

OpenLDV
Programmer’s Guide

Release 2.1

@echelon
®

C o r p o r a t i o n

078-0275-01C

Echelon, LON, LONWORKS, NodeBuilder,
LonTalk, Neuron, LONMARK, LNS, LonBuilder,
LonUsers, BeAtHome, LonManager, 3120,
3150, LonPoint, Digital Home, LONWORLD,
ShortStack, i.LON, the Echelon logo, and the
LONMARK logo are registered trademarks of
Echelon Corporation. LNS Powered by
Echelon, LonMaker, LonLink, LonResponse,
OpenLDV, LONews, Open Systems Alliance,
Panoramix, Panoramix Powered by Echelon,
LONMARK Powered by Echelon, Powered by
Echelon, and LonSupport are trademarks of
Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not
designed for use in equipment or systems which
involve danger to human health or safety or a risk of
property damage and Echelon assumes no
responsibility or liability for use of the Neuron Chips
in such applications.

Parts manufactured by vendors other than Echelon
and referenced in this document have been
described for illustrative purposes only, and may not
have been tested by Echelon. It is the responsibility
of the customer to determine the suitability of these
parts for each application.

ECHELON MAKES AND YOU RECEIVE NO
WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED,
STATUTORY OR IN ANY COMMUNICATION WITH YOU,
AND ECHELON SPECIFICALLY DISCLAIMS ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the
prior written permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©2004-2005 by Echelon Corporation.

Echelon Corporation
www.echelon.com

OpenLDV Programmer’s Guide i

Purpose
This document describes Echelon’s OpenLDV Release 2.1 software. OpenLDV is an API
that you can use to create applications that send and receive low-level LonTalk®

messages through Echelon’s family of LONWORKS® network interface products. This
includes local network interfaces such as the PCC-10 PC Card adapter and the PCLTA-
20 PC LonTalk Adapter, as well as Internet-enabled network interfaces such as the
i.LON® 10 Ethernet Adapter and the i.LON 100 Internet Server. The OpenLDV software
is licensed for use exclusively with Echelon’s family of network interface products.

For most Echelon customers, the development of PC-based LONWORKS network tools will
be simpler and less time-consuming when done using Echelon’s LNS® Network Operating
System software. In addition, network tools that use LNS will have higher performance
levels than those that use OpenLDV. You can find out more about LNS on Echelon’s
website at http://www.echelon.com/lns. Contact Echelon Sales at
http://www.echelon.com/sales if you would like assistance in determining whether you
should develop your network tools with LNS, or with OpenLDV.

Audience
This document is intended for software developers creating OpenLDV applications for
use with Echelon’s family of LONWORKS network interface products. Readers of this
guide should be familiar with LONWORKS technology. An introduction to LONWORKS
technology can be found in the Introduction to the LONWORKS System document, which
can be downloaded from Echelon’s website at:

http://www.echelon.com/support/documentation/manuals.

Hardware and Software Requirements
To install and use the OpenLDV software, your PC must meet the following minimum
requirements:

• Intel® Pentium® III 366MHz processor

• 128MB RAM

• Microsoft Windows® 98SE, Windows 2000, Windows XP or Windows Server 2003

• 10MB of available hard-disk space

• 800x600 screen resolution

http://www.echelon.com/lns
http://www.echelon.com/sales
http://www.echelon.com/support/documentation/manuals

ii OpenLDV Programmer’s Guide

Table of Contents
Purpose..i
Audience..i
Hardware and Software Requirements...i
Table of Contents..ii

Introduction to the OpenLDV API.. 1
Introduction to the OpenLDV API ..2
Installing the OpenLDV Software...4

Modifying the OpenLDV Installation Path ..5
Modifying the Reboot Behavior When OpenLDV 2.1 Is a Nested Installation........................6

Getting Started ...6
Using the OpenLDV API... 9

Referencing the OpenLDV Component ...10
The OpenLDV API..10

ldv_get_version...10
ldv_open..11
ldv_close..12
ldv_read ..12
ldv_write ...14
ldv_register_event..14

OpenLDV Return Codes...16
Using the OpenLDV API with Multiple Threads and Multiple Processes19

Sending and Receiving Messages With The OpenLDV API .. 21
Overview ...22
OpenLDV Application Architecture ..22

Application Layer...23
Presentation Layer...24
Interface Layer...24
Physical Layer..24
Link Layer ..24

Constructing Link Layer Messages...25
Downlink Commands...26
Uplink Commands ...27

Immediate Commands ...27
Application Buffer Structure ...33

Application Layer Header ...33
Message Header ...35

ExpMsgHdr..35
Network Address..36

SendAddrDtl ..36
RcvAddrDtl ..40
RespAddrDtl ..42

Message Data ...44
UnprocessedNV ...44
ExplicitMsg ..44

Sending Messages to the Network Interface..45
Receiving Messages from the Network Interface...45

The OpenLDV Developer Example ... 47
The OpenLDV Developer Example ...48

OpenLDV Programmer’s Guide iii

Common Definitions ..48
COpenLDVapi and COpenLDVtrace ..48
COpenLDVni, Message Pumps, and Message Dispatchers ..48
Toolkits and User Interface...49
Developer Example Diagram ..49

iv OpenLDV Programmer’s Guide

OpenLDV Programmer’s Guide 1

1
Introduction to the OpenLDV

API

This chapter introduces the OpenLDV API, and describes how
you can use it to send and receive LonTalk messages through
any of Echelon’s network interface products. It also provides
instructions to follow when installing the OpenLDV software.

2 OpenLDV Programmer’s Guide

Introduction to the OpenLDV API
OpenLDV is an API that you can use to write applications that send and receive low-
level LonTalk messages through Echelon’s family of LONWORKS network interface
products. These messages can be used to initialize and terminate communication with a
network interface, retrieve incoming LonTalk messages from a network interface, or
transmit outgoing LonTalk messages through a network interface. OpenLDV supports
simultaneous communication with multiple network interfaces through a single client,
and it supports access to both local and remote (Internet-enabled) network interfaces.

The OpenLDV API is realized in the LDV32.DLL file. Prior to the release of OpenLDV
Release 1.0, Echelon licensed the LDV32.DLL to certain third parties for use in their
products. The OpenLDV Release 1.0 API and higher is backwards compatible with the
API contained in all previous releases of Echelon’s LDV32.DLL. If you are currently using
a previous release of Echelon’s LDV32.DLL file, Echelon requests that you convert to the
OpenLDV Release 2.1 software as soon as possible. In order to avoid Windows DLL
search path and naming conflicts when you do so, you should remove the previous release
of LDV32.DLL that you have been using, and include the OpenLDV installer with your
updated product installation.

OpenLDV may be useful when deployed in many network management, or monitor and
control, systems. For example, if you are managing a self-installed system with hard-
coded network addresses, you could use the OpenLDV API to create an application that
sends LonTalk messages to test the devices on your network. This diagnostic application
could also periodically send request messages to devices in the system to check their
status. You could also use OpenLDV to create a data logging application to monitor and
retrieve network variable values from the various devices on your network.

When used with an i.LON 10 Ethernet Adapter or an i.LON 100 Internet Server,
network tools that use the OpenLDV API can establish downlink connections (session
initiation from a PC to an i.LON 10 or i.LON 100), and they can accept uplink session
requests (session initiation from an i.LON 10 or i.LON 100 to a PC). The i.LON devices
and PCs communicate using Echelon’s xDriver software subsystem, which is included
with the OpenLDV Release 2.1 software.

xDriver is an extensible network driver that uses TCP/IP to establish connections with
network interfaces such as Echelon’s i.LON 10 Ethernet Adapter and i.LON 100 Internet
Server. You can use the xDriver Profile Editor to create xDriver Profiles for use with
your OpenLDV applications. An xDriver Profile is a set of configuration parameters that
determines how the xDriver subsystem will manage connections with a group of remote
networks. For example, you may have hundreds of remote networks, each of which has
an i.LON 10 attached. At your service center, your monitoring tool could use the
OpenLDV API and xDriver subsystem to listen for uplink session requests from these
networks for when they need to report alarm conditions. You can configure each xDriver
Profile to provide your application with information identifying the network interface
that has requested an uplink session. This will allow you to program your application to
quickly identify the source of an uplink session request, and respond to a variety of
different alarm conditions. For more information on xDriver and the xDriver Profile
Editor, see the OpenLDV Programmer’s Guide, xDriver Supplement.

Before you begin developing your OpenLDV application, you should be aware that
development with OpenLDV is complex. To create applications that properly use the
OpenLDV API, you need to understand LonTalk message formats and network interface

OpenLDV Programmer’s Guide 3

state management. You also need to be able to manage low-level LonTalk messaging
details such as LonTalk reference IDs. Chapters 3 and 4 of this document describe some
of the LonTalk message formats you can use with OpenLDV Release 2.1. In addition, the
Message Header section of Chapter 3 includes some discussion of LonTalk reference IDs.
Other documents you may find useful when performing these tasks include the
LONWORKS Host Application Programmer’s Guide and the LONWORKS Microprocessor
Interface Program (MIP) User's Guide, which can be downloaded from Echelon’s website
at http://www.echelon.com/support/documentation/Manuals/default.htm, as well as the
EIA/CEA 709.1-B-2002 protocol specification, which can be downloaded from
http://global.ihs.com/.

You should note that Echelon’s LNS software provides a high-level interface to
LONWORKS networks that intentionally hides all of the complexity involved with
managing network interfaces and the low-level communication details of the LonTalk
protocol. LNS is a powerful, flexible network management platform you can use with
high performance Layer 2 and Layer 5 network interfaces, as well as with LONWORKS/IP
routers such as the i.LON 600 and i.LON 1000. LNS provides a wide variety of network
management and monitor and control services, and allows multiple client access to the
same network interface - which is not directly supported by OpenLDV.

For most customers, choosing to use the LNS software platform will result in a high-
quality application that can be developed more quickly, and with far less knowledge of
the low-level details of the LonTalk protocol, than with other network management
platforms, including OpenLDV. However, with the introduction of the OpenLDV API,
you now have another choice for writing PC-based LONWORKS software for use with
Echelon’s family of network interface products.

This document describes how to install the OpenLDV software, and how to write
applications that use the OpenLDV API. For instructions on configuring the xDriver
subsystem and on using the xDriver Profile Editor, see the OpenLDV Programmer’s
Guide, xDriver Supplement, which is included with the OpenLDV Developer’s Kit
described in the next section.

http://www.echelon.com/support/documentation/Manuals/default.htm
http://global.ihs.com/

4 OpenLDV Programmer’s Guide

Installing the OpenLDV Software
This section describes how to install the OpenLDV software. To install and use the
OpenLDV software, your PC must meet the following minimum requirements:

• Intel Pentium III 366MHz processor

• 128MB RAM

• Microsoft Windows 98SE, Windows 2000, Windows XP or Windows Server 2003

• 10MB of available hard-disk space

• 800x600 screen resolution

You can download the OpenLDV runtime installer (OpenLDV210.exe) from Echelon’s
website at http://www.echelon.com/downloads. The OpenLDV runtime installer installs
the OpenLDV runtime components, including the LONWORKS Interfaces application in
the Windows Control Panel, and the xDriver Profile Editor. Echelon designed the
OpenLDV runtime installer to be incorporated directly into your OpenLDV application’s
installation, either as a standalone component that your end-users will install, or as a
component that your overall software installer will install. Note that the OpenLDV
runtime installer is based on Microsoft Installer 2.0. If the PC you are installing the
OpenLDV runtime component on is using an outdated version of Microsoft Installer, the
OpenLDV runtime installation will update that PC to use version 2.0.

You can also download the OpenLDV Release 2.1 readme file (readme_OpenLDV.htm)
from http://www.echelon.com/downloads. You should review the readme file before
executing the OpenLDV runtime installer, or developing your OpenLDV application.

If you are developing an OpenLDV application, you will also need the OpenLDV
Developer’s Kit (OpenLDV210-DK.zip), which is installed into the C:\LonWorks folder
by the LNS Turbo Edition installation. You can also download the file from
http://www.echelon.com/downloads. The OpenLDV Developer’s Kit contains
documentation, include files, and the OpenLDV Developer Example, which you will find
useful when you begin developing your own OpenLDV application.

You can also download the OpenLDV Developer’ Kit Release 2.1 readme file
(readme_OpenLDV-DK.htm) from http://www.echelon.com/downloads. You should review
this readme file before extracting the contents of the OpenLDV Developer’s Kit archive,
or developing your OpenLDV application.

NOTE: The “210” appended to OpenLDV in the above file names indicates that the file is
for OpenLDV Release 2.1.

To install and use the OpenLDV runtime software, follow these steps:

1. Prior to the release of OpenLDV Release 1.0, Echelon licensed the LDV32.DLL file to
certain third parties for use in their products. The OpenLDV Release 1.0 (and higher)
API is backwards compatible with the API contained in all previous releases of
Echelon’s LDV32.DLL. If the PC that you installing the OpenLDV runtime software
on contains a previous version of the LDV32.DLL file, you should either delete the
existing LDV32.DLL file, rename it, or move it out of the search path that Windows
uses to find components. The OpenLDV software will malfunction if an older version
of LDV32.DLL exists in the Windows search path, and is found before the newly-
installed OpenLDV version of the LDV32.DLL file.

http://www.echelon.com/downloads
http://www.echelon.com/downloads
http://www.echelon.com/downloads
http://www.echelon.com/downloads

OpenLDV Programmer’s Guide 5

2. Download the readme_OpenLDV.htm and OpenLDV210.exe files from Echelon’s
website at http://www.echelon.com/downloads.

3. After reviewing the readme file, double-click the OpenLDV210.exe file to begin the
OpenLDV runtime installation. The Welcome to the InstallShield Wizard for Echelon
OpenLDV 2.1 window will open. Click Next to continue. This opens the License
Agreement window.

4. Read the terms of the license agreement, and if you agree to the terms, click the I
accept… button to continue. This opens the Installing Echelon OpenLDV 2.1 window.
The installer will now install the OpenLDV runtime software. A completion dialog
will appear when the installation is complete. If the OpenLDV runtime is not
installed successfully, a dialog will appear to notify you of this.

 5. If you are using the i.LON 10 Ethernet Adapter or the i.LON 100 Internet Server,
you may need to modify the configuration for those devices with the LONWORKS
Interfaces application in the Windows Control Panel and the xDriver Profile Editor
before using them with your OpenLDV application. You can use the LONWORKS
Interfaces application in the Windows Control Panel to specify the Internet network
addresses of the i.LON 10 or i.LON 100 that you will connect to with your OpenLDV
application. Consult the online help for the LONWORKS Interfaces application for
more information on this. You can use the xDriver Profile Editor to configure xDriver
Profiles for use with your OpenLDV application. For more information on the xDriver
Profile Editor, see Chapter 2 of the OpenLDV Programmer’s Guide, xDriver
Supplement.

 To install and use the OpenLDV Developer’s Kit, follow these steps:

1. Download the readme_OpenLDV-DK.htm and OpenLDV210-DK.zip files from
Echelon’s website at http://www.echelon.com/downloads.

2. After reviewing the readme file, extract the files contained in the OpenLDV210-
DK.zip file to the LONWORKS folder of your PC. By default, this folder is
C:\LonWorks. Although you may install the OpenLDV Developer’s Kit to any folder
on your PC, Echelon recommends that you install them into the LONWORKS folder.
For more information on the LONWORKS folder, see the next section, Modifying the
OpenLDV Installation Path.

3. You can now use the OpenLDV Developer’s Kit to write applications that use the
OpenLDV API. To do so, include the ldv32.h header file that was extracted into the
C:\LonWorks\OpenLDV\Include folder, and link with the ldv32.lib library file
that was extracted into the C:\LonWorks\OpenLDV\Lib folder, within your
Windows application development environment. For more information on the
OpenLDV API, see Chapter 2, Using the OpenLDV API.

Modifying the OpenLDV Installation Path
All of Echelon's software products are designed to install into a single folder tree on a PC.
Echelon's software installers check for the existence of a Windows registry key to
determine if the location of this tree (the LONWORKS Path) has been set. If it has been
set, all of Echelon’s software installers automatically install into this path.

By default the LONWORKS Path is C:\LonWorks. The Windows registry key that
determines this path (HKEY_LOCAL_MACHINE\Software\LonWorks\LonWorks Path)
must never be changed after it has been initially set. If the LONWORKS Path is changed

http://www.echelon.com/downloads
http://www.echelon.com/downloads

6 OpenLDV Programmer’s Guide

after it has been initially set, some or all of the Echelon software installed on your
machine will malfunction.

The OpenLDV runtime installer will install into the LONWORKS Path if it has already
been set in the Windows registry. If the LONWORKS Path has not been set, the OpenLDV
runtime installer will set the LONWORKS Path to the C:\LonWorks folder, and then
install into this folder without prompting. If you want to modify this behavior, you may
do so by first checking that the LONWORKS Path has not been set (the registry key is
HKEY_LOCAL_MACHINE\Software\LonWorks\LonWorks Path), and then creating a
string variable specifying a valid path on the PC. When you subsequently launch the
OpenLDV installer, the installer will find the LONWORKS Path you have created, and
install into it.

Since the LONWORKS Path cannot be modified after you initially set it, and because all
subsequent Echelon software installations will use this path, Echelon recommends that
you do not set it to install into your product’s folder tree. The reason is that if an end-
user uninstalls your software product, the uninstallation may remove Echelon software
components as well.

Modifying the Reboot Behavior When OpenLDV 2.1 Is a Nested
Installation
The OpenLDV installation may discover that some components of the OpenLDV product
are in use, and the installation cannot complete without a Windows reboot. The default
behavior of the OpenLDV 2.1 installation in this case is to display a dialog stating that a
reboot is necessary, and then reboot immediately if you select Yes.

There are two potential problems here. One is that your product installation may not
want the user to make a reboot choice until all installation is complete. The second is
that your product installation checks the error return from the OpenLDV installation to
determine whether it was successful, but a failed code will be returned if a reboot is
required, even if the user selects No to defer the reboot.

The reboot choice dialog may be suppressed in the OpenLDV 2.1 installation by invoking
it with the command-line option REBOOT=R. Note that this will suppress the choice
dialog only, and will not prevent an “installation not complete” error code in the case
where a reboot is necessary.

From your installation, if you need to determine whether the OpenLDV 2.1 sub-
installation has succeeded after you have run it, your installation can look at the
Windows Registry entry at \HKEY_LOCAL_MACHINE\Software\Echelon\Echelon
OpenLDV\Install Status. If the string value there is Success, the installation
succeeded and no reboot is required. If the value is Success-RebootRequired, the
installation succeeded and a reboot is required. For any other value, or if this Registry
entry is not present, the OpenLDV 2.1 installation failed.

Getting Started
An important factor you need to be aware of before developing or using any OpenLDV
application is that OpenLDV is licensed for use only with Echelon’s network interfaces,
and for the PCC-10, PCLTA-10 and PCLTA-20, only with Layer 5 firmware.

OpenLDV Programmer’s Guide 7

Use the LONWORKS Plug ‘n Play application in the Windows Control Panel to determine
if your network interface is using a Layer 5 image. You can determine which image the
network interface is using with the “NI Application” field. Table 1.1 lists the image you
should select to ensure that your Echelon network interface is using a Layer 5 image.

NOTE: The LONWORKS Plug ‘n Play application is installed with the network interface
driver for the network interfaces listed in Table 1.1.

Table 1.1 NI Application Settings

Network Interface NI Application Setting for Layer 5 Image

PCC-10 NSIPCC

PCLTA-10 NSIPCLTA

PCLTA-20 NSIPCLTA

The remainder of this document contains information you will need when creating your
OpenLDV application. Echelon strongly recommends that you review this material before
you begin developing of your OpenLDV application. This includes the following chapters:

Chapter 2, Using the OpenLDV API: This chapter describes each function that is
included in the OpenLDV API. It also defines guidelines you need to follow when writing
applications that use the OpenLDV API to access multiple network interfaces.

Chapter 3, Sending and Receiving Messages With The OpenLDV API: You can use the
ldv_write and ldv_read functions described in Chapter 2 to send and receive message
commands through a network interface. This chapter describes the various network
interface commands your OpenLDV application can send and receive with these
functions, as well as the application buffer structure each type of message requires.

Chapter 4, The OpenLDV Developer Example: This chapter introduces the OpenLDV
Developer Example, which is installed with the OpenLDV Developer’s Kit. It describes
various classes implemented in the OpenLDV Developer Example. You should also note
that the OpenLDV Developer Example contains comments you will find useful as you
review its code

8 OpenLDV Programmer’s Guide

.

OpenLDV Programmer’s Guide 9

2
Using the OpenLDV API

This chapter describes each function that is included in the
OpenLDV API. It also defines guidelines you need to follow
when writing applications that use the OpenLDV API to
access multiple network interfaces.

10 OpenLDV Programmer’s Guide

Referencing the OpenLDV Component
This chapter describes the OpenLDV API functions, including the input and output
parameters associated with each function, and the return codes returned by each
function.

You can develop applications that use the OpenLDV API with any Windows application
development environment that supports the use of standard Windows DLL and COM
components. Echelon has tested the OpenLDV software with Microsoft Visual Studio
.NET® 2003, using the Microsoft Visual C++ component. Echelon will provide technical
assistance for the OpenLDV API only if you are developing your application with
Microsoft Visual Studio .NET 2003, using the Microsoft Visual C++ component.

In order to develop with the OpenLDV API, you must install the OpenLDV Developer’s
Kit (OpenLDV-DK.zip), as described in Chapter 1. During this procedure, you should
have extracted the ldv32.h and ldv32.lib files to the
C:\LonWorks\OpenLDV\Include and C:\LonWorks\OpenLDV\Lib folders of your PC.

To develop your OpenLDV application, you must instruct your Windows application
development environment to include the ldv32.h header file, and to link to the
ldv32.lib import library. Consult your development environment’s documentation for
information about linking to external libraries. Once you have performed these steps
(and assuming that the OpenLDV210 runtime installer has been run on your PC), the
OpenLDV interface (LDV32.DLL) will be automatically loaded and dynamically linked to
your application when your application loads. End users of your OpenLDV application do
not need any of the files included in the OpenLDV Developer’s Kit installed on their PC
to use their application. They only need to have the OpenLDV installer installed.

The OpenLDV Developer’s Kit includes the OpenLDV Developer Example, which uses
the functions described in this chapter. This example application should be useful to you
as you begin writing your own OpenLDV application. You will need Microsoft Visual
Studio .NET 2003, with the Microsoft Visual C++ component installed, to compile and
debug the OpenLDV Developer Example. The example application will be extracted to
the C:\LonWorks\OpenLDV\Examples\Example1 folder of your PC when you install
the OpenLDV Developer’s Kit. The OpenLDV Developer Example contains numerous
helpful comments. In addition, Chapter 4 of this document describes the architecture of
the OpenLDV Developer Example, and the different classes it contains.

The OpenLDV API
This section describes each of the functions included in the OpenLDV API, and common
return codes that may be returned by each function. The entire set of return codes that
may be returned by these functions is described in the next section, OpenLDV Return
Codes, on page 16.

ldv_get_version
Summary: Use this function to read the version number of the OpenLDV software

installed on your PC.

Syntax:: LPCSTR ldv_get_version(void)

OpenLDV Programmer’s Guide 11

Remarks: This function returns the version number of the OpenLDV software being
used as a constant string.

ldv_open
Summary: Use this function to establish communication between your application

and a network interface. The function returns a unique handle that you
can provide to the other OpenLDV functions to identify this instance of
the network interface.

Syntax: LDVCode ldv_open(LPCSTR id, short* handle)

 Element Description

 id Identify the network interface to establish
communication with by specifying its name as the
id input parameter. For example,
“x.Default.1MainStreet” could be used to identify
an i.LON 10 that will be opened through xDriver.
Or, “LON1” could be used to identify a PCLTA-10
or PCLTA-20 network interface.

 handle This output parameter will contain a pointer to a
short integer that you will use to identify the
network interface with the other OpenLDV
functions. This handle is only valid if the function
returns LDV_OK.

Remarks: This function returns LDV_OK if the network interface is successfully
opened. In this case, the function will also return a handle that you will
use to identify the network interface with the other OpenLDV functions.
You can use the ldv_close function to close the session with the
network interface.

 When the ldv_open function returns the LDV_OK success code, the
network interface device has been initialized, and has entered the initial
flush state. To start using the network interface, the OpenLDV
application must cancel the flush state with the niFLUSH_CANCEL
immediate network interface command. For more information on
immediate commands, see Immediate Commands on page 27.

 For xDriver-based remote network interfaces that use the Default
xDriver Profile, the name specified as the id parameter should match an
entry created for a device with the LONWORKS Interfaces application in
the Windows Control Panel. See Chapter 2 of the OpenLDV
Programmer’s Guide, xDriver Supplement for more information on this.
If you do not specify a valid network interface name as the id parameter
when you call this function, or if the network interface referenced by the
id parameter cannot be found, the LDV_INVALID_DEVICE_ID or
LDVX_INVALID_XDRIVER return codes will be returned.

 Each network interface can only be part of one OpenLDV session at a
time on a given PC. If you invoke this function on a network interface
that is being used by another process on your PC, the function will fail to
execute, and the LDV_ACCESS_DENIED return code will be returned.

12 OpenLDV Programmer’s Guide

 If you use xDriver to open a remote network interface while a remote
client on another PC is using it, the call to ldv_open may initially
appear to have succeeded. However, when you call ldv_read or
ldv_write to read or write a message to the network interface later, the
LDVX_READ_FAILED or LDVX_WRITE_FAILED failure codes will
return, indicating that the session has failed. The timing of this depends
on the setting of the Synchronous Timeout field of the xDriver Profile
handling the session, as well as the setting of the
TcpMaxConnectRetransmissions parameter on the PC running the
application. For more information on xDriver Profiles, see Chapter 3 of
the OpenLDV Programmer’s Guide, xDriver Supplement.

ldv_close
Summary: Use this function to close a network interface that has been previously

initialized with the ldv_open function.

Syntax: LDVCode ldv_close(short handle)

 Element Description

 handle Pass in a handle value identifying the network
interface to be closed as the handle input
parameter. This value was returned as the handle
element when you opened the network interface
with the ldv_open function.

Remarks: Use this function to close an OpenLDV session, which will end
communication between your application and the network interface
involved in the session. This frees any resources assigned to the network
interface, and the handle assigned to the session. This function returns
LDV_OK if the network interface is successfully closed. Once this
happens, other processes on your PC will be able to access the network
interface.

 If you attempt to close a network interface that has not been previously
opened, or has already been closed, the LDV_NOT_OPEN code will be
returned. If the handle parameter you pass to the function is not valid,
the LDV_INVALID_DEVICE_ID code will be returned.

ldv_read
Summary: Use this function to read the next uplink message from a network

interface.

Syntax: LDVCode ldv_read(short handle, void* msg_p, short len)

 Element Description

 handle Pass in a handle value identifying the network
interface to be read from as the handle input
parameter. This value was returned as the handle
element when you opened the network interface
with the ldv_open function.

OpenLDV Programmer’s Guide 13

 msg_p A pointer to a buffer allocated by your application
that will receive the next uplink message. You
must program your application to ensure that a
sufficiently large buffer is available to receive
each message. The length of this buffer is
specified by the len parameter.

 For information on the different uplink messages
you might read with this function, and
descriptions of the application buffer structure
each one uses, see Chapter 3, Sending and
Receiving Messages With OpenLDV.

 len You specify the length of the application buffer to
receive the message, in bytes, as the input len
parameter. The maximum length of a message is
257 bytes, and so Echelon recommends that you
use a buffer length of at least 257 bytes.

Remarks: All messages from a network interface involved in an OpenLDV session
are buffered in the OpenLDV driver until a client application reads them
with this function. You can program your application to poll the network
interface for incoming messages by periodically calling this function. The
function will return LDV_OK to signal that it has successfully read a
message from the network interface. Alternatively, you can use the
ldv_register_event function to set up events that will signal the
receipt of each new message. The ldv_register_event function is
described later in this chapter.

 Although incoming messages are buffered in the OpenLDV driver, the
OpenLDV application must process these messages, and provide suitable
responses to the LONWORKS network, in a timely fashion. The acceptable
duration for this depends on many different attributes of the OpenLDV
session, including the arrival rate of messages from the network, the
number of buffers in the network interface driver involved, and the speed
and current processing load of the PC running your application.
Therefore, the best strategy is for the OpenLDV application to process all
incoming message promptly, and with high priority.

 The ldv_read function will return LDV_NO_MSG_AVAIL if no
messages are currently available to be read from the network interface. It
will return LDV_INVALID_BUF_LEN if the specified buffer is too small
to contain the next incoming message. In this case, you should allocate a
larger buffer to receive the message, and call the function again,
specifying a larger value as the len input parameter. Note that the
maximum length of a message is 257 bytes, and so Echelon recommends
that you use a buffer length of at least 257 bytes.

If the handle parameter you pass to the function is not valid, the
LDV_INVALID_DEVICE_ID code will be returned. If the network
interface referenced by the handle parameter has not been opened by
your process, then the LDV_NOT_OPEN code will be returned if the
handle references a local network interface. If the handle references a
remote network interface, the LDVX_READ_FAILED code will be
returned.

14 OpenLDV Programmer’s Guide

ldv_write
Summary: Use this function to write a message to the network interface, or to send a

message through the network interface to a device on the network.

Syntax: LDVCode ldv_write(short handle, void* msg_p, short len)

 Element Description

 handle Pass in a handle value identifying the network
interface to be written to as the handle input
parameter. This value was returned as the handle
element when you opened the network interface
with the ldv_open function.

 msg_p This input parameter should contain a pointer to
a buffer which contains the message to be written
to the network interface.

 For information on the different message
commands you can send with this function, and
descriptions of the application buffer structure
each one requires, see Chapter 3, Sending and
Receiving Messages With OpenLDV.

 len This input parameter should specify the length of
the message to be written. Note that this might
not match the length of buffer referenced by the
msg_p parameter. The len parameter should
reflect how many bytes will be written to the
network interface, and should therefore be less
than or equal to the length of the buffer
referenced by the msg_p parameter.

Remarks: This function will return LDV_OK if the message is successfully written
to the network interface.

 If the handle parameter you pass to the function is not valid, the
LDV_INVALID_DEVICE_ID code will be returned. If the network
interface referenced by the handle parameter is not open, then the
LDV_NOT_OPEN code will be returned if it is a local network interface.
If it is a remote network interface, the LDVX_WRITE_FAILED code will
be returned.

ldv_register_event
Summary: Use this function to register a Windows event object that will be signaled

whenever a message is available to be read from a network interface.

Syntax: LDVCode ldv_register_event(short handle, HANDLE event)

 Element Description

 handle Pass in a handle value identifying the network
interface that will cause the Windows event object
to be signaled as the handle input parameter.
This value would have been returned as the

OpenLDV Programmer’s Guide 15

handle element when you opened the network
interface with the ldv_open function.

 event The Windows event object that should be signaled
each time a message is received. You can use the
Windows CreateEvent and CloseHandle functions
to create and destroy a Windows event object
suitable for use with the ldv_register_event
function.

Remarks: Use this function to register for notification of incoming messages from
the network interface. When the network interface receives a message,
the Windows event object referenced by the event parameter will be
signaled. After that, you can use the ldv_read function to read the
message.

 Note that this event signals the availability of one or more messages to be
read. When the Windows event object is signaled, the OpenLDV
application should call the ldv_read function repeatedly, until all
available uplink messages have been read.

 To register another event, call ldv_register_event again with a new
event parameter. You can also call the ldv_register_event function
and specify NULL as the event parameter to disable event notifications
for a network interface.

 As an alternative to using events, you can program your application to
periodically call ldv_read to check if there are any messages to be read
from the network interface. The ldv_read function is described earlier in
this chapter.

 If the handle parameter you pass to the function is not valid, the
LDV_INVALID_DEVICE_ID code will be returned. If the network
interface referenced by the handle parameter is not open, then the
LDV_NOT_OPEN code will be returned. If the function fails to register
the Windows event object for any reason, the
LDVX_REGISTER_FAILED code will be returned.

16 OpenLDV Programmer’s Guide

OpenLDV Return Codes
Table 2.1 describes the return codes that may be returned by the OpenLDV functions.

Table 2.1 OpenLDV Return Codes

Return Code Numeric
Value

Description

LDV_OK 0 The operation completed successfully.

LDV_NOT_FOUND 1 This code will be returned if you call the
ldv_open function to open a network
interface, but you do not specify a valid
device name as the id parameter, or the
device referenced by the id parameter cannot
be found.

LDV_ALREADY_OPEN 2 This return code is obsolete.

LDV_NOT_OPEN 3 The network interface is not open. This code
may be returned if you use the ldv_read or
ldv_write functions to read or write a
message to a network interface, or if you use
the ldv_close function to close a session
with a network interface, and the network
interface has not yet been initialized with
the ldv_open function (or the network
interface has already been closed).

LDV_DEVICE_ERR 4 This code will be returned if a function fails
to execute as a result of a failure to
communicate with the network driver. If you
encounter this return code, you should call
ldv_close to close the network interface.
This will release the resources assigned to
the network driver. Once you have done so,
you can re-open the network interface with
the ldv_open function.

LDV_INVALID_DEVICE_ID 5 This code will be returned if you specify an
invalid device name when opening a network
interface with the ldv_open function, or an
invalid handle when using any of the other
OpenLDV functions. When you invoke the
ldv_open function, you will use the id input
parameter to specify the name of the device
to be opened. Make sure you enter a valid
device ID here. The ldv_open function will
then open the network interface, and return
a handle value you can use to identify the
network interface with the other OpenLDV
functions.

OpenLDV Programmer’s Guide 17

Return Code Numeric
Value

Description

LDV_NO_MSG_AVAIL 6 No message is available to be read. This code
will be returned if you call ldv_read, and
there are no uplink messages from the
network interface that have not yet been
read. You can use the
ldv_register_event function described
earlier in this chapter to receive notification
events when messages are available to be
read from the network interface.

LDV_NO_BUFF_AVAIL 7 No buffer is available. This code will be
returned if you call ldv_write, and there is
no available buffer on the local network
interface to write the message to. In this
case, you should wait until a buffer becomes
available, and try writing the message again.

LDV_NO_RESOURCES 8 No resources are available. This code may be
returned if the OpenLDV API has assigned
too many session handles, or if the PC
running your application is having memory
allocation problems. If you encounter this
return code, you should close any non-
essential processes running on your PC, and
try the operation again.

LDV_INVALID_BUF_LEN 9 This code will be returned if you call
ldv_read to read a message from a network
interface, and the buffer length you specify is
not big enough to contain the next incoming
message. In this case, you need to allocate a
larger buffer to receive the message and then
call ldv_read again, making sure to specify
a larger value as the len input parameter.
The message will remain as the next
incoming message until you successfully read
it with ldv_read.

To avoid this error, Echelon recommends
that you allocate a buffer of at least 257
bytes (the maximum size of an incoming
message) each time you call ldv_read.

LDV_NOT_ENABLED 10 This return code is obsolete.

LDVX_INITIALIZATION_FAILED 11 The remote network interface could not be
initialized. Generally, this code will be
returned if there are configuration problems
on the network interface you are opening, or
on the PC running your application.

18 OpenLDV Programmer’s Guide

Return Code Numeric
Value

Description

LDVX_OPEN_FAILED 12 The remote network interface could not be
opened.

LDVX_CLOSE_FAILED 13 The remote network interface could not be
closed.

LDVX_READ_FAILED 14 The application failed to read the message as
a result of a generic failure during the call to
ldv_read. If you encounter this return code
persistently, you should close the current
session and start a new one, as the current
session may have failed.

LDVX_WRITE_FAILED 15 The application failed to write the message
as a result of a generic failure during the call
to ldv_write. If you encounter this return
code persistently, you should close the
current session and start a new one, as the
current session may have failed.

LDVX_REGISTER_FAILED 16 The application failed to register the
Windows event object for event notification.

LDVX_INVALID_XDRIVER 17 This code will be returned if you attempt to
open an xDriver network interface with the
ldv_open function, and the xDriver Lookup
Extension Component fails to find that
network interface. You should use the
LONWORKS Interfaces application in the
Windows Control Panel to check that the
network interface referenced by the id
parameter exists. See the LONWORKS
Interfaces application’s online help for
information on how to do so. For information
on Lookup Extension Components, see the
OpenLDV Programmer’s Guide, xDriver
Supplement.

LDVX_DEBUG_FAILED 18 This return code is reserved for future use.

LDVX_ACCESS_DENIED 19 This code will be returned if you call
ldv_open to initialize a network interface
that is already involved in another process
on your PC. OpenLDV does not support
concurrent access to network interfaces
between multiple processes on the same PC.
For more information on this, see the next
section, Using the OpenLDV API with
Multiple Threads and Multiple Processes.

OpenLDV Programmer’s Guide 19

Using the OpenLDV API with Multiple Threads and
Multiple Processes
The OpenLDV software supports communication with multiple network interfaces at a
time. However, there are certain restrictions you need to be aware of when writing
applications that use the OpenLDV API to access multiple network interfaces
simultaneously:

1. A single process can access multiple network interfaces simultaneously. However,
concurrent thread access to each network interface should be limited to access by one
writer thread, and by one reader thread. You must program your application to
enforce this restriction, as it is not enforced by the OpenLDV software. See the
OpenLDV Developer Example for a demonstration of the proper use of separate
reader and writer threads.

2. Multiple processes on the same PC cannot access the same network interface
simultaneously. Attempts to access the same network interface by more than one
process on a PC will result in the LDV_ACCESS_DENIED failure code when the
ldv_open function is called.

3. The i.LON 10 Ethernet Adapter and i.LON 100 Internet Server allow a single session
at a time. If you attempt to open such a network interface while another session is
active (usually from another PC), the call to ldv_open may initially appear to have
succeeded. However, when you call ldv_read or ldv_write to read or write a
message to the network interface later, the LDVX_READ_FAILED or
LDVX_WRITE_FAILED return codes will return, indicating that the session has
failed. The timing of this depends on the setting of the Synchronous Timeout field of
the xDriver Profile handling the session, as well as the setting of the
TcpMaxConnectRetransmissions parameter on the PC running the application.
For more information on this, see the description of the ldv_open function earlier in
this chapter.

These are the guidelines you need to follow when writing an application that will access
multiple network interfaces simultaneously. If you follow these guidelines, you should
not have a problem creating such an application.

20 OpenLDV Programmer’s Guide

OpenLDV Programmer’s Guide 21

3
Sending and Receiving

Messages With The OpenLDV
API

This chapter describes the various network interface message
commands your OpenLDV application can send and receive
through a network interface, as well as the application buffer
structure that each type of message requires.

22 OpenLDV Programmer’s Guide

Overview
OpenLDV applications construct outgoing messages using application buffer structures,
and send that data to the interface using the ldv_write function. OpenLDV
applications use the ldv_read function to retrieve data from the interface, using the
same application buffer structures.

This chapter begins with a discussion of the different layers of an OpenLDV application
that handle the transmission and receipt of these messages, and then describes the
formats of the application buffer structures used by those messages. Example code that
defines the formats of these application buffer structures described in this chapter can be
found in the OpenLDVdefinitions.h header file. The OpenLDVdefinitions.h file is
included with the OpenLDV Developer Example, which is described in Chapter 4 of this
document.

OpenLDV Application Architecture
An application that uses the OpenLDV API is called an OpenLDV application. The
OpenLDV application architecture has several layers: the application layer, the
presentation layer, the interface layer, the link layer, and the physical layer.

Figure 3.1 illustrates the different layers and interfaces contained within a typical
OpenLDV application. The sections following Figure 3.1 describe each of these layers in
detail.

OpenLDV Programmer’s Guide 23

SLTA/10 PCLTA/10/20 PCC/10 i.LON 10/100

LonWorks Network

EI
A-

23
2

PC
I B

us

PC
 C

ar
d

Bu
s

Et
he

rn
et

,
In

te
rn

et
SLTA/10 Link

Layer PCLTA Link Layer PCC Link Layer xDriver Link Layer

Physical Layer Interface

OpenLDV API (ldv32.DLL)

Link Layer
Interface

OpenLDV Application

Network Interface API

Interface Layer

Presentation Layer

Presentation
Layer Interface

Application Layer

O
pe

nL
D

V
ap

pl
ic

at
io

n
O

pe
nL

D
V

in
te

rfa
ce

 a
nd

dr
iv

er
 s

of
tw

ar
e

O
pe

nL
D

V-
co

m
pa

tib
le

in
te

rfa
ce

s

OR OR OR

Figure 3.1 OpenLDV Application Architecture

Application Layer
The application layer represents layer 7 of the OSI (Open Systems Interconnection)
reference model developed by ISO (International Standards Organization). This layer
sends data to the LONWORKS network through output network variables and outgoing
application messages, and receives LONWORKS network data through input network
variables and incoming application messages. This layer is where an OpenLDV
application's primary algorithm operates. In general, the bulk of an OpenLDV
application's code is at the application layer.

The OpenLDV API does not explicitly support the application layer as a separate
component. However, the OpenLDV Developer Example contains a fragment architecture
that dispatches incoming messages to an application-specific message dispatcher. For

24 OpenLDV Programmer’s Guide

more information on the OpenLDV Developer Example and the message dispatcher it
employs, see Chapter 4, The OpenLDV Developer Example.

Presentation Layer
The presentation layer represents layer 6 of the OSI (Open Systems Interconnection)
reference model developed by ISO (International Standards Organization). This layer
translates messages between the lower layers implemented by OpenLDV (described in
the following sections) and the easier-to-use presentation format used by the application
layer. For example, all incoming network variable update messages from a network
interface will be recognized by this layer. Following this, the application’s network
variable objects will be updated accordingly, and the application layer will be notified of
the change.

The presentation layer also manages several network management messages and
diagnostics services, such as the responses to QuerySI network management commands.

OpenLDV does not explicitly support the presentation layer as a separate component.
However, the OpenLDV Developer Example contains a fragment architecture that
provides a framework for a presentation layer implementation. The OpenLDV Developer
Example also includes code that handles several network management commands and
diagnostics.

Interface Layer
The interface layer, also referred to as the Network Interface Layer, is used to ensure
reliable delivery of packets between the OpenLDV application and the network interface,
and to execute complete network transactions.

Examples of these network transactions include sending a simple message and awaiting
a transaction completion (success or failure) code, querying some external data and
awaiting one or more responses to that request, replying to incoming requests, and
operations that involve local management and diagnostics of a network interface.

The OpenLDV API does not explicitly implement the interface layer as a separate
component. However, the OpenLDV Developer Example contains an example
implementation of a network interface layer. It also contains code that supports
execution of all transaction types mentioned in the previous paragraph.

Physical Layer
The physical layer interface is the interface between the OpenLDV application and the
network interface. The physical layer interface for an i.LON 10 or i.LON 100 network
interface is an Ethernet connection that uses the TCP/IP protocol. The physical layer
interface for an SLTA-10 is an EIA-232 interface, as described in the Serial LonTalk
Adapter User's Guide. Other network interfaces use a variety of local physical layer
interfaces, such as the PCI bus or the PC Card bus.

Link Layer
The network interface driver implements the link layer to ensure the reliable delivery of
messages between the OpenLDV application and the network interface. The link layer is

OpenLDV Programmer’s Guide 25

hardware-dependent, and varies between the different network interfaces you might use
with an OpenLDV application. For example, a local PCC-10 PC LonTalk Adapter
requires a link layer implementation different than the implementation required to
access an i.LON 100 across the Internet.

In addition, the link layer also implements commands specific to the network interface
being used. For example, the xDriver link layer, which is used for Internet connections to
i.LON 10 and i.LON 100 network interfaces, contains support for strong encryption of
messages, as well as authentication of the communicating endpoints, between an
OpenLDV application and a remote network interface.

Although the link layer implementation is different for most network interfaces, the
OpenLDV application developer does not need to be concerned with the details and
constraints of the various link layer implementations. This is because the driver software
that is delivered and installed with each network interface implements the link layer
interface.

And so regardless of the way the network interface you are using implements the link
layer interface, all you need to do to use the link layer interface to send and receive
messages through the network interface is to call the ldv_read and ldv_write
functions of the OpenLDV API, using the application buffer structures described in this
chapter to format the data you are sending and receiving.

Constructing Link Layer Messages
The ldv_read and ldv_write functions take a msg_p parameter, which is a pointer to
the data that is to be sent for the ldv_write function, or a pointer to the buffer for data
to be received for the ldv_read function. They also take a len parameter, which specifies
the size of that data (or buffer) in bytes. The data exchanged at this level is commonly
referred to as the application buffer structure, although the actual application layer is
further up the stack.

In both cases, the application buffer structure begins with a simple header, the Network
Interface Header. This header contains an indicator for a command and queue in the first
byte, and the length of the data that follows the header in the second byte. An optional,
variable-length data field (as indicated by the header’s length byte) follows the header.

NOTE: If an incoming message contains “0x1a” in the first byte, then the message was
sent from a network interface that is using a Layer 2 image. You cannot use Layer 2
network interface firmware with the OpenLDV software. For more information on the
permitted uses of the OpenLDV software, see Getting Started on page 6.

Queue and Command

Length of Data N

Data[0]

Data[1]

Data[N-1]

D
at

a
pa

yl
oa

d
N

I H
ea

de
r

Figure 3.2 Application Buffer Structure

26 OpenLDV Programmer’s Guide

The queue bits indicate the path by which an incoming message was received, or by
which an outgoing message should leave the network interface. For example, an outgoing
message may use the standard, non-priority output queue or the priority output queue.
Likewise, an incoming message might be received as a response to a pending request, or
it might be an unexpected, normal, incoming message.

Commands that may be used with a specified queue include niCOMM for messages sent
and received from the network, and niNETMGMT for local network management operation
messages sent to the network interface.

Not all commands require queuing, however. Some commands affect the OpenLDV
interface immediately, and therefore do not require queuing. These command are called
Immediate Commands or Non-Queue Commands. For immediate commands, the queue
selection in the NI header is not used to indicate the queue. Instead, the queue selection
and command fields are combined as a single immediate command byte. A couple of
examples of immediate commands are niRESET (to reset the network interface), and
niOFFLINE (to set the network interface offline). For a complete list of the immediate
commands you can use with OpenLDV, see Immediate Commands on page 27.

The OpenLDV Developer Example contains all relevant data type definitions, constants
and enumerations you will require for the construction and understanding of link layer
messaging. The complete application buffer structure is defined as a structure of type
ExpAppBuffer in the OpenLDVdefinitions.h header file. For more information on the
Open LDV Developer Example, see Chapter 4 of this document.

The remainder of this chapter describes the various message commands that are defined
in the OpenLDVdefinitions.h header file included with the OpenLDV Developer
Example, and the application buffer structure that you must use when sending each
message command.

Downlink Commands
A downlink command is a message sent from an OpenLDV application to a network
interface with the ldv_write function. There are several categories of downlink
communication.

• Immediate commands do not require an application output buffer in the network
interface, and are used to control the operation of the network interface itself.
Immediate commands are sent with all queue selection bits cleared.

• Local network management commands are used to configure and control the
Neuron Chip that is part of the network interface. They are sent with the
niNETMGMT network interface command, and are not sent out on the network.

• The OpenLDV application sends application messages, network management and
diagnostics messages, network variable updates, and network variable poll
requests out on the network via the network interface using the niCOMM network
interface command.

• The OpenLDV application also sends messages to the OpenLDV interface that it
generates in response to uplink request messages. These include responses to
uplink network variable poll messages.

• The OpenLDV application sends messages to the OpenLDV interface in response
to certain uplink network management messages that it receives for processing.

OpenLDV Programmer’s Guide 27

For a list of the immediate commands you can use with OpenLDV Release 2.1, and
descriptions of the application buffer structures those messages require, see Immediate
Commands on page 25. For information on the application buffer structures used by all
other messages you might send to a network interface with the OpenLDV, see
Application Buffer Structure on page 33.

Uplink Commands
An uplink command is a message read from a network interface by an OpenLDV
application with the ldv_read function. There are several classes of uplink
communication.

• Immediate commands are sent to the OpenLDV application by the network
interface to indicate the current operational status of the network interface.

• Local network management responses are sent to the OpenLDV application when
it issues a local network management request to the network interface.

• The OpenLDV interface passes certain network management messages to the
OpenLDV application for processing.

• The network interface passes uplink application messages, network variable
updates and network variable poll requests to the OpenLDV interface when they
are received from the network.

• The network interface also passes completion events to the OpenLDV interface at
the conclusion of every downlink message initiated with the niCOMM network
interface command. If the downlink message was a request message, the network
driver also passes up any responses it may have received from the network.

For a list of the immediate commands you can use with OpenLDV Release 2.1, and
descriptions of the application buffer structures those messages require, see Immediate
Commands on page 25. For information on the application buffer structures used by all
other messages you might read from a network interface with the OpenLDV API, see
Application Buffer Structure on page 33.

Immediate Commands
Most immediate commands are just two bytes long. This includes a command byte
followed by a trailing zero, which indicates there is no further data in the command (i.e.
the Data Payload section of the message, as depicted in Figure 3.2, is empty). However,
some of these commands, such as niXDRVESC (xDriver escape command), do require
additional data after the first two bytes.

Immediate commands may be sent to the OpenLDV interface using the ldv_write
function. In addition, the OpenLDV Developer Example also includes an example
implementation of a network interface API. The NiSendImmediate function, which is
part of this example API, may be used to send immediate commands more conveniently.

Literals for the supported immediate commands are defined by the enumeration type
definition NI_NoQueueCmd used in the field NI_Hdr.q of the application layer header.
Table 3.1 lists the immediate network interface commands you can use with OpenLDV
Release 2.1.

28 OpenLDV Programmer’s Guide

Table 3.1 Immediate Network Interface Commands
Network Interface

Command
Value Uplink (U)

or Downlink
(D)

Description

niRESET 0x50 U+D This code is sent uplink
whenever the network
interface has executed a
hardware or software reset.
When this code is sent
downlink, the network
interface resets immediately.

niFLUSH_CANCEL 0x60 D This code cancels any flush
operation posted in the
network interface with the
niFLUSH command. The
OpenLDV application should
issue this command
following a successful
completion of the ldv_open
function. The NiInit
function, which is part of the
OpenLDV Developer
Example described in
Chapter 4 of this document,
may be used to open a
connection to a network
interface more conveniently.

niFLUSH_COMPLETE 0x60 U This code informs the
OpenLDV application that a
flush operation posted with
the niFLUSH command has
completed.

OpenLDV Programmer’s Guide 29

Network Interface
Command

Value Uplink (U)
or Downlink

(D)

Description

niONLINE 0x70 D This code sets the network
interface’s online flag, and
sets the device to the online
state. This code should be
sent by the OpenLDV
application whenever it goes
online.

Generally, the OpenLDV
application will receive an
uplink network management
message indicating that it
should go online, and the
niONLINE command should
be sent, from a network
management tool or plug-in.
This uplink message is a
standard Set Node Mode
network management
command (message code
0x6C) with mode set to
ONLINE.

niOFFLINE 0x80 D This code clears the network
interface’s online flag, and
sets the device to the offline
state. This code should be
sent by the OpenLDV
application whenever it goes
offline.

Generally, the OpenLDV
application will receive an
uplink network management
message indicating that it
should go offline, and the
niOFFLINE command
should be sent, from a
network management tool or
plug-in. This uplink message
is a standard Set Node Mode
network management
command (message code
0x6C) with mode set to
OFFLINE.

30 OpenLDV Programmer’s Guide

Network Interface
Command

Value Uplink (U)
or Downlink

(D)

Description

niFLUSH 0x90 D This code causes the
network interface to enter
the FLUSH state, which will
cause it to send any pending
downlink messages. Once all
pending downlink messages
are completed, the network
interface will respond with
the niFLUSH_COMPLETE
command. No further
downlink messages can be
processed until the
OpenLDV application
cancels the flush state with
the niFLUSH_CANCEL
command.

niFLUSH_IGN 0xA0 D Obsolete.

niSLEEP 0xB0 D Obsolete.

niSERVICE 0xE6 D When this code is sent
downlink, the network
interface sends out a service
pin message in exactly the
same way as it would if the
service pin were grounded.
Some network interfaces,
such as the i.LON 100, do
not support this command.

OpenLDV Programmer’s Guide 31

Network Interface
Command

Value Uplink (U)
or Downlink

(D)

Description

niXDRVESC

0xEF U+D This code applies to xDriver
network interfaces only.
Unlike most of the other
immediate network interface
commands, this message
must contain a data field, in
addition to the command
byte and the length byte.
The first byte of the data
field denotes an xDriver-
specific command. The
xDriver-specific commands
are described in more detail
in Table 3.2.

For information on other
immediate commands that
are specific to a particular
network interface, see the
documentation of that
network interface. For
example, the Power Line
SLTA Adapter and Power
Line PSG/3 User’s Guide
contains descriptions of
commands specific to the
SLTA/PSG interface
products that can be used to
control dial-up connections
via a modem.

Table 3.2 describes the xDriver-specific commands that you can use with the niXDRVESC
immediate command. The niXDRVESC immediate command is described in Table 3.1.

NOTE: When using these commands to enable encryption, you should be aware that
encryption is very processor-intensive for the network interface, and should only be used
if you are transferring highly secret information, such as LonTalk authentication keys,
over the network. Other security features, such as MD5 authentication and sequence
numbers, can be used to protect the link between your application and a network
interface from random access and replay attacks.

32 OpenLDV Programmer’s Guide

Table 3.2 xDriver Specific Commands

xDriver Command Description

LDVX_NICMD_ENCRYPTION_ON_SEND=0x02 Use this command to turn on RC4
encryption for all subsequent
messages sent to the network
interfaces. Once you send this
command, all subsequent messages
will be encrypted until the
LDVX_NICMD_ENCRYPTION_OFF_SEND
command is sent, or the session is
terminated.

On behalf of the calling application,
the xDriver subsystem will probe the
network interface to determine if it
supports RC4 encryption. If the
network interface does not support
RC4 encryption, this command will
be silently ignored. In addition, this
command has no effect if encryption
has already been turned on.

LDVX_NICMD_ENCRYPTION_OFF_SEND=0x03 Use this command to turn off RC4
encryption for all subsequent
messages sent to the network
interface. This command has no effect
if encryption has already been turned
off.

LDVX_NICMD_ENCRYPTION_ON_RECEIVE=0x04 Use this command to turn on RC4
encryption for all subsequent
messages sent from the network
interface. Once you send this
command, all subsequent messages
will be encrypted until the
LDVX_NICMD_ENCRYPTION_OFF_RECEIVE
command is sent, or the session is
terminated. This command has no
effect if encryption has already been
turned on.

On behalf of the calling application,
the xDriver subsystem will probe the
network interface to determine if it
supports RC4 encryption. If the
network interface does not support
RC4 encryption, this command will
be silently ignored. In addition, this
command has no effect if encryption
has already been turned on

OpenLDV Programmer’s Guide 33

xDriver Command Description

LDVX_NICMD_ENCRYPTION_OFF_RECEIVE=0x05 Use this command to turn off RC
encryption for all subsequent
messages sent by a network
interface. This command has no effect
if encryption has already been turned
off.

Application Buffer Structure
Most immediate commands use only the first byte—the cmd and queue fields—of the
application buffer. Some immediate commands, such as niXDRVESC, also include
additional data, as specified by that network interface command.

All other downlink and uplink message commands use the complete application buffer
structure, which is described in this section. This structure is shown in Figure 3.3. The
sections following Figure 3.3 describe the various parts of the application buffer structure
in detail.

length

cmd queue

ExpMsgHdr

SendAddrDtl
or

RcvAddrDtl
or

RespAddrDtl

UnprocessedNV
or

ExplicitMsg

length

Message Header
size = 3

Network Address
size = 11

Message Data
size varies

Application Layer
Header
size = 2

7 6 5 4 3 2 1 0

Figure 3.3 Application Buffer Structure

Application Layer Header
For non-immediate commands, the application layer header contains the network
interface command, and a byte indicating the length of the rest of the message. The most
significant nibble of the network interface command contains the command code niCOMM
(for network messages) or niNETMGMT (for local network interfaces messages), and the

34 OpenLDV Programmer’s Guide

least significant nibble contains the queue code. These nibbles combine to form the
command/queue byte, which is the network interface command.

The OpenLDV application sends these commands using the ldv_write function, and
receives them via the ldv_read function. In addition, the OpenLDV Developer Example
contains an example implementation of a network interface API. The NiSendMsgWait
and NiSendResponse functions, part of this example API, may be used to send queued
commands more conveniently, and the application-specific message dispatcher, also
implemented as part of the OpenLDV Developer Example, may be used to receive these
messages.

The command codes are defined by the enumeration type definition NI_QueueCmd used
in the field NI_Hdr.q.q_cmd of the application layer header, and the queue codes are
defined by the enumeration type definition NI_Queue used in the field
NI_Hdr.q.queue. The OpenLDV Developer Example contains a utility function,
COpenLDVni::msgHdrInit, that computes the correct value for the command/queue
byte based on the address type (local or remote), the service type, and the priority
attribute of the message.

Table 3.3 lists the various command codes that are used with OpenLDV Release 2.1.

Table 3.3 Command and Queue Values for the Application Layer Header

Bits
7..4

Bits
3..0

Code Uplink (U) or
Downlink (D)

Description

1 niCOMM U+D
Used for messages sent to and
received from the network.

2 niNETMGMT U+D
Used for messages sent to and
received from the network interface.

2 niTQ D

Used for downlink non-priority
messages using acknowledged,
request and repeated services.

3 niTQ_P D

Used for downlink priority messages
using acknowledged, request and
repeated services.

4 niNTQ D

Used for downlink non-priority
messages using unacknowledged
service, as well as responses.

5 niNTQ_P D

Used for downlink priority messages
using unacknowledged service, as
well as responses.

6 niRESPONSE U

Used for uplink response messages
and completion codes.

8 niINCOMING U

Used for uplink messages received
from the network or the network
interface.

OpenLDV Programmer’s Guide 35

Message Header
The message header describes the various attributes of the LonTalk message contained
in the data field. The message header field is defined by the structure ExpMsgHdr,
which is displayed below. For details on the various services at layers 2 through 5 of the
LonTalk protocol, see the ANSI/EIA/CEA 709.1 protocol specification.

ExpMsgHdr
7 6 5 4 3 2 1 0

0 service type auth tag
Priority Path compl code addr

mode
alt path pool resp

 length

The service type field contains one of the following values, depending on which LonTalk
protocol service is to be used for delivery of the message: ACKD (0) for the acknowledged
messaging service, UNACKD_RPT (1) for the unacknowledged, repeat messaging service,
UNACKD (2) for the unacknowledged messaging service, or REQUEST (3) for the
request/response messaging service.

The auth field is set on a downlink message header if the receiver must authenticate the
message using LonTalk authentication. It is set on an uplink message header if the
message has been authenticated by the network interface. If authentication is not
enabled on the network interface involved in the session, this field should be set to 0.

The OpenLDV application uses the tag field on a downlink message to correlate returned
responses and completion events. For explicitly addressed messages, this may be set to
any value in the range 0-14, and the same value is returned in the corresponding
responses and completion events. In this case, the tag is also known as the reference ID.
In a downlink implicitly addressed message, the tag field is used as an index into the
address table of the Neuron Chip on the network interface to indicate the destination
address of the message. In this case, the tag must be in the range of 0-14. For more
details on the address table, see the ANSI/EIA/CEA 709.1 protocol specification.

For an uplink message, the tag field indicates the index into the receive transaction
database for acknowledged, repeated and request messages. When the OpenLDV
application generates a response to an uplink request message, it must save the tag
value from the request, and return the same tag value in the downlink response
message.

The priority field is set to indicate a message delivered with priority media access, either
uplink or downlink. When the OpenLDV application generates a response to an uplink
request message, it saves the priority attribute from the request, and returns the
response with the same priority. If the network interface is configured without priority
buffers, and a priority request is received, the OpenLDV application sets the priority bit
in the response, but sends the response in a non-priority buffer.

The path field is set to one if the message should use the alternate path, and zero if it
should use the primary path. This feature is enabled only if the alternate path bit,
described later in this section, is set. Alternate path is a feature of certain special-
purpose mode LONWORKS transceivers.

36 OpenLDV Programmer’s Guide

The completion code field is set in an uplink completion event buffer. Completion code
events are returned to the OpenLDV application for every downlink (niCOMM) network
message sent previously. The MSG_SUCCEEDS (1) value indicates that the message was
successfully delivered. The MSG_FAILS (2) value indicates that the message failed to be
delivered. The completion code field should be set to MSG_NOT_COMPL (0) for application
layer buffers that are not completion events. Messages sent to the network driver with
the niNETMGMT network interface command do not have associated completion events.

The address mode bit should be set to one for an explicitly addressed downlink message,
in which case the network address field should have a SendAddrDtl structure defined in
it. This is described in the next section. The address mode field should be set to zero for
an implicitly addressed downlink message, in which case the network address field (also
described in the next section) is ignored, although it must be present. In this case, the tag
field is used as the index into the address table of the Neuron Chip in the network
interface for the destination address. The address mode field should be set to zero for
downlink responses to uplink request messages and network variable polls. For more
details on the address table, see the ANSI/EIA/CEA 709.1 protocol specification. The
address mode bit is ignored for local network management (niNETMGMT) messages.

If the alternate path bit is set, the message will be delivered on the path specified in the
path bit, otherwise it will be delivered on the default path. See the description of the path
bit earlier in this section for more details.

The pool bit should be set to zero for a downlink message.

The response bit should be set to one in a downlink response message, and clear
otherwise. If it is set in an uplink message, the message is a response to a previously sent
request.

The length field in the message header is distinct from the length field in the application
layer header. The length field the message header tells how many bytes there are in the
application buffer, which is the size of the network address field plus the size of the data
field.

Network Address
The network address specifies the address for network (niCOMM) messages, which
includes application messages as well as network variable messages. The network
address is not used for local (niNETMGMT) messages, or for implicitly addressed downlink
messages, but it must be present in the application buffer. The type definition
ExplicitAddr is a union of three structures, depending on the type of message buffer.
For more details on address modes and the corresponding structures, see the
ANSI/EIA/CEA 709.1 protocol specification.

The OpenLDV Developer Example also contains an example definition of the related
structures in the OpenLDVdefinitions.h header file.

SendAddrDtl
This structure is used for a downlink, explicitly addressed message, and contains the
destination address of the downlink message in one of four formats, depending on the
address mode. The address modes for sending explicitly addressed messages are

OpenLDV Programmer’s Guide 37

broadcast, group, subnet/node, Neuron ID, local and implicit. The SendAddrDtl formats
for uplink messages sent using each of these address modes are displayed below.

msb lsb

Format

SendAddrDtl
Destination Address For Broadcast

Addressing

0

Domain

tx_timer

Retryrpt_timer

Subnet

Reserved

Destimation
Address

0 0 0 0 0 1 1

Backlog

38 OpenLDV Programmer’s Guide

msb lsb

Format

SendAddrDtl
Destination Address For Group

Addressing

Size1

Domain Member

tx_timer

Retryrpt_timer

Group

Reserved

Destimation
Address

msb lsb

Format

SendAddrDtl
Destination Address For Subnet/Node

Addressing

0

Domain Node

tx_timer

Retryrpt_timer

Subnet

Reserved

Destimation
Address

0 0 0 0 0 0 1

OpenLDV Programmer’s Guide 39

msb lsb

Format

SendAddrDtl
Destination Address For Neuron ID

Addressing

0

Domain

tx_timer

Retryrpt_timer

Subnet

Neuron ID

Destimation
Address

0 0 0 0 0 1 0

0 1 1 1 1 1 1 1

msb lsb

Format

Reserved

SendAddrDtl
Destination Address For Local

Addressing

Destination
Address

40 OpenLDV Programmer’s Guide

0 1 1 1 1 1 1 0

msb lsb

Format

Reserved

SendAddrDtl
Destination Address For Implicit

Addressing

Destination
Address

msg_tag

RcvAddrDtl
This structure is used for uplink messages addressed to the network interface and
intended for the OpenLDV application. The structure contains the source address of the
node sending the message, and the destination address of the uplink message in one of
four formats, depending on the address mode. The address modes for received addresses
are broadcast, group, subnet/node, and Neuron ID. The RcvAddrDtl structures for
uplink messages sent using each of these address modes are displayed below.

OpenLDV Programmer’s Guide 41

msb lsb

Format

RcvAddrDtl
Received Address For Broadcast

Addressing

Domain

Node

Subnet

Reserved

Source
Address

0 0 0 0 0 0flex_domain

Destination
Address

Subnet

msb lsb

Format

RcvAddrDtl
Received Address For Group Addressing

Domain

Node

Subnet

Reserved

Source
Address

0 0 0 0 0 1flex_domain

Destination
Address

Group

42 OpenLDV Programmer’s Guide

msb lsb

Format

RcvAddrDtl
Received Address For Subnet/Node

Addressing

Domain

Node

Subnet

Reserved

Source
Address

0 0 0 0 1 0flex_domain

Destination
Address

Subnet

Node

msb lsb

Format

RcvAddrDtl
Received Address For Neuron ID

Addressing

Domain

Node

Subnet

Neuron ID

Source
Address

0 0 0 0 1 1flex_domain

Destination
Address

Subnet

Reserved

RespAddrDtl
This structure is used for an uplink message in response to a previous downlink request.
This field contains the source address of the node sending the response, and the
destination address of the uplink message in one of two formats, depending on the
address mode. The address modes for received responses are group and subnet/node. The

OpenLDV Programmer’s Guide 43

RespAddrDtl structures for response messages sent using each of these address modes
are displayed below.

msb lsb

Format

RespAddrDtl
Response Address For Group

Addressing

Domain

Node

Subnet

Reserved

Source
Address

flex_domain

Destination
Address

Subnet

Node

0

Group

Member

msb lsb

Format

RespAddrDtl
Response Address For Subnet/Node

Addressing

Domain

Node

Subnet

Reserved

Source
Address

flex_domain

Destination
Address

Subnet

Node

1

1

44 OpenLDV Programmer’s Guide

Message Data
The data field contains the application data to be transferred within a message. The
format depends on the type of message, and is defined by either the UnprocessedNV or
ExplicitMsg structures.

UnprocessedNV
7 6 5 4 3 2 1 0

1 dir NV selector hi
 NV selector lo

NV

 data

Depending on the context, this form of the data field is used for network variable update
messages, poll messages, poll responses or completion events. A network variable update
message and a poll response contains 1-31 bytes of network variable data. A network
variable poll request message and a completion event contain no data, only the selector
in the first two bytes.

The direction bit should be set to one when polling an output network variable, and zero
when updating or polling an input network variable.

An OpenLDV application that sends a downlink network variable message must retrieve
the appropriate network variable selector from its network variable configuration table
or alias table. Similarly, when an uplink network variable message arrives, the
OpenLDV application looks up the network variable selector from the message in its
network variable configuration table or alias table to determine which network variable
was addressed.

For more extensive details on network variable configuration, messages, and alias tables,
see the ANSI/EIA/CEA 709.1 protocol specification.

ExplicitMsg
7 6 5 4 3 2 1 0

0 Message code

Message

 data

Depending on the context, this form of the data field is used for downlink messages,
uplink messages, or completion events. A downlink or uplink message contains 0-228
bytes of data. A completion event contains only the message code and the first byte of the
data. Message codes for non-response messages are allocated as listed in Table 3.4.

Table 3.4 Message Codes for Application Messages

Message type Message codes (hex)

Application message 00 .. 3F

OpenLDV Programmer’s Guide 45

Message type Message codes (hex)

Foreign message 40 .. 4F

Network diagnostic message 50 .. 5F

Network management message 60 .. 73

Router configuration message (not used by
the network interface)

74 .. 7C

Network management escape code 7D

Router far side escape code (not used by the
network interface)

7E

Service pin message 7F

Sending Messages to the Network Interface
Some messages may be sent to the network interface itself. For example, the
NM_leave_domain (0x64) message may be sent to the network interface itself using
the niNETMGMT network interface command. This message is useful when preparing for
the termination of an OpenLDV application, and causes the interface to be de-configured
as the OpenLDV application terminates.

Receiving Messages from the Network Interface
Application, foreign, and network variable messages are passed unchanged to the
OpenLDV application. Most network management messages received are handled by the
network interface itself. However, the network management messages listed in Table 3.5
may be passed to the OpenLDV application, which should respond appropriately. See the
ANSI/EIA/CEA 709.1 protocol specification for details about these network management
and diagnostics messages.

The OpenLDV Developer Example also contains an example framework for recognizing
and processing these messages. See the discussion of the application-specific message
dispatcher in the next chapter for details.

Table 3.5 Network Management Messages Passed to the OpenLDV Application

Message Code Comments

Query NV Config 0x68 OpenLDV application responds with data from
the network variable configuration table or alias
table.

Update NV
Config

0x6B OpenLDV application writes its own network
variable configuration or alias table,
respectively.

Set Node Mode 0x6C On-line and off-line only. OpenLDV application
sends corresponding immediate command
(niONLINE or niOFFLINE) to the network
interface.

46 OpenLDV Programmer’s Guide

Message Code Comments

Wink 0x70 OpenLDV application indicates receipt of
message to user, or handles a request to manage
its self-documentation data.

Query SI 0x72 OpenLDV application responds with self-
identification and self-documentation data.

NV Fetch 0x73 OpenLDV application responds with network
variable data.

OpenLDV Programmer’s Guide 47

4
The OpenLDV Developer

Example

This chapter introduces the OpenLDV Developer Example
included with OpenLDV Release 2.1, and describes the
various classes implemented in the example.

48 OpenLDV Programmer’s Guide

The OpenLDV Developer Example
OpenLDV Release 2.1 includes the OpenLDV Developer Example, an example
application that uses the OpenLDV API. The example application will be placed in the
C:\LonWorks\OpenLDV\Examples\Example1 folder of your PC when you extract the
files included in the OpenLDV Developer’s Kit. The example application contains
comments that should assist you when reviewing the code. This chapter describes the
structure of the example application, and the different classes it contains.

The OpenLDV Developer Example is a simple, dialog-based, Windows application
written in C++ with Microsoft Foundation Classes (MFC), using Microsoft Visual Studio
.NET 2003. The example illustrates how a Windows application can access the OpenLDV
API, and demonstrates a wide range of simple to complex network operations.

Common Definitions
The OpenLDV API functions are specified in the standard OpenLDV header file
ldv32.h. The OpenLDV Developer Example provides additional definitions of constants,
enumerations, and aggregated types in the OpenLDVdefinitions.h header file. These
definitions are used throughout the remainder of the example application.

COpenLDVapi and COpenLDVtrace
A COpenLDVapi class is implemented in the example application to wrap the OpenLDV
API functions. The COpenLDVapi class provides a simple interface via four methods:
Open, Close, Read and Write. Compared to the standard OpenLDV functions
(ldv_* functions), this class provides thread-safe, synchronized access to the downlink
message path (ldv_write), and implements a reader thread COpenLDVreader, which
queries the uplink message path (ldv_read) and supplies data to a protected queue. The
COpenLDVapi::Read function queries that queue, thereby providing coordinated access
to both uplink and downlink messaging.

The example application also implements a COpenLDVtrace class. The COpenLDVtrace
class illustrates how an OpenLDV application may provide hooks to debugging or tracing
into the low level portion of the OpenLDV application. The example implementation,
COpenLDVtrace, provides a packet dump of all incoming and outgoing packets that is
shown in the application's user interface.

The related header files, OpenLDVapi.h and OpenLDVtrace.h, contain extensive
details about these classes and their usage.

COpenLDVni, Message Pumps, and Message Dispatchers
A COpenLDVni class is also provided. This class implements the core functions of a
network interface API. The functions included in this class are NiInit,
NiSendMsgWait, NiSendImmediate, NiGetNextResponse, NiSendResponse,
NiClose, or NiEncryption.

The OpenLDVni.h header file contains extensive details about this class and its usage.

OpenLDV Programmer’s Guide 49

The COpenLDVni class also implements and controls a worker thread,
COpenLDVmessagePump. This thread operates as a message pump, receiving and
dispatching uplink messages from the COpenLDVapi class.

To dispatch an incoming message, a message dispatcher must understand the message,
take the appropriate action local to the OpenLDV application, and then respond
accordingly to the network. For example, the incoming message might describe an update
to an input network variable. The message dispatcher for the application receiving this
message must recognize the message as a network variable update message, and route
the new network variable data to the relevant application storage. Other message types
might also cause interaction with the network. For example, the application might
receive a network variable fetch message. In this case, the dispatcher will have to obtain
the current value of the network variable in question, and report the value to the
network by constructing an appropriate response message.

The message pump thread in this example application uses the functions provided by the
COpenLDVni and COpenLDVapi classes to retrieve and dispatch messages. Ultimately,
these messages will be sent via a NiDispatch method. The COpenLDVni class specifies,
but does not implement, such a NiDispatch method. Therefore, the COpenLDVni class
is an abstract C++ class.

The OpenLDV Developer Example implements an example for an application-specific
message dispatcher, COpenLDVexampleDispatcher, which is derived from
COpenLDVni and that implements the NiDispatch function.

The example dispatcher implements handlers for a variety of messages including
handlers for selected network management and diagnostics messages such as
HandleQuerySnvt, HandleSetNodeMode, or HandleServicePin.

When writing an OpenLDV application, the COpenLDVexampleDispatcher class may
serve as an example, but the dispatcher must be re-written and adopted to each specific
OpenLDV application.

The header and implementation files OpenLDVexampleDispatcher.h and
OpenLDVexampleDispatcher.cpp, respectively, contain extensive comments
describing the details of the implementation.

Toolkits and User Interface
The OpenLDV Developer Example provides a simple user interface based on a single
dialog. The OpenLDV ExampleDlg.cpp implementation file contains event handlers
related to that user interface, such as the various “click” event handlers related to
buttons. The same COpenLDV ExampleDlg class also provides example instantiation of
the above classes.

For most operations, however, the dialog uses the COpenLDVtools class as a toolkit.
COpenLDVtools provides a simple interface, implementing selected operations such as
QueryDomain, LeaveDomain, or UpdateDomain. The COpenLDvtools class also
implements a FindDevices function, demonstrating the implementation of multi-
transaction sequences within the context of this framework.

 Developer Example Diagram

50 OpenLDV Programmer’s Guide

Figure 4.1 describes the hierarchy of the classes introduced in this chapter:

Figure 4.1 OpenLDV Developer Example Class Hierarchy

ldv32.dll ldv_open, ldv_close, ldv_read, ldv_write,
ldv_register_event

COpenLDVapi Open, Close, Read, Write,
RegisterEvent, UnregisterEvent

COpenLDVreader
Start, Stop, Pause

PQueue<>
push, front, pop

COpenLDVtrace Open, Close, Read, Write,
RegisterEvent, UnregisterEvent

COpenLDVni NiInit, NiClose, NiSendMsgWait, NiSendResponse,
NiSendImmediate, …

NiPauseMessagePump, NiContinueMessagePump
NiDispatch

COpenLDVmessagePump
Start, Stop, Pause

COpenLDVexampleDispatcher
NiDispatch

COpenLDVtools
QueryDomain, LeaveDomain, ...

ldv_register_event ::SetEvent

(Un-)RegisterEvent ::SetEvent

NiDispatch

Ap
pl

ic
at

io
n-

sp
ec

ifi
c

im
pl

em
en

ta
tio

n
an

d
ex

te
ns

io
ns

O
pe

nL
D

V
ex

te
nd

ed
 fr

am
ew

or
k

an
d

ne
tw

or
k

in
te

rfa
ce

 A
PI

O
pe

nL
D

V
ba

se
 fu

nc
tio

ns

Ab
st

ra
ct

 c
la

ss
(N

iD
is

pa
tc

h
is

 p
ur

e
vi

rtu
al

)
O

ve
rri

di
ng

vi
rtu

al
s

in
C

O
pe

nL
D

Va
pi

	Purpose
	Audience
	Hardware and Software Requirements
	Table of Contents
	Introduction to the OpenLDV API
	Introduction to the OpenLDV API
	Installing the OpenLDV Software
	Modifying the OpenLDV Installation Path
	Modifying the Reboot Behavior When OpenLDV 2.1 Is a Nested Installation

	Getting Started

	Using the OpenLDV API
	Referencing the OpenLDV Component
	The OpenLDV API
	ldv_get_version
	ldv_open
	ldv_close
	ldv_read
	ldv_write
	ldv_register_event

	OpenLDV Return Codes
	Using the OpenLDV API with Multiple Threads and Multiple Processes

	Sending and Receiving Messages With The OpenLDV API
	Overview
	OpenLDV Application Architecture
	Application Layer
	Presentation Layer
	Interface Layer
	Physical Layer
	Link Layer

	Constructing Link Layer Messages
	Downlink Commands
	Uplink Commands

	Immediate Commands
	Application Buffer Structure
	Application Layer Header
	Message Header
	ExpMsgHdr

	Network Address
	SendAddrDtl
	RcvAddrDtl
	RespAddrDtl

	Message Data
	UnprocessedNV
	ExplicitMsg

	Sending Messages to the Network Interface
	Receiving Messages from the Network Interface

	The OpenLDV Developer Example
	The OpenLDV Developer Example
	Common Definitions
	COpenLDVapi and COpenLDVtrace
	COpenLDVni, Message Pumps, and Message Dispatchers
	Toolkits and User Interface
	Developer Example Diagram

