
I
I J

1

LONWORKS’”
Host Application

Programmer’s
Guide

Revision 2

EtHELOk
Corporation

I

I
1
1

078-0016-01 B

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical.
photocopying, recording, or otherwise, without the prior written permission of
Echelon Corporation.

Echelon, LON, and NEURON are registered trademarks of Echelon Corporation.
LONBUILDER, LONMANAGER, LONTALK, LONWORKS, 3120, and 3150 are trademarks
of Echelon Corporation. Other names may be trademarks of their respective
companies,

Document No. 29400

Printed in the United States of America.
Copyright 01992,1993 by Echelon Corporation

Echelon Corporation
4015 Miranda Avenue
Palo Alto, California
94304

Preface

This guide describes how to create LONWORKS~~ host applications.
Host applications are application programs running on hosts other
than NEURON@ CHIPS that use the LONTALKTM protocol to
communicate with nodes on a LONWORKS network. The availability
of host applications makes the LONTALK protocol available to any
host processor by using the NEURON CHIP as a communications
processor.

Host Application Programmer’s Guide
i

Audience
The Host Application Programmer’s Guide is intended for developers creating host
applications for any host. Examples are shown in ANSI C, however, host
applications may be written in any language that can implement the LONTALK
network interface protocol.

Developers creating host applications using the LONMANAGERm API do not need
to read this guide. The LONMANAGER API implements the network interface
protocol and provides a higher level of services to the host application programmer.

Readers of this guide should have C programming experience and be familiar with
LONWORKS concepts and LONWORKS application node development. See Related
Manuals later in the preface for a list of LONWORKS documentation.

For a complete description of ANSI C consult the following references:

l American National Standard X3.159-1989, Programming Language C, D-F.
Prosser, American National Standards Institute, 1989.

l Standard C: Programmer’s Quick Reference, P.J. Plauger and Jim Brodie,
Microsoft Press, 1989.

l C: A Reference Manual, Samuel P. Harbison and Guy L. Steele, Jr., 3rd
edition, Prentice-Hall, Inc., 1991.

l The C Programming Language, Brian W. Kemighan and Dennis M. Ritchie,
2nd edition, Prentice-Hall, Inc., 1988.

Content
The Host Application Programmer’s Guide has five chapters and four appendices
as follows:

l Chapter 1, Host Application Overview, provides an introduction to the host
application architecture.

l Chapter 2, Host Application Architecture, discusses the protocol used by host
applications to communicate with a network interface.

l Chapter 3, Sending and Receiving Messages, discusses the steps used in
sending and receiving LONTALK messages from a host application.

l Chapter 4, Using a Network Driver, describes specifications for using a
LONWORKS network driver.

l Chapter 5, Error Conditions, discusses errors detected by host applications.

l Appendix A, Sample Host Application, provides source code for a sample host
application.

l Appendix B, Creating an External Interface File, describes the procedure for
modifying an external interface file to include network variables and
message tags used by a host application.

ii Preface

l Appendix C, Network Interface Messages, defines the message structures
exchanged by a host application and the network interface.

l Appendix D, Network Interface Commands, describes the network interface
commands specified in a data transfer from a host application to the network
interface.

Related Manuals
The following manuals and engineering bulletins are referenced in this guide:

The LONTALK Protocol engineering bulletin describes the LONTALK Protocol.

The How to Use SNVTs in LONWORKS Applications engineering bulletin
describes how standard network variable types (SNVTs) can be used by any
application, including host applications, to increase interoperability between
LONWORKS nodes.

The NEURON 3120TM CHIP and NEURON 3150TM CHIP Data Book Appendix B
defines the network management and network diagnostic message formats that
can be used by all application nodes, including host application nodes.

The LONBUILDERTM User’s Guide lists and describes all tasks related to
LONWORKS application development using the LONBUILDER Developer’s
Workbench. Refer to that guide for detailed information on the LONBUILDER user
interface.

The LONMANAGER API Programmer’s Guide and the LONMANAGER API
Programmer’s Guide for Windows describe network management in a
LONWORKS network. They outline the components of a LONWORKS network
management tool, list the library functions of the LONMANAGER API, and provide
examples for building a host application using the LONMANAGER API. In addition
to the programmer’s guide, there is also a LONMANAGER API Reference Guide for
Windows, Volumes I and II.

The NEURON C Programmer’s Guide outlines a recommended general approach to
developing a NEURON C application, explains key concepts of programming in
NEURON C through the use of code fragments and examples, and provides a
complete reference section for NEURON C.

The Parallel II0 Inte$ace to the NEURON CHIP engineering bulletin describes
hardware and software to interface the NEURON CHIP to a host processor using the
parallel I/O port.

The Custom Node DeueEopment engineering bulletin describes the steps for
building an example LONWORKS application node.

The LONWORKS Installation Overview engineering bulletin describes
LONWORKS network installation and outlines several scenarios that may be used
to install LONWORKS networks.

Host Application Programmer’s Guide iii

The NEURON CHIP-based Installation of LONWORKS Networks engineering
bulletin describes network management from NEURON C applications.

The Serial LONTALK Adapter User’s Guide describes how to use the Serial
LONTALK Adapter, a network interface that can be used with any host with a serial
interface.

The LONBUILDER Microprocessor Interface Program (MIP) User’s Guide
describes how to create a network interface using the LONBUILDER Microprocessor
Interface Program (MIP).

iv Preface

Contents

Pn?face
Audience
Content
Related Materials

chapter1 overview of the Host Application
Architecture

Overview of the Host Application Architecture
Intended Uses of Host Applications

Examples
Network Management, Network Control,

and Network Monitoring
Network Management
Network Control
Network Monitoring

Definitions

CM-57 Host Application Architecture
Host Application Architecture

Application Layer
Link-Layer
Physical Layer

Plush State

chapter3 Sending and Receiving Messages
Communicating With Other Nodes
Network Interface Configuration Options

Network Variable Processing Option
Network Variable Configuration Table Size Option
Explicit Addressing Option
Buffer Options

Sending Messages
Receiving Messages
Local Control of the Network Interface
Local Network Management/Diagnostics

With the Network Interface
Binding to a Host Node

i
ii
ii

iii

1-1
1-2
1-3
1-3

1-4
1-4
1-5
1-5
1-5

2-1
2-2
2-2
2-2
2-2
2-3

3-1
3-1
3-4
3-4
3-5
3-5
3-6
3-7
3-8

3-10

3-10
3-11

Host Application Programmer’s Guide V

chapter4 Using a Network Driver 4-1
The Network Driver 4-2
Standard Network Driver Services 4-2
DOS Network Driver Services 4-3

Driver Direct Functions 4-4

-P-5 Error Conditions
Errors Detected by the Host Application

Driver Not Installed
Wrong Driver Invoked
Network Interface Not Installed
Power Lost to Network Interface ARer Start-Up
Destination Node Not Available
Network Management Request Failed

Errors Detected By a Network Driver
Downlink Timeouts
Host Detection of Hardware Failures
Error Codes Returned to the Driver Direct Functions

Errors Detected By a Network Interface

Appendix A Sample Host Application A-1
Host Application Overview A-2
Host Application Requirements A-2
Host Application Data Structures A-3
Host Application Architecture A-6
Network Interface Transaction Handler A-8

ni-init A-8
ni-reset0 A-9
NI-send-msg-wait0 A-9

Input Parameters A-9
Output Parameters A-11
Error Codes A-12

ni,get-next-response0 A-12
ni-receive-msg0 A-12
ni-send-response0 A-13
ni,sendjmmediate() A-13
handle-error0 A-14

Application Message Handler A-14
handle-updatepv-config A-15
handle-query-nv-config A-15
handle-set-mode0 A-15
handle-query-SNVT() A-16
handle-NV-fetch0 A-16
handle-netvar-msg() A-16
handle-explicit-msg() A-16

Outgoing Network Variable Messages A-16
NV-update0 A-16
NV-poll0 A-17

Running the Sample Host Application A-19

5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-4
5-5

vi Preface

AppendixB Creating an External Interface File
How to Add Network Variables to the External

Interface File
External Interface File
Network Variables and Message Tags

Adding Network Variables and Message Tags to the
Network Interface External Interface File

AppendixC Network Interface Messages
NI-MSG.H
NI-MGMT.H
Bit Field Diagrams

AppendixD Network Interface Commands
Network Interface Commands
Buffer Queue Values

Host Application Programmer’s Guide

B-1

B-2
B-3
B-5

B-9

C-1
C-2

C-15
C-19

D-1
D-2
D-4

vii

Host Application Overview

This chapter provides an introduction to the host applications. Basic
concepts are defined and the host application’s intended uses are
outlined.

Host Application Programmer’s Guide 1-1

Overview of the Host Application Architecture
Host applications are application programs running on hosts other than NEURON
CHIPS that use the LONTALK protocol to communicate with nodes on a LONWORKS
network. For PC-based host applications, the LONMANAGER API can be used to
greatly reduce the work required for implementing a host application.

Host applications interface with a LONWORKS network via a network interface. A
network interface uses a NEURON CHIP as a communications processor. The
network interface implements layers 1 through 5 of the LONTALK protocol. Layers
6 and 7 of the protocol are implemented by the host application. The network
interface may be implemented using a turn-key network interface product such as
the Serial LONTALK Adapter (SLTA). A custom network interface may be
implemented using the LONBUILDER Microprocessor Interface Program (MIP).
See the Serial LONTtiKAdapter User’s Guide and the MIP User’s Guide for more
information.

The host application can use a network driver to implement the hardware
dependent portion of the network interface protocol. This allows host applications to
be independent of the physical interface between the host and the network interface.
Figure l-l summarizes the host application architecture.

Host

Driver
Interface

1 Network Driver 1

I I Host interface

I l/O Interface
Network
Interface

rl

Figure l- 1 Host Applicdion Architecture

1-2 Host Application Overview

Intended Uses of Host Applications
Several types of nodes can be attached to a LONWORKS network. The lowest cost
node, based on the NEURON 3120” CHIP, provides a complete system-on-a-chip,
including memory for the application code and data, and protocol firmware. For
applications that require more code or data space, the NEURON 3150TM CHIP
supports up to 42 Kbytes of off-chip user memory. Nodes using the NEURON CHIP as
the applications processor are called NEURON CHIP-hosted nodes.

Host applications can be used for nodes that require more processing power,
memory, or input/output capability than provided by the NEURON CHIP family.
Host applications use the NEURON CHIP as a communications processor. The
applications processing occurs on an external host processor. Host applications
can also be used to interface an existing application to a LONWORKS network.
These nodes are called host-based nodes.

Examples
A host application may be implemented on a host microprocessor to expand the
input/output capabilities of the node. For example, the host microprocessor family
may have special-purpose peripheral chips available. Figure l-2 illustrates an
example host application using a Motorola 68332 processor.

Parallel Interface

I Transceiver

Host

Network
Interface

LONWORKS Network

Figure l-2 Host Application with Motorola 68332 Host

A host application may be implemented on a microcomputer with a standard
operating system such as MS-DOS or Unix. In this case, the host will have a wide
variety of data storage and user interface hardware available, as well as third-
party software and hardware products that can be easily integrated into the
LONWORKS network. In general, a host microcomputer may have much greater
processing power than a NEURON CHIP for compute-intensive applications. This
is illustrated in figure l-3.

Host Application Programmer’s Guide 1-3

>

Network
Interface

LONWORKS Network

Figure 1-3 Host Application with Microcomputer Host

Host applications may also be used to receive asynchronous updates from more
network variable connections than can be received by a NEURON CHIP-hosted
application. Any NEURON CHIP-hosted or host application can write to and poll
any number of network variables. This is done by sending network variable
updates and polls (or fetches) as explicit messages as described in Appendix B of the
NEURON CHIP Data Book. However, to receive asynchronous updates from a
network variable connection, the application node must be bound to the connection.
A NEURON CHIP-based application or host application using network interface
selection (described in Chapter 3) can declare up to 62 network variables. When
network variable processing is set to host selection, the host can declare up to 4096
network variables. Through the binding process, network variables on multiple
nodes are associated with one another so that nodes may receive asynchronous
updates from one another.

NOTE: While there is no direct mapping between the number of network variables
on a node and the number of connections in which the node may participate, the
ability to declare more network variables does make host applications well-suited
to large monitoring, data logging, or controller-like applications.

Network Management, Network Control,
and Network Monitoring

Host applications can be used for any type of application, but the most typical uses
are network management, network control, and network monitoring. A
LONWORKS network interface can be used to create nodes that perform any
combination of these functions.

Network Management
Network management is the task of installing, maintaining, and configuring the
nodes in a network. A network management tool does not participate in the
exchange of application messages and network variable messages, and so does not
need to be present for the network to operate. Network management tools require a
database that allows them to keep track of node and variable addresses on the

1-4 Host Application Overview

network, and so they are typically implemented using computers as hosts with the
database stored on disk. In that sense, a network management tool is a special case
of a host application. Network management applications for complex networks are
best implemented using a PC-compatible host and the LONMANAGER Application
Programmer’s Interface (API) for DOS or Windows, or alternatively with the turn-
key LONMANAGER NetMaker tool. These tools include a database management
facility that keeps track of network topology and addressing. See the LONWORKS
Installation Overview engineering bulletin for a description of installation
options.

Network Control
A network controller is a central node that coordinates the sense and control
processing of a control network. In LONWORKS networks, any node can send and
receive messages and network variables to and from any other node on the
network, and thus can act as a network controller. The network controller is the
source or destination of most of the application messages, and the other nodes
communicate only with this central node. LONWORKS networks may also be
designed using peer-to-peer communication and control so that a network
controller is not required. The system is then invulnerable to failures of any
single node.

Network Monitoring
A network monitor is a node that receives application messages or network
variable updates from many of the other nodes on the network. Any node in the
network may be the destination of LONTALK messages from other nodes, and so
may act as a network monitor.

Definitions

Downlink Data transfers from the host to the network interface.

Host The host processor with the host application, network
driver, and host interface.

Host Application An application program running on a host other than
a NEURON CHIP that uses the LONTALK protocol to
communicate with nodes on a LONWORKS network.

Host Application Programmer’s Guide 1-5

Host Interface The hardware interface between the host processor
and the network interface. The host interface is
physically connected to the network interface. The
host interface is an EIA-232 interface for the Serial
LONTALK Adapter (SLTA), and is a parallel or
dual-ported RAM interface for network interfaces
implemented with the Microprocessor Interface
Program (MIP).

Host Node The host plus the network interface and driver.

Host Processor The processor that runs the host application. The
processor may be a microcontroller, microprocessor,
PC, workstation, minicomputer, or mainframe
computer.

Microprocessor Firmware for the NEURON CHIP that moves the upper
Interface Program layers of the LONTALK protocol off the NEURON
NIP) CHIP onto a host processor. The MIP implements

the NEURON CHIP side of the network interface
protocol, and can be used to implement a custom
network interface.

Network Driver The software that interfaces the host application to the
host interface hardware. The network driver
isolates the host application from the physical
interface to the network interface.

Network Driver
Protocol

A standard protocol for communications between
a host application and a network driver.

Network Interface A device that provides an interface between a host
and a LONWORKS network. The network interface
implements the LONTALK network interface
protocol. The network interface may be
implemented using a turn-key network interface
product such as the Echelon Serial LONTALK
Adapter (SLTA). A custom network interface may
be implemented using the LONBUILDER
Microprocessor Interface Program (MIP).
LONWORKS network interfaces are also available
from third-party manufacturers. See the Serial
LONTALX Adapter User’s Guide and the MIP User’s
Guide for more information.

1-6 Host Application Overview

Network Interface
Protocol

A standard protocol for communications between
a host and a network interface. There are three
variants of the protocol: one for the Serial
LONTALK Adapter, one for the MIP/PBO and
MIP/P50, and one for the MIP/DPS. The differences
are transparent to the host application since they are
handled by the network driver.

Network Variable An object declared on a LONWORKS node that may
be connected to multiple nodes on a LONWORKS
network. Network variables provide a well-defined
interface between LONWORKS nodes.

Serial LONTALK A turn-key network interface that communicates
Adapter (SLTA) with a host using an EIA-232 interface.

SLTA Node A host node using the SLTA

Uplink Data transfers from the network interface to the host.

Host Application Programmer’s Guide 1-7

2
Host Application

Architecture

This chapter discusses the protocol used by host applications to
communicate with a network interface.

Host Application Programmer’s Guide 2-1

Host Application Architecture
The host application architecture defines standard protocols for communications
between a host and a network interface. The architecture has three layers;
application, link, and physical. Figure 2-l illustrates the host application
architecture layers.

Application layer
The application layer, also known as the LONTALK Network Driver Protocol, is
used by the host application to send and receive LONT&K messages. Chapter 3,
Sending and Receiving Messages, describes how the host application can send and
receive LONTALK messages using the network driver protocol. The network
driver protocol is identical for all network interfaces, including the Serial
LONTALK Adapter (SLTA) and network interfaces using any version of the
Microprocessor Interface Program (MIP).

link layer
The link layer, also known as the LONTXLK Network Interface Protocol is used by
the network driver to ensure reliable delivery of packets between the host and the
network interface. The link layer is also used by the host to control the network
interface. The link layer is different for the SLTA, the MIP/P20 and MIPBO, and
the MIP/DPS. The differences in the link layer protocols are managed by the
network driver, and are transparent to the host application. The link layer protocol
for the SLTA is based on a serial data transfer protocol between the host and
network interface. For details of the SLTA link layer protocol, see the SLTA User’s
Guide. The link layer protocol for a MIP/P20 or MIP/PBO-based network interface
is based on tbe NEURON CHIP parallel I/O protocol. The link layer protocol for a
MIP/DPS-based network interface is based on a dual-ported HAM witb semaphores
that is mapped into the address space of a NEURON 3150 CHIP and also of the host
microprocessor. For details of the link layer protocols used by the MIPS, see the
LONBUILDER Microprocessor Interface Program (MIP) User’s Guide. Appendix
D, Network Interface Commands, describes the commands that the host can use to
control the network interface.

Physical layer
The physical layer is the physical interface between the host interface and the
network interface. The physical layer for the SLTA is an EIA-232 interface as
described in the Serial L0NTAL.K Adapter User’s Guide. The physical layer for a
network interface based on the MIPIPBO or MIP/PBO is a parallel interface. The
physical layer for a network interface based on the MIP/DPS is a dual-ported RAM
with hardware semaphores. This interface should be described in documentation
provided with a third-party network interface, and is described in the
Microprocessor Interface Program (MIP) User’s Guide for custom network
interfaces.

2-2 Host Application Architecture

Host Application

r -Lo~M&A<E~A~ (o$&& - I
---m---m--

Host Application

---me- Application-Layer Interface - - - - - -

Driier Services:
open/close/ioctl/read/write

Flow Control and Buffering
. Network Driver

------ Link-Layer Interface - - - - - - -

pi&-j Or /lO”‘~l$

------ Physical-Layer Interface - - - - - -

El SLTA or
MIP/P20 or or
MIP/P50

MIP/DPS Network Interface

< * LONWORKS

Figure 2- 1 Network Interface Protocol Layers

FLUSH State
After the network interface is reset, the NFJJRON CHIP enters a special FLUSH state.
This state causes the network interface to ignore all incoming messages and
prevents all outgoing messages, even service pin messages. The FLUSH state is
provided to prevent any other network management tool from performing network
management functions on the network interface before the host has a chance to
configure the network interface. This state must be cancelled with a downlink
niFLUSH_CANCEL command from the host before the network interface can
participate in any network transactions. After the FLUSH state is cancelled, the
network interface is in the NORM&L state.

The network interface sends the niRESET command uplink following any reset.
This is the first message received by the host whenever the network interface is
reset. The standard network drivers for DOS provide a configuration option for
handling the FLUSH state. If the /Z switch was not specified when the driver was
loaded (in the CONFIG. SYS file), then the driver will automatically send the
network interface the niFLUSH_CANCEL message when the device is opened, and

Host Application Programmer’s Guide 2-3

2-4

also when it receives an uplink niRESET command. If the /Z switch was specified,
then the application is responsible for sending niFLUSH_CANCEL when the device is
opened, and when it receives an uplink niRESET.

For the SLTA, another possibility is provided with a jumper option. This jumper
specifies that the SLTA not enter the special FLUSH state after reset, so that the host
application or the host driver need not send the niFLUSH_CANCEL. See
Configuration Jumpers in Chapter 2 of the Serial LONTALK Adapter (SLTA) User’s
Guide.

Host Application Architecture

3
Sending and Receiving

Messages

This chapter discusses the steps used in sending and receiving
LONTALK messages fi-om a host application. Network interface
configuration options are also described.

Host Application Programmer’s Guide 3-1

Communicating With Other Nodes
The host application communicates with other nodes by sending and receiving
LONTALK messages. These messages may be application, network management,
or network diagnostic messages. Application messages may be network variable
messages or explicit messages.

The host application sends a LONTALK message by building the message in an
application buffer and passing the buffer downlink to the network interface via the
network driver. The host application receives LONTALK messages by decoding
application buffers received uplink from the network interface via the network
driver. The format of the application buffer is defined in this section and is
contained in the ExpAppBuf f er and ImpAppBuf f er structures in Appendix C.

The network driver translates the application-layer header to a link-layer header,
and manages buffer allocation as described in the Serial LONTALK Adapter User’s
Guide and the LONBUILDER Microprocessor Interface Program User’s Guide.
Application buffers exchanged by the host application and the network driver
contain one or more of the following fields:

l Network Interface Command. The network interface command specifies the
type and size of the application buffer. The network interface command is
contained in the NI-Hdr structure defined in Appendix C, and in the file
NI-MGMT . H supplied with the sample host application. Network interface
commands are defined in Appendix D. This field is always present, and is the
only field specified for local network interface commands, such as the reset
command, niRESET. Local network interface commands are network
management or network diagnostic commands that are sent from the host to the
network interface.

l Message Header. The message header describes the type of LONTALK message
contained in the data field. The message header is contained in the MsgHdr
union in Appendix C. This field is included if the application buffer is a data
transfer or a completion event. The format of this field depends on the type of
transfer and is defined by one of the following structures defined in Appendix
c:

NetVarHdr Network variable update or completion code when
network interface selection is enabled as described
under Network Variable Processing Option later in
this chapter.

ExpMsgHdr All other data transfers and completion codes.

l Network Address. The network address specifies the destination address for
downlink explicitly addressed application buffers, or the source address for
uplink application buffers. The network address is contained in the
Explicit-Addr union in Appendix C. This field is included if the application
buffer is a data transfer or a completion event and explicit addressing on is
enabled as described under Explicit Addressing On later in this chapter. The
format of this field depends on the type of transfer, and is defined by one of the
following structures defined in Appendix C:

3-2 Sending and Receiving Messages

SendAddrDtl Outgoing explicit messages or network variable
updates.

RcvAddrDtl Incoming explicit messages or unsolicited network
variable updates.

RespAddrDtl Incoming responses or network variable updates
solicited by a poll.

l Data. The data field defines the data to be transferred. The data field is
contained in the MsgData union in Appendix C. This field is included if the
application buffer is a data transfer or a completion event. The format of this
field depends on the type of transfer, and is defined by one of the following
structures defined in Appendix C:

UnprocessedNV Network variable update or completion event when
host selection is enabled as described under Network
Variable Processing Option later in this chapter.
This field addresses the network variable using the
network variable selector; the host application
translates the network variable index to and from a
network variable selector. Completion events
include only the network variable selector contained
in the first two bytes.

ProcessedNV Network variable update or completion event when
network interface selection is enabled as described
under Network Variable Processing Option later in
this chapter. This field addresses the network
variable using the network variable index; the
network interface translates the network variable
index to and from a network variable selector.
Completion events include only the network variable
index contained in the first byte.

FxplicitMsg Explicit message or completion code. Completion
events include only the message code contained in
the first byte. Explicit message formats are defined
in Appendix B of the NEURON CH.?F Data Book.

When working with application buffers, note the following:

l The structure for the application buffer is different depending on whether
explicit addressing on or explicit addressing off is selected as described under
Explicit Addressing Option later in this chapter. When explicit addressing off
is selected, the application buffer does not include the I1 byte explicit address
field. When explicit addressing on is selected, an additional 11 bytes are
included to accommodate the explicit address.

l The length field in the application buffer header describes the length of the
message only, not the message plus the explicit addressing field.

Host Application Programmer’s Guide 3-3

l All downlink LONTALK messages that are not local network management or
network diagnostic messages will eventually result in an uplink completion
event message. The completion event message can be used to determine if an
acknowledged message is received by all addresses. It is the responsibility of
the host application to process these events appropriately.

l The command type of completion event messages is niCOMM+niRESPONSE. The
cmpl-code field of the application buffer should be checked for pass/fail status.
This field is zero for incoming LONTALK messages.

l Application buffers must be large enough to hold the largest network variable,
explicit message, or response used by the application. Typically, the largest
network management message is 17 bytes.

Network Interface Configuration Options
The types of messages passed between the host and the network interface are
determined by configuration options specified for the network interface. Defaults
for these options specify the type of network variable processing performed by the
network interface, the size of the network variable configuration table, use of
explicit addressing, and the amount of buffering within the network interface.
These options are selected when the network interface is built. If you are building a
network interface based on the MIP, specify these options as described in the
Microprocessor Interface Program (MIP) UserS Guide. The settings for these
options for the SLTA are described in the Serial LOIVTU Adapter User’s Guide.
The settings of these options for third-party network interfaces should be specified
in the third-party network interface documentation.

Network Variable Processing Option
There are two values for the network variable processing option: host selection and
network interface selection. These values determine whether the host processor or
the network interface perform network variable selection. Network variable
selection is one of the three steps a node performs when a network variable update
occurs. These three steps are:

1 Target address decoding. This step verifies that a network variable update is
addressed to the target node and is always performed by the network interface.

2 Network uariable selection. This step determines which network variable on
the node is to be updated. This step is performed by the network interface if
network interface selection is specified; it is performed by the host application
if host selection is specified.

3 Network variable modification. This step modifies the selected network
variable and is always performed by the host application.

When network interface selection is specified, the host can declare up to 62 network
variables. When host selection is specified, the host can declare up to 4096 network
variables. To use host selection, the host application should process the Update Net
Variable Conf& and Query Net Variable Config network management commands
as described under Receiving Messages later in this chapter. If the host itself is the
network manager and will not be receiving network variable binding messages
from other nodes, this need not be done. Network interface selection is easier since

3-4 Sending and Receiving Messages

the network interface handles all network variable selection. Also, network
interface selection provides non-volatile storage of network variable
configuration. Host selection supports more connections, and the host application
must provide network variable configuration storage.

The SLTA uses host selection. Network interfaces used with the LONMANAGER
API must use host selection.

Network Variable Configuration Table Size Option
When network interface selection is specified, this option defines the size of the
network variable configuration table on the network interface. The size may be
any value from 0 to 62 entries. This option is not used when host selection is
specified.

Explicit Addressing Option
This option determines whether space is set aside in the application buffer for
explicit addressing information. Specifying explicit addressing on adds an 11
byte explicit address field to every application buffer. The host application can use
this field to specify an explicit address for any message, bypassing the address
table in the network interface. This allows the host application to send LONTALK
messages to an unlimited number of nodes. When explicit addressing ofiis
specified, the host application can only send messages to the addresses stored in the
network interface address table, which has a maximum of 15 entries; this form of
addressing is called implicit addressing.

When explicit addressing on is specified, the host application may still send
implicitly addressed messages by clearing the addr-mode bit in the message
header. Responses to incoming requests must be sent with implicit addressing,
since the destination address of the respo’nse is implicitly taken from the source
address of the request. If the host application has network variables which have
been bound by some other network management tool, then these should also be sent
with implicit addressing, since the network management tool will have created
address table entries in the network interface for the destinations. Otherwise,
network variable updates and polls may be sent with explicit addressing.

Specifying explicit addressing on can also be used to get the source address of a
message received from the network interface. Every LONTALK packet has a
source and destination address. The destination address ensures that the packet is
delivered to the correct node(s). The source address is used for generating the
acknowledgement or response and also for assisting learning routers in learning
the network topology. Destination nodes can also use the source address to
determine which member of a group sent a network variable update. See
Monitoring Network Variables in Chapter 3 of the NEURON C Programmer’s
Guide for more information.

The SLTA specifies explicit addressing on. Network interfaces used with the
LONMANAGER API must specify explicit addressing on.

Host Application Programmer’s Guide 3-5

Buffer Options
Network interfaces have two types of buffers, application buffers and network
buffers. The application buffer is used between the host and the network interface,
and internally within the network interface between the application and network
CPUs on the NEURON CHIP. The network buffer is used between the network and
media access control (MAC) CPUs on the NEURON CHIP within the network
interface. Figure 3-l illustrates where the application and network buffers are
used.

Sender Node (writer)
Host

0 Outgoing Application Buffer @ Outgoing Network Buffer
(app-tWW (net-buf-out)

Receiver Node (reader)
Host

0

@ incoming Network Buffer 0 incoming Application Buffer
(net-buf-in) (wp_bWn)

Figure 3- 1 Application and Network Buffers

The number and sizes of buffers required are dependent on the host application.
For example, a host application which sends large explicit messages will need
large output bu.fFers to hold the messages. An application that receives bursts of
messages, such as many acknowledgements to a network variable update sent to a
group, will need many input buffers.

3-6 Sending and Receiving Messages

The buffer configuration for any network interface, including the SLTA, can be
changed at any time by sending network management write memory messages to
it, either from the host (local network management) or over the network from some
other network management tool. See the NEURON CHIP Data Book, section Al, for
details of the data structures within the NEURON CHIP that control the partitioning
of RAM for buffers. Although the NEURON 3150 CHIP used in a network interface
has 2,048 bytes of on-chip RAM, do not attempt to configure a network interface to
use more than its available buffer memory, as it will most likely crash or behave
erratically, since the remaining on-chip RAM is used by the system image and
SLTA or MIP firmware.

For network interfaces based on the MIP, the default allocation of RAM to buffers is
controlled by pragmas in the NEURON C source file, and the hardware properties
used when the MIP image was created. See the Microprocessor Interface Program
(MIP) User’s Guide for details. If you have purchased a network interface from a
third party, consult your vendor for details on the default buffer allocation specified
when that device was manufactured.

Sending Messages
Host applications send LONTALK messages using the following steps:

1 Build the message within the application bufFer data structures. See Appendix C
of this document for the definition of the application buffer data structures.

2 Write the application buffer to the network driver.

3 Repeat step 2 if the driver returns the LDV_NO_BUFF_AVAIL or
LDV-DEVICE-BUSY error codes.

4 If necessary, process (read) any response messages from the network
interface. These appear as niRESPONSE+niCOMM commands.

5 Process the completion event messages from the network interface.

Downlink buffers (from host to network interface) can contain either outgoing
messages or outgoing responses to a previous incoming request. Uplink buffers
(from network interface to host) can contain incoming messages, incoming
responses to a previous request, or completion events. Completion events are
generated whenever an outgoing message has completed processing, and indicates
whether the message succeeded or failed, indicated by the value of the cmpl-code
field in the buffer. Buffers that are not completion events have zero in this field.
For request/response service, the completion event occurs after all the responses
have arrived.

For network management messages delivered to the network interface (command
niNETMGMT), there are no completion events returned. Responses, however, are
returned as usual.

The tag fields of an outgoing message, its completion event, and any responses are
all the same. This allows the host application to correlate the responses and
completion events with the original message. Similarly, a response generated by

Host Application Programmer’s Guide 3-7

the host must use the same tag as that in the incoming request message or network
variable poll. To further aid in correlating completion events with the original
message, the first two bytes of the data field are included. This contains either the
network variable selector (host selection enabled network variables), the network
variable index (network interface selection enabled network variables), or the
message code (explicit messaging).

The LONTALK protocol supports two paths for special purpose transceivers, and the
path field in an incoming message or response indicates how it was received. By
default, the alternate path is used for the last two transmission attempts when using
Acknowledged, Request/Response, or Unacknowledged/Repeated service. For an
outgoing message, the host may override this selection by setting the path-spec bit.
In this case, the message is delivered on the channel specified by the path bit.

The trnarnd bit of an outgoing response to a network variable poll must be the same
as the trnarnd bit of the incoming request when using network interface selection.
This allows any node to correctly poll its own output network variables.

For outgoing network variables, the message is delivered with priority service only
if the priority bit in the message is set. Even if network interface selection is
enabled, the priority bit in the network variable configuration table is ignored.
Outgoing messages with the priority bit set must be delivered to the priority queue,
and if the priority bit is clear, they must be delivered to the non-priority queue. The
host application should read the priority bit from the network variable
configuration table so that it can use priority or non-priority service as appropriate
for delivering the network variable.

See the sample host application in Appendix A for an example of sending network
variable updates from a host application. In the example, the NV-update (1
function updates an output network variable by calling ni-send-msg-wait (1 to
send out the update message and wait for the completion event. Similarly, the
NV_PO~~ () function polls an input network variable by calling
ni-send-msg-wait () to send the poll request, and then wait for the response(s) and
the completion event.

Receiving Messages
When a network interface receives an application message it is passed uplink to
the host in a link-layer buffer. The application message may be a network
variable update, response to a poll, poll request, or an explicit message.

When a network interface receives a network management or network diagnostic
message, it is processed entirely by the NEURON CBIP within the network interface
with the following exceptions (these messages are passed uplink as explicit
messages):

l Set Node MO& (online and offline only)

l Wink
l Update Net Variable Config (only if host selection enabled)

l Query Net Variable Config (only if host selection enabled)

3-8 Sending and Receiving Messages

l Query SNVT

l Network Variable Fetch

See Appendix B of the NEURON CHIP Data Book for a description of these
commands.

Messages passed to the host appear as application buffer data structures with the
niCOkiM+niINCOMING commandor niCOMM+niRESPONSE value.

The form of network variable update messages depends on whether host selection or
network interface selection is enabled.

When network variable selection is performed by the host application (host
selection), the host application must maintain the network variable configuration
table. Depending on the availability of host memory, this table may be as large as
the maximum number of network variables on a node, which is 4096 entries. The
network variable configuration table is updated with the Update Net Variable
Config network management command, which is passed to the host application by
the network interface and must be processed by the host application. The network
variable configuration table is queried with the Query Net Variable Config
network management command, which is also passed to the host application by the
network interface and must also be processed by the host application. See the
sample host application in Appendix A for an example of handling these incoming
network management messages in a host application (routines
handle-update-nv-cnfg() andhandle-query,nv-cnfg0).

Network variable updates and polls are passed to the host application as explicit
messages using the UnprocessedNV structure defined in Appendix C
(msg-type=O). The host application determines the network variable to be updated
or polled by decoding the network variable selector. See the sample host application
in Appendix A for an example of receiving network variable updates and polls in a
host application (routine handlegetvar-msg()).

In a typical host application which is not itself a network installation tool, the
network manager initially configures the network variable configuration table
when the network image is downloaded to the node. If the host application manages
its own configuration, then it must initialize its own network variable
configuration table, whether it is on the network interface or on the host.

A host application that may be queried by a network manager to retrieve its
program information must have an initialized network variable configuration
table, so that the direction, priority, and authentication attributes of each network
variable may be determined.

The following table summarizes the key differences in network variable messages
when host selection or network interface selection is enabled.

Host Application Programmer’s Guide 3-9

Option I Network interface Selection Host Selection I

Target address decoding Network Interface I Network Interface I

Network variable selection

Network variable
configuration table

Network Interface

Network Interface

Host Application

Host Application

Maximum size of network
variable cotiguration table

62 entries 4096entries

Format of network variable
application buffers

ProcessedNV

(msg-tyPe=l)

UnprocessedNV

(msg-type=01

See Appendix B of the NEURON CHIP Data Book for a definition of the network
variable message structures, network variable configuration table contents, and
the network variable configuration network management commands.

See the sample host application in Appendix A for an example of receiving network
variable messages in a host application. In the example, the main loop alternately
calls ni-receive-msg () to receive a message from the network interface and
kbhit () to receive input from the keyboard. If a message has been received from
the network, the function process-msg () determines whether this is an explicit
message or a network variable message. If it is a network variable message, the
function handle-netvar-msg () either updates the variable, or sends a poll
response.

local Control of the Network Interface
A group of network interface commands is responsible for local control of the
network interface. In addition to resetting the network interface, these commands
can place the network interface iri a number of FLUSH states, and in the OFFLINE or
ONLINE state. Refer to the NEURON C Programmefs Guide for a detailed
description of these states. Refer to Appendix D for a description of the network
interface commands.

Local Network Management/Diagnostics With the
Network Interface

All LONTALK network management and network diagnostics commands can be
addressed to the network interface directly from the host. These commands take
the form of downlink LONTALK messages and do not actually appear on the
LONWOFES network. Instead, they are considered addressed to the network
interface itself. The request-response mechanism can be used as though
communicating with a remote node. These messages are defined in Appendix A of
the NEURON CHIP Data Book. Completion event messages are not returned. The
network interface command for this process is the niNETMGMT. + niTQ or niNETMGMT
+ niNTQ command.

3-10 Sending and Receiving Messages

However, if the host application wishes to send network management messages to
some other node on the network (not the network interface itselfi, these are not
considered to be network management messages from the point of view of the
network interface, and should therefore be sent using the niCOMM + niTQ or niCOMM
+ niNTQ commands. Responses and completion events are returned in the same
way as for any application message.

When building the application buffer portion of a locally addressed network
management message, the entire network address field must still be present if
explicit addressing on is enabled. Explicit addressing is always on for the SLTA.
The contents of the network address field are ignored for locally addressed
network management messages.

Local network management commands can be used by the host application to do
self-installation of the host node. For example, the Update Address network
management message can be used to update the network interface’s address table.
See the NEURON CHIP-based Installation of LONWORKS Networks engineering
bulletin for more information on self-installation.

See the sample host application in Appendix A for an example of sending a local
network management command. In the example, the main () function calls
install-prog-ID () which creates a local network management message to write
the application program ID into the EEPROM memory of the network interface, and
thencalls ni-send-msg-wait0 to sendit.

Binding to a Host Node
Host-based nodes can be bound to network variable and explicit message tag
connections using procedures similar to NEURON CHIP-hosted nodes.
Connections can be created using self-installation as described in the previous
section, or connections can be created by a network management tool sending
network management messages to host-based and NEURON CHIP-hosted nodes.
To perform binding, a network management tool requires a description of the
network variables on the nodes to be connected. The network management tool can
get these descriptions for a host-based node using one of the following methods:

l SNVT Import. Anetwork management tool can import the network variable
descriptions over the network using the Query SNVT network management
command described in Appendix B of the NEURON CHIP Data Book, even if the
network variables are not all of standard types. To support this, the host
application must maintain the SNVT structure defined in Appendix A of the
NEURON CHIP Data Book and return its contents in response to the Query
SNVZ’ message. See the sample host application routine
handle-query_SNVT () for an example of handling this message. Also, the
network variable configuration table of the host application must be initialized
with the appropriate direction, priority, and authentication attributes for each
network variable. The SNVT structure contains the following:

SNVT Header Defines the length of the SNVT structure, the number
of network variables and bindable message tags,
and the format of the SNVT structure.

Host Application Programmer’s Guide 3-11

SNVT Descriptor Defines each network variable for every network
Table variable declared in the host application.

Node Self- A null-terminated text string containing an optional
Documentation description of the node.

Extension Records Optional fields describing update rate estimates, the
network variable name, and a text description of the
network variable.

l External Interface File Import. An external interface file can be used with any
type of LONWORKS node. The external interface file provides a text
description of the node, its network variables, and its message tags. Network
management tools can import external interface files to get all the information
needed to create network variable and message tag connections.

Follow these steps to create and import an external interface file:

If you are using an SLTA, copy the external interface file provided with the
SLTA as described in the Serial LONTALX Adapter User’s Guide.

OF

If you are using a third-party network interface, copy the external interface
file provided with the network interface.

OF

If you have built your own network interface, create an external interface
file as described in Exporting a Network Interface in the Microprocessor
Interface Program (MIP) User’s Guide.

Modify the external interface file. Add the network variable and message
tag entries as described in Appendix B.
Import this new external interface file to the network management tool. If
you are importing the host node into a development network, import the
external interface file as described under Importing External Interface
Files in Chapter 7 of the LONBULLLlER User’s Guide. If you are using the
LONMANAGER API for DOS or Windows, use the ldb-import-xi f (1
function.

3-12 Sending and Receiving Messages

Using a Network Driver

This chapter describes specifications for using a LONWORKS network
driver. Network interfaces for DOS should come with a DOS network
driver. If you are using the Serial LONTALK Adapter, refer to the
Serial LONTALK Adapter User’s Guide for instructions on how to
install the SLTA driver. If you are using a different network
interface, see their specific documentation on how to install the
associated driver. Network driver services and functions are
described.

Host Application Programmer’s Guide 4-1

The Network Driver
The network driver provides a device-independent interface between the host
application and the network interface.

The LONTALK network driver protocol defines four functions that should be
provided by every network driver. These functions are ldv-open () ,
ldv-close(),ldv-read(), and ldv-write(). Theldv-open0 function
initializes the network driver and network interface. The ldv-close () function
deallocates any resources assigned by the ldv-open () function. The ldv-read ()
and ldv-write () functions transfer application buffers uplink from the network
interface and downlink to the network interface. The syntax for these functions
may be operating system dependent. For example, the DOS network driver
function calls are described under DOS Network Driver Services later in this
chapter.

Standard Network Driver Services
The functions and services defined by the LONTALK network driver protocol are:

typdef int LNI;

LNI handle = ldv-open(char *device-name);

Initialize the network interface and return a handle for accessing the network
interface. If the network interface is held in a reset state after power-up, cancel the
reset state.

Initialization includes cancelling the network interface Flush state. Hoer a
network interface is reset, the network interface enters the Flush state. While in
the Flush state, the network interface ignores all incoming messages and will not
send any outgoing messages, even service pin messages. The Flush state is
provided to prevent a network management tool from performing network
management functions on the network interface before the host has configured the
network interface. This state is cancelled with the niFLUSH_CANCEL command
from the host. After the Flush state is cancelled, the network interface is in the
Normal state.

The network interface sends a niRESET command uplink following any reset.
This will be the first message received by the host whenever the network interface
is reset.

LDVCode error = ldv-read(LN1 handle, void *msg_p, unsigned length);

Read an application buffer from the network interface. The msg_p argument is a
pointer to an application buffer. Application buffers are defined in Chapter 3. If a
buffer is not available, return the LDV-NO-MSG-AVAIL error code.

4-2 Using a Network Driver

LDVCode error = ldv-write(LN1 handle, void *msg_p, unsigned length);

Write an application buffer to the network interface. The msg_p argument is a
pointer to an application buffer. Application buffers are defined in Chapter 3. If a
buffer is not available, return the LDV-NO-BUFF-AVAIL error code.

LDVCode error = ldv-close(LN1 handle);

Free any resources assigned to the network interface identified by handle, and free
the handle. Optionally hold the network interface in a reset condition.

DOS Network Driver Services
A standard LONWORKS network driver interface has been defined for MS-DOS.
This standard allows DOS applications, such as a host application incorporating
the LONMANAGER API for DOS or Windows, to transparently interface with
different network interfaces. The host application can initially be debugged with
the network driver for the LONBUILDER Development Station. Later, that same host
application program can be used with a network driver for a Serial LONTALK
Adapter or with the network driver for a custom network interface based on the
MIP.

Installation of the network driver for the SLTA is described in the Serial LONTALK
Adapter User’s Guide. Installation of a network driver for a third-party network
interface should be provided by the manufacturer of the network interface.
Development and installation of the network driver for a custom network interface
based on the MIP is described in the Microprocessor Interface Program CMIP)
User’s Guide.

The network driver and installation instructions for the LONBUILDER
development station are included in the LONLINK- Sampler diskette included
~4th LONBUILDER.

Following are the services provided by a standard DOS network driver:

OPEN To open the network interface use the DOS device/file open function
with the device name LON (n) . In an ANSI C application the open ()
function can be used with the access bits OJDWR and O-BINARY set.
This function returns a handle value which is then used in
subsequent device operations:

int handle = open(char *
"LONl", int 0~RDWRIO-BINARY);

The open command invokes the autobaud sequence for the SLTA
driver if autobaud is enabled on the driver and the SLTA The
autobaud sequence causes the SLTA to synchronize with the host
baud rate.

Host Application Programmer’s Guide 4-3

IOCTL Once the network driver is opened, it is ready to act as the
connection between tire LONWORKS network and the host
application. Messages are passed between the host application and
the network interface via write or read DOS function calls. There
are other paths to these services within the network driver if the user
chooses to use them. The DOS ioct 1() function is used to fill in a
data structure passed to it with function pointers to three functions
within the driver:

ldv-read-direct0
ldv-write-direct0
ldv-register0

The ANSI C usage is:

int ioctl(int handle, int function, far struct
adapter-info-s *argdx, int size);

The ioct 1 () function is provided as part of the Borland C standard
runtime library. Microsoft C does not provide this function, and so
the source code for ioct 1() is provided with the sample host
application for use with the Microsoft compiler.

The value of function is 2, for ‘read from device’. The usage of the
pointers returned in the adapter-info-s structure is described in
the next section.

struct adapter-info-s (

unsigned char ioctl-stat; //returned status

LDVCode (far *read-fn) (void * msg_p, unsigned length);
//pointer to ldv-read-direct0

LDVCode (far *write-fn) (void * msgg, unsigned length);
//pointer to ldv-write-direct0

void (far *register-fn) (int handle,
void (interrupt far *callback) (void));

//pointer to ldv-register0
1;

The error codes returned by the driver direct functions are defined
in Chapter 5.

WRITE The standard DOS write function can be used by the host application
to transfer either network interface local commands or LONTALK
messages to the network interface from the application via the
driver. The ANSI C usage is:

4-4 Using a Network Driver

int length = write(int handle, void far *msg_p,
unsigned length);

The msg_p argument is a pointer to an application buffer.
Application buffers are discussed in Chapter 3. The first thing in an
application buffer will always be the network interface command;
i.e., the NI-Hdr structure defined in Appendix C. The length
argument is the number of bytes in the application buffer. The
return value is the number of bytes written, or -1 if an error
occurred. If there are no output buffers available in the network
driver, the return value is zero. L/O blocking does not occur, that is,
the function will not wait for an output buffer if none is available.

READ The standard DOS read function can be used by the host application
to transfer either responses to network interface local commands or
LONTALK messages from the network interface to the host
application via the driver. The ANSI C usage is:

int read(int handle, void far *msgg, unsigned
length);

The msg_p argument is a pointer to an application bufFer.
Application buffers are discussed in Chapter 3. The first thing in an
application buffer will always be the network interface command,
i.e., the NI-Hdr structure defined in Appendix C. The length
argument is the number of bytes in the application buffer. The
return value is the number of bytes read, or zero if no input buffers
were ready, or -1 if an error occurred. I/O blocking does not occur,
that is, the function will not wait for a full input buffer.

CLOSE To close the network interface, use the DOS device/file close
function with the handle returned by the open function:

int error = close(int handle);

This function call closes the network interface, and the network
interface is reset. The device’s callback function pointer (see
below) is cleared and the callback is disabled.

Driver Direct Funcfions
There are three driver direct functions available to the user. The ioct 1 () function
call returns pointers to these functions once the network interface has been opened.
These functions are required by the LONMANAGER API. The driver direct
functions are preferable to DOS read and write calls because error conditions can
be handled better. Error conditions within the DOS functions will result in a DOS
error prompt unless a DOS critical error handler is installed. The three functions
are:

Host Application Programmer’s Guide 4-5

1 LDVCode error = ldv-write-direct(void far *msg_p, unsigned
length);

This function is similar to the DOS write function, except that it is a direct call to
the network driver rather than a call via DOS. Note that a handle is not required
since this is a direct function call. The msg_p and length arguments are the
same as those described for the DOS WRITE function. This function will return
the error code LDV-NO-BUFF-AVAIL if no output buffers are available, whereas
the DOS write function will return zero.

2 LDVCode error = ldv-read-direct(void far *msg_p, unsigned
length);

This function provides the read complement of ldv-wr it e-direct (1. The
msg_p and length arguments are the same as those described for the DOS READ
function. While the DOS read function returns a zero value if no input
messages are available to be read, this function returns the error code
LDV-NO-MSG-AVAIL.

3 void ldv-register(int handle, void (interrupt far
*callback)(void));

This function registers the handle value and the callback function pointer
within the driver. The callback function is a function within the user
application called by the driver whenever a network driver input buffer is filled
by the network interface under interrupt control. The handle value will be
included in the call to the callback function in the CPU’s AX register. The
user’s callback function may then flag this event or call the
ldv-read-direct 0 function.

NOTE: This callback function occurs under interrupt control, so the callback
function must not o?o much more than the single read from the device. It should
not make any DOS calls, or call any runtime library routines that make DOS
calls, since DOS is not reentrant. It should also be careful when accessing static
data that may simultaneously be accessed by the main application. The callback
function must also behave like an interrupt function by loading its DS register
with the application’s data segment since the DS register will be set to the
driver’s data segment. An IRET instruction should terminate this function.
This is handled automatically by the compiler when the interrupt keyword is
used in the cleclaration of the callback routine.

4-6 Using a Network Driver

Error Conditions

This chapter describes error conditions that may be encountered by
host applications. Errors detected by the network interface and
network driver also are described.

Host Application Programmer’s Guide 5-1

Errors Detected By the Host Application
There are several basic types of error detection in a host application. Host
applications interact with a network driver, and detect errors based on return codes
from I/O calls to the network driver. These errors are typically due to problems
accessing the network interface, for example, incorrect jumper assignments,
incorrect driver option settings, or hardware problems in the network interface.
The network driver error responses are operating system dependent; this section
describes the error responses from a DOS network driver.

The second type of error is due to transmission errors on the network, or temporary
buffer congestion problems in either the sending or receiving nodes. These are
normally handled transparently by the network protocol, which retries the
transactions up to the configured retry count. The application is unaware of any
retries if the transaction is ultimately successful.

The third type of error occurs when a network transaction fails to complete
successfully, and the host application is informed by a failure completion code.
This is most often due to the destination nodes not being accessible across the
network because the message was misaddressed, the nodes were powered down, the
network was disconnected or extremely busy or noisy.

For host applications that perform network management operations on other nodes
on the network, a fourth type of error can occur when the receiving node rejects the
network management request. It does this by returning a corresponding error code
in the response.

The function ni-handle-error0 in the sample host application handles all types
of errors after a call has been made to send a message and wait for the completion
event. The arguments to this function are the function return value from the
driver, the completion code for the transaction, and the returned message code if the
message was a network management message.

Driver Not Ins tulle d
If the network driver is not installed, or if the device name in the open () function
call does not match the device name used to install the driver, DOS returns a No
such file or directory error when open (1 is called. The network driver is
installed with a device statement in the DOS CONFIG. SYS file as described in
Chapter 4. The device name is also specified in the same device statement, and
defaults to LONG for the SLTA, MIP, and LONBUILDER network drivers.

Wrong Driver Invoked
If a driver is opened that is not a LONWORKS network driver, DOS may return an
Invalid argument error. If this error is not returned, the error symptoms will be
the same as if the network interface is not installed.

5-2 Error Conditions

Network Interface Not Installed
If a network driver is installed, but the network interface is not installed, the host
application will not receive any responses to messages. The same error will occur
if the network interface is installed, but is configured incorrectly, e.g. the wrong
baud rate is selected on an SLTA The first message sent by a host application
should be a niRESET command to the network interface. If installed and correctly
configured, the network interface will respond with an uplink niRESET message
upon completion of the reset. By waiting for this message with an appropriate
timeout (e.g., 2 seconds), the host application can determine if a network interface
is installed and operating correctly. See the ni-init () function in Appendix A for
an example.

Power lost to Network Interface After Starf-Up
Network drivers that use polling will generally detect a power loss while
transferring an application buffer to or from the network interface, and will return
theism-DEVICE-ERR errorcode.

Network drivers that are fully interrupt driven will generally not detect an error
during a transfer since all the bytes in a packet may be stored in an interrupt buffer
on the host. In this case, loss of power will be detected by lack of response to a
network message, which must be detected by a timeout in the host application. Since
all network messages result in a completion code from the network interface upon
successful completion or failure of the message, lack of a completion code within a
long period of time (e.g., 10 seconds) can be used to flag loss of the network
interface.

In either case, the host application should close, reopen, and reset the network
driver. Doing this will restart the autobaud sequence if the network interface is an
SLTA with autobaud enabled. If there is still no response from the reset, the
network interface cannot be restarted. See the ni-init () function in Appendix A
for an example of closing and reinitializing a network interface.

Destination Node Not Available
If the network driver and network interface are installed and operating correctly,
but the destination of an acknowledged message or request message is not
available, the driver will return the MSG-FAILS completion code. The MSG-FAILS
completion code is returned after all retries have been attempted for a message.
This completion code is the equivalent of the msg-f ails event in NEURON C.

Network Management Request Failed
If a network management request is received by a node, the response contains a
code which indicates whether the request was acted on. Failures are typically due to

Host Application Programmer’s Guide 5-3

parameters of the request being out of range, for example, a request to query a non-
existent entry in a table. See the NEURON CZZP Data Book Appendix B for more
details.

Errors Detected By a Network Driver

Down/ink Timeouts
Downlink timeouts can occur as a result of the network interface’s inability to
transmit messages on the network at the desired rate. This condition can be seen
as the absence of the niACK from the network interface within a user selected
period. This error detection scheme can be built into the host’s network driver, and
is built into the SLTA network driver.

Host Detection of Hardware Failures
Host detection of hardware failures is performed by various parts of the network
driver. A hardware failure is a timeout condition on the handshake signal from
the network interface. If a message transfer starts but is not completed due to this
timeout, a device failure error will be returned to the host application. When this
occurs, the host should perform a hardware reset of the network interface.

For network interfaces based on the MIPIPBO or MIP/P50, if the host driver has
given up the write token, and the network interface has not returned it for some
period, such as 500 ms, a hardware error state may be flagged.

For the SLTA, error conditions are typically a result of lost data bytes due to
transmission errors between the SLTA and the host. Lost ALERT bytes are handled
by both the SLTA and the driver by virtue of a timeout/retry feature. Lost downlink
buffer requests are handled by the driver through a timeout/retry feature. If the
command or data portion of any other type of transfer is corrupted, it will be the
responsibility of the host sofiware to deal with this condition. Corrupted uplink
transfers are flagged with an error status which results in an error code
(LDV-DEVICE-ERR) when the driver read service is used. The driver has no method
of detecting if a downlink transfer has been corrupted. It is up to the host application
to determine that these transactions have failed by implementing some form of a
timeout at that level.

Error Codes Returned to the Driver Direct Functions
The driver direct functions for LONWORKS standard network drivers return the
following error codes:

LDV-OK 0 No errors detected, operation successful.

LDV-ALREADY-OPEN 2 This network interface was already open.

LDV-NOT-OPEN 3 Access to this network interface denied, it is not
open.

LDV-DEVICE-ERR 4 Hardware error detected.

5-4 Error Conditions

LDV-NO-MSG-AVAIL

LDV-NO-BUFF-AVAIL

6 For read operations, no messages buffered.

7 For write operations, no message buffers
available.

LDV-DEVICE-BUSY 8 Try again later. This network interface is
being initialized.

Errors Detected By a Network Interface
The network interface ignores command bytes that it does not understand. If the
network interface states are violated (these states are not applicable to the
MIP/DPS), and the host passes downlink messages without first requesting a
buffer, the network interface will ignore the downlink message. No error response
mechanism is provided. The network interface states are managed by the network
driver.

Other error statistics, such as those normally tallied by all application nodes, can
be accessed locally via the query status network diagnostic message to the network
interface. See the NEURON CHIP Data Book Appendix B for a description of the
network diagnostic messages. The query status diagnostic message may be sent
from LONBUILDER by activating the Target HWITest command.

For network interfaces based on the MIP/p20 or MIP/P50, the parallel I/O protocol
must be maintained. Confusion over who owns the write token nearly always
results in a lock-up of one of the processors (network interface or host) once a non-
null data message transfer occurs. The parallel I/O states are manged by the
network driver.

A network interface based on the MIP /p20 or MIP/PBO will execute a watchdog
timeout reset under the following conditions:

l If the network driver initiates a parallel I/O transfer but does not complete the
operation.

l If the network driver stops servicing the network interface when the network
interface owns the write token (since it is waiting to transfer the write token
back to the host).

Refer to the Parallel I/ 0 Interface to the NEURON CHIP engineering bulletin for
additional information.

A network interface based on the MIP/DPS will execute a watchdog timeout reset
under the following conditions:

l If the network driver holds any of the semaphores for too long.

l If the network driver corrupts the control structure or buffers in shared
memory.

Host Application Programmer’s Guide 5-5

Appendix A
Sample Host Application

This appendix contains source code for an example DOS host
application that can both send and receive polls and updates to
network variables, and whose network variables may be bound
by an installation tool that sends it network management
messages. This host application does not itself do any network
management of other nodes. A PC-based host application that
performs network management is best implemented using the
LONMANAGER API, rather than the host application
framework.

Host Application Programmer’s Guide A-1

Sample Host Application Overview
The example is included in the host application example directory and consists of
five C source files, three C header files, and a LONWORKS node external interface
fileHA_V2.XIF. The sourcefilesareHA.C, APPLMSG.C, HAUIF.C, NI-MSG.C,
and IOCTL . C. The HA. c file contains the main program for the example; the
APPLMSG. c file contains the functions for handling network management and
network variable messages; tRe HAUIF . c file contains the functions for a
primitive command-line user interface, and the NI-MSG . C file contains general
purpose functions for calling the network driver. The file IOCTL . c is required
only when using the Microsoft C compiler. The header files are HAUIF . H,
N1,MS.G . H and NI-MGMT. H . The file HAUIF . H contains prototype declarations for
the user interface functions; the file NI-MSG . H contains complete data structure
declarations for the message buffers that are passed to or received from the network
interface driver, as well as prototype declarations for the functions in NI-MSG . C;
the file NI-MGMT . H contains data structure and message code declarations for the
network management messages and for the application-layer data structures for
the host application. The files NI-MSG . H and NI-MGMT . H are reproduced in
Appendix C.

These files may be compiled and linked with any ANSI C compiler and linker.
The file makef ile is a make file for Borland C, and the file msof t .mak is a make
file for Microsoft C. To make the example, copy the example source files, header
files, and makefile to a working directory. For Borland C, type MAKE. The Borland
C bin directory must be in your path. The default path for the Borland C lib
directory must be specified in t link. cf g, as described in the Borland C
documentation. For Microsoft C, type NMAKE /F MSOFT .MA.K. The Microsoft C, the
bin directory must be in your path. The DOS environment variables INCLUDE and
LIB must be set up to point to the Microsoft include and library directories
respectively as described in the Microsoft documentation.

An executable version of the example is also included in the host application
example directory. The file name is HA. EXE.

Sample Host Application Requirements
The example host application is structured in a top down way that may easily be
modified. The example was designed for the following requirements, but for
specific applications, code will most likely need to be added or removed.

l The application supports any network interface that has a LONWORKS
standard network driver for DOS. The network interface is configured with
host network variable selection, and with explicit addressing on. This is the
way that the SLTA is configured.

l Network variables on the node may be bound by a network management tool
such as the LONBUILDER network manager, NetMaker, or a network
management tool based on LONMANAGER API. This means that the host
application must support incoming network management messages to query
and update its network variable configuration table, as well as messages to go
on-line and off-line.

A-2 Sample Host Application

.

Note. Two PCs are required to bind this example host application into a network.
One PC runs the network management tool (for example, the LONBUILDER
network manager or NetMaker). The other PC runs the host application. The host
application must be running when the network image is loaded into the host node
because it must process incoming network management messages during the
loading process. It is not possible to run a DOS-based network management tool
and this example host application in different DOS sessions under Microsoft
Windows, because Windows cannot switch contexts fast enough between the two
DOS applications. This host application is not able to return responses soon enough
to the network management tool to avoid transaction timeouts. However, if both the
network management tool and the host application are native Windows
applications, multi-tasking may be achieved because the applications can
relinquish the CPU when waiting for network events.

The node may be queried by a network management tool to retrieve self-
identification and self-documentation information so that an external
interface definition for the node may be created. The LONBUILDER Query
command uses this capability, as does the LONMANAGER API function
lxt-install-node (1 in the case that there is no program record for the node
defined in the database. This function is not a requirement for all nodes, since
the external interface definition may be supplied separately as an external
interface file (. XIF extension) to the network management tool.

l The network variables of the node may be polled using the Nvfetch network
management message. The node therefore responds appropriately to a network
variable browser, such as the one in LONBUILDER and the Data function in
NetMaker.

l The network variables of the node may be updated on receipt of a user command
from the keyboard. Output network variables that are updated are propagated
over the network to whatever nodes they are bound to. The application also has
input network variables that are polled on receipt of a user command from the
keyboard. The poll command sends the appropriate request message to the
destination address that the network variable is bound to, and handles poll
responses from single nodes as well as groups of nodes.

l The input network variables of the node are updated when the node receives the
relevant update message from the network. Network variables may also be
polled when the node receives a request message over the network, and the
application will return the correct poll response. This means that the
application has to support network variable selection appropriately.

Sample Host Application Data Structures
The host application does not directly use the C native data types char, int , and
long for any of its data declarations that need to be compatible with the NEURON
CHIP data or message structures. This is because these types differ depending on
the host architecture and the compiler used. Instead, the application uses the
typedef names byte, word, and bits for unsigned 8-bit, unsigned 16-bit, and bit-
field data objects respectively. These typedef s are defined in the file NI-MSG .H.
For bitfields, most C compilers for the 80x86 little-end&n architecture assign bits
from right to 1eR within a byte, whereas the NEURON C compiler and compilers for
other big-endian architectures assign bits from left to right. Note that the Microsoft
C compiler always assigns biffields to an even number of bytes, whereas the
Borland C compiler allows bitlields to occupy any number of bytes. In most cases

Host Application Programmer’s Guide A-3

the source code is identical, but in some places the symbol -MSC-VER is tested to
determine if the Microsoft compiler is being used.

The main data structures used by the host application are:

l A network variable configuration table whose structure matches the network
variable configuration structure defined for any LONWORKS node. See the
NEURON CHIP Data Book, section A4 for a description of the network variable
configuration structure. The definition of this type is in the file NI-MGMT . H,
and is reproduced here:
typedef struct C

bits selector-hi
bits direction
bits priority
bits selector-lo
bits addr-index
bits auth
bits service
bits turnaround

> nv-struct;

: 6;
: 1; // use nv-direction
: 1;
: 8;
: 4;
: 1;
: 2; // use ServiceType
: 1;

#define NULL-IDX 15 /* unused address table index */
typedef enum { NV-IN = 0, NV-OUT = 1) nv-direction;
typedef enum { ACKD = 0, UNACKD-RPT = 1,

UNACKD = 2, REQUEST = 3 1 ServiceType;

This host application is compiled with eight network variables, four outputs and
four inputs. The network variable configuration table itself is declared in the
file APPLMSG.C, as follows:

#define NUMJVS 8
/* Number of Network Variable table entries on this node */

nv-struct nv-config-table[NUMJVS] // configuration table
= {

/* selhi dir prio sell0 addridx auth svc trnarnd */
{ Ox3F, NV-OUT, FALSE, OxFF, NULLJDX, FALSE, ACKD, FALSE },
{ Ox3F, NV-OUT, FALSE, OxFE, NULL-IDX, FALSE, ACKD, FALSE },
{ Ox3F, NV-OUT, FALSE, OxFD, NULL-IDX, FALSE, ACKD, FALSE 1,
(Ox3F, NV-OUT, FALSE, OxFC, NULL-IDX, FALSE, ACKD, FALSE 1,
{ Ox3F, NV-IN , FALSE, OxFB, NULL-IDX, FALSE, ACKD, FALSE },
{ Ox3F, NV-IN , FALSE, OxFA, NULL-IDX, FALSE, ACKD, FALSE),
{ Ox3F, NV-IN , FALSE, OxF9, NULL-IDX, FALSE, ACKD, FALSE),
{ Ox3F, NV-IN , FALSE, OxF8, NULL-IDX, FALSE, ACKD, FALSE)

I;

The initializer for the network variable configuration table is strictly speaking
not necessary, although it is necessary to set the direction, priority,
authentication and service type bits appropriately for each network variable if
the node is to be imported over the network in order to create its external
interface definition. When the host application is started up, it searches for a
file called NVCONFIG .TBL in the current working directory. If it finds the file,
it reads the file into the network variable configuration table (function
load_NV_conf ig () in the file APPLMSG . c). When the user types the Exit
command to leave the host application, it writes the network variable
configuration table to the file NVCONFIG. TBL (function exit-f unc () in

A-4 Sample Host Application

APPLNSG . c). In this way, any binding information that has been loaded into
the network variable configuration table will be saved for the next invocation of
the host application.

l Self-identification and self-documentation data structures for the network
variables (SNVT information). These data structures match the data
structures defined in the NEURON CHIP Data Book, section A.5, and are
required only for LONWOFtKS nodes that need to support uploading of their
external interface definition by a network management tool. The declarations
of the elements of this structure are in the file NI-MGMT . H, and are reproduced
in appendix C.
Either version 0 or version 1 formats may be used for nodes that have less than
255 network variables, but version 1 format is required if there are more than
this. Version 1 format also supports a compact representation of network
variable arrays. This example host application uses version 0 format.

For illustrative purpose, the network variables of this application are all of
standard types (ASCII string, discrete level, continuous level, and floating
point count types), although this is, of course, not required. The SNVT
information in this node includes the names of each network variable, a self-
identification string for each network variable, and a self-identification
string for the node. This information is the same as would be generated by the
following set of NEURON C declarations. See the NEURON C Programmer’s
Guide chapter 3, and the LONBUILDER Release 2.2 Supplement chapter 4 for
more information.

#pragma enable-sd-nv-names
#prag-ma set-node-sd-string "Sample host application program"

network output sd-string("ASCII string output NV" 1
SNVT-str-asc NV-string-out;

network output sd-string("Discrete output NV")
SNVTJev-disc NV-disc-out;

network output sd-string("Continuous output NV")
SNVT-lev-cant NV-cant-out;

network output sd-string("Floating count output NV")
SNVT-count-f NV-float-out;

network input sd-string("ASCII string input NV")
SNVT-styasc NV-string-in;

network input sd-string("Discrete input NV")
SNVl~lev-disc NV-disc-in;

network input sd-string("Continuous input NV")
SNVT-lev-cant NV-cant-in;

network input sd-string("Floating count input NV")
SNVT-count-f NV-float-in;

The declaration of the SNVT information for this node is the const data object
SNv'l?-info in the file APPLMSG . C. The initializer for this object is the data that
the NEURON C compiler would produce with the above declarations. Portions of
this structure are returned as responses to the network management request
Query SNVT.

Host Application Programmer’s Guide A-5

. Network variable storage data structures. These structures do not have to
correspond to any data structures defined for the NEURON CHIP. Network
management tools do not directly access these structures, and so they can be
designed as needed for the host application’s requirements. Specifically, there
is no need to have a network variable fixed table as defined in the NEURON
CHIP Data Book, section A4.2. For this example application, the data type
network-variable is used to store application-level data for each network
variable. This typede f is in the file NI-MGMT . H and is reproduced here:
typedef struct {

int size;
nv-direction direction;
const char * name;
void (* print-func) (byte * 1;
void (* read-func) (byte *);
byte data[MAXJEI'VAFLDATA I;

] network-variable;
The size, direction, and data fields are used when the network variable is
updated or polled.

‘I’he structure defining all the network variables is in the file APPLMSG . C, and
is reproduced here.

network-variable nv-value-table[NUMJVS I = {
t 31, NV-OUT, string-out-name, print-asc, read-asc 3,
t 1, NV-OUT, disc-out-name, print-disc, read-disc 1,
1 1, NV-OUT, cant-out-name, print-cant, read-cant I,
1 4, NV-OUT, float-out-name, print-float,read-float),
t 31, W-IN, string-in-name, print-asc, read-asc I,

I ::
NV-IN r disc-in-name, print-disc, read-disc 1,
NV-IN, cant-in-name, print-cant, read-cant I,

{ 4, W-IN, float-in-name, print-float,read&float)

The routines print-xxx and read-xxx (in file APPLXSG. C) are simple
command-line-oriented user interface routines to display and input values of
these types to and from the user. They also perform the necessary
transformations between NEURON CHIP data representations, and PC-
compatible or user-friendly data representations, for example, byte-swapping
of multi-byte numeric objects, decoding and encoding of enumerations, and
conversions to and from customary units. The variable names are pointers to
the names in the self-identification structure (to save space), and are used in
the user interface when displaying menus of network variables. If the node has
no self-identification data, ASCII string constants can be used instead.

Sample Host Application Architecture
The host application is divided into four files. NI-MSG . c is a layer on top of the
network driver that handles outgoing message transactions
(ni-send-msg-wait () >, and incoming application messages
(ni-receive-msg () 1. The main program in HA. c initializes the network
interface and then enters an infinite loop, alternately calling ni-receive-msg ()
to look for incoming network traffic, and kbhit () , a DOS function to look for user
keystrokes from the keyboard. If a message is received from the network, the
function process-msg () in the file APPLMSG . c is called to handle the message,
whether it be an incoming network management, network variable, or explicit

A-6 Sample Host Application

application message. This routine is essentially a switch () statement that
dispatches a handler depending on the message code of the incoming message. If
the incoming message is a network management request or network variable poll,
the handler calls ni-send-response () to return the appropriate response.

On the other hand, if a keystroke is detected, the main loop calls the function
process-cmd () in the file HAUIF . C to dispatch the user command. The
commands are defined in the array command-table in the file HAUIF. C as
follows:

typedef struct (
char letter; /* command letter */
void (* func)(void); /* handler function */
char * help-text;

> command-struct;

const static command-struct command-table[] = {

{ ‘E’, exit-func, "(E)xit this application and return to DOS" >,
E 'N's NV-table, "(N)etwork Variable configuration table", 1,
t 'P', Nv_poll, "(P)oll input network variable"
('T', traffic, "Incoming network (T)raffic summary" ;:

NV update,
i :t: : verbose

"(U)pdate network variable" I,
"Control (V)erbose modes"

{ '\r', null-&d, In
t '\O' 3
1;

The routine process-cmd () in the file APPLMSG . c implements a simple table-
driven command dispatcher for these commands. Additional user commands
may be easily added to the table. Note that the network driver is checked for
incoming traffic only when the application is in the main polling loop. If the
application is waiting for user input somewhere else, incoming traffic may back up
into the network driver buffers and the network interface buffers causing
incoming message transactions to fail.

The command functions are as follows:

E Writes the network variable configuration table to disk, and quits back to
DOS.

N A debug command to display the current contents of the network variable
configuration table.

P Displays a menu of input network variables and polls the variable that the user
selects.

T Displays incoming traffic statistics - the number of application messages,
network variable updates, network variable polls, and total bytes of explicit
message data received.

U Displays a menu of network variables, and updates the variable that the user
selects with the value that the user entered.

Host Application Programmer’s Guide A-7

V Controls the state of two verbose mode flags. All messages to and from the
network interface may be displayed in detail - this is useful for debugging the
host application. The default setting of this flag is off. All messages received
by the host application may be reported in summary. The default setting of this
flag is on.

Host Application

HAUIF.C APPLMSG.C

1 NetworkDriver 1

Network Interface

Figure A.1 Top Level Architecture of the Host Application

Network Interface Library
The file NI-MSG . c contains a general-purpose layer on top of the network driver
that can be used in any host application. This library handles LONTALK message
transactions for the host application, which can therefore be simplified. The main
entry points to this library are as follows. All functions return an error code of type
NI-Code, definedinthefile NI-MSG.H.

niinit()
NI-Code ni-initlchar * device-name);

This function initializes the network interface. It opens the network driver using a
DOS open () call. When the device is opened, the driver automatically sends an
niFLUSH_CANCEL command to the network interface, unless the /Z switch was
specified when the driver was loaded. The /Z option to LONWORKS network
drivers for DOS is provided for those circumstances where the host application must
configure the network interface before it is allowed to respond to incoming
messages. In that case, the host application must explicitly send the
niFLUSH_CANCEL command after every reset. This host application example
assumes that the driver automatically sends the niFLUSH_CANCEL when it is
opened, and so the application does not need to do so.

The ni-init () function then calls the DOS ioctl () function to get the address of
the driver information structure that allows direct calls to the driver. If the driver

A-8 Sample Host Application

was successfully opened, it sends a local reset command to the network interface.
The DOS device name for LONWORKS network interfaces is LONx, where x, the
device unit number, is set by a switch in the DEVICE= command that loads the
device driver in the CONFIG. SYS file when the PC is bootstrapped. See the driver
documentation for details of how to set the unit number. All drivers default to unit
1, so that the default device name is LONl. This host application example only
supports a single network interface.

ni-reset0
NI-Code ni-resetlvoid);

This function sends a local reset command to the network interface. It may be used
by host applications that perform local network management on the network
interface, and need to reset it.

ni-send-msg- waif0

NI-Code ni-send-msg-wait(
ServiceType service,
const SendAddrDtl * out-addr,
const MsgData * out-data,
int out-length,
boolean priority,
boolean out-auth,
ComplType * completion,
int * num-responses,
RespAddrDtl * in-addr,
MsgData * in-data,
int * in-length);

This function executes a complete outgoing LONTALK message transaction
through the network interface. It sends the message, and then waits for any
responses and the message completion code before returning. Other messages that
may arrive at the node while the transaction is underway are not returned to the
caller, but are stored in a heap for later retrieval. This greatly simplifies the logic
of a host application, which can defer the processing of these unanticipated
incoming messages until later.

Input Parameters
Serviceme service - the DONTALK service type to use for the outgoing
message. Network variables may be sent out using ACKD, DNACKD-RPT, or UNACKD
service. Network variable polls use REQUEST service.

SendAddrDt 1 out-addr - the destination address to use for the outgoing message.
This data type is a union of six different possibilities, and is defined in the file
NI-MSG . H as follows. Also, see the NEURON CHIP Data Book, section A.3 for more
information on destination addresses.

Host Application Programmer’s Guide A-9

typedef enum I
UNASSIGNED = 0,
SUBNET-NODE = 1,
NEURON-ID = 2,
BROADCAST = 3,
IMPLICIT = 126,
LOCAL = 127

} AddrType;

typedef union (
SendGroup gp;
SendSnode
SendBcast ;zj
SendNrnid id;
SendUnassigned ua;
SendImplicit im;

) SendAddrDtl;
The first byte of a destination address determines the type of addressing used. If
the most significant bit of the type is set (types 0x80 - OxFF), then the address is
an explicitly addressed multicast (group) message, and the SendGroup union
element is used to define the address. Otherwise, the type may have the following
values:

SUBNET-NODE - the address is an explicitly addressed unicast (subnet/node)
message, and the SendSnode union element is used to define the address.

NEURON-ID - the address is an explicitly addressed unicast (NEURON ID) message,
and the SeridNrnid union element is used to define the address.

BROADCAST - the address is an explicitly addressed broadcast (subnet-wide or
domain-wide) message, and the SendBcast union element is used to define the
address.

Note that for all the above explicit address formats, the address includes the fields
retry, rpt-t imer, and tx-t imer, which must be set according to the requirements
of the application. Zero is not a suitable default for these fields.

The following two address types are not defined as LONTALK address types, but are
used internally within this host application example to address messages to the
network interface itself (type LOCAL), and to use addresses defined in the address
table of the network interface (type IMPLICIT).

LOCAL - the destination is the network interface. No additional addressing
information is required; the message is sent to the network interface using the
niNETMGMT command.

IMPLICIT - the destination address is determined implicitly. The SendImplicit
union element is used to define the address, which requires specification of the
message tag. This is a number between 0 and 14 which is an index into the address
table of the network interface. The address table entry in the network interface on-
chip EEPROM memory contains the actual destination address. The address table
entries are loaded by a network management tool when the node is installed.
Implicit addressing is used for bound network variables and message tags, and
does not require definition of retry counts and timers since these are implicitly
defined in the address table entry.

A-10 Sample Host Application

MsgData out-data - the actual data to be sent in the outgoing message. This data
type is a union of three possibilities, defined in the file NI-MSG . H .

typedef union {
UnprocessedNV unv;
ProcessedNV pm;
JIxplicitMsg exp r'

} MsgData;

Since this host application is designed to work with network interfaces that are
configured with host selection enabled, the ProcessedNV union element cannot be
used. The UnprocessedNV union element is used for outgoing network variable
updates and polls, and the ~xplicitMsg union element is used for outgoing explicit
application and network management messages.

int out-length - the length of the outgoing message data in bytes (including the
code byte for messages, and the selector bytes for network variables).

boolean priority - set to TRUE if the message should be delivered with priority
service, FALSE otherwise.

boolean out-auth - set to TRUE if the message should be authenticated, FALSE
otherwise. Only acknowledged and request messages may be authenticated.

Output Parameters
All output parameters are returned via pointers passed to the function. If any
pointer is NULL, the corresponding parameter is simply not returned.

ComplType *completion - the completion code for the transaction, either
MSG-SUCCEEDS or MSG-FAILS. An acknowledged or request/response transaction
is successful if all the acknowledgments or responses are received. An implicitly
addressed transaction will also succeed ifit is sent to an unbound message tag or
network variable. A network variable poll sent with network interface selection
enabled is successful if at least one response contains network variable data. An
unacknowledged or unacknowledged/repeated transaction is successful if all the
packets were sent on to the network.

int *num-responses - the number of responses received (for request/response
service only). If the message was sent with a unicast or a broadcast address and the
transaction succeeded, this will be one. If the message was sent with a multicast
address, this will be the number of actual responses received. The first response is
returned in the call to ni-send-msg-wait () , and subsequent responses with a call
to ni-get-next-responseo.

RespAddrDtl * in-addr - the address of the first response. See the declaration in
NI-MSG . H for details of the fields in this structure. It can be used to determine
which node sent the response.

MsgData *in-data - the data in the first response. If this is a response to an
explicit message, the union element ExplicitMsg is used. If this is a response to a
network variable poll, the union element UnprocessedNV is used.

int *in-length - the length of the incoming response data in bytes (including
the code for messages, and the selector for network variables).

Host Application Programmer’s Guide A-11

Error Codes
NI-OK - returned when the transaction completed normally

NI-DRIVER-ERROR - returned if the network driver reported an error when the
driver was called

NI-TIMEOUT - returned if the transaction did not complete within 5 seconds (the
constant niWAIT-TIME in N1JISG.C)

NI-UPLINK-CMD - returned if the network interface sent a local uplink command
(typically if it has been reset)

NI-INTERNAL-ERR - something unexpected happened

ni-get-next-response0

NI-Code ni-get-next-response(
RespAddrDtl * in-addr,
MsgData * in-data,
int * in-length 1;

The output parameters of this function are the same as the output parameters of
ni-send-msg-wait (1, which returns the first response for a request/response
message. The ni-get-next-response () function is used to return subsequent
responses, if any. Note that the heap used to store the subsequent responses is
cleared when a new call is made to ni-send-msg-wait () . The error code
NI-NO-RESPONSES is returned if the subsequent response heap is empty.

ni-receive-msg()

NI-Code ni-receive-msg(
ServiceType * service,
RcvAddrDtl * in-addr,
MsgData * in-data,
int * in-length,
boolean * in-auth 1;

This function checks to see if an incoming message has been received. If so, it
returns NI-OK and the message is passed to the caller using the output parameters of
the function call. If there is no message waiting, the function returns NI-TIMEOUT.
If an unexpected event is received (for example, a response, a completion event, or a
reset from the network interface), then the function returns NI-UPLINK-CMD.

All output parameters are returned via pointers passed to the function. If any
pointer is NULL, the corresponding parameter is simply not returned. The output
parameters of this function are:

ServiceType *service - the LONTALK service type for the incoming message.
Network variable updates are received using ACKD, UNACKD-RPT, or UNACKD
service. Network variable polls use REQUEST service. If the incoming message
uses REQUEST service, the response should be returned with the function
ni-send-responseo.

A-12 Sample Host Application

RcvAddrDtl *in-addr - the source address in the received message. See the
declaration in NI-MSG . H for details of the fields in this structure. It can be used to
determine which node sent the message and how it was addressed to the network
interface.

MsgData *in-data - the data in the received message. If this is an explicit
message, the union element ExplicitMsg is used. If this is a network variable
update or poll, the union element UnprocessedNV is used. The most significant bit
of the message code is one for a network variable message, and zero for an explicit
message.

int *in-length - tthe length of the incoming message data in bytes (including
the code byte for messages, and the selector bytes for network variables).

boolean * in-auth - TRUE if the incoming message is authentic, FALSE otherwise.
A message is authentic when authenticated service was specified and the sender
successfully replied to the challenge from the network interface.

ni-send-response0

NI-Code ni-send-response(
MsgData * out-data,
int out-length 1;

This function is used by the host application to send a response to the last incoming
message that specified request service. It is used to respond to incoming network
management requests, incoming network variable polls, and other incoming
request messages. Responses to requests should always be returned, otherwise the
requestor will receive a transaction failure, and the received transaction record in
the responder will remain locked. Also, the host application should return
responses promptly; if lengthy processing is required to prepare a response, the
transaction timer of the sending node and the appropriate receive timer of the host
application node should be increased to compensate.

The input parameters of this function are:

MsgData out-data - the actual data to be sent in the outgoing response. Since this
host application is designed to work with network interfaces that are configured
with host selection enabled, the ProcessedNv union element cannot be used. The
UnprocessedNV union element is used for outgoing network variable poll
responses, and the Explici tMsg union element is used for outgoing application
and network management responses.

int out-length - the length of the outgoing response data in bytes (including the
code byte for explicit message responses, and the selector bytes for network variable
poll responses).

nigend-immediafe()

NI-Code ni-send-immediate(NI-NoQueueCmd command);

Host Application Programmer’s Guide A-13

This function is used to send an immediate command to the network interface.
These commands are defined in Appendix D. Any downlink command other than
niCOMM or niNETMGMT may be sent with this function. The host application uses this
to inform the network interface that is has received a mode on-line or mode off-line
network management message. The output parameter is a command code of type
NI-NoQueueCmd (definedin NI-MSG.H).

han de- error0
boolean handle-error(NI-Code ni-error,

ComplType completion,
byte response-code,
const char * msg-name);

This function (in file NI-MSG . C) should be used to check the return status of any
call to the ni-xxx () functions. It will print an appropriate message if any error
has occurred, and return TRUE. If there was no error, it returns FALSE. The input
parameters are:

NI-Code ni-error - an error code returned from a call to one of the ni-xxx ()
functions

ComplType completion - a completion code returned from a call to
ni-send-msg-wait 0. Ifthe callbeingcheckedwasnot ni-send-msg-wait0,
MSGSUCCEEDS should be passed in for this parameter.

byte response-code - if the call being checked was a network management
message sent with ni-send-msg-wait () , this should be the message code from the
response. Otherwise NO-CHECK should be used.

char * msg-name- a text string printed as part of the error message.

Application Message Handler
The file APPLMSG . c contains all the functions that deal with incoming messages,
including network management messages passed to the application, and
incoming network variable updates and polls. The function process-msg () is
called by the main dispatch loop whenever it detects that an incoming message has
been received with ni-receive-msg () . It dispatches control to different functions
depending on the message code of the incoming message.
boolean process-msg(ServiceType service,

RcvAddrDtl * address,
MsgData * in-data,
int in-length,
boolean in-auth) (

/* handle incoming messages addressed to this node */
/* return TRUE if prompt should be redisplayed */

last-rev-addr = * address;
// save for debug purposes

A-14

switch(in-data->exp.code) (
// dispatch on message code

Sample Host Application

case NM-update-nv-cnfg:
return handle-update-nv-cnfg(in-data, service);

case NM_query_nv-cnfg:
return handle-query-nv-cnfg(in-data, service);

case NM-set-node-mode:
return handle-set-mode(in-data);

case NM-quexy_SNVT:
return handle-query-SNVT(in-data, service);

case N&-wink:
if(report-flag)printf("Received Wink msg\n");
printf(I(\a"); // Ding!
return report-flag;

case m-NV-fetch:
return handle-NV-fetch(in-data, service);

default: /* handle all other messages here */

if(in-data->unv.must-be-one)
// This is a network variable

return handle-netvar-msg(in-data, service,
in-length, in-auth);

// This is an explicit msg
else return handle-explicit-msg(in-data, service,

in-length, in-auth);
1 // end switch

handle-update-nv-config
This function is invoked when a network management tool wishes to bind a
network variable. It extracts the network variable index from the incoming
message, validates it, and then copies the network variable configuration table
entry from the message to the appropriate element of the array nv-conf ig-table.

This function is invoked when a network management tool wishes to retrieve the
binding information for a network variable. It extracts the network variable index
from the incoming message, validates it, and then sends a response with a copy of
the requested network variable configuration table entry from the array
nv-config-table.

handle-set-mode0
This function is invoked when a network management tool sends a network
management message to the node telling it to go on-line or off-line. It saves the
requested mode in the variable on1 ine-f lag, and sends a local message to the
network interface to inform it of the change. If the host application is off-line, it

Host Application Programmer’s Guide A-15

will not send out network variable updates and poll message. If it receives a
network variable poll, it will respond with no data. If it receives a network
variable update, the value will be updated, even if the node is off-line. If the node is
on-line, of course, it will behave normally.

handle-query-SNVT()
This function is invoked when a network management tool wishes to import the
self-identification and self-documentation information -from the node. It extracts
the offset and byte count from the request message, validates them, and sends a
response containing the requested data from the sNv'l?-info data structure.

handle-NV-fetch0
This function is invoked when a network management tool wishes to retrieve the
value of a network variable by index. It extracts the network variable index from
the incoming message, validates it, and then sends a response with a copy of the
requested network variable data from the array nv-value-table.

handle-ne tvar-msg()
This function is invoked when an application node updates or polls one of the
network variables of this node. It searches through the network variable
configuration table for an entry whose selector and direction match the selector and
direction in the incoming message. If a match is found, the corresponding entry in
the network variable value table is updated (for non-request messages), or returned
in a poll response (for request messages). The example host application uses linear
searching for simplicity since there are only eight network variables on the node.
For large numbers of network variables, a more efficient search algorithm could
be used.

This function is invoked when the node receives an explicit message which is not
one of the defined network management messages. It simply reports the arrival of
the message. Note that service pin messages are received as ordinary
unacknowledged explicit messages; they are not processed by this application.

Outgoing Network Variable Messages
The file APPLMSG . c also contains two functions that handle user commands to
update and poll network variables.

NV-update0
This function displays a menu of the defined network variables with their current
values, and asks the user to identify which one should be updated. It then reads the
new value for the network variable from the keyboard, and updates the value in the
array nv-value-table. If the specified network variable is an output variable, it

A-16 Sample Host Application

then sends a network variable update message to the network interface. It uses the
selector, service class, authentication, and priority attributes that are configured
for this network variable in the network variable configuration table. It also uses
an implicit address, with the message tag obtained from the addr-index field of the
network variable configuration table entry. Finally, if this is a turnaround
network variable bound to an input on the same node, it updates that input network
variable.

This function displays a menu of the defined input network variables with their
current values, and asks the user to identify which one should be polled. It then
sends a network variable poll request message to the network interface. It uses the
selector, authentication, and priority attributes that are configured for this network
variable in the network variable configuration table. It also uses an implicit
address, with the message tag obtained from the addr-index field of the network
variable configuration table entry. For each valid response that is received, it
updates the value in the array nv-value-table. Finally, if this is a turnaround
network variable bound to an output on the same node, it uses the value of that output
variable to update the value in the array nv-value-table.

Running the Sample Host Application
The sample host application requires a PC to execute. It does not do any network
management, and does not bind itself to other nodes. A network manager, such as
NetMaker or the LONBUILDER Network Manager, may be used to install and bind
the host application to other nodes. See the section Host Application Requirements
in this chapter for more details.

To run the host application, type

HA [-VI [-DLONnl

at the DOS prompt. The optional argument -V turns on verbose mode. This mode
may also be turned on with the v command to the application’s command
interpreter. The optional argument -DLONn specifies the DOS network driver
name for the network interface to use for the application, where n is the device
number. The default is ~0~1. The device number is specified in the CONFIG. SYS
file when the network driver is loaded.

Once the host application is running, it will respond to network events as well as
keyboard commands as described below. A NEURON C test program HA-TEST. NC
is provided that may be installed on a NEURON CHIP-hosted node such as a
LONBUILDER NEURON Emulator. This test program has network variables that
may be bound to the host application node in order to test its functionality. This test
program also has four input and four output network variables with the same
names and types as the host application’s network variables, and it may be bound to
the host application node as shown below.

Host Application Programmer’s Guide A-17

Host Application Test Application
(PC-based) (NEURON-based)

Figure A.2 Network Variables of the Host and Test Applications

LONBTJILDER may be used to build this network as described below. The test
application uses certain functions from the Extended Arithmetic Library, so this
software should have previously been installed before proceeding. See the Extended
Arithmetic Support engineering bulletin for installation instructions; the
Extended Arithmetic Support engineering bulletin is included in LONBUILDER
Notes and News. The Extended Arithmetic Library is available on the LONLINK
bulletin board, and is also available on the LONLINK Sampler diskette. Also, the
test application uses a LONBUILDER Multifunction I/O Kit (with Gizmo 21, so that
this hardware should be installed in the emulator as described in the LONBUIL,DER
Startup and Hardware Guide.

You should first create a channel definition in the LONBUILDER hardware
database for the network interface, if one does not already exist. If you are using
an SLTA as the network interface, the channel type is described on a colored
sticker on the outside of the SLTA Next, make sure that the LONBTJILDER network
manager, the emulator that you are using for the test application, and the network
interface can all communicate with each other, both physically and logically. You
may need to define and install LONBUILDER or LONWORKS routers to ensure that
this is the case, or alternatively, change the transceivers on the network manager
and emulator to the same type as the transceiver on the network interface for the
host application. It is preferable for the LONBUILDER protocol analyzer to be able to
communicate with the test network for debugging purposes.

Create an application node, target hardware object for the network interface. Its
type should be “Custom Node.” The hardware properties that you select should
reflect the correct NEURON CHIP input clock rate, depending on the clock used in
the network interface. The channel that you select should be the correct one also.

A-18 Sample Host Application

Now install the network interface - you will be asked to press the service pin on the
network interface. Do not install corn&cation parameters.

Create an application image of origin “Interface File”, with the name HA-V2 . XIF.
Create a node specification for the host application that specifies HA-V2 as the
application image, and the network interface object as the target hardware.

Create a node specification for the test application, and specify the application
image name as HA-TEST, and the target hardware as the emulator you are using.
‘I!his will cause the NEURON C program HA-TEST. NC to be compiled to produce the
application image for the emulator. The NEURON C include file DISPLAY. H is
required; it contains the display driver for the Gizmo 2 used by the test application.

You can now build and load the emulator and the host application node using the
LONBUILDER Project Manager. The host application must be running during the
load operation, since it will be required to respond to certain network management
messages. You can bind the network variables of the test application and the host
application together as in the above diagram.

The test application uses the Gizmo 2 as the user interface device when connected to
an emulator or other NEURON C-based node. When the node receives a network
variable update from the network, it will display the value using the seven segment
display. For the network variable of type SNVT-str-asc, it will display the first
four characters if possible to do so using the seven segment display of the Gizmo 2.
If there is no reasonable representation in seven segments, a blank will be
displayed. For the network variable of type SNVT-count-f, it will display the
number using two decimal places and a sign. For the network variable of type
SNVT-lev-disc, it will display the value in percent using one decimal place. For
the network variable of type SNV‘I-lev-disc, it will display one of the strings
“OFF”, “LO”, “=Ed”, “HI” or “On”, corresponding to the ST-OFF, ST-LO, ST-MED,
ST-HI and ST-ON values.

You can also use the Gizmo 2 to transmit network variables to the host application.
Pressing the right (10-3) button will cycle the display through the discrete level,
continuous level, floating point, and the four first characters of the string output
network variables. The quadrature input dial may be used to change the values
transmitted to the network, and these will then be displayed by the host application
when it receives the network variable updates.

The left (IO-71 button of the Gizmo 2 toggles the node between display of the input
and output network variable of a given type. The red LED will be on if the input
variable is being displayed, and off if the output variable is being displayed.

Host Application Programmer‘s Guide A-19

Appendix B
Creating an External Interface File

This appendix describes the procedure for modifying an external
interface file (. XIF extension) to include network variables and
message tags used by a host application.

Host Application Programmer’s Guide B-1

How to Add Network Variables to the External
Interface File

As described under Binding to a Host Node in Chapter 3, an external interface file
(.XIF extension) can be used by a network management tool to determine the
external interface of a node. The external interface file describes the network
variables and message tags for a node. External interface files may be generated
in several different ways.

The LONBUILDER sofiware will create external interface files for nodes created
with the NEURON C compiler. After the node image has been built, invoke the
Export command in the App Node / Node Specs screen, and specify the Intel)eace
File option. See the LONBUILDER User’s Guide Chapter 7 for more information.
LONBUILDER 2.1 exports an interface file with versions 1 and 2 formats, and
LONBUILDER 2.2 exports an interface file with version 3 format. This appendix
describes version 2 and version 3 formats. A utility XIF3T02 is included with
LONBUILDER 2.2 to convert version 3 format interface files to version 2.

A variant of this technique may be used to create an external interface file for a host
application node. Create a NEURON C program with the appropriate network
variable and message tag declarations. There need be no actual code in this
program. Compile and build this application using the appropriate hardware
properties and channel definitions for the custom node. Then use LONBUILDER to
export the external interface file for this node. Afterwards, use a text editor such as
the LONBUILDER editor to modify the values in the sixth line appropriately. This
technique will work for nodes with 62 network variables or less. Nodes with more
than this will require further modifications to the external interface file as
described below.

LONBUILDER may also be used to create an external interface file from an existing
custom node by querying it over the network. Invoke the Query command in the
App Node / Node Specs screen. If the node was built with network variable names
in its SNVT information, those names will automatically be uploaded, otherwise
default names will be used for the network variables. These names may be edited
if desired. See the LONBUILDER User’s Guicle Chapter 6 for more information.

An external interface file without network variables or message tag definitions is
included with the SLTA, and can be generated for network interfaces based on the
MIP as described in the Microprocessor Interface Program (MIP) User’s Guiok.
This appendix describes how to modify this external interface file to add network
variables and message tag definitions to a basic header.

External interface files are used by several LONWORKS tools. All current
releases of these tools can read version 2 interface files.

B-2 Creating an External interface File

LONBUILDER can read an external interface file for an existing custom node so
that its network variables and message tags may be bound. In the App Node / App
Images screen, create an application image whose origin is Interface File, and
whose name is the base name of the external interface file which should be in the
working directory. Then in the App Node / Node Specs screen, create a node
specification with that App Image Name. Afer that node is built, the network
variables and message tags imported from the external interface file will be
available to the binder. See the LONBCULDER User$ Guide Chapter 7 for more
information.

External interface files may be read by the function ldb-import-xif (1 in the
LONMANAGER API in order to create program records. These program records
may then be used to define the network variables of node records in the database.
See the LONMANAGER Reference Guide for Windows Chapter 2, or the
LONMANAGER API Programmer$ Guide for DOS Appendix C for details.

External interface files may also be read by the LONMANAGER NetProfiler as part
of the process of creating an Application Type. These Application Types form part
of the parts catalog that the LONMANAGER NetMaker uses for network installation.
See the LONMANAGER NetProfiler User’s Guide Chapter 5 for details.

External Interface File Format
The external interface file is a text file that describes critical logical (e.g., network
variables) and physical (e.g., transceiver) interface characteristics of a node.

Before any modifications, the external interface file for a network interface will
look very similar to the following:
1: File: PMIP-78K.XIF generated by APC Revision 1.73, XIF Version 2
2: Copyright (c) 1990, 1992 by Echelon Corporation
3: All Rights Reserved. Run on Wed Apr 15 10:18:08 1992
4:
5: 40:49:43:52:4F:5F:50:49
6:215100333444llllllll108
7: 0 4 4 5 3 13 18 1402 0 15 5 3 106
8: *
The values in this file header depend upon transceiver type, buffer configuration,
and other configuration characteristics of the application. Adding network
variables or message tags to an external interface file requires only limited
changes to the original contents of the external interface file header. Network
variables and message tags are added to an external interface file by adding
additional lines of information to the original file. Most of the entries in the
header of the file must not be changed, except as noted below, otherwise many of the
LONWORKS tools will fail to import the file. The other entries are documented here
for reference only. Note that blank lines are significant. The fourth line must be
blank, and there must be no blank lines at the end of the file.

Host Application Programmer’s Guide B-3

First line: The last character is the version number for this external interface file
format. The directions given here apply only to version 2 and version 3 external
interface file formats.

Fifth line: The program ID as a sequence of eight hexadecimal values separated by
colons.

Sixth line: This consists of eighteen decimal values separated by single spaces, as
follows:
1
2
3
4

5

6
7
8
9
10
11
12
I.3
14
15
16

17

18

Number of domains (1 or 2).
Number of address table entries (0 to 15).
If this node handles incoming explicit messages. (1 for a host application)
Number of network variables (0 to 4096). This value should be modified
appropriately.
Number of explicit message tags (0 to 15). This value should be modified
appropriately.
Note - the encodings of the following ten values are described in the NEURON
CHIP Data Book, section Al.
Encoded number of network input buffers.
Encoded number of network output buffers.
Encoded number of priority network output buffers.
Encoded number of priority application output buffers.
Encoded number of application output buffers.
Encoded number of application input buffers.
Encoded size of a network input buffer.
Encoded size of a network output buffer.
Encoded size of an application output buffer.
Encoded size of an application input buffer.
If this is a host application (1 for a host application). This value should be
modifid to 1.
Number of network variables for a host application using network interface
selection (0 to 621, 0 otherwise. This value should be modified if you are using
network interface selection.
Number of receive transaction buffers.

Seventh line: This consists of eleven (version 3) or thirteen (version 2) decimal values
separated by single spaces, as follows:

1 NEURON CHIP type. 0 for a 3150 and 8 for a 3120)
2 Encoded input clock rate. (1 to 5, corresponding to 625kHz to 10MHz).
3 Encoded comm. port bit rate. (0 to 8, corresponding to 1.25 Mbps to 4.9 kb/s)

(version 2 only)
4 Medium type. (version 2 only)
5 Firmware version number.
6 Size of a receive transaction buffer. (13)
7 Size of a transmit transaction buffer, (18)

B-4 Creating an External interface File

8 Number of bytes of available on-chip RAM.
9 Number of bytes of available off-chip RAM.
10 Size of a domain table entry. (15)
11 Size of an address table entry. (5)
12 Size of a network variable configuration table entry. (3)
I3 Size of network image.

In a version 3 external interface file, the next three lines describe the transceiver
properties. In a version 2 external interface file, the next line (only one line)
describes the transceiver properties.

Next line: This line consists of a double quote character followed by the node self-
identification string, or an asterisk if there is no self ID string.

The next line must be blank.

Network Variables and Message Tags
Each network variable and message tag is represented in an external interface file
with an entry that begins with VAR or TAG respectively. Each entry consists of
several lines of information; each line consists of one or more data fields. A
single space separates the data fields on a line; each line is terminated with a
newline. Listed below are several example network variable and message tag
declarations and the corresponding external interface file entries. See the
NEURON C Programmer’s Guide for a description of network variable and
message tag declarations. Following these examples is a detailed discussion of the
external interface file entries for network variables and message tags.
network output polled long

bind-info(offline ackd(nonconfig)
authenticatedc nonconfig)
priority(nonconfig)
rate-est(123) max-rate-est(234)) outvar;

VAR outvar 0 69 76 0
116310 0101010 0
*
o* 1
20010

network input sync config int invar;

VAR invar 1 0 0 0
0163 0010101011
*
o* 1
10 010

Host Application Programmer’s Guide B-5

typedef struct (int x;
long YJ
int arrayE51;
unsigned z : 3;
unsigned zz : 5;
union (

int a; int b;) u;
3 group;

network input group ingroup;

VAR ingroup 2 0 0 0
0163 0 0101010 0 0
*
0* 6
10 0 10
2 0 0 10
10015
30300
33500
40100

msg-tag bind-info(rate-est(l23) max-rate-est(234)) user-tag;

TAG user-tag 0 69 76 0
016310101010 0 0

Below is a detailed explanation of the external interface file entries for network
variables and message tags. For each line, the data field explanations are listed in
the order they appear on the line from lefi to right.

First Line - Type, Name, and General Information.

Field
Entry 5Pe

Name

Index

Values and Meaning
“VAR” - network variable
“TAG” - message tag
Message tag or network variable name;
character string of up to 16 characters.
0 to 4095 - network variable
Oto 14-messagetag

cauments

Unique number for each
type assigned sequentially
starting at 0. For arrays,
this is the index of the first
element

B-6 Creating an External Interface File

Rate Estimate 0 - Not applicable; otherwise encoded value See the NEURON C
representing the average network traffic Programmer’s Guide for an
generated by this network variable or explanation of the encoding
message tag. scheme

Maximum Rate Same as Rate Estimate above.
Estimate
Array Size 0-notanarray

1 to 4095 - number of array elements

Note: Each element of an array is assigned a unique index number. The index
number assigned to an entry following that for an array, is assigned an index
number equal to the index number of the array plus the number of elements in the
array.

Second Line - Connection Information. Where appropriate, the same terminology
is used in these descriptions as is used in the NEURON C bind-info declaration.
For message tags, only the first three fields are significant, but the other fields
must be present; their values are ignored.

Field Values and Meaning Comments

Offline

Bindable

Unused

0 - update when online or offline
1 - update only when offline
0 - cannot be bound For binding host nodes, this should
l-canbebound always be 1.
63

Direction

Service Type

0 - input
1 - output
0 - ackd

1 1 - unackd-rpt 1 - unackd-rpt
2 - unackd 2 - unackd
0 - nonconlig (no) 0 - nonconlig (no)
1 - config (yes) 1 - config (yes)

Service Type - Service Type -
Configurable Configurable

Specify config (1) if the service type Specify config (1) if the service type
may be changed by a network may be changed by a network

Authenticated

Authenticated -
Configurable

priority

Priority -
Configurable

0 - nonauthenticated NV
1 - authenticatedNV
0 - nonconfig (no)
1 - cofig (yes)

0 - nonpriority
1 - priority
0 - nonpriority (no)
1 - config (yes)

management message

Specify config (1) if the authentication
field may be changed by a network
management message

Specify conlig (1) if the priority may
be changed by a network
management message

Host Application Programmer’s Guide B-7

Polled For output NVs:
0 - asynchronous updates
1 - update only when polled
For input NVs:

Synchronized

Config

0 - not polled by this node
1 - polled by this node
0 - regular updates
1 - send all values, preserve order
0 - can be changed by this node
1 - cannot be changed by this
node

Third Line - Network Variable Self-Documenting text. This and all following
lines are only included for network variables. If self-documenting text is not
supplied, this line consists only of a single asterisk. If supplied, one or more lines
of text appear here; each line begins with a double-quote character and ends with a
newline. When the lines are concatenated together without the double-quote or
newline characters, this forms the self-documentation text. Each line may be up to
60 characters long not including the double-quote or newline.

Fourth Line - Network Variable Type Information. This line follows the last line
of the network variable self-documenting text.

Field Values and Meaning Comments

Smr Type 0 - not a standard type See the SNVT list for the
1 to 255 - standard type number type numbers

Unused *

Number of Elements 1 - not a struct or union
1 to 256 - number of elements in a

Fifth and Subsequent Line(s) - Element Description(s). For each element, the
characteristics of the data are defined. There is one line for each element; the
number of elements is specified in the Number of Elements field in the preceding
line.

B-8 Creating an External Interface File

Field Values and Meaning Comments

Type

Bitfield Of&et

size

O-char
1 - int (NEURON C definition)
2 - long (NEURON C definition)
3 - biffield
4-union
5 - typeless
0 if not applicable
Oto 7 otherwise
0 - not applicable
1 to 7 - number of bits (bitfield
only)
1 to 31- number of bytes (union
only)
0 - not applicable or unsigned
1 - signed
0 - not an array or not applicable

If Type is typeless, none
of the remaining fields
are applicable.

Applies only when Type
is biUield.
Applies only when Qpe
is bitfield or union.

Sign or Signed

Array Bound
1 1 to 31- number of array elements 1

Adding Network Variables and Message Tags to the
Network Interface External Interface File

As mentioned above, the external interface file is a text file. The external interface
file can be modified using any text editor, including the LONBUILDER editor.
Follow the steps listed below to add network variables and message tags to the
network interface external interface file.

1 Start with the original network interface external interface file. That file
should be similar to that listed below; the file name will be different and some
of the numeric values will be different depending upon transceiver type, buffer
configuration, and other configuration characteristics. Also, the line number
and colon are not part of the external interface file.

1: File: PMIP-78K.XIF generated by APC Revision 1.73, XIF Version 2
2: Copyright (c) 1990, 1992 by Echelon Corporation
3: All Rights Reserved. Run on Wed Apr 15 10:18:08 1992
4:
5: 40:49:43:52:4F:5F:50:49
6:21510 03 3 3 444llllllll.108
7: 0 4 4 5 3 13 18 1402 0 15 5 3 106
8: *

2 Three values in the original file need to be changed. All of these are on the
sixth line. The following changes should be made:

Host Application Programmer’s Guide B-9

a The fourth (4th) number is the number of network variables; this is a value
from 0 to 4096. Change this to the number of network variable entries that
are to be added.

b The fifth (5th) number is the number of message tags; this is a value from 0
to 15. Change this to the number of message tag entries that are to be added.

c The sixteenth (16th) number should be changed from ‘1’ to ‘0’. This
indicates that this external interface file is for a host application program.

These changes are shown below with a double underscore.

File: PMIP-78K.XIF generated by APC Revision 1.73, XIF Version 2
Copyright (c) 1990, 1992 by Echelon Corporation
All Rights Reserved. Run on Wed Apr 15 10:18:08 1992

4D:49:43:52:4F:SF:50:49
2151~~333444llllllll~ 08
0 4 4 5 3-13 18 1402 0 15 5 3 106
*

3 Place the cursor at the end of the last line, that is immediately after the * on the
last line. Enter a newline, then enter a second newline to create a blank line
before the first network variable or message tag entry.

4 Enter the first network variable or message tag entry at the current position in
the file. This is illustrated below.

File: PMIP-78K.XIF generated by APC Revision 1.73, XIF Version 2
Copyright (c) 1990, 1992 by Echelon Corporation
All Rights Reserved. Run on Wed Apr 15 10:18:08 1992

40:49:43:52:4F:SF:50:49
21510 033344411111111008
0 4 4 5 3 13 18 1402 0 15 5 3 106
*

VAR outvar 0 69 76 0
1163100101010 0
*
o* 1
20010

5 Enter the next network variable or message tag entry immediately after the
first entry, i.e., there is no blank line separating the entries. A second entry is
shown below.

File: PMIP-78K.XIF generated by APC Revision 1.73, XIF Version 2
Copyright (c) 1990, 1992 by Echelon Corporation
All Rights Reserved. Run on Wed Apr 15 10:18:08 1992

B-10 Creating an External Interface File

40:49:43:52:4F:SF:50:49
21510 0333444lllillllO 0 8
0 4 4 5 3 13 18 1402 0 15 5 3 106
*

VAR outvar 0 69 76 0
116310 0101010 0
*
o* 1
20010
VAR invar 1 0 0 0
0163 0 010101011
*
o* 1
10 0 10

6 Continue adding entries in the same way until all of the required network
variables and message tags have been included.

There is an alternative to the above procedure which may be more appropriate in
some circumstances. The alternative is defined below:

Create a NEURON C source program containing the NEURON C network
variable and message tag declarations corresponding to the entries needed in
the network interface external interface file. This file need not have any
executable statements in it.

Create and build an application node with this NEURON C program.
Export the external interface file for this application node.

Perform steps 1 through 3 in the first procedure.

Use a text editor to cut and paste the network variable and message tag entries
from the external interface file exported in step 3 of this procedure to the network
interface external interface file.

While creating the NEURON C source program and building the application
requires more work than simply editing the external interface file, this approach is
more reliable because the NEURON C compiler generates the external interface file
entries. This is the recommended approach if more than a very small number of
simple network variable or message tag entries are required.

NOTE: When using anything other than Standard Network Variable Types
(SNVTs), the size of a NEURON C-type (e.g., int) may not be the same as that for the
host application. Special conversion processing may be required in the host for
connections between a host application and a NEURON CHIP-hosted application, or
the typeless data type may need to be used for connections between host applications.

Host Application Programmer’s Guide B-11

Appendix C
Network Interface Messages

This appendix defines the message structures exchanged by a host
application and the network driver. These messages will consist of
network variable updates, explicit messages, or local commands to
the network interface. Explicit messages may be application,
network management, or network diagnostic messages as defined in
Appendix B of the NEURON CHIP Data Book.

The message structures are defined using ANSI C structure
definitions, and also using bit-field diagrams. The ANSI C structure
definitions are contained in two ANSI C header files that are
included in the host application example directory. These files are
NI-MSG . H and NI-MGMT e H. The NI-MSG . H header file defines the
network interface message structures and also defines other
structures and variables used by the NI-MSG . c functions listed in
Appendix A. The NI-MGMT . H header file defines the subset of
network management messages used by the example host
application in Appendix A.

The bit-field diagrams can be used by host application developer’s
using a language other than ANSI C. The bit-field diagrams also
illustrate the difference between the application-layer header and the
link-layer headers.

Host Application Programmer’s Guide C-l

NIBMSG.H
/*

* NI-MSG.H
*
* Message definitions for the LONWORKS network driver protocol.
*/

/*
~~**************

* Application buffer structures for sending and receiving messages to and
* from a network interface. The "ExpAppBuffer' and 'ImpAppBuffer'
* structures define the application buffer structures with and without
* explicit addressing. These structures have up to four parts:
*
* Network Interface Command (NI-Hdr) (2 bytes)
* Message Header (MsgHdr) (3 bytes)
* Network Address (ExplicitAddr) (11 bytes)
* Data (MsgData) (varies)
*
* Network Interface Command (NI-Hdr):
*
* The network interface command is always present. It contains the
* network interface command and queue specifier. This is the only
* field required for local network interface commands such as niRESET.
*
* Message Header (MsgHdr: union of NetVarHdr and ExpMsgHdr):
*
* This field is present if the buffer is a data transfer or a completion
* event. The message header describes the type of LONTALK message
* contained in the data field.
*
* NetVarHdr is used if the message is a network variable message and
* network interface selection is enabled.
*
* ExpMsgHdr is used if the message is an explicit message, or a network
* variable message and host selection is enabled (this is the default
* for the SLTA).
*
* Network Address (ExplicitAddr: SendAddrDtl, RcvAddrDtl, or RespAddrDtl)
*
* This field is present if the message is a data transfer or completion
* event, and explicit addressing is enabled. The network address
* specifies the destination address for downlink application buffers,
* or the source address for uplink application buffers. Explicit
* addressing is the default for the SLTA.
*
* SendAddrDtl is used for outgoing messages or NV updates.
*
* RcvAddrDtl is used for incoming messages or unsolicited NV updates.
*
* RespAddrDtl is used for incoming responses or NV updates solicited
* by a poll.
*
* Data (MsgData: union of UnprocessedNV, ProcessedNV, and ExplicitMsg)

C-2 Network Interface Messages

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This field is present if the message is a data transfer or completion
event.

If the message is a completion event, then the first two bytes of the
data are included. This provides the NV index, the NV selector, or the
message code as appropriate.

UnprocessedNV is used if the message is a network variable update, and
host selection is enabled. It consists of a two-byte header followed by
the NV data.

ProcessedNV is used if the message is a network variable update, and
network interface selection is enabled. It consists of a two-byte header
followed by the NV data.

ExplicitMsg is used if the message is an explicit message. It consists
of a one-byte code field followed by the message data.

* Note - the fields defined here are for a little-endian (Intel-style)
* host processor, such as the 80x86 processors used in PC compatibles.
* Bit fields are allocated right-to-left within a byte.
* For a big-endian (Motorola-style) host, bit fields are typically
* allocated left-to-right. For this type of processor, reverse
* the bit fields within each byte. Compare the NEURON C include files
* ADDRDEFS.H and MSGJDDR.H, which are defined for the big-endian NEURON
* CHIP.
~*******
*/

/* Change the following declarations to port to a non-80x86 */

typedef unsigned char byte; /* 8 bits */
typedef unsigned bits; /* bit fields */
typedef unsigned int word; /* 16 bits */

typedef enum { FALSE = 0, TRUE 1 boolean;

/*
********************~~~~~~~~~~~~~***~~~~~~~~~~~~~~~~~~~~~~~~~~*~~**~~~~~
* Network Interface Command data structure. This is the application-layer
* header used for all messages to and from a LONWORKS network interface.
**
*/

/* Literals for the 'cmd.q.queue' nibble of NI-Hdr. */

typedef enum {
niTQ = 2,
niTQ-P = 3,
niNTQ = 4,
ni.NTQ-P = 5,
niRESPONSE = 6,
niINCOMING = 8

) NI-Queue;

/* Transaction queue */
/* Priority transaction queue */
/* Non-transaction queue */
/* Priority non-transaction queue */
/* Response msg & completion event queue*/
/* Received message queue */

Host Application Programmer’s Guide C-3

/* Literals for the 'cmd.q.q_cmd' nibble of NI-Hdr. */

typedef enum (
niCOMM = 1, /* Data transfer to/from network */
niNETMGMT = 2 /* Local network management/diagnostics */

) NI-QueueCmd;

/* Literals for the 'cmd.noq' byte of NI-Hdr. */

/* Not used
/* Not used

/* Uplink
/* Downlink

/* SLTA only

/* SLTA only
/* SLTA only

/* Not used
/* Not used

typedef enum {
niNULL = 0x00,
niTIMEOUT = 0x30,
niCRC = 0x40,
niRESET = 0x50,
niFLUSH_COMPLETE = 0x60,
niFLUSH_CANCEL = 0x60,
niONLINE = 0x70,
niOFFLINE = 0x80,
niFLUSH = 0x90,
niFLUSH_IGN = OXAO,
niSLEEP = OxBO,
niACK = oxco,
niNACK = OxCl,
niSSTATUS = OxEO,
niPUPXOFF = OxEl,
niPUPXON = oxE2,
niPTRHROTL = oxE4,
niDRV_CMD = OxFO,

3 NI-NoQueueCmd;

/*
* Header for network interface messages. The header is a union of
* two command formats: the 'q' format is used for the niCOMM and
* niNETMGMT commands that require a queue specification; the 'noq'
* format is used for all other network interface commands.
* Both formats have a length specification where:
*
* length = header (3) + address field (11 if present) + data field
*
* WARNING: The fields shown in this structure do NOT reflect the actual
* structure required by the network interface. Depending on the network
* interface, the network driver may change the order of the data and add
* additional fields to change the application-layer header to a link-layer
* header. See the description of the link-layer header in Chapter 2 of the
* Host Application Programmer's Guide.
*/

typedef union {
struct (

bits queue :4;

bits q-cmd :4;

bits length :8;
1 9;
struct {

/* Network interface message queue */
/* Use value of type 'NI-Queue' */
/* Network interface command with queue */
/* Use value of type 'NI-QueueCmd' */
/* Length of the buffer to follow */
/* Queue option */

*/
*/

*/
*/

*/

*/
*/

*/
*/

C-4 Network interface Messages

byte

byte
I noq;

> NI-Hdr;

cmd;

length;

/* Network interface command w/o queue */
/* Use value of type 'NI-NoQueueCmd' */
/* Length of the buffer to follow */
/* No queue option */

/*
************t****t**~~~~~~*~~~~*~~~~~~~~~~~~~~~~~*~~~~~~~~~~~~*~~~*~~~~~~~~~
* Message Header structure for sending and receiving explicit
* messages and network variables which are not processed by the
* network interface (host selection enabled).
~***************************
*/

/* Literals for 'St' fields of ExpMsgHdr and NetVarHdr. */

typedef enum C
ACKD = 0,
UNACKD-RPT = 1,
UNACKD = 2,
REQUEST = 3

} ServiceType;

/* Literals for 'cmpl-code' fields of ExpMsgHdr and NetVarHdr. */

typedef enum {
MSG-NOT-COMPL = 0,
MSG-SUCCEEDS = 1,
MSG-FAILS = 2

} ComplType;

/* Not a completion event “1
/* Successful completion event */
/* Failed completion event */

/* Explicit message and Unprocessed NV Application Buffer. */

typedef struct {

bits tag :4; /* Message tag for implicit addressing */
/* Magic cookie for explicit addressing */

bits auth :l; /* 1 => Authenticated */
bits st :2; /* Service Type - see 'ServiceType' */
bits msg-type :l; /* 0 => explicit message *i

/* or unprocessed NV */
/*-------------------- ---------__---___-__---------------------------------- */

bits response :l; /* 1 => Response, 0 => Other */
bits pool :l; /* 0 => Outgoing */
bits alt_path :l; /* 1 => Use path specified in 'path' */

/* 0 => Use default path */
bits addr-mode :l; /* 1 => Explicit addressing, */

/* 0 => Implicit */
/* Outgoing buffers only */

bits cmpl-code :2; /* Completion Code - see 'ComplType' */
bits path :l; /* 1 => Use alternate path, */

/* 0 => Use primary path */
/* (if 'alt-path' is set) */

bits priority :l; /* 1 => Priority message */
/*--~~

byte length; /* Length of msg or NV to follow */

Host Application Programmer’s Guide C-5

1 ExpMsgHdr;

/* not including any explicit address */
/* field, includes code byte or */
/* selector bytes */

* Message Header structure for sending and receiving network variables
* that are processed by the network interface (network interface
* selection enabled).

*/

typedef struct (
bits tag :4; /* Magic cookie for correlating */

/* responses and completion events */
bits rsvd0 :2;
bits poll :l; /* 1 => Poll, 0 => Other */
bits msg-type :l; /* 1 => Processed network variable */

/*--*/
bits response :l; /* 1 => Poll response, 0 => Other */
bits pool :l; /* 0 => Outgoing */
bits trnarnd :l; /* 1 => Turnaround Poll, 0 => Other */
bits addr-mode :l; /* 1 => Explicit addressing, */

/* 0 => Implicit addressing */
bits cmpl-code :2; /* Completion Code - see above */
bits path :l; /* 1 => Used alternate path */

/* 0 => Used primary path */
/* (incoming only) */

bits priority :l; /* 1 => Priority msg (incoming only) */
/*--*/

byte length; /* Length of network variable to follow */
/* not including any explicit address */
/* not including index and rsvd0 byte */

> NetVarHdr;

/* Union of all message headers. */

typedef union {
HxpMsgHdr exp;
NetVarHdr pnv;

> MsgHdr;

*/

/* Literals for 'type' field of destination addresses for outgoing messages. */

typedef enum {
UNASSIGNED = 0,
SUBNET-NODE = 1,
NEURON-ID = 2,

C-6 Network interface Messages

BROADCAST = 3,
IMPLICIT = 126, /* not a real destination type *!
LOCAL = 127, /* not a real destination type */

) AddrType;

/* Group address structure. Use for multicast destination addresses. */

typedef struct (
bits size :7;
bits type :l;

bits member :6;
bits rsvd0 :l;
bits domain :l;

bits retry :4;
bits rpt-timer :4;

bits tx-timer :4;
bits rsvdl :4;

byte group i
> SendGroup;

/* Subnet/node ID address.

typedef struct (
byte tme i

bits node :7;
bits domain :l;

bits retry :4;
bits rpt-timer :4;

bits tx_timer :4;
bits rsvdl Z4i

bits subnet :8;
} SendSnode;

/* Group size (0 => huge group) "1
/* 1 => Group */

/* Member ID (0 => huge group) */

/* Domain index */

/* Retry count */
/* Retry repeat timer "1

/* Transmit timer index */

/* Group ID */

Use for a unicast destination address. */

,'* SUBNET-NODE

/* Node number
/* Domain index

/* Retry count
/* Retry repeat timer

/* Transmit timer index

*/

*/
*/

*/
*/

*/

/* Subnet ID */

/* 48-bit NEURON ID destination address. */

#define NEURON-ID-LEN 6

typedef struct (
byte type i /* NEURON-ID */

bits rsvd0 :7;
bits domain :li /* Domain index

bits retry :4i /* Retry count
bits rpt-timer :4i /* Retry repeat timer

bits tx-timer :4i /* Transmit timer index
bits rsvd2 :4;

*/

*/
*/

*/

Host Application Programmer’s Guide C-7

bits subnet :8; /* Subnet ID, 0 => pass all routers */
byte nid[NEURON-ID-LEN 1; /* NEURON ID */

) SendNrnid;

/* Broadcast destination address. */

typedef struct (
byte type ; /* BROADCAST

bits backlog :6; /* Backlog
bits rsvd0 :I.;
bits domain :l; /* Domain index

bits retry :4i /* Retry count
bits rpt-timer :4i /* Retry repeat timer

bits tx-timer :4i /* Transmit timer index
bits rsvd2 :4;

bits subnet
} SendBcast;

:8; /* Subnet ID, 0 => domain-wide

*/

*/

*/

*/
*/

*/

*/

/* Address format to clear an address table entry. */
/* Sets the first 2 bytes of the address table entry to 0. */

typedef struct (
byte type i

> SendUnassigned;
/* UNASSIGNED or LOCAL */

typedef struct {
byte type i

byte -g-tag ;
) SendImplicit;

/* IMPLICIT */
/* address table entry number */

/* Union of all destination addresses. */

typedef union {
SendGroup m?;
SendSnode Sn;

SendBcast bc;
SendNrnid id;
SendUnassigned ua;
SendImplicit im;

) SendAddrDtl;

/* Received subnet/node ID destination address. Used for unicast messages. */

typedef struct (

C-8 Network Interface Messages

bits subnet :8;
bits node :7;
bits :li

) RcvSnode;

/* Received 48-bit NEURON ID destination address. */

typedef struct (
byte subnet;
byte nid[NEURON-ID-LEN I;

) RcvNrnid;

/* Union of all received destination addresses. */

typedef union (
byte gPi
RcvSnode sn;
RcvNrnid id;
byte subnet;

> RcvDestAddr;

/* Group ID for multicast destination */
/* Subnet/node ID for unicast */
/* 48-bit NEURON ID destination address */
/* Subnet ID for broadcast destination */
/* 0 => domain-wide */

/* Source address of received message. Identifies */
/* network address of node sending the message. */

typedef struct {
bits subnet :8;
bits node :7i
bits :I.;

) RcvSrcAddr;

/* Literals for the 'format' field of RcvAddrDtl. */

typedef enum {
ADDR-RCV-BCAST = 0,
ADDR-RCV-GROUP = 1,
ADDR-RCV-SNODE = 2,
ADDR-RCVJJRNID = 3

} RcvDstAddrFormat;

/* Address field of incoming message. */

typedef struct (
#ifdef &SC-VER

byte kludge; /* Microsoft C does not allow odd-length bitfields */
#else

bits format :6; /* Destination address type */
/* See 'RcvDstAddrFormat' */

bits flex-domain :l; /* 1 => broadcast to unconfigured node */
bits domain :li /* Domain table index */

#endif
RcvSrcAddr source; /* Source address of incoming message */
RcvDestAddr dest; /* Destination address of incoming msg */

1 RcvAddrDtl;

/*

Host Application Programmer’s Guide C-9

**********************~~*~**********~*******~***************~*************~*
* Network Address structures for receiving responses with explicit
* addressing enabled.
*********fff*f**t********************+**~~~~~*~~~~~*~~~~**********~~********
*/

/* Source address of response message. */

typedef struct (
bits subnet :8;
bits node Z7i
bits is-snode :l;

) RespSrcAddr;

/* 0 => Group response, */
/* 1 => snode response */

/* Destination of response to unicast request. */

typedef struct (
bits subnet :8;
bits node :7i
bits Eli

} RespSnode;

/* Destination of response to multicast request. */

typedef struct {
bits subnet :8i
bits node :7i
bits :l;
bits group :8;
bits member :6;
bits :2;

) RespGroup;

/* Union of all response destination addresses. */

typedef union (
RespSnode sn;
RespGroup gPi

3 RespDestAddr;

/* Address field of incoming response. */

typedef struct {
#ifdef &SC-VER

byte kludge; /* Microsoft C does not allow odd-length bitfields */
#else

bits :6;
bits flex-domain :li /* l=> Broadcast to unconfigured node */
bits domain Eli /* Domain table index */

#endif
RespSrcAddr source; /* Source address of incoming response */
RespDestAddr dest; /* Destination address of incoming resp */

) RespAddrDtl;

/* Explicit address field if explicit addressing is enabled. */

C-10 Network Interface Messages

typedef union (
RcvAddrDtl rev i
SendAddrDtl snd;
RespAddrDtl rsp;

] ExplicitAddr;

/*
* MAXJETMSG-DATA specifies the maximum size of the data portion of an
* application buffer. MAXJETVAR-DATA specifies the maximum size of the
* data portion of a network variable update. The values specified here
* are the absolute maximums,based on the LONTALK protocol. Actual limits
* are based on the buffer sizes defined on the attached NEURON CHIP.
*/

#define MAXJ'ETMSG~DATA 228
##define MAXJETVAR_DATA 31

/* Data field for network variables (host selection enabled). */

typedef struct (
bits NV-selector-hi :6;
bits direction :l; /* 1 => output NV, 0 => input NV
bits must-be-one :li /* Must be set to 1 for NV
bits NV-selector-lo :8;
byte data[MAXJETVAR~DATA 1; /* Network variable data

] UnprocessedNV;

*/
*/

*/

/* Data field for network variables (network interface selection enabled). */

typedef struct {
byte index; /* Index into NV configuration table */
byte rsvd0;
byte data1 MAXJETVAR~DATA I; /* Network variable data */

} PrOCeSSdNVi

/* Data field for explicit messages. */

typedef struct (
byte code; /* Message code
byte data[MAXJETMSG-DATA 1; /* Message data

} ExplicitMsg;

/* Union of all data fields. */

typedef union {
UnprocessedNV UIIV;

ProcessedNV PnVi

ExplicitMsg exp i

} MsgData;

*/
*/

Host Application Programmer’s Guide C-11

/* Application buffer when using explicit addressing. */

typedef struct {
NI-Hdr ni-hdr;
MsgHdr msg-hdr;
ExplicitAddr addr;
MsgData data;

1 ExpAppBuffer;

/* Network interface header
/* Message header
/* Network address
/* Message data

/* Application buffer when not using explicit addressing. */

typedef struct (
NI-Hdr ni-hdr; /* Network interface header
MsgHdr msg-hdr; /* Message header
MsgData data; /* Message data

) ImpAppBuffer;

*/
*/
*/

/*
******+*************~~~~~~~******f*~~~~~~~~~~~*~~~~***********~********
* Network driver error codes.
~*******************************
*/

typedef enum {
LDV-OK = 0,
LDV-NOT-FOUND,
LDV-ALREADY-OPEN,
LDV-NOT-OPEN,
LDV-DEVICE-ERR,
LDV~INVALID~DEVICE~ID,
LDV-NO-MSG-AVAIL,
LDV-NO-BUFF-AVAIL,
LDV-DEVICE-BUSY

> LDVCode;

typedef enum {
NI-OK = 0,
NI-NO-DEVICE,
NI-DRIVER-NOT-OPEN,
NI-DRIVER-NOT-INIT,
NI-DRIVER-NOT-RESET,
NI-DRIVER-ERROR,
NI-NO-RESPONSES,

C-12 Network Interface Messages

NI-RESET-FAILS,
NI-TIMEOUT,
NI-UPLINK-CMD,
NI-INTERNAL-ERR,

) NI-Code;

,f********X+**f********++tf*** Externals ~*****t***i+********~~~~~**~~,

NI-Code ni-init(char * device-name); /* Initialize network interface */

NI-Code ni-reset(void); /* Reset network interface */

/* Assumes only one network interface is open */

/* Assume network interface is configured with explicit addressing ON,
and network variable processing OFF */

NI-Code ni-send-msg-wait(
ServiceType
const SendAddrDtl
const MsgData
int
boolean
boolean
ComplType *
int *
RespAddrDtl *
MsgData *
int *

1;

service,
* out-addr,
* out-data,
out-length,
priority,
out-auth,
completion,
num-responses,
in-addr,
in-data,
in-length

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ACKD, UNACKD-RPT, UNACKD, REQUEST */
address of outgoing message */
data of outgoing message */
length of outgoing message */
outgoing message priority */
outgoing message authenticated */
MSG-SUCCEEDS or MSG-FAILS */
number of received responses */
address of first response */
data of first response */
length of first response */

NI-Code ni-get-next-response(
RespAddrDtl * in-addr,
MsgData * in-data,
int * in-length

\ .

NI-Code ni-receive-msg(
ServiceType * service,
RcvAddrDtl * in-addr,
MsgData * in-data,
int * in-length,
boolean * in-auth

);

NI-Code ni-send-response(
MsgData * out-data,
int out-length

);

/* get subsequent responses here */

/* ACKD, UNACKD-RPT, UNACKD, REQUEST */
/* address of incoming msg */
/* data of incoming msg */
/* length of incoming msg */
/* if incoming was authenticated */

/* send response to last received request */
/* data for outgoing response */
/* length of outgoing response */

NI-Code ni-send-immediate(NI-NoQueueCmd command);
// send an immediate (no queue) command to network interface */

extern ExpAppBuffer msg-out; /" Outgoing message buffer */
extern ExpAppBuffer msg-in; /* Incoming message buffer */

Host Application Programmer’s Guide C-13

extern void ni-msg-hdr-init(int msg-size, ServiceType service,
boolean priority, boolean local, boolean auth, boolean implicit,
byte msg-tag);

void ni-error-display(const char * s, NI-Code ni-error);
/* Disolay a network interface error*/

void ni-ldv-error-display(const char * s, LDVCode ldv-error);
/* Display a network driver error */

void ni-msg-display(ExpAppBuffer *msg_ptr);

NI-Code ni_put-msg(void);
NI-Code ni-get-msg(boolean wait);

/* prototypes for low level calls */

C-14 Network interface Messages

NI-MGMT.H
/*

* NI-MGMT.H
*
* Network management codes and messages for an application node.
* This file contains a subset of the network management structures
* The types have been changed where necessary because of the difference
* in representations between Neuron and DOS objects.
*/

#define ID-STR-LEN 8 /* program ID length */

#define NULL-IDX 15 /* unused address table index */

typedef struct
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

1 nv-struct;

1
selector-hi
direction
priority
selector-lo
addr-index
auth
service
turnaround

: 6;
: 1;
: 1;
: 8;
: 4;
: 1;
: 2;
: 1;

// Note - Microsoft C will make nv-struct 4 bytes long because it does
// not allow odd-length bit-fields. It is really 3 bytes long.
// Be careful when using sizeof() any structure that includes an nv-struct.

#define NM-update-nv-cnfg Ox6B
#define NM-update-nv-cnfg-fail OxOB
#define NM-update-nv-cnfg-succ Ox2B

typedef struct {
byte code;
nv-struct nv-cnfg;

1 NM-query-nv-cnfg-response;

#define NM-query-nv-cnfg 0x68
#define NM-querypv-cnfg-fail 0x08
#define NM-querypv-cnfg-succ 0x28

typedef enum (
APPL-OFFLINE = 0,
APPL-ONLINE,
APPL-RESET,
CHANGE-STATE

) nm-node-mode;

/* Soft offline state

typedef enum {
APPL-UNCNFG 2,
NO-APPL-UNCNFG : 3,
CNFG-ONLINE = 4,
CNFG-OFFLINE = 6, /* Hard offline state

*/

*/

C-15 Host Application Programmer’s Guide

SOFT-OFFLINE = oxc
) r-m-node-state;

typedef struct {
byte code:
byte mode;
byte node-state;

> NM~set~node~mode~request;

#define m-set-node-mode Ox@

typedef enum {
ABSOLUTE 0,
REA-ONLY-RELATIVE 1 1,
CONFIGJELATIVE = 2,

I nm-mam-mode;

typedef enum {
NO-ACTION 0,
BOTH-CS-RECALC 1 1,
CNFG-CSJECALC = 4,
ONLY-RESET 8,
BOTH-CS-RECALC-;ESET = 9,
CNFG-CS-RECALC-RESET = 12,

1 nm-mem-form;

typedef struct (
byte code;
byte mode;
byte offset-hi;
byte offset-lo;
byte count;
byte form;

1 NM-write-memory-request;

/* Interpret with 'run-node-mode' */
/* Optional field if mode==CHANGE-STATE */
/* Interpret with 'nm-node-state' */

// followed by the data

#define NM-write-memory Ox6E

typedef struct {
byte length-hi;
byte length-lo;
byte nun--netvars;
byte version;
byte mtag-count;

> snvt-struct_vO;

// version 0 format

typedef struct {
byte length-hi;
byte length-lo;
byte num-netvars-lo;
byte version; // version 1 format
byte num-netvars-hi;
byte mtag-count;

) snvt-struct-vl;

// Partial list of SNVT type index values

C-16 Network Interface Messages

typedef enum {
SNVT-str-asc = 36,
SNVI-lev-cant = 21,
SNVT-lev-disc = 22,
SNVT-count-f = 51,

> SNVT_ti

typedef struct {
unsigned nv-config-class :I.;
unsigned nv-auth-config Zli
unsigned nv-priority-config :l;
unsigned nv-service-type-config ~1;
unsigned nv-offline :l;
unsigned nv_polled :l;
unsigned nv-sync :l;
unsigned ext-ret :l;
bits snvt-type-index ~8;

) snvt-desc-struct;
// use enum SNVl-t

typedef struct {
#ifdef -MSC-VER

byte mask;
#else

unsigned unused
unsigned nc
unsigned sd
unsigned nm
unsigned re
unsigned mre

#endif
> snvt-ext-ret-mask;

:3;
:l;
:li
:l;
:l;
:l;

// Microsoft C does not allow odd-length
// bit fields

// array count
// self-documentation
// network variable name
// rate estimate
// max rate estimate

// Network management message codes

#define NM-query-SNVT 0x72
#define NM-query-SNVT-fail 0x12
#define NM-query_SMrI-succ 0x32

typedef struct {
byte code;
word Offset; // big-endian 16-bits
byte count;

1 NM_gue?Zy-SNV!-request;

#define NM-wink 0x70

#define NM-NV-fetch 0x73
#define NM_NV_fetch-fail 0x13
#define NM-NV-fetch-succ 0x33

// Application-specific structure used by host application to store network variables

typedef enum { NV-IN = 0, NV-OUT = 1] nv-direction;

typedef struct { // structure to define NVs

Host Application Programmer’s Guide C-17

int Size; // number of bytes
nv-direction direction; // input or output
const char * name; // name of variable
void
void I

* print-func I(byte *); // routine to print value
* read-func)(byte *); // routine to read value

byte data[MAXJEI'V~~DATA 1; // actual storage for value
] network-variable;

C-18 Network Interface Messages

Bit Field Diagrams

Length

EqMsgHdr
w

NetVarHdr

SendAddrDtl

Rc.~ddlDtl

Flsddr MI

UnprocessedNV

ProoikdN”

ApplicatiOll-by
Header
size-2

N&WOfk
Address
size - 11
qofional

Data
size varies

length

CMDXFER-0x01

length

ExpMsgHdr
Q

NetVarHdr

SendAddrDtl

R:LdrDtl

Re$ddrDtI

Unp-s.sdNV
or

P-s&NV

Exp&sg

EOM -O&l

Host Application Programmer’s Guide

MIPmO and
MIPlP50
Link-Layer
Header
she-3

Message
Header
sire-3

1 Network
Address
size -11
optional

Data
size varies

length

length

T

ExpMsgHdr
0

NetVarHdr

UnprocessedNv
w

ProcessedNV

EXPliLg

2
.

.

MP/DPS Link-layer Bulfer

C-19

MIPIDPS
Link-layer
Header size - 2

Message
Header
size-3

Network
Address
she - 11
optional

Data
size varies

length length

ExpMsgHdr
(explicit messa es

or unprocessed 14 Vs)

C-20

NetVarHdr
(processed NVs)

Network Interface Messages

1 source
address

I
I node I

address

Reserved

--- m-e

Reserved

em-

_-- ---

_-- ---

I
I

I I
!

I I
I I I I I

RcvAddrDtl RcvAddrDtl
received address received address

for broadcast addressing for group addressing

Host Application Programmer’s Guide C-21

krisb; ; 1 I I f i Isb 1 I I I I I I I
dfy$=.=-i 0 i 0 i 0 i 0 i 1 i 0

I I I I I I I
subnet

1 I I node I
subnet

node
I I I I I I I
I

I f
I I I I

I I I I I
m-v ---

subnet
source

address 1
I node 1 --------

destip&n subnet
I I I I I I I

i f
I
I I I I !

--- ---

--- ---

--- --- -mm NEURON ID -we

-me Resewed s-m --- me-

--- ---

--- ---

I
I
I I

I
I ! ; I

--- m-w

i i i i i i i
I 1 I I I I I

Resewed

RcvAddrDtl RcvAddrDtl
received address received address

for subnethode addressing for NEURON ID addressing

C-22 Network Interface Messages

i i 1 msbl i
i i i i
I I I I I Isb I

I I I :
i

1 I size
I I

doml ; -...rLrr
ain f I

fpt-timer I

’ -:--~~,

retr
! I i I I I I I I

I I 1 I I I I 1 I I I tx-timer
I

W-timer
I I

WuP subnet
I I I I I I I I I I I I I I
I I

f I
I I I I

I I I I I 1 I
I I I
I I I I I

--- m-w --- _--

S-D _-- --- ---

--- Reserved _-- Reserved ---

--- me- --- _--

--- m-w

I I 1 I 1 I f

I I I I 1 I

SendGroup SendSnode

Host Application Programmer’s Guide C-23

I
I I
I I

I I I i
I ! I t i -- --

r
-- -- --

NEURON ID

I 1 I I ! I I I

i i i i i i i
I
I lmsbl I I I I I I

I 1 I

i
0,0,0~0~0~0~1~ I

I I I-

hi I I I I f 1 ain , I I

tpt-timer I retry
I I I I
! I I : &-timer

I I

subnet

SendNrnid Sendscast

isb i

0

.--

_--

se-

_--

.--

-

I I i i i
I I I I I t Isb
I I I .a------

format oioioioioioii~l I I I I I I I -w--w---

--a Reserved --.

--- --.

--- _-.

--- _-.

I I I I I I I

I I I t

C-24 Network Interface Messages

i i lmsbl i i i i i i i
I Isb I

i i lmsbl i i
i

i i i
I I I I I I I I I I

I I I I I I l----,--,, I I I I I I 1

dmifkx i i i i i i
1

ain ldornni format domiflex i 1 i 1 i i
I I 1 I I ain #onii~ I I I I 1 v-------e. 1

subnet subnet
source

i
1 I node address 0 1 node

I 1 .--------
subnet d&&M& subnet

1 I node I
I node

I I

I
i

I I I
I I I 8 i i WUP --- em-

I I

I I member
--- V-B I I I I , I 1

i i I
I

I
I I

I I I
--- Reserved m-s ---

--- Reserved

Rf?%pAddrDtl
response address

for subnethode addressing

RespAddrDtl
response address

for group addressing

Host Application Programmer’s Guide C-25

i i i
I I
I I i i lmsbl I I I I B

i i I Isb 1 I I I 1 I I
1 ;djrecI

c

, bon I
NV-selector-h

NV~selector~lo

1 msbl i i i) j I j i I j ~ Isb i

Reserved
I

I I I
I

I ! . . . ! . I i 1 I . 1 . I . ! f
--- -- --- ---

Network Network --- _- --- ---
Variable Variable

--- Data _-

e------w___ --____------- ----

UnprocessedNV

--- Data ---

c-------____ -_____----- __-----

ProcessedNV

i Ir

0 0

i

t

t
I
I

i i i i i
I I I I I Isb I I

code

i I i i I I I f --.

Message
Data

--.

--.

_-.

C- ------___ -_______e----- -s-.

Ex IlcltMsg
(applica ion messages r

ExpllcltMsg

and responses)
(foreign messages

and responses)

; ir nst

0

--

--

--

Message
Data

C- -----__ ---________------

Isb 1

C-26 Network Interface Messages

i i lmsbl i
I I
I i I i i i

I I I I I I Isb I

I
I I I

I 1

1 IOil i

Message
-- Data e--

-- ---

_a-----__ ---___c_____c------- I

ExpllcltMsg
(network diagnostic messages)

ExplicitMsg
(network diagnostic responses)

i i i lmsbl I i
i
I i

i i i
I I Isb I

I I I I I I
I I

Olllii code
I I I

I I I I I
I
I I

I I I I I I I
m-v m-s

Message

Data -em

--- ---

_----a-__ ---_________---------

ExplicitMsg
(network management messages)

ExplicitMsg
(network management responses)

i
I I
I I i i i i lmsbl I I I I I

i i
I Isb I

I I I I I
I / I 8

0; 0
1 WC- I 1 ; code

I ICeSSl I

I
I
I f I I

i
I

I I I I I I

e-v

Message

--- Data ---

--- _--

_c-----__ -----____---- ---e---c

i i i i
i i

i i
i i i i

i i
I I

I msbl I msbl I I i i
I I I I I Isb I I Isb I

1 1 I I I I I I I I
I I I I 1 1

0 I 0 F&1 0 I 0 F&1 code code

i i I I
I I
I I i i I I I I

I I
I I

I I I I I I I I I I I 1 I 1

--- ---

--- ---
Message Message

Data Data

--- ---

_-- _--

--- --- _-- _--

I _a-----___ _a-----___
----___------ ----___------ __---- 1 __-----

Host Application Programmer’s Guide C-27

Appendix D
Network interface Commands

This appendix defines the network interface commands specified in a
data transfer from a host application to the network interface. All
data transfers (non-NULL transfers) to the network interface include
a length byte and a command byte.

Host Application Programmer’s Guide D-1

,,

Network Interface Commands

code value m/down link
niCOMM 0x10 u+d
The niCOMM command is ORed with the buffer queue code, and is used to both
request an output buffer and to send an output buffer. It is also used by the network
interface to pass completion events to the host. Buffer queue codes are defined in the
next section.

cod value
ni;ETMGMT 0x20

m/down link
d

Network Management Command. This code is ORed with one of the buffer queue
codes for performing local network management or network diagnostic
commands on the network interface itself. Typical buffer queue codes used would
be niTQ for request/response commands or niNTQ for unacked commands. Buffer
queue codes are defined in the next section.

d
Z&SET

value m/down link
0x50 u+d

This code is sent uplink whenever the network interface has executed a hardware
or software reset. When this code is sent downlink, the network interface resets
immediately.

code value m/down link
niFLUSHJXNCEL 0x60 d
This command cancels any flush operations posted within the network interface.

code value m/down hk
niFLUSH_COMPLETE 0x60 u
This command informs the host that the FLUSH operation is complete.

D-2 Network Interface Commands

code value m/down link
niONLINE 0x70 d
This command places the network interface in the online state.

code value m/down link
niOFFLINE OX80 d
This command places the network interface in the offline state.

code value u&down link
niFLUSH Ox!30 d
This command places the network interface in the flush state.

code value m/down link
niFLUSH_IGN OXAO d
This command places the network interface in the flush, ignore comm.
state.

code value m/down link
niACK oxco U

This command is sent uplink following a buffer queue request when a
buffer becomes available. This command is not available with the
MIP/DPS.

9 de link
niNACK OxCl U

This command is sent uplink immediately following a buffer queue request if
there are no buffers available (SLTA only).

Host Application Programmer’s Guide D-3

code value m/down hk
niPUPXOFF OxEl d
Uplink source quench command. This command is not available with the
MIP/DPS.

code value u&down link
niPUPXON OxE2 d
Uplink source resume command. This command is not available with the
MIP/DPS.

_cod
niSemEP

value m/down hk
OXBO d

This command forces the SLTA, MIP/P50, or MIP/DPS to enter the sleep state. For
the SLTA, the EIA-232 transceivers are disabled, the UART clock is shut down, and
the NEURON CHIP enters the sleep state. Network activity will not wake up the
node. Only depressing the service pin or sending a downlink transaction to the
SLTA will awaken the NEURON CHIP. The provided driver takes care of waking
up the SLTA by sending it a break character frame. The SLTA then acknowledges
that it has awakened by sending an niACK command uplink. For the MIP/P50 and
MIP/DPS, the NEURON CHIP enters the sleep state. Network activity and
depressing the service pin will awaken the NEURON CHIP. Downlink
transactions will not wake up the node. The niSLEEP command is not available
with the MIP/P20.

code value m/down link
niSSTATUS OxEO u+d
This command, when sent downlink, will cause the SLTA to respond with a
niSSTATUS command plus one byte of data. This byte of data contains the four
most significant bits of the config switches on the SLTA (CFGO-3) in the four most
significant bits of the data byte, plus the battery test bit value in the least signit%ant
bit of the data byte. The battery test bit is low when the battery voltage is below the
acceptable voltage for continued operation. Not available with the MIP.

Buffer Queue Values
For the niCOMM and niNETMGMT commands there is a buffer queue code encoded into
the lower four bits. This code defines which buffer queue within the NEURON CHIP
will be used for downlink messages.

D-4 Network interface Commands

code value uD/down link
niTQ 0x02 d
Use the transaction queue. The transaction queue is for all transaction oriented
outgoing messages and for outgoing network variable updates. Messages are sent
in the same order as they are queued. Because only one such transaction may be
outstanding at a time, another message will not be sent from this queue until all
acknowledgements for the previous message are received.

code value
niTQ_P 0x03

u&down link
d

This is the priority version of the transaction queue.

code value &down link
niNTQ 0x04 d
Use the non-transaction queue. The non-transaction queue is for any response to a
message or response to a network variable poll or for non-transaction oriented
messages (unacknowledged or repeated service). These messages have priority
over transaction oriented messages.

gode
niNTQ_P

value
0x05

uD/down link
d

This is the priority version of the non-transaction queue.

code value uD/down link
niRESPONSE 0x06 u

Response message queue. This queue contains any received response message
addressed to this node. When using the request-response message service the
responses appear in this queue. Completion events are also passed back to the host
in this queue.

code value uD/down link
niINCOMING OXO8U

Received message queue. This queue contains any received message which was
addressed to this node and whose code was an application or foreign type. This
queue also contains all network variable updates and polls. If host selection is
enabled, then network variable configuration network management messages
also appear in this queue.

Host Application Programmer’s Guide D-5

Index

A
acknowledged 3-8

acknowledgement 3-5

adapter-info-s 4-4

address table 3-5

AddrType C-7

&ERT byte 5-4

application-layer header 3-2

application
buffer 3-2,3-3,3-4,3-6,3-g, 3-10,3-11,42,4-3,45,46
layer 2-2
message 3-2,3-8

asynchronous update l-4

authenticated B-7

autobaud 5-3

AX register 4-6

Host Application Programmer’s Guide I-1

B
baud rate 5-3

bind-info 3-5

bindable B-7

binding l-4,3-11, B-7

bit-field diagrams C-l, C-19

buffer options 3-6

buf’Ter queue values D-4

building the application buffer 3-11

C
callback 4-6

function 4-6

CLOSE 45

close0 4-2

cmpl-code 3-4,3-7, C-5

command-table A-7

communications processor l-2, l-3

completion
code 5-3
event 3-2,3-3,3-4,3-7,3-10

ComplType C-5

config B-8

CONFIG.SYS 5-2

configuration options 3-4

connection information 3-5

connections l-4, 3-11

I-2 index

control network l-5

controller-like applications l-4

custom network interfaces 2-2

D
data C-3

field 3-3,3-8
logging l-4
transfer 3-2,3-3

default message buffers A-28

destination
node 5-2,5-3
address 3-2,3-5

diagnostic messages 3-8,5-5

direct function call 4-6

DOS 43
driver 43

downlink l-5,3-2,3-4,5-4
buffers 3-7
timeouts 5-4
application buffers 3-2

driver
direct functions 4-5
not installed 5-2

DS register 4-6

E
EIA-232 interface l-6,2-2

error
codes 54
conditions 4-5
handler 45

errors 5-2,5-3,54,5-5

Host Application Programmer’s Guide I-3

existing application l-3

ExpAppBuffer 3-2, C-12

explicit addressing 3-5
Of-T 3-3,3-5
on 3-2,3-3,3-5,3-11

explicit messages 1-4, 3-2, 3-8

ExpMsgHdr 3-2, C-2, C-5, C-6

exporting 3-12

extension records 3-12

external interface file 3-12, B-2, B-5, B-9

F
flow control 2-7

FLUSH state 2-7,3-10

H
HA.C A-2

handle value 45
handle-error A-14
handle-explicit-msg A-16
handlepetvar-msg A-16
handle-NV-fetch A-16
handle-query-nv-config A-15
handle-query_SNVT A-16
handle-set-mode A-15
handle-update-nv-config A-15

handshake 5-4

hardware failure 5-4

host 1-5
application architecture l-2,2-2
applications l-2, 1-3, l-4, l-5,3-6,3-7,3-9,3-10,5-2

I-4 Index

hardware failure 5-4
interface 1-6
node l-6
processor 1-6
interface 2-2
selection l-4,3-3,3-4,3-8,3-9

ID-STR-LEN C-15

ImpAppBuffer 3-2, C-13

import 3-12

installgrogID() 3-11

int error 45

int read 45

initializing the network interface 5-3

input buffer 45

interrupt 46
driven 5-3

invalid argument 5-2

IOCTL 44

ioctl() 44, 45

IRET 46

L
layers l-2,2-2,2-3

ldbjmport-xifo 3-12

LDV-ALREADY-OPEN 5-4

LDV-DEVICE-BUSY 3-7,5-5

LDV-DEVICE-ERR 5-3, 5-4

Host Application Programmer’s Guide I-5

LDV-NO-BUFF-AVAIL 3-7, 4-6, 5-5

LDV-NO-BUFF-AVAIL 5-4

LDV-NO-MSG-AVAIL 4-6, 5-5

LDV-NOT-OPEN 5-4

LDV-OK 5-4

ldv-read-direct0 4-3, 4-6

ldv-register0 4-4, 4-6

LDVCode C-12, C-14

ldv-write-direct0 4-4, 46

link-layer 2-2,2-3, 3-2
header 3-2

local network diagnostic commands 3-10

local network management commands 3-11

lock-up 5-5

LON database A-3

LONBUILDER 4-3, B-2, B-9

LONMANAGER API l-2,3-5,3-12,43,4-5,

LONTALK messages 3-2

loss of power 5-3

M
main0 3-11

MAX-NETMSG-DATA C-12

MAXJETVAR-DATA C-12

media access control 3-6

I-6 index

message
code 3-8
header 3-2, C-2
tag 3-8,3-11,3-E& B-2, B-5, B-10

messages
receiving 3-2, 3-9
sending 3-2, 3-7

Microprocessor Interface Program see MIP

ME’ l-2, l-6,2-2,2-3,3-4,43,5-2,5-4, B-2
link-layer protocol 2-3
external interface file B-2
P/20 or PI50 2-2,5-4

monitoring l-4
network variables 3-5

Motorola 68332 processor l-3

MS-DOS l-3,42

MSG-FAILS 5-3

ms&p 5-4

MsgData 3-3, C-2, C-10, C-11, C-12, C-13

MsgHdr 3-2, C-2, C-5, C-6, C-12

N
NetVarHdr 3-2, C-2, C-5, C-6

network address 3-2, C-2, C-12

network buffer 3-6

network control l-5

network diagnostic 3-4,3-10
message 3-2

network driver l-2, l-7,3-2,4-3,5-2,5-3
device driver 2-6
error strings A-29
interface structure A-28
services 4-1,4-2,43,4-4

Host Application Programmer’s Guide l-7

network interface l-2, l-4,1-5,1-6, l-7,2-2,3-4,3-10
command 2-2,3-2,3-10, C-2, D-2
configuration options 3-4
link-layer protocol 2-3
not installed 5-3
protocol l-7,2-2
selection l-4,3-2,3-4,3-8,3-9

network management l-4,3-4,3-8,3-10
messages 3-2,3-7,3-11
tool l-4,2-3,3-11, B-2

network monitor l-5

network variable l-7,3-11,3-12, A-6, B-2, B-5, B-10
62 14,3-4
4096 lJq3-4
configuration table 3-5,3-g
fetch 3-9
index 3-3,3-g
messages l-4,3-2
modification 3-4, 3-9
processing option 3-2
selection 3-4,3-g
selector 3-3,3-g
update 3-8

NEURON 3120TM CHIP 1-3

NEXRON 3150=“’ CHIP l-3

ni,get-next-response A-2

ni-handle-error0 5-2

ni,error-display0 A-37

ni_getsO A-37

NI-Hdr 3-2,4-5, C-5

ni-init 5-3, A-8

ni,receive-msg A-12

ni-reset A-9

ni-send 3-8

ni,send-immediate A-13

I-8 Index

ni-send-msgwait A-9

ni-send-response A-13

niACK 5-4, D-3

niCOMM + niNTQ 3-11

niCOMM D-2

niCOMM+niINCOMING 3-9

niCOMM+niRESPONSE 3-4,3-g

niFLUSH D-3

niFLUSH_CANCEL 2-3, 2-4, D-2

niFLUSH_COMPLETE D-2

niFLUSHJGN D-3

niINCOMING D-5

niNACK D-3

niNETMGMT + niNTQ 3-10

niNETMGMT + niTQ 3-10

niNETMGMT 3-7, D-2

niNTQ D-5

niNT&P D-5

niOFFLINE D-3

niONLINE D-3

niPUPXOFF D-4

Host Application Programmer’s Guide l-9

niPUPXON D-4

niRESET2-3,3-2,5-3,D-2

niRESPONSE D-5

niRESPONSE+niCOMM 3-7

niSLEEP D-4

niSSTATUS D-4

niTQ D-5

niT&P D-5

nm-node-state C-16

node self-documentation 3-12

NORMAL state 2-3

nv-config-table A-4

NV-poll A-17

nv-struct A-4

NV-update 3-8, A-16

nv-value-table A-6

0
off-chip memory l-3

OFFLINE 3-8,3-10, B-5, B-7

ONJJNE 3-8,3-10, B-7

OPEN 4-2

I-10

open0 4-2,5-2

output buffer 4-3

Index

P

parallel interface 2-2

path-spec 3-8

peer-to-peer l-5

physical layer 2-2

poll l-4,3-8 , B-8
request 3-8

power loss 5-3

priority 3-8, B-4

process_cmdO A-7

process-msg A-14

ProcessedNV 3-3,3-10, C-13

protocol layers l-2,2-2,2-3

a
query 3-11

Query Net Variable Co&g 3-4,3-S

Query SNVT 3-9,3-11

query-received0 A-16

query&atusO 5-5, A-14

R
RcvAddrDtl 3-3, C-2, C-9, C-11, C-13

RcvDestAddr C-9

RcvNrnid C-9

/* Host Application Programmer’s Guide l-11

RcvSnode C-9

RcvSrcAddr C-9

READ 4-5

read DOS function calls 4-4

receiving messages 3-4, 3-8

recursion 4-5

request/response 3-7,3-S

resetting the network interface 3-10

RespAddrDtl 3-3, C-2, C-10, C-11, C-13

RespDestAddr C-10

RespGroup C- 10

response 3-8

RespSnode C-10

RespSrcAddr C-10

S
self-documenting 3-12, B-8

self-installation 3-11

SendAddrDtl 3-3, C-10

SendBcast C-8

SendGroup C-8

sending messages 3-7

SendNmid C-8

SendSnode C-8

Serial LONTALK Adapter See SLTA

Service Type B-7, C-5

l-12 Index

service pin 2-3

Set Node Mode 3-8

SLTA 1-2, l-6, l-7,2-2,2-3,2-4,3-4,3-5,3-7,3-12,43,5-2,5-3,5-4, B-2
link-layer protocol 2-2
node 1-7,
host 24

SNVT 3-11,3-12, B-11
description table 3-12
header 3-11
import 3-11
structure 3-11

source address 3-2,3-5

special FLUSH state 2-3

special purpose transceiver 3-8

Standard Network Variable Type see SNVT

statistics 5-5

synchronized B-8

TAG B-5

tag field 3-7

target address decoding 3-4

timeout 5-4
reset 5-5

timers A-10, A-13

trnamd (turnaround) 3-8

type B-8

Host Application Programmer’s Guide l-13

U
Unix 1-3

Unacknowledged/Repeated 3-8

UnprocessedNV 3-3,3-g, 3-10, C-11

Update Address 3-11

Update Net Variable Config 3-8

uplink l-7,3-9
buffers 3-7
application buffers 3-2

v
VAR B-5

W

watchdog timeout 5-5

wink 3-8

WRITE 4-4

write DOS function calls 4-4

write token 54

l-14 Index

	Cover
	Preface
	Contents
	CH1 - Host Application Overview
	CH2 - Host Application Architecture
	CH3 - Sending and Receiving Messages
	CH4 - Using a Network Driver
	CH5 - Error Conditions
	Appendix A - Sample Host Application
	Appendix B - Creating an External Interface File
	Appendix C - Network Interface Messages
	Appendix D - Network Interface Commands
	Index

