LONWORKS®
Microprocessor
Interface
Program(MIP)
User's Guide

Revision 3

ECHELON

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of
Echelon Corporation.

Echelon, LON, Neuron, LonBuilder, LonManager,
LonTalk, LONWORKS, 3120, and 3150 are registered
trademarks of Echelon Corporation. Other names may be
trademarks of their respective companies.

Document No. 29500

Printed in the United States of America.
Copyright ©1992, 1993, 1995 by Echelon Corporation

Echelon Corporation
4015 Miranda Avenue
Palo Alto, California
94304

Preface

This document describes how to build a LONWORKS® network
interface using the LONWORKS Microprocessor Interface Program
(MIP). The MIP is firmware for the Neuron Chip that transforms
the Neuron Chip into a communications coprocessor for an attached
host processor. The MIP moves the upper layers of the LonTalk®
Protocol from the Neuron Chip to the attached host. Network
interfaces based on the MIP can be used to create host applications on
a variety of host processors including PCs, work-stations,
microprocessors, and microcontrollers.

Three MIPs are described in this document. The first two, the
MIP/P20 and MIP/P50, use an 11-bit parallel interface to the host
processor. The third, the MIP/DPS, uses a dual-ported RAM with
hardware semaphores for communicating with the host processor.
The MIP/P20 and MIP/P50 are included with the Model 23200
LONWORKS MIP/P20 and MIP/P50 Developer's Kit. The MIP/DPS is
included with the Model 23210 LONWORKS MIP/DPS Developer's Kit.

Microprocessor Interface Program User's Guide i

Audience

The LONWORKS MIP User's Guide is intended for LONWORKS developers
who are developing one of the following:

e a LONWORKS network interface that will be embedded within an
application node that includes a host processor; the network interface
provides an interface between the host processor and a LONWORKS network

¢ a generic LONWORKS network interface that will be provided for use by
third parties who will integrate the network interface with a host processor
to create an application node

Programming examples are shown in ANSI C, however, network drivers and
host applications may be written in any language that can implement the
LONWORKS network interface protocol. Readers of this guide developing
network drivers or host applications should have C programming experience
and be familiar with LONWORKS concepts and LONWORKS application node
development. See Related Manuals later in the preface for a list of LONWORKS
documentation.

A LonBuilder Developer's Workbench, or a LONWORKS NodeBuilder
Development Tool is required to develop a network interface based on any
version of the MIP. Once a network interface is developed, these tools are not
required to create a host application.

Content
The LONWORKS MIP User’s Guide has six chapters as follows:

e Chapter 1, MIP Overview, provides an introduction to the MIP.

e Chapter 2, Installing the MIP Software, describes how to install the MIP
software on a PC.

¢ Chapter 3, Creating a MIP Image, describes the process of building the MIP
image that will be loaded onto a network interface.

e Chapter 4, Building a Network Interface, describes the process of building a
network interface with the MIP.

e Chapter 5, Creating a Network Driver, describes the process of building a
network driver for a host that is to be connected to a MIP-based network
interface.

¢ Chapter 6, Installing the DOS Network Driver, describes how a MIP
network driver is installed on a DOS host.

‘Related Manuals

The following manuals and engineering bulletins provide supplemental
information to the material in this guide:

e The LONWORKS Host Application Programmer’s Guide (document no.
29400) describes how to create LONWORKS host applications. Host
applications are application programs running on hosts other than Neuron
Chips that use the LonTalk Protocol to communicate with nodes on a

LONWORKS network. Network interfaces based on the MIP provide the
communications interface between a host application and a LONWORKS
network.

¢ The Parallel I/0 Interface to the Neuron Chip engineering bulletin
describes the hardware interface used by the MIP/P20 and MIP/P50.

e The LonBuilder User's Guide lists and describes all tasks related to
LONWORKS application development using the LonBuilder Developer's
Workbench. Refer to that guide for detailed information on the user
interface to the LonBuilder software.

¢ The NodeBuilder User’s Guide lists and describes all tasks related to
LONWORKS application development using the NodeBuilder Development
Tool. Refer to that guide for detailed information on the user interface to the
NodeBuilder software.

¢ The Neuron C Programmer’'s Guide outlines a recommended general
approach to developing Neuron C applications, and explains key concepts of
programming in Neuron C through the use of code fragments and
examples.

¢ The Neuron C Reference Guide provides a complete reference section for
Neuron C.

e The Custom Node Development engineering bulletin describes the steps for
building an example LONWORKS application node.

e The LonTalk Protocol engineering bulletin describes the LonTalk
Protocol.

e The Neuron Chip Data Book, Appendix B, provides a description of the
network management and diagnostic message formats that must be
handled by host application nodes.

e The LONWORKS Network Services Architecture Technical Overview
describes how to create host applications that install, maintain, monitor, or
control LONWORKS networks.

¢ The LONWORKS Component Architecture document describes how to create
host applications for Microsoft Windows ‘95 and Windows NT.

e The LonManager DDE Server User’s Guide describes how to create network
monitoring and control applications based on the LonManager DDE
Server. The LonManager DDE Server greatly simplifies user interface
and database application development on Microsoft Windows-based hosts.

Microprocessor Interface Program User's Guide

Preface
Audience
Content
Related Materials

Chapterl1 MIP Overview
LONWORKS Network Interface Architecture
LONWORKS MIP Developer’s Kit
New Features

Chapter2 Installing the MIP Software
Software Installation Instructions
Software Contents
Upgrading from Previous Releases

Chapter3 Creating a MIP Image

Writing the MIP Application
Example MIP Application for the MIP/P20
Example MIP Application for the MIP/P50
Example MIP Application for the MIP/DPS
Specifying MIP Pragmas
Declaring MIP I/0 Objects
Calling the MIP Function

Building the MIP Image

Loading the MIP Image

Chapter4 Building a Network Interface
Building a Network Interface Hardware
Building the Host Interface

MIP/P20 and MIP/P50 Host Interface
MIP/DPS Host Interface
Handling Uplink Requests
Polled 1/0
Interrupt-Driven I/O
Implementing a Reset Latch
Implementing Semaphores

Microprocessor Interface Program User's Guide

Contents

i
11
ii

1-1
1-2
1-6
1-6

2-1
2-2
2-3
2-6

3-1
3-2
32

34
3-5
3-8
3-8
3-10
3-11

4-1
42
4-2
43
45
45
4-6
46
49
4-10

vi

Chaptér5 Creating a Network Driver
Implementing a Network Driver
Example Network Driver
Implementing a MIP/P20 or MIP/P50 Network Driver
Downlink Buffer Transfer
Uplink Buffer Transfer
Example MIP/P20 and MIP/P50 Network Driver
MIP/P20 and MIP/P50 Processing
Implementing a MIP/DPS Network Driver
Control Interface Structure
Resource Control and Semaphores
Downlink Buffer Transfer
Uplink Buffer Transfer
“Local Command Processing

LTI NN AT

Example MIP/DPS Network Driver

Chapter 6 Installing the DOS Network Driver
Installing the Sample Network Driver

Appendix A MIP/DPS Control Structures
MipPtr
mipci_outbuffs_s
mipci_inbuffs_s
control_iface_s

AppendixB Example MIP/DPS Control Schematic
Memory Map
Example Notes

5-1

1 [1
=

(9] C')'l C.J'l Ov U
[
30 O Uk

R P
(R

>
DN DN

A-3

B-1
B-2
B-2

MIP Overview

Welcome to Release 1.1 of the LONWORKS MIP/DPS Developer's Kit
and Release 2.3 of the LONWORKS MIP/P20 and MIP/P50
Developer's Kit. These kits enable you to create LONWORKS network
interfaces. These network interfaces can be used to create host
applications that communicate using the LonTalk protocol and run
on processors other than the Neuron Chip.

Host applications and network interfaces extend the reach of
LONWORKS technology to a variety of hosts including PCs,
workstations, embedded microprocessors, and microcontrollers.

This manual describes how to build a network interface using one of
the MIPs. See the LONWORKS Host Application Programmer’s
Guide for a description of how to write a host application.

A host application combined with a LONWORKS network interface
may be used to:

o Add processing power to a LONWORKS network
. Move an existing product to a LONWORKS network

o Implement a network management, monitoring, or control
tool based on the LonManager API

This chapter provides an overview of the MIP products. The
architecture of a network interface based on the MIP is described,
and the components of the MIP Developer's Kits are described. New
features also are described.

Microprocessor Interface Program User's Guide 1-1

LONWORKS Network Interface Architecture

A network interface is a device that provides a communications interface between
a host processor and a LONWORKS network. The network interface may be a turn-
key device such as the SLTA/2 Serial LonTalk Adapter, the PCLTA PC LonTalk
Adapter, or the PCNSS PC Interface Card. A custom network interface may be
based on the LTM-10 LonTalk Module, LTS-10 Serial LonTalk Adapter module,
the LonManager NSS-10 Network Services Server module, or may contain a
Neuron Chip running the Microprocessor Interface Program (MIP), and support
circuitry. Network interfaces also include a LONWORKS transceiver to connect
the Neuron Chip to the communications medium.

The MIP is firmware that transforms the Neuron Chip into a communications
coprocessor for an attached host processor. The MIP moves the upper layers of the
LonTalk Protocol from the Neuron Chip to the attached host. Three MIPs are
available which support different interfaces to the host. The three MIPs are:

e MIP/P20. Uses an 11-bit parallel interface between the host and network
interface Neuron Chip. The host can view the Neuron Chip as an 8-bit I/O port
with 3 handshake and control lines, or as two 8-bit memory-mapped locations.
The MIP/P20 can be run on a Neuron 3120 Chip or a Neuron 3150 Chip, but is
usually used only with the Neuron 3120 Chip.

e MIP/P50. Uses an 11-bit parallel interface between the host and network
interface Neuron Chip, with the addition of an optional uplink interrupt
generated by a memory write from the Neuron Chip. As with the MIP/P20, the
host can view the Neuron Chip as an 8-bit I/O port with 3 handshake and control
lines, or as two 8-bit memory-mapped locations. The MIP/P50 provides faster
throughput than the MIP/P20, even if the uplink interrupt is not used, but it
requires a Neuron 3150, 3120E1, or 3120E2 Chip. Use of the uplink interrupt
requires a Neuron 3150 Chip. The MIP/P50 firmware and interrupt decoding
hardware is included on the LTM-10 LonTalk Module.

e MIP/DPS. Uses a dual-ported memory interface between the host and network
interface Neuron Chip. The dual ported memory must provide hardware
semaphores to control access to the shared memory by either the host or network
interface. The MIP/DPS provides faster throughput and lower host overhead
than either the MIP/P20 or the MIP/P50, but requires a Neuron 3150 Chip and a
high-speed dual ported memory chip compatible with the IDT71342 or Cypress
78144. The MIP/DPS is typically used with high-end 32-bit microprocessors, but
it may be used with any host processor.

Figure 1.1 illustrates the architecture of a network interface based on the MIP/P20.
Figure 1.2 illustrates the architecture of a network interface based on the MIP/P50.
Figure 1.3 illustrates the architecture for a MIP/DPS-based network interface.

Host-based Node with MIP/P20

Host

Host Application

(monitoring, control, network management, or communication

A Parallel or A Optional

Memory Bus
Network Interface Interface Interrupt
Host
interface
Reset Latch
Parallel
/10

Clock

> Neuron 3120
Chip with MIP/P20

Transceiver

Transceiver Interface

LONWORKS Network

Figure 1.1 MIP/P20-based Network Interface Architecture

Microprocessor Interface Program User's Guide 1-3

Host-based Node with MIP/P50

Host

Host Application
(monitoring, control, network management, or communication

A Optional
Parallel or Memo
Network Interface TBus Interface 24 Interrupt
Host
Interface Reset Latch and
Optional Uplink
Parallel Interrupt Interface
/O
Read-Only
Memory
Clock | ——pp Neon3150 g1 witn MIP/PSO
Chip .
and Neuron Chip
Firmware
- _ - 5
Transceiver | Og}?’aal |
- - =

Transceiver Interface

LONWORKS Network

Figure 1.2 MIP/P50-based Network Interface Architecture

Host-based Node with MIP/P50

Host

Host Application
(monitoring, control, network management, or communication

A Optional
Network Interface Memory Bus Interface Interrupt
Dual-Port RAM
Host
Interface Reset Latch and
Optional Uplink
Iinterrupt Interface
Memory
Bus
Read-Only
Memory
Clock | ——pp NERZI0 |g 1 with MIP/P50
and Neuron Chip
Firmware
- T
. Optional
Transceiver | RAM |
- - =

Transceiver Interface

LONWORKS Network

Figure 1.3 MIP/DPS-based Network Interface Architecture

Microprocessor Interface Program User's Guide

LONWORKS MIP Developer's Kits

Two developer's kits are available for the MIP. The LONWORKS MIP/P20 and
MIP/P50 Developer's Kit includes the software required to build a custom network
interface based on the MIP/P20 and MIP/P50. The LONWORKS MIP/DPS
Developer's Kit provides similar components for the MIP/DPS. The kits include:

L]

Microprocessor Interface Program (MIP). The MIP is firmware for the Neuron
Chip that extends the Neuron Chip firmware. The MIP is delivered as an object
library that is linked with a Neuron C MIP application program to create the
MIP image.

Sample MIP Application. The MIP application is a short Neuron C program
that specifies the configuration of the MIP node and invokes the MIP function.

Sample Network Driver. An example DOS device driver for the MIP. The
network driver provides a device independent interface to the host application.
This allows host applications to work transparently with different network
interfaces, regardless of their physical interface. For example, a host
application can be moved from a PCLTA PC LonTalk Adapter to an Echelon
SLTA/2 Serial LonTalk Adapter to a custom network interface based on any of
the MIPs without being modified. The sample driver is provided as ANSI C and
assembly source code that can be modified for different host interfaces to the
network interface.

Example Host Application. A sample host application that polls, writes, and
monitors network variables, and responds appropriately to network
management messages. The example is provided as ANSI C source code that
can be used as a starting point for creating custom host applications.

This documentation describes Release 2.3 of the LONWORKS MIP/P20 and
MIP/P50 Developer's Kit, and Release 1.1 of the LONWORKS MIP/DPS
Developer's Kit.

New Featfures

Release 2.3 of the MIP/P20 and MIP/P50 and Release 1.1 of the MIP/DPS
include the following new features:

16

Custom Uplink Interrupt Interface. The MIP/P50 now supports a custom
uplink interrupt request function to support custom interrupt request
hardware.

Easier to use host application. The host application example has been
enhanced. The network interface (NI) layer now uses a call-back
architecture to invoke user-supplied routines to handle all types of

incoming messages. This architecture is compatible with the architecture
of the host application example provided with the LonManager NSS for
Windows and the LonManager NSS-10 Network Services Server
Developer's Kits. The host application also transparently handles retries of
incoming request messages.

2

Installing the MIP Software

This chapter explains how to install the MIP software on a PC,
and describes the software files installed during the installation
process. Upgrades from previous releases are also described.

Microprocessor Interface Program User's Guide 2-1

Software Installation Instructions

2-2

Follow these steps to install the MIP software on your PC. LonBuilder 3.0 or
NodeBuilder 1.5 (or later) is required.

1

Place the installation disk in a floppy disk drive. Drive A: is used in the
following steps; substitute your drive letter if you are using a drive other than
A:. The installation disk is labeled LONWORKS MIP/P20 and MIP /P50
Software for the MIP/P20 and MIP/P50; the installation disk is labeled
LONWORKS MIP/DPS Software for the MIP/DPS.

Start the automatic installation procedure by entering:
a:install J

Enter the drive letter of your floppy drive in place of the "a:" if you are using
another drive.

After a moment of disk activity, the product name and version number will be
displayed, along with the following message:

Press [Esc] to quit, any other key to continue . .

The installation can be aborted at any time by pressing the [Esc] key. To
continue with the installation, press any other key.

The next screen provides some basic instructions concerning installation.
Press any key (other than [Esc]) to continue.

The next screen allowsyou to select whether you are installing the software into
a LonBuilder software installation, or into a NodeBuilder software
installation. Press 1 when the proper choice is highlighted.

A list of available hard disk drives will be displayed. Use the arrow keys to
select the drive. Press .J when the proper drive is highlighted.

A prompt for an installation directory will be displayed. Enter the name of a
directory. The default directory is \LB or \LONWORKS. Press .J when the proper
path is shown.

A number of compressed files will now be copied from the floppy to your hard
disk, where they will be expanded. When all the files have been placed on your
hard disk, you will be returned to DOS.

A network driver as described in Chapters 5 and 6 must loaded on your host
processor before you can run a host application. If your host processor is a PC
running DOS, the network driver must be specified in your config.sys file
before you can run a host application on the PC. See Chapters 5 and 6 for more
information.

Software Contents

The software for the MIP developer's kits is supplied on installation diskettes
which contain the following:

Microprocessor Interface Program (MIP). The MIPs are contained in library
files. For NodeBuilder installations, these files are installed in the
LONWORKS IMAGES directory (the default directory is \ LONWORKS\ IMAGES).
For LonBuilder installations, these files are installed in the version 3, 4, and 6
IMAGES directory (the default directories are \LB\ IMAGES\VER3,
\LB\IMAGES\VER4, and \LB\ IMAGES\VERE). The filenames for the libraries

are:

File Name MIP/Px0 MIP/DPS Description

mip_pio.lib . Parallel I/O MIP library. Includes the MIP/P20
and MIP/P50.

mip_dps.lib . MIP/DPS library. This library file may only be
used with VER4 and VER6 Neuron Chip
firmware

miputl6.lib o . Library functions used by the MIP libraries.

Sample MIP Application. The sample MIP applications are contained in
Neuron C source files. For NodeBuilder installations, these files are installed
in the NB\EXA\MIP directory (the default directory is \LONWORKS\NB\EXA\MIP).
For LonBuilder installations, the files are installed in the EXAMPLES\MIP
directory (the default directory is \LB\EXAMPLES\MIP). The filenames for the
MIP applications are:

File Name MIP/Px0 | MIP/DPS Description

mip_ap20.nc . MIP application for the MIP/P20
mip_ap50.nc . MIP application for the MIP/P50
mip_dps.nc . MIP application for the MIP/DPS

Sample Network Driver Source. The example DOS device drivers for the MIP
are provided as ANSI C and assembly source files. For NodeBuilder
installations, the sample network driver for the MIP/P20 and MIP/P50 is
installed in the NB\EXA\MIP directory (the default directory is
\LONWORKS\NB\EXA\MIP). For LonBuilder installations, the sample network
driver for the MIP/P20 and MIP/P50 is installed in the EXAMPLES\MIP directory
(the default directory is \LB\EXAMPLES\MIP).

For NodeBuilder installations, the sample network driver for the MIP/DPS is
installed in the NB\EXA\MIP_DPS directory (the default directory is
\LONWORKS\NB\EXA\MIP). For LonBuilder installations, the sample network
driver for the MIP/DPS is installed in the EXAMPLES\MIP_DPS directory (the
default directory is \LB\EXAMPLES\MIP_DPS). The sample network driver
ANSI C source files are:

Microprocessor Interface Progfom User's Guide 2-3

File Name MIP/Px0 | MIP/DPS Description

dps_frst.c . Device driver header. Must be the first file
linked.

dps_difc.c . DOS to network driver interface functions.

dps_mip.c . Low-level interface functions for the dual-ported
RAM.

dps_last.c . Used to determine the size of the network driver.

Must be the last file linked.

mip_frst.c

Device driver header. Must be the first file
linked.

mip_difc.c

DOS to network driver interface functions.

mip_last.c

Used to determine the size of the device driver.
Must be the last file linked.

mip_pio.c

Low-level interface functions to the MIP/P20 or
MIP/P50 via the user implemented parallel pont.
Stub operations are provided that are replaced
with code for the actual hardware.

mip_exec.c

Medium and high-level interface functions for
the driver. Includes the read(), write(), open(),
close(), and ioctl() functions.

mdv_time.c

Contains functions which support the usage of
the PC/AT's counter # 0 hardware for timeouts
required by various parts of the driver.

The ANSI C header files are:

File Name MIP/Px0 | MIP/DPS Description

dpr_defs.h . Hardware and buftfer definitions for the
MIP/DPS.

dpr_prto.h . Control interface structure definitions and
function prototypes for the MIP/DPS.

mip_typs.h o Control interface structure definitions and

function prototypes type declarations for the
MIP/P20 and MIP/P50 network driver C source
files.

mdv_time.h

Structure and constant definitions, and function
prototypes for the services associated with the
file MDV_TIME.C.

mip_drvr.h

Network driver structure, command, and return

‘ code definitions.

The assembly source files are:

File Name

MIP/Px0

MIP/DPS

Description

segdata.asm

Segment data constants. This file is the same
for both kits.

tchain.asm

Timer interrupt chaining code for the MIP/P20
and MIP/P50 network driver.

The build files are:

File Name Description

Borland C make file. Type make at the DOS
command prompt to execute the build
instructions in this file.

Borland C compiler options for makefile. The
last line of this file contains the Borland C
include file path. If the Borland C include file
are not contained in the directory

makefile . .

pnip.cfg . .

changed.

C: \BORLANDC\ INCLUDE, then this file must be

The driver has been compiled with Borland C++, version 3.1. Modifications

may be required for other compilers such as Microsoft C. Full descriptions of

the contents of each of these files are included as comments within the files.

Example host application. The example host application is provided as ANSI C

source files. These files are installed in the directory EXAMPLES\HA, or

\NB\EXA\HA. For a complete description of this example host application, see
the LONWORKS Host Application Programmer’s Guide.

File Name Description

applmsg.c Contains the function definitions for handling network
management and network variable messages.

applcmds.c Contains the code for the user commands to the
application.

ha.c The main line code for this example.

hauif.c Contains the functions for a primitive command-line
user interface.

ioctl.c Contains the functions required to establish
communication with a DOS device driver. This file is
required only when using the Microsoft C compiler
(the Borland C standard library includes this function).

ldvintfc.c Contains the lowest-level interface to the DOS

network driver.

ni_callb.c

Contains functions to handle callbacks from the
network driver.

ni_msg.c Network interface initialization and LonTalk message
send and receive functions. Generic functions that
can be used by any host application.

applmsg.h Contains prototype declarations for the functions

defined in applmsg.c.

ha_comn.h

Contains common declarations used by all the files in
the application.

hauif.h Contains prototype declarations for the functions
defined in hauif.c.

ldvintfc.h Contains prototype declarations for the functions
defined in 1dvintfc.c.

ni_callb.h Contains prototype declarations for the functions
defined in ni_callb.c.

ni_msg.h Defines network interface message structures.

Microprocessor Interface Program User's Guide

2-5

ni_mgmt.h Defines the subset of network management
» | functions used by the sample host application.

makefile Borland C make file. Type make at the DOS
command prompt to execute the build instructions in
this file.

msoft.mak Makefile for Microsoft C compiler. Type make /£

msoft .mak at the DOS command prompt to execute
the build instructions in this file.

ha_v3.xif Host-based node external interface file.

ha_test.nc Neuron C source code for a LONWORKS device that
may be bound to a host processor running the
sample _host application.

display.h Display driver functions for the Gizmo 2 and Gizmo 3.
This file is included by the Neuron C file
ha_test.nc.

read.me A text file that contains updates to the
documentation for the example host application that
have occurred since it was printed.

Read-Me Files. The files . . \MIP\README . TXT and . . \MIP_DPS\README.TXT
are text files with updates to the MIP User’s Guide that have occurred since it
was printed. The file . . \HA\READ.ME is a text file with updates to the Host
Application Programmer’s Guide that have occurred since it was printed.
These example directories are the same as described above for the network
driver source, and the sample host application.

Upgrading From Previous Releases

The following procedure describes the upgrade process for users of previous
releases of the MIP.

1 Install the MIP software as described under Software Installation
Instructions earlier in this chapter. The new MIP software will overwrite
any previous releases.

2 The MIP image in existing network interfaces does not have to be upgraded
unless you want to take advantage of the performance improvements of this
release. To upgrade the MIP image in existing network interfaces, rebuild
the MIP image as described in Chapter 3, and install this new image on
your network interfaces.

3 Existing network interface hardware designs do not have to be modified.

4 Existing network drivers do not have to be modified, unless you want to take
advantage of the performance improvements in the new network driver
example.

5 Existing host applications do not have to be modified, the network driver
protocol for this release is fully compatible with previous releases.

26

3

Creating a MIP Image

This chapter describes the process of building the MIP image that
will be loaded onto a network interface.

Microprocessor Interface Program User's Guide 3-1

Writing the MIP Applicafion

The MIP image is the firmware loaded on a network interface that enables the
network interface to act as a LonTalk communications processor. The MIP image
is made up of the following components:

* Neuron Chip firmware. The MIP image includes the standard Neuron Chip
firmware that handles layers 1 - 5 and portions of layer 6 of the LonTalk
protocol and controls the execution of the MIP firmware.

e MIP firmware. The MIP firmware includes functions that extend the Neuron
Chip firmware by hooking into the layer 5 and 6 processing functions of the
Neuron Chip firmware to enable portions of layers 6 and all of layer 7 to be
moved to the host processor.

e MIP application. The MIP application is a Neuron C source program that
specifies configuration options for the MIP and Neuron Chip firmware. The
MIP application should only setup the hardware and call the MIP firmware.
For the MIP/P50, the MIP application must also define an uplink interrupt
request function. No other user code should be included. Once the MIP
firmware is started, it never returns to the MIP application. The MIP
application is different for the parallel MIPs (the MIP/P20 and MIP/P50) and
the dual-ported MIP (the MIP/DPS). All three versions are described in the
following sections.

The MIP image may be built to initially start-up in the configured or unconfigured
state as described under the Target Network Types and Firmware State Selection
section of the LonBuilder User’s Guide, or in the Help information for the
NodeBuilder Device Template Window Export tab (see the NodeBuilder User's
Guide). Network interfaces that are shipped without host applications should be
built to come up unconfigured to prevent network address conflicts when the
network interface is first installed in a network.

Example MIP Application for the MIP/P20

The following is an example of a MIP application for the MIP/P20. This example is
included with the LonBuilder MIP/P20 and MIP/P50 Developer's Kit in the
mip_ap20.nc file. This file is installed in the examples directory (the default
directory is \LB\EXAMPLES\MIP or \LONWORKS \NB\EXA\MIP).

#pragma micro_interface
#pragma idempotent_duplicate_off

// Select explicit addressing on or off with this pragma.
#pragma explicit_addressing_on

// Select NEURON CHIP (on) or host (off) NV selection.
#pragma netvar_processing_off

// When NEURON CHIP NV selection is specified (on), the

// set_netvar_count and num_addr_table_entries pragmas are
// used to control the amount of memory the NEURON CHIP uses
// for the network variable configuration and address tables.

#pragma set_netvar_count 13
#pragma num_addr_table_entries 14
#pragma receive_trans_count 4
#pragma set_id_string "MIP"

32

// Modify the following pragmas to set buffer sizes and counts.

#pragma app_buf_out_count 2
#pragma app_buf_out_priority_count 0
#pragma net_buf_out_priority_count 0
#pragma app_buf_in_count 2
#pragma app_buf_out_size 66
#pragma app_buf_in_size 66
#pragma net_buf_out_size 66
#pragma net_buf_in_size 66

// Modify this declaration to suit your hardware interface.
IO_0 parallel slave p_bus;

extern void mip_p20_interface(unsigned long throttle);

when (reset) {
// The argument <throttle> will yield about 375
// microseconds of delay per count. A value of
// one yields no throttle.
mip_p20_interface(l);

}

Example MIP Application for the MIP/P50

The following is an example of a MIP application for the MIP/P50. This example is
included with the LonBuilder MIP/P20 and MIP/P50 Developer's Kit in the
mip_ap50.nc file. This file is installed in the examples directory (the default
directory is \LB\EXAMPLES\MIP or \LONWORKS\NB\EXA\MIP).

#pragma micro_interface
#pragma idempotent_duplicate_off

// Select explicit addressing on or off with this pragma.
#pragma explicit_addressing_on

// Select NEURON CHIP (on) or host (off) NV selection.
#pragma netvar_processing_off

#pragma set_id_string "MIpP*"

// Modify the following pragmas to set buffer sizes and counts.
#pragma app_buf_out_count 3

#pragma app_buf_out_priority_count 3

#pragma app_buf_in_count 7

#pragma app_buf_out_size 66

#pragma app_buf_in_size 66

#pragma net_buf_out_size 66

#pragma net_buf_in_size 66

// Modify this declaration to suit your hardware interface.
IO_0 parallel slave p_bus;

// The argument <irqgp> is a pointer to the Interrupt Callback
function.

//
// The argument <throttle> will yield about 350 microseconds
// of delay per count. A value of one yields no throttle.

Microprocessor Interface Program User's Guide 3-3

extern void mip_p50_interface(void (*irgp) (veid),
unsigned long throttle);

// Define the interrupt callback function. This function should
// restrict its activities to I/O oriented actions.
// In this example the interrupt consists of a write of 0x01
// to location 0xC000. If no interrupt callback functionality is
// required there needs to be at least a dummy function provided.
void irqg_callback(void) {

* (unsigned short *) (0xC000) = 0x01;
}

when (reset) {
mip_pS50_interface(irg_callback, 1UL);
}

Example MIP Application for the MIP/DPS

34

Following is an example of a MIP application for the MIP/DPS. This example is
included with the MIP/DPS Developer's Kit in the mip_dps .nc file. This file is
installed in the examples directory (the default directory is
\LB\EXAMPLES\MIP_DPS or \LONWORKS\NB\EXA\MIP_DPS).

#pragma warnings_off
#pragma micro_interface
#pragma idempotent_duplicate_off

// Select explicit addressing on or off with this pragma.
#pragma explicit_addressing_on

// Select NEURON CHIP (on) or host (off) NV selection.
#pragma netvar_processing_off

// Set RAM test to OFF
#pragma ram_test_off

// Places buffers in DP ram.
#pragma all_bufs_offchip

#pragma set_netvar_count 30
#pragma num_addr_table_entries 15
#pragma receive_trans_count 16
#pragma set_id_string “DP_MIP*
#pragma app_buf_out_count 23
#pragma app_buf_out_priority_count 3
#pragma app_buf_in_count 23
#pragma app_buf_out_size 66
#pragma app_buf_in_size 66
#pragma net_buf_out_size 66
#pragma net_buf_in_size 66

// This allows pin IO_10 to drive an interrupt signal to the host,
// 1f needed.

IO_10 output bit irgpl0 = 1;

// This allows pin IO_0 to be initialized as a message indicator.
I0_0 output oneshot invert clock (7) status_led = 1;

//

// Protoype for the MIP interface function. The <if_flush> argument

// will cause the MIP application to enter the INIT FLUSH state

// following reset. The <if_oba_ir> argument causes the host to be

// interrupted whenever a new output buffer is posted to the interface
// The <sema_base_page> argument is the 8 bit page address of the

// semaphore area.

extern void dpram_mip_interface(unsigned if_flush, unsigned
if_oba_ir,
unsigned short sema_base_page) ;

when (reset) (
// In this example the semaphore area is mapped to base 0x8000.
dpram_mip_interface (TRUE, TRUE, 0x80);

}

Specifying MIP Pragmas

The pragmas specified in the MIP application select the network interface
configuration options defined in the LONWORKS Host Application Programmer’s
Guide. The sample MIP applications contain default values for these pragmas.
Edit the MIP application source file to change them.

#pragma micro_interface

This pragma indicates to the compiler that this node is a network interface.
This pragma also ensures that the MIP image will start execution even if it
is not configured. This pragma must be specified for MIP applications.

#pragma idempotent_duplicate_off
#pragma idempotent_duplicate_on

These pragmas control the idempotent request retry bit in the application
buffer. This bit corresponds to the addr_mode bit of the ExpMsgHdr structure
declared in ni_msg.h for incoming request messages only. These
pragmas only apply to MIP applications running on version 6 of the Neuron
Chip firmware or newer. One of these pragmas must be specified. The
idempotent_duplicate_on pragma should be specified unless the host
application depends on the pre-version 6 firmware behavior of the
idempotent request retry bit (i.e., it was always set to O prior to version 6 for
incoming request messages).

If idempotent_duplicate_on is specified, the idempotent request retry bit
indicates a duplicate request for incoming request messages. The host
application will only receive the duplicate request if the response to the
original request contained data. When a duplicate request is received, the
host application can return the original response, or can provide a new
updated response. See Idempotent Versus Non-Idempotent Requests in
Chapter 4 of the Neuron C Programmer’s Guide for more information.

If idempotent_duplicate_off is specified, or if the Neuron Chip

firmware used in the network interface is a version prior to version 6, the
idempotent request retry bit is always 0.

Microprocessor Interface Program User's Guide 35

#pragma explicit_addressing_on
#pragma explicit_addressing_off

These pragmas determine whether space is set aside in the application buffer
for explicit addressing information. The value in the sample MIP applications
is explicit_addressing_on, which adds 11 bytes of overhead per application
buffer for the explicit addressing information. Explicit addressing allows a
host application to bypass the network interface's address table, allowing the
host application to send LonTalk messages to an unlimited number of nodes.
See the LONWORKS Host Application Programmer’s Guide for more
information. The default value is explicit_addressing_on. The
explicit_addressing_on pragma must be specified for MIP applications to be
used with the LonMaker™ Installation Tool or the LonManager API.

#pragma netvar_processing_on
#pragma netvar_processing_off

These pragmas specify whether network variable selection is performed by the
Neuron Chip firmware (network interface selection) or the host application
(host selection). See the LONWORKS Host Application Programmer’'s Guide
for a description of these options. When network interface selection
(netvar_processing_on) is specified, the size of the network variable
configuration table must be specified with the set_netvar_count pragma.
The setting netvar_processing_off is the default. MIP applications must
specify host selection (netvar_processing_off) to be used with the
LonMaker Installation Tool or the LonManager API.

#pragma set_netvar_count nn

This pragma defines the size of the network variable configuration table
when the netvar_processing_on (network interface selection) pragma is
specified. The value of nn is the number of entries to be reserved for the
table, and may be any value from 0 to 62. When the MIP/P20 is used on the
Neuron 3120 Chip, the size of the network variable configuration table is
limited by the amount of free memory in the Neuron 3120 Chip EEPROM.
The number of entries can be traded off against the number of address table
entries, but typical values for nodes configured for 1 and 2 domains are
illustrated in table 4.1.

#pragma num_addr_table_entries nn

This pragma specifies the number of address table entries to reserve in the
MIP image. See the Neuron C Programmer’s Guide for more information
on the use of this pragma. When the MIP/P20 is used on the Neuron 3120
Chip, the size of the address table is limited by the amount of free memory in
the Neuron 3120 Chip EEPROM. The number of entries can be traded off
against the number of network variable configuration table entries, but
typical values for nodes configured for 1 and 2 domains are illustrated in
table 4.1. The default size is 15 entries.

#pragma one_domain

This pragma limits the domain table to one entry. The default size is two
entries. See the Neuron C Programmer’s Guide for more information on
the use of this pragma. When the MIP/P20 is used on a Neuron 3120 Chip,
the number of entries can be traded off against the number of network
variable configuration table entries and address table entries as shown in
table 4.1.

#pragma ram_test_off

This pragma disables the standard RAM test that is performed by the
Neuron Chip firmware during power-up initialization. This power-up test
should normally be performed for network interfaces based on the MIP/P20
or MIP/P50, but may be disabled for network interfaces based on the
MIP/DPS to prevent address conflicts with the host during power-up.
Recommended usage is to leave the RAM test enabled for the MIP/P20 and
MIP/P50; and disable the RAM test with ram_test_off for the MIP/DPS.

#pragma all_bufs_offchip

This pragma moves all application and network buffers to off-chip RAM.
This pragma should be used with the MIP/DPS to ensure that the buffers are
located in the dual-ported RAM. Recommended usage is to leave the buffers
in their default locations for the MIP/P20 and MIP/P50; and move the
buffers off-chip with all_bufs_offchip for the MIP/DPS.

#pragma set_id_string "string"

This pragma defines the program ID string contained in the MIP image.
This string is sent in service pin messages, and is also sent in response to
Query ID network management messages. The ID string should be
changed in the MIP application source if the MIP image is only to be used
with a single host application. If the MIP image will potentially be used
with multiple host applications, the program ID can be left as a generic ID
that is replaced by the host application when it starts running. The generic
program IDs in the sample MIP applications are "MIP" for the MIP/P20
and MIP/P50; and "DP_MIP" for the MIP/DPS.

When the MIP/P20 is used on the Neuron 3120 Chip, the size of the domain table,
address table, and network variable configuration table is limited by the amount of
free memory in the Neuron 3120 Chip EEPROM. Typical values for 3120-based
nodes configured for 1 and 2 domains are illustrated in table 4.1. This table does
not apply to the Neuron 3120E1 and 3120E2 Chips, which have more available
EEPROM. When modifying the buffer sizes and counts, see the link map
generated by the LonBuilder or NodeBuilder linker to determine the available
EEPROM and RAM resources.

Microprocessor Interface Program User's Guide 37

fable 4.1 Table Size Trade-Offs for 3120-Based Network Interfaces

Domains Address Table NV Configuration Table
Entries Entries
1 8 28
2 15 11

Additional pragmas are used to set Neuron Chip resources such as buffer counts
and sizes, and receive transaction counts. The sample MIP applications for the
MIP/P20 and MIP/P50 are set up to fit the buffers entirely within the Neuron Chip's
on-chip RAM. The sample MIP application for the MIP/DPS is set up to fit the
buffers within the default off-chip dual-ported RAM. The default sizes should be
increased if large explicit messages will be used. The default counts should be
increased if the host applications will cause too many messages to be lost due to
unavailable buffers. Increased sizes or counts may require the use of off-chip RAM
with the MIP/P50. For a complete descriptions of these pragmas, refer to Chapter 1
of the Neuron C Programmer’s Guide.

The buffer size settings in the sample MIP applications assume explicit messaging
and explicit addressing as defined in table 6.1 in the Neuron C Programmer’s
Guide. They are defined by pragmas and may be configured at run-time by writing
to the application image. The Neuron Chip Data Book Appendix A describes the
locations and encodings of these fields within the application image.

Declaring MIP I/O Objects

When using the MIP/P20 or MIP/P50, a parallel I/O object must be declared with the
following statement:

I0_0 parallel slave p_bus;
or

I0_0 parallel slave_b p_bus;
Select the first declaration for a slave A interface and the second declaration for a
slave B interface. Slave A mode is suitable for parallel port interfaces; slave B
mode requires fewer external components to interface to a memory bus. See the
Parallel I/0 Interface to the Neuron Chip engineering bulletin for a description of
the operational characteristics of the parallel I/O functions including a description
of the two slave modes and management of the token.

When using the MIP/DPS, an I/O object must be declared for the uplink interrupt,
even if the I/O pin is not used. An optional I/O object may be declared for a message
indicator output. The two I/O objects are declared with the following statements:

I0_10 output bit irqgpl0 = 1;
IO_0 output oneshot invert clock (7) status_led = 1;

Calling the MIP Function

When using the MIP/P20, the mip_p20_interface () function is called
to invoke the MIP firmware. This function call never returns. The
function prototype for this function is:

3-8

extern void mip_p20_interface(unsigned long throttle);

The throttle parameter specifies the throttle delay in units of approximately 375 us
at an input clock rate of 10 MHz. For example, a throttle parameter of 40 specifies
approximately a 15 millisecond throttle with a 10 MHz input clock. The throttle delay
scales with the input clock. A throttle of 1 specifies no throttle delay. See Polled I/0 in
Chapter 4 for more information on the throttle delay.

When using the MIP/P50, the mip_p50_interface () function is called to invoke
the MIP firmware. This function call never returns. The function prototype for
this function is:

extern void mip_p50_interface(void (*irqgp) (void),
unsigned long throttle);

The irqgp parameter specifies the address of a user-supplied Neuron C function
which is called when the MIP wishes to assert an uplink host interrupt.

The mip_ap50.nc example MIP application described earlier in this chapter
includes an example function to write a 1 (one) to location 0xC000 to request an
interrupt. External hardware can decode this write to generate an interrupt signal.

The throttle parameter specifies the throttle delay in units of approximately 350
us at an input clock rate of 10 MHz. A throttle parameter of 1 may be specified when
the MIP/P50 uplink interrupt is used. In this case, the host driver will normally
keep the write token when the network is in the idle state. If the host has some
downlink traffic to send, it can immediately use the token to write it to the network
interface. If the network interface has some uplink traffic, it can interrupt the host
to indicate that the write token should be passed down. This provides optimum
latency in both uplink and downlink directions. If the uplink interrupt is not
implemented, the token will need to be continuously passed between the host and the
network interface so that each will have an opportunity to pass traffic to the other.
This will increase latency because delays to wait for the token may be necessary.

See Interrupt-Driven I/0 in Chapter 4 for more information on the uplink interrupt.
If an uplink interrupt is not required, supply the address of an empty function as the
irgp parameter.

When using the MIP/DPS, the dpram_mip_interface function is called to invoke
the MIP firmware. This function call never returns. The function prototype for
this function is:

extern void dpram_mip_interface(unsigned if_flush,
unsigned if_oba_ir, unsigned short sema_base_page);

The if_flush parameter specifies whether the MIP application will enter the
FLUSH state after every reset. If if_flush is TRUE, the MIP-based node will not be
able to communicate on the network after a reset. The MIP application prevents
communications by entering a FLUSH state. This state causes the MIP to ignore all
incoming messages and prevents all outgoing messages, even service pin
messages. This FLUSH state is provided to prevent any other network management
tools from performing network management functions on the MIP-based node
before the host has a chance to perform any of its own network management
functions. This state is canceled with the ni FLUSH_CANCEL command from the
host. A network driver for a MIP-based network interface may automatically

Microprocessor Interface Program User's Guide 39

enable network communications when the network interface is opened by sending
the niFLUSH_CANCEL command when the driver is opened and when it receives an
uplink message from the MIP application indicating that it has been reset.
Alternatively, if the MIP application is built with if_flush set to FALSE, the
network interface will not enter the FLUSH state after each reset, and network
communications will be immediately enabled.

The if_oba_ir parameter specifies whether the MIP application will post an
uplink interrupt when it frees an output buffer. If if_oba_ir is FALSE, the MIP
application posts an uplink interrupt whenever it has uplink traffic for the host
(incoming message, incoming response, completion event, or network interface
command). If if_oba_ir is TRUE, the MIP application will, in addition, post an
uplink interrupt when it has freed a downlink application buffer. This occurs
shortly after the host has read a completion event, which allows the MIP to free the

corresponding buffer.

The sema_base_page parameter specifies the 8-bit page address of the semaphore
area in the dual-ported RAM device. For example, a semaphore base page
parameter of 0x80 specifies that the semaphores start at location 0x8000 in memory.
See the Implementing a MIP/DPS Network Driver in Chapter 5 for more
information on the use of semaphores.

‘Building the MIP Image

The MIP image is built using the LonBuilder or NodeBuilder tools following the
same procedure as any other node being built from Neuron C source code. This
process is described in Chapters 6 and 7 of the LonBuilder User’s Guide, and in
Chapter 5 of the NodeBuilder User’'s Guide. The node build takes place as it would
for any other node except that no binding can occur for network interfaces that have
not been integrated with a host application.

Memory properties are defined for a MIP-based node as with any other node. The
typical memory properties for each MIP are described in the following table:

uplink interrupt is used *

Memory Type MIP/P20 MIP/P50 MIP/DPS
ROM 0 (on a Neuron | 128 pages typical; 128 pages typical;
3120 Chip) 66 pages minimum * 68 pages minimum
EEPROM 0 0 0
RAM 0 (on a Neuron | 0 - 166 (required size must | 16 - 166 (required size must
3120 Chip) be large enough for the be large enough for the
number of buffers number of buffers declared)
declared) *
110 0 1 page if memory-mapped | 1 page

(semaphore page; start
address must match the
sema_base_page parameter
in the call to

dpram mip_interface())

* or 0 for a Neuron 3120E1 or
3120E2 Chip

3-10

Once a network interface is integrated with a host application, the host node can be
bound to connections as described under Binding to a Host Node in Chapter 3 of the
LONWORKS Host Application Programmer’s Guide.

Loading the MIP Image

Once the MIP image has been built, there are four methods to load the image into a
network interface:

¢ Emulator download. If the network interface is initially prototyped on a
LonBuilder Neuron Emulator, the MIP image can be loaded directly into the
emulator memory using the LonBuilder Load command. When using the
MIP/P20 or MIP/P50, the emulator will continuously watchdog reset if no host is
present. To reliably load such a network interface, the host should be present
and be exchanging tokens with the network interface. The MIP/DPS cannot be
loaded on an emulator since the dual-ported memory cannot be emulated.

¢ Network download. If the MIP is to be loaded in read/write memory on the
network interface such as the on-chip EEPROM, the MIP image can be loaded
over the network using the LonBuilder or NodeBuilder Load command. When
using the MIP/P20 or MIP/P50, the network interface will continuously
watchdog reset if no host is present. To reliably load such a network interface,
the host should be present and be exchanging tokens with the network interface.

¢ PROM export. When using any version of the MIP with a Neuron 3150 Chip, the
MIP image can be exported to a ROM image using the LonBuilder or
NodeBuilder Export command. The ROM image is loaded into a PROM using
a PROM programmer.

¢ Neuron 3120 image export. When using the MIP/P20 with a Neuron 3120,
3120E1, or 3120E2 Chip, the MIP image must be exported to a Neuron 3120 image
using the LonBuilder or NodeBuilder Export command. The Neuron 3120
image is loaded into a Neuron 3120, 3120E1, or 3120E2 Chip using a Neuron 3120
programmer such as the LONWORKS Neuron 3120 Programmer.

The MIP application may be exported to initially start-up in the configured or
unconfigured state as described under the Target Network Types and Firmware
State Selection section of the LonBuilder User’s Guide, or in the Help information
for the NodeBuilder Device Template Window Export tab (see Chapter 5 of the
NodeBuilder User's Guide). Network interfaces that are shipped without host
applications should be built to come up unconfigured to prevent network address
conflicts when the network interface is first installed in a network.

Once reset, a MIP-based node will always start up online, and cannot start offline.
Because of this, the LonBuilder Load command has the same effect as the
LonBuilder Load/Start command, they both load and start the MIP-based node.

If the network interface will be loaded or configured over the network, the host must
be able to sense when the network interface has been reset. See the discussion in
Chapter 4, Building a Network Interface, for information on reset latch circuitry.

Microprocessor Interface Program User's Guide 3-11

4

Building a Network Interface

This chapter describes the process of building a network interface.
A detailed discussion of host interface considerations is included.

Microprocessor Interface Program User's Guide 4-1

Building Network Interface Hardware

The network interface hardware is similar to any custom node containing a
Neuron Chip, a transceiver, and memory. The hardware itself is built the same
way as you build a custom node. Refer to the LONWORKS Custom Node
Development engineering bulletin for additional information. Network
interfaces based on the MIP/P20 or MIP/P50 may be based on LONWORKS control
modules which conveniently integrate the Neuron Chip, transceiver, memory, and
support circuitry. LONWORKS control modules cannot be used with the MIP/P50
when using uplink interrupts, and also cannot be used with the MIP/DPS.

The network interface external interface file (. XIF extension) is exported as with
any custom node. The network interface external interface file does not contain
network variable records. Host application network variables can be manually
added to the external interface file. Refer to the LonBuilder User’s Guide or the
NodeBuilder User’'s Guide for information on exporting external interface files.
See Appendix B of the LONWORKS Host Application Programmer’s Guide for a
description of how to modify the external interface file to add network variables
and message tags.

Network interfaces based on the MIP/P20 or MIP/P50 may be tested on a
LonBuilder Neuron Emulator, or the LTM-10 LonTalk Node prior to building
custom hardware. Because of the requirement for dual-ported memory, the
MIP/DPS cannot be tested on an emulator or an LTM-10 Node and must be run on a
custom node.

There are up to four hardware interfaces between a host and network interface.
These interfaces are:

¢ Host interface. A data interface for transferring commands and data between
the host and network interface.

e Uplink interrupt. An optional interrupt interface so that the network interface
can interrupt the host when an uplink message buffer is available.

* Reset latch. An optional interface so that the host can be informed that a reset
has occurred on the network interface. This interface is required for host-
based nodes that will be reset, configured, or loaded over the network.

¢ Semaphores. Hardware semaphores shared by the host and network interface.
Used for resource contention for the dual-ported RAM by the MIP/DPS. Not
used for the MIP/P20 or MIP/P50.

The following sections describe these four hardware interfaces.

‘Building the Host Inferface

42

The host interface provides a communications path for transferring commands
and data between the host and network interface. For the MIP/P20 and MIP/P50,
the interface is an 11-bit parallel I/O interface. For the MIP/DPS, the interface is a
dual-ported RAM with semaphores. Figures 1.1 through 1.3 illustrate the
components of a network interface based on the MIP/P20, MIP/P50, and MIP/DPS.

MIP/P20 and MIP/P50 Host Interface

The MIP/P20 and MIP/P50 host interface is implemented as described in the
Parallel I/0 Interface to the Neuron Chip engineering bulletin and Chapter 8 of the
Neuron C Reference Guide. The host must have the ability to execute the token
passing algorithm required by the parallel /O interface. This algorithm is
implemented by the sample DOS network driver described in Chapter 5.

The MIP/P20 and MIP/P50 can be used with either of the two parallel /O modes:
slave A and slave B. The slave A mode is used to communicate with a parallel port.
In slave A mode, the master (the host) and slave (the Neuron Chip) communicate
through eight data lines, plus chip select, read/write, and handshake control lines.

The slave B mode is used to communicate with a memory or I/O bus. It is logically
similar in operation to the slave A mode, however, the handshaking process and the
data bus control are specifically tailored for use in a bus environment. Multiple
slaves may reside on the same bus, as may other non-slave devices such as
memory or other I/O devices. Slave B mode requires the host to alternatively select
the data register and control register of the network interface in order to monitor
the handshake bit. See the Neuron Chip Data Book for a comparison of these two
modes.

Figure 4.1 illustrates the parallel I/O modes as used by the MIP/P20 and

MIP/P50.
Master Slave
Parallel
Port NEURON
uP/uC ke CHiP
Slave A
Memory or
1/0 Bus NEURON
pP/uC CHIP
I Slave B
I uP/uC/
}— —={ Peripheral
I Device
|_ NEURON
=™ CHpP
Slave B

Figure 4.1 MIP/P20 and MIP/P50 Parallel /O Modes

Microprocessor Interface Program User's Guide 4-3

The host should not read the EOM at the parallel /O interface level. Refer to the
Parallel I/0 Interface to the Neuron Chip engineering bulletin, which describes the
purpose of the EOM step. The EOM is written in order to set up the HANDSHAKE
signal for the next read operation.

Figure 4.2 illustrates the use of the slave A mode of the MIP/P20 or MIP/P50 for
interfacing the Neuron Chip to a Motorola 68HC11 microcontroller. The 68HC11 is
the master and the Neuron Chip is the slave connected to the B and C ports of the
68HC11. The interface circuitry is considerably more involved than the slave B
mode interface, which is shown in figure 4.3. See the next section on Handling
Uplink Requests for other options for generating an uplink interrupt.

NEURON CHIP 8HC11A1
109 faPW. PBO
108 Ja=CS STRB
""'Dc]

10 10 HS »1 SIRA
1
I
L +1IRQ

DO - D7 8
1010-107 A »1 PORTC

Figure 4.2 Sample Slave A Mode 68HC11 Interface for the MIP/P20 or MIP/P50

Figure 4.3 illustrates the use of the slave B mode of the MIP/P20 or MIP/P50 for
interfacing the Neuron Chip to a Motorola 68HC11 microcontroller. The 68HC11 is
the master and the Neuron Chip is the slave residing in the 68HC11’s address space.
No interface circuitry is needed aside from some address decoding logic that
allows the 6BHC11 to access the Neuron Chip by using specific addresses (one
address for the data register and one for the control register).

MC68HC11A8 NEURON CHIP

(master) (slave B)
15
A0-A15 —fx—m
Decoding ‘ -
Logic cs 10_8
A0 AD 10_10
E
B R/~W 109
D0-D7 —£ 10_0-10_7
8 Data

Figure 4.3 Sample Slave B Mode 68HC11 Interface for the MIP/P20 and
MIP/P50

If the host to Neuron Chip connection involves any type of external cabling, the data
and control signals must be adequately conditioned, in particular the ~CS (chip
select) signal. Crosstalk and poor rise times on this signal will interfere with the
operation of the parallel /O protocol.

MIP/DPS Host Interface

For the MIP/DPS, any dual-ported RAM can be used that supports the memory
access requirements of the Neuron Chip and implements semaphores as described
later in this chapter under Implementing Semaphores. Two dual ported RAMs that
meet these requirements are the IDT 71342 and the Cypress 78144. The memory
must be contiguous and start on a 256-byte page boundary. The starting address
must be after the end of the ROM memory used for the MIP image, however the ROM
and the dual-ported RAM do not have to be contiguous. The starting address and
size of the RAM must be specified as external RAM in the LonBuilder Hardware
Properties window or the NodeBuilder device template. Appendix B provides a
sample schematic for a network interface based on the MIP/DPS.

Handling Uplink Requests

There are two methods that the host can use to initiate the transfer of a message
uplink from the network interface to the host: polled /O and interrupt-driven I/O.
Polled I/O is simpler, but requires that the host periodically check for the
availability of an uplink message from the network interface. Interrupt driven
I/O is more complex, but provides for asynchronous notification of the host when a
message is ready to be transferred uplink. Either method can be used with any of
the MIPs, but use of interrupt-driven I/O is more complex with the MIP/P20 (the
MIP/P50 and MIP/DPS directly support uplink interrupts).

Once an uplink transfer is started with the MIP/P20 or MIP/P50, each byte of the
message may also be transferred using polled I/O or interrupt-driven I/O. In
addition, for the MIP/P50 using an uplink interrupt, a DMA (direct memory

Microprocessor Interface Program User's Guide 4-5

access) controller can be used to finish transferring the message. Polled 1/0
should be used once the transfer has started if the host’s interrupt service processing
time is long compared to the interrupt period. For example, the interrupt period is
2.4ps for the MIP/P20 or MIP/P50 running at 10 MHz.

The MIP/DPS first writes an uplink message into one of the available uplink
buffers in the dual-port RAM and then generates an uplink interrupt. Therefore no
polled I/O is required for the MIP/DPS for each byte of an uplink packet.

Polled I/O

For polled I/O, the host network driver software periodically polls the network
interface to determine if a message is available for an uplink transfer. The
method of polling depends on which MIP is being used, and the interface mode of
the MIP:

e MIP/P20, slave A mode. The handshake pin indicates that the MIP is ready to
pass back the parallel interface token. The token may be part of a message
packet, or may be a null token.

e MIP/P20, slave B mode. The handshake bit of the status port indicates that the
MIP is ready to pass back the parallel interface token. The token may be part of
a message packet, or may be a null token.

e MIP/P50, slave A or B mode. When the Neuron Chip running the MIP/P50
firmware does not own the write token, it will call the user-supplied uplink
interrupt request routine to indicate that a message is available for an uplink
transfer. This routine typically writes to a memory-mapped location, and
external hardware decodes and latches this memory write. The address of the
user-supplied uplink interrupt request function is specified in the call to the
MIP function as described under Calling the MIP Function in Chapter 3.
Alternatively, the handshake pin in slave A mode or the handshake bit in slave
B mode can be used as with the MIP/P20. However, the handshake signal is
asserted once per byte transferred. The memory-mapped I/O port is written
once per uplink transfer request.

s MIP/DPS. The MIP/DPS firmware changes a state variable in the control
interface structure in shared memory to indicate that a message is available
for an uplink transfer. The control interface structure is described under
Control Interface Structure in Chapter 5.

Interrupt-Driven I/O

46

For interrupt-driven I/O, an interrupt signal generated by the network interface
informs the host that a message is available for an uplink transfer from the
network interface to the host. The source of the interrupt depends on which MIP is
being used:

e MIP/P20. Slave A mode should be used if an uplink interrupt is desired with the
MIP/P20 since interrupts are difficult to generate with slave B mode. In slave
A mode, the handshake pin interrupts the host every time the MIP is ready to
pass back the parallel interface token. The token may be part of a LonTalk
message packet from the network, a local network interface command, or a
null token. The handshake pin therefore acts as both an uplink interrupt and a
null token interrupt. However, the handshake signal is asserted once per byte

transferred. The host must transfer the packet to determine if it is a message or
a null token.

e MIP/P50. The MIP/P50 firmware calls the user-supplied uplink interrupt
request function to generate an uplink interrupt. This routine typically writes
to a memory-mapped location (which requires a Neuron 3150 Chip), and
external hardware decodes and latches this memory write. This method is
illustrated by the example MIP application in Chapter 3. The address of the
user-supplied uplink interrupt request function is specified in the call to the
MIP function as described under Calling the MIP Function in Chapter 3. The
uplink interrupt signals an uplink LonTalk message from the network or a
local network interface command. Either slave A or slave B mode may be
used. In this model the host normally has the write token. Downlink transfers
occur as needed. Uplink transfers occur via two interrupts from the network
interface hardware. The first interrupt is a signal that the network interface
does not own the token, and needs to send data uplink. The driver then writes
downlink, giving up the token. The second interrupt is a signal that the
network interface is starting an uplink transfer. In this case the driver reads
the uplink data from the network interface. Both interrupts appear on a single
interrupt request line since they are generated in the same manner by the
network interface hardware. The distinction between them is made by
evaluating the token state of the driver. No polling occurs in this model; it is
completely interrupt-driven in the uplink transfer case.

The following figure describes one method of generating the uplink interrupt
using the example interrupt request function from Chapter 3. The address that
is decoded is 0xC000. The upper four bits only of the address (1100) are decoded,
therefore nothing else should be in the memory map from 0xC000 to 0xCFFF. As
described in the LTM-10 User’s Guide, similar hardware is implemented on
the LTM-10 module, so that an ~IRQ output is available from the module.

A15
A14 74HC74
| D
A3 H>e—
A12 -[>°—— -
CLK Q -——l
PR
D Q—
£ iy IRQ
g 1aq——>CLK
NOTE: This is not minimized logic CLR_IRQ >

IRQ signals the host system that an uplink message is waiting. The host’s interrupt
subroutine will acknowledge the interrupt by briefly asserting ~CLR_IRQ.

Figure 4.4 MIP/P50 Uplink Interrupt Generation for Interrupt-driven 1/0

Microprocessor Interface Program User's Guide 4-7

After the command byte is received with the uplink interrupt, if the command
specifies a message, the length byte is read using polled I/O. Now that the
length of the rest of the message is known, the transfer can be completed by
polled /O, interrupt I/O, or a DMA controller. When DMA is used, a separate
end-of-transfer interrupt is generated by the DMA controller to signal to the
driver that the transfer has been completed. Depending upon the host this driver
is being used on, this may or may not be a faster way than using interrupt-
driven I/O, as setting up the DMA hardware usually entails a fair amount of
overhead. Generally, larger-sized messages will achieve a greater
performance improvement than small messages.

Figure 4.5 provides a block diagram of using interrupt I/0O and a DMA channel
with the MIP/P50.

NEURON running MIP/P50
using the optional uplink
interrupt and 1/O —— memory

Host Bus Interface DMA requests.
UPLINK 3
IRQ __G—__—_—— INTERRUPT /i
ADDR. DECODE |~ 7 Al15..12]
LOGIC
RESET —_
LATCH % RESET
LOGIC
10[7..0] 10 [7..0]
ADDR. ‘ ; DATA <
CONTROL I

4-8

RAM

GLUE
LOGIC

_ :

Programmable
DMA
Controller

Figure 4.5 MIP/P50 Interrupt I/O with DMA Functional Block Diagram

MIP/DPS. The MIP/DPS firmware asserts I0_10 low for 10 us to generate an
uplink interrupt. The I0_10 pin can be used directly to generate an interrupt on
the host. The IO_10 pin should be latched if a latching interrupt is required by
the host hardware. The uplink interrupt signals an uplink LonTalk message
from the network or a local network interface command. The example
MIP/DPS schematic in Appendix B includes an interrupt latch.

Implementing a Reset Latch

The host must respond to any resets that occur on the network interface. For
example, a network interface may be reset during the loading process to start
execution with a new network image or application image. If the host ignores the
reset, the load may fail and the host application will not operate.

For the MIP/P20 and the MIP/P50, the host must reinitiate the parallel interface
token passing protocol after a reset occurs since the master is assumed to have the
token after a Neuron Chip reset.

For the MIP/DPS, the host must terminate all writes to the shared memory and
release any semaphores since the MIP/DPS firmware initializes the shared
memory after a reset and rebuilds the control structures (see Implementing
Semaphores below). The host must also terminate any reads after a reset since the
data may no longer be valid.

Once the MIP/DPS initialization has completed, the control_iface.out and
control_iface.out_p structures will be filled in with valid (non-null) pointers.
The host will be informed that the reset initialization has been completed by an
uplink interrupt for an uplink niRESET command. The niRESET command will be
posted at control_iface.command_in. Once the niRESET command has been
transferred uplink, the host may proceed with normal operation of the network
interface. The MIP/DPS will be in the FLUSH state (no network messages
allowed, in or out) until canceled with the niFLUSH_CANCEL command from the
host.

For the MIP/P20 and MIP/P50, the reset latch can either be polled by the host, or can
be used to generate an interrupt to the host. For the MIP/DPS, a reset interrupt
should be used to ensure that the host does not write to the dual-ported RAM while it
is being initialized by the MIP/DPS firmware. If a reset interrupt is used, the reset
signal may be logically OR'd with the uplink interrupt to generate a single host
interrupt, as long as the reset latch is also made available to the host so that the host
can determine the source of the interrupt. If both the uplink and reset bits are set,
then the reset sequence is initiated nonetheless.

A reset latch is implemented by latching the reset output of the network interface
Neuron Chip. An example schematic for a reset latch is shown in figure 4.6. The
example MIP/DPS schematic in Appendix B also includes a reset latch.

Microprocessor Interface Program User's Guide 49

~<_RST_SENSE"

CR1 Neuron
| o
“RESET RV P
14 U2A ~RESET
2 PR 5
“RST CLR > C a6 1 2
= cL IN |
To HOST MPU = 74HC74 RST GND-Q‘j_
(TTL LEVELS) x‘ =
Vee MC33164P-5

Consult the Neuron Chip Data Book
for the appropriate reset circuit.

Figure 4.6 Sample Reset Latch Schematic

Implementing Semaphores

4-10

The MIP/DPS uses hardware semaphores to control access to the shared memory
area by either the network interface processor or the host processor (the MIP/P20
and MIP/P50 do not use semaphores). Only exact address conflicts need to be
avoided; either processor has free access to the shared memory area provided they
do not access the same byte location within a "very small period" of each other.
This period is guaranteed by the semaphores and ownership rules concerning
certain elements in the shared memory.

There are eight single bit semaphores mapped into eight consecutive addresses.
The starting address is passed as a function call argument from the MIP
application (MIP_DPS.NC) to the MIP function (that is in the MIP_DPS.LIB
library). The MIP function requires that the semaphores start on a 256 byte page
boundary.

The semaphores are implemented in hardware within the dual-ported RAM to ensure
that only one processor can own a semaphore at a time. To access (own) a semaphore
the processor writes a '0' value and then reads back the same location. If the value
read is a '0' value then that processor owns the semaphore. If the value read is a '1'
then that processor does not own the semaphore and the process of trying to own it may
be repeated. The semaphore hardware ensures that if both processors write a '0' value
at the same time then only one of the processors will read back a '0’ value.

The semaphore must eventually be released by the processor that owns it. This is
accomplished by writing a '1' value to that semaphore. When the network interface
Neuron Chip gets a semaphore, it will own it for 17.4 ps with a 10 MHz input clock
(the time scales with the input clock).

The MIP/DPS will not operate properly unless the semaphores in the dual-ported
RAM are initially freed by the host for use by the MIP/DPS. When a network
interface is powered up, it is likely that all of the required semaphores will not be
free due to the power up state of the semaphores. The MIP/DPS will wait on these
semaphores, and possibly reset due to a watchdog timeout, until the semaphores are
freed by the host side of the dual-ported RAM.

S

Creating a Network Driver

This chapter describes the process of building a network driver for
a host that is to be connected to a MIP-based network interface.

Microprocessor Interface Program User's Guide 51

Implementing a Network Driver

The network driver provides a hardware-independent interface between the host
application and the network interface. The LonTalk network driver protocol
defines a standard calling convention for network driver functions. By using
network drivers with consistent calling conventions, host applications can be
transparently moved between different network interfaces. For example, using a
standard MS-DOS network driver for the MIP allows applications, such as those
based on the LonManager API for DOS or Windows, to be debugged using the
network driver for the LonBuilder Development Station, then later be used with the
network driver for the SLTA/2 Serial LonTalk Adapter, PCLTA PC LonTalk
Adapter or a network driver for a custom network interface based on any of the
MIPs. You can do all of this without modifying the host application.

Figure 5.1 illustrates how the network driver fits into the host application
architecture.

Host Application

| | Host Application

- = = =— == = Application-Layer Intefface @=— =— = = = =

Driver Services:

open/close/ioctl/read/write .
Network Driver

Flow Control and Buffering

—————— Link-Layer Inteface @=— — — — — — —
SLTA or PCLTA MIP/P20 and MIP/DPS
Link-Layer or MIP/P50 Link- Link-Layer
Protocol Layer Protocol Protocol
————— = = Physical-Layer Inteface — — — — — — =
SLTA/2, MIP/P20 or
PCLTA, or or MIP/P50 or MIP/DPS Network Interface
PCNSS

) i

Figure 5.1 Host Application Architecture

P LONWORKS Network

52

The LonTalk network driver protocol defines four functions that should be
provided by every network driver, these functions are 1dv_open (), 1dv_close(),
1dv_read (), and 1dv_write (). The 1dv_open () function initializes the network
driver and network interface. The 1dv_close () function deallocates any
resources assigned by the 1dv_open () function. The 1dv_read() and

ldv_write () functions transfer application buffers uplink from the network
interface and downlink to the network interface. The syntax for these functions
may be operating system dependent. The DOS network driver function calls are
defined in Chapter 4 of the LONWORKS Host Application Programmer’s Guide.

The network driver protocol defines the interface between the host application and
the network driver. LonTalk packets are transferred between the host application
and the network driver using application buffers. The network interface protocol
defines the interface between the network driver and the network interface.
LonTalk packets are transferred between the network driver and the network
interface using MIP link-layer buffers. The network driver must translate
between application buffers and link-layer buffers. Figure 5.2 illustrates the
application and link-layer buffer formats. The contents of the buffers are
identical, with the exception of the application and link-layer headers, as well as
the EOM byte at the end of the MIP/P20 and MIP/P50 buffers. The network driver
does not have to modify the length or command/queue bytes, it only has to modify
their ordering. See the LONWORKS Host Application Programmer’s Guide for a
detailed description of the buffer contents and network interface commands.

amd I queus Application-Layer CMD XFER = 0x01 MIp/P20 and length o MIPD
s Lk Lyer oo
length length Header and queue Header size = 2
size=3 o
oand queue
ExpMsgHdr n:ador I - ExpMsgHdr 9 Message
i H
NetVarHdr size=3 ExpMsgHdr Message NetVarHar Sl::‘r{?
or
NetVarHdr Hoader -
 —
SendAddrDt
or Network SendAddrDYl ™ SendAdarDt Network
RevAddrOt \ddress or Address
R :::«L“ RevdarOn Hetwork RevAdarDt sizo = 11
darDY optional
| ' RespAddrDt siz, r.\.d‘ 1 tongth RespAdarDt
o
-
| o -
UnprocessedNV
UnprocessedNV pme.:s‘d cessed
or Data or NV Data Umor v Data
ProcessedNV size varies ExplicitMsg size varies ProcessedNV size varies
o or
ExplicitMsg ExplicitMsg
EOM = 0x00] sizo 1
L
lication-Layer Butfer MIP/P20 and MIP/P50
(Anp.‘:m. independent) Link-Layer Buffer MIP/DPS Link-Layer Butfer

Figure 5.2 Application and Link-Layer Buffer Formats

Microprocessor Interface Progfom User's Guide

53

The network interface protocol for network interfaces based on the MIP/P20 and
MIP/P50 is based on the Neuron Chip parallel I/O protocol. This protocol is defined
in the Parallel I/0 Interface to the Neuron Chip engineering bulletin. The network
interface protocol for the MIP/DPS is built on a shared memory interface with
semaphores.

The functions and services defined by the LonTalk network driver protocol are:

typedef int LNI;
LDVCode error = ldv_open (const char *device_name, LNI *pHandle) ;

Initialize the network interface and return a handle for accessing the network
interface. If the network interface is held in a reset state after power-up, cancel the
reset state.

Initialization includes cancelling the network interface Flush state. After a
network interface is reset, the network interface enters the Flush state. While in
the Flush state, the network interface ignores all incoming messages and will not
send any outgoing messages, even service pin messages. The Flush state is
provided to prevent a network management tool from performing network
management functions on the network interface before the host has configured the
network interface. This state is cancelled with the niFLUSH_CANCEL command
from the host. After the Flush state is cancelled, the network interface is in the
Normal state.

The network interface sends a niRESET command uplink following any reset.
This will be the first message received by the host whenever the network interface
is reset.

LDVCode error = ldv_read(LNI handle, void *msg_p, unsigned length);

Read an application buffer from the network interface. The msg_p argument is a
pointer to an application buffer. Application buffers are defined in chapter 3 of the
LONWORKS Host Application Programmer’s Guide. If a buffer is not available,
return the LDV_NO_MSG_AVAIL error code. If a buffer is available, translate the
buffer from the MIP link layer buffer format to the application layer buffer format,
and return the buffer in the *msg_p structure. The uplink buffer transfer is
described later in this chapter.

LDVCode error = ldv_write(LNI handle, void *msg_p, unsigned length);

Write an application buffer to the network interface. The msg_p argument is a
pointer to an application buffer. Application buffers are defined in chapter 3 of the
LONWORKS Host Application Programmer’s Guide. For the MIP/P20 and
MIP/P50, if the application buffer is a niCOMM or niNETMGMT command, first
request an output buffer as described under Downlink Buffer Transfer for the
MIP/P20 and MIP/P50 later in this chapter. If a buffer is not available, return the
LDV_NO_BUFF_AVAIL error code. If a buffer is available, translate the the
application layer buffer format to the MIP link layer buffer format and transfer the
link layer buffer to the network interface. The downlink buffer transfer is
described later in this chapter.

LDVCode error = ldv_close(LNI handle);

Free any resources assigned to the network interface identified by handle, and free
the handle. Optionally hold the network interface in a reset condition.

‘Example Network Driver

The MIP is delivered with source code for an-example network driver for DOS.
This example driver for the MIP/P20 and MIP/P50 can be used as a starting point
for creating a working network driver. The example source code is modular, and
changes for the hardware interface should be localized to the files MIP_PIO.C and
MIP_TYPS.H. The example driver for the MIP/DPS is a complete working
example for network interface hardware meeting the following specifications:

Dual ported RAM size: 4 Kbytes

Dual ported RAM Neuron Chip address: 0xA000 - OxAFFF

Dual ported RAM host base address: 0xC000:0x0000 to 0xDE00:0x0000
Control interface structure offset from base address: O0xOFEO

Control interface structure Neuron Chip address: OxAFEOQ

See the comments in the source code for the network drivers for an explanation of
how the network drivers work. These drivers are templates for LONWORKS
standard network drivers and are compatible with the LonMaker Installation Tool
and the LonManager APIs for DOS and Windows.

Implementing a MIP/P20 or MIP/P50 Network Driver

All transfers between the network driver and the network interface are either
NULL token transfers, data transfers, RESYNC transfers, or ACK_RESYNC
transfers as described in the Parallel I/0O Interface to the Neuron Chip engineering
bulletin. Data transfers start with the link-layer header sequence described in
figure 5.2. The link layer header consists of a CMD_XFER byte, hex 01, followed by a
length byte, followed by a network interface command byte. The data transfer is
terminated with an EOM (end of message byte), which may be any value, but is
usually 0. The EOM byte is never read, but is necessary to put the handshake line
in the correct state to imply passing the write token to the other side of the parallel
interface.

The length byte describes the length of the command field plus the length of the data
field. This value will always be at least 1.

Microprocessor Interface Program User's Guide 55

Downlink Buffer:Transfer

The network driver receives application buffers from the host application, translates
them to link-layer buffers, and passes the link-layer buffers to the network interface
using the parallel I/O protocol. If the application buffer is a niCOMM or niNETMGMT
command, the network interface must first request an output buffer before sending
the link-layer buffer. The network driver may hold the buffers in an output queue
until the network interface is ready to receive them. The network driver takes the
network interface through three states to request a buffer and send the link layer
buffer. Figure 5.3 illustrates the downlink state transition diagram.

Receive niCOMM
or niNETMGMT

Node Reset

Out Queue
Requested

Output
Buffer
Available

Receive niCOMM
or niNETMGMT
message

send niACK

Figure 5.3 Network Interface Downlink State Transition Diagram

Following is the sequence of events for transferring an niCOMM or n iNETMGMT
command downlink to the network interface:

1. The network interface is initially in the Normal state.

2. The network driver requests an output buffer by sending a link-layer
header with a niCOMM or niNETMGMT command and the appropriate queue
value (niTQ, niTQ_P, niNTQ, or niNTQ_P). The length byte must be one (1)
for this header. [Note: The driver sends the complete link_layer buffer
once the network interface is in the Output Queue Ack’d state.] This puts the
network interface in the Output Queue Requested state.

3. If an output buffer is not available, the network interface responds with a
null token or another uplink transfer, which is not an niACK. The network
driver cannot send a downlink LonTalk message, as long as the network
interface remains in the Output Queue Requested state. The network driver
can only send downlink transfers which are local commands. Uplink
transfers may also occur.

4. When an output buffer is available, the network interface responds with an
acknowledgement (command code niACK). The network interface is now
in the Output Queue Ack’d state. While in this state, the network driver can
only transfer downlink LonTalk messages, Uplink Source Quench
commands (niPUPXOFF), Uplink Source Resume commands (niPUPXON),
or Reset commands (niRESET) since the network interface is waiting for a
message in this state. All other network interface commands sent
downlink will be ignored, and will return the network interface to the
Normal state.

5. Upon receiving the niACK acknowledgement, the host transfers the link-
layer buffer to the network interface. This returns the network interface to
the Normal state.

The network driver must preserve the continuity of the type of buffer request and the
type of message sent downlink. For example, if the network driver sends the
niCOMM+niTQ_P command requesting a priority output buffer, and follows this with
a message transfer with the non-priority niCOMM+niTQ command, the network
interface will incorrectly store the message in a priority output buffer, the type
originally requested.

The network driver should not send another downlink buffer request just because it
did not get an niACK uplink. If there still is no output buffer allocated from the
previous buffer request, so the buffer request is still posted in the MIP, this action
will be benign - the request simply overwrites the previous one. If the host was
owning the token, which it would just before sending a second downlink buffer
request, and the MIP has just allocated the output buffer, the MIP will be in the buffer
allocated state, even though it has not sent the uplink niACK yet. A subsequent
downlink niCOMM or niNETMGMT will be assumed to be a downlink message because
the buffer has been allocated. This will be an invalid message since the rest of the
message did not exist - it was just a buffer request.

Therefore the network driver should not re-request output buffers. The first request
cannot get lost. When the niACK comes uplink, the network driver should send the
downlink message. When in the Output Queue Ack’d state, the network driver may
send down a NI_NoQueueCmd command, but it should not send another nicoMM or
niNETMGMT request.

Microprocessor Interface Program User's Guide 57

Uplink Buffer Transfer

Uplink link-layer buffers may be incoming LonTalk messages, output buffer
request acknowledgements, completion events, local commands, or null tokens.
The network driver translates the link-layer buffers to application buffer format
and stores the buffers in a queue until the host application is ready to read them.
The network driver can use uplink flow control to stop uplink transfers when no
network driver input buffers are available. When no network driver input buffers
are available, the network driver sends the Uplink Source Quench (niPUPXOFF)
command to the network interface. This prevents the network interface from
sending any LonTalk messages uplink. When the network driver senses that
network driver input buffers are available, it sends the Uplink Source Resume
(niPUPXON) command to the network interface in order to resume uplink transfers.
Figure 5.4 illustrates the uplink state transition diagram.

Receive
niPUPXOFF?

Receive
niPUPXON?

Figure 5.4 Network Interface Uplink State Transition Diagram

Example MIP/P20 and MIP/P50 Network Driver

Figure 5.5 illustrates the structure of the example network driver for DOS included

with the MIP/P20 and MIP/P50.
g
:I
HOST APPLICATION =< 8
£ 'EI 9,
| .
- o < ‘.. direct
= = §s 8 interface
SEEOL RN
£20009 533
MIP/P20 OR L
MIP/P50 mip_difc.c
NETWORK DOS DRIVER INTERFACE application
DRIVER callback
tchain.asm mip_exec.c ¢ \A A4 mdv_time.c
BACKGROUND)
INTERRUPT <@ timers
k) ko &
S x 3 2
event 25 (| £2| | =2
processor gg 4] og
@ 3 £
= E 8
TOKEN?
L A optional uplink
mip_pio.c 1 interrupt (MIP/P50)
ccccmmeeeeeeed e ____hardware interface _________ B
NETWORK
INTERFACE 11 RST
Neuron MIP/P20 OR
3120/ MIP/P50
3150 FIRMWARE

Figure 5.5 MIP/P20 and MIP/P50 Network Driver Block Diagram

The sample DOS network driver supplied with the MIP/P20 and MIP/P50 uses the
DOS system timer tick interrupt (vector 0x1C) to perform background processing of
the parallel network interface. This interrupt normally occurs every 55 ms. The
driver hooks into this interrupt vector and executes driver code whenever the

LON (n) device is opened. Flags internal to the driver prevent the interrupt code
thread from interfering with the normal application foreground execution of
functions within the driver.

Microprocessor Interface Program User's Guide 59

Within the driver there is a function, mip_isx (), which services the parallel
interface to the network interface. This function may be executed from within the
tick interrupt, or from the beginning of the read function call to the device, or from
the end of the write function call to the device. This service involves passing the
write token to the network interface, in the form of either a message to the network
interface if there is a message buffered, or as a NULL token if there is no message
buffered.

Next, unless the mip_isr () function has been executed from a write function call to
the device, the driver will wait up to four milliseconds for a pending transfer of the
token from the Neuron Chip by checking the handshake signal. This period gives
the network interface some time to process the data it has read, and to initiate a
write operation. If there is a transfer pending, the driver reads the network
interface. This yields either a message transfer or a NULL token transfer. The
driver now owns the write token, which is the Normal state for the driver. Next, if
there are buffered input messages, and if this function has been executed from the
tick interrupt, the application callback function is executed.

When the mip_isr () function is executed from either the read or write case, this
service repeats itself as long as there are incoming messages to be processed by the
driver.

This provides a code path which can process more than a single input message
every 55 milliseconds. The tick interrupt service is limited to prevent the PC from
becoming interrupt bound.

The example network driver is fully buffered for both outgoing and incoming
messaging. Read and write functions work with circular buffers within the
driver. The host interface service handles the other ends of these buffer queues.

The example network driver only supports a single set of output buffers. An
elaboration on this design could implement a set of priority output buffers. The
write function could determine into which of the two buffer sets to place messages,
and the driver service function could service the priority buffers first.

MIP/P20 and MIP/P50 Processing

510

Figures 5.6 through 5.8 are flow charts illustrating the processing done by the
MIP/P20 and MIP/P50 firmware. Figure 5.6 shows the MIP processing when the
host owns the token. Transfers downlink from the host to the MIP only occur in this
figure. The two boxes labeled Execute “background” tasks are expanded in figure
5.7. Figure 5.8 shows the MIP processing when the MIP owns the token. Transfers
uplink from the MIP to the host only occur in this figure (with the exception of the
uplink niACK command shown if figure 5.7).

The MIP firmware performs a synchronization step prior to starting the processing
shown in the following figures. The Neuron Chip running the MIP firmware will
watchdog reset until the synchronization is complete. After synchronizing, the
MIP firmware enters the Flush state. This state affects the lower layers of the
network interface protocol only, blocking incoming and outgoing network traffic.
It does not affect other MIP processing.

Eost owns the Token State)‘

v

Host owns Token
Is there downlink
activity?

b Execute “background”
g taksks.

Yes

In the OutQueue
Ackd state?

Yes.’

. No

4

4 Transter downlink and
process local NI
commands (Note #2)

Was thata
buffer request?

-

Is command
niCOMM?

Yes

¥

Enqueue the message
for the network.

Transter downlink. Is command
(Note #1) niINETMGMT?
Yes
Execute command and
free output bufter

Post buffer request,

enter OutQueue

Requested state.

No

. 4

Execute
“background” tasks:

L

' :

Process limited local NI

commands. (Note #3)

Enter Normal state. l‘

“ (m Toen]

Figure 5.6 Host Owns Token Processing

Note 1. If the command is niNETMGMT or niCOMM, and the actual downlink message
is a buffer request rather than a true message, an incomplete message will be
processed instead of treating it as if it were another buffer request.

Note 2. If the command is ni NETMGMT or niCOMM, and the actual downlink message
is a true message with a transfer length greater than 1 rather than a buffer request,
then this transfer must be flushed and the entire downlink transfer is lost.

Note 3. The only local commands that can be executed in this state are Uplink
Source Quench commands (niPUPXON), Uplink Source Resume commands
(niPUPXOFF), and Reset commands (niRESET).

Microprocessor Interface Program User's Guide

511

‘ MIP owns Token State)

there a local Ni
command posted for

Yes -’ Transfer uplink and clear
: posted command.

“” |s there an uplink
message posted for
transfer?

Ly | Transfer uplink and free
o the message buffer.

2

Perform NULL Token
uplink transfer.

1 Host owns Token state. ’ - '

Figure 5.8 MIP Owns Token Processing

Implementing a MIP/DPS Network Driver

A network driver for the MIP/DPS must follow conventions for use of the dual-
ported RAM shared by the host and network interface. A control interface structure
in the shared memory controls access to uplink and downlink buffers used for
transferring messages between the host and network interface. Access to the
control interface structure is controlled by hardware semaphores. The following
sections define the control interface structure, resource control using the
semaphores, and the scenarios for downlink and uplink transfers.

Microprocessor Interface Program User's Guide 513

512

Background Tasks

v

In the OutQueue Is there an uplink Allocate an output
Requested local NI command "’ bufter.

state? ?
No Yes ‘ ¢

Allocation
successful?

T o Eﬁter Othueué Ael;d

state and post uplink
local niACK command.

Is there an uplin
message posted?

Try and dequeue an
uplink message.

Post uplink message for
transfer.

End of Background
Tasks

Figure 5.7 MIP Background Processing

Confrol Interface Sfructure

A 32-byte control interface structure is stored in the dual-ported RAM. The
structure of this control interface structure is defined in the control_iface
declaration in Appendix B. The base address of the control interface structure
starts 32 bytes from the end of off-chip dual ported memory.

Addresses stored in the control interface structure are Neuron Chip addresses.
Host access to these addresses will typically require offsetting of these values for
the proper location within the host's own memory map.

Resource Confrol and the Semaphores

514

The design of the MIP/DPS minimizes the duration of any spin loops that the host
processor may be forced to execute while waiting for a semaphore. Referring to
Appendix A, elements of the control_iface.out and control_iface.outp
structures are controlled by semaphore 0, and the control_iface. in structure by
semaphore 1. The control_iface.command_out byte is controlled by semaphore
2, and the control_iface.command_in byte is controlled by semaphore 3. The
buffers themselves reside within the rest of the dual-ported RAM. Address conflicts
for the buffering space are avoided due to ownership rules. Modification
contentions for the buffer state control bytes are avoided due to network
interface/host modification rules. Downlink buffers are allocated from the
downlink buffer pool, one at a time, by the network interface Neuron Chip. The
buffer pointers are then posted into the control_iface.out or
control_iface.out_p structure. Once posted they are owned by the host until they
are filled in and the associated state byte is modified by the host. While owned by
the host the network interface will not access them. Uplink buffers are de-queued
by the network interface and posted for consumption by the host. Once posted they
are no longer owned by the network interface until the host posts them back for
freeing by the network interface. Buffers are only read or written to by the side who
currently owns them.

The state bytes are the only elements of either structure controlled by the
semaphore. Read/write rules control access to the buffer pointers and their
corresponding buffers in memory. This assures that the host and network
interface will not be accessing the pointers at the same time.

Likewise, the control_iface.command_out element is controlled by semaphore 2,
and the control_iface.command_in element is controlled by semaphore 3.

Downlink Buffer Transfer

Two downlink buffers of each type, priority and non-priority, are typically posted to
the host, provided they can be allocated by the network interface from the internal
pool. Along with these two buffer pointers for each type (named A and B) are two
buffer state control bytes, and two A/B selectors, one of which is used by the host, and
the other which is used by the network interface.

The values for the output buffer state bytes are:

0 Not available for use by the host.
1 Available to the host for writing.
2 Filled by host.

Address contention for the buffer pointers is avoided by access rules. The host will
not read or write to the pointer if its state is '0' or '2". The network interface will not
read or write to the pointer if its state is '1".

Given that there are two downlink buffers available it becomes important that these
buffers are processed by the network interface in the same order as they were filled
in by the host. This order is maintained by two single byte A/B selectors which are
used to determine the next buffer to be used or checked. Since there are only two
buffer pointers (per type, priority and non-priority) there are only two values for the
selectors. The host will use the selector in shared RAM rather than a private
variable. This assures that the variable is reset if the network interface is ever
reset. Semaphore control is not required for the A/B selectors since they are only
accessed by their owner: the host or the network interface.

When a downlink message needs to be sent, the host will read one of these pointers,
fill in the buffer, and change the corresponding state byte value from '1' to '2'. The
network interface determines the message's transaction queue type, transaction or
non-transaction, by examining the command/queue byte which is stored in the
message header.

The process of filling in an output buffer by a host is as follows: Determine if this is
a priority or non-priority message, and use the corresponding structure elements
in the control interface. Next, read the A/B selector value to determine which of the
two buffer pointers to access. If the corresponding state byte is '1', read the buffer
pointer and fill in that buffer with the message. Toggle the A/B selector and change
the corresponding state byte to '2'.

If the state byte is '0' the network interface has not yet posted a new downlink
buffer. If the state byte is '2' the network interface has not yet processed this
message. In either case the host must back off and try this process again later,
typically after a response or completion event is passed uplink.

Microprocessor Interface Program User's Guide 515

Uplink Buffer Transfer

The mechanism for controlling the uplink buffers is similar to the methods
described for the downlink buffers, except in reverse. Only one pair of uplink
buffer pointers exist. These buffer pointers have their corresponding state bytes,
and host/network interface A/B selectors.

The values for the input buffer state bytes are:

0 Not available for use by the host.
1 Available to the host for reading.
2 Read by host.

Address contention for the buffer pointers is avoided by access rules: The host will
not read or write to the pointer if its state is '0' or '2'. The network interface will not
read or write to the pointer if its state is '1'.

The process of reading these uplink buffers by the host is as follows: Read the A/B
selector value to determine which of the two buffer pointers to access. If the state byte
for that buffer pointer is '1' then read the message, toggle the A/B selector, and
change the state byte from '1' to '2'. When the network interface sees the state byte
is '2' it will free this buffer and change the state to '0'. When the network interface
de-queues an uplink buffer it will post the buffer pointer and change the state to '1".

Write contention for both uplink and downlink buffer state bytes is controlled by
rules concerning write access to these state bytes. The network interface only
writes (changes) the state byte when it is '0' or '2". The host only writes the state byte
when it is '1'.

The MIP/DPS does not use the niACK, niNACK, niPUPXOFF, or niPUPXON uplink
commands since they are not required for the dual ported memory interface.

Local Command Processing

516

A path exists for supporting single byte commands, which do not use application
buffers, in both directions between the host and the network interface. These
commands are defined by the enumeration NI_NoQueueCmd in Appendix C of the
LONWORKS Host Application Programmer’s Guide. Host to network interface
commands are passed by first checking the control_iface.command_out
element. Ifit is zero a new command may be posted. Likewise, if the
control_iface.command_in element is non-zero this location should be read,
processed, and zeroed.

Example MIP/DPS Network Driver

Figure 5.9 illustrates the structure of the example network driver for DOS included

with the MIP/DPS.
g
-
[0)]
=< 8
EET
w wi El .g'l g‘
HOST APPLICATION £ Z32E e § § —wdirect
Qp S Wk N interface
i i i; T. 1L
MIP/DPS dpr_difc.c
NETWORK .
DRIVER DOS DRIVER INTERFACE application
callback
dpr_pmip.c ¢ Yvy
Q >0 [] © E
HIEHIFIHEIE
S22 E|lle
event E g‘ o.g' £ g‘ el1l&
processor 8- Zol|lz2]]|8 S
S a =93 K] allxll=
0 29 [7] § <
()] % [« [} ro¥ ;
E © E 1S3 3 o
©
S Ry —
A
NETWORK UPLINK
INTERFACE INTERRUPT
INTERRUPT SEMAPHORE
CAUSE =
REGISTER e §a
o e ©
25|85|28 £5
ES|<5|5E|SE
£°l£°|5g|8 ¢
£ c o|l© 8
g |3
el
NEURON MIP/DPS
3150 FIRMWARE

Figure 5.9 MIP/DPS Network Driver Block Diagram

Microprocessor Interface Program User's Guide

o17

6

Installing the DOS Network Driver

This chapter describes how a MIP network driver is installed on a
MS-DOS or PC-DOS host.

Microprocessor Interface Program User's Guide 61

Installing the Sample Network Driver

62

If you are implementing a network driver for DOS and you have added your
hardware dependent code to the example driver, the driver can be installed in the
same manner as any DOS driver. Add a line to your config.sys file which
includes the driver name and specify driver options. For the MIP/P20 and
MIP/P50, the default name is 1dvpmip.sys; for the MIP/DPS, the default name is
1dvdpmip.sys. An example config.sys entry for the MIP/P20 or MIP/P50 is:

device=c:\lonworks\bin\ldvpmip.sys /010 /il0

An example config.sys entry for the MIP/DPS network driver (loaded as LON2)
is:

device=c:\lonworks\bin\1ldvdpmip.sys /i10 /d2 /mC900
/sC800
In the following descriptions, nn represents decimal digits, and hh represents hex

digits. The command line option switches recognized by the example network
driver are:

nn Sets the number of input buffers the driver will use to buffer
incoming LonTalk messages to nn. You must have at least two
buffers. A maximum of 90 buffers is allowed. The default input
buffer count is 8.

Dn Sets the device ID to n, where nis 1to 9. The device name then
becomes LONn. The default device name is LON1. This option can be
used to load multiple network drivers for multiple network
interfaces. The device name must be unique, meaning, for
instance, that there cannot be two LON1 drivers.

1Z Disables automatic cancellation of the FLUSH state. If this flag is not
specified, the driver automatically cancels the MIP FLUSH state. If
the flag is specified, the host application must cancel the FLUSH state
explicitly using the niFLUSH_CANCEL command. For more
information, see the discussion on the network interface FLUSH state
in Chapter 5.

The following additional options are available only in the 1dvpmip.sys driver
for the MIP/P20 and MIP/P50:

/Onn Sets the number of output buffers the driver will use to buffer
LONTALK messages between the network interface and the host
application to nn. You must have at least two buffers. Each buffer,
input or output, requires 258 bytes of PC memory. The maximum
number of output buffers is 90. The default output buffer count is 8.

/Pn Sets the port number for the driver to use to n. The default port is 1.
Interpretation of the port number depends on the host interface
implementation.

The following additional options are available only in the 1dvdpmip.sys driver

for the MIP/DPS:

/Mhhhh Sets the RAM address paragraph number in the first megabyte of
host address space (a paragraph is 16 bytes). The default is 0xCDO0O.

/Shhhh Defines the semaphore address paragraph number in the first
megabyte of host address space (a paragraph is 16 bytes). The
default is 0xCCO00.

The example network driver assumes that the reset latch described in Chapter 4
is implemented on the network interface. Once the driver is installed at boot
time by DOS, the reset input to the Neuron Chip is held in the reset state until the
network driver is opened. All driver states and input and output buffers are
cleared by the reset. When the network driver is closed, the reset input to the
Neuron Chip is returned to the reset state.

Microprocessor Interface Program User's Guide 63

Appendix A

MIP/DPS Control Structures

This appendix includes ANSI C declarations for the MIP/DPS
control structures. Buffer pointers are 16-bit values stored with
the high byte followed by the low byte.

Microprocessor Interface Program User's Guide Al

MipPir

This structure typedef is used in the following definitions to define the 16-bit
pointers to Neuron Chip memory addresses. 16-bit quantities are not used because
the underlying hardware architecture on which the the MIP/DPS driver is ported to
may be either little or big endian.

The member p_state is set by the network interface to the value 1 to indicate to the
MIP/DPS network driver that it may read the information out of the buffer for
uplink buffers, or write information into the buffer for downlink buffers. The
network interface sets the p_state to 0 for all buffers that are not available to be
accessed by the network driver. When the MIP/DPS network driver is done
reading from or writing to the buffer, it sets p_state to the value 2, indicating to the
network interface that the buffer can be reused for another message.

typedef unsigned char byte;

// This typedef is used for all MIP pointers.
// Note that it is an ODD length.
typedef struct (

byte p_state; // state byte always controlled by a semaphore
byte p_hi;
byte p_lo;

} MipPtr;

mipci_outbuffs_s

The mipci_outbuffs_s structure is used to implement the two downlink message
buffer queues, for non-priority and priority messages. The downlink message
queues are both controlled by semaphore 0.

// This structure is used for host->mip messaging, priority and
// non-priority, and is controlled by semaphore 0.

typedef struct mipci_outbuffs_s {

// This group of pointers point to output buffers:
MipPtr out_a; // pointer for buffer A
MipPtr out_b; // pointer for buffer B

// These are the selectors for accessing 'A' or 'B'
// 0 => a

// 1 =>Db
byte host_o_absel; // Used by Host.
byte mip_o_absel; // Used by MIP.
}i
mipci_inbuffs_s

The mipci_inbuffs_s structure is used to implement the uplink message buffer
queue, which is controlled by semaphore 1.

// This structure is used for mip->host messaging
// and is controlled by semaphore 1.

A2

typedef struct mipci_inbuffs_s {

// This group of pointers point to input buffers:
// uplink, response and completion events

MipPtr in_a; // pointer for buffer A
MipPtr in_b; // pointer for buffer B
// These are the selectors for accessing 'A' or 'B'
// 0 => a
// 1 =>Db
byte host_i_absel; // Used by Host.
byte mip_i_absel; // Used by MIP.
}:
control_iface_s

The control_iface_s structure defines the last 32 bytes of the dual-ported RAM.
Upon a reset, the MIP/DPS code waits for all eight semaphores and then initializes
this area.

// This structure represents the layout of the memory at the last
// 32 byte page of the dual ported RAM.

struct control_iface_s ({
// State bytes controlled by semaphore 0

/7

//
/7

//
//

mipci_outbuffs_s out_p; // Priority downlink niTQ_P, niNTQ_P
mipci_outbuffs_s out; // Non-priority downlink niTQ, niNTQ

State bytes controlled by semaphore 1
mipci_inbuffs_s in; // Uplink niRESPONSE, niINCOMING

Used to pass local commands to the MIP
Controlled by semaphore 2.
byte command_out; // Downlink NI_NoQueueCmd

Used to pass local commands to the HOST
Controlled by semaphore 3.
byte command_in; // Uplink NI_NoQueueCmd

byte padl[6]; // Forces the size to 32.

} control_iface;

Microprocessor Interface Program User's Guide

A3

Appendix B

MIP/DPS Example Schematic

This appendix is an example schematic for a network interface
based on the MIP/DPS. Figure B-1 is a top-level schematic for the
network interface. Figures B-2 and B-3 provide the detailed
schematics for the Neuron Subsystem and Interrupt Logic blocks
shown in the top-level schematic. The Host Interface and
Transceiver blocks are implementation dependent, and are not
included with this example.

The example implements the memory map shown in Table B-1.

Microprocessor Interface Program User's Guide B-1

Memory Map

The example implements the memory map shown in table B.1.

Table B.1 Neuron Chip Memory Map

Start Address (hex) End Address (hex) Usage

0000 7FFF PROM

8000 8007 Dua7I-Port RAM Semaphores
0-

8008 9FFF Do not use (maps to
semaphore bits)

A000 BFFF Dual-Port RAM (8KBytes)

EO000 FFFF Neuron Chip Internal

‘Example Notes

The mipci_outbuffs_s structure is used to implement the two downlink
message buffer queues, for non-priority and priority messages. The
downlink message queues are both controlled by semaphore 0. Following
are additional notes concerning the example:

e The HCE_RAM- and HCE_Sem- signals shown in figure B.1 are mutually
exclusive, so they must be enabled by different addresses on the host.

e The dual ported RAM shown in the example is a CY7B144 8KByte
DPRAM. A CY7B138 or compatible part can be substituted for a 4KByte
DPRAM.

¢ An AS family part is required to generate the WE- signal shown in
figure B.2.

¢ Diode D1 in figure B.3 resets the Neuron Chip when the host resets

(HReset- asserted), and prevents the Neuron Chip from resetting the
host (Reset- asserted).

B-2

Host interface

HA18..12)
HD[E..7]
HCE_RAM-

HYE-

HCE Sen-

HReset-

HIOR-

HIDW-
ResetStotus

MIP Stectus

HIRO

HOE- B

Neuron Subsystan

HOSTIF.SCH

RTINS R3..12) CPIE..4)
2.7 oHDiL.. 7]
HCE_RAM- \—Euct_nnn-
HNE- HVE-
HOE- HOE -
pf HCE-Sen- [ESen- -
MIP_IRO-
NEUSYS. SCH 2
Interrust Logic
HD® IntEns MIP_IRD- ﬂ:
a—"—Reso?- eset- Reset=
H1DR- HIOR-
H10¥- HIOW-
ResetStatus ResetStatus
MIP_Statys NIP Stotus
HIRD HIRQ
IRG.SCH

Figure B-1 MIP/DPS Example Top-Level Schematic

Microprocessor Interface Program User's Guide

/

L

(L

LI 21}

2

[

4

e
coo
S wn
CTT
-

1321 79%]

-S/H

YINI UNE
H¥ASNE TAsSN8

130

4489 H
851] Al m
"y 1353 b4y 13€ NI f-—0 134 = =
=3 ik w o .
- v | = 13
2 9 ? H 12 2
L0
80 ZHuaL
sg ,m [23]
0 (3)]
9% €% [Z1F] z ¥ E
Ea 13 Ml (1]
t 2a i 1E1F]
1 321AY38 [ryr—wsTraRr—
@9I0/1 oy A.q—‘
= S¥Y 6071 IM.*IX L
] i 9071 [5X
£3Y L0/1 yX
3 90/1 fp¥X
3 §0/1 pyX
Q1Y mnh sl
6v 0/1 =X =
~m —ae] %Y zos1 F5-x a4
Ly 1071 X
Y 0071 X —wyrxcse—t 7N
s ¥ 651 °Y 13
309 PV vad e &) is
T Ya] £¥ £42 HyE 20172 R yasing
v 23] zZY zdd L —_ 631 ERITYITY
4 233 [82 - 150
Y81d3
[111
"
]
30

¥30
YH3S
L)

-
~
<

~|

sn
ZSTSE’QI'E] OND
0T L M

[{ FT17)

Y

Figure B.2 Neuron Subsystem (Example Circuit Only)

SZ1JHYL
gein

7\

1A
ﬁH
¥L0UbL
1
9 |G o)
AN124
o [
1S dIW 10 d a 2
gen
[{RI] 2] .
E) -~ niei5- Jin SLISFIl]
ysanbayjuj q
1A
MH
redurs
~-Snieigiesey [*] |m W
%104
¥ 13]
L Givsay 5 g d4 @ 2T
aen %u
BYIITD Y
8y IFNI
N AV4
RELLLYI!]
¥
rLourL)
wTqeugsor 9|2
A104 T < -:c—z_
-}
¥z 8 d 0 qUIIITH >
uan H

Figure B.3 Interrupt Logic (Example Circuit Only)

B-5

Microprocessor Interface Program User's Guide

	Cover
	Preface
	Contents
	Chapter 1 - MIP Overview
	Chapter 2 - Installing the MIP Software
	Chapter 3 - Creating a MIP Image
	Chapter 4 - Building a Network Interface
	Chapter 5 - Creating a Network Driver
	Chapter 6 - Installing the DOS Network Driver
	Appendix A - MIP/DPS Control Structures
	Appendix B - MIP/DPS Example Schematic

