter 6.

Notes:

The Neuron firmware contains the implementation of the ISO/IEC 14908-1 protocol stack, the
application scheduler, and many frequently used functions. The functions included in the Neuron
firmware vary between firmware versions and chip models; therefore, when you rebuild an existing
application for a FT 5000 Smart Transceiver, the application may have a smaller or larger memory
footprint, subject to the application’s use of library functions.

The Neuron C Version 2.2 language includes the following new keywords: interrupt, _ lock,
stretchedtriac, _ slow, _ fast, and _ parity. Some of these keywords use a double underscore
prefix to avoid any naming collisions within existing device applications.

Improved Memory Architecture

The 5000 Series chips have a new memory architecture that speeds up the CPU operation and lowers
development and device costs. The 5000 Series chips have internal on-chip memory that includes 16
KB of ROM to store the Neuron firmware image and 64 KB of RAM (44 KB is available for
application code and data). The 5000 Series chips use external serial memory (EEPROM or flash) to
store your application code, configuration data, and an upgradable Neuron firmware image (the 5000
Series chips have no user-accessible on-chip non-volatile memory). The external serial EEPROM and
flash memory devices communicate with Neuron 5000 Core via a serial peripheral interface bus (SPI)
or Inter-Integrated Circuit (I*C) interface. EEPROM devices can use either the SPI or I°C interfaces;
flash devices must use the SPI interface.

When a device is reset, the application code and configuration data are copied from the external
non-volatile memory into the internal on-chip RAM, and the device application is then executed. The
5000 Series chips require at least 2KB of off-chip EEPROM to store configuration data, and you can
use a larger capacity EEPROM device or an additional flash device (up to 64 KB) to store your
application code and an upgradable Neuron firmware image.

The 5000 Series chips also include a new interrupt processor (ISR) that handles user-programmable
interrupts, which improves chip performance.

Note: Many types of EEPROM devices are supported; however, Echelon currently supports and
provides drivers for three external flash devices: Atmel AT25F512AN, ST M25P05-AVMNG6T, and
SST25VF512A. You can configure the external non-volatile memory used by a device in the
Hardware Template Editor. For more information on using the Hardware Template Editor, see Using
Hardware Templates in Chapter 5.

The following graphic illustrates the memory architecture of the 5000 Series chips. For more
information on the memory architecture of the 5000 Series chips, see the 5000 Series Chip Data Book.

NodeBuilder FX User's Guide 3

12 c 5 Transformer
omm | ,

i VA - s » o
<«— > 110 < > Port < > or
transceiver
6 i
External NVM |, | | > N
Requied | > ry > ISR CPU
Serial EEPROM Interface
(sPlorcy | | 0 i |
Min: 2KB
Max: 64 KB
Optional > APP CPU
Serial Flash (SPI) RAM
Max: 64 KB
64kB [©

<> NET CPU

ROM
16KB [€Je» MAC CPU

Clock and

Reset JTAG

XIN
XOuT
RST~

Faster System Clock

The 5000 Series chips support an internal system clock speed of up to 80 MHz (using an external 10
MHz crystal). This results in application processing power that equals a hypothetical FT 3150 Smart
Transceiver operating at an external clock speed of I60MHz. You can adjust the internal system clock
speed from 5 MHz to 80 MHz based on the device’s hardware template maintained by the
NodeBuilder Development Tool. For more information on configuring the system clock of the 5000
Series chips, see Editing Hardware Templates in Chapter 5.

Improved Performance for Arithmetic Operations

The 5000 Series chips include 8-bit hardware multipliers and dividers, which are supported by new
Neuron assembly language instructions for multiplication and division. These instructions use
hardware multiply and divide functions to provide improved performance for 8-bit multiplication and
division. The older software multiplication and division system functions are still supported, but many
of these functions automatically benefit from these faster hardware multipliers and dividers.

User-Programmable Interrupts

The 5000 Series chips let you define user interrupts that can handle asynchronous I/O events,
timer/counter events, and a dedicated, high-resolution system timer. A hardware semaphore is
supplied to help you control access to data that is shared between the application (APP) and interrupt
(ISR) processors on the 5000 Series chips.

At higher system clock rates (20 MHz or greater), these interrupts can run in the dedicated interrupt
processor (ISR) on the chip. This improves the performance of the interrupt routines and your device
application. At lower system clock rates, these interrupts run in the same application processor (APP)
as the device application.

Introduction

Additional I/O Model Support

The 5000 Series chips include hardware support for the Serial Peripheral Interface (SPI) and Serial
Communication Interface (SCI) serial I/O models, which provide increased performance for devices
that use these interfaces. The UART on the 5000 Series chips includes an increased FIFO (16 bytes),
and supports software-configurable parity generation and validation (odd, even, none).

Overall, the 5000 Series chips support 35 I/O models, including all of the I/O models that were
previously only supported by the PL 3120, PL 3150, and PL 3170 Smart Transceivers. These I/O
models include the Infrared Pattern model, Magcard Bitstream model, SCI model, and SPI model.

In addition, the 5000 Series chips support the Stretched Triac model, which is a new I/O model that
improves performance for triac devices used with inductive loads.

FT 5000 EVB Evaluation Board

The FT 5000 EVB is a complete 5000 Series LONWORKS device that you can use to evaluate the
LONWORKS 2.0 platform and create LONWORKS devices. The FT 5000 EVB includes a FT 5000
Smart Transceiver with an external 10 MHz crystal (you can adjust the system’s internal clock speed
from SMHz to 80MHz), an FT-X3 communication transformer, 64KB external serial EEPROM and
flash memory devices, and a 3.3V power source. The FT 5000 EVB features a compact design that
includes the following I/O devices that you can use to develop prototype and production devices and
test the FT 5000 EVB example applications:

4 x 20 character LCD

4-way joystick with center push button
2 push-button inputs

2 LED outputs

Light-level sensor

Temperature sensor

The FT 5000 EVB Evaluation Board also includes EIA-232/TIA-232 (formerly RS-232) and USB
interfaces that you can use to connect the board to your development computer and perform
application-level debugging. You can also use the EIA-232 interface for development with the
ShortStack® Developer’s Kit. Note that only one interface can be used at a time.

Note: You cannot run ShortStack 2.1 Micro Servers on the FT 5000 EVB.

Each FT 5000 EVB also features a flash in-circuit emulator (ICE) header that supports the SPI and I°C
interfaces for fast downloads when programming the external non-volatile memory of the FT 5000
Smart Transceiver on the board.

For more information on the FT 5000 EVB hardware, including detailed descriptions of its Neuron
core, I/O devices, service pin and reset buttons and LEDs, and jumper settings, see the F'7' 50000 EVB
Hardware Guide.

Increased Network Variable Support

Neuron chips that use version 16 firmware or greater can support up to 254 static network variables
and 127 network variable aliases for Neuron-hosted devices, subject to available system resources (for
example, RAM and EEPROM) and application requirements. The 5000 Series chips use the new
version 18 Neuron firmware and therefore support these increased network variable limits, subject to
resources.

You must build the device application with the NodeBuilder FX tool to take advantage of these
increased network variable limits. If you use a previous release of the NodeBuilder tool, your device
application is limited to 62 network variables.

NodeBuilder FX User's Guide 5

Neuron C Version 2.2 Enhancements

The new features in the Neuron C Version 2.2 programming language include interrupt support,
non-constant device-specific configuration properties, and new and enhanced compiler directives.
These new features are detailed in the Neuron C Programmer’s Guide and Neuron C Reference Guide.

Interrupt Support

The 5000 Series chips support hardware user interrupts in addition to the support provided through I/O
models. The Neuron C Version 2.2 language includes new keywords to manage hardware user
interrupts and a semaphore for application programs. The 5000 Series chips support the following
three types of interrupts: I/O interrupts, timer/counter driven interrupts, and periodic system interrupts.

When the 5000 Series chips are running at a system clock rate of 20 MHz or greater, these interrupts
execute in the separate interrupt processor on the chips, which improves the performance of the
interrupt and the device application.

Non-Constant Device-Specific Configuration Property Support

The Neuron C Version 2.2 language supports non-constant device-specific configuration properties.
Non-constant device-specific configuration properties have values that can be modified by the device
application, an LNS network tool such as the LonMaker tool, or another tool not based on LNS. For
example, a thermostat may include a user interface that allows the user to change the setpoint.

New and Enhanced Compiler Directives

The Neuron C Version 2.2 language includes new compiler directives and existing compiler directives
that have been enhanced to help you develop location-independent and modular code.

You can enable and disable specific errors and warnings using the new #error and #warning compiler
directives. You can use the new #pragma library directive to indicate custom library that is required.
You can use enhanced buffer control directives for statements of minimum or final requirements.

Compiler directives for control of the Neuron C Optimizer have been streamlined, and a new
optimization phase for generating more compact code has been added.

Enhanced Hardware Template Editor

The Hardware Template Editor in the NodeBuilder tool now supports hardware templates based on the
Neuron 5000 Processor or the FT 5000 Smart Transceiver, and is now available as a standalone tool.

For 5000 Series chips, you use the Hardware Template Editor to map external non-volatile memory
from 0x4000 to OXE7FF in the Neuron address space (a maximum of 42 KB). The 5000 Series chips
support external serial EEPROM or serial flash devices for off-chip non-volatile memory. Echelon
currently supports and provides drivers for three flash devices (Atmel AT25F512AN, ST
M25P05-AVMNG6T, and SST25VF512A).

For more information on using the Hardware Template Editor, see Using Hardware Templates in
Chapter 5.

Enhanced Code Wizard Framework Template

The new Code Wizard Framework Version 3 Template supports large functional block and network
variable counts and includes fixes and improvements to code, code layout, and comments. New device
applications are automatically built using the Version 3 templates, and you can manually upgrade
existing applications to this version. The Code Wizard also supports continued maintenance of
applications based on Version 2 templates. For more information on upgrading existing device
applications to the new Code Wizard framework template, see Using Code Wizard Templates in
Chapter 6.

6 Introduction

Neuron C Debugger

The NodeBuilder debugger provides an option to write all breakpoints to RAM and not have them
copied to the external non-volatile memory. This option lets you set breakpoints and single step
through the memory of a 5000 Series Chip, without causing excessive writes to the external
non-volatile memory that could cause the memory to fail. For more information on using breakpoints
while debugging, see Setting and Using Breakpoints in Chapter 10.

LNS Plug-in Framework Developer’s Kit

You can use the new LNS Plug-in Framework Developer’s Kit to write LNS device plug-ins in NET
programming languages such as C# and Visual Basic .NET. The LNS Plug-in Framework Developer’s
Kit allows plug-ins to function in the .NET environment and interface with director applications. It
includes the .NET components needed for interfacing with the COM-based LNS API in the .NET
environment. It provides a set of example software and framework assemblies that let you efficiently
develop plug-ins with the latest .NET programming tools and re-distribute your plug-ins.

The LNS Plug-in Framework Developer’s Kit is automatically installed on your computer when you
install the NodeBuilder FX Development Tool CD. For more information on writing LNS device
plug-ins and the LNS Plug-in API, see the LNS Plug-in Programmer’s Guide.

Note: The LNS Plug-in Wizard, which generated code for Microsoft Visual Basic 6.0, has been
removed from the NodeBuilder tool and is no longer supported. You can still download the LNS
Plug-in Wizard from the Echelon Web site at www.echelon.comdownloads.

Microsoft Windows Vista Support

The NodeBuilder FX Development Tool and the NodeBuilder online help files are compatible with
Microsoft Windows Vista.

What's Included with the NodeBuilder FX Tool

There are four NodeBuilder FX products: the NodeBuilder FX/FT Development Tool, the NodeBuilder
FX/PL Development Tool, the NodeBuilder FX/FT Classroom Edition, and the NodeBuilder FX CD.
The NodeBuilder FX/FT Classroom Edition is for educational-use only. The NodeBuilder FX CD is
for developers who do not require development hardware such as NodeBuilder 3.1 users or Mini FX
users who want to upgrade from an evaluation kit to a development kit (the NodeBuilder FX/FT Tool
and Mini FX/FT Kit both include FT 5000 EVBs). The four NodeBuilder FX products consist of the
following components:

FX/FT and Classroom

Component FX/PL Tools Edition CD
NodeBuilder Development Tool CD V] | V1
Development Platforms* V1 M O
LonMaker Integration Tool V1 O V1
Professional Edition CD (includes
Microsoft Visio 2003 Professional)
LonMaker Integration Tool Standard] ™ O
Edition CD (includes Microsoft Visio
2003 Standard)
LonScanner Protocol Analyzer LNS V1 ™ V1

NodeBuilder FX User's Guide 7

http://www.echelon.comdownloads/

Turbo Edition CD

U10/U20 USB Network Interface V] | O

* The NodeBuilder FX/FT Development Tool and NodeBuilder FX/FT Classroom Edition include two FT 5000 EVBs. The
NodeBuilder FX/PL Tool includes one LTM-10A Hardware Platform and one NodeBuilder Gizmo 4 I/0O Board (for
development of PL devices).

The following sections describe each of the components.

NodeBuilder FX Development Tool CD

The NodeBuilder Development Tool CD contains the software required to develop and debug Neuron
C applications for your LONWORKS devices, and it includes Neuron C example applications that you
can run on your development platform and use to further learn how to develop your own device
applications.

The NodeBuilder software includes the following components:

e NodeBuilder Resource Editor. View standard types and functional profiles, and create
user-defined types and profiles if the standard resource files do not include the resources you need.

e NodeBuilder Code Wizard. Use a drag-and-drop interface to create your device’s interface and
then automatically generate Neuron C source code that implements the device interface and
creates the framework for your device application.

e NodeBuilder Editor. Edit the Neuron C source code generated by the Code Wizard to create your
device’s application.

e NodeBuilder Debugger. Debug your application with a source-level view of your application code
as it executes.

e NodeBuilder Project Manager. Build and download your application image to your development
platform or to your own device hardware.

The NodeBuilder FX/FT Development tool and NodeBuilder FX/FT Classroom Edition include three
Neuron C example applications that you can run on your FT 5000 EVB, and the NodeBuilder FX/PL
Development tool includes one Neuron C example application that you can run on your LTM-10A
platform with Gizmo 4 I/O board. You can use these examples to test the I/O devices on the FT 5000
EVB or Gizmo 4 /O board, and create simple LONWORKS networks. You can view the Neuron C
code used in the example applications, and then create a new device application by modifying the
existing example applications or by developing the device application from scratch.

For more information on using the FT 5000 EVB example applications, see the 7' 5000 EVB
Examples Guide. For more information on using the LTM-10A Platform—Gizmo 4 1/O Board example
application, see the NodeBuilder FX/PL Examples Guide.

Development Platforms

The NodeBuilder FX/FT Development Tool includes two FT 5000 EVBs. The NodeBuilder FX/PL
Development Tool includes the LTM-10A Hardware Platform, a PLM-22 power line transceiver,
power line couplers for line-to-earth coupling and line-to-neutral coupling, and the NodeBuilder
Gizmo 4 I/O Board. The following sections describe these development platforms.

FT 5000 EVB Evaluation Board

The FT 5000 EVB is a complete 5000 Series LONWORKS device that you can use to evaluate the
LONWORKS 2.0 platform and create LONWORKS devices. The FT 5000 EVB includes an FT 5000
Smart Transceiver with an external 10 MHz crystal (you can adjust the system’s internal clock speed
from SMHz to 80MHz), an FT-X3 communication transformer, 64KB external serial EEPROM and
flash memory devices, and a 3.3V power source. The FT 5000 EVB features a compact design that

8 Introduction

includes the following I/O devices that you can use to develop prototype and production devices and
test the FT 5000 EVB example applications:

4 x 20 character LCD

4-way joystick with center push button
2 push-button inputs

2 LED outputs

Light-level sensor

Temperature sensor

The FT 5000 EVB Evaluation Board also includes an EIA-232/T1A-232 (formerly RS-232) and USB
interfaces that you can use to connect the board to your development computer and perform
application-level debugging. You can also use the RS-232 interface for development with the
ShortStack® Developer’s Kit. Note that only one interface can be used at a time.

Note: You cannot run ShortStack 2.1 Micro Servers on the FT 5000 EVB.

Each FT 5000 EVB also features a flash ICE header that supports the SPI and I°C interfaces for fast
downloads when programming the external non-volatile memory of the FT 5000 Smart Transceiver on
the board.

For more information on the FT 5000 EVB hardware, including detailed descriptions of its Neuron
core, I/0 devices, service pin and reset buttons and LEDs, and jumper settings, see the F'7 50000 EVB
Hardware Guide.

LTM-10A Platform and NodeBuilder Gizmo 4 /O Board

The NodeBuilder FX/PL Development Tool includes the LTM-10A Hardware Platform (right) and the
NodeBuilder Gizmo 4 1/0 Board (left).

NodeBuilder FX User's Guide 9

10

LTM-10A Platform

The LTM-10A Platform is a complete LONWORKS device with downloadable flash memory and RAM
that you can use for testing your applications and I/O hardware prototypes.

The LTM-10A Platform includes an LTM-10A Flash Control Module (herein referred to as the
LTM-10A module) that you can design into your prototypes and products. The LTM-10A module
includes a Neuron Chip, 64 KB flash memory, 32 KB static RAM, 10 MHz crystal oscillator, and
custom Neuron firmware. The custom firmware allocates the memory to the Neuron Chip 64 KB
address space and automatically initializes the transceiver interface for standard transceivers. The
NodeBuilder tool can load your application image into the RAM or flash memory of the LTM-10A
module. An application image loaded into the flash memory is preserved when the module is powered
down. An application image loaded into the RAM is preserved when the module is reset, but not when
it is powered down. You can use the Neuron C Debugger to debug applications running in the RAM
or flash memory; however, you should debug your application running in RAM because extensive
debugging in the flash memory can cause the flash memory to fail.

The LTM-10A Platform also includes a PLM-22 power line transceiver with external power line
coupler for attaching the platform to a LONWORKS network. Two power line couplers are included,
one for line-to-earth coupling and one for line-to-neutral coupling.

For more information on the LTM-10A Platform and Flash Control Module, see the LTM-10A4 User’s
Guide.

NodeBuilder Gizmo 4 1/0 Board

The NodeBuilder Gizmo 4 1/0 Board is a collection of I/O devices that you can use with the LTM-10A
Platform for developing prototype devices and 1/O circuits, developing special-purpose devices for
testing, or running the NodeBuilder examples. The Gizmo 4 includes the following 1/O devices:

4 x 20 character LCD display

2 10-bit resolution analog inputs with screw terminal connector

2 8-bit resolution analog outputs with screw terminal connector

2 digital inputs with screw terminal connector and pushbutton inputs
2 digital outputs with screw terminal connector and LED outputs
Digital shaft encoder

Piezoelectric transducer

Real-time clock

Temperature sensor

Introduction

A Gizmo 4 1/0O library is included with the NodeBuilder software that provides easy-to-use high-level
functions for accessing the display, analog I/O, piezo transducer, real-time clock, and temperature
sensor. For a description of the I/O devices on the Gizmo 4 board and a description of the Gizmo 4 I/O
library, see the Gizmo 4 User’s Guide.

LonMaker Integration Tool CD

The LonMaker tool is an integral part of your NodeBuilder development kit that you can use to install,
connect, configure, test, and update the devices in your project. It is a software package for designing,
installing, and maintaining LONWORKS control networks. Based on Echelon’s LNS network operating
system, the LonMaker tool combines a powerful, client-server architecture with an easy-to-use Visio
user interface. The LonMaker tool is compatible with a number of LNS plug-ins, including the
NodeBuilder Project Manager.

The LonMaker tool can be used to manage all phases of a network’s life cycle, from the initial design
and commissioning to the ongoing operation, because it provides the functionality of several network
tools in one single solution:

e Network Design Tool. You can design a network onsite or offsite (either connected to the network
over the Internet or not connected to it all), and then modify it anytime. The LonMaker tool can
also learn an existing network’s design through a process called network recovery.

e Network Installation Tool. You can rapidly install a network designed offsite once it is brought
onsite. The device definitions can be quickly and easily associated with their corresponding
physical devices to reduce on-site commissioning time. The LonMaker Browser provides
complete access to all network variables and configuration properties.

e Network Documentation Tool. You can create a LonMaker drawing during the network design
and installation process. This LonMaker drawing is an accurate, logical representation of the
installed physical network. The LonMaker drawing is therefore an essential component of as-built
reports.

e Network Operation Tool. You can operate the network using the operator interface pages
contained within the LonMaker drawing.

o Network Maintenance Tool. You can easily add, test, remove, modify, or replace devices, routers,
channels, subsystems, and connections to maintain the network.

This guide describes many of the LonMaker functions that you will use with the NodeBuilder tool.

See the LonMaker User’s Guide for more information on the LonMaker tool and to learn how it can be
used to install, operate, and maintain your operational networks in addition to your development
networks.

LonScanner Protocol Analyzer CD

The LonScanner Protocol Analyzer is a software package that provides network diagnostic tools to
observe, analyze, and diagnose the behavior of installed LONWORKS networks, including network with
devices that you have built with the NodeBuilder tool. You can use the LonScanner tool with the U10
or U20 USB network interface included with the NodeBuilder FX/FT and FX/PL Tools, and you also
use it with other network interfaces including an IP-852 (ISO/IEC 14908-4) interface as described in
the LonScanner Protocol Analyzer User’s Guide. For more information on the LonScanner tool, see
the LonScanner Protocol Analyzer User’s Guide.

U10/U20 USB Network Interface

The NodeBuilder FX/FT Development Tool and NodeBuilder FX/PL Development Tool include U10
and U20 USB network interfaces, respectively. The U10 and U20 USB Network Interfaces are
low-cost, high-performance LONWORKS interfaces for USB-enabled computers and controllers.

NodeBuilder FX User's Guide 11

The U10 USB Network Interface connects directly to TP/FT-10 Free Topology Twisted Pair (ISO/IEC
14908-2) LONWORKS channels through a high-quality removable connector. The U20 USB Network
Interface connects to PL-20 C-Band Power Line (ISO/IEC 14908-3) LONWORKS channels through an
included power supply with integrated coupler. The U20 USB Network Interface can also be
connected directly to 10.8-18VDC power systems (such as those in automobiles, trucks and buses)
without a coupling circuit, or to virtually any powered line through a customer-supplied coupler/power
supply.

The drivers for U10 and U20 USB network interfaces are automatically installed on your computer
when you install the LonMaker Integration Tool CD.

The USB Network Interfaces can be used with virtually any computer-based LONWORKS application,
including all LNS and OpenLDV " based applications such as the NodeBuilder Development tool,
LonMaker tool, and LonScanner Protocol Analyzer.

For more information on installing and using the U10 and U20 USB network interfaces, see the
LonWorks USB Network Interface User’s Guide.

Infroduction to NodeBuilder Device Development and
LONWORKS Networks

A LONWORKS network consists of intelligent devices (such as sensors, actuators, and controllers) that
communicate with each other using a common profocol over one or more communications channels.
Network devices are sometimes called nodes.

Devices may be Neuron hosted or host-based. Neuron hosted devices run a compiled Neuron C
application on a Neuron Chip or Smart Transceiver. You can use the NodeBuilder tool to develop,
test, and debug Neuron C applications for Neuron hosted devices.

Host-based devices run applications on a processor other than a Neuron Chip or Smart Transceiver.
Host-based devices may run applications written in any language available to the processor. A
host-based device may use a Neuron Chip or Smart Transceiver as a communications processor, or it
may handle both application processing and communications processing on the host processor. The
NodeBuilder tool supports some of the common tasks occurring in the creation of host-based devices;
however, an additional host-based device development tool, such as the ShortStack® 2.1 Developer’s
Kit or the FTXL"™ Developer’s Kit, is required.

Each device includes one or more processors that implement the ISO/IEC 14908-1 Control Network
Protocol (CNP). Each device also includes a component called a transceiver to provide its interface to
the communications channel.

A device publishes and consumes information as instructed by the application that it is running. The
applications on different devices are not synchronized, and it is possible that multiple devices may all
try to talk at the same time. Meaningful transfer of information between devices on a network,
therefore, requires organization in the form of a set of rules and procedures. These rules and
procedures are the communication protocol, which may be referred to simply as the protocol. The
protocol defines the format of the messages being transmitted between devices and defines the actions
expected when one device sends a message to another. The protocol normally takes the form of
embedded software or firmware code in each device on the network. The CNP is an open protocol
defined by the ISO/IEC 14908-1 standard (defined nationally in the United States, Europe, and China
by the ANSI/EIA 709.1, EN 14908, and GB/Z 20177 standards, respectively).

Channels

12

A channel is the physical media between devices upon which the devices communicate. The LonTalk
protocol is media independent; therefore, numerous types of media can be used for channels: twisted
pair, power line, fiber optics, IP, and radio frequency (RF) to name a few. Channels are categorized
into channel types, and the channel types are characterized by the device transceiver. Common

Introduction

channel types include TP/FT-10 (ISO/IEC 14908-2 twisted pair free topology channel), TP/XF-1250
(high-speed twisted pair channel), PL-20 (ISO/IEC 14908-3 power line channel), FO-20
(ANSI/CEA-709.4 fiber optics channel), and IP-852 (ISO/IEC 14908-4 IP-communication).

Different transceivers may be able to interoperate on the same channel; therefore, each transceiver type
specifies the channel type or types that it supports. The choice of channel type affects transmission
speed and distance as well as the network topology.

The NodeBuilder tool, LonMaker tool, and LonScanner tool, and Neuron chips support all standard
channel types, but not all Neuron chips support all transceiver and channel types. Smart Transceivers
combine the transceiver and Neuron chip core in the same chip, and therefore support the channel
types supported by the integrated transceiver.

Routers

Multiple channels can be connected using routers. Routers are used to manage network message
traffic, extend the physical size of a channel (both length and number of devices attached), and connect
channels that use different media (channel types) together. Unlike other devices, routers are always
attached to at least two channels.

The NodeBuilder tool does not require routers, but the LonMaker tool can be used to create complex
networks that include multiple routers. Typically, device development networks use a simple
topology, but you can create a complex network when creating a device application with the
NodeBuilder tool.

Applications

Every LONWORKS device contains an application that defines the device’s behavior. The application
defines the inputs and outputs of the device. The inputs to a device can include information sent on
LONWORKS channels from other devices, as well as information from the device hardware (for
example, the temperature from a temperature sensing device). The outputs from a device can include
information sent on LONWORKS channels to other devices, as well as commands sent to the device
hardware (for example, a fan, light, heater, or actuator). You can use the NodeBuilder tool to write a
device’s Neuron C application.

Program IDs

Every LONWORKS application has a unique, 16 digit, hexadecimal Standard Program ID with the
format FM:MM:MM:CC:CC:UU:TT:NN. This Program ID is broken down into the following
fields:

Field Description

Format (F) A 1 hex-digit value defining the structure of the program ID. The upper
bit of the format defines the program ID as a standard program ID (SPID)
or a text program ID. The upper bit is set for standard program IDs, so
formats 8—15 (0x8—0xF) are reserved for standard program IDs.

e Program ID format 8 is reserved for LONMARK certified devices.

e Program ID format 9 is used for devices that will not be LONMARK
certified, or for devices that will be certified but are still in
development or have not yet completed the certification process.

e Program ID formats 10-15 (0xA—0xF) are reserved for future use.
Text program ID formats are used by network interfaces and legacy
devices and, with the exception of network interfaces, should not be
used for new devices.

The NodeBuilder tool can be used to create applications with program ID

NodeBuilder FX User's Guide 13

Field

Manufacturer ID (M)

Device Class (C)

Usage (U)

Channel Type (T)

Model Number (N)

Description

format 8 or 9.

A 5 hex-digit ID that is unique to each LONWORKS device manufacturer.
The upper bit identifies the manufacturer ID as a standard manufacturer
ID (upper bit clear) or a temporary manufacturer ID (upper bit set).

e Standard manufacturer IDs are assigned to manufacturers when they
join LONMARK International, and are also published by LONMARK
International so that the device manufacturer of a LONMARK certified
device is easily identified. Standard manufacturer IDs are never
reused or reassigned. If your company is a LONMARK member, but
you do not know your manufacturer ID, you can find your ID in the
list of manufacturer IDs at www.lonmark.org/spid. The most current
list at the time of release of the NodeBuilder tool is also included with
the NodeBuilder software.

e Temporary manufacturer IDs are available at no charge to anyone on
request by filling out a simple form at www.lonmark.org/mid.

A 4 hex-digit value identifying the primary function of the device. This
value is drawn from a registry of pre-defined device class definitions. If
an appropriate device class designation is not available, LONMARK
International Secretary will assign one, upon request.

A 2 hex-digit value identifying the intended usage of the device. The
upper bit specifies whether the device has a changeable interface. The
next bit specifies whether the remainder of the usage field specifies a
standard usage or a functional-profile specific usage. The standard usage
values are drawn from a registry of pre-defined usage definitions. If an
appropriate usage designation is not available one will be assigned upon
request. If the second bit is set, a custom set of usage values is specified
by the primary functional profile for the device.

A 2 hex-digit value identifying the channel type supported by the device’s
LONWORKS transceiver. The standard channel-type values are drawn
from a registry of pre-defined channel-type definitions. A custom
channel-type is available for channel types not listed in the standard
registry.

A 2 hex-digit value identifying the specific product model. Model
numbers are assigned by the product manufacturer and must be unique
within the device class, usage, and channel type for the manufacturer. The
same hardware may be used for multiple model numbers depending on the
program that is loaded into the hardware. The model number within the
program ID does not have to conform to your published model number.

See the LonMark Application Layer Interoperability Guidelines for more
information about program IDs.

Network Variables

Applications exchange information with other LONWORKS devices using network variables. Every
network variable has a direction, type, and length. The network variable direction can be either input
or output, depending on whether the network variable is used to receive or send data. The network
variable type determines the format of the data.

14

Introduction

http://www.lonmark.org/spid
http://www.lonmark.org/mid
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

Network variables of identical type and length but opposite directions can be connected to allow the
devices to share information. For example, an application on a lighting device could have an input
network variable that was of the switch type, while an application on a dimmer-switch device could
have an output network variable of the same type. A network management tool such as the LonMaker
Integration Tool could be used to connect these two devices, allowing the switch to control the lighting
device, as shown in the following figure:

Switch

A single network variable may be connected to multiple network variables of the same type but
opposite direction. The following example shows the same switch being used to control three lights:

:

Switch

Light 3

The application program in a device does not need to know where input network variable values come
from or where output network variable values go. When the application program has a changed value
for an output network variable, it simply assigns the new value to the output network variable.

Through a process called binding that takes place during network design and installation, the device is
configured to know the logical address of the other device or group of devices in the network
expecting that network variable’s values. The device’s embedded firmware assembles and sends the
appropriate packet(s) to these destinations. Similarly, when the device receives an updated value for
an input network variable required by its application program, its firmware passes the data to the
application program. The binding process thus creates logical connections between an output network
variable in one device and an input network variable in another device or group of devices.

Connections may be thought of as virtual wires. For example, the dimmer-switch device in the
dimmer-switch-light example could be replaced with an occupancy sensor, without making any
changes to the lighting device.

The NodeBuilder Code Wizard automatically generates the required network variable declarations for
your device’s interface in your device’s Neuron C application. Typically, you don’t need implement
any code in the device application to handle the binding process, or the source or destination devices

NodeBuilder FX User's Guide 15

for network variable values. Neuron C provides an easy-to-use programming model familiar to any C
language programmer that encapsulates the complexity of distributed applications.

Configuration Properties

LONWORKS applications may also contain configuration properties. Configuration properties allow
the device’s behavior to be customized using a network management tool such as the LonMaker tool or
a customized plug-in created for the device (see the LNS Plug-in Programmer’s Guide for more
information on creating LNS device plug-ins).

For example, an application may allow an arithmetic function (add, subtract, multiply, or divide) to be
performed on two values received from two network variables. The function to be performed could be
determined by a configuration property. Another example of a configuration property is a heartbeat
that determines how often a device transmits network variable updates over the network.

Like network variables, configuration properties have types that determine the type and format of the
data they contain.

The NodeBuilder Code Wizard automatically generates the required configuration property
declarations for your device’s interface and most of the required infrastructure code in your device’s
Neuron C application. The NodeBuilder tool supports configuration properties with an easy-to-use
programming model in Neuron C.

Functional Blocks

Applications in devices are divided into one or more functional blocks. A functional block is a
collection of network variables and configuration properties, which are used together to perform one
task. These network variables and configuration properties are called the functional block members.
For example, a digital input device could have four digital input functional blocks that contain the
configuration properties and output network variable members for each of the four hardware digital
inputs on the device.

The NodeBuilder Code Wizard automatically generates the required functional block declarations for
your device’s interface in your device’s Neuron C application.

A functional block is an implementation of a functional profile.

Functional Profiles

A functional profile defines mandatory and optional network variable and configuration property
members for a type of functional block. For example, the standard functional profile for a light
actuator has mandatory SNVT _switch input and output network variables, optional

SNVT elapsed_tm and SNVT elec_kwh output network variables, and a number of optional
configuration properties. The following diagram illustrates the components of the standard light
actuator functional profile:

16 Introduction

Lamp Actuator
SFPTLampActuator

Mandatory network variables
> v nviLampValue > > nv2 | nvoLampValueFb >
SNVT_switch SNVT _switch
Optional network variables
nvoRunHours
> e SNVT elapsed_tm >
nvoEnergyCnt >
> V4| SNVT elec_kwh

Configuration properties

Mandatory Optional

SCPT _location SCPTrunHrlnit
SCPTinFbDly SCPTrunHrAlarm
SCPT_def_output SCPTenrgyCntlnit

R _4

When a functional block is created from a functional profile, the application designer can determine
which of the optional configuration properties and network variables to implement.

Hardware Templates

A hardware template is a file with a .NbHwt extension that defines the hardware configuration for a
device. It specifies hardware attributes that include the transceiver type, Neuron Chip or Smart
Transceiver model, clock speed, system image, and memory configuration. Several hardware
templates are included with the NodeBuilder tool. You can use these or create your own. Third-party
development platform suppliers may also include hardware templates for their platforms.

Neuron C

Neuron C is a programming language, based on ANSI C, used to develop applications for devices that
use a Neuron Chip or Smart Transceiver as the application processor. Neuron C includes extensions
for network communication, device configuration, hardware 1/0O, and event-driven scheduling.

Device Templates

A device template defines a device type. The NodeBuilder tool uses two types of device templates.
The first is a NodeBuilder device template. The NodeBuilder device template is a file with a .NbDt
extension that specifies the information required for the NodeBuilder tool to build the application for a
device. It contains a list of the application Neuron C source files, device-related preferences, and the
hardware template name. When the application is built, the NodeBuilder tool automatically produces
an LNS device template and passes it to the LonMaker tool and other network tools. The LNS device
template defines the external device interface, and it is used by the LonMaker tool and other network
tools to configure and bind the device.

Device Interface Files

A device interface file (also known as an XIF file or an external interface file) is a file that specifies the
interface of a device. It includes a list of all the functional blocks, network variables, configuration
properties, and configuration property default values defined by the device’s application. LNS tools
such as the LonMaker tool use device interface files to create an LNS device template. This enables
the network tool to be used to create network designs without being connected to the physical devices,
and it speeds up some configuration steps when the network tool is connected to the physical device.

NodeBuilder FX User's Guide 17

A text device interface file with a .XIF extension is required by the LonMark Application Layer
Interoperability Guidelines. A text device interface file is automatically produced by the NodeBuilder
tool when you build an application. The NodeBuilder tool also automatically creates binary (.XFB
extension) and optimized-binary (.XFO extension) versions of the device interface file that speed the
import process for LNS tools such as the LonMaker tool.

Resource Files

Resource files define network variable types, configuration property types, and functional profiles.
Resource files for standard types and profiles are distributed by LONMARK International. The standard
resource files define standard network variable types (SNVTs), standard configuration property types
(SCPTs), and standard functional profiles. For example, SCPT location is a standard configuration
property type for configuration properties containing the device location as a text string, and

SNVT temp fis a network variable type for network variables containing temperature as a
floating-point number. The standard network variable and configuration property types are defined at
types.lonmark.org.

As new SNVTs and SCPTs are defined, updated resource files and documentation are posted to the
LONMARK Web site. Standard functional profiles are included with the NodeBuilder tool, and their
documentation is also available on the LONMARK Web site. To view and download the latest resource
files and documentation, go to the LONMARK Web site at www.lonmark.org.

Device manufacturers may also create user resource files that contain manufacturer-defined types and
profiles called user network variable types (UNVTs), user configuration property types (UCPTs), and
user functional profiles (UFPTs).

You can create applications that only use the standard types and profiles. In this case, you do not need
to create user-defined resource files. If you need to define any new user types or profiles, you will use
the NodeBuilder Resource Editor to create them.

Targets

18

A target is a LONWORKS device whose application is built by the NodeBuilder tool. There are two
types of targets, development targets and release targets. Development targets are used during
development; release targets are used when development is complete and the device will be released to
production. Each NodeBuilder device template specifies the definition for a development target and a
release target. Both target definitions use the same source code, program ID, interface, and resource
files, but can use different hardware templates and compiler, linker, and exporter options. The source
code may include code that is conditionally compiled based on the type of target.

Introduction

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/

2

Installing the NodeBuilder FX
Development Tool

This chapter describes how to get started with your NodeBuilder tool, including how
to install the NodeBuilder software and connect the NodeBuilder hardware.

NodeBuilder FX User's Guide 19

Installing the NodeBuilder FX Development Tool

To install your NodeBuilder FX Development Tool, follow these steps:

20

1.

Verify that you have a manufacturer ID. A manufacturer ID is required for many NodeBuilder
tool functions.

Standard manufacturer IDs are assigned to manufacturers when they join LONMARK International,
and are also published by LONMARK International so that the device manufacturer of a LONMARK
certified device is easily identified. If your company is a LONMARK member, but you do not
know your manufacturer ID, you can go to www.lonmark.org/spid and find your ID in the list of
manufacturer IDs. The most current list at the time of release of the NodeBuilder tool is also
included with the NodeBuilder software.

If you do not have a manufacturer ID, you can instantly get a temporary manufacturer ID by filling
out a simple form at Attp.//www.lonmark.org/mid.

If you have Mini EVK 1.0 installed on your computer, remove it before installing the NodeBuilder
FX software.

Register your NodeBuilder FX tool. This entitles you to a free replacement CD or serial number if
you lose either one in the future. To register your NodeBuilder FX tool, go to
www.echelon.com/register, select the NodeBuilder product, enter the serial number from the back
of your NodeBuilder FX Tool CD case, enter the other information requested by the form, and
then click Register Now.

*%% SPECIAL OFFER *** Echelon will send you free printed versions of the Neuron C
Programmer’s Guide and the Neuron C Reference Guide if you register your software within
30 days of purchase.

Insert the LonMaker Integration Tool CD into your computer, install the LonMaker software,
and then activate the LonMaker tool as described in Chapter 2 of the LonMaker User’s Guide.
The LonMaker tool must be installed on your computer in order to install the NodeBuilder
software.

Installing the LonMaker tool automatically installs the drivers for the U10/U20 USB network
interface (included with the NodeBuilder FX Development Tool); PCC-10 PC Card Network
Interface; PCLTA-20 and 21 Cards; the ;. LON SmartServer, i. LON 100 Internet Server, and
i.LON 10 Ethernet Adapter remote network interfaces; and the i. LON 600 LONWORKS-IP Server.

If you are using an SLTA-10 Serial LonTalk Adapter as the network interface, select the check
box for installing the SLTA-10 driver in the LonMaker installer as described in the LonMaker
User’s Guide.

Insert the LonScanner Protocol Analyzer CD into your computer, install the LonScanner
software, and then activate the LonScanner software as described in the LonScanner Protocol
Analyzer User’s Guide.

Note: You must install the LonScanner software before installing the NodeBuilder FX software;
otherwise, the NodeBuilder FX tool may fail.

Insert the NodeBuilder FX Development Tool CD into your computer and install the
NodeBuilder software as described in the next section, Installing the NodeBuilder Sofiware. You
must install Microsoft NET Framework 3.5 SP1, the NodeBuilder FX tool, and LNS
Server/Turbo Edition SP5, in that order, to run the NodeBuilder tool. Optionally, you can install
Adobe Reader 9.1, and you can install the provided FTDI USB driver if you plan on using the
USB port on the NodeBuilder FX/FT hardware (FT 5000 EVB) for debugging.

Note: The NodeBuilder software automatically installs the following programs on your computer:
NodeBuilder Resource Editor 4.0, LONMARK Resource Files 13.00, LNS Plug-in Framework 1.10,
and ISI Developer’s Kit 3.02.

Installing the NodeBuilder Development Kit

http://www.lonmark.org/spid
http://www.lonmark.org/mid
http://www.echelon.com/register

Connect the NodeBuilder hardware as described in Connecting the NodeBuilder Hardware later in
this chapter.

If you do not have the LonMaker FX tool, which is scheduled to be released in 2010, or you are
developing 3100 Series devices, order 500 LonMaker development credits as described in Chapter
10 of the LonMaker User’s Guide. You do not need to order LonMaker credits if you have the
LonMaker FX tool and you are developing 5000 Series devices.

Your licensed copy of the LonMaker software includes 64 free LonMaker credits. A LonMaker
credit is a token representing a prepaid fee to commission a device. You can use LonMaker
credits in one network or in multiple networks. LonMaker credits are associated with the
LonMaker application and the computer running it and are stored in a file called the LonMaker
license file. The LonMaker tool keeps track of the number of credits you have available. When
you initially install the LonMaker tool, you have 64 free LonMaker credits to start your
development. You can order up to 500 free credits for development use per year per device type
that you develop.

If you will be developing an LNS device plug-in for your device, install Microsoft Visual Studio
2005 Professional Edition or higher. The NodeBuilder software installer automatically installs the
new LNS Plug-in Framework Developer’s Kit, which you can use to write LNS device plug-ins in
.NET programming languages such as C# and Visual Basic .NET For more information on writing
LNS device plug-ins and the LNS Plug-in API, see the LNS Plug-in Programmer’s Guide.

Installing the NodeBuilder Software

To install the NodeBuilder software, follow these steps:

1.
2.

3.

Insert the NodeBuilder FX Development Tool CD into your CD-ROM drive.

If the NodeBuilder setup application does not launch immediately, click Start on the taskbar and
then and click Run. Browse to the Setup application on the NodeBuilder FX Development Tool
CD and click Open. The Echelon NodeBuilder FX Development Tool main menu opens.

> Echelon NodeBuilder FX Development Tool

= ECHELON

NODEBUILDER DEVELOPMENT TOOL

Install Products
View ReadMe
Browse CD Contents

View Website

Click Install Products. The Install Products dialog opens.

NodeBuilder FX User's Guide 21

22

» Echelon NodeBuilder, FX Development Tool

- .
= ECHELON
Installs the Echelon NodeBuilder Fx Development Toal
The Echelon LanMaker Integration Tool must be installed befare
installing NoceBuilder. Depending Lpan your NodeBuilder
wversion, the LonMaker Tool may already be installed, or may be . .
on ancther CO or DVD within the product package Microsoft NET 3.5 SP 1

NodeBuilder FX ()
LNS Turbo SP 5 ()

Adobe Reader 9.1 ()

FTDI USB Driver 2.04.06 ()

4. Click Microsoft NET Framework 3.5 SP1 to install Microsoft NET Framework 3.5 SP1 and

6.

then follow the on-screen instructions. Microsoft .NET Framework 3.5 SP1 is required to run the
NodeBuilder tool.

After Microsoft NET Framework 3.5 SP1is installed, click the Echelon NodeBuilder FX
Development Tool button in the Taskbar to return to the NodeBuilder installer, and then click
NodeBuilder FX in the Install Products dialog. The Welcome window of the NodeBuilder
software installer opens.

i@ Echelon NodeBuilder FX Development Tool - InstallShield Wizard [= |[71/[X]

welcome to the InstallShield Wizard for
Echelon NodeBuilder FX Development Tool

Echelon ModeBuilder Fx Development Tool Setup is preparing
the Installshield Wizard which will quide vou through the
program setup process, Please wait,

Computing space requirements

Click Next. The NodeBuilder Development Tool License Agreement window opens.

Installing the NodeBuilder Development Kit

i Echelon NodeBuilder FX Development Tool - InstallShield Wizard

License Agreement 7

Please read the Following license agreement carefully,

NodeBuilder® Development Tool
HOTICE

Thiz is a legal agreerment between you and Echelon Caorporation [™Echelon™).
You MUST READ AMD AGREE TS THE TERMS OF THIS SOFTWARE LICEMSE
AGREEMEMT BEFORE AMY LICEMSED SOFTWARE CAM BE DOWMLOADED OR
IMNSTALLED ©F USED, BY CLICKIMG OM THE *I AGREE” OR “ACCERPTY BUTTON
OF THIS SOFTWARE LICEMSE AGREEMENT, OR DOWMLOADING LICEMSED
SOFTWARE, OF IMSTALLIMG LICEMSED SOFTWARE, OR USIMNG LICEMSED
SOFTWARE, voU ARE ASREEIMG T2 BE B2UMD BY THE TERMS AMD
COMDITICONS OF THIS SOFTWARE LICEMSE ASREEMEMT, IF %oU D2 MOT

AVEDEE WWTTH TUE TED RS ARIM S RIS TTTARS A TUTS SnETWADE | TERCE

(%31 accept the terms in the license agreement

{31 do not accept the kerms in the license agreement

W

[< Back “ et =] [Cancel]

7. Read the license agreement (see Appendix D, NodeBuilder Software License Agreement, for a
printed version of this license agreement). If you agree with the terms, click Accept the Terms
and then click Next. The Customer Information window appears.

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard

Customer Information . .

Please enter vour information,

User Mame: Phone Mumber;
Qrganization; Email Address:
[|

Manufacturer ID: Web Address:
o |

Serial Mumber:

[< Back “ Mexk =] [Cancel]

8. Enter the NodeBuilder serial number on the back of NodeBuilder FX Development Tool CD in the
Serial Number box. Optionally, you can enter the following registration information. The
NodeBuilder FX tool automatically enters this information into your resource files. Your phone
number, e-mail address, and Web address will be included with any resource file that you create
and distribute.

User Name Your name. The name may be entered automatically based on the user
currently logged on and whether other Echelon products are installed on

NodeBuilder FX User's Guide 23

24

your computer.

Organization The name of your company. The name may be entered automatically
based on the user currently logged on and whether other Echelon
products are installed on your computer.

Manufacturer 1D If you have a standard manufacturer ID, enter it decimal format.

If your company is a LONMARK member, but you do not know your
manufacturer ID, you can find your ID in the list of manufacturer IDs at
www.lonmark.org/spid. The most current list at the time of release of
the NodeBuilder tool is also included with the NodeBuilder software.

If you do not have a standard manufacturer ID, you can request a
temporary manufacturer ID by filling out a simple form at
www.lonmark.org/mid.

Phone Number The phone number where you can be contacted.
Email Address The e-mail address where you can be contacted.
Web Address Your company’s Web site.

Note: You can enter or modify this information after installing the NodeBuilder software in the
NodeBuilder Project Manager. To do this, create or open a NodeBuilder project, click Project,
click Settings (or right-click the Project folder in the Project pane and click Settings on the
shortcut menu), and then click the Registration tab in the NodeBuilder Project Properties
dialog.

9. Click Next. If your computer does not have a LONWORKS directory, the Destination Location

window appears. Choose a LONWORKS folder in which you want the NodeBuilder software
installed. By default, the NodeBuilder software is installed in the C:\LonWorks folder, or the
C:\Program Files\LonWorks directory if you have not previously installed any Echelon or
LONMARK products (this will not likely be the case because you should have already installed the
LonMaker tool, which is installed in the C:\LLonWorks folder by default). Click Next.

10. The Setup Type window opens.

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard

Setup Type
Choose the setup type that best suits vour needs,)

Please select a setup bype.

(*) Complete

All program Features will be installed. (Requires the most disk
space.)

() Custom
Choose which program Features vou want installed and where they

@ will be installed, Recommended For advanced users,

< Back “ Mext =] [Cancel

Installing the NodeBuilder Development Kit

http://www.lonmark.org/spid
http://www.lonmark.org/mid

11. Select the type of installation to be performed. Select Complete to install NodeBuilder features or
select Custom to choose whether to install the FT 5000 EVB examples, NodeBuilder LTM-10A
examples, both sets of examples, or neither on your computer. Click Next. The Ready to Install
window appears.

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard

Ready to Install the Program
The wizard is ready to begin installation.

Click Install ko begin the installation,

IF wou wank to review or change any of vour installation sektings, click Back, Click Cancel to
exit the wizard,

[< Back “ Install] [Cancel]

12. Click Install to begin the NodeBuilder software installation. Before installing the NodeBuilder
software, the following programs are automatically installed or upgraded on your computer (if
they are not already installed on your computer, or if they are installed, but have a lower version):
NodeBuilder Resource Editor 4.0, LONMARK Resource Files 13.00, LNS Plug-in Framework 1.10,
and ISI Developer’s Kit 3.02.

13. After the NodeBuilder software has been installed, a window appears stating that the installation
has been completed successfully.

i& Echelon NodeBuilder FX Development Tool - InstallShield Wizard E|

Installshield Wizard Completed

The InstallShield Wizard has successfully installed Echelon
ModeBuilder Fi Development Tool, Click Finish bo exit the
wizard,

Show the readme File

NodeBuilder FX User's Guide 25

14.

15.

16.

17.

18.

Click Finish. If a window appears prompting you to reboot your computer now or later, click Yes
to reboot your computer now.

Once the installation has completed, you will be given the option to view the ReadMe file. See
the ReadMe file for updates to the NodeBuilder documentation.

Install LNS Server/Turbo Edition SP5 after the NodeBuilder tool is installed and you have
performed any required reboots. To do this, click the Echelon NodeBuilder FX Development
Tool button in the Taskbar to return to the NodeBuilder installer, click LNS Turbo SP 5 in the
Install Products dialog, and then follow the on-screen instructions. LNS Server/Turbo Edition
SP5 or later is required for developing, testing, and debugging your devices.

Optionally, install Adobe Reader 9.1. Adobe Reader (or another PDF viewer) is required to open
the user documentation PDF files included with the NodeBuilder software. To do this, click the
Echelon NodeBuilder FX Development Tool button in the Taskbar to return to the NodeBuilder
installer, click Adobe Reader 9.1 in the Install Products dialog, and then follow the on-screen
instructions.

Optionally, install the FTDI USB driver if you plan on using the USB port on the FT 5000 EVB
for debugging. To do this, click the Echelon NodeBuilder FX Development Tool button in the
Taskbar to return to the NodeBuilder installer, and then click FTDI USB Driver 2.04.06 in the
Install Products dialog.

Connecting the NodeBuilder Hardware

The following sections describe how to connect the NodeBuilder FX/FT hardware (FT 5000 EVBs)
and the NodeBuilder FX/PL hardware (LTM-10A Platform, Gizmo 4 I/O Board, and power line
coupler).

Connecting the NodeBuilder FX/FT Hardware
To connect the NodeBuilder FX/FT hardware, follow these steps:

26

1.

Unpack the equipment from the shipping carton.

Note: The FT 5000 EVBs are shipped in protective anti-static packaging. When assembling the
FT 5000 EVBs, the boards must not be subjected to high electrostatic potentials. Avoid touching
the component pins, or any other metallic equipment on the evaluation boards.

Verify that all of the following hardware and software items are present.

Item Qty
FT 5000 EVB 2

Power supplies (90-240VAC 50/60Hz) with power cords (US/Japan and 2
Continental European)

Network cable and terminator 1
U10 USB Network Interface 1
USB Extension Cable 1
NodeBuilder FX CD 1
LonMaker CD 1
LonScanner CD 1

Connect the barrel connectors of the included power supplies into the barrel jacks on the FT 5000
EVBs, connect the power supplies to the included power cords that are appropriate for you region
(US/Japan or Continental European), and then plug the power cords into a power outlet. The
power LEDs on the boards will activate when they are powered on.

Installing the NodeBuilder Development Kit

5. Use the included U10 USB Network Interface to attach the computer running the NodeBuilder
tool to the TP/FT-10 channel. To do this, connect the black network connector on the network
cable to the U10 USB Network Interface, and then plug the U10 USB Network Interface into an
available USB port on your computer. You can use the included USB extension cable to help
connect the USB 10 Network Interface to your development computer.

NodeBuilder FX User's Guide 27

>

If this is the only LONWORKS interface installed on your computer, it will automatically use the
default name LONI, and you can proceed directly to your software application and begin using
the interface as LONI1.

If you have another network interface installed on your computer, you can check the name used by
the U10 USB Network Interface in the LONWORKS Interfaces application. You can also use this
application to configure the buffer sizes and counts used by the U10 USB Network Interface. To
open the LONWORKS Interfaces application, and check the name of the U10 USB Network
Interface and configure it, click Start on the taskbar, click Control Panel, double-click
LonWorks Interfaces, and then click the USB tab.

For more information on installing and using the U10 USB Network Interface, see the LonWorks
USB Network Interface User’s Guide.

Note: You can use a different network interface such as a PCC-10, PCLTA-20, or PCLTA-21;
SLTA-10; remote network interface (i. LON SmartServer, i. LON 100 Internet Server, i. LON 600
LONWORKS-IP Server, or i. LON 10 Ethernet Adapter); or an IP-852 interface (. LON
SmartServer with IP-852 routing, ;. LON 100 Internet Server with IP-852 routing, or . LON 600
LONWORKS-IP Server).

To use a PCC-10, a PCLTA-20, or a PCLTA-21 as the network interface, you first need to
configure it as a layer-2 network interface using the LONWORKS Plug ‘n Play application. To do
this, click Start on the taskbar, click Control Panel, and then double-click LonWorks Plug ‘n
Play. In the Device Selected box, select your network interface. In the NI application box,
select PCC10NSI if you are using a PCC-10, or select NSIPCLTA if you are using a PCLTA-20
or a PCLTA-21. Click OK to save your changes and close the LonWorks Plug ‘n Play
application.

Complete the quick-start exercise in Chapter 3, NodeBuilder Quick-Start Exercise. In the
quick-start exercise, you will develop a device with one sensor and one actuator. The sensor is a
simple sensor that monitors a push button on the FT 5000 EVB and toggles a network variable
output each time the button is pressed. The actuator drives the state of an LED on the FT 5000
EVB based on the state of a network variable input.

This quick-start guides you through all the steps of creating a device with the NodeBuilder tool,
including creating the NodeBuilder project, the device template, the device interface, and the
Neuron C code that implements your device interface; implementing device functionality in the
Neuron C code; building and downloading the device application; testing the device in a
LONWORKS network; and debugging the device application.

Run the Neuron C example applications included with the NodeBuilder FX tool on your FT 5000
EVBs. The NodeBuilder tool includes three Neuron C example applications (NcSimpleExample,
NcSimplelsiExample, and NcMultiSensorExample) that you can use to test the I/O devices on the
FT 5000 EVBs, and create simple managed and self-installed LONWORKS networks.

The NeMultiSensorExample application is pre-loaded on the FT 5000 EVBs and runs in
Interoperable Self-installation (ISI) mode by default. You install and connect this example
application and the other examples using the LonMaker tool, or using the ISI protocol. See the FT
5000 EVB Examples Guide for more information on using these example applications.

For more information on the FT 5000 EVB, including how to use the I/O components, service buttons,
interfaces, and jumpers on the FT 5000 EVB hardware, see the F'T 5000 EVB Hardware Guide.

Installing the NodeBuilder Development Kit

Connecting the NodeBuilder FX/PL Hardware
To connect the NodeBuilder FX/PL hardware, follow these steps:

1. Unpack the equipment from the shipping carton. Avoid touching areas of integrated circuitry, as
static discharge could damage circuits.

2. Verify that all of the following hardware and software items are present.

Item Qty
LTM-10A Platform (with built-in PL-22 power line transceiver) 1
LTM-10A Power Supply 1
Gizmo 4 1/0 Board 1

LONWORKS Power Line Couplers. One line-to-neutral (L-N) coupler, and 2
one line-to-earth (L-E) coupler.

U20 USB Network Interface 1
U20 USB Network Interface Power Supply 1
USB Extension Cable 1
PLM-22 Accessory Kit 1
NodeBuilder FX CD 1
LonMaker CD 1
LonScanner CD 1

3. Connect either the line-to-neutral (L-N) or line-to-earth (L-E) LONWORKS Power Line Coupler
included with the NodeBuilder FX/PL tool to the Network input on the LTM-10A Platform,
connect a power cable (not included) to the coupler, and then plug the power cable into a power
outlet.

If you use the L-N coupler, you can directly use the included USB 20 network interface and power
supply/coupler to connect your computer running the NodeBuilder tool to a PL-20 channel as
described in step 6. If you use the L-E coupler, you must supply your own power supply/coupler
for the USB 20 network interface.

4. Connect the LTM-10A power supply to the 9-12VDC INPUT on the LTM-10A Platform, and
then insert the power supply into a power outlet.

NodeBuilder FX User's Guide 29

Connect the Gizmo 4 1/0 Board to the LTM-10A Platform using the provided ribbon cable. Plug
one end of the ribbon cable into the /O CONNECTOR on the Gizmo 4 I/O Board, and plug the
other end into the I/0 connector on the LTM-10A Platform. For more information on connecting
the NodeBuilder FX/PL hardware, see the LTM-104 User’s Guide and the Gizmo 4 User’s Guide.

Insert the barrel connector of the included power supply into the barrel jack of the included U20
USB network interface, connect the power supply to the included power cord that is appropriate
for you region (US/Japan or Continental European), plug the power cord into a power outlet, and
then plug the U20 USB network interface into an available USB port on your computer. For more
information on installing and using the U20 USB Network Interface, see the LonWorks USB
Network Interface User’s Guide.

o

Complete the quick-start exercise in Chapter 3, NodeBuilder Quick-Start Exercise. In the
quick-start exercise, you will develop a device with one sensor and one actuator. The sensor is a
simple sensor that monitors a push button on the Gizmo 4 I/O Board and toggles a network
variable output each time the button is pressed. The actuator drives the state of an LED on the
Gizmo 4 /O Board based on the state of a network variable input.

This quick-start guides you through all the steps of creating a device with the NodeBuilder tool,
including creating the NodeBuilder project, the device template, the device interface, and the
Neuron C code that implements your device interface; implementing device functionality in the
Neuron C code; building and downloading the device application; testing the device in a
LONWORKS network; and debugging the device application.

Run the Neuron C example application, NcExample, included with the NodeBuilder FX tool on
your LTM-10A Platform. You can use the NcExample application to test the I/O devices on the
Gizmo 4 1/0 Board, and create a simple managed LONWORKS network. For more information on
using the NcExample application, see the NodeBuilder FX/PL Examples Guide.

Installing the NodeBuilder Development Kit

3

NodeBuilder Quick-Start Exercise

This chapter demonstrates how to create a LONWORKS device using the NodeBuilder
Development tool.

NodeBuilder FX User's Guide 31

NodeBuilder Quick-Start Exercise

The following quick-start exercise demonstrates how to create a LONWORKS device with the
NodeBuilder tool. It introduces NodeBuilder FX features and provides some familiarity with the
NodeBuilder interface. You can use either the FT 5000 EVB Evaluation Board or the LTM-10A
Platform with the Gizmo 4 I/O Board as the hardware platform for this exercise.

The first step required to develop a device is to define the requirements for the device. For this
quick-start exercise, you will develop a device with one sensor and one actuator. The sensor is a
simple sensor that monitors a push button and toggles a network variable output each time the button is
pressed. The actuator drives the state of an LED based on the state of a network variable input.

To develop a LONWORKS device with the NodeBuilder tool, you perform the following steps:

Create a NodeBuilder project.

Create a NodeBuilder device template.

Define the device interface and generate Neuron C source code that implements it.
Develop the device application by editing your Neuron C source code.

Compile, build, and download your application.

Test your device interface.

Debug your device’s application.

8. Connect and test your device in a network.

Nk

Additional steps in the device development process include creating a LonMaker stencil, an LNS
device plug-in, a human-machine interface (HMI), and an installation application for your device;
submitting your OEM license so that you can purchase Neuron Chips or Echelon Smart Transceivers;
and applying for LONMARK certification for your device. These steps are summarized in the
Additional Device Development Steps section that follows this quick-start exercise.

After you complete this exercise, you can load and run the Neuron C example applications that are
included with the NodeBuilder tool. The NodeBuilder software includes three Neuron C example
applications that you can load into your FT 5000 EVBs (included with the NodeBuilder FX/FT Tool,
and available separately), and one Neuron C example application that you can load into your
LTM-10A platform with Gizmo 4 1/O Board (included with the NodeBuilder FX/PL Tool, and
available separately). You can use these examples to test the I/O devices on the FT 5000 EVB or
Gizmo 4 I/O board, and create simple LONWORKS networks. You can browse the Neuron C code used
by these examples to further learn how to develop your own device applications.

For more information on using the FT example applications, see the F'T' 5000 EVB Examples Guide.
For more information on using the PL example application, see the NodeBuilder FX/PL Examples
Guide.

Step 1: Creating a NodeBuilder Project

32

A NodeBuilder project collects all the information about a set of devices that you are developing. You
will create, manage, and use NodeBuilder projects from the NodeBuilder Project Manager. The
project manager provides an integrated view of your entire project and provides the tools you will use
to define and build your project.

To create a NodeBuilder project, start the NodeBuilder Project Manager from the LonMaker tool
(recommended) or directly from the NodeBuilder program folder. You will typically start the project
manager from the LonMaker tool because it simplifies the association of a NodeBuilder project with
a LonMaker network.

You can use the same NodeBuilder project with multiple LonMaker networks, and you can use a
LonMaker network with multiple NodeBuilder projects. However, a LonMaker network can only be
used with one NodeBuilder project at a time.

To create a NodeBuilder project by starting the NodeBuilder Project Manager from the LonMaker tool,
follow these steps:

NodeBuilder Quick-Start Exercise

1. Create a new LonMaker network. To do this, follow these steps:

a. Verify that your LonMaker computer is physically attached to the network via the USB 10/20
interface provided with the NodeBuilder FX Development Kit (or with another network
interface).

b. Click Start on the taskbar, point to Programs, point to Echelon LonMaker, and then select
LonMaker. The LonMaker Design Manager opens.

c. Inthe Network Name property under New Network, enter NB_FX Exercise.

* Echelon LonMaker, Design Manager

General l Options] e Mletwork Options] Lontdaker Stencils] Lontdaker Default Options]
My Metwark

L M k ® Metwark name:
o n a e r | MEB_F¥ Exercise Create Network ™ show Al

Turbo Edition options

Existing Metwark

Showy all
Cpen Metwork -
Dravving directory: w r options
|Network j Cpen Copy
Drranwing name:
Delet
|Ne‘tw0rk wad j #
Database name: Defragment Database
L 2 |Ne‘tw0rk j
e Launch LNS Server

p— N Backup...

= ECHELON [Eew
Restare. .. Import...

Subject ko barms of license agreement

Copyright [<] 1396-2006 Echelen Corp. Settings
All Rights Rezerved Dravwing base path: Comidrawings j Al

Exit | Help |

d. Clear the Show All Options check box under New Network if it is selected.

e. Click Create Network to create the new network.

e A message may appear informing you that Visio must be launched and initialized so that
it can work with the LonMaker tool. Click OK.

e A warning may appear asking you if you want to enable macros. You must enable
macros for the LonMaker tool to function.

f. Visio 2003 starts and the Naming page in the Network Wizard appears. Click Next. The
Network Interface page appears.

NodeBuilder FX User's Guide 33

34

Network Wizard

X

Metwork Interface
v Metwark attached

Metwork interface name

LOmI -]

[™ Skip network interface prompt swhen re-opening this drawing

| Mext = | Finish | Cancel Help

Select the Network Attached check box and then select the network interface attached to
your LonMaker computer that is to be used for communication between the LonMaker tool
and your development platform or platforms.

You can use the U10 or U20 USB Network Interface included with your development
platform, or you can use another network interface such as a PCC-10, PCLTA-20,
PCLTA-21, i.LON 10 Ethernet Adaptor, i.LON server. If you are using the U10 or U20 USB
Network Interface included with the NodeBuilder tool and you have not installed any other
network interfaces on your computer, select LON1.

For more information on installing and configuring the U10 or U20 USB Network Interface,
and on using it to attach your computer to a network channel, see the LONWORKS USB
Network Interface User’s Guide.

Click Next. The Management Mode page appears.

NodeBuilder Quick-Start Exercise

Network Wiza

Management Made

f* Onket (propagste device changes to the netwark)

7 Offtet (zave device changes for later processing)

¢ !

[Skip thiz promgt when re-opening this drawing

= Back | Mexts | Fiish | cancel | Help |

i. Select OnNet. This means that changes to the LonMaker drawing are sent immediately to
your NodeBuilder devices on the network. Click Finish.

j. The LonMaker tool creates and opens a new network drawing.

For more information on creating and opening LonMaker networks, see Chapter 3 of the
LonMaker User’s Guide.

2. Click LonMaker and then click NodeBuilder.

B Microsoft Visio

! Fle Edit Miew Insett Format Tooks Shape LonMaker | Window — Help Type aquestion for help [+
Negdalanizaianm] e PRy FHEE)
: rial - ot '| B 7 U |§ Help Contents . g -l oo s s o 8

LonMaker Online
NB_FX Exercise.vsd LonMaker Options
Network Properties. ..
Search For Shapes:

” Network Resources... Subaystam 1
Type your search here 4 —

. Network Service Devices...
[i.LON SmartServer Static Shapes

[Lontaker Ny Shapes
B lowpant shapes 3.0 | LonMaker Credis...
[E LonMaker Basic Shapes Discover Devices. .,

Device Templates. ..

Device Status Summary...
Lonwarks ETP...
Synchronization

Plug-ins

User Profiles. ..

Select Minimurn LI =

Use LonMaker Shape Menus

ModeBuilder

Chonnal 1

Subsystem 1 4_Title Elocks < |

Width = 1in. Height = 0.5 in. Angle = 0* Page 1/1

NodeBuilder FX User's Guide 35

3. The New Project wizard opens.

NodeBuilder Project @El

project associated with it. You may either create a new

@ Metwork MB_FX Exercise’ does not have a ModeBuilder
project, ar choase an existing project for this netwark,

* Create a new ModeBuilder project

" Open an existing ModeBuilder project

| Iext = | Cancel

4. Accept the default Create a New NodeBuilder Project option, and then click Next.

5. Accept the default NodeBuilder Project Name, which is the same name as the LonMaker
network, and then click Next.

6. Accept the defaults in the Specify Default Project Settings dialog, and then click Finish.

7. The NodeBuilder New Device Template wizard starts. Proceed to the next section to create a
NodeBuilder device template.

For more information on creating NodeBuilder projects, see Chapter 4, Creating and Opening
NodeBuilder Projects.

Step 2: Creating a NodeBuilder Device Template

Each type of device that you develop with the NodeBuilder tool is defined by a pair of device
templates: a NodeBuilder device template and an LNS device template. The NodeBuilder device
template specifies the information required for the NodeBuilder tool to build the application for a
device such as a list of the source code files and up to two hardware platforms for the device. The
LNS device template defines the external interface to the device, and is used by LNS tools such as the
LonMaker tool to configure and bind the device.

Each pair of device templates is identified by a unique program ID. Every device on a network with
the same program ID must have the same external interface.

This section demonstrates how to create a NodeBuilder device template. The LNS device template
will be created automatically when you build the application. To create the NodeBuilder device
template, follow these steps:

1. Inthe NodeBuilder Device Template Name property in the New Device Template wizard, enter
NB FX Example Device.

36 NodeBuilder Quick-Start Exercise

NodeBuilder New Device Template Wizard

ModeBuilder device termplate name:
‘ MB Fx Example Device

Source file name:

| B FX Example Device.nc Browese...

Folders

ModeBuilder device termplata:
| CAlmSourceltB_FX ExerciseitB Fx Example De Browse..

Ciutput:

i

|-1 Browse...

| Mext = | Cancel ‘

2. Click Next. The Program ID window appears.

Program ID

ModeBuilder device template name: | MB Fx Examnple Device

Autarmatic program 10 management

¥ Enahle Min model 2 | 0%00 Max model # lW
[v Re-register plug-ins

Program ID type

i

&+ Standard developmentiprototype format 9)

" Standard Lontark certified (format 8)

Pragram 10

|9F:FD:3E:DD:DD:DD:DD:DD Calculator...

LMS device template name:
| B FX Example Device

= Back | Mext = | Cancel

3. Click Calculator. The Standard Program ID Calculator dialog opens.

NodeBuilder FX User's Guide

i LonMark Standard Program ID Calculator,

M anufacturer (koAb bdbd] o

<Enter Mumber [Decimal]» 1047870 |:|

Cateqgory:
| Cancel

Device clags ([CCCC)

Uzage (U] :
| Metwork, M anagement

Channel type [TT] :
| <Enter Mumber [Decimal]:

Lo

L

Lo

L

kadel number [MH]
w |00

v Standard development program 1D

™ Has changeable interface

™ Usage field values defined by functional prafils
Program 10
FHZMHZMMCC:CC:UUCTT NN
|9F:FD:3E:BB:BB:BB:BB:BB

4. Enter the following values for the program ID fields:

e In the Manufacturer ID (M:MM:MM) property, enter your standard manufacturer ID or
temporary manufacturer ID in decimal format, or select the Examples manufacturer ID. By
default, the manufacturer ID that you entered during of the NodeBuilder tool installation is
shown by default.

If your company is a LONMARK member, but you do not know your manufacturer ID, you can
find your ID in the list of manufacturer IDs at www.lonmark.org/spid.

If you do not have a standard manufacturer ID, you can request a temporary manufacturer ID
by filling out a simple form at www.lonmark.org/mid.

o In the Category property, select the I/O option.

¢ In the Device Class (CC:CC) property, select the Multi-I/O module (5.01) option.
e In the Usage (UU) property, select the General option.

e Inthe Channel Type (TT) property, select the TP/FT-10 option.

e Inthe Model Number (NN) property, enter 01.

38 NodeBuilder Quick-Start Exercise

http://www.lonmark.org/spid
http://www.lonmark.org/mid

i LonMark Standard Program ID Calculator,

M anufacturer (koAb bdbd] o

|<Enter Mumber [Decimal]» j |1D4?8?D
Cateqgory:
] ~|

Cancel
Device clags ([CCCC)
|Mu|ti-I£D module (5.01)

L

Uzage (U] :
|General

Channel type [TT] :
| TPAFT-10

Lo

L

kadel number [MH]
w |00

v Standard development program 1D

™ Has changeable interface

™ Usage field values defined by functional prafils
Program 10
FHZMHZMMCC:CC:UUCTT NN
|9F:FD:3E:BS:B1:BH:B#:BB

Note: The current list of manufacturer IDs, device classes, usage values, and channel types
are defined in an XML file (spidData.xml) that is available at www.lonmark.org/spid. This
file is updated as LONMARK International adds new manufacturer IDs, device classes, usage
values, and channel types.

5. Click OK to return to the New Device Template wizard. The Program ID property contains the
program ID you specified in the Standard Program ID Calculator dialog.

Tip: Do not clear the Enable check box under Automatic Program ID Management. This
enables the Model Number (NN) field in the program ID to be incremented automatically when
the external interface of the device is changed. This allows for the easy development of a device
with a changing external interface during development. The program ID will cycle through the
range of specified model numbers to avoid two devices having the same program ID but different
external interfaces.

6. Click Next. The Hardware Template window opens.
7. Specify the development build and release build hardware template.

e If you are using the NodeBuilder FX/FT hardware (FT 5000 EVBs), select FT 5000 EVB in
both the Development Build Hardware Template and Release Build Hardware Template
properties.

NodeBuilder FX User's Guide 39

http://www.lonmark.org/spid

Hardware Templates

ModeBuilder device template name: MB Fx Examnple Device

Please specify the hardware termplates to be used with each device
template target. Ifyvou select =kone=, the target will not be built.

Cevelopment build hardware template:

FT 5000 Evaluation Board -

Release huild hardware template:

v Run ModeBuilder Code Wizard

= Back | Finish | Cancel

e Ifyou are using the NodeBuilder FX/PL hardware (LTM-10A Platform with Gizmo 4 1/O
Board), select LTM-10A RAM in the Development Build Hardware Template property,
and then select LTM-10A Flash in the Release Build Hardware Template property.

Hardware Templates

ModeBuilder device template name: MB Fx Examnple Device

Please specify the hardware termplates to be used with each device
template target. Ifyvou select =kone=, the target will not be built.

Cevelopment build hardware template:

LTN-104 RAM -

Release huild hardware template:

v Run ModeBuilder Code Wizard

= Back | Finish | Cancel

8. Click Finish. The NodeBuilder Code Wizard starts. There will be an initial pause as it reads the
available resource files. Proceed to the next section to generate Neuron C code that defines your
device’s interface.

NodeBuilder Quick-Start Exercise

Step 3: Defining the Device Interface and Creating its Neuron C
Application Framework

You can develop device applications with the NodeBuilder tool using the Neuron C programming
language. Neuron C is based on ANSI C, with extensions for network communication, hardware /O,
timing, and event handling.

The NodeBuilder tool includes a NodeBuilder Code Wizard, which automatically generates Neuron C
source code that defines the device interface (XIF). The device interface includes all the functional
blocks, network variables, and configuration properties implemented by your device. The
NodeBuilder Code Wizard also generates much of the code for the Node Object functional block,
which is a standard functional block that is used for maintaining and managing the device and its
functional blocks.

Device template Configuration property access method
Marne: MB FX Example Device = ‘ Generate and Close

Program 10 91:99:AB:05:01:04:00:01 .
Close ‘

Taoinsert a functional hlock, network variahle, or configuration praperty, drag the correspaonding item from the
resource pane and drop it into the program interface pane, or right-click an the desired element in the program
interface pane.

Resaource pane: Frogram interface pane:
|E: WLonwarkshTypeshLdrf Cat CAl\Source\ME_F Exercize\MB Fx Example Device
g Ci\LonWorks) TypesiLdrf. Cat = . ME F¥ Example Device
=11 C:\Lonwarks| Types —-{_ Functional Blacks
+ g STANDARD (Scope 0: Standard) + & NodeObject
—-[C3 C:\Lonworks! TypestUser|Echelon [Z Metwark Variables
+-@p echelon (Scope 3: Echelon Corporation) [_ Configuration Properties

+-fp MBUS_Integrator (Scope 4: Echelon Corporation, Gatewan
+|-fp dc0519 (Scope 4: Echelon Corporation, Generic Analog Ou
+|-fip DCO131 (Scope 4 Echelon Corporation, Channel Diagnosk
+| - BA5_Controller {Scope 4 Echelon Corporation, Generic Co
-0 C:\Lonworks\typesiuseriYourCampany
+-@p Device Development (Scope 5t 0xFFDSE, 0:x0000, Networ
--[L Cr\LonorksiMeuronCiExamplesiModeBuilder LTM-104Types
+|-fp McExample (Scope 5: Examples, I/O, General)
-3 C:\Lonwarks\NeuronC\ExamplesiMini EVE\ Types
+|-Ep Minikit (Scope 4: Examples, Generic Analog Input)

The left pane of the NodeBuilder Code Wizard is the Resource pane, which is used to display the
resources that are available for your application. The right pane is the Program Interface pane, which
is used to display and modify your device’s interface. You will define your device’s interface by
dragging functional profile templates and network variable and configuration property types from the
Resource pane to the Program Interface pane.

After you run the NodeBuilder Code Wizard, you work with the generated code to implement your
device’s functionality. You can rerun the NodeBuilder Code Wizard at any time to modify your
device’s interface, while maintaining any changes that you have implemented in the source code.

In this step, you will automatically create Neuron C source code for a device with the following
functional blocks:

e An open-loop sensor functional block with a SNVT _switch output network variable.

e An open-loop actuator with a SNVT_switch input network variable.

NodeBuilder FX User's Guide 41

42

A simple Node Object with no configuration properties (the NodeBuilder Code Wizard
automatically creates this functional block).

To define your device interface and automatically create Neuron C source code for it using the Code
Wizard, follow these steps:

1.

Create an open-loop sensor functional block with a SNVT_switch network variable. To do this,
follow these steps:

Expand the STANDARD (Scope 0: Standard) resource file under the LonWorks/Types
folder, and then expand the Functional Profile Templates folder to display the standard

a.

functional profile templates (SFPTs).

NodeBuilder Code Wizand

Device template
Mame: MB Fx Example Device

FriagE (5 51:89:48:05:01:04:00:01

interface pane.

Resource pane:

Ta insert a functional block, netwark variable, or configuration property, drag the corresponding item fram the
resource pane and drap it into the program interface pane, ar right-click on the desired element inthe pragram

Configuration propery access method
Generate and Close
-
~
Close

Prograrm interface pane:

|C. SLontworkshTyepeshS TAMDARD . fpt

C:4mhSource B _F Exercize'NE Fx Example Device

g CiiLonworks! TypesiLdrf, Cat
- CiiLonworksiTypes
- STANDARD (Scope 0: Standard)
+-{_] Metwork Variable Types

+-{Z1] Configuration Property Types

+ D Enumerations
+-(Z] Language Files
+-{_] Formats
-1 CiiLonworksiTypes\UseriEchelon
+-@ echelon (Scope 3: Echelon Corporation)
+- il MEUS_Integrator (Scope 4: Echelon Corporation, Gatewa:
+-@p dc0519 (Scope 4: Echelon Corporation, Generic Analog O
+-fp DCO131 (Scope 4 Echelon Corporation, Channel Diagnost
+-fp BAS_Controller (Scope 4 Echelon Corporation, Generic Co
- CiiLonorksibypesiuseriYourCompary
+-fp Device Development (Scope 5: 0xFFD3IE, 00000, Metwor
=13 CiiLonwWorksiNeuronCiExamplesiNodeBuilder LTM-1041Types
+- @ NcExample (Scope St Examples, If0, General)
-1 CriLonworksiMeuronClExamplesiMini EVBI Types
+- @ Minikit (Scope 4: Examples, Generic Analog Input)

=|-w& MEB Fx Example Device
—-{_ Functional Blocks
+ 0 ModeObject
(2 Metwork Variables
[Z Configuration Properties

b. Drag the SFPTopenLoopSensor (1) functional profile template from the Resource Pane on
the left side to the Functional Blocks folder in the Program Interface pane on the right side.
An openLoopSensor functional block appears under the Functional Blocks folder.

NodeBuilder Quick-Start Exercise

NodeBuilder Code Wizand

Device template

Program ID:

interface pane.

Resource pane:

Mame: MB Fx Example Device

91:99:AB:05:01:04:00:01

Configuration propery access method

=

I

Tainsert a functional block, netwark variable, or configuration property, drag the corresponding item fram the
resource pane and drap it into the program interface pane, ar right-click on the desired element inthe pragram

Frogram interface pane:

C:AmhSourceMB_Fx Exercize’\NE Fx Example Device

C:ALonworks\TypeshSTANDARD. fpt

& SFPThvacTempSensor (10400

% SFPThvacyalvePositioner (3131)
¥ SFPTidentifierSensor (S035)

% SFPTisiKeypad (3253)

% SFPTisiLampactuator (3041}

% SFPTisiMonitorPoink (5

= ‘ ME F¥ Example Device
=-{_ Functional Blocks
+ 0 ModeObject
ERCY openLoopSensor
[Metwork Yariables
D Caonfiguration Properties

Generate and Close
Close

% SFPTisiOccupancySensor (10610

¥ SFPTisisunblindactuator (6112)

% SFPTlampActuataor (30400

2% SFPTlightingPanelController (3401)
% SFPTlightSensor (1010}

% SFPTmodemController (S091)

% SFPThodeCbject (0)

% SFPToccupancyController (30710

% SFPToccupancySensor (1060)

% SFPTopenLoopictuator (33

% SFPTopenLoopSensor (1)

vy SFPTpartitionwallController (3252)
% SFPTpressureSensor (1030)

% SFPTpullStationFirelnitiztor {11005)
% SFPTpumpController (31207

% SFPTraicardudioContraler (91113

T CEMTu il ma Aoyl Cmmm e (7447

e o e e e e e e e e e R e e R e e

c. Rename the openLoopSensor functional block to “Switch”. To do this, right-click the
openLoopSensor functional block in the Program Interface pane, click Rename on the
shortcut menu, enter Switch, and then press ENTER or TAB. A warning message appears
warning that new source files will be generated as a result of the name change. Click OK.

d. Expand the Switch functional block, and then expand the Mandatory NVs folder to display
the nvoSwitch network variable.

NodeBuilder FX User's Guide 43

NodeBuilder Code Wizand

Device template

interface pane.

Resource pane:

Mame: MB Fx Example Device

FriagE (5 51:89:48:05:01:04:00:01

Tainsert a functional block, netwark variable, or configuration property, drag the corresponding item fram the
resource pane and drap it into the program interface pane, ar right-click on the desired element inthe pragram

Configuration propery access method
Generate and Close
-
~
Close

Frogram interface pane:

C:ALonworks\TypeshSTANDARD. fpt

C:AmhSourceMB_Fx Exercize’\NE Fx Example Device

&% SFPThvacTempSensor {1040)

% SFPThvacyalvePositioner (3131)
SFPTidentifier Sensor (S035)
SFPTisikeypad {3253}
SFPTisiLampactuator (3041)
SFPTisiMonitarPaint (5)
SFPTisiOccupancySensor (1061)
SFPTisisunblindactuator (6112)
SFPTlampaActuator (30400
SFPTlightingPanelController {3401%
SFPTlightSensor {1010)
SFPTmoademController (5091)
SFPTRodeCbject {0)
SFPToccupancyController (3071)
SFPToccupancySensor (1060
SFPTopenLoopActuatar (3)
SFPTopenLoopSensor (1)
SFPTpartitionvwallContraller (3252)
SFPTpressureSensor (10300
SFPTpullStationFireInitistor {11005)
SFPTpumpController {51200
SFPTrailcaraudioController (9111%

e EO AT

e o e e e e e e e e e R e e R e e

CEMTw il e o din .

= ‘ ME F¥ Example Device
=-{_ Functional Blocks
+ ’ ModeObject
SRC h
=11 Mandatory Mys
&3 rvovalue
[Z optional Mys
(7 optional Cps
2 Implementation-specific Nvs
{7 tmplementation-specific CPs
{21 Metwork Yariables
D Configuration Properties

e. Double-click the nvoValue network variable, or right-click it and then select Properties on
the shortcut menu. The NV Properties dialog opens.

f. In the Name property, change the network variable name to nvoSwitch.

g. Inthe NV Type property, select SNVT_switch, and then click OK.

NV Properties ['_l &l

Marne: | moSwitch

-

[Changeable type

Cancel

— | =
e |

Advanced..

Y e SHYT_gwitch

SKVT_sound_dh

FPT member name: SNYT_sound_db_f

34

FFT mermber nurnber: gng:ggz:gj
ST _speed_mil
SHWT_state

A ST _state_G4

Direction SMVT_str_asc

' str_int

o SNYT_switeh_2
SHYT_telcom
SHYT_temp
SHYT_temp_diff_p

Modifiers SMNVT_ternp_f

SellSMVT_temp_p

& None SMNVT_temnp_rar

" Synchronized ’7

" Polled

Initializer

Edit...

44

NodeBuilder Quick-Start Exercise

2. Create an open-loop actuator with a SNVT_switch network variable.

a. Drag a SFPTopenLoopActuator functional profile template from the Resource Pane on the
left side to the Functional Blocks folder in the Program Interface pane on the right side.

b. Rename the openLoopActuator functional block to “LED”. A warning message appears
warning that new source files will be generated as a result of the name change. Click OK.

c. Expand the LED functional block, and then expand the Mandatory NVs folder to display the
nviValue network variable.

d. Double-click the nviValue network variable, or right-click it and then select Properties on
the shortcut menu. The NV Properties dialog opens.

e. Inthe Name property, change the network variable name to nviLamp.
f. Inthe NV type property, select SNVT_switch, and then click OK.

You have completed designing the external interface of the device. You will now use the
NodeBuilder Code Wizard to generate the source files for you.

3. Click the Generate and Close button in the top-right corner of the NodeBuilder Code Wizard to
generate the Neuron C source files that implement your specified external interface.

Device template Caonfiguration property access method
Mame: MB Fx Example Device o Generate and Close

Frogram 10 91:99:A8:05:01:0A:00:01 i
Close ‘

Toinsert a functional block, network variable, or configuration property, drag the corresponding itern from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program
interface pane.

Resource pane: Program interface pane:
|E: “LonworkshTypesiLdr.Cat Clmb\Source\ME_Fi Exercize\NE Fx Example Device
&l C\Loniwarks\ TypesiLdrf.Cat =@ NE Fx Example Device
-0 Ci\Lonwarks| Types —1-[_1 Functional Blacks
+-@p STANDARD (Scope 0: Standard) = 0 LED
—-[C3 C:\Lonworks! TypestUseriEchelon =1 Mandatary Mys
+-@p echelon (Scope 3: Echelon Corporation) g
+|-fp MBUS_Integrator {Scope ¢ Echelon Corporation, Gatewa: [_ Optional Mys
+|-fip dc0519 (Scope 4: Echelon Corporation, Generic Analog Ou [_ Optional CPs
+|-fip DCO131 (Scope 4 Echelon Corporation, Channel Diagnosk [Z Implementation-specific s
+|-fip BA5_Controller {Scope 4: Echelon Corporation, Generic Co [_ Implementation-specific CPs
-1 Ci\Lonworks\typesiuseriYourCompany + 3 ModeObject
+| - Device Development (Scope S: 0xFFD3E, 0x0000, Metwor] Switch
—-[L Cr\LonorksiMeuronCiExamplesiModeBuilder LTM-104Types =] Mandatary Mys
+- @y NcExample (Scope S5: Examples, I/O, General) g rvoSwitch
—1-23 Ci\LonwarksiNeuronC\ExamplesiMini EVE\ Types [_ Optional Mys
+|-fp Minikit (Scope 4: Examples, Generic Analog Input) [_1 Optional CRs
[Z7 Implementation-specific Mys
[Z7 Implementation-specific CPs
[Z Metwark Yariables
D Configuration Properties
4 4

4. The NodeBuilder Code Wizard closes and you are returned to the Project Manager window. The
Project pane within the project manager displays the files and templates defined for your project.

NodeBuilder FX User's Guide 45

S| Project 'WE_F¥ Exercise’:
=3 Device Templates
— @ NE F¥ Example Device
[E1ME Fx Example Device.nc
+ H Development
+ [H| release
- =3 Saurce Files
[E1Filesys.h
Elenh
ELeD.ne
Enerz Example Device.h
[E)Modeobject.h
= ModeObject.nc
[switch.h
[E)5witch.ne
[E) common.h
[E) comman.ne
[(Mibraries
DDevices

+{ IHardware Templates

"2 Project

Double-click the NB FX Example Device.nc file in the Project pane to open the main Neuron C
file for this new device template.

Open the Switch.h and LED.h header files and view the functional block and configuration
property declarations.

Open the Switch.nc and LED.nc Neuron C files and view the default implementation of the
director function (named SwitchDirector or equivalent).

The director function is a mechanism that allows the developer to easily dispatch events to all the
functional blocks in a device with a single function call. For instance, during reset, the when
(reset) clause can dispatch the reset event for each functional block in the device when it is done
initializing the “global” components in the device. This is done using the following line of code:

executeOnEachFblock (FBC WHEN RESET) ;

Proceed to the next section to implement your device’s functionality by editing your Neuron C
code.

For more information on defining device interfaces and generating Neuron C code for them, see
Chapter 6, Defining Device Interfaces and Creating their Neuron C Application Framework.

Step 4: Developing the Device Application

46

The Neuron C source code generated by the NodeBuilder Code Wizard implements your device’s
interface. The Code Wizard also generates a skeleton application framework, including the most
common tasks performed by the Node Object. When developing the device application, you will
typically concentrate on writing the algorithms that implement your device’s functionality. To do this,
you will edit the code generated by the Code Wizard and program any required interaction between the
device application and the I/O devices on your device hardware.

In this step, you will add Neuron C I/O declarations to the Switch.h, and LED.h header files, and then
implement your desired I/O functionality in the Switch.nc and LED.nc Neuron C files.

Note: The I/O object declarations used for the NodeBuilder FX/FT hardware (FT 5000 EVBs) and the
NodeBuilder FX/PL hardware (LTM-10A Platform with Gizmo 4 I/O Board) are different. Therefore,

NodeBuilder Quick-Start Exercise

follow the section corresponding with the development platform or platforms you are using for the
appropriate code to use.

FT 5000 Evaluation Boards
1. Declare the I/O hardware for the Switch following these steps:
a. Double-click the Switch.h file in the Project pane to edit the source file.
b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End
c. Add the following line of code after the line referenced in step b.
IO 9 input bit ioSwitchl;
2. Add functionality to the Switch I/O following these steps:
a. Double-click the Switch.nc file in the Project pane.
b. Find the following line of code at the end of the Editor window:
#endif // _Switch NC_
c. Add the following when-clause before the line referenced in step b:

when (io changes (ioSwitchl))

{
nvoSwitch.state = !input value;
nvoSwitch.value input value ? 200u : 0;

}
3. Declare the I/O hardware for the LED. To do this follow these steps:
a. Double-click the LED.h file in the Project pane.
b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End
c. Add the following line of code after the line referenced in step b.
IO 2 output bit ioLamp = 1;
4. Add functionality to the LED I/O following these steps:
a. Double-click the LED.nec file in the Project pane.
b. Find the following lines of code near the beginning of the Editor window:

when (nv_update occurs (nviLamp))
//
//}}NodeBuilder Code Wizard End

{
c. Add the following line of code after the lines referenced in step b:
io_out (ioLamp, ! (nvilamp.value && nviLamp.state)):;
5. Click File and then click Save All to save all your changes to the source files.

6. Proceed to the next section to compile your Neuron C application, and then build an application
image and download it to your device.

For more information on editing Neuron C code to implement your device’s functionality, see Chapter
7, Developing Device Applications.

NodeBuilder FX User's Guide 47

LTM-10A Platform and Gizmo 4 1/O Board

1. Declare the I/O hardware for the Switch following these steps:
a. Double-click the Switch.h file in the Project pane to edit the source file.
b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End
c. Add the following line of code after the line referenced in step b.
IO 6 input bit ioSwitchl;
2. Add functionality to the Switch I/O following these steps:
a. Double-click the Switch.nc file in the Project pane.
b. Find the following line of code at the end of the Editor window:
#endif // _Switch NC_
c. Add the following when clause before the line referenced in step b:

when (1o _changes (ioSwitchl))

{

nvoSwitch.state !input value;
nvoSwitch.value = input value ? 200u : O;

}
3. Declare the I/O hardware for the LED. To do this follow these steps:
a. Double-click the LED.h file in the Project pane.
b. Find the following line of code near the end of the Editor window:
//}}NodeBuilder Code Wizard End
c. Add the following line of code after the line referenced in step b.
IO 0 output bit ioLamp = 1;
4. Add functionality to the LED I/O following these steps:
a. Double-click the LED.nec file in the Project pane.
b. Find the following lines of code near the beginning of the Editor window:

when (nv_update occurs (nviValue))

//
//}}NodeBuilder Code Wizard End

{
c. Add the following line of code after the lines referenced in step b:
io out (ioLamp, ! (nvilamp.value && nvilLamp.state));
5. Click File and then click Save All to save all your changes to the source files.

6. Proceed to the next section to compile your Neuron C application, and then build an application
image and download it to your device.

For more information on editing Neuron C code to implement your device’s functionality, see Chapter
7, Developing Device Applications.

NodeBuilder Quick-Start Exercise

Step 5: Compiling, Building, and Downloading the Application

The NodeBuilder tool includes a complete set of tools for compiling your Neuron C application,
building an application image that can be loaded into your device, and downloading your application
image to your device.

When you build your application, the NodeBuilder tool will create downloadable application image
files and device interface files. The downloadable application image file is used by the LonMaker tool
and other network tools to download the compiled application image to a device. The device interface
file describes the external interface for your device. It is used by network tools such as the LonMaker
tool to determine how to bind and configure your device. The device interface file is also used by the
NodeBuilder tool to automatically create the LNS device template.

The NodeBuilder tool can create two device sets for each device that you build, one for a development
version of your device and one for a release, or production, version of your device. The default project
directory for your NB_FX Exercise project is C:\Lm\Source\NB_FX Exercise. The two device file
sets are written to different directories—the NB FX Example Device\Development directory and the
NB FX Example Device\Release directory. The development and release file set are both stored
within your project directory.

To compile, build, and download your application, follow these steps:

1. Right-click the NB FX Example Device device template icon in the Project pane, then click Build
on the shortcut menu.

@ Echelon NodeBuilder, FX - [C:\lm\SourcelNB_FX ExerciseMNB FX Example DeviceNB FX Example Device. nc]

[Fle Edit view project Tools Window Help -8 x
DEET I 2N
4
B |al Targets - &
BEO0 %
g g [g Ciimisour
*aPm]act 'WB_F¥ Exercise’s /f{{NodeBuilder Code Wizard Start <CodeUizard Timestamp> -~
= evice Templates un on ri ar H H s VEESLOn - .
‘A Device Templat AR Fri Mar 13 14:42:07 2009 ion 4.00.20
= L
[SINB X Example| Dettings... hdeEuilder Code Wizard End
+[H] Development et SourceFile... hgeBuilder Code Wizard Start <CodeDizard Templates
+ [H| Release Code Wizard. . fTemplate Revision="3"/>
=159 Source Files Remave pdeBuilder Cods Wizard End
[ElFlesys.h ‘/f'f'/'NNJ//f'f'/'NN///f'/'/'fNN/f'f'/'/'/N////'f'/’/’N////NNNNNNNNNNN
Eltenh o le: B FX Example Device.nc
g ean
[E1Lep.ne Build Exclude
ierated by NodeBuilder Code Wizard Version 4.00.20
Elhod b] | Properties wwright (o) 2001-2009 Echelon Corporation. &1l rights reserved.
ModeObject,
Esuitchh 4/ ECHELCN MAKES NO REPRESENTATION, WARRANTY, OR CONDITICN OF
[E)5micch.ne #f BNY KIND, EXPRESS, IMPLIED, STATUTCORY, OR OTHERWISE OR IN
[Elcommen.h 4/ BNY COMMUNICATICN WITH ¥OU, INCLUDING, EUT NOT LIMITED TO,
[E1 common.nc /¢ ANY INPLIED WARRANTIES OF MERCHAMTABILITY, SATISFACTORY
= ibraries 4/ QUALITY, FITHESS FOR ANY PARTICULAR PURPOSE,
& _IHardware Templates // NOMINFRINGEMENT, AND THEIR EQUIVALENTS.
i
< * i
i Jf Written Ruw: b2
[Project ¢ S »
= |
o
u
s
il
o
2
7
S M Alr N'\Mes:age:j Search Results ; Eve
For Help, press F1 MUM NS

2. Ifyoureceive any build errors, double-check that the code you entered matches that listed in Step
4: Developing Device Applications (you may receive some warnings, which can be ignored in the
context of this quick-start exercise).

3. Click the Echelon LonMaker/Visio button in the Taskbar to switch to the LonMaker tool. You
will use the LonMaker Tool to install, bind, configure, and test the devices in your project. The
LonMaker tool displays a network drawing that shows the devices, functional blocks, and
connections in your network.

NodeBuilder FX User's Guide 49

50

5.

The LonMaker tool also displays stencils that contain shapes that you can drag to your LonMaker
drawing. The LonMaker tool includes a NodeBuilder Basic Shapes 4.00 stencil with shapes that
you will use to add new devices, functional blocks, and connections to your network drawing.
The NodeBuilder Basic Shapes 4.00 stencil contains shapes that can be used with any device.
You can also create custom stencils with shapes customized for your devices and networks.

The NodeBuilder Basic Shapes 4.00 stencil contains two shapes that you will use to define your
devices during development. They are the Development Target Device shape and the Release
Target Device shape. These special device types help distinguish between other devices on the
network and the target devices used by the NodeBuilder tool. The NodeBuilder tool allows you to
create a mixed network of development hardware (FT 5000 EVB or LTM-10A Platforms), release
hardware (your own hardware), and other devices.

Drag a Development Target Device shape from the NodeBuilder Basic Shapes 4.00 stencil to
your network drawing. You can drop the shape anywhere, but a good location is just below the
Channel 1 shape on your drawing.

NB_FX Exercise.vsd
Shapes x

[N S—
Type your ssarch here

[i.LON SmartServer Skatic Shapes

[LonMaker MY Shapes
[LonPaint: Shapes 3.0
Shapes .00

The New Device Wizard opens. In the Device Name property, enter NB Device, and then select
the Commission Device check box. Verify that NB FX Example Device is selected in the
NodeBuilder Device Template box.

NodeBuilder Quick-Start Exercise

Mew Device Wizard

Device name: | MB Device

Mumbker of devices to create:

[v Commiszion device

ModeBuilder Device Template

[Creste new device template

[&

Mame: ME F¥ Example Device

Channel
[Auto-detect channel

Type: |TPFT-10

Mame: | Channel 1

| Mext = |

Finizh

Cancel

Lef Led

)

Help

6. Click Next three times. The window in the New Device Wizard lets you select the application

image to be downloaded to your device.

7. Select the Load Application Image check box and then click Next. This specifies that you will
download to the device the binary application image file (APB extension) that was automatically
created when you built the device with the NodeBuilder tool. The application image files for your
NodeBuilder development devices are stored in the C:\Lm\Source\<NodeBuilder

Project>\<NodeBuilder Device Template>\Development folder.

NodeBuilder FX User's Guide

51

52

Mew Device Wizard

Specify device application image name

)

Device template: | MB F¥ Example Device [02]

Device name(s): MB Device

[v Load spplication image

[Update firmware in device to match application image

Image name; | Chm\SourcehB_FX ExercizeiNB Fr Example Device'De

¥IF rame:

| CAm\SourcehB_Fr ExerciseiNB Fx Example Device'De

= Back | Mext = | Finizh

L
Fer=|

Cancel Help |

8. The next window lets you set the initial device state and the source of configuration property values
when your device is commissioned.

9. Select the Online option under State. This means that your device will run its application after it
has been commissioned.

Commission Device Wizard

Device namels):

Specify the intial state of the device and the source of CP values

X

MB Device

State Source of CP Yalues Device Specific CPz

™ Defautt f* LNS databaze f* Do not updste

7 Offline " Defaults " Update with other TPz

* Online r " Upload from nesy app image
(™ Disahle £ Application image fil= " Preserve device values

= Back | Mext = |

Finizh Cancel Help

10. Click Finish. The Press Service Pin window appears.

NodeBuilder Quick-Start Exercise

Echelon LonMaker

E B Please press the service pin on device 'Example 1°...

Options Total Received
| Dizplary data from service pin

[Fitter on programm ID 0

[Fiter on channel

Coritinue Help

11. Press the service pin on the development platform to be loaded and commissioned. The
LonMaker tool loads the application image for your NB FX Example Device application to the
development platform and makes it operational. When the LonMaker tool is done commissioning,
it will return to the LonMaker drawing. The device shape will be will be solid green indicating
that the device has been commissioned and is online. The device application will not do anything
until you test the device or connect it to other devices.

NB_FX Exercise.vsd

Shapes x

[N S—
Type your ssarch here

[i.LON SmartServer Static Shapes
[LonMaker MY Shapes
[LonPaint Shapes 3.0
ﬁ hodeBuilder Basic Shapes .00

= Sl
Mimlml
2 2.

il =]
H s Diata Paint =
Serwc u e
l l [LLLE l
Re‘ease Channel 1

=)

Target ...

“ |4 4 » M} Subsystem 1 A Title Blocks J(__ | >

12. Proceed to the next section to test your device’s interface using the LonMaker Browser.

For more information on building and downloading device applications, see Chapter 8, Building and
Downloading Device Applications.

Step 6: Testing the Device Interface

The NodeBuilder tool makes it easy to test your device by itself, as well as to integrate your device
into a network and test its interaction with other devices.

The first tool that you will typically use for testing is the LonMaker Browser. The browser displays all
the input and output network variables and configuration properties for your device. You will typically
exercise the hardware or network variable inputs to your device and observe the hardware and network
outputs from your device.

NodeBuilder FX User's Guide 53

To test your device’s interface with the LonMaker Browser, follow these steps:

1. Right-click the NB FX Example Device device in your LonMaker drawing, then click Browse on
the shortcut menu.

&l NB_FX Exercise.vsd
shapes x

Search For Shapes:
Type your search here «

[1.LON SmartServer Static Shapes
[LonMaker MY Shapes
[LonPoint Shapes 3.0
#] nodeBuilder Basic Shapes 4,00

O &l

Configure...

!i:; - Delete
Manage. ..
Drata Point >< Move Device ¥
N =

ModeBuilder — »

e Plug-ins
—| Properties...

Re\aaxe Channel 1

Copy
Duplicate

v

||

4 4 b ¥ Subsystem 1 _Title Blacks / | ¢ | e
—_——

2. The LonMaker Browser opens. It displays the three functional blocks in your device interface
(LED, NodeObject, and Switch) and the network variables and configuration properties within
each functional block. You can only write values to the input network variables (blue) and

writable configuration properties (green).

W [NB_FX Exercise] LonMaker Browser - Untitled
File Edit Browse Help

------ sl@ls/s| o3[t

Subsystem

Suhsys’tem 1 IIB Device IIO(IeOI)ject nleequest 0,RO_EHAELE
HodeObject nvostatus H i 0,0

Subsystem 1 |HB Device
Subsystem 1 |HB Device |Switch nvoSwitch H [XIN]

=]

3. Click the Monitor All button ([i4]) on the toolbar to start polling all values.

54 NodeBuilder Quick-Start Exercise

4. Press and hold the left button at the bottom of your development board (SW1 on the FT 5000
EVB; 10 _6 on the Gizmo 4 1/O Board). The value of the nveSwitch network variable in the
Switch functional block changes to 100.0 1, which means that the switch is at its maximum level
(100%) and on.

5. Release the left button at the bottom of your development board. The value of the nvoSwitch
network variable in the Switch functional block changes back to 0.0 0, which means that the
switch is at its lowest level (0%) and off.

Note: The nvoSwitch network variable does not toggle each time you press the button. Instead, it
depicts the current state of the button. You will modify the behavior of the Switch functional
block in Step 7: Debugging Your Device’s Application so that it acts as a toggle-switch.

6. Click anywhere in the row for the nviLamp network variable in the LED functional block. In the
Value box in the browser toolbar, enter 100.0 1 and then press ENTER or click the Set Value
button (Ll) in the browser toolbar. This sets the LED on the left side of your development board
(LED1 on the FT 5000 EVB; IO_0 on the Gizmo 4 I/O Board) to its maximum level (100%) and
turns it on.

7. Inthe Value box in the browser toolbar, enter 0.0 0, and then press ENTER or click the Set Value
button (Ll) in the browser toolbar. This returns the LED to its lowest level (0%) and turns it off.
The LED functional block appears to be functioning correctly.

8. Proceed to the next section to debug your device’s application. You will modify your device
application so that the value of the nvoSwitch network variable in the Switch functional block
toggles each time the button is pressed instead of when the button is pressed and released.

For more information on testing your device, see Chapter 9, Testing a NodeBuilder Device Using the
LonMaker Tool.

Step 7: Debugging the Device Application

If your device does not function as expected, you can use the NodeBuilder Debugger to control and
observe the behavior of the device application. The debugger allows you to set breakpoints, monitor
variables, halt the application, step through the application, view the call stack, and peek and poke
memory. You can make changes to the code as you debug your device.

To debug your device’s application with the NodeBuilder Debugger, follow these steps:
1. Click the Echelon LonMaker/Visio button in the Taskbar to switch to the LonMaker tool.

2. Right-click the NB Device device shape in your LonMaker drawing, point to NodeBuilder, and
then click Debug on the shortcut menu.

NodeBuilder FX User's Guide 55

56

3.

B} NB_FX Exercise.vsd

Shapes x

Search For Shapes:
Type your search here w

[i.LON SmartServer Static Shapes
[LonMaker My Shapes

[LonPoint Shapes 3.0

#] nodeBuilder B

Brawse...
Commissioning »
Configure...
Delete

Manage. ..

Move Device P

Plug-ins » g
Properties... Edit Source

NodeBuilder Properties. ..
Copy

Duplicate

14 4 » MY Subsystem 1 £ Title Blocks Ji | >

1|

The NodeBuilder Project Manager appears, and a debug session for the device starts. There is a
short pause as the debug session is started while the NodeBuilder tool establishes communication

with the device’s debug kernel.

@ Echelon NodeBuilder, FX - C:Mm\Source\NB_FX ExerciselNB FX Example DevicelNB FX Example Device.nc

Fle Edit Wiew Project Debug Tools Window Help

DEHC & 2%

All Targets A £

BEO0®

0

nHKe ®

FX Example DevicelhB F2 Example Device.nc

= Project ME_FH Exercisss A [C:\m\SourceMNB_FX ExerciseNB FX Example DeviceMWB FX Example Device.nc
= {3 Device Templates //4{NodeBuilder Code Wizard Start <Codelizard Timestsmp> -
= NE Fx Example Devic /¢ Run on Wed Mar 11 13:36:37 2009, wversion 4.00.20 3
[E1n8 F2 Example Dr 7
+ HDEV‘?'ODWBW /43 NodeBuilder Code Wizard End
+ [H release /44 {NodeBuilder Code Wizard Start <Codefizard Template:
= [¥source Files /#¢¢ <Template Revision="3"/>
Filesys.h odeEuilder Code Wizar b1
o /¢ 11 NodeBuilder Code W d End
[ElLep.h FEEEEEITTEEEE i i it ddiididiiiddiiidiiiiddiddiiidddiiddiiiidiriddiii
[EILED e i /# File: NB FX Example Device.nc
[E1MB F¥ Example i
@Nodeoh]ect‘h /e
[ZIModethbiect n /4 Generated by NodeBuilder Code Wizard Version 4.00.20
= Switch h ’ /¢ Copyright (c) 2001-2009 Echelon Corporation. A4ll rights reserved.
[21 5uiteh ™ ‘
" = @ /¢ ECHELON MAKES NO REPRESENTATION, WARRANTY, OR CONDITICM OF
= = /¢ ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE OR IN v
[Project < >
X Device Hame | Debug Status | B dev template | subsystem |
E NB Device |Running ‘NB FX Example Device ‘Suhsystem 1 ‘
=4
2
o
Q
X +>r> Build device 'Subsy «| ¥ (Call stack not availsble - deviee X g, | gource ... |L | X Type Variable | Value
2 lcomputing status for 'NB o o =
E Resolving CodeWizard-3.1i o ‘é =
» [Resolving GEN.LIE as C:\VL F] 2 i
_a Fesolving EXTARITH.LIB as « o fz s
& 1| 4| » | M}, Messages ||« LA | = NN 3
Far Help, press F1 Debug Status: Running Subsystem 1.ME Device UM QOWR,

Double-click the Switch.nc file in the Project pane. A Debug window appears for the Switch.nc
file.

Find the when (io_changes (ioSwitch)) clause near the end of the file. This is the code
you added in Step 4: Developing the Device Application.

NodeBuilder Quick-Start Exercise

6. Right-click the nvoSwitch.state = !input value line, and then click Toggle
Breakpoint on the shortcut menu, or click anywhere in the line and press F9.

@ Echelon NodeBuilder FX - C:\im\Source\NB_FX ExerciselNB FX Example Device\Switch. nc

File Edit Wiew Project Debug Tools Window Help

DEHT & 2%

Com @O E N, ey % B @
B |al Targets ' &
BEO0 %

nNKke @ M

F¥ Example DevicelSwitch.nc |

=I_F5ource Files ~ M C:Aim\Source\NB_FX Exercise\NB FX Example DevicelSwitch.nc

[E Filesys.h 1, // report mask
Eieoh o, // programming mode
[ELED.ne o, // programming feiled
[E11B F: Excample 0, /¢ alarm notify dissbled
@Nodeoh]ect‘h o // reset_complete
= ModeObject.n r:
[switch b
[switch.ne when{io_changes{ioSwitchl))
[Z1 common.h t
[commen.ne
5 Lbraries nvoSwitch.value = input_value 2 Cut
+JDevices ' s::ti
= FHardware Templates = gendif i/ Suiteh NGO —
™ = - - Insert File into Project 3
£ | > Properties

"2 Projert Find

‘Watch Variable
| subsystem |

X Davice Hame | Debug status

E NB Device |Running Toggle Breakpoint 9 ‘Suhsystem 1 ‘
H

&

X [>35>> Build device 'Subsy «| X [Call stack not available - ¢ RunToCursor | ® Type Variable | Value ‘
:u Computing status for 'NEB o =

E Resolving CodeWizard-3.1i - 2 5

¥ [Resolving GEN.LIE as C:vL E g i

_a Resolving EXTARITH.LIB as « : E =

W[« » M} Messages {[«|] » E < | 3| & 3

For Help, press F1 Debug Skatus: Running Subsystem 1.ME Device Ln 502, Col 36 MUM QYR

7. A breakpoint marker (i) appears next to the line, and the line is added to the Breakpoint List
pane at the bottom of the NodeBuilder Project Manager.

Am\SourceMNB_FX ExerciselNB FX Example Device\Switch.nc

1. /{ report_mask

o, /¢ programming mode 0
o, /¢ programming failed

o, /¢ alarm_notify disabled

[u] // reset_complete

ri

when{io_changes{iodwitchl}))

b itch. =
nvodwitch.value = input_wvalue ? 0 @ 200u;

#endif // _Switch NC_

53]

8. Press and then release the left button at the bottom of your development board (SW1 on the FT
5000 EVB; I10_6 on the Gizmo 4 I/O Board). Observe that program execution stops at your
breakpoint as denoted by the arrow symbol on top the breakpoint symbol (Iﬂ).

NodeBuilder FX User's Guide 57

58

9.

10.

Y

progra;ming_mode
programming failed
alarm notify disabled
reset_complete

when({io_ changes{io3witchl}))

Vinput_wvalue;

input_walus ? 0 Z00mu;

{
=] nvoSwitch.state =
nvoldwitch.value =
¥
#endif // _Switch NC_

v

Right-click the input value variable in the line of code in which you set the breakpoint, and
then click Watch Variable on the shortcut menu.

@ Echelon NodeBuilder FX -

Im\SourcelNB_FX ExerciseMNB FX Example DevicelSwitch. nc

File Edit Wiew Debug Tools Window Help
e & 28

= =2 @0 §A A,

Be Ml Targets -|[#0]) o
BEMD®

P KE @ @ T

Fx Example DeviceSnitch.ne |

Project

b B2@

[C:\m\SourceMNB_FX ExerciseMNB FX Example DevicelSwitch. nc

slarm notify disabled

Far Help, press F1

= C¥source Files o
[E)Fiesys.h 1, /¢ report_mask
Eenh o, /¢ programming_mode
[ELenne a, /¢ programming failed
[E)HE Fx Example o, I
[EModecbjert h 0 // reset_complete
[E)Hadecbiect.n ¥
[E)5witch b
[E switch.nc when({io_changes{iodwitchl))
[Z1 common.h ¢
[Z] common.nc [=+] nvoSwitch.state = u
#(ibraries nvoZwitch.value = input_valus
= dDevices '
E+ Hard, Templat —
DD bardiore Tompctes v #endif // _Switch NC_

< | =

" Project

X Device Name | Debug Status

2 " NB Device |Break @ 50z

g

£

[

[=]

X ooy Build device 'Subsy - X wheni...}

2 lcomputing status for 'NB

E Resolving CodeWizard-3. 11 =3

» [Resolving GEN.LIE as C:\VL F]

_a Fesolving EXTARITH.LIB as « o

& 1| 4| » | M}, Messages ||« »]

Cut
Copy
Paste
Insert Fils inta Project »
Properties
Find —
>
Toggle Breakpaint Fa ‘ Subsystem ‘
‘Suhsystem 1
@0
Step Ower
Step Inta
Run To Cursor x =
. Type Variable | Value

Show Current Statement | m} P

£ %

= =

[

H £

]
a E
UM QR

Debug Status: Bresk @ 502 Subsystem 1.MB Device Ln 502, Col 36

The Watch Variable dialog opens.

NodeBuilder Quick-Start Exercise

11.

12.

13.

14.

15.

Watch Variable

Wiiatch type
+ \Watch variable

" Configuration takle symbol

" Built-in syrmbol

j Recalculate

Type Variable | Value

Missing... Add Wvatch Cancel

Click Add Watch. The variable is added to the Watch List pane at the bottom of the NodeBuilder
Project Manager. This pane displays each of the variables added to the watch list and their current
values.

Click the Step Into button (E2]) in the debug toolbar to step through the code in the function until
you reach the end of the when clause. The input value variable is 0.

Click the Step Into button to observe that the function executes a second time. The
input value variable is now 1.

Click the Resume button (»]) in the debug toolbar. Your device application resumes normal
execution.

Click Debug, point to Stop Debugging, and then select All Devices.

NodeBuilder FX User's Guide 59

60

16.

17.
18.

19.

20.

21.

@ Echelon NodeBuilder FX - C:\im\Source\NB_FX ExerciseliNB FX Example Device\Switch. nc

Fie Edit Miew Project | Debug | Tools Window Help
=y =] 8 % Reset 3

Halt L4
B W Stop Debuaging W Current Device
225y e -
b, M |=El Step Qver F10

— [stepime Fi1 |
M Run ToCursor

= (¥source Fies X Exercise\NB FX Example DeviceXswitch. nc

[EFilesys.h PeekiPoke Memary report mask
[Eleoh Breskpoints » /¢ programming_mode
[ELenne | — /¢ programming failed
[E1MB F Example o, /4 alarm notify dissbled
[Enodeobject.h D // reset_complete
) _ P

[E)Hadecbiect.n ¥
[E5witchh
[E switch.nc when({io_changes{iodwitchl))
[common.h ¢
[comman.nc [=+] nvoSwitch.state = linput_value;

#(ibraries nvoSwitch.walue = input_wvalus 2 0 @ 200w

= dDevices
#{_IHardware Templates

b

gendif // _Bwitch HO_
3 >

[Project v

Device Name | Debug Status | B dev template | subsystem |
NB Device |Break @ 502 ‘NB FX Example Device ‘Suhsystem 1 ‘

Debug L1 %

Type ‘ Variable | Value ‘

E...| Source ... |L|
long ... ‘inpul_va... |1 ‘

Yes C:VLMY 3O, .. 502

Computing status for 'NE
Resolving CodeWizard-3. 11
Resolving GEN.LIE as C:\L
Fesolving EXTARITH.LIB as «

H 4|» N\Messagesmu »

Stop debuaging all devices Debug Status: Break @ 502 Subsystem 1.MB Device NUM QYR

>rerr Build device 'Subsyﬂ é when(...)

Results Pane 00 X
Breakpoint L O X
WatchList O X

Call Stack

The NodeBuilder debugger has demonstrated that events occur when the button is both pressed
and released. To implement the desired behavior in which an event occurs only when the button is
pressed, change the following lines of code in the Switch.nc file:

nvoSwitch.state !input value;
nvoSwitch.value = input value ? 200u : 0;

to the following:

if (!input value) {

A

nvoSwitch.state "= 1;
nvoSwitch.value = nvoSwitch.state ? 200u : 0;

}
Verify that the Load after Build option (E) is set.

Right-click the NB FX Example Device device template in the Project pane, then click Build on
the shortcut menu. The NodeBuilder tool rebuilds the NB FX Example Device application and
downloads it to all devices using the NB FX Example Device device template.

Right-click the NB FX Example Device device in your LonMaker drawing, then click Browse on
the shortcut menu to open the LonMaker Browser. Verify that the Monitor All button ([t) on
the toolbar is enabled.

Press the left button at the bottom of your development board (SW1 on the FT 5000 EVB; 10_6
on the Gizmo 4 1/0 Board) repeatedly. Observe that the button now acts as a toggle-switch—the

value of the nvoSwitch network variable in the Switch functional block changes when you press
the button, but it no longer changes when you release the button.

Proceed to the next section to install and test your device in a LONWORKS network.

For more information on debugging Neuron C applications, see Chapter 10, Debugging a Neuron C
Application.

NodeBuilder Quick-Start Exercise

Step 8: Connecting and Testing the Device in a Network

Once you determine that your device is functioning as desired, you can test it as part of a network.
You can use the LonMaker tool to connect your development devices to other devices and verify their
operation within a network. This entails creating functional blocks, connecting the network variables
within the functional blocks, and verifying that the network variable values are updated appropriately
when you use the I/O devices on the FT 5000 EVB or Gizmo 4 1/O Board.

An output network variable of a device may be connected to compatible input network variables of the
same device. These are called turnaround connections. For this exercise, you will create a turnaround
connection so that a switch on your development board controls an LED. The procedure is the same
for creating connections between different devices.

To create Functional Block shapes with Network Variable shapes for each of your functional blocks,
and then connect the network variables, follow these steps:

1. Click the Echelon LonMaker/Visio button in the Taskbar to switch to the LonMaker tool.

2. Drag a Functional Block shape from the NodeBuilder Basic Shapes 4.00 stencil on the left of
the LonMaker window to the drawing.

L=l NB_FX Exercise.vsd

Shapes X ~
Seatch for Shapes:
Type your search here

i.LOM SmartServer Static Shapes
LonMaker by Shapes

[LonPaint Shapes 3.0

' ModoBuilder Basic Shopes 4.00 |

eeeee

L
e

rpd

Metve... Metw...
=

s M; Data Point £

s Ms LrL_»mmnﬂl‘ T T
AN

i = Targ... Channel 1
—

HIIII o @

ek,

T - HBRguire__

arget ..,

“ /|4 4 » M Subsystem 1 4 Title Blocks J(_ >

3. The Functional Block wizard opens. You will use this wizard to associate the new functional
block shape with the NB Device device and the Switch functional block.

4. In the Functional Block wizard, do the following:

In the Name property under Device, select NB Device if it is not already selected.
In the Name property under Functional Block, select Switch.

In the New FB Name: property, enter Left Switch.

Select the Create All Network Variable Shapes check box.

e o

NodeBuilder FX User's Guide 61

Functional Block Wizard

x)

Select Device and Functional Block Instance
Source Functional Block

Marme: | Type: |

Subsystem

Mame: | Subsystem 1 Browvse...
Device

Nama: |NE, Device j Type: | MB FX Example Device [03]

Functional Block

Tepees |Open-Loop Sensar (OLS)

[
Mame; |5WﬂCh J

S
=

Mewy FB name: Mumber of FBs to creste:
Lett Swvitch
St pvile v Creste sl network varisbles shapes
Dynamic: FBs
L
I

| Finizh | Cancel Help

Click Finish. The New Functional Block wizard closes and the LonMaker drawing appears. A
new Left Switch functional block shape appears on the drawing.

NB_FX Exercise.vsd

Shapes x

[N S—
Type your ssarch here

[i.LON SmartServer Static Shapes
[LonMaker MY Shapes

[LonPaint Shapes 3.0
ﬁ hodeBuilder Basic Shapas 4,00

!,JQJ

'#
Drata Point X NB Device el Switeh
5erwc u o 4
. | LT I
Channel 1

3

4 4 » M} Subsystem 1 4 Title Blocks J_(_ | >

Repeat steps 2—4 to create a new functional block shape named “Left LED”. In the Name
property under Functional Block in the Functional Block Wizard, select LED. In the New FB
Name: property, enter Left LED.

NodeBuilder Quick-Start Exercise

Functional Block Wizard

Select Device and Functional Block Instance
Source Functional Block

Mame: | Type: |

Subsystem

Mame: | Subsystem 1 Browse...
Device

Mame: |NEI Device j Type: | MB F% Example Device [03]

Functional Black

e [open-Loop Actustor (OLA) x| o |3
=~
1 3:

Mame; |LED
Meray FB name: Mumber of FBs to create:
Left LED
F v Create all network variables shapes
[ynamic FBs
r
r

| Finizh | Cancel Help

)

7. Click Finish. The New Functional Block wizard closes and the LonMaker drawing appears. A

new Left LED functional block shape appears on the drawing.

NB_FX Exercise.vsd

Shapes x

[N S—
Type your ssarch here

[i.LON SmartServer Skatic Shapes
[LonMaker MY Shapes

[LonPaint Shapes 3.0

#] nodeBuilder Ba:

Drata Point & B Device Lefl Switch
u

Servic., M NB Device Left LED

|

14 4 » [\ Subsystem 1 4_Title Blocks / [¢ |
—_——

8. Connect the nvoSwitch output network variable of the Left Switch functional block to the

nviLamp input network variable of the Left LED functional block. To do this follow these steps:

NodeBuilder FX User's Guide

63

64

Drag the Connector shape from the NodeBuilder Basic Shapes 4.00 stencil to the drawing.

Position the left end of the shape over the tip of the nveSwitch output network variable on the
Left Switch functional block before releasing the mouse button. A red box appears around

the end of the Connector shape when you have positioned it correctly over the Network

Variable shape.

2} NB_FX Exercise.vsd

EBX

Shapes x

Search For Shapes:
Type your search here «

[E] i.LOM SmartServer Static Shapes
[Lontaker My Shapes

[LorPoink Shapes 3.0

1 NodeBuilder Basic Shapes ... e |

!JQJMI

Blnck

#J ;JQ

Metw,, MNetw..

!JWLE m

Glue ko Connection Point

B Device Lal Ew
N8 Device Left LED

1<

4 4 » M} Subsystem 1

Title Blocks / |4

|

Drag the other end of the Connector shape to the nviLamp input network variable of the

Left LED functional block until it snaps into place and a square box appears around the end
of the Connector shape. There is a brief pause as the LonMaker tool updates the NB Device

device over the network.

2 NB_FX Exercise.vsd

Shapes X

Search For Shapes:
Type your search here +

[i.LON SmartServer Skatic Shapes
[Lontaker My Shapes

[LonPoint Shapes 3.0
ﬂ NodeBuilder Basic Shapes ..

leml
)=
meJml

Metw..

I Dats Foint e
Ser’\ﬂc Me e u 9

Glue ko Connection Point

NB OSvica el Bwieh @
NE Device Lef LED

=9

4 4 ¢ M} Subsystem 1

Title Blacks /7 | <

v
)

Monitor the values of the nvoSwitch output network variable of the Left Switch functional block

and the nviLamp input network variable of the Left LED functional block. To do this, follow

these steps:

a. Right-click an empty space in the LonMaker drawing and then select Enable Monitoring on

the shortcut menu.

NodeBuilder Quick-Start Exercise

2 NB_FX Exercise.vsd

Shapes x
Search For Shapes:
Type your search here v

[El LonMaker MY Shapes
[Fl LonPaint Shapes 3.0

o[~
m O
¥) |

Mot Netw..
2|
Data Paint

Servicw Merge
%5
- a Takg...

Devalp..
Targat ..

3l

[E i.LON SmartServer Static Shapes

#] WodeBuilder Basic Shapes ... el
-~

><
LMS Network Interfape

MEB Device.Left Switch

Channel 1

4 4 » »\ Subsystem 1

Title Blocks 7 |<

wLamp.

NB Device.Lsft LED

Commissioning »
Connect. ..

Delete

Display Options 3

Go To Subsystem...

Manage...
Maove Objects »
Plug-ins »

Subsystem Froperties...

Paste

~

2

Right-click the new Connector shape and select Monitor Input Value to display the current
value of the nvoSwitch network variable on the Left Switch functional block.

2 NB_FX Exercise.vsd
Shapes X

Searchfor Shapes:
Type your search here 4

[i.LOM Smartserver Static Shapes
[Lontaker My Shapes
[LonPoint Shapes 3.0

#] NodeBuilder Basic Shapes ... |

=fu)=§

ur
Black

=)

Target ..,

=

LMS Network Interfape

NEB Device.Left Switch

Channel 1

NE

4 4 » M} Subsystem 1

Right-click the new Connector shape and select Monitor QOutput Value to display the
current value of the nviLamp network variable on the Left LED functional block.

NodeBuilder FX User's Guide

Title Blocks / |4

A
Delste

Get Inpuk Valus
Get Output Value

WManitor Input ¥

Monitor Oukput Yalue
Properties. ..

Set Connection Description ¥
Use Reference

Copy
Duplicate

=

[+

65

2 NB_FX Exercise.vsd

Shapes x ~
Search For Shapes:
Type your search here |+

[E i.LON SmartServer Static Shapes
[El LonMaker MY Shapes

[Fl LonPaint Shapes 3.0
ﬁ NodeBuilder Basic Shapes ..

mlml
T

MHJ MJ Connector 0.0 0 -C Lemp
Metur,, Nezw ; Delets
NB Device Left Switch
. LNS Network Interfabe et Input Yalus
: e Get Qukput Yalue
Servicu Merge g v Manitor Input Value =
} > Channel 1
J rrd g Set Connection Description
T2 Use Reference
e - Copy
Davelop... i
Target .., NB D Duplicate
— 4
~||H 4 » ¥\ Subsystem 1 4_Title Blocks / | ¢ | >

10. Press the left button at the bottom of your development board (SW1 on the FT 5000 EVB; I0_6
on the Gizmo 4 I/O Board) repeatedly to test the connection between the nvoSwitch output
network variable of the Left Switch functional block and the nviLamp input network variable of
the Left LED functional block.

Observe that the left LED at the bottom of your development board (LED1 on the FT 5000 EVB;
10_0 on the Gizmo 4 I/O Board) turns on and off each time you press the left button on your
development board. In addition, the current values of the output and input network variable on the
Connector shape toggle between 100.0 1 and 0.0 0 each time you press the button.

EE NB_FX Exercise.vsd

Shapes x b

Search For Shapes:
Type your search here v

[E i.LoN SmartServer Static Shapes
[LonMaker My Shapes
[E LonPaint Shapes 3.0
1 ModeBuilder Basic Shapes ... el

MFI MJ Connectar m:[mnn 1%In:[100.0 1]

Mt NEIW

(o] - NB Device.Left Switch NB Device.Left LED
T LNS Network Interfabe

[rata Point

Servic,,

A J Channel 1

x

De
T NB Device

3

4 4 » [\ Subsystem 1 4 Title Blocks / | ¢ | >

For more information on testing NodeBuilder devices in a LONWORKS network, see Chapter 9
Testing a NodeBuilder Device Using the LonMaker Tool.

NodeBuilder Quick-Start Exercise

Additional Device Development Steps

After you create your device application and successfully test your device in a network, you can
perform the following additional steps in the device development process, which are summarized in
the following sections:

Create a LonMaker stencil.

Create an LNS device plug-in.

Create an HMI.

Create a device installation application

Submit an OEM license.

Apply for LONMARK certification for your device.

Creating a LonMaker Stencil

You can create a LonMaker stencil for your device to make it easier for network integrators to install.
A LonMaker stencil should contain a custom LonMaker shape for your device and for each functional
block in the device interface. These custom shapes can then be provided to network integrators so that
they can quickly integrate your device into their LONWORKS networks using the LonMaker tool.

To create a LonMaker stencil for your device, you do the following:
1. Create a new LonMaker stencil. To do this follow these steps:

a. Open the LonMaker drawing containing the NodeBuilder device for which you want to make
custom shapes.

b. Click File, point to Stencils, and then click New Stencil.

B Microsoft Visio

i File | Edit Wiew Insert Format Jooks Shy Type a question for help =
[MysShapes 3 .
3 tew A v 7Y Y S TECANCY . FEl =
3| open... Ctr0 D T
Bl LonBASIC i =
l Close l;ﬁ
B LonhvShapes
Il Save Chrl+5 =&
B LonPaintz
LonMaker Documents »
El vLonPaints
aly Save as Web Page...
B B muti-portRouter
Shapes 3
ES ‘lﬁ MELonBasic
Page Setp... Bl scHEDULE
& Prink Preview & Timers
4| Print... ChrkP i
4 Block Diagram »
send To * |28l Erainstorming b
LG, ANB3_2 Exercise, vsd 21| Bulding Plan 5
2 G ANB3_Z Exerd 1vsd 4 Business Process B Out:[100.0 17 In:[100.0 1]—3
3C:h. ANB3 QuickStart.vsd | Charts and Graphs » Pl Swilch Example 1.Left LED
4 Cih, APlug-In Instantiation Models,vsd 3| Database »
Exit [Electrical Enginesring 3
¥ '
S 4 Flowchart 3
'i:!’ LNS' LPLSNBMM_J Map 3
ki — 4 Mechanical Enginesring
Merge Box Control £ Metwork v
’ ’ d ©rganization Chart »
m!ﬂl mﬂl EJ i
i . ks [0 Process Enginsering »
1 Project Schedule 3
CECEE [Software »
Deer
Target .. [0 visio Extras »
(1| ‘eb Diagram 3
& Cpen Stencil... e
V[r AT o stenal [BE: z
Show Dacument Stenci Page 11

c. A blank LonMaker stencil named Stencil is added to the Shapes window.
2. Create a custom device shape. To do this follow these steps:

a. Right-click the NodeBuilder device in the LonMaker drawing page and then select Properties
on the shortcut menu.

NodeBuilder FX User's Guide 67

68

2 NB_FX Exercise.vsd

Shapes x »~

Search For Shapes:
Type your search here |+

[l i.LOM SmartServer Static Shapes
] Loniaker MY Shapes

[LonPoint Shapes 3.0

#1 NodeBuilder Basic Shapes 4,00
stencill

Brawse. .,

Commissioning 3
Configure...
Delete
C Goto Functional Block,.. P00 ”
& NB Device Manage... NB Device Left LED
LMS Network Interfaie Move Device »

NodeBuilder 3

Channel 1

Copy
Duplicate

v

<

W 4 » [\ Subsystem 1 4_Title Blocks / | ¢ | b3

The Device Properties dialog opens with the Attributes tab selected. This dialog allows you
to read and write to the properties of the LonMaker device.

Device Properties &

Functionzl Blocks l Address Table] Metvwoark Variahble Config l Extension Records l
Aftributes] Idertifiers] Basic Properties] Advanced Properties] Self-documentation]

Device name:
Template rame: | ME F Example Device [03]
Commiszsion status: | Current
State: | Configured, Online
Firmevare version: | 18.0
Channel
Rlatme: | Channel 1 Handle: 1
Subsystems
Subsystem 1

Ok | Cancel Help

In the Device Name property, enter the name to be shown for the custom device shape in your
LonMaker stencil.

Click the Basic Properties tab.

Creating and Opening NodeBuilder Projects

%]

Functional Blacks l Address Table] Pleteark Wariable Config l Extension Records l
Mriues | ldentifiers Basic Properties | advanced Properties | Seff-documentation |

Device Properties

Device name; | MB Device
Location Ping Interval
" ASC
| 800500000000 Mewer j
¢ Hex
Description:

Ok | Cancel Help

Set the Location and Ping Interval properties to the values to be saved with the custom
device shape in your LonMaker stencil. See the LonMaker online help file for more
information on these properties. Note that changes made to the Description are not saved in

the custom device shape.

€.

f. Click the Advanced Properties tab.

NodeBuilder FX User's Guide

Device Properties El
l

Functional Blacks l Address Table] Pleteark Wariable Config] Extension Records
Mtriues | identifiers | BasicProperies Advanced Properties | Seff-documenttion |

Dievice name: | MB Device

Mon-group Receive Timer

r m | milizeconds

Authentication Priarity

(» Dizahle

" Enshle - sutomati
Existing key: nahle - automatic

| " Enahle - manual Slat:

Ok | Cancel Help

g. Set the Non-group Receive Timer property to the value to be saved with the custom device
shape in your LonMaker stencil. See the LonMaker online help file for more information on
this property.

h. Click OK.

i. Drag your NodeBuilder device to your LonMaker stencil. A new custom LonMaker master
shape with the device name specified in step ¢ appears in the stencil.

i NB_FX Exercise.vsd

Shapes X

Search For Shapss:
Type your search here +

[i.LOM SmartServer Static Shapes
[Lonitaker My Shapes

[E LorPoink Shapes 3.0

i Nodeilder Basic Shapes 4,00
#] stencill d

= ?

ut:[100.0 11 In:[100.0 1} =
i

NB Device Left Switch NB Device Left LED
LNS Network Interfape
Channel 1
=
NB
- b
~||H 4 » W[\ Subsystem 1 4_Title Blocks / |4 | 3

j- Click the disk icon (L&) on the stencil’s title bar. Specify a name and location for your
LonMaker stencil file (.vss extension), and then save your LonMaker stencil.

70 Creating and Opening NodeBuilder Projects

3. Create custom functional block shapes. Custom functional block shapes let you provide network
integrators with functional block shapes that have built-in network variable shapes. To do this
follow these steps:

a. Verify that functional block shapes for each functional block defined by the device interface
have been added to the LonMaker drawing. To create a functional block shape, drag a
Functional Block shape from the NodeBuilder Basic Shapes 4.00 stencil on the left of the
LonMaker window to the drawing, and then complete the Functional Block wizard.

b. Configure the default network variable and configuration property values for the custom
functional block using the LonMaker browser or an LNS device plug-in (if you have created
one for your device). You can create several versions of the same functional block for
different configurations of that functional block.

c. Drag each functional block shape to your LonMaker stencil. New custom LonMaker master
shapes with the functional block names specified in the Functional Block wizard appear in the
stencil.

1] NB_FX Exercise.vsd

Shapes X

Search For Shapss:
Type your search here +

[i.LOM SmartServer Static Shapes
[Lonitaker My Shapes

[LonFaint Shapes 3.0

#] WodeBuilder Basic Shapes 4,00
NE Example Device Stencl el

[
Lo
—OUt[100.0 1] IN:[100.0 1}—gpaviiame &1

E NB Device Left Swilch nB Bevics LeitL ED
LNS Network Interfale

Channel 1

v || 4 » » Subsystem 1 A Title Blocks J(>

d. Click the disk icon (i) on the stencil’s title bar to save your LonMaker stencil.

Note: Custom LonMaker shapes can contain multiple functional blocks, devices, and connections. For
example, you can create custom LonMaker shapes for two connected functional blocks, or for a device
and all of its configured functional blocks. To do this, select multiple shapes and drag and drop them
to a custom stencil. See the LonMaker User’s Guide for more information on creating complex
custom LonMaker shapes.

Creating an LNS Device Plug-in

You can create an LNS device plug-in to simplify and automate the installation of your devices for
network integrators. An LNS device plug-in is an application that implements the LNS Plug-in API.
LNS device plug-ins are typically written in a .NET programming language such as C# or Visual Basic
NET, but you can write an LNS device plug-in in any development environment that allows the
creation of an (COM) automation server for Windows. For more information on writing LNS device
plug-ins and the LNS Plug-in API, see the LNS Plug-in Programmer’s Guide.

NodeBuilder FX User's Guide 71

Developing an HMI

You can create a human machine interface (HMI) for your device so that end users can monitor and
control it. You will typically create an HMI if you are building a complete system that requires one;
however, if your device is installed by integrators where each installation is unique, the integrators will
typically develop the required HMIs.

You can use the LonMaker tool to design a simple HMI for your device. With the LonMaker tool, you
use the data point shape in the LonMaker Basic Shapes stencil and standard Visio shapes to create the
HMI. For example, you can create an HMI that displays the current state of a lamp and provides
override switches that let you manually turn the lamp on and off. For more information on creating
HMIs with data point shapes, see Chapter 6 of the LonMaker User’s Guide.

Switch Override Lamp State
H—
s
*
k-
ON % OFF
| 10001 I | 1 I
DE- 1.1 DO- 2. Digital state

You can use high-end HMI tools, such as Wonderware’s InTouch or Intellution FIX, to represent more
complex types of network interactions. These tools are developed with a scripting language tuned to
specifically address HMI tasks. In addition, these tools offer components that provide reporting and
analysis, history, alarm logging, event handling, and Internet-enabling.

Creating a Device Installation Application

You can create an installation executable that automatically installs all the files required by your
device into the appropriate locations on your customers’ computers. The files that your application
should install include the device application (if your device uses downloadable application memory),
the device interface file, user-defined resource files, the LonMaker stencil, the LNS device plug-in, and
the HMI. Typically, the installation executable is created using an installation application such as the
InstallShield® product.

If your device will be installed in a managed network (as opposed to a self-installed network), your
customers must have LNS or an LNS network tool such as the LonMaker tool already installed on their
computers. Installing LNS or an LNS network tool creates a LonWorks folder that is stored by
default in the root directory or program files directory on the user’s computer (for example,
C:\LonWorks or C:\Program Files\LonWorks). The user, however, can change the location of the
LonWorks folder when they are installing LNS or an LNS tool. You can locate the LonWorks folder
in the Windows registry at the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonWorks Path

The following table lists and describes the files that your installation application should install:

Creating and Opening NodeBuilder Projects

Programmable
Application Image
Files

(.APB and .NXE)

Device Interface Files

(.XIF, .XFO*, and
XFB)

* XFO file is
optional.

The LonMaker tool and other LNS network tools use programmable
application image files to download the compiled application image to
a device. The programmable application image files have .APB,
.NDL, and .NXE extensions.

On a NodeBuilder computer, the programmable application image
files are stored in the Development or Release target folder within the
device template folder. For example, the application image files for
the development target in the quick-start exercise in this chapter are
stored in the C:\Lm\Source\NB_FX Exercise\NB FX Example
Device\Development folder.

Your installation executable must install the .APB files. The .NDL
file is used to support manufacture-time loading of devices and
therefore does not need to be installed; the NXE file is used to
support legacy network tools and is usually not required. The .APB
file should be installed in a folder where it can be found by the LNS
network tool on the target computer. For the LonMaker tool, you can
find this location in the Windows registry in the following location
(by default, this location is C:\LonWorks\Import):

HKEY LOCAL MACHINE\SOFTWARE\LonWorks\LonMaker
for Windows\NxeSearchPath

Your installation executable should install your .APB file in a
subdirectory labeled with your company name
(C:\LonWorks\Import\YourCompany, for example). Your
installation should search for your company’s folder and, if not found,
it should create a folder with your company’s name.

See Building an Application Image in Chapter 8 for more information
on these programmable application image files.

The LonMaker tool and other LNS network tools use device interface
files (also known as external interface files) to create LNS device
templates. Device interface files have .XIF, .XFO, and .XFB
extensions.

On a NodeBuilder computer, the device interface files are stored in
the same Development or Release target folder that contains the
programmable application image files for the device.

Your installation executable must install the .XIF and .XFB files.
Installing the .XFO file is optional; however, it speeds up device
template importing for tools that support it such as the LonMaker tool.

Your installation executable should install these device interface files
in a folder where it can be found by the LNS network tool on the
target computer. For the LonMaker tool, you can find this location in
the Windows registry in the following location (by default, this
location is C:\LonWorks\Import):

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonMaker
for Windows\XifSearchPath

Your installation executable should install your device interface files
in a subdirectory labeled with your company name
(C:\LonWorks\Import\YourCompany, for example). Your
installation should search for your company’s folder and, if not found,
it should create a folder with your company’s name.

See Building an Application Image in Chapter 8 for more information

NodeBuilder FX User's Guide

73

on these device interface files.

Device Resource Files Resource files are the files created by the NodeBuilder Resource that

contain network variable and configuration property type information
(-TYP, .FMT, .FPT) and functional profile definitions. You must install all resource files
that are used by your device.

The location of the resource files on the NodeBuilder computer can be
found by starting the resource editor and finding the folder that
contains the resource file set you want to include in the installation.

For each resource file set, you must install the type file (TYP
extension), the format file (FMT extension), the functional profile
file (.FPT extension), and any language resource file (language
resource file extensions vary by language as described in the
NodeBuilder Resource Editor User’s Guide. Uninstalling a device
should not remove manufacturer resource files because they may be
used by other devices from the manufacturer.

Resource files should be installed to the LonWorks\types folder, in a
subdirectory labeled with your company name
(C:\LonWorks\Types\YourCompany, for example).

LNS Device Plug-in If you have created an LNS device plug-in, it should be installed and
registered by your installation. See the LNS Plug-in Programmer’s
Guide for more information.

LonMatker Stencil If you have created a LonMaker stencil containing custom shapes for
your device, it should be installed in the LonWorks\LonMaker\Visio
folder in a subdirectory labeled with your company name
(C:\LonWorks\LonMaker\Visio\YourCompany, for example). See
Creating a LonMaker Stencil earlier in this section for more
information.

HMI Application If you have created an HMI for your device, it should be installed and
registered. See the documentation for your installation creation
software and your HMI development tool for more information on the
steps this entails.

Submitting a LONWORKS OEM License

You need a LONWORKS OEM License to purchase Neuron Chips or Echelon Smart Transceivers, and
to manufacture devices that contain Neuron Chips or Echelon Smart Transceivers. You can download
a LONWORKS OEM License Agreement from the Echelon Web site at www.echelon.com/oemlicense.
Sign and return this license so that you can purchase Neuron Chips or Echelon Smart Transceivers
when you are ready to start building device hardware.

Applying for LONMARK Certification

LONMARK International is an independent, non-profit organization that oversees LONWORKS
technology and related standards. If your device will be installed by integrators, you will want to
apply for LONMARK certification for your device since most integrators require LONMARK certified
devices for their projects. LONMARK certified devices are assured to be compliant with LONMARK
standard and can be easily integrated into LONWORKS networks with other LONWORKS devices from
multiple vendors. For information on having your device LONMARK certified, see the LONMARK Web
site at www.lonmark.org.

Creating and Opening NodeBuilder Projects

http://www.echelon.com/oemlicense
http://www.lonmark.org/

NodeBuilder FX User's Guide

75

4

Creating and Opening NodeBuilder
Projects

This chapter describes how to create, open, and copy NodeBuilder projects, and how
to copy NodeBuilder projects and NodeBuilder device templates to another computer.

NodeBuilder FX User's Guide 77

Infroduction to the NodeBuilder Project Manager

A NodeBuilder project collects all the information about a set of devices that you are developing. You
will create, manage, and use NodeBuilder projects from the NodeBuilder Project Manager. The
project manager provides an integrated view of your entire project and provides the tools you will use
to define and build your project.

To create a NodeBuilder project, you start the NodeBuilder Project Manager from the LonMaker tool
(recommended) or directly from the NodeBuilder program folder. You will typically start the project
manager from the LonMaker tool because it simplifies the process of associating the NodeBuilder
project with the LonMaker network.

You can use the same NodeBuilder project with multiple LonMaker networks, and you can use a
LonMaker network with multiple NodeBuilder projects; however, you can only use a LonMaker
network with one NodeBuilder project at a time.

The NodeBuilder Project Manager initially contains three panes: the Project pane (left), the Edit pane
(right), and the Results pane (bottom). These panes can all be moved and resized, and the Project and
Results panes can be closed; however, the NodeBuilder Project Manager displays all the three panes by
default.

@ Echelon NodeBuilder, FX - [C:\LonWorks\NeuronC\Examples\FT5000 EVB\NcMultiSensor Example\Source\Switch. nc]

@ File Edit Wiew Project Tools Window Help -8 x
bexEda & T8
m & 07) ic]
B® |all Targets - &
BEM®
@ CiiLamorksiMeuronC\Examples\FTS000 EVEYNcultiSensorExample|SourcelSwitch.ne ‘
=3 Project NeMulkiSensorEsar A SEEFETFTSEEF RIS FESEF TSI F TS L E TS F I T F i E i i i iddiid -~
=3 Device Templates // File: Switch.nc
=1 & NeMultiSensorExamg. '
[EMain.nc /¢ Copyright (o) 2009 Echelon Corporation. All rights reserved.
+ H Development o
1 [H] Release // This file is Example Software as defined in the Softvare
=153 Source Files /¢ License Agreewent that governs its use.
[E1FT5000Ev2lEe i
[// ECHELON MAKES NO REPRESENTATION, UARRANTY, OR COMDITION OF
Elriosys.h // MY KIND, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE OR IN
E ‘Es"s" /4 INY COMMUMICATION WITH TOU, INCLUDING, BUT NOT LIMNITED To,
@Is"mpeme”ta /¢ INT IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY
Joystick.ne // QUALITY, FITHESS FOR ANY PARTICULAR PURPOSE,
LCD-h // WOMTNFRINGEMENT, AND THEIR EQUIVALENTS.
[E1Lcone i
@Lamp‘nc Iy
[Evightsensor. /4 Description:
[ElLuzne // Switch.ne contsins when-tssks, I/0 handler functions and
@Nudeohiact.n /¢ any other code that is used with the Switch component.
[E15witch.ne
(=1 Tempsensor.r SEEFETFTSEEF RIS FESEF TSI F TS L E TS F I T F i E i i i iddiid
#{Libraries
CIDevices v $ifndef Switch NO_
< > #define Switch NC_
B A
Project < >
x
= =
u
5
-4
2
7
2 [H| 4] » M} Messages [Seach Resuls § Eve] |
Far Help, press F1 Ln 8, Col 3 UM OWR.
The following table describes the three panes in the NodeBuilder Project Manager:
Pane Description
Project Provides a hierarchical view of all the components in the NodeBuilder

project. The Project pane lets you browse the files used in the
NodeBuilder Project. See the following section for further description
of the Project pane.

78 Creating and Using Device Templates

Edit Lets you to edit any of the Neuron C source files or header files that
are used in the project. See Chapter 7, Developing Device
Applications, for more information on using the Edit pane.

Results The Results pane contains three tabs: Messages, Search Results, and
Event Log.

The Messages tab displays compiler and other messages
generated when you build the application image for a
NodeBuilder device template. If any errors or warnings are
generated during the build, you can double-click them to open the
file containing the error or warning and go to the line of code that
generated the error or warning. See Building an Application
Image in Chapter 8 for more information on using the Messages
tab in the Results pane.

The Search Results tab displays the results of a Find in Files
search. You can double-click any of these results to open the file
containing the search text and go to the line containing the search
text. See Searching Source Files, in Chapter 7 for more
information on using the Search Results tab in the Results pane.

The Event Log contains debugger event messages. See Chapter
10, Debugging a Neuron C Application, for more information on
using the Event Log tab in the Results pane.

Using the Project Pane

The Project pane appears on the left side of the NodeBuilder Project Manager by default. The Project
pane provides a hierarchical view of all the components in the NodeBuilder project. You can use the
Project pane to browse and open the files in your NodeBuilder Project.

S| Praject 'McMulkiSensorExample’:
=4 Device Templates
= @2 MNeMultiSensorExample
@ Main. nc

+ m] Development

+ [H| Release

- =3 Source Files
[E)FT5000EvalEoard.h
[EFrso00evalBoard.ne
[ElFilesys.h
= IsiImplementation. nc
[Z1 20vstick.nc
Elcoh
B
@ Larnp.nc
[ELightsensor.nc
@ L, nc
[E1 Modeobject.ne
[Z1 switch.ne
@ TempSensar.nc

+{TLibraries

DDevices

+ [IHardware Templates

| Project

The top level of the Project pane is always a project folder labeled Project ‘<Project Name>‘:. You
can right-click the Project folder to see a shortcut menu with the following options:

NodeBuilder FX User's Guide

79

—'3 Device Templates 5ettings...
=1 & NcMulktiSensorExample
@ Main.nc

+ [H| Development

+ lm Release

='=3 Source Files
[E Frso00EvalEaard.h
[E1FT5000EvalEoard.nc
= Filesys.h
[E] sitmplementation.ne
= Jovstick.nc
Ecoh
EL.nc
@ Lamp.nc
= Light3ensor, nc
@ Lux.nc
[Enodetbject.ne
[E15witch.nc
@ TempSensor,nc

+{ILibraries

DDevices

+_IHardware Templates hd
| Prajeck

Settings Opens the NodeBuilder Project Properties dialog with the Project
tab selected. The Project tab displays the project settings.

Propetties. ..

Properties Displays file properties of the NodeBuilder project file (.NbPrj
extension). The properties include the file name, location, size, and
the dates on which the file was created, last modified, and last
accessed.

The Project folder may also contain the following three folders: Device Templates, Devices, and
Hardware Templates.

e The Device Templates folder contains all of the device templates that have been created in this
NodeBuilder project. See Creating Device Templates in Chapter 5 for more information on device
templates.

e The Devices folder contains a list all devices in LonMaker drawings that have been associated
with device templates in this NodeBuilder project. See Building an Application Image in Chapter
8 for more information. Note that the Devices folder will not appear if the NodeBuilder project is
not associated with a LonMaker network.

e The Hardware Templates folder contains a list of the hardware templates available in this
NodeBuilder project. See Using Hardware Templates in Chapter 5 for more information on
hardware templates.

Creating a NodeBuvilder Project

To create a NodeBuilder project, you must first start the NodeBuilder Project Manager. You can start
the NodeBuilder Project Manager from the LonMaker tool, or you can start it standalone directly from
the NodeBuilder program folder. You will typically start the project manager from the LonMaker tool
because it simplifies the process of associating the NodeBuilder project with the LonMaker network.

80 Creating and Using Device Templates

Creating a NodeBuilder Project from the LonMaker Tool

You can create a NodeBuilder project by starting the NodeBuilder Project Manager from the
LonMaker tool. To do this, follow these steps:

1.

Create or open a LonMaker drawing. See the LonMaker User’s Guide for more information on
creating and opening LonMaker drawings. If you will want to load the application you develop
into a device, make sure the LonMaker computer is attached to the network.

Open the LonMaker menu then click NodeBuilder. The NodeBuilder Project Manager starts. If
you have not previously created a NodeBuilder project for this network, the New Project wizard

automatically starts.

Note: If you have previously created a project for this network and you want to create a new
project, click File and then click Create Project.

Enter project information into the wizard as described in steps 5-9 in the next section, Creating a
NodeBuilder Project from the NodeBuilder Project Manager-.

Note: You can also start the NodeBuilder tool from the LonMaker tool’s New Device Wizard. See
Starting the NodeBuilder tool from the New Device Wizard later in this chapter for more information
on how to do this.

Creating a NodeBuilder Project from the NodeBuilder Project

Manager

You can create a NodeBuilder project by starting the NodeBuilder Project Manager standalone. To do
this, follow these steps:

1.

3.

Open the NodeBuilder Project Manager. To do this, click Start on the taskbar, point to
Programs, point to Echelon NodeBuilder, and then click NodeBuilder Development Tool. The
NodeBuilder Project Manager starts.

Click File and then click Create Project. The New Project wizard starts with the Select Network
dialog.

Please specify the netwark name and netwark interface
"a far use with ModeBuilder.

v Do not open any network

Metwork:

| []

Metwork interface:

| []

| Iext = | Cancel

To associate an existing LonMaker network with your NodeBuilder project, clear the Do Not
Open Any Network check box if it is selected, select an existing LonMaker network in the

NodeBuilder FX User's Guide 81

82

Network property, and then select the LNS network interface to be used for communication
between the LonMaker network and your NodeBuilder device in the Network Interface property.

Alternatively, you can select the Do Not Open Any Network check box to create a new project
that is not associated with a LonMaker network, and disable automatic LNS device template
creation and automatic load after build.

4. Click Next.

5.

The Specify New Project Name dialog opens.

Specify New Project Mame @El

FPlease specify the name and location of your nes
1 mModeBuilder project.

Froject name:

Lacation:

| CALMMSource

-

= Back | Mext = | Cancel

In the Project Name property, enter the name of your new NodeBuilder project. If you specified
a LonMaker network to be associated with the NodeBuilder project in the Select Network dialog,
the default Project Name is that of the selected LonMaker network. You can accept this default
name or enter a new one.

Project files with this name and .NbPrj, .NbOpt, and .NbWsp extensions will be created in the
project folder specified in the Location property. The project folder is stored in the
C:\Im\Source\<Project name> folder by default. You can click the button to the right of the
Location property to specify a different location.

If you specified a LonMaker network to be associated with the NodeBuilder project in the Select
Network dialog, the Set as Default Project check box is selected. This means that this
NodeBuilder project is automatically opened when the NodeBuilder tool is started from the
selected LonMaker network. If you selected the Do Not Open Any Network check box in the
Select Network dialog, the Set as Default Project check box is unavailable.

Click Next. The Specify Project Default Settings dialog opens.

Creating and Using Device Templates

Specify Project Default Settings

Location:

| CAlmiSourceiNew Project

Default transceiver type:

|TPIFT-10

Include search path:

v Run MNodeBuilder device template wizard

= Back | Finish | Cancel

8. Specify the following properties:

Project Name

Location

Default Transceiver
Type

Include Search
Path

Run Device
Template Wizard

The name of the project as specified in the Specify New Project
Name dialog. This is a read-only field.

The location of the project folder as specified in the Specify New
Project Name dialog. This is a read-only field.

The transceiver type to be used for Hardware Templates that specify
“default” for the transceiver type. The default transceiver type is
TP/FT-10. See the Using Hardware Templates section in Chapter 5
for more information on hardware templates.

An optional semi-colon separated list of directories to be searched for
include files when a NodeBuilder project is compiled. By default,
only the device template source file and the Neuron C standard
include file directories will be searched for include files. If relative
path names are specified, they are relative to the location of the
NodeBuilder project directory (location of the .NbPrj project file).
Note that this list applies to the entire project. By default, this
property is blank.

Automatically opens the Device Template Wizard immediately after
you click Finish. The Device Template Wizard guides you through
the process of creating the first NodeBuilder device template for this
project. See Creating Device Templates in Chapter 5 for more
information. This option is selected by default.

9. Click Finish. If you selected the Run Device Template Wizard check box in the Specify
Project Default Settings dialog, the Device Template Wizard opens. Proceed to the Specifying
the Device Template Name section in Chapter 5 to create a device template.

NodeBuilder FX User's Guide

83

Creating a NodeBuilder Project from the New Device Wizard

You can create a NodeBuilder project from the New Device Wizard in the LonMaker tool. To do this,
follow these steps:

1. Create or open a LonMaker network. See the LonMaker User’s Guide for more information on
creating and opening LonMaker networks. If you plan on downloading your device application to
a device, make sure that the LonMaker computer is attached to the network.

2. Drag a Development Target Device or a Release Target Device shape from the NodeBuilder
Basic Shapes 4.00 stencil to your network drawing. Use a Development Target Device if you
are building to a NodeBuilder hardware platform; use a Release Target Device if you are building
to the release hardware. You can drop the shape anywhere, but a good location is just below the
Channel 1 shape on your drawing.

NB Network 1.vsd

Shapes x

Search For Shapes:
Type your search hers s

[E i.LoN SmartServer Static Shapes
[Lontaker MY Shapes

[LonPaint Shapes 3.0

[ModeBuilder Basic Shapes 4,00

a2101dX3 HI0mIaN

3. The New Device Wizard opens. In the Device Name property, enter the device name, select the
Commission Device check box, and then select the Create New Device Template check box
under NodeBuilder Device Template.

84 Creating and Using Device Templates

)

Mew Device Wizard

Device name: | MYNBDEViCE'

Mumbker of devices to create: El

[v Commiszion device

ModeBuilder Device Template

Mame: J

Channel
[Auto-detect channel

Type: |TPFT-10

Lef Led

Mame: | Channel 1

| Mext = | Finish Cancel Help

4. Click Next. The next page in the New Device Wizard lets you select the NodeBuilder device

template.
New Device Wizard &l
Device name: | WyhBDevice
Target Device Type: | Dewvelopment

NodeBuilder Device Template: I -

LMNZ device template: |

Start ModeBuilder

= Back | Mext = | Finish Cancel Help

5. Click Start NodeBuilder to create a new NodeBuilder project. The NodeBuilder tool starts
automatically.

6. The New Project wizard opens.

NodeBuilder FX User's Guide

10.

NodeBuilder Project @gl

project associated with it. You may either create a new

@ Metwaork '™WB Metwork' does not have a NodeBuilder
n
project, ar choase an existing project for this netwark,

* Create a new ModeBuilder project

" Open an existing ModeBuilder project

| Iext = | Cancel

Accept the default Create a New NodeBuilder Project option, and then click Next.

Accept the default NodeBuilder Project Name, which is the same name as the LonMaker
network, and then click Next.

Accept the defaults in the Specify Default Project Settings dialog, and then click Finish.

The NodeBuilder New Device Template wizard starts. Proceed to the Specifying the Device
Template Name section in Chapter 5 to create a device template.

Opening a NodeBuilder Project

To open an existing NodeBuilder project, you must first start the NodeBuilder Project Manager if it is
not already running. You can start the NodeBuilder Project Manager from the LonMaker tool, or
directly from the NodeBuilder program folder. You will typically start the project manager from the
LonMaker tool since that simplifies associating the NodeBuilder project with the LonMaker network.

Opening a NodeBuilder Project from the LonMaker Tool

You can open a NodeBuilder project by starting the NodeBuilder Project Manager from the LonMaker
tool. To do this, follow these steps:

86

1.

Create or open a LonMaker drawing. See the LonMaker User’s Guide for more information on
creating and opening LonMaker drawings. If you plan on downloading your device application to
your device, make sure the LonMaker computer is attached to the network.

Click LonMaker and then click NodeBuilder. The NodeBuilder Project Manager starts. If you
have not previously created a NodeBuilder project for this network, the New Project wizard
automatically starts with the NodeBuilder Project dialog displayed.

Note: If you have previously created a NodeBuilder project for this network, the default project
for the network opens. To open a different project, click File, click Open Project, and then skip
to step 4.

In the NodeBuilder Project dialog, select the Open an Existing NodeBuilder Project option and
then click Next.

Creating and Using Device Templates

NodeBuilder Project

Metwork '™B Metwork' does not have a ModeBuilder
#. project associated with it. You may either create a new
project, ar choase an existing project for this netwark,

" Create a new ModeBuilder project

* Qpen an existing ModeBuilder project

| Iext = | Cancel ‘

4. The Select NodeBuilder Project File dialog opens. Click the button to the right of the Project
File property, browse to and select the desired project folder (C:\Lm\Source\<Project Folder> by

5.

default), and then select the project file (NbPrj extension) in the project folder.

Select NodeBuilder Project File

@ Fleaze specify the ModeBuilder project file to he uzed.

Project file:
CALmiSaureel\MB_Fx ExerciselMB_FX Exercise. |

v Setas default project for this network

= Back ‘ Finish | Cancel

Click Finish.
Notes:

e You can open a project and start the New Device Template wizard at the same time by
dragging a Development Target or Release Target device shape from the NodeBuilder

Basic Shapes 4.00 stencil to your network drawing.

e You can open specific windows within the default project by right-clicking a Development

Target or Release Target device shape in the LonMaker drawing, pointing to Custom, and
then clicking Edit Source, NodeBuilder Properties, Build, or Debug on the shortcut menu.

NodeBuilder FX User's Guide

87

Opening a NodeBuilder Project from the NodeBuilder Project
Manager

88

You can open a NodeBuilder project by starting the NodeBuilder Project Manager standalone. To do
this, follow these steps:

1. Open the NodeBuilder Project Manager. To do this, click Start on the taskbar, point to
Programs, point to Echelon NodeBuilder, and then click NodeBuilder Development Tool. The

NodeBuilder Project Manager starts.

2. Click File and then click Open Project. The New Project wizard starts with the Select Network
dialog.

Please specify the netwark name and netwark interface
% for use with ModeBuilder.

v Do not open any network

Metwork:

| []

Metwork interface:

| []

| Iext = | Cancel

3. To associate an existing LonMaker network with your existing NodeBuilder project, clear the Do
Not Open Any Network check box if it is selected, select an existing LonMaker network in the
Network property, and then select the LNS network interface to be used for communication
between the LonMaker network and your NodeBuilder device in the Network Interface property.

Click Next.

Alternatively, you can select the Do Not Open Any Network check box to open a NodeBuilder
project but not associate it with a LonMaker network, and disable automatic LNS device template
creation and automatic load after build. Click Next.

4. The Select NodeBuilder Project File opens.

Creating and Using Device Templates

Select NodeBuilder Project File @g‘

@ Fleaze specify the ModeBuilder project file to he uzed.
n

Project file:
CALmiSaureel\MB_Fx ExerciselMB_FX Exercise. |

v Setas default project for this network

= Back ‘ Finish | Cancel

If you have previously associated a LonMaker network with this NodeBuilder project, it appears
in the Project File property.

To select a different NodeBuilder project, click the button to the right of the Project File property,
browse to and select your project folder (C:\Lm\Source\<Project Folder> by default), and then
select the project file (NbPrj extension) in the project folder.

Optionally, you can select the Set as Default Project check box to specify this NodeBuilder
project as the default when the NodeBuilder tool is started from the LonMaker tool.

Click Finish.

Copying NodeBuilder Projects

You can copy a NodeBuilder project to another computer using the LonMaker tool (recommended), or
by manually copying the NodeBuilder project files. After you copy a NodeBuilder project, you must
also copy any user-defined resource files used by the device template in the project from the source
computer to the target computer, and then install and register your user-defined resource files on the
target computer. See Copying User-Defined Resource Files for more information on how to do this.

Using the LonMaker Tool to Backup and Restore a NodeBuilder
Project

You can copy a NodeBuilder project to another computer by backing up the project files on the source
computer and restoring them on the target computer with the LonMaker tool. To do this, follow these

steps:

1. Ensure that the source and target computers have the same versions of the NodeBuilder tool and
the LonMaker tool.

2. On the source computer, start the LonMaker tool. To do this, click Start on the taskbar, point to
Programs, point to Echelon LonMaker, and then select LonMaker. The LonMaker Design
Manager opens.

3. Inthe Database Name property under Existing Network, select the LonMaker network design

associated with the NodeBuilder project to be copied and then click Backup.

NodeBuilder FX User's Guide 89

90

*) Echelon LonMaker Design Manager,

General] Cptionz] Ty Metwvork Optinns] Lonhtaker Stencilz | Lonbdaker Default Optinns]
Meray Metweark
® Metwark name:
LonMaker stowa
S | ME Metweark Creste Metwork ‘ options
Turbo Edition
Exizting Metwork
Shawe all
(8] Metwork ‘)
Drawving directory: Ren Hetwar options
|NEI_F}{ Exercize ﬂ Open Copy ‘
Drawing name:
: Delet ‘
|NEI_F}{ Exercize . vsd j Slete
Detabase name: Defragment Datsbase ‘
Launch LMNS Server ‘
Backup... ‘
Restare... ‘ Impart... ‘
Fubject ko kerms of licns: t .
Capyight <] 1996-2008 Echalon Corp, | SSAHINGS
All Fights Frazaried Drawing baze path: Coimidraving ﬂ Add...
Exit ‘ Help |

4. The LonMaker Backup dialog opens.

Echelon LonMaker Backup

You have asked to back up a LonMaker drawing andior
databaze. You may override the default backup file
name.

Backup Selection

. MOTE: YWhen
[v Backup drawing hacking up to copy
to & remote PG,
[v Backup databaze hack up the
dravving only .

[v Backup ModeBuilder project

Drawving files to backup
(* Backup Wisio (* v2*) files only

" Backup all filez in drawing directory

Backup File

CAm'\BackupMB_FX Exercize'NB_F¥ Exercize zip

Ok

Cancel

Help

Options

i

Browese...

!

dd

Select the Backup Drawing, Backup Database, Backup NodeBuilder Project check boxes

under Backup Selection (the Backup Drawing and Backup Database check boxes are selected

by default), and then click OK.

The LonMaker drawing, LNS network database, and the NodeBuilder project are all stored in a

single LonMaker backup file (.zip extension) that is specified in the Backup File property
(C:\LM\Backup\<LonMaker network>\<LonMaker network>_<index>.zip by default).

Creating and Using Device Templates

7. After the backup has been created, copy the LonMaker backup file from the source computer to a
USB drive, another removable media, or a shared network drive with read/write permissions.

8. On the target computer, start the LonMaker tool and then
9. Click Restore. The LonMaker Restore dialog opens.

Echelo nMaker Restore

You have asked to restore 8 Lonhaker Ok
drawing andior database.
Wou may owerride the default file from Cancel

which to extract the backed up files.
Help

i

P]

Backup File
[v Restore from Lontaker backup

| F\MNB_Fi Exercize zip Brovvse. . |

LM% Hot Backups
I

Location Drate Creasted

10. Click Browse to specify the location of the LonMaker backup file, and then click OK. The
Confirm Restore dialog opens.

Confirm Restore

Lonhdaker swill nowy restore the follovwing drsswing

and databsse directaries. Enter O to confirm.

Cancel
When restoring a network which already exists on
the local PC, the drawing and database must be Help
restared into the same directaries.

i

Drawing path; | CAmdrawingshNB_FX Exercisel* vs®
Database path: | C:UMDENE_F¥ Exercize
MadeBuilder praject path; | CAmSource'\NB_Fx Exercisel® *

11. Click OK. The LonMaker drawing, LNS network database, and the NodeBuilder project are
copied to the target computer. The NodeBuilder project is associated with the LonMaker network.

NodeBuilder FX User's Guide 91

12. A message appears informing you that the network restore operation has been completed, and
prompting you to select whether to open the LonMaker network in order to recommission devices
that have changed since the network was backed up.

e Click Yes if you made any changes to the network since it was backed up. This prevents the
network from behaving unpredictably if the LonMaker network design is not in sync with the
physical devices. Proceed to recommission and resynchronize the network.

e Click No only if changes have not been made to the configuration of the existing physical
devices on the network since it was backed up. This happens if the LonMaker tool was
OffNet the entire time, or if you added new devices and functional blocks but did not modify
any existing devices or functional blocks. The LonMaker drawing will not be opened.

See the LonMaker User’s Guide for more information on backing up and restoring a LONWORKS
Network Design.

Manually Copying NodeBuilder Project Files

You can manually the entire NodeBuilder project. To do this, follow these steps:

1. Ensure that the source and target computers have the same versions of the NodeBuilder tool and
the LonMaker tool.

2. On the source computer, copy the entire NodeBuilder Project folder to a USB drive, another
removable media, or a shared network drive with read/write permissions. By default, the
NodeBuilder Project folder is stored in the C:\Lm\Source directory and has the same name as the
NodeBuilder project. The NodeBuilder Project folder contains subdirectories for each device
template in the NodeBuilder project.

3. On the source computer, copy any user-defined hardware templates and custom libraries to the
USB drive, another removable media, or a shared network drive with read/write permissions. By
default, user-defined hardware templates are stored in the
C:\LonWorks\NodeBuilder\Templates\Hardware\User directory.

4. Copy the NodeBuilder Project backup to the C:\Lm\Source directory on the target computer.

5. Copy the user-defined hardware template backup to the
C:\LonWorks\NodeBuilder\Templates\Hardware\User directory on the target computer. You need
to create a User folder in the Hardware directory if one does not already exist.

6. Copy the library backup to the same folder as they were located on the source computer. If this is
not possible, you can re-add them to the project as described in Inserting a Library into a
NodeBuilder Device Template.

7. Start the NodeBuilder tool as described in Opening a NodeBuilder Project earlier in this chapter
and browse to and open the NodeBuilder Project file (.NbPrj extension).

Copying NodeBuilder Device Templates

92

You can copy NodeBuilder device templates to another computer. To do this, follow these steps:
1. Ensure that the source and target computers have the same versions of the NodeBuilder tool.

2. If the NodeBuilder project that will contain the device templates has not been created on the target
computer, create it as described in Creating a NodeBuilder Project earlier in this chapter

3. On the source computer, copy the device template folders to a USB drive, another removable
media, or a shared network drive with read/write permissions. By default, the device templates
within a given project are stored in individual folders in the C:\Lm\Source\<NodeBuilder Project>
directory that have names corresponding to their respective NodeBuilder device templates.

Creating and Using Device Templates

4. On the source computer, copy any user-defined hardware templates and custom libraries to the
USB drive, another removable media, or a shared network drive with read/write permissions. By
default, user-defined hardware templates are stored in the
C:\LonWorks\NodeBuilder\Templates\Hardware\User directory.

5. Copy the device template backups to the C:\Lm\Source\<NodeBuilder Project> directory of the
target NodeBuilder project on the target computer.

6. Copy the user-defined hardware template backup to the
C:\LonWorks\NodeBuilder\Templates\Hardware\User directory on the target computer. You need
to create a User folder in the Hardware directory if one does not already exist.

7. Copy the library backup to the same folder as they were located on the source computer. If this is
not possible, you can re-add them to the project as described in Inserting a Library into a
NodeBuilder Device Template.

8. Copy any user-defined resource files from the source computer to the target computer, and then
install and register the resource files on the target computer. See Copying User-Defined Resource
Files for more information on how to do this.

9. On the target computer, open the NodeBuilder tool.

10. Right-click the Device Templates folder in the Project Pane on the left side of the NodeBuilder
Project Manager, and then click Insert on the shortcut menu.

Workspace O x
-1 Project 'ME_Fix Exercise':

- Templates
+- i ME F¥ Example Device
+{_IHardware Templates

Mew, .,

Inserk Copy,..

Build
Clean

Status...

11. Browse to and open the device template folder backed up in step 3, and then select the
NodeBuilder device template file (.NbDt extension). The device template is added to the
NodeBuilder project under the Device Templates folder in the Project Pane.

Workspace O x

-1 Project 'ME_Fix Exercise':
- Device Templates
+ @ NB P Example HC:'I,.Lun'-.-'\.-'urks'l,Neuru:unC'l,ExampIes'l,FTSEl
28 JhchulkiSensorExample

+{ IHardware Templates

Copying User-Defined Resource Files

After you copy a NodeBuilder project or a NodeBuilder device template to another computer, you
must also copy any user-defined resource files on the source computer to the target computer, and then

NodeBuilder FX User's Guide 93

install and register the resource files on the target computer. User-defined resource files include the
network variable types, configuration property types, functional profiles, enumerations, languages, and
formats that you have created in your resource file set. To copy resource files to another computer,
follow these steps:

1. On the source computer, copy the resource folder containing your user-defined resource files to a
USB drive, another removable media, or a shared network drive with read/write permissions. By
default, your resource folder is in the C:\LonWorks\types\user directory on your computer.

2. Copy the user-defined resource file backup to the C:\LonWorks\types\user directory on the target
computer.

See Using the Resource Pane in Chapter 6 for more information on resource folders, resource file sets,
and resources.

Viewing and Printing NodeBuilder XML Files

Many of the files created by the NodeBuilder tool are XML files. These files can be viewed and
printed using a variety of tools including Internet Explorer or Microsoft Excel. This can be useful for
generating printed summaries of the options contained in these files. Do not change the contents of
these files. To open one of these files, right-click the file in Windows Explorer and then click Open
With on the shortcut menu. Choose Microsoft Excel, Internet Explorer, or another XML browsing
tool.

The following XML files are created and maintained by the NodeBuilder tool:

Project File (*.NbPrj) Contains a project definition including the project version and a
list of the device templates and the hardware templates for a
project. There is one project file per project. This file is stored
in the project folder (C:\Lm\Source\<NodeBuilder Project>).

Options File (*.NbOpt) Contains the NodeBuilder project options for a project. There is
one options file per project. This file is stored in the project
folder (C:\Lm\Source\<NodeBuilder Project>).

Device Template File Contains a device template, including the options specified for

(*.NbDt) the device template and device template targets. There is one
device template file per device template. This file is stored in
the project folder (C:\Lm\Source\<NodeBuilder
Project>\<NodeBuilder Device Template> folder).

Hardware Template File Contains a hardware template, inc!uding the options specified
(*.NbHwt) for the hardware template. There is one hardware template file
per hardware template.

Standard hardware template files are stored in the
C:\LonWorks\NodeBuilder\Templates\Hardware\Standard
folder.

User-defined hardware template files are stored in the
C:\LonWorks\NodeBuilder\Templates\Hardware\User folder.

Hardware templates specific to the project can also be contained
in the project folder.

94 Creating and Using Device Templates

5

Creating and Using Device Templates

This chapter describes how to use the New Device Template wizard in the
NodeBuilder Project Manager to create, manage, and edit NodeBuilder device
templates. It explains how to manage development and release targets and insert
libraries into a device template. It describes how to use the Hardware Template
Editor to create and edit hardware templates.

NodeBuilder FX User's Guide 95

Infroduction to Device Templates

Each type of device that you develop with the NodeBuilder tool is defined by a pair of device
templates: a NodeBuilder device template and an LNS device template.

The NodeBuilder device template is an XML file with a .NbDt extension that specifies the information
required for the NodeBuilder tool to build the device application. The NodeBuilder device template
includes a list of Neuron C source code files and the hardware template name.

When you build the device application, the NodeBuilder tool automatically produces an LNS device
template. The LNS device template defines the external interface to the device, and is used by the
LonMaker tool and other LNS network tools to configure and bind the device.

Creating Device Templates

You can create device templates using the New Device Template wizard in the NodeBuilder Project
Manager. The New Device Template wizard guides you through the process of creating a new
NodeBuilder device template. In the NodeBuilder device template, you will specify a device template
name, working directories, a Program ID, and hardware templates.

To create a device template, you do the following:

Start the New Device Template wizard.
Specify the device template name.
Specify the program ID.

Select the target hardware platform.

L=

Starting the New Device Template Wizard
To start the new device template wizard follow these steps:

1. You can start the New Device Template wizard automatically after you finish creating a new
NodeBuilder project or manually from the Project pane.

e To automatically start the New Device Template wizard after you finish creating a new
NodeBuilder project, select the Run NodeBuilder Device Template Wizard check box in
the Specify Project Default Settings dialog at the end of the New Project Wizard. See
Creating a NodeBuilder Project in Chapter 4 for more information on creating a NodeBuilder
project and setting this option.

e To manually start the New Device Template wizard, right-click the Device Templates folder
in the Project pane and then select New on the shortcut menu.

13 Project 'MewProject’:
B8 Dcvice Template

[Ipevices
#{_MHardware Templs INs&tt..
Insett Copy. ..
Euild
Clean
Skatus...

2. The NodeBuilder New Device Template Wizard opens.

96 Creating and Using Device Templates

NodeBuilder New Device Template Wizard

ModeBuilder device termplate name:

Source file name:

| Browse...

Folders

ModeBuilder device termplata:
| CALrmSource\MB_FX Exercise Browse. ..

Ciutput:

i

|-1 Browse...

| Mext = | Cancel

3. Proceed to the next section to specify the device template name.

Specifying the Device Template Name

To specify the device template name, follow these steps:

1. Inthe NodeBuilder Device Template Name property, enter a valid Windows file name for the
device template. A NodeBuilder device template file (.NbDt extension) with this name will be
created in the folder specified in the NodeBuilder Device Template property under Folders.

NodeBuilder Mew Device Template Wizard

MNodeBuilder device termplate name:

| WwrewDevice Termplate

Source file name:
|MyNewDeviceTemplate.nc Browse...

Folders

MNodeBuilder device termplate:

|C:1Lm180urce Browse. .

Qutput:

Pl

|-1 Browse...

| Mext = | Cancel

NodeBuilder FX User's Guide

97

Optionally, in the Source File Name property, you can enter the name of the Neuron C source file
for this device template. By default, this field is set to <Device Template Name>.nc, and the file
will be created in the folder specified in the NodeBuilder Device Template property under
Folders. To select an existing source file, click Browse.

Optionally, in the NodeBuilder Device Template property under Folders, you can enter the
device template folder where the device template file will be stored. By default, the name of the
device template folder is the same as the device template that it contains (for example, the device
template folder containing the NB FX Example Device.NbDt device template file is
C:\Lm\Source\NB_FX Exercise\NB FX Example Device). To select a different folder, click
Browse and then browse to and choose a different folder.

Optionally, in the Qutput property under Folders, you can enter the root folder for output files
generated by the build process. You can specify either an absolute or relative path name. Relative
paths are based on the device template folder. The default value is the build target folder (.\).

Click Next. The Program ID dialog opens.

ModeBuilder device template name: | iyt ewDeviceTernplate

Automatic program ID management

¥ Enable Min model#: | 000 Max model # W
v Re-register plug-ins

Pragram I type

f'“

&+ Standard developmentiprototype format 9)

" Standard Lontark certified (format 8)

Pragram 10

|9F:FD:3E:DD:DD:DD:DD:DD Calculatar...

LME device template name:

| WyrlewDeviceTermplate

= Back | Mext = | Cancel

Proceed to the next section to specify the program ID.

Specifying the Program ID

98

The program ID is a 16-hex-digit number that uniquely identifies the device interface for a device.
The program ID may be formatted as a standard or non-standard program ID. When formatted as a
standard program ID, the 16 hex digits are organized as six fields that identify the manufacturer,
classification, usage, channel type, and model number of the device.

To specify the program ID, follow these steps:

Click Calculator. The Standard Program ID Calculator dialog opens.

Creating and Using Device Templates

i LonMark Standard Program ID Calculator,

M anufacturer (koAb bdbd] o

<Enter Mumber [Decimal]» 1047870 |:|

Cateqgory:
| Cancel

Device clags ([CCCC)

Uzage (U] :
| Metwork, M anagement

Channel type [TT] :
| <Enter Mumber [Decimal]:

Lo

L

Lo

L

kadel number [MH]
w |00

v Standard development program 1D

™ Has changeable interface

™ Usage field values defined by functional prafils
Program 10
FHZMHZMMCC:CC:UUCTT NN
|9F:FD:3E:BB:BB:BB:BB:BB

The Standard Program ID Calculator helps you select the appropriate values for the program
ID fields. It lets you select the values from lists contained in a program ID definition file
distributed by LONMARK International. The current file (spidData.xml) is available at
http://www.lonmark.org/spid. This file is updated as LONMARK International adds new
manufacturer IDs, device classes, usage values, and channel types.

The Program ID box at the bottom of this dialog is automatically updated as you enter the
program ID fields. You can manually enter some or all of the program ID fields directly into this
box. If you enter values directly in this box, the calculator updates the properties above in the
dialog with those values.

2. Enter the following values for the program ID fields:

a. In the Manufacturer ID (M:MM:MM) property, either select your company from the list,
enter your 5 hex-digit standard manufacturer ID or temporary manufacturer ID in the box to
the right in decimal format (the calculator will convert it to hex format), or select the
Examples manufacturer ID. By default, the manufacturer ID that you entered during of the
NodeBuilder tool installation is shown by default.

If your company is a LONMARK member, but you do not know your manufacturer ID, you can
find your ID in the list of manufacturer IDs at www.lonmark.org/spid.

If you do not have a standard manufacturer ID, you can request a temporary manufacturer ID
by filling out a simple form at www.lonmark.org/mid.

b. In the Category property, select the general purpose or industry of the device. The Category
determines the device classes that will be available in Device Class property. Alternatively,
you can select one of the following options to determine and organize the device classes
shown in the Device Class property:

e ALL. Show all the existing device classes.

e Profiles By Name. Show an alphabetical list of all device classes with a profile.

e Profiles By Number. Show a numeric list (sorted by device class number) of all device
classes with a profile.

NodeBuilder FX User's Guide 99

http://www.lonmark.org/spid
http://www.lonmark.org/spid
http://www.lonmark.org/technical_resources/temp_mid_request

100

In the Device Class (CC:CC) property, select the primary function of the device. To enter a
device class value that has not yet been added to the standard list, select <Enter
Number[Decimal]>, and then enter decimal values from 0 to 255 in the boxes to the right
(the calculator will convert the values to hex format).

In the Usage (UU) property, select the intended use of the device. The most significant two
bits are determined by the Has Changeable Interface and Use Field Valued Defined By
Functional Profile check boxes below the Usage property.

If you are using a standard usage value, select the Use Field Defined By Functional Profile
check box below the Usage property, and select a standard usage value from the list.

If the primary functional profile implemented by your device specifies custom usage values,
clear the Use Field Defined By Functional Profile check box below the Usage property,
select <Enter Number[Decimal]> from the list, and then enter a decimal value from 0-255 in
the box to the right (the calculator will convert the value to hex format).

In the Channel Type (TT) property, select the channel type supported by the device’s
transceiver.

If you are using a transceiver that is not compatible with any of channel types in the list, select
Custom.

To enter a channel type value that has not yet been added to the standard list, select <Enter
Number[Decimal]> and enter a decimal value from 0 to 255 in the box to the right (the
calculator will convert the value to hex format).

In the Model Number (NN) property, enter the specific product model within the range
specified by the Min Model # and Max Model # properties in the Program ID dialog. You
can assign a unique model number for the specified manufacturer, device class, usage, and
channel type. The same hardware may be used for multiple model numbers depending on the
program that is loaded into the hardware. The model number within the program ID does not
have to conform to your published model number. You can have this property updated
automatically by selecting the Automatic Program ID Management check box in the
Program ID dialog.

In the Standard Development Program ID property, identify your device as a standard
development/prototype device or as a LONMARK certified device. If your device is a
development or prototype device that is not yet LONMARK certified, select the Standard
Development Program ID check box (the calculator sets the F field of the program ID to 9).
Clear this checkbox if your prototype is LONMARK certified (the calculator sets the F field of
the program ID to 8). This check box is selected by default.

If your device has a changeable interface (it has changeable-type network variables, or the
device supports dynamic network variables), select the Has Changeable Interface check
box. This check box is cleared by default.

Integrators can use a network tool to change the types of changeable-type network variables
when installing a network. You can implement changeable-type network variables on any
type of device.

Dynamic network variables are network variables that are during installation time by a
network tool. Network variables with changeable types may be implemented by any device;
dynamic network variables may only be implemented by host-based devices. For more
information on changeable-type network variables and dynamic network variables, see the
Application Laye0072 Interoperability Guidelines.

Creating and Using Device Templates

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

i LonMark Standard Program ID Calculator,

M anufacturer (koAb bdbd] o

|<Enter Mumber [Decimal]» j |1D4?8?D
Cateqgory:
|H\’r'é"|: j Cancel

Device clags ([CCCC)
| Thermastat (20.60)

L

Uzage (U] :
| Metwork, M anagement

Channel type [TT] :
| TPAFT-10

Lo

L

kadel number [MH]
w |00

v Standard development program 1D

™ Has changeable interface

™ Usage field values defined by functional prafils
Program 10
FHZMHZMMCC:CC:UUCTT NN
|9F:FD:3E:58:30:BB:B#:BB

3. Click OK to return to the Program ID dialog in the New Device Template wizard. The Program
ID property contains the program ID you specified in the Standard Program ID Calculator
dialog.

Program ID EI@

ModeBuilder device template name: | MyNewDeviceTemplate

Autarmatic program 1D management

¥ Enable Min model#: | 000 Max model # W
v Re-register plug-ins

Frogram ID type

i

&+ Standard developmentiprototype (format 9

" Standard LonMark certified (format 8)

Program ID:

‘QF:FD:SE:SD:SC:DD:M:DD Calculator... |

LME device template name:

| WyrlewDeviceTermplate

= Back | Mext = ‘ Cancel

4. Verify that the Enable check box under Automatic Program ID Management is selected. This
enables the Model number (NN) field in the program ID to be incremented automatically when the
external interface of the device is changed. This allows for the easy development of a device with
a changing external interface during development. The program ID will cycle through the range

NodeBuilder FX User's Guide 101

of model numbers specified by the Min Model # and Max Model # properties to avoid two
devices having the same program ID but different external interfaces. When the Max model #
value is reached, the model number field of the Program ID will be reset to the Min model #
value. When this check box is selected, the Min model # and Max model # properties are
enabled, and the Nonstandard (ASCII) Program ID Type is disabled.

When Automatic Program ID Management is enabled, the NodeBuilder tool automatically
upgrades all target devices using this device template if the Load After Build option is set. To
upgrade the target devices, the NodeBuilder tool creates a new device template with the new name
and program ID, then downloads the new application to the target devices, preserving connections
for compatible network variables.

You should clear this check box only if you are creating a resource file for the device template and
the resource file specifies a scope of 6 (model number specific). If this option is set with a scope 6
resource file, you will have to modify the program ID template in the resource file each time you
change the device interface. If you clear this check box, you must manually manage the program
ID and device template name to ensure they are unique for each unique device interface.

The NodeBuilder tool automatically deletes old LNS device templates with the minimum model
number as long as they are not in use by any devices. If the old LNS device template is in use, the
NodeBuilder tool reports an error.

5. Optionally, you can select the Re-register Plug-ins property so that the NodeBuilder tool
automatically re-registers LNS device plug-ins whenever the program ID changes. This option is
only available if Automatic Program ID Management is enabled. This check box is selected by
default.

Only LNS device plug-ins that were registered for the most recent previous device template will
be registered (for example, if you turn this option off for several program ID changes, then turn it
back on, you will need to manually re-register LNS device plug-ins for the newest version of the
device template).

Note: You can access the Program ID settings after the device template has been created. To do
this, right-click the device template in the Project pane, select Settings from the shortcut menu,
and then select the Program ID tab.

6. The LNS Device Template Name property displays the name that the device template will be
referred to by LNS tools such as the LonMaker tool. The default LNS device template name is the
same as the NodeBuilder device template name. If you change the program ID of a NodeBuilder
device template, you must change the LNS Device Template Name property. This is because
each LNS device template has a unique program ID and multiple LNS device templates cannot
have the same name.

If Automatic Program ID Management is enabled, the LNS Device Template name is
automatically updated in the following format: <Device Template Name> [version number]. To
revert to the old LNS device template name, you must remove the LNS device template with the
old name from the LNS database (for example, by using the Device Templates dialog in the
LonMaker tool).

7. Click Next. The Target Platforms dialog opens.

102 Creating and Using Device Templates

Hardware Templates E| El

ModeBuilder device template name: | rmyMewDeviceTernplate

Please specify the hardware termplates to be used with each device
template target. Ifyvou select =kone=, the target will not be built.

Cevelopment build hardware template:

Release huild hardware template:

=Mane= j

v Run ModeBuilder Code Wizard

= Back | Finish | Cancel

8. Proceed to the next section to specify the hardware templates used by development and release
devices.

Specifying Target Platforms

You can specify the hardware templates used for targets. A hardware template is a file that defines the
hardware configuration for a device. It specifies hardware attributes including platform, transceiver
type, Neuron Chip or Smart Transceiver model, clock speed, system image, and memory
configuration.

A target is a LONWORKS device whose application is built by the NodeBuilder tool. There are two
types of targets, development targets and release targets. Development targets are used during
development; release targets are used when development is complete and the device will be released to
production.

Note: You can skip this step now, but you must specify the hardware templates before you can build
the device template.

To specify the target platforms, follow these steps:

1. In the Development Build Hardware Template property, select the hardware template to be used
for development targets. The list contains all the hardware templates in the Hardware Templates
folder in the Project pane.

NodeBuilder FX User's Guide 103

Hardware Templates E| El

ModeBuilder device template name: | iyt ewDeviceTernplate

Please specify the hardware termplates to be used with each device
template target. Ifyvou select =kone=, the target will not be built.

Cevelopment build hardware template:

=Mone= j
=[one= ~
FT 3120 Evaluation Board
FT 3120 Evaluation Board (801-0442-01)
FT 3120-E4 40MHz
FT 3150 64K Flash 10mMHz
FT 31350 Evaluation Board
5000 Evaluation Board

LT-‘I OFlashNB1_5
LTh-10MIF MNB 1_5
LTh-10 RAM NB 1_5 b

= Back | Finish | Cancel

2. Inthe Release Build Hardware Template property, select the hardware template to be used for
release targets. The list contains all the hardware templates in the Hardware Templates folder in
the Project pane.

Hardware Templates E| El

ModeBuilder device template name: | iyt ewDeviceTernplate

Please specify the hardware termplates to be used with each device
template target. Ifyvou select =kone=, the target will not be built.

Cevelopment build hardware template:

FT 5000 Evaluation Board -

Release huild hardware template:

|FT 5000 Evaluation Board =]

v Run ModeBuilder Code Wizard

= Back | Finish | Cancel

3. Select the Run NodeBuilder Code Wizard check box to run the NodeBuilder Code Wizard
immediately after clicking Finish. This check box is selected by default.

Note: You can change the default setting of this option. To do this, click Project and then click
Setting, or right-click the Project folder in the Project pane and click Settings on the shortcut

104 Creating and Using Device Templates

menu. The NodeBuilder Project Properties dialog opens. Click the Options tab, change the
setting, and then click OK.

4. Click Finish. If you selected the Run NodeBuilder Code Wizard check box, the NodeBuilder
Code Wizard starts. See Chapter 6, Defining Device Interfaces and Creating their Neuron C
Application Framework, for more information about the NodeBuilder Code Wizard.

Managing and Editing Device Templates

You can manage and edit the device templates in a NodeBuilder project from the Project pane in the
NodeBuilder Project Manager.

Managing Device Templates

The Device Templates folder in the Project pane of the project manager lists all the device templates
that are defined as part of the current NodeBuilder project. You can right-click the Device Templates
folder to open a shortcut menu with the following options:

- Project 'WE_F¥ Exercise’;

- a Device Templates
+ i@ MyMNewDevice|
+- @ NE Fx Example

+|_JHardware Templa Insert Copy...

Insert, ..

Biuild
Clean

Skatus, ..

New

Insert

Insert Copy

Build

Clean

Creates a new device template in the currently open NodeBuilder
project. This opens the New Device Template Wizard as described in
Starting the New Device Template Wizard earlier in this chapter.

Inserts an existing NodeBuilder device template into the currently open
NodeBuilder project. A dialog opens allowing you to browse to and
select a NodeBuilder device template file (NbDt extension). This
option allows device templates to be reused in multiple projects, and
allows multiple projects to share a single device template.

Creates a copy of an existing NodeBuilder device template and inserts it
into the currently open NodeBuilder project.

When you select this option, a dialog opens allowing you to browse to
and select a NodeBuilder device template file (.NbDt or .dev
extension). After you select an existing device template, the New
Device Template Wizard opens. Complete the New Device Template
Wizard as described in Creating Device Templates.

All files associated with the device template (for example, all files in the
Source Files subdirectory) will be copied to the new device template.

Builds the application images for all qualifying targets. See Building an
Application Image in Chapter 8 for more information on building device
applications.

Deletes all output files created when building the currently open
NodeBuilder project for all qualifying targets. See Cleaning Build

NodeBuilder FX User's Guide 105

Status

Output Files in Chapter 8 for more information on removing the files
and folders produced by a build.

Displays the build status for all device templates. See Viewing Build
Status in Chapter 8 for more information on viewing the build status of
NodeBuilder device templates and targets.

Viewing and Editing Device Templates

After you create a device template (§®), you can view and edit its properties. To do this, right-click
the device template under the Device Templates folder in the Project pane to open a shortcut menu
with the following options:

106

-3 Praoject 'WB_F¥ Exercise’:
—1'— Device Templates
S0 JytewDeviceTemplats
+ @ NE Fx Example Device
+|_IHardware Templates

Settings...

Set Source File, ..
Code Wizard. ..
Remove

Build
Clean
Build Exclude

Skatus, ..
Properties...

Settings

Set Source File

Code Wizard

Remove

Build

Clean

Build Exclude

Opens the NodeBuilder Device Template Properties dialog. This
dialog allows you to change the properties you set for the selected
device template in the New Device Template Wizard.

Sets the main source file (.nc¢ extension) for this device template. By
default the main source file is <Device Template Name>.nc.

Starts the NodeBuilder Code Wizard for this device template. See
Chapter 6, Defining Device Interfaces and Creating their Neuron C
Application Framework, for more information about using the
NodeBuilder Code Wizard.

Removes this device template from the currently open NodeBuilder
project. Note that this does not permanently delete the device template
file or source files.

Build the application image specified by this device template for all
qualifying targets. See Setting Build Options in Chapter 8 for more
information about setting build properties that control the build process.

Deletes all output files created when building this device template for
all qualifying targets. See Cleaning Build Output Files in Chapter 8 for
more information on removing the files and folders produced by a build.

Determines if this device template will be included or excluded when
you click the Build command for the Device Templates folder. When
this option is enabled, the device template will be excluded from a
device templates build, the device template name is dimmed, and a
checkmark will appear next to the Build Exclude option on the shortcut

Creating and Using Device Templates

Status

Properties

menu. When a device template is excluded, you can still explicitly
build the device template by right-clicking the device template and
selecting Build from the shortcut menu.

Displays the build status for this device template. See Viewing Build
Status in Chapter 8 for more information on viewing the build status of
NodeBuilder device templates and targets.

Displays the name, location, size, and the dates on which the file was
created, last modified, and last accessed.

Viewing Device Template Components

After you create a device template (), you can view and edit its components, which include the main

source file ([£]), development and release targets (|H]), source files (_1}), and libraries (_1). To do
this, expand the device template under the Device Templates folder in the Project pane to display the

components, which are described as follows:

| Project "WE_F¥ Exercise’:
- Davice Templates
+ i@ MyMewDeviceTemplate
=1 & ME Fx Example Device
ElneF Example Device.nc

+ IHI Release

+_ILibraries
+ DDevices

+ IHI Developrment

+[_}saurce Files

+|_JHardware Templates

Main Source File

Development/Release

The main Neuron C source file (.n¢ extension) for this device
template. This file may include other source files by using Neuron C
#include statements. By default, this file is named <Device
Template Name>.nc.

Editing the Main Source File

You can double-click the main source file to edit it. See Chapter 7,
Developing Device Applications, for more information on editing the
main source file.

Viewing the Main Source File Properties

To view the location, size, and date stamps of a source file, right-click
the source file and then click Properties on the shortcut menu.

The development and release targets contain information specific to
building application images for development and release targets,
respectively. See the next section, Managing Development and
Release Targets, for more information.

NodeBuilder FX User's Guide 107

Source Files This folder contains all the source files associated with this device
template except for the main source file. When you add source files to
the NodeBuilder project directly or using the NodeBuilder Code
Wizard, they are added to this folder.

Adding Source Files

You can add other files to this folder, including Neuron C source files
(.nc extension), header files (.h extension), C files (.c extension), text
files (.txt extension), or other specification or documentation files. To
do this, right-click the Source Files folder and click Insert on the
shortcut menu.

Note: Adding files to this folder does not automatically include them
when you build the application image. You must insert #include
statements in your Neuron C code to explicitly include these files in
the build.

You can add non-source code files to this folder to allow them to be
easily accessed from the project.

Editing Source Files

You can double-click any source file to edit it. See Chapter 7,
Developing Device Applications, for more information on editing
source files.

Removing Source Files

To remove a source file from the device template, right-click the
source file and then click Remove on the shortcut menu.

Viewing Source File Properties

To view the location, size, and date stamps of a source file, right-click
the source file and then click Properties on the shortcut menu.

Libraries This folder contains all libraries explicitly used by this device
template. A library is a file containing one or more compiled ANSI C
functions. When you build the application image for a device
template, functions are included from libraries if they are referenced
by any code included in the device template. The code for any
unreferenced functions is not included in the application image.

You can add a library in the Specify Library Type dialog. To access
this dialog, right-click the Libraries folder and then click Insert on
the shortcut menu. See Inserting Libraries into a NodeBuilder Project
later in this chapter for more information on adding libraries to a
project.

108 Creating and Using Device Templates

Managing Development and Release Targets

Each NodeBuilder device template in the Project pane contains Development and Release targets (8;)
that can be built. These targets are defined by their hardware templates and dependencies.

A hardware template (L) is a file that defines the hardware configuration for a target. It specifies
hardware attributes including platform, transceiver type, Neuron Chip or Smart Transceiver model,
clock speed, system image, and memory configuration. The hardware template is listed directly under
its target in the Project pane. You can edit the properties of a hardware template in the Hardware
Template Editor dialog. To access this dialog, double-click the hardware template or right-click the
hardware template and click Settings on the shortcut menu (see Creating Hardware Templates for
more information).

Dependencies are the files required to build the application image for a target. A list of dependencies
is automatically created when you build the application image for a target. These files are listed in the
Dependencies folder (L) under the target in the Project pane. The list is empty until you
successfully build an application image for a target

- Project 'ME_Fx Exercise's
-1 Device Templates
-1 & ME Fx Example Device
ElneF Example Device.nc
- (& Developrent

+ DDependencies
+ IHI Release
+[_J¥source Files
+[_JLibraries
+ I:I'Devil:es
+{_IHardware Templates

You can view and edit the properties of a target. To do this, right-click the target under its parent
device template in the Project pane to open a shortcut menu with the following options:

- Project 'WE_F¥ Exercise’;
-1 Device Templates
=1 & ME Fx Example Device
EnE Fy Example Device.ne
= f-"-

e _
FT 5000 E Settings...
: DDepender Set Hardware Template. ..

+ [H Release Bild

+_ I Saurce Files Campile

+{_JLibraries Clean
+[_}Devices Build Exclude

+|_JHardware Template
Status,..

NodeBuilder FX User's Guide 109

Opens the NodeBuilder Device Template Target Properties dialog,
which includes compiling, linking, exporting, and configuration options
for the target. See the following subsections for more information on
the target properties you can set in this dialog.

Settings

Set Hardware Opens the Set Target Device Hardware Template dialog, where you

Template can select the hardware template to be used for this target. You can
select from all hardware templates contained in the Hardware
Templates folder. Alternatively, you can drag a hardware template
from the Hardware Templates folder to the Development or Release
target. Note that a target cannot be built or cleaned until it has a
hardware template.

Note: If your NodeBuilder project is not associated with a LonMaker
network and you change the hardware template for a device template
that uses a 5000 Series chip, you must associate the NodeBuilder
project with a LonMaker network and then re-build the device
application to implement the clock speed associated with the selected
hardware template. If you load the device application with the
LonMaker tool without using the NodeBuilder tool’s automatic load
after build feature, the device may not use the correct clock speed.

Build Builds the application image for this target only. See Building an
Application Image in Chapter 8 for more information.

Compile Compiles the application for this target only.

Note: Only the compilation step of the build process is completed when
you select this option. The application is not linked and the application
image is not created.

Clean Deletes all output files created when building this target. See Cleaning
Build Output Files in Chapter 8 for more information on removing the
files and folders produced by a build.

Build Exclude Determines if this target will be included or excluded when you click

the Build command for the device template or the Device Template
folder. When this option is enabled, the target will be excluded from a
device template build, the target name is dimmed, and a checkmark will
appear next to the Build Exclude option on the target’s shortcut menu.
When a target is excluded, you can still explicitly build the target by
right-clicking the target and selecting Build from the shortcut menu.
See Excluding Targets from a Build in Chapter 8 for more information

Status Displays the build status for this target. See Viewing Build Status in
Chapter 8 for more information on viewing the build status of
NodeBuilder device templates and targets.

Setting Device Template Target Properties: Compiler

The Neuron C Compiler (NCC) is a Neuron C tool that is used to produce Neuron assembly source
files from Neuron C source code.

You can modify the compiler options for a target. To do this, right click the target, click Settings on
the shortcut menu, then select the Compiler tab in the NodeBuilder Device Template Target
Properties dialog.

110 Creating and Using Device Templates

NodeBuilder Device Template Target Properties

Target device type:

Defines:

Campiler lLinker] Expnrter] Cnnﬂguration]

ModeBuilder device template name: | MB Fx Examnple Device

|Deve|npment

Compiler aptions

I Relaxed casting

I Generate assembly listing

Cebug kernel aptions
W Use debug kernel
¥ Expand statements [¥ Enable reset event
¥ Enable event notify

[+ Disable optimizer

[v Mode recovery

[v Enable function execute

Ok | Cancel

You can set the following properties:

Defines

Compiler Options
Relaxed Casting

Generate Assembly
Listing

You can define a symbol, which can then be tested from the program
using the ifdef or ifndef directive. The defaultis DEBUG for
development targets. This field is blank by default for release targets.

The NodeBuilder FX tool includes the following standard, pre-defined
preprocessor symbols: ECHELON, NEURONC,
_NODEBUILDER, and _NCCS. See the Neuron C Reference Guide
for more information on these symbols.

Allows the const attribute to be removed from a variable without
generating an error (a warning will still be generated by default). This
check box is cleared by default.

Generates an assembly listing when the Neuron C application is
compiled and stores it in your working directory. This listing will have
the same name as the Neuron C source file with a .NL extension. This
check box is cleared by default.

Assembly listings are generated by the Neuron C compiler and are
useful for analyzing the timing and memory efficiency of Neuron C
application code. See the Neuron Chip Data Book for the timings of the
Neuron Chip instructions. These listings are also useful in
understanding how the code generated by the Neuron C compiler is
affected by the use of various programming constructs and
optimizations in the source file.

NodeBuilder FX User's Guide

111

112

Debug Kernel
Options

Disable optimizer

Use Debug Kernel

Expand Statements

Enable Event Notify

Node Recovery

FEnable Reset Event

Disables the compiler’s code optimizer. Optimization typically
generates smaller and faster code, and is typically enabled for release
targets. However, optimization can severely change the code initially
generated by the compiler, which can make it difficult to place and use
breakpoints in an application that is being debugged. This check box is
selected by default.

Note: Debugging an optimized application is not supported.

See the Neuron C Reference Guide for information about the pragma
optimization directive, which provides detailed control over the
effective optimization level.

Uses the debug kernel when compiling and linking the application.
This check box is selected for Development targets by default.

If this check box is cleared at compile time, you will not be able to
debug the application. Clearing this check box also disables the
Expand statements, Enable Event Notify, Enable Event Reset, and
Enable Functional Execute options.

Expands all Neuron C statements to at least 2 bytes of machine code. A
single Neuron C statement must correspond to machine code that is at
least 2 bytes long in order to place a breakpoint, and the optimizer can
reduce statements to less than 2 bytes. This check box is selected by
default.

If you are debugging a 3100 Series device, you must select this check
box. Compiling such a debug target with this option cleared generates a
linker error (NLD#515), which states that the Expand Statements
option should be enabled for such targets.

If you are debugging a 5000 Series device, you can clear this check box
to reduce the size of your application’s debug image so it is closer in
size to the release image (typically, the debug and release images will
still vary in size due to different optimization settings). Compiling such
a debug target with this option selected generates a linker warning
(NLD#516), which states that the Expand Statements option is not
required for such targets.

Enables the debug kernel to communicate debug events from the device
back to the NodeBuilder tool. This check box is selected by default.
Clearing this check box also disables the Enable Event Reset option.

Enables the user to make the device applicationless by pressing the
service pin for 3 seconds during a power cycle. This check box is
selected by default.

Enables the debug kernel to notify the device when a reset event occurs.
This option is useful when you are debugging, but it should be disabled
if you are using debug targets in larger networks because the reset
notifications can consume network bandwidth (for example, if an entire
site is powered at once). This check box is selected by default. Note
that the Enable Event Notify check box must be selected in order to set
this option.

Creating and Using Device Templates

Enable Function Enables the debugger to get and update the values of system timers and
Execute to update the values of network variables in the watch list when
suspended at a breakpoint. This check box is selected by default.

Setting Device Template Target Properties: Linker

The Neuron Linker (NLD) is a Neuron C tool that is used to produce Neuron executable files. It links

the application image, user-libraries, system libraries, and the Neuron firmware.

You can modify the linker options for a target. To do this, right click the target, click Settings on the
shortcut menu, then select the Linker tab in the NodeBuilder Device Template Target Properties

dialog.

NodeBuilder Device Template Target Properties

Target device type:

Map file options

¥ Generate map file

Wariahle placement

I ModeBuilder 3 compatible

I Generate symbaol file

ModeBuilder device termplate name:

Compiler Linker l E}{poner] Configuration]

| metultiSensorExample

| Diewelopment

+ Verhose

" Summary

Ok | Cancel

You can set the following properties:

Map File Options

Generate Map File Generates a link map file in your working directory. This link map file
will have the same name as the device template, but with the .MAP
extension. This check box is selected by default.

If you select this check box, select whether to generate a Verbose or a

Summary link map.

e A Summary link map summarizes the memory usage of your
application image to determine how much margin is available in

each memory device.

e A Verbose link map contains a report showing the location of
every code and data segment; this report is useful for a detailed
understanding of the memory usage of each type of memory in
your target device. This is the default link map.

Variable
Placement

NodeBuilder 3 Allocates application EEPROM variables prior to allocating on-chip

NodeBuilder FX User's Guide

113

114

Compatible

Generate Symbol
File

EEPROM to meet system requirements.

In NodeBuilder 3.0 and prior releases, the NodeBuilder tool allocated
system on-chip EEPROM after placement of explicit and implicit
on-chip EEPROM variables. This could cause link failure in
applications that declare a large amount of implicit on-chip EEPROM
variables.

Implicit on-chip EEPROM variables are those application EEPROM
variables declared without use of the explicit onchip or offchip
keyword. These variables are placed in on-chip EEPROM when
possible, or in off-chip EEPROM when necessary.

Do not select this option unless your application code makes
assumptions about order or location of EEPROM variables, and it
requires backwards-compatible variable placement. This check box is
cleared by default.

Generates a symbol file when the project is built. Symbol files are only
required if you are creating ShortStack 2.1 MicroServer images or
custom firmware images.

Setting Device Template Target Properties: Exporter

The Neuron Exporter (NEX) is a Neuron C tool that takes input from the compiler and the linker and
produces downloadable application image files ((APB, .NDL, and .NXE extensions), programmable
application image files (.NRIL, .NFI, .NEI, .NME, and .NMF, extensions), and device interface files

(.XIF and .XFB extensions).

You can modify the exporter options for a target. To do this, right click the target, click Settings on
the shortcut menu, then select the Exporter tab in the NodeBuilder Device Template Target

Properties dialog.

ModeBuilder Device Template Target Properties

Cnmpilerl Linker Exporter] Cnnﬂguratiun]

ModeBuilder device template name: | MNB Fx Example Device

Target device type:

* Automatic

" Manual

Boot ID generation

|Deve|npment

Rebaot aptions
Categony:

[~

|Cnnﬂgurati0n

Walue:

Ox5634

¥ Checksum all code

I Checksum error
I Fatal application error

[Abways

Cancel

Creating and Using Device Templates

You can set the following properties:

Boot ID Select whether the boot ID is generated automatically or manually.

Generation Note: This option is intended for Neuron 3150 Chips and 3150 Smart

Transceivers.

e Automatic. Allocates a new boot ID each time the application
image is built. This causes the on-chip EEPROM to be rebooted
from the system image if the external memory device has been
updated. This is the default. You should select this option unless
you are trying to rebuild an application image from archived source
files.

e Manual Value. If you are trying to rebuild an application image
from archived source files, specify the 16-bit hexadecimal boot ID.
To archive source files that will be rebuilt later, store the device
template, Neuron C source files, and device files in the archive.
Make sure you select the Manual Value option in the archived
image prior to archiving. The NodeBuilder software will update
the Boot ID value to the last automatically assigned value.

Checksum All Computes the application checksum over the part of the application

Code image and system image that is in ROM and in writable memory.
Selecting this check box increases the time it takes the Neuron Chip to
complete its reset processing. This check box is selected by default.

If you clear this check box, the application checksum is computed only
over the part of the application image that is in writable memory. See
Reboot Options for more information.

Reboot Options Specifies when the device should reboot various parts of its on-chip
EEPROM memory. The device does this by copying its initial state
from off-chip ROM or flash memory.

Some hardware designs can cause corruption of the contents of the
Neuron Chip’s on-chip EEPROM (for example, designs with inadequate
power supply noise decoupling for the Neuron Chip). The Neuron
firmware can detect this because it maintains several 8-bit checksums,
including ones for the configuration image, application image, and
system image.

Note: These options are intended for Neuron 3150 Chips and 3150
Smart Transceivers, and they are available if the target hardware uses
custom Neuron firmware that is based on version 6 standard firmware
(or later).

You can select reboot options for Configuration, Application, and
Communication Parameters categories. You can select the desired
category from the Categories list.

Configuration Specify when to copy the network image from the ROM into on-chip
EEPROM. This includes the address assignment and binding
information in the device, but it does not include the communications
parameters.

e Checksum error. Reboot whenever there is a configuration
checksum error.

e Fatal application error. Reboot whenever there is an application
checksum error, illegal device state, memory allocation failure, or

NodeBuilder FX User's Guide 115

application image inconsistency, or other fatal application error.
e Always. Reboot every time the Neuron Chip is reset.

Application Specify when to copy the on-chip part of the application image from
ROM into the on-chip EEPROM. All applications have at least part of
their image in on-chip EEPROM in the Read-Only data structure. See
Appendix A of the Neuron Chip Data Book for a description of this
structure.

Note: You cannot use this option to recover from corruption of any part
of the application image that is in off-chip memory. If off-chip memory
gets corrupted, recovery will fail and the device will be in the
applicationless state. You will then need to re-program the memory
chip, or re-download the application over the network

e Fatal Application Error. Reboot whenever there is an application
checksum error, illegal device state, memory allocation failure, or
application image inconsistency, or other fatal application error.

e Always. Reboot every time the Neuron Chip is reset.

e App’lessis Fatal. Classifies the applicationless state as a fatal
application error. If you select this option, you should also select
the Fatal Application Error check box or else recovery will not
occur.

Note: If you are downloading the device application over the
network, do not select this check box. This is because the device
must be in the applicationless state for a download to occur.

e Reboot EE Vars. Specifies that on-chip EEPROM variables,
including configuration network variables, will also be rebooted
any time the application image is rebooted. This will undo any
changes to the initial state of the EEPROM variables located in the
on-chip EEPROM by a network management tool, the application,
or another device.

Communication Specify when to re-initialize the communications parameters from the

Parameters ROM copy. Note that re-initializing the communications parameters
will cause the device to lose its priority assignment if it previously had
one.

e Checksum Error. Reboot when a checksum error is detected.

e Type/rate Mismatch. Reboot if the transceiver type (differential,
single-ended or special purpose mode) or the interface bit rate of
the on-chip communications parameters do not match the values in
the ROM copy. This usually indicates corrupted communications
parameters, although this might not be the case if your transceiver
supports multiple bit rates.

e Always. Reboot every time the Neuron Chip is reset.

Setting Device Template Target Properties: Configuration

You can modify the configuration options for a target. To do this, right click the target, click Settings
on the shortcut menu, then select the Configuration tab in the NodeBuilder Device Template Target
Properties dialog.

116 Creating and Using Device Templates

MNodeBuilder Device Template Target Properties

Gompiler | Linker | Exporter Configuration]

PIX

ModeBuilder device template name: | MB Fx Example Device

Target device type: | Developrnent

[Export confioured
Damait

r Lemnith: Subnet I0:
1D MNode 1D:

Authentication Location string:

key. Receive timer

loze]

o o lir

—
—

=

Ok | Cancel ‘

You can select the Export Configured check box to enable the NodeBuilder tool build a configured

device application for the target. The target will have the properties set in this dialog set when the
application is downloaded to the device. This information is used to set the fields of the system
domain table and other configuration data structures (see the Neuron C Reference Guide for more

information). This check box is cleared by default.

Tip: Most device applications should be exported as unconfigured; therefore, you will typically leave
the Export Configured check box cleared. Creating a configured device application is recommended

for advanced users only.

If you select the Export Configured check box, you can set options for the following properties (see

the Neuron C Programmers Guide and Neuron C Reference Guide for more information on these

properties):

Domain

Clone Uses a clone domain, which is a domain address within a device that
specifies that the device can receive messages from other devices with
the same network address. If you are exporting your application image
as a configured image, you can configure the domain as a clone domain.
A clone domain is typically only used in self-installed networks where
multiple devices within a network may have the same address.

Limitations

Devices using a clone domain have the following limitations:

e Devices can no longer receive messages in that domain using
subnet/node addressing. Some other addressing mode must be used
(Neuron ID, group, or broadcast). Use only group and broadcast
addressing for self-installed devices since the use of Neuron ID
addressing makes systems more difficult to maintain.

e Devices cannot receive acknowledgements and responses. The
device will, however, continue to send acknowledgements and
responses with proper subnet/node information.

e Devices cannot use Authentication because the reply to a challenge

NodeBuilder FX User's Guide

117

is sent using subnet/node addressing regardless of the addressing
format of the original message.

e Devices are no longer protected against receiving their own
messages in looping topologies. This must be considered when
designing the application. For example, if a device sends out a
network variable update, and it also had an input network variable
defined with the same network variable selector, its input network
variable will get updated if the message is reflected or routed back,
which may not be the intention.

Length Specify the length of the domain that will be loaded into the device.
This can be set to one of the following values:

e <None>. The device will not include a pre-configured domain
record. If you want to use authentication, the firmware must
support open media authentication.

e 0 bytes. The device uses the 0 length domain. If you want to use
authentication, the firmware must support open media
authentication.

e 1,3, 6bytes. The domain length. This value determines the
format of the Domain ID field.

D The domain ID that will be loaded into the device with the application,
as a hexadecimal value. You can only set this property if you set the
Domain Length property to 1 byte or greater.

Subnet ID The subnet ID that will be loaded into the device.
Node ID The node ID that will be loaded into the device.
Authentication The authentication key that will be loaded into the device.
Location String The location string that will be loaded into the device. Select whether

the location string is set in ASCII or Hex format.

Receive Timer The receive timer value that will be loaded into the device.

Inserting a Library into a NodeBuilder Device Template

You can add a library to a NodeBuilder device template. A library is a file with a .lib extension
containing one or more compiled ANSI C functions. When you build the application image for a
device template, functions are included from libraries if they are referenced by any code included in
the device template. The code for any unreferenced functions is not included in the application image.

There are two types of libraries: standard and custom. The standard libraries are included with the
NodeBuilder tool. When you build a device template, some standard libraries are automatically linked
in your Neuron C code such as the CodeWizard-3.lib library (if you are using version 3 code
templates), and the gen.lib, psg.lib and extarith.lib libraries. You may explicitly include standard
libraries in a NodeBuilder project for documentation purposes. Note that some libraries provided by
Echelon must be explicitly included as custom libraries such as the ISI and CCL libraries.

Custom libraries are any libraries that you or a third party creates. Custom libraries must be explicitly
included in a NodeBuilder project. You can create your own custom libraries (see the Neuron C
Programmer’s Guide for more information on how to do this).

To insert a library into a NodeBuilder device template using the NodeBuilder project manager, follow
the steps outlined below. Alternatively, you can use a pragma library directive, which lets you specify
a library from your Neuron C source file (see the Neuron C Reference Guide for more information).

To insert a library into a NodeBuilder device template, follow these steps:

118 Creating and Using Device Templates

1. Expand the device template in the Project pane of the NodeBuilder project manager.

2. Right-click the Libraries folder and then click Insert on the shortcut menu.

Workspace O x

-3 Praoject 'WB_F¥ Exercise’:
—1'— Device Templates
- & ME Fx Example Device
ElneF Example Device.nc
= & Development

+ DDependencies
+ IHI Release
+[_¥Source Files
+
+|_YDevices
+{_IHardware Templates

Insert...

3. The Specify Library Type dialog opens.

Specify Library Type

Please specify whether the library to be inzerted is a
standard Echelon library ifram the LanWorksUmages
directary), or a custom library.

I Customn library

+ Standard library

| Iext = | Cancel

4. Select a Custom Library or a Standard library to add to the device template and then click
Next. Standard libraries (.lib extension) are stored in the C:\LonWorks\Images folder; custom
libraries can be stored anywhere.

5. Ifyou selected Standard Library in step 4, the Select Standard Libraries dialog opens.

NodeBuilder FX User's Guide

119

120

Select Standard Libraries

Checkthe standard librangies) to be inzerted.

[] Codewizard lib
[EXTARITH. lib
[]GEN.LIB
REET
[]5LTAlb

= Back | Finish | Cancel |

Select one or more of the following standard libraries in the C:\LonWorks\Images folder to be
explicitly included in the project (for documentation purposes only) and then click Finish.

CodeWizard-3.lib

CodeWizard.lib

Extarith.lib

Psg.lib

Gen.lib

SLTA.lib

The NodeBuilder Code Wizard library used by the version 3 code
template. The Code Wizard library supplies most of the utility
functions defined in the CodeWizard.h file. See Version 3
Templates in Chapter 6 for more information on the version 3 code
templates.

Note: You do not need to add a reference to the CodeWizard-3.lib
file to your NodeBuilder Device Template. Version 3 of the
CodeWizard.h file automatically links with this library through the
#pragma library directive.

The NodeBuilder Code Wizard library used by the version 2
template. Existing applications that use the version 2 code
templates already contain a reference to this library; however new
applications that use the version 2 code templates need to reference
this library. See Version 2 Templates in Chapter 6 for more
information on the version 2 code templates.

Note: You should use the version 3 code templates for all new
device development. The version 1 code templates do not use or
require a special function library.

The extended arithmetic function library. Provides floating point
and 32-bit integer math functions. For more information, see the
Neuron C Programmer’s Guide.

The programmable serial gateway library. Provides serial /O
functions for the PSG/3 and PSG-20 programmable serial gateways.
For more information, see the programmable serial gateway
documentation.

The standard Neuron C support library. Provides general support
functions for Neuron C.

The SLTA-10 Serial LonTalk Adapter support library.

Creating and Using Device Templates

When you build the application image, the NodeBuilder tool first searches for the selected
libraries in the folder within the Images folder that contains the system image for the target (for
example, C:\LonWorks\Images\Ver18). If the libraries are not in the version folder, the libraries
in the parent C:\LonWorks\Images folder are used.

6. Ifyou selected Custom Library in step 4, the Specify Custom Libraries dialog opens. Enter the
full path of the library or libraries to be added to the device template. You can enter multiple
library files by separating the paths with a semi-colon. To browse to a library file, click the button
to the right of the Library Names property and then browse to any file with the .lib extension.
When you have finished specifying the custom libraries, click Finish.

Please indicate the full path name ofthe custom library
or libraries to be insered. Separate multiple libraries by
a semicolon.

Library name(s):

= Back | Finish | Cancel

Note: You can view a summary of the contents of any library file using the Neuron Librarian
standalone tool. To do this, open a command prompt and enter the following command:

nlib —r <library file name>
To save the summary, redirect the output to a file using the following command:
nlib —r <library file name> > <text file name>

For more information on using the Neuron Librarian tool and other standard Neuron C tools that can
be run standalone, see Appendix A of the Neuron C Programmer’s Guide.

Using Hardware Templates

You can create new hardware templates or copies of existing ones and then configure them with the
NodeBuilder Project Manager. A hardware template is a file with a .NbHwt extension that defines the
hardware configuration for a target device. It specifies hardware attributes including platform,
transceiver type, Neuron Chip or Smart Transceiver model, clock speed, system image, and memory
configuration. Several hardware templates are included with the NodeBuilder tool. You can use these
or create your own. Third-party development platform suppliers may include NodeBuilder hardware
templates for their platforms.

To view the currently defined hardware templates, expand the Hardware Templates folder in the
Project pane of the NodeBuilder Project Manager. The Hardware Templates folder contains
Standard Templates and User Templates folders.

e The Standard Templates folder contains standard NodeBuilder hardware templates that are
included with the NodeBuilder tool. The Standard hardware templates are read-only; however,

NodeBuilder FX User's Guide 121

you can use the Insert Copy feature to create your own custom hardware template based on a
Standard template and then edit your custom template.

Workspace O x
13 Project 'WE_F¥ Exercise's ~
+[_JDevice Templates
+ [JDevices

='“AHardware Templates
Standard Templates
FT 3120 Evaluation Board (S01-0442-01)
FT 3120 Evaluation Board
FT 3120-E4 40MHz
FT 3150 64K Flash 10MHz
FT 3150 Evaluation Board
FT 5000 Evaluation Board
LTM-10Flash ME 1_5
LTM-10MIFME 1_5 —
LTM-10RAMMNE 1 5
LTM-104 64K Flash with FTT-104 Transceiver
LTM-104 Flash Gk
LTM-104 Flash
LTM-104 MIP
LTM-104 RAM

The User Templates folder contains your custom hardware templates that can be used by all
NodeBuilder projects on this computer. Any hardware templates unique to this project are located
in the Hardware Templates folder, and are not contained in the Standard Templates or User
Templates folders.

To create hardware templates, you do the following:

1.

Create a new hardware template either using the New shortcut command on the Hardware
Templates or User Templates folder, duplicating an existing hardware template using the Insert
shortcut command on the Hardware Templates folder, or creating a copy of an existing hardware
template using the Insert Copy shortcut command on the Hardware Templates or User
Templates folder.

Set the hardware template properties for the new hardware template in the Hardware Template
Editor dialog. You can also use this dialog to edit existing hardware templates or edit the
hardware template being used in an existing device template.

Creating Hardware Templates

You can create new hardware template and add existing ones into your project from the Project pane.
To do this, right-click the Hardware Templates or User Templates folders to open a shortcut menu
that has the following options:

122

Workspace O x

| Project "WE_F¥ Exercise’:

+[_JDevice Templates

+[_YDevices

S [Hardiware Templates
+/[_}standard Template; ~ Mew...

[Yuser Templates Insert...
Insert Copy...

Creating and Using Device Templates

New Creates a new hardware template to be added to the selected folder.
Selecting this option opens the Hardware Template Editor dialog
where you can create a new hardware template.

e Ifyou are creating a hardware template in the Hardware
Templates folder, it will be placed in the NodeBuilder project
folder (for example, C:\Lm\Source\NB_FX Exercise).

e Ifyou are creating a hardware template in the User Templates
folder, the new User hardware template will be placed in the User
hardware templates folder, which is
C:\Lm\Source\Templates\Hardware by default. If this folder does
not already exist on your computer, you will be prompted to create
it.

You can set the default User hardware templates folder in the
Options tab of the NodeBuilder Project Properties dialog. To
access this dialog, click Project and then click Settings, or
right-click the Project folder in the Project pane and click Settings
on the shortcut menu.

You can create folders in the User hardware templates folder, but
the NodeBuilder tool will only show them if they contain at least
one hardware template.

Proceed to the next section, Editing Hardware Templates, to configure
the hardware, memory, and description of the new hardware template.

Insert References an existing hardware template and inserts it into the
currently open NodeBuilder project. After you select this option,
browse to and select an existing NodeBuilder device template file
(.NbHwt extension) to be inserted into your current NodeBuilder
project.

Note: This command is only available for the Hardware Templates
folder.

Insert Copy Creates a copy of an existing NodeBuilder hardware template, lets you
modify the hardware template properties, and inserts the modified
hardware template into the currently open NodeBuilder project.

After you select this option, browse to and select an existing
NodeBuilder device template file (.NbDt extension) to be inserted into
your current NodeBuilder project. After you select an existing
hardware template, the Hardware Template Editor dialog opens.

Proceed to the next section, Editing Hardware Templates, to configure
the hardware, memory, and description of the hardware template copy.

Note: You can also create a copy of an existing NodeBuilder hardware
template by dragging a standard or user hardware template to the
Hardware Templates folder.

Notes:

e You can add a hardware template to a device template’s development or release target by dragging
the hardware template from the Hardware Templates folder to the appropriate Release or
Development folder. Each of these folders can contain only one hardware template. When you
drag a new hardware template to one of these folders, it replaces the old one if the folder already
contained a hardware template. You can edit an existing hardware template by double-clicking it,
which opens the Hardware Template Editor dialog.

NodeBuilder FX User's Guide 123

¢ Do not modify hardware templates in the Standard Templates folder because any changes that
you make will be overwritten by future NodeBuilder updates. To modify a standard template, first
insert a copy in the User Templates folder, and then edit the resulting custom template. Future
upgrades of the NodeBuilder tool will not modify any user templates.

e You can remove project-specific hardware templates in the Hardware Templates folder. To do
this, right-click the template and then click Remove on the shortcut menu. Note that removing a
hardware template only removes the hardware template from the project; it does not delete the
hardware template file.

* You cannot remove hardware templates in the Standard Templates and User Templates folders
because they may be used by other NodeBuilder projects.

Editing Hardware Templates

124

When you create a new hardware template or create a copy of an existing one, you can configure the
hardware, memory, and description properties of the new hardware template. You can also edit these
properties for an existing hardware template or for a hardware template being used in an existing
device template. The following sections describe how to set these properties.

Note: If you are editing a hardware template that is associated with a development or release target,
the changes you make are also saved to the original hardware template in the Hardware Templates
folder.

Setting Hardware Properties

You can set hardware properties for a hardware template on the Hardware tab of the NodeBuilder
Hardware Template Properties dialog. If you open an existing template or create a new hardware
template using Insert Copy, this tab will show the properties of the selected hardware template. If you
create a new hardware template, it will contain the default values shown in the following image:

Creating and Using Device Templates

sy Hardware Template Editor,

Hardware template name; FT 5000 Evaluation Boar: |

Hardware |Memory Description

Flatform:

| Cuztom w |

Transceiver type:
(TRFT-10 v/

Mewron chip model:
FT 5000 v/

Euternal clock, speed:

Clack multiplier: Syztem clock:
E v/ 80.00 MHz

Syztem image version:

| <Default: w |

Image name: Firmmaare wersion:

erranng

I Ok H Cancel]

You can set the following properties on the Hardware tab:

Hardware Template Enter the name of the hardware template. By default, new hardware

Name templates are named Custom 1, Custom 2, and so on. The hardware
template name may be any valid Windows file name. The name can
contain up to 210 characters, including spaces. The name cannot
contain the following characters: \ / : * ? “ <> |.

Platform A platform is a category of hardware implementations. Most hardware
templates, including standard and user-defined hardware templates, are
implemented using the Custom platform. The Custom platform is
suitable for all user-defined hardware.

Other platform types are used for unique hardware implementations.
For example, the LTM-10 platform does not have a fixed transceiver
type, and such flexibility may complicate the implementation.

Select one of the following hardware platforms:

e Custom. Select this if you are not using an LTM-10, LTM-10A, or
LonBuilder Emulator. This is the default.

e LTM-10.
e LTM-10A.
e LonBuilder Emulator 3150.

NodeBuilder FX User's Guide 125

Transceiver Type Select the transceiver type supported by the Neuron Chip or Smart
Transceiver model selected in the Neuron Chip Model property. Each
transceiver type identifies a unique set of transceiver parameters that are
included in the application image. The default transceiver type is
TP/FT-10.

Select <Default> to use the project default transceiver. You can set the
default transceiver in the Project tab of the NodeBuilder Project
Properties dialog. To access this tab, click Project, click Settings, and
then click the Project tab, or right-click the Project folder in the Project
pane, click Settings on the shortcut menu, and then click the Project
tab.

Neuron Chip Model Select the Neuron Chip or Smart Transceiver model supported by the
hardware platform selected in the Platform property. The default
Neuron Chip model is FT 5000.

External Clock Displays the frequency of the external crystal used for the Neuron Chip
Speed or Smart Transceiver model selected in the Neuron Chip Model
property.

For 5000 Series chips, the external crystal has a frequency of 10MHz;
however, you can change the system’s internal clock speed from SMHz
to 80MHz. To do this, you change the frequency at which the Neuron
Chip or Smart Transceiver runs in the Clock Multiplier property.

For 3100 Series chips, you can select a different clock speed from the
list of those available for the selected Neuron Chip and transceiver type,
or for the selected Smart Transceiver. This property is unavailable for
those Neuron Chip or Smart Transceiver models that support only one
external clock speed. See your Neuron Chip or Smart Transceiver data
book for more information.

Clock Multiplier For 5000 Series chips, you can select the frequency at which the Neuron
Chip runs to modify the system clock speed. You can select multipliers
of 5, 1,2, 4, and 8. The default multiplier is 8.

This property is fixed at %2 for the 3100 chip series.

Note: If you modify this property and your NodeBuilder project is not
associated with a LonMaker network, you must associate the
NodeBuilder project with a LonMaker network and then load the device
application with the NodeBuilder tool to implement the change. If you
load the device application with the LonMaker tool without using the
NodeBuilder tool’s automatic load after build feature, the device may
not use the correct clock speed.

System Clock The effective clock speed of the internal system. For 5000 Series chips,
this is the product of the External Clock Speed and the Clock
Multiplier. The default internal system clock speed is 80.00 MHz (the
crystal’s speed external clock speed of 10MHz multiplied by the default
clock multiplier of 8), and it may be as low as 5 MHz (10MHz *).

Note: The 5.00 MHz system clock setting is intended only to facilitate
backward compatibility with older designs that cannot scale to higher
clock rates. There is no power consumption advantage to using 5.00
MHz over 10.00 MHz.

For 3100 Series chips, this is the same value as the External Clock
Speed multiplied by %.

126 Creating and Using Device Templates

System Image Select the system image version for the selected Neuron Chip or Smart
Version Transceiver model. See your Neuron Chip or Smart Transceiver data
book for more information.

Select <Default> to use the default system image for the chosen chip.
The default system image is the most current system image version
included with this version of the NodeBuilder tool and any applied
service packs.

Select <Custom> to specify your own custom system image in the
Image Name property. See the Neuron C Programmer’s Guide for
information on creating custom system images.

Image Name Displays the file name of the system image. If <Custom> is selected in
the System Image Version property, you can enter a system image file
name or click the button to the right and browse to a system image
symbol file (.sym extension).

For 5000 Series chips, the name of the default system image is
BFT5000.

Firmware Version Displays the firmware version used by the selected system image if

the System Image Version property is set to <Default>; otherwise
N/A is displayed.

Setting Memory Properties

You can view and set the on-chip and off-chip memory properties for a hardware template on the
Memory tab of the NodeBuilder Hardware Template Editor dialog.

+4 Hardware Template Editor

Hardware template name: FT 5000 E valuation Board |

Hardware| temary |Descripti0n

Memom addreszes Mat-wolatile rmemaon
Start End
Off-chip ROM: | | | |
Type:
Extended non-volatile: |DK4FFF & | | EEPROM 3

Extended on-chip Flé: |DHEUUU - | |UKE?FF 5 |

Sector size:
OnchipROM: [0:0000 | [0x3FFF |
“rite time:
On-chipRAM: |0:E800 | |D:EFFF | [] ms
Mandatory EEPROM: | G4F000 | |O4FFFF |
Estended orchip EEPROM: 00000 | [0x0000 |
[(1] H Cancel][Apply

NodeBuilder FX User's Guide

127

128

The Memory Addresses box details how on chip and off-chip memory is organized on the selected
Neuron Chip or Smart Transceiver model. These values are dependent on the chip type and may be
modified depending on the Neuron chip model and available memory. You can modify the Start and
End locations for available memory by clicking the arrows. A value of 0x0000 is displayed for any
memory location that has not been set; N/A is displayed for any memory location that is not available.

The Non-Volatile Memory box specifies the type of external non-volatile memory (EEPROM,
FLASH, and NVRAM) used, if any. If EEPROM is selected, the Write Time field specifies the
EEPROM write time. If Flash is selected, the Sector Size field specifies the flash memory sector size.

The following sections describe the memory properties of the 5000 Series chips, 3150 Neuron core,
and 3120 and 3170 Neuron core.

5000 Series Chips

The address ranges and consumption for the on-chip and off-chip memory of the 5000 Series chips are
as follows:

Off-Chip ROM The 5000 Series chips do not support off-chip memory;
therefore, this property is set to N/A.

Extended Non-Volatile The 5000 Series chips use a serial memory interface for
external non-volatile memory devices (EEPROM or flash).
The application code and configuration data are stored in the
external non-volatile memory device and then copied into the
internal RAM when the device is reset. The device application
is then executed from the internal RAM.

The Extended Non-Volatile memory always starts at 0x4000
and can extend to a configurable address of less than 0xE7FF
(a maximum of 42KB).

Echelon currently supports and provides drivers for the
following flash devices, which you can select from the Type
property in the Non-Volatile Memory box: Atmel
AT25F512AN, ST M25P05-AVMNG6T, and SST25VF512A.
See the Neuron Chip or Smart Transceiver data book for more
information.

Note: The drivers for different flash devices consume varying
amounts of EEPROM code space because of the different
programming algorithms required for the different flash
devices. For example, the SST driver takes 40 bytes more of
EEPROM than the other two supported flash devices.

Extended On-chip RAM The Extended On-chip RAM can start at a configurable address
at or above 0x4000 or at the end of any extended non-volatile
memory and must end at 0OxE7FF.

On-chip ROM The On-chip ROM is set from 0x0000 to 0x3FFF.
On-chip RAM The On-chip RAM is set from 0xE800 to OxEFFF.
Mandatory EEPROM The On-chip EEPROM is set from 0xF000 to OxF7FF. This

reflects the fact that a minimum of 2K of external serial
EEPROM is required for the 5000 Series chips.

Extended On-chip EEPROM The 5000 Series chips do not use Extended On-chip EEPROM;
therefore, this property is set from 0x0000 to 0x0000.

Creating and Using Device Templates

3150 Neuron Core

For Neuron 3150 Chips, 3150 FT Smart Transceivers, and 3150 PL Smart Transceivers, the on-chip
memory values are dependent on the chip type and may not be modified with the exception of the
Extended On-chip RAM. The Type property in the Non-Volatile Memory box specifies the type of
non-volatile memory (EEPROM, FLASH, and NVRAM) used, if any. For devices where the system
image is kept in non-volatile memory, select either flash or NVRAM. EEPROM is not supported for
this configuration.

3120 and 3170 Neuron Core

For the Neuron 3120 Chips, 3120 FT Smart Transceivers, 3120 PL Smart Transceivers, and 3170 PL
Smart Transceivers, the on-chip memory values are dependent on the chip type and may not be
modified with the exception of the Extended On-chip RAM. These chips do not support off-chip
memory, therefore, the Off-Chip ROM, Off-Chip RAM, Off-Chip Non-Volatile and I/O properties
are set to N/A.

Setting the Hardware Template Description

You can enter an optional description for a hardware template in the Description tab of the
NodeBuilder Hardware Template Properties dialog. This description will be saved in the hardware
template file and will be available if this hardware template is used in other NodeBuilder projects.

+ Hardware Template Editor

Hardware template narme: FT 5000 Evaluation Board

Hardware | Memory | Description

Hardware template description;

Thiz iz the standard hardware template for the FT 5000 EVE evaluation board,

The FT 5000 EVE uses Echelon's FT 5000 Smart Transceiver, which supports an intemal system clock
gpeed of B MHz to 80 MHz [bazed on an external crystal of 10 MHz),

The FT 5000 Smart Trangceiver includes 16KE of on-chip ROM to store the system firmware image and
£4 KB of on-chip Bakd [44 KB of which can be used for application code and data). The FT 3000 Smart
Tranzceiver requires at least 2KB of off-chip EEPROM to stare configuration data, and you can use a
larger capacity EEPROM device or an additional flazh device [up to B4KEB] to ztore your application
code, configuration data, and an upgradable system firmware image. The spstem image and application
code iz shadowed inta the an-chip FAM at runtime.

This FT 5000 EVE hardweare template maps the memomn range from 0w4000 to 0xDFFF for EEPROM
which can be used to store application code. The memary range 0=E000 to 0<E 7FF iz configured for
on-chip Rakd. These memony ranges are configurable based on application requirements.

]S H Cahcel H Apply

NodeBuilder FX User's Guide 129

130 Creating and Using Device Templates

6

Defining Device Interfaces and
Creating their Neuron C Application
Framework

This chapter describes how to use the NodeBuilder Code Wizard to define your
device interface and generate Neuron C code that implements it. It explains how to
start the NodeBuilder Code Wizard, how to add functional blocks, network variables,
and configuration properties to your device template, and how to create the Neuron C
framework for your device application.

NodeBuilder FX User's Guide 131

Infroduction to Device Interfaces

The NodeBuilder Code Wizard generates Neuron C source code that implements your device interface
and creates the Neuron C framework for your device application. The device interface defines the
functional blocks, network variables, and configuration properties implemented by your device. The
framework created by the Code Wizard implements the most common device and functional block
management tasks that are used in interoperable networks, and are required for certification of
interoperable devices.

Functional blocks, network variables, and configuration properties are described as follows:

e Functional blocks group network variables and configuration properties into functional units that
define desired system functionalities. Functional blocks define standard formats and semantics for
how information is exchanged between devices on a network.

e Network variables allow devices to send and receive data over the network. Network variables are
data items (such as temperature, the state of a switch, or actuator position setting) that a particular
device shares with other devices on the network.

e Configuration properties define device behavior by determining how data is manipulated and
when data it is transmitted, for example. Configuration properties control the application’s
algorithms, while network variables provide input and output to the algorithms. For example, a
configuration property may specify a minimum change that must occur on a physical input to a
device before the corresponding output network variable is updated. Configuration properties can
be applied at the device, functional block, or network variable level. Configuration properties may
be set during device installation, operation, and maintenance.

To create a device interface and the Neuron C framework for the device application, you do the
following:

1. Start the NodeBuilder Code Wizard.
2. Define the device interface.
3. Generate the Neuron C code.

Starting the Code Wizard

You can start the NodeBuilder Code Wizard when you are creating a new device template in the New
Device Template wizard or any time from the NodeBuilder Project Manager.

To start the NodeBuilder Code Wizard when you are creating a new device template, select the Run
NodeBuilder Code Wizard check box in the Target Platforms dialog of the New Device Template
wizard. See Creating Device Templates in Chapter 5 for more information on setting this option in the
NodeBuilder Code Wizard.

To start the Code Wizard from the NodeBuilder Project Manager, right-click a device template in the
Project pane and click Code Wizard on the shortcut menu.

132 Defining Device Interfaces and Creating their Neuron C Framework

Workspace

-4 Project 'ME_Fx Exercise's

-1 Device Templates
+ P
+ @ NE Fx Example Device

+ DDevices

— A Hardwara Templates
+[_¥standard Templates

[Huser Templates

Biuild
Clean
Build Exclude

Settings...
Set Source File, ..

Skatus, ..
Properties. ..

The NodeBuilder Code Wizard opens.

NodeBuilder Code Wizard

Device template

Mame: MyrewDeviceTemplate

Frogram 0 9F:FO:3E:50:3C:00:04:00

interface pane.

Resource pane:

Configuration property access method

o

I

Toinsert a functional hlock, network variable, or configuration property, drag the correspaonding item from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program

Frogram interface pane:

Generate and Close

Close

|E: SLonwworkshTypeshLdr.Cat

CALmhS ource

g CiiLonWorks) TypesiLdrf . Cat
=13 Ci\Lonwarks\Types
+|-fip STAMDARD (Scope O Standard)
-1 C:\Lonwarks| TypesiUseriEchelon
+| @i echelon (Scope 3: Echelon Corporation)
+-fp MBUS_Integrator (Scope 4: Echelon Corporation, Gatewan
+-@p dc0519 (Scope 4 Echelon Corporation, Generic Analog O
+-fp DCO131 (Scope 4 Echelon Corporation, Channel Diagnosk
+|-fp BAS_Controller {Scope 4: Echelon Corporation, Generic Co
=1-{C1 C:\Lonworksitypesiuser|YourCompany
+| g Device Development (Scope S 0xFFD3E, 0x0000, Metwor
—-[L Cr\LonmaorksiMeuronCiExamplesiModeBuilder LTM-104Types
+- @y NcExample (Scope S5: Examples, I/O, General)
—1-23 Ci\LonwarksiNeuronC\ExamplesiMini EVE\ Types
+|-fp Minikit (Scope 4: Examples, Generic Analog Input)

= . MyMewDeviceTemplate
=1-_1 Functional Blacks
+ . ModeCbject
[Z Metwark Yariables
D Configuration Properties

The NodeBuilder Code Wizard user interface is essentially divided into two panes: the Resource pane
and the Program Interface pane. The following sections describe how to use these panes.

Using the Resource Pane

The Resource pane provides the full functionality of the NodeBuilder Resource Editor. It lists
functional profiles, network variable types, and configuration property types, which are collectively
referred to as resources. To define your device interface, you drag these resources from the Resource

pane to the Program Interface pane as described in Using the Program Interface Pane later in this

NodeBuilder FX User's Guide

133

section. For more information on creating and editing resource file sets and resources, see the
NodeBuilder Resource Editor User’s Guide.

The Resource pane displays a hierarchical view of your resource catalog. The resource catalog file
(&#) is at the top of the hierarchy. The resource catalog file is used to identify all the directories
containing resource file sets. The resource catalog file has a .Cat extension. The default resource
catalog file is Ldrf.cat, and it is stored in the C:\LonWorks\Types folder.

Below the resource catalog files are entries for each resource folder contained in the resource catalog.
A resource folder may contain one or more resource file sets. By default, there is one resource folder
(C:\LonWorks\Types) that contains the STANDARD resource file set. There may be a
C:\LonWorks\Types\User\Echelon folder if you installed the LonPoint plug-in when you installed
the LonMaker tool, or you may have additional resource folders if you have installed any other
plug-ins, or already created your own resource files. You can add and remove resource folders in the
resource catalog file from the Resource pane.

Each resource file set (8) includes individual folders containing functional profile, network variable
type, configuration property type, format, and language file resources.

C:hLondwfarkshTopes STANDARD

g CiiLonworks\ TypesiLdrf. Cat
= CiiLomworks\ Types
STANDARD (Scope 0: Standard)

+-[_ Metwork Variable Types
+ I:l Configuration Property Types
+-[_7 Functional Profile Templates
+ I:l Enurmerations
+-[_7 Language Files
+-[27] Formats

+-{_7] CriLomworks) TypesiUseriEchelon

Note: The Resource pane does not include the menu and toolbar displayed at the top of the
NodeBuilder Resource Editor; however, you can access the commands provided by these components
by right-clicking the Resource Catalog in the Resource pane.

C:hLondwfarksh T ppesLdif. Cat

- CriLomwiarks\ Types Add Folder...
+ @il STANDARD (Scope O Mew Resource File Set, .,
=1 CriLonwaorks) TypesiUser Refresh Catalog
+-E echelon (Scope 3: Edl cave Al
+ -l MBIS_Integrator (Se A
+ g dc0519 (Scope 4 EcH Catalog Properties. . o
+ -l DCO131 (Scope 4 Ec nsk
+-fip BAS_Cantroller (Scop Search... iZi
=1 Cilonwoaorksityvpesiusert Report..
+-fip Device Development | Opions. .. o

Introduction to Resource File Sets

Resources are grouped into resource file sets, which apply to a specified range of program IDs. The
program ID range is determined by a program ID template in the file, and a scope value for the
resource file set. The scope specifies the fields of the program ID template that are used when
matching the program ID template to the program ID of a device. The program ID template has an
identical structure to the program ID of a device, except that the applicable fields may be restricted by
the scope. The scope value serves as a filter, indicating the relevant parts of the program ID.

134 Defining Device Interfaces and Creating their Neuron C Framework

The scope may be one of the following values:
Scope Program ID Fields Used

Standard

Device Class

Device Class and Usage
Manufacturer

Manufacturer and Device Class

N S W N = O

Manufacturer, Device Class, and Device Subclass
6 Manufacturer, Device Class, Device Subclass, and Device Model

For a device to use a resource file set, the program ID of the device must match the program ID of the
resource file set to the degree specified by the scope. This allows each LONWORKS manufacturer to
create resource files that are unique to their devices.

For example, consider a resource file set with a program ID of 81:23:45:01:02:05:04:00 and
manufacturer and device class scope (scope 4). Any device with the manufacturer ID fields of the
program ID set to 1:23:45 and the device class ID fields set to 01:02 would be able to use types
defined in this resource file set, whereas devices of the same class but by a different manufacturer
could not access this resource file set.

A resource file set may also reference information in any resource file set with a numerically lower
scope provided the relevant fields of their program ID templates match. For example, a scope 4
resource file set can reference resources in a scope 3 resource file set, provided the manufacturer ID
components of the resource file sets’ program ID templates match.

Scopes 0-2 are reserved for standard resource definitions published by Echelon and distributed by
LONMARK International. Scope 0 applies to all devices; therefore, there is a single scope 0 resource
file set called the standard resource file set. A standard resource file set is included with the
NodeBuilder tool. You can download updated standard resource files from the LONMARK Web site at
www.lonmark.org/technical resources/resource_files.

You can define your own functional profiles, network variable and configuration property types, and
formats in scope 3—6 resource files.

Introduction to Resources

Each resource file set may contain definitions for the following resources:

Resource Description
Network Variable Type information for network variables. This information includes the
Types size, units, scaling factors, and type category (float, integer, signed, and so

on) for each type. Network variable types can contain a single scalar
value, a structure containing multiple fields (for example, the
SNVT_switch network variable contains 2 fields for the value and state),
or enumerated values that allow the network variable to be set to one of a
discrete number of values. Network variables types are defined in a
resource file with a .typ extension.

Configuration Type information for configuration properties. This information includes
Property Types the size, units, scaling factors, and type category (float, integer, signed,

and so on) for each type. Like network variable types, configuration
property types can contain scalar, structured, or enumerated values.
Configuration property types are defined in a resource file with a .typ
extension (this is the same file used for network variable types).

NodeBuilder FX User's Guide 135

http://www.lonmark.org/technical_resources/resource_files/

136

Resource

Functional Profiles

Enumerations

Language Files

Description

Functional profiles define a template for functional blocks. A functional
block is a collection of network variables and configuration properties
designed to perform a single function on a device.

Each functional profile can define mandatory and optional network
variables and configuration properties, which are collectively known as
mandatory and optional member network variables and configuration
properties. When a functional block implements a functional profile, it
must implement all mandatory member network variables and member
configuration properties defined by the functional profile, and it may
implement some, all, or none of the optional member network variables
and member configuration properties.

Functional profiles are defined in a resource file with a .fpt extension.
Functional profiles are also called functional profile templates. Functional
blocks are implementations of functional profiles, and are formerly known
as LonMark objects.

An enumeration type is a list of integral constants that are each associated
with a mnemonic name. If a network variable or configuration property
type contains an enumeration, the definitions of the enumerated values are
maintained separately as an enumeration type.

Enumeration types are defined in a resource file with a .typ extension
(along with network variable and configuration property types).
C-language definitions of enumerations are also automatically generated
in C-language header files (.h extension), which can be used to publish the
enumeration type to the Neuron C compiler.

Network variable types, configuration property types, functional profiles,
and enumeration types can all reference text information used to describe
their name, units, and function. This text information is contained in
separate language files. There is one language file for every language
your resource file set supports. When a language file is translated, the
references contained in the network variable types, configuration property
types, and functional profiles still point to the appropriate strings. The file
extension of each language file depends on the language, and is one of the
following values:

Language File Extension
Czech “csy”
Danish “dan”
Dutch (Belgian) “nlb”
Dutch (default) “nld”
English (UK) “eng”
English (US) “enu”
Finnish “fin”
French (Belgian) “frb”
French (Canadian) “frc”
French (default) “fra”
French (Swiss) “frs”
German (Austrian) “dea”
German (default) “deu”
German (Swiss) “des”
Greek “ell”
Hungarian “hun”
Icelandic “isl”

Defining Device Interfaces and Creating their Neuron C Framework

Resource Description

Italian (default) “ita”
Italian (Swiss) “its”
Norwegian (Bokmal) “nor”
Polish “plk”
Portuguese (Brazilian) “ptb”
Portuguese (default) “ptg”
Russian “rus”
Slovak “sky”
Spanish (default) “esp”
Spanish (Mexican) “esm”
Swedish “sve”
Formats Each network variable and configuration property type must have at least

one format defined. This format describes how the value will appear when
using text-oriented visualization tools such as the LonMaker Browser. It
is possible to define multiple formats for a network variable type or
configuration property type. Different formats can provide the
information in a different order (if the value is a structure) or provide a
different scaling factor (for example, the SNVT_temp_f network variable
type has three formats, one for Fahrenheit, one for differential Fahrenheit,
and one for Celsius). Formats are defined in format files with a .fmt
extension.

Using the NodeBuilder Resource Editor

You can use the NodeBuilder Resource Editor to create, modify, and view resources. The resource
editor is a standalone application that you can start from the NodeBuilder Project Manager, or start
independently from the Echelon NodeBuilder program folder. You can start the NodeBuilder
Resource Editor by one of the following methods:

o Click Start on the taskbar, point to Programs, point to Echelon NodeBuilder, and then select
NodeBuilder Resource Editor.

e From the NodeBuilder Project Manager, click Tools and then click NodeBuilder Resource
Editor.

Note: If you are running the NodeBuilder Code Wizard, the Resource pane provides the full
functionality of the NodeBuilder Resource Editor.

For more information on using the NodeBuilder Resource Editor, see the NodeBuilder Resource Editor
User’s Guide.

Using the Program Interface Pane

The Program Interface pane lists all the functional blocks, network variables, and configuration
properties currently in the device interface. After you create a new device template, the Program
Interface pane includes a tree view that has a device template object (s&) with three folders listed
underneath it: Functional Blocks, Network Variables, and Configuration Properties.

ChLmySource
= n&s MyMewDeviceTemplate
=-[_1 Functional Blocks
+ 0 ModeChjeck
[metwork variables
D Configuration Properties

NodeBuilder FX User's Guide 137

138

e The Functional Blocks folder contains all the functional blocks contained in this device interface.

e The Network Variables folder contains all the device network variables for this device interface.
Device network variables belong to the device and therefore are not contained in any functional
block. You can use device network variables to create a portion of your device interface for
proprietary or legacy information.

e The Configuration Properties folder contains all device configuration properties for this device
interface. Device configuration properties belong to the device and therefore are not contained in
any functional block. You can use device configuration properties to create a portion of your
device interface for proprietary or legacy information.

If you use device network variables or device configuration properties in your
device interface, your device will not comply with interoperability guidelines version
3.4 (or better) and therefore cannot be certified by LONMARK.

A better alternative for adding members to a functional profile is to create a user-defined functional
profile template (UFPT) that inherits from an existing standard functional profile template (SFPT), and
then add new mandatory or optional member network variables to the UFPT. This method results in a
new functional profile that you can easily reuse in new devices. See the NodeBuilder Resource Editor
User’s Guide for more information on creating new functional profiles.

You can right-click the device template to open a shortcut menu that has the following commands:

CP Access Method

[Functional Blocks

+ 0 ModeCbject
L1 Metwork Yariables
(7 Configuration Props

P Access Method »

v Use External FB Mame

Generate and Close
Refresh Catalog

Properties

Configuration properties may be accessed using read and write network
management commands, or they be accessed using the LONWORKS File
Transfer Protocol (FTP). Select this option to choose the configuration
property access method: Direct Memory Read/Write (recommended)
or File Transfer Protocol.

e Direct Memory Read/Write. This method requires less space and
code on the target device. This is the recommended option and the
default. When this option is selected, the Code Wizard
automatically implements the Node Object functional block’s
optional nvoFileDirectory network variable. The optional
nviFileReq, nviFilePos, and nvoFileStat network variables may
not be in the Node Object functional block when this option is
selected.

o File Transfer Protocol. When this option is selected, the Code
Wizard automatically implements the Node Object functional
block’s optional nviFileReq, nviFilePos, and nvoFileStat network
variables. The optional nvoFileDirectory network variable may
not be in the Node Object functional block when this option is
selected.

You can also select one of these options in the Configuration Property
Access Method box at the top of the user interface.

The NodeBuilder Code Wizard requires every device interface to
contain a Node Object functional block with nviRequest and nvoStatus

Defining Device Interfaces and Creating their Neuron C Framework

Use External FB
Name

Generate and Close

Refresh Catalog

Properties

network variables. The Node Object functional block is a standard
functional block that is used by network management tools to test and
manage the other functional blocks on your device and is also used to
report alarms generated by your device.

If you remove the Node Object functional block, the Code Wizard
cannot generate code for your device interface. See the LonMark

Application Interoperability Guidelines for more information about the
Node Object.

If this option is enabled, the LonMaker tool and other network
management tools use the functional block name set in the Code Wizard
(for example, Switch or LED). This option is enabled by default.

If this option is disabled, network management tools use the functional
profile name (for example, SFPTopenLoopSensor or
SFPTopenLoopActuator).

Creates the Neuron C code framework for your device interface and
closes the NodeBuilder Code Wizard. You can also create the Neuron
C code by clicking the Generate and Close option in the upper
right-hand corner of the user interface.

To close the NodeBuilder Code Wizard without generating any code,
click the Close option in the upper right-hand corner of the user
interface.

Updates the Program Interface pane with any changes made to the
network variable types, configuration property types, or functional
profiles used by the device template that are listed in the Resource pane.

If you change the name of a network variable type, configuration
property type, or functional profile, it will be removed from the device
interface when the NodeBuilder Code Wizard is refreshed and must be
re-added.

You can also refresh an individual functional block or the device’s
Network Variables and Configuration Properties folders by
right-clicking on them and then clicking Refresh on the shortcut menu.

Select this option to open the Device Template Properties dialog. You
can use this dialog to view the name, code template, and program ID of
the device template; view the number of functional blocks, network
variables, and configuration properties (both CPNVs and file CPs) in
the device interface; and view the configuration property access
method.

For new device interfaces created with the NodeBuilder FX tool, you
can change the code template used for the device application in the
Framework Version property. See Using Code Wizard Templates later
in this chapter for more information.

You can add text to be included in the device’s self-documentation
string in the Self-Documentation box in this dialog. .

Defining the Device Interface

The device interface consists of the functional blocks, network variables, and configuration properties
that let your device communicate with other LONWORKS devices and allow it to be configured by

network tools.

NodeBuilder FX User's Guide

139

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

A network variable defines an operational input or output for the device. The structure, range, units,
and format of the network variable are defined by a network variable type.

A configuration property specifies a configuration option for a network variable, a functional block, or
the entire device. The structure, range, units, and format of a configuration property are defined by a

configuration property type.

A functional block groups network variables and configuration properties that are related to a
particular function for the device. Each functional block is defined by a functional profile that
specifies the mandatory network variables and configuration properties that the functional block must
implement, and the optional network variables and configuration properties that the functional block
may implement. The functional profile also defines the behavior that the functional block must
implement.

Functional profiles, network variable types, and configuration property types are defined in resource
files. Resource files are grouped into resource file sets, where each set defines functional profiles,
network variable types, and configuration properties for a particular scope and program ID mask. The
NodeBuilder tool includes a Standard resource file set, which defines many standard functional profile
templates (SFPTs), standard network variable types (SNVTs), and standard configuration property
types (SCPTs) that you can use for your device interface.

If you need additional functional profiles or types that are not defined in the standard resource file set,
you can create your own user-defined functional profiles (UFPTs), user-defined network variable types
(UNVTs), and user-defined configuration property types (UCPTs). For more information on resource
files, including how to create user-defined functional profiles and types, see the NodeBuilder Resource
Editor User’s Guide.

To define your device interface, you first determine the functional profiles to be implemented by your
device. To select the functional profiles to be implemented by your device, you first browse the SFPTs
in the standard resource file set in the Resource pane. LONMARK International publishes
documentation for some standard functional profiles, which details the behavior expected from each
functional block that implements a given functional profile. You can view these functional profile
documents on the LONMARK Web site at
http://www.lonmark.org/technical_resources/guidelines/functional_profiles.

Note: The following graphic shows the functional profiles sorted by index; by default, they are sorted
by name. To change how the functional profiles are sorted, right-click the resource catalog in the
Resource Pane, click Options on the shortcut menu, select By Index in the Sort By box, and then
click OK.

140 Defining Device Interfaces and Creating their Neuron C Framework

http://www.lonmark.org/technical_resources/guidelines/functional_profiles

NodeBuilder Code Wizard X

Device template Caonfiguration property access method
Marne: MyMewDeviceTemplate & Generate and Clase
Program 1D 9F:FD:3E:50:3C:00:04:00 -
Clase

To insert a functional block, network variable, or configuration property, drag the corresponding itermn from the
resource pane and drop it into the program interface pane, or right-click on the desired element in the program
interface pane.

Resource pane: Program interface pane:
C:ALontwiorkshT ypeshLdif. Cat C:ALmbSource
g = L. Cat |2 ade MyMewDevicaTemplate
=0 CiLonwaorks| Types =1-(_ Functional Blocks
—|- @ STANDARD (Scope 0: Standard) + 0 ModeObject
+1-_1 MNetwork Yariable Types [Z7 Metwork Yariables
+ [:I Configuration Property Types [:] Configuration Properties

-1-[_1 Functional Profile Templates
+-4% SFPTnodeCbject (0)

% SFPTopenLoopSensar (1)

% SFPTclosedloopSensor (2)

% SFPTopenLoopdctuator (3)

% SFPTolosedLoopdctuatar (4)

% SFPTcontroller (S)

% SFPTcalendar (6]

% SFPTscheduler (7)

% SFPTisiMonitarPoint (8)

v SFPTdatalogger (%)

% SFPTchannelMonitor (132)

% SFPTdeviceMoritor (136)

% SFPTchannelContinuityMaonitor {1373

% SFPTanaloglnput (5200

% SFPTanalogOutput (521)

% SFPTlightSensar (1010)

% CCNTruem e e S 1NN

e o o O

Each functional profile has a name and number that is unique for the scope of the resource file set.

The number is called the functional profile key or FPT key. If your device is a simple sensor or
actuator, you can use functional profiles 1-4: SFPTopenLoopSensor (1), SFPTclosedLoopSensor
(2), SFPTopenLoopActuator (3), or SFPTclosedLoopActuator (4). If your device is more complex,
you can browse the other SFPTs in the Standard resource file set for any suitable standard profiles
have been defined.

If you cannot find an SFPT that fits your device, you can define a user-defined functional profile
template (UFPT). You can create a UFPT from scratch, or you can create a UFPT that inherits from a
SFPT and then add network variables and configuration properties to the UFPT. See the NodeBuilder
Resource Editor User’s Guide for more information on creating UFPTs.

After you determine the functional profiles that your device interface needs to implement, you do the
following to finish defining your device interface:

1. Add functional blocks.

2. Edit mandatory network variables.

3. Implement desired optional network variables.

4. Implement desired optional configuration properties.

If your device needs network variables or configuration properties that are not included in any
functional profile, you can create a UFPT that inherits from a SFPT as described in the NodeBuilder
Resource Editor User’s Guide. Alternatively, you can add implementation-specific network variables
and configuration properties to the device interface; however this is not recommended because your
device will not pass LONMARK certification.

NodeBuilder FX User's Guide 141

Adding Functional Blocks

Functional blocks represent specific device functions. For example, a device could have four hardware
digital inputs, and digital would have its own functional block. To add a functional block to a device
template, follow these steps:

1. Drag the desired functional profile from the Resource Pane to the Functional Blocks folder in the
Program Interface pane. A new functional block with the same name as the functional profile
(without the SFPT or UFPT prefix, and truncated to 16 characters or less) is added to the device
interface.

For example, dragging a SFPTsccChilledCeiling functional profile to the Program Interface pane
creates a functional block named secChilledCeilin. If you add more functional blocks from the
same functional profile without changing the default functional block name, an index is appended
to the name in order to maintain unique functional block names. The functional blocks are sorted
by name.

2. Ifyou added a functional profile of the same type and scope as an existing one, a dialog opens and
prompts you whether you want to create a functional block array. Click Yes to create an array of
functional blocks. Click No to create a new functional block using the same functional profile.

NodeBuilder Code Wizard

b An instance of a functional block with FPT index ‘2’ and scope 07 is already in use,
‘-‘f} Do vou wish to implement a Functional block array?

es Mo Cancel

If you have added a functional profile that has the same type and scope as two or more existing
functional profiles in the device template, the Existing Functional Block List dialog opens. To
create a functional block array or add the functional block to an existing array, select an existing
functional block for which an array is to be created or select an existing functional block array and
then click Yes. To create a new functional block using the same functional profile, click No.

Existing Functional Block List

An instance of 3 functional black with FPT

index "' and scope '0'is already in use.

Select the functional block name fram the

list ifyou wish to add it to the existing array
arta implerment a functional black array,

and click "res" to continue, or click "Ma" if Cancel

youwish to create a new instance ofthe
functional block.

Swiitch
Temperature

A functional block array is useful if your device contains two or more identical switches, lights,
dials, controllers, or other I/O components that will each have an identical external interface. In
addition, a functional block array saves code space and reduces the number of when clauses in
your code. See Using Large Functional Block Arrays for how to manage your device
application’s memory when you are implementing large functional block arrays.

Note: You can still create a functional block array after adding the functional block to the device
interface. To do this, right-click the new functional block in the Program Interface pane, and then
click Properties on the shortcut menu. The Functional Block Properties dialog opens. Select

142 Defining Device Interfaces and Creating their Neuron C Framework

the Use Array checkbox, enter the number of functional blocks in the array in the Size box, and
then click OK.

3. Inthe Program Interface pane, right-click the new functional block and then select Rename on the
shortcut menu to change the name of the functional block. LNS network tools use this name is
used to identify the functional block. This name is not case sensitive; however, creating a
functional block, removing it, and then creating another functional block with different
capitalization can cause compilation problems, and is therefore not recommended.

NodeBuilder, Code Wizard)
Device template Configuration property access method
Mame; MyhMewDeviceTemplate & ‘ Generate and Close
Program 10 9F:FD:3E:S0:3C:00:04:00 .
Close ‘

Taoinsert a functional hlock, network variahle, or configuration praperty, drag the correspaonding item from the
resource pane and drop it into the program interface pane, or right-click an the desired element in the program
interface pane.

Resaource pane: Frogram interface pane:
|E:\LonWorks\Types'\STANDAHD.fpt CALmiSaurce
g Cr\LonWorksh TypesiLdrf. Cat A |= . MyNewDeviceTemplate
=11 Ci\Lonwarks| Types —-{_ Functional Blacks
|- STANDARD (Scope O: Standard) + & NodeObject
+-[C1] Mebwork Yariable Types ERCA open 50
+-[_1 Configuration Property Types [Z Metwark Variables
=1-{Z2 Functional Profile Templates [_71 Configuration Prope

T

&% SFPTnodeObieck (0}

%% SFPTopenLoopSensar (1)
% SFPTclosedloopSensor (2) Properties
= SFPTopenLoophctuator (3)

% SFPTclosedloopActuator (4)

% SFPTcalendar (6)

% SFPTscheduler (7)

% SFPTisiManitarPaink (23

% SFPTdatalogger (9)

% SFPTchannelMaoritor (132)

% SFPTdeviceMonitor (136)

% SFPTchannelContinuityMonitar (137)
% SFPTanalogInput (5200

% SFPTanalogOubput (5213

% SFPTlightSensor (1010)

¥ SFPTpressuresensar (10300

% CEMThy i T Cmmm e £ 0D

Refresh Catalog

) 3 3 e e S I

Note: You can have the LonMaker tool and other network management tools identify the
functional block by its functional profile name instead of the user-specified name. To do this,
right-click the device template in the Program Interface pane, and disable the Use External FB
Name option.

4. All the mandatory network variables and configuration properties specified by the functional
profile are automatically added to the Mandatory NVs and Mandatory CPs folders under the
functional block. These folders only exist only if the functional profile contains mandatory
network variables or configuration properties. Mandatory items can not be deleted from the
functional block. You can expand these folders to display the mandatory members in the
functional profile.

NodeBuilder FX User's Guide 143

C:ALm\Source
- . MyMewDeviceTemplate
=1-[_1 Functional Blocks

+ Modeobject
- Switch

=R | andatory Mis
25 nvovalue
[optional Mys
[optional cps
[Implementation-specific Mys

[Implementation-specific CPs

5. If any of the mandatory network variables do not have a default type set by the functional profile
(for example, the nvoValue network variable in the openLoopSensor profile), you need to set the
network variable type. See Editing Mandatory Network Variables for more information on how to

do this and edit other network variable properties.
Alternatively, you can add a functional block directly from the Program Interface pane following these
steps:
1. Right-click the Functional Blocks folder in the Program Interface pane and click Add Functional
Block in the shortcut menu.

C:5LmhSource
- . MyMewDevice Templake

Modethiect &dd Funckional Black:

Switch
[metwork variables
D Configuration Propetties

2. The Add Functional Block dialog opens.

Add Functional Block

Marme:

[Use array

Selectresource type
&+ Standard

" User-defined

| []
|

SFPT: |SFPTairvelocitySensar -

8154 Cancel

3. Inthe Select Resource Type box, select whether the functional block you are adding is based on a
Standard or User-Defined profile. If you select a User-Defined profile, select the Scope of the

functional profile.

144 Defining Device Interfaces and Creating their Neuron C Framework

4. Inthe SFPT or UFPT property, select the desired functional profile template.
5. Inthe Name property, enter a name for your functional block.

6. To create a functional block array, select the Use Array checkbox, and then enter the number of
functional blocks in the array in the Size box. See Using Large Functional Block Arrays for how
to manage your device application’s memory when you are implementing large functional block
arrays.

7. Click OK.

8. In the Program Interface pane, set the network variable type for any mandatory network variables
that do not have a default type set by the functional profile.

Using Large Functional Block Arrays

Implementing member network variables that apply to a functional block array of x elements requires
one network variable per functional block array element for each member network variable.
Implementing a single member network variable will therefore require x network variables,
implemented as an array of x network variables. Most functional profiles specify more than one
mandatory network variable (m), and will require m*x network variables.

Devices based on Neuron chips that use version 16 firmware or greater (for example, the 5000 Series
chips) support up to 254 static network variables (this limit is subject to available system resources and
application requirements). Storage for network variable values is by default allocated to the NEAR
RAM segment. The NEAR RAM segment allows accessing these variables with the most efficient
code (smaller, faster) compared to linking those network variable values into on-chip or off-chip FAR
RAM segments. However, the Neuron Chip’s hardware architecture limits the NEAR RAM segment
to 256 bytes in total, shared among global application and system variables and network variables.

Implementing very large functional block arrays, implementing smaller functional block arrays with
large numbers of member network variables, or generally implementing large numbers of functional
blocks (or network variables or application variables in general) will eventually exhaust the NEAR
RAM segment, and it will cause compiler or linker errors.

You will need to select variables for FAR RAM segments and NEAR RAM segments, respectively.
You will typically try to allocate the most frequently accessed and most time-critical ones into NEAR
RAM, permitting inherent limitations.

To change the allocation rules, double click a member network variable, then click Advanced in its
properties dialog, and select far to force a variable out of the NEAR RAM segment. See Chapter 8 of
the Neuron C Reference Guide for more information about using RAM in your Neuron C application.

Editing Mandatory Network Variables

When you add a functional block to your device interface, all the mandatory network variables
specified by the functional profile are automatically added to the Mandatory NVs folder under the
functional block. The functional profile provides defaults for all the properties of the network
variables; however, you can edit some of the properties. For example, you can set the network variable
type if the network variable does not have one set for it by the functional profile (for example, the
nvoSwitch member network variable in the openLoopSensor profile is defined using the placeholder
type SNVT_xxx), change the modifiers and messaging service used if the network variable is an
output network variable, set the initial value for the network variable when the device is reset, and set
the storage classes used by the network variable.

To edit a mandatory network variable, as well as optional and implementation-specific network
variables, follow these steps:

1. Double-click the network variable or right-click the network variable and select Properties from
the shortcut menu.

NodeBuilder FX User's Guide 145

C:hLmhSource

- . MyMewDevice Templake
=-{_7] Functional Blocks
+ ModeTbject
- openLoopSensar
=-[Mandatary Mys
% recvalus
[optional Mys
[optional s Rename
[Implementat
[Implementat
[metwark variables
D Configuration Properties

Propetties

2. The NV Properties dialog opens.

NV Properties

Mame:

rvovalue

[~ Changeahle type

"
- = o |

Advanced..
Y type: | j
FPT rmember name: | o alle
FPT mermber number: | 1
Direction Serwvice type
0 & Unspecified
o " Acknowledged
" Unacknowledged
" Repeated
Modifiers
Selfdocumentation (sd_string):
+ Mone (e o
" Synchronized
" Polled
Initializer

Edit...

3. Edit the following properties:

146 Defining Device Interfaces and Creating their Neuron C Framework

Name Displays the name of the network variable that will be used in the
LonMaker tool and other network management tools. The default
name is the functional profile name.

You can change the name of the network variable. The name must be
unique to the device, can contain up to 16 alphanumeric characters,
and must start with a letter. The name cannot contain spaces or the
following characters: \ /: * 7 “ <>|.

You can also rename the network variable by right-clicking it in the
Program Interface pane and then clicking Rename on the shortcut

menu.
Array Element The Use Array check box indicates whether the functional block
Count containing the network variable is an array (selected if the functional

block has been implemented as an array; cleared otherwise). If the
functional block has been implemented as an array, the Size box
displays how many functional blocks are in the array.

This network variable will be implemented in each functional block in
the array. This information can be useful when determining how
many network variables have been created on the device. This field is
read-only.

Changeable Type Enables network integrators to change the type of this network
variable. This lets you create a network variable that can send or
receive different kinds of information, depending on how the device
is used. For example, a generic PID controller device can be
implemented using SNVT _temp _f as the initial type, but selecting
this check box enables a network integrator to change this network
variable type to a range of other types to allow the PID controller to
control, light, pressure, or other types.

This option is only available if the Has Changeable Interface option
was selected in the Standard Program ID Calculator, and if the
functional profile defines no specific type for the network variable.
See Specifying the Program ID in Chapter 5 for more information on
setting this option.

For more information on implementing changeable-type network
variables in your Neuron C code, see Using Changeable-Type
Network Variables in Chapter 7 and the Neuron C Programmer’s
Guide.

NV Type Displays the standard or user-defined type of the network variable.
For implementation-specific network variables, you can change the
network variable type; otherwise, this field is read-only.

FPT Member Name Displays the name of the network variable as specified in the
functional profile. For implementation-specific network variables,
you can change the member name; otherwise, this field is read-only.

FPT Member Displays the member number of the network variable as specified in

Number the functional profile. For implementation-specific network
variables, you can change the member number; otherwise, this field is
read-only.

Direction Displays the direction of the network variable as specified in the

functional profile (Input or Output). For implementation-specific
network variables, you can change the direction; otherwise, this field
is read-only.

NodeBuilder FX User's Guide 147

Service Type Displays the service type used by the network variable to send
updates as specified in the functional profile (Unspecified,
Acknowledged, Repeated, or Unacknowledged). This property is
only available for output network variables.

You can change the service type for mandatory and optional output
network variables if the functional profile has not specified one, and
you can change the service type for implementation-specific output
network variables. The service types vary in reliability and resources
consumed:

e Unspecified. The network management tool or integrator will
determine which service type is used.

e Acknowledged. The sending device expects to receive
confirmation from the receiving device or devices that a network
variable update was delivered. The sending application is
notified when an update fails, but it is up to the developer of the
sending device to handle the notification in the device
application. While acknowledged service is very reliable, it can
create excessive message traffic, especially for large fan-out or
polled fan-in connections. When acknowledged messaging is
used, every receiving device has to return an acknowledgment.
Acknowledged messaging can be used with up to 63 receiving
devices, but an acknowledged message to 63 devices generates at
least 63 acknowledgements—more if any retries are required due
to lost acknowledgements.

Acknowledged service is the best choice for most network
variable connections due to its superior reliability and
performance.

e Unacknowledged. The sending device sends out the network
variable update only once and does not expect any confirmation
from the receiving device. This message service type consumes
the least amount of resources, but is the least reliable.

Unacknowledged service is often used with data that is frequently
repeated as part of the application’s algorithm, where the
occasional loss of an update might not be critical.

e Repeated. The sending device sends out a series of network
variable updates, but does not expect any confirmation from the
receiving device. Repeated service with three repeats has a
99.999% success rate in delivering messages. Repeated service
provides the same probability of message delivery as
acknowledged messaging with the same number of retries, with
significantly lower network overhead for large multicast fan-out
connections. For example, a repeated message with three retries
to 64 devices generates four packets on the network, whereas an
acknowledged message requires at least 64 packets. However,
the repeated message in this case does not allow for the backlog
estimation that an acknowledged message does.

148 Defining Device Interfaces and Creating their Neuron C Framework

Modifiers Indicates whether the network variable uses the Synchronized or
Polled modifiers. This property is only available for output network
variables.

You can change the modifiers for mandatory and optional output
network variables if the functional profile has not specified them, and
you can change the modifiers for implementation-specific output
network variables. This property may be one of the following values.

e None. The network variable is neither synchronous nor polled.

e Synchronized. The device sends all output network variable
updates, and queues and processes all input network variable
updates. The size of the input and output queues is limited to the
size of the application buffer queues on the device, so you may
need to allocate additional buffer space on the device if you
select this option.

If the network variable is not synchronized, the device sends only
the most recent output network variable update if the device
application updates the output network variable multiple times
before the application leaves the current when-task. Similarly,
the device processes only the most recent input network variable
update if the device receives multiple updates before the device
application can process them.

Note that most network variables are not synchronized.

e Polled. Output network variable updates are sent only in
response to a poll request from a device that reads this network

variable.
Self-document Optionally, you can enter comments to be appended to the
(sd_string) self-documentation string for this network variable. This text can

provide additional notes that can be accessed from a network tool.

Network variable members of functional blocks use a standard
self-documentation format that is detailed in the LonMark Application
Layer Interoperability Guidelines. The Neuron C Compiler
automatically generates all required self-documentation information.

The total length of the self-documentation string can be up to 1024
characters, including the characters automatically generated by the
Neuron C Compiler, any external functional block names, a
semicolon to separate comments (if you enter comments in this box),
your comments themselves (and possibly including formatting
characters), and a terminating zero byte.

Initializer Optionally, you can set the value for the network variable when the
device is reset. If this network variable is a structure, union, float, or
enumeration, click Edit to open the Edit Initializer dialog and enter
the value or values. See Setting Initial Values for Network Variables
and Configuration Properties later in this chapter for more
information.

Note: Network variables are automatically reset to 0 during reset
processing (except for those declared with the optional eeprom
modifier and those implementing configuration properties); therefore,
they do not need to be explicitly initialized to 0.

NodeBuilder FX User's Guide 149

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

150

4.

Optionally, you can click Advanced to open the Advanced NV Properties dialog and further
specify the storage class used by the network variable. Consider a scenario where you declare a
large network variable array that exceeds the limits of the near RAM segment, which is 256 bytes.
In this case, you need to move the network variable array to the far RAM segment by selecting the
far check box in this dialog. For more information on managing memory resources, see Chapter 8
of the Neuron C Programmer’s Guide.

MY class

gqualify the starage class.

[const

[~ eeprom

[far

[uninit

[Specify location
i

~

Connection infarmation

metwork variahles constitute one ofthe starage
classes in Meuron C. Use these options to further

Enter any additional hind_info options here:

0K

Cancel

You can set the following properties and then click OK to return to the NV Properties dialog:

NV Class

const

eeprom

You can specify the following storage classes for the network
variable.

The network variable is of const type. The Neuron C compiler will
not allow modifications of const type variables by the device’s
program. However, a const network input variable will still be placed
in modifiable memory and the value may change as a result of a
network variable update from another device. Selecting this class
disables the uninit keyword option.

When used with the declaration of a configuration network variable
(CPNV), the const storage class prevents both the Neuron C
application and network tools from writing to the CPNV. The
application may cast away the affects of the const type property to
implement device-specific configuration properties as configuration
network variables. However, the network variable will be placed in
modifiable memory; therefore, network variable connections may still
cause changes to such a configuration network variable.

The network variable is placed in EEPROM or flash memory instead
of RAM. All variables are placed in RAM by default. EEPROM and
flash memory is only appropriate for variables which change
infrequently because of the overhead and execution delays inherent in
writing such memory, and the limited number of writes for such

Defining Device Interfaces and Creating their Neuron C Framework

memory devices.

The network variable is placed in the far section of the variable space.
By default, Neuron C variables are placed in the near RAM segment;
however, the near RAM segment is limited to 256 bytes.

Accessing data in near RAM is faster and requires less code space
than accessing data in far RAM. As a result, you may need to move
some application variables or network variables into far RAM to
make enough space in the near RAM segment for those variables that
are either frequently accessed in a time-critical section of code, or
accessed from many locations in your source code

The maximum size of near memory areas is 256 bytes of RAM and
255 bytes of EEPROM, but this may be less in some scenarios.

uninit Prevents compile-time initialization of network variables. This is
useful for eeprom variables that do not or should not be written by
program load or reload. Selecting this class disables the const option.

A different mechanism, subject to your network management tool, is
used to determine whether configuration properties (including
configuration network variables), will be initialized after loading or
commissioning the device. The uninit keyword cannot be used to
prevent configuration network variables from being initialized by the
network management tool. See your network tool’s documentation
for details.

Specify Location Select this check box to place the network variable in the off-chip
portion or on-chip portion of the variable space, and then select one of
the following options:

e Offchip. This keyword places the variable in the off-chip
portion of the variable space. By default, the linker places
variables in either space as it chooses, depending on availability.
If the requested memory is not available, the link fails.

e Onchip. This keyword places the variable in the on-chip portion
of the variable space. By default, the linker places variables in
either space as it chooses, depending on availability. If the
requested memory is not available, the link fails.

Connection You can specify the Neuron C bind_info options. These options

Information allow you to specify default connection information for this network
variable (priority, authentication, service type, rate). For example,
entering authenticated(config) priority(config) in this box generates
the following line of code:

network <direction> <NV type> bind info
(authenticated (config) priority(config))

This is only required for bind_info options that are not handled by
the NV Properties dialog. For example ackd, unackd, and
unackd_rpt options are already handled by the NV Properties
dialog.

Network management tools such as the LonMaker tool can override
these settings. See the Neuron C Reference Guide for more
information.

If you define a network variable to use priority, the device containing

NodeBuilder FX User's Guide 151

152

the network variable must have priority enabled when it is installed.
To enable priority on a device installed in a LonMaker network, right
click the device, click Properties on the shortcut menu, select the
Advanced Properties tab and then set the priority to Enable -
Automatic or Enable - Manual. If you set the priority to Enable -
Manual, you must also set the priority slot. Setting the priority to
Disable disables priority.

5. Click OK.
Editing Mandatory Configuration Properties

When you add a functional block to your device interface, all the mandatory configuration properties
specified by the functional profile are automatically added to the Mandatory CPs folder under the
functional block. The functional profile provides defaults for all the properties of the configuration
properties; however, you can edit some of the properties. For example, you can implement the
configuration property as an array (if allowed by the functional profile), set the configuration property
flags, change how the configuration property is implemented (configuration network variable [CPNV]
or configuration file [file CP]), and set the initial value for the configuration property after the device
application has been downloaded to the device and the device has been reset.

To edit a mandatory configuration property, as well as optional and implementation-specific
configuration properties, follow these steps:

1. Double-click the configuration property or right-click the configuration property and select
Properties from the shortcut menu.

C:hLmhSource

- . MyMewDevice Templake
—1-[_1 Functional Blocks
= 0 heatPump
+-[_] Mandatory Mys
[optional Mys
=-[[] Mandatary CPs

nciSndHrtEE

nciTempSetpks
[optional cPs
[Implementation-sg
[Implementation-sg
+ ModeChjeck
+ openLoopSensor
[Metwork Yariables
D Configuration Properties

Renarme

Propetties

2. The CP Properties dialog opens.

Defining Device Interfaces and Creating their Neuron C Framework

Add CP To Functional Block 2x

Mame:

Cancel
[Implement as CP array 4

Select resource type

f* Standard
=

! [
SCPT. |SCPTactFuDIy |

Restriction flags
[device_specific_fla {Always read value from the device)
[mfg_flg (Madify only during manufacture)
[~ reset_fly (Reset after modifying)
[~ offline_flg (Put offline befare madifying)
[~ const_flg {¥alue is never changed)
[obj_disabl_fly (Disahle functional hlock before modifying

Implement ag
[Configuration network variable

Initializer

Edit...

Applies to

& Functional Block

O meteork Wariable

|
-

3. Edit the following properties:

Name Displays the name of the configuration property that will be used in
the LonMaker tool and other network management tools. The default
name is the functional profile name.

You can change the name of the configuration property. The name
must be unique to the device, can contain up to 16 alphanumeric
characters, and must start with a letter. The name cannot contain
spaces or the following characters: \/: * ? “ <> |.

You can also rename the configuration property by right-clicking it in
the Program Interface pane and then clicking Rename on the shortcut

menu.
Array Element A functional profile may require a configuration property to be
Count implemented as an array and may enforce a minimum and maximum

array size, or a functional profile may give you the option to
implement the configuration property as an array and let you set the
number of configuration properties in the array. If the functional
profile template defines whether this configuration property must be
implemented as an array or as a single configuration property, the

NodeBuilder FX User's Guide 153

Implement as CP Array check box is set appropriately and
unavailable.

If the functional profile template does not define how this
configuration property must be implemented or if this is an
implementation-specific configuration property, you have the option
to configure the configuration property as an array or as a single
configuration property.

To implement this configuration property as an array, select the
Implement as CP Array check box (for configuration properties
implemented as configuration files) or Use Array check box (for
configuration properties implemented as configuration network
variables [CPNVs]), and then specify the number of elements in the
array in the Size box.

An array has a minimum size of 2 elements, and a maximum size of
65,500 bytes. The array size is limited by the amount of available
persistent, modifiable, memory in the device. A linker error will
occur if the specified array size exceeds the device’s resources.

Note: Configuration property arrays implemented as configuration
network variables (CPNVs) are subject to the same limitations as
network variables. Specifically, Neuron C applications are limited to
62 or 254 static network variables. In the case of a configuration
property array implemented as CPNVs, each element in the array
counts as one network variable.

See the Neuron C Programmer’s Guide and Neuron C Reference
Guide for more information about implementing configuration
property arrays.

CP Type Displays the standard or user-defined type of the configuration
property. This field is read-only.

FPT Member Name Displays the name of the configuration property as specified in the
functional profile. This field is read-only. For
implementation-specific network variables, this field is empty.

Restriction Flags You can set the one or more of the following configuration property
flags. Network tools are responsible for checking these flags and
handling configuration properties appropriately.

e device_specific_flg. Specifies that the configuration property
should always be read from the device, never from the LNS
database. An example use of this flag is for the device’s minor
version number. The minor version would be part of the
application image download so network tools could check the
version that was loaded into the device.

o mfg flg. Specifies that the configuration property should be
modified only at manufacture time. Installation tools should not
modify this configuration property unless they are being used for
manufacturing. An example is a configuration property used to
hold calibration data.

e reset_flg. Specifies that the device should be reset after the
configuration property is modified in order for the application to
work properly.

o offline flg. Specifies that the configuration property should be

154 Defining Device Interfaces and Creating their Neuron C Framework

modified only when the device has been set offline by a network
tool such as the LonMaker tool. Do not set this option if you are
using FTP to transfer configuration properties because devices
must be online to run the file transfer protocol.

e const_flg. Specifies that the configuration property should be
considered read-only. It must not be written. It might be stored
in ROM. An example of this kind of property is the device major
version number.

e obj _disabl _flg. Specifies that the configuration property should
only be modified when the functional block has been disabled by
a network tool such as the LonMaker tool. The application will
have a chance to initialize the functional block when the network
management tool enables it.

Note: The reset_flg, offline flg, and obj_disabl_flag flags comprise
a hierarchy, where the reset flg has the highest precedence and the
obj_disabl_flag flag has the lowest.

For example, if you specify the offline_flg flag for a configuration
property, the device will be set offline, but other steps or
configuration property updates occurring at the same time might also
require that the device be reset.

Similarly, the offline_flg flag, which applies to devices, has a higher
precedence than the obj_disabl_flag, which applies to functional
blocks. As a result, if you specify the offline_flg flag, it is expected
that the device is offline or the functional block is disabled.

Implement As You can specify the following implementation options for the
configuration property.

Configuration Enables you to read, write, and bind the configuration property like a

Network Variable network variable. If this check box is cleared, the configuration

property is implemented as a configuration file (file CP). This check
box is cleared by default.

Note that CPNVs are have the following limitations: (1) they must be
based on network variable types and therefore can only be a
maximum of 31 bytes in size; and (2) if the CPNV is implemented as
an array that applies to multiple functional blocks or network
variables, the CPNV array must always be shared statically or
globally. It is therefore recommended that you only use CPNVs if
your application requires configuration properties that must be bound
or if you are adding a SCPTnwrkCnfg configuration property.

Static CP Creates a single configuration property that is shared by all the
functional blocks in a functional block array. Sharing configuration
properties can simplify device configuration by reducing the number
of configuration properties that must be set by an integrator, and can
also reduce the memory required for the device application.

This property is only available if the configuration property is in a
functional block array. Modifying the value of the configuration
property on any functional block in the array modifies it for all of
them (only one variable is allocated).

If this check box is cleared, a separate configuration property is
created for each functional block in the array. This check box is

NodeBuilder FX User's Guide 155

cleared by default.

Initializer Optionally, you can set the value for the network variable when the
device is reset. If this network variable is a structure, union, float, or
enumeration, click Edit to open the Edit Initializer dialog and enter
the value or values. See Setting Initial Values for Network Variables
and Configuration Properties later in this chapter for more
information.

Note: Configuration properties have default values that are defined in
resource files. Default values are included in the definition of the
configuration property type, in the definition of the functional
profile’s member configuration property (an optional initial value
override), and possibly in the definition of an inherited functional
profile. The Neuron C compiler will automatically initialize the
configuration property to its defined default value.

Therefore, you can explicitly set the initial value or the configuration
property; however, it is recommended that you use the default values
defined in the resource file, if possible.

Applies to Select whether the configuration property is applied to a network
variable, a functional block, or the device as a whole. This is called
global configuration property sharing.

e If this is an implementation-specific configuration property, you
can apply it to the functional block or to any of the network
variables on the functional block (any network variable in any of
the Mandatory NVs, Optional NVs, or Implementation-specific
NVs folders).

e Ifthis is a device configuration property (a configuration
property that you added to the Configuration Properties folder of
a device), the configuration property can be applied to the device
or to any of the network variables in the Network Variables
folder.

Adding a Shared Configuration Property

To apply a configuration property to a functional block or network
variable, follow these steps:

1. If another configuration property with the same type, array
size, Implement As setting, and Applies To setting exists on
the device, it will appear in Applies To property under
Network Variables or Functional Blocks.

2. Select the Functional Block or Network Variable option.

3. Select one or more of the items from the Network Variables
or Functional Blocks list and click the right arrow button to
move the selected functional block or network variable to the
Selected Network Variables or Selected Functional
Blocks list.

The network variable that the originally selected
configuration property applied to will appear in bold gray
text to indicate that it is the root configuration property and
cannot be removed from the list of shared configuration
properties. You can remove any of the other configuration
properties.

156 Defining Device Interfaces and Creating their Neuron C Framework

NodeBuilder FX User's Guide

4. If you have shared two mandatory or optional configuration
properties or if you have shared two implementation-specific
configuration properties from a different functional block,
they will appear in the Program Interface pane with the same
configuration property name in their respective folders.

If you share an implementation-specific configuration
property with an optional or mandatory configuration
property within the same functional block, the
implementation-specific configuration property will be
removed from the Program Interface pane.

For example, if you are creating a configuration property that
applies to both a nvoCO2ppm1 network variable on a
co2Sensorl functional block and a nvoCO2ppm?2 network
variable on a co2Sensor2 functional block; the Neuron C
expression co2Sensorl: :nvoCO2ppml: :cpValue

== co2Sensor2: :nvoCO2ppm?2: : cpValue will
always be true because these two expressions are two
different names for the same configuration property.

Note: When using the LonMaker Browser or an LNS Plug-in to
update a shared configuration property, the display may not
automatically update the other shared configuration properties. You
can force the Browser to update its display by opening the Browse
menu and selecting Refresh All. Refreshing an LNS Plug-in display
is plug-in specific.

Removing a Shared Configuration Property

To remove a shared configuration property, select the configuration
property to be removed, and then click the left arrow button. The
configuration property originally selected in the Code Wizard will be
shown in bold gray text and cannot be removed through this dialog.
To remove the configuration property that is shown in bold gray,
close the CP Properties dialog and re-open it for one of the
configuration properties that is to remain.

Each configuration property that is removed from the Selected
Network Variables or Selected Functional Blocks list will be
implemented as a separate, non-shared configuration property.

Configuration Property Sharing Rules

The following rules apply to using global configuration property
sharing:

e A configuration property can only be shared between multiple
network variables, or between multiple functional blocks, but not
between a combination of network variables and functional
blocks at the same time.

e All configuration property types can be shared.

e A configuration property that applies to the entire device cannot
be shared.

e Multiple functional blocks or network variables can share a
configuration property. A shared configuration property can
apply to multiple singular functional blocks or network variables,
a functional block or network variable array, a number of

157

158

functional block or network variable arrays, or any combination
thereof.

e A configuration property that is shared among the members of a
functional block or network variable array must always be shared
among all members of that array.

e A configuration property can be shared between network
variables on different functional blocks.

e A configuration property that inherits its type from a network
variable can only be shared between network variables that are
all of the same type. Therefore, all changeable type network
variables that share an inheriting configuration property must
also share an instantiation of SCPTnvType so that the set of
changeable network variables will always have the same, single
type and so that type changes occur at the same time.

e Two (or more) mandatory functional profile template
configuration properties can be implemented using a single,
shared, configuration property provided the shared configuration
property meets the requirements of all individually listed FPT
members (for example, same type, same array size, and so on).

e A single configuration property that inherits its type from a
network variable cannot be shared simultaneously by both
changeable and non-changeable network variables.

o Configuration property arrays that are implemented as arrays of
configuration network variables and that apply to a functional
block array or to a network variable array must be shared.

5. Click OK.

Implementing Optional Network Variables

Functional profiles specify mandatory network variables that must be implemented by any
implementation of the profile, and they also specify optional network variables that may be
implemented but are not required. When a functional profile is added to the device interface in the
NodeBuilder Code Wizard, the wizard adds all the mandatory members of the functional profile to the
device interface, but it does not add any of the optional members. To implement an optional network
variable on a functional block, follow these steps:

1. Right-click the Optional NVs folder for the functional block in the Program Interface pane and
select Implement Optional NV from the shortcut menu.

Defining Device Interfaces and Creating their Neuron C Framework

C:hLmhSource

= ’ My MewwDevice Template
=-{_7 Functional Blocks

+ ModeDbject
- Switch

=-[] Mandatary Mys
nvotalue
3

[optional CPs
[Implementation-specific Mvs
[Implementation-specific CPs
[metwark variables
D Configuration Properties

Implement Opkional My

Alternatively, you can drag a network variable from the functional profile’s Optional NVs folder
in the Resource pane to the functional block’s Optional NVs folder in the Program Interface pane.
If a functional profile does not have any optional network variables defined, it does not have an
Optional NVs folder.

2. The Implement Optional NV dialog opens.

Implement Optional NV

Marme: nviPresetFb

r o=

Select optional MY to be implemented:

Cancel

Type: | SMVT_preset

FPT memhber name: |nvipregeﬂ:b j
FPT memmber nurmber: |2

Direction: | Input

Service tyne: | Mot specified

Modifiers: |Nune

Self-documentation
(sd_string):

Initializer: Edit...

3. Inthe FPT Member Name property, select the optional network variable from the list of those
that have not yet been implemented in this functional block.

4. In the Name property, enter the name of the optional network variable that will be displayed in the
LonMaker tool and other network management tools. The default name is the functional profile
name. This name must be unique to the device, can contain up to 16 alphanumeric characters, and
must start with a letter.

NodeBuilder FX User's Guide 159

160

The name cannot contain spaces or the following characters: \ /: * ? “ <> |,

5. The Use Array check box in the Array Element Count box is a read-only property that indicates
whether the optional network variable is implemented as a single network variable (the check box
is cleared), or as an array of network variables that applies to an array of functional blocks (the
check box is selected). If the optional network variable is implemented as an array of network
variables, the Size box displays the number of elements in the functional block array, which is also
the same number of elements that are in the network variable array (this enables one network
variable to be allocated to each member of the functional block array).

6. Optionally, in the Self-Documentation (sd_string) property, you can enter comments to be
appended to the self-documentation string for this network variable. This text can provide
additional notes that can be accessed from a network tool.

7. Optionally, in the Initializer property, you can set the value for the network variable when the
device is reset. If this network variable is a structure, union, float, or enumeration, click the box to
the right to open the Edit Initializer dialog and enter the value or values. See Setting Initial
Values for Network Variables and Configuration Propertieslater in this chapter for more
information.

8. Click OK. The optional network variable is added to the Optional NVs folder.

Note: After you create the optional network variable, you can edit its properties following the steps
described in Editing Mandatory Network Variables earlier in this chapter. For example, you may want
to change the modifiers and messaging service used if the network variable is an output network
variable, or you may want to set the storage classes used by the network variable.

Implementing Optional Configuration Properties

A functional profile specifies mandatory configuration properties that must be implemented by any
implementation of the profile, and they may also specify optional configuration properties that may be
implemented but are not required. When a functional profile is added to the device interface in the
NodeBuilder Code Wizard, the wizard adds all the mandatory members of the functional profile to the
device interface but does not add any of the optional members. To implement an optional
configuration property, follow these steps:

1. Right-click the Optional CPs folder for the functional block in the Program Interface pane and
select Implement Optional CP from the shortcut menu.

C:hLmhSource

= . My MewDevice Termplake
=-[_1 Functional Blocks

+ ModeChbject
- Switch

—-_7] Mandatary Mys

Eﬁ mviovalue

—1-[_ optional Mys
rviPresetFh
=

[Implementat
[Implement ation-specific CPs
[Metwork Yariables
D Configuration Properties

Implement Cptional CP

Alternatively, you can drag a configuration property from the functional profile’s Optional CPs
folder in the Resource pane to the functional block’s Optional CPs folder in the Program
Interface pane. If a functional profile does not have any optional configuration properties defined,
it does not have an Optional CPs folder.

2. The Implement Optional CP dialog opens.

Defining Device Interfaces and Creating their Neuron C Framework

MNarne: |nciAIarmCIearT1

r =

Select optional CP to be implemented:

Cancel

Tyne: | SCPTalmmCIrT

FPT member name: [neialarmclearTt =l

Restriction flags
[~ device_specific_flg (Always read value fram the device)
[mfg_fla {Madify only during manufacture)
[~ reset_flo (Reset after modifying)
[~ offline_flg (Put offline before modifying)
[const_fly &value is never changed)
[~ obj_digabl_fla {(Disable functional block befare modifying

Implement as
[Configuration netwark variable

Initializer

Edit...

3. Inthe FPT Member Name property, select the optional configuration property from the list of
those that have not yet been implemented in this functional block.

4. Inthe Name property, enter the name of the optional configuration property that will be displayed
in the LonMaker tool and other network management tools. The default name is the functional
profile name. This name must be unique to the device, can contain up to 16 alphanumeric
characters, and must start with a letter. The name cannot contain spaces or the following
characters: \/: ¥ ? “<>|.

5. To implement this configuration property as an array, select the Implement as CP Array check
box (for configuration properties implemented as configuration files) or Use Array check box (for
configuration properties implemented as configuration network variables [CPNVs]), and then
specify the number of elements in the array in the Size box.

A functional profile may require a configuration property to be implemented as an array and may
enforce a minimum and maximum array size, or a functional profile may give you the option to
implement the configuration property as an array and let you set the number of configuration
properties in the array. If the functional profile template defines whether this configuration
property must be implemented as an array or as a single configuration property, the Implement as
CP Array check box is set appropriately and unavailable.

If the functional profile template does not define how this configuration property must be
implemented, you have the option to configure the configuration property as an array or as a single
configuration property.

An array has a minimum size of 2 elements, and a maximum size of 65,500 bytes. The array size
is limited by the amount of available persistent, modifiable, memory in the device. A linker error
will occur if the specified array size exceeds the device’s resources.

Note: Configuration property arrays implemented as configuration network variables (CPNVs)
are subject to the same limitations as network variables. Specifically, Neuron C applications are
limited to 62 or 254 static network variables. In the case of a configuration property array
implemented as CPNVs, each element in the array counts as one network variable.

NodeBuilder FX User's Guide 161

See the Neuron C Programmer’s Guide and Neuron C Reference Guide for more information
about implementing configuration property arrays.

6. In the Restriction Flags box, you can set configuration property flags that network tools must
check in order to handle the configuration property appropriately. See Editing Mandatory
Configuration Properties earlier in this chapter for more information on these flags.

7. To implement the configuration property as a configuration network variable (CPNV), select the
Configuration Network Variable check box. This enables you to read, write, and bind the
configuration property like a network variable. If this check box is cleared, the configuration
property is implemented as a configuration file. This check box is cleared by default.

Note: CPNVs are have the following limitations: (1) they must be based on network variable
types and therefore can only be a maximum of 31 bytes in size; and (2) if the CPNV is
implemented as an array that applies to multiple functional blocks or network variables, the CPNV
array must always be shared statically or globally. It is therefore recommended that you only use
CPNVs if your application requires configuration properties that must be bound or if you are
adding a SCPTnwrkCnfg configuration property.

8. Optionally, in the Initializer property, you can set the value for the configuration property that
will be stored in the LNS network database and set the first time the device is reset after the device
application has been downloaded to the device. If this configuration property is a structure, union,
float, or enumeration, click the box to the right to open the Edit Initializer dialog and enter the
value or values. See Setting Initial Values for Network Variables and Configuration Properties
later in this chapter for more information.

9. If the configuration property is member of a functional block array, you can select the Static CP
check box to create a single configuration property that is shared by all the functional blocks in the
array (this is called static configuration property sharing). Modifying the value of the
configuration property on any functional block in the array modifies it for all of them (only one
variable is allocated). If this check box is cleared, a separate configuration property is created for
each functional block in the array. This check box is cleared by default.

10. Click OK. The optional configuration property is added to the Optional CPs folder.

Note: After you create the optional configuration property, you can edit its properties following the
steps described in Editing Mandatory Configuration Properties earlier in this chapter. For example,
you may want to change the configuration property flags, or change how the configuration property is
implemented (configuration network variable [CPNV] or configuration file [file CP]).

Adding Implementation-specific Network Variables

You can add a network variable member to a functional block or device that is not defined by any
functional profile. This is called an implementation-specific network variable.
Implementation-specific network variables should be avoided as part of a device’s interoperable
interface because they are not documented by a functional profile.

WARNING: If you use implementation-specific network variables in your device
interface, your device will not comply with interoperability guidelines version 3.4
(or better) and therefore cannot be certified by LONMARK.

A better alternative for adding members to a functional profile is to create a user-defined functional
profile template (UFPT) that inherits from an existing standard functional profile template (SFPT), and
then add new mandatory or optional member network variables to the UFPT. This method results in a
new functional profile that you can easily reuse in new devices. See the NodeBuilder Resource Editor
User’s Guide for more information on creating new functional profiles.

In order to add an implementation-specific network variable to a functional block, the scope of the
network variable type must be less than or equal to the scope of the functional profile upon which the
functional block is based. For example, a UNVT could not be added to a SFPT, but a SNVT may be
added to a UFPT.

162 Defining Device Interfaces and Creating their Neuron C Framework

To add an implementation-specific network variable to a functional block, follow these steps:

1. Right-click the Implementation-specific NVs folder for the functional block in the Program
Interface pane and then click Add NV on the shortcut menu.

C:hLmhSource

= . MyMewDevice Termplate
=-[1 Functional Blocks

+ ModeChbject
- Switch

+-[_] Mandatary Mys
+-[_ 7] Optional Mys
[optional CPs
b | [rnplementation-specific M) = =
[Implementation-specific CF
[metwork, variables
D Configuration Properties

Alternatively, you can right-click the Network Variables folder in the Program Interface pane and
select Add NV from the shortcut menu, or you can drag a network variable from a Network
Variables folder in the Resource pane to the functional block’s Implementation-specific NVs
folder or the Network Variables folder in the Program Interface pane.

2. The Add NV to Functional Block dialog opens (or Add NV to Device dialog if you are adding
the network variable to the device folder).

Add NY To Functional Block

Mame:

Cancel
- o e

-

Select resource type

+ Standard
~

| [
|

SMYT; | SHVT_abs_humid =l

Direction Service type
* |nput {+

" Qutput f"

~

~
Madifiers

& Self-documentation {sd_string):

~
~

Initializer

Edit...

NodeBuilder FX User's Guide 163

3. Inthe Name property, enter a name for the network variable as it will appear in the LonMaker tool
and other network management tools. This name must be unique to the device, can contain up to
16 alphanumeric characters, and must start with a letter. The name cannot contain spaces or the
following characters: \ / : * ? “ <>|. The default name is nvValue.

4. If your device has a changeable interface (it has network variables with changeable types, or it
supports dynamic network variables), you can select the Has Changeable Interface check box so
that network integrators can change the network variable’s type. This option is only available if
you selected the Has Changeable Interface check box when defining the device’s program ID in
the Standard Program ID Calculator (see Specifying the Program ID in Chapter 5 for more
information). This check box is cleared by default.

Selecting this option lets you create a network variable that can send or receive different kinds of
information, depending on how the device is used. For example, you can implement a generic
PID controller device using a SNVT _temp_f as the initial type, and then let a network integrator
change the SNVT_temp_f network variable to a range of other types so that the PID controller
can control light, pressure, or other types.

5. Inthe Select Resource Type box, select whether the network variable you are adding is based on
a Standard or User-Defined type. If you select a User-Defined type, select the Scope of the
functional profile containing the network variable type. To use a User-Defined type, you must
first add the resource file containing the UNVT to the resource catalog as described in the
NodeBuilder Resource Editor User’s Guide.

6. Inthe SNVT or UNVT property, select the network variable to be added to the functional block or
device from the list.

If you are selecting a UNVT, the list contains all the UNVTs in resource files of the scope
specified in the Scope field that match the program ID template to the degree specified by the
scope. The network variable’s type must have a scope that is equal to or lower then the scope of
the functional profile upon which the functional block is based.

7. In the Direction property, select whether you are adding an Input or Output network variable.

8. Ifyou are creating an Qutput network variable, select the messaging service type to be used for
transmitting updates for this output network variable in the Service Type box. You have four
choices: Unspecified, Acknowledged, Unacknowledged, or Repeated. See Editing Mandatory
Network Variables earlier in this chapter for more information about these different service types.

9. [Ifyou are creating an Output network variable, you can make the output network variable
Synchronized or Polled in the Modifiers box. See Editing Mandatory Network Variables earlier
in this chapter for more information about these modifiers.

10. Optionally, in the Self-Documentation (sd_string) property, you can enter comments to be
appended to the self-documentation string for this network variable. Network variable members
of functional blocks use a standard self-documentation format that is detailed in the LonMark
Application Layer Interoperability Guidelines. The Neuron C Compiler automatically generates
all required self-documentation information. This property can be used to provide additional notes
that can be accessed from a network tool.

11. Optionally, in the Initializer property, you can set the value for the network variable when the
device is reset. If this network variable is a structure, enumeration, or float, click the box to the
right to open the Edit Initializer dialog and enter the value or values. See Setting Initial Values
for Network Variables and Configuration Properties later in this chapter for more information.

12. Click OK. The implementation-specific network variable is added to the
Implementation-specific NVs folder.

Adding Implementation-specific Configuration Properties

You can add a configuration property to a functional block or device that is not defined by the
functional profile. This is called an implementation-specific configuration property.

164 Defining Device Interfaces and Creating their Neuron C Framework

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

Implementation-specific configuration properties should be avoided as part of a device’s interoperable
interface since they are not documented by a functional profile.

WARNING: If you use implementation-specific configuration properties in your
device interface, your device will not comply with interoperability guidelines version
3.4 (or better) and therefore cannot be certified by LONMARK.

A better alternative for adding members to a functional profile is to create a user-defined functional
profile template (UFPT) that inherits from an existing standard functional profile template (SFPT), and
then add new mandatory or optional member configuration properties to the UFPT. This method
results in a new functional profile that you can easily reuse in new devices. See the NodeBuilder
Resource Editor User’s Guide for more information on creating new functional profiles.

In order to add an implementation-specific configuration property to a functional block, the scope of
the configuration property type must be less than or equal to the scope of the functional profile upon
which the functional block is based. For example, a UCPT could not be added to a SFPT, but a SCPT
may be added to a UFPT.

To add an implementation-specific configuration property to a functional block or device, follow these
steps:

1. Right-click the Implementation-specific CPs folder for the functional block in the Program
Interface pane and then click Add CP on the shortcut menu.

C:hLmhSource

= . My MewDevice Termplake
=-{_] Functional Blocks

+ ModeChbject
- Switch

+-_7] Mandatary Mys
+-_]] Optional Nys
[optional CPs
[Implementation-specific Mvs
i | Inplementation-specific CF ——
[Metwork Yariables

D Configuration Properties

Alternatively, you can right-click the Configuration properties folder in the Program Interface
pane and select Add CP from the shortcut menu, or you can drag a configuration property from a
Configuration properties folder in the Resource pane to the functional block’s
Implementation-specific CPs folder or the Configuration properties folder in the Program
Interface pane.

2. The Add CP to Functional Block dialog opens (or Add CP to Device dialog if you are adding
the configuration property to the device folder).

NodeBuilder FX User's Guide 165

166

Mame:

oK

Cancel
[Implerment as CF array 4

Select resource type
f+ Standard

™ Usger-defined

| E
|

SCPT. |SCPTactFLDIy |

Restriction flags
[device_specific_flg {Always read value from the device)
mfg_flg {Modify only during manufacture)
reset_flg (Reset atter modifying)
offline_fly (Put offline hefare modifying)
const_flg (Value is never changed)

1117

[obj_disabl_flg {Disable functional block hefore madifying

Implement as
[~ Configuration netwaork variable

Initializer

Edit...

Applies to

 Functional Block

" Metwork Variable

In the Name property, enter a name for the configuration property as it will appear in the
LonMaker tool and other network management tools. This name must be unique to the device,
can contain up to 16 alphanumeric characters, and must start with a letter. The name cannot
contain spaces or the following characters: \ / : * ? ““ <>|. The default name is cpValue.

To implement this configuration property as an array, select the Implement as CP Array check
box (for configuration properties implemented as configuration files [file CPs]) or Use Array
check box (for configuration properties implemented as configuration network variables
[CPNVs]), and then specify the number of elements in the array in the Size box.

An array has a minimum size of 2 elements, and a maximum size of 65,500 bytes. The array size
is limited by the amount of available persistent, modifiable, memory in the device. A compiler or
linker error will occur if the specified array size exceeds the device’s resources.

Note: Configuration property arrays implemented as configuration network variables (CPNVs)
are subject to the same limitations as network variables. Specifically, Neuron C applications are
limited to 62 or 254 static network variables. In the case of a configuration property array
implemented as CPNVs, each element in the array counts as one network variable.

See the Neuron C Programmer’s Guide and Neuron C Reference Guide for more information
about implementing configuration property arrays.

In the Select Resource Type box, select whether the configuration property you are adding is
based on a Standard or User-Defined type. If you select a User-Defined type, select the Scope

Defining Device Interfaces and Creating their Neuron C Framework

of the functional profile containing the configuration property type. To use a User-Defined type,
you must first add the resource file containing the UCPT to the resource catalog as described in
the NodeBuilder Resource Editor User’s Guide.

6. Inthe SCPT or UCPT property, select the configuration property to be added to the functional
block or device from the list.

If you are selecting a UCPT, the list contains all the UCPTs in resource files of the scope
specified in the Scope field that match the program ID template to the degree specified by the
scope. The configuration property’s type must have a scope that is equal to or lower then the
scope of the functional profile upon which the functional block is based.

7. To implement the configuration property as a configuration network variable (CPNV), select the
Configuration Network Variable check box. This enables the configuration property to be read,
written, and bound just like a network variable; however, this consumes limited network variable
resources on the device. If this check box is cleared, the configuration property is implemented as
a configuration file. This check box is cleared by default.

8. If the configuration property is in a functional block array, you can select the Static CP check box
to create a single configuration property that is shared by all the functional blocks in the array.
Modifying the value of the configuration property on any functional block in the array modifies it
for all of them (only one variable is allocated). If this check box is cleared, a separate
configuration property is created for each functional block in the array. This check box is cleared
by default.

9. In the Restriction Flags box, you can set configuration property flags that network tools must
check in order to handle the configuration property appropriately. See Editing Mandatory
Configuration Properties earlier in this chapter for more information on these flags.

10. Optionally, in the Initializer property, you can set the value for the configuration property when
the device is reset. If this configuration property is a structure, enumeration, or float, click the box
to the right to open the Edit Initializer dialog and enter the value or values. See Setting Initial
Values for Configuration properties and Configuration Properties later in this chapter for more
information.

11. In the Applies To box, select whether the configuration property is applied to a network variable,
a functional block, or the device as a whole. See Editing Mandatory Configuration Properties
earlier in this chapter for more information on how to do this.

12. Click OK. The configuration property is added to the Implementation-specific CPs folder.

Note: After you create the implementation-specific configuration property, you can edit its properties
following the steps described in Editing Mandatory Configuration Properties earlier in this chapter.
For example, you may want to change the configuration property flags, or change how the
configuration property is implemented (configuration network variable [CPNV] or configuration file).

Setting Initial Values for Network Variables and Configuration Properties

You can set the initial value for any network variable or configuration property. For network
variables, this value will be set when the device is reset. For configuration properties, this value will
be stored in the LNS network database, and it will be set the first time the device is reset after the
device application has been downloaded to the device.

Each network variable and configuration property creation, implementation, and editing dialog has an
Initializer property. You can enter a valid Neuron C initializer statement in the Initializer property.
The following examples demonstrate valid Neuron C initializer statements:

Data Type Example SNVT Example Initializer
Integral SNVT _temp 0
Float SNVT volt_f {0, 0x42, 1, 0x7c, 0x6666}

NodeBuilder FX User's Guide 167

Structure SNVT _switch {200, 0}
Enumeration SNVT hvac_mode HVAC AUTO

If you need help entering a valid initializer value, you can click the button to the right of the Initializer
property to open the Edit Initializer dialog. This dialog provides information on the data type such as
scaling, and minimum and maximum values. If the network variable or configuration property is a
structure, enumeration, or float, this dialog is very useful:

e For structures, it lists the individual fields in the data type and lets you enter valid values for each
field.

e For enumerations, it lists all the available enumerations for the data type.

e For floats and s32 type values, it lets you convert them to structures.

The following subsections describe how to set values for floats, structures, and enumerations in the
Edit Initializer dialog.

Notes:

e Network variables are automatically reset to 0 during reset processing (except for those declared
with the optional eeprom modifier); therefore, they do not need to be explicitly initialized to 0.

o Configuration properties have default values that are defined in resource files. Default values are
included in the definition of the configuration property type, in the definition of the functional
profile’s member configuration property (an optional initial value override), and possibly in the
definition of an inherited functional profile. The Neuron C compiler will automatically initialize
the configuration property to its defined default value.

Therefore, you can explicitly set the initial value or the configuration property; however, it is
recommended that you use the default values defined in the resource file, if possible.

For more information on the initializer format, see Appendix A of the Neuron C Reference Guide
and any C reference manual.

Setting Initial Values for Structured Data Types

For structured network variables and configuration properties, the Edit Initializer dialog displays the
individual fields in the structure.

168 Defining Device Interfaces and Creating their Neuron C Framework

Edit Initializer,

Structure fields:

Ej struct SNVT switch

unsigned short |value ,7
signed short state

i Use Default
Initializer:

Ok | Cancel

The Structure Fields box displays all the fields in the structured network variable or configuration
property. If no initializer has previously been set, the Value boxes for each field and the Initializer
box are empty. To enter values for the fields in the structure, follow these steps:

1. Click anywhere in the field’s row. The scaling for the field is displayed in the Scalar Details box,
and its minimum, maximum, and invalid (if any) values are displayed in the Limits box.

2. Click anywhere in the field’s Value box and enter a valid value for the field. If the field is an
enumeration, select the value from the list in the Value box. The Scaling Result box displays
how the specified value will be scaled. For example, if you enter 200 for the value field of a
SNVT _switch data point, the Scaling Result box displays 100.0.

NodeBuilder FX User's Guide 169

Edit Initializer,

Structure fields:
Scalar details:

Type Variable Value

= struct SNVT_switch Scale A g

unsigned short | =
signed short Scale B
Scale C: lﬂi

Secaling result:

100.0

scaled= AT 104 ™ (raw + C)

Lirnits
Initializer: Use Default Min: 0
1200, 0} Itz 200

Invalid:

Ok | Cancel

3. All other fields in the structure are automatically set to their default values, which are defined in
resource files. If no default value is defined for the field, it is set to 0 or the minimum value
allowed if 0 is out of range. You can set all fields to their default values by clicking Use Default.

The current initial value for the structure is displayed in the Initializer box. The values are
enclosed in braces and are separated with commas (e.g., {SET_OFF, 0, 0} for a SNVT _setting data

type).
4. Enter values for all other fields in the structure.

You can edit the values of a field by either selecting the field and clicking Value in the Structure
Fields box or directly editing the value in the Initializer box. You can add comments or arrange
the initializer value to be displayed in a separate line by editing the Initializer box directly. If you
select a field in the Structure Fields box, the corresponding value in the Initializer box is
highlighted and vice versa. For a union, you can only set the first member; all subsequent
members are read-only.

You can use a preprocessor #define statement to define a string that can be used as a structure
initializer. For example, you can enter the following: #define myInit {FS_ XFER OK,
1, 2 {{{3}, {0x00, 0x00, 0x00, 0x000}, 0}}}. Ifyou do this, you can enter
mylnit directly in the Initializer box when creating the network variable or configuration
property. The Edit Initializer dialog will not be aware of the #define statement, and it will not
verify any data you enter.

5. Click OK to save the changes. The value specified in the Initializer box will be transferred to the
Initializer property of the respective network variable or configuration property dialog.

Setting Initial Values for Enumerations

For enumerated network variables and configuration properties, you can enter a value following these
steps:

1. Click anywhere in the data type’s row.

170 Defining Device Interfaces and Creating their Neuron C Framework

2. Click anywhere in the Value box, and select a value from the list of possible enumeration values.
You can set the enumeration to its default value by clicking Use Default.

Edit Initializer,

Structure fields:
Scalar details:

Type Variable Value |
hvac t SNVT hvac_mode | j Scale & 1
HVAC_NUL - -
HVAC_AUTO srale B
Seale C: 0
HYAC_MBNG_WRMUP
HVAC COOL v

Scaling result:

| 0

scaled= AT 10 ™ (raw + C)

Limits
[T Use Default Min: -1
Initializer:

S 17
Invalid:

Ok Cancel

3. The current initial value for the enumeration is displayed in the Initializer box. You can edit the

value by clicking Value in the Structure Fields box or directly editing the value in the Initializer
box.

4. Click OK to save the changes. The value specified in the Initializer box will be transferred to the
Initializer property of the respective network variable or configuration property dialog.

Setting Initial Values for Floating Point and s32 Data Types

For floating point and s32 data types, the Edit Initializer dialog lets you convert their values to the
structures used by Neuron C to represent their values in memory. To do this, follow these steps:

1. Click anywhere in the data type’s row. The scaling for the data type is displayed in the Scalar
Details box, and its minimum, maximum, and invalid (if any) values are displayed in the Limits
box.

2. Click anywhere in the float or 32 data type’s Value box and enter a valid value. The value is
automatically converted to the structure used by Neuron C to represent it in memory; the values of
the fields in the structure appear below the data type. You can set the floating point or s32 data
type to its default value by clicking Use Default.

NodeBuilder FX User's Guide 171

Edit Initializer,

Structure fields:

Variable

........ e SNVTtemf ... ,7
unsigned f1:1 0

unsigned f2:7 0x41

unsigned 13:1 1 ,7
unsigned f4:7 0xb1

unsigned long i 0x999a

Lirnits
G Use Default Min: -2.731700e+00
Initializer:

40, Oxd 1, 1, 0x51, 0x999a} [IEVS 3.402823e+03¢
Invalid:

Ok Cancel

3. The current initial value for the float or 32 data type is displayed in the Initializer box. You can
edit the values of a field by either selecting the field and clicking Value in the Structure Fields
box or directly editing the value in the Initializer box

4. Click OK to save the changes. The value specified in the Initializer box will be transferred to the
Initializer property of the respective network variable or configuration property dialog.

Using Changeable-Type Network Variables

You can use changeable-type network variables to implement generic functional blocks that work with
different types of inputs and outputs. For example, you can create a general-purpose device that can be
used with a variety of sensors or actuators, and then create a functional block that allows the integrator
to select the network variable type depending on the physical sensor or actuator attached to the device.
Another example is a scheduler that can control a variety of device types by allowing the integrator to
change the type of the output of the scheduler. The Code Wizard generates code that contains a
framework for supporting changeable network variable types.

The method used by the Neuron firmware to change the size of a network variable uses an NV length
override system image extension that is managed by the application. Whenever the firmware needs the
length of a network variable, it calls the NV length override system image extension to get it. This
method provides reliable updates to network variable sizes.

For more information on how to implement a changeable-type network variable in your device
application, see Implementing Changeable-Type Network Variables in Chapter 7. For more
information about changeable-type network variables and the NV length override system image
extension, as well as a commented source code example that illustrates all aspects of creating an
application that uses changeable-type network variables, see the Neuron C Programmer’s Guide.

172 Defining Device Interfaces and Creating their Neuron C Framework

Generating Code with the Code Wizard

You can use the NodeBuilder Code Wizard to generate Neuron C source code that implements your
device interface and creates the framework for your device application. To do this, click the Generate
and Close option in the upper right-hand corner of the user interface. Alternatively, you can
right-click the device template folder in the Program Interface pane and click Generate and Close on
the shortcut menu.

The NodeBuilder Code Wizard checks whether the device template meets the following requirements:
e The device template has a Node Object functional block with an index of 0.

e The network variables required for the selected configuration property access method are in the
Node Object functional block.

e The Synchronized option is set for the nvoStatus network variable in the Node Object functional
block.

e The Changeable Type option is not set for any network variable if the device does not have a
changeable interface (it has network variables with changeable types, or the device supports
dynamic network variables). See Specifying the Program ID in Chapter 5 for more information on
setting the Has Changeable Interface option in the Standard Program ID Calculator for a
device template.

e A member name is defined for each implementation-specific network variable.

e All configuration property types, network variable types, and functional profiles have defined
resources when code is being generated.

e All network variables have a distinct type. Some functional profiles contain network variables
with no defined type (referred to as SNVT_xxx). The NodeBuilder Code Wizard forces a distinct
and valid type to be assigned to these network variables.

If your device interface includes any of these errors, a warning message appears explaining the error.
Fix the error and then re-generate the code.

The NodeBuilder Code Wizard generates the Neuron C source files for your device interface (see Files
Created by the Code Wizard for more information), the NodeBuilder Code Wizard closes, and you are
returned to the NodeBuilder Project Manager. If any read-only files will be overwritten, a
confirmation dialog opens.

See Chapter 7, Developing Device Applications, for information on using the Neuron C programming
language to write your device application and editing the Neuron C source files created by the Code
Wizard.

Files Created by the Code Wizard

When you generate Neuron C code, the NodeBuilder Code Wizard creates a series of header and
Neuron C source files, which are listed in the Project pane of the NodeBuilder Project Manager. The
main Neuron C source file, <Device Template Name>.nc, is listed underneath the device template. All
the other files are shown under the Source File tree, but all the header and source files are stored in the
same location on your computer.

NodeBuilder FX User's Guide 173

-1 Project 'ME_Fx Exercise":
-1 Device Templates

+ IH] Developrment

+ [HI Release

-|'3 Saurce Files
E Filesys.h
[E]LED .k

[E]LED e
B ModeDbject.h

[Z]5witch.h
[Z] 5witch.nc
[El common.h
(=] comman.ne
[ibraries

+/[_YDevices
+{_JHardware Templates

- @ MyMewDeviceTemplate
@ MyMewDeviceTemplate, nc

B MyMewDeviceTemplate, b

E ModeDbjeck, nc

+ P B Fx Example Device

The following table lists and describes the files created by the NodeBuilder Code Wizard.

Source File

<Device Template Name>.nc

<Device Template Name>.h

<Functional Block Name>.nc

<Functional Block Name>.h

common.nc

common.h

174 Defining Device Interfaces and Creating their Neuron C Framework

Description

The main Neuron C source file for the device application.
All other files generated by the Code Wizard are included
in this file using #include statements.

Contains header information and function declarations for
the main source file. Defines a number of constants that
are used in the application code.

Contains Neuron C code framework for each network
variable and configuration property defined in the
functional block. A functional block source file is
generated for every functional block defined in the device
interface.

Contains header information and function declarations for
the corresponding functional block source file.

Contains common definitions and some device
management functions. Most of the utility functions
contained in this file may remain unused because they are
provided by the CodeWizard-3.lib and CodeWizard.lib
library files. Functions and definitions this file provides
should not be modified.

Contains header information and function declarations for
common.nc.

Source File

filesys.nc

filesys.h

filexfer.nc

filexfer.h

NodeObject.h
NodeObject.nc

CodeWizard-3.lib

Description

Contains functions used to facilitate transfer of
configuration properties implemented as configuration
files.

This file is only generated if you selected the File
Transfer Protocol configuration property access mode
(for more information, see Using the Program Interface
Pane earlier in this chapter).

Contains header information and function declarations for
configuration properties implemented as configuration
files.

Contains functions used to implement FTP transfer of
configuration properties.

This file is only generated if you selected the File
Transfer Protocol configuration property access mode
(for more information, see Using the Program Interface
Pane earlier in this chapter).

Contains header information and function declarations for
filexfer.nc.

This file is only generated if you selected the File
Transfer Protocol configuration property access mode
(for more information, see Using the Program Interface
Pane earlier in this chapter).

Contains header information for node object declarations

Contains the implementation of the node object functional
block.

Library containing a number of utility functions used by
the application framework. The CodeWizard-3 library is
automatically linked with the applications based on version
3 Code Wizard Templates.

The version 3 templates include improved code size, speed,
and compliance with interoperability guidelines. The
instructional comments have been revised and improved,
and the templates have improved support for applications
with a large number of network variables and functional
blocks.

The version 3 templates are architecturally identical to
version 2 templates except that they use the
CodeWizard-3.lib library. Version 3 templates also use
the new #pragma library compiler directive to
automatically link with this library, which means that you
no longer have to specify the Code Wizard library in your
project.

Note: To share source files among multiple NodeBuilder device templates through a common folder,
you need to specify the full path of the folder in the NodeBuilder project’s Include Search Path
property. To do this, click Project and then click Setting, or right click the Project folder in the
Project pane and click Settings on the shortcut menu. The NodeBuilder Project Properties dialog

opens. Click the Project tab, specify the full path of the shared folder in the Include Search Path

property, and then click OK.

NodeBuilder FX User's Guide

175

Each time you generate code using the Code Wizard, it checks whether each of the common files exists
on the Include Search Path property. If a file exists, the Code Wizard uses the one in the common
folder; otherwise it creates the file in the source files folder.

Using Code Wizard Templates

When you generate the Neuron C code for a device interface, the Code Wizard creates the source code
file based on a code template. The code templates define the general infrastructure and layout of the
generated application. In addition, the code templates supply many utility functions for managing
device and functional block status, which you can use in your application, as needed. By default, the
code template used for new device interfaces created with NodeBuilder FX tool is the version 3
template. Previous releases of the NodeBuilder tool used version 2 templates (NodeBuilder 3.1) and
version 1 templates (NodeBuilder 3.0). The following sections describe the version 3, version 2, and
version 1 templates and how to upgrade existing device applications to the new version 3 code
templates.

Version 3 Templates

The version 3 templates include improved code size, speed, and compliance with interoperability
guidelines. The instructional comments have been revised and improved, and the templates have
improved support for applications with a large number of network variables and functional blocks.
Version 3 templates are architecturally identical to version 2 templates except that they use the
CodeWizard-3.1ib library. Version 3 templates also use the new #pragma library compiler directive
to automatically link with this library, which means that you no longer have to specify the Code
Wizard library in your project.

You can upgrade device applications written for a 3100 Series chip to the new version 3 code
templates when porting them to a 5000 Series chip. To do this, follow these steps:

1. Create a new device template that includes a hardware template that uses the Neuron 5000
processor or FT 5000 Smart Transceiver. See Creating Device Templates in Chapter 5 for more
information.

2. Create the device interface with the NodeBuilder Code Wizard based on the existing device. See
Defining the Device Interface earlier in this chapter for more information.

3. Generate the Neuron C code for the device interface.
4. Manually copy your Neuron C code from the old application into the new application.

Note: The Neuron C Version 2.2 language includes the following new keywords: interrupt,
__lock, stretchedtriac, __slow, _fast, and _ parity. Some of these keywords use a double
underscore prefix to avoid any naming collisions within existing device applications.

5. Remove any references to CodeWizard.lib library from your device template, as the version 3
templates automatically link with the revised CodeWizard-3.lib library.

6. Build your upgraded device application. See Chapter 8, Building and Downloading Device
Applications, for more information.

Version 2 Templates

The version 2 templates moved most utility functions from the application space into the
CodeWizard.lib library, and they included improvements to code size, speed, and compliance with
interoperability guidelines. The Code Wizard still supports applications based on version 2 templates.

You should upgrade existing NodeBuilder projects to the Version 3 template; however, you can
continue using the Code Wizard with version 2 templates. To continue using version 2 templates,
verify that your device template references the standard CodeWizard.lib library. Typically, device
templates created with earlier versions of the NodeBuilder tool already reference this library, but you
may need to add an explicit reference to it in some cases (see Inserting a Library into a NodeBuilder
Device Template in Chapter 5 for how to do this).

176 Defining Device Interfaces and Creating their Neuron C Framework

Version 1 Templates

The version 1 templates were the initial implementation of the Code Wizard templates, which are no
longer supported by the Code Wizard.

You should upgrade existing NodeBuilder projects to the Version 3 template because it generally
results in more compact and faster code, and better compliance with interoperability guidelines. You
can, however, continue using the Code Wizard with the version 1 templates. To continue using
version 1 templates, verify that your device template does not reference the standard CodeWizard.lib
library.

Creating the Device Application

The code produced by the Code Wizard is skeleton code. It implements the device interface that you
have defined, but it does implement any device functionality. You will use the NodeBuilder Project
Manager to edit the source files generated by the Code Wizard and implement your device’s
functionality. To create your device application, do the following:

o See the Modifying Neuron C Code Generated by the Code Wizard section in Chapter 7. This
section describes the Neuron C code generated by the NodeBuilder Code Wizard and provides
guidelines on how to modify it. In addition, it lists the Neuron C Version 2 features that are not
supported by the NodeBuilder Code Wizard.

e See the Neuron C Programmer’s Guide. This document details how to write device applications
using the Neuron C Version 2.2 language. It also describes how to design and implement a device
application.

o See the Neuron C Reference Guide. This document provides reference information for writing
device applications using the Neuron C Version 2.2 language.

NodeBuilder FX User's Guide 177

178 Defining Device Interfaces and Creating their Neuron C Framework

7

Developing Device Applications

This chapter provides an overview of the Neuron C Version 2.2 programming
language. It describes how to edit the Neuron C source code generated by the
NodeBuilder Code Wizard to implement your device functionality. It explains how
to use the NodeBuilder Editor to edit, search, and bookmark Neuron C code.

NodeBuilder FX User's Guide 179

Infroduction to Neuron C

Neuron C Version 2.2 is a programming language based on ANSI C that you can use to develop
applications for Neuron Chips and Smart Transceivers. It includes network communication, 1/O,
interrupt-handling, and event-handling extensions to ANSI C, which make it a powerful tool for the
development of LONWORKS device applications. Following are a few of the extensions to the ANSI
Standard C language:

e A network communication model based on functional blocks and network variables that simplifies
and promotes data sharing between like or disparate devices.

e A network configuration model based on functional blocks and configuration properties that
facilitates interoperable network configuration tools.

e A type model based on standard and user resource files expands the market for interoperable
devices by simplifying integration of devices from multiple manufacturers.

e An extensive built-in set of /O objects that supports the powerful 1/O capabilities of Neuron Chips
and Smart Transceivers. Powerful event-driven programming extensions based on when-tasks that
provide easy handling of network, I/O, and timer events.

e Language extensions that define application interrupt handlers and use synchronization tools,
where available.

Neuron C provides a rich set of language extensions to ANSI C tailored to the unique requirements of
distributed control applications. Experienced C programmers will find Neuron C a natural extension to
the familiar ANSI C paradigm. Neuron C offers built-in type checking and allows the programmer to
generate highly efficient code for distributed LONWORKS applications.

Neuron C omits ANSI C features not required by the standard for free-standing implementations. For
example, certain standard C libraries are not part of Neuron C. Other differences between Neuron C
and ANSI C are detailed in the Neuron C Programmer’s Guide.

This chapter provides an introduction to Neuron C. For more details on Neuron C, see the Neuron C
Programmer’s Guide.

Unique Aspects of Neuron C

Neuron C implements all the basic ANSI C types, and type conversions as necessary. In addition to
the ANSI C data constructs, Neuron C provides some unique data elements.

Network variables are fundamental to Neuron C and LONWORKS applications. Network variables are
data constructs that have language and Neuron firmware support to provide the look and feel of a
regular global C variable, but with additional properties of communicating across a LONWORKS
network, to or from one or more other devices on that network. The network variables make up part of
the device interface for a LONWORKS device.

Configuration properties are Neuron C data constructs that are another part of the device interface.
Configuration properties allow the device’s behavior to be customized using a network tool such as the
LonMaker tool or a customized plug-in created for the device. Configuration properties provide the
look and feel of a normal variable to the C program, with the addition of controlled access by network
configuration tools.

Neuron C also provides a way to organize the network variables and configuration properties in the
device into functional blocks. Functional blocks provide a collection of network variables and
configuration properties that are used together to perform one task. These network variables and
configuration properties are called the functional block members.

180 Developing Device Applications

Each network variable, configuration property, and functional block is defined by a type definition
contained in a resource file. Network variables and configuration properties are defined by network
variable types (NVTs) and configuration property types (CPTs). Functional blocks are defined by
functional profile templates (FPTs).

Network variables, configuration properties, and functional blocks in Neuron C can use standardized,
interoperable types. The use of standardized data types promotes the interconnection of disparate
devices on a LONWORKS network. For network variables, the standard types are called standard
network variable types (SNVTs). For configuration properties, the standard types are called standard
configuration property types (SCPTs). For functional blocks, the standard types are called standard
functional profile templates (SFPTs). If you cannot find standard types or profiles that meet your
requirements, Neuron C also provides full support for user-defined network variable types (UNVTs),
user-defined configuration property types (UCPTSs), and user-defined functional profile templates
(UFPTs).

A Neuron C application executes in the environment provided by the Neuron firmware. This firmware
provides an event-driven scheduling system as part of the Neuron C language’s run-time environment.
Therefore, a Neuron C application does not use a single entry point, as is the case with ANSI C’s
main() function. Instead, a Neuron C application uses when-tasks and interrupt-tasks to specify
application code to be executed in response to various system events or interrupt requests, much in the
way of a .NET event handler.

The Neuron firmware contains a scheduler, which executes these when-tasks in an orderly and
deterministic fashion as and if needed. Neuron C when-tasks can be triggered by system events (such
as reset), network events (such as a network variable update or network error), I/O events (such as a
new reading from an I/O input), timer events, or any arbitrary application-defined event.

Interrupt-tasks are activated as the interrupt request occurs, subject to interrupt prioritization rules.
Neuron C interrupt-tasks can be triggered by edge or level conditions on any of the dedicated I/O pins,
by events occurring in the embedded timer and counter units, or by a dedicated high-resolution system
timer. Interrupt-tasks are only supported by 5000 Series chips. Other interrupt sources, such as those
related to sending or transmitting serial data over the embedded UART, are handled transparently by
the Neuron firmware.

Neuron C also provides a lower-level application messaging service integrated into the language in
addition to the network variable model. While the network variable model has the advantage of being
a standardized method of information interchange that promotes interoperability between multiple
devices from multiple vendors, application messaging is available for proprietary and standard
special-purpose solutions. Application messages are used with the LONWORKS file transfer protocol, a
standard mechanism for transfer of large amounts of data, and the ISI protocol, a standard mechanism
to manage networks without intervention of a dedicated tool or specialist.

Another Neuron C data object is the application timer object. Timer objects can be declared and
manipulated like variables. When a timer expires, the Neuron firmware automatically manages the
timer events and notifies the program of those events. Timers may be automatically reloading
(repeating), or one-shot timers, with a resolution ranging from 0.001-65,535 seconds.

Neuron C supports programmable hardware timer units through a variety of I/O library functions.
These functions provide a resolution up to 1 MHz (1 ps) or better, subject to the selected I/O model,
Neuron Chip type, clock speed, and other factors (see the /O Model Reference for more information).
The 5000 Series chips also support a configurable high-resolution system timer, which can be used to
generate periodic interrupt requests.

Neuron C supports up to 35 different I/O models, ranging from simple bit Direct I/O models for typical
input or output hardware to complex Timer/Counter models for triacs. Neuron C also includes Serial
and Parallel I/O models for serial and parallel communication busses. These I/O models are
standardized I/O “device drivers” for the Neuron Chip or Smart Transceiver I/O hardware. Each I/O
model fits into the event-driven programming model. A function-call interface is provided to interact
with each I/O object. The function-call interfaces are optimized for their respective I/O models, yet
they are similar to each other so that they are easy to use.

NodeBuilder FX User's Guide 181

Neuron C Variables

182

The following sections briefly discuss various aspects of Neuron C-specific variable declarations.
Data types affect what sort of data a variable represents. Storage classes affect where the variable
is stored, whether it can be modified (and if so, how often), and whether there are any device
interface aspects to modifying the data.

Neuron C Variable Types

Neuron C supports the following C variable types. The keywords shown in square brackets below
are optional. If omitted, they will be assumed by the Neuron C language, per the rules of the
ANSI C standard:

e [signed] long [int] 16-bit quantity

e unsigned long [int] 16-bit quantity

e signed char 8-bit quantity

¢ [unsigned] char 8-bit quantity

o [signed] [short][int] 8-bit quantity

e unsigned [short][int] 8-bit quantity

e enum 8-bit quantity (int type)

Neuron C provides some predefined enum types. One example is shown below:
typedef enum {FALSE, TRUE} boolean;

You should use the unsigned int type whenever possible because it is the type best supported by
the Neuron Chip and Smart Transceiver’s hardware architecture. The unsigned int type is
preferred over signed int type.

Neuron C also provides predefined objects that, in many ways, provide the look and feel of an
ANSI C language variable. These objects include Neuron C timer and I/O objects. See Chapter 2
of the Neuron C Programmer’s Guide for more details on I/O objects, and see Chapter 4 in the
Neuron C Reference Guide for more details on timer objects.

The extended arithmetic library also defines float_type and s32_type for IEEE 754 and signed
32-bit integer data respectively. These types are detailed further in Chapter 3 of the Neuron C
Reference Guide.

Neuron C Storage Classes

If no class is specified for a declaration at file scope, the data or function is global. File scope is
that part of a Neuron C program that is not contained within a function, a when-task, or an
interrupt-task. Global data (including all data declared with the static keyword) is present
throughout the entire execution of the program, starting from the point where the symbol was
declared. Declarations using extern references can be used to provide forward references to
variables, and function prototypes must be declared to provide forward references to functions. In
addition, extern references can be used to publish a symbol and allow for linking with other object
files.

Upon power-up or reset of a Neuron Chip or Smart Transceiver, the global data in RAM is
initialized to its initial-value expression, if present; otherwise, it is set to 0.

Neuron C supports the following ANSI C storage classes and type qualifiers:

e auto declares a variable of local scope. Typically, this would be within a function body. This is
the default storage class within a local scope and the keyword is normally not specified. Variables
of auto scope that are not also static are not initialized upon entry to the local scope. The value of
the variable is not preserved once program execution leaves the scope.

e const declares a value that cannot be modified by the application program. Affects
self-documentation (SD) data generated by the Neuron C compiler when used in conjunction with

Developing Device Applications

the declaration of CP families or configuration network variables. The Neuron C language does
not permit the use of const with auto.

e extern declares a data item or function that is defined in another module, in a library, or in the
system image.

e static declares a data item or function which is not to be made available to other modules at link
time. Furthermore, if the data item is local to a function or to a when()task, the data value is to be
preserved between invocations, and is not made available to other functions at compile time.

In addition to the ANSI C storage classes, Neuron C provides the following classes and class
modifiers:

e network begins a network variable declaration. See Chapter 3, How Devices Communicate Using
Network Variables, of the Neuron C Programmer’s Guide for more details.

e uninit when combined with the eeprom keyword (see below), specifies that the EEPROM
variable is not initialized or altered on program load or reload over the network.

The following Neuron C keywords allow you to direct portions of application code and data to
specific memory sections.

eeprom
far

offchip (only on Neuron Chips and Smart Transceivers with external memory)
onchip

These keywords are particularly useful on the Neuron 3150 Chip and 3150 Smart Transceivers,
since a majority of the address space for these parts is mapped off chip. See Using Neuron Chip
Memory in Chapter 8 of the Neuron C Programmer’s Guide for a more detailed description of
memory usage and the use of these keywords.

Variable Initialization

Initialization of variables occurs at different times for different classes. The const variables,
except for network variables, must be initialized. Initialization of const variables occurs when the
application image is first loaded into the Neuron Chip or Smart Transceiver. The const ram
variables are placed in off-chip RAM that must be non-volatile. The eeprom and config variables
are also initialized at load time, except when the uninit class modifier is included in these variable
definitions.

Automatic variables cannot be declared const because Neuron C does not implement initializers in
declarations of automatic variables.

Global RAM variables are initialized at reset (specifically when the device is reset or powered up).
By default, all global RAM variables (including static variables) are initialized to zero at this time.

Initialization of I/O objects, input network variables (except for eeprom, config, config_prop, or
const network variables), and timers also occurs at reset. Zero is the default initial value for
network variables and timers.

Local variables (except static ones) are not automatically initialized, nor are their values preserved
when the program execution leaves the local scope.

Neuron C Declarations

The Neuron C Version 2.2 programming language and ANCI C both support the following
declarations:

NodeBuilder FX User's Guide 183

Declaration
Simple data items
Data types
Enumerations
Pointers
Functions

Arrays

Structures and unions

The Neuron C Version 2.2 programming language also supports the following declarations:

Example

int a, b, c;

typedef unsigned long ULONG;
enum hue {RED, GREEN, BLUE};
char *p;

int f(int a, int b);

int afl4];

struct s {
int fieldl;
unsigned field2 : 3;
unsigned field3 : 4;
bi

Declaration Example

1/0 objects IO 0 output oneshot relay trigger;
Timers mtimer led on timer;

Network variable network input SNVT temp nviTemperature;
Configuration Properties SCPTdefOutput cp family cpDefaultOut;
Functional Blocks fblock SFPTnodeObject { .. } myNode;

Introduction to Neuron C Code Editing

The Neuron C source code generated by the NodeBuilder Code Wizard provides the framework for
your device application. It implements the device interface that you have defined, but it only
implements basic device functionality. The functionality supplied by Code Wizard includes the most
common tasks required for interoperable device and functional block management, but it does not
include any code implementing your application’s core algorithms. You can implement your device’s
functionality by editing your device application’s Neuron C source code in the Edit pane of the
NodeBuilder Project Manager to.

184

In addition to network variable, configuration property, and functional block declarations that comprise
the device interface, the Neuron C code generated with the NodeBuilder Code Wizard also contains the
following features:

Skeleton when() task for functional blocks or functional block arrays. The when() task
provides notification upon incoming network variable updates for the functional block or
functional block array. If the functional block has no input network variables, no when() task is
generated.

Default implementation for handling of system events. System events include when reset,
online, offline. These system events also get routed to the different director functions, allowing
each functional block director function to respond to each event in an appropriate way.

Code handling device and functional block requests on the Node Object. The Code Wizard
generates code for the nviRequest and nvoStatus network variables on the Node Object
functional block. This implementation routes requests to the functional block or blocks concerned
by calling the relevant director functions, and provides a default implementation that allows for
the following requests to be honored: RQ_REPORT MASK, RQ UPDATE_STATUS,
RQ_DISABLED, RQ _ENABLE. Handling for other requests is partially implemented but must

Developing Device Applications

be completed by the developer. The C language comments supplied in the source files generated
by the Code Wizard describe the aspects and ramifications of various interoperability procedures.
For more information, see the LonMark Application Layer Interoperability Guidelines.

o Default directors for functional blocks or functional block arrays. The source code for each
functional block or functional block array contains a default implementation of a director function

o Utility functions to manage functional block state. The Code Wizard generates common.h and
common.nc files, which contain some utility functions. Most utility functions are delivered with
the CodeWizard-3.lib library file (CodeWizard.lib for version 2 templates), and they are
declared in the CodeWizard.h header file. See these files for more information on these
functions.

o File directory structure. The Code Wizard creates code to reference the configuration property
template and value files for both direct memory read/write and FTP configuration property access.
The two access methods are mutually exclusive.

If FTP is used to access configuration property template and value files, and at least one
configuration file has been implemented, the Code Wizard code also provides an implementation
of the FTP server. The default implementation of the FTP server supports read and write access
both sequentially and random access. The FTP server supports configuration property files with
up to the amount of available space on the Neuron Chip. This space is equal to 64 KB minus any
address space used for code, data, or other features. The default implementation of the FTP server
does not support local initiation or dynamic creation of files, but partially implements the
framework for these operations. See the filexfer.h file for more details.

Modifying Neuron C Code Generated by the Code Wizard

Each file generated by the Code Wizard has sections that look like this:
/I{{NodeBuilder Code Wizard Start
//{{NodeBuilder Code Wizard End

Neuron C code inside these comments will be modified by the Code Wizard every time code you
generate code for the device template. You can edit the Neuron C code outside these tags, and your
changes will not be overwritten when you run the Code Wizard again.

Code Commands

Inside this Code Wizard generated code, there are commands used by the Code Wizard that look like
this:

//<Command>

These commands indicate where the NodeBuilder Code Wizard puts certain pieces of generated code.
For example, the //<Include Headers> precedes the Code Wizard generated list of include statements.
If you want to remove the Code Wizard statements from Code Wizard control, you can move them
outside the Code Wizard generated code. Once you have moved a code outside of the Code Wizard
start (//{ {NodeBuilder Code Wizard Start),end(//{{NodeBuilder Code Wizard
End), you will manage the section of the code on your own.

For example, one Neuron C feature that is not supported by the NodeBuilder Code Wizard is a single
configuration property being applied to more than one network variable. The following example
demonstrates this:

//{{NodeBuilder Code Wizard Start

//<Fblock Input NV Declarations>
network input SNVT temp p nviTempP

NodeBuilder FX User's Guide 185

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

nv_properties {
cpTransInMin =
cpTransInMax = 3000L

|
o
~

}i

!/

//<Fblock Output NV Declarations>

network output SNVT lev percent nvoPercentage;

//
//}}NodeBuilder Code Wizard End

You can override the code generated by the NodeBuilder Code Wizard by moving the //<Fblock
Output NV Declarations> command out of the Code Wizard section, as shown below:

//{{NodeBuilder Code Wizard Start

//<Fblock Input NV Declarations>
network input SNVT temp p nviTempP
nv_properties {

cpTransInMin 0,

cpTransInMax = 3000L

}i

//
//}}NodeBuilder Code Wizard End
//
//<Fblock Output NV Declarations>
network output SNVT lev percent nvoPercentage
nv_properties {
cpTransInMin = O,

}i

Once you take the /<Fblock Input NV Declarations> command out of the Code Wizard managed
section of the code, the Code Wizard will no longer create input network variable declarations. If you
want to add additional input network variables to the functional block, they must be added manually.

Code Guidelines

The following sections provide recommendations for modifying the code generated by the
NodeBuilder Code Wizard. This is not a comprehensive list and the modifications you make will vary
depending on the purpose of your device.

Add I/0 and Timer Declarations

Initialize global I/O, timers, variables, and the interrupt system in the when (reset) task within the
main Neuron C file (main.nc). Initialize functional block-specific I/O, timers, and variables in the
relevant functional block’s director function. Upon completion of the initialization for each functional
block, release the lockout bit for each functional block and thus allow it to operate. The following
example demonstrates this:

else if ((TFblock command)iCommand == FBC WHEN RESET)
// raised by when (reset) task

{
// initialize output lines:
SetLed(0, DigitalOutput[0]::cpDigitalDefault.state);

186 Developing Device Applications

SetlLed(1, DigitalOutput[l]::cpDigitalDefault.state);
setLockedOutBit (uFblockIndex, FALSE);

Add when-tasks Responding to I/0 and Timer Events

You can add when-tasks to respond to I/O and timer-related events, as needed. Add these event
handlers to the main source file if they affect global I/O or timers, and add them to the individual
functional block’s source file if they affect functional block-specific items.

Add interrupt-tasks Responding to Interrupt Requests

You can add interrupt-tasks to respond to interrupt requests, as needed. Add these interrupt handlers
to the main source, and enable interrupt processing. Interrupt processing is typically enabled in the
reset task, but other tasks, such as the online and offline tasks, may also enable or disable the interrupt
system.

Add Code to when(nv_update_occurs(<nv>)) when-task of Functional Blocks
with Input NVs

For functional blocks that implement input network variables, add code to the
when(nv_update_occurs(<nv>)) when-task in the subject functional block or functional block array,
where <nv> is the related input network variable or network variables. The Neuron C scheduler will
raise this event and execute the related when-task when at least one of the associated input network
variables has been updated. You can use the built-in Neuron C variables, such as nv_in_addr,
nv_in_index, or nv_array_index, to obtain more details about the update from within the when-task.

Code Wizard implements one input network variable when-task for each functional block or functional
block array in order to achieve short scheduler-cycles and therefore a responsive device.

Share Code with filexfer.nc when Handling Explicit Messages on a Device
Implementing FTP

When adding code that handles explicit messages and contains unqualified when(msg_arrives) event
handlers on a device that implements FTP with the sender-capability enabled, the sender routine does
itself implement such an event handler. There can only be one such event handler and this handler
must be the last when-task in compilation order; therefore, you must share your code with the code
provided in the filexfer.nc file. The FTP server implementation uses the #pragma scheduler_reset
directive if the sender-capability is enabled (this is the default). See the filexfer.nc and filexfer.h files
for more details.

Ignore NCC#310 and NC#463 Compiler Warnings

You may notice a few compiler warnings that appear when compiling unedited Code Wizard code,
referring to items being declared but never used (warning NCC#310), or referring to the const attribute
being casted away (warning NCC#463). The second warning, NCC#463, should only occur if support
for the file transfer protocol has been requested. Both messages can be safely ignored in this case.

You can eliminate NCC#310 warnings during a final clear-up phase during device development. This
will reduce memory requirements and reduce the size of the application image, thus reducing
download times. The items referred to by these NCC#310 warnings are utility functions provided for
your convenience. These functions are declared in common.nc and can safely be removed if not used.

Alternatively, you can use the #pragma disable_warning directive to disable selected warnings.

Implementing Changeable-Type Network Variables

You can use changeable-type network variables to implement generic functional blocks that work with
different types of inputs and outputs. For example, you can create a general-purpose device that can be
used with a variety of sensors or actuators, and then create a functional block that allows the integrator
to select the network variable type depending on the physical sensor or actuator attached to the device.

NodeBuilder FX User's Guide 187

Another example is a scheduler that can control a variety of device types by allowing the integrator to
change the type of the output of the scheduler. The Code Wizard generates code that contains a
framework for supporting changeable network variable types.

The method used by the Neuron firmware to change the size of a network variable uses an NV length
override system image extension that is managed by the application. Whenever the firmware needs the
length of a network variable, it calls the network variable length override system image extension to
get it. This method provides reliable updates to network variable sizes.

For more information about changeable-type network variables and the NV length override system
image extension, as well as a commented source code example that illustrates all aspects of creating an
application that uses changeable-type network variables, see Chapter 3 of the Neuron C Programmer’s
Guide.

To implement a changeable-type network variable in your device application, follow these steps (see
Chapter 3 of the Neuron C Programmer’s Guide for a more detailed discussion of step 4):

1. Create a device template that has a changeable interface. See Specifying the Program ID in
Chapter 5 for more information on how to do this.

2. Inthe Code Wizard, create a new network variable or edit an existing one and select the
Changeable Type checkbox in the dialog for creating or editing the network variable. See
Editing Mandatory Network Variables, Implementing Optional Network Variables, or Adding
Implementation-specific Network Variables in Chapter 6 for more information on how to do this.

3. Generate Neuron C code for your device interface. See Generating Code with the Code Wizard in
Chapter 6 for more information on how to do this

1. In the Neuron C code generated by the Code Wizard, do the following:

a. Complete the implementation of the get nv_length_override function. The Code Wizard
provides an empty implementation of this function in the device template’s main source file.
This function should return the length of any changeable-type network variable in the device.

b. The Code Wizard uses the #pragma unknown_system_image_extension_isa_warning
directive to generate Neuron C source code that will compile. The Code Wizard enables this
directive in the device template’s main header file. If you use a combination of Code Wizard
generated code and your own code, you can edit the relevant portion of the main header file.

You should only use the older nv_len() function to support debugging of an application
containing changeable-type network variables on platforms that do not support the system
image extension. For production release, the more robust system image extension method
should be used, and both methods should not coexist in a production device.

You can use the get_current_nv_length() function to determine the current length of a
network variable at any time (see the Neuron C Reference Guide for more information about
this method).

c. Define the behavior of the application when a request to change the network variable type is
received. The application must validate that the requested type change is supported. If it is
not, it must reject the request (either by setting invalid_request or by setting an
application-specific error and putting the device offline) and set the network variable type
back to the last valid type. If the type change is valid, it must implement the type and size
change.

The Code Wizard does not provide framework code for this task, but a commented source
code example is provided in the Neuron C Programmer’s Guide.

d. Define how the functional block behaves when sending or receiving values on
changeable-type network variables. For each valid type, the functional block must perform
any necessary conversion before operating on the value.

188 Developing Device Applications

The Code Wizard does not provide framework code for this task, but a commented source
code example is provided in the Neuron C Programmer’s Guide.

Neuron C Version 2 Features Not Supported by the Code Wizard

The following overview summarizes features of the Neuron C Version 2 language that are currently
not used or not supported by the NodeBuilder Code Wizard. See the Neuron C Programmer’s Guide
and Neuron C Reference Guide for more information about Neuron C Version 2.2.

Message Tags

The generation of declarations or the use of message tags is not supported with the exception of
automatically generated FTP server implementation that contains a message tag (fx_explicit_tag).
Also see when() clauses later in this section.

1/0 Models

The NodeBuilder Code Wizard does not generate or support the generation of declarations or use of
I/0O objects.

Network Variables

Network variable arrays. The NodeBuilder Code Wizard only generates declarations for a network
variable array if it applies to a functional block array. The sizes of the two arrays will be the same (for
example, one network variable per functional block). The NodeBuilder Code Wizard does not support
declaring a network variable array and distributing the elements of this array among multiple
functional blocks or functional block arrays.

Polled modifier for input network variables. The NodeBuilder Code Wizard supports the polled
network variable modifier for output network variables, but it does not support the polled network
variable modifier for input network variables. The polled modifier, combined with input network
variables, is only used for host-based application development with a model file. This feature is not
required or supported for development of Neuron-hosted applications because the Neuron C compiler
automatically detects the polling inputs and generates the Neuron C code accordingly.

Configuration Properties

Network variable class config. The NodeBuilder Code Wizard does not support the network variable
class config because this keyword is not recommended for use in new development. The NodeBuilder
Code Wizard supports configuration network variables using the Neuron C network variable class cp
instead.

cp_family re-use. The NodeBuilder Code Wizard code will declare one cp_family of a given type for
each instance of a configuration property, unless the configuration property it references is a functional
block array. Specifically, if the complete device requires two (or more) configuration properties of
type T, the declaration of a single cp_family of type T is technically sufficient in many cases;
however, the NodeBuilder Code Wizard will generate two (or more) ep_families of type T.

This means that a cp_family generated by the NodeBuilder Code Wizard will always have a single
member unless the configuration properties applies to a functional block array. In this case, the size of
that array equals the size of the cp_family.

Global configuration properties. The NodeBuilder Code Wizard does not currently support the
global CP modifier, but it does support sharing a configuration property through the static CP
modifier.

The NodeBuilder Code Wizard does not support the generation of configuration properties that apply
to multiple disjointed functional block (for example, not be members of the same functional block
array).

The NodeBuilder Code Wizard does not support sharing a configuration property among the members
of a network variable array that applies to the entire device (for example, it is not part of a functional

NodeBuilder FX User's Guide 189

block or functional block array). This restriction applies to both the static and global configuration
property sharing scopes.

range_mode_string. The NodeBuilder Code Wizard does not support the range_mode_string
option, which supports the setting of LONMARK range modification for a configuration property.

when() clauses

Unqualified when(msg_arrives). The NodeBuilder Code Wizard code generates an unqualified
when(msg_arrives) task as part of the pre-defined FTP server implementation (see the filexfer.nc
file). This code is only generated if the you selected the FTP configuration property access method.

If your device application processes incoming messages and includes the pre-defined FTP server, you
must use the existing implementation and start your own handler code from there. For more
information about removing parts of the code generated by the NodeBuilder Code Wizard, see
Modifying Neuron C Code Generated by the Code Wizard earlier in this chapter.

when(nv_update_occurs(nvl..nvx)). For functional blocks or functional block arrays that contain
input network variables, the NodeBuilder Code Wizard always generates a single when() task to
handle incoming network variable updates, using the Neuron C construct
when(nv_update_occurs(nvl..nvX)).

Code for multiple when-tasks per functional block or functional block array (assuming each functional
block has more than one input network variable) is not generated.

This implies that all input network variables that belong to a given functional block or functional block
array are to be declared in subsequent order. See the Neuron C Programmer’s Guide for more details
about the use of NV range specifications as arguments to the nv_update_occurs function.

The NodeBuilder Code Wizard does not generate code to handle the arrival of updates to configuration
network variables.

#pragma scheduler_reset. The implementation of the FTP server requires the presence of #pragma
scheduler_reset. This is automatically inserted as needed by the NodeBuilder Code Wizard (see the
filexfer.nc file). You may not remove this pragma.

LONMARK Style

The NodeBuilder Code Wizard can only generate code for a device template that includes a valid Node
Object functional block. The Node Object functional block must be the first object in the device’s list
of objects. The functional profile key for the Node Objects functional profile is 0 at present scope;
therefore, you can create own Node Object functional profile with a key of 0 that inherits from the
scope 0 functional profile.

Director Functions

The NodeBuilder Code Wizard always creates one director per functional block or functional block
array. It does not currently support functional blocks without director functions, and it does not
support the sharing of one director function among multiple functional blocks (except for functional
block arrays).

Interrupt Tasks

The NodeBuilder Code Wizard does not currently generate code for application-specific
interrupt-tasks.

Using the NodeBuilder Editor

You can display and edit source and text files using the NodeBuilder Project Manager; this includes
Neuron C files (.nc extension), header files (.h extension), C files (.c extension), and text files (.txt
extension). You can open any file in a device template folder or device template Source Files folder

190 Developing Device Applications

by double clicking it. You can open multiple files in the Edit pane of the NodeBuilder Project
Manager. You can switch between open files using the Window menu.

You can cut, copy, and paste text using standard Windows commands. For example, you can cut
selected text using CTRL+X, the Cut button on the toolbar, or by clicking Cut on the Edit menu.

This section describes the following:

The color-coding scheme used to highlight source code based on Neuron C syntax.

How to search for a text string in a single source file or in all source files in the project.
How to use bookmarks to return to frequently used parts of your code.

How to set the options in the Editor tab of the NodeBuilder Project Properties dialog that
control syntax highlighting, tab settings, auto indent, font settings, and automatic loading.

Elh o

Using Syntax Highlighting

If you are editing a Neuron C file (.nc extension), header file (.h extension), or C file (.c extension),
the Edit pane in the NodeBuilder Project automatically color-codes text based on Neuron C syntax.
This color-coding is designed to make your Neuron C code more easily readable. You can change
these colors using the editor options (for more information, see Setting Editor Options later in this
chapter).

The following table lists the default colors and their corresponding Neuron C syntax:

Green Neuron C comment. Commented text is not compiled
during a build.

Blue Neuron C language specific keyword or function

Pink String or number. This includes the arguments to #include
statements, and numerical values assigned to variables.

Dark Blue Constant or preprocessor directive.
Code generated and updated by the NodeBuilder Code
Wizard.

Black All other text.

Searching Source Files

You can search for a string in a single source file or multiple source files, or you can search for a string
and replace it with another.

Searching a Single File for a String
You can search a single file for a text string. To search for a text string, follow these steps:

1. Open the file that you want to search in the NodeBuilder Project Manager. Click anywhere in the
file.

2. Click Edit and then click Find (or press CTRL+F). The Find dialog opens.

Find S
Find what: || | Find Next |
[Match whole ward only Mark A&l
[Match caze

Cancel

NodeBuilder FX User's Guide 191

192

Enter the text string to search for in Find what.

Set Match Whole Word Only to find only whole words that match the string. Set Match case to
make the search case sensitive.

Click Find Next to find the next occurrence of the string, starting from the current cursor position
and moving down. Click Mark All to have every line in the file containing the string bookmarked
(for more information, see Using Bookmarks later in this chapter,).

Replacing Text

You can search for a string and automatically replace it with another string. To search and replace,
follow these steps:

1.

Open the file that you want to search in the NodeBuilder Project Manager. Click anywhere in the
file.

Click Edit and then click Replace (or press CTRL+H). The Replace dialog opens.

Replace E| E|

Find what: | -l Find Mest
Hl

Replace with: |

Beplace
[Match whole ward only Replace |n. Replace Al
[Match caze fe wihole file
i

Cancel

gl

Enter the text string to search for in Find what.
Enter and the text string that you want to replace it with in Replace with.

Set Match Whole Word Only to find only whole words that match the string. Set Match case to
make the search case sensitive.

If you selected text prior to opening this dialog, set Selection to search only the selected text for
the string. Set Whole file to search and replace in the entire file.

Click Find Next to find the first instance of the string. It will be selected and this dialog will
remain open.

Click Replace to replace the selected string with the string in Replace with. Click Replace All to
automatically replace all the selected strings without confirmation.

Searching Multiple Files for a String

You can search for a string in multiple source files at once. You can use this capability to find all calls
of a certain function or uses of a certain variable in an entire project. To search for a string in one or
more files, follow these steps:

1.

Click Edit and then click Find in Files (or press CTRL+SHIFT+F). The Find in Files dialog
opens.

Developing Device Applications

Find In Files

Textto find:

| =
File types:

|*.n|: *c*h j
Options

| Case sensitive

[Whole words only
[Begular expressions

YWhere to search
" Search all files in project

" Search all open files
f* Search in directories

Search directory options
Directony

CIALMSource\tB3_2 Exercise

v Include subdirectories

I

Cancel |

In the Text to Find property, enter the text string to be found.

In the File Types property, select the file types to be searched. By default, the search will look in

Neuron C files (.nc extension), header files (.h extension), and C files (.c extension). You can

remove a file type from the search by removing the corresponding *.<file type extension> entry.

You can add additional file types by adding * .<file type extension> to this field.

In the Options box, select one or more of following check boxes to modify the search (all of the
check boxes are cleared by default):

Case Sensitive. Performs a case-sensitive search.

Whole Words Only. Limits the search to whole words that match the search string.

Regular Expressions. Enables regular expression syntax in the search string. If this option

is set, you can use the following expressions in your search string:

Expression Description

*

+ The plus sign behaves just like the asterisk, but it must replace at least

An asterisk in the search string replaces zero or more characters. An
asterisk must be accompanied by at least two other characters (for
example, you could search for zo*, which would find instances of zo,
z00, zoom, zoot, but not z*). Use * to represent an asterisk character.

one character (for example, if you search for zoo+, it will return zoot and

zoom, but not zoo. Use \+ to represent a plus character.

NodeBuilder FX User's Guide

193

Expression Description

? The question mark replaces one or zero characters. The search must
contain at least two other characters. Use \? to represent a question mark
character.

The period replaces exactly one character. The search must contain at
least two other characters. Use \. to represent a period character.

(pattern) Matches the pattern and remembers the match. The matched substring
can be retrieved by using \0’-\9” later in the regular expression, where
‘0’-‘9” are the number of the pattern.

Example: regular expression (re).*\Os+ion will match regular expression.
First the search matches re string and stores that pattern with index 0. .*
will match gular exp in regular expression. The \0 expression retrieves
the pattern with index O (for example, re). This re that matches the re in
expression. Finally the s+ion expression matches ssion.

x|y Matches either character x or y. You can combine more than two
characters like x|y|z.

{n} The preceding character must match exactly n times. For example
bo{2}k{2}e{2}per would match bookkeeper. n must be a positive
integer.

{n,} The preceding character must match n or more times (for example,

bo{2,}k{2,}e{2,}per would find instances of bookkeeper,
boookkeeeeper, and so on. n must be a positive integer.

{n,m} The preceding character must match between n and m times. n and m
must be positive integers, and m must be greater than n.

[xyz] Matches any of the enclosed characters. [xyz] produces identical results
to x|y|z.

["*xyz] Matches any character other than the enclosed characters.

\b Matches a word boundary.

\B Matches anything other than a word boundary.

\d Matches any numerical digit (0-9).

\D Matches any non digit.

\f Matches a form feed.

\n Matches a new line character.

\s Matches any white space character.

\S Matches any non-white space character.

\t Matches any tab character.

\v Matches any vertical tab character.

\w Matches any letter, number, or underscore.

\W Matches anything other than a letter, number or underscore.

\<num> Where <num> a number from 0-9. Matches indexed pattern (see,
(pattern), above).

/n/ Where n is any number from 1-255. Matches the character with the
ASCII value n.

194 Developing Device Applications

5. In the Where property, select which files to search. You have the following three choices:

e Search all Files in Project. Searches all files in the current NodeBuilder project. This is the
default.

e Search all Open Files. Searches all currently open files. Open the Window menu to see
which files are currently open.

e Search in Directories. Search all files in a specific directory.

6. If you selected the Search in Directories option in step 5, enter the directory to be searched in the
Directory property. The NodeBuilder project directory will be selected by default. Click the
button to the right to browse to a different directory. To search all the subfolders in the Directory
property, select the Include Subdirectories check box. This check box is cleared by default.

7. Click Find.

8. The Search Results tab of the Results pane will display the results of the search. Each instance of
the string found is displayed in a line in the Results pane. The line includes the file, line number,
and line text where the string was found. Double-click a line in the Results pane to open the
specified file and go to the specified line.

Using Bookmarks

You can flag lines of code in you source and text files using bookmarks. You can use bookmarks to
easily return to important sections of your source or text files. You can set bookmarks manually or as
a result of a search (see Searching Source Files earlier in this chapter).

To manually set or remove a bookmark, follow these steps:
1. Open the file that you want to search in the NodeBuilder Project Manager.

2. Place the cursor on the line to be bookmarked, or on the line containing the bookmark to be
removed.

3. Click Edit, point to Bookmarks, and then click Toggle Bookmark. If the line does not contain a
bookmark, a bookmark symbol () appears to the left of the line. If the line already contains a
bookmark, it is removed.

Once you have set any bookmarks in a file, you can go to the next bookmark in the file. To go to the
next or previous bookmark, click Edit, point to Bookmarks, and then click Next Bookmark or
Previous Bookmark.

To remove all bookmarks from the current source file, click Edit, point to Bookmarks, and then click
Clear All Bookmarks.

Setting Editor Options

You can set editor options that control syntax highlighting, tab settings, auto indent, font settings, and
automatic loading for the current NodeBuilder project. To set editor options, follow these steps:

1. Click Tools and then click Options. The NodeBuilder Project Properties dialog opens with the
Editor tab selected.

NodeBuilder FX User's Guide 195

NodeBuilder Project Properties

196

Code settings

Tab width: =

v Auto indent

¥ Syntax coloring

Font

|CnurierNew,1D nt

Change Fant..

Options Editor IRegistration] F'rojeu:t] Build] Debugger

Code colors

kewwards

Cn_mments ™ Bald
Strings

Murnbers [Italic
COperatars b

Reload previously open documents when
apening the project

Reset All

Ok | Cancel ‘ |

Alternatively, you can access this tab by clicking Project, clicking Settings, and then clicking the

Editor tab, or by clicking the
the Editor tab.

2.
Code Settings
Tab Width
Auto Indent

Syntax Coloring

Font

Code Colors

Reload Previously
Open Documents

Reset All

Project Settings button (') on the Editor toolbar, and then clicking

Set the following properties:

Determines the tab size. By default, the tab size is 4.

Automatically indents code inside a function or conditional statement.
This check box is selected by default.

Enables syntax highlighting. You can specify colors in the Code
Colors property. This check box is selected by default.

Sets the font and font size used to display text in the editor. Click
Change Font to choose a new font or font size. You may choose only
from fixed width fonts.

Sets the colors used by the editor when the Syntax Coloring check box
is selected. You can choose different colors for keywords, comments,
strings, numbers, operators, code wizard maintained code, and
preprocessor statements, as well as the default color for code that
doesn’t fit into any of these categories. Select one of these categories
and then choose a color using the color picker.

You can also make the specified text bold or italic by setting the Bold
or Italic check boxes. These check boxes are cleared by default.

Opens all documents that were open the last time you closed the project
when you open a project.

Resets all options on this tab to their defaults.

Click OK to save the changes.

Developing Device Applications

8

Building and Downloading Device
Applications

This chapter describes how to compile Neuron C source code, build an application
image, and download the application image to a device. It explains how to add target
devices to a NodeBuilder project and how to manage them.

NodeBuilder FX User's Guide 197

Infroduction to Building and Downloading Applications

You can build an application image for one or more development or release targets in a NodeBuilder
project. After you build the application image, you can download it to a development platform such as
an FT 5000 EVB or an LTM-10A Platform, a custom device that you have manufactured, or a
third-party device. You can add target devices to your NodeBuilder project using the LonMaker tool
or the NodeBuilder Project Manager, and then manage them and edit their settings.

The following sections describe how to do the following:

1. Build an application image with the NodeBuilder tool.

2. Download the application image to a target with the NodeBuilder tool.

3. Add target devices to a NodeBuilder project using the LonMaker tool and the NodeBuilder tool,
manage target devices, and edit target device settings.

Building an Application Image

You can build an application image for one or more development or release targets in a NodeBuilder
project. When you build an application image, the NodeBuilder tool compiles the source code
specified by the device template, links the compiled code with the standard libraries and any
user-specified libraries in the device template, creates downloadable application image files, creates a
ROM image, and creates device interface files that are required by the LonMaker tool and other

198

network tools.

To build an application image for one or more targets, follow these steps:

1. Close the LonMaker Browser if it is open.

2. Open the project in the NodeBuilder Project Manager. For more information on how to do this,
see Opening a NodeBuilder Project in Chapter 4.

3. Build the application image for all the targets in the project, all the targets in a device template, or
one or more targets in the project.

e To build all the targets in the current NodeBuilder project, click Project and then click Build
All, or right-click the Device Templates folder in the Project pane and click Build on the
shortcut menu. This builds all non-excluded targets in the project. For more information on
excluding targets, see Excluding Targets from a Build later in this chapter.

=3 Project 'ME_Fi Exercise’:
- a Dervice Temp
+ P MyNewDeviceTemplat:
+- P NB F Example Device
+ [:l'Devices
+ [IHardware Templates

lakes

Meat,
Insert. ..
Insert Copy...

Clean

Skatus, .,

You can clean all targets automatically before building them. To do this, click Project and
then click Build All Unconditionally. For more information on cleaning targets, see
Cleaning Build Output Files later in this chapter.

e To build all the targets in a device template, right-click a device template in the Project pane
and click Build on the shortcut menu.

Building and Downloading Device Applications

Workspace O x

=+ Project 'NE_FY Exercise':
-1 Device Templates

wheviceTempla
+- i NE F3 Example Devict
+ DDevices
+{_JHardware Templates

Settings...

Set Source File, .
Code Wizard. ..
Remaowve

Clean
Build Exclude

Status...
Properties...

e To build one or more targets in the current NodeBuilder project, click one target device
template, optionally, hold down CTRL and click the other targets or device templates
containing the targets to be built, right-click one of the selected items, and then click Build on
the shortcut menu.

Workspace O x

S| Project 'WE_F¥ Exercise's
‘A Device Templates

viceTemplate

@ MyMewDeviceTemplate.nc
+ lm Development
+ [H| releass
+ [} Source Files
[(ILibraries
=@ ME F Example Device
EineFx Example Device.nc

lopment
T 5000 Evaluation Boarg

Settings...

+ [H| release Zlean
+ 1 50urce Files Build Exclude
+{ JLibraries

4. The NodeBuilder tool automatically saves all unsaved project files when you start a build. If there
are any unsaved changes and the Prompt before Saving Files check box in the Options tab of the
NodeBuilder Project Properties dialog is selected, you will be prompted to save the changes or
cancel the build.

5. The results of the build are displayed in the Messages tab of the Results pane. This pane displays
Neuron C errors, linker errors, warnings, and the build status. You can double-click an error or
warning to go to the line of code that generated the message. The information displayed during a
build is also saved in a log file (.log extension) in the Development or Release target subfolder of
the device template’s output directory.

NodeBuilder FX User's Guide 199

————— Building 'NE FX Example Device': 'Developwent' targef —-—-—-—-—

Resolving CodeWizard-3.lib as C:i\LonWorks) Imagesh CodeWizard-3.lib

Resolving GEN.LIB as C:\LonUorks) Images'GEN.LIE

Resolving EXTARITH.LIB as C:%LonWorks' Images)EXTARITH.LIB

Resolving PSG.LIE a3 C:iLonlorks) ImagesyPSG.LIE

Exporter driwver: The koot ID has been updated to Ox0AFD

Project Make: Updating device template file succeeded

Iwporting device template 'Cih 1w\ Source\NB_FX Exercise\NB FX Example Device)DevelopmentiNB FX Example Device.xif' as 'NB F!
Registering plugins for new LNS device template...

————— Building 'ME FX Example Device': 'Release' target —----

Build dues for component MNeuron (R) C Compiler, reason: File C:\LM\SOURCE\NB_FX EXERCISEYNE FX EXAMPLE DEVICE\NE FX EXAMPLE
Cleaned file C:)lmhSource\NE FX Exercise\NE FX Exawple Device\Release\NE FX Example Device.nxe

Cleaned file C:)lmhSource\NE FX Exercise\NE FX Exawple Device\Release\NE FX Examwple Device.apb

Cleaned file C:)lwhSource\NB FX Exercise\NB FX Exswple Device\Release\NB FX Exswple Device.xif

Cleaned file C:)lmySource\NE_FX Exercise\NE FX Exsmple Device\Release\NE FX Exswple Device.xfb

Cleaned file C:)lmySource\NB_FX Exercise\NE FX Exsmple Device\Release\NE FX Exsmple Device.ndl

Cleaned file C:)lmhSource\NB_FX Exercise\NE FX Example Device\Release\NE FX Example Device.map

Cleaned file C:)lwmhSource\NE FX Exercise\NE FX Exawple Device\Release\NE FX Example Device.nme

X [>»»>>> Build for project 'NE_FX Exercise' <<<<< j

c
c
<
<
i
c

E Recuesting build from Neuron (R) € Compiler

e Compiling...

¥ |Compiler driver: Attached to LonUCL3IZ-3

% [set Meuron (R) € Compiler command --defloc=C:) lmySourcetNE FX Exercise\NB FX Example Device -
2 |H| 4| » M)\ Messages [Seach Results § Eve | 4 | 3

Note: To stop a build in progress, open the Project menu and then select Stop Build.

6. If the Load After Build option (E)in the NodeBuilder toolbar is set or if the Load after Build
check box in the Build tab of the NodeBuilder Project Properties dialog is selected, all
commissioned devices that use one of the applications produced by the build are automatically
downloaded to the devices. If there are any uncommissioned devices associated with the
NodeBuilder project, you need to replace them with the LonMaker tool when the build is complete
(for more information, see Replacing a Device in a LonMaker Network in Chapter 7 of the
LonMaker User’s Guide). The status of this operation will be shown in the NodeBuilder Results
pane.

7. Each device is assigned the LNS Device Template specified by its LNS Device Template Name
property in the Program ID tab of the NodeBuilder Device Template Properties dialog. If you
change a device’s program ID, the device template name must also be changed. This is handled
automatically if Automatic Program ID Management is enabled for the NodeBuilder device
template in the Program ID tab of the NodeBuilder Device Template Properties dialog (it is
enabled by default).

If you are unable to load a previously-built device because of a program ID conflict, you can set
the device applicationless by expanding the Devices folder in the Project pane, right-clicking the
device, and then clicking Force Applicationless on the shortcut menu.

= aProject 'ME Exercise’s
-1 Device Templates

+ P Examplel
+- i myMewDeviceTemplate
= S Devices
+{ IHardware Templates Settings. ..
Remaowve
EBuild
Debug

Skatus.,.
Go ko LonMaker

8. The NodeBuilder tool generates downloadable application image files, programmable application
image files, and device interface files. The following table describes these files:

200 Building and Downloading Device Applications

Downloadable
Application Image
Files

(.APB, .NDL., and
NXE,)

Programmable
Application Image
Files

(.NRI, .NEI, .NFI,
.NME, and .NMF)

NodeBuilder FX User's Guide

These files contain the application image used by the LonMaker tool
and other network tools to download the compiled application image to
a device.

There are three types of downloadable application image files: the
binary application image file ((APB extension), the .NDL file, and the
text application image file (NXE extension). These files are described
as follows:

e The .APB file is used by the LonMaker tool and other LNS
network tools to download an application images to a device over
the network. The .APB files can be used to upgrade the device
application for a previously installed device.

Note: The .APB files cannot be used to update a device’s
communication parameters or the clock multiplier for a 5000 Series
chip. If you change these properties, you must associate the
NodeBuilder project with a LonMaker network and then load the
device application with the NodeBuilder tool to implement the
change.

e The .NDL file is used to support manufacture-time loading of
devices with the NodeLoad utility. For more information on the
NodeLoad utility, see the NodeLoad Utility User’s Guide.

e The .NXE file is supplied to support some legacy network tools,
but it is not normally required.

These files contain an application image that is used by a programming
tool to program an application image into a memory chip.

Programming tools include generic device programmers and specialized
Neuron 3120 programmers.

The .NMF and .NME types are new for NodeBuilder FX tool and the
5000 Series chips, and they are used to program serial EEPROM
(.NME) and flash (NMF) memory parts. Image files intended for
serial memory parts may also be programmed in-circuit, subject to the
availability of suitable hardware.

There are five types of programmable application image files: ROM
application image file (.NRI extension), the EEPROM and flash
application image file (.NEI extension), the off-chip serial EEPROM
application image file (NME extension), the Neuron flash image (.NFI
extension), and the off-chip flash application image file (NMF
extension).

e ROM. The ROM application image file (.NRI extension) contains
a read-only application image that is used for programming a
PROM or flash memory for use in a device based on a Neuron
3150 Chip or FT 3150 Smart Transceiver. The first 16Kbytes of
the ROM application image file contains the Neuron firmware, and
optionally contains a copy of some or the entire on-chip EEPROM
image, as selected by the Exporter Reboot Options for the device
template target.

e EEPROM and flash memory. The EEPROM application image
file (.NEI extension) contains a EEPROM application image that is
used for programming an external or on-chip EEPROM. If the
application image was built for a Neuron 3150 Chip or an FT 3150
Smart Transceiver, the EEPROM application image file contains

201

202

Device Interface
Files

(XIF, .XFB, and .xfo)

the application code and data that resides in off-chip EEPROM,
flash, or NVRAM (if any). For these devices, this file is used with
a device programmer to program the external memory chips. If the
application image was built for a Neuron 3120 Chip, this file
contains some or all of the on-chip EEPROM image in a special
format for use only with a Neuron 3120 programmer.

Off-chip serial EEPROM. For the 5000 Series chips, the NME
application image file is supplied and supports programming the
serial EEPROM memory part.

Neuron flash image. For a Neuron 3120E4 Chip or an FT 3120
Smart Transceiver, the .NFI file contains an EEPROM application
image that is used for programming the on-chip EEPROM. It
contains the same information as the EEPROM application image
file for the Neuron 3120 Chip, but uses a different format because
of the different programming requirements of the 3120E4 and FT
3120 chips.

Off-chip serial flash. For the 5000 Series chips, the .NMF
application image file is supplied and supports programming the
optional serial flash memory part.

These files contain a definition of the device interface that is used by
the LonMaker tool and other LNS network tools to learn the interface to
a device, without requiring the device to be physically attached to the
network.

There are three types of device interface files: the text device interface
file (.XIF extension), the binary device interface file (.XFB extension),
and the optimized device interface file (.xfo extension).

XIF. The text device interface file is a text description of the
device interface. The format of this file is detailed in the LONMARK
External Interface File Reference Guide, which is available on
LONMARK Web site at
www.lonmark.org/technical_resources/guidelines/developer.shtml

XFB and XFO. The binary device interface file and optimized
device interface file are used by the LonMaker tool and other LNS
tools to create LNS device templates, which define the device
interface to LNS tools.

Device manufacturers should distribute the binary application image file ((APB) and text device
interface file (.XIF) files to customers to support their devices. The .NDL file may also be
distributed to support loading the devices in the field with the NodeLoad utility. This is useful for
systems where an LNS network tool is not available to download device applications.

Note: If you provide .NDL files for upgrading device applications, do not change the device’s
communication parameters or change the clock multiplier on a 5000 Series chip. Changing the
communication parameters may cause communication with the device to be lost permanently.
Changing the clock multiplier on a 5000 Series chip may affect the device’s power consumption
and EMC performance, and it may affect the peripheral circuitry attached to the Neuron 5000
Processor or FT 5000 Smart Transceiver.

Building and Downloading Device Applications

http://www.lonmark.org/technical_resources/guidelines/developer.shtml

Excluding Targets from a Build

You can exclude a target or a device template from project builds, and you can exclude a target from a
device template build. To exclude a target or device template from a build, right-click the device
template or the Release or Development target folder and then click Build Exclude on the shortcut
menu. The selected device template or target folder will be dimmed.

S| Project 'WE_F¥ Exercise's
‘A Device Templates
+ i MyNewDeviceTemplate
-1 & ME FY Example Device
[E11E Fx Example Device.nc
+ lm Development
+ R, —
+ 1 50urce Files
+{_MLibraries
+ DDevices
+[_IHardware Templates

Build

To include the device template or target in the build after you have excluded it, right-click it and select
Build Exclude again.

You can also choose to build to only development or release targets in the entire project. To do this,
select Development Targets or Release Targets in Build Type in the NodeBuilder toolbar. To build
all targets, select All Targets.

Cleaning Build Output Files

You can remove all files and folders produced by a build from the device template’s output folder. To
remove all build outputs in the project, right-click the Device Templates folder and then select Clean
from the shortcut menu.

Workspace O x

S| Project 'WE_F¥ Exercise's
‘A Device Templates
+ @
SN - IME Fi Example Device
[E1ME F Example Device.y Settings...

+ [H| Development Sek Source File, ..
+ [H| releass Code Wizard...
+ [} Source Files Remove
+{ILibraries Build
+ DDevices P
+{JHardware Templates uld —
Skatus. ..
Properties...

To clean all build outputs from a specific device template or target, right-click the device template or
target folder and then select Clean from the shortcut menu.

NodeBuilder FX User's Guide 203

Workspace O x

=+ Project 'NE_FY Exercise':
-1 Device Templates
+
=@ ME F Example Device
EineFx Example Device.nc
+ [H| Development

+ [
+|_}source Files Settings...
+JLibraries Set Hardware Template...
+ [JDevices Buwild
+{ IHardware Templates Compile
Build Exclude
Skatus, .,

Note: The Clean command only removes files and folders produced by the NodeBuilder tool. It does
not remove any files that you have generated with the NodeBuilder tool.

Viewing Build Status

You can view the build status of all NodeBuilder device templates and targets. The build status shows
whether the latest version of the source files have been compiled and built and whether all known
devices have had the latest version of the application loaded. You can view the build status for the
entire project, a specific device template, a specific device template target, or a specific target. To do
this, follow these steps:

1. Select whether to the view the build status for the entire project, a specific device template, a
specific device template target, or a specific target.

e To see the build status for the entire project, right-click the Device Templates folder and then
click Status on the shortcut menu.

Workspace O x

=+ Project 'NE_FY Exercise':

e Templates

+ P MyMewDeviceTemplate

-1 &2 NE FY Example Device
[E1ME Fx Example Device.r

Mew...
Insert. ..
Insert Copy.,..

+ lm Development Euild
+ [H| release Clean
+ 1 50urce Files
+{ MLibraries

+ DDevices

+{ IHardware Templates

e To see the build status for a specific device template, target, or device, right-click it and then click
Status on the shortcut menu.

204 Building and Downloading Device Applications

Workspace

=+ Project 'NE_FY Exercise':
-1 Device Templates

+ [H] Development
+ [
+ X Source Files
+{ILibraries

+ DDevices

+{ IHardware Template

+ P MyMNewDeviceTemplate
-1 &2 NE FY Example Device
[E1MB F2 Example Device.nc

Settings...
3et Hardware Template. ..

Build

Compile
Clean

Build Exclude

2. The Build Status dialog opens.

Build Status

Template Target

| Device Status | Ok |

+ B F¥ Exa... Release

B Fi Exa... Development |Jp-to-date

Jp-to-date

3. Each row in this dialog represents a device template target or a target. Targets are listed beneath
their associated device template target. The dialog has the following columns:

Template
Target

Device

Status

NodeBuilder FX User's Guide

The NodeBuilder device template.
The target type (Release or Development).

If this row contains the status for a target, this column displays the
target name. If this column contains status for a device template
target, this column is empty.

The target status. This may be one of the following values:

Up-to-date. For device template targets, this indicates that the
application image is consistent with the source code. For targets, this
indicates that the target has been loaded with the latest application
image.

Compile required. Applies to device template targets only. Indicates
that the source code or a property that would change the compiled
version of the application has been modified since it the application was
last compiled.

Assembly required. Applies to device template targets only. Indicates
that the assembly file has been modified since it was last assembled or a
property that would modify the assembled version of the application has

205

changed. This status is unlikely to occur.

Link required. Applies to device template targets only. Indicates that
one of the libraries or the system image has been modified since the
application image was last built or that a property has been changed that
requires the project be re-linked.

Export required. Applies to device template targets only. Indicates
that a property has been changed that requires the device to be exported.

Load required. Applies to targets only. Indicates that the application
image has been modified since the target was last loaded. The
NodeBuilder tool will only be aware of loads performed by the
NodeBuilder or LonMaker tools. If you load the application with
another tool, the NodeBuilder tool will not update the status until the
application is built and loaded using the NodeBuilder or LonMaker
tools. The Load required status is undetermined when you use the
NodeBuilder tool as a standalone application.

Setting Build Options

You can set build properties that control the build process. To set build properties, follow these steps:

1. Click Project and then click Settings, or click the Project Settings button (&') in the Project
toolbar. The NodeBuilder Project Properties dialog opens with the Build tab selected.

ModeBuilder, Project Properties

Project name:

Stop builds on

* Errors
" Warnings

" Do not stop

v Load after build

Optiuns] Editur] Registratiun] Project Build lDebugger]

W Load NodeBuilder devices anly

Build type:
|1l Targets ~|

v Verbose make messages
v Debug make messages

[Generate build script files

Ok | Cancel

Alternatively, you can right-click the Project folder at the top of the Project pane, click Settings
on the shortcut menu, and the click the Build tab; or click Tools, click Options, and then click the

Build tab.

2. Set the following options for building device applications:

Stop Builds on

206

Determines when a build is stopped. A build may be stopped when an
error or warning is returned, or upon completion. The default is
Errors. If Do not stop is selected and an error occurs, the build

Building and Downloading Device Applications

process will move on to the next target, rather than aborting the build.

Load after Build Loads Fhe application iqto a device immedi.ately after .the application
image is built. The devices must be commissioned with the LonMaker
tool and the LonMaker drawing containing the device must be open and
attached to the network. The Load After Build button ([#e) on the
NodeBuilder toolbar reflects changes to this option and vice versa. This
check box is selected by default.

Load NodeBuilder Limits loads to the targets listed in the Devices folder in the Project
Devices only pane. This check box is selected by default.

Build Type Determines whether All Targets (the default),' Development Targets,
or Release Targets will be built when you build a project or device
template. You can also view and change the build type from the

NodeBuilder toolbar.

Verbose Make Displays more descriptive messages in the Results pane when you build

messages a device template. This check box is selected by default.

Debug make Displays debugging messages in the Results pane when you build a

Messages device template. This output may be used by Echelon Support to help
you diagnose problems. This check box is selected by default.

Generate Build Generates build script files when you build a device template. This

Seript Files check box is cleared by default. Build scripts are described in Appendix
A, Using the NodeBuilder Command Line Project Make Facility.

3. Click OK.

Downloading an Application Image

You can download an application image that you have built with the NodeBuilder tool to a LONWORKS
device. The device may be a development platform such as the FT 5000 EVB or an LTM-10A
Platform, a custom device that you have manufactured, or a third-party device. Typically, you will do
your initial debugging on a development platform before building a custom device, but you can create
and load a custom device at any time.

Development platforms such as the FT 5000 EVB and the LTM-10A Platform include Neuron
firmware that is preloaded into the device. The Neuron firmware allows these devices to be
downloaded over a LONWORKS network so that you do not have to use any special device
programming tools. If you are using a development platform, you will automatically load the platform
when you add a NodeBuilder target as described in Adding and Managing Target Devices later in this
chapter.

If you are using a custom device that does not have an on-chip Neuron firmware image (similar to a
3150 Neuron Chip or 3150 Smart Transceiver), you must program the Neuron firmware image into the
external memory (EEPROM, flash, PROM, ROM, and so on) before you can use the device as a target.

Once you have completed development, you will load your application image into the device as part of
your manufacturing process. The files containing the application image are described in Building an
Application Image earlier in this chapter.

The following table summarizes the processor/memory combinations that you can use, and the files
that you will use to program each.

NodeBuilder FX User's Guide 207

Application
Application Image
System Image Application Image File Programming
Processor Memory Type Memory Type Extension Tool
Neuron 5000 On-chip ROM Off-chip serial .NME Compatible
Processor EEPROM Device
FT 5000 Smart Offchip serial | .NMF Programmer
Transceiver flash
Off-chip serial .NDL NodeLoad Utility
EEPROM or
flash
Neuron 3150 Off-chip flash Off-chip flash .NEI Device
Chip programmer
FT 3150 Smart .NDL NodeLoad Utility
Transceiver
PL 3150 Smart
Transceiver
Neuron 3120xx On-chip On-chip .NEI Neuron 3120
Chip EEPROM EEPROM Programmer
APB and .NXE Network Tool
(TP/XF-1250
devices only)
.NDL NodeLoad Utility
Neuron 3120E4 On-chip On-chip .NFI Compatible
Chip EEPROM EEPROM Programmer
FT 3120 Smart APB and .NXE Network tool
Transceiver (for initial load,
PL 3120 Smart TP/XF-1230
. devices only)
Transceiver
PL 3170 Smart .NDL NodeLoad Utility
Transceiver

The procedure that you will use to program the application image depends on whether you are
programming off-chip memory for a device based on a Neuron 5000 core; the off-chip or on-chip
memory for a device based on a Neuron 3150 core; or the on-chip memory for a device based on a
Neuron 3120 core. These procedures are described in the following sections. See the Smart
Transceiver databook for more information.

Programming 5000 Off-chip Memory

A 5000 Series device requires at least 2K of external serial EEPROM, and it can optionally contain
external serial flash memory. There is no on-chip non-volatile memory provided for the application.
Many types of EEPROM devices are supported; however, Echelon currently supports and provides
drivers for only the following three external flash devices: Atmel AT25F512AN, ST

M25P05-AVMNG6T, and SST25VF512A.

Note: The drivers for different flash devices consume varying amounts of EEPROM code space
because of the different programming algorithms required for the different flash devices. For example,
the SST driver takes 40 bytes more of EEPROM than the other two supported flash devices.

Building and Downloading Device Applications

The system image resides in on-chip ROM. The application image and the system image are copied
from the external non-volatile memory into the on-chip RAM at chip startup and reset. The Neuron
firmware is responsible for copying any writes that are directed towards external non-volatile memory.
See the Neuron Chip or Smart Transceiver data book for more information.

The build process produces an .NME file for application code and data designated for external
EEPROM and an optional .NMF file for application code for external flash memory, if it is available.

You can download the device application over the network, or you can transfer the device application
over an [12C or SPI interface using the application images files generated by the build process if the
device has not been installed on the network. Using the I12C or SPI interface is ideal for the ex-circuit
programming of serial flash and EEPROM devices. In addition, you can use any compatible device
programmer with the I2C or SPI interface to program these memory devices in-circuit, which helps
with the development and mass-production of generic device hardware, and lowers production costs.
See the next section, Programming 5000 Series Chips In-Circuit, for more information on preparing
your device hardware for in-circuit programming.

You can load an alternate system image from external EEPROM or external flash, if required. This
feature may be required if a newer firmware image becomes available at a later date. In such a case,
the system image will always start at address 0xCO000 in the external part. In the case of external
EEPROM, the part has to be at least 32K in order to support alternate system images.

The 5000 Series chips contain the version 18 Neuron firmware in their on-chip ROM; therefore, you
do not need to program the memory parts before the device is first used. When the Neuron firmware
initializes during power-up, it can detect empty memory parts, and then boot into the applicationless
state with communication parameters set for a TP/FT-10 channel at a clock multiplier setting of 1.
You can then load your application image using the NodeBuilder tool, LonMaker tool, NodeLoad
Utility, or other network tool.

You need to pre-program the serial memory parts if you want the device to start with a different
version of the Neuron firmware, or if you want to increase application loading speed during
production.

Programming 5000 Series Chips In-Circuit

You can use the I°C or SPI interface on the 5000 Series chips for the in-circuit programming of your
external non-volatile memory EEPROM and flash devices. This lets you pre-produce generic
hardware and load one of several application images into the board at production time, without the
need for costly sockets or re-soldering.

To perform in-circuit programming, you need a method to connect your external serial EEPROM or
flash memory device to a compatible device programmer, while disconnecting these signal lines from
the 5000 Series chip. Echelon has tested the Aardvark™ [2C/SPI USB Host Adapter from
TotalPhase™ (Part No. TP240141), with the 10-pin split cable from TotalPhase (Part No. TP240212),
as one method for creating this connection (for more information on this adapter, go to the TotalPhase
Web site at www.totalphase.com/products/aardvark_i2cspi/). The Aardvark has six signal lines: two
for the I°C interface (SDA and SCL), and four for the SPI interface (MOSI, MISO, SCL, and SS). The
I’C/SPI interface used by the Neuron 5000 Processor or FT 5000 Smart Transceiver has some pins that
are multifunctional; therefore you must program each external non-volatile memory device
individually.

After you connect the I°C or SPI interface to the Aardvark programmer or other compatible in-circuit
device programmer, you can use a program such as the Flash Center Memory Programmer from
TotalPhase to program your external serial EEPROM or flash memory device. You can download the
Flash Center Memory Programmer for free from the TotalPhase Web site at
www.totalphase.com/products/flash_center/#downloads. 1f you use the Flash Center Memory
Programmer software, you also need to change the extension of the NME and .NMF application
image files generated by the NodeBuilder tool to .HEX. This is because the Flash Center Memory
Programmer requires hex files that have .HEX extensions.

NodeBuilder FX User's Guide 209

http://www.totalphase.com/products/aardvark_i2cspi/
http://www.totalphase.com/products/flash_center/%23downloads

210

The following sections provide two sets of diagrams illustrating connection schemes that you could use
for connecting external serial memory devices to the Aardvark programmer over the I°C and SPI
interfaces in the Neuron core of the 5000 Series chips.

The first diagram in each section illustrates how to connect the external serial memory device to the
Aardvark programmer by connecting the TotalPhase 10-pin split cable to the Aardvark programmer
and then inserting the flying leads on the 10-pin split cable to the jumpers on your device’s board.
This is ideal for scenarios where you want to physically disconnect the external serial memory device
from the Neuron chip. Note that instead of using flying leads, you could use one or more custom
cable adapters that are individually wired or switched-in to match the configuration for each external
serial memory device to be programmed.

The second diagram in each section illustrates how to directly connect the external serial memory
device to the Aardvark programmer. This is ideal for small devices where there may be insufficient
space for jumpers on the board, or simple devices where jumpers are not desired. Note that in this
scenario, the external serial memory devices are still connected to the 5000 Series chip. You therefore
must connect the RST~ pin on the Neuron chip to GND on the Aardvark programmer. This holds the
RST~ line low, places the I’C and SPI interfaces in a high impedance state, and idles the Neuron chip.
This eliminates the possibility of the Aardvark programmer conflicting with the Neuron chip when the
Aardvark is accessing the I°C and SPI interfaces.

Serial Memory Device-Aardvark Connection Scheme for I°C Interface

To connect an external serial EEPROM device to the Aardvark programmer and perform in-circuit
programming over the I°C interface, you could use the following schemes:

Building and Downloading Device Applications

FT 5000-Aardvark 1°C Connection

[(via Jumpers and 10-pin split cable (Total Phase Part No. TP240212)]

FT 5000 1 Aardvark
;45 1.2 3 i
SCLO——O O O Q sCL
J2
43 1 2 3 3
SDACS1TO——F—0O O O SDA
GND 01 +——0 GND
l 10
—O GND
VCC VCC
R1 R2
4.99k 4.99k
: OO Serial
g ;é: EEPROM
Device
F GND

Note: In this diagram, all jumpers are set into position 1-2 for normal operation, and they are set into
position 2-3 for in-circuit programming. You must always power off your device before changing the

jumper settings.

NodeBuilder FX User's Guide

211

Serial EEPROM-Aardvark 1°C Connection
(Direct Connection)

FT 5000 Aardvark
i 45 1
scL @ L 4 Q sCL
43 3
SDA_CS1~ O 0) SDA
28 2
RST~ O Y GND

10
GND 01 r\) GND

VCC VCC
R1 R2
4.99k 4.99k
grevereen QO Serial
8 g EEPROM
Device
F GND

Note: Pins 2 and 10 on the Aardvark are both connected to ground inside the Aardvark. As a result,
when the Aardvark is connected to the device board, it finds a reference ground at pin 10 and it takes
the RST~ line to ground on pin 2 at the same time. This means that once the Aardvark connection is
removed, the RST~ line is released and the 5000 Series chip resumes normal operation.

212 Building and Downloading Device Applications

Serial Memory Device-Aardvark Connection Scheme for SPI Interface

To connect an external serial EEPROM or flash device to the Aardvark programmer and perform
in-circuit programming over the SPI interface, you could use the following schemes:

Serial EEPROM or Flash-Aardvark SPI Connection
[(via Jumpers and 10-pin split cable (Total Phase Part No. TP240212)]

FT 5000 J1 Aardvark
i 48 1.2 3 8 i
MOSI O O O O O MOSI

J2
46 1 2 3 5
MISO O O 0 O O MISO
J3
47 12 3 7
SCK 0 0 O > SCLK
J4
40 1.2 3 9
cso~ O 0 0 O O sS
2
GND C>1 +——0O GND
10
+——O GND
vee
R1..3 R4
3xR49.9 100k
s Serial
; ; ; o EEPROM or Flash
8 3 R 9 Device

F GND

Notes: In this diagram, all jumpers are set into position 1-2 for normal operation, and they are set into
position 2-3 for in-circuit programming. You must always power off your device before changing the
jumper settings.

NodeBuilder FX User's Guide 213

Serial EEPROM or Flash-Aardvark SPI Connection
(Direct Connection)

FT 5000 Aardvark
i 48 8
MOSI O L 2 QO MOSI
MISO O—2 e} * 5 miso
47 7
SCK O @ O SCLK
40 9
Ccso~ @ ®) SS
. 28 2
RST~ OT O GND
10

GND 01 fo GND

VCC

0] L)

R1..3
3xR49.9

L 1

Y Serial
; ; o o EEPROM or Flash
8 3 R 3 Device

F GND

Note: Pins 2 and 10 on the Aardvark are both connected to ground inside the Aardvark. As a result,
when the Aardvark is connected to the device board, it finds a reference ground at pin 10 and it takes
the RST~ line to ground on pin 2 at the same time. This means that once the Aardvark connection is
removed, the RST~ line is released and the 5000 Series chip resumes normal operation.

Programming 3150 Off-chip Memory

A device based on a Neuron 3150 Chip, FT 3150 Smart Transceiver, or PL 3150 Smart Transceiver
will always have off-chip ROM or flash memory, and may also have off-chip EEPROM or flash, and
RAM. The Neuron firmware must reside in the ROM or flash. Typical configurations use a 64KB
flash memory part, and sometimes a RAM device. The application code may reside in any
combination of the off-chip memory types, and the on-chip EEPROM. For information on the
placement of application code in the various memory types, see Using Memory in the Neuron C
Programmer’s Guide.

You can program the Neuron firmware and your application image into a PROM or flash memory
device using a compatible device programmer. You will use the ROM application image file (NRI
extension) if your device uses off-chip PROM, or the EEPROM application image file (NEI
extension) if your devices uses off-chip flash, EEPROM, or NVRAM. You will use both types of
image files if your device uses both types of memory. These files are described in Building An
Application Image earlier in this chapter. All off-chip memory devices containing Neuron firmware or
an application image must be programmed before loading them in the device. You can load an initial
blank application if you plan on downloading a new application over the network to your device.

214 Building and Downloading Device Applications

When using flash memory, always enable the flash programmer’s software data protect, SDP, feature
if possible. You must have at least 0x5600 bytes mapped for flash or else the SDP algorithm will not
work.

You can define sections of application code that will reside in EEPROM, flash memory, or NVRAM,
coexisting with the Neuron firmware and other application code in ROM. The portion of the code that
will reside in EEPROM, flash, or NVRAM is contained in the EEPROM image file (.NEI extension).
You must program this memory before installation, just like the ROM because the application must be
completely present when the device is powered-up.

Programming 3150 On-chip Memory

The Neuron firmware automatically initializes the on-chip EEPROM for a Neuron 3150 Chip, FT 3150
Smart Transceiver, or PL 3150 Smart Transceiver by copying a block of memory from off-chip
memory called the boot image. The boot image is contained in the system area (the first 16Kbytes). It
contains a copy of some or all of the on-chip EEPROM memory. Its contents depend on which
firmware state you select when you build the application image. If you select the unconfigured state
(the default), the boot image contains application code and data and a default network image with no
network addressing information. If you select the configured state, the boot image contains a complete
copy of on-chip EEPROM, including network configuration complete with network addressing
information. When a Neuron 3150 Chip, FT 3150 Smart Transceiver, or PL 3150 Smart Transceiver is
powered up and the firmware determines that EEPROM should be initialized (see below), the data
from the boot image will be copied to on-chip EEPROM, and the appropriate firmware state will be
set. If the firmware state is unconfigured, the remaining EEPROM data must then be loaded over the
network. If the firmware state is configured, the chip will be fully programmed at this point, though no
network connections will be defined.

The boot image is used to initialize the on-chip EEPROM of a Neuron 3150 Chip or FT 3150 Smart
Transceiver when the chip is powered up and the firmware detects that EEPROM has not yet been
initialized by the current Neuron firmware or if the Neuron firmware detects an error and reboot
options are specified as described in Setting Device Template Target Properties: Configuration in
Chapter 5. To accomplish this, there is a special value, or boot ID, placed in the application image file
when it is exported. This 16-bit value normally changes each time you build the application image.
On power-up, the Neuron firmware compares the boot ID in the firmware image with the boot ID copy
in the on-chip EEPROM. If they don’t match, the Neuron firmware initializes the on-chip EEPROM
from the boot image. It also copies the boot ID to EEPROM, so the initialization will not happen again
until a new firmware image with a different boot ID is installed. Additional EEPROM boot recovery
options are available as described in Setting Device Template Target Properties: Configuration in
Chapter 5.

Because the boot ID normally changes each time an application image file is exported, exporting,
programming, and inserting a new memory chip will normally result in the EEPROM initialization
taking place, even if no changes have been made to the application or configuration. While a device
normally only does this initialization once for a given firmware image, you can force this process to
occur again with the same firmware image by resetting the Neuron 3150 Chip, FT 3150 Smart
Transceiver, or PL 3150 Smart Transceiver to the blank state (the initial state of EEPROM on a newly
manufactured Neuron Chip or Smart Transceiver) using a special application image. This image is
shipped with the NodeBuilder software in a file named EEBLANK.NRI, and is located in the
C:\LonWorks\Images folder, where x is 12 or higher. To reset a 3150 chip’s state, program this image
into a memory chip and power up the device with this memory chip in place of the normal firmware.
For a short period, the service LED will flash, then it will change to full on, indicating that the chip has
been returned to the blank state. The next time any memory created from an exported firmware file is
placed in the device, the on-chip EEPROM will again be initialized from the special data area in the
firmware.

In addition to the boot ID, external EEPROM, RAM, and flash memory areas coexisting with ROM
will each have a 16-bit signature value, or memory signature, calculated over any application code or
data (but not user variables) that resides in the area. These values are kept in the respective memory

NodeBuilder FX User's Guide 215

areas, as well as in on-chip EEPROM. Whenever the Neuron Chip or Smart Transceiver is reset, the
Neuron firmware compares the on-chip and off-chip signatures, and if there is a mismatch, the Neuron
firmware changes the device state to applicationless. If the device copies the boot image to on-chip
EEPROM, this check will follow that process, and will override the firmware state selection if the
signatures do not match.

Programming 3120 and 3170 On-chip Memory

A Neuron 3120xx Chip, FT 3120 Smart Transceiver, PL 3120 Smart Transceiver, or PL 3170 Smart
Transceiver does not support external memory; therefore, the only memory to program is on-chip
EEPROM, which must be programmed over the network or with a 3120 or 3170 programmer.

A blank Neuron 3120xx Chip, FT 3120 Smart Transceiver, PL 3120 Smart Transceiver, or PL 3170
Smart Transceiver comes up with its communications interface initialized to 1.25Mbps differential
mode with a 10MHz input clock (TP/XF-1250 twisted-pair compatible), and a Neuron firmware state
of applicationless. If your custom device has a compatible transceiver and clock, you can load all of
the application and network configuration over the network using the LonMaker tool.

To pre-program a Neuron 3120xx Chip, FT 3120 Smart Transceiver, PL 3120 Smart Transceiver, or
PL 3170 Smart Transceiver with an application or network configuration other than the default, you
must program it in a Neuron 3120 Chip or Neuron 3170 Chip programmer. Refer to the
documentation supplied with the particular programmer for details.

Programming PL 3120 and PL 3170 Smart Transceiver Parameters

The PL 3120 and PL 3170 Smart Transceivers ship with an initial set of transceiver parameters
pre-loaded for programming purposes. To ensure optimal operation, you must re-program the
transceiver parameters for all PL 3120 and PL 3170 chips using the NodeLoad utility.

e For adevice based on a PL 3120 Smart Transceiver, you can use the NodeLoad utility with the —X
option to change the transceiver parameters from the factory default parameters to any of the
supported parameters.

e For adevice based on a PL 3170 Smart Transceiver , you can use the NodeLoad utility to change
the parameters to any of the various C-band types (the PL 3170 Smart Transceiver does not
support A-band operation).

To load transceiver parameters using the NodeLoad utility, you must use the .NDL or .NEI image
because the .NXE image does not contain transceiver parameter values. You can also use a universal
programmer, such as BP Microsystems' programmer or HiLo System's programmer, to change the
parameters prior to soldering the chip onto your PCB board. All valid transceiver parameters included
in the application image files generated by the NodeBuilder tool are supported.

If you reboot a PL 3120 or PL 3170 Smart Transceiver, the smart transceiver will restore the factory
default parameters and go back to the initial state. Rebooting in this case refers to any of the following

operations:
Software Action
LNS application Invoking the Reboot() method for AppDevice or
Router object.
NodeUtil utility Sending the “Reboot” command for the device
(version older than 1.96)
Network management command with Writing a value of zero to the second byte of the
the appl_reset option transceiver parameters on the Smart Transceiver and

resetting the device with the Set Node Mode.

Note: If you simply power cycle or reset your device, it will maintain the programmed change; it will
not restore the factory default.

216 Building and Downloading Device Applications

Upgrading Device Applications

The 5000 Series chips are compatible with device applications written for 3150 and 3120 Neuron
Chips and Smart Transceivers. You can use the NodeBuilder tool to port your old application to a
5000 Series chip. To do this, you open the device’s NodeBuilder project, update the Neuron Chip
model used by the hardware template to the Neuron 5000 processor or FT 5000 Smart Transceiver, and
then re-build the device application. See Editing Hardware Templates in Chapter 5 for more
information on using the Hardware Template Editor.

Note: The Neuron C Version 2.2 language includes the following new keywords: interrupt, _ lock,
stretchedtriac, _slow, fast, and _ parity. Some of these keywords use a double underscore
prefix to avoid any naming collisions within existing device applications.

You can also use the NodeBuilder tool to upgrade your existing device applications to the new Version
3 code templates when porting them to a 5000 Series chip. The Version 3 code templates include
improved code size, speed, and compliance with interoperability guidelines. To upgrade existing
device applications to the Version 3 template, see Using Code Wizard Templates in Chapter 6.

Adding and Managing Target Devices

A target device is a LONWORKS device application that is built by the NodeBuilder tool. There are
two types of targets, development targets and release targets. Development targets are used during
development; release targets are used when development is complete and the device will be released to
production. Each NodeBuilder device template specifies the definition for a development target and a
release target. Both target definitions use the same source code and resource files, but they may use
different hardware templates and compiler, linker, and exporter options. The source code may include
code that is conditionally compiled based on the type of target.

Each target device is defined by a LonMaker shape and its corresponding LNS device, a NodeBuilder
device template and its corresponding LNS device template, and a NodeBuilder hardware template.

You can add a target device to a NodeBuilder project using the LonMaker tool or the NodeBuilder
Project Manager (you should use the LonMaker tool because it is typically faster and easier). After
you add a target device, you can use the NodeBuilder Project Manager to re-build and debug it and to
view and change its NodeBuilder device template and target type.

Adding a Target Device with the LonMaker Tool

You can add a target device to a NodeBuilder project using the LonMaker tool. To add a target device
with the LonMaker tool, follow these steps:

1. Build the application image for the target as described in Building an Application Image earlier in
this chapter.

2. Correct any build errors.

3. Create a new a LonMaker network or open an existing one. See the LonMaker User’s Guide for
more information on creating and opening LonMaker drawings.

You will use the LonMaker tool to install, bind, configure, and test the targets in your project.
The LonMaker tool displays a network drawing that shows the devices, functional blocks, and
connections in your network.

The LonMaker tool also displays stencils that contain shapes that you can drag to your LonMaker
drawing. The LonMaker tool includes a NodeBuilder Basic Shapes 4.00 stencil with shapes that
you can use to add new devices, functional blocks, and connections to your network drawing. The
NodeBuilder Basic Shapes 4.00 stencil contains shapes that can be used with any device. You
can also create custom stencils with shapes customized for your devices and networks.

NodeBuilder FX User's Guide 217

The NodeBuilder Basic Shapes 4.00 stencil contains a Development Target Device shape and a
Release Target Device shape. These special device types help distinguish between other devices
on the network and the target devices used by the NodeBuilder tool. The NodeBuilder tool lets
you create a mixed network of development hardware (such as the FT 5000 EVB or the LTM-10A
Platform), release hardware (your own hardware), and other devices.

4. Drag a Development Target Device shape or Release Target Device shape from the
NodeBuilder Basic Shapes 4.00 stencil to your network drawing. You can drop the shape
anywhere, but a good location is just below the Channel 1, near the LNS network interface shape
on your drawing.

NB_FX Exercise.vsd

Shapes x ”~

Seatch for Shapes:
Type your search here

[i.LON SmartServer Static Shapes
[Lontaker MY Shapes

[LonPaint Shapes 3.0

[ModeBuilder Basic Shapes 4.00

eeeee

= 0o

e -
:r?# L SNeMnxklnbamaue

i Diata Point
ervic.. Merge

.RPH_NI m‘;, % Channel 1
]
Bhouyn | Deveer |

v -
] 1B Exxample Device Stencil 4 4 b M\ Subsystem 1 J_Title Blocks / | ¢ | 2

5. The New Device Wizard opens.

6. In the Device Name property, enter a name for the target. This name must be unique for all the
devices and targets within the current page (subsystem). The default name is the Device followed
by an integer (e.g. Device 1). The device name may be up to 85 alphanumeric characters and
include embedded spaces; the name may not include the period, backslash, colon, forward slash,
or double quote characters.

7. Select the Commission Device check box.

218 Building and Downloading Device Applications

Mew Device Wizard

)

Device name:

Mumbker of devices to create: El

[v Commiszion device

| MadeBuilder Device|

ModeBuilder Device Template

[Creste new device template

hame: MB FX Example Device ﬂ

Channel
[Auto-detect channel

Type: |TPFT-10

Lef Led

Mame: | Channel 1

| Mext = | Finish Cancel Help

8. Click Next three times. The window in the New Device Wizard lets you select the application
image to be downloaded to your device.

9. Select the Load Application Image check box and then click Next. This specifies that you will
download the binary application image file (.APB extension) built for the device application to the
device. The binary application image files for your device applications are stored in the
C:\Lm\Source\<NodeBuilder Project>\<NodeBuilder Device Template>\<Release ||
Development> folder.

NodeBuilder FX User's Guide 219

220

Mew Device Wizard

Image name:

¥IF rame:

Device template:

Device name(s):

Specify device application image name

)

| MB F¥ Example Device [5]

ModeBuilder Device

[v Load spplication image

[Update firmware in device to match application image

| Chm\SourcehB_FX ExercizeiNB Fr Example Device'Re

| CAm\SourcehB_Fx ExerciseiNB F Example Device'Re

= Back | Mext = |

Finish Cancel Help |

10. The next window lets you set the initial device state and the source of configuration property values
when your device is commissioned.

11. Select the Online option under State. This means that your device will run its application after it
has been commissioned.

Mew Device Wizard

Device ramels):

State

" Default
" Offline
+ Online
" Digable

Specify the initial state of the device and the =ource of CP values

X

ModeBuilder Device

Source of CP Values
r

v Defautts
v Include MY type CPs
(" Application image file

= Back ‘ Finish | Cancel Help

Device Specific CPs

f* Do not update

" Update with other CPs

" Upload from new app image

" Preserve device values

12. Click Finish. The Press Service Pin window appears.

Building and Downloading Device Applications

Echelon LonMaker

E B Please press the service pin on device 'Example 1°...

Options Total Received
| Dizplary data from service pin

[Fitter on programm ID 0

[Fiter on channel

Coritinue Help

13. Press the service pin on the development platform you to be loaded and commissioned. The
LonMaker tool loads the application image for your device application to the device and makes it
operational. When the LonMaker tool is done commissioning, it will return to the LonMaker
drawing. The device shape will be will be solid green indicating that the device has been
commissioned and is online. The device application will not do anything until you test the device
or connect it to other devices.

NB_FX Exercise.vsd \Z”EWE
Shapes X 25

[N S—
Type your ssarch here

[i.LON SmartServer Static Shapes
[LonMaker MY Shapes

[LonPaint Shapes 3.0

] NodeBuilder Easic Shapes 4,00

QOB

Device

oL
¥ ¥ 1

H
Servic..,

N
Marge
m‘LJ mu Channel 1
0 ¥ T I
B)

Target ...

Drata Paint

[1B Example Device Stencl 4 4 ¥ ¥\ Subsystem 1 4_Title Blocks / | € | X

14. Test your device’s interface using the LonMaker tool. See Chapter 9, Testing a NodeBuilder
Device Using the LonMaker Tool, for more information.

15. Debug your device application Debugging a Neuron C Application. See Chapter 10, Debugging a
Neuron C Application, for more information.

Adding a Target Device with the NodeBuilder Project Manager

You can use the NodeBuilder Project Manager to add the devices in any open LonMaker network to
your current NodeBuilder project. To do this, follow these steps:

1. Right-click the Devices folder in the Project pane and click Insert on the shortcut menu.

NodeBuilder FX User's Guide 221

Workspace O x

-1 Project "WE_F¥ Exercise’:
- Davice Templates
+ @@ MyNewDeviceTemplate
+ @ NE Fx Example Device
- a Devices
@ NodeBuilder Device
+|_JIHardware Templates

Insert...

2. The Insert Device dialog opens.

Insert Device

Dewice list:

LMS devtemplate | NB devtemplate | Target type Suhsystem |
+ [ILNS Netwar... Cancel
#{JMB Fi Exam... NBFX Exarmple D...

3. This dialog organizes the devices in currently open LonMaker networks by LNS device template
name. Ifthe LNS device template used by the device is based on a NodeBuilder device template,
the NodeBuilder device template name is displayed in the NB Dev Template column. These
devices cannot be added to your NodeBuilder project.

4. Expand the folder containing the desired device template and then select the device to be added.

5. Click anywhere under the NB Dev Template column, and then select a NodeBuilder device
template in the current project that is currently not associated with an LNS device template in the
project.

6. Click anywhere under the Target Type column, and then select either a Development or Release
target type.

222 Building and Downloading Device Applications

Insert Device

Dievice list:

LMS devtemplate | NB devtemplate | Target type | Suhsystem |
Cancel

+[_JILNS Metwor...
—Z9MB FX Exam... NB F¥ Example D...

> Device 3 MB F¥ Example D... - | Subsystem 1
='ZAMB F Exam... NBFX Example D...
Development Subsystemn 1

@ ModeBuil... MBFXExampleD...

Re

7. Click OK to add the target to the Devices folder in the NodeBuilder Project pane. If this device is
commissioned, the NodeBuilder tool will download the application to the device the next time you

build it.

Managing Target Devices

You can build, debug, and edit target devices from the Project pane in the NodeBuilder Project
Manager. The Devices folder in the Project pane contains all the targets defined in the current
NodeBuilder project that you have created in a LonMaker network. You can right-click a device to
open a shortcut menu with the following options:

Workspace O x

S| Project 'ME_F¥ Exercise’;
=3 Device Templates
+ @ MyNewDeviceTemplate
+- P NB F Example Device
- a Devices

MNodeBuilder Device
+ [IHardware Templates

Settings...
Remawve

Build
Debug
Force Applicationless. ..

Skatus...
G0 ko LonMaker

Settings Opens the Device Settings dialog, which lets you view and configure
device settings including the NodeBuilder device template and target

type.

NodeBuilder FX User's Guide

223

Remove Removes the device as a target for future builds. The device is removed
from the current NodeBuilder project, but it is not removed from the
LonMaker drawing or network, and none of the device files are deleted.

To replace the LonMaker shape in your LonMaker drawing, drag the
Device shape in the LonMaker Basic Shapes stencil over the
Development or Release Target shape, select the Replace the Existing
Device Shape with the Shaped just Dropped check box in the New
Device Wizard, and then click OK.

Build Builds the application image for the device template assigned to this
device. For more information, see Building an Application Image
earlier in this chapter.

Debug Debugs the device. For more information, see Chapter 10, Debugging a
Neuron C Application. This command is unavailable if the application
image has not been built. This command is not displayed if the device
is already being debugged.

Stop Debugging Stops debugging the device. This command is not displayed if the
device is not being debugged.

Force Forces the selected device to the applicationless state by clearing its

Applicationless program ID. To use the device, you must reload the application, or load
a new application.

Status Displays the build status for this device and its device template.

Go to LonMaker Switches focus to the LonMaker drawing with the device shape
selected. The LonMaker drawing must be open for this command to
work.

Editing Target Device Settings

You can edit the device settings for a target device. The device settings include the NodeBuilder
device template and NodeBuilder target type for the target. To edit the target device settings, follow
these steps:

1. Right-click the target in the Devices folder in the Project pane and then click Settings on the
shortcut menu.

2. The Device Settings dialog opens.

224 Building and Downloading Device Applications

Device Settings

NodeBuilder]

Device name:

|NDdeEIuiIderDevice

Suhsystern:

|Subsvstem1

ModeBuilder device template:

ModeBuilder device target type:

|Re|ease

Current LME device template:

|Examp|e1

Ok | Cancel

3. You can view and set the following properties:

Device Name

Subsystem

NodeBuilder Device
Template

NodeBuilder Device
Target Type

NodeBuilder FX User's Guide

Displays the name of the device specified in the LonMaker drawing.
This field is read-only.

Displays the subsystem (drawing page) in the LonMaker drawing where
the device is located. This field is read-only.

Displays the name of the current NodeBuilder device template used by
the target. You can change the NodeBuilder device template used by
the target by selecting a different one from the list of those in the
current NodeBuilder project. If you change the NodeBuilder device
template, the change is not implemented until t you build the device
template and load the target.

When you load the target with the new device template, the LonMaker
tool will preserve any functional blocks and connections that are
compatible between the old device template and the new device
templates. Incompatible functional blocks and connections will be
deleted.

The device shape in the LonMaker drawing will not change when you
change the NodeBuilder device template. If there is a different device
shape associated with the new LNS device template, drag the new shape
on top of the old shape in your LonMaker drawing, select the Replace
the Existing Device Shape with the Shaped just Dropped check box
in the New Device Wizard, and then click OK.

Displays the device target type, which may be Development or
Release. You can change the target type. The device shape in the
LonMaker drawing will not change when you change the target type. If
you change the target type, you should replace the shape by dragging
the new shape on top of the old shape.

225

Current LNS Device Displays the name of the LNS device template associated with the
Template target. This field is read-only and is automatically updated if you build
the target with a new NodeBuilder device template.

4. Click OK to save the settings.

226 Building and Downloading Device Applications

NodeBuilder FX User's Guide 227

9

Testing a NodeBuvilder Device Using the
LonMaker Tool

This chapter describes how to use the Data Point shape and LonMaker Browser in the
LonMaker tool to monitor and control your device. It explains how to use the
LonMaker tool to connect your NodeBuilder device to other LONWORKS devices in a
network.

NodeBuilder FX User's Guide 229

Introduction to Testing NodeBuilder Devices

You can use the LonMaker tool to test your NodeBuilder device. You can press the hardware inputs
on your device and use the LonMaker tool to monitor changes to the values of the network variables in
the device interface. You can also use the LonMaker tool to control the values of the input network
variables and observe whether the hardware outputs function as designed and output network variable
values change accordingly. After you determine that your device is functioning as designed, you can
use the LonMaker tool to connect your development devices to other devices and verify their operation
within a network.

Monitoring and Controlling NodeBuilder Devices

230

You can monitor and control your device with the LonMaker tool using the Data Point shape in the
LonMaker Basic Shapes stencil or the LonMaker Browser.

The Data Point shape lets you monitor and control a single network variable or configuration property
value from the current drawing page. It is ideal for testing smaller device interfaces with few network
variables and configuration properties. You can also use the Data Point shape to create simple HMIs
in your LonMaker drawing.

The LonMaker Browser can display the values for all the input and output network variables and
configuration properties in your device interface. It is ideal for testing devices with larger external
interfaces.

The following sections describe how to monitor and control your device using each of these methods.

Using the Data Point Shape
To test your device’s interface with the Data Point shape, follow these steps:

1. Open the LonMaker drawing containing your device. See the LonMaker User’s Guide for more
information on opening LonMaker drawings.

2. Drag a Data Point shape from the LonMaker Basic Shapes stencil on the left of the LonMaker
window to the drawing. You can place the Data Point shape anywhere, but a good place is
directly above or below the device or functional block containing the data point to be monitored
and controlled. The Data Point Shape dialog opens.

Data Point Shape

Cancel

4l

Help

r r More ==

Testing a NodeBuilder Device Using the LonMaker Tool

3. Expand the Subsystem icon, expand your NodeBuilder device icon, expand a functional block in
the device interface corresponding to a hardware input, and then select an output network variable
in the functional block; select the Enable Monitoring check box; and then click OK.

Data Point Shape

= . Subsystem 1
+ LMS Metwark Interface
ModeBuilder Device 1

4

LED Cancel
Y
Modelbject Heli
Swvitch
Enshle
Crverrice
B nvoSwitch

-4 virtual Functional Block

|v Enahle monitaring [

[~ Use abzolute subsystem path B WS =

4. The Data Point shape is added to your LonMaker drawing.

&l NB_FX Exercise.vsd

shapes x

Search For Shapes:

Twpe wour search here w
[1.LON SmartServer Static Shapes
[LonMaker MY Shapes
[LonPoint Shapes 3.0
[E ModeBuilder Basic Shapes 4. UU
#1 NB Example Device Stencil
E LonMaker Basic Shapes

B O &l
|-
S A - N

Metin, Mt

=R |
Crata Point.

B Channel 1

mlml

=

NpdeBuilder Device 1

100.01

Switch nvoSwitch

=

14 4 » [\ Subsystem 1 4_Title Blocks / | ¢
—_——

[

5. Toggle the hardware input and observe the value of the corresponding output network variable
change in the Data Point shape.

6. Repeat steps 2—4 to add a Data Point shape that monitors and controls an input network variable in
a functional block corresponding to a hardware output. In the Data Point Shape dialog, select the
Enable Value Updates check box.

NodeBuilder FX User's Guide 231

Data Point Shape

= . Subsystem 1
+ LME Metwoark Interface
- ModeBuilder Device 1

4

. Cancel
= LED
Enshle Heli
Crverrice
B nvilamp

+ Modelbject
+ Swvitch
+ Virtual Functionsl Block

|v Enahle monitaring |v Enahle value updates

[~ Use abzolute subsystem path B WS =

7. Double-click the Data Point shape for the input network variable, enter a different value, and then
click anywhere outside the Data Point shape. Observe the hardware output change based on the
value you entered for the input network variable.

If the data point has a structured value, you can also set the value by right-clicking the data point
shape and selecting Value Details on the shortcut menu. The Set Network Variable Value
dialog opens. You can set the values for the individual fields in the structure, and then click OK
to save the changes.

If the data point has an enumerated value, you can set the value by right-clicking the data point
shape, pointing to Set Details on the shortcut menu, and then selecting an enumeration from the
list that appears.

For more information on using the Data Point shape in the LonMaker tool, see Chapter 6 of the
LonMaker User’s Guide.

Note: If these steps do not generate the expected result, open the NodeBuilder tool and check your
code. You can also use the NodeBuilder Debugger to help troubleshoot problems (for more
information, see Chapter 10, Debugging a Neuron C Application).

Using the LonMaker Browser
To test your device’s interface with the LonMaker Browser, follow these steps:

1. Open the LonMaker drawing containing your device. See the LonMaker User’s Guide for more
information on opening LonMaker drawings.

2. Right-click the device in your LonMaker drawing, then click Browse on the shortcut menu.

232 Testing a NodeBuilder Device Using the LonMaker Tool

% NB_FX Exercise.vsd

Shapes x al

Search For Shapes:
Type your search here w

[E i.LoN SmartServer Static Shapes
[LonMaker My Shapes

[E LonPaint Shapes 3.0

[ModeBuilder Basic Shapes 4,00

#1 MB Example Device Stencll el
[LonMaker Basic Shapes

~

= =]

it Fur
Black

c i & . Commissioning »
Configure...

—L| £ Delete
2 ; LNS Network Interfab-e Manage. ..

Mave Device »
ModeBuilder » n
Plug-ins »
Diata Paint
Channel 1 Properties...
Copy
Duplicate
=
e Buil 1
= o
v ([€ » ¥\ Subsystem 1 4 Title Blocks / [¢ >

3. The LonMaker Browser opens. It displays the functional blocks in your device interface and the
network variables and configuration properties within each functional block. You can only write
values to the input network variables (blue) and writable configuration properties (green).

File Edit Browse Help
= IEVEE]

Subsystem Device

@l 33| [iooon

0,RC_ENABLE

Suhsystem 1 IIodeBulI(Ier Device 1 IIodeOh]e-ct mrlRequest
Subsystem 1 |HodeBuilder Device 1 |HodeObject nvoStatus H 0 0.,0

Subsystem 1 |HodeBuilder Device 1 |Switch nvoSwitch H L0 1

(=]

4. Right click anywhere in the row for each network variable and configuration property and click
Properties on the shortcut menu.

NodeBuilder FX User's Guide 233

S [NB_FX Exercise] LonMaker Browser - Untitled
File Edit

Browse Help

= H & &\O=e o 3] oo

Subsystem

Suhsystem 1 IIodeBulI(Ier Device 1 IIodeOh]e-ct

mrlRequest

Subsystem 1 |HodeBuilder Device 1 |HodeObject nvoStatus

Subsystem 1 |HodeBuilder Device 1 |Switch nvoSwitch

Manitor All On Chrl+E
M 0 0.0.0.0 Monitor &ll OFf Chr-Shift+B —
Refresh Al Chrl+F —
H 100.0 1

Clear all Values Chr+L -

o Ctrl+R
Monitor Chrl+M .
Get Yalue Chr+G u
Set Yalue Chrl4+L —
Clear Value Ale+3hift+C —
Details. .. Chr4D -

Change Format... Crrl+a

(=]

5. The Network Variable Properties or Configuration Property Properties dialog opens.

Metwork Variable Properties

Lonhdark
Description

Connections]
MY Adtributes |

Mame:

X

Monitar Options l
Connection Attributes]

Type name:

| SNWT_switch

Format:

| SNWT_switch

Self-documentation:

Description:

LRL:

Subsystem 1ModeBuilder Device 1/ LEDnviLamp

(9.4 | Cancel

Help

6. Verify that the network variable or configuration property has the correct type and size.

7. Click the |1t | Monitor All button on the toolbar to start polling all network variable and

configuration property values.

234 Testing a NodeBuilder Device Using the LonMaker Tool

8. Change network variable and configuration property values and confirm that the device hardware
works as designed. For example, toggle a hardware input and observe the value of the
corresponding output network variable change. You can then change the value of an input
network variable and observe the hardware output change based on the value you entered.

For more information on using the LonMaker Browser, see Chapter 6 of the LonMaker User’s Guide.

Note: If these steps do not generate the expected result, open the NodeBuilder tool and check your
code. You can also use the NodeBuilder Debugger to help troubleshoot problems (for more
information, see Chapter 10, Debugging a Neuron C Application).

Connecting NodeBuilder Devices

Once you determine that your device is functioning as desired, you can test it as part of a network.
You can use the LonMaker tool to connect your development devices to other devices and verify their
operation within a network. This entails creating functional blocks, connecting the network variables
within the functional blocks, and verifying that the network variable values are updated appropriately
when you use the I/O devices on your device hardware.

Note: You can connect an output network variable of a device to one or more compatible input
network variables on the same device. These connections are referred to as turnaround connections.

To connect your NodeBuilder device, follow these steps:

1. Open the LonMaker drawing that contains the NodeBuilder device. The device must be built and
it must be associated with the appropriate LNS device template.

2. Drag a Functional Block shape from the NodeBuilder Basic Shapes 4.00 stencil or the
LonMaker Basic Shapes stencil on the left of the LonMaker window to the drawing.

@ NB_FX Exercise.vsd

shapes x

Search For Shapes:
Type yaur search here &

[i.LON SmartServer Static Shapes
[LonMaker MY Shapes

[LonPoint Shapes 3.0

[E ModeBuilder Basic Shapes 4,00
1 NB Example Device Stencil el
[LonMaker Basic Shapes

=fa -}

Dewice

e

Channel Sub s 1
]!J ’ H & .. Fune Black 1
npum o Ca LNS N: k Interfale

-

J

Metu, Metw..,
=
Hel M Data Point
Servic, Merge Channel 1
> b
] msg_s | |
o = o
NadeBulldgr Deviegy!
v
v |4 4 » M} Subsystem 1 4 Title Blocks j(¥

3. The Functional Block wizard opens. You will use this wizard to associate the new functional
block shape with your NodeBuilder device and the desired functional block.

4. In the Functional Block wizard, do the following:
a. In the Name property under Device, select your NodeBuilder device.

b. In the Name property under Functional Block, select a functional block from those defined
in the device interface.

NodeBuilder FX User's Guide 235

236

c. Inthe New FB Name: property under Functional Block, enter the name for the functional
block. The functional block name may be up to 85 alphanumeric characters and include
embedded spaces; the name may not include the period, backslash, colon, forward slash, or

double quote characters.

d. Select the Create All Network Variable Shapes check box.

Functional Block Wizard

Select Device and Functional Block Instance
Source Functional Block

(x]

Browsze...

Functional Black

Mame: | Type: |
Subsystem

Marme: | Subsystem 1

Device

Mame: |NndeEluiIder Device 1 j Type:

Trpees |Open-Loop Senzar (OLS)

Mame: |Switch

Meray FB name:

Left Switch

Murmber of FBs to creste:

v Creste all network variables shapes

Dyramic FBs

-
-

| Finizh | Cancel

| ME F¥ Example Device [5]

ﬂlD:l"i
[~

Help

Click Finish. The New Functional Block wizard closes and the LonMaker drawing appears. A
new functional block shape appears on the drawing.

Repeat steps 4-5 for each functional block in your NodeBuilder device. If the device contains any
implementation-specific or device network variables or configuration properties (network
variables and configuration properties that are not associated with a specific functional block), the
device will contain a functional block named Virtual Functional Block. Create this functional
block as well. Verify that all functional blocks defined in the NodeBuilder Code Wizard can be

created by the LonMaker tool.

Connect the output network variable on one functional block to an input network variable on
another functional block. To do this follow these steps:

a. Drag the Connector shape from the NodeBuilder Basic Shapes 4.00 stencil or the
LonMaker Basic Shapes stencil to the drawing. Position the left end of the shape over the
tip of the output network variable on the functional block before releasing the mouse button.
A red box appears around the end of the Connector shape when you have positioned it
correctly over the Network Variable shape.

Testing a NodeBuilder Device Using the LonMaker Tool

EE NB_FX Exercise.vsd

Shapes x
Search For Shapes:
Type your search here s

[E i.LoN SmartServer Static Shapes
[LonMaker My Shapes

[E LonPaint Shapes 3.0

[ModeBuilder Basic Shapes 4,00

Block

=5y
M

Glue ko Connection Poink

NodeBuilder Device 1.Le NodeBuilder Device 1.LED

Metw, Metwwin 3
LNS Network Interfape
Channel 1
=
NpdeBuilder Deviee] 1
v
[LonMaker Basic shapes 4 4 » [\ Subsystem 1 4 Title Blocks / | ¢

Drag the other end of the Connector shape to the input network variable of the other

functional block until it snaps into place and a square box appears around the end of the
Connector shape. There is a brief pause as the LonMaker tool updates the device over the

network.

EE NB_FX Exercise.vsd

Shapes x

Search For Shapes:
Type your search here s

[E i.LoN SmartServer Static Shapes
[LonMaker My Shapes

[E LonPaint Shapes 3.0

[ModeBuilder Basic Shapes 4,00

Block

W G o
22

Cannector

NodeBuilder Device 1.LED

NodeBuilder Device 1.Left SwilI

Metw .. Metwwin 3
!ﬂ;' LNS Network Interfab-e

M [rata Point.
Servic., Metge
LI

- - Targ...

.
Target ... NpdeBuilder Device] 1
v

[LonMaker Basic shapes 4 4 » [\ Subsystem 1 4 Title Blocks / | ¢ |

Note: You can also create connections using the Connector tool (') on the Visio Standard
toolbar or the Network Variable Connection dialog box. See Chapter 4 of the LonMaker
User’s Guide for more information on creating connection using these methods.

8.

a.
the shortcut menu.

NodeBuilder FX User's Guide

Monitor the values of the connected network variables. To do this, follow these steps:

Right-click an empty space in the LonMaker drawing and then select Enable Monitoring on

237

2 NB_FX Exercise.vsd
Shapes x

Search For Shapes:
Type your search here |+

[l i.LOM SmartServer Static Shapes
] Loniaker MY Shapes
[LonPoint Shapes 3.0

[E odeBuildsr Basic Shapss 4.00

Connector

Data Point

||

[El LonMaker Basic Shapes

ilder Device 1.Left Switch

x
LL Network nterfale

Channel 1

]

Subsystem 1 A_Title Blocks / | <

~
NodeBuilder Device 1.LED
Commissioning 3
Connect...
Delete
Display Options »
Ene aring
Go To Subsystem...
Manage...
Mave Objects b
Plug-ins »
Subsystem Properties. ..
Paste
v
) 3

b. Right-click the new Connector shape it and select Monitor Input Value to display the
current value of the input network variable in the connection.

i NB_FX Exercise.vsd

Shapes X

Search For Shapes:
Type your szarch here

[Lonitaker My Shapes
[E LorPoink Shapes 3.0

Fi

mE

Dats Point

2

Davalp..
Targat ..

[F] LonMaker Basic Shapes

[E]i.LOK SmartServer Static Shapes

[F NodeBuilder Basic Shapes 4.00

~

ilder Device 1.Left Switch

3
LL Network Interfal:e

Channel 1

i
NpdeBuilder Device| 1

4 4 » M\ Subsystem 1 _Title Blocks 7 |4

Delete

Get Input Value D
Get Qutput Yalue

Monitar Output Value

Properties. .. _
Set Connection Description ¥

Use Reference

Copy
Duplicate

£

B2

c. Right-click the new Connector shape it and select Monitor Output Value to display the
current value of the output network variable in the connection.

238

Testing a NodeBuilder Device Using the LonMaker Tool

FX Exercise.vsd

Shapes x &l
—_——
Search For Shapes:
Type your search here v | €]
[i.LOM SmartServer Static Shapes
[Loniaker Ny Shapes
[LonPoint Shapes 3.0
o]
100.0:1— ‘(
Delete
NodeBuilder Device 1.Left Switch Get Input Value
Get Output Value =
+ Monitor Input Yalus
Properties., .,
Set Connection Description ¥
Use Reference
Channel 1
Copy
Duplicate
Ny 1
ol |
[H Lontaker Basic Shapes M 4 » [\ Subsystem 1 4_Title Blocks / | < Il] &) .

9. Toggle a hardware input to test the connection between the network variables change. Observe
the hardware output and the current values of the network variables on the Connector shape
change as you toggle the hardware input.

X
Shapes X -)
—
Search For Shapes:
Type your search here I
[i.LON SmartServer Static Shapes
[LonMaker MY Shapes
[LonPaint Shapes 3.0
] NodeBuilder Easic Shapes 4,00
— Al
Out:[0.0 0] In:[0.0 0]
NodeBuilder Device 1.Left Switch NodeBuilder Device 1.LED
Channel 1
M 1
i L L]
[LonMaker Basic Shapes 4 4 » Ml Subsystem 1 i_Title Blocks / | €| i | 3.

NodeBuilder FX User's Guide 239

240 Testing a NodeBuilder Device Using the LonMaker Tool

10

Debugging a Neuron C Application

This chapter describes how the use the NodeBuilder debugger to troubleshoot your
Neuron C application.

NodeBuilder FX User's Guide 241

Introduction to Debugging

You can use the NodeBuilder debugger within the NodeBuilder Project Manager to control and
observe the behavior of your device application over a LONWORKS channel in order to debug it. The
debugger lets you set breakpoints, monitor network variables, halt the application, step through the
application, view the call stack, and peek and poke memory. You can make changes to the code as you
debug a single device or debug multiple devices simultaneously.

In addition to using the NodeBuilder debugger, you may also connect your device hardware to your
computer using a RS-232 or USB interface, and output debugging and tracing information from your
application. You can then use a terminal emulation program on your computer, such as Windows
HyperTerminal, to view the output and perform runtime debugging.

Many of Echelon’s evaluation boards include a RS-232 or USB interface to support application-level
debugging. These evaluation boards consist of the 5000 FT EVB, 3150 FT EVB, 3150 PL EVB, 3120
FT EVB, and 3120 PL EVB. For more information on connecting the FT 5000 EVB to a computer for
application-level debugging, see the FT 5000 EVB Hardware Guide. For more information on
connecting the 3150 FT EVB, 3150 PL EVB, 3120 FT EVB, and 3120 PL EVB, see the Mini EVK
Hardware Guide.

Starting the NodeBuilder Debugger

242

You can start the NodeBuilder debugger from the NodeBuilder Project Manager or from the LonMaker
tool. To start the NodeBuilder debugger, follow these steps:

1. Start the NodeBuilder debugger from the NodeBuilder Project Manager or from the LonMaker
tool.

e To start the NodeBuilder debugger from the NodeBuilder Project Manager, right-click the
device to be debugged under the Devices folder in the Project pane and then click Debug on
the shortcut menu.

| Project "WE_F¥ Exercise’:
—1'= Device Templates
+ i@ MyMewDeviceTemplate
+- @ ME Fx Example Device

- a Devices
ModeBuilder Device
+|_YHardware Templates Settings...
Remove
Biuild

Force Applicationless. ..

Status...
G0 ta LonfMaker

To debug multiple devices at the same time, click one device under the Devices folder in the
Project pane, hold down CTRL and click the other devices to be debugged, right-click one of
the selected devices, and then click Debug on the shortcut menu.

e To start the NodeBuilder debugger from the LonMaker tool, open the LonMaker drawing
containing the device, right-click the device to be debugged, point to NodeBuilder, and then
click Debug on the shortcut menu.

Using the NodeBuilder Debugger

EE NB_FX Exercise.vsd

Shapes x

Search For Shapes:
Type your search here s

[E i.LoN SmartServer Static Shapes
[LonMaker My Shapes

[E LonPaint Shapes 3.0

[ModeBuilder Basic Shapes 4,00

Browse...
Carmmissioning »
Configure... .00
NodeBuilder Df Delete NodeBuilder Device 1.LED
Go to Functional Block. ..
s Manage...
LNS Network Interfare WMove Device 2
M] Build
ug 3
Properties... Edit Source
Chanpel 1 Modefuider Properties. .
Copy
Duplicate
=
e Buil Al

<
£

[LonMaker Basic shapes || ¥ W Subsystem 1 2 Titke Biocks 1=

|l

2. The NodeBuilder debugger opens.

@ Echelon NodeBuilder, FX - [C:\lm\SourcelNB_FX ExerciseMNB FX Example DeviceNB FX Example Device. nc]

Mg Fle Edit view Pproject Debug Tools Window Help -8 x
DEEG & ¢8R
]
B |al Targets - &
BEDE
nNKne =
@ CiimiSourceiMB_F ExercissiNB Fi Example Devics\MB Fx Example Device nc
= Project 'NB_F¥ Exerdise’: //{{NodeBuilder Code Wizard Start <Codelizard Timestamp:> ~
-aDEvi(ETEmp\ates /¢ Bun on Fri Mar 13 14:42:07 2009, wersion 4.00.20 3
1 @ MyNewDevicaTemplat i
1 9 B FX Example Device 4/} NodeBuilder Code Wizard End
=23 Devices //{{NodeBuilder Code Wizard Start <CodeUizard Templates
@ NodeBuilder Devics 1 Af¢7 <Template Revision="3f/ >
(_IHardware Templates /¢ }NodeBuilder Code Wizard End
FEFEESSRETEESFEETTEEE TS E IS F T d i T d T E i d i i rididiiey
/4 File: NE FX Example Device.nc
i
i
/4 Generated by MNodeBuilder Code Wizard Version 4.00.20
/¢ Copyright {cj 2001-2009 Echelon Corporstion. Aall rights reserved.
i
/¢ ECHELCN MAKES NO REFRESENTATION, WARRANTY, OR CONDITICH OF
< | [44 ANY KIND, EXPRESS, IMPFLIED, STATUTORY, OR OTHERWISE OR IN
= = S ANY COMMUNICATICN WITH YOU, INCLUDIMNG, EUT MOT LIMITED TO, v
(Z Praject ¢ =
X Device Name | Debug Status ‘ NE dev template ‘ Subsyskem |
E Device 1 |Running ‘NBFX le Device ‘Suhsysteml |
o
El
i
£
T
o
X [Resolving EXTARITH.LIB @s C:tLoia] X (Call stack not available - deviee is r X E... |souwrce File|L... | X T. |v.. [v.. |
o Fesolving PSG.LIE as C:iLonWork: E o
% Exporter driver: The koot ID ha: E -
& [Project Make: Updating device t ‘g H 2
£ [starting debug session for devir,| @ % =
@ = g k]
Z || 4| »], Messages [Searchi S« | Y & E
For Help, press F1 Debug Skatus: Running Subsystem 1.ModeBuilde Device 1 MUM QYR

3. The Debug menu appears on the NodeBuilder menu bar and four new panes open in the
NodeBuilder project manager: the Debug Device Manager pane, the Breakpoint List pane, the Call
Stack pane, and the Watch List pane. The following table describes each of these panes:

NodeBuilder FX User's Guide 243

Debug Device Displays which devices are currently being debugged, and lets you

Manager pause and resume the application on each device. If at least one debug
session is in progress, the status bar will indicate the device currently
being debugged and its current state (Running, Halted, Reset, and so
on). For more information, see Using the Debug Device Manager later
in this chapter.

Breakpoint List Displays all the breakpoints that have been set. For more information,
see Setting and Using Breakpoints later in this chapter.

Call Stack Displays a list of active function calls when the debugger is halted in
application source code. You can this information to trace program
execution logic. For more information, see Using the Call Stack later in
this chapter.

Watch List Displays all monitored network variables and their values. For more
information, see Using the Watch List Pane later in this chapter.

Except for the Debug Device Manager pane, these panes are docked into the NodeBuilder Project
Manager. The Debug Device Manager pane appears as a floating window by default, but you can
dock it into the NodeBuilder Project Manager by right-clicking it and selecting the Allow
Docking option on the shortcut menu. You can enable a pane to be moved and resized by
right-clicking the pane and clearing the Allow docking option.

Notes: To stop debugging a single device, right-click the device and select Stop Debugging on the
shortcut menu. Alternatively, you can click Debug, point to Stop Debugging, and select Current
Device from the Stop Debugging menu while the appropriate device is displayed in the status bar of
the Debug Device Manager. To stop debugging all devices, click Debug, point to Stop Debugging,
and select All Devices from the Stop Debugging menu.

You can also stop debug devices from the Debug Device Manager pane. To stop debugging for one
device, right-click the device in the Debug Device Manager pane and select Stop on the shortcut menu.
To stop debugging for all devices, right-click one device and select Stop All on the shortcut menu.

If at least one debug session is in progress, the Results pane contains a Debug Log tab, which lists
device errors. You can use this tab to dump trace information while debugging.

Using the Debugger Toolbar

244

When you start the NodeBuilder debugger, the Debugger toolbar opens. By default, the NodeBuilder
debugger appears directly above the Project pane and below the Window toolbar in the NodeBuilder
Project Manager, but you can move it anywhere.

@ Echelon NodeBuilder FX - [C:\Mm\Source\NB. FX Exercise\NB FX Example DevicelNB FX Example Device.nc]
IE File Edit “ew Project Debug Tools ‘Window Help -0 X

DCeEdo & 28

L
B All Targets - sy
B850 ®
[6fElE nKm o |
@ CillmiSourcelME_F¥ ExerciselME FX Example Device\WNE FX Example Device nc
=] apru]ect 'ME_F Exercise; S {{NodeBuilder Code Wizard Start <CodeWizard Timestamp> ~
‘aDevicE Templates // Bun on Fri Mar 13 14:42:07 2009, version 4.00.20
+ P MyhlewDeviceTemplat £
+ @ NE Fx Example Device //}}NodeBuilder Code Wizard End
- =4 Devices /7 {{NodeBuilder Code Wizard Start <CodeWVizard Temwplate:
@ todeBuilder Device 1 /477 <Template Revision="3"/>
((FHardware Templates /711 NodeBuilder Code Wizard End

IR RN RN RN NN
f4 File: NE FX Example Device.no

I

I

// Generated by NodeBuilder Code Wizard Version 4.00.20

ff Copyright (o) Z001-2Z009 Echelon Corporation. All rights reserved.

// ECHELON MAKES NO REPRESENTATION, WARRANTY, OR CONDITICH OF

Using the NodeBuilder Debugger

The following table describes each of the buttons in the Debugger toolbar.

lﬁ View Breakpoint Toggles the breakpoint list pane. See Setting and Using Breakpoints
List later in this chapter for more information.
|51c(‘ | View Watch List Toggles the watch list pane. See Using the Watch List Pane later in this
chapter for more information.
E View Call Stack Toggles the call stack pane. See Using the Call Stack later in this
= chapter for more information.
[p| Resume Resumes execution of a halted application. See Stopping an Application
later in this chapter for more information.
Il Halt Halts the application running on the current device. See Stopping an
Application later in this chapter for more information.
M| Reset Resets the current device.
] Stop Stops debugging the current device.
& Watch Variable Opens the Add to Watch List dialog. See Using the Watch List Pane
later in this chapter for more information.
[@| Toggle Breakpoint Toggles whether the current line of code has a breakpoint. See Setting
and Using Breakpoints later in this chapter for more information
s | Step Over Executes the current line of the application. If the current line contains a
: function, the function will execute in its entirety. See Stepping Through
Applications later in this chapter for more information.
] Step Into Executes the current line of the application. If the current line contains a

|

Run to Cursor

Current
Instruction Source
Code

function, the application will halt at the first line of the function. See
Stepping Through Applications later in this chapter for more information.

Sets an implicit breakpoint at the line that the cursor is on. The
application resumes if it is currently halted and continues to execute if it
is already running. The application will halt when it reaches this implicit
breakpoint. In addition, the breakpoint will be cleared once it is
encountered.

When the application is halted, jumps to the line of code on which the
application has halted.

Stopping an Application

You can stop an application while it is running in debug mode in three ways: halting the application,
running to the cursor, and setting breakpoints.

Once you stop an application, you can step through the application one command at a time (see

Stepping Through Applications for more information), observe the values of variables in the watch list
(see Using the Watch List Pane for more information), and observe the condition of the call stack (see
Using the Call Stack for more information).

To resume execution of an application that you have halted, either click the resume button ([p]) on the
Debugger toolbar, type <F5>, or select Go from the Debug menu. The application will continue
running until it hits another breakpoint (or the same one again). You can also move your cursor and
click the run to cursor button to have the application resume execution until it gets to the line
containing the cursor.

The following sections describe the three methods for stopping a device application running in debug
mode.

NodeBuilder FX User's Guide 245

246

Halting an Application

You can stop an application while it is running in debug mode by clicking the halt button (]II]) on the
Debugger toolbar. Alternatively, you can click Debug, point to Halt, and select Current Device or
All Devices. If the device halts in application code, the editing pane displays the line of code where
the application was halted using an arrow (|E:>) in the left margin. If the device halts in system code, no
arrow will appear and a “Call stack not available” message appears in the Call Stack pane.

To resume execution of an application that has halted, click the resume button ([»]) on the Debugger
toolbar, click Debug and then click Go, or press F5. The application will continue running until it hits
another breakpoint (or the same one again). You can also move your cursor and click the run to cursor
button to have the application resume execution until it gets to the line containing the cursor.

Running to the Cursor

You can make an application run to a cursor location. To do this, place the cursor in the line where the
application is to be halted, and then either click the run to cursor button (MI) on the Debugger toolbar
or click Debug and then click Run to Cursor. The application will automatically halt when it reaches
the cursor. If you move the cursor, you will need to set this option again to re-enable this behavior.
Note that Run to cursor breakpoints will be cleared after the first time that they are encountered.

Setting and Using Breakpoints

You can use breakpoints to set lines in your source code where the application will stop running so you
can check variable values, device hardware status, and so on. This lets you identify the line of code
causing an error or unexpected behavior.

To set a breakpoint, place your cursor in the line of code in which you want to set a breakpoint and
click the Toggle Breakpoint button (@) on the Debugger toolbar. Alternatively, you can either
right-click the line of code and select Toggle Breakpoint on the shortcut menu; click Debug, point to
Breakpoints, and then click Toggle Current Line; or press F9. When you set a breakpoint, the
breakpoint icon () appears to the left of the line of code.

You can only set breakpoints on lines that contain underlying executable code. Examples of such lines
include function calls, variable assignments, if statements, and macros. Examples of source lines that
you cannot set breakpoints on include comments, when() clauses, pre-processor directives, and
variable declarations.

When the application reaches a line with a breakpoint, the application halts and an arrow icon appears
on top of the breakpoint icon (&) to the left of the line of code.

Notes:

e For 5000 Series chips, you cannot set breakpoints in interrupt-tasks or set breakpoints in functions
that are called from interrupt-tasks. If you set a breakpoint in an interrupt-tasks or in a function
called from an interrupt-task and interrupts are enabled [with the interrupt_control() function],
the debug target will report a system error, reset, and then go into the soft-offline state. If you
re-enable interrupts in the reset clause before the device can go offline, the NodeBuilder debugger
might lose communication with the device and therefore need to set the device applicationless

¢ Do not edit source files when running an application in debug mode because the source code will
no longer reflect the active image in the debugger, and breakpoints may lose synchronization. If
you believe breakpoints have lost synchronization, you can stop the debugging session, recompile
and load the device application, and then restart the debugging session.

e Ifyou place a breakpoint in a reset() clause and perform a software reset, you may have to force
the application to continue using the resume ([P]) button for it to reach your breakpoint.

Using the NodeBuilder Debugger

Stepping Through Applications

You can step through the code in your application one line at a time after you halt the application. You
can step into or step over a line of code. The two methods are identical for all statements except for
function calls. When you step over a function call, the function executes and you step to the line of
code after the function call. When you step into a function, you step to the first executable line of the
function. For more information on stopping a device application running in debug mode, see the
previous section, Stopping an Application.

When you halt an application, an arrow (| =) appears in the left margin at the line of code where the
application was stopped. When you step to the next command, the arrow moves to indicate the current
line of source code where the application has been stopped.

To step over the current line of the application, you can either click the step over button (%%) on the
Debugger toolbar; click Debug and then click Step Over; or press <F10>.

To step into the current line of the application, you can either click the step into button (k&) on the
Debugger toolbar; click Debug and then click Step Into; or press <F11>.

Debugging Interrupts for 5000 Series chips

If you are debugging a target device that uses a 5000 Series chip, you cannot set breakpoints in
interrupt-tasks or set breakpoints in functions that are called from interrupt-tasks. If you set a
breakpoint in an interrupt-tasks or in a function called from an inferrupt-task and interrupts are
enabled [with the interrupt_control() function], the debug target will report a system error, reset, and
then go into the soft-offline state. If you re-enable interrupts in the reset clause before the device can
go offline, the NodeBuilder debugger might lose communication with the device and therefore need to
set the device applicationless

Using Statement Expansion

The 3100 Series chips use a 2-byte breakpoint instruction for debugging. To support breakpoints in
all suitable locations, the compiler must expand some statements to a 2-byte machine instruction (by
inserting a benign no-operation performed [NOP] instruction).

The 5000 Series chips support single-byte breakpoint instructions for debugging, which enables the
debug image for a 5000 Series chip to be smaller than that of a 3100 Series chip. To support
single-byte breakpoint instructions, no padding is necessary, and the compiler does not need not to
expand statements.

By default, the statement expansion feature is enabled to support the debugging of 3100 Series devices.
If you are debugging a 5000 Series device, you can disable the statement expansion feature to reduce
the size of the debug image. To do this, right click the target, click Settings on the shortcut menu,
then select the Compiler tab in the NodeBuilder Device Template Target Properties dialog. In the
Debug Kernel Options box, clear the Expand Statements check box, and then click OK.

Using the Watch List Pane

You can add variables, network variables, and configuration properties in your device application to
the Watch List and then monitor their current values in the Watch List pane.

You can monitor local variables when the application is halted in a context where the variables are
available. You can monitor global variables and network variables while the application is running.
You can also modify the values of global variables and input network variables while the application is
running. You can only modify output network variables when the application is halted in the
debugger. You cannot monitor the msg_in, msg_out, resp_in, and resp_out built-in variables from
the debugger.

NodeBuilder FX User's Guide 247

To add a variable, network variable, or configuration property to the watch list and monitor its value in
the Watch List pane, follow these steps:

1.

248

Right-click a variable name or statement in the source code and then click Watch Variable on the
shortcut menu.

@ Echelon NodeBuilder FX - [C:\im\Source\NB_FX Exercise\NB FX Example Devicell ED.nc] EEX
@ File Edit Wiew Project Debug Tools Window Help - @ %
O & TN
=2 m [L) &
B® |all Targets - &
BEmM®
HLKE ® ® "
Workspace [=]E3 @ @ @
=1 € NE Fx Example De & i ~
=ample <Fhloc en:
EnerrE I #f<Fhlock NV Wh
+ [H] Development when (nv_update_occurs (nvilamp))
+ [H release i B
- 3 Source Files /¢ }NodeBuilder Code Wizard End
@Fﬂesys.h
Eeoh i
E. io_out{ioLamp, '{nvilamp.value && [RERSEM —----
i ockNormalNotLockedour ock_inde:
BB 1 Exom if {fhlock INorLockedout{fhlock inde: OO
- Capy
[EINodeObiect ﬁj —
S nodeohject B .
Eswitchh /¢ idd code to process the input net Tnsert Flle into Profect
. /¢ Use the nv in index, nv array ind . in index]
[E1switch.ne —— - = Properties -
5 // constructs to determine which NV |
[=] common.h = I Find
< - abie
(] Project Togale Breakpoint Fo E
X Device Hame | Debug Status | N dev te | subsystem |
;Iu NodeBuilder Device 1 |Running ‘NB FX Ex: Subsystem 1 |
o
= Run Ta Cursor
i
2
X [Resolving EXTARITH.LIE as C:tLoia| X (Call stack mnot available - device is r X E... |Sowrce File|L... | X T [v. |v.. |
o Resolving PSG.LIE as C:\Lonlorks o D: =
% Exporter driwer: The boot ID hat g n
% Project Make: Updating device t “E ‘5 ﬂ
== Starting debug session for devi - 1 % =
@ = T =
2 || 4| » | M)\ Messages [Seachf e 1 8| & S
Far Help, press F1 Debug Status: Running Subsystem 1,ModeBuilde- reike0ol 46 UM OWR.

The Watch Variable dialog opens.

Watch Variable

Wiiatch type
+ \Watch variable

" Configuration takle symbol

" Built-in syrmbol

j Recalculate

Type Variable Value
+-network input str... [nviLamp <{0,0} >

Missing... Add Wvatch Cancel

If you right-clicked a variable name, the selected variable appears in the Watch Type box. You
can proceed to step 5.

Using the NodeBuilder Debugger

4. Ifyou right-clicked a statement, the drop-down list in the Watch Type box is empty and you need
to select one of the following types of variables to watch :

e Watch variable. Enter a network variable using its global network variable name or using its
functional block member name (for example, using the scope operator “::””). Similarly, you
can enter a configuration network variable using its global network variable name or using the
corresponding configuration property syntax. See the Neuron C Programmer’s Guide and
Neuron C Reference Guide for more information on referencing configuration network
variables (CPNVs). To watch a configuration property that is implemented within a

configuration file (file CP), specify the configuration property to be watched as follows:
[<FB or NV name>] [[<FBNVindex>]]::<CP name>[[<CPindex>]]

If the configuration property applies to a functional block or network variable, enter <FB or
NV name>; if the property applies to the entire device start the name with the scope operator
(for example, : : cpValue). If the functional block or network variable is part of an array,
enter the <FBNVindex> value to specify the array member. <CP name> can be a
configuration property variable or array. If the configuration property is part of an array,
enter the <CP index> to specify the member of the array to watch. In addition, the following
rules apply:

* You cannot watch an entire configuration network variable array. You must specify a
single element to be watched using the <CPindex> field.

= You can only watch an entire cp_family array. In this case, do not specify a <CPindex>;
the entire array will be displayed in a tree structure in the watch list.

See the Neuron C Programmer’s Guide and the Neuron C Reference Guide for more
information on the syntax used for accessing configuration properties.

o Configuration Table Symbol. Select a configuration table value to be watched from the list
of all available configuration table symbols.

e Built-in Symbol. Select a built-in symbol value to be watched from the list of all available
system symbols. You can click Missing to list any header files not used in this application
that contain other system variables. If you want to watch one of these system symbols, you
will need to include the header file and rebuild the device application.

You can click Recalculate to search for the currently selected watch variable. If the selected
variable is a structure type, the pane at the bottom of the dialog allows you to browse the variable
structure. If the variable does not exist, a dialog pops up with the message Symbol Not Found.

5. Click Add Watch to add the selected variable to the Watch List pane. If the variable is a structure
or union, you can expand the variable and then the data type under the Type column to display all
the fields of the structure. For each variable or field in a structure, the watch list displays the type,
variable name, and value.

NodeBuilder FX User's Guide 249

250

Watch Variable

Wiiatch type
+ \Watch variable

" Configuration takle symbol

" Built-in syrmbol

rviLarmp j

Recalculate

Type Variable

Binetwork input str... nviLamp '({ {0.0} >
- struct <{0,0}>
unsigned sh...|value <0>
short state <0>

Missing... Add Wvatch

Cancel

Scalar network variables contain a single field that contains their value. If the variable does not

exist, a Symbol Not Found dialog opens.

Optionally, you can edit the value of a variable or a field in a structure in the Watch List pane.

a. To edit the value of a scalar variable, double-click anywhere in the row containing the
variable or right-click the variable and then click Edit Value on the shortcut menu.

To edit the value of an enumeration, expand the variable, double-click anywhere in the row
containing the field, or right-click the field and then click Edit Value on the shortcut menu.

To edit the value of a structure, expand the variable and expand the type, double-click
anywhere in the row containing the field, or right-click the field and then click Edit Value on

the shortcut menu.

Edit alue

Refresh Yalue

Display Format 3

é Type Variable Delete all Watches
- network input struct |nviLamp v filow docking 1>
§ =stuct _ Hide >
% unsigned short value <U
® short state <03
E

ot

b. The Edit Value dialog opens.

Edit Value: value

Data type: unsigned shart ok

Display format. Decimal
Cancel

Currentwalue: 0

Mew walue: |E

Using the NodeBuilder Debugger

c. Enter the new value for the variable and then click OK. If you are editing the value of an
enumerated type, select an enumeration from the list or click Enter in Decimal or Enter in
Hex and then enter the desired index of the enumeration.

d. Click OK to save the value.
Notes:

e To remove a variable from the watch list, right-click the variable in the Watch List pane and click
Delete on the shortcut menu. To remove all variables from the Watch List pane, right-click
anywhere in the Watch List pane and click Delete all Watches on the shortcut menu.

e You can display the values in the Watch List pane in either decimal or hexadecimal format. You
can set the default format by clicking Project, clicking Settings, clicking the Debugger tab in the
NodeBuilder Project Properties dialog, and then selecting the desired default format in the
Default Display Radix option. You can override the default setting for individual entries in the
Watch List pane by right-clicking in the Watch List pane, pointing to Format, and then selecting
the desired format on the shortcut menu. Individual entries within each of the variables can also
be displayed using string, signed 32-bit, and floating point format where applicable.

Using the Call Stack Pane

The Call Stack pane displays the functions that have been called when the application is halted. If
your device application is halted within a function, this lets you determine if that function was called
from within another function, and if so, which one. If the device application is within multiple
functions, the most recently called one will be on the top of the call stack list. You can double-click
any entry on the call stack list to be taken to the line of the function call.

Using the Debug Device Manager Pane

The Debug Device Manager pane displays the status (running, halted, or reset) of all devices that are
currently being debugged. The Reset status is only displayed if the device is reset while halted. You
can right-click a device in the Debug Device Manager pane and select one of the following options on
the shortcut menu:

X Device Name

NodeBuilder Device

Examplel

Resume

Stop All

v Allow docking
Hide

Debug Device Manager

Make Current Makes the selected device the current device. This affects
operations that are performed on the Current Device from the
Debug menu.

Stop Stops debugging the selected device and removes the device from
the Debug Device Manager pane. To restart debugging for this
device, right-click the device under the Devices folder in the
Project pane and click Debug on the shortcut menu.

Halt Halts the application in the selected device. For more information
about stopping and starting device applications, see Stopping an
Application earlier in this chapter.

Resume Resumes running a halted application in the current device.

NodeBuilder FX User's Guide 251

Stop All Stops debugging all devices, removes all the devices from the
Debug Device Manager pane, and closes the NodeBuilder
debugger. To restart debugging for a device, right-click the device
under the Devices folder in the Project pane and click Debug on
the shortcut menu.

Allow Docking Docks the Debug Device Manager pane into the NodeBuilder
Project Manager. The Debug Device Manager pane appears as a
floating window that you can move and resize by default.

Hide Select this option to hide the debug manager window. To view the
debug manager window again, click View, select Debug
Windows, and then select Debug Device Manager.

Peeking and Poking Memory

You can use the NodeBuilder debugger to view (peek) and modify (poke) the memory contents of the
device being debugged. You must be careful when modifying memory contents because you can
render a device inoperable by writing to an inappropriate memory location. To view and modify
memory, follow these steps:

252

1.

Click Debug and then click Peek/Poke Memory. The Peek/Poke Memory dialog opens:

Peek/Poke Memory - Subsystem 1.NodeBuilder Device @g|
Peek

Address |[Q] Count | 128 Feek

Paoke

Address Paoke ‘ Fill...

Data: |

Close

To inspect memory, enter the Address and Count properties in the Peek box at the top of the
dialog, and then click Peek. The Peek box displays the number of bytes in the Count property
starting at the address in the Address property. The data is displayed in both hexadecimal and
ASCII format. You can save the results of the peek by clicking Save to File.

To modify memory, enter the Address property and enter the Data property (in hexadecimal
format) in the Poke box at the bottom of the dialog, and then click Poke. The data in the Data
property is written to the device starting at the address in the Address property. To write multiple
bytes of data, separate each byte with spaces, commas, tabs, newlines, hyphens, or colons.

You can fill multiple bytes of memory with the same value. To do this, click Fill. The Fill
Memory Block dialog opens.

Using the NodeBuilder Debugger

Fill Memory Block ?x

Address: ||
Cancel
Count: ID_

Bivte (hes): I_

In the Address field, enter the address to start writing in. In the Count field, enter the number of
bytes to write. In the Byte field, enter a two digit hexadecimal value. Click OK to write the value
in Byte a number of times equal to Count starting at the address in Address. You are returned to
the Peek/Poke Memory dialog.

4. Click Close to return to the NodeBuilder debugger.

Executing Code in Development Targets Only

You can designate code for execution in development targets only. This lets you build simultaneously
to development and release targets and include test code that executes on the development targets only.
To have one or more lines of code execute on development targets only, put the statement #ifdef
_DEBUG before the code, and the statement #endif after the statement. The following code sample
demonstrates how to do this:

#ifdef DEBUG
//Test code. Executes on development targets only
<test code>

fendif

You can not define network variables or configuration properties or make any changes to the external
interface inside the #ifdef clause. This is because both release and development targets have the same
program ID.

The DEBUG macro is predefined for development targets, but not for the release targets. To edit the
predefined macros for a development target, right-click Development folder in the Project pane, and
then click Settings on the shortcut menu. The NodeBuilder Device Template Target Properties
dialog opens with the Compiler tab selected. Enter a symbol in the Defines: property, which can be
tested using the ifdef directive.

Using the Debug Error Log Tab

When you start a debugging session, the Debug Error Log tab is added to the results pane. This tab
provides rudimentary tracing capabilities and debugging timing-related problems in the debugger when
a debug session is in progress. You can use the Neuron C error_log() function to output specific error
codes to the debug tab in response to specific events. See the Neuron C Programmer’s Guide and
Neuron C Reference Guide for more information about the error_log() function.

Setting Debugger Options
You can set options for the NodeBuilder debugger following these steps:

1. Click Project, click Settings, and then click the Debugger tab in the NodeBuilder Project
Properties dialog. Alternatively, you can right-click the Project folder at the top of the Project
pane and then click Settings on the shortcut menu.

NodeBuilder FX User's Guide 253

254

NodeBuilder Project Properties

Options | Editor | Registration | Project| Buils Debugger |

Default Display Radix
& Decimal (Base 100

" Hexadecimal (Base 16)

Preferences

I Do not display device reset dialogs
I Do not display flash warning dialogs
I Do not display editing while debugging warning dialogs

[Do not open the device source file at session startup

Fonts and Colars

Call Stack
Watch List

Dehug Session

Tick Interval (msec): 100

10 pt, Courier HNew

Fonts and Colars... ‘

Ok | Cancel ‘ |

Default Display Radix

Tick Interval

Preferences

Do not Display Device
Reset Dialogs

Do not Display Flash
Warning Dialogs

Do not Display Editing
while Debugging
Warning Dialogs

Do not Open the Device
Source File at Session
Startup

2. You can set the following options:

Specifies the default format in which data is displayed in the
Watch List pane. You can choose to monitor data in the Watch
List pane in Decimal or Hexadecimal format.

Specifies how frequently (in milliseconds) the debugger
processes incoming debug messages from the device. The
default interval is 100 ms.

Suppresses warnings when a device in the project encounters a
hardware, software, or watchdog timer reset. A message
confirming the reset will still appear in the results pane. This
check box is cleared by default.

Suppresses warnings when you set a breakpoint in application
code that resides in flash memory. This check box is cleared by
default.

Suppresses warnings when you edit code while in a debugging
session. Editing code in a debugging session can cause
unpredictable debugger behavior and is not recommended. This
check box is cleared by default.

Prevents the source file (<template name>.nc) from automatically
opening when you start the debugger. This may prevent
unnecessary windows from being opened if you are debugging
other source files. If a breakpoint is hit in this file (or any file),
that file will be opened regardless of this option.

Using the NodeBuilder Debugger

Fonts and Colors Specifies the font, font size, and color used for text in the
Breakpoint List, Call Stack, and Watch List panes. To change
the font and color used in a pane, click the pane and then click
Fonts and Colors.

3. Click OK to save the settings.

NodeBuilder FX User's Guide 255

256 Using the NodeBuilder Debugger

Appendix A

Using the Command Line Project
Make Facility

This appendix describes how to use the command line project make facility with the
project make command.

NodeBuilder FX User's Guide 257

Using the NodeBuilder Command Line Project Make
Facility

You can invoke the NodeBuilder build tools from the Windows command line. You can use this
feature to generate automated build scripts for your devices. To invoke the NodeBuilder Command
Line Project Make Utility and build a project, open a Windows command prompt and enter the
following command:

pmk [-p=<Project> <command line switches> -t=<Target>

You must specify what kind of operation will take place: a build (see the —b command switch), a query
(see the —q command switch), or a clean (see the —x command switch). All other command line
switches are optional. The pmk command performs one build, query, or clean operation.

You can use the following command line switches:

-? <cmd> Displays usage help for the <cmd> command. Providing no command

(or —help <cmd>) at all also displays the list of the available commands and a brief usage
hint.

-@ <file> Uses <file> as input to the project make. This file can contain

command line switches to be used by the project make facility. You can
set the Generate build script option in the Build tab of the
NodeBuilder Project Properties dialog to have the NodeBuilder tool
automatically generate a command file (.CMD extension) that will
allow you to reproduce the current build from the command line. This
command file will be placed in the device template target folder, and
will have the name <device template name>.cmd. If multiple targets
are built, a separate command file will be generated for each.

--always (or —a) Causes NodeBuilder to perform an unconditional build. See Building
an Application Image for more information. This causes a clean
command to be executed before the build.

—b <nbdt> Indicates that a build operation will be made on the selected
NodeBuilder device template (.NbDt extension) for the target specified
by the —t command switch. The device template will be compiled,
linked, and exported. You can only specify a single device template per
make command.

—c <nbdt> Specifies a NodeBuilder device template file (.NbDt extension) to be
compiled. You can only specify a single device template per make
command.

258 Appendix A: Using The Command Line Project Make Facility

--defloc <dir>

--mkscript <file>

--n

--nadep <nadep>

--ncdep <ncdep>

--nldep <nldep>

--nodefaults

--nxdep <nxdep>

-p <project file>

-q <nbdt>

--silent

-t <Development ||
Release>

-V

NodeBuilder FX User's Guide

Specifies a directory to search for the default command file. The
default command file for the project make facility must be named
lonpmk32.def. If a default directory that does not contain this file is
specified, the command will fail silently. If no default directory is
specified, the current directory will be searched for lonpmk32.def.

The default command file can contain any number of command
switches for the pmk command. These commands will be executed in
addition to any commands that are entered on the command line, or
passed along using the --file command switch. For example, a default
command file consisting of the following line would generate a log of
the build script for every build in a file called lonpmk.32.log:

--mkscript c:\temp\lonpmk32.log

Generates a file that contains all the command switches and arguments
that are used in this invocation of the project make command. This file
can be used (for example) as a log of the build or to recreate the build
on another computer.

Reconfirms build status after build completion.

Specifies the location of the assembler dependency file. By default, this
file is located in the IM subdirectory of the target folder (for example,
Development or Release).

Specifies the location of the compiler dependency file. By default, this
file is located in the IM subdirectory of the target folder (for example,
Development or Release).

Specifies the location of the linker dependency file. By default, this file
is located in the IM subdirectory of the target folder (for example,
Development or Release).

Disables processing of default command files (see the description of the
--defloc command switch for more information).

Specifies the location of the exporter dependency file. By default, this
file is located in the IM subdirectory of the target folder (for example,
Development or Release).

Specifies the NodeBuilder project that contains the NodeBuilder device
template to be built. NodeBuilder project files have the .NbPrj
extension.

Indicates that a query operation will be performed on the specified
NodeBuilder device template for the target specified by the —t command

switch. This command will indicate whether the target needs to be
built.

Suppresses banner message display.

Specifies on which target the build, clean, or query operation will be
invoked.

Causes the project make facility to be run in verbose mode.

259

260

-x <nbdt> Indicates that a clean operation will be performed on the specified
NodeBuilder device template for the target specified by the —t command
switch. A clean operation removes all files and folders produced by a
build.
The following example demonstrates a minimal command line invocation of the Project Make Facility:
PMK -p=Test.nbprj -b=MyDevice.nbdt -t=Development

This command performs a conditional build on the development target that is contained within the
device template MyDevice, which is part of the project Test.

For more information about the NodeBuilder and Neuron C command line tools, see Appendix A of
the Neuron C Programmer’s Guide.

Appendix A: Using The Command Line Project Make Facility

Appendix B

Using Source Control With a
NodeBuilder Project

This appendix describes how to manage a NodeBuilder project using a source control
application.

NodeBuilder FX User's Guide 261

Using Source Control with a NodeBuilder Project

When developing a large NodeBuilder project, you can put the project under source control to allow
multiple developers to work concurrently on different parts of the project. This appendix lists all the
files associated with a NodeBuilder project that should be kept under source control.

262

The following abbreviations for file locations are used throughout the table:

<LonWorks>

<NbDtFolder>

<mnfr>

<lang>

<project>

The LONWORKS folder, which is typically C:\LonWorks.

The folder that contains the NodeBuilder device template file.
NodeBuilder device template files use the .NbDt file extension.
By default <NbDtFolder> is a subfolder of the NodeBuilder
project folder.

Your manufacturer name (for example, ACME Corporation).

A valid device resource file language identifier such as ENU,
GER, FRA, and so on.

The name of the NodeBuilder project.

Check the following files into a source code control system to allow several developers to work on the
same code base and to enable a LONWORKS device file set to be completely recreated from source:

NodeBuilder Project Files

(.NbPrj and .NbOpt)

NodeBuilder Device
Template Files

(.NbDt)

The file <project>.NbPrj is the NodeBuilder project file. It holds
pointers to all the NodeBuilder device templates and any
user-defined hardware templates required for a build. This file
would be checked in for convenience.

The file <project>.NbOpt is a NodeBuilder options file. It holds
information about which devices have been inserted into the
project, breakpoint lists for the debugger and other user settings.
This file would not normally be checked in. The options in this
file are a matter of personal preference, and do not effect device
file set.

Although NodeBuilder project folders and all their subfolders can
be moved and re-opened from the new location with the Open
Project dialog, moving a project folder can cause compilation
errors due to absolute file references in use, or due to device
resource files being moved. Try to use relative references rather
than absolute file name paths whenever possible.

To improve project-to-project compatibility, do not use the
Include Search Path option in the Project tab of the
NodeBuilder Project Properties dialog.

The default location for project files is: C:\Im\source\<project>

These files hold most of the data required to build a device file set
and NodeBuilder device template.

The device template folder and all its contents can be moved and
re-inserted into an existing project. Moving a device template
folder can cause compilation errors due to absolute file references
in use, or due to resource files being moved. The default location
for the NodeBuilder device template files is <NbDtFolder>.

Appendix B: Using Source Control with a NodeBuilder Project

Neuron C Source Files

(.nc, .c, and .h)

Miscellaneous Files

NodeBuilder Hardware
Template Files

(.NbHwt)

Resource Files

(.TYP, .FMT, .FPT, and
<lang>)

The main source file, <Device Template>.nc, is stored in the
C:\Lm\Source\<Project>\<Device Template> folder. This file
and any files included with the #include directive must be
checked in.

Standard header files are stored in the
C:\LonWorks\NeuronC\Include folder. These files should never
be edited because future installs will overwrite modified files and
changes would be lost. Check these files in to ensure that you can
go back to the version used to create your device, but be cautious
when restoring them so that you do not overwrite newer versions.

You can determine the set of dependent files from the Project pane
by performing a successful unconditional build operation and
inspecting the files listed under the Dependencies folder.

Includes user-defined libraries, build script files, and other
user-defined files

Describe the hardware that will be used to host the application.
This data includes Neuron Chip model, clock rate, memory map,
and so on.

Standard hardware templates are stored in the
C:\LonWorks\NodeBuilder\Templates\Hardware\Standard
folder.

These files should never be edited because future updates to the
NodeBuilder tool will overwrite modified files and your changes
would be lost. Check these in to ensure that you can go back to
the version used to create your device, but be cautious when
restoring them so that you do not overwrite newer versions.

You can place user hardware templates in any folder. A
cross-project collection of user hardware templates may be found
in the User hardware templates folder, which by default is in the
C:\LM\Source\Templates\Hardware\User folder.

These resource files comprise resource file sets, which hold
definitions of functional profiles, network variable types, and
configuration property types. Resource file sets are generated
with the NodeBuilder Resource Editor. For more information on
creating and editing resource file sets, see the NodeBuilder
Resource Editor User’s Guide.

You can move resource files by removing the reference to the
previous resource folder from the resource file catalog using the
NodeBuilder Resource Editor, moving the resource folder and all
its content to a new location, and then adding the new resource
folder to the resource catalog using the resource editor. You must
also add all required resource folders to the resource catalog when
moving or restoring a NodeBuilder project to a new computer.

To register a resource file from a build script, change the current
directory to the C:\LonWorks\Types folder and enter the
following command:

mkcat —a<ResourceFolderPath>

Note: Do not check-in the device resource file catalog (LDRF.cat by default) because it might
contain references to device resource files that are unique to each computer.

NodeBuilder FX User's Guide

263

264 Appendix B: Using Source Control with a NodeBuilder Project

Appendix C

Glossary

This appendix provides definitions for many terms commonly used with NodeBuilder
device development.

NodeBuilder FX User's Guide 265

3100 Series Chip

The term used to collectively refer to all previous-generation Neuron chips, including the 3150 and
3120 Neuron chips; the 3150 and 3120 FT Smart Transceivers; and the 3170, 3150, and 3120 PL
Smart Transceivers.

5000 Series Chip
The term used to collectively refer to the Neuron 5000 Processor and FT 5000 Smart Transceiver.
Application Device

A LONWORKS device that runs a LonTalk Application (OSI Layer 7). The application may run on a
Neuron Chip, in which case the device is called a “Neuron hosted” device.

Application Image

Device firmware that consists of the object code generated by the Neuron C compiler from the user’s
application program and other application-specific parameters, including the following:

Network variable fixed and self-identification data
Network variable external interface data (XIF file)
Program ID string

Optional self-identification and self-documentation data
Number of address table entries

Number of domain table entries

Number and size of network buffers

Number and size of application buffers

Number of receive transaction records

Input clock speed of target Neuron Chip
Transceiver type and bit rate

Application Program

The software code in a LONWORKS device that defines how it functions. The application program,
also referred to as the application or the application layer, may be in the device when you purchase it,
or you may load it into the device from application image files (.APB, .NDL, and .NXE extensions)
using the LonMaker tool. The application program interfaces with the LonTalk firmware to
communicate over the network. It may reside completely in the Neuron Chip, or it may reside on an
attached host processor (in a host-based device).

Backup

A .zip file containing a saved version of one to all of the following components: a LonMaker drawing,
LNS network database, and NodeBuilder project. Backup files are used to protect against accidental
file corruption or hardware failure, or to copy a LonMaker network design or NodeBuilder project
from one computer to another.

Binding

Process of connecting network variables. Binding creates logical connections (virtual wires) between
LONWORKS devices. Connections define the data that devices share with one another. Tables
containing binding information are stored in the Neuron Chip’s EEPROM, and may be updated by the
LonMaker tool.

Changeable-Type Network Variable

A network variable that has a type and length that can be changed to that of another network variable
type of equal or smaller size. You can use changeable-type network variables to implement generic
functional blocks that work with different types of inputs and outputs.

266 Appendix C: Glossary

Channel

The physical media between devices upon which the devices communicate. The LonTalk protocol is
media independent; therefore, numerous types of media can be used for channels: twisted pair, power
line, fiber optics, IP, and RF, and other types.

Clock Multiplier

For 5000 Series chips, you can select the frequency at which the Neuron Chip runs to modify the
internal system clock speed. You can select multipliers of '%, 1, 2, 4, and 8 to adjust the internal
system clock speed from 5 MHz to 80 MHz (based on a crystal running at 10 MHz).

Commissioning

The process in which the LonMaker tool downloads network and application configuration data into a
physical device. For devices whose application programs are not contained in ROM, the LonMaker
tool also downloads the application program into non-volatile RAM in the device. Devices are usually
either commissioned and tested one at a time, or commissioned and then brought online and tested
incrementally.

Code Wizard Template

Defines the general infrastructure and layout of a Neuron C application generated with the
NodeBuilder Code Wizard. Code templates supply many utility functions for managing device and
functional block status, which you can use in your application, as needed.

Configuration Properties (CPs)

Configuration properties define the behavior of an application device by determining the manner in
which data is manipulated and when data it is transmitted. Configuration properties can be applied at
the device, functional block, or network variable level. Configuration properties determine the
functions to be performed on the values stored in network variables. For example, a configuration
property may specify a minimum change that must occur on a physical input to a device before the
corresponding output network variable is updated.

Configured

A device state where the device has both an application image and a network image. This indicates
that the device is ready for network operation.

Connector Shape
A single connector used to connect a pair of network variables within the same subsystem.
Control Network Protocol (CNP)

Echelon’s implementation of the ISO/IEC 14908-1 standard. The CNP provides a standard method for
devices on a LonWorks network to exchange data. The CNP defines the format of the messages being
transmitted between devices, and it defines the actions expected when one device sends a message to
another. The protocol normally takes the form of embedded software or firmware code in each device
on the network.

Data Point

A network variable, configuration property, or functional block state (enabled or in override) that the
LonMaker tool can monitor and/or control.

Data Point Shape

A shape in the LonMaker Basic Stencil of the LonMaker tool that you can use to monitor and control
the values of network variables and configuration properties, and the states of functional blocks
(enabled or in override).

NodeBuilder FX User's Guide 267

268

Device

A device that communicates on a LONWORKS network. A device may be an application device,
network service device, or a router. Devices are sometimes referred to as nodes in LONWORKS
documentation.

Device Interface

The logical interface to a device. A device’s interface specifies the number and types of functional
blocks; number, types, directions, and connection attributes of network variables; and the number of
message tags. The program ID field is used as the key to identify each external interface. Each
program ID uniquely defines the static portion of the interface. However, two devices with identical
static portions may differ if dynamic network variables are added or removed, or if the types of
changeable network variables are changed. Thus it is possible to have devices with the same program
ID but different external interfaces.

Device Interface File (XIF)

A file that documents a device’s interface with a network. The file can be a text file (.XIF extension),
or it can be a binary file (.XFB extension).

Device-Specific Configuration Property

A configuration property that has values that can be modified independent of the network database.
Changes made to a device-specific configuration property are not updated in the network database.

Device Template

A device template contains all the attributes of a given device type, such as its functional blocks,
network variables, and configuration properties. You can create a device template by importing a
device interface (XIF) file supplied by the device manufacturer, or by uploading the device interface
definition from the physical device. A device template is identified by its name and its program ID.
Both must be unique within a network—you cannot have two device templates with the same name or
the same program ID in a single network.

Download

An installation process in which data, such as the application program, network configuration, and/or
application configuration, is transferred over the network into a device.

Free Topology

A connection scheme for the communication bus that removes traditional transmission line restrictions
of trunks and drops of specified lengths and at specified distances, and terminations at both ends. Free
topology allows wire to be strung from any point to any other, in bus, daisy chained, star, ring, or loop
topologies, or combinations thereof. It only requires one termination anywhere in the network. This
can reduce the cost of wiring by a factor of two or more.

FT 5000 EVB

A LONWORKS evaluation board that uses Echelon’s FT 5000 Smart Transceiver. It features a compact
design that includes the following I/O devices that you can use to develop prototype devices and run
the FT 5000 EVB examples: 4 x 20 character LCD display, 4-way joystick with center push button, 2
push-button inputs, 2 LED outputs, digital light sensor, and digital temperature sensor.

FT 5000 Smart Transceiver

A chip that integrates a Neuron 5000 processor core and a TP/FT-10 transceiver. See Neuron 5000
Processor for more information about the key features of the Neuron 5000 processor.

FT/PL 3150 EVB

A LONWORKS evaluation board that uses Echelon’s FT or PL 3150 Smart Transceiver. It is connected
to a MiniGizmo board that includes eight push buttons, eight LEDs, a temperature sensor, and a piezo
buzzer. In a managed network, you can bind compatible network variables in applications running on

Appendix C: Glossary

the FT 3150 EVB and FT 5000 EVBs. In a self-installed network, you can use the ISI protocol to
connect the FT 3150 EVB running the MGSwitch, MGLight, or MGDemo applications to an FT 5000
EVB running the NcSimplelsiExample or NeMultiSensorExample applications.

FT/PL 3120 EVB

A LONWORKS evaluation board that uses Echelon’s FT or PL 3120 Smart Transceiver. It is connected
to a MiniGizmo board that includes eight push buttons, eight LEDs, a temperature sensor, and a piezo
buzzer. In a managed network, you can bind compatible network variables in applications running on
the FT 3120 EVB and FT 5000 EVBs. In a self-installed network, you can use the ISI protocol to
connect the FT 3120 EVB running the MGSwitch or MGLight applications to an FT 5000 EVB running
the NcSimplelsiExample or NeMultiSensorExample applications.

Functional Block (FB)

A collection of network variables, configuration properties, and associated behavior that defines a
desired system functionality. Functional blocks define standard formats and semantics for how
information is exchanged between devices on a network.

Functional Block Array

A set of identical functional blocks. A functional block array is useful if your device contains two or
more identical switches, lights, dials, controllers, or other I/O components that will each have an
identical external interface. In addition, a functional block array saves code space and reduces the
number of when-tasks in your code.

Functional Profile

A LONMARK specification that enables equipment specifiers to select the functionality they need for a
system. A functional profile is a template for a type of functional block that defines mandatory and
optional network variable and configuration property members along with their intended usage. A
small number of functional profiles are available for generic devices such as simple sensor and
actuators. Many industry-specific functional profiles are available for industry-specific applications.
Industry-specific profiles are developed through a review and approval process, including a
cross-functional review to ensure the profile will interoperate within an individual subsystem and also
provide interoperability with other subsystems in the network.

Gizmo 4 1/0 Board

A collection of I/O devices that you can use with the LTM-10A Platform for developing prototype
devices and I/O circuits, developing special-purpose devices for testing, or running the NodeBuilder
examples.

i.LON IP-852 Router

An i.LON IP-852 router forwards ISO/IEC 14908-2 packets enveloped in ISO/IEC 14908-4 packets
over an [P-852 channel. i.LON IP-852 routers include the ;. LON SmartServer with IP-852 routing,
i.LON 100 €3 Internet Server with IP-852 routing, and the ;. LON 600 LONWORKS-IP Server.

I/O Object

An instantiation of an I/O model. An I/O objects consists of a specific /O model, and its pin
assignment, modifiers, and name.

IP-852 Channel

Also known as an ANSI/CEA-852 LONWORKS/IP channel, an IP-852 channel carries ISO/IEC
14908-2 packets enveloped in ISO/IEC 14908-4 packets. An IP-852 channel is a LONWORKS channel
that uses a shared IP network to connect IP-852 devices and is defined by a group of IP addresses.
These IP addresses form virtual wires that connect IP-852 devices so they can communicate with each
other. IP-852 devices include the LNS Server computers, LonMaker computers, and i. LON IP-852
routers. An IP-852 channel enables a remote full client to connect directly to a LONWORKS network
and perform monitoring and control tasks.

NodeBuilder FX User's Guide 269

IP-852 Network Interface

Formally called VNI, an IP-852 network interface enables IP-852 devices such as LNS Server
computers, LonMaker computers, and ;. LON IP-852 routers to be attached to [P-852 channels. An
IP-852 network interface requires that the LONWORKS-IP Configuration Server be configured before
trying to communicate with remote devices or remote computers.

Implementation-specific NVs/CPs

Network variables and configuration properties that are not defined in the functional profiles used by
their parent functional blocks. Implementation-specific network variables and configuration properties
(those implemented as configuration network variables [CPNVs]) appear in Virtual functional blocks
instead of their parent functional blocks when you are using the LonMaker tool or other network tool.

Note: If you use implementation-specific network variables in your device interface, your device will
not comply with interoperability guidelines version 3.4 (or better) and therefore cannot be certified by
LONMARK. A better alternative for adding members to a functional profile is to create a user-defined
functional profile template (UFPT) that inherits from an existing standard functional profile template
(SFPT), and then add new mandatory or optional member network variables to the UFPT. This
method results in a new functional profile that you can easily reuse in new devices. See the
NodeBuilder Resource Editor User’s Guide for more information on creating UFPTs.

Interoperable Self-installation (ISI) Protocol

The standard protocol for performing self-installation in LONWORKS networks. ISI is an
application-layer protocol that lets you install and connect devices without using a separate network
management tool.

ISI Mode

An installation scenario in which the ISI protocol is used (instead of the LonMaker tool or other
network tool) to install devices and create network variables connections.

LNS

A network operating system that provides services for interoperable LONWORKS installation,
maintenance, monitoring, and control tools such as the LonMaker tool. Using the services provided by
the LNS client/server architecture, tools from multiple vendors can work together to install, maintain,
monitor, and control LONWORKS networks. The LNS architecture consists of the following elements:

1. The LNS Client application program, which can be used to develop, monitor and control
LONWORKS networks.

2. The LNS Object Server ActiveX Control, which is a language-independent programming interface
to access the LONWORKS network.

3. The Network Services Server (NSS), which maintains an image of the network.

4. The Data Server, which provides services for monitoring and control.

5. The Network Services Interface (NSI), which is the physical interface to the network.
LNS Device Template

A device template automatically generated by the NodeBuilder tool when you build a device
application. The LNS device template defines the external interface to the device, and it is used by the
LonMaker tool and other LNS network tools to configure and bind the device

LNS Network Database

Each LONWORKS network has its own LNS network database (also referred to as the network
database), which includes the network and device configuration data for that network. The network
database also contains extension records, which are user-defined records for storing application data.

270 Appendix C: Glossary

LNS Server

The computer containing the LNS global database acts as the LNS Server. The LNS global database
contains the group of LONWORKS networks being managed with the LNS Server.

Local Client
A LonMaker computer that is also running the LNS Server.
Local Device

An FT 5000 EVB board running the NeMultiSensorExample application that receives SNVT_lux
and/or SNVT_temp_p output network variable updates from another device (a remote device). The
local device displays the temperature and light level values received from the remote device in the
Remote Info Mode panel on its LCD. A remote device may be another FT 5000 EVB board running
the NcMultiSensorExample application.

LonMaker Browser

An LNS plug-in that provides a table view of the network variables and configuration properties of
selected devices and/or functional blocks. The LonMaker Brower can be used to monitor and control
the network variables and configuration properties in a network.

LonMaker Drawing
A LonMaker drawing contains the graphical representation of a LONWORKS network.
LonMaker Integration Tool

An LNS network tool that uses Visio as its graphical user interface. The LonMaker tool is used to
design, commission, maintain, and document distributed control networks comprised of both
LONMARK and other LONWORKS devices.

LonMaker Network Design

A LonMaker network design consists of an LNS network database and a LonMaker drawing.
LonMaker Shape

A reusable drawing object related specifically to a LONWORKS device.

LONMARK

A distinctive logo applied to LONWORKS devices that have been certified to the interoperability
standards of LONMARK International.

LONWORKS 2.0 Platform

The next generation of LONWORKS products designed to both increase the power and capability of
LONWORKS devices, and to decrease the costs of device development and devices.

LONWORKS Network

A network of intelligent devices (such as sensors, actuators, and controllers) that communicate with
each other using a common protocol over one or more communications channels.

LONWORKS Technology

The technology that allows for the creation of open, interoperable control networks that communicate
with the LonTalk protocol. LONWORKS technology consists of the tools and components required to
build intelligent device and to install them in control networks.

LTM-10A Platform

A complete LONWORKS device with downloadable flash memory and RAM that you can use for
testing your applications and I/O hardware prototypes. You can connect a Gizmo 4 1/0 Board to the
LTM-10A Platform.

NodeBuilder FX User's Guide 271

Mandatory Network Variable/Configuration Property

A network variable/configuration property that must be implemented by the functional block, as
specified by the functional profile that the functional block is instantiating.

Mini Kit

A tool for evaluating the development of control network applications with the ISO/IEC 14908
standard. You can use the Mini kit to develop a prototype or production control system that requires
networking, particularly in the rapidly growing, price-sensitive mass markets of smart light switches,

thermostats, and other simple devices and sensors. You can also use the Mini kit to evaluate the
development of applications for such control networks using the LONWORKS platform.

Monitored Connection

A connector shape or reference connection on which network variable values are displayed and
updated.

Network Interface

A LONWORKS device that provides a layer 6 LonTalk interface to an external host computer such as a
computer or a handheld maintenance tool. Network interfaces include IP-852 interfaces (i. LON
SmartServer with IP-852 routing, i. LON 100 e3 Internet Server with IP-852 routing, and the i. LON
600 LONWORKS-IP Server); U10/U20 USB network interfaces; and PCC-10 and PCLTA-10, 20, and
21 PCI network interfaces

Network Variable (NV)

Network variables allow a device to send and receive data over the network to and from other devices.
Network variables are data items (such as temperature, the state of a switch, or actuator position
setting) that a particular device application program expects to receive from other devices on the
network (an input network variable) or expects to make available to other devices on the network (an
output network variable).

Network Variable/Configuration Property Types

A network variable or configuration property type defines the structure and contents of the object. A
network variable type can be either a standard network variable type (SNVT) or a user-defined
network variable type (UNVT). A configuration property type can be a standard configuration
property type (SCPT) or a user-defined configuration property type (UCPT)

Neuron 5000 Processor

Echelon’s next-generation Neuron chip designed for the LONWORKS 2.0 platform. The Neuron 5000
processor is faster, smaller, and cheaper that previous-generation Neuron chips. The Neuron 5000
processor includes a fourth processor for interrupt service routine (ISR) processing.

The Neuron 5000 processor supports an internal system clock speed of 5 MHz to 80 MHz (using a 10
MHz external crystal). The Neuron 5000 processor includes 16KB of on-chip ROM to store the
Neuron firmware image and 64 KB on-chip RAM (44 KB is user-accessible). The Neuron 5000
processor requires at least 2KB of off-chip EEPROM to store configuration data, and you can use a
larger capacity EEPROM device or an additional flash device (up to 64KB) to store your application
code, configuration data, and an upgradable Neuron firmware image. The Neuron 5000 processor
supports the mapping of external non-volatile memory from 0x4000 to OxDFFF in the Neuron address
space (a maximum of 42KB).

Neuron Assembler (NAS)

A Neuron C tool that is used to produce Neuron object files.

272 Appendix C: Glossary

Neuron C

A programming language based on ANSI C that you can use to develop applications for Neuron Chips
and Smart Transceivers. It includes network communication, I/O, and event-handling extensions to
ANSI C, which make it a powerful tool for the development of LONWORKS device applications.

Neuron Chip

A semiconductor component specifically designed for providing intelligence and networking
capabilities to low-cost control devices. The Neuron core includes up to four processors that provide
both communication and application processing capabilities. Two processors execute the layer 2
through 6 implementation of the ISO/IEC 14908-1 protocol and the third executes layer 7 and the
application code. LONWORKS 2.0 Neuron cores include a fourth processor for interrupt service
routine (ISR) processing.

Neuron C Compiler (NCC)
A Neuron C tool that is used to produce Neuron assembly source files from Neuron C source code.
Neuron Exporter (NEX)

A Neuron C tool that takes input from the compiler and the linker and produces the following types of
files: downloadable application image files ((APB, .NDL, and .NXE extensions), programmable
application image files (.NRI, .NFI, .NEI, .NME, and .NMF, extensions), and device interface files
(.XIF and .XFB extensions).

Neuron Firmware

A complete operating system including an implementation of the ISO/IEC 14908-1 protocol used by a
Neuron chip. The Neuron firmware is a program that is inserted into programmable read-only memory
(programmable ROM) of a Neuron chip.

Neuron ID

A 48-bit number assigned to each Neuron Chip at manufacture time. Each Neuron Chip has a unique
Neuron ID, making it like a serial number.

Neuron Librarian (NLIB)

A Neuron C tool that is used to create and manage libraries, or to add and remove individual object
files to and from an existing library.

Neuron Linker (NLD)

A Neuron C tool that is used to produce Neuron executable files. It links the application image,
user-libraries, system libraries, and the Neuron firmware.

Neuron Object File

A Neuron object file (.NO extension) is an intermediate file that contains the data and executable code
in binary form, and contains information about exported and imported symbols. Neuron object files
are the link between the Neuron Assembler and the Neuron Linker, but other data also contributes to
the linking

Node Object

A functional block that monitors the status of all functional blocks in a device and makes the status
information available for monitoring by the LonMaker tool. A LONMARK-compliant device that has
more than one functional block must have a node object.

NodeBuilder Device Template

An XML file with a .NbDt extension that specifies the information required for the NodeBuilder tool
to build the device application. The NodeBuilder device template includes a list of Neuron C source
code files and the hardware template name

NodeBuilder FX User's Guide 273

NodeBuilder Hardware Template

A file with a .NbHwt extension that defines the hardware configuration for a target device. It specifies
hardware attributes including platform, transceiver type, Neuron Chip or Smart Transceiver model,
clock speed, system image, and memory configuration. Several hardware templates are included with
the NodeBuilder tool. You can use these or create your own. Third-party development platform
suppliers may include NodeBuilder hardware templates for their platforms

NodeBuilder Project
A NodeBuilder project collects all the information about a set of devices that you are developing.
NodeBuilder Project Manager

The NodeBuilder Project Manager provides an integrated view of an entire NodeBuilder project and
provides the tools for defining and building a NodeBuilder device.

NodeBuilder Tool

A hardware and software platform that is used to develop applications for Neuron Chips and Echelon
Smart Transceivers. The NodeBuilder tool provides complete support for creating, debugging,
testing, and maintaining LONWORKS devices. You can use the NodeBuilder tool all to create many
types of devices, including VAV controllers, thermostats, washing machines, card-access readers,
refrigerators, lighting ballasts, blinds, and pumps. You can use these devices in a variety of systems
including building controls, factory automation, and transportation.

Non-const Device-specific Configuration Property

A configuration property that can be changed by the device application, an LNS network tool such as
the LonMaker tool, or another tool not based on LNS. For example, a thermostat may include a user
interface that allows the user to change the setpoint.

OffNet

A management mode in which network configuration changes are stored in the network database, but
not propagated to the devices on the network. To send the changes to the devices, you place the
LonMaker tool OnNet. If the LonMaker tool is OffNet and attached to the network, you can still
perform read operations on the network.

OnNet

A management mode in which network configuration changes are propagated immediately to the
devices on the network.

Optional Network Variable/Configuration Property

A network variable/configuration property that may be implemented by the functional block, as
specified by the functional profile that the functional block is instantiating.

PCC-10

A type II PC (formerly PCMCIA) card network services interface (NSI) that includes an integral
FTT-10 transceiver. Other transceiver types can be connected to the PCC-10 via external transceiver
“pods”. The PCC-10 is the best NSI to use with laptop, notebook, or embedded PCs.

PCLTA-10/20

A Y4 size ISA card network services interface (NSI). Unlike the PCNSI, it includes a twisted pair
transceiver onboard, eliminating the need to attach a separate SMX transceiver assembly. The
PCLTA-10 also supports the Windows plug-and-play standard. The PCLTA-10/20 is the best NSI to
use on a host computer attached to a twisted-pair channel.

PCNSI

A half-length ISA card network services interface (NSI). Requires an SMX transceiver to interface to
any LONWORKS communications channel. The PCNSI has two modes of operation — NSI mode and

274 Appendix C: Glossary

network interface mode. In NSI mode, the host treats the PCNSI card as a smart peripheral device that
provides access to an NSS either locally on the PC or remotely via the LONWORKS network. In
network interface mode, the host uses the PCNSI card as a standard LONWORKS network interface.

The PCNSI card is supported, but it is not recommended for use with the NodeBuilder FX tool. For
better performance, use the USB 10/20 network interface included with the NodeBuilder FX tool, or
use a PCLTA-10/20 or PCC-10 adapter.

Peer-To-Peer

A control strategy in which independent intelligent devices share information directly with each other
and make their own control decisions without the need or delay of using an intermediate, central, or
master controller. Because of the enhanced system reliability introduced by eliminating the master (a
single point of failure) and the reduced installation and configuration cost inherent in peer-to-peer
designs, LONWORKS technology is intended to implement a peer-to-peer control strategy.

PL-20

The power line LONWORKS channel type.

Program ID

A unique, 16-hex digit ID that uniquely identifies the device application.
Project Make Facility (PMK)

A Neuron C tool that manages the build process (it minimizes the number of build steps required), and
handles program ID management tasks and automatic boot ID processing.

Remote Client

A LonMaker computer that communicates with the LNS Server (running on a separate computer) over
a LONWORKS channel (an IP-852 or TP/XF-1250 channel) or over an LNS/IP interface. The
NodeBuilder tool cannot be run on a remote client.

Remote Network Interface (RNI)

A network interface that enables you to connect an LNS or OpenLDV-based application to a
LONWORKS network via a TCP/IP connection. RNIs include the ;. LON SmartServer, i. LON 100 3
Internet Server, i. LON 600 LONWORKS-IP Server, and . LON 10 Ethernet Adapter.

Resource File

A file included with a LONWORKS device that defines the components of the device interface to be
used by the LonMaker tool or other LNS network tool. Defined components include network variable
types, configuration property types, and functional profiles implemented by the device application.
Resource files allow for the correct formatting of the data, and they are necessary for LONMARK
certification of a device.

SLTA-10

A serial NSI interface with built-in twisted pair transceiver that connects to any host with an EIA-232
(formerly RS232) port. It can also connect to the host remotely using a Hayes-compatible modem.
The SLTA-10 is the best NSI to use for remote application or for portable hosts that do not contain a
type II PC slot or a USB interface.

The SLTA-10 adapter is supported, but not recommended unless dial-up operation through a modem
and a serial connection is required. You should use a PCC-10 or U10/20 USB network interface
instead. For accessing remote networks, you can use an RNI such as the i. LON SmartServer, i. LON
100 €3 Internet Server, i LON 600 LONWORKS-IP Server, and i LON 10 Ethernet Adapter.

Self-Installed Network

A network that has network addresses and connections created without the use of a network
management tool. In a self-installed network, each device contains code (the Neuron C ISI library,

NodeBuilder FX User's Guide 275

276

which implements the ISI protocol) that replaces parts of the network management server’s
functionality, resulting in a network that no longer requires a special tool or server to establish network
communication or to change the configuration of the network.

Service Pin

Each Neuron Chip has a service pin used during installation to acquire the Neuron Chip’s Neuron ID.
When this pin is grounded, the Neuron Chip sends a broadcast message containing its Neuron ID and
program ID, which is called service pin message or packet. The method used to ground the service pin
varies from device to device. Examples of mechanical methods include grounding via a push button or
using a magnetic reed switch. By attaching one of the device’s I/O pins to the service pin, the service
pin can also be put under software control as long as the device is configured. For example, the device
can ground the pin when the device is moved or when a predefined series of I/O occurs. The service
pin can also be used to drive an LED that indicates the Neuron Chip’s state. The service LED is solid
on when the Neuron Chip is applicationless, blinks slowly when the Neuron Chip has an application
and is unconfigured, is off when the Neuron Chip has an application and is configured, and blinks once
quickly each time the Neuron Chip is reset.

Smart Transceiver
A chip that integrates a Neuron network processor core and a transceiver.
Standard Configuration Property Type (SCPT)

A standard set of configuration property types defined by LONMARK International to facilitate
interoperability. SCPTs are defined for a wide range of configuration properties used in many kinds of
functional profiles, such as hysteresis bands, default values, minimum and maximum limits, gain
settings, and delay times. SCPTs should be used in a LONWORKS network wherever applicable. In
situations where there is not an appropriate SCPT available, manufacturers may define UCPTs for
configuring their devices. See the LONMARK Web site for a current list and documentation.

Standard Functional Profile Template (SFPT)

A standard set of functional profiles defined by LONMARK International. See the LONMARK Web site
for a current list and documentation. See Functional Profile for more information about functional
profile templates.

Standard Network Variable Type (SNVT)

A standard set of network variable types defined by LONMARK International to facilitate
interoperability by providing a well-defined interface for communication between devices made by
different manufacturers. See the Echelon or LONMARK Web site for a current list and documentation.

Stencil
A collection of master shapes that can be reused in Visio.
Target Device

A LONWORKS device application that is built by the NodeBuilder tool. There are two types of targets,
development targets and release targets. Development targets are used during development; release
targets are used when development is complete and the device will be released to production.

TP/FT-10
The free topology twisted pair LONWORKS channel type, which has 78Kbps bit rate.
U10/20 USB Network Interface.

A low-cost, high-performance LONWORKS network interface with a built-in TP/FT-10 or PL-20
transceiver that can be used with USB-enabled computers and controllers.

Appendix C: Glossary

User-defined Configuration Property Type (UCPT)

A non-standard data structure used for configuration of the application program in a LONMARK device.
UCPTs should be used only when there is no appropriate standard configuration property type (SCPT)
defined. LONMARK-certified devices must have UCPTs documented in resource files according to a
standard format, in order to allow the devices to be configured without the need for proprietary
configuration tools.

User-defined Functional Profile Template (UFPT)

A non-standard functional profile template defined by a device manufacturer. UFPTs should be used
only when there is no appropriate standard functional profile template (SFPT) defined. See Functional
Profile for more information about functional profile templates.

User-defined Network Variable Type (UNVT)

A non-standard network variable type defined by the manufacturer of a device. UNVTs should be
used only when there is no appropriate standard network variable type (SNVT) defined.
LoNMARK-certified devices must have UNVTs documented in resource files according to a standard
format, in order to allow the devices to be interoperable.

Virtual Functional Block

A static functional block that that contains the network inputs and outputs for a device that are not part
of other functional blocks on the device.

NodeBuilder FX User's Guide 277

278 Appendix C: Glossary

Appendix D

NodeBuilder Software License
Agreement

When installing the NodeBuilder software, you must agree to the terms of the software
license agreement detailed in this appendix.

NodeBuilder FX User's Guide 279

NodeBuilder® Development Tool

NOTICE

This is a legal agreement between you and Echelon Corporation (“Echelon”). YOU
MUST READ AND AGREE TO THE TERMS OF THIS SOFTWARE LICENSE
AGREEMENT BEFORE ANY LICENSED SOFTWARE CAN BE
DOWNLOADED OR INSTALLED OR USED. BY CLICKING ON THE “I
AGREE” OR “ACCEPT” BUTTON OF THIS SOFTWARE LICENSE
AGREEMENT, OR DOWNLOADING LICENSED SOFTWARE, OR
INSTALLING LICENSED SOFTWARE, OR USING LICENSED SOFTWARE,
YOU ARE AGREEING TO BE BOUND BY THE TERMS AND CONDITIONS OF
THIS SOFTWARE LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH
THE TERMS AND CONDITIONS OF THIS SOFTWARE LICENSE
AGREEMENT, THEN YOU SHOULD EXIT THIS PAGE AND NOT
DOWNLOAD OR INSTALL OR USE ANY LICENSED SOFTWARE. BY DOING
SO YOU FOREGO ANY IMPLIED OR STATED RIGHTS TO DOWNLOAD OR
INSTALL OR USE LICENSED SOFTWARE.

NodeBuilder Software License Agreement

In consideration of Your agreement to the terms of this Agreement, Echelon grants
You a limited, non-exclusive, non-transferable license to use up to two (2) copies of
the Licensed Software and Documentation and any updates or upgrades thereto
provided by Echelon according to the terms set forth below. If the Licensed Software
is being provided to You as an update or upgrade to software which You have
previously licensed, then You agree the Licensed Software may be used and
transferred only as part of a single product package and may not be separated for use
on more than two (2) computers as expressly provided below.

DEFINITIONS

280

For purposes of this Agreement, the following terms shall have the following
meanings:

“Documentation” means the documentation included with the Licensed Software.

“Licensed Software” means all computer software programs and associated media,
printed materials, and online or electronic documentation that accompany the
NodeBuilder Development Tool product; including, without limitation, the
NodeBuilder Example Applications. The Licensed Software also includes any
software updates, add-on components, stencils, templates, shapes, SmartShapes
symbols, Web services and/or supplements that Echelon may provide to You or
make available to You, or that You obtain from the use of features or functionality
of the Licensed Software, after the date you obtain your initial copy of the Licensed
Software (whether by delivery of a CD, permitting downloading from the Internet or
a dedicated Web site, or otherwise) to the extent that such items are not
accompanied by a separate license agreement or terms of use. Licensed Software
does not include the LonMaker Integration Tool, Microsoft Visio, or any other

Appendix D: Software License Agreement

software product shipped with the NodeBuilder Development Tool product and not
contained in the NodeBuilder directories as identified in the Documentation.

e “NodeBuilder Example Applications” means the Neuron C source code example
applications included as part of the Licensed Software which demonstrate the use of
the Licensed Software, (i) as provided in the “Examples” directory and its
subdirectories, (ii) as generated by the NodeBuilder Code Wizard, or (iii) otherwise
containing wording in the source code clearly identifying such source code as an
“Example Application”.

e “LonWorks® Device” means a product designed for use in a network based upon
Echelon’s LonWorks platform, including without limitation LonWorks
Application(s) as set forth in the LonWorks OEM License Agreement between You
and Echelon.

e “Your Device” means a LonWorks Application that you develop as set forth in the
LonWorks OEM License Agreement between You and Echelon.

e “Your Device Plug-in” means Your software product that makes calls to the LNS
server or LNS remote client (as both terms are described in the Documentation) and
which (i) operates only with Your Device, (ii) allows the user to set or retrieve
application configuration properties, to read or write application data, or to perform
diagnostics on only a single device at a time, (iii) provides a user interface that is
customized for Your Device, (iv) does not recover, commission, or install any
LonWorks Device, including the LONWORKS Device being operated on, (v)
conforms to the device plug-in specifications described in the Documentation, and
(vi) does not include any of the following: (a) code that increases or decreases the
number of available device credits or LonMaker credits, or (b) the Licensed
Software with the exception of derivative works of the NodeBuilder Example
Applications.

e “You(r)” means Licensee, i.e. the company, entity or individual who has rightfully
acquired the NodeBuilder Development Tool.

LICENSE

You may:

(a) use the Licensed Software solely to develop Your Devices and Your Device Plug-
ins and prepare your derivative works of the NodeBuilder Example Applications to
develop Your Devices and Your Device Plug-ins;

(b) install and use the Licensed Software for such purposes on one (1) primary
computer (the “Primary Computer”);

(c) install and use a second copy of the Licensed Software for such purposes on one (1)
additional computer (the “Additional Computer”) for the exclusive use of the
individual who is the primary user of the copy of the Licensed Software installed
on the Primary Computer, provided that the Licensed Software may only be used on

NodeBuilder FX User's Guide 281

one computer at a time, and provided that such installation and use otherwise
comply with all the terms and conditions of this Agreement;

(d) keep the original media on which the Licensed Software was provided by Echelon
solely for backup or archival purposes;

(e) make, use, and sell Your Devices that You developed pursuant to the terms of the
LoNWORKS OEM License Agreement between You and Echelon;

(f) distribute Your Device Plug-ins; and

(g) physically transfer any authorized copy of the Licensed Software from one (1)
computer to another, provided that such copy is removed from the computer on
which it was previously installed and the Licensed Software is used on only one (1)
computer at a time.

You may not, and shall not permit others to:

(a) install the Licensed Software for development on more than one (1) Primary
Computer and one (1) Additional Computer, use the Licensed Software on more
than one (1) computer at a time, or allow any individual other than the primary user
to use the Licensed Software on the Additional Computer;

(b) copy the Licensed Software except as permitted above;

(c) except for the limited rights granted above, modify, translate, reverse engineer,
decompile, disassemble or otherwise attempt (i) to defeat, avoid, bypass, remove,
deactivate or otherwise circumvent any software protection mechanisms in the
Licensed Software, including without limitation any such mechanism used to
restrict or control the functionality of the Licensed Software, or (ii) to derive the
source code or the underlying ideas, algorithms, structure or organization from any
of the Licensed Software that has not been provided in source code form (except to
the extent that such activities may not be prohibited under applicable law);

(d) alter, adapt, prepare derivative works of, modify or translate the Licensed Software
in any way for any purpose, including without limitation error correction, except for
the limited rights expressly granted above with respect to NodeBuilder Example
Applications; or

(e) except for the limited rights granted above, distribute, rent, loan, lease, transfer or
grant any rights in the Licensed Software or modifications thereof in any form to
any person without the prior written consent of Echelon.

You hereby acknowledge and agree that Your Device is a LonWorks Application as
such term is defined in the LonWorks OEM License Agreement between Echelon and
Licensee and therefore, Your Device is subject to the terms thereof and you shall
have no rights to distribute Your Devices or Your Plug-ins as set forth above unless
You and Echelon shall have entered into a LonWorks OEM License Agreement prior
any such distribution.

This license is not a sale. Title, copyrights and all other rights to the Licensed
Software and any copy made by You remain with Echelon and its suppliers.
Unauthorized copying of the Licensed Software or the Documentation, or failure to

282 Appendix D: Software License Agreement

comply with the above restrictions, will result in automatic termination of this license
and will make available to Echelon other legal remedies.

TERMINATION

This license will continue until terminated. Unauthorized copying of the Licensed
Software or failure to comply with the above restrictions will result in automatic
termination of this Agreement and will make available to Echelon other legal
remedies. This license will also automatically terminate if you go into liquidation,
suffer or make any winding up petition, make an arrangement with Your creditors, or
suffer or file any similar action in any jurisdiction in consequence of debt. Upon
termination of this license for any reason you will destroy all copies of the Licensed
Software. Any use of the Licensed Software after termination is unlawful.

TRADEMARKS

You may make appropriate and truthful reference to Echelon and Echelon products
and technology in Your company and product literature; provided that You properly
attribute Echelon’s trademarks and do not use the name of Echelon or any Echelon
trademark in Your name or product name. No license is granted, express or implied,
under any Echelon trademarks, trade names, trade dress, or service marks.

LIMITED WARRANTY AND DISCLAIMER

Echelon warrants to you that, for a period of ninety (90) days from the date of
delivery or transmission to You, the Licensed Software programs under normal use
will perform substantially in accordance with the Licensed Software specifications
contained in the Documentation. Echelon’s entire liability and Your exclusive
remedy under this warranty will be, at Echelon’s option and expense, to use
reasonable commercial efforts to attempt to correct or work around errors, to replace
the Licensed Software with functionally equivalent Licensed Software, or to
terminate this Agreement and accept return of the NodeBuilder Development Tool
and refund Your purchase price less a reasonable amount for use.
NOTWITHSTANDING THE FOREGOING, ECHELON MAKES NO
WARRANTIES WHATSOEVER WITH RESPECT TO THE NODEBUILDER
EXAMPLE APPLICATIONS.

EXCEPT FOR THE EXPRESS LIMITED WARRANTIES AND CONDITIONS
GIVEN BY ECHELON ABOVE, ECHELON AND ITS SUPPLIERS MAKE AND
YOU RECEIVE NO OTHER WARRANTIES OR CONDITIONS, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE OR IN ANY COMMUNICATION
WITH YOU, AND ECHELON AND ITS SUPPLIERS SPECIFICALLY DISCLAIM
ANY IMPLIED WARRANTY OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE OR
NONINFRINGEMENT AND THEIR EQUIVALENTS. Echelon does not warrant
that the operation of the Licensed Software will be uninterrupted or error free or that
the Licensed Software will meet Your specific requirements.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS

NodeBuilder FX User's Guide 283

MAY NOT APPLY TO YOU. YOU MAY ALSO HAVE OTHER RIGHTS THAT
VARY FROM STATE TO STATE AND JURISDICTION TO JURISDICTION.

LIMITATION OF LIABILITY

IN NO EVENT WILL ECHELON OR ITS SUPPLIERS BE LIABLE FOR LOSS OF
OR CORRUPTION TO DATA, LOST PROFITS OR LOSS OF CONTRACTS,
COST OF PROCUREMENT OF SUBSTITUTE PRODUCTS OR OTHER
SPECIAL, INCIDENTAL, PUNITIVE, CONSEQUENTIAL OR INDIRECT
DAMAGES, LOSSES, COSTS OR EXPENSES OF ANY KIND ARISING FROM
THE SUPPLY OR USE OF THE LICENSED SOFTWARE, HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY (INCLUDING WITHOUT LIMITATION
NEGLIGENCE). THIS LIMITATION WILL APPLY EVEN IF ECHELON OR AN
AUTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES AND NOTWITHSTANDING THE FAILURE OF
ESSENTIAL PURPOSE OF ANY LIMITED REMEDY. EXCEPT TO THE
EXTENT THAT LIABILITY MAY NOT BY LAW BE LIMITED OR EXCLUDED,
IN NO EVENT SHALL ECHELON’s OR ITS SUPPLIERS’ LIABILITY EXCEED
TEN THOUSAND DOLLARS ($10,000). YOU ACKNOWLEDGE THAT THE
AMOUNTS PAID BY YOU FOR THE LICENSED SOFTWARE REFLECT THIS
ALLOCATION OF RISK.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS AND
EXCLUSIONS MAY NOT APPLY TO YOU.

SAFE OPERATION

YOU ASSUME RESPONSIBILITY FOR, AND HEREBY AGREE TO USE YOUR
BEST EFFORTS IN, DESIGNING AND MANUFACTURING PRODUCTS USING
THE LICENSED SOFTWARE TO PROVIDE FOR SAFE OPERATION
THEREOF, INCLUDING, BUT NOT LIMITED TO, COMPLIANCE OR
QUALIFICATION WITH RESPECT TO ALL SAFETY LAWS, REGULATIONS
AND AGENCY APPROVALS, AS APPLICABLE. THE LICENSED SOFTWARE,
SMART TRANSCEIVERS, NEURON CHIPS, YOUR DEVICE, YOUR DEVICE
PLUG-IN AND OTHER ECHELON PRODUCTS AND TECHNOLOGY ARE NOT
DESIGNED OR INTENDED FOR USE AS COMPONENTS IN EQUIPMENT
INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER
APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, FOR USE IN
FLIGHT CONTROL OR ENGINE CONTROL EQUIPMENT WITHIN AN
AIRCRAFT, OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE
THEREOF COULD CREATE A SITUATION IN WHICH PERSONAL INJURY
OR DEATH MAY OCCUR, AND YOU SHALL HAVE NO RIGHTS
HEREUNDER FOR ANY SUCH APPLICATIONS.

LANGUAGE

284 Appendix D: Software License Agreement

The parties hereto confirm that it is their wish that this Agreement, as well as other
documents relating hereto, have been and shall be written in the English language
only.

Les parties aux présentes confirment leur volonté que cette convention de méme que
tous les documents y compris tout avis qui s’y rattache, soient rédigés en langue
anglaise.

SUPPORT

You acknowledge that You shall either (i) inform the end-user that You are the
primary support contact for Your Devices and Your Device Plug-ins, and that
Echelon Corporation will not support Your Devices and Your Device Plug-ins, or
(i1) inform the end-user that there will be no support for Your Devices and Your
Device Plug-ins.

GENERAL

This Agreement shall not be governed by the 1980 U.N. Convention on Contracts for
the International Sale of Goods; rather, this Agreement shall be governed by the laws
of the State of California, including its Uniform Commercial Code, without reference
to conflicts of laws principles. This Agreement is the entire agreement between You
and Echelon and supersedes any other communications, representations or advertising
with respect to the Licensed Software. If any provision of this Agreement is held
invalid or unenforceable, such provision shall be revised to the extent necessary to
cure the invalidity or unenforceability, and the remainder of the Agreement shall
continue in full force and effect. If You are acquiring the Licensed Software on
behalf of any part of the U.S. Government, the following provisions apply. The
Licensed Software programs and Documentation are deemed to be “commercial
computer software” and “commercial computer software documentation”,
respectively, pursuant to DFAR Section 227.7202 and FAR 12.212(b), as applicable.
Any use, modification, reproduction, release, performance, display or disclosure of
the Licensed Software programs and/or Documentation by the U.S. Government or
any of its agencies shall be governed solely by the terms of this Agreement and shall
be prohibited except to the extent expressly permitted by the terms of this Agreement.
Any technical data provided that is not covered by the above provisions is deemed to
be “technical data-commercial items” pursuant to DFAR Section 227.7015(a). Any
use, modification, reproduction, release, performance, display or disclosure of such
technical data shall be governed by the terms of DFAR Section 227.7015(b).

Echelon, Neuron, NodeBuilder, LONWORKS are U.S. registered trademarks of
Echelon Corporation. LNS is a trademark of Echelon Corporation.

NodeBuilder FX User's Guide 285

< ECHELON

www.echelon.com

	Table of Contents
	Preface
	Purpose
	Audience
	Hardware Requirements
	Content
	Related Manuals
	For More Information and Technical Support

	1 Introduction
	Introduction to the NodeBuilder Tool
	New Features in the NodeBuilder FX Tool
	5000 Series Chip Support
	Backwards Compatibility for Device Applications
	Improved Memory Architecture
	Faster System Clock
	Improved Performance for Arithmetic Operations
	User Programmable Interrupts
	Additional I/O Model Support

	FT 5000 EVB Evaluation Board
	Increased Network Variable Support
	Neuron C Version 2.2 Enhancements
	Interrupt Support
	Non Constant Device Specific Configuration Property Support
	New and Enhanced Compiler Directives

	Enhanced Hardware Template Editor
	Enhanced Code Wizard Framework Template
	Neuron C Debugger
	LNS Plug in Framework Developer’s Kit
	Microsoft Windows Vista Support

	What's Included with the NodeBuilder FX Tool
	NodeBuilder FX Development Tool CD
	Development Platforms
	FT 5000 EVB Evaluation Board
	LTM 10A Platform and NodeBuilder Gizmo 4 I/O Board
	LTM 10A Platform
	NodeBuilder Gizmo 4 I/O Board

	LonMaker Integration Tool CD
	LonScanner Protocol Analyzer CD
	U10/U20 USB Network Interface

	Introduction to NodeBuilder Device Development and LonWorks Networks
	Channels
	Routers
	Applications
	Program IDs
	Network Variables
	Configuration Properties
	Functional Blocks
	Functional Profiles
	Hardware Templates
	Neuron C
	Device Templates
	Device Interface Files
	Resource Files
	Targets

	2 Installing the NodeBuilder FX Development Tool
	 Installing the NodeBuilder FX Development Tool
	Installing the NodeBuilder Software
	Connecting the NodeBuilder Hardware
	Connecting the NodeBuilder FX/FT Hardware
	Connecting the NodeBuilder FX/PL Hardware

	3 NodeBuilder Quick Start Exercise
	NodeBuilder Quick Start Exercise
	Step 1: Creating a NodeBuilder Project
	Step 2: Creating a NodeBuilder Device Template
	Step 3: Defining the Device Interface and Creating its Neuron C Application Framework
	Step 4: Developing the Device Application
	FT 5000 Evaluation Boards
	LTM 10A Platform and Gizmo 4 I/O Board

	Step 5: Compiling, Building, and Downloading the Application
	Step 6: Testing the Device Interface
	Step 7: Debugging the Device Application
	Step 8: Connecting and Testing the Device in a Network
	Additional Device Development Steps
	Creating a LonMaker Stencil
	Creating an LNS Device Plug in
	Developing an HMI
	Creating a Device Installation Application
	Submitting a LonWorks OEM License
	Applying for LonMark Certification

	4 Creating and Opening NodeBuilder Projects
	 Introduction to the NodeBuilder Project Manager
	Using the Project Pane

	Creating a NodeBuilder Project
	Creating a NodeBuilder Project from the LonMaker Tool
	Creating a NodeBuilder Project from the NodeBuilder Project Manager
	Creating a NodeBuilder Project from the New Device Wizard

	Opening a NodeBuilder Project
	Opening a NodeBuilder Project from the LonMaker Tool
	Opening a NodeBuilder Project from the NodeBuilder Project Manager

	Copying NodeBuilder Projects
	Using the LonMaker Tool to Backup and Restore a NodeBuilder Project
	Manually Copying NodeBuilder Project Files

	Copying NodeBuilder Device Templates
	Copying User Defined Resource Files
	Viewing and Printing NodeBuilder XML Files

	5 Creating and Using Device Templates
	 Introduction to Device Templates
	Creating Device Templates
	Starting the New Device Template Wizard
	Specifying the Device Template Name
	Specifying the Program ID
	Specifying Target Platforms

	Managing and Editing Device Templates
	Managing Device Templates
	Viewing and Editing Device Templates
	Viewing Device Template Components
	Managing Development and Release Targets
	Setting Device Template Target Properties: Compiler
	Setting Device Template Target Properties: Linker
	Setting Device Template Target Properties: Exporter
	Setting Device Template Target Properties: Configuration

	Inserting a Library into a NodeBuilder Device Template

	Using Hardware Templates
	Creating Hardware Templates
	Editing Hardware Templates
	Setting Hardware Properties
	Setting Memory Properties
	5000 Series Chips
	3150 Neuron Core
	3120 and 3170 Neuron Core

	Setting the Hardware Template Description

	6 Defining Device Interfaces and Creating their Neuron C Application Framework
	 Introduction to Device Interfaces
	Starting the Code Wizard
	Using the Resource Pane
	Introduction to Resource File Sets
	Introduction to Resources
	Using the NodeBuilder Resource Editor

	Using the Program Interface Pane

	Defining the Device Interface
	Adding Functional Blocks
	Using Large Functional Block Arrays

	Editing Mandatory Network Variables
	Editing Mandatory Configuration Properties
	Implementing Optional Network Variables
	Implementing Optional Configuration Properties
	Adding Implementation specific Network Variables
	Adding Implementation specific Configuration Properties
	Setting Initial Values for Network Variables and Configuration Properties
	Setting Initial Values for Structured Data Types
	Setting Initial Values for Enumerations
	Setting Initial Values for Floating Point and s32 Data Types

	Using Changeable Type Network Variables

	Generating Code with the Code Wizard
	Files Created by the Code Wizard

	7 Developing Device Applications
	Introduction to Neuron C
	Unique Aspects of Neuron C
	Neuron C Variables

	Introduction to Neuron C Code Editing
	Modifying Neuron C Code Generated by the Code Wizard

	Using the NodeBuilder Editor
	Using Syntax Highlighting
	Searching Source Files
	Using Bookmarks
	Setting Editor Options

	8 Building and Downloading Device Applications
	 Introduction to Building and Downloading Applications
	Building an Application Image
	Excluding Targets from a Build
	Cleaning Build Output Files
	Viewing Build Status
	Setting Build Options

	Downloading an Application Image
	Programming 5000 Off chip Memory
	Programming 3150 Off chip Memory
	Programming 3150 On chip Memory
	Programming 3120 and 3170 On chip Memory
	Upgrading Device Applications

	Adding and Managing Target Devices
	Adding a Target Device with the LonMaker Tool
	Adding a Target Device with the NodeBuilder Project Manager
	Managing Target Devices
	Editing Target Device Settings

	9 Testing a NodeBuilder Device Using the LonMaker Tool
	 Introduction to Testing NodeBuilder Devices
	Monitoring and Controlling NodeBuilder Devices
	Connecting NodeBuilder Devices

	10 Debugging a Neuron C Application
	 Introduction to Debugging
	Starting the NodeBuilder Debugger
	Using the Debugger Toolbar
	Stopping an Application
	Stepping Through Applications
	Debugging Interrupts for 5000 Series chips
	Using Statement Expansion
	Using the Watch List Pane
	Using the Call Stack Pane
	Using the Debug Device Manager Pane
	Peeking and Poking Memory
	Executing Code in Development Targets Only
	Using the Debug Error Log Tab
	Setting Debugger Options

	Appendix A Using the Command Line Project Make Facility
	Appendix B Using Source Control With a NodeBuilder Project
	Appendix C Glossary
	Appendix D NodeBuilder Software License Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CenturySchoolbook
 /Echelon
 /EchelonPlain
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

