
0 7 8 - 0 3 9 8 - 0 1 A

®

Mini FX User’s Guide

ii

Echelon, LON, LONWORKS, Neuron, 3120, 3150, Digital Home,
i.LON, LNS, LonMaker, LONMARK, LonPoint, LonTalk,
NodeBuilder, ShortStack, and the Echelon logo are
trademarks of Echelon Corporation registered in the United
States and other countries. FTXL, LonScanner, LonSupport,
OpenLDV, and LNS Powered by Echelon are trademarks of
Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed for
use in equipment or systems which involve danger to human
health or safety or a risk of property damage and Echelon
assumes no responsibility or liability for use of the Neuron

Chips or LonPoint Modules in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested by
Echelon. It is the responsibility of the customer to determine
the suitability of these parts for each application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR ANY
PARTICULAR PURPOSE, NONINFRINGEMENT, AND THEIR
EQUIVALENTS.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright ©1997–2009 by Echelon
Corporation.
Echelon Corporation
www.echelon.com

Mini FX User's Guide iii

Table of Contents
Preface..vii

Purpose ..viii
Audience ..viii
Hardware Requirements ..viii
Content .. ix
Related Manuals ... ix
For More Information and Technical Support ..xi

1 Introduction .. 1
Introduction to the Mini FX Evaluation Kit .. 2
New Features in the Mini FX Evaluation Kit.. 2

Series 5000 Chip Support ... 2
Improved Memory Architecture... 3
Faster System Clock ... 4
Improved Performance for Arithmetic Operations 4
User-Programmable Interrupts ... 4
Additional I/O Model Support .. 5
Increased Network Variable Support .. 5
Smaller Layout.. 5
Backwards Compatibility for Device Applications 5

FT 5000 EVB Evaluation Board... 6
PL 3150 and 3170 EVB Evaluation Board... 6
Neuron C Version 2.2 Enhancements .. 7

Interrupt Support ... 7
Non-Constant Device-Specific Configuration Property Support ... 7
New and Enhanced I/O Models.. 7
New and Enhanced Compiler Directives... 7

Hardware Template Editor... 8
Microsoft Windows Vista Support .. 8

What's Included with the Mini FX Evaluation Kit...................................... 8
Mini FX CD.. 9
Development Platforms... 10

FT 5000 EVB Evaluation Board .. 10
PL 3150 and PL 3170 EVB Evaluation Boards............................. 10

LonScanner Protocol Analyzer CD (Demo Edition) 11
U10/U20 USB Network Interface... 12

Upgrading the Development Environment .. 12
Upgrading to the NodeBuilder FX Tool ... 12
Upgrading to the LonMaker Tool ... 14
Activating the LonScanner Tool ... 15

Introduction to Mini FX Device Development and LONWORKS
Networks...15

Channels ..16
Routers ...16
Applications ...17
Program IDs... 17
Network Variables... 18
Configuration Properties... 20
Functional Blocks .. 20
Functional Profiles .. 20

iv Preface

Hardware Templates... 21
Neuron C .. 21
Device Templates... 21
Device Interface Files.. 22
Resource Files .. 22

2 Installing the Mini FX Evaluation Kit..................................... 23
Installing the Mini FX Evaluation Kit ... 24

Installing the Mini FX Software... 24
Connecting the Mini FX Hardware .. 29

Connecting the Mini FX/FT Hardware.. 30
Connecting the Mini FX/PL Hardware.. 33

3 Mini FX Quick-Start Exercise ... 37
Mini FX Quick-Start Exercise... 38

Step 1: Creating the Device Application .. 38
Step 2: Writing the Device Application.. 39

FT 5000 Evaluation Boards.. 39
PL 3150 and PL 3170 Evaluation Boards 41

Step 3: Building the Device Application .. 42
Step 4: Downloading the Device Application....................................... 45
Step 5: Testing the Device Application .. 46

4 Using the Mini FX Application.. 47
Introduction to the Mini FX Application .. 48
Building a Device Application... 48

Creating and Opening Neuron C Source Files 49
Selecting the Hardware Template.. 51
Specifying the Program ID.. 51
Building the Application Image File .. 55

Downloading an Application Image File .. 55
Resetting, Winking, and Testing Devices... 60

5 Developing Device Applications... 63
Introduction to Neuron C .. 64

Unique Aspects of Neuron C... 64
Neuron C Variables ...66

Neuron C Variable Types ... 66
Neuron C Storage Classes .. 67
Variable Initialization .. 68
Neuron C Declarations ... 68

Getting Started with Neuron C... 69
Performing Neuron C Input/Output... 70

Switches... 72
FT 5000 EVB... 72
Mini Gizmo I/O Board ..73
Conditional Compilation Example .. 74

LEDs ..75
FT 5000 EVB... 76
Mini Gizmo I/O Board ..76
Conditional Compilation Example .. 76

Temperature Sensor ... 77
Serial I/O.. 78
LCD Display .. 79

Mini FX User's Guide v

I/O Examples Toolkit .. 80
Creating Example Device Applications.. 84

Digital Sensor and Actuator Examples ... 85
Simple Digital Sensor... 85
Simple Digital Actuator ... 86
Advanced Digital Actuator... 86
Advanced Digital Sensor Example .. 88

Thermostat Example .. 89
ISI Example... 92

Appendix A Glossary .. 97

Appendix B Creating and Editing Hardware Templates 109
Using Hardware Templates .. 110

Creating Custom Hardware Templates ... 111
Configuring Hardware Templates.. 111

Setting Hardware Properties ... 111
Setting Memory Properties ..114

Series 5000 Chips ...115
3150 Neuron Core... 116
3170 Neuron Core... 116

Setting the Hardware Template Description.............................. 117
Appendix C Mini FX Software License Agreement................. 119

vi Preface

Mini FX User's Guide vii

Preface

The Mini FX Development Kit is a hardware and software
platform for evaluating the LONWORKS® 2.0 platform and

developing simple LONWORKS devices. The Mini kit lets you
build Neuron® C applications and download them to

LONWORKS devices, and test LONWORKS devices.

viii Preface

Purpose
This document describes how to use the Mini FX Evaluation Kit to develop and build
simple Neuron C device applications, download the device applications to LONWORKS
devices, and test the LONWORKS devices.

Audience
This guide is intended for device and system designers with an understanding of control
networks.

Hardware Requirements
Requirements for computers running the Mini kit are listed below:

• Microsoft® Windows Vista® or Microsoft Windows® XP. Echelon recommends that
you install the latest service pack available from Microsoft for your version of
Windows.

• Intel® Pentium® III 600MHz processor or faster, and meeting the minimum Windows
requirements for the selected version of Windows.

• 120 to 350 megabytes (MB) free hard-disk space, plus the minimum Windows
requirements for the selected version of Windows.

o The Mini kit requires 90 MB of free space.

o Microsoft .NET Framework 3.5 SP1, which is required to run the Mini FX
Application, requires 30 MB of free space.

o The LonScanner™ Protocol Analyzer (Demo Edition), which is included with the
Mini kit software, requires 26 MB of free space.

o If you install Adobe® Reader 9.1 from the Mini FX Evaluation Kit CD, you need
an additional 204 MB of free space. You need Adobe Reader or another PDF
viewer to view the Mini kit documentation.

• 512 MB RAM minimum.

• Note: Windows Vista testing for the Mini FX Application has been performed on
computers that have a minimum of 2 GB of RAM. For complete Windows Vista
requirements, refer to
www.microsoft.com/windows/windows-vista/get/system-requirements.aspx. You
can use Microsoft’s Vista Upgrade Advisor to determine upgrade requirements for a
particular computer. To download this tool, go to the Microsoft Web site at
www.microsoft.com/windows/windows-vista/get/upgrade-advisor.aspx.

• CD-ROM drive.

• 1024x768 or higher-resolution display with at least 256 colors.

• Mouse or compatible pointing device.

• LNS® network interface or IP-852 router. If an LNS network interface is used, it
may be a local or remote interface.

o Compatible local network interfaces include the U10/U20 USB network interface
(included with the Mini FX/FT and Mini FX/PL Evaluation Kits); PCC-10,

http://www.microsoft.com/windows/windows-vista/get/system-requirements.aspx
http://www.microsoft.com/windows/windows-vista/get/upgrade-advisor.aspx

Mini FX User's Guide ix

PCLTA-20, or PCLTA-21 network interfaces; and the SLTA-10 Serial LonTalk
Adapter.

o Compatible remote network interfaces include the i.LON® SmartServer, i.LON
100 e3 plus Internet Server, or i.LON 600 LONWORKS-IP Server.

o Compatible IP-852 routers include the i.LON SmartServer with IP-852 routing,
i.LON 100 e3 plus Internet Server with IP-852 routing, or an i.LON 600
LONWORKS-IP Server. If you are using an IP-852 router, your computer must
have an IP network interface such as an Ethernet card or modem with PPP
software. In addition, the i.LON software must be installed on your computer,
and the IP-852 channel must be configured using the LONWORKS-IP
Configuration Server application software.

Content
This guide includes the following content:

• Introduction: Lists the new features in the Mini FX Evaluation Kit, and summarizes
the components included with the Mini kit. Describes how to upgrade your device
development environment with the NodeBuilder tool, LonMaker tool, and an
activated LonScanner tool. It provides an overview of device development with the
Mini kit and LONWORKS networks.

• Installing the Mini FX Evaluation Kit. Describes how to get started with your Mini
FX, including how to install the Mini FX software and connect the Mini FX
hardware.

• Mini FX Quick-Start Exercise. Demonstrates how to create a device with the Mini
kit.

• Using the Mini FX Application. Describes how to use the Mini FX Application to
build a Neuron C application image, download an application image into a device,
and test a device.

• Developing Device Applications. Introduces the Neuron C Version 2.2 programming
language, and provides a series of programming examples that demonstrate Neuron
C concepts, including input/output, timers, network variables, configuration
properties, functional blocks, and Interoperable Self-Installation (ISI).

• Appendices. Includes a glossary, an appendix describing how to create and edit
custom hardware templates, and the Mini Kit Software License agreement.

Related Manuals
The documentation related to the Mini kit is provided as Adobe PDF files and online help
files. The PDF files are installed in the Echelon Mini program folder when you install
the Mini kit. You can download the latest Mini FX documentation, including the latest
version of this guide, from Echelon’s Web site at www.echelon.com/docs.

The following manuals provide supplemental information to the material in this guide.
You can download these documents from Echelon’s Web site at www.echelon.com.

FT 5000 EVB Examples Guide Describes how to run the Neuron C example
applications included with the Mini FX/FT Evaluation
Kit on an FT 5000 EVB.

http://www.echelon.com/docs
http://www.echelon.com/

x Preface

FT 5000 EVB Hardware Guide Describes how to connect the FT 5000 EVBs, and
describes the Neuron core, I/O devices, service pin and
reset buttons and LEDs, and jumper settings on the FT
5000 EVB hardware.

Two FT 5000 EVBs are included with the Mini FX/FT
Evaluation Kit.

Introduction to the LONWORKS®
Platform

Provides a high-level introduction to LONWORKS
networks and the tools and components that are used
for developing, installing, operating, and maintaining
them.

I/O Model Reference for Smart
Transceivers and Neuron Chips

Describes the many different I/O models that are
available for use with the Neuron Chips and Smart
Transceivers.

LonMaker® User’s Guide Describes how to use the LonMaker Integration Tool to
design, commission, modify, and maintain LONWORKS
networks.

LONMARK® SNVT and SCPT
Guide

Documents the standard network variable types
(SNVTs), standard configuration property types
(SCPTs), and standard enumeration types that you can
declare in your applications.

LonScanner™ Protocol Analyzer
User’s Guide

Describes how to use the LonScanner Protocol Analyzer
to monitor, analyze, and diagnose ISO/IEC 14908-4,
LONWORKS/IP, and native ISO/IEC 14908-1 channels,
and how to interpret the data that the protocol analyzer
collects.

LONWORKS® USB Network
Interface User’s Guide

Describes how to install and use the U10 and U20 USB
Network Interfaces, which are included with the Mini
FX/FT Evaluation Kit and Mini FX/PL Evaluation Kit,
respectively.

Mini FX/PL Examples Guide Describes how to run the Neuron C example
applications included with the Mini FX/PL Evaluation
Kit on PL 3150 and PL 3170 EVBs.

Mini FX/PL Hardware Guide Describes how to connect the PL 3150 and PL 3170
EVBs, and describes the I/O devices, service pin and
reset buttons and LEDs, and jumper settings on the PL
3150 and PL 3170 EVBs, and Mini Gizmo I/O Boards.

The Mini FX/PL Evaluation Kit includes one PL 3150
EVB and one PL 3170 EVB.

Neuron® C Programmer’s Guide Describes how to write programs using the Neuron C
Version 2.2 language.

Neuron® C Reference Guide Provides reference information for writing programs
using the Neuron C language.

Neuron® Tools Error Guide Provides reference information for Neuron tool errors.

Mini FX User's Guide xi

NodeBuilder® Resource Editor
User’s Guide

Describes how to use the NodeBuilder Resource Editor
to create and edit resource file sets and resources such
as functional profiles, network variable types, and
configuration property types.

PL 3120® / PL 3150® / PL 3170™

Smart Transceiver Data Book
Provides detailed technical specifications on the
electrical interfaces, mechanical interfaces, and
operating environment characteristics for the PL 3120,
PL 3150, and PL 3170 Power Line Smart Transceivers.

For More Information and Technical Support
The Mini FX ReadMe document provides descriptions of known problems, if any, and
their workarounds. To view the Mini FX ReadMe, click Start, point to Programs,
point to Echelon Mini, and then select Mini FX ReadMe First. You can also find
additional information about the Mini kit at the Mini FX Web page at
www.echelon.com/mini.

If you have technical questions that are not answered by this document, the Mini FX
online help, or the Mini FX ReadMe file, you can contact technical support. Free e-mail
support is available or you can purchase phone support from Echelon or an Echelon
support partner. See www.echelon.com/support for more information on Echelon
support and training services.

You can also view free online training or enroll in training classes at Echelon or an
Echelon training center to learn more about developing devices. You can find additional
information about device development training at www.echelon.com/training.

You can obtain technical support via phone, fax, or e-mail from your closest Echelon
support center. The contact information is as follows (check www.echelon.com/support
for updates to this information):

Region Languages Supported Contact Information
The Americas

English
Japanese

Echelon Corporation
Attn. Customer Support
550 Meridian Avenue
San Jose, CA 95126
Phone (toll-free):
1.800-258-4LON (258-4566)
Phone: +1.408-938-5200
Fax: +1.408-790-3801
lonsupport@echelon.com

Europe

English
German
French
Italian

Echelon Europe Ltd.
Suite 12
Building 6
Croxley Green Business
Park
Hatters Lane
Watford
Hertfordshire WD18 8YH
United Kingdom
Phone: +44 (0)1923 430200
Fax: +44 (0)1923 430300
lonsupport@echelon.co.uk

http://www.echelon.com/mini
http://www.echelon.com/support
http://www.echelon.com/training/
http://www.echelon.com/support
mailto:lonsupport@echelon.com
mailto:sales@echelon.co.uk

xii Preface

Region Languages Supported Contact Information
Japan

Japanese Echelon Japan
Holland Hills Mori Tower,
18F
5-11.2 Toranomon,
Minato-ku
Tokyo 105-0001
Japan
Phone: +81.3-5733-3320
Fax: +81.3-5733-3321
lonsupport@echelon.co.jp

China

Chinese
English

Echelon Greater China
Rm. 1007-1008, IBM Tower
Pacific Century Place
2A Gong Ti Bei Lu
Chaoyang District
Beijing 100027, China
Phone: +86-10-6539-3750
Fax: +86-10-6539-3754
lonsupport@echelon.com.cn

Other Regions

English
Japanese

Phone: +1.408-938-5200
Fax: +1.408-328-3801
lonsupport@echelon.com

mailto:lonsupport@echelon.co.jp
mailto:lonsupport@echelon.com.cn
mailto:lonsupport@echelon.com

Mini FX User's Guide 1

1

Introduction

This chapter introduces the Mini FX Evaluation Kit. It lists
the new features in the Mini kit, and it summarizes the

components included with the Mini kit. It describes how to
upgrade your device development environment with the

NodeBuilder tool, LonMaker tool, and an activated
LonScanner tool. It provides an overview of device

development with the Mini kit and LONWORKS networks.

2 Introduction

Introduction to the Mini FX Evaluation Kit
The Mini FX Evaluation Kit is a hardware and software platform for evaluating the
LONWORKS® 2.0 platform and developing LONWORKS devices based on the Series 5000
and 3100 Neuron Chips and Smart Transceivers. The Mini kit lets you build Neuron C
applications and download them to LONWORKS devices, and test LONWORKS devices.

You can use the Mini kit to develop prototype or production devices, particularly in the
rapidly growing, price-sensitive mass markets of smart light switches, thermostats, and
other simple devices and sensors.

You can use the Mini kit to do the following:

• Compile, build, and download a Neuron C device application to a development
platform or to your own devices.

• Test with prototype I/O hardware on either the FT 5000 EVBs included with the
Mini FX/FT Evaluation Kit and available separately, or with the PL 3150 and PL
3170 EVBs included with the Mini FX/PL Evaluation Kit and available separately, or
build and test your own I/O hardware with your own custom device.

• Create a self-installed LONWORKS network and test how your device interoperates
with other LONWORKS devices—or use the Mini kit with a separately purchased
LonMaker® Integration Tool to create a managed LONWORKS network.

• View standard resource file definitions for standard network variable types (SNVTs),
standard configuration property (SCPTs), and standard functional profiles.

• Create your own resource files with user-defined network variable types (UNVTs),
user-defined configuration property (UCPTs), and user-defined functional profiles.

New Features in the Mini FX Evaluation Kit
The Mini FX Evaluation Kit adds support for Echelon’s new Series 5000 chips (the term
used to collectively refer to the Neuron 5000 Processor and FT 5000 Smart Transceiver),
support for Echelon’s new FT 5000 EVB and new PL 3170 EVB, and the following key
features:

• Neuron C Version 2.2 Enhancements
• Hardware Template Editor
• Microsoft Windows Vista support

Series 5000 Chip Support
The Mini FX Evaluation Kit supports Echelon’s new Neuron 5000 Processor and FT 5000
Smart Transceiver, which are designed for the LONWORKS 2.0 platform. The Series 5000
chips are faster, smaller, and cheaper that previous-generation chips, as they include the
following new features and functions.

• Improved memory architecture.
• Faster system clock.
• Improved performance for arithmetic operations.
• User-programmable interrupts.
• Additional I/O model support.
• Increased network variable support (NodeBuilder tool required).
• Smaller layout

Mini FX User's Guide 3

• Backwards compatibility for device applications.

Improved Memory Architecture
The Series 5000 chips have a new memory architecture that speeds up the CPU
operation and lowers development and device costs. The Series 5000 chips have internal
on-chip memory that includes 16 KB of ROM to store the Neuron firmware image and 64
KB of RAM (44 KB is available for application code and data). The Series 5000 chips use
external serial memory (EEPROM or flash) to store your application code, configuration
data, and an upgradable Neuron firmware image (the Series 5000 chips have no
user-accessible on-chip non-volatile memory). The external serial EEPROM and flash
memory devices communicate with Neuron 5000 Core via a serial peripheral interface
bus (SPI) or Inter-Integrated Circuit (I2C) interface. EEPROM devices can use either the
SPI or I2C interfaces; flash devices must use the SPI interface.

When a device is reset, the application code and configuration data are copied from the
external non-volatile memory into the internal on-chip RAM, and the device application
is then executed. The Series 5000 chips require at least 2KB of off-chip EEPROM to
store configuration data, and you can use a larger capacity EEPROM device or an
additional flash device (up to 64 KB) to store your application code and an upgradable
Neuron firmware image.

The Series 5000 chips also include a new interrupt processor that handles
user-programmable interrupts, which improves chip performance.

Note: Many types of EEPROM devices are supported; however, Echelon currently
supports and provides drivers for three external flash devices: Atmel AT25F512AN,
STM25P05, and SST25VF512A. You can configure the external non-volatile memory
used by a device in the Hardware Template Editor. For more information on using the
Hardware Template Editor, see Chapter 3.

Figure 1.1 illustrates the architecture of the Series 5000 chips. For more information on
the memory architecture of the Series 5000 chips, see the Series 5000 Chip Data Book.

4 Introduction

Figure 1.1 Series 5000 Chip Architecture

Faster System Clock
The Series 5000 chips support an internal system clock speed of up to 80 MHz (using an
external 10 MHz crystal). This results in application processing power that equals a
hypothetical FT 3150 Smart Transceiver operating at an external clock speed of 160MHz.
You can adjust the internal system clock speed from 5 MHz to 80 MHz through the
device’s hardware template. For more information on configuring the system clock of the
Series 5000 chips, see Appendix B, Creating and Editing Hardware Templates.

Improved Performance for Arithmetic Operations
The Series 5000 chips include 8-bit hardware multipliers and dividers, which are
supported by new Neuron assembly language instructions for multiplication and division.
These instructions use hardware multiply and divide functions to provide improved
performance for 8-bit multiplication and division. The older software multiplication and
division system functions are still supported, but many of these functions automatically
benefit from these faster hardware multipliers and dividers.

User-Programmable Interrupts
The Series 5000 chips let you define user interrupts that can handle asynchronous I/O
events, timer/counter events, and a dedicated, high-resolution system timer. A hardware
semaphore is supplied to help you control access to data that is shared between the
application (APP) and interrupt (ISR) processors on the Series 5000 chips.

At higher system clock rates (20 MHz or greater), these interrupts run in the dedicated
interrupt processor (ISR) on the chip. This improves the performance of the interrupt

Mini FX User's Guide 5

routines and your device application. At lower system clock rates, these interrupts run
in the same application processor (APP) as the device application.

Additional I/O Model Support
The Series 5000 chips include hardware support for the Serial Peripheral Interface (SPI)
and Serial Communication Interface (SCI) serial I/O models, which provide increased
performance for devices that use these interfaces. The UART on the Series 5000 chips
includes an increased FIFO (16 bytes), and supports software-configurable parity
generation and validation (odd, even, none) for the SCI model.

Overall, the Series 5000 chips support 35 I/O models, including all of the I/O models that
were previously only supported by the PL 3120, PL 3150, and PL 3170 Smart
Transceivers. These I/O models include the new Infrared Pattern, Magcard Bitstream,
SCI, and SPI models.

In addition, the Series 5000 chips support the Stretched Triac model, which is a new I/O
model that improves performance for triac devices used with reactive loads.

Increased Network Variable Support
The Series 5000 chips can support up to 254 static network variables and 127 network
variable aliases, subject to available system resources (for example, RAM and EEPROM)
and application requirements. All current Series 3100 chips with Neuron firmware
version 16 or better also support these increased network variable limits, subject to
available memory resources.

You must build the application with the NodeBuilder FX tool to take advantage of these
increased network variable limits. If you use the Mini FX Application, your device
application is limited to 32 network variables.

Smaller Layout
The Series 5000 chips feature a more compact design using a 7 mm by 7 mm 48-pin quad
flat no leads (QFN) packaging and 3.3V operation (I/O pins are 5V-tolerant)

Backwards Compatibility for Device Applications
The Series 5000 chips are compatible with device applications written for 3150 and 3120
Neuron Chips and Smart Transceivers. You can use the Mini kit to port your Series
3100 application to a Series 5000 chip. To do this, you open the Mini kit application and
verify that the existing application can be built using Mini FX Application. If the build is
successful, create a hardware template for your device based on the Series 5000 chip, and
then re-build the device application using the new hardware template. See Selecting the
Hardware Template in Chapter 4 and, Appendix B, Creating and Editing Hardware
Templates See in Chapter 4 for more information on using the Hardware Template
Editor.

Notes:

The Neuron firmware contains the implementation of the ISO/IEC 14908-1 protocol
stack, the application scheduler, and many frequently used functions. The functions
included in the Neuron firmware vary between firmware versions and chip models;
therefore, when you rebuild an existing application for a FT 5000 Smart Transceiver, the
application may have a smaller or larger memory footprint, subject to the application’s
use of library functions.

6 Introduction

The Neuron C Version 2.2 language includes new keywords such as interrupt, __lock,
stretchedtriac, __slow, __fast, and __parity. Some of these keywords use a double
underscore prefix to avoid any likely naming collisions within existing device
applications.

FT 5000 EVB Evaluation Board
The FT 5000 EVB is a complete Series 5000 LONWORKS device that you can use to
evaluate the LONWORKS 2.0 platform and create LONWORKS devices. The FT 5000 EVB
includes a FT 5000 Smart Transceiver with an external 10 MHz crystal (you can adjust
the system’s internal clock speed from 5MHz to 80MHz), an FT-X3 communication
transformer, 64KB external serial EEPROM and flash memory devices, and a 3.3V power
source. The FT 5000 EVB features a compact design that includes the following I/O
devices that you can use to develop prototype and production devices and test the FT
5000 EVB example applications:

• 4 x 20 character LCD
• 4-way joystick with center push button
• 2 push-button inputs
• 2 LED outputs
• Light-level sensor
• Temperature sensor

The FT 5000 EVB Evaluation Board also includes EIA-232/TIA-232 (formerly RS-232)
and USB interfaces that you can use to connect the board to your development computer
and perform application-level debugging. You can also use the EIA-232 interface or
other interfaces provided for development with the ShortStack® Developer’s Kit. Note
that only one interface can be used at a time.

Note: You must use the ShortStack FX Developer’s Kit to develop ShortStack
applications for the FT 5000 EVB. Earlier versions of the kit do not support the FT 5000
EVB.

The FT 5000 EVB supports the in-circuit programming of the external serial EEPROM
and flash devices used by the FT 5000 Smart Transceiver on the FT 5000 EVB. This
provides an alternative to loading application images into these external serial memory
devices over the TP/FT-10 network.

The FT 5000 EVB also features a flash in-circuit emulator (ICE) header that you can use
to connect an SPI flash ICE. This provides an alternative to using the external serial
non-volatile memory flash device on the FT 5000 EVB.

For more information on the FT 5000 EVB hardware, including detailed descriptions of
its Neuron core, I/O devices, service pin and reset buttons and LEDs, jumper settings,
and in-circuit programming instructions, see the FT 5000 EVB Hardware Guide.

PL 3150 and 3170 EVB Evaluation Board
The PL 3170 EVB is a complete LONWORKS device that you can use to evaluate the
LONWORKS 2.0 platform and create simple LONWORKS devices. The PL 3170 EVB
includes a PL 3170 Smart Transceiver, which includes Interoperable Self Installation
(ISI) functions built into the firmware that is stored in the on-chip ROM. This lets you
create Neuron C device application that have a maximum of 4 KB code—even when
using ISI functions in the application.

Mini FX User's Guide 7

The PL 3150 EVB is a complete LONWORKS device that includes a PL 3150 Smart
Transceiver operating at 10MHz external clock (5MHz system clock speed), 64KB of
off-chip flash memory, and 2KB of on-chip RAM.

You can attach a Mini Gizmo I/O Board to the PL 3150/PL 3170 EVBs to test your device
applications and test the example applications included with the Mini FX/PL Evaluation
Kit.

Neuron C Version 2.2 Enhancements
The new features in the Neuron C Version 2.2 programming language include interrupt
support, non-constant device-specific configuration properties, new and enhanced I/O
models, and new and enhanced compiler directives. These new features are detailed in
the Neuron C Programmer’s Guide and Neuron C Reference Guide.

Interrupt Support
The Series 5000 chips support hardware user interrupts in addition to the support
provided through I/O models. The Neuron C Version 2.2 language includes new
keywords to manage hardware user interrupts and a semaphore for application
programs. The Series 5000 chips support the following three types of interrupts: I/O
interrupts, timer/counter driven interrupts, and periodic system interrupts.

When the Series 5000 chips are running at a system clock rate of 20 MHz or greater,
these interrupts execute in the separate interrupt processor on the chips, which improves
the performance of the interrupt and the device application.

Non-Constant Device-Specific Configuration Property
Support
The Neuron C Version 2.2 language supports non-constant device-specific configuration
properties. Non-constant device-specific configuration properties have values that can be
modified by the device application, an LNS network tool such as the LonMaker®
Integration Tool, or another tool not based on LNS. For example, a thermostat may
include a user interface that allows the user to change the setpoint.

New and Enhanced I/O Models
The Neuron C Version 2.2 language now includes support for the stretched triac output
model, and it includes some enhancements to the existing SCI and I2C I/O models.

The stretched triac output model provides improved control when driving inductive
loads. The stretched triac model requires a Neuron 5000 Processor.

The SCI input/output model now supports a configurable parity bit (none, even, odd).
The parity feature requires a Series 5000 chip even though the SCI model is available on
some Series 3100 chips.

The I2C input/output model now supports slow and fast operation speeds for compliance
with the I2C standard when operating at very high system clock speeds.

New and Enhanced Compiler Directives
The Neuron C Version 2.2 language includes new compiler directives and existing
compiler directives that have been enhanced to help you develop location-independent
and modular code.

8 Introduction

You can enable and disable specific warnings using the new #pragma enable_warning
and #pragma disable_warning compiler directives, and you can use the new #error
and #warning compiler directives to manage conditional compilation, raising
user-defined warning or error messages as necessary. You can use the new #pragma
library directive to indicate any required library. You can use enhanced buffer control
directives for statements of minimum or final requirements.

Compiler directives for control of the Neuron C Optimizer have been streamlined, and a
new optimization phase for generating more compact code has been added.

Hardware Template Editor
The Mini kit now includes a Hardware Template Editor that you can use to create and
configure new custom hardware templates and edit existing ones. The Hardware
Template Editor can be launched from the Mini FX application, and it is available as a
standalone tool.

A hardware template is a file with a .NbHwt extension that defines the hardware
configuration for a target device. It specifies hardware attributes including platform,
transceiver type, Neuron Chip or Smart Transceiver model, clock speed, system image,
and memory configuration. Several standard hardware templates are included with the
Mini kit. You can use these or create your own.

The Hardware Template Editor supports hardware templates based on any supported
Neuron chip, including Series 5000 and Series 3100 chips. You use the Hardware
Template Editor to map external non-volatile memory from 0x4000 to 0xE7FF in the
Neuron address space (a maximum of 42 KB).

For more information on using the Hardware Template Editor, see Selecting the
Hardware Template in Chapter 4 and, Appendix B, Creating and Editing Hardware
Templates.

Microsoft Windows Vista Support
The Mini FX Application and online help files are compatible with Microsoft Windows
Vista.

What's Included with the Mini FX Evaluation Kit
There are two Mini FX products: the Mini FX/FT Evaluation Kit and the Mini FX/PL
Evaluation Kit. Table 1.1 lists the components included with the two Mini FX products:

Table 1.1 Mini FX Products

Component

Mini FX/FT
Evaluation

Kit

Mini FX/PL
Evaluation

Kit

Mini FX CD
Development Platforms
 FT 5000 EVB Evaluation Boards
 PL 3150 EVB and PL 3170 EVB Evaluation Boards

(1 each)

Mini FX User's Guide 9

LonScanner Protocol Analyzer CD (Demo Edition)
U10 or U20 USB Network Interface

The following sections describe each of the components.

Mini FX CD
The Mini FX CD contains the software required to build and download Neuron C
applications for your LONWORKS devices, and it includes Neuron C example applications
that you can run on your development platform and use to further learn how to develop
your own device applications.

The Mini FX software includes the following programs:

• Mini FX Application. Manage Neuron C code, build Neuron C device applications,
and download the device applications to your development boards. The Mini FX
Application includes the following components:

o Hardware Template Editor. Specify hardware attributes including platform,
transceiver type, Neuron Chip or Smart Transceiver model, clock speed, system
image, and memory configuration.

o Standard Program ID Calculator. Specify the device’s 16-hex digit program ID,
which uniquely identifies the device application.

o Diagnostic Tool. Reset the device application, wink a device, or get the current
device status and statistics related to the device’s performance.

• NodeBuilder Resource Editor. Provides a simple interface for viewing existing
LONMARK® resources and defining your own resources. For more information on the
NodeBuilder Resource Editor, see the NodeBuilder Resource Editor User’s Guide.

• ISI Developer’s Kit. Provides for easy development of devices that do not require
installation tools. Consult the ISI Programmer’s Guide for more information on ISI.

• OpenLDV™ 3.4. An API used by the Mini kit to send and receive ISO/IEC 14908-1
messages through Echelon’s family of LONWORKS network interface products. The
Mini FX Application and the Monitoring & Control C# example application that you
can download from the Echelon Web site uses the OpenLDV API. For more
information on OpenLDV, see the OpenLDV Programmer’s Guide. You can download
the OpenLDV Programmer’s Guide and the OpenLDV Developer’s Kit from the
Echelon Web site at www.echelon.com/openldv.

• Example Applications. The Mini kit include three Neuron C example applications
for the FT 5000 EVBs, and four Neuron C example applications for the PL 3150 EVB
and PL 3170 EVB. You can use these examples to test the I/O devices on your EVBs,
and create simple LONWORKS networks. You can view the Neuron C code used in the
example applications, and then create a new device application by modifying the
existing example applications or by developing the device application from scratch.
For more information on using the FT 5000 EVB example applications, see the FT
5000 EVB Examples Guide. For more information on using the PL 3150 and PL 3170
example applications, see the Mini FX/PL Examples Guide.

Note: Mini FX/PL users can download a Monitoring & Control C# example
application from the Echelon Web site. This application monitors ISI messages and
uses the OpenLDV API to monitor and control network variables on devices,
including the PL 3150 and PL 3170 EVBs, running the MGDemo example.

http://www.echelon.com/openldv

10 Introduction

Development Platforms
The Mini FX/FT Evaluation Kit includes two FT 5000 EVBs. The Mini FX/PL
Evaluation Kit includes one PL 3150 EVB and one PL 3170 EVB. The following sections
describe these development platforms.

FT 5000 EVB Evaluation Board
The FT 5000 EVB is a complete Series 5000 LONWORKS device that you can use to
evaluate the LONWORKS 2.0 platform and create LONWORKS devices. The FT 5000 EVB
includes an FT 5000 Smart Transceiver with an external 10 MHz crystal (you can adjust
the system’s internal clock speed from 5MHz to 80MHz), an FT-X3 communication
transformer, 64KB external serial EEPROM and flash memory devices, and a 3.3V power
source. The FT 5000 EVB features a compact design that includes the following I/O
devices that you can use to develop prototype and production devices and test the FT
5000 EVB example applications:

• 4 x 20 character LCD
• 4-way joystick with center push button
• 2 push-button inputs
• 2 LED outputs
• Light-level sensor
• Temperature sensor

Figure 1.2 FT 5000 EVB

PL 3150 and PL 3170 EVB Evaluation Boards
The Mini FX/PL Evaluation Kit includes one PL 3150 EVB and one PL 3170 EVB. The
PL 3150 and 3170 EVBs utilize Echelon’s Power Line Smart Transceivers to signal over
any AC or DC power circuit, eliminating any need for additional wiring. The power

Mini FX User's Guide 11

supplies included with the PL 3150 and 3170 EVBs pass the network signals directly into
the AC power lines over the same two wires that power the evaluation boards. With the
PL 3150 and 3170 EVBs, you can begin building a power line control network by simply
plugging the evaluation boards into an electrical outlet. You can also attach the included
Mini Gizmo I/O Boards to the PL 3150/PL 3170 EVBs to test your device applications and
run the example applications included with the Mini FX/PL Evaluation Kit.

Figure 1.3 PL 3150/PL 3170 EVB (top) and Mini Gizmo I/O Board (bottom)

LonScanner Protocol Analyzer CD (Demo Edition)
The LonScanner Protocol Analyzer is a software package that provides network
diagnostic tools to observe, analyze, and diagnose the behavior of installed LONWORKS
networks, including network with devices that you have built with the Mini kit. A demo
version of the LonScanner Protocol Analyzer is included with your Mini kit. It is not
required to use the Mini kit, but the protocol analyzer will make your development and
integration efforts more productive. You can use the LonScanner tool with the U10 or
U20 USB network interface included with the Mini FX/FT and Mini FX/PL kits, and you

12 Introduction

also use it with other network interfaces including an IP-852 (ISO/IEC 14908-4) interface
as described in the LonScanner Protocol Analyzer User’s Guide.

The LonScanner tool included with the Mini kit will run in demo mode until you
purchase a key and activate it. When operating in demo mode, the protocol analyzer
does not display every captured packet and displays only the first 20 packets of a saved
or imported log file. In addition, the LonScanner License Activation dialog will appear
every time you open the protocol analyzer, and give you the option to activate your
LonScanner software. For more information on the LonScanner tool, including how to
purchase a key activate the software, see the LonScanner Protocol Analyzer User’s Guide.

U10/U20 USB Network Interface
The Mini FX/FT Evaluation Kit and Mini FX/PL Evaluation Kit include U10 and U20
USB network interfaces, respectively. The U10 and U20 USB Network Interfaces are
low-cost, high-performance LONWORKS interfaces for USB-enabled computers and
controllers.

The U10 USB Network Interface connects directly to a TP/FT-10 Free Topology Twisted
Pair (ISO/IEC 14908-2) LONWORKS channel through a high-quality removable connector.

The U20 USB Network Interface connects to a PL-20 C-Band Power Line (ISO/IEC
14908-3) LONWORKS channel through an included power supply with integrated coupler.
The U20 USB Network Interface can also be connected directly to 10.8-18VDC power
systems (such as those in automobiles, trucks and buses) without a coupling circuit, or to
virtually any powered line through a customer-supplied coupler/power supply.

The USB Network Interfaces can be used with virtually any computer-based LONWORKS
application, including all LNS and OpenLDV based applications such as the Mini kit,
NodeBuilder tool, LonMaker tool, and LonScanner tool. Drivers for the U10 and U20
USB Network Interfaces are automatically installed when you install the Mini FX
software.

For more information on installing and using the U10 and U20 USB network interfaces,
see the LONWORKS USB Network Interface User’s Guide.

Upgrading the Development Environment
You can upgrade your device development environment with the NodeBuilder FX
Development Tool or the LonMaker tool, or by activating the LonScanner tool included
with your Mini kit. The following sections describe the features provided by each tool,
and how they can improve your device development projects.

Upgrading to the NodeBuilder FX Tool
You can upgrade your Mini kit to the NodeBuilder FX Development Tool to build larger
device applications and build them faster in an integrated development environment
with a source-level debugger. The NodeBuilder FX Development Tool also provides free
activation of the included LonMaker and LonScanner tools. The NodeBuilder tool
includes the following components to help speed up your device development projects:

• Code Wizard. Use a drag-and-drop interface to create your device’s interface and
then automatically generate Neuron C source code that implements the device
interface and creates the framework for your device application.

• Code Editor. Edit the Neuron C source code generated by the Code Wizard to create
your device’s application.

Mini FX User's Guide 13

• Debugger. Debug your application with a source-level view of your application code
as it executes. The debugger lets you control and observe the behavior of your device
application over a LONWORKS channel. The debugger lets you set breakpoints,
monitor network variables, halt the application, step through the application, view
the call stack, and peek and poke memory. You can make changes to the code as you
debug a single device or debug multiple devices simultaneously.

• Project Manager. Build and download your application image to your development
platform or to your own device hardware.

• LonMaker® Integration Tool. Install, connect, configure, test, and update the devices
in your project using an LNS based application that combines a powerful,
client-server architecture with an easy-to-use Visio user interface. For more
information, see the LonMaker User’s Guide.

Activation of the LonMaker tool included with the NodeBuilder FX Development Tool
is free.

• LonScanner Protocol Analyzer (LNS Turbo Edition). Observe, analyze, and diagnose
the behavior of installed LONWORKS networks, including network with devices that
you have built with the Mini kit or NodeBuilder tool. For more information, see the
LonScanner Protocol Analyzer User’s Guide

Activation of the LonScanner tool included with the NodeBuilder FX Development
Tool is free.

• LNS Plug-in Framework Developer’s Kit. Write LNS device plug-ins in .NET
programming languages such as C# and Visual Basic .NET and re-distribute them.
For more information, see the LNS®Plug-in Programmer’s Guide.

Table 1.2 compares the Mini kit to the NodeBuilder FX tool.

Table 1.2 Comparison of the Mini Kit to the NodeBuilder Tool

Feature
Mini FX

Evaluation Kit
NodeBuilder

FX Tool

Neuron C Compiler

Network Variables per Device
(maximum number) 32 254a

Network Variables Aliases per Device
(maximum number) 32 127a

Application Code and Constant Data per
Device (maximum size in KB) 32 44

Integrated Development Environment

Code Wizard

Code Editor

Debugger

Project Manager

LonMaker Tool

14 Introduction

Feature
Mini FX

Evaluation Kit
NodeBuilder

FX Tool

LonScanner Protocol Analyzer (Demo
Edition)

LonScanner Protocol Analyzer (LNS Turbo
Edition)

LNS Plug-in Framework Kit
a The NodeBuilder FX tool supports up to 254 static network variables and 127 network variable

aliases for Neuron-hosted devices that use version 16 firmware or greater (for example, the Series
5000 chips, which use version 18 firmware). This limit is subject to available system resources (for
example, RAM and EEPROM) and application requirements.

When you upgrade to the NodeBuilder tool, you can use your existing development
hardware, and you can incorporate the Neuron C source files, library files, and hardware
templates you developed with the Mini kit into your NodeBuilder projects.

Note: The Mini kit build process requires the automatic creation of NodeBuilder device
template files. The Mini kit uses the name of the Neuron C source file as the name of the
device template file. For example, compiling the myDeviceApplication.nc source file
with the Mini FX Application leads to the creation of a hidden
myDeviceApplication.nbdt device template file.

To use the same device template file for both the Mini and NodeBuilder build processes,
specify different names for the source file and the device template when you build the
source file with NodeBuilder tool. Possible conflicts resulting from the sharing of the
same NodeBuilder device template file can be resolved by viewing and editing the device
template preferences in the NodeBuilder tool.

For more information on the NodeBuilder tool, see the NodeBuilder Web page at
www.echelon.com/nodebuilder. For more information on ordering the NodeBuilder tool,
contact your Echelon sales representative.

Upgrading to the LonMaker Tool
You can use the Mini kit to create self-installed devices, which do not require a network
management tool such as the LonMaker tool. The Mini kit supports standalone
applications (which may not require any network management), and self-installed
applications using the ISI protocol.

For more complex networks and applications that do require a network management
tool, you can use the LonMaker tool to install your development devices in a network,
and then configure, monitor, and test those devices. The LonMaker tool includes the
following features that you can use to test the Neuron C device applications you have
developed with the Mini kit: the LonMaker Browser, Data Point shapes, the LonMaker
Device Manager, and connection monitoring.

The LonMaker Browser is a standalone application that monitors all the network
outputs from your device and allows you to control all the network inputs to your
device. You can open the LonMaker Browser on any device or functional block in the
network. The LonMaker Browser displays all the network variables and
configuration properties for the selected network variables and configuration
properties. You can change the value of any of the input network variables or
writeable configuration properties.

http://www.echelon.com/nodebuilder

Mini FX User's Guide 15

The Data Point shape provides similar functionally as the LonMaker Browser, but
directly in your LonMaker drawing. The Data Point shape is a LonMaker Basic Shape
that you can add to your LonMaker drawing to monitor and control individual network
variables and configuration properties in your device. You can use a Data Point shape to
monitor the value of any input or output network variable, configuration property, or
functional block state (enabled or in override). You can also use a Data Point shape to
control the value of an input network variable or a configuration property. You can also
use Data Point shapes to create simple human-machine interface (HMI) applications for
your development devices within your LonMaker drawing.

The LonMaker Device Manager allows you to control the state of your device and its
functional blocks. You can use the device manager to reset your device, put your
device online or offline, and test network communication with your device. You can
also use the Device Manager to enable or disable individual functional blocks on your
device, and to invoke the self-test function of any of your functional blocks that
support self-test.

The LonMaker tool allows you to connect the network variables in your devices, and
then monitor those connections on the same page that you created the connections.
You can use monitored connections to view the values of network variables on your
LonMaker drawing. This feature is useful for monitoring and debugging your device
because monitored connections provide an easy way to visualize the flow of data
through your functional blocks.

Note: You cannot simultaneously use the same network interface with both the
LonMaker tool and the Mini FX Application. The Mini FX Application is an
OpenLDV application; therefore, it cannot share a network interface with other
LONWORKS applications. This means that when the Mini FX Application is attached
to a network interface, network tools such as the LonMaker tool cannot use that
network interface at the same time, and vice versa. To avoid network interface
conflicts, you can use the LonMaker tool to download and test device applications
that you have compiled with the Mini FX Application, or you can use separate
network interfaces for the LonMaker tool and the Mini FX Application.

Activating the LonScanner Tool
You can purchase a key to activate the LonScanner tool that is included with your Mini
kit. Once you activate your LonScanner tool, you can view every captured packet
transmitted and received by you development device and view all entries in saved or
imported log files.

Introduction to Mini FX Device Development and
LONWORKS Networks

A LONWORKS network consists of intelligent devices (such as sensors, actuators, and
controllers) that communicate with each other using a common protocol over one or more
communications channels. Network devices are sometimes called nodes.

Devices may be Neuron hosted or host-based. Neuron hosted devices run a compiled
Neuron C application on a Neuron Chip or Smart Transceiver. You can use the Mini kit
to develop, test, and debug Neuron C applications for Neuron hosted devices.

Host-based devices run applications on a processor other than a Neuron Chip or Smart
Transceiver. Host-based devices may run applications written in any language available
to the processor. A host-based device may use a Neuron Chip or Smart Transceiver as a

16 Introduction

communications processor, or it may handle both application processing and
communications processing on the host processor. The Mini kit supports some of the
common tasks occurring in the creation of host-based devices; however, an additional
host-based device development tool, such as the ShortStack® FX or the FTXL™
Developer’s Kit combined with a host development tool, is required.

Each device includes one or more processors that implement the ISO/IEC 14908-1
Control Network Protocol (CNP). Each device also includes a transceiver to provide its
interface to the communications channel.

A device publishes and consumes information as instructed by the application that it is
running. The applications on different devices are not synchronized, and it is possible
that multiple devices may all try to talk at the same time. Meaningful transfer of
information between devices on a network, therefore, requires organization in the form of
a set of rules and procedures. These rules and procedures are the communication
protocol, which may be referred to simply as the protocol. The protocol defines the
format of the messages being transmitted between devices and defines the actions
expected when one device sends a message to another. The protocol normally takes the
form of embedded software or firmware code in each device on the network. The CNP is
an open protocol defined by the ISO/IEC 14908-1 standard (defined nationally in the
United States, Europe, and China by the ANSI/EIA 709.1, EN 14908, and GB/Z 20177
standards, respectively).

Channels
A channel is the physical media between devices upon which the devices communicate.
The CNP is media independent; therefore, numerous types of media can be used for
channels: twisted pair, power line, fiber optics, IP, and radio frequency (RF) to name a
few. Channels are categorized into channel types, and the channel types are
characterized by the device transceiver. Common channel types include TP/FT-10
(ISO/IEC 14908-2 twisted pair free topology channel), TP/XF-1250 (high-speed twisted
pair channel), PL-20 (ISO/IEC 14908-3 power line channel), FO-20 (ANSI/CEA-709.4
fiber optics channel), and IP-852 (ISO/IEC 14908-4 IP-communication).

Different transceivers may be able to interoperate on the same channel; therefore, each
transceiver type specifies the channel type or types that it supports. The choice of
channel type affects transmission speed and distance as well as the network topology.

The Mini kit, LonMaker tool, and LonScanner tool, and Neuron chips support all
standard channel types, but not all Neuron chips support all transceiver and channel
types. Smart Transceivers combine the transceiver and Neuron chip core in the same
chip, and therefore support the channel types supported by the integrated transceiver.

Routers
Multiple channels can be connected using routers. Routers are used to manage network
message traffic, extend the physical size of a channel (both length and number of devices
attached), and connect channels that use different media (channel types) together.
Unlike other devices, routers are always attached to at least two channels.

The Mini kit does not install routers, but it can be used on networks with routers
installed by the LonMaker tool or other network management tool.

Mini FX User's Guide 17

Applications
Every LONWORKS device contains an application that defines the device’s behavior. The
application defines the inputs and outputs of the device. The inputs to a device can
include information sent on LONWORKS channels from other devices, as well as
information from the device hardware (for example, the temperature from a temperature
sensing device). The outputs from a device can include information sent on LONWORKS
channels to other devices, as well as commands sent to the device hardware (for example,
a fan, light, heater, or actuator). You can use the Mini kit to write a device’s Neuron C
application.

Program IDs
Every LONWORKS application has a unique, 16 digit, hexadecimal standard program ID
with the format FM:MM:MM:CC:CC:UU:TT:NN. Table 1.3 provides a break down of
the fields within the program ID.

Table 1.3 Program ID Fields

Field Description

Format (F) A 1 hex-digit value defining the structure of the program ID.
The upper bit of the format defines the program ID as a
standard program ID (SPID) or a text program ID. The upper
bit is set for standard program IDs, so formats 8–15 (0x8–0xF)
are reserved for standard program IDs.

• Program ID format 8 is reserved for LONMARK certified
devices.

• Program ID format 9 is used for devices that will not be
LONMARK certified, or for devices that will be certified
but are still in development or have not yet completed
the certification process.

• Program ID formats 10–15 (0xA–0xF) are reserved for
future use. Text program ID formats are used by
network interfaces and legacy devices and, with the
exception of network interfaces, should not be used for
new devices.

The Mini kit can be used to create applications with program ID
format 8 or 9.

Manufacturer ID
(M)

A 5 hex-digit ID that is unique to each LONWORKS device
manufacturer. The upper bit identifies the manufacturer ID as
a standard manufacturer ID (upper bit clear) or a temporary
manufacturer ID (upper bit set).

• Standard manufacturer IDs are assigned to
manufacturers when they join LONMARK International,
and are also published by LONMARK International so
that the device manufacturer of a LONMARK certified
device is easily identified. Standard manufacturer IDs
are never reused or reassigned. If your company is a
LONMARK member, but you do not know your

18 Introduction

Field Description

manufacturer ID, you can find your ID in the list of
manufacturer IDs at www.lonmark.org/spid. The most
current list at the time of release of the Mini kit is also
included with the Mini kit software.

• Temporary manufacturer IDs are available at no charge
to anyone on request by filling out a simple form at
www.lonmark.org/mid.

Device Class (C) A 4 hex-digit value identifying the primary function of the
device. This value is drawn from a registry of pre-defined device
class definitions. If an appropriate device class designation is
not available, LONMARK International Secretary will assign one,
upon request.

Usage (U) A 2 hex-digit value identifying the intended usage of the device.
The upper bit specifies whether the device has a changeable
interface. The next bit specifies whether the remainder of the
usage field specifies a standard usage or a functional-profile
specific usage. The standard usage values are drawn from a
registry of pre-defined usage definitions. If an appropriate
usage designation is not available one will be assigned upon
request. If the second bit is set, a custom set of usage values is
specified by the primary functional profile for the device.

Channel Type (T) A 2 hex-digit value identifying the channel type supported by
the device’s LONWORKS transceiver. The standard channel-type
values are drawn from a registry of pre-defined channel-type
definitions. A custom channel-type is available for channel
types not listed in the standard registry.

Model Number
(N)

A 2 hex-digit value identifying the specific product model.
Model numbers are assigned by the product manufacturer and
must be unique within the device class, usage, and channel type
for the manufacturer. The same hardware may be used for
multiple model numbers depending on the program that is
loaded into the hardware. The model number within the
program ID does not have to conform to your published model
number.

See the LonMark Application Layer Interoperability Guidelines
for more information about program IDs.

Network Variables
Applications exchange information with other LONWORKS devices using network
variables. Every network variable has a direction and a type. The network variable
direction can be either input or output, depending on whether the network variable is
used to receive or send data. The network variable type determines the format of the
data.

Network variables of identical type but opposite directions can be connected to allow the
devices to share information. For example, an application on a lighting device could have

http://www.lonmark.org/spid
http://www.lonmark.org/mid
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

Mini FX User's Guide 19

an input network variable that was of the switch type, while an application on a
dimmer-switch device could have an output network variable of the same type. A
network management tool such as the LonMaker Integration Tool could be used to
connect these two devices, allowing the switch to control the lighting device, as shown in
Figure 1.4:

Figure 1.4 Network Variable Connection

A single network variable may be connected to multiple network variables of the same
type but opposite direction. Figure 1.5 shows the same switch being used to control three
lights:

Figure 1.5 Network Variable Fan-Out Connection

The application program in a device does not need to know where input network variable
values come from or where output network variable values go. When the application
program has a changed value for an output network variable, it simply assigns the new
value to the output network variable.

Through a process called binding that takes place during network design and
installation, the device is configured to know the logical address of the other device or
group of devices in the network expecting that network variable’s values. The device’s
embedded firmware assembles and sends the appropriate packet(s) to these destinations.
Similarly, when the device receives an updated value for an input network variable
required by its application program, its firmware passes the data to the application
program. The binding process thus creates logical connections between an output
network variable in one device and an input network variable in another device or group
of devices.

20 Introduction

Connections may be thought of as virtual wires. For example, the dimmer-switch device
in the dimmer-switch-light example could be replaced with an occupancy sensor, without
making any changes to the lighting device.

You can declare a maximum of 32 network variables in a Neuron C application to be
compiled with the Mini kit. The NodeBuilder FX Development Tool supports up to 254
network variables.

If you are creating a device to be used in a managed network, you typically don’t need
implement any code in the device application to handle the binding process, or the source
or destination devices for network variable values. If you are creating a device to be
used in a self-installed network, you need to implement code to support the enrollment
process, which is how you create network variable connections in such a network.
Neuron C provides an easy-to-use programming model familiar to any C language
programmer that encapsulates the complexity of distributed applications.

Configuration Properties
LONWORKS applications may also contain configuration properties. Configuration
properties allow the device’s behavior to be customized using a network management tool
such as the LonMaker tool or a customized plug-in created for the device (see the LNS
Plug-in Programmer’s Guide for more information on creating LNS device plug-ins).

For example, an application may allow an arithmetic function (add, subtract, multiply, or
divide) to be performed on two values received from two network variables. The function
to be performed could be determined by a configuration property. Another example of a
configuration property is a heartbeat interval setting that determines how often a device
transmits network variable updates over the network.

Like network variables, configuration properties have types that determine the type and
format of the data they contain.

You will need to declare the required configuration properties for your device’s Neuron C
application. The Mini kit supports configuration properties with an easy-to-use
programming model in Neuron C.

Functional Blocks
Applications in devices are divided into one or more functional blocks. A functional block
is a collection of network variables and configuration properties, which are used together
to perform one task. These network variables and configuration properties are called the
functional block members. For example, a digital input device could have four digital
input functional blocks that contain the configuration properties and output network
variable members for each of the four hardware digital inputs on the device. You will
need to declare the required functional blocks for your device’s Neuron C application. A
functional block is an implementation of a functional profile.

Functional Profiles
A functional profile defines mandatory and optional network variable and configuration
property members for a type of functional block. For example, the standard functional
profile for a light actuator has mandatory SNVT_switch input and output network
variables, optional SNVT_elapsed_tm and SNVT_elec_kwh output network variables,
and a number of optional configuration properties. Figure 1.6 illustrates the components
of the standard light actuator functional profile:

Mini FX User's Guide 21

Figure 1.6 Functional Profile

When a functional block is created from a functional profile, the application designer can
determine which of the optional configuration properties and network variables to
implement. With some functional profiles, you can control certain aspects of the
implementation such as the network variable type, or the size of a configuration property
array.

Hardware Templates
A hardware template is a file with a .NbHwt extension that defines the hardware
configuration for a device. It specifies hardware attributes that include the transceiver
type, Neuron Chip or Smart Transceiver model, clock speed, system image, and memory
configuration. Several hardware templates are included with the Mini kit. You can use
these or create your own. Third-party development platform suppliers may also include
hardware templates for their platforms.

Neuron C
Neuron C is a programming language, based on ANSI C, used to develop applications for
devices that use a Neuron Chip or Smart Transceiver as the application processor.
Neuron C includes extensions for network communication, device configuration,
hardware I/O, interrupt handling, and event-driven scheduling.

Device Templates
A device template defines a device type. The Mini kit generates a NodeBuilder device
template (.NbDt extension) that specifies the information required for the NodeBuilder
tool to build the application for a device. It contains a list of the application Neuron C
source files, device-related preferences, and the hardware template name. The
NodeBuilder device template is automatically generated, managed, and removed by the
Mini FX application, unless a matching NodeBuilder device template already exists (for
example, an existing NodeBuilder project includes the device template). In this case,

22 Introduction

Mini kit will upgrade this device template as necessary, but it will not delete or manage
it.

If you build the application with the NodeBuilder tool, the NodeBuilder tool
automatically produces an LNS device template and passes it to the LonMaker tool and
other network tools. The LNS device template defines the external device interface, and
it is used by the LonMaker tool and other network tools to configure and bind the device.
The Mini kit does not generate LNS device templates, but it generates device interface
files (with .XIF and .XFB extensions). These interface files can be used with the
LonMaker tool to generate LNS device templates.

Device Interface Files
A device interface file (also known as an XIF file or an external interface file) is a file that
specifies the interface of a device. It includes a list of all the functional blocks, network
variables, configuration properties, and configuration property default values defined by
the device’s application. LNS tools such as the LonMaker tool use device interface files
to create an LNS device template. This enables the network tool to be used to create
network designs without being connected to the physical devices, and it speeds up some
configuration steps when the network tool is connected to the physical device. A text
device interface file with a .XIF extension is required by the LonMark Application Layer
Interoperability Guidelines.

The Mini kit automatically creates a .XIF file when you build a device application. The
Mini kit also automatically creates a binary (.XFB extension) version of the device
interface file that speed the import process for LNS tools such as the LonMaker tool.

Resource Files
Resource files define network variable types, configuration property types, and functional
profiles. Resource files for standard types and profiles are distributed by LONMARK
International. The standard resource files define standard network variable types
(SNVTs), standard configuration property types (SCPTs), and standard functional
profiles. For example, SCPTlocation is a standard configuration property type for
configuration properties containing location information as a text string, and
SNVT_temp_f is a network variable type for network variables containing temperature
as a floating-point number. The standard network variable and configuration property
types are defined at types.lonmark.org.

As new SNVTs and SCPTs are defined, updated resource files and documentation are
posted to the LONMARK Web site. Standard functional profiles are included with the
Mini kit, and their documentation is also available on the LONMARK Web site. To view
and download the latest resource files and documentation, go to the LONMARK Web site
at www.lonmark.org.

Device manufacturers may also create user resource files that contain
manufacturer-defined types and profiles called user network variable types (UNVTs),
user configuration property types (UCPTs), and user functional profiles (UFPTs).

You can create applications that only use the standard types and profiles. In this case,
you do not need to create user-defined resource files. If you need to define any new user
types or profiles, you will use the NodeBuilder Resource Editor included with the Mini kit
to create them.

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf
http://www.lonmark.org/

Mini FX User's Guide 23

2

Installing the Mini FX Evaluation Kit

This chapter describes how to get started with your Mini kit,
including how to install the Mini FX software and connect the

Mini FX hardware.

24 Installing the Mini FX Evaluation Kit

Installing the Mini FX Evaluation Kit
To install your Mini FX Evaluation Kit, follow these steps:

1. Verify that you have a manufacturer ID. A manufacturer ID is required for many
Mini kit functions.

Standard manufacturer IDs are assigned to manufacturers when they join LONMARK
International, and are also published by LONMARK International so that the device
manufacturer of a LONMARK certified device is easily identified. If your company is a
LONMARK member, but you do not know your manufacturer ID, you can go to
www.lonmark.org/spid and find your ID in the list of manufacturer IDs. The most
current list at the time of release of the Mini kit is also included with the Mini kit
software.

If you do not have a manufacturer ID, you can instantly get a temporary
manufacturer ID by filling out a simple form at http://www.lonmark.org/mid.

2. Register your Mini kit. This entitles you to a free replacement CD or serial number if
you lose either one in the future. To register your Mini kit, go to
www.echelon.com/register, select the Mini FX Evaluation Kit product, enter the
serial number from the back of your Mini FX CD case, enter the other information
requested by the form, and then click Register Now.

3. A demo version of the LonScanner Protocol Analyzer is included with your Mini kit.
It is not required to use the Mini kit, but the protocol analyzer will make your
development and integration efforts more productive. To try the demo version, insert
the LonScanner Protocol Analyzer CD into your computer, install the
LonScanner software, and then optionally purchase an activation key and activate
the LonScanner software as described in the LonScanner Protocol Analyzer User’s
Guide.

Note: If you plan on installing the LonScanner software, you must install it before
installing the Mini FX software. If you install the LonScanner software after
installing the Mini FX software, re-install the Mini FX software and chose the Repair
option when prompted.

4. Insert the Mini FX CD into your computer and install the Mini FX software as
described in the next section, Installing the Mini FX Software. You must install
Microsoft .NET Framework 3.5 SP1 before installing the Mini FX Evaluation Kit.
Optionally, you can install Adobe Reader 9.1, the provided FTDI USB driver if you
plan on using the USB port on the Mini FX/FT hardware (FT 5000 EVB) for
debugging, and the SLTA-10 driver if you are using an SLTA-10 Serial LonTalk
Adapter as the network interface.

Note: The Mini FX software automatically installs the following programs on your
computer: NodeBuilder Resource Editor 4.0, LONMARK Resource Files 13.00,
OpenLDV 3.40, and ISI Developer’s Kit 3.02.

5. Connect the Mini FX hardware as described in Connecting the Mini FX Hardware
later in this chapter.

Installing the Mini FX Software
To install the Mini FX software, follow these steps:

1. Insert the Mini FX Evaluation Kit CD into your CD-ROM drive.

http://www.lonmark.org/spid
http://www.lonmark.org/mid
http://www.echelon.com/register

Mini FX User's Guide 25

2. If the Mini FX setup application does not launch immediately, click Start on the
Windows taskbar and then and click Run. Browse to the Setup application on the
Mini FX CD and click Open. The Echelon Mini FX Evaluation Kit main menu
opens.

Figure 2.1 Mini FX Evaluation Kit Main Menu

3. Click Install Products. The Install Products dialog opens.

Figure 2.2 Mini FX Evaluation Kit Install Products Dialog

26 Installing the Mini FX Evaluation Kit

4. Click Microsoft .NET Framework 3.5 SP1 to install Microsoft .NET Framework
3.5 SP1 and then follow the on-screen instructions. Microsoft .NET Framework 3.5
SP1 is required to run the Mini FX Application.

5. After Microsoft .NET Framework 3.5 SP1is installed, click the Echelon Mini FX
Evaluation Kit button in the taskbar to return to the Mini FX installer, and then
click Mini FX Evaluation Kit in the Install Products dialog. The Welcome
window of the Mini FX software installer opens.

Figure 2.3 Mini FX Evaluation Kit Installer—Welcome Dialog

6. Click Next. The Mini FX Evaluation Kit License Agreement window opens.

Mini FX User's Guide 27

Figure 2.4 Mini FX Evaluation Kit Installer—License Agreement

7. Read the license agreement (see Appendix C, Mini FX Software License Agreement,
for a printed version of this license agreement). If you agree with the terms, click
Accept the Terms and then click Next. The Customer Information window
appears.

Figure 2.5 Mini FX Evaluation Kit Installer—Customer Information

8. Enter the Mini FX serial number on the back of Mini FX Evaluation Kit CD in the
Serial Number box. Optionally, you can enter the following registration
information.

User Name Your name. The name may be entered automatically based on
the user currently logged on and whether other Echelon
products are installed on your computer.

Organization The name of your company. The name may be entered
automatically based on the user currently logged on and
whether other Echelon products are installed on your
computer.

9. Click Next. If your computer does not have a LONWORKS directory, the Destination
Location window appears. Choose a LONWORKS folder in which you want the Mini
FX software installed. By default, the Mini FX software is installed in your existing
LONWORKS folder, which is typically C:\LONWORKS, or C:\Program
Files\LONWORKS if you have not previously installed any Echelon or LONMARK
products. Click Next.

10. The Setup Type window opens.

28 Installing the Mini FX Evaluation Kit

Figure 2.6 Mini FX Evaluation Kit Installer—Setup Type

11. Select the type of installation to be performed. Select Complete to install all the
Mini kit features or select Custom to choose whether to install the FT 5000 EVB
examples, Mini EVB examples, both sets of examples, or neither on your computer.
Click Next. The Ready to Install window appears.

Figure 2.7 Mini FX Evaluation Kit Installer—Ready to Install

12. Click Install to begin the Mini FX software installation. Before the Mini FX
Evaluation Kit is installed, the following programs are automatically installed or
upgraded on your computer (if they are not already installed on your computer, or if

Mini FX User's Guide 29

they are installed, but have a lower version): ISI Developer’s Kit 3.02, OpenLDV
3.40, NodeBuilder Resource Editor 4.0, and LONMARK Resource Files 13.00.

13. After the Mini kit software has been installed, a window appears stating that the
installation has been completed successfully.

Figure 2.8 Mini FX Evaluation Kit Installer—Completed

14. Click Finish. If a window appears prompting you to reboot your computer now or
later, click Yes to reboot your computer now.

15. Once the installation has completed, you will be given the option to view the
ReadMe file. See the ReadMe file for updates to the Mini kit documentation.

16. Optionally, install Adobe Reader 9.1. Adobe Reader (or another PDF viewer) is
required to open the user documentation PDF files included with the Mini FX
software. To do this, click the Echelon Mini FX Evaluation Kit button in the taskbar
to return to the Mini FX installer, click Adobe Reader 9.1 in the Install Products
dialog, and then follow the on-screen instructions.

17. Optionally, install the FTDI USB driver if you plan on using the USB port on the FT
5000 EVB for application-level debugging. To do this, click the Echelon Mini FX
Evaluation Kit button in the taskbar to return to the Mini FX installer, and then
click FTDI USB Driver 2.04.06 in the Install Products dialog.

18. Optionally, install the SLTA-10 driver if you plan on using an SLTA-10 Serial
LonTalk Adapter as the network interface. To do this, click the Echelon Mini FX
Evaluation Kit button in the taskbar to return to the Mini FX installer, and then
click SLTA-10 Driver in the Install Products dialog.

Connecting the Mini FX Hardware
The following sections describe how to connect the Mini FX/FT hardware (FT 5000 EVBs)
and the Mini FX/PL hardware (PL 3150 and PL 3170 EVBs).

30 Installing the Mini FX Evaluation Kit

Connecting the Mini FX/FT Hardware
To connect the Mini FX/FT hardware, follow these steps:

1. Unpack the equipment from the shipping carton.

Note: The FT 5000 EVBs are shipped in protective anti-static packaging. When
assembling the FT 5000 EVBs, the boards must not be subjected to high electrostatic
potentials. Avoid touching the component pins, or any other metallic equipment on
the evaluation boards.

2. Verify that all of the following hardware and software items listed in Table 2.1 are
present.

Table 2.1 Mini FX/FT Evaluation Kit Hardware and Software Items

Item Qty

FT 5000 EVB 2

Power supplies (90–240VAC 50/60Hz) with power cords
(US/Japan and Continental European)

2

Network cable and terminator 1

U10 USB Network Interface 1

USB Extension Cable 1

Mini FX CD 1

LonScanner CD (Demo Edition) 1

3. Connect the barrel connectors of the included power supplies into the barrel jacks on
the FT 5000 EVBs, connect the power supplies to the included power cords that are
appropriate for you region (US/Japan or Continental European), and then plug the
power cords into a power outlet. The power LEDs on the boards will activate when
they are powered on.

Mini FX User's Guide 31

Figure 2.9 FT 5000 EVB Power Supply Connection

4. Connect the orange network connector on each FT 5000 EVB to the included network
cable.

Figure 2.10 FT 5000 EVB Network Connection

5. Use the included U10 USB Network Interface to attach the computer running the
Mini FX Application to the TP/FT-10 channel. To do this, connect the black network
connector on the network cable to the U10 USB Network Interface, and then plug the
U10 USB Network Interface into an available USB port on your computer. You can
use the included USB extension cable to help connect the USB 10 Network Interface
to your development computer.

32 Installing the Mini FX Evaluation Kit

Figure 2.11 USB 10 Network Interface Connection

If this is the only LONWORKS interface installed on your computer, it will
automatically use the default name LON1, and you can proceed directly to your
software application and begin using the interface as LON1.

If you have another network interface installed on your computer, you can check the
name used by the U10 USB Network Interface in the LONWORKS Interfaces
application. You can also use this application to configure the buffer sizes and counts
used by the U10 USB Network Interface. To open the LONWORKS Interfaces
application, and check the name of the U10 USB Network Interface and configure it,
click Start on the taskbar, click Control Panel, double-click LONWORKS
Interfaces, and then click the USB tab.

For more information on installing and using the U10 USB Network Interface, see
the LONWORKS USB Network Interface User’s Guide.

Note: You can use a different network interface such as a PCC-10, PCLTA-20, or
PCLTA-21; SLTA-10; remote network interface (i.LON SmartServer, i.LON 100 e3
plus Internet Server, i.LON 600 LONWORKS-IP Server); or an IP-852 interface (i.LON
SmartServer with IP-852 routing, i.LON 100 e3 plus Internet Server with IP-852
routing, or i.LON 600 LONWORKS-IP Server).

To use a PCC-10, a PCLTA-20, or a PCLTA-21 as the network interface, you first
need to configure it as a layer-5 network interface using the LONWORKS Plug ‘n Play
application. To do this, click Start on the taskbar, click Control Panel, and then
double-click LONWORKS Plug ‘n Play. In the Device Selected box, select your
network interface. In the NI application box, select PCC10NSI if you are using a
PCC-10, or select NSIPCLTA if you are using a PCLTA-20 or a PCLTA-21. Click
OK to save your changes and close the LONWORKS Plug ‘n Play application.

6. Complete the quick-start exercise in Chapter 3, Mini FX Quick-Start Exercise. In the
quick-start exercise, you will develop a device with one sensor and one actuator. The
sensor is a simple sensor that monitors a push button on the FT 5000 EVB. The
actuator drives the state of an LED on the FT 5000 EVB based on the state of the
button.

This quick-start guides you through all the steps of creating a device with the Mini
kit, including writing the Neuron C code that implements your device functionality,
building the device application, downloading the device application, and testing the
device.

7. Run the Neuron C example applications included with the Mini kit on your FT 5000
EVBs. The Mini kit includes three Neuron C example applications
(NcSimpleExample, NcSimpleIsiExample, and NcMultiSensorExample) that you can
use to test the I/O devices on the FT 5000 EVBs, and create simple self-installed and
managed LONWORKS networks. Note that you need the LonMaker tool or other
network tool to create a managed network with the FT 5000 EVB example
applications.

Mini FX User's Guide 33

The NcMultiSensorExample application is pre-loaded on the FT 5000 EVBs and runs
in Interoperable Self-Installation (ISI) mode by default. You install and connect this
example application and the other examples using the LonMaker tool, or using the
ISI protocol. See the FT 5000 EVB Examples Guide for more information on using
these example applications.

For more information on the FT 5000 EVB, including how to use the I/O components,
service buttons, interfaces, and jumpers on the FT 5000 EVB hardware, see the FT 5000
EVB Hardware Guide.

Connecting the Mini FX/PL Hardware
To connect the Mini FX/PL hardware, follow these steps:

1. Unpack the equipment from the shipping carton. Avoid touching areas of integrated
circuitry, as static discharge could damage circuits.

2. Verify that all of the following hardware and software items listed in Table 2.2 are
present.

Table 2.2 Mini FX/PL Evaluation Kit Hardware and Software Items

Item Qty

PL 3150 EVB 1

PL 3170 EVB 1

Power supplies (90–240VAC 50/60Hz) with power cords
(US/Japan and Continental European) and integrated couplers

2

MiniGizmo 2

MiniGizmo Cables 2

U20 USB Network Interface 1

USB Extension Cable 1

Mini FX CD 1

LonScanner CD (Demo Edition) 1

3. Connect the PL 3150 and PL 3170 EVBs to the MiniGizmo I/O Boards using the
included MiniGizmo ribbon cables.

4. Connect the barrel connectors of two of the included power supplies into the barrel
jacks on the PL 3150 and PL 3170 EVBs, connect the power supplies to the included
power cords that are appropriate for you region (US/Japan or Continental European),
and then plug the power cords into a power outlet.

This connects the PL EVBs to the power line channel. The Mini FX/PL power
supplies include internal coupling to enable the evaluation boards to communicate
through the power supply. You cannot substitute another power supply for the Mini
kit power supplies, unless your alternative power supply provides equivalent
coupling.

34 Installing the Mini FX Evaluation Kit

 Figure 2.12 PL 3150/PL 3170 EVB Connections

5. After you plug in the power supplies, LED1 will begin flashing, indicating that the
PL Evaluation Board has entered CENELEC configuration mode. If LED8 is on,
then the CENELEC access protocol is enabled. If LED8 is off, CENELEC is
disabled. By default, CENELEC is enabled.

You must enable the CENELEC access protocol when operating within one of the
CENELEC member states. When operating outside the CENELEC member states,
disable the CENELEC access protocol for optimum performance and reliable
communications.

To change the current setting, you can press the SW8 button on the MiniGizmo I/O
Board to toggle CENELEC support. When you have made a selection, press the SW1
button to confirm your selection and exit CENELEC configuration mode. Make sure
that LED8 is on before pressing SW1 if you want CENELEC enabled, or off if you
want CENELEC disabled. You will not be able to perform any network operations
with the PL EVB until you have made a selection and exited CENELEC
configuration mode.

The CENELEC setting affects the hardware template and program ID (channel type)
selections you will make when using the Mini FX Application with the PL EVBs. See
Chapter 4 for more information on these settings.

The CENELEC EN 50065-1 standard specifies an access protocol for C-band
channels to allow multiple power line signaling devices from different manufacturers
to operate on a common AC-mains circuit. See Chapter 8 of the PL 3120 / PL 3150 /
PL 3170 Smart Transceiver Data Book for more information on the CENELEC

Mini FX User's Guide 35

protocol. To view this book, click Start, point to Programs, point to Echelon Mini,
point to Smart Transceiver Data Books, and then click it.

6. Insert the barrel connector of the included power supply into the barrel jack of the
included U20 USB network interface, connect the power supply to the included power
cord that is appropriate for you region (US/Japan or Continental European), plug the
power cord into a power outlet, and then plug the U20 USB network interface into an
available USB port on your computer. For more information on installing and using
the U20 USB Network Interface, see the LONWORKS USB Network Interface User’s
Guide.

Figure 2.13 USB 10 Network Interface Connection

Note: You can use a different network interface such as remote network interface
(i.LON SmartServer or i.LON 100 e3 plus Internet Server), or an IP-852 interface
(i.LON SmartServer with IP-852 routing or i.LON 100 e3 plus Internet Server with
IP-852 routing, or i.LON 600 LONWORKS-IP Server).

7. Complete the quick-start exercise in Chapter 3, Mini FX Quick-Start Exercise. In the
quick-start exercise, you will develop a device with one sensor and one actuator. The
sensor is a simple sensor that monitors a push button on a PL 3150/PL 3170 EVB.
The actuator drives the state of an LED on the PL 3150/PL 3170 EVB based on the
state of the button.

This quick-start guides you through all the steps of creating a device with the Mini
kit, including writing the Neuron C code that implements your device functionality,
building the device application, downloading the device application, and testing the
device.

8. Run the MGDemo, MGSwitch, MGLight, and MGKeyboard Neuron C example
applications included with the Mini kit on your PL 3150 and PL 3170 EVBs. You can
use the example applications to test the I/O devices on the Mini Gizmo I/O Boards
that you can attach to the PL 3150/PL 3170 EVBs, and create simple self-installed
and managed LONWORKS networks. You need to purchase a LonMaker tool or other
network tool to create a managed network with the Mini FX/PL example
applications.

The PL 3150 EVB comes pre-loaded with the MGDemo example application; the PL
3170 EVB comes pre-loaded with the MGSwitch example application. With these
pre-loaded example applications, you can create a simple self-installed LONWORKS
network where the push buttons on the PL 3170 EVB are connected to the LEDs on
the PL 3150 EVB.

For more information on using the Mini FX/PL example applications, see the Mini
FX/PL Examples Guide.

36 Installing the Mini FX Evaluation Kit

Note: Echelon power line technology combined with ISI self-installation provides virtual
plug and play communication in a single-family home environment. Mini kit users are
encouraged to explore the communication capabilities of these evaluation units in a
variety of home environments.

Reliable power line communication in a commercial environment—where nearby outlets
may be serviced from different distribution transformers with very long branch circuits—
is possible with the addition of routers, as described in the Centralized Commercial
Building Applications with the PLT-21 Power Line Transceiver Engineering Bulletin
(005-0056-01). Communication in a commercial environment without the additional
routers described in this engineering bulletin may not be reliable.

For best results, do not attempt to communicate through mains power bars or power
strips that contain EMC filters. This can be accomplished by plugging the Mini kit
supply into a plug on the input side of a filtered power bar.

Mini FX User's Guide 37

3

Mini FX Quick-Start Exercise

This chapter demonstrates how to create a LONWORKS device
using the Mini kit.

38 Mini FX Quick-Start Exercise

Mini FX Quick-Start Exercise
The following quick-start exercise demonstrates how to create a LONWORKS device with
the Mini kit. It introduces Mini kit features; familiarizes you with the Mini FX
Application user interface; and guides you through all the steps of developing a device
with the Mini kit, including creating, writing, compiling and building, and downloading
the Neuron C device application.

For this quick-start exercise, you will develop a standalone device application with one
sensor and one actuator. The sensor is a simple sensor that monitors a push button on
the EVB. The actuator drives the state of an LED on the EVB based on the state of the
push button. You can use either the FT 5000 EVB, or PL 3150/PL 3170 EVB as the
hardware platform for this exercise.

Note: For simplicity, this device application does not include functional blocks and
network variables, which are used by interoperable LONWORKS devices. In addition, this
device application does not include any ISI code, which is required to connect your device
to other LONWORKS devices in a self-installed network. After you complete this exercise,
you can add functional block and network variable declarations to the Neuron C device
application so that your device has an interoperable interface, and then you can add ISI
code so that you can connect your device to other devices that have compatible ISI
assemblies, or connect your devices using the LonMaker tool or other network tool. For
more information on declaring functional blocks and network variables and using ISI in
your device application, see Creating Example Device Applications in Chapter 5.

After you complete this exercise, you can also load and run the Neuron C example
applications that are included with the Mini kit. The Mini FX software includes three
Neuron C example applications that you can load into your FT 5000 EVBs (included with
the Mini FX/FT Evaluation Kit, and available separately), and four Neuron C example
applications that you can load into PL 3150 and PL 3170 EVBs (included with the Mini
FX/PL Evaluation Kit, and available separately). You can use these examples to test the
I/O devices on your EVBs, and you can browse the Neuron C code used by these examples
to further learn how to develop your own device applications. For more information on
using the FT example applications, see the FT 5000 EVB Examples Guide. For more
information on using the PL example applications, see the Mini FX/PL Examples Guide.

 To develop a LONWORKS device with the Mini kit, you perform the following steps:

1. Create a new device application.
2. Write Neuron C source code for your device application.
3. Build your device application.
4. Download your device application
5. Test your device application.

Step 1: Creating the Device Application
You can use the Mini FX Application to create a new device application. To do this,
follow these steps:

1. Start the Mini FX Application. To do this, click Start on the taskbar, point to
Programs, point to the Echelon Mini program folder, and then click Mini FX
Application. The Mini FX Application opens with the Application tab selected.

2. Click New to create a new device application, browse to the desired location on your
hard drive or create a new folder, then enter main as the file name, and then click

Mini FX User's Guide 39

Save. This creates a new empty Neuron C source file named main.nc in your
chosen location, and it opens the file using your computer’s default text editor.

3. Proceed to the next section to write your Neuron C device application in the main.nc
file.

 Step 2: Writing the Device Application
When developing the device application, you will typically concentrate on writing the
algorithms that implement your device’s functionality. To do this, you will program any
required interaction between the device application and the I/O devices on your device
hardware. In this step, you will create Neuron C I/O declarations and implement your
desired I/O functionality in the main.nc Neuron C source file that you created in the
previous section. If you are using the Mini FX/FT Evaluation Kit, you will additionally
add code that writes to the LCD on the FT 5000 EVB.

Note: The I/O device declarations used for the Mini FX/FT hardware (FT 5000 EVBs)
and the Mini FX/PL hardware (PL 3150/PL 3170 EVBs) are different. Therefore, follow
the section corresponding with the development platform or platforms you are using for
the appropriate code to use.

FT 5000 Evaluation Boards
1. Enter the following directives:

#include <string.h>
#include <io_types.h>
#include <control.h>

//required to compile Neuron C source code
#pragma num_alias_table_entries 0

//run application even if device is uncommissioned
#pragma run_unconfigured

2. Add the following code that declares the I/O hardware for the SW1 button and LED1
on the FT 5000 EVB (both LED1 and SW1 are connected directly to the I/O 2 and I/O
9 I/O pins, respectively):

IO_2 output bit ioLed1 = 1;
IO_9 input bit ioSwitch1;

3. Add the following code that adds functionality to the Switch and LED I/O:
//Create global variable to store the previous LED state

boolean switchState;

// Function for setting LED1

void SetLed(boolean led1)
{
 io_out(ioLed1, !led1);
}

// Read the SW1 button when pressed and then set LED1

void DisplayStatus(boolean led, boolean sw);

when(io_changes(ioSwitch1) to 0)
{
 switchState ^= TRUE;
 SetLed(switchState);
 DisplayStatus(switchState, switchState);
}

40 Mini FX Quick-Start Exercise

4. Add the following code that initializes the I/O devices and writes to the LCD when
the FT 5000 EVB is reset:

void InitializeIO()
{
 io_change_init(ioSwitch1);
}

void LcdDisplayString(unsigned row, unsigned column, const char* data);

when(reset) {
 InitializeIO();

 LcdDisplayString(0,0, "Mini FX QuickStart ");
 LcdDisplayString(1,0, "====================");
 LcdDisplayString(2,0, "Press SW1 to toggle ");
 LcdDisplayString(3,0, "LED1 ");
}

5. Add the following code that writes to the LCD on the FT 5000 EVB:
IO_0 i2c __slow ioIIC;
define LCD_COMMAND_PREFIX 0xFEu
define LCD_COMMAND_ON 0x41u
define LCD_COMMAND_SETCURSOR 0x45u
define LCD_COMMAND_CLEARSCREEN 0x51u
define LCD_COMMAND_BRIGHTNESS 0x53u
 // The datasheet states the address as 0x50, but the
 // 7-bit right-justified address is really 0x28 (0x50 >> 1):
define I2C_ADDRESS_LCD (0x50u >> 1)

// The SendLcdCommand() function is used within this driver kit.
// The function sends a one- or two-byte command to the display.

void SendLcdCommand(unsigned command, unsigned parameter, unsigned size)
{
 unsigned data[3];

 data[0] = LCD_COMMAND_PREFIX;
 data[1] = command;
 data[2] = parameter;

 (void)io_out(ioIIC, data, I2C_ADDRESS_LCD, 1+size);
}

void LcdDisplayString(unsigned row, unsigned column, const char* data)
{
 // Set the cursor position:
 static const unsigned lcdRowAddress[4] = {0x00, 0x40, 0x14, 0x54};
 SendLcdCommand(LCD_COMMAND_SETCURSOR, lcdRowAddress[row]+column, 2);
 // Send the data:
 (void)io_out(ioIIC, data, I2C_ADDRESS_LCD, (unsigned)strlen(data));
}

// The InitializeLCD function enables and clears the display. Call this
// function from InitializeIO() (which in turn is called from when(reset).

// InitializeIO() is called from the when(reset) task and initalizes
// the I/O system and related driver functions.

// display SW1 and LED1 state when on

void DisplayStatus(boolean led, boolean sw)
{
 LcdDisplayString(2, 0, “SW1 = ”);

Mini FX User's Guide 41

 LcdDisplayString(3, 0, “LED1 = “);
 LcdDisplayString(2, 7, led ? “ON” : “OFF”);
 LcdDisplayString(3, 7, sw ? “ON” : “OFF”);
}

6. Save your main.nc Neuron C source file.

7. Proceed to Step 3: Building the Device Application to compile and build your Neuron
C device application.

For more information on writing Neuron C code to implement your device’s functionality,
see Chapter 5, Developing Device Applications.

PL 3150 and PL 3170 Evaluation Boards
1. Enter the following directives:

//Required to compile Neuron C source code
#pragma num_alias_table_entries 0

//Run application even if device is uncommissioned
#pragma run_unconfigured

2. Add the following code that declares the I/O hardware for the SW1–SW8 buttons and
LED1–LED8 on the PL 3150/PL 3170 EVB (all the switches and LEDs on the Mini
Gizmo I/O board are connected through serial-in parallel-out and parallel-in
serial-out shift registers:

// Configure the I/O pins for SW1–SW8 buttons
IO_4 input bitshift numbits(8) clockedge(-) ioButtons;
IO_6 output bit ioButtonLoad = 1;

// Configure the I/O pins for LED1–LED8
IO_2 output bitshift numbits(8) ioLeds;
IO_1 output bit ioLedLoad = 1;

3. Add the following code that adds functionality to the Switch and LED I/O:
// Read state of MiniGizmo SW1 button
boolean GetButton(void)
{
 unsigned debounce;
 unsigned data;
 data = 0xFF;

 for (debounce = 0; debounce < 3; ++debounce) {
 // Strobe:
 io_out(ioButtonLoad, 0);
 io_out(ioButtonLoad, 1);
 // Sample data and debounce:
 data &= (unsigned)io_in(ioButtons);
 }
 return ~data & 0x01;
}

// Set MiniGizmo LED1
void SetLeds(boolean led1)
{
 unsigned data;

 // Compute the data byte for the shift register:
 data = led1 ? 0x01 : 0x00;

 // Push inverted data into shift register:
 io_out(ioLeds, ~data);

42 Mini FX Quick-Start Exercise

 // strobe:
 io_out(ioLedLoad, 0);
 io_out(ioLedLoad, 1);
}

//Create global variable to store the previous SW1 button state.

boolean switchState;

// Create function that sets LED1 when SW1 button is pushed.

void OnButtonPressed()
{
 switchState ^= TRUE;
 SetLeds(switchState, ~switchState);
}

// Timer that checks SW1 button every 25ms

mtimer repeating buttonTimer = 25;

when(timer_expires(buttonTimer))
{
 static boolean previousButton;

 boolean currentButton;
 currentButton = GetButton();

 if (currentButton && !previousButton){
 OnButtonPressed();
 }
 previousButton = currentButton;
}

4. Save your main.nc Neuron C source file.

5. Proceed to the next section to compile and build your Neuron C device application.

For more information on writing Neuron C code to implement your device’s functionality,
see Chapter 5, Developing Device Applications.

Step 3: Building the Device Application
You can use the Mini kit to compile your Neuron C application and build an application
image that can be loaded into your device.

When you build your application, the Mini kit will create downloadable application
image files and device interface files. The downloadable application image file is used by
the Mini kit and other network tools to download the compiled application image to a
device. The device interface file describes the external interface for your device. It is
used by network tools such as the LonMaker tool to determine how to bind and configure
your device. The device interface file is also used by the NodeBuilder tool to
automatically create the LNS device template. The device interface file is not used in
this exercise because it does require the device to be configured.

The Mini kit also generates other application image files that are appropriate for to your
hardware. For example, if your hardware contains off-chip memory parts such as the
flash memory device commonly used with a PL 3150 Smart Transceiver, the Mini kit
generates a programmable application image file (.NEI extension) that can be used to
program the flash memory part using a device programmer. For more information on the

Mini FX User's Guide 43

application image files used for various memory parts, see Chapter 8 of the NodeBuilder
FX User’s Guide.

To compile and build, your device application, follow these steps:

1. In the Target Hardware box on the Application tab, select the standard hardware
template for your EVB.

• If you are using the Mini FX/FT Evaluation Kit, select FT 5000 Evaluation
Board.

• If you are using the Mini FX/PL Evaluation Kit, select PL 3150 Evaluation
Board (CENELEC off), PL 3150 Evaluation Board (CENELEC on), PL
3170 Evaluation Board (CENELEC off), or PL 3170 Evaluation Board
(CENELEC on).

The CENELEC EN 50065-1 standard is a European-standard protocol for
controlling access to a power line used for communication. It is required for
power line communication in most CENELEC member states, which include
most of Europe and some neighboring countries. For operation outside states
governed by the CENELEC committee, you must disable the CENELEC access
protocol for optimum performance and reliable communication. See Chapter 8 of
the PL 3120 / PL 3150 / PL 3170 Smart Transceiver Data Book for more
information on the CENELEC protocol. To view this book, click Start, point to
Programs, point to Echelon Mini, point to Smart Transceiver Data Books,
and then click it.

2. In the Standard Program Identifier box, click Calculate. The Standard
Program ID Calculator dialog opens.

3. Specify the program ID for your device application. The program ID uniquely
identifies an application, and must be different for every type of device on a network.
The program ID includes fields that define the manufacturer, device class, device
subclass, transceiver type, and model number for a device type.

Enter the following values for the program ID fields:

• In the Manufacturer ID (M:MM:MM) property, enter your standard
manufacturer ID or temporary manufacturer ID in decimal format, or select the
Examples manufacturer ID.

• If your company is a LONMARK member, but you do not know your manufacturer
ID, you can find your ID in the list of manufacturer IDs at
www.lonmark.org/spid.

• If you do not have a standard manufacturer ID, you can request a temporary
manufacturer ID by filling out a simple form at www.lonmark.org/mid.

• In the Category property, select the I/O option.

• In the Device Class (CC:CC) property, select the Multi-I/O module (5.01)
option.

• In the Usage (UU) property, select the General option.

• In the Channel Type (TT) property, select the TP/FT-10 option if your
development platform is a FT 5000 EVB, or select the PL-20 option if your
development platform is a PL 3150/PL 3170 EVB.

• In the Model Number (NN) property, enter 01.

http://www.lonmark.org/spid
http://www.lonmark.org/mid

44 Mini FX Quick-Start Exercise

Note: The current list of manufacturer IDs, device classes, usage values, and
channel types are defined in an XML file (spidData.xml) that is available at
www.lonmark.org/spid. This file is updated as LONMARK International adds
new manufacturer IDs, device classes, usage values, and channel types.

4. Click OK to return to the Mini FX Application. The program ID you specified in the
Standard Program ID Calculator dialog appears in the Standard Program
Identifier box.

5. Click Build to compile the application and create the application image files.

6. The status box at the bottom of the Application tab informs you when the
application has successfully been compiled, and it displays build errors (if any).

Figure 3-1 demonstrates that the device application in this quick-start exercise has
successfully been built. In addition, it displays the properties set in the Application
tab to build it.

Figure 3.1 Building the Device Application

7. If you receive any build errors, double-check that the code you entered matches that
listed in Step 2: Writing the Device Application (you may receive some warnings,
which can be ignored in the context of this quick-start exercise).

http://www.lonmark.org/spid

Mini FX User's Guide 45

Step 4: Downloading the Device Application
You can use the Mini FX Application to download an application image over a
LONWORKS network into your development platform. In this step, you will download the
application image file that was automatically created when you built the device in the
previous section. To download the application image file into your EVB, follow these
steps.

1. Click the Device tab.

2. In the Network Interface box, select the network interface attached to your
development computer that is to be used for communication between the Mini FX
Application and your EVB, and then click Connect. If you are using the U10 or U20
USB Network Interface included with the Mini kit and you have not installed any
other network interfaces on your computer, select LON1. The Status box at the
bottom indicates whether the Mini FX Application is connected to a network
interface.

You can alternatively use a different layer 5 network interface such as a PCC-10,
PCLTA-20, PCLTA-21, i.LON 10 Ethernet Adaptor, i.LON server. To use a PCC-10,
PCLTA-20, PCLTA-21 as the network interface for communication with an FT 5000
EVB, you must first configure it as a layer 5 interface. To do this, click Start on the
taskbar, click Control Panel, and then double-click LonWorks Plug ‘n Play. In
the Device Selected box, select your network interface. In the NI application box,
select PCC10NSI if you are using a PCC-10, or select NSIPCLTA if you are using a
PCLTA-20 or a PCLTA-21. Click OK to save your changes and close the LonWorks
Plug ‘n Play application.

3. Press the service pin on the FT 5000 EVB or PL 3150/PL 3170 EVB. The service pin
is a black button that is located along the right side of the board and is labeled
“Service”.

4. The Service Pin Message dialog opens. The Neuron ID of the FT 5000 EVB
appears in the Neuron ID box and its program ID in the Program ID box.

The Neuron ID is a unique 48-bit (12-hex digit) identifier contained in every
LONWORKS device. The Mini kit uses the Neuron ID to communicate with your
selected device. For more information on Neuron IDs, see the Introduction to the
LONWORKS Platform document in the Echelon Mini FX program folder.

5. Click Yes to register the device with the Mini FX Application.

6. The EVB device is added to the Device list, which includes devices that you have
added. The device will remain in the Device list until you close the Mini FX
Application, or connect to a new network interface. You will need to add the device
again when you restart the Mini FX Application, or when you connect to a different
network interface.

7. In the Application Image box, the application image file that was automatically
created when you built the device (main.NDL) is displayed. The application image
file that was built last appears in this box by default. If the main.NDL file is not
displayed, you can select it from the list of those application images recently built or
added, or click Add to browse to and select it.

8. Click Load to load the main.NDL application image file into your EVB. The Status
box informs you when the application image has been successfully loaded into the
device, and it also informs you of any load errors.

46 Mini FX Quick-Start Exercise

Figure 3-2 demonstrates that the device application in this quick-start exercise has
successfully been downloaded to the EVB. In addition, it displays the properties set
in the Device tab to download the device application.

Figure 3.2 Downloading the Device Application

Step 5: Testing the Device Application
You can use the switch and LED I/O devices on your EVB to test your device application,
and verify that it is functioning as designed. To test your device application, follow these
steps:

1. Press the SW1 button located on the bottom left side of the FT 5000 EVB or Mini
Gizmo I/O board.

2. Observe that LED1 is illuminated (LED1 is located directly above the SW1 button).

3. Press the SW1 button to extinguish LED1.

Mini FX User's Guide 47

4

Using the Mini FX Application

This chapter describes how to use the Mini FX Application
to build a Neuron C device application and download it into

a device. This chapter also describes how to use the Mini FX
Application to reset, wink or test a device.

48 Using the Mini FX Application

Introduction to the Mini FX Application
The Mini FX Application is an easy-to-use program consisting of two tabs: the
Application tab and the Device tab. You use the Application tab to create/edit,
compile, and build Neuron C device applications, and you use the Device tab to
download your device applications.

You can use the Application tab to create new Neuron C device applications or edit
existing ones. Neuron C (Version 2.2) is a programming language that includes network
communication, I/O, interrupt-handling, and event-handling extensions to ANSI C,
which make it a powerful tool for the development of LONWORKS device applications.
After you develop your Neuron C device application, you can use the Application tab to
compile it. The Mini FX Application can compile device applications that have a
maximum of approximately 32 KB of code and 32 network variables. When you
successfully compile your Neuron C device application, the Mini FX Application
generates a downloadable application image file (.NDL extension) that you download
into a device based on a Neuron chip or Smart Transceiver, including your FT 5000 EVBs
or PL 3150/PL 3170 EVBs.

You use the Device tab to download the application image file into your EVBs or into
other LONWORKS devices based on Neuron chips or Smart Transceivers. You can also
use the Device tab to reset, wink, and test the devices that you have registered with the
Mini FX Application.

The following sections describe how to perform the following tasks with the Mini FX
Application:

1. Compile and build a device application.
2. Download a device application.
3. Reset, wink, and test a device.

Building a Device Application
You can use the Application tab in the Mini FX Application to create a new Neuron C
device application or modify an existing one, compile the device application, and build a
downloadable application image file.

1. Create a new Neuron C source file (.nc extension) or open an existing one.
Optionally, you can specify any libraries required by your Neuron C source code (for
example, the ISI libraries if you are creating an ISI device.

You can also specify required libraries from within your source code by using the
#pragma library compiler directive. Using this directive usually simplifies
application management because the application’s dependency on a particular
function library is expressed within the application code itself. For more information
on using the library pragma, see Chapter 2 of the Neuron C Reference Guide.

2. Select a hardware template. The hardware template defines the hardware
configuration for the development platform or device into which your device
application is to be downloaded.

3. Specify the program ID of your device application. The program ID is a unique,
16-hex digit ID that uniquely identifies the device application.

4. Build the application image and device interface files.

Mini FX User's Guide 49

Creating and Opening Neuron C Source Files
You can use the Application tab in the Mini FX Application to create a new Neuron C
source file or open an existing one. To create/open a Neuron C source file and include
library files, follow these steps:

1. Start the Mini FX Application. To do this, click Start on the taskbar, point to
Programs, point to the Echelon Mini program folder, and then click Mini FX
Application. The Mini FX Application opens with the Application tab selected.

Figure 4.1 Application Tab

2. To create a new Neuron C source file, click New in the Neuron C Source Files and
Library Box. This creates a new empty source file (.nc extension), and opens the
file using your computer’s default editor for Neuron C source files (or Notepad if you
have not registered any specialized Neuron C editor on your computer). To open an
existing Neuron C source file, select a file from the list of those that have been
compiled most recently or click Browse and select a file, and then click Edit.

The Mini FX Evaluation Kit includes several pre-built example applications that you
can view or edit. To select one of the example applications, click Browse, navigate
to the C:\LONWORKS\NeuronC\Examples folder, open the folder corresponding to
your development platform (FT 5000 EVB or Mini EVB [for PL 3150/PL 3170
EVBs]), and then select the .nc file to be opened. For more information on the FT

50 Using the Mini FX Application

5000 EVB example applications, see the FT 5000 EVB Examples Guide. For more
information on the PL 3150/PL 3170 EVB example applications, see the Mini FX/PL
Examples Guide.

Note: Windows Notepad is typically your default Neuron C source editor. To use a
different editor, open the Folder Options in the Windows Control Panel, click the
File Types tab, select the NC extension, and then click Change to change the
program to be used to open .NC files, and then click Close. The Mini FX Application
will then use the selected editor as the default.

Tip: Choose an editor that includes line numbers as your default editor. This helps
you navigate your device application if it fails to compile because the Status box at
the bottom of the Application tab in the Mini FX Application lists any errors in your
code, and it includes the line numbers of the errors. You can download a free editor
that includes line numbers such as TextPad® (for evaluation), UltraEdit (for
evaluation), or Crimson Editor.

3. Write the Neuron C code for your device application. See Chapter 5, Developing
Device Applications, for more information on the Neuron C programming language
and examples to help you get started with programming in Neuron C.

4. If your Neuron C source code references any functions contained in a standard ISI
library or any other standard or custom library, you may need to instruct the Mini
kit to use these libraries. Failing to do so will lead to link errors because functions
and variables provided with those libraries cannot be found.

You can reference a library several ways: (1) you can include a reference to the
required library with your source code, or (2) you can explicitly advise on required
libraries through the tool. The Mini kit supports both methods; however, it is
recommended that you include the library references in your source code. This is
because the source code makes references to certain functions and libraries provided
with certain required libraries; therefore, it is logical that the same source code
states this library requirement. In addition, including the library reference in your
source does not require any additional steps; therefore, it makes the build process
easier to manage. For more information on using the pragma library compiler
directive, see Chapter 2 of the Neuron C Reference Guide.

• To reference a library within your source code, add a pragma library compiler
directive to your application source code that specifies the required library in its
argument.

• To reference a library outside your source code, click Add in the Neuron C
Source and Library File Names box, and then browse to and select the library
to be included in the Add Library/Libraries window. This window defaults to
the C:\LonWorks\NeuronC\ Libraries directory, which contains the
standard Neuron C libraries, and the ISI libraries described in the ISI
Programmer’s Guide.

Alternatively, you can type the full path of the library to be added in the box.
You can enter multiple libraries by clicking Add multiple times, or by entering
them in the box and separating them with semicolons.

Note: The Mini FX Application automatically links your Neuron C device
application with all required standard libraries (see Chapter 5 of the NodeBuilder FX
User’s Guide for descriptions of these standard library files). However, some Neuron
C applications have specific library requirements. For example, the example
applications included with the Mini FX/PL Evaluation Kit all require the ISI
libraries and the CENELEC Configuration Library (CCL). Seven different ISI

http://www.textpad.com/
http://www.ultraedit.com/
http://www.crimsoneditor.com/

Mini FX User's Guide 51

libraries are supplied, varying in features provided and application memory required.
For more information on the libraries required by the various Mini FX/PL example
applications, see the Mini FX/PL Examples Guide.

Selecting the Hardware Template
You can use the Application tab in the Mini FX Application to select the hardware
template for your device application. A hardware template specifies the attributes for
the hardware into which your device application is to be downloaded including platform,
transceiver type, Neuron Chip or Smart Transceiver model, clock speed, system image,
and memory configuration.

In the Target Hardware box, select the hardware template corresponding to your
development platform from the list of standard hardware templates stored in the
C:\LONWORKS\NodeBuilder\Templates\Hardware\Standard folder. The list
includes hardware templates for the FT 5000 EVBs, and PL 3150/PL 3170 EVBs.

• If you are using the Mini FX/FT Evaluation Kit, select FT 5000 Evaluation Board.

• If you are using the Mini FX/PL Evaluation Kit, select PL 3150 Evaluation Board
(CENELEC off), PL 3150 Evaluation Board (CENELEC on), PL 3170
Evaluation Board (CENELEC off), or PL 3170 Evaluation Board (CENELEC
on).

The CENELEC EN 50065-1 standard is a European-standard protocol for controlling
access to a power line used for communication. It is required for power line
communication in most CENELEC member states, which include most of Europe and
some neighboring countries. For operation outside states governed by the CENELEC
committee, you must disable the CENELEC access protocol for optimum performance
and reliable communication. See Chapter 8 of the PL 3120 / PL 3150 / PL 3170
Smart Transceiver Data Book for more information on the CENELEC protocol. To
view this book, click Start, point to Programs, point to Echelon Mini, point to
Smart Transceiver Data Books, and then click it.

• To use a custom hardware template you have created, click Browse, and then
browse to and select the hardware template. By default, custom hardware templates
are stored in the C:\LONWORKS\NodeBuilder\Templates\Hardware folder on
your computer.

• To create a custom hardware template, click New and then configure the hardware,
memory, and description properties of your new custom hardware template as
described in the Configuring Hardware Templates section in Appendix B.

• To view or edit the hardware, memory, and description properties of the selected
hardware template, click Edit. If you save changes to a hardware template, you will
be prompted to confirm that you want to clear the read-only attribute of the
hardware template and save the file. Click Yes to overwrite the hardware template.

Note: Do not overwrite Standard hardware templates. Instead, create a custom
hardware template from a copy of a Standard hardware template and then configure
your custom hardware template. For more information on creating and configuring
custom hardware templates, see Appendix B, Creating and Configuring Hardware
Templates.

Specifying the Program ID
You can use the Application tab in the Mini FX Application to specify the program ID
for your device application. The program ID is a 16-hex-digit number that uniquely

52 Using the Mini FX Application

identifies the device application. The program ID may be formatted as a standard or
non-standard program ID. When formatted as a standard program ID, the 16 hex digits
are organized as six fields that identify the manufacturer, classification, usage, channel
type, and model number of the device.

To specify the program ID for your device application, follow these steps:

1. Click Calculate in the Standard Program Identifier box. The Standard
Program ID Calculator dialog opens.

Figure 4.2 Standard Program ID Calculator

The Standard Program ID Calculator helps you select the appropriate values for
the program ID fields. It lets you select the values from lists contained in a program
ID definition file distributed by LONMARK International. The current file
(spidData.xml) is available at http://www.lonmark.org/spid. This file is updated
as LONMARK International adds new manufacturer IDs, device classes, usage values,
and channel types.

The Program ID box at the bottom of this dialog is automatically updated as you
enter the program ID fields. You can manually enter some or all of the program ID
fields directly into this box. If you enter values directly in this box, the calculator
updates the properties above in the dialog with those values.

2. In the Manufacturer ID (M:MM:MM) property, either select your company from
the list, enter your 5 hex-digit standard manufacturer ID or temporary manufacturer
ID in the box to the right in decimal format (the calculator will convert it to hex
format), or select the Examples manufacturer ID.

• If your company is a LONMARK member, but you do not know your manufacturer
ID, you can find your ID in the list of manufacturer IDs at
www.lonmark.org/spid.

http://www.lonmark.org/spid
http://www.lonmark.org/spid

Mini FX User's Guide 53

• If you do not have a standard manufacturer ID, you can request a temporary
manufacturer ID by filling out a simple form at www.lonmark.org/mid.

3. In the Category property, select the general purpose or industry of the device. The
Category determines the device classes that will be available in Device Class
property. Alternatively, you can select one of the following options to determine and
organize the device classes shown in the Device Class property:

• ALL. Show all the existing device classes.

• Profiles By Name. Show an alphabetical list of all device classes with a profile.

• Profiles By Number. Show a numeric list (sorted by device class number) of all
device classes with a profile.

4. In the Device Class (CC:CC) property, select the primary function of the device. To
enter a device class value that has not yet been added to the standard list, select
<Enter Number[Decimal]>, and then enter decimal values from 0 to 255 in the
boxes to the right (the calculator will convert the values to hex format).

5. In the Usage (UU) property, select the intended use of the device. The most
significant two bits are determined by the Has Changeable Interface and Use
Field Valued Defined By Functional Profile check boxes below the Usage
property.

If you are using a standard usage value, select the Use Field Defined By
Functional Profile check box below the Usage property, and select a standard
usage value from the list.

If the primary functional profile implemented by your device specifies custom usage
values, clear the Use Field Defined By Functional Profile check box below the
Usage property, select <Enter Number[Decimal]> from the list, and then enter a
decimal value from 0-255 in the box to the right (the calculator will convert the value
to hex format).

6. In the Channel Type (TT) property, select the channel type supported by the
device’s transceiver.

• If you are using an FT 5000 EVB or you are developing a device based on an FT
Smart Transceiver, select TP/FT-10.

• If you are using a PL 3150/PL 3170EVB or you are developing a device based on a
PL Smart Transceiver or PLT-22 transceiver, select PL-20C or PL-20N. The
PL-20C transceiver has the CENELEC EN 50065-1 standard protocol enabled,
the PL-20N transceiver does not.

• If you are using a transceiver that is not compatible with any of channel types in
the list, select Custom. To enter a channel type value that has not yet been
added to the standard list, select <Enter Number[Decimal]> and enter a
decimal value from 0 to 255 in the box to the right (the calculator will convert
the value to hex format).

Note: Applications linking with the ISI libraries must select the program ID so
that it reports the channel type correctly. Non-interoperable device applications
should still use a standard program ID and advertise the channel type field
correctly.

7. In the Model Number (NN) property, enter the specific product model within the
range specified by the Min Model # and Max Model # properties in the Program
ID dialog. You can assign a unique model number for the specified manufacturer,

http://www.lonmark.org/technical_resources/temp_mid_request

54 Using the Mini FX Application

device class, usage, and channel type. The same hardware may be used for multiple
model numbers depending on the program that is loaded into the hardware. The
model number within the program ID does not have to conform to your published
model number.

8. In the Standard Development Program ID property, identify your device as a
standard development/prototype device or as a LONMARK certified device. If your
device is a development or prototype device that is not yet LONMARK certified, select
the Standard Development Program ID check box (the calculator sets the F field
of the program ID to 9). Clear this checkbox if your prototype is LONMARK certified
(the calculator sets the F field of the program ID to 8). This check box is selected by
default.

9. If your device has a changeable interface (it has changeable-type network variables,
or the device supports dynamic network variables), select the Has Changeable
Interface check box. This check box is cleared by default.

Integrators can use a network tool to change the types of changeable-type network
variables when installing a network. You can implement changeable-type network
variables on any type of device.

Dynamic network variables are network variables that are created or removed
during installation time by a network tool. Network variables with changeable types
may be implemented by any device; dynamic network variables may only be
implemented by some host-based devices. For more information on changeable-type
network variables, see Chapter 3 of the Neuron C Programmer’s Guide. For more
information on changeable-type network variables and dynamic network variables,
see the Application Layer Interoperability Guidelines.

Figure 4.3 Standard Program ID Calculator Completed

http://www.lonmark.org/technical_resources/guidelines/docs/LmApp34.pdf

Mini FX User's Guide 55

10. Click OK to return to the Application tab in the Mini FX Application. The
program ID you calculated appears in the Standard Program Identifier box.

Building the Application Image File
You can use the Application tab in the Mini FX Application to compile your device
application and generate a downloadable application image file for it. To do this, follow
these steps:

1. Click Build in the Build Application Image box.

2. The status box at the bottom of the Application tab informs you when the
application has successfully been compiled, and it displays build errors (if any).

3. If you receive any build errors, double-check that your code and fix the errors. For
more information on Neuron errors, including tips on how to resolve them, see
Chapter 7 of the Neuron Tools Errors Guide.

Note: The FT 5000 EVB example applications contain multiple Neuron C source and
header files, which are all referenced by the main.nc file. If you modify any of these
files and you want to build the modified device application with the Mini FX
Application, re-build the main.nc file in the example’s
LONWORKS\NeuronC\Examples\FT50000 EVB\<Example>\Source folder.

Downloading an Application Image File
You can use the Device tab in the Mini FX Application to download an application image
file over a LONWORKS network into your development platforms or any other LONWORKS
device based on a Neuron Chip or Smart Transceiver. To do this, you select a network
interface, select a device, select the application image file to be downloaded into the
specified device, and then download the application image file.

Note: Your EVBs ship with example applications pre-loaded on them. This means that
out-of-the-box you can install and bind them using the ISI protocol—without any
additional steps (no network tool is required). You can also install and bind your EVBs
using the LonMaker tool (available separately), or other network tool. Binding refers to
the process in which devices are logically connected via the network variables in their
device applications.

• The FT 5000 EVBs come with the NcMultiSensorExample application pre-loaded on
them. See the FT 5000 EVB Examples Guide for more information on downloading
and using this example application.

• The PL 3150 EVB comes with the MgDemo application pre-loaded on it, and the PL
3170 EVB comes with the MgSwitch application pre-loaded on it. See the Mini
FX/PL Examples Guide for more information on downloading and using these
example applications.

To download an application image file into a device, follow these steps.

1. Click the Device tab.

56 Using the Mini FX Application

2. In the Network Interface box, select the network interface attached to your

development computer that is to be used for communication between the Mini FX
Application and your EVB, and then click Connect. If you are using the U10 or U20
USB Network Interface included with the Mini kit and you have not installed any
other network interfaces on your computer, select LON1. The Status box at the
bottom indicates whether the Mini FX Application is connected to a network
interface.

You can alternatively use a different layer 5 network interface such as a PCC-10,
PCLTA-20, PCLTA-21, i.LON 10 Ethernet Adaptor, i.LON server. To use a PCC-10,
PCLTA-20, PCLTA-21 as the network interface for communication with an FT 5000
EVB, you must first configure it as a layer 5 interface. To do this, click Start on the
taskbar, click Control Panel, and then double-click LonWorks Plug ‘n Play. In
the Device Selected box, select your network interface. In the NI application box,
select PCC10NSI if you are using a PCC-10, or select NSIPCLTA if you are using a
PCLTA-20 or a PCLTA-21. Click OK to save your changes and close the LonWorks
Plug ‘n Play application.

Mini FX User's Guide 57

Note: The Mini FX Application is an OpenLDV application; therefore, it cannot
share a network interface with other LONWORKS applications. This means that when
the Mini FX Application is attached to a network interface, network tools such as the
LonMaker tool cannot use that network interface at the same time. To make the
network interface available to other applications, you must close the Mini FX
Application.

Conversely, the Mini FX Application cannot use a network interface that is currently
attached to another LONWORKS application. If you try to attach the Mini FX
Application to a network interface that is already connected, the following dialog
opens.

To make a connected network interface available to Mini FX Application, you must
close any LONWORKS applications using that network interface. If you are using the
LonMaker tool, you can also alternatively detach the application from the network
interface by clicking LonMaker, clicking Network Properties, clicking the
Network Interface tab, and clearing the Network Attached box, and then
clicking OK.

To use the Mini FX Application with network tools while avoiding network interface
conflicts, follow these guidelines:

• Use the network tool to download device applications that you have compiled
with the Mini FX Application into the target device, and to test that target
device.

• Use a separate network interfaces for the network tool and the Mini FX
Application. For example, you can install two U10 USB Network Interfaces in
your computer, and use one for the network tool, and use the other for the Mini
FX Application.

3. Select the device into which the application image is to be downloaded. You can do
this in three ways: sending a service pin message from the device, manually adding
a device, or selecting a previously registered device or a device automatically
discovered through the ISI protocol.

• To send a service pin message to register the device and select it, follow these
steps:

a. Press the Service button on the device. For the FT 5000 EVB or PL 3150/PL
3170 EVB, the Service button is a black button that is located along the right
side of the board and is labeled “Service”.

b. The Service Pin Message dialog opens. The Neuron ID of the device
appears in the Neuron ID box and its program ID in the Program ID box.

58 Using the Mini FX Application

Figure 4.4 Service Pin Message Dialog

The Neuron ID is a unique 48-bit (12-hex digit) identifier contained in every
LONWORKS device. The Mini FX Application uses the Neuron ID to
communicate with your selected device. For more information on Neuron
IDs, see the Introduction to the LONWORKS Platform document in the
Echelon Mini FX program folder.

The program ID is a 16-hex-digit number that uniquely identifies the device
application. The program ID is displayed as eight pairs of hexadecimal
encoded digits, separated by colons. The 16 hex digits are organized as 6
fields (FM:MM:MM:CC:CC:UU:TT:NN) that identify the manufacturer,
classification, usage, channel type, and model number of the device. For
more information on program IDs, see the Program IDs section in Chapter 1.

c. Click Yes to register the device with the Mini FX Application.

d. The device is added to the Device list, which includes devices that you have
added. The device will remain in the Device list until you close the Mini FX
Application, or connect to a new network interface. You will need to add the
device again when you restart the Mini FX Application, or when you connect
to a different network interface.

• To manually register the device and select it, follow these steps:

a. Click Add. The Add Device dialog opens.

b. Either press the Service button on the device, or manually enter the 12-digit
Neuron ID in hexadecimal format.

c. Click OK.

d. The device is added to the Device list.

• To select a device that was registered during the current Mini FX Application
session with the currently selected network interface, select the device from the
Device list. You can also select a device that has automatically been discovered

Mini FX User's Guide 59

through the ISI protocol (all self-installed devices in the network are silently
registered and added to the Device list).

4. From the list in the Application Image box, select the application image file to be
downloaded into the device you selected in step 3. The list includes all the
application images you have recently built or added with the Mini FX Application.
The last application image file that was built with the Mini FX Application appears
in this box by default.

To select an application image file that is not listed, click Add, and then browse to
and select the application image file (.NDL extension) to be downloaded. You can
select an application image file that you built using the Application tab, or you can
select any other existing application image file. The Mini FX Application builds
multiple types of application image files to support various network tools; however,
you must select an .NDL file when loading a device with the Mini FX Application.

Note: You cannot load the MgDemo Mini FX/PL example application on a PL 3170
EVB.

5. Click Load to load the selected Neuron application image into the selected device.
The Status box at the bottom of the Device tab informs you when the application
image has been successfully loaded into the device, and it also informs you of any
load errors. For more information on Neuron linker (NLD) errors, including tips on
how to resolve them, see Chapter 7 of the Neuron Tools Errors Guide.

60 Using the Mini FX Application

Note: After you load one of the MgDemo, MgSwitch, MgKeyboard or MgLight
application image files into a PL 3150/PL 3170EVB, LED1 will begin flashing,
indicating that the PL EVB has entered CENELEC configuration mode. If LED8 is
on, then the CENELEC EN-50065-1 protocol is currently enabled. If LED8 is off,
this CENELEC protocol is currently disabled.

The initial setting depends on the hardware template you selected when you loaded
the application image into a PL EVB. For example, if you selected the PL 3150
Evaluation Board (CENELEC on) hardware template, CENELEC will be enabled
by default, and LED8 will be on. If you selected the PL 3150 Evaluation Board
(CENELEC off) hardware template, CENELEC will be disabled by default, and
LED8 will be off.

You can press the SW8 button to enable or disable CENELEC. When you have made
a selection, press the SW1 button to confirm your selection and exit CENELEC
configuration mode. You will not be able to load another application into the PL
3150/PL 3170EVB, or perform any other network operations, until you have made a
selection and exited CENELEC configuration mode.

The PL EVB will enter CENELEC configuration mode every time you load a Mini
FX/PL example application image file into it (as well as the first time you power up
the EVB). To disable this behavior for any of the Mini FX/PL example applications,
comment out the following line in the Neuron C source file:
#define SUPPORT_CCL

For more information on CENELEC configuration mode, see the CENELEC
Configuration Library ReadMe file that is automatically installed with the Mini
FX software. To view this document, click Start, point to Programs, point to
Echelon Mini, point to Mini FX Documentation, and then select CENELEC
Configuration Library ReadMe. Alternatively, you can browse to the
C:\LONWORKS\NodeBuilder folder on your computer and then open the
CCL_ReadMe.htm file.

Resetting, Winking, and Testing Devices
You can use the Device tab to reset, wink, or test a device that you have registered with
the Mini FX Application. To do this, open the Mini FX Application, follow steps 1–3 in
the previous section to select a network interface and register the device to be tested, and
then click one of the following options:

• Reset. You can reset a device to test its reset behavior, or to restart the device
application if the device becomes unresponsive. Resetting a device clears the device
statistics that are reported when you click Test.

• Wink. You can wink a device to identify it on the network and verify that it is
communicating properly. A device that supports the Wink command generates an
application-dependent audio or visual feedback such as a beep or a flashing service
LED when winked. Wink commands are typically used when installing or diagnosing
multiple devices in a system, where a network tool may be needed to confirm the
identity of a given device. You can program your device application to so that it
provides some clear audio or visual feedback in response to a Wink command.

o When you wink an FT 5000 EVB running any of the provided Neuron C example
applications, the TX (transaction send) and RX (transaction receive) LEDs
quickly flash on and off.

Mini FX User's Guide 61

o When you wink a PL EVB when it is running an example application LED1–
LED3 on the Mini Gizmo I/O Board turn on and LED4–LED8 blink rapidly for a
few seconds, and the TX and RX LEDs on the EVB quickly flash.

• Test. You can test a device to check its current status. After the test has been
completed, the Status box displays the current state of the device, as well as
statistics such as the number of packets received by the device, the number of
packets addressed to the device, and the number of missed or lost messages. Each
statistic displayed by the test will remain static when it reaches the maximum value
of 65,535. You can reset the device statistics after a test by clicking Reset.

62 Using the Mini FX Application

Mini FX User's Guide 63

5

Developing Device Applications

This chapter provides an overview of the Neuron C Version
2.2 programming language. It provides a series of

programming examples that demonstrate Neuron C
concepts, including input/output, timers, network variables,

configuration properties, functional blocks, and
Interoperable Self-Installation (ISI).

64 Developing Device Applications

Introduction to Neuron C
Neuron C Version 2.2 is a programming language based on ANSI C that you can use to
develop applications for Neuron Chips and Smart Transceivers. It includes network
communication, I/O, interrupt-handling, and event-handling extensions to ANSI C,
which make it a powerful tool for the development of LONWORKS device applications.
Following are a few of the extensions to the ANSI Standard C language:

• A network communication model based on functional blocks and network variables that
simplifies and promotes data sharing between like or disparate devices.

• A network configuration model based on functional blocks and configuration properties
that facilitates interoperable network configuration tools.

• A type model based on standard and user resource files expands the market for
interoperable devices by simplifying integration of devices from multiple
manufacturers.

• An extensive built-in set of I/O objects that supports the powerful I/O capabilities of
Neuron Chips and Smart Transceivers. Powerful event-driven programming extensions
based on when-tasks that provide easy handling of network, I/O, and timer events.

• Language extensions that define application interrupt handlers and use
synchronization tools, where available.

Neuron C provides a rich set of language extensions to ANSI C tailored to the unique
requirements of distributed control applications. Experienced C programmers will find
Neuron C a natural extension to the familiar ANSI C paradigm. Neuron C offers built-in
type checking and allows the programmer to generate highly efficient code for distributed
LONWORKS applications.

Neuron C omits ANSI C features not required by the standard for free-standing
implementations. For example, certain standard C libraries are not part of Neuron C.
Other differences between Neuron C and ANSI C are detailed in the Neuron C
Programmer’s Guide.

This chapter provides an introduction to Neuron C. For more details on Neuron C, see
the Neuron C Programmer’s Guide.

Unique Aspects of Neuron C
Neuron C implements all the basic ANSI C types, and type conversions as necessary. In
addition to the ANSI C data constructs, Neuron C provides some unique data elements.

Network variables are fundamental to Neuron C and LONWORKS applications. Network
variables are data constructs that have language and Neuron firmware support to
provide the look and feel of a regular global C variable, but with additional properties of
communicating across a LONWORKS network, to or from one or more other devices on
that network. The network variables make up part of the device interface for a
LONWORKS device.

Configuration properties are Neuron C data constructs that are another part of the device
interface. Configuration properties allow the device’s behavior to be customized using a
network tool such as the LonMaker tool or a customized plug-in created for the device.
Configuration properties provide the look and feel of a normal variable to the C program,
with the addition of controlled access by network configuration tools.

Mini FX User's Guide 65

Neuron C also provides a way to organize the network variables and configuration
properties in the device into functional blocks. Functional blocks provide a collection of
network variables and configuration properties that are used together to perform one
task. These network variables and configuration properties are called the functional
block members.

Each network variable, configuration property, and functional block is defined by a type
definition contained in a resource file. Network variables and configuration properties
are defined by network variable types (NVTs) and configuration property types (CPTs).
Functional blocks are defined by functional profile templates (FPTs).

Network variables, configuration properties, and functional blocks in Neuron C can use
standardized, interoperable types. The use of standardized data types promotes the
interconnection of disparate devices on a LONWORKS network. For network variables,
the standard types are called standard network variable types (SNVTs). For
configuration properties, the standard types are called standard configuration property
types (SCPTs). For functional blocks, the standard types are called standard functional
profiles (SFPTs). If you cannot find standard types or profiles that meet your
requirements, Neuron C also provides full support for user-defined network variable
types (UNVTs), user-defined configuration property types (UCPTs), and user-defined
functional profile templates (UFPTs).

A Neuron C application executes in the environment provided by the Neuron firmware.
This firmware provides an event-driven scheduling system as part of the Neuron C
language’s run-time environment. Therefore, a Neuron C application does not use a
single entry point, as is the case with ANSI C’s main() function. Instead, a Neuron C
application uses when-tasks and interrupt-tasks to specify application code to be
executed in response to various system events or interrupt requests, much in the way of
a .NET event handler.

The Neuron firmware contains a scheduler, which executes these when-tasks in an
orderly and deterministic fashion as and if needed. Neuron C when-tasks can be
triggered by system events (such as reset), network events (such as a network variable
update or network error), I/O events (such as a new reading from an I/O input), timer
events, or any arbitrary application-defined event.

Interrupt-tasks are activated as the interrupt request occurs, subject to interrupt
prioritization rules. Neuron C interrupt-tasks can be triggered by edge or level
conditions on any of the dedicated I/O pins, by events occurring in the embedded timer
and counter units, or by a dedicated high-resolution system timer. Interrupt-tasks are
only supported by Series 5000 chips. Other interrupt sources, such as those related to
sending or transmitting serial data over the embedded UART, are handled transparently
by the Neuron firmware.

Neuron C also provides a lower-level application messaging service integrated into the
language in addition to the network variable model. While the network variable model
has the advantage of being a standardized method of information interchange that
promotes interoperability between multiple devices from multiple vendors, application
messaging is available for proprietary and standard special-purpose solutions.
Application messages are used with the LONWORKS file transfer protocol, a standard
mechanism for transfer of large amounts of data, and the ISI protocol, a standard
mechanism to manage networks without intervention of a dedicated tool or specialist.

Another Neuron C data object is the application timer object. Timer objects can be
declared and manipulated like variables. When a timer expires, the Neuron firmware
automatically manages the timer events and notifies the program of those events.

66 Developing Device Applications

Timers may be automatically reloading (repeating), or one-shot timers, with a duration
ranging from 0.001–65,535 seconds.

Neuron C supports programmable hardware timer units through a variety of I/O library
functions. These functions provide a resolution up to 1 MHz (1 µs) or better, subject to
the selected I/O model, Neuron type, clock speed, and other factors (see the I/O Model
Reference for more information). The Series 5000 chips also support a configurable
high-resolution system timer, which can be used to generate periodic interrupt requests.

Neuron C supports up to 35 different I/O models, ranging from simple bit Direct I/O
models for typical input or output hardware to complex Timer/Counter models for triacs.
Neuron C also includes serial and parallel I/O models for serial and parallel
communication busses. These I/O models are standardized I/O “device drivers” for the
Neuron Chip or Smart Transceiver I/O hardware. Each I/O model fits into the
event-driven programming model. A function-call interface is provided to interact with
each I/O object. The function-call interfaces are optimized for their respective I/O
models, yet they are similar to each other so that they are easy to use.

Neuron C Variables
The following sections briefly discuss various aspects of Neuron C-specific variable
declarations. Data types affect what sort of data a variable represents. Storage
classes affect where the variable is stored, whether it can be modified (and if so, how
often), and whether there are any device interface aspects to modifying the data.

Neuron C Variable Types
Neuron C supports the following C variable types. The keywords shown in square
brackets below are optional. If omitted, they will be assumed by the Neuron C
language, per the rules of the ANSI C standard:

• [signed] long [int] 16-bit quantity
• unsigned long [int] 16-bit quantity
• signed char 8-bit quantity
• [unsigned] char 8-bit quantity
• [signed] [short][int] 8-bit quantity
• unsigned [short][int] 8-bit quantity
• enum 8-bit quantity (int type)

Neuron C provides some predefined enum types. One example is shown below:

typedef enum {FALSE, TRUE} boolean;

You should use the unsigned int type whenever possible because it is the type best
supported by the Neuron Chip and Smart Transceiver’s hardware architecture. The
unsigned int type is preferred over signed int type.

Neuron C also provides predefined objects that, in many ways, provide the look and feel
of an ANSI C language variable. These objects include Neuron C timer and I/O objects.
See Chapter 2 of the Neuron C Programmer’s Guide for more details on I/O objects, and
see Chapter 4 in the Neuron C Reference Guide for more details on timer objects.

The extended arithmetic library also defines float_type and s32_type for IEEE 754 and
signed 32.bit integer data respectively. These types are detailed further in Chapter 3 of
the Neuron C Reference Guide.

Mini FX User's Guide 67

Neuron C Storage Classes
If no class is specified for a declaration at file scope, the data or function is global. File
scope is that part of a Neuron C program that is not contained within a function, a
when-task, or an interrupt-task. Global data (including all data declared with the static
keyword) is present throughout the entire execution of the program, starting from the
point where the symbol was declared. Declarations using extern references can be used
to provide forward references to variables, and function prototypes must be declared to
provide forward references to functions. In addition, extern references can be used to
publish a symbol and allow for linking with other object files.

Upon power-up or reset of a Neuron Chip or Smart Transceiver, the global data in RAM
is initialized to its initial-value expression, if present; otherwise, it is set to 0.

Neuron C supports the following ANSI C storage classes and type qualifiers:

• auto declares a variable of local scope. Typically, this would be within a function
body. This is the default storage class within a local scope and the keyword is
normally not specified. Variables of auto scope that are not also static are not
initialized upon entry to the local scope. The value of the variable is not preserved
once program execution leaves the scope.

• const declares a value that cannot be modified by the application program. Affects
self-documentation (SD) data generated by the Neuron C compiler when used in
conjunction with the declaration of CP families or configuration network variables.
The Neuron C language does not permit the use of const with auto.

• extern declares a data item or function that is defined in another module, in a
library, or in the system image.

• static declares a data item or function which is not to be made available to other
modules at link time. Furthermore, if the data item is local to a function or to a
when()task, the data value is to be preserved between invocations, and is not made
available to other functions at compile time.

In addition to the ANSI C storage classes, Neuron C provides the following classes and
class modifiers:

• network begins a network variable declaration. See Chapter 3, How Devices
Communicate Using Network Variables, of the Neuron C Programmer’s Guide for
more details.

• uninit when combined with the eeprom keyword (see below), specifies that the
EEPROM variable is not initialized or altered on program load or reload over the
network.

The following Neuron C keywords allow you to direct portions of application code and
data to specific memory sections.

• eeprom
• far
• offchip (only on Neuron Chips and Smart Transceivers with external memory)
• onchip

These keywords are particularly useful on the Neuron 3150 Chip and 3150 Smart
Transceivers, since a majority of the address space for these parts is mapped off chip.
See Using Neuron Chip Memory in Chapter 8 of the Neuron C Programmer’s Guide for a
more detailed description of memory usage and the use of these keywords.

68 Developing Device Applications

Variable Initialization
Initialization of variables occurs at different times for different classes. The const
variables, except for network variables, must be initialized. Initialization of const
variables occurs when the application image is first loaded into the Neuron Chip or
Smart Transceiver. The const ram variables are placed in off-chip RAM that must be
non-volatile. The eeprom and config variables are also initialized at load time, except
when the uninit class modifier is included in these variable definitions.

Automatic variables cannot be declared const because Neuron C does not implement
initializers in declarations of automatic variables.

Global RAM variables are initialized at reset (specifically when the device is reset or
powered up). By default, all global RAM variables (including static variables) are
initialized to zero at this time.

Initialization of I/O objects, input network variables (except for eeprom, config,
config_prop, or const network variables), and timers also occurs at reset. Zero is the
default initial value for network variables and timers.

Local variables (except static ones) are not automatically initialized, nor are their values
preserved when the program execution leaves the local scope.

Neuron C Declarations
The Neuron C Version 2.2 programming language and ANSI C both support the
following declarations listed in Table 5.1:

Table 5.1 ANSI C and Neuron C Declarations

Declaration Example

Simple data items int a, b, c;

Data types typedef unsigned long ULONG;

Enumerations enum hue {RED, GREEN, BLUE};

Pointers char *p;

Functions int f(int a, int b);

Arrays int a[4];

Structures and unions struct s {
 int field1;
 unsigned field2 : 3;
 unsigned field3 : 4;
};

The Neuron C Version 2.2 programming language also supports the following
declarations listed in Table 5.2:

Table 5.2 Neuron C Declarations

Declaration Example

I/O objects IO_0 output oneshot relay_trigger;

Timers mtimer led_on_timer;

Network variable network input SNVT_temp nviTemperature;

Mini FX User's Guide 69

Declaration Example

Configuration Properties SCPTdefOutput cp_family cpDefaultOut;

Functional Blocks fblock SFPTnodeObject { … } myNode;

Getting Started with Neuron C
This section provides a series of Neuron C examples that demonstrate how to use Neuron
C to perform I/O functions. These programming examples are designed to work with
both the FT 5000 EVB and the PL 3150/PL 3170 EVB, with minor functional differences
based on the hardware and system resources on the boards. The examples use the I/O
devices on the FT 5000 EVB, and the Mini Gizmo I/O board that you can attach to a PL
3150/PL 3170 EVB. The I/O devices used in these examples include the push buttons,
LEDs, temperature sensors, serial ports, and displays on the boards. By following these
examples, you will create a set of I/O utility functions that is summarized in I/O
Examples Toolkit later in this chapter. These utility functions are used in the
subsequent example device applications.

This section then provides a series of increasingly complex device applications based on
the I/O examples. These device applications introduce Neuron C and device development
concepts such as I/O objects and timers, network variables, configuration properties,
functional profiles, and Interoperable Self-Installation (ISI). The device applications are
as follows:

• A digital sensor that senses a push button, and a digital actuator that drives an LED.
• A thermostat that samples ambient temperature readings, displays current and

setpoint temperature values, executes a controller algorithm to drive a heating and
cooling system, and provides status information.

You can copy the programming examples or the complete device applications to a text
editor, save them to a file with an .nc extension, and then build and download them into
your EVB with the Mini FX Application.

Note: You must use the .nc file extension for Neuron C source code. You cannot use the
.c file extension, which is common to ANSI C programmers. If you compile code
packaged in a file with a .c file extension, the Neuron C Compiler classifies the source as
“pure C” and disables most of the Neuron C extensions. As a result, you will not be able
to download the resulting application image file into a Neuron Chip or Smart
Transceiver. You cannot use the Mini kit to create user-defined function libraries with
the pure C feature, but you can use the NodeBuilder tool to create them with pure C.

If you have changed the jumper configurations on your EVB, you must return them to
their default settings to run the examples provided in this chapter. Table 5-3 lists the
minimum jumper configurations required for the FT 5000 EVB, PL 3150 EVB, and PL
3170 EVB to run the examples. The table lists separately the jumper pins that must be
connected and disconnected.

See the FT 5000 EVB Hardware Guide for more information on the jumper locations and
settings of the FT 5000 EVB. See the Mini FX/PL Examples Guide for more information
on the jumper locations and settings of the PL 3150/PL 3170 EVB.

70 Developing Device Applications

Table 5.3 Required EVB Jumper Configurations

Required Connections Required Disconnections Board

Jumper Pin Jumper Pin

JP31 all JP21 all

JP32 1-2 (SWSH)
3-4 (TEMP)
7-8 (SW1)

JP32 11-12 (3PD)
13-14 (1PD)
15-16 (9PD)

JP33 LCD 5V JP201 all

FT 5000 EVB

P201 7-8 (10 T1IN) JP203 1-2 (SPD)
3-4 (6PD)
5-6 (T2IN)
7-8 (FON PD)

PL 3150 EVB Mini Gizmo I/O Board (P201) — —

JP201 all

JP203 IO5

PL 3170 EVB Mini Gizmo I/O Board (P201)

JP204 IO6

Note: You can use other Series 3100 EVBs to run the examples applications. To do this,
connect the Mini Gizmo I/O Board to the P201 connector on the EVB, connect the IO10
jumper, and remove the IO5, IO6, IO0, IO8, IO4, and IO1 jumpers.

Performing Neuron C Input/Output
A Neuron Chip or Smart Transceiver may be connected to one or more physical I/O
devices via up to 12 versatile I/O pins. Examples of simple I/O devices include
temperature, light, and position sensors; valves; switches; LEDs; and LCDs. Neuron
Chips and Smart Transceivers can also be connected to other microprocessors. The
Neuron firmware implements numerous I/O objects that manage the interface to these
devices for a Neuron C application. For more details on I/O objects, see the Neuron C
Programmer’s Guide and the Neuron C Reference Guide.

To set up I/O devices in your Neuron C code, you declare the I/O objects that monitor and
control the Neuron Chip or Smart Transceiver I/O pins, named IO_0 – IO_10 or IO_11
(depending on the Neuron Chip or Smart Transceiver model). To perform I/O, you use
the built in I/O events and functions in the Neuron C programming language.

You can then use the built in I/O events and functions to debug your device application.
For example, you can use the LED outputs on your EVBs to signal events from within
your application.

You can also perform application level debugging using the serial ports on your EVBs, or
exchange other data to any other computer using a serial connection. To do this, you
insert code in your device application that sends output to the serial ports, enable serial
communication on your EVB, and connect your EVB to your development computer via a
serial interface. You can then monitor the serial output with Windows HyperTerminal,
PuTTy, or another terminal emulation program on your computer.

• You can connect an FT 5000 EVB to your development computer via a USB or EIA
232 interface For more information on connecting the serial interface on an FT 5000
EVB, see Chapter 2 of the FT 5000 EVB Hardware Guide. The examples in this

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Mini FX User's Guide 71

chapter, and the jumper configuration discusses earlier in this chapter, use an EIA-
232 connection.

• You can connect your PL 3150 EVB to your development computer via an EIA 232
interface. For more information on connecting the serial interface on a PL 3150 EVB,
see the Mini FX/PL Examples Guide.

If you are using the Mini FX/FT Evaluation Kit, you can also use the LCDs on the FT
5000 EVBs to display debug output, application data, and usage information. The
programming samples in this chapter demonstrate how to do this.

For more information on the built in Neuron C I/O functions and events, see the Neuron
C Reference Guide. For more information on performing I/O with a Smart Transceiver or
Neuron Chip, see the I/O Model Reference for Smart Transceivers and Neuron Chips and
the Engineering Bulletins listed in Table 5.4, which are available at
www.echelon.com/docs.

Table 5.4 Neuron C I/O Engineering Bulletins

Document Title Description Part Number

Analog-To-Digital
Conversion With
the Neuron Chip

Describes some of the more popular
analog to digital (A/D) conversion
schemes available for use with a Smart
Transceiver or Neuron Chip. Provides
schematics, parts lists and code
examples.

005-0019-01

Driving a Seven
Segment Display
with the Neuron
Chip

Describes how a Smart Transceiver or
Neuron Chip can be used to drive a
seven-segment display controller chip,
the Motorola MC14489, using the
Neurowire device. Includes Neuron C
software drivers to display decimal
numbers from binary data.

005-0014-01

EIA-232C Serial
Interfacing with
the Neuron Chip

Describes a simple level conversion
circuit to allow a Smart Transceiver or
Neuron Chip to communicate with
RS-232C devices. Also includes Neuron
C software to drive an RS-232C CRT
terminal.

005-0008-01

Neuron Chip
Quadrature Input
Function Interface

Describes the use of the quadrature
device in a Smart Transceiver or
Neuron Chip to interface to external
devices such as shaft encoders.

005-0003-01

Parallel I/O
Interface to the
Neuron Chip

Describes hardware and software to
interface a Smart Transceiver or
Neuron Chip to a microprocessor using
the parallel I/O port.

005-0021.01

www.echelon.com/docs
http://www.echelon.com/support/documentation/bulletin/005-0019-01C.pdf
http://www.echelon.com/support/documentation/bulletin/005-0014-01C.pdf
http://www.echelon.com/support/documentation/bulletin/005-0008-01D.pdf
http://www.echelon.com/support/documentation/bulletin/005-0003-01.pdf
http://www.echelon.com/support/documentation/bulletin/005-0021-01C.pdf

72 Developing Device Applications

Document Title Description Part Number

Scanning a Keypad
with the Neuron
Chip

Describes how a Smart Transceiver or
Neuron Chip can be used to scan a
simple 16-key switch matrix to provide
a numeric or special-function keyboard
without the use of a keyboard encoder.

005-0004-01

Using the
Hardware Serial
Peripheral
Interface (SPI) and
Neurowire I/O
Object Models to
Interface with
Peripherals and
Microcontrollers

Describes communications between
Smart Transceivers or Neuron Chips
and other microcontrollers for designs
that intend to make use of the SPI
interface for simpler applications and
also for understanding how the SPI
interfaces are implemented in the
Smart Transceivers and Neuron Chips.
Neuron C code examples of an SPI
interface are explained in this
engineering bulletin, and the source
code is available for download.

005-0165

The programming samples in this section are designed to work with both the FT 5000
EVB and the PL 3150/PL 3170 EVB. Conditional compilation is used where necessary
because some of the I/O devices on the EVBs are different. For the examples in this
chapter, define the USE_5000EVB symbol to use the FT 5000 EVB, and define the
USE_MINIGIZMO symbol to use a PL 3150/PL 3170 EVB (other Series 3100 EVB) with
a Mini Gizmo I/O board attached.

This following section demonstrates how to write Neuron C code to perform I/O on
switches, LEDs, temperature sensors, serial ports, and displays. To view the collection of
I/O definitions and functions created by these examples, see I/O Examples Toolkit at the
end of this section. The subsequent example device applications in this chapter are
based on the I/O definitions and functions.

Note: This section includes code fragments rather than complete application code. To
view complete example Neuron C device applications, see Creating Example Device
Applications later in this chapter.

Switches
The following sections describe how to write Neuron C code that interoperates with the
push buttons on the FT 5000 EVB and the Mini Gizmo I/O Board that you can attach to a
PL EVB. The code that samples the SW1 button on both EVB types can be combined
using conditional compilation. The complete code for the I/O drivers is provided in I/O
Examples Toolkit at the end of this section.

FT 5000 EVB
The FT 5000 EVB includes two push buttons: SW1 and SW2. The SW1 button is wired
straight to the I/O 9 pin and can be sampled using a simple input bit model. The SW2
push button is connected to a parallel-in/serial-out shift register. For simplicity, this
example uses the SW1 button only.

The state of a bit input signal can be read at any time through the io_in() Neuron C
library function:

http://www.echelon.com/support/documentation/bulletin/005-0004-01.pdf
http://www.echelon.com/support/documentation/bulletin/005-0165-01A.pdf

Mini FX User's Guide 73

IO_9 input bit ioSwitch1;

void example()
{
 if ((boolean)io_in(ioSwitch1)) {
 …
 }
}

The Neuron C language implements a largely event-driven programming model. This
means that instead of constantly polling all I/O for new data, your device application only
needs to respond to changes. The following example initializes this system during reset
processing, and calls an OnButtonPressed() event handler whenever an activated
button is detected. The OnButtonPressed() event handler does nothing in this
example, but it will be modified later to respond to button events:

IO_9 input bit ioSwitch1;

extern void OnButtonPressed(void); // button event handler

//
// InitializeIO() is called from the when(reset) task and initializes
// the I/O system and related driver functions.
//
void InitializeIO()
{
 io_change_init(ioSwitch1);
}
//
// when(reset) executes whenever the device resets. It performs housekeeping
// and initialization tasks as required by the application.
//
when(reset)
{
 InitializeIO();
 //
 // TODO: add other initialization code, if necessary
 //
 …
}

//
// when(io_changes…) executes whenever the switch
//
when(io_changes(ioSwitch1) to 0)
{
 OnButtonPressed();
}

//
// OnButtonPressed() is called whenever the button becomes active. This
// initial implementation here does nothing.
//
void OnButtonPressed()
{
}

Note: The FT 5000 EVB examples included with the Mini kit contain a
EvalBoardGetSwitch() function that demonstrates how to efficiently handle both push
buttons on the FT 5000 EVB. This function is contained in the ft5000evalboard.h file,
which is located in the LONWORKS\NeuronC\Examples\FT5000 EVB\Common
folder on your computer.

Mini Gizmo I/O Board
The Mini Gizmo I/O board includes eight buttons that are connected to a parallel-in
serial-out shift register. These buttons are sampled using a bitshift input model for data,

74 Developing Device Applications

and a bit output model for the latch pulse. To read any of these buttons, all eight buttons
must be read from the shift register.

The following GetButton() function takes three subsequent readings to suppress a
bouncing signal, and returns the logical state of the SW1 button:

IO_4 input bitshift numbits(8) clockedge(-) ioButtons;
IO_6 output bit ioButtonLoad = 1;

boolean GetButton(void)
{
 unsigned debounce;
 unsigned data;
 data = 0xFF;

 for (debounce = 0; debounce < 3; ++debounce) {
 // strobe:
 io_out(ioButtonLoad, 0);
 io_out(ioButtonLoad, 1);
 // sample data and debounce:
 data &= (unsigned)io_in(ioButtons);
 }
 return ~buttons & 0x01;
}

Because the eight Mini Gizmo buttons are connected through a shift register, state
changes cannot be detected through the io_changes() event used with the SW1 button
on the FT 5000 EVB. The following example uses a repeating application timer, which
expires every 25 ms, to take the button reading. When an activated SW1 button is
detected, the timer event handler calls the same OnButtonPressed() event handler
introduced earlier:

extern void OnButtonPressed(void); // button event handler
//
// buttonTimer expires every 25ms, and triggers the timer_expires event
// with each expiry
//
mtimer repeating buttonTimer = 25;

//
// The Neuron C scheduler activates the following when-task whenever the
// button timer expires. The task samples the button state, detects a
// newly activated SW1 button, and fires the OnButtonPressed() event when
// necessary.
//
when(timer_expires(buttonTimer) {
 static boolean previousButton = TRUE;
 boolean currentButton;

 currentButton = GetButton();
 if (currentButton && !previousButton) {
 OnButtonPressed();
 }
 previousButton = currentButton;
}

//
// OnButtonPressed() is called whenever the button becomes active. This
// initial implementation here does nothing.
//
void OnButtonPressed()
{
}

Conditional Compilation Example
The following is the combined code for the switch driver, capable of driving the SW1
button on FT 5000 EVB and the Mini Gizmo I/O board:

Mini FX User's Guide 75

#ifdef USE_5000EVB

IO_9 input bit ioSwitch1;

//
// when(io_changes…) executes whenever the button is pressed
//
when(io_changes(ioSwitch1) to 0)
{
 OnButtonPressed();
}

#ifdef USE_MINIGIZMO

IO_4 input bitshift numbits(8) clockedge(-) ioButtons;
IO_6 output bit ioButtonLoad = 1;
boolean GetButton(void)
{
 unsigned debounce;
 unsigned data;
 data = 0xFF;
 for (debounce = 0; debounce < 3; ++debounce) {
 // Strobe:
 io_out(ioButtonLoad, 0);
 io_out(ioButtonLoad, 1);
 // Sample data and debounce:
 data &= (unsigned)io_in(ioButtons);
 }
 return ~data & 0x01;
}

//
// buttonTimer expires every 25ms, and triggers the timer_expires event
// with each expiry
//
mtimer repeating buttonTimer = 25;
//
// The Neuron C scheduler activates the following when-task whenever the
// button timer expires. The task samples the button state, detects a
// newly activated SW1 button, and fires the OnButtonPressed() event when
// necessary.
//
when(timer_expires(buttonTimer)) {
 static boolean previousButton = TRUE;
 boolean currentButton;

 currentButton = GetButton();
 if (currentButton && !previousButton) {
 OnButtonPressed();
 }
 previousButton = currentButton;
}

#else

#endif // 5000 evb
#endif // mini gizmo

LEDs
LEDs are normally connected to Vcc through a suitable resistor, and driven active low: a
‘0’ output signal normally switches the LED on, and a ‘1’ switches it off. The following
sections describe how to program the LEDs on the FT 5000 EVB and the Mini Gizmo I/O
Board that you can attach to a PL EVB. The code that drives the LEDs on both EVB
types can be combined using conditional compilation. The complete code for the I/O
drivers is provided in I/O Examples Toolkit at the end of this section

76 Developing Device Applications

FT 5000 EVB
The FT 5000 EVB includes two LEDs: LED1 and LED2. LED1 and LED2 are
connected to pins I/O 2 and I/O 3, respectively. You can drive the state of these LEDs by
simply declaring a one bit output model for each LED, and assigning the desired output
value with the io_out() Neuron C library function:

IO_2 output bit ioLed1 = 1;
IO_3 output bit ioLed2 = 1;

For use with the examples provided in this chapter, a SetLeds() function takes two
arguments, the logical on/off state for each LED. The function provides hardware
abstraction, translates the logical on/off state into the physical signal, and drives the I/O
lines accordingly:

void SetLeds(boolean led1, boolean led2)
{
 io_out(ioLed1, !led1);
 io_out(ioLed2, !led2);
}

Mini Gizmo I/O Board
The Mini Gizmo I/O board includes eight LEDs that are connected to the Smart
Transceiver using a serial-in/parallel-out shift register. To control any of these LEDs,
the desired state of all eight LEDs must be shifted into this register. Similar to the
SetLeds() function for the FT 5000 EVB, the SetLeds() function for the Mini Gizmo I/O
board in this example only supports two LEDs, LED1 and LED2. The remaining six
LEDs are always off.

The following is an implementation of the SetLeds() function for use with the Mini
Gizmo I/O board. The function uses a bitshift output model for the serialized data, and a
bit output object to drive the shift register’s low-active Load signal.

IO_2 output bitshift numbits(8) ioLeds;
IO_1 output bit ioLedLoad = 1;

void SetLeds(boolean led1, boolean led2)
{
 unsigned data;

 // Compute the data byte for the shift register:
 data = led1 ? 0x80 : 0x00;
 data |= led2 ? 0x40 : 0x00;

 // Push inverted data into shift register:
 io_out(ioLeds, ~data);

 // Strobe:
 io_out(ioLedLoad, 0);
 io_out(ioLedLoad, 1);
}

Conditional Compilation Example
The following is the combined code for the LED driver, capable of driving two LEDs on
FT 5000 EVB and the Mini Gizmo I/O board:

Mini FX User's Guide 77

#ifdef USE_5000EVB

IO_2 output bit ioLed1 = 1;
IO_3 output bit ioLed2 = 1;

#else
#ifdef USE_MINIGIZMO

IO_2 output bitshift numbits(8) ioLeds;
IO_1 output bit ioLedLoad = 1;

#endif // mini gizmo
#endif // 5000 evb

void SetLeds(boolean led1, boolean led2)
{
#ifdef USE_5000EVB
 io_out(ioLed1, !led1);
 io_out(ioLed2, !led2);
#else
#ifdef USE_MINIGIZMO
 unsigned data;

 // Compute the data byte for the shift register:
 data = led1 ? 0x01 : 0x00;
 data |= led2 ? 0x02 : 0x00;

 // Push inverted data into shift register:
 io_out(ioLeds, ~data);

 // Strobe:
 io_out(ioLedLoad, 0);
 io_out(ioLedLoad, 1);
#endif // mini gizmo
#endif // 5000 evb
} // SetLeds

Temperature Sensor
Both the FT 5000 EVB and the Mini Gizmo I/O board include a Dallas DS18S20
temperature sensor. This temperature sensor is connected to the Smart Transceiver
through a one-wire touch I/O interface to pin I/O 7.

The following example illustrates the use of the touch I/O model. The
GetTemperature() function drives the 1-wire protocol to obtain two data bytes from the
sensor, maps those to a local variable in big endian notation, and transforms the data
received to meet the definition of a SNVT_temp_p standard network variable type,
which holds temperature information in Celsius, with a resolution of 0.01°.

IO_7 touch ioTemperatureSensor;

#define DS18S20_SKIP_ROM 0xCCu
#define DS18S20_CONVERT 0x44u
#define DS18S20_READ 0xBEu

SNVT_temp_p GetTemperature(void)
{
 union {
 SNVT_temp_p value;
 unsigned raw[2];
 } current;

 current.value = 32767l;

 if (touch_reset(ioTemperatureSensor)) {
 (void)touch_byte(ioTemperatureSensor, DS18S20_SKIP_ROM);
 (void)touch_byte(ioTemperatureSensor, DS18S20_READ);
 // Read data into big-endian variable:
 current.raw[1] = (unsigned)touch_byte(ioTemperatureSensor, 0xFFu);

78 Developing Device Applications

 current.raw[0] = (unsigned)touch_byte(ioTemperatureSensor, 0xFFu);

 if (touch_reset(ioTemperatureSensor)) {
 // The value currently held in ‘current’ is the raw DS18S20
 // data, in Celsius, at a resolution of 0.5 degrees.
 // SNVT_temp_p, however, provides a resolution of 0.01 in
 // a fixed-point implementation.
 // Correct the raw reading by factor 50 thus:
 current.value *= 50ul;

 // Start the next conversion cycle:
 (void) touch_byte(ioTemperatureSensor, DS18S20_SKIP_ROM);
 (void) touch_byte(ioTemperatureSensor, DS18S20_CONVERT);
 } else {
 current.value = 32767l;
 }
 }
 return current.value;
}

Serial I/O
Serial I/O is often used to exchange application data with other processors or computers.
A simple serial text output is also often useful for simple application-level debugging and
diagnosing, or for reporting calibration data during manufacture.

Both the FT 5000 EVB and the PL 3150/PL 3170 EVB support a EIA-232 line driver and
a 9-pin standard serial port (J201). To use this serial port, you must configure your EVB
as described in Table 5-3 in the Getting Started with Neuron C section earlier in this
chapter. This enables your application to drive the asynchronous serial output from the
Smart Transceiver’s I/O 10 pin through the EIA-232 line driver and to the J201
connector.

To monitor the serial output generated by the examples in this chapter, you can connect
your EVB to your computer using a DB9 Male-Female Serial Extension Cable or a USB
Type A to Type B Cable (FT 5000 EVB only), and then run Windows HyperTerminal,
PuTTY, or another terminal emulation program on your computer. Configure the
terminal emulation program for direct connection to your serial port (typically COM1 or
COM2), 9600 bps, 8 data bits, no parity, one stop bit, and no flow control.

The following example implements the SerialOutput() function, which uses the SCI
serial I/O model through pins I/O 8 (RxD, which is not used in this example) and I/O 10
(TxD, which is used to send data). The SerialOutput() function sends a zero-terminated
string (without the termination byte) to the serial output, using the SCI input/output
model. The function automatically appends a "\r\n" line termination.

The SCI I/O model uses the on-chip hardware UART. If the SCI I/O model is not
available on your hardware platform, you can use the serial output model instead.

IO_8 sci baud(SCI_9600) ioSerial;
void SerialOutput(const char *data)
{
 // Send data:
 io_out_request(ioSerial, data, strlen(data));
 while(!io_out_ready(ioSerial)) ;

 // Send line termination:
 io_out_request(ioSerial, “\r\n”, 2);
}

Mini FX User's Guide 79

LCD Display
The LCD display included with the FT 5000 EVB may be used to display status or other
application data in an easy-to-read fashion. In addition, it can be used to debug and
diagnose applications.

The display is connected to the Smart Transceiver through an I2C interface to the I/O 0
and I/O 1 pins. The functions shown in the following example use the i2c input/output
model. For applications built in debug mode, the LcdDisplayString() function
automatically forwards the data to the serial output. The Debug mode is supported in
the NodeBuilder tool, but it is not available with Mini kit.

The Mini Gizmo I/O board does not include an LCD display. When used with the Mini
Gizmo I/O board, the LcdDisplayString() function always uses a remote display and
forwards the data to the serial output.

#ifndef USE_MINIGIZMO

 IO_0 i2c __slow ioIIC;

define LCD_COMMAND_PREFIX 0xFEu
define LCD_COMMAND_ON 0x41u
define LCD_COMMAND_SETCURSOR 0x45u
define LCD_COMMAND_CLEARSCREEN 0x51u
define LCD_COMMAND_BRIGHTNESS 0x53u
 // The datasheet advertizes the address as 0x50, but in reality,
 // the 7-bit right-justified address is 0x28 (0x50 >> 1):
define I2C_ADDRESS_LCD (0x50u >> 1)

//
// The SendLcdCommand() function is used within this driver kit.
// The function sends a one- or two-byte command to the display.
//
void SendLcdCommand(unsigned command, unsigned parameter, unsigned size)
{
 unsigned data[3];

 data[0] = LCD_COMMAND_PREFIX;
 data[1] = command;
 data[2] = parameter;

 (void)io_out(ioIIC, data, I2C_ADDRESS_LCD, 1+size);
}

#endif // !mini gizmo
//
// The InitializeLCD function enables and clears the display. Call this
// function from InitializeIO() (which in turn is called from when(reset).
//
static void InitializeLCD(void)
{
#ifndef USE_MINIGIZMO

 SendLcdCommand(LCD_COMMAND_ON, 0, 1);
 SendLcdCommand(LCD_COMMAND_BRIGHTNESS, 1, 2);
 SendLcdCommand(LCD_COMMAND_CLEARSCREEN, 0, 1);

#else // use mini gizmo:

 SerialOutput("\r\n---Reset");

#endif // mini gizmo
}

void LcdDisplayString(unsigned row, unsigned column, const char* data)
{
#ifndef USE_MINIGIZMO

80 Developing Device Applications

 // Set the cursor position
 static const unsigned lcdRowAddress[4] = {0x00, 0x40, 0x14, 0x54};

 SendLcdCommand(LCD_COMMAND_SETCURSOR, lcdRowAddress[row]+column, 2);

 // Send the data
 (void)io_out(ioIIC, data, I2C_ADDRESS_LCD, (unsigned)strlen(data));

ifdef _DEBUG
 // in a debug build, forward the same data to the serial port:
 watchdog_update();
 SerialOutput(data);
endif // _debug
#else // Use mini gizmo:
 // Always send data to serial port (in lieu of a local display)
 SerialOutput(data);
#endif // mini gizmo
}

//
// InitializeIO() is called from the when(reset) task and initalizes
// the I/O system and related driver functions.
//
void InitializeIO()
{
#ifdef USE_MINIGIZMO

#else
 InitializeLCD();
#ifdef USE_5000EVB
 io_change_init(ioSwitch1);
#endif // USE_5000EVB
#endif // USE_MINIGIZMO
} // InitializeIO

I/O Examples Toolkit
The following code is the combined I/O driver toolkit from the I/O examples in this
section. You can copy and paste this code into a file (the suggested filename is “io.nc”),
and use it with the example device applications in the following Creating Example Device
Applications section. Alternatively, you can paste the I/O toolkit code straight into your
application’s main Neuron C source file. Note that you must define either
USE_MINIGIZMO or USE_5000EVB based on your EVB.

//
// io.nc is the I/O toolkit that drives both FT 5000 EVB and PL 3150 EVB
// (actually, almost anything with a Mini Gizmo I/O board)
//
#ifndef __IO_NC__
#define __IO_NC__

#include <string.h>
#include <io_types.h>
#include <control.h>

//
// Make sure one of USE_5000EVB and USE_MINIGIZMO is defined. If both are
// defined, USE_MINIGIZMO has priority (allowing to use the Mini Gizmo I/O
// board with the FT 5000 EVB).
//
#ifndef USE_5000EVB
#ifndef USE_MINIGIZMO
error "You must define either USE_5000EVK or USE_MINIGIZMO"
#endif // mini gizmo
#endif // 5000 evb

//
// Driver to support two leds. Use SetLeds(a, b) to drive the LEDs with
logical

Mini FX User's Guide 81

// levels, i.e. TRUE for "on".
// The driver function translates the logical levels as necessary.
//
#ifdef USE_MINIGIZMO
 IO_2 output bitshift numbits(8) ioLeds;
 IO_1 output bit ioLedLoad = 1;
#else
#ifdef USE_5000EVB
 IO_2 output bit ioLed1 = 1;
 IO_3 output bit ioLed2 = 1;
#endif // 5000 evb
#endif // mini gizmo

void SetLeds(boolean led1, boolean led2)
{
#ifdef USE_MINIGIZMO
 unsigned data;

 // compute the data byte for the shift register:
 data = led1 ? 0x01 : 0x00;
 data |= led2 ? 0x02 : 0x00;

 // push inverted data into shift register:
 io_out(ioLeds, ~data);

 // strobe:
 io_out(ioLedLoad, 0);
 io_out(ioLedLoad, 1);
#else
#ifdef USE_5000EVB
 io_out(ioLed1, !led1);
 io_out(ioLed2, !led2);
#endif // 5000 evb
#endif // mini gizmo
} // SetLeds

//
// Driver to support one button. The driver calls the OnButtonPressed()
// function, which is a callback function implemented by the application.
//
extern void OnButtonPressed(void);

#ifdef USE_MINIGIZMO

IO_4 input bitshift numbits(8) clockedge(-) ioButtons;
IO_6 output bit ioButtonLoad = 1;
boolean GetButton(void)
{
 unsigned debounce;
 unsigned data;
 data = 0xFF;
 for (debounce = 0; debounce < 3; ++debounce) {
 // Strobe:
 io_out(ioButtonLoad, 0);
 io_out(ioButtonLoad, 1);
 // Sample data and debounce:
 data &= (unsigned)io_in(ioButtons);
 }
 return ~data & 0x01;
}

//
// buttonTimer expires every 25ms, and triggers the timer_expires event
// with each expiry
//
mtimer repeating buttonTimer = 25;
//
// The Neuron C scheduler activates the following when-task whenever the
// button timer expires. The task samples the button state, detects a
// newly activated SW1 button, and fires the OnButtonPressed() event when
// necessary.

82 Developing Device Applications

//
when(timer_expires(buttonTimer)) {
 static boolean previousButton = TRUE;
 boolean currentButton;

 currentButton = GetButton();
 if (currentButton && !previousButton) {
 OnButtonPressed();
 }
 previousButton = currentButton;
}

#else
#ifdef USE_5000EVB

IO_9 input bit ioSwitch1;

//
// when(io_changes…) executes whenever the switch
//
when(io_changes(ioSwitch1) to 0)
{
 OnButtonPressed();
}

#endif // 5000 evb
#endif // mini gizmo

//
// Driver to support a 1-Wire Dallas DS18S20 digital thermometer device.
// This implementation uses a simplified protocol, skipping the
// search ROM step, because the boards provide only one 1-Wire device.
// The same code works for both FT 5000 EVB and Mini Gizmo I/O boards.
//
// 1-Wire is a registered trademark of Dallas Semiconductor.
// You can find out more about this device on www.maxim-ic.com
//
IO_7 touch ioTemperatureSensor;

#define DS18S20_SKIP_ROM 0xCCu
#define DS18S20_CONVERT 0x44u
#define DS18S20_READ 0xBEu

SNVT_temp_p GetTemperature(void)
{
 union {
 SNVT_temp_p value;
 unsigned raw[2];
 } current;

 current.value = 32767l;

 if (touch_reset(ioTemperatureSensor)) {

 (void)touch_byte(ioTemperatureSensor, DS18S20_SKIP_ROM);
 (void)touch_byte(ioTemperatureSensor, DS18S20_READ);

 // read data into big-endian variable
 current.raw[1] = (unsigned)touch_byte(ioTemperatureSensor, 0xFFu);
 current.raw[0] = (unsigned)touch_byte(ioTemperatureSensor, 0xFFu);

 if (touch_reset(ioTemperatureSensor)) {
 // The value currently held in 'current' is the raw DS18S20
 // data, in Celsius, at a resolution of 0.5 degrees.
 // SNVT_temp_p, however, provides a resolution of 0.01 in
 // a fixed-point implementation.
 // Correct the raw reading by factor 50 thus:
 current.value *= 50ul;
 // Start the next conversion cycle:
 (void) touch_byte(ioTemperatureSensor, DS18S20_SKIP_ROM);
 (void) touch_byte(ioTemperatureSensor, DS18S20_CONVERT);

Mini FX User's Guide 83

 } else {
 current.value = 32767l;
 }
 }
 return current.value;
}

//
// Driver to support simple serial output. The SerialOutput() function
// sends a zero-terminated string (without the termination byte) to the
// serial output, using the SCI input/output model. The function auto-
// matically appends a "\r\n" line termination.
// The SCI model is not available on all target chips, as it requires
// and uses the on-chip UART. Consider using the serial output model on
// IO 10 as a replacement in this case.
//
IO_8 sci baud(SCI_9600) ioSerial;

void SerialOutput(const char *data)
{
 io_out_request(ioSerial, data, (unsigned)strlen(data));
 while(!io_out_ready(ioSerial)) ;
 // Send line termination:
 io_out_request(ioSerial, "\r\n", 2);
}

//
// Driver to support the LCD display provided with the FT 5000 EVB. In a
// debug build, the driver automatically forwards the output to the serial
// port, using the SerialOutput() function.
// On a device using a Mini Gizmo I/O board, which does not include
// a LCD display, display data is always sent to the serial output.
//
// The main API is LcdDisplayString()
//
#ifndef USE_MINIGIZMO
 IO_0 i2c __slow ioIIC;

define LCD_COMMAND_PREFIX 0xFEu

define LCD_COMMAND_ON 0x41u
define LCD_COMMAND_SETCURSOR 0x45u
define LCD_COMMAND_CLEARSCREEN 0x51u
define LCD_COMMAND_BRIGHTNESS 0x53u

 // The datasheet advertizes the address as 0x50, but in reality, the 7-bit
 // right-justified address is 0x28 (0x50 >> 1)
define I2C_ADDRESS_LCD (0x50u >> 1)

//
// The SendLcdCommand() function is used within this driver kit. The function
// sends a one- or two-byte command to the display.
//

void SendLcdCommand(unsigned command, unsigned parameter, unsigned size)
{
 unsigned data[3];

 data[0] = LCD_COMMAND_PREFIX;
 data[1] = command;
 data[2] = parameter;

 (void)io_out(ioIIC, data, I2C_ADDRESS_LCD, 1+size);
}
#endif // !mini gizmo

//
// The InitializeLCD function enables and clears the display. Call this
// function from InitializeIO() (which in turn is called from when(reset).
//
void InitializeLCD(void)

84 Developing Device Applications

{
#ifndef USE_MINIGIZMO
 SendLcdCommand(LCD_COMMAND_ON, 0, 1);
 SendLcdCommand(LCD_COMMAND_BRIGHTNESS, 1, 2);
 SendLcdCommand(LCD_COMMAND_CLEARSCREEN, 0, 1);
#else // use mini gizmo:
 SerialOutput("\r\n---Reset");
#endif // mini gizmo
}

void LcdDisplayString(unsigned row, unsigned column, const char* data)
{
#ifndef USE_MINIGIZMO
 // Set the cursor position:
 static const unsigned lcdRowAddress[4] = {0x00, 0x40, 0x14, 0x54};
 SendLcdCommand(LCD_COMMAND_SETCURSOR, lcdRowAddress[row]+column, 2);
 // Send the data
 (void)io_out(ioIIC, data, I2C_ADDRESS_LCD, (unsigned)strlen(data));

ifdef _DEBUG
 // In a debug build, forward the same data to the serial port:
 SerialOutput(data);
endif // _debug
#else // Use mini gizmo
 // always send data to serial port (in lieu of a local display)
 SerialOutput(data);
#endif // mini gizmo
}

//
// initialization entry point. The application calls this from when(reset):
//
//
// InitializeIO() is called from the when(reset) task and initalizes
// the I/O system and related driver functions.
//
void InitializeIO()
{
#ifdef USE_MINIGIZMO

#else
 InitializeLCD();
#ifdef USE_5000EVB
 io_change_init(ioSwitch1);
#endif // USE_5000EVB
#endif // USE_MINIGIZMO
} // InitializeIO

#endif // __IO_NC_

Creating Example Device Applications
This section provides a series of device applications based on the I/O examples created in
the previous section. These device applications introduce Neuron C and device
development concepts such as I/O objects and timers, network variables, configuration
properties, functional profiles, and ISI. There are three types of device applications
demonstrated in this section: digital sensor and digital actuator examples, a thermostat
example, and an ISI example.

Notes:

• The digital sensor and digital actuator examples require the LonMaker tool for
commissioning and for connecting their network variable to compatible devices.
Alternatively, you can add code to make these example applications self-installed (see
the ISI Example later in this section for how to do this). The thermostat example can
be run as a standalone application and does not require network integration. You
can use the LonMaker tool or ISI to integrate the thermostat example into a network.

Mini FX User's Guide 85

• The example device applications presented in this section are not considered
interoperable mainly because they do not include a Node Object functional block. For
examples of interoperable device applications that are more complex, see the FT 5000
EVB examples or Mini FX/PL examples included with the Mini kit.

o To view the source code for the FT 5000 EVB examples click Start, point to
Programs, pointing to Echelon Mini, point to Examples, point to FT 5000
EVB, click the desired Example Source Code folder, and then click the Source
folder. For more information on the FT 5000 EVB examples, see the FT 5000
EVB Examples Guide.

o To view the source code for the Mini FX/PL examples click Start, point to
Programs, pointing to Echelon Mini, point to Examples, point to Mini EVB,
and then click the desired Example Source Code folder. For more information
on the FT 5000 EVB examples, see the Mini FX/PL Examples Guide.

Digital Sensor and Actuator Examples
The digital sensor and actuator examples creates a simple device which can sense a
switch, and drive an output network variable to reflect the switch’s on/off position. The
physical implementation uses the SW1 pushbutton to toggle the switch state with every
activation.

The digital actuator implements an input network variable of the same type, and reflects
every new value received in this input network variable by driving a lamp accordingly.
The physical implementation on the FT 5000 EVB or Mini Gizmo I/O board uses LED1
to represent that lamp.

The network variable is defined as a SNVT_switch type, which is defined similar to the
following pseudo-definition. The true definition of SNVT_switch is embedded in the
standard resources, and includes additional data such as scaling factors, comments or
supported value ranges:

typedef struct {
 unsigned value;
 unsigned state;
} SNVT_switch;

SNVT_switch reports the on/off state with its state member, where 0 indicates Off and 1
indicates On. The value field supports raw data in the 0–200 range, representing 0–
100% dimming level, in increments of 0.5%.

Simple Digital Sensor
The simple digital sensor example demonstrates the event-driven Neuron C
programming model, and showcases the integration of network variables into Neuron C.
The application code defines a network variable, nvoSwitch, similar to a global ‘C’
variable, and uses it just like any other global variable. The system firmware
automatically sends any newly assigned network variable value over the network.
Typically, the application code does not need to know where output network variable
values go.

Based on the I/O toolkit created by the examples in Performing Neuron C Input/Output,
the following code defines the simple digital sensor example.

#include "io.nc"

#pragma num_alias_table_entries 2

//
// Output network variable declaration. Will always be cleared to

86 Developing Device Applications

// zero after reset.
network output SNVT_switch nvoSwitch;

//
// OnButtonPressed() is called whenever the button becomes active.
//
void OnButtonPressed()
{
 // toggle the reported switch status:
 nvoSwitch.state ^= 1;
 nvoSwitch.value = nvoSwitch.state ? 200u : 0;
}

when(reset) {
 InitializeIO();

 LcdDisplayString(0,0, "Simple Digital");
 LcdDisplayString(1,0, "Sensor Example");
 LcdDisplayString(2,0, "-+-+-+-+-+-+-+-+-+-+");
 LcdDisplayString(3,0, "SW1 drives nvoSwitch");
}

Simple Digital Actuator
Similar to the OnButtonPressed() function, which was called by the I/O toolkit, the
when(nv_update_occurs) task executes when the specified network variable received
an update from the network. Most Neuron C applications focus on the application
algorithm, while delegating most or all of the processing related to the network to the
system firmware. The corresponding simple digital actuator is defined by the following
application.

#include "io.nc"

#pragma num_alias_table_entries 2 // required by compiler

//
// Input network variable declaration. Will always be cleared to
// zero after reset.
network input SNVT_switch nviSwitch;

//
// when(nv_update_occurs) executes when the referenced input network
// variable receives a new value:
//
when(nv_update_occurs(nviSwitch))
{
 SetLeds(nviSwitch.state, FALSE);
}

when(reset) {
 InitializeIO();

 LcdDisplayString(0,0, "Simple Digital");
 LcdDisplayString(1,0, "Actuator Example");
 LcdDisplayString(2,0, "-+-+-+-+-+-+-+-+-+-+");
 LcdDisplayString(3,0, "nviSwitch drives LED");
}

Advanced Digital Actuator
This example demonstrates a slightly more complex version of the digital actuator. This
example implements two digital actuators (driving LED1 and LED2 through one input
network variable each. This application also implements two SCPTlocation
configuration properties, which can be used to describe the lamps (for example, through
their location). Each lamp is represented by one functional block of type

Mini FX User's Guide 87

SFPTopenLoopActuator, where each functional block encapsulates the network
variable and configuration property for each lamp.

Following the declaration of the input network variables and configuration properties,
the fblock construct defines the functional block, and it describes how locally
implemented network variables and configuration properties map to the definitions in
the SFPTopenLoopActuator functional profile instantiated by the functional block.

The first element of the nviSwitch network variable array implements the profile’s
nviValue member (and subsequent members of this network variable array are
distributed among the other elements of the fblock array). Similarly, the first element of
the lamp[0] fblock array uses the first element of the nciLocation configuration
property array.

#include "io.nc"

#pragma num_alias_table_entries 2 // required by compiler

//
// Input network variable declaration. For multiple lamps
// of the same characteristic, it is best to declare the
// related network variables as an array:
//
network input SNVT_switch nviSwitch[2];

//
// Configuration network variables are used just like any
// other network variable, but are updated very infrequently,
// and their values reside in non-volatile memory (e.g. EEPROM
// or flash memory)
//
network input cp SCPTlocation nciLocation[2];

//
// Functional blocks group network variables, configuration
// properties and other aspects of a logical unit within a
// device's application together. Similar to other data items,
// functional blocks can also be implemented as arrays:
//
fblock SFPTopenLoopActuator {
 nviSwitch[0] implements nviValue;
} lamp[2] fb_properties {
 nciLocation[0]
};

//
// when(nv_update_occurs) executes when the referenced input network
// variable receives a new value:
//
when(nv_update_occurs(nviSwitch))
{
 SetLeds(nviSwitch[0].state, nviSwitch[1].state);
}

void OnButtonPressed(void)
{
 // Do nothing in this application
}

when(reset) {
 InitializeIO();

 LcdDisplayString(0,0, "Second Digital");
 LcdDisplayString(1,0, "Actuator Example");
 LcdDisplayString(2,0, "-+-+-+-+-+-+-+-+-+-+");
 LcdDisplayString(3,0, "nviSwitch drives LED");
}

88 Developing Device Applications

Advanced Digital Sensor Example
The advanced digital sensor example expands the previous simple digital sensor and
advanced digital actuator examples by adding an implementation of the
SFPTopenLoopSensor functional profile to the first digital sensor example, and by
adding configuration property processing to the application algorithm.

While the advanced digital actuator example added SCPTlocation configuration
properties, this advanced digital sensor example adds a SCPTclOffDelay configuration
property, which controls the duration after which the switch automatically returns to the
Off position. Network integrators can set this configuration property to 0.1–6553.5s, or
to 0 to disable the auto-off feature. The SCPTclOffDelay configuration property is set
to 300s by default and by definition of the SCPT type.

The implementation supports the entire value range of SCPTclOffDelay, but it
implements a resolution of 1s.

The SCPTclOffDelay configuration property is applied to the output network variable,
which in turn implements the nvoValue member of the SFPTopenLoopSensor profile.
This differs from the advanced digital actuator example, which applied SCPTlocation to
the entire functional block,

Repeated activation of the SW1 pushbutton toggles the switch state (as before), if the
auto-off feature is disabled. If the auto-off feature is enabled (the default), repeated
activation of the pushbutton re-triggers the timer, thus implementing a stairwell light
switch.

#include "io.nc"

#pragma num_alias_table_entries 2 // required by compiler

//
// Output network variable and configuration property declaration
//
network input cp SCPTclOffDelay nciOffDelay;

network output SNVT_switch nvoSwitch nv_properties {
 nciOffDelay
};

//
// Functional block
//
fblock SFPTopenLoopSensor {
 nvoSwitch implements nvoValue;
} mySwitch;

//
// The auto off timer
stimer autoOffTimer;

void OnButtonPressed(void)
{
 if (nciOffDelay) {
 //
 // We are in stairwell mode. Set switch to "On" and
 // retrigger the autoOffTimer. The timer implements a
 // 1s resolution, but any non-zero CP values should
 // activate the auto-off feature, so we correct the
 // value towards the next full second:
 //
 nvoSwitch.state = 1;
 autoOffTimer = (nciOffDelay + 9ul) / 10ul;
 } else {
 //
 // We are in normal 'toggle mode.' Toggle the switch

Mini FX User's Guide 89

 // and make sure the timer is stopped:
 //
 nvoSwitch.state ^= 1;
 autoOffTimer = 0;
 }

 // Finally, set the switch value according to its state:
 nvoSwitch.value = nvoSwitch.state ? 200u : 0;
}

//
// when(timer_expires(....)) executes when the timer specified in
// the event condition has expired. In this example, this happens
// when the auto-off timer expires
//
when(timer_expires(autoOffTimer)) {
 // Shut down the light
 nvoSwitch.state = nvoSwitch.value = 0;
}

when(reset) {
 InitializeIO();

 LcdDisplayString(0,0, "Second Digital");
 LcdDisplayString(1,0, "Sensor Example");
 LcdDisplayString(2,0, "-+-+-+-+-+-+-+-+-+-+");
 LcdDisplayString(3,0, "SW1 drives nvoSwitch");
}

Thermostat Example
The Thermostat example expands the previous digital sensor and actuator examples by
implementing more aspects of Neuron C programming. The Thermostat example works
not only once it is integrated with other devices in the network like the digital sensor and
actuator examples, but it automatically switches to standalone mode, if necessary, and
runs as a single, independent device.

The application implements the SFPTthermostat standard functional profile. The
application samples the local ambient temperature through the temperature sensor
supplied with both the FT 5000 EVB and the Mini Gizmo I/O board. Current ambient
temperature and setpoint values are shown on the display (where available). The
application drives the nvoCool and nvoHeat network variables using a simple
proportional controller algorithm, which is parameterized through SCPTgain
configuration properties, implements a hysteresis through the nciMinDelta
configuration property, and indicates whether the application is currently heating or
cooling through LED1 and LED2, respectively.

For brevity, the example implementation of SCPTthermostat ignores the
SCPTsetPnts (nciSetPnts) configuration property. This configuration property holds a
number of temperature setpoints, subject to the occupancy state of the controlled
environment. This example ignores this setpoint vector, and draws the temperature
setpoint from the nviSetpoint input network variable. To support standalone mode,
this application defaults the nviSetpoint variable to 21°C (69.8F).

The application first defines the device interface by declaring functional blocks, network
variables, and configuration properties. The declaration of the nvoCool and nvoHeat
output network variables use the bind_info() modifier to request that this network
variable shall use the unacknowledged service when connected with other network
variables, as required by the SFPTthermostat functional profile. Each of these
network variables has a proportional control coefficient with individually assigned
default values applied.

#include <stdlib.h>

90 Developing Device Applications

#include <string.h>
#include <snvt_hv.h>

#include "io.nc"

#pragma enable_sd_nv_names // Show useful names to integrator
#pragma run_unconfigured // Allow running standalone
#pragma num_alias_table_entries 10 // required by compiler

//
// Configuration properties:
//
network input cp SCPTsetPnts nciSetPnts; // See text!
network input cp SCPTmaxSendTime nciHeartbeat;
network input cp SCPTminDeltaTemp nciHysteresis;

network input cp SCPTgain nciCoolFactor; // Cooler coeff.
network input cp SCPTgain nciHeatFactor; // Heater coeff.

//
// Network variables
//
network input SNVT_temp_p nviSetpoint = 2100ul;

network output bind_info(unackd) SNVT_lev_percent nvoCool nv_properties {
 nciCoolFactor = {3, 1}
};

network output bind_info(unackd) SNVT_lev_percent nvoHeat nv_properties {
 nciHeatFactor = {5, 2}
};

network output bind_info(unackd) SNVT_temp_p nvoCurrent;
network output bind_info(unackd) SNVT_hvac_status nvoUnitStatus;

fblock SFPTthermostat {
 nviSetpoint implements nviSetPoint;
 nvoCool implements nvoCoolOutput;
 nvoHeat implements nvoHeatOutput;
 nvoCurrent implements nvoSpaceTemp;
 nvoUnitStatus implements nvoUnitStatus;
} MyThermostat fb_properties {
 nciSetPnts,
 nciHeartbeat,
 nciHysteresis = { 100 } // 1 degree
};

The application drives the control algorithm, which is implemented in the Thermostat()
function, when necessary:

//
// The application’s main algorithm is run from the 'Thermostat'
// function. This function is being called under three conditions:
// (a) during reset processing, (b) when the setpoint input network
// variable changes, or (c) once every second for periodic sampling
// of the current ambient temperature. Periodic sampling is governed
// by the sampleTimer application timer, whose interval is governed
// by SCPTmaxSendTime (nciHeartbeat). If this heartbeat CP is zero,
// the application samples at SAMPLETIMER_DEFAULT_INTERVAL (1s).
//

void Thermostat(void);

stimer sampleTimer;
#define SAMPLETIMER_DEFAULT_INTERVAL 1 // 1s

when(reset) {
 InitializeIO();

 LcdDisplayString(0,0, "Thermostat Example");
 LcdDisplayString(1,0, "-+-+-+-+-+-+-+-+-+-+");

Mini FX User's Guide 91

 Thermostat();
}

when(timer_expires(sampleTimer)) {
 Thermostat();
}

when(nv_update_occurs(nviSetpoint)) {
 Thermostat();
}

void OnButtonPressed(void)
{
 // do nothing in this application

}

The Thermostat() function then implements the behavior of the functional block:
//
// The Thermostat function samples the current temperature,
// computes the control values for heater and cooler, and
// updates the status network variable as it goes along.
// Current and setpoint values are being displayed, and the
// next sample is scheduled.
//
// Thermostat() uses the Display() utility function.
//
void Display(unsigned row, unsigned column,
 const char* format, SNVT_temp_p value);

void Thermostat(void)
{
 SNVT_temp_p reading;

 // Get the true current temperature
 reading = GetTemperature();

 // Discard current reading and use previous value, if new
 // reading is still within hysteresis band:
 if (nciHysteresis == 0
 || reading < nvoCurrent-nciHysteresis
 || reading > nvoCurrent+nciHysteresis) {
 nvoCurrent = reading;
 } else {
 // refresh output network variable for re-propagation
 // (heartbeat)
 nvoCurrent = nvoCurrent;
 }

 // compute cooler and heater control values
 if (nvoCurrent < nviSetpoint) {
 nvoCool = 0;
 nvoHeat = nvoUnitStatus.heat_output_primary =
 muldiv(nviSetpoint-nvoCurrent,
 nciHeatFactor.multiplier,
 nciHeatFactor.divisor);
 nvoUnitStatus.mode = HVAC_HEAT;
 }
 if (nvoCurrent > nviSetpoint) {
 nvoHeat = 0;
 nvoCool = nvoUnitStatus.cool_output =
 muldiv(nvoCurrent-nviSetpoint,
 nciCoolFactor.multiplier,
 nciCoolFactor.divisor);
 nvoUnitStatus.mode = HVAC_COOL;
 }
 // Indicate heat/cool status and drive value display
 SetLeds((boolean)nvoCool, (boolean)nvoHeat);

 Display(2,0, "Current: 0.00", nvoCurrent);

92 Developing Device Applications

 Display(3,0, "Setpoint: 0.00", nviSetpoint);

 // Schedule next sample:
 if (nciHeartbeat) {
 // Round to the next full second
 sampleTimer = (nciHeartbeat + 9u) / 10ul;
 } else {
 sampleTimer = SAMPLETIMER_DEFAULT_INTERVAL;
 }
}

Finally, the application provides two utility functions, ToAscii() and Display(), to help
display the current ambient temperature and setpoint values:

//
// The ToAscii() utility function converts an unsigned
// long number into its decimal representation, stored
// in the requested buffer backwards.
//
void ToAscii(char* buffer, unsigned long value)
{
 while(value) {
 *buffer-- = (char)(value % 10) + '0';
 value /= 10;
 }
}

void Display(unsigned row, unsigned column,
 const char* format, SNVT_temp_p value)
{
 char buffer[21];

 (void)strcpy(buffer, format);
 ToAscii(buffer+19, value % 100);
 ToAscii(buffer+16, value / 100);

 LcdDisplayString(row, column, buffer);
}

ISI Example
The following example demonstrates an application that uses the Interoperable
Self-Installation (ISI) engine and API. Most commercial networked devices are
integrated into a network using the LonMaker tool or other network tool. The
integration process can be semi-automated, but it typically involves manual steps and
decisions taken by an experienced network integrator.

Home network and other small networks cannot afford the complexity and cost of a
manual integration step. In addition, their limited size and complexity makes them
more conducive for automatic integration. User interaction (if any) can be limited to
simple tasks such as pushing a button in response to a flashing LED.

Applications that use the ISI engine can be divided into three major tasks: defining the
application algorithm and interface, starting and running the ISI engine, and providing
application-specific information to the ISI engine when requested.

The application algorithm and interface of an ISI-enabled application is almost identical
to that of a non ISI-enabled application. The ISI-aware application simply adds a
SCPTnwrkCnfg configuration property, which allows the network tool to disable the
self-installation procedures. As a result, the self-installed device can be integrated into a
managed network.

The ISI engine is started through a simple function call, usually from the when(reset)
task. The application adds logic to decide whether to start the engine, considering the
current value of the SCPTnwrkCnfg configuration property. The application must

Mini FX User's Guide 93

decide whether to start the ISI engine at reset time, but it does not have to make the
same decision repeatedly. The remainder of the application can make calls into the ISI
API regardless of the ISI engine’s running state. If the ISI engine is not currently
running, the calls into the ISI API are ignored (or yield a benign response).

The ISI engine itself has no knowledge of the application it serves. Some generic services
are provided fully automatically, such as allocation and maintenance of unique device
addresses. However, other services need feedback from the application. For example,
when establishing network variable connections, a process described in the ISI protocol
as enrollment, the application must inform the ISI engine about the set of network
variables applicable to the pending enrollment. Similarly, when the application opens an
ISI enrollment, it must inform the ISI engine how to describe the enrollment.

ISI enrollments can describe a large variety of network variable sets that are available
for connections. In the following example, which builds on the simple digital actuator
example, the enrollment information simply is “any SNVT_switch network variable”.

Following is the application algorithm and interface for this example application:
#include <snvt_cfg.h>
#include "io.nc"

#pragma num_alias_table_entries 4

boolean isiLed;

//
// Network variables
//
network input SNVT_switch nviSwitch;

//
// Configuration properties
//
// The SCPTnwrkCnfg configuration property must be
// implemented as a configuration network variable to ease
// transitions between self-installed and managed networks.
// This property defaults to CFG_EXTERNAL. This is
// the default value required by the LonMark Interoperability
// Guidelines, and is the best choice when using the device in a
// managed network. See the when(reset) task, below, for more
// details about application start-up.
//
network input SCPTnwrkCnfg cp cp_info(reset_required) nciNetConfig
 = CFG_EXTERNAL;

//
// when(nv_update_occurs) executes when the referenced input network
// variable receives a new value. The current switch position is shown
// through LED2, while LED1 (and SW1) are used to implement the ISI
// user interface.
//
when(nv_update_occurs(nviSwitch))
{
 SetLeds(isiLed, nviSwitch.state);
}

Observe that LED1 now provides ISI status information, and is driven through the
isiLed global variable.

The first part of starting and running the ISI engine is shown in the following code
snippet, including the reset logic, periodic calls into the IsiTickS() API, and processing
of any incoming messages destined for ISI:

//
// Include the ISI definitions and link with the ISI library. Use
// IsiFull.lib where possible. Use IsiPl3170.lib for a device that

94 Developing Device Applications

// uses the PL 3170 Smart Transceiver, and use IsiCompactS.lib for
// devices using an FT 3120 or PL 3120 Smart Transceiver.
//
#include <isi.h>
#pragma library "STD\IsiFull.lib"

//
// Reset Processing
//
// The when(reset) task executes when the device resets. To control
// the ISI engine start-up, or to prevent the ISI engine from starting,
// reset processing contains the following logic:
// a) If this is the first reset with a new application image, the reset
// code sets nciNetConfig to CFG_LOCAL. This allows the ISI engine to
// start on a brand new device.
// The initial value of CFG_NUL of the local, persistent, OldNwrkCnfg
// variable is used to detect the first start.
// b) If nciNetConfig is set to CFG_LOCAL but the previous value is
// CFG_EXTERNAL (determined by the tracking variable OldNetConfig),
// the device returns itself to factory defaults.
// c) If nciNetConfig is set to CFG_LOCAL, the ISI engine starts
eeprom SCPTnwrkCnfg oldNetConfig = CFG_NUL;

when(reset) {
 SCPTnwrkCnfg networkConfig;

 // Prepare the ISI engine. This call is required before starting the
 // ISI engine, and should be made under all circumstances.
 IsiPreStart();

 networkConfig = oldNetConfig;

 if (networkConfig == CFG_NUL) {
 // For the first application start, set nciNetConfig to CFG_LOCAL,
 // allowing the ISI engine to run by default:
 nciNetConfig = CFG_LOCAL;
 }
 oldNetConfig = nciNetConfig;

 if (nciNetConfig == CFG_LOCAL) {
 if (networkConfig == CFG_EXTERNAL) {
 // The application has just returned into the self-installed
 // environment. Make sure to re-initialize the ISI engine:
 IsiReturnToFactoryDefaults(); // This call resets the device
 }
 // We are in a self-installed network, so let's start:
 IsiStartS(isiFlagNone);
 }

 InitializeIO();

 LcdDisplayString(0,0, "Simple ISI Example");
 LcdDisplayString(1,0, "-+-+-+-+-+-+-+-+-+-+");
}

mtimer repeating isiTick = 1000ul / ISI_TICKS_PER_SECOND;

void SignalIsiState(void);

when(timer_expires(isiTick)) {
 IsiTickS();
 SignalIsiState();
}

when(msg_arrives) {
 if (IsiApproveMsg()) {
 if (IsiProcessMsgS()) {
 // TODO: process unprocessed ISI messages here (if any)
 ;
 }
 } else {

Mini FX User's Guide 95

 // TODO: process other application messages here (if any)
 ;
 }
}

The second part of this segment provides visual feedback about the ISI enrollment status
to the user (through LED1 in this example). The ISI API provides an
IsiUpdateUserInterface() callback for this purpose:

IsiEvent isiState;

void IsiUpdateUserInterface(IsiEvent Event, unsigned Parameter)
{
 isiState = Event;
 SignalIsiState();
#pragma ignore_notused Parameter
}

void SignalIsiState(void)
{
 if(isiState == isiPending
 || isiState == isiPendingHost) {
 // Flash LED in any 'pending' state
 isiLed ^= TRUE;
 } else if(isiState == isiApproved
 || isiState == isiApprovedHost) {
 // LED is solid on in any 'approved' state
 isiLed = TRUE;
 } else {
 // LED is off otherwise:
 isiState = isiLed = 0;
 }
 SetLeds(isiLed, nviSwitch.state);
}

The third part of this segment forwards user input to the ISI API:
//
// Handler to act when the user presses the ISI connect button
// (SW1 in this example). When the ISI engine is idle, this opens
// an ISI enrollment. When an enrollment is pending, this completes
// the enrollment. A pending enrollment is automatically cancelled
// after some time, but a more sophisticated user interface could,
// for example, detect a prolonged activation of SW1 and explicitly
// cancel the pending enrollment, or delete an existing connection.
//
void OnButtonPressed(void)
{
 if(isiState == isiPending || isiState == isiApprovedHost) {
 IsiCreateEnrollment(0);
 } else if(isiState == isiNormal) {
 IsiOpenEnrollment(0);
 }
}

Finally, in the third segment, the application provides application-specific information to
ISI through a set of dedicated callback functions:

//
// When this application opens enrollment, ISI requests a CSMO data
// package from the application. This data informs all other devices
// on the type of enrollment on offer; its number, type and direction
// of network variables, etc.
//
// The following myCsmo constant describes this enrollment as "any
// network variable of type SNVT_switch":
//
static const IsiCsmoData myCsmo = {

96 Developing Device Applications

 ISI_DEFAULT_GROUP, isiDirectionVarious, 1, 0xFF, 95u, 0,
 {
 0, 0, isiScopeStandard, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 1
 }
};

void IsiCreateCsmo(unsigned Assembly, IsiCsmoData* pCsmoData)
{
 memcpy(pCsmoData, &myCsmo, sizeof(IsiCsmoData));
#pragma ignore_notused Assembly
}

//
// When ISI receives an open enrollment, it inquires with the
// application whether this is an eligible enrollment. The
// application returns an application-specific assembly number
// if this is the case, or returns ISI_NO_ASSEMBLY.
// This simple example accepts all enrollments that consist of
// the same enrollment description than its own, but more advanced
// applications can accept a larger variety of enrollments, or be
// more specific which enrollment to accept.
//
unsigned IsiGetAssembly(const IsiCsmoData* pCsmo, boolean automatic)
{
 return memcmp(pCsmo, &myCsmo, sizeof(IsiCsmoData)) == 0 ?
 0 : ISI_NO_INDEX;
#pragma ignore_notused automatic
}

//
// The ISI application groups network variables that apply to the
// same enrollment in logical assemblies, using application-defined
// assembly numbers 0..254. Then ISI processes an assembly, the engine
// inquires with the application about the mapping of locally
// implemented network variables to the members of that assembly.
//
// This simple example supports only one assembly, which consists of
// only one network variable:
//
unsigned IsiGetNvIndex(unsigned assembly, unsigned offset)
{
 return nviSwitch::global_index;
#pragma ignore_notused assembly
#pragma ignore_notused offset
}

Mini FX User's Guide 97

Appendix A

Glossary

This appendix provides definitions for many terms commonly
used with Mini FX device development.

98 Appendix A: Glossary

Application Device

A LONWORKS device that runs an ISO/IEC 14908-1 application (OSI Layer 7). The
application may run on a Neuron Chip or Smart Transceiver, in which case the device is
called a “Neuron hosted” device.

Application Image

Device firmware that consists of the object code generated by the Neuron C compiler
from the user’s application program and other application-specific parameters, including
the following:

• Network variable fixed and self-identification data
• Network variable device interface data
• Program ID string
• Optional self-identification and self-documentation data
• Number of address table entries
• Number of domain table entries
• Number and size of network buffers
• Number and size of application buffers
• Number of receive transaction records
• Input clock speed of target Neuron Chip or Smart Transceiver
• Transceiver type and bit rate

Application Program

The software code in a LONWORKS device that defines how it functions. The application
program, also referred to as the application, may be in the device when you purchase it,
or you may load it into the device from application image files (.APB, .NDL, and .NXE
extensions) using the LonMaker tool or other network management tool. The application
program interfaces with the ISO/IEC 14908-1 firmware to communicate over the
network. It may reside completely in the Neuron Chip or Smart Transceiver, or it may
reside on an attached host processor (in a host-based device).

Binding

Process of connecting network variables. Binding creates logical connections (virtual
wires) between LONWORKS devices. Connections define the data that devices share with
one another. Tables containing binding information are stored in the device’s
non-volatile memory, and may be updated by the LonMaker tool or the ISI protocol.

Changeable-Type Network Variable

A network variable that has a type and length that can be changed to that of another
network variable type of equal or smaller size. You can use changeable-type network
variables to implement generic functional blocks that work with different types of inputs
and outputs.

Channel

The physical media between devices upon which the devices communicate. The ISO/IEC
14908-1 protocol is media independent; therefore, numerous types of media can be used
for channels: twisted pair, power line, fiber optics, IP, and RF, and other types.

Clock Multiplier

For Series 5000 chips, you can select the frequency at which the Neuron Chip or Smart
Transceiver runs to modify the internal system clock speed. You can select multipliers of
½, 1, 2, 4, and 8 to adjust the internal system clock speed from 5 MHz to 80 MHz (based
on a crystal running at 10 MHz). For Series 3100 chips, the clock multiplier is fixed at ½.

Mini FX User's Guide 99

Commissioning

The process in which the LonMaker tool or other network management tool downloads
network and application configuration data into a physical device. For devices whose
application programs are not contained in ROM, the network management tool also
downloads the application program into non-volatile RAM in the device. Devices are
usually either commissioned and tested one at a time, or commissioned and then brought
online and tested incrementally.

Configuration Properties (CPs)

Configuration properties are data values that define the behavior of an application device
by determining the manner in which device application data is manipulated and when
device application data is transmitted. Configuration properties can be applied to the
device, functional block, or network variable level. Configuration properties can
determine the functions to be performed on the values stored in network variables. For
example, a configuration property may specify a minimum change that must occur on a
physical input to a device before the corresponding output network variable is updated.

Configured

A device state where the device has both an application image and a configured network
image. This indicates that the device is ready for network operation.

Control Network Protocol (CNP)

The ISO/IEC 14908-1 Control Network Protocol. The CNP is a complete seven-layer
communications protocol, with each layer optimized to the needs of control applications.
The seven layers follow the reference model for open systems interconnection (OSI)
developed by the International Standard Organization (ISO).

Device

A device that communicates on a LONWORKS network using CNP. A device may be an
application device, network service device, or a router. Devices are sometimes referred to
as nodes in LONWORKS documentation.

Device Interface

The logical interface to a device, abbreviated as XIF. A device’s interface specifies the
number and types of functional blocks; number, types, directions, and connection
attributes of network variables; and the number of message tags. The program ID for a
device is used as the key to identify each device interface. Each program ID uniquely
defines the static portion of the interface. However, two devices with identical static
portions may differ if dynamic network variables are added or removed, or if the types of
changeable network variables are changed. Thus it is possible to have devices with the
same program ID but different device interfaces.

Device Interface (XIF) File

A file that documents a device’s interface with a network. The file can be a text file (.XIF
extension), or it can be a binary file (.XFB extension).

Device Template

A device template defines a device type. The Mini kit generates a NodeBuilder device
template (.NbDt extension) that specifies the information required for the NodeBuilder
tool to build the application for a device. It contains a list of the application Neuron C
source files, device-related preferences, and the hardware template name.

100 Appendix A: Glossary

Download

An installation process in which data, such as the application program, network
configuration, and/or application configuration, is transferred over the network into a
device.

Free Topology

A connection scheme for a communication channel that eases traditional transmission
line restrictions of trunks and drops of specified lengths and at specified distances, and
terminations at both ends. Free topology allows wire to be strung from any point to any
other, in bus, daisy chained, star, ring, or loop topologies, or combinations thereof. It
only requires one termination anywhere in the network. This can reduce the cost of
wiring significantly.

FT 5000 EVB

A LONWORKS evaluation board that uses Echelon’s FT 5000 Smart Transceiver. It
features a compact design that includes the following I/O devices that you can use to
develop prototype devices and run the FT 5000 EVB examples: 4 x 20 character LCD
display, 4-way joystick with center push button, 2 push-button inputs, 2 LED outputs,
light-level sensor, and temperature sensor.

FT 5000 Smart Transceiver

A chip that integrates a high-performance Neuron 5000 processor core and a TP/FT-10
transceiver. The FT 5000 Smart Transceiver, combined with an FT-X3 Communications
Transformer and inexpensive serial memories, provides a lower-cost, higher-performance
alternative to the previous generation LONWORKS TP/FT-10 solution. See Neuron 5000
Processor for more information about the key features of the Neuron 5000 processor.

PL 3150 EVB

A LONWORKS evaluation board that uses Echelon’s PL 3150 Smart Transceiver. It can be
connected to a MiniGizmo I/O board for testing device applications running on the EVB.

PL 3170 EVB

A LONWORKS evaluation board that uses Echelon’s PL 3170 Smart Transceiver, which
includes Interoperable Self Installation (ISI) functions built into the firmware. It can be
connected to a MiniGizmo I/O board for testing device applications running on the EVB.

Functional Block (FB)

A collection of network variables, configuration properties, and associated behavior that
defines a specific system functionality. Functional blocks define standard formats and
semantics for how information is exchanged between devices on a network. Each
functional block implements a functional profile.

Functional Profile

A template for a functional block that enables equipment specifiers to select the
functionality they need for a system. Each functional profile defines mandatory and
optional network variable and configuration property members along with their intended
usage. A number of generic standard functional profiles are available for generic devices
such as simple sensor and actuators. Many industry-specific standard functional profiles
are available for industry-specific applications. Industry-specific standard profiles are
developed through a review and approval process, including a cross-functional review to
ensure the profile will interoperate within an individual subsystem and also provide
interoperability with other subsystems in the network.

Mini FX User's Guide 101

User-defined functional profiles can be created if no appropriate standard profiles are
available.

Hardware Template

A file with a .NbHwt extension that defines the hardware configuration for a target
device. It specifies hardware attributes including platform, transceiver type, Neuron
Chip or Smart Transceiver model, clock speed, system image, and memory configuration.
Several hardware templates are included with the Mini kit. You can use these or create
your own. Third-party development platform suppliers may include NodeBuilder
hardware templates for their platforms

i.LON IP-852 Router

An i.LON IP-852 router forwards ISO/IEC 14908-1 packets enveloped in ISO/IEC
14908-4 packets over an IP-852 channel. i.LON IP-852 routers include the i.LON
SmartServer with IP-852 routing, i.LON 100 e3 plus Internet Server with IP-852
routing, and the i.LON 600 LONWORKS-IP Server.

I/O Object

An instantiation of an I/O model. An I/O objects consists of a specific I/O model, and its
pin assignment, modifiers, and name.

IP-852 Channel

Also known as an ISO/IEC 14908-4 channel or an ANSI/CEA-852 LONWORKS/IP channel,
an IP-852 channel carries ISO/IEC 14908-1 packets enveloped in ISO/IEC 14908-4
packets. An IP-852 channel is a LONWORKS channel that uses a shared IP network to
connect IP-852 devices and is defined by a group of IP addresses. These IP addresses
form virtual wires that connect IP-852 devices so they can communicate with each other.
IP-852 devices include the LNS Server computers, LNS client computers, LonMaker
computers, and i.LON IP-852 routers. An IP-852 channel enables a client computer to
connect directly to a LONWORKS network and perform monitoring and control tasks.

IP-852 Network Interface

An IP-852 network interface enables IP-852 devices such as LNS Server computers, LNS
client computers, LonMaker computers, and i.LON IP-852 routers to be attached to
IP-852 channels. An IP-852 network interface requires that the LONWORKS-IP
Configuration Server be configured before trying to communicate with remote devices or
remote computers.

Interoperable Self-Installation (ISI) Protocol

The standard protocol for performing self-installation in LONWORKS networks. ISI is an
application-layer protocol that lets you install and connect devices without using a
separate network management tool. It is typically used in home networks, and may be
used in any network with less than 200 devices with simple connection and configuration
requirements.

ISI Mode

An installation scenario in which the ISI protocol is used (instead of the LonMaker tool
or other network tool) to install devices and create network variables connections.

LNS

A network operating system that provides services for interoperable LONWORKS
installation, maintenance, monitoring, and control tools such as the LonMaker tool.
Using the services provided by the LNS client/server architecture, tools from multiple

102 Appendix A: Glossary

vendors can work together to install, maintain, monitor, and control LONWORKS
networks. The LNS architecture consists of the following elements:

1. LNS client applications, which can be used to develop, monitor and control
LONWORKS networks.

2. The LNS Object Server ActiveX Control, which is a language-independent
programming interface for LNS client applications to access the LONWORKS network.

3. The LNS Server, which manages the network and maintains a database containing
the network configuration.

LNS Device Template

An LNS device template defines the external interface to a device, and it is used by the
LonMaker tool and other LNS network tools to configure and bind the device.

LNS Network Database

Each LONWORKS network has its own LNS network database (also referred to as the
network database) that is managed and maintained by an LNS Server. The network
database includes the network and device configuration data for that network. The
network database also contains extension records, which are user-defined records for
storing application data.

LNS Server Computer

 A computer running the LNS Server software. The LNS Server computer contains the
LNS global database, which includes the group of LONWORKS networks being managed
by the LNS Server, plus a network database for each network managed by the server.

Local Client

An LNS application running on the same computer as the LNS Server.

LonMaker Integration Tool

An LNS network tool that is used to design, commission, maintain, and document
distributed control networks. The LonMaker tool features a simple graphical interface
based on Microsoft Visio.

LONMARK Logo

A distinctive logo applied to LONWORKS devices that have been certified to the
interoperability standards of LONMARK International.

LonTalk Protocol

Echelon’s implementation of the ISO/IEC 14908-1 Control Network Protocol (CNP). CNP
provides a standard method for devices on a LONWORKS network to exchange data. CNP
defines the format of the messages being transmitted between devices, and it defines the
actions expected when one device sends a message to another. The protocol normally
takes the form of embedded software or firmware code in each device on the network.
The LonTalk protocol is implemented in the Neuron firmware for Neuron Chips and
Smart Transceivers.

LONWORKS 2.0 Platform

The next generation of LONWORKS products designed to both increase the power and
capability of LONWORKS devices, and to decrease the costs of device development and
devices.

Mini FX User's Guide 103

LONWORKS Network

A network of intelligent devices (such as sensors, actuators, and controllers) that
communicate with each other using a common protocol over one or more communications
channels.

LONWORKS Technology

The technology that allows for the creation of open, interoperable control networks that
communicate with the ISO/IEC 14908-1 Control Network Protocol. LONWORKS
technology consists of the tools and components required to build intelligent device and
to install them in control networks.

Mandatory Network Variable/Configuration Property

A network variable/configuration property that must be implemented by the functional
block, as specified by the functional profile that the functional block is instantiating.

Mini FX Evaluation Kit

A tool for evaluating the development of control network applications with the ISO/IEC
14908-1 standard. You can use the Mini FX to develop a prototype or production control
system that requires networking, particularly in the rapidly growing, price-sensitive
mass markets of smart light switches, thermostats, and other simple devices and
sensors. You can also use the Mini FX to evaluate the development of applications for
such control networks using the LONWORKS platform.

Mini Gizmo I/O Board

A board that can be connected to a PL 3150 or 3170 EVB. The Mini Gizmo I/O board
contains the following I/O devices for testing device application running on a PL EVB:
eight push buttons, eight LEDs, a temperature sensor, and a piezo buzzer.

Monitored Connection

A network variable connection in which the current values are being monitored, typically
by an HMI. The connector shape and reference connection in a LonMaker drawing
demonstrate monitored connections.

Network Interface

A LONWORKS device that provides a layer 2 or 5 ISO/IEC 14908-1 interface to an
external host computer such as a computer or a handheld maintenance tool. Network
interfaces include IP-852 interfaces (i.LON SmartServer with IP-852 routing, i.LON 100
e3 plus Internet Server with IP-852 routing, and the i.LON 600 LONWORKS-IP Server);
U10 and U20 USB network interfaces; and PCC-10 and PCLTA-10, 20, and 21 PCI
network interfaces

Network Variable (NV)

Network variables allow a device to send and receive data over the network to and from
other devices. Network variables are data items (such as temperature, the state of a
switch, or actuator position setting) that a particular device application program expects
to receive from other devices on the network (an input network variable) or expects to
make available to other devices on the network (an output network variable).

Network Variable/Configuration Property Types

A network variable or configuration property type defines the structure and contents of a
data object. A network variable type can be either a standard network variable type
(SNVT) or a user-defined network variable type (UNVT). A configuration property type

104 Appendix A: Glossary

can be a standard configuration property type (SCPT) or a user-defined configuration
property type (UCPT)

Neuron 5000 Processor

Echelon’s next-generation Neuron chip designed for the LONWORKS 2.0 platform. The
Neuron 5000 processor is faster, smaller, and cheaper that previous-generation Neuron
chips. The Neuron 5000 processor includes a fourth processor for interrupt service
routine (ISR) processing.

The Neuron 5000 processor supports an internal system clock speed of 5 MHz to 80 MHz
(using a 10 MHz external crystal). The Neuron 5000 processor includes 16KB of on-chip
ROM to store the Neuron firmware image and 64 KB on-chip RAM (44 KB is
user-accessible). The Neuron 5000 processor requires at least 2KB of off-chip EEPROM
to store configuration data, and you can use a larger capacity EEPROM device or an
additional flash device (up to 64KB) to store your application code, configuration data,
and an upgradable Neuron firmware image. The Neuron 5000 processor supports the
mapping of external non-volatile memory from 0x4000 to 0xE7FF in the Neuron address
space (a maximum of 42KB).

Neuron Assembler (NAS)

A component of the Neuron C development tools that is used to translate Neuron
Assembly source, such as the code generated from your Neuron C application by the
Neuron C Compiler, into Neuron object code.

Neuron C

A programming language based on ANSI C that you can use to develop applications for
Neuron Chips and Smart Transceivers. It includes network communication, I/O,
interrupt-handling, and event-handling extensions to ANSI C, which make it a powerful
tool for the development of LONWORKS device applications.

Neuron Chip

A semiconductor component specifically designed for providing intelligence and
networking capabilities to low-cost control devices. The Neuron Chip includes a
communication port for connections to various network types.

Neuron Core

The Neuron core includes up to four processors that provide both communication and
application processing capabilities. Two processors execute the layer 2 through 6
implementation of the ISO/IEC 14908-1 Control Network Protocol and the third executes
layer 7 and the application code. Series 5000 chips include a fourth processor for
interrupt service routine (ISR) processing.

Neuron C Compiler (NCC)

A Neuron C tool that is used to produce Neuron assembly code from Neuron C source
code.

Neuron Exporter (NEX)

A component of the Neuron C development tools that takes input from the Neuron C
compiler and the linker and produces the following types of files: downloadable
application image files (.APB, .NDL, and .NXE extensions), programmable application
image files (.NRI, .NFI, .NEI, .NME, and .NMF, extensions), and device interface files
(.XIF and .XFB extensions).

Mini FX User's Guide 105

Neuron Firmware

A complete operating system including an implementation of the ISO/IEC 14908-1
protocol used by a Neuron Chip or Smart Transceiver. The Neuron firmware is a
program that is inserted into memory of a Neuron Chip or Smart Transceiver.

Neuron ID

A 48-bit number assigned to each Neuron core at manufacture time. Each Neuron core
has a unique Neuron ID, making it like a serial number.

Neuron Librarian (NLIB)

A component of the Neuron C development tools that is used to create and manage
libraries, or to add and remove individual object files to and from an existing library.
The Neuron Librarian is included with the NodeBuilder tool, but it is not included with
the Mini kit.

Neuron Linker (NLD)

A component of the Neuron C development tools that is used to produce Neuron
executable files. It links the application image, user-libraries, system libraries, and the
Neuron firmware.

Neuron Object File

A Neuron object file (.NO extension) is an intermediate file that contains the data and
executable code in the Neuron object code format, and contains information about
exported and imported symbols. Neuron object files are the link between the Neuron
Assembler and the Neuron Linker, but other data also contributes to the linking

Node Object

A functional block that monitors the status of all functional blocks in a device and makes
the status information available for monitoring by the LonMaker tool. A
LONMARK-compliant device that has more than one functional block must have a node
object. Each Node Object functional block implements the SFPTnodeObject standard
functional profile, or a user-defined profile that inherits from SFPTnodeObject.

NodeBuilder Tool

A hardware and software platform that is used to develop applications for Neuron Chips
and Smart Transceivers. The NodeBuilder tool provides complete support for creating,
debugging, testing, and maintaining LONWORKS devices. You can use the NodeBuilder
tool to create many types of devices, including VAV controllers, thermostats, washing
machines, card-access readers, refrigerators, lighting ballasts, blinds, and pumps. You
can use these devices in a variety of systems including building controls, factory
automation, and transportation.

Non-const Device-specific Configuration Property

A configuration property that can be changed by the device application, an LNS network
tool such as the LonMaker tool, or another tool not based on LNS. For example, a
thermostat may include a user interface that allows the user to change the setpoint.
Device-specific configuration properties have values that can be modified independent of
the LNS network database.

Optional Network Variable/Configuration Property

A network variable or configuration property listed as an optional component in a
functional profile. Functional blocks can elect not to implement optional network

106 Appendix A: Glossary

variables or configuration properties specified by the functional profile that the
functional block is instantiating.

PCC-10

A type II PC (formerly PCMCIA) card network interface that includes an integral
TP/FT-10 transceiver. Other transceiver types can be connected to the PCC-10 via
external transceiver “pods”.

PCLTA-20/21

A ½ size ISA card network interface.

Peer-To-Peer

A control strategy in which independent intelligent devices share information directly
with each other and make their own control decisions without the need or delay of using
an intermediate, central, or master controller. Peer-to-peer control provides enhanced
system reliability by eliminating the master (a single point of failure) and reduces
installation and configuration cost.

PL-20

A communication channel type that enables devices to communicate over the power
mains, eliminating the need for any new wiring for communication. The PL 3150 and PL
3170 Smart Transceivers include an on-chip PL-20 transceiver core.

Program ID

A unique, 16-hex digit ID that uniquely identifies a device application.

Remote Client

An LNS application that communicates with an LNS Server (running on a separate
computer) over a LONWORKS channel (an IP-852 or TP/XF-1250 channel) or over an
LNS/IP interface.

Remote Network Interface (RNI)

A network interface that enables you to connect an LNS or OpenLDV-based application
to a LONWORKS network via a TCP/IP connection. RNIs include the i.LON SmartServer,
i.LON 100 e3 plus Internet Server, and i.LON 600 LONWORKS-IP Server.

Resource File

A file included with a LONWORKS device that defines the components of the device
interface to be used by integration and development tools. Defined components include
network variable types, configuration property types, and functional profiles
implemented by the device application. Resource files hold definitions of standard and
user-defined resources, including network variable and configuration property types,
functional profiles, enumerations, and formatting rules to display network variable and
configuration properties in a readable form. Resource files are used during device
development, installation and management. Standard resource files are distributed by
LONMARK International. User-defined resource files are created and managed during
device development.

SLTA-10

A serial network interface with built-in twisted pair transceiver that connects to any host
with an EIA-232 (formerly RS232) port. It can also connect to the host remotely using a
modem.

Mini FX User's Guide 107

The SLTA-10 network interface is supported, but not recommended unless dial-up
operation through a modem and a serial connection is required. You should use a
PCC-10 or U10/20 USB network interface instead. For accessing remote networks, you
can use an RNI such as the i.LON SmartServer, i.LON 100 e3 plus Internet Server, or
i.LON 600 LONWORKS-IP Server.

Self-Installed Network

A network that has network addresses and connections created without the use of a
network management tool. In a self-installed network, each device contains code (the
Neuron C ISI library, which implements the ISI protocol) that replaces parts of the
network management server’s functionality, resulting in a network that no longer
requires a special tool or server to establish network communication or to change the
configuration of the network.

Series 3100 Chip

The term used to collectively refer to all previous-generation Neuron Chips and Smart
Transceivers, including the 3150 and 3120 Neuron chips; the 3150 and 3120 FT Smart
Transceivers; and the 3170, 3150, and 3120 PL Smart Transceivers.

Series 5000 Chip

The term used to collectively refer to the Neuron 5000 Processor and FT 5000 Smart
Transceiver.

Service Button

A push button or other actuator on a LonWorks devices that is used during installation
to acquire the device’s Neuron ID. For a Neuron hosted device, the button is connected to
the service pin of the Neuron Chip or Smart Transceiver. When this pin is activated, the
Neuron core sends a broadcast message containing its Neuron ID and program ID, which
is called service pin message or packet. The method used to implement the Service
button varies from device to device. Examples of mechanical methods include grounding
via a push button or using a magnetic reed switch. By attaching one of the device’s I/O
pins to the service pin, the service pin can also be put under software control as long as
the application code is being executed. For example, the device can ground the pin when
the device is moved or when a predefined series of I/O occurs. The service pin can also be
used to drive an LED that indicates the device’s state. The service LED is solid on when
the device is applicationless, blinks slowly when the device has an application and is
unconfigured, is off when the device has an application and is configured. Some
applications also implement additional service pin blink patterns.

Smart Transceiver

A chip that integrates a Neuron core and a transceiver.

Standard Configuration Property Type (SCPT)

A standard configuration property type defined by LONMARK International to facilitate
interoperability. SCPTs are defined for a wide range of configuration properties used in
many kinds of functional profiles, such as hysteresis bands, default values, minimum and
maximum limits, gain settings, and delay times. SCPTs should be used for configuration
in a LONWORKS network wherever applicable. In situations where there is not an
appropriate SCPT available, manufacturers may define UCPTs for configuring their
devices.

In addition to standard or user-defined network variable types, which define the data
type, formatting rules, limits and units, SCPT also define semantics. For example, the
SNVT_time_sec standard network variable type defines a data type for exchanging

108 Appendix A: Glossary

durations of time, in seconds. The SCPTmaxSentTime standard configuration property
type references SNVT_time_sec, but adds semantics by clarifying that this
configuration property defines the maximum period of time between consecutive
transmissions of the current value. See types.lonmark.org for a current list and
documentation.

Standard Functional Profile

A standard set of functional profiles defined by LONMARK International. See
types.lonmark.org for a current list and documentation. See Functional Profile for more
information about functional profiles.
Standard Network Variable Type (SNVT)

A standard set of network variable types defined by LONMARK International to facilitate
interoperability by providing a well-defined interface for communication between devices
made by different manufacturers. See types.lonmark.org for a current list and
documentation.

TP/FT-10

The free topology twisted pair LONWORKS channel type, which has 78Kbps bit rate.

U10/20 USB Network Interface.

A low-cost, high-performance LONWORKS network interface with a built-in TP/FT-10 or
PL-20 transceiver that can be used with USB-enabled computers and controllers.

User-defined Configuration Property Type (UCPT)

A non-standard data structure used for configuration of the application program in a
LONMARK device. UCPTs should be used only when there is no appropriate standard
configuration property type (SCPT) defined. LONMARK-certified devices must have
UCPTs documented in resource files according to a standard format, in order to allow the
devices to be configured without the need for proprietary configuration tools. See
Standard Configuration Property Type (SCPT) for more information on configuration
property types.

User-defined Functional Profile

A non-standard functional profile defined by a device manufacturer. A user-defined
functional profile should be used only when there is no appropriate standard functional
profile defined. See Functional Profile for more information about functional profile
templates.

User-defined Network Variable Type (UNVT)

A non-standard network variable type defined by the manufacturer of a device. UNVTs
should be used only when there is no appropriate standard network variable type (SNVT)
defined. LONMARK-certified devices must have UNVTs documented in resource files
according to a standard format, in order to allow the devices to be interoperable.

Mini FX User's Guide 109

Appendix B

Creating and Editing Hardware
Templates

This appendix explains how to edit standard hardware
templates with the Mini FX Application.

110 Appendix B: Editing Hardware Templates

Using Hardware Templates
You can create new custom hardware templates and then configure them with the
Hardware Template Editor in the Mini FX Application. A hardware template is a file
with a .NbHwt extension that defines the hardware configuration for a target device. It
specifies hardware attributes including platform, transceiver type, Neuron Chip or
Smart Transceiver model, clock speed, system image, and memory configuration.
Several Standard hardware templates are included with the Mini FX Evaluation Kit.

To view the standard hardware templates included with the Mini kit, open the Mini FX
Application, and then click the arrow in the Target Hardware box. A list of the
standard hardware templates stored in the LONWORKS
NodeBuilder\Templates\Hardware\Standard folder on your computer is displayed,
as demonstrated by Figure B-1.

 Figure B-1 Standard Hardware Template List

The standard hardware templates are read-only; however, you can create custom
hardware templates from a copy of a Standard hardware template and then configure
your custom hardware template, or you can create and configure a custom hardware
template from scratch. The following sections describe how to do this.

Note: Do not edit or overwrite Standard hardware templates using the Hardware
Template Editor in the Mini FX Application. Instead, create custom hardware templates
from a copy of a Standard hardware template and then configure your custom hardware
template, as described in the next section.

Mini FX User's Guide 111

Creating Custom Hardware Templates
You can create a new custom hardware template from a copy of a Standard hardware
template, or you can create and configure a custom hardware template from scratch
using the Hardware Template Editor.

To create a new custom hardware template from a copy of a Standard hardware
template, follow these steps:

1. Browse to the LONWORKS\NodeBuilder\Templates\Hardware\Standard
folder.

2. Copy the Standard hardware template to be used as the source. Select the Standard
hardware template that has the same transceiver used by the target device (whether
an EVB or a custom device), if available.

For example, if the target device uses a FT 5000 Smart Transceiver, select the FT
5000 Evaluation Board hardware template as the source. Similarly, if the target
device uses a PL 3150 Smart Transceiver, select the PL 3150 Evaluation Board
(CENELEC on) or PL 3150 Evaluation Board (CENELEC off) hardware template
as the source.

3. Browse to the LONWORKS\NodeBuilder\Templates\Hardware folder (or other
desired location for custom hardware templates on your computer), and then paste
the Standard hardware template you copied in step 2.

4. Rename your new custom hardware template.

5. Configure the hardware, memory, and description properties of your new custom
hardware template as described in the next section, Configuring Hardware
Templates.

To create a new custom hardware template from scratch using the Hardware Template
Editor in the Mini FX Application, follow these steps:

1. Start the Mini FX Application.

2. In the Target Hardware box in the Application tab, click New.

3. Enter the name of your custom hardware template and save it. By default, new
custom hardware templates are stored in the
LONWORKS\NodeBuilder\Templates\Hardware folder on your computer.

4. Configure the hardware, memory, and description properties of your new custom
hardware template as described in the next section, Configuring Hardware
Templates.

Configuring Hardware Templates
You can configure the hardware, memory, and description properties of a hardware
template with the Hardware Template Editor in the Mini FX Application. The following
sections describe how to set these properties.

Setting Hardware Properties
You can set hardware properties for a hardware template on the Hardware tab of the
Hardware Template Properties dialog. This tab displays the properties of the
selected hardware template. For example, Figure B-2 displays the default properties for
the FT 5000 Evaluation Board hardware template.

112 Appendix B: Editing Hardware Templates

Figure B-2 Default Hardware Properties

You can set the following properties on the Hardware tab:

Hardware
Template Name

Enter the name of the hardware template. By default, new
hardware templates are named Custom 1, Custom 2, and so
on. The hardware template name may be any valid Windows
file name. The name can contain up to 210 characters,
including spaces. The name cannot contain the following
characters: \ / : * ? “ < > |.

Mini FX User's Guide 113

Platform A platform is a category of hardware implementations. Most
hardware templates, including standard and user-defined
hardware templates, are implemented using the Custom
platform. The Custom platform is suitable for all
user-defined hardware.

If you are building a device application to be downloaded into
a device that has an SMX transceiver, select LTM-10 or
LTM-10A platform and then specify the transceiver type
supported by your device in the Transceiver Type property.

Select one of the following hardware platforms:

• Custom. Select this if you are not using an LTM-10,
LTM-10A, or LonBuilder® Emulator. This is the default.

• LTM-10.

• LTM-10A.

• LonBuilder Emulator 3150.

Transceiver Type Select the transceiver type supported by the Neuron Chip or
Smart Transceiver model selected in the Neuron Chip
Model property. Each transceiver type identifies a unique set
of transceiver parameters that are included in the application
image. The default transceiver type is TP/FT-10.

Neuron Chip
Model

Select the Neuron Chip or Smart Transceiver model supported
by the hardware platform selected in the Platform property.
The default Neuron Chip model is FT 5000.

External Clock
Speed

Displays the frequency of the external crystal used for the
Neuron Chip or Smart Transceiver model selected in the
Neuron Chip Model property.

For Series 5000 chips, the external crystal has a frequency of
10MHz; however, you can change the system’s internal clock
speed from 5MHz to 80MHz. To do this, you change the
frequency at which the Neuron Chip or Smart Transceiver
runs in the Clock Multiplier property.

For Series 3100 chips, you can select a different clock speed
from the list of those available for the selected Neuron Chip
and transceiver type, or for the selected Smart Transceiver.
This property is unavailable for those Neuron Chip or Smart
Transceiver models that support only one external clock
speed. See your Neuron Chip or Smart Transceiver data book
for more information.

Clock Multiplier

For Series 5000 chips, you can select the frequency at which
the Neuron Chip runs to modify the system clock speed. You
can select multipliers of ½, 1, 2, 4, and 8. The default
multiplier is 8.

This property is fixed at ½ for the Series 3100 chips.

System Clock The effective clock speed of the application processor. This is
the product of the External Clock Speed and the Clock
Multiplier.

114 Appendix B: Editing Hardware Templates

For Series 5000 chips, the default internal system clock speed
is 80.00 MHz (the crystal’s speed external clock speed of
10MHz multiplied by the default clock multiplier of 8), and it
may be as low as 5 MHz (10MHz * ½).

Note: The 5.00 MHz system clock setting is intended only to
facilitate backward compatibility with older designs that
cannot scale to higher clock rates. There is no power
consumption advantage to using 5.00 MHz over 10.00 MHz.

For Series 3100 chips, this is the same value as the External
Clock Speed multiplied by ½.

System Image
Version

Select the Neuron firmware version for the selected Neuron
Chip or Smart Transceiver model. See your Neuron Chip or
Smart Transceiver data book for more information.

Select <Default> to use the default system image for the
chosen chip. The default system image is the most current
system image version included with this version of the Mini
kit and any applied service packs. If you are prototyping
devices, you typically select <Default>.

Select <Custom> to specify your own custom system image in
the Image Name property. See the Neuron C Programmer’s
Guide for information on creating custom system images.

Select VerXX, where XX is the desired version number, to use
a specific system firmware version. After you have completed
the initial prototyping phase of your device's development and
you are beginning the testing or production phases, you should
select a specific system firmware version. This ensures that
further development and maintenance of your device is subject
to controlled conditions even when newer versions of the
system firmware become available.

Image Name Displays the file name of the system image containing the
Neuron Firmware. If <Custom> is selected in the System
Image Version property, you can enter a system image file
name or click the button to the right and browse to a system
image symbol file (.sym extension).

For Series 5000 chips, the name of the default system image is
BFT5000.

Firmware Version Displays the Neuron Firmware version used by the selected
system image if the System Image Version property is set
to <Default>; otherwise N/A is displayed. This field is
read-only.

Setting Memory Properties
You can view and set the on-chip and off-chip memory properties for a hardware
template on the Memory tab of the Hardware Template Editor dialog. Figure B-3
displays the default memory properties for the FT 5000 Evaluation Board standard
hardware template

Mini FX User's Guide 115

Figure B-3 Default Memory Properties for FT 5000 Evaluation Board Hardware
Template

The Memory Addresses box details how on chip and off-chip memory is organized on
the selected Neuron Chip or Smart Transceiver model. These values are dependent on
the chip type and may be modified depending on the Neuron model and available
memory. You can modify the Start and End locations for available memory by clicking
the arrows. A value of 0x0000 is displayed for any memory location that has not been
set; N/A is displayed for any memory location that is not available.

The Non-Volatile Memory box specifies the type of external non-volatile memory
(EEPROM, FLASH, and NVRAM) used, if any. If EEPROM is selected, the Write Time
field specifies the EEPROM write time. If Flash is selected, the Sector Size field
specifies the flash memory sector size.

The following sections describe the memory properties of the Series 5000 chips, 3150
Neuron core, and 3120 and 3170 Neuron core.

Series 5000 Chips
The address ranges and consumption for the on-chip and off-chip memory of the Series
5000 chips are as follows:

Off-Chip ROM The Series 5000 chips do not support off-chip memory;
therefore, this property is set to N/A.

116 Appendix B: Editing Hardware Templates

Extended Non-Volatile The Series 5000 chips use a serial memory interface for
external non-volatile memory devices (EEPROM or
flash). The application code and configuration data are
stored in the external non-volatile memory device and
then copied into the internal RAM when the device is
reset. The device application is then executed from the
internal RAM.

The Extended Non-Volatile memory always starts at
0x4000 and can extend to a configurable address of
less than 0xE7FF (a maximum of 42KB).

Echelon currently supports and provides drivers for
the following flash devices, which you can select from
the Type property in the Non-Volatile Memory box:
Atmel AT25F512AN, STM25P05, and
SST25VF512A. See the Neuron Chip or Smart
Transceiver data book for more information.

Note: The drivers for different flash devices consume
varying amounts of EEPROM code space because of
the different programming algorithms required for the
different flash devices. For example, the SST driver
takes 40 bytes more of EEPROM than the other two
supported flash devices.

Extended On-chip RAM The Extended On-chip RAM can start at a configurable
address at or above 0x4000 or at the end of any
extended non-volatile memory and must end at
0xE7FF.

On-chip ROM The On-chip ROM is set from 0x0000 to 0x3FFF.

On-chip RAM The On-chip RAM is set from 0xE800 to 0xEFFF.

Mandatory EEPROM The On-chip EEPROM is set from 0xF000 to 0xF7FF.
This reflects the fact that a minimum of 2K of external
serial EEPROM is required for the Series 5000 chips.

Extended On-chip
EEPROM

The Series 5000 chips do not use Extended On-chip
EEPROM; therefore, this property is set from 0x0000
to 0x0000.

3150 Neuron Core
For the 3150 PL Smart Transceivers, the on-chip memory values are dependent on the
chip type and may not be modified with the exception of the Extended On-chip RAM.
The Type property in the Non-Volatile Memory box specifies the type of non-volatile
memory (EEPROM, FLASH, and NVRAM) used, if any. For devices where the system
image is kept in non-volatile memory, select either flash or NVRAM. EEPROM is not
supported for this configuration.

3170 Neuron Core
For the 3170 PL Smart Transceivers, the on-chip memory values are dependent on the
chip type and may not be modified with the exception of the Extended On-chip RAM.
These chips do not support off-chip memory, therefore, the Off-Chip ROM, Off-Chip
RAM, Off-Chip Non-Volatile and I/O properties are set to N/A.

Mini FX User's Guide 117

Setting the Hardware Template Description
You can enter an optional description for a hardware template in the Description tab of
the NodeBuilder Hardware Template Properties dialog. This description will be saved in
the hardware template file and will be available if this hardware template is used in
other NodeBuilder projects. Figure B-4 displays the description of the FT 5000
Evaluation Board standard hardware template

Figure B-3 FT 5000 Evaluation Board Hardware Template Description

118 Appendix B: Editing Hardware Templates

Mini FX User's Guide 119

Appendix C

Mini FX Software License Agreement

When installing the Mini FX software, you must agree to the
terms of the software license agreement detailed in this

appendix.

120 Appendix C: Software License Agreement

NOTICE
This is a legal agreement between you and Echelon Corporation (“Echelon”). YOU
MUST READ AND AGREE TO THE TERMS OF THIS SOFTWARE LICENSE
AGREEMENT BEFORE ANY LICENSED SOFTWARE CAN BE DOWNLOADED OR
INSTALLED OR USED. BY CLICKING ON THE “I AGREE” OR “I ACCEPT” BUTTON
OF THIS SOFTWARE LICENSE AGREEMENT, OR DOWNLOADING LICENSED
SOFTWARE, OR INSTALLING LICENSED SOFTWARE, OR USING LICENSED
SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS AND
CONDITIONS OF THIS SOFTWARE LICENSE AGREEMENT. IF YOU DO NOT
AGREE WITH THE TERMS AND CONDITIONS OF THIS SOFTWARE LICENSE
AGREEMENT, THEN YOU SHOULD EXIT THIS PAGE AND DO NOT DOWNLOAD
OR INSTALL OR USE ANY LICENSED SOFTWARE. BY DOING SO YOU FOREGO
ANY IMPLIED OR STATED RIGHTS TO DOWNLOAD OR INSTALL OR USE
LICENSED SOFTWARE.

Mini FX Software License Agreement
In consideration of Your agreement to the terms of this Agreement, Echelon grants You a
limited non-exclusive, non-transferable (except as expressly provided below) license to
use up to two (2) copies of the Licensed Software and accompanying Documentation (as
defined below) and any updates or upgrades thereto provided by Echelon according to the
terms set forth below. If the Licensed Software is being provided to You as an update or
upgrade to software which You have previously licensed, then You agree to destroy all
copies of the prior release of this software within thirty (30) days after installing the
Licensed Software; provided, however, that You may retain one (1) copy of the prior
release for backup, archival and support purposes.

DEFINITIONS
For purposes of this Agreement, the following terms shall have the following meanings:

 “Documentation” means the documentation included with the Licensed Software.

 “ISI Libraries” means the IsiCompactAuto.lib, IsiCompactDa.lib, IsiCompactDaHb.lib,
IsiCompactManual.lib, IsiCompactS, IsiCompactSHb, IsiFull.lib, or IsiPl3170.lib files
included with the Licensed Software, or future updates to these files identified as ISI
Libraries by Echelon.

 “Licensed Software” means all computer software and associated media, printed
materials, and online or electronic documentation that accompany the Mini FX product;
including, without limitation, any and all executable files, libraries, include files,
add-ons, stencils, templates, filters, tutorials, help files and other files, that accompany
such software or the Documentation.

 “LonWorks® Application” has the meaning as set forth in the LonWorks OEM License
Agreement, which definition is incorporated herein by reference.

 “LONWORKS Device” means a device designed for use in a network based upon Echelon’s
LONWORKS platform, which device meets the definition of a LONWORKS Application.

 “LONWORKS OEM License Agreement” means the Echelon LonWorks OEM License
Agreement entered into between You and Echelon, either revision “J” or a later version
or an amendment to an earlier version that includes a license to Echelon’s ISI protocol.

Mini FX User's Guide 121

 “Mini FX Example Applications” means the Neuron C and C# source code example
applications included as part of the Licensed Software which demonstrate the use of the
Licensed Software, (i) as provided in the “Examples” directory and its subdirectories, or
(ii) as included in the Documentation.

 “Your Device” means a LONWORKS Device developed by You, which LONWORKS Device
incorporates the ISI Libraries.

 “You(r)” means Licensee, i.e. the company, entity or individual who has rightfully
acquired the Licensed Software.

LICENSE
You may:

(a) use the Licensed Software solely to develop Your Devices, and prepare derivative
works of the Mini FX Example Applications to include in Your Devices;

(b) install and use the Licensed Software for such purposes on one (1) primary computer
(the “Primary Computer”);

(c) install and use a second copy of the Licensed Software for such purposes on one (1)
additional computer (the “Additional Computer”) for the exclusive use of the
individual who is the primary user of the copy of the Licensed Software installed on
the Primary Computer, provided that the Licensed Software may only be used on one
computer at a time, and provided that such installation and use otherwise comply
with all the terms and conditions of this Agreement; and

(d) copy the Licensed Software as necessary to exercise the rights expressly granted
above.

You may not, and shall not permit others to:

(a) install the Licensed Software for development on more than one (1) Primary
Computer and one (1) Additional Computer, use the Licensed Software on more than
one (1) computer at a time, or allow any individual other than the primary user to
use the Licensed Software on the Additional Computer;

(b) copy the Licensed Software or Documentation (except as expressly permitted above);

(c) reverse engineer, decompile, disassemble or otherwise attempt (i) to defeat, avoid,
bypass, remove, deactivate, or otherwise circumvent any software protection
mechanisms in the Licensed Software, including without limitation any such
mechanism used to restrict or control the functionality of the Licensed Software, or
(ii) to derive the source code or the underlying ideas, algorithms, structure or
organization from the software from the Licensed Software (except that the foregoing
restrictions shall not apply to the extent that such activities may not be prohibited
under applicable law);

(d) alter, adapt, prepare derivative works of, modify or translate the Licensed Software
in any way for any purpose, including without limitation error correction, except for
the limited rights expressly granted above with respect to the Mini FX Example
Applications; or

(e) distribute, rent, loan, lease, transfer or grant any rights in the Licensed Software or
modifications thereof or accompanying Documentation in any form to any person
without the prior written consent of Echelon. This license grants You only
development rights. Distribution rights are granted only pursuant to the LONWORKS
OEM License Agreement.

122 Appendix C: Software License Agreement

This license is not a sale. Title, copyrights and all other rights to the Licensed Software
and the Documentation and any copy made by You remain with Echelon. Unauthorized
copying of the Licensed Software or the Documentation, or failure to comply with the
above restrictions, will result in automatic termination of this license and will make
available to Echelon other legal remedies.

LONWORKS OEM LICENSE AGREEMENT AND
DIGITAL HOME ALLIANCE AGREEMENT

This Agreement does not grant You any rights to distribute Your Devices. You
shall have no rights to distribute Your Devices unless there is a LONWORKS
OEM License Agreement Revision J or newer in effect between You and
Echelon at the time of any such distribution. Your Device shall be subject to
the terms thereof. Your rights to distribute Your Devices for a home
environment shall also be subject to there being a Digital Home Alliance
Agreement in effect between You and Echelon at the time of such distribution.

TERMINATION
This license will continue until terminated. Unauthorized copying of the Licensed
Software or failure to comply with the above restrictions will result in automatic
termination of this Agreement and will make available to Echelon other legal remedies.
This license will also automatically terminate if you go into liquidation, suffer or make
any winding up petition, make an arrangement with Your creditors, or suffer or file any
similar action in any jurisdiction in consequence of debt. Upon termination of this
license for any reason you will destroy all copies of the Licensed Software. Any use of the
Licensed Software after termination is unlawful.

TRADEMARKS
You may make appropriate and truthful reference to Echelon, Echelon products and
technology in Your company and product literature; provided that You properly attribute
Echelon’s trademarks and do not use the name of Echelon or any Echelon trademark in
Your name or product name. No license is granted, express or implied, under any
Echelon trademarks, trade names, trade dress, or service marks.

LIMITED WARRANTY AND DISCLAIMER
Echelon warrants that, for a period of ninety (90) days from the date of delivery or
transmission to You, the Licensed Software under normal use will perform substantially
in accordance with the Licensed Software specifications contained in the Documentation.
Echelon’s entire liability and Your exclusive remedy under this warranty will be, at
Echelon’s option, to use reasonable commercial efforts to attempt to correct or work
around errors, to replace the Licensed Software with functionally equivalent Licensed
Software, or to terminate this Agreement and accept return of the Licensed Software and
refund Your purchase price less a reasonable amount for use.

NOTWITHSTANDING THE FOREGOING, ECHELON MAKES NO WARRANTIES
WHATSOEVER WITH RESPECT TO THE MINI FX EXAMPLE APPLICATIONS,
WHICH ARE DELIVERED “AS IS.” EXCEPT FOR THE ABOVE EXPRESS LIMITED
WARRANTIES AND CONDITIONS, ECHELON AND ITS SUPPLIERS MAKE AND

Mini FX User's Guide 123

YOU RECEIVE NO OTHER WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU, AND
ECHELON AND ITS SUPPLIERS SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTY OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
PARTICULAR PURPOSE OR NONINFRINGEMENT AND THEIR EQUIVALENTS.
Echelon does not warrant that the operation of the Licensed Software will be
uninterrupted or error free or that the Licensed Software will meet Your specific
requirements.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU.
YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY FROM STATE TO STATE AND
JURISDICTION TO JURISDICTION.

LIMITATION OF LIABILITY
IN NO EVENT WILL ECHELON OR ITS SUPPLIERS BE LIABLE FOR LOSS OF OR
CORRUPTION TO DATA, LOST PROFITS OR LOSS OF CONTRACTS, COST OF
PROCUREMENT OF SUBSTITUTE PRODUCTS OR OTHER SPECIAL, INCIDENTAL,
PUNITIVE, CONSEQUENTIAL OR INDIRECT DAMAGES, LOSSES, COSTS OR
EXPENSES OF ANY KIND ARISING FROM THE SUPPLY OR USE OF THE
LICENSED SOFTWARE OR ACCOMPANYING DOCUMENTATION, HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY (INCLUDING WITHOUT
LIMITATION NEGLIGENCE). THIS LIMITATION WILL APPLY EVEN IF ECHELON
OR AN AUTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES AND NOTWITHSTANDING THE FAILURE OF ESSENTIAL
PURPOSE OF ANY LIMITED REMEDY. EXCEPT TO THE EXTENT THAT
LIABILITY MAY NOT BY LAW BE LIMITED OR EXCLUDED, IN NO EVENT SHALL
ECHELON’S OR ITS SUPPLIERS’ LIABILITY EXCEED FIVE HUNDRED DOLLARS
($500.00). YOU ACKNOWLEDGE THAT THE AMOUNTS PAID BY YOU FOR THE
LICENSED SOFTWARE REFLECT THIS REASONABLE ALLOCATION OF RISK.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
SO THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT APPLY TO YOU.

SAFE OPERATION
YOU ASSUME RESPONSIBILITY FOR, AND HEREBY AGREE TO USE YOUR BEST
EFFORTS IN, DESIGNING, MANUFACTURING, COMMISSIONING, AND
RECOVERING LONWORKS DEVICES HEREUNDER TO PROVIDE FOR SAFE
OPERATION THEREOF, INCLUDING, BUT NOT LIMITED TO, COMPLIANCE OR
QUALIFICATION WITH RESPECT TO ALL SAFETY LAWS, REGULATIONS AND
AGENCY APPROVALS, AS APPLICABLE. THE LICENSED SOFTWARE, SMART
TRANSCEIVER, NEURON® CHIP, LONTALK PROTOCOL, NEURON CHIP
FIRMWARE, YOUR DEVICE, AND THE LONWORKS NETWORK INTERFACES ARE
NOT DESIGNED OR INTENDED FOR USE AS COMPONENTS IN EQUIPMENT
INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER
APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN LIFE, FOR USE IN FLIGHT
CONTROL OR ENGINE CONTROL EQUIPMENT WITHIN AN AIRCRAFT, OR FOR
ANY OTHER APPLICATION IN WHICH THE FAILURE THEREOF COULD CREATE
A SITUATION IN WHICH PERSONAL INJURY OR DEATH MAY OCCUR, AND YOU
SHALL HAVE NO RIGHTS HEREUNDER FOR ANY SUCH APPLICATIONS.

124 Appendix C: Software License Agreement

LANGUAGE
The parties hereto confirm that it is their wish that this Agreement, as well as other
documents relating hereto, have been and shall be written in the English language only.
Any translations are provided for convenience only, and the English language version
shall control.

Les parties aux présentes confirment leur volonté que cette convention de même que tous
les documents y compris tout avis qui s'y rattache, soient rédigés en langue anglaise.

SUPPORT
You acknowledge that You shall either (i) inform the end-user that You are the primary
support contact for Your Devices, and that Echelon Corporation will not support Your
Devices, or (ii) inform the end-user that there will be no support for Your Devices.

COMPLIANCE WITH EXPORT CONTROL LAWS
You agree to comply with all applicable export and reexport control laws and regulations,
including the Export Administration Regulations ("EAR") maintained by the United
States Department of Commerce. Specifically, you covenant that You shall not -- directly
or indirectly -- sell, export, reexport, transfer, divert, or otherwise dispose of any
software, source code, or technology (including products derived from or based on such
technology) received from Echelon under this Agreement to any country (or national
thereof) subject to antiterrorism controls or U.S. embargo, or to any other person, entity,
or destination prohibited by the laws or regulations of the United States, without
obtaining prior authorization from the competent government authorities as required by
those laws and regulations. You agree to indemnify, to the fullest extent permitted by
law, Echelon from and against any fines or penalties that may arise as a result of Your
breach of this provision. This export control clause shall survive termination or
cancellation of this Agreement.

GENERAL
This Agreement shall not be governed by the 1980 U.N. Convention on Contracts for the
International Sale of Goods; rather, this Agreement shall be governed by the laws of the
State of California, including its Uniform Commercial Code, without reference to
conflicts of laws principles. This Agreement is the entire agreement between You and
Echelon and supersedes any other communications or advertising with respect to the
Licensed Software and accompanying Documentation. If any provision of this Agreement
is held invalid or unenforceable, such provision shall be revised to the extent necessary to
cure the invalidity or unenforceability, and the remainder of the Agreement shall
continue in full force and effect. If You are acquiring the Licensed Software on behalf of
any part of the U.S. Government, the following provisions apply. The Licensed Software
and accompanying Documentation are deemed to be “commercial computer software” and
“commercial computer software documentation”, respectively, pursuant to DFAR Section
227.7202 and FAR 12.212(b), as applicable. Any use, modification, reproduction, release,
performance, display or disclosure of the Licensed Software and/or the accompanying
Documentation by the U.S. Government or any of its agencies shall be governed solely
by the terms of this Agreement and shall be prohibited except to the extent expressly
permitted by the terms of this Agreement. Any technical data provided that is not
covered by the above provisions is deemed to be “technical data-commercial items”

Mini FX User's Guide 125

pursuant to DFAR Section 227.7015(a). Any use, modification, reproduction, release,
performance, display or disclosure of such technical data shall be governed by the terms
of DFAR Section 227.7015(b).

Echelon, LON, LonTalk, LonWorks, and Neuron are U.S. registered trademarks of
Echelon Corporation.

www.echelon.com

	Table of Contents
	Preface
	Purpose
	Audience
	Hardware Requirements
	Content
	Related Manuals
	For More Information and Technical Support

	1 Introduction
	 Introduction to the Mini FX Evaluation Kit
	New Features in the Mini FX Evaluation Kit
	Series 5000 Chip Support
	Improved Memory Architecture
	Faster System Clock
	Improved Performance for Arithmetic Operations
	User Programmable Interrupts
	Additional I/O Model Support
	Increased Network Variable Support
	Smaller Layout
	Backwards Compatibility for Device Applications

	FT 5000 EVB Evaluation Board
	PL 3150 and 3170 EVB Evaluation Board
	Neuron C Version 2.2 Enhancements
	Interrupt Support
	Non Constant Device Specific Configuration Property Support
	New and Enhanced I/O Models
	New and Enhanced Compiler Directives

	Hardware Template Editor
	Microsoft Windows Vista Support

	What's Included with the Mini FX Evaluation Kit
	Mini FX CD
	Development Platforms
	FT 5000 EVB Evaluation Board
	PL 3150 and PL 3170 EVB Evaluation Boards

	LonScanner Protocol Analyzer CD (Demo Edition)
	U10/U20 USB Network Interface

	Upgrading the Development Environment
	Upgrading to the NodeBuilder FX Tool
	Upgrading to the LonMaker Tool
	Activating the LonScanner Tool

	Introduction to Mini FX Device Development and LonWorks Networks
	Channels
	Routers
	Applications
	Program IDs
	Network Variables
	Configuration Properties
	Functional Blocks
	Functional Profiles
	Hardware Templates
	Neuron C
	Device Templates
	Device Interface Files
	Resource Files

	2 Installing the Mini FX Evaluation Kit
	 Installing the Mini FX Evaluation Kit
	Installing the Mini FX Software
	Connecting the Mini FX Hardware
	Connecting the Mini FX/FT Hardware
	Connecting the Mini FX/PL Hardware

	3 Mini FX Quick Start Exercise
	
	Mini FX Quick Start Exercise
	Step 1: Creating the Device Application
	 Step 2: Writing the Device Application
	FT 5000 Evaluation Boards
	PL 3150 and PL 3170 Evaluation Boards

	Step 3: Building the Device Application
	Step 4: Downloading the Device Application
	Step 5: Testing the Device Application

	4 Using the Mini FX Application
	 Introduction to the Mini FX Application
	Building a Device Application
	Creating and Opening Neuron C Source Files
	Selecting the Hardware Template
	Specifying the Program ID
	Building the Application Image File

	Downloading an Application Image File
	Resetting, Winking, and Testing Devices

	5 Developing Device Applications
	 Introduction to Neuron C
	Unique Aspects of Neuron C
	Neuron C Variables
	Neuron C Variable Types
	Neuron C Storage Classes
	Variable Initialization
	Neuron C Declarations

	Getting Started with Neuron C
	Performing Neuron C Input/Output
	Switches
	FT 5000 EVB
	Mini Gizmo I/O Board
	Conditional Compilation Example

	LEDs
	FT 5000 EVB
	Mini Gizmo I/O Board
	Conditional Compilation Example

	Temperature Sensor
	Serial I/O
	LCD Display
	I/O Examples Toolkit

	Creating Example Device Applications
	Digital Sensor and Actuator Examples
	Simple Digital Sensor
	Simple Digital Actuator
	Advanced Digital Actuator
	Advanced Digital Sensor Example

	Thermostat Example
	ISI Example

	Appendix A Glossary
	Appendix B Creating and Editing Hardware Templates
	Using Hardware Templates
	Creating Custom Hardware Templates
	Configuring Hardware Templates
	Setting Hardware Properties
	Setting Memory Properties
	Series 5000 Chips
	3150 Neuron Core
	3170 Neuron Core

	Setting the Hardware Template Description

	Appendix C Mini FX Software License Agreement

