
078-0366-01B 
®

    ShortStack FX ARM7 

Example Port User’s Guide 



Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron, 
3120, 3150, ShortStack, LonMaker, and the Echelon logo are 
trademarks of Echelon Corporation registered in the United 
States and other countries.  3170 is a trademark of the 
Echelon Corporation.   

Other brand and product names are trademarks or 
registered trademarks of their respective holders. 

Neuron Chips and other OEM Products were not designed 
for use in equipment or systems, which involve danger to 
human health or safety, or a risk of property damage and 
Echelon assumes no responsibility or liability for use of the 
Neuron Chips in such applications. 

Parts manufactured by vendors other than Echelon and 
referenced in this document have been described for 
illustrative purposes only, and may not have been tested 
by Echelon.  It is the responsibility of the customer to 
determine the suitability of these parts for each 
application. 

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR 
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY 
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY 
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY 
OR FITNESS FOR A PARTICULAR PURPOSE. 

No part of this publication may be reproduced, stored in a 
retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or 
otherwise, without the prior written permission of Echelon 
Corporation. 

Printed in the United States of America. 
Copyright © 2001, 2009 Echelon Corporation. 

Echelon Corporation  
www.echelon.com 

 

http://www.echelon.com/


ShortStack FX ARM7 Example Port User’s Guide        iii 

Welcome 
Echelon’s ShortStack® Micro Server enables any product that contains a 
microcontroller or microprocessor to quickly and inexpensively become a 
networked, Internet-accessible device.  The ShortStack Micro Server provides a 
simple way to add LONWORKS® networking to new or existing smart devices.  

This document describes the ShortStack FX ARM7 Example Port for an ARM7-
family microprocessor, the Atmel® ARM® AT91SAM7S64.  This example port 
includes ported example ShortStack applications, the host API, and a serial 
driver for the ARM7 processor.  This example is available as a free download 
from the Echelon ShortStack Web site, www.echelon.com/shortstack.   

Audience 
This document assumes that you have a good understanding of the LONWORKS 
platform, the ShortStack Micro Server, ShortStack LonTalk Compact API, 
general embedded system design methodologies, and the ARM7 family of 
embedded processors. 

If you create a serial driver for communications between the host microprocessor 
and the ShortStack Micro Server, you need to be familiar with either the Serial 
Communications Interface (SCI) or Serial Peripheral Interface (SPI) interface 
standard.  

Related Documentation 
The ShortStack FX Developer’s Kit includes the ShortStack FX User’s Guide 
(078-0365-01B), which describes how to develop applications for LONWORKS 
devices that use the ShortStack FX Micro Server.  It also describes the 
architecture of a ShortStack device and how to develop one. 

The ShortStack FX Developer’s Kit also includes the following manuals: 

• Neuron C Programmer’s Guide (078-0002-02H).  This manual describes 
the key concepts of programming using the Neuron C programming 
language and describes how to develop a LONWORKS application. 

• Neuron C Reference Guide (078-0140-02F).  This manual provides 
reference information for writing programs that use the Neuron C 
language. 

• Neuron Tools Errors Guide (078-0402-01B).  This manual describes error 
codes issued by the Neuron C compiler and related development tools. 

After you install the ShortStack FX Developer’s Kit, you can view any of these 
manuals from the Windows Start menu:  select Programs → Echelon ShortStack 
FX Developer’s Kit → Documentation. 

The following manuals are available from the Echelon Web site 
(www.echelon.com) and provide additional information that can help you develop 
applications for a ShortStack Micro Server: 

http://www.echelon.com/shortstack
http://www.echelon.com/


iv 

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D).  This 
manual provides detailed technical specifications on the electrical 
interfaces, mechanical interfaces, and operating environment 
characteristics for the FT 3120® and FT 3150® Smart Transceivers. 

• Introduction to the LONWORKS Platform (078-0183-01B).  This manual 
provides an introduction to the ISO/IEC 14908 (ANSI/CEA-709.1 and 
EN14908) Control Network Protocol, and provides a high-level 
introduction to LONWORKS networks and the tools and components that 
are used for developing, installing, operating, and maintaining them. 

• ISI Programmer's Guide (078-0299-01F).  Describes how you can use the 
Interoperable Self-Installation (ISI) protocol to create networks of control 
devices that interoperate, without requiring the use of an installation 
tool.  Also describes how to use Echelon's ISI Library to develop devices 
that can be used in both self-installed as well as managed networks. 

• ISI Protocol Specification (078-0300-01F).  Describes the Interoperable 
Self-Installation (ISI) protocol, which is a protocol used to create 
networks of control devices without requiring the use of an installation 
tool. 

• LONMARK® Application Layer Interoperability Guidelines.  This manual 
describes design guidelines for developing applications for open 
interoperable LONWORKS devices, and is available from the LONMARK 
Web site, www.lonmark.org.  

• LonMaker User's Guide (078-0333-01A).  This manual describes how to 
use the Turbo edition of the LonMaker® Integration Tool to design, 
commission, monitor and control, maintain, and manage a network. 

• NodeBuilder® FX User’s Guide (078-0405-01A).  This manual describes 
how to develop a LONWORKS device using the NodeBuilder tool. 

• Mini FX User’s Guide (078-0398-01A).  This manual describes how to use 
the Mini FX Evaluation Kit.  You can use the Mini kit to develop a 
prototype or production control system that requires networking, or to 
evaluate the development of applications for such control networks using 
the LONWORKS platform. 

• PL 3120 / PL 3150 / PL 3170 Power Line Smart Transceiver Data Book 
(005-0193-01A).  This manual provides detailed technical specifications 
on the electrical interfaces, mechanical interfaces, and operating 
environment characteristics for the PL 3120, PL 3150, and PL 3170™ 
Smart Transceivers. 

• Series 5000 Chip Data Book (005-0199-01A).  This manual provides 
detailed specifications on the electrical interfaces, mechanical interfaces, 
and operating environment characteristics for the FT 5000 Smart 
Transceiver and Neuron 5000 Processor. 

All of the ShortStack documentation, and related product documentation, is 
available in Adobe® PDF format.  To view the PDF files, you must have a current 
version of the Adobe Reader®, which you can download from Adobe at:  
www.adobe.com/products/acrobat/readstep2.html.  

http://www.lonmark.org/
http://www.adobe.com/products/acrobat/readstep2.html


ShortStack FX ARM7 Example Port User’s Guide        v 

As you create your serial driver for communications between your host processor 
and the ShortStack Micro Server, you will need to be familiar with either the SCI 
or SPI interface standard. You will find having an appropriate reference for the 
interface helpful.  

 





 

ShortStack FX ARM7 Example Port User’s Guide        vii 

Table of Contents 
Welcome.........................................................................................................iii 
Audience ........................................................................................................iii 
Related Documentation ................................................................................iii 

Chapter 1. Introduction ..................................................................................... 1 
Introduction.................................................................................................... 2 
Installing the Example Port .......................................................................... 2 

Hardware Requirements......................................................................... 3 
Software Requirements........................................................................... 3 
Installing the ShortStack Example Software........................................ 3 

Chapter 2. Overview of the Hardware Environment for the ARM7 ................ 5 
General Description of the Supported Hardware ........................................ 6 
Hardware Development Tools for the ARM7 Microprocessor..................... 6 
Hardware Interface for the ShortStack Micro Server ................................. 8 

Chapter 3. Developing ShortStack Applications for the ARM7 ..................... 11 
Supported Software and Tools Overview ................................................... 12 
Software Development Tools for the ARM7 Microprocessor..................... 12 
Loading Your Application into the ARM7 Microprocessor........................ 13 
Preparing the ShortStack Micro Server ..................................................... 13 
Debugging Your Application ....................................................................... 14 

Chapter 4. Developing the ShortStack Driver ................................................ 15 
Communications Configuration Options .................................................... 16 

Setting the Serial Interface Type ......................................................... 16 
Setting the Interface Bit Rate .............................................................. 16 

Serial Driver Implementation..................................................................... 16 
Transmitting Data to the Micro Server ............................................... 17 
Serial Driver State Machines ............................................................... 22 

Driver States ................................................................................... 22 
Receive States ................................................................................. 22 
Transmit States............................................................................... 23 
Receive Buffer States...................................................................... 25 
Transmit Buffer States................................................................... 26 

Upper-Layer Serial Driver Implementation........................................ 27 
Lower-Layer SCI Serial Driver Implementation................................. 27 

Chapter 5. Exploring the Example Applications ............................................ 29 
Overview....................................................................................................... 30 
The Simple Example.................................................................................... 30 

Application I/O....................................................................................... 30 
Main Function........................................................................................31 
Callback Handler Functions ................................................................. 32 

LonNvUpdateOccurred() ................................................................ 33 
LonResetOccurred() ........................................................................ 34 

Application-Specific Utility Functions ................................................. 34 
Model File...............................................................................................34 
Application Framework Data ............................................................... 35 

The Simple Changeable-Type Example...................................................... 37 
Application I/O....................................................................................... 37 
Main Function........................................................................................38 
Callback Handler Functions ................................................................. 39 



viii 

LonOnline()...................................................................................... 40 
LonNvUpdateOccurred() ................................................................ 40 
LonResetOccurred() ........................................................................ 44 

Application-Specific Utility Functions ................................................. 45 
ProcessTypeChange()...................................................................... 45 
UpdateOutputNv() .......................................................................... 47 

Model File...............................................................................................48 
The Self-Installation Example .................................................................... 49 

Application I/O....................................................................................... 50 
Main Function........................................................................................52 
Callback Handler Functions ................................................................. 54 

Functions in ShortStackHandlers.c............................................... 54 
Functions in ShortStackIsiHandlers.c .......................................... 61 

Application-Specific Utility Functions ................................................. 66 
Model File...............................................................................................66 

Building the Application Image .................................................................. 68 
Loading the Application Image ................................................................... 68 
Running the Application.............................................................................. 69 

Running the Simple Example............................................................... 70 
Running the Changeable-Type Example ............................................. 71 
Running the Self-Installation Example ............................................... 74 



 

ShortStack FX ARM7 Example Port User’s Guide        1 

 

1  

Introduction 

This chapter introduces the ShortStack FX ARM7 Example 
Port and describes how to install the example software. 



2 Introduction                                 

Introduction 
The ShortStack FX ARM7 Example Port includes ported example applications, 
host API, and a serial driver for the ARM7 microprocessor.  The example 
applications include a simple example, a changeable-type example, and a self-
installation example.   

The simple example application is a very simple simulated analog actuator with 
a gain of two.  This simulated device receives an input voltage value, multiplies 
the value by 2, and returns the new output value.  The changeable-type example 
application includes the same functionality as the simple example application, 
but adds the ability to change the SNVT types for two of the network variables.  
The self-installation example demonstrates the basics of using the Interoperable 
Self-Installation (ISI) protocol for a ShortStack device. 

This manual describes the example applications, including their design, how to 
build them, how to load them into the ARM7 microprocessor, and how to run 
them. 

The source code for the example applications is installed in the following 
directories: 

• [ARM7Example]\Simple Example  

• [ARM7Example]\Simple Changeable-type Example 

• [ARM7Example]\Self-installation Example 

where [ARM7Example] is the directory in which you installed the ShortStack FX 
ARM7 Example Port, which by default is C:\Program 
Files\LonWorks\ShortStack\Examples\ARM7.   See Installing the ShortStack 
Example Software on page 3 for information about creating this directory. 

For more information about the example applications, see Exploring the Example 
Applications on page 29. 

Installing the Example Port 
The ShortStack FX ARM7 Example Port requires: 

• A development board with an Echelon 3120 or 3150 Smart Transceiver 
plus an ARM7 development board, such as the Echelon Pyxos™ FT EV 
Pilot Evaluation Board (see Hardware Development Tools for the ARM7 
Microprocessor on page 6).  The Pyxos FT EV Pilot EVB includes both an 
Echelon FT 3150 Smart Transceiver and an ARM7 host processor. 
 
Alternatively, you can use an Echelon FT 5000 EVB Evaluation Board 
with the Pyxos FT EV Pilot EVB or with a separate ARM7 development 
board, such as the Atmel AT91SAM7S-EK evaluation kit.  However, this 
configuration requires some extra setup; see the ShortStack FX User’s 
Guide. 

• A software development environment for the ARM7 microprocessor. 

• A hardware emulator and debugger that supports the Institute of 
Electrical and Electronics Engineers (IEEE) Standard Test Access Port 



 

ShortStack FX ARM7 Example Port User’s Guide        3 

and Boundary-Scan Architecture (IEEE 1149.1-1990) of the Joint Test 
Action Group (JTAG). 

• An In-System Programmer (ISP) to load program images into the ARM7 
microprocessor. 

• The ShortStack FX Developer’s Kit software. 

• The ShortStack FX ARM7 Example Port software. 

To demonstrate ISI-specific behavior, the self-installation example also requires 
a separate ISI-enabled device, such as one of the following: 

• An Echelon Mini EVK or Mini FX Evaluation Board, with the MiniGizmo 
board, running the MGDemo (or MGLight or MGSwitch) application. 

• An Echelon FT 5000 EVB Evaluation Board, running the 
NcSimpleIsiExample application. 

Hardware Requirements 
The ShortStack FX ARM7 Example Port does not have specific PC hardware 
requirements, other than those required for the ShortStack FX Developer’s Kit 
and your software development environment.  

However, you must have the following hardware for LONWORKS connectivity: 

• LONWORKS compatible network interface, such as a U10 USB Network 
Interface or an i.LON® SmartServer 

• A LONWORKS TP/FT-10 network cable, with network terminator 

Other hardware requirements are described in Hardware Development Tools for 
the ARM7 Microprocessor on page 6 and Loading Your Application into the 
ARM7 Microprocessor on page 12. 

Software Requirements 
The ShortStack FX ARM7 Example Port requires the ShortStack FX Developer’s 
Kit to be installed.  See the ShortStack FX User’s Guide for ShortStack software 
requirements.   

The Example Port does not have additional PC software requirements beyond 
those of the ShortStack FX Developer’s Kit and your ARM7 software 
development environment.   

The following software is optional, depending on your requirements: 

• Adobe Reader 9.1 or later 

• NodeBuilder Resource Editor 4.00 or later (installed with the ShortStack 
FX Developer’s Kit), if you need to create custom LONMARK® resource 
files and data type definitions 

Installing the ShortStack Example Software 
To install the ShortStack FX ARM7 Example Port: 

1. Download the ShortStack FX ARM7 Example Port from the Echelon 
ShortStack Web site, www.echelon.com/shortstack. 

http://www.echelon.com/shortstack


4 Introduction                                 

2. From Windows Explorer, double-click 
ShortStack400ARM7ExamplePort.exe to start the Echelon ShortStack 
FX ARM7 Example Port installer. 

3. Follow the installation dialogs to install the example port onto your 
computer.  The installer installs the example port into the Examples 
directory within your ShortStack FX directory, by default, C:\Program 
Files\LonWorks\ShortStack\Examples\ARM7.    

If you plan to make substantial modifications to the example applications or to 
the serial driver, you should make a backup copy of the 
\LonWorks\ShortStack\Examples\ARM7 directory.  

 



 

ShortStack FX ARM7 Example Port User’s Guide        5 

2  

Overview of the Hardware 
Environment for the ARM7 

Microprocessor  

This chapter describes hardware development tools for the ARM7 
microprocessor and the hardware interface for the ShortStack Micro 
Server.   



6 Overview of the Hardware Environment for the ARM7 Microprocessor                                 

General Description of the Supported Hardware 
The ShortStack FX ARM7 Example Port includes ported example applications, 
host API, and a serial driver for an ARM7-family microprocessor, the Atmel ARM 
AT91SAM7S64.    

The AT91SAM7S64 microprocessor is a general-purpose microcontroller, 
featuring 64 KB of embedded high-speed flash memory, with sector lock 
capabilities and a security bit, and 16 KB of static random access memory 
(SRAM).  

The AT91SAM7S64 microprocessor includes the following peripherals: 

• A Universal Serial Bus (USB) 2.0 Full Speed Device Port 

• Two universal synchronous/asynchronous receiver/transmitters 
(USARTs) 

• Serial peripheral interface (SPI) Bus 

• Synchronous Serial Controller (SSC)  

• Two-wire interface (TWI)  

• Power Management Controller (PMC) 

• Advanced Interrupt Controller (AIC) 

• An 8-channel, 10-bit analog-to-digital converter (ADC)  

In addition, AT91SAM7S64 microprocessor’s Peripheral DMA Controller 
channels eliminate processor bottlenecks during peripheral-to-memory transfers.  
And its System Controller manages interrupts, clocks, power, time, debug and 
reset, significantly reducing the external chip count and minimizing power 
consumption.  

For more information about the Atmel ARM AT91SAM7S64 microprocessor, see 
www.atmel.com/dyn/products/product_card.asp?part_id=3521.    

Hardware Development Tools for the ARM7 
Microprocessor  

To work with the Atmel ARM AT91SAM7S64 microprocessor, you can use any of 
the many available tools that support the ARM7 family of microprocessors, such 
as the Atmel AT91SAM7S-EK evaluation kit. 

The example applications that are included with the ShortStack FX ARM7 
Example Port are built for the Echelon Pyxos FT EV Pilot Evaluation Board, as 
shown in Figure 1 on page 7 and described in Table 1 on page 7.  In addition to 
providing a development platform for the Echelon Pyxos FT Chip, this evaluation 
board includes an Atmel ARM AT91SAM7S64 microprocessor and an Echelon FT 
3150 Smart Transceiver.  You do not need to work with the Pyxos FT Chip to 
work with the ShortStack FX ARM7 Example Port. 

http://www.atmel.com/dyn/products/product_card.asp?part_id=3521


 

ShortStack FX ARM7 Example Port User’s Guide        7 

 

Figure 1. Echelon Pyxos FT EV Pilot Evaluation Board 

Table 1. The Pyxos FT EV Pilot Evaluation Board 

Pyxos FT EV Pilot Evaluation Board 

The Pyxos FT EV Pilot Evaluation Board is the controller for the Pyxos EVK 
network.  It contains an Atmel ARM AT91SAM7S64 host microcontroller that is 
connected to, and communicates with, a Pyxos FT Chip.  A Pyxos Pilot is 
responsible for configuring, maintaining, and communicating with the Pyxos 
Points in a Pyxos network.  The EV Pilot can also optionally communicate with 
LONWORKS devices using the included FT 3150 Smart Transceiver.  For more 
information about the Pyxos FT EV Pilot Evaluation Board, see 
www.echelon.com/pyxos.  

If you use the Pyxos FT EV Pilot Evaluation Board for the ShortStack FX ARM7 
Example Port, you do not need any other development hardware, except a device 
programmer (such as the Atmel AT91SAM-ICE JTAG Emulator).  And although 
the Pyxos FT EV Pilot Evaluation Board includes a number of jumper settings to 
control the behavior of the board, you do not need to change any of the jumper 
settings to run the ShortStack example applications on the Pyxos FT EV Pilot 
Evaluation Board. 

Important:  Because the Atmel AT29C512 flash memory part on the Pyxos FT EV 
Pilot Evaluation Board is factory pre-programmed with an older version of the 
ShortStack Micro Server, you must reprogram the flash part to load it with a 

http://www.echelon.com/pyxos


8 Overview of the Hardware Environment for the ARM7 Microprocessor                                 

ShortStack FX Micro Server.  See Preparing the ShortStack Micro Server on 
page 13 for more information. 

If you work with a separate ARM7 development board (such as the Atmel 
AT91SAM7S-EK evaluation kit), you must: 

• Add a network interface with an Echelon Smart Transceiver, such as an 
Echelon FT 5000 EVB Evaluation Board, which is available separately 
and is included with the Echelon Mini FX Evaluation Kit or the 
NodeBuilder FX Development Tool 

• Configure the Smart Transceiver to act as a ShortStack Micro Server (for 
example, by setting the appropriate jumpers on the FT 5000 EVB 
Evaluation Board; see the ShortStack FX User’s Guide for the required 
jumper settings) 

• Create or modify the ShortStack serial driver to work with the I/O that is 
available on the development board; see Developing the ShortStack 
Driver on page 15 

• Run the LonTalk Interface Developer utility to generate application 
framework files for the Smart Transceiver 

• Create your own software projects for the development environment 

See the ShortStack FX User’s Guide for more information about these tasks. 

You can obtain the Pyxos FT EV Pilot Evaluation Board from Echelon.  It is 
available separately and as part of the Pyxos FT EVK Evaluation Kit.  For more 
information about the Pyxos FT EV Pilot Evaluation Board, see the Pyxos FT 
EVK User’s Guide. 

Hardware Interface for the ShortStack Micro 
Server 

The example applications use a ShortStack Micro Server with the characteristics 
listed in Table 2.  You can modify these characteristics using the LonTalk 
Interface Developer utility, which is a tool that generates the device interface 
data and the device interface file required to implement the device interface for 
your ShortStack device. 

Table 2. ShortStack Micro Server Characteristics 

Device 
Characteristic Simple Example 

Changeable-Type 
Example 

Self-Installation 
Example 

Device type FT 3150 Smart 
Transceiver 

FT 3150 Smart 
Transceiver 

FT 3150 Smart 
Transceiver 

Channel type TP/FT-10  TP/FT-10 TP/FT-10  

Clock speed 10 MHz  10 MHz  10 MHz  

Changeable 
interface 

Disabled Enabled Disabled 



 

ShortStack FX ARM7 Example Port User’s Guide        9 

Device 
Characteristic Simple Example 

Changeable-Type 
Example 

Self-Installation 
Example 

ISI API 
included 

No No Yes 

Device program 
ID 

9F:FF:FF:06:00:0A:04:01 9F:FF:FF:06:00:8A:04:02 9F:FF:FF:05:01:04:04:05 

Model File [ARM7Example]\Simple 
Example\ShortStack\Si
mple Example.nc 

[ARM7Example]\Simple 
Changeable-type 
Example 
\ShortStack\Simple 
Changeable-type 
Example.nc 

[ARM7Example]\Self-
installation 
Example\ShortStack\ 
Self-installation 
Example.nc 

Note:  The changeable interface setting is specified in the LONMARK Standard Program ID 
Calculator, which is available from the Program ID Selection page of the LonTalk Interface 
Developer utility. 

The ShortStack FX ARM7 Example Port implements communications between 
the ARM7 microprocessor and the ShortStack Micro Server using the SCI 
interface.  The [ARM7Example]\Common\Driver\LdvSci.c file contains the 
serial driver implementation; see Developing the ShortStack Driver on page 15 
for more information.  To use an SPI interface, you must implement an SPI serial 
driver because the ShortStack FX ARM7 Example Port does not include one.  
However, the Echelon Knowledge Base has an example SPI driver that you can 
download for an ARM7 microprocessor; go to www.echelon.com/support/kb/ and 
search for “KB635”.  The SPI driver is compatible with either the ShortStack 2.1 
ARM7 example or the ShortStack FX ARM7 example. 

The pin connections between ARM7 microprocessor and the ShortStack Micro 
Server are defined in the LdvSci.h file.  Table 3 shows the physical connections 
for the SCI interface on the Pyxos FT EV Pilot Evaluation Board.   

Table 3. ARM7 to Micro Server Pin Connections for the SCI Interface 

AT91SAM7S64 Pin FT 3150 Smart Transceiver Pin 

Number Name Number  Name 

31 PA8 2 IO0 (CTS~) 

44 PA2 3 IO1 (HRDY~) 

N/A N/A 5 IO3 (SPI/SCI~) 
Tied to GND for SCI 

32 PA7 10 IO4 (RTS~) 

48 PA0 11 IO5 (SBRB0) 

47 PA1 12 IO6 (SBRB1) 

http://www.echelon.com/support/kb/


10 Overview of the Hardware Environment for the ARM7 Microprocessor                                 

AT91SAM7S64 Pin FT 3150 Smart Transceiver Pin 

Number Name Number  Name 

35 PA5 14 IO10 (TXD) 

34 PA6 16 IO8 (RXD) 

15 PA23 6 RESET~ 

If you use a development environment other than the Pyxos FT EV Pilot 
Evaluation Board, you must add 10 kΩ pull-up resistors to all communication 
lines between the ARM7 host microprocessor and the Smart Transceiver (the 
Pyxos FT EV Pilot Evaluation Board already includes them).  If you use a cable 
to make the pin connections, keep the total cable length to a maximum of 24 
inches (0.6 meters).  Note that the Echelon FT 5000 EVB also already includes 
the appropriate pull-up resistors.  However, the Echelon Mini EVK or Mini FX 
EVBs do not include pull-up resistors for connecting to an external host 
processor. 

Although the Pyxos FT EV Pilot Evaluation Board defines connections between 
the Micro Server and the ARM7 host processor for the IO5 and IO6 pins (SBRB0 
and SBRB1), the SCI interface does not require that the host processor control 
these signals; in general, most devices would tie these signals to VDD or GND (as 
appropriate; see the ShortStack FX User’s Guide) to specify the link-layer bit 
rate.  In addition, if you use an EVB other than the Pyxos FT EV Pilot 
Evaluation Board for the ShortStack Micro Server (such as the FT 5000 EVB), do 
not connect that EVB’s IO5 and IO6 lines to the ARM7 processor’s PA0 and PA1 
pins.  By default, the ShortStack FX ARM7 example port’s serial driver sets the 
SCI serial bit rate to 76800 bps for a 10 MHz FT 3150 Smart Transceiver (see the 
LdvSci.h file); connecting the EVB’s IO5 and IO6 lines to the ARM7 processor’s 
PA0 and PA1 pins can create a mismatch in the expected bit rate for the Micro 
Server if the Smart Transceiver runs at a different system clock rate or uses a 
different external crystal frequency.  Thus, you should use the jumpers on the 
EVB to set the Micro Server bit rate to match the driver’s expected bit rate.   

The example application code assumes that the AT91SAM7S64 microprocessor 
runs at 47.9232 MHz and that the ShortStack Micro Server runs at 10 MHz.  By 
default, the host microprocessor communicates with the ShortStack Micro Server 
through the SCI interface at the 76 800 bit rate.   

You can change the communication interface through compilation-time 
configuration, as described in Communications Configuration Options on page 
16. 

 



 

ShortStack FX ARM7 Example Port User’s Guide        11 

3  

Developing ShortStack 
Applications for the ARM7 

Microprocessor 

This chapter describes software development tools for the ARM7 
microprocessor, and tools for loading and debugging your ShortStack 
application.   



12 Developing ShortStack Applications for the ARM7 Microprocessor                                 

Supported Software and Tools Overview 
The example applications for the ShortStack FX ARM7 Example Port require a C 
compiler (with its associated development environment), a hardware emulator 
and debugger (or other device programmer) to load the compiled program into the 
ARM7 microprocessor, and optionally an in-circuit debugger to debug and verify 
the program.   

The example also requires that you load the appropriate ShortStack Micro Server 
firmware image into the FT Smart Transceiver.   

The rest of this chapter describes the tools required for development of the 
example applications. 

Software Development Tools for the ARM7 
Microprocessor 

To develop your ShortStack application for an ARM7 microprocessor, you can use 
any tools that support the ARM7 family of microprocessors, such as those listed 
in Table 4. 

Table 4. Software Development Tools for an ARM7 Microprocessor 

ARM RealView® Development Suite 

The RealView Development Suite is a set of development tools that support all 
ARM processors and ARM debug technology.  It includes a C/C++ compiler, 
assembler, linker, virtual platforms, text editor, and debugger.  It also allows you 
to choose an IDE for code development.  For more information about ARM 
RealView, see www.arm.com/products/DevTools/. 

IAR Embedded Workbench® 

The IAR Embedded Workbench is a set of development tools for programming 
embedded applications.  It includes a C/C++ compiler, assembler, linker, 
librarian, text editor, project manager, and debugger.  For more information 
about the IAR Embedded Workbench, see www.iar.com/ewarm. 

The example applications were built with the IAR Embedded Workbench for 
ARM 5.40.  The IAR Embedded Workbench project files for the example 
applications are included with the source code; see Exploring the Example 
Applications on page 29 for more information about the example applications. 

Important:  The project files for the example applications require version 5.40 or 
later of the IAR Embedded Workbench; earlier versions cannot open the project 
files. 

http://www.arm.com/products/DevTools/
http://www.iar.com/ewarm


 

ShortStack FX ARM7 Example Port User’s Guide        13 

Loading Your Application into the ARM7 
Microprocessor 

To load your application, the ShortStack LonTalk Compact API, and the serial 
driver into the ARM7 microprocessor, you can use a hardware emulator and 
debugger, such as those listed in Table 5. 

Table 5. Hardware Emulator and Debugger for the ARM7 Microprocessor 

AT91SAM-ICE JTAG Emulator 

The SAM-ICE is a JTAG emulator designed for Atmel ARM processors. You can 
get software support for the SAM-ICE from www.segger.com 
(www.segger.com/cms/downloads.html; scroll to J-Link ARM).  For more 
information about the SAM-ICE, see 
www.atmel.com/dyn/products/tools_card.asp?tool_id=3892. 

IAR J-Link 

IAR J-Link is a small ARM JTAG hardware debug probe that connects to a 
Windows computer by a USB connection.  You can use IAR J-Link with the IAR 
Embedded Workbench.  For more information about the J-Link, see 
www.iar.com/jlinkarm. 

To load program images (such as the ones contained in the 
[ARM7Example]\Images directory), you can use an In-System Programmer (ISP) 
such as the one listed in Table 6.  

Table 6. In-System Programmer (ISP) for the ARM7 Microprocessor 

Atmel SAM-PROG 

The SAM-PROG is included with the AT91 In-System Programmer (ISP), an 
open set of tools for programming the AT91SAM7 and AT91SAM9 ARM-based 
microcontrollers.  SAM-PROG allows you to directly program your application 
through a SAM-ICE or a J-Link JTAG Probe. For more information about the 
AT91ISP and SAM-PROG, see 
www.atmel.com/dyn/products/tools_card.asp?tool_id=3883. 

Preparing the ShortStack Micro Server 
The Atmel AT29C512 flash memory on the Pyxos FT EV Pilot Evaluation Board 
is factory pre-programmed with an earlier version of the ShortStack Micro Server 
that is not compatible with the ShortStack FX examples.  Therefore, you must 
load the ShortStack FX Micro Server firmware into the flash memory on the 
Pyxos FT EV Pilot Evaluation Board.   

To load the ShortStack Micro Server using ex-circuit programming, use a PROM 
programmer to load an NEI file for the ShortStack FX Micro Server into the FT 
3150 Smart Transceiver’s off-chip memory.  The ShortStack FX ARM7 Example 
Port includes Micro Server NEI files for each of the three examples.  Using a 
PROM programmer for the initial load of the ShortStack FX Micro Server is the 

http://www.segger.com/
http://www.segger.com/cms/downloads.html
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892
http://www.iar.com/jlinkarm
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3883


14 Developing ShortStack Applications for the ARM7 Microprocessor                                 

recommended method for upgrading the flash memory part on the Pyxos FT EV 
Pilot Evaluation Board. 

If your Pyxos FT EV Pilot Evaluation Board can communicate with a LONWORKS 
network (that is, you have a working ShortStack Micro Server, link-layer driver, 
and host application), you can reload the ShortStack image using in-circuit 
programming using a network management tool such as the NodeLoad utility.  

For information about using these tools to load a ShortStack Micro Server, see 
the ShortStack FX User’s Guide. 

The firmware images (APB, NEI, and NDL files) for the example applications are 
located in the following directories: 

• [ARM7Example]\Simple Example\ShortStack 

• [ARM7Example]\Simple Changeable-type Example\ShortStack 

• [ARM7Example]\Self-installation Example\ShortStack 

If you use a different EVB for the ShortStack Micro Server (such as the FT 5000 
EVB), see the ShortStack FX User’s Guide for information about how to prepare 
the Micro Server. 

Debugging Your Application 
To debug your application, you can use the debug tools supplied with the IAR 
Embedded Workbench (or other software development platform), along with the 
hardware emulator and debugger described in Loading Your Application into the 
ARM7 Microprocessor on page 12.  

Debugging your application typically requires halting the application at 
breakpoints, single-stepping through code, inspecting and editing of variables, 
and similar tasks.  Such debugging tools significantly affect the application’s 
performance.  You can debug your application using these tools, but depending on 
the code that you debug, the overall system might not work as designed while you 
are debugging your application.  

For example, halting the application while the application gathers data for the 
response to a network variable poll request can cause the poll request to time out 
and fail.  Likewise, debugging the serial driver code, or the code that drives the 
initialization and application registration phase, can disrupt the link-layer 
timing requirements, and thus lead to an unsuccessful completion. 

 

    



 

ShortStack FX ARM7 Example Port User’s Guide        15 

 

 

 

 

4  

Developing the ShortStack Driver 

This chapter describes the communications configuration 
options for the ShortStack application and the ShortStack 
serial driver implementation. 



16 Developing the ShortStack Driver                                 

Communications Configuration Options 
You can set the serial interface type and the interface bit rate for the example 
applications. 

Setting the Serial Interface Type 
The example applications for the ShortStack FX ARM7 Example Port use the 
SCI asynchronous interface.  The ShortStack FX ARM7 Example Port does not 
include an SPI driver.  If you want to use the SPI synchronous interface for 
communications between the ARM7 microprocessor and the ShortStack Micro 
Server, you must implement a lower-layer SPI serial driver for the ShortStack 
Micro Server.  However, the Echelon Knowledge Base has an example SPI driver 
that you can download for an ARM7 microprocessor; go to 
www.echelon.com/support/kb/ and search for “KB635”.  The SPI driver is 
compatible with either the ShortStack 2.1 ARM7 example or the ShortStack FX 
ARM7 example. 

Setting the Interface Bit Rate 
The interface bit rate for the example application is defined in the ShortStack 
serial driver.  If you want to change the application bit rate, add or modify the 
following statement to the [ARM7Example]\Common\Driver\LdvSci.h file: 

#define SS_BAUD_RATE    0 

The valid values for the SS_BAUD_RATE literal are defined in a set of comments 
in the LdvSci.h file.  For a Micro Server running on a 10 MHz FT 3150 Smart 
Transceiver, a value of 0 represents a bit rate of 76 800 bps for the SCI interface 
and a value of 1 represents a bit rate of 9600 bps.  To define other bit rates, 
modify the definition of the USART_BAUD_RATE symbol in the LdvSci.c file. 

The selected serial interface type and interface bit rate must match the 
configuration of the ShortStack Micro Server to avoid communications problems.  
Because the example serial driver sets the interface bit rate (in the LdvInit() 
function), you do not need to modify the jumper settings on the Pyxos FT EV Pilot 
Evaluation Board.  

In addition, if you use an EVB other than the Pyxos FT EV Pilot Evaluation 
Board for the ShortStack Micro Server (such as the FT 5000 EVB), do not connect 
that EVB’s IO5 and IO6 lines to the ARM7 processor’s PA0 and PA1 pins.  
Connecting the EVB’s IO5 and IO6 lines to the ARM7 processor’s PA0 and PA1 
pins can create a mismatch in the expected bit rate for the Micro Server if the 
Smart Transceiver runs at a different system clock rate or uses a different 
external crystal frequency.  Thus, you should use the jumpers on the EVB to set 
the Micro Server bit rate to match the driver’s expected bit rate. 

Serial Driver Implementation 
The example serial driver for the ShortStack FX ARM7 Example Port example 
applications implements two interface layers:  

• An upper-layer interface to the ShortStack LonTalk Compact API 

http://www.echelon.com/support/kb/


 

ShortStack FX ARM7 Example Port User’s Guide        17 

• A lower-layer interface to the ARM7 and Micro Server hardware  

The source files for the serial-driver implementation are in the 
[ARM7Example]\Common\Driver directory. 

You can use these files as templates for developing ShortStack serial drivers for 
any microcontroller or microprocessor.  The example SCI driver supports the 
interface functions that the ShortStack LonTalk Compact API requires.   

The upper-layer driver interface includes the functions that the ShortStack 
LonTalk Compact API calls on behalf of the application to initialize the interface 
(LdvInit()), send messages (LdvPutMsg()), receive messages (LdvGetMsg()), and 
so on.  These functions are listed in Upper-Layer Serial Driver Implementation 
on page 27. 

The lower-layer driver interface includes the functions that manage the interface 
with the ARM7 microprocessor and handle the handshake protocol for 
exchanging messages between the Micro Server and the ARM7 microprocessor.  
These functions are listed in Lower-Layer SCI Serial Driver Implementation on 
page 27. 

The main functionality of the lower-layer serial driver is interrupt driven.  The 
ARM7 microprocessor provides hardware interrupts for its programmed I/O lines, 
and the lower-level serial driver uses these interrupts for the CTS~, RXD, and 
TXD signals. 

Transmitting Data to the Micro Server 
The lower-layer driver controls the handshaking protocol with the ShortStack 
Micro Server to transmit and receive data. 

Receiving data from the Micro Server is relatively straightforward because as 
long as the HRDY~ line is asserted, the ARM7 microprocessor is ready to receive 
data.  When it receives data, if the driver has sufficient buffer space available, it 
processes the data, otherwise it ignores the data. 

Transmitting data to the Micro Server is more complex because the protocol 
expects a handshake for the header data, another handshake for the extended 
header (if the command refers to a network variable with index greater than 62), 
and another handshake for the payload data (if any).  The driver relies on two 
interrupt service routines (ISRs) to manage the handshake protocol and manage 
the transmission of the header and payload: 

• The CTS ISR is triggered whenever the state of the CTS~ line changes.  
The Micro Server asserts and deasserts the CTS~ line as part of the 
handshake protocol. 

• The Transmit ISR is triggered continuously while the Transmit Interrupt 
is enabled.  The driver enables this interrupt only when there is data to 
send to the Micro Server.  Because the ARM7 microprocessor has a one-
byte buffer for sending data, this ISR is triggered for every byte of a data 
transmission (header and payload) to the Micro Server. 

Figure 2 on page 19 shows the basic control flow for transmitting data from the 
serial driver to the Micro Server.  The application signals that there is data to 
send to the Micro Server by calling the LdvPutMsg() function, followed by the 
LdvFlushMsgs() function, which begins the flow shown in the figure. 



18 Developing the ShortStack Driver                                 

For network variable updates or poll requests where the network variable index 
is greater than 62, the command header includes a special network variable 
index value (0x3F, decimal 63) to indicate that the Micro Server should expect an 
extended two-byte header to be sent before the payload (if any).  The Micro 
Server also expects another handshake for receiving these extended header bytes.  
Figure 3 on page 21 shows the control flow for transmitting data from the serial 
driver to the Micro Server for network variable updates or poll requests where 
the network variable index is greater than 62. 

See the ShortStack FX User’s Guide for information about how the Micro Server 
handles the SCI downlink transfer. 



 

ShortStack FX ARM7 Example Port User’s Guide        19 

Micro Server Serial Driver

Wait

Transmit ISR
Check transmit state
If state == IDLE

Send Length byte
Move to COMMAND state

CTS ISR
Enable Transmit Interrupt
Deassert RTS~

Transmit ISR
Check transmit state
If state == COMMAND

Send Command byte
If Command == (NV update or NV poll) and NV index == 63

Disable Transmit Interrupt
Move to HANDSHAKE state
Set NextState to INFO

Else
Check payload length
If length > 0

Disable Transmit Interrupt
Move to HANDSHAKE state
Set NextState to PAYLOAD

Else
Move to DONE state

CTS ISR
Check CTS~
If CTS~ asserted

Enable Transmit Interrupt
Deassert RTS~

Else
Check transmit state
If state == HANDSHAKE

Assert RTS~
If NextState == INFO

Move to INFO state
Else

Move to PAYLOAD state

Transmit ISR
Check transmit state
If state == PAYLOAD

Send Payload byte
If payload length = 0

Move to DONE state

Transmit ISR
Check transmit state
If state == DONE

Disable Transmit Interrupt
Move to IDLE state

Transmit ISR is 
called repeatedly 

until Transmit 
Interrupt is 
disabled

Assert CTS~

Deassert CTS~

Assert RTS~

Assert CTS~

Send Length Byte

Send Command Byte

Deassert CTS~

Assert RTS~

Send Payload Byte

Deassert RTS~

Assert CTS~

Wait

CTS ISR
Enable Transmit Interrupt
Deassert RTS~

Assert CTS~

Deassert RTS~

LdvFlushMsgs() Function
Check CTS~
If CTS~ asserted

Return
Else

Check transmit state
If state == IDLE

Assert RTS~
Enable interrupts

 

Figure 2. Control Flow for Transmitting Data to the Micro Server 



20 Developing the ShortStack Driver                                 

The figure shows the interaction of the two ISRs.  It also shows the use of a state 
machine within the driver to control the transmission of data.  These states are 
described in Transmit States on page 23. 

Figure 3 on page 21 shows the same control flow as Figure 2, but includes the 
extra handshake and header transmission for network variable updates or poll 
requests where the network variable index is greater than 62.  For a network 
variable update or poll request, the message includes: 

• The length byte 

• The command byte 

• The two extended header bytes 

• The payload 

The extended header contains the actual network variable index for the 
command. 



 

ShortStack FX ARM7 Example Port User’s Guide        21 

Wait

CTS ISR
Enable Transmit Interrupt
Deassert RTS~

Assert CTS~
Assert CTS~

Deassert RTS~

Transmit ISR
Check transmit state
If state == INFO

Send Info bytes
If payload length > 0

Move to HANDSHAKE state
Set NextState to PAYLOAD
Disable Transmit Interrupt

Else
Move to DONE state

Send Info Bytes

These actions occur only 
for NV updates or polls 

where the NV index is 63

CTS ISR
Check CTS~
If CTS~ asserted

Enable Transmit Interrupt
Deassert RTS~

Else
Check transmit state
If state == HANDSHAKE

Assert RTS~
If NextState == INFO

Move to INFO state
Else

Move to PAYLOAD state

Deassert CTS~
Deassert CTS~

Assert RTS~

Micro Server Serial Driver

Wait

Transmit ISR

Check transmit state
If state == IDLE

Send Length byte
Move to COMMAND state

CTS ISR

Enable Transmit Interrupt
Deassert RTS~

Transmit ISR

Check transmit state
If state == COMMAND

Send Command byte
If Command == (NV update or NV poll) and NV index == 63

Disable Transmit Interrupt
Move to HANDSHAKE state
Set NextState to INFO

Else
Check payload length
If length > 0

Disable Transmit Interrupt
Move to HANDSHAKE state
Set NextState to PAYLOAD

Else
Move to DONE state

CTS ISR

Check CTS~
If CTS~ asserted

Enable Transmit Interrupt
Deassert RTS~

Else
Check transmit state
If state == HANDSHAKE

Assert RTS~
If NextState == INFO

Move to INFO state
Else

Move to PAYLOAD state

Transmit ISR

Check transmit state
If state == PAYLOAD

Send Payload byte
If payload length = 0

Move to DONE state

Transmit ISR

Check transmit state
If state == DONE

Disable Transmit Interrupt
Move to IDLE state

Transmit ISR is called 
repeatedly until Transmit 

Interrupt is disabled

Assert CTS~

Deassert CTS~

Assert RTS~

Assert CTS~

Send Length Byte

Send Command Byte

Deassert CTS~

Assert RTS~

Send Payload Byte

Deassert RTS~

Assert CTS~

Wait

CTS ISR

Enable Transmit Interrupt
Deassert RTS~

Assert CTS~

Deassert RTS~

LdvFlushMsgs() Function

Check CTS~
If CTS~ asserted

Return
Else

Check transmit state
If state == IDLE

Assert RTS~
Enable interrupts

 

Figure 3. Control Flow for Transmitting the Extended Header to the Micro Server 



22 Developing the ShortStack Driver                                 

Serial Driver State Machines 
The lower-layer driver implements a set of state machines for managing the 
driver and the SCI receive and transmit operations.  The driver also implements 
state machines for the receive and transmit buffers.  The LdvSci.c file 
implements these state machines.  You can use this driver implementation as the 
basis for your own SCI serial driver. 

The states described in this section represent a minimal and complete set of 
states required to implement an SCI serial driver.  Although it is not required 
that your serial driver implementation be based on state machines, this approach 
simplifies the implementation of the required protocol. 

Driver States 
  Figure 4 shows the states and state transitions for the driver. 

Normal Sleep

Reset Driver
or

Suspend Driver

Resume Driver
or

Wake Up Driver

LdvInit()

 

Figure 4. State Machine for the Driver 

The driver implements a state machine with two states to manage its overall 
operations: 

• Sleep state:  The initial state set by the LdvInit() function.  The driver 
also enters this state whenever the driver is reset or suspended.  In the 
Sleep state, the driver is non-operational. 

• Normal state:  The driver enters this state whenever the driver resumes 
operations (after having been suspended) or is woken up (after entering 
the Sleep state).  All important driver operations occur while the driver is 
in this state. 

Receive States 
Figure 5 on page 23 shows the states and state transitions for receiving data. 



 

ShortStack FX ARM7 Example Port User’s Guide        23 

 

Figure 5. State Machine for Receiving Data 

The driver implements three states to manage receiving data from the Micro 
Server: 

• Idle state:  The initial state set by the LdvInit() function.  The driver also 
enters this state after receiving and processing (or ignoring) all data.  

• Ignore state:  The driver enters this state when it receives the first byte 
of data but has no available buffers to store the data.  The driver remains 
in this state until all bytes for the message are received. 

• Payload state:  The driver enters this state when it receives the first byte 
of data and has at least one available buffer to store the data.  The driver 
remains in this state until all bytes for the message are received. 

Transmit States 
Figure 6 on page 24 shows the states and state transitions for transmitting data. 



24 Developing the ShortStack Driver                                 

Idle

Command

Handshake

Done

Payload

LdvInit()

Transmit length 
byte

Transmit 
command

Send info bytes
(for NV index > 62)

All payload 
bytes sent

No payload 
to transmit

Transmit 
complete

Info

Payload to 
transmit

Transmit 
payload

Transmit 
command; no 
info bytes or 
payload to 
transmit

 

Figure 6. State Machine for Transmitting Data 

The driver implements six states to manage transmitting data to the network: 

• Idle state:  The initial state set by the LdvInit() function.  The driver also 
enters this state after transmitting all data.  

• Command state:  The driver enters this state after it completes the 
downlink handshake and sends the length byte of a message header to 
the Micro Server.  The driver then sends the command byte of the 
message to the Micro Server.  If there are no info bytes or message 
payload to process, the driver enters the Done state, otherwise it enters 
the Handshake state.  

• Handshake state:  The driver enters this state after it sends the 
command byte of a message header.  After the downlink handshake is 
complete (the driver receives the CTS~ interrupt), the driver then checks 
the command byte to determine if the command is a network variable 
update or poll command for a network variable index greater than 62.  
For these network variable commands, the driver enters the Info state.  
For other commands, the driver enters the Payload state.  



 

ShortStack FX ARM7 Example Port User’s Guide        25 

• Info state:  Although Figure 6 shows only one Info state, the driver 
implements two Info states: Info1 and Info2.  The driver enters the Info1 
state to send the first byte of the extended header for a network variable 
update or poll command for a network variable index greater than 62.  
The driver then enters the Info2 state to send the second byte of the 
extended header.  There is no handshake required for sending the second 
info byte.  If the command byte indicated a payload for the message, the 
driver re-enters the Handshake state to process the handshake for 
sending the payload.  If there is no payload, the driver enters the Done 
state. 

• Payload state:  The driver enters this state after the handshake is 
complete (the CTS~ line is asserted) if there is payload data to transmit.  
The driver remains in this state until all bytes for the message are 
transmitted.  Then, it enters the Done state. 

• Done state:  The driver enters this state either after all payload bytes are 
sent or if there is no payload for the message.  From this state, the driver 
returns to the Idle state. 

Receive Buffer States 
In addition to the states managed by the driver, the driver also manages a set of 
states for the buffers.  Figure 7 shows the states and state transitions for the 
receive buffers. 

Empty

Receiving

Ready

Processing

LdvInit()

Data received from Micro Server 
and empty buffer available

All bytes received LdvGetMsg()

LdvReleaseMsg()

 

Figure 7. State Machine for Receive Buffers 

  The receive buffers for the driver implement four states: 

• Empty state:  The initial state set by the LdvInit() function.  A buffer also 
enters this state as a result of the LdvReleaseMsg() call.   This call 
indicates that the ShortStack LonTalk Compact API is done using the 
buffer (it has copied the contents of the buffer to its own local memory) 
and that the buffer can be released to the buffer pool. 



26 Developing the ShortStack Driver                                 

• Receiving state:  When the driver receives data from the Micro Server 
and there is a buffer available for the message, the driver reserves a 
buffer and the buffer enters this state.  The buffer remains in this state 
until all bytes have been received from the Micro Server. 

• Ready state:  A buffer enters this state after all bytes are received for the 
message.  This state informs the API that the buffer is available for 
processing, and that the API will receive this buffer through a call in its 
event handler. 

• Processing state:  A buffer enters this state as a result of the 
LdvGetMsg() call.  This state means that the API has access to the 
buffer’s contents and that those contents should not be overwritten.  After 
the API is done using the buffer, it calls the LdvReleaseMsg() function to 
return the buffer to the driver. 

Transmit Buffer States 
Figure 8 shows the states and state transitions for the transmit buffers. 

Empty

Filling

Ready

Transmitting

LdvInit()

LdvAllocateMsg()

LdvPutMsg() Data ready to transmit

Transmit complete

 

Figure 8. State Machine for Transmit Buffers 

Similar to the receive buffers, the transmit buffers for the driver implement four 
states: 

• Empty state:  The initial state set by the LdvInit() function.  A buffer also 
enters this state after data transmission is complete.  

• Filling state:  A buffer enters this state as a result of the 
LdvAllocateMsg() call.  This state indicates that the API has access to the 
buffer and that the API is in the process of filling the buffer with data. 

• Ready state:  A buffer enters this state as a result of the LdvPutMsg() 
call.  This state indicates that the API has completely filled the buffer 
with data and that the buffer is ready to be sent to the Micro Server.  By 
calling the LdvPutMsg() function, the API gives the control of the buffer 
to the driver. 



 

ShortStack FX ARM7 Example Port User’s Guide        27 

• Transmitting state:  A buffer enters this state when the driver begins 
transmitting its data to the Micro Server.  The buffer remains in this 
state until all of the data has been transmitted. 

Upper-Layer Serial Driver Implementation  
The upper-layer serial driver represents the interface between the ShortStack 
LonTalk Compact API callback handler functions and the serial driver.  The 
upper-layer serial driver includes the following functions: 

• LdvInit():  Initializes the serial driver, including the hardware interface 
between the ARM7 microprocessor and the ShortStack Micro Server. 

• LdvGetMsg():  Determines if there are messages waiting in a receive 
buffer, and provides a pointer to the first available data message. 

• LdvReleaseMsg():  Releases a receive buffer to the serial driver. 

• LdvAllocateMsg():  Determines if there is an available transmit buffer, 
and provides a pointer to the allocated buffer. 

• LdvPutMsg():  Instructs the driver to send the message downlink.  The 
RxTxInterruptHandler() function of the lower-layer serial driver manages 
the handshake signals and sends the message downlink.  

• LdvPutMsgBlocking():  Copies a message into the driver, calls the 
LdvFlushMsgs() function, and waits for the message to be sent downlink.   
Use this function to send messages downlink synchronously, or for 
messages that are larger than a single transmit buffer. 

• LdvFlushMsgs():  Completes all pending transactions, including 
transmitting messages in the buffers or in the driver.  The 
RxTxInterruptHandler() function of the lower-layer serial driver manages 
the handshake signals and sends any pending messages downlink. 

• LdvReset():  Resets the serial driver when it receives an uplink reset 
message from the Micro Server. 

Lower-Layer SCI Serial Driver Implementation 
The lower-layer serial driver represents the interface between the upper-layer 
serial driver and the hardware.  The lower-layer serial driver includes the 
following functions: 

• ResetMicroServer():  This function resets the ShortStack Micro Server. 

• SuspendSci():  This function suspends the operation of the SCI driver. 

• ResumeSci():  This function resumes the operation of the SCI driver. 

• CyclicIncrement():  This is a driver-internal function that ensures that 
the indices for the buffers are incremented properly. 

• PrintData():  This is a driver-internal function that prints data to the 
STDOUT device.  This function is included only if the 
PRINT_LINK_LAYER macro is defined. 



28 Developing the ShortStack Driver                                 

• CtsInterruptHandler():  The SCI interrupt handler for the CTS~ signal.  
The ARM7 microprocessor generates an interrupt when the CTS~ signal 
changes.  

• RxTxInterruptHandler():  The SCI interrupt handler for both the RXD 
and TXD signals.  The ARM7 microprocessor generates an interrupt 
whenever the receive buffer is full or the transmit buffer is empty.  
Changes to these buffers represent a need to process uplink or downlink 
data.  This interrupt handler determines which buffer caused the 
interrupt, and takes the appropriate action. 

• PeriodicIntervalTimerHandler():  The SCI interrupt handler for the 
periodic interval timer.  The ARM7 microprocessor generates an 
interrupt when the periodic interval timer expires.  The default value of 
this timer is 1 millisecond.  This interrupt handler updates two utility 
timers, and then checks whether the driver’s receive timer, sleep timer, 
keep-alive timer, or message-blocking timer has expired, and takes the 
appropriate action.   

In addition to the lower-layer driver functions, the LdvSci.h file implements the 
following macros to manage the handshake protocol: 

• CHECK_CTS_DEASSERTED() 

• CHECK_CTS_ASSERTED() 

• DEASSERT_RTS()     

• ASSERT_RTS()    

• CHECK_RTS_DEASSERTED() 

• DEASSERT_HRDY()     

• ASSERT_HRDY() 

• ENABLE_RX_INT()         

• DISABLE_RX_INT() 

• ENABLE_TX_INT()                     

• DISABLE_TX_INT()  

 

 



 

ShortStack FX ARM7 Example Port User’s Guide        29 

 

 

5  

Exploring the Example 
Applications 

This chapter describes the example applications that are 
included with the ShortStack FX ARM7 Example Port.  This 
chapter describes each application’s design, I/O, main() 
function, callback handler functions, application-specific 
utility functions, and model file.  It also describes how to 
build and load the application images and run the example 
applications. 



30 Exploring the Example Applications                                 

Overview 
The ShortStack FX ARM7 Example Port includes three example applications:  a 
simple example, a changeable-type example, and a self-installation example: 

• The simple example application is a very simple application that 
simulates an analog actuator with a gain of two.  This simulated device 
receives an input voltage value, multiplies the value by 2, and returns the 
new output value.   

• The changeable-type example application includes the same functionality 
as the simple example application, but adds the ability to change the 
SNVT types for two of the network variables. 

• The self-installation example demonstrates the basics of using the 
Interoperable Self-Installation (ISI) protocol for a ShortStack device.  The 
application is similar to the NcSimpleIsiExample example application 
that is included with the Echelon NodeBuilder FX/FT Development Tool 
and the Echelon Mini FX/FT Evaluation Kit, and is similar to the 
MGDemo example application that is included with the Echelon Mini 
FX/PL Evaluation Kit. 

The following sections describe the example applications, including their design, 
how to build them in the IAR Embedded Workbench, how to load them into the 
ARM7 microprocessor on the Pyxos FT EV Pilot Evaluation Board, and how to 
run them. 

The Simple Example  
The simple example application is a very simple application that simulates an 
analog actuator device that has a gain of two.  This simulated device receives an 
input voltage value, multiplies the value by 2, and returns the new output value.   

The model file for this example includes a single SFPTclosedLoopActuator 
functional block for the two network variables.  It does not include a Node Object 
functional block. 

The design of the example application is very simple.  It includes a single C 
source file (main.c) and the ShortStack LonTalk Compact API files that are 
generated by the LonTalk Interface Developer utility. 

The following sections describe the application’s I/O, main() function, callback 
handler functions, application-specific utility functions, and model file. 

Application I/O 
The simple example application provides a status LED on the Pyxos FT EV Pilot 
Evaluation Board.  This status LED indicates the current status of the 
application: 

• Before and during initialization:  the LED is solid on 

• After a successful initialization:  the LED is solid off 

• After a failed initialization:  the LED blinks rapidly (100 ms interval) 



 

ShortStack FX ARM7 Example Port User’s Guide        31 

LED1 on the Pyxos FT EV Pilot Evaluation Board is the status LED, as shown in 
Figure 9. 

 

Figure 9. Status LED on the Pyxos FT EV Pilot Evaluation Board 

The simple example application does not use any other hardware input I/O from 
the Pyxos FT EV Pilot Evaluation Board. 

Main Function 
The main() function is in the main.c file, which is in the [ARM7Example]\Simple 
Example directory. 

The main() function performs the following tasks: 

1. Initializes the ARM7 microprocessor. 

2. Illuminates the application’s status LED (LED1 on the EV Pilot 
Evaluation Board). 

3. Calls the LonInit() ShortStack LonTalk Compact API function to 
initialize the ShortStack LonTalk Compact API, the ShortStack serial 
driver, and the ShortStack Micro Server.  

4. If the call to the LonInit() function is successful: 

a. Turns off the application’s status LED. 

b. Runs an infinite loop to repeatedly call the LonEventHandler() 
API function to handle LONWORKS events.  This loop checks 
whether the Micro Server needs to be re-initialized (such as after 
the Micro Server image changes, for example, if you load a new 
Micro Server image), and calls LonInit() if necessary.  

5. If the call to the LonInit() function is not successful, it causes the 
application’s status LED to blink. 

Although the main() function for this application is an example, you can use the 
same basic algorithmic approach for a production-level application. 

The main() function is shown below. 

void main(void) { 
  /* Initialize the ARM7 processor */ 
  ProcessorInit(); 
     
  StatusLedInit(); 
     
  /* Initialize ShortStack API, serial driver, and 
   * ShortStack Micro Server */ 



32 Exploring the Example Applications                                 

  if (LonInit() != LonApiNoError) { 
    /* Initialization failed. Take some defensive action */ 
    bError = TRUE; 
  } 
  else { 
    /* Assume initialization succeeded */ 
    bInitialized = TRUE; 
    StatusLedOutput(FALSE); 
 
    /* This is the main control loop, which runs forever.*/ 
    while (!bError) { 
      if (!bInitialized) { 
        /* The Micro Server might have been updated and 
         * needs re-initializing */ 
        if (LonInit() != LonApiNoError) { 
          /* Initialization failed. Take some defensive 
           * action */ 
          bError = TRUE; 
        } 
        else { 
          /* Assume initialization succeeded */ 
          bInitialized = TRUE; 
        } 
      } 
      /* Update the watch dog timer each time through the 
       * control loop */ 
      UpdateWatchDogTimer(); 
             
      /* Handle LonWorks Events */ 
      LonEventHandler(); 
    }     
  } 
  while (bError) { 
    StatusLedSignalError(); 
  } 
} 

Callback Handler Functions 
To signal to the main application the occurrence of certain types of events, the 
ShortStack LonTalk Compact API calls specific callback handler functions.  For 
the simple example application, two of the API’s callback handler functions have 
been modified to provide basic LONWORKS networking capability: 

• LonNvUpdateOccurred() 

• LonResetOccurred() 

The ShortStackHandlers.c file (in the [ARM7Example]\Simple 
Example\ShortStack directory) contains the modified functions. 

Within the ShortStackHandlers.c file, each modified function calls a 
corresponding function in the main.c file that provides the application-specific 
behavior.  This functional-separation approach keeps changes to the LonTalk 
Interface Developer utility-generated files to a minimum.  For a production-level 
application, you can place application-specific code wherever your application 
design requires it. 



 

ShortStack FX ARM7 Example Port User’s Guide        33 

LonNvUpdateOccurred() 
The modified LonNvUpdateOccurred() function is called when the host processor 
receives a network-variable update.  This function simply calls the 
myNvUpdateOccurred() function in the main.c file that provides the application-
specific behavior.   

The myNvUpdateOccurred() function contains a C switch statement, which 
contains a single case statement because the VoltActuator functional block 
includes only a single input network variable, nviVolt. 

The case statement for the nviVolt network variable (specified by the 
LonNvIndexNviVolt network variable index) performs the following tasks: 

• Performs bounds checking for the network variable 

• Sets the output network variable to double the value of the input 
network variable 

• Propagates the output feedback network variable to the network  

The two network variables are defined in the model file, which is described in 
Model File on page 34. 

The myNvUpdateOccurred() function is shown below. 

void myNvUpdateOccurred(const LonByte nvIndex,  
         const LonReceiveAddress* const pNvInAddr) { 
  switch (nvIndex) { 
    case LonNvIndexNviVolt: 
    { 
      /* Whenever nviVolt is updated, set nvoVoltFb to 
       * twice the value of nviVolt.  
       */ 
      /* Copy the input value to another variable as 
       * nviVolt is volatile */ 
      SNVT_volt nviVoltLocal = nviVolt; 
      LonBits16 value = LON_GET_SIGNED_WORD(nviVoltLocal); 
      if (value > MAX_VOLT) { 
        /* Input value is out of range.  Set it to the 
         * maximum */ 
        value = MAX_VOLT; 
        LON_SET_SIGNED_WORD(nviVolt, value); 
      } 
      else if (value < MIN_VOLT) { 
        /* Input value is out of range.  Set it to the 
         * minimum */ 
        value = MIN_VOLT; 
        LON_SET_SIGNED_WORD(nviVolt, value); 
      } 
      /* Set nvoVoltFb to 2*nviVolt to simulate a built-in 
       * gain of 2.  In a real actuator, nviVolt would be 
       * used to set a physical output to adjust the 
       * voltage level.  The resulting voltage output would 
       * then be read and reported using the nvoVoltFb.  
       */ 
      LON_SET_SIGNED_WORD(nvoVoltFb, value * 2); 
 
      /* Propagate the NV onto the network. */ 



34 Exploring the Example Applications                                 

      if (LonPropagateNv(LonNvIndexNvoVoltFb) !=  
            LonApiNoError) { 
        /* Handle error here, if desired. */ 
      } 
      break; 
    } 
    /* Add more input NVs here, if any */ 
     
    default: 
      break; 
  } 
} 

LonResetOccurred() 
The modified LonResetOccurred() function is called when the Micro Server 
completes a reset.  This function simply calls the myResetOccurred() function in 
the main.c file that provides the application-specific behavior, which is to check 
that the link-layer protocol is the correct version and check whether the Micro 
Server is properly initialized. 

The myResetOccurred() function is shown below. 

void myResetOccurred(const LonResetNotification*  
      const pResetNotification) { 
  if (pResetNotification->Version != 
        LON_LINK_LAYER_PROTOCOL_VERSION) 
    bError = TRUE; 
  else if (!LON_GET_ATTRIBUTE((*pResetNotification), 
        LON_RESET_INITIALIZED)) 
    bInitialized = FALSE;  
    /* This will result in a re-initialization of the  
     * Micro Server */ 
} 

Application-Specific Utility Functions 
The simple example application includes several application-specific utility 
functions for handling the I/O on the Pyxos FT EV Pilot Evaluation Board. 

The I/O functions are: 

• StatusLedInit() to initialize the status LED 

• StatusLedOutput() to set the output value of the status LED 

• StatusLedSignalError() to blink the status LED to signal an error 

These functions are defined in the main.c file. 

Model File 
The model file, Simple Example.nc, defines the LONWORKS interface for the 
example ShortStack device.  This file is in the [ARM7Example]\Simple 
Example\ShortStack directory. 

The model file defines one functional block, VoltActuator.  The VoltActuator 
functional block includes two network variables, nviVolt and nvoVoltFb.  The 



 

ShortStack FX ARM7 Example Port User’s Guide        35 

functionality for these network variables is implemented in the 
myNvUpdateOccurred() function described in Callback Handler Functions on 
page 32. 

The model file is shown below. 

#pragma enable_sd_nv_names 
 
network input SNVT_volt nviVolt; 
 
network output SNVT_volt bind_info(unackd) nvoVoltFb; 
 
fblock SFPTclosedLoopActuator  
{ 
 nviVolt   implements nviValue; 
 nvoVoltFb implements nvoValueFb; 
} VoltActuator 
external_name("VoltActuator"); 

For more information about creating and using a model file, see the ShortStack 
FX User’s Guide.  

To change the LONWORKS interface and functionality of the example application, 
perform the following steps: 

1. Define the interface in the Simple Example.nc model file. 

2. Run the LonTalk Interface Developer utility to generate an updated 
application framework.  See Application Framework Data for information 
about some of this generated framework. 

3. Make appropriate changes to the callback handler functions in the 
ShortStackHandlers.c file or the main.c file.  

4. Rebuild the project. 

5. Load the new executable file into the ARM7 microprocessor. 

Application Framework Data 
The LonTalk Interface Developer utility generates several blocks of data as part 
of the application framework for your ShortStack application.  The 
ShortStackDev.c file contains the generated framework, which for the simple 
example includes the following data: 

• The C declarations for the two network variables 

• The self-identification data for the application 

• The application initialization data for the application 

• The network variable table 

• Functions to get any of the data defined as part of the framework 

Important:  Do not edit or modify the self-identification data or the application 
initialization data for the application. 

You do not need to know the internal structure of the application framework to 
develop a ShortStack application because this data is generated by the LonTalk 
Interface Developer utility.  However, certain network debugging tasks can be 
simpler if you are familiar with this data. 



36 Exploring the Example Applications                                 

For example, the simple example’s self-identification data and the application 
initialization data are defined as shown below. 

/* 
 *  Self-identification data 
 *  DO NOT EDIT 
 */ 
static const LonByte siData[] = 
{ 
    0x00, 0x3D, 0x02, 0x00, 0x00, 0x8E, 0x2C, 0x8E,  
    0x2C, 0x26, 0x33, 0x2E, 0x34, 0x40, 0x34, 0x56,  
    0x6F, 0x6C, 0x74, 0x41, 0x63, 0x74, 0x75, 0x61,  
    0x74, 0x6F, 0x72, 0x00, 0x30, 0x6E, 0x76, 0x69,  
    0x56, 0x6F, 0x6C, 0x74, 0x00, 0x40, 0x30, 0x7C,  
    0x31, 0x00, 0x30, 0x6E, 0x76, 0x6F, 0x56, 0x6F,  
    0x6C, 0x74, 0x46, 0x62, 0x00, 0x40, 0x30, 0x7C,  
    0x32, 0x00, 0x7F, 0x00, 0x7F 
}; 
 
/* 
 *  Application initialization data 
 *  DO NOT EDIT 
 */ 
static const LonByte appInitData[] = 
{ 
    /* 16-bit application signature: */ 
    LON_APP_SIGNATURE%256u, LON_APP_SIGNATURE/256u, 
    /* program Id: */ 
    0x9F, 0xFF, 0xFF, 0x06, 0x00, 0x0A, 0x04, 0x01,  
    /* communication parameters: */ 
    0x25, 0x2E, 0x08, 0x05, 0x0C, 0x0E, 0x0F, 0x00,  
    0x04, 0x00, 0xA4, 0x00, 0x00, 0x00, 0x00, 0x00,  
    /* preferences */ 
    LON_EXPLICIT_ADDRESSING | LON_SERVICE_PIN_TIMER, 
    /* number of static network variables: */ 
    0x02,  
    /* one configuration byte per network variable: */ 
    0x00, 0x60 
}; 

The appInitData[] array is a ShortStack-specific data block, and is described in 
the ShortStack FX User’s Guide.  The siData[] array is a LONWORKS defined data 
block, and is described in the Control Network Protocol Specification, ISO/IEC 
14908.  The siData[] array contains such information as: 

• The number of network variables 

• The number of message tags 

• Descriptor records for each network variable 

• The device self-documentation string 

• Extension records for each network variable 

• Alias field structures 

Your application’s self-identification data could include additional fields or 
different fields. 



 

ShortStack FX ARM7 Example Port User’s Guide        37 

The Simple Changeable-Type Example  
The simple changeable-type example application demonstrates the basics of 
using the LONMARK changeable-type protocol in a ShortStack application.  The 
example is not a complete implementation of the protocol, but is meant to serve a 
starting point for writing your own application.  

To demonstrate changeable-type network variables, the example application has 
a configuration network variable (CPNV) named nciNvType, which maintains the 
current type of the nviVolt network variable.  The application supports changing 
the network variable type for this network variable between the SNVT_volt type 
and the SNVT_volt_mil type.  Any attempt to change the NV to an unsupported 
type causes the device to reject the change and to revert the nciNvType CPNV to 
its last-known good value.  It also disables the functional block. 

The model file for this example includes a single SFPTclosedLoopActuator 
functional block for the two network variables.  It also includes an 
SFPTnodeObject functional block to manage the device interface. 

The design of the example application is relatively simple.  It includes a single C 
source file (main.c) and the ShortStack LonTalk Compact API files that are 
generated by the LonTalk Interface Developer utility. 

The following sections describe the application’s I/O, main() function, callback 
handler functions, application-specific utility functions, and model file. 

Application I/O 
The changeable-type example application provides a status LED on the Pyxos FT 
EV Pilot Evaluation Board.  This status LED indicates the current status of the 
application: 

• Before and during initialization:  the LED is solid on 

• After a successful initialization:  the LED is solid off 

• After a failed initialization:  the LED blinks rapidly (100 ms interval) 

LED1 on the Pyxos FT EV Pilot Evaluation Board is the status LED, as shown in 
Figure 10. 

 

Figure 10. Status LED on the Pyxos FT EV Pilot Evaluation Board 

The changeable-type example application does not use any other hardware input 
I/O from the Pyxos FT EV Pilot Evaluation Board. 



38 Exploring the Example Applications                                 

Main Function 
The main() function is in the main.c file, which is in the [ARM7Example]\Simple 
Changeable-type Example directory. 

The main() function performs the following tasks: 

1. Initializes the ARM7 microprocessor. 

2. Illuminates the application’s status LED (LED1 on the EV Pilot 
Evaluation Board). 

3. Reads the nciNvType configuration property network variable in non-
volatile data to set its type to the last known good value. 

4. Calls the LonInit() ShortStack LonTalk Compact API function to 
initialize the ShortStack LonTalk Compact API, the ShortStack serial 
driver, and the ShortStack Micro Server.  

5. If the call to the LonInit() function is successful: 

a. Turns off the application’s status LED. 

b. Runs an infinite loop to repeatedly call the LonEventHandler() 
API function to handle LONWORKS events.  This loop checks 
whether the Micro Server needs to be re-initialized (such as after 
the Micro Server image changes, for example, if you load a new 
Micro Server image), and calls LonInit() if necessary.  Within this 
loop, the application also updates nciNvType configuration 
property network variable in non-volatile data, if necessary. 

6. If the call to the LonInit() function is not successful, causes the 
application’s status LED to blink. 

Although the main() function for this application is an example, you can use the 
same basic algorithmic approach for a production-level application. 

The main() function is shown below. 

void main(void) { 
  unsigned fbIndex; 
     
  /* Initialize the ARM7 processor */ 
  ProcessorInit(); 
     
  StatusLedInit(); 
     
  ReadNonVolatileData(); 
     
  memset(FbStatus, 0, sizeof(FbStatus)); 
  for (fbIndex = 0; fbIndex < FBIDX_count; fbIndex++) { 
    LON_SET_UNSIGNED_WORD(FbStatus[fbIndex].object_id, 
       fbIndex); 
  } 
     
  /* Initialize ShortStack API, serial driver, and 
   * ShortStack Micro Server */ 
  if (LonInit() != LonApiNoError) { 
    /* Initialization failed. Take some defensive action */ 
    bError = TRUE; 



 

ShortStack FX ARM7 Example Port User’s Guide        39 

  } 
  else { 
    /* Assume initialization succeeded */ 
    bInitialized = TRUE; 
    StatusLedOutput(FALSE); 
 
    /* This is the main control loop, which runs forever.*/ 
    while (!bError) { 
      if (!bInitialized) { 
        /* The Micro Server might have been updated and 
         * needs re-initializing */ 
        if (LonInit() != LonApiNoError) { 
          /* Initialization failed. Take some defensive 
           * action */ 
          bError = TRUE; 
        } 
        else { 
          /* Assume initialization succeeded */ 
          bInitialized = TRUE; 
        } 
      } 
      /* Update the watch dog timer each time through the 
       * control loop */ 
      UpdateWatchDogTimer(); 
             
      /* Handle Events */ 
      LonEventHandler(); 
             
      /* Write to the non-volatile data (if required) */ 
      if (bWriteNonVolatileData) 
        WriteNonVolatileData(); 
    } 
  } 
  while (bError) { 
    StatusLedSignalError(); 
  } 
} 

Callback Handler Functions 
To signal to the main application the occurrence of certain types of events, the 
ShortStack LonTalk Compact API calls specific callback handler functions.  For 
the changeable-type example application, the following ShortStack LonTalk 
Compact API callback handler functions have been modified to provide basic 
LONWORKS networking capability:   

• LonNvUpdateOccurred() 

• LonOnline() 

• LonResetOccurred() 

Another important callback handler function is the LonGetCurrentNvSize() 
function.  The changeable-type example application uses the default 
implementation for this callback handler function, which is generated by the 
LonTalk Interface Developer utility. 



40 Exploring the Example Applications                                 

The ShortStackHandlers.c file (in the [ARM7Example]\Simple Changeable-type 
Example\ShortStack directory) contains the modified functions and the default 
implementation for the LonGetCurrentNvSize() function. 

Within the ShortStackHandlers.c file, each modified function calls a 
corresponding function in the main.c file that provides the application-specific 
behavior.  This functional-separation approach keeps changes to the LonTalk 
Interface Developer utility-generated files to a minimum.  For a production-level 
application, you can place application-specific code wherever your application 
design requires it. 

LonOnline() 
The modified LonOnline() function is called when the ShortStack device goes 
online.  This function simply calls the myOnline() function in the main.c file that 
provides the application-specific behavior, which is to call the 
ProcessTypeChange() utility function.  That function accepts or rejects a 
requested type change for the nviVolt network variable.  See 
ProcessTypeChange() on page 45 for more information about this function. 

The myOnline() function is shown below. 

void myOnline(void) { 
  /* Type changes may occur while offline.  In that case 
   * the value of the nciNvType will be updated but not 
   * delivered to the application.  Check for changes every 
   * time the device goes online or is reset.  
   */ 
  ProcessTypeChange(); 
} 

LonNvUpdateOccurred() 
The modified LonNvUpdateOccurred() function is called when the host processor 
receives a network-variable update.  This function simply calls the 
myNvUpdateOccurred() function in the main.c file that provides the application-
specific behavior.  

The myNvUpdateOccurred() function contains a C switch statement, which 
contains three case statements to process the following types of updates: 

• A change to the nciNvType configuration network variable (CPNV), 
which controls the type of the nviVolt and nvoVoltFb network variables. 

• A change to the node object’s nviRequest network variable, which controls 
the status of the ShortStack device’s functional blocks. 

• A change to the voltage amplifier’s nviVolt network variable, which 
controls the input to the actuator. 

The case statement for the nciNvType CPNV (specified by the 
LonNvIndexNciNvType network variable index) checks the status of the 
functional block.  If the functional block is disabled, it does nothing.  If the 
functional block is not disabled, it calls the ProcessTypeChange() utility function.  
See ProcessTypeChange() on page 45 for more information about this function. 

The case statement for the nviRequest CPNV (specified by the 
LonNvIndexNviRequest network variable index) performs the following tasks: 



 

ShortStack FX ARM7 Example Port User’s Guide        41 

• Makes a copy of the network variable value because the network variable 
is declared as volatile. 

• Checks whether the object index represents a supported object: 

o For non-supported objects, sets the object status to invalid. 

o For supported objects: 

 Checks whether the command applies to all objects or to a 
specified functional block 

 Performs the specified command (implemented in a 
switch statement based on the nviRequest.object_request 
variable) 

 Checks whether it should report the status for the object   

• Propagates the change to the network 

The case statement for the nviVolt network variable (specified by the 
LonNvIndexNviVolt network variable index) checks the status of the functional 
block.  If the functional block is disabled, it does nothing.  If it is not disabled, it 
calls the UpdateOutputNv() utility function.  See UpdateOutputNv() on page 47 
for more information about this function.   

The functional blocks and network variables are defined in the model file, which 
is described in Model File on page 48. 

The myNvUpdateOccurred() function is shown below. 

void myNvUpdateOccurred(const LonByte nvIndex,  
         const LonReceiveAddress* const pNvInAddr) { 
  switch (nvIndex) { 
    case LonNvIndexNciNvType: 
    { 
      if (!LON_GET_ATTRIBUTE(FbStatus[FBIDX_VoltActuator], 
            LON_DISABLED)) { 
        /* The nciNvType has been updated, which controls 
         * the type of nviVolt and nvoVoltFb. Validate the 
         * change to determine whether to accept the update 
         * or not. 
         */ 
        ProcessTypeChange(); 
      } 
      break; 
    } 
 
    case LonNvIndexNviRequest: 
    { 
      /* Copy the input nv locally as it is declared as 
       * volatile */ 
      SNVT_obj_request nviRequestLocal = nviRequest; 
      LonUbits16 index = 
          LON_GET_UNSIGNED_WORD(nviRequestLocal.object_id); 
      memset((void *)&nvoStatus, 0, sizeof(nvoStatus)); 
      LON_SET_UNSIGNED_WORD(nvoStatus.object_id, index); 
             
      if (index >= FBIDX_count) {    
        /* We don't support this object - flag it as an 
         * invalid ID. */ 



42 Exploring the Example Applications                                 

        LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDID, 1); 
      } 
      else { 
        /* If reportStatus is TRUE, we will set the 
         * objectStatus to the status of the specified  
         * function block. 
         */ 
        LonBool reportStatus = TRUE; 
     
        /* start and limit define which function block or 
         * blocks will be effected. 
         */ 
        int start; 
        int limit; 
        if (index == FBIDX_NodeObject) {    
          /* Command applies to all function blocks. */ 
          start = 0; 
          limit = FBIDX_count-1; 
        } 
        else {    
          /* Command only applies to the specified function 
           * block. */ 
          start = index; 
          limit = index; 
        } 
     
        switch (nviRequestLocal.object_request) { 
          int i; 
          case RQ_NORMAL: 
            /* Set the object (or all objects) to normal by 
             * clearing the disabled and in_override flags. 
             */ 
            for (i = start; i <= limit; i++) { 
              LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED, 
                    0); 
              LON_SET_ATTRIBUTE(FbStatus[i], 
                    LON_INOVERRIDE, 0); 
            } 
                         
            /* If the VoltActuator FB got enabled, sync the 
             * output */ 
            if (!LON_GET_ATTRIBUTE( 
                FbStatus[FBIDX_VoltActuator],LON_DISABLED)) 
            { 
              UpdateOutputNv(); 
            } 
            break; 
     
          case RQ_UPDATE_STATUS: 
            /* Update the status.  If the object is not the 
             * node object, just return the current status 
             * of the object.  Special processing below for 
             * node object only. 
             */ 
            if (index == FBIDX_NodeObject) { 
              /* When requesting the status of the node 
               * object, return a status that represents 



 

ShortStack FX ARM7 Example Port User’s Guide        43 

               * the OR of the statuses of all function 
               * blocks. 
               * Don't report the status of the node object 
               * - use the summary below. 
               */ 
              reportStatus = FALSE; 
     
              for (i = start; i <= limit; i++) { 
                nvoStatus.Flags_1 |= FbStatus[i].Flags_1; 
                nvoStatus.Flags_2 |= FbStatus[i].Flags_2; 
                nvoStatus.Flags_3 |= FbStatus[i].Flags_3; 
                nvoStatus.Flags_4 |= FbStatus[i].Flags_4; 
              }                             
            } 
            break; 
                         
          case RQ_REPORT_MASK: 
            /* All bits are zero unless set explicitly. 
             * Don't report the status of the object.  The 
             * nvoStatus is filled in below.  All fields 
             * that are untouched are left as 0, indicating 
             * that the function block does not support the 
             * associated operation. 
             */ 
            reportStatus = FALSE; 
     
            /* Mark this as the result of a RQ_REPORT_MASK  
             */ 
            LON_SET_ATTRIBUTE(nvoStatus, LON_REPORTMASK, 
                  1); 
     
            /* All objects support disable */ 
            LON_SET_ATTRIBUTE(nvoStatus, LON_DISABLED, 1); 
     
            break; 
                     
          case RQ_DISABLED: 
            /* Disable the object or all objects */ 
            for (i = start; i <= limit; i++) { 
              LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED, 
                    1); 
            } 
            break; 
 
          case RQ_ENABLE: 
            /* Enable the object or all objects */ 
            for (i = start; i <= limit; i++) { 
              LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED, 
                    0); 
            } 
 
            /* If the VoltActuator FB got enabled, sync the 
             * output */ 
            if (!LON_GET_ATTRIBUTE( 
               FbStatus[FBIDX_VoltActuator], LON_DISABLED)) 
            { 
              UpdateOutputNv(); 



44 Exploring the Example Applications                                 

            } 
            break; 
     
          default: 
            /* Mark all other requests as invalid */ 
            LON_SET_ATTRIBUTE(nvoStatus, 
                  LON_INVALIDREQUEST, 0); 
            reportStatus = FALSE; 
          } 
          if (reportStatus) {    
            /* Report the current status of the function 
             * block */ 
            nvoStatus = FbStatus[index]; 
          } 
        } 
     
        /* Propagate the value of nvoStatus */ 
        if (LonPropagateNv(LonNvIndexNvoStatus) != 
              LonApiNoError) { 
          /* Handle error here, if desired. */ 
        } 
        break; 
      } 
         
      case LonNvIndexNviVolt: 
      { 
        if (!LON_GET_ATTRIBUTE( 
             FbStatus[FBIDX_VoltActuator], LON_DISABLED)) { 
          /* Whenever nviVolt is updated, set nvoVoltFb to 
           * twice the value of nviVolt.  
           */ 
          UpdateOutputNv(); 
        } 
        break; 
      } 
      /* Add more input NVs here, if any */ 
     
      default: 
        break; 
  } 
} 

LonResetOccurred() 
The modified LonResetOccurred() function is called when the Micro Server 
completes a reset.  This function simply calls the myResetOccurred() function in 
the main.c file that provides the application-specific behavior, which is to check 
that the link-layer protocol is the correct version and check whether the Micro 
Server is properly initialized.  If it is the correct version, the function then reads 
the non-volatile data for the value of the nciNvType configuration network 
variable, and then calls the ProcessTypeChange() utility function.  See 
ProcessTypeChange() on page 45 for more information about this function. 

The myResetOccurred() function is shown below. 

void myResetOccurred(const LonResetNotification*  
      const pResetNotification) { 



 

ShortStack FX ARM7 Example Port User’s Guide        45 

  if (pResetNotification->Version != 
      LON_LINK_LAYER_PROTOCOL_VERSION) 
    bError = TRUE; 
  else if (!LON_GET_ATTRIBUTE((*pResetNotification), 
      LON_RESET_INITIALIZED)) { 
    bInitialized = FALSE;  
    /* This will result in a re-initialization of the Micro 
     * Server */ 
  } 
  else { 
    ReadNonVolatileData(); 
 
    /* Type changes may occur while offline.  In that case 
     * the value of the nciNvType will be updated but not 
     * delivered to the application.  Check for changes 
     * every time the device goes online or is reset.  
     */ 
    ProcessTypeChange(); 
  } 
} 

Application-Specific Utility Functions 
The changeable-type example application includes several application-specific 
utility functions for handling the I/O on the Pyxos FT EV Pilot Evaluation Board 
and for managing non-volatile data in the ARM7 microprocessor’s flash memory. 

The I/O functions are: 

• StatusLedInit() to initialize the status LED 

• StatusLedOutput() to set the output value of the status LED 

• StatusLedSignalError() to blink the status LED to signal an error 

The non-volatile data functions are: 

• ReadNonVolatileData() to read non-volatile data 

• WriteNonVolatileData() to write non-volatile data 

In addition, the changeable-type example application includes two functions that 
manage some of the behavior for the network variables: 

• ProcessTypeChange() manages changes to the nviVolt network variable 

• UpdateOutputNv() updates the nvoVolt network variable to be twice the 
current value of the nviVolt network variable 

All of these functions are defined in the main.c file. 

ProcessTypeChange() 
For each type change to the nviVolt or nvoVoltFb network variables, this function 
processes the type change.  If the type change is valid (from SNVT_volt to 
SNVT_volt_mil or from SNVT_volt_mil to SNVT_volt), this function converts the 
network variable’s value to match the new type, stores the type and value in the 
nciNvType configuration property network variable, and specifies that the value 
should be stored in non-volatile memory. 



46 Exploring the Example Applications                                 

The ProcessTypeChange() function is shown below. 

void ProcessTypeChange(void) { 
  /* Accept the CP only if it has changed and the new value  
   * is valid. */ 
  LonBool bAcceptChange = FALSE;   
  unsigned newTypeIndex = INDEX_SNVT_VOLT; 
     
  /* Copy the input NV locally as it is declared as  
   * volatile */ 
  SCPTnvType nciNvTypeLocal = nciNvType; 
     
  if (memcmp((void *)&nciNvTypeLocal, 
     &nciNvTypeLastKnownGoodValue, sizeof(nciNvType)) != 0) 
  { 
    /* A change has been requested. See if it is legal. */ 
    if (nciNvTypeLocal.type_category == 0) { 
      newTypeIndex = INDEX_SNVT_VOLT; 
      bAcceptChange = TRUE; 
    } 
    else if (nciNvTypeLocal.type_category >= 1  &&   
                 nciNvTypeLocal.type_category <= 6  
                 && nciNvTypeLocal.type_scope == 0) { 
      newTypeIndex =  
         LON_GET_UNSIGNED_WORD(nciNvTypeLocal.type_index); 
      switch (newTypeIndex) { 
        case INDEX_SNVT_VOLT:  
        case INDEX_SNVT_VOLT_MIL:  
          bAcceptChange = TRUE; 
          break; 
        default: 
          break;    
      } 
    } 
         
    if (bAcceptChange){ 
      LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDREQUEST, 
            0); 
    } 
    else { 
      /* Invalid type.  Set the CP back to the last known 
       * good value. */ 
      memcpy((void*)&nciNvTypeLocal, 
            &nciNvTypeLastKnownGoodValue,  
            sizeof(SCPTnvType)); 
      nciNvType = nciNvTypeLocal; 
      /* Reject the unsupported type change */ 
      LON_SET_ATTRIBUTE(FbStatus[FBIDX_VoltActuator], 
            LON_DISABLED, 1); 
      LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDREQUEST, 1); 
    } 
 
    if (LonPropagateNv(LonNvIndexNvoStatus) != 
          LonApiNoError) { 
      /* Handle error here, if desired. */ 
    } 
  } 



 

ShortStack FX ARM7 Example Port User’s Guide        47 

 
  if (bAcceptChange) { 
    SNVT_volt nviVoltLocal = nviVolt; 
    LonBits16 value = LON_GET_SIGNED_WORD(nviVoltLocal); 
    /* Change the values */ 
    if (LON_GET_UNSIGNED_WORD( 
              nciNvTypeLastKnownGoodValue.type_index) == 
              INDEX_SNVT_VOLT && newTypeIndex ==  
              INDEX_SNVT_VOLT_MIL) { 
      /* Change from SNVT_volt to SNVT_volt_mil */ 
      LON_SET_SIGNED_WORD(nviVolt, value * 1000); 
      LON_SET_SIGNED_WORD(nvoVoltFb, (value * 2) * 1000); 
    } 
    else if (LON_GET_UNSIGNED_WORD( 
          nciNvTypeLastKnownGoodValue.type_index) ==  
          INDEX_SNVT_VOLT_MIL && newTypeIndex == 
          INDEX_SNVT_VOLT) { 
      /* Change from SNVT_volt_mil to SNVT_volt */ 
      LON_SET_SIGNED_WORD(nviVolt, value / 1000); 
      LON_SET_SIGNED_WORD(nvoVoltFb, (value * 2) / 1000); 
    } 
         
    /* Store the new cp information */ 
    memcpy((void*) &nciNvTypeLastKnownGoodValue, (void*) 
          &nciNvTypeLocal, sizeof(SCPTnvType)); 
    LON_SET_UNSIGNED_WORD( 
          nciNvTypeLastKnownGoodValue.type_index, 
          newTypeIndex); 
    /* Mark the non-volatile data to be written to flash */ 
    bWriteNonVolatileData = TRUE; 
  } 
} 

UpdateOutputNv() 
Whenever the input nviVolt network variable changes, the application updates 
the nvoVolt network variable to be twice the current value of the nviVolt network 
variable.  This function ensures that the calculation returns the correct value 
based on the current type specified for the nviVolt network variable. 

The UpdateOutputNv() function is shown below. 

void UpdateOutputNv(void) { 
  /* Copy the input nv locally as it is declared as 
   * volatile */ 
  SNVT_volt nviVoltLocal = nviVolt; 
  LonBits16 value = LON_GET_SIGNED_WORD(nviVoltLocal); 
  int divider = 1; 
  if (LON_GET_UNSIGNED_WORD( 
        nciNvTypeLastKnownGoodValue.type_index) == 
        INDEX_SNVT_VOLT) 
    divider = 1000; 
  if (value > MAX_VOLT_MIL / divider) { 
    value = MAX_VOLT_MIL / divider; 
    LON_SET_SIGNED_WORD(nviVolt, value); 
  } 
  else if (value < MIN_VOLT_MIL / divider) { 



48 Exploring the Example Applications                                 

    value = MIN_VOLT_MIL / divider; 
    LON_SET_SIGNED_WORD(nviVolt, value); 
  } 
  LON_SET_SIGNED_WORD(nvoVoltFb, value * 2); 
     
  if (LonPropagateNv(LonNvIndexNvoVoltFb) != LonApiNoError) 
  { 
    /* Handle error here, if desired. */ 
  } 
} 

Model File 
The model file, Simple Changeable-type Example.nc, defines the LONWORKS 
interface for the example ShortStack device.  This file is in the 
[ARM7Example]\Simple Changeable-type Example\ShortStack directory. 

The model file defines two functional blocks:  NodeObject and VoltActuator.  The 
NodeObject functional block allows a network management tool to enable or 
disable the functional blocks for the ShortStack device.  The VoltActuator 
functional block defines the interface for the application.  

The VoltActuator functional block includes two network variables, nviVolt and 
nvoVoltFb.  The functionality for these network variables is implemented in the 
myNvUpdateOccurred() function described in Callback Handler Functions on 
page 39. 

The two network variables for the VoltActuator functional block include 
references to a configuration network variable (CPNV), nciNvType.  These 
references allow the application to be informed when a network management tool 
modifies the network variable type.  The references also allow the nviVolt and 
nvoVoltFb network variables to maintain type changes in non-volatile memory, 
and thus be preserved across device resets. 

The model file is shown below. 

#pragma enable_sd_nv_names 
 
network input cp SCPTnvType nciNvType; 
 
network input SNVT_obj_request nviRequest; 
 
network output sync SNVT_obj_status nvoStatus; 
 
fblock SFPTnodeObject  
{ 
 nviRequest  implements nviRequest; 
 nvoStatus  implements nvoStatus; 
} NodeObject 
external_name("NodeObject"); 
 
network input changeable_type SNVT_volt nviVolt 
nv_properties  
{ 
 global nciNvType 
}; 
 



 

ShortStack FX ARM7 Example Port User’s Guide        49 

network output changeable_type SNVT_volt bind_info(unackd) 
nvoVoltFb 
nv_properties  
{ 
 global nciNvType 
}; 
 
fblock SFPTclosedLoopActuator  
{ 
 nviVolt   implements nviValue; 
 nvoVoltFb implements nvoValueFb; 
} VoltActuator 
external_name("VoltActuator"); 

For more information about creating and using a model file, see the ShortStack 
FX User’s Guide.  

To change the LONWORKS interface and functionality of the example application, 
perform the following steps: 

1. Define the interface in the Simple Changeable-type Example.nc model 
file. 

2. Run the LonTalk Interface Developer utility to generate an updated 
application framework. 

3. Make appropriate changes to the callback handler functions in the 
ShortStackHandlers.c file or the main.c file.  

4. Rebuild the project. 

5. Load the new executable file into the ARM7 microprocessor. 

The Self-Installation Example  
The self-installation example application demonstrates the basics of using the 
Interoperable Self-Installation (ISI) protocol for a ShortStack device.  The 
example does not include a complete implementation of the protocol, but is meant 
as a starting point for writing your own application. 

The self-installation example application is similar to the NcSimpleIsiExample 
example application that is included with the Echelon NodeBuilder FX/FT 
Development Tool and the Echelon Mini FX/FT Evaluation Kit, except that the 
ShortStack example implements two switch and light pair sets rather than one.  
It is also similar to the MGDemo example application that is included with the 
Echelon Mini FX/PL Evaluation Kit, except that the ShortStack example 
implements only two of the four switch and light pair sets, and does not include 
the temperature sensor or piezo buzzer. 

As described in Application I/O on page 50, the example implements two sets of 
switch and light pairs.  For each set, one switch and light pair implements a 
switch that is hard-wired to a local light, and the other switch and light pair 
controls the ISI connection for the first pair of the set.  Each switch is 
implemented with an SFPTclosedLoopSensor functional block, and each light is 
implemented with an SFPTclosedLoopActuator functional block.   

When you use the self-installation example application in a self-installed 
environment, you cannot connect a switch without its corresponding light.  For 



50 Exploring the Example Applications                                 

example, the LED5 light emulates a light bulb that is physically connected to the 
corresponding SW2 switch.   

When you use the self-installation example application in a managed 
environment, you can independently connect each of the switch and light 
functional blocks to demonstrate the additional flexibility provided by managed 
networks.  For example, you can use the self-installation example application 
with the LonMaker tool and connect each of the four individual functional blocks 
independently.  However, in the managed environment, the application stops the 
ISI engine in the Micro Server. 

Application I/O 
The self-installation example application provides a status LED on the Pyxos FT 
EV Pilot Evaluation Board.  This status LED indicates the current status of the 
application: 

• Before and during initialization:  the LED is solid on 

• After a successful initialization:  the LED is solid off 

• After a failed initialization:  the LED blinks rapidly (100 ms interval) 

LED1 on the Pyxos FT EV Pilot Evaluation Board is the status LED. 

In addition, the self-installation example application provides four pushbuttons 
and four LEDs: 

• SW2 and LED5 are switch and light pair 1 

• SW3 and LED6 are the ISI connect switch and light for pair 1 

• SW4 and LED7 are switch and light pair 2 

• SW5 and LED8 are the ISI connect switch and light for pair 2 

The self-installation example application does not use any other hardware input 
I/O from the Pyxos FT EV Pilot Evaluation Board. 

The LEDs and pushbuttons for the self-installation example are shown in Figure 
11 on page 51. 



 

ShortStack FX ARM7 Example Port User’s Guide        51 

 

Figure 11. ISI Example I/O on the Pyxos FT EV Pilot Evaluation Board 

Pressing the SW2 button toggles the state of LED5.  Likewise, pressing the SW4 
button toggles the state of LED7. 

When the device operates in ISI mode, SW3 has the following behavior:  

• Pressing the SW3 button initiates an ISI connection for SW2; the Connect 
LED for pair 1 (LED6) blinks.  While the device is in this state, other ISI 
devices can join this connection.  Press the SW3 button again to complete 
the connection.   

• The Connect LED for pair 1 (LED6) also blinks if the Connect switch on 
another ISI device is pressed.  Press the Connect switch for pair 1 (SW3) 
to make the pair 1 switch and light (SW2 and LED5) a part of that 
connection.  Then, press the other ISI device’s Connect switch to complete 
the connection. 

Similarly, when the device operates in ISI mode, SW5 has the following behavior: 

• Pressing the SW5 button initiates an ISI connection for SW4; the Connect 
LED for pair 2 (LED8) blinks.  While the device is in this state, other ISI 
devices can join this connection.  Press the SW5 button again to complete 
the connection.   

• The Connect LED for pair 2 (LED8) also blinks if the Connect switch on 
another ISI device is pressed.  Press the Connect switch for pair 2 (SW5) 
to make the pair 2 switch and light (SW4 and LED7) a part of that 
connection.  Then, press the other ISI device’s Connect switch to complete 
the connection. 



52 Exploring the Example Applications                                 

Main Function 
The main() function is in the main.c file, which is in the [ARM7Example]\Self-
installation Example directory. 

The main() function performs the following tasks: 

1. Initializes the ARM7 microprocessor. 

2. Initializes the LED and pushbutton I/O on the Pyxos FT EV Pilot 
Evaluation Board. 

3. Illuminates the application’s status LED (LED1 on the Pyxos FT EV Pilot 
Evaluation Board). 

4. Reads the nciNetConfig configuration network variable in non-volatile 
data to set the device configuration to its last valid state. 

5. Calls the LonInit() ShortStack LonTalk Compact API function to 
initialize the ShortStack LonTalk Compact API, the ShortStack serial 
driver, and the ShortStack Micro Server.  

6. If the call to the LonInit() function is successful: 

a. Turns off the application’s status LED. 

b. Runs an infinite loop to repeatedly call the LonEventHandler() 
API function to handle LONWORKS events.  If the Micro Server 
image changes (for example, if you load a new Micro Server 
image), this loop checks if the Micro Server needs to be re-
initialized and calls LonInit().  Within this loop, the application 
also: 

• Calls the HandleSwitchUpdates() function to process 
pushbutton activity and toggle the corresponding LEDs. 

• Calls the UpdateConnectionLeds() function to set the ISI-
related LEDs (LED6 and LED8 on the Pyxos FT EV Pilot 
Evaluation Board) based on the current state of the ISI 
assemblies. 

• Updates the nciNetConfig configuration network variable in 
non-volatile data, if necessary. 

7. If the call to the LonInit() function is not successful, causes the 
application’s status LED to blink. 

Although the main() function for this application is an example, you can use the 
same basic algorithmic approach for a production-level application. 

The main() function is shown below. 

void main(void) { 
  unsigned fbIndex; 
     
  /* Initialize the ARM7 processor */ 
  ProcessorInit(); 
    
  IoInit(); 
  SetDigitalOutput(LED_STATUS, TRUE); 
   
  ReadNonVolatileData(); 



 

ShortStack FX ARM7 Example Port User’s Guide        53 

     
  memset(FbStatus, 0, sizeof(FbStatus)); 
  for (fbIndex = 0; fbIndex < FBIDX_count; fbIndex++) { 
    LON_SET_UNSIGNED_WORD(FbStatus[fbIndex].object_id, 
   fbIndex); 
  } 
     
  /* Initialize ShortStack API, serial driver, and */ 
  /* ShortStack Micro Server */ 
  if (LonInit() != LonApiNoError) { 
    /* Initialization failed. Take some defensive action */ 
    bError = TRUE; 
  } 
  else { 
    /* Assume initialization succeeded */ 
    bInitialized = TRUE; 
    SetDigitalOutput(LED_STATUS, FALSE); 
 
    /* This is the main control loop, which runs forever.*/ 
    while (!bError) { 
      if (!bInitialized) { 
        /* The Micro Server might have been updated and 
         * needs re-initializing */ 
        if (LonInit() != LonApiNoError) { 
          /* Initialization failed. Take some defensive 
           * action */ 
          bError = TRUE; 
        } 
        else { 
          /* Assume initialization succeeded */ 
          bInitialized = TRUE; 
        } 
      } 
      /* Update the watch dog timer each time through */ 
      /* the control loop */ 
      UpdateWatchDogTimer(); 
             
      /* Handle Events */ 
      LonEventHandler(); 
             
      HandleSwitchUpdates(); 
             
      UpdateConnectionLeds(); 
             
      /* Write to the non-volatile data (if required) */ 
      if (bWriteNonVolatileData) 
        WriteNonVolatileData(); 
    } 
  } 
  while (bError) { 
        SignalError(); 
  } 
} 



54 Exploring the Example Applications                                 

Callback Handler Functions 
To signal to the main application the occurrence of certain types of events, the 
ShortStack LonTalk Compact API calls specific callback handler functions.  For 
the self-installation example application, the following ShortStack LonTalk 
Compact API callback handler functions have been modified to provide basic 
LONWORKS networking capability: 

• LonNvUpdateOccurred() 

• LonResetOccurred() 

• LonServicePinHeld() 

The ShortStackHandlers.c file (in the [ARM7Example]\Self-installation 
Example\ShortStack directory) contains the modified functions.   

In addition, the following ShortStack ISI API callback handler functions have 
been modified to provide self-installation capability: 

• IsiCreateCsmo() 

• IsiGetAssembly() 

• IsiGetNextAssembly() 

• IsiGetNextNvIndex() 

• IsiGetNvIndex() 

• IsiGetPrimaryGroup() 

• IsiGetWidth() 

• IsiUpdateUserInterface() 

The ShortStackIsiHandlers.c file (in the [ARM7Example]\Self-installation 
Example\ShortStack directory) contains the modified functions.   

Within the ShortStackHandlers.c and ShortStackIsiHandlers.c files, each 
modified function calls a corresponding function in the main.c file that provides 
the application-specific behavior.  This functional-separation approach keeps 
changes to the LonTalk Interface Developer utility-generated files to a minimum.  
For a production-level application, you can place application-specific code 
wherever your application design requires it.  

Functions in ShortStackHandlers.c 
This section describes the modified functions in the ShortStackHandlers.c file. 

LonNvUpdateOccurred() 
The modified LonNvUpdateOccurred() function is called when the host processor 
receives a network-variable update.  This function simply calls the 
myNvUpdateOccurred() function in the main.c file that provides the application-
specific behavior.  

The myNvUpdateOccurred() function contains a C switch statement, which 
contains four case statements to process the following types of updates: 



 

ShortStack FX ARM7 Example Port User’s Guide        55 

• A change to the nciNetConfig configuration network variable (CPNV), 
which contains the current configuration of the device. 

• A change to the node object’s nviRequest network variable, which controls 
the status of the ShortStack device’s functional blocks. 

• A change to the nviLight network variable for the first light and switch 
pair (LED5), which represents a change in the state of that pair. 

• A change to the nviLight network variable for the second light and switch 
pair (LED7), which represents a change in the state of that pair. 

The case statement for the nciNetConfig CPNV, specified by the 
LonNvIndexNciNetConfig network variable index, performs the following tasks: 

• Checks whether the device’s current configuration and the last-known 
good value for its configuration:     

o If the current configuration is set to external, and the last-known 
configuration is not set to external, a network management tool 
is controlling the device.  The function stops the ISI engine. 

o If the current configuration is set to local, and the last-known 
configuration is not set to local, the network management tool is 
no longer controlling the device.  The function starts the ISI 
engine. 

The case statement for the nviRequest CPNV, specified by the 
LonNvIndexNviRequest network variable index, performs the following tasks: 

• Checks whether the object index represents a supported object: 

o For non-supported objects, sets the object status to invalid. 

o For supported objects: 

 Checks whether the command applies to all objects or to a 
specified functional block 

 Performs the specified command (implemented in a 
switch statement based on the nviRequest.object_request 
variable) 

 Checks whether it should report the status for the object   

• Propagates the change to the network 

The case statement for the nviLight[0] network variable for the first light and 
switch pair (LED5), specified by the LonNvIndexNviLight__1 network variable 
index, performs the following tasks: 

• Checks whether the functional block is disabled.  If it is disabled, it does 
nothing.  If it is not disabled:   

o Sets the value for LED5 to match the value of the nviLight[0] 
network variable 

o Sets the value of the nvoLightFb[0] output network variable to 
the value of the nviLight[0] network variable 

o Sets the value of the nvoSwitch[0] output network variable to the 
value of the nviLight[0] network variable 



56 Exploring the Example Applications                                 

o Sets the value of the nviSwitchFb[0] input network variable to 
the value of the nviLight[0] network variable 

The case statement for the nviLight[1] network variable for the second light and 
switch pair (LED7), specified by the LonNvIndexNviLight__2 network variable 
index, performs the following tasks: 

• Checks whether the functional block is disabled.  If it is disabled, it does 
nothing.  If it is not disabled:   

o Sets the value for LED7 to match the value of the nviLight[1] 
network variable 

o Sets the value of the nvoLightFb[1] output network variable to 
the value of the nviLight[1] network variable 

o Sets the value of the nvoSwitch[1] output network variable to the 
value of the nviLight[1] network variable 

o Sets the value of the nviSwitchFb[1] input network variable to 
the value of the nviLight[1] network variable 

The functional blocks and network variables are defined in the model file, which 
is described in Model File on page 66. 

The myNvUpdateOccurred() function is shown below. 

void myNvUpdateOccurred(const LonByte nvIndex,  
       const LonReceiveAddress* const pNvInAddr) { 
  switch (nvIndex) { 
    case LonNvIndexNciNetConfig: 
    { 
      if (nciNetConfig == CFG_EXTERNAL  && 
            nciNetConfigLastKnownGoodValue != CFG_EXTERNAL) 
      { 
        /* Some network tool is now managing this device. 
           It's not an ISI device anymore. */ 
        nciNetConfigLastKnownGoodValue = nciNetConfig; 
        bWriteNonVolatileData = TRUE; 
        IsiStop(); 
      } 
      else if (nciNetConfig == CFG_LOCAL  && 
               nciNetConfigLastKnownGoodValue != CFG_LOCAL) 
      { 
        /* The external tool has stopped managing the 
           device.  Go back to the ISI mode. */ 
        nciNetConfigLastKnownGoodValue = nciNetConfig; 
        bWriteNonVolatileData = TRUE; 
        IsiStart(IsiTypeS, IsiFlagExtended); 
      } 
      break; 
    } 
 
    case LonNvIndexNviRequest: 
    { 
      /* Copy the input NV locally as it is declared as 
       * volatile */ 
      SNVT_obj_request nviRequestLocal = nviRequest; 
      LonUbits16 index = 
         LON_GET_UNSIGNED_WORD(nviRequestLocal.object_id); 



 

ShortStack FX ARM7 Example Port User’s Guide        57 

      memset((void *)&nvoStatus, 0, sizeof(nvoStatus)); 
      LON_SET_UNSIGNED_WORD(nvoStatus.object_id, index); 
             
      if (index >= FBIDX_count) {    
        /* We don't support this object - flag it as an 
         * invalid ID. */ 
        LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDID, 1); 
      } 
      else { 
        /* If reportStatus is TRUE, we will set the 
         * objectStatus to the status of the specified 
         * function block. 
         */ 
        LonBool reportStatus = TRUE; 
     
        /* Start and limit define which function block or 
         * blocks will be affected. 
         */ 
        int start; 
        int limit; 
        if (index == FBIDX_NodeObject) {    
          /* Command applies to all function blocks. */ 
          start = 0; 
          limit = FBIDX_count-1; 
        } 
        else {    
          /* Command only applies to the specified function 
           * block. */ 
          start = index; 
          limit = index; 
        } 
     
        switch (nviRequest.object_request) { 
          int i; 
          case RQ_NORMAL: 
            /* Set the object (or all objects) to normal by 
             * clearing the disabled and in_override flags. 
             */ 
            for (i = start; i <= limit; i++) { 
              LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED, 
                  0); 
              LON_SET_ATTRIBUTE(FbStatus[i], 
                  LON_INOVERRIDE, 0); 
            } 
            break; 
     
          case RQ_UPDATE_STATUS: 
            /* Update the status.  If the object is not the 
             * node object, just return the current status 
             * of the object.  Special processing below for 
             * node object only. 
             */ 
            if (index == FBIDX_NodeObject) { 
              /* When requesting the status of the node 
               * object, return a status that represents 
               * the OR of the statuses of all functional 
               * blocks.                        



58 Exploring the Example Applications                                 

               * Don't report the status of the node object 
               * - use the summary below. 
               */ 
              reportStatus = FALSE; 
     
              for (i = start; i <= limit; i++) { 
                nvoStatus.Flags_1 |= FbStatus[i].Flags_1; 
                nvoStatus.Flags_2 |= FbStatus[i].Flags_2; 
                nvoStatus.Flags_3 |= FbStatus[i].Flags_3; 
                nvoStatus.Flags_4 |= FbStatus[i].Flags_4; 
              }                             
            } 
            break; 
                         
          case RQ_REPORT_MASK: 
            /* All bits are zero unless set explicitly. 
             * Don't report the status of the object.  The 
             * nvoStatus is filled in below.  All fields  
             * that are untouched are left as 0, indicating 
             * that the functional block does not support 
             * the associated operation. 
             */ 
            reportStatus = FALSE; 
     
            /* Mark this as the result of a  
             * RQ_REPORT_MASK */ 
            LON_SET_ATTRIBUTE(nvoStatus, LON_REPORTMASK, 
                1); 
     
            /* All objects support disable */ 
            LON_SET_ATTRIBUTE(nvoStatus, LON_DISABLED, 1); 
     
            break; 
                     
          case RQ_DISABLED: 
            /* Disable the object or all objects */ 
            for (i = start; i <= limit; i++) { 
              LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED, 
                  1); 
            } 
            break; 
 
          case RQ_ENABLE: 
            /* Enable the object or all objects */ 
            for (i = start; i <= limit; i++) { 
              LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED, 
                  0); 
            } 
            break; 
     
          default: 
            /* Mark all other requests as invalid */ 
            LON_SET_ATTRIBUTE(nvoStatus, 
                LON_INVALIDREQUEST, 0); 
            reportStatus = FALSE; 
        } 
        if (reportStatus) {    



 

ShortStack FX ARM7 Example Port User’s Guide        59 

          /* Report the current status of the function 
           * block */ 
          nvoStatus = FbStatus[index]; 
        } 
      } 
     
      /* Propagate the value of nvoStatus */ 
      if (LonPropagateNv(LonNvIndexNvoStatus) != 
            LonApiNoError) { 
        /* Handle error here, if desired. */ 
      } 
      break; 
    } 
         
    case LonNvIndexNviLight__1: 
    { 
      if (!LON_GET_ATTRIBUTE(FbStatus[FBIDX_FbLight_1], 
            LON_DISABLED)) { 
        SetDigitalOutput(LED_1, nviLight[0].state); 
        nvoLightFb[0] = nviLight[0]; 
        nvoSwitch[0] = nviLight[0]; 
        nviSwitchFb[0] = nviLight[0]; 
      } 
      break; 
    } 
         
    case LonNvIndexNviLight__2: 
    { 
      if (!LON_GET_ATTRIBUTE(FbStatus[FBIDX_FbLight_2], 
            LON_DISABLED)) { 
        SetDigitalOutput(LED_2, nviLight[1].state); 
        nvoLightFb[1] = nviLight[1]; 
        nvoSwitch[1] = nviLight[1]; 
        nviSwitchFb[1] = nviLight[1]; 
      } 
      break; 
    } 
    /* Add more input NVs here, if any */ 
     
  default: 
    break; 
  } 
} 

LonResetOccurred() 
The modified LonResetOccurred() function is called when the Micro Server 
completes a reset.  This function simply calls the myResetOccurred() function in 
the main.c file that provides the application-specific behavior. 

The myResetOccurred() function checks that the link-layer protocol is the correct 
version, checks whether the Micro Server is standard or custom, and checks that 
the Micro Server supports ISI.  For a custom Micro Server, you must ensure that 
it includes ISI support.  The function then reads the non-volatile data to retrieve 
the configuration data for the device.  Based on the configuration data, the 
function then determines which ISI mode the device is in, and starts the ISI 
engine. 



60 Exploring the Example Applications                                 

The myResetOccurred() function is shown below. 

void myResetOccurred(const LonResetNotification*  
  const pResetNotification) { 
  if (pResetNotification->Version != 
        LON_LINK_LAYER_PROTOCOL_VERSION) 
    bError = TRUE; 
  else if (!LON_GET_ATTRIBUTE((*pResetNotification), 
        LON_RESET_INITIALIZED)) { 
    bInitialized = FALSE;  /* This will result in a  
        re-initialization of the Micro Server */ 
  } 
  else if (!(LON_GET_UNSIGNED_WORD(pResetNotification->Key) 
                     & 0x8000)) { 
    /* This is a standard Micro Server. Make sure that it 
     * supports ISI.  If you are using a custom Micro  
     * Server in this device, make sure that you include 
     * the appropriate ISI library in that Micro Server. */ 
    if (!(LON_GET_UNSIGNED_WORD(pResetNotification->Key) 
          & 0x0008)) 
      bError = TRUE; /* Micro Server doesn't support ISI */ 
  } 
  else { 
    SCPTnwrkCnfg nciNetConfigLocal; 
    ReadNonVolatileData(); 
         
    nciNetConfigLocal = nciNetConfigLastKnownGoodValue;  
 
    if (nciNetConfigLocal == CFG_NUL) { 
      /* For the first application start, set */ 
      /* nciNetConfig to CFG_LOCAL, thus allow the ISI */ 
      /* engine to run by default */ 
      nciNetConfig = CFG_LOCAL; 
      bWriteNonVolatileData = TRUE; 
    } 
 
    nciNetConfigLastKnownGoodValue = nciNetConfig; 
     
    if (nciNetConfig == CFG_LOCAL) { 
      /* We are in self-installed mode */ 
      if (nciNetConfigLocal == CFG_EXTERNAL) { 
        /* The application has just returned into the */ 
        /* self-installed mode.  Make sure to */  
        /* re-initialize the entire ISI engine */ 
        IsiReturnToFactoryDefaults();    
        /* Call NEVER returns! (resets the device) */ 
      } 
      /* Initialize the arrays */ 
      /* Set to IsiNormal*/ 
      memset(IsiAssemblyState, 0,  
          sizeof (IsiAssemblyState)); 
      /* Set to FALSE */ 
      memset(IsiLedState, 0, sizeof(IsiLedState));  
      /* Start the ISI engine */ 
      IsiStart(IsiTypeS, IsiFlagExtended); 
    } 
  } 



 

ShortStack FX ARM7 Example Port User’s Guide        61 

} 

LonServicePinHeld() 
The modified LonServicePinHeld() function is called when the service pin on the 
device is pressed (held) for a specified amount of time.  From the System 
Preferences page of the LonTalk Interface Developer utility, you can specify how 
long the device’s service pin must be held before the ShortStack LonTalk 
Compact API calls this function.  This function simply calls the 
myServicePinHeld() function in the main.c file that provides the application-
specific behavior. 

The myServicePinHeld() function sets the value for the nciNetConfig 
configuration network variable (CPNV), sets a flag so that this value is written to 
the device’s non-volatile data, and then calls the IsiReturnToFactoryDefaults() 
function to reset the ISI engine. 

The myServicePinHeld() function is shown below. 

void myServicePinHeld(void) { 
  nciNetConfigLastKnownGoodValue = CFG_LOCAL; 
  nciNetConfig = CFG_LOCAL; 
  bWriteNonVolatileData = TRUE; 
  IsiReturnToFactoryDefaults();   /* Never returns! */ 
} 

Functions in ShortStackIsiHandlers.c 
This section describes the modified functions in the ShortStackIsiHandlers.c file. 

IsiCreateCsmo() 
The ISI engine calls the modified IsiCreateCsmo() function to define the open 
enrollment invitation message (the Connection Status Message Open [CSMO] 
message) for the automatic ISI network variable connection offered by the device.  
This function simply calls the myCreateCsmo() function in the main.c file that 
provides the application-specific behavior. 

The myCreateCsmo() function checks that the assembly number is within the 
range defined for the application, and then copies the CSMO data to the address 
provided in the function call. 

The myCreateCsmo() function is shown below. 

void myCreateCsmo(unsigned assembly, IsiCsmoData** ppCsmo) 
{ 
  if (assembly <= ASSEMBLY_LAST_SWITCHLIGHTPAIR) 
      memcpy(*ppCsmo, &CsmoData, sizeof(IsiCsmoData)); 
} 

IsiGetAssembly() 
The modified IsiGetAssembly() function returns the number of the first assembly 
that can join the enrollment.  This function simply calls the myGetAssembly() 
function in the main.c file that provides the application-specific behavior. 

The myGetAssembly() performs the following tasks: 



62 Exploring the Example Applications                                 

• Checks whether the CSMO requires the acknowledged service or polling.  
Because the host application does not support either of these features, 
this function returns the ISI_NO_ASSEMBLY value.   

• Checks whether the CSMO requires automatic connections.  Because the 
host application does not support this feature, this function returns the 
ISI_NO_ASSEMBLY value.   

• Checks all existing assemblies to determine if one of them initiated the 
connection; in which case, the function returns the ISI_NO_ASSEMBLY 
value.   

• Checks for acceptable connections by verifying the CSMO data, the ISI 
scope, the extended attributes, the profile, and the variant; for 
acceptable connections, the function returns the assembly number of the 
first light and switch pair, otherwise it returns the ISI_NO_ASSEMBLY 
value. 

The myGetAssembly() function is shown below. 

unsigned myGetAssembly(const IsiCsmoData* pCsmo,  
                       LonBool automatic) { 
  unsigned assembly; 
 
  /* This application does not accept connections requiring 
   * acknowledged service or polling */ 
  if (!LON_GET_ATTRIBUTE(pCsmo->Extended, ISI_CSMO_ACK) && 
      !LON_GET_ATTRIBUTE(pCsmo->Extended, ISI_CSMO_POLL)) { 
    if (!automatic) { 
      /* Suppress turn-around connections by looking at 
       * existing assemblies. If one of them initiated the 
       * connection return no assembly */ 
      for (assembly = ASSEMBLY_FIRST_SWITCHLIGHTPAIR; 
           assembly <= ASSEMBLY_LAST_SWITCHLIGHTPAIR;  
           ++ assembly) { 
        if(IsiAssemblyState[assembly] == IsiPendingHost || 
           IsiAssemblyState[assembly] == IsiApprovedHost) { 
          assembly = ISI_NO_ASSEMBLY; 
          break; 
        } 
      } 
             
      if (assembly != ISI_NO_ASSEMBLY) { 
        /* Now test for the different acceptable 
         * connections */ 
        if ((memcmp(pCsmo, &CsmoData, sizeof(IsiCsmoData)) 
             == 0)  
             || ((LON_GET_ATTRIBUTE(pCsmo->Extended,  
                  ISI_CSMO_SCOPE) == IsiScopeStandard  
                  && pCsmo->Extended.Member == 1  
                  && LON_GET_ATTRIBUTE((*pCsmo), 
                     ISI_CSMO_WIDTH) == 2  
                  && pCsmo->NvType == 95u) 
                  &&  
                  (((LON_GET_UNSIGNED_WORD(pCsmo->Profile) 
                     == 5 && pCsmo->Variant == 128u)  
                  || (LON_GET_UNSIGNED_WORD(pCsmo->Profile) 
                     == 3 && pCsmo->Variant == 0)))  



 

ShortStack FX ARM7 Example Port User’s Guide        63 

                ) 
           ) 
        {                  
          assembly = ASSEMBLY_FIRST_SWITCHLIGHTPAIR; 
        } 
        else 
          assembly = ISI_NO_ASSEMBLY; 
      } 
    } 
    else   
      assembly = ISI_NO_ASSEMBLY; 
  } 
  else  
    assembly = ISI_NO_ASSEMBLY; 
  return assembly; 
} 

IsiGetNextAssembly() 
The modified IsiGetNextAssembly() function returns the next applicable 
assembly for an incoming CSMO message that follows the specified assembly.  
This function is called after calling the IsiGetAssembly() function, unless 
IsiGetAssembly() returned ISI_NO_ASSEMBLY.  This function simply calls the 
myGetNextAssembly() function in the main.c file that provides the application-
specific behavior. 

The myGetNextAssembly() function checks whether there are more assemblies 
available within the range defined for the application, and returns the next 
available assembly number. 

The myGetNextAssembly() function is shown below. 

unsigned myGetNextAssembly(const IsiCsmoData* pCsmo, 
      LonBool automatic, unsigned prevAssembly) { 
  unsigned assembly = ISI_NO_ASSEMBLY; 
  if (prevAssembly < ASSEMBLY_LAST_SWITCHLIGHTPAIR) { 
    /* We support a set of multiple similar assemblies 
     * ASSEMBLY_FIRST_SWITCHLIGHTPAIR ..  
     * ASSEMBLY_LAST_SWITCHLIGHTPAIR */ 
    assembly = prevAssembly + 1; 
  } 
  return assembly; 
} 

IsiGetNextNvIndex() 
The modified IsiGetNextNvIndex() function returns the network variable index of 
the network variable at the specified offset within the specified assembly, 
following the specified network variable.  The function returns the 
ISI_NO_INDEX value if there are no more network variables.  This function 
simply calls the myGetNextNvIndex() function in the main.c file that provides 
the application-specific behavior. 

The myGetNextNvIndex() function determines whether the assembly number 
corresponds to the first or the second switch and light pair, then determines 
which network variable index precedes the one passed to the function, and sets 
the network variable index to the one that follows.  



64 Exploring the Example Applications                                 

The myGetNextNvIndex() function is shown below. 

unsigned myGetNextNvIndex(unsigned assembly,  
             unsigned offset, unsigned prevIndex) { 
  unsigned nvIndex = ISI_NO_INDEX; 
  if (assembly == ASSEMBLY_FIRST_SWITCHLIGHTPAIR) { 
    if (prevIndex == LonNvIndexNvoSwitch__1) { 
      nvIndex = LonNvIndexNviLight__1; 
    }  
    else if (prevIndex == LonNvIndexNvoLightFb__1) { 
      nvIndex = LonNvIndexNviSwitchFb__1; 
    } 
  } 
  else if (assembly == ASSEMBLY_LAST_SWITCHLIGHTPAIR) { 
    if (prevIndex == LonNvIndexNvoSwitch__2) { 
      nvIndex = LonNvIndexNviLight__2; 
    }  
    else if (prevIndex == LonNvIndexNvoLightFb__2) { 
      nvIndex = LonNvIndexNviSwitchFb__2; 
    } 
  } 
  return nvIndex; 
} 

IsiGetNvIndex() 
The modified IsiGetNvIndex() function returns the network variable index of the 
network variable at the specified offset within the specified assembly; it returns 
the ISI_NO_INDEX value if no such network variable exists.  This function 
simply calls the myGetNvIndex() function in the main.c file that provides the 
application-specific behavior. 

The myGetNvIndex() function determines whether the assembly number 
corresponds to the first or the second switch and light pair, and sets the network 
variable index value to either the switch or the light, based on the offset value. 

The myGetNvIndex() function is shown below. 

unsigned myGetNvIndex(unsigned assembly, unsigned offset) 
{ 
  unsigned nvIndex = ISI_NO_INDEX; 
  if (assembly == ASSEMBLY_FIRST_SWITCHLIGHTPAIR) { 
    nvIndex = offset ? LonNvIndexNvoSwitch__1 :  
                LonNvIndexNvoLightFb__1; 
  } 
  else if (assembly == ASSEMBLY_LAST_SWITCHLIGHTPAIR) { 
    nvIndex = offset ? LonNvIndexNvoSwitch__2 :  
                LonNvIndexNvoLightFb__2; 
  } 
  return nvIndex; 
} 

IsiGetPrimaryGroup() 
The modified IsiGetPrimaryGroup() function returns the group ID for the 
specified assembly.  This function simply calls the myGetPrimaryGroup() 
function in the main.c file that provides the application-specific behavior. 



 

ShortStack FX ARM7 Example Port User’s Guide        65 

The myGetPrimaryGroup() function returns the default ISI group number (128, 
defined in ShortStackIsiTypes.h). 

The myGetPrimaryGroup() function is shown below. 

unsigned myGetPrimaryGroup(unsigned assembly) 
{ 
    return ISI_DEFAULT_GROUP; 
} 

IsiGetWidth() 
The modified IsiGetWidth() function returns the width of the specified assembly. 
The width is equal to the number of network variable selectors associated with 
the assembly.  This function simply calls the myGetWidth() function in the 
main.c file that provides the application-specific behavior. 

The myGetWidth() function returns a width of 2 for all assemblies because each 
switch and light pair defined in the model file contains two network variables for 
each functional block. 

The myGetWidth() function is shown below. 

unsigned myGetWidth(unsigned assembly) { 
  return 2; 
} 

IsiUpdateUserInterface() 
The modified IsiUpdateUserInterface() function is called to synchronize the 
device’s user interface with the ISI engine.  This function simply calls the 
myUpdateUserInterface() function in the main.c file that provides the 
application-specific behavior. 

The myUpdateUserInterface() function checks the type of ISI event that caused 
the ISI engine to call this function, and checks the number of assemblies defined 
for the device.  If there are no assemblies and the ISI event is either normal or 
cancelled, the function resets the assembly state and the LED state.  If there are 
assemblies, and the ISI event is the start of the ISI engine, the function sets a 
flag; otherwise the function stores the event in the assembly state array. 

The myUpdateUserInterface() function is shown below. 

void myUpdateUserInterface(IsiEvent event,  
       unsigned parameter) { 
  if (parameter == ISI_NO_ASSEMBLY && (event == IsiNormal 
        || event == IsiCancelled)) { 
    memset(IsiAssemblyState, 0, sizeof (IsiAssemblyState)); 
    memset(IsiLedState, 0, sizeof(IsiLedState)); 
  }  
  else if (event == IsiRun) { 
    bIsiEngineRunning = parameter ? TRUE : FALSE; 
  }  
  else if (parameter < sizeof(IsiAssemblyState)) { 
    IsiAssemblyState[parameter] = event; 
  } 
} 



66 Exploring the Example Applications                                 

Application-Specific Utility Functions 
The self-installation example application includes a number of application-
specific utility functions for handling the I/O on the Pyxos FT EV Pilot 
Evaluation Board and for managing non-volatile data in the ARM7 
microprocessor’s flash memory. 

The I/O functions are: 

• IoInit() to initialize the I/O 

• GetDigitalInput() to get the value of a specified digital input 

• SetDigitalOutput() to set the specified digital output (on or off) 

• SignalError() to blink the status LED to signal an error 

• HandleSwitchUpdates() to check for updates to the state of any of the 
switches 

• UpdateConnectionLeds() to set the state of an LED based on assembly 
state 

• ProcessNormalSwitch() to update the network variable values for a 
specified switch 

• ProcessConnectionSwitch() to handle ISI enrollment for a specified switch 

The non-volatile data functions are: 

• ReadNonVolatileData() to read non-volatile data 

• WriteNonVolatileData() to write non-volatile data 

All of these functions are defined in the main.c file. 

Model File 
The model file, Self-installation Example.nc, defines the LONWORKS interface for 
the example ShortStack device.  This file is in the [ARM7Example]\Self-
installation Example\ShortStack directory. 

The model file defines three functional blocks:  NodeObject, FbLight, and 
FbSwitch.  The NodeObject functional block allows a network management tool 
to enable or disable the functional blocks for the ShortStack device.  The FbLight 
and FbSwitch functional blocks define the interface for the application. 

The NodeObject functional block, in addition to including the two required 
SNVT_obj_status network variables, includes the nciNetConfig configuration 
network variable (CPNV) within its fb_properties clause.  This CPNV allows the 
device to maintain its current configuration state in non-volatile memory, and 
thus be preserved across device resets. 

The FbLight functional block is a functional-block array of two elements.  Each 
array element includes two network variables, nviLight and nvoLightFb: 

• The nviLight network variable array defines the LEDs (LED5 and LED7) 
of the switch and light pairs. 

• The nvoLightFb network variable array defines the Connect LEDs (LED6 
and LED8) that illuminate to show the ISI connection state for the switch 
and light pairs.   



 

ShortStack FX ARM7 Example Port User’s Guide        67 

The FbSwitch functional block is also a functional-block array of two elements.  
Each array element includes two network variables, nvoSwitch and nviSwitchFb: 

• The nvoSwitch network variable array defines the pushbuttons (SW2 and 
SW4) of the switch and light pairs.  

• The nviSwitchFb network variable array defines the Connect switches 
(SW3 and SW5) that control the ISI connection state for the switch and 
light pairs.   

See Application I/O on page 50 for a description of the LED and pushbutton I/O 
for the application. 

The functionality for the network variables within both functional blocks is 
implemented in the myNvUpdateOccurred() function described in Callback 
Handler Functions on page 54. 

The model file is shown below. 

#include "SNVT_CFG.h" 
  
#pragma enable_sd_nv_names 
 
network input cp SCPTnwrkCnfg nciNetConfig = CFG_EXTERNAL; 
 
network input SNVT_obj_request nviRequest; 
 
network output sync SNVT_obj_status nvoStatus; 
 
fblock SFPTnodeObject  
{ 
 nviRequest  implements nviRequest; 
 nvoStatus  implements nvoStatus; 
} NodeObject external_name("NodeObject") 
fb_properties  
{ 
    nciNetConfig 
}; 
 
network input  SNVT_switch nviLight[2]; 
network output bind_info(unackd) SNVT_switch nvoLightFb[2]; 
fblock SFPTclosedLoopActuator  
{ 
    nviLight[0]   implements nviValue; 
    nvoLightFb[0] implements nvoValueFb; 
} FbLight[2] external_name("FbLight"); 
 
network output bind_info(unackd_rpt) SNVT_switch 
nvoSwitch[2]; 
network input  SNVT_switch nviSwitchFb[2]; 
fblock SFPTclosedLoopSensor  
{ 
    nvoSwitch[0]   implements nvoValue; 
    nviSwitchFb[0] implements nviValueFb; 
} FbSwitch[2] external_name("FbSwitch"); 

For more information about creating and using a model file, see the ShortStack 
FX User’s Guide.  



68 Exploring the Example Applications                                 

Building the Application Image 
To build the software image for any of the example applications included with the 
ShortStack FX ARM7 Example Port: 

1. Start the IAR Embedded Workbench. 

2. Select File → Open → Workspace to open the Open Workspace dialog. 

3. In the Open Workspace dialog, select one of the following workspace files, 
and click Open: 

• [ARM7Example]\Simple Example\Simple Example.eww 

• [ARM7Example]\Simple Changeable-type Example\Simple 
Changeable-type Example.eww 

• [ARM7Example]\Self-installation Example\Self-installation 
Example.eww 

4. From the Workspace utility window, select RAM Debug, Flash Debug, or 
Flash Release from the dropdown list box at the top of the window.  This 
selection allows you to work with one of the predefined project 
configurations: 

• The RAM Debug configuration loads the application into RAM and 
allows you to debug it from the IAR Embedded Workbench.  This 
configuration is generally larger than the Flash Release configuration 
because of the added debug support. 

• The Flash Debug configuration loads the application into flash 
memory and allows you to debug it from the IAR Embedded 
Workbench.  This configuration is generally larger than the Flash 
Release configuration because of the added debug support. 

• The Flash Release configuration loads the application into flash 
memory without debug support; see Loading the Application Image. 

5. Select Project → Clean to clean the project. 

6. Select Project → Rebuild All to rebuild the project files. 

After you build the project, you can run it, as described in Running the 
Application on page 69. 

Loading the Application Image 
To load and run either the RAM Debug project configuration or the Flash Debug 
project configuration, simply run the application from the IAR Embedded 
Workbench, as described in Running the Application on page 69.  However, to 
load the Flash Release project configuration image into the ARM7 
microprocessor, you must use an In-System Programmer, such as the SAM-
PROG programmer.   

To load the Flash Release project configuration software image into the ARM7 
microprocessor: 

1. Ensure that the Pyxos FT EV Pilot Evaluation Board is powered on and 
that a hardware emulator and debugger, such as the AT91SAM-ICE 



 

ShortStack FX ARM7 Example Port User’s Guide        69 

JTAG Emulator, is connected to the evaluation board’s JTAG header 
connector (JP504). 

2. Build the Flash Release configuration for the project.  See Building the 
Application Image on page 68. 

3. Start the SAM-PROG programmer. 

4. Click Browse to open the Open dialog. 

5. In the Open dialog, select one of the following executable files, and click 
Open: 

• [ARM7Example]\Simple Example\Flash Release\Exe\Simple 
Example.bin 

• [ARM7Example]\Simple Changeable-type Example\Flash 
Release\Exe\Simple Changeable-type Example.bin 

• [ARM7Example]\Self-installation Example\Flash Release\Exe\Self-
installation Example.bin 

6. Click the Target Connected? Yes button to establish communications 
between the Pyxos FT EV Pilot Evaluation Board and the hardware 
emulator and debugger. 

7. Click Write Flash to write the program image to flash memory. 

8. After the software is loaded, perform a reset by pressing the RESET 
button on the Pyxos FT EV Pilot Evaluation Board. 

9. Click EXIT to close the SAM-PROG programmer. 

The ARM7 microprocessor runs the loaded software as soon as the processor 
completes restart processing. 

Running the Application 
Before you run any of the applications, load the appropriate Micro Server image 
into the Atmel AT29C512 flash memory on the Pyxos FT EV Pilot Evaluation 
Board: 

• For the simple example, load [ARM7Example]\Simple 
Example\ShortStack\Simple Example.nei 

• For the changeable-type example, load [ARM7Example]\Simple 
Changeable-type Example\ShortStack\Simple Changeable-type 
Example.nei 

• For the self-installation example, load [ARM7Example]\Self-installation 
Example\ShortStack\Self-installation Example.nei 

Recommendation:  To be able to run all three examples with a single Micro 
Server image, load the Self-installation Example.nei image into the Atmel 
AT29C512 flash memory; an ISI-enabled Micro Server can run with either an ISI 
application or a non-ISI application. 

See the ShortStack FX User’s Guide for information about loading a Micro Server 
image into a Smart Transceiver. 

If you loaded the Flash Debug or Flash Release project configuration software 
image into the ARM7 microprocessor, the application runs automatically as soon 



70 Exploring the Example Applications                                 

as the ShortStack Micro Server and the ARM7 microprocessor are properly 
programmed and reset.  

You can also run either the RAM Debug or Flash Debug project configuration 
software image from the IAR Embedded Workbench: 

1. Ensure that the Pyxos FT EV Pilot Evaluation Board is powered on and 
that a hardware emulator and debugger, such as the AT91SAM-ICE 
JTAG Emulator, is connected to the evaluation board’s JTAG header 
connector (JP504). 

2. Start the IAR Embedded Workbench. 

3. Select File → Open → Workspace to open the Open Workspace dialog. 

4. In the Open Workspace dialog, select one of the following workspace files, 
and click Open: 

• [ARM7Example]\Simple Example\Simple Example.eww 

• [ARM7Example]\Simple Changeable-type Example\Simple 
Changeable-type Example.eww 

• [ARM7Example]\Self-installation Example\Self-installation 
Example.eww 

5. From the Workspace utility window, select Flash Debug from the 
dropdown list box at the top of the window. 

6. Select Project → Rebuild All to rebuild the project files. 

7. Select Project → Download and Debug to load the application image into 
the ARM7 microprocessor and begin a debugging session. 

8. To run the application, select Debug → Go.  To step through the 
application program, select one of the step options from the Debug menu. 

Running the Simple Example 
To verify that the application runs as expected, connect the Pyxos FT EV Pilot 
Evaluation Board to a LONWORKS TP/FT-10 compatible network interface, such 
as a U10 USB Network Interface or an i.LON SmartServer, and connect that 
interface to a network management tool, such as the LonMaker Integration tool.  
From the tool, modify the value for the nviVolt network variable and confirm that 
the value for the nvoVoltFb network variable is double that value: 

1. Open the LonMaker drawing for the ShortStack device.  See the 
LonMaker User’s Guide for more information about working with 
LonMaker drawings. 

2. Ensure that the ShortStack device is properly configured and 
commissioned. 

3. Right-click the ShortStack device on the LonMaker drawing and select 
Browse to open the LonMaker Browser window. 

4. Within the LonMaker Browser window, select the row for the nviVolt 
network variable.   

5. Enter a value for the network variable in the Value field at the top of the 
window.  Click the Set value button to set the network variable’s value. 



 

ShortStack FX ARM7 Example Port User’s Guide        71 

6. Select the row for the nvoVoltFb network variable, and click the Get 
value button to see its current value.  That value should be twice the 
nviVolt value, as shown in Figure 12. 

 

 

Figure 12. LonMaker Browser View for the Two Network Variables 

Running the Changeable-Type Example 
To verify that the application runs as expected, connect the Pyxos FT EV Pilot 
Evaluation Board to a LONWORKS TP/FT-10 compatible network interface, such 
as a U10 USB Network Interface or an i.LON SmartServer, and connect that 
interface to a network management tool, such as the LonMaker Integration tool.  
From the tool, modify the value for the nviVolt network variable and confirm that 
the value for the nvoVoltFb network variable is double that value, as described 
for the simple example. 

To change the type of the two network variables that are defined for the 
VoltActuator functional block: 

1. Open the LonMaker drawing for the ShortStack device.  See the 
LonMaker User’s Guide for more information about working with 
LonMaker drawings. 

2. Ensure that the ShortStack device is properly configured and 
commissioned. 

3. Right-click the ShortStack device on the LonMaker drawing and select 
Browse to open the LonMaker Browser window. 

4. Select the row for either the nviVolt or nvoVoltFb network variable.  Be 
sure not to select the row for the corresponding configuration property, if 
any (displayed in green, with the value SCPTnvType in the Config Prop 
column). 

5. Right-click the nviVolt or nvoVoltFb network variable and select Change 
Type to open the Select Network Variable Type dialog. 

6. In the Select Network Variable Type dialog, select either SNVT_volt or 
SNVT_volt_mil (if necessary, expand the tree view for 
\LonWorks\Types\STANDARD.FMT), as shown in Figure 13 on page 
72.  Click OK to change the type and close the Select Network Variable 
Type dialog. 
 
Important:  You can only change the type for a network variable if it is 
not connected to another network variable.  LonMaker implicitly binds 
network variables when you enable monitoring from the LonMaker 
drawing (from the drawing itself or from any connections to the 
functional blocks) or the LonMaker Browser window.  Thus, you must 
disable monitoring for both the nviVolt and nvoVoltFb network variables 
before you change their type. 



72 Exploring the Example Applications                                 

 

Figure 13. The Select Network Variable Type Dialog 

To verify that the type changed successfully: 

1. Within the LonMaker Browser window, select the row for the nviVolt 
network variable.   

2. Right-click the nviVolt network variable and select Properties to open the 
Network Variable Properties dialog. 

3. On the Description page of the Network Variable Properties dialog, the 
Type name field displays the current type for the network variable.  The 
current type should be either SNVT_volt or SNVT_volt_mil, as shown in 
Figure 14 on page 73. 



 

ShortStack FX ARM7 Example Port User’s Guide        73 

 

Figure 14. The Network Variable Properties Dialog 

The valid range for the value of the nviVolt and nvoVoltFb network variables 
depends on its current type: 

• For nviVolt as SNVT_volt:  ± 1.6 V 

• For nvoVoltFb as SNVT_volt:  ± 3.2 V 

• For nviVolt as SNVT_volt_mil:   -1638.4 mV to +1638.3 mV 

• For nviVolt as SNVT_volt_mil:  -3276.8 mV to +3276.6 mV 

Important:  Be sure to change the type to either SNVT_volt or SNVT_volt_mil, 
not to SNVT_vol, SNVT_vol_mil, or any other type.  If you change the type to an 
invalid type, the changeable-type example application rejects the change and 
disables the VoltActuator functional block.  However, the LonMaker Browser 
window does not indicate that the application rejected the change.  In this case, 
you must re-enable the functional block: 

1. Change the type for either the nviVolt or nvoVoltFb network variable to a 
valid type, SNVT_volt or SNVT_volt_mil. 

2. Within the LonMaker drawing, right-click the VoltActuator functional 
block and select Manage to open the LonMaker Device Manager dialog. 



74 Exploring the Example Applications                                 

3. From the Functional Blocks tab of the LonMaker Device Manager dialog, 
click Enable to re-enable the functional block.  Click Test to verify that 
the output for the functional block displays “Disabled: 0”, which signifies 
that the functional block is not disabled. 

Running the Self-Installation Example 
You can verify the non-ISI part of the application directly from the Pyxos FT EV 
Pilot Evaluation Board, but to verify that the application is able to make ISI 
connections, you need to connect the Pyxos FT EV Pilot Evaluation Board to an 
ISI-capable device through a LONWORKS TP/FT-10 compatible network cable.  
For example, you can connect the Pyxos FT EV Pilot Evaluation Board to an 
Echelon FT 5000 EVB Evaluation Board running the NcSimpleIsiExample 
application or to a Mini FX/PL Evaluation Board running the MGDemo example 
application.   

To test the basic, non-ISI, behavior of the application, press the SW2 button 
Pyxos FT EV Pilot Evaluation Board; LED5 should illuminate.  Press the SW2 
button again to turn LED5 off.  Similarly, you can press the SW4 button to toggle 
the state of LED7. 

To test the ISI behavior of the application for the first switch and light pair when 
the Pyxos FT EV Pilot Evaluation Board is connected to a Mini EVB with an 
attached MiniGizmo I/O board, perform the steps listed in Table 7.  The steps in 
the table begin with the Pyxos FT EV Pilot Evaluation Board. 

Table 7. Steps for Verifying the ISI Behavior for the First Switch and Light Pair 

Step 
On the Pyxos FT EV Pilot Evaluation 
Board 

On the Mini EVB Evaluation Board’s 
MiniGizmo I/O Board 

1 Press the SW3 button to open enrollment 
for the first switch and light pair 

 

2 
LED6 blinks to indicate that the 
application is waiting for an ISI device to 
join the connection 

LED5 through LED8 all blink to indicate 
that they are ready to join a connection 

3  Press the SW5 button to join the 
connection 

4 LED6 stops blinking and stays on LED5 stops blinking and stays on to 
indicate that the connection is pending 

5 
Press the SW3 button to approve the 
connection and create the enrollment for 
the first switch and light pair 

 

6 LED6 turns off LED5 turns off 

7 Press the SW2 button  

8 LED5 turns on LED1 turns on 



 

ShortStack FX ARM7 Example Port User’s Guide        75 

Step 
On the Pyxos FT EV Pilot Evaluation 
Board 

On the Mini EVB Evaluation Board’s 
MiniGizmo I/O Board 

9 Press the SW2 button again  

10 LED5 turns off LED1 turns off 

11  Press the SW1 button 

12 LED5 turns on LED1 turns on 

13  Press the SW1 button again 

14 LED5 turns off LED1 turns off 

Notes: 

• For step 1, you can press either SW3 or SW5.  If you press SW5, you open 
enrollment for the second switch and light pair, and LED8 blinks in step 
2. 

• For step 3, you can press any of the buttons, SW5, SW6, SW7, or SW8.  
Which button you press determines which of the switch and light pairs on 
the MiniGizmo join the connection: 

o SW5 controls SW1 and LED1 

o SW6 controls SW2 and LED2 

o SW7 controls SW3 and LED3 

o SW8 controls SW4 and LED4 

To cancel enrollment after step 1 and before step 5, press and hold the Connect 
button (SW3 in Table 7) for eight seconds.  After you release the button, all 
blinking LEDs turn off. 

Instead of opening enrollment from the Pyxos FT EV Pilot Evaluation Board, you 
can open enrollment from the MiniGizmo board.  In this case, press one of the 
buttons SW5 through SW8 to open enrollment for one of the switch and light 
pairs.  Then, LED6 and LED8 on the Pyxos FT EV Pilot Evaluation Board blink 
to indicate that they are ready to join a connection.  The remaining steps are 
similar to those of Table 7. 

You could also use the FT 5000 Evaluation Board with the Pyxos FT EV Pilot 
Evaluation Board instead of the Mini EVB and MiniGizmo board.  For the FT 
5000 EVB, LED2 blinks in step 2 in Table 7; press SW2 in step 3.  Press SW1 in 
step 11; LED1 turns on in step 12.  

The self-installation example is limited to one-to-one connections between light 
and switch pairs from each device.  That is, after you open enrollment for a 
switch and light pair (for example, by pressing the Pilot’s SW3 button, as in 
Table 7 step 1), when you press a button to join the connection (for example, by 
pressing the MiniGizmo’s SW5 button, as in Table 7 step 3), the connection is 
pending, and thus you cannot then press another button (such as SW4 on the 
MiniGizmo) to have it also join the connection.  Likewise, if you connect both a 
MiniGizmo and an FT 5000 EVB to the network with the Pyxos FT EV Pilot 



76 Exploring the Example Applications                                 

Evaluation Board, after you initiate enrollment, the first button that you press 
from either board becomes the light and switch pair that is connected. 

See the Mini FX/PL Hardware Guide for more information about the Mini EVB 
Evaluation Board and the MiniGizmo board.  See the Mini FX/PL Examples 
Guide for more information about the MGDemo application.  See the FT 5000 
EVB Hardware Guide for information about the FT 5000 EVB.  See the FT 5000 
EVB Examples Guide for information about the NcSimpleIsiExample application. 

 

 



www.echelon.com


	Welcome
	Audience
	Related Documentation
	1. Introduction
	Introduction
	Installing the Example Port
	Hardware Requirements
	Software Requirements
	Installing the ShortStack Example Software


	2. Overview of the Hardware Environment for the ARM7 Microprocessor 
	General Description of the Supported Hardware
	Hardware Development Tools for the ARM7 Microprocessor 
	Hardware Interface for the ShortStack Micro Server

	3. Developing ShortStack Applications for the ARM7 Microprocessor
	Supported Software and Tools Overview
	Software Development Tools for the ARM7 Microprocessor
	Loading Your Application into the ARM7 Microprocessor
	Preparing the ShortStack Micro Server
	Debugging Your Application

	4. Developing the ShortStack Driver
	 Communications Configuration Options
	Setting the Serial Interface Type
	Setting the Interface Bit Rate

	Serial Driver Implementation
	Transmitting Data to the Micro Server
	Serial Driver State Machines
	Upper-Layer Serial Driver Implementation 
	Lower-Layer SCI Serial Driver Implementation


	5. Exploring the Example Applications
	 Overview
	The Simple Example 
	Application I/O
	Main Function
	Callback Handler Functions
	Application-Specific Utility Functions
	Model File
	Application Framework Data

	The Simple Changeable-Type Example 
	Application I/O
	Main Function
	Callback Handler Functions
	Application-Specific Utility Functions
	Model File

	The Self-Installation Example 
	Application I/O
	Main Function
	Callback Handler Functions
	LonNvUpdateOccurred()
	LonResetOccurred()
	LonServicePinHeld()
	IsiCreateCsmo()
	IsiGetAssembly()
	IsiGetNextAssembly()
	IsiGetNextNvIndex()
	IsiGetNvIndex()
	IsiGetPrimaryGroup()
	IsiGetWidth()
	IsiUpdateUserInterface()


	Application-Specific Utility Functions
	Model File

	Building the Application Image
	Loading the Application Image
	Running the Application
	Running the Simple Example
	Running the Changeable-Type Example
	Running the Self-Installation Example




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




