
 078-0347-01D

®

i.LON® SmartServer 2.0

 Programmer's Reference

 ii

Echelon, LON, LONWORKS, LonTalk, Neuron, LONMARK, 3120, 3150, LNS,
LonMaker, and the Echelon logo are trademarks of Echelon Corporation
registered in the United States and other countries. LonPoint and LonSupport
are trademarks of Echelon Corporation.

Other brand and product names are trademarks or registered trademarks of
their respective holders.

Neuron Chips, LonPoint Modules, and other OEM Products were not designed
for use in equipment or systems which involve danger to human health or
safety or a risk of property damage and Echelon assumes no responsibility or
liability for use of the Neuron Chips or LonPoint Modules in such applications.

Parts manufactured by vendors other than Echelon and referenced in this
document have been described for illustrative purposes only, and may not
have been tested by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR CONDITION OF ANY
KIND, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE OR IN ANY
COMMUNICATION WITH YOU, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR ANY
PARTICULAR PURPOSE, NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Echelon Corporation.

Printed in the United States of America.
Copyright ©1997–2010 by Echelon Corporation.
Echelon Corporation
www.echelon.com

i.LON SmartServer 2.0 Programmer’s Reference iii

Table of Contents
1 Introduction to the SmartServer SOAP/XML Interface 1-1

1.1 About This Document ..1-1
1.2 Programming Samples ..1-2
1.3 Getting Started ..1-2
1.4 SmartServer SOAP/XML Interface Upgrades1-2

1.4.1 Version 4.0 SOAP Message Name Schema.............................1-3
2 SOAP Messages and the SmartServer WSDL File...................... 2-1

2.1 SmartServer Naming Structure ...2-1
2.2 SmartServer WSDL File ..2-2
2.3 Security..2-2
2.4 SOAP Request and Response Message Structure.........................2-2

2.4.1 SOAP Request ..2-3
2.4.2 SOAP Response ...2-4

2.5 SOAP Messages Formats ...2-4
2.5.1 SOAP Envelope...2-5
2.5.2 SOAP Header..2-5
2.5.3 SOAP Body..2-6
2.5.4 Namespace..2-9
2.5.5 SOAP Message Schema...2-9
2.5.6 SOAP Function Types ...2-9
2.5.7 SOAP Message Attributes...2-11
2.5.8 Using xSelect Statements in SOAP Message Requests2-11

2.6 Data Point References ..2-14
2.7 UCPTcurrentConfig ...2-15
2.8 Fault Structure ...2-15
2.9 LonString type ...2-15
2.10 SOAP Message Examples ..2-15

2.10.1 Configuration Data...2-16
2.10.2 Web Binding ..2-17
2.10.3 Data Log Read ..2-18

3 SmartServer Applications and the SOAP/XML Interface............ 3-1
3.1 Overview of SmartServer Applications..3-1
3.2 SmartServer XML Configuration Files...3-2

3.2.1 Modifying the XML Configuration Files......................................3-2
3.3 SmartServer Resource Files ...3-3

3.3.1 Standard Network Variable Type (SNVT)
Device Resource Files...3-3

3.3.2 Standard Configuration Property Type (SCPT)
Device Resource Files...3-3

3.3.3 User-Defined Network Variable Type (UNVT)
Device Resource Files...3-4

3.3.4 User-Defined Configuration Property Type (UCPT)
Device Resource Files...3-4

3.3.5 Data Point Templates ..3-4
3.3.6 Data Formatting...3-4

3.4 SOAP Functions ..3-5
3.4.1 List Functions ..3-5
3.4.2 Get Functions ..3-6
3.4.3 Set Functions...3-6
3.4.4 Read Functions ...3-7

i.LON SmartServer 2.0 Programmer’s Reference iv

3.4.5 Write Functions..3-7
3.4.6 Delete Functions..3-7

3.5 Performance Issues...3-7
4 Using the SmartServer Data Server ... 4-1

4.1 Creating and Modifying the Data Point XML Files...........................4-2
4.2 Overview of the Data Point XML File ..4-3
4.3 Data Server SOAP Interface ...4-4

4.3.1 Using the List Function on the Data Server...............................4-4
4.3.2 Using the Get Function on the Data Server4-5
4.3.3 Using the Set Function on the Data Server.............................4-10
4.3.4 Using the Read Function on the Data Server..........................4-11
4.3.5 Using the Write Function on the Data Server..........................4-15
4.3.6 Using the Invoke Function to Reset Data Point Priorities4-17
4.3.7 Data Point Values and Priority Levels4-17
4.3.8 Using the Delete Function on the Data Server........................4-18

4.4 Using the Web Binder Application...4-19
4.4.1 Using the List Function on a Web Connection4-20
4.4.2 Using the Get Function on a Web Connection........................4-21
4.4.3 Using the Set Function on a Web Connection4-23
4.4.4 Using the Delete Function on a Web Connection4-24

5 Data Loggers .. 5-1
5.1 Overview of the Data Logger XML File ...5-1
5.2 Creating and Modifying the Data Logger XML File5-2
5.3 Data Logger SOAP Interface...5-3

5.3.1 Using the List Function on a Data Logger5-3
5.3.2 Using the Get Function on a Data Logger.................................5-4
5.3.3 Using the Set Function on a Data Logger5-8
5.3.4 Using the Read Function on a Data Logger5-9
5.3.5 Using the Clear Function on a Data Logger5-12
5.3.6 Using the Delete Function on a Data Logger5-13

6 Alarm Generator... 6-1
6.1 Overview of the Alarm Generator XML File.....................................6-1
6.2 Creating and Modifying the Alarm Generator XML File6-2
6.3 Alarm Generator SOAP Interface..6-2

6.3.1 Using the List Function on an Alarm Generator6-3
6.3.2 Using the Get Function on an Alarm Generator6-3
6.3.3 Using the Set Function on an Alarm Generator6-12
6.3.4 Using the Delete Function on an Alarm Generator6-13

7 Alarm Notifier ... 7-1
7.1 Overview of the AlarmNotifier XML File ..7-2
7.2 Creating and Modifying the Alarm Notifier XML File7-3
7.3 Alarm Notifier SOAP Interface...7-4

7.3.1 Using the List Function on an Alarm Notifier7-4
7.3.2 Using the Get Function on an Alarm Notifier.............................7-5
7.3.3 Using the Set Function on an Alarm Notifier7-17
7.3.4 Using the Read Function on an Alarm Notifier7-18
7.3.5 Using the Write Function on an Alarm Notifier Log File7-22
7.3.6 Using the Clear Function on an Alarm Notifier Log File7-23
7.3.7 Using the Delete Function on an Alarm Notifier7-24

8 Analog Function Block .. 8-1
8.1 Overview of the AnalogFB XML File ...8-1

i.LON SmartServer 2.0 Programmer’s Reference v

8.2 Creating and Modifying the Analog Functional Block XML File...........8-2
8.3 Analog Functional Block SOAP Interface..8-2

8.3.1 Using the List Function on an Analog Functional Block8-2
8.3.2 Using the Get Function on an Analog Functional Block............8-3
8.3.3 Using the Set Function on an Analog Functional Block8-12
8.3.4 Using the Delete Function on an Analog Function Block8-13

9 Scheduler.. 9-1
9.1 Overview of the Scheduler XML File ...9-2
9.2 Creating and Modifying the Scheduler XML File9-3
9.3 Scheduler SOAP Interface ..9-3

9.3.1 Using the List Function on a Scheduler.....................................9-4
9.3.2 Using the Get Function a Scheduler ...9-4
9.3.3 Using the Read Function on a Scheduler................................9-12
9.3.4 Using the Set Function on a Scheduler...................................9-14
9.3.5 Using the Delete Function on a Scheduler..............................9-17

10 Calendar.. 10-1
10.1 Overview of the Calendar XML File...10-1
10.2 Creating and Modifying the Calendar XML File.............................10-2
10.3 Calendar SOAP Interface ..10-2

10.3.1 Using the List Function on a Calendar10-2
10.3.2 Using the Get Function a Calendar10-2
10.3.3 Using the Set Function on a Calendar10-12
10.3.4 Using the Read Function on a Calendar10-13
10.3.5 Using the Delete Function on a Calendar10-15

11 Real-Time Clock ... 11-1
11.1 Overview of the Real-Time Clock XML File...................................11-1
11.2 Creating and Modifying the Real-Time Clock XML File11-1
11.3 Real-Time Clock SOAP Interface..11-2

11.3.1 Using the List Function on a Real-Time Clock11-2
11.3.2 Using the Get Function on a Real-Time Clock......................11-2
11.3.3 Using the Set Function on a Real-Time Clock11-4
11.3.4 Using the Delete Function on a Real-Time Clock11-5

12 Type Translator .. 12-1
12.1 Overview of the Type Translator XML File12-1
12.2 Creating and Modifying the Type Translator XML File..................12-2
12.3 Type Translator SOAP Interface ...12-2

12.3.1 Using the List Function on a Type Translator12-2
12.3.2 Using the Get Function on a Type Translator12-3
12.3.3 Using the Set Function on a Type Translator........................12-5
12.3.4 Pre-Defined Type Translator Rules.......................................12-6
12.3.5 Using the Delete Function on a Type Translator.................12-14

13 Type Translator Rules ... 13-1
13.1 Type Translator Rule XML Files..13-1
13.2 Creating and Modifying the Type Translator Rule XML Files........13-2
13.3 Type Translator Rule SOAP Interface...13-2

13.3.1 Using the List Function on a Type Translator Rule13-3
13.3.2 Using the Get Function on a Type Translator Rule...............13-3
13.3.3 Using the Set Function on a Type Translator Rule13-11
13.3.4 Using the Delete Function on a Type Translator Rule13-12

i.LON SmartServer 2.0 Programmer’s Reference vi

14 LONWORKS Driver ... 14-1
14.1 LONWORKS Networks...14-1

14.1.1 Using the List Function on a LONWORKS Network.................14-1
14.1.2 Using the Get Function on a LONWORKS Network14-1
14.1.3 Using the Set Function on a LONWORKS Network.................14-5
14.1.4 Using the Delete Function on a LONWORKS Network..........14-11

14.2 LONWORKS Channels...14-11
14.2.1 Using the List Function on a LONWORKS Channel14-11
14.2.2 Using the Get Function on a LONWORKS Channel14-12
14.2.3 Using the Set Function on a LONWORKS Channel...............14-16
14.2.4 Using the Delete Function on a LONWORKS Channel..........14-16

14.3 LONWORKS Devices ...14-17
14.3.1 Using the List Function on a LONWORKS Device.................14-17
14.3.2 Using the Get Function on a LONWORKS Device.................14-19
14.3.3 Using the Set Function on a LONWORKS Device14-26
14.3.4 Using the Delete Function on a LONWORKS Device............14-32

14.4 Routers ..14-32
14.5 Remote Network Interface...14-34
14.6 LONWORKS Functional Blocks ...14-34

14.6.1 Using the List Function on a LONWORKS
Functional Block ..14-35

14.6.2 Using the Get Function on a LONWORKS
Functional Block ..14-36

14.6.3 Using the Set Function on a LONWORKS
Functional Block ..14-39

14.6.4 Using the Delete Function on a LONWORKS
Functional Block ..14-40

14.7 Network Variables (LONWORKS Data Points)14-40
14.7.1 Using the List Function on Network Variables14-40
14.7.2 Using the Get Function on Network Variables14-41
14.7.3 Using the Set Function on a Network Variable14-45
14.7.4 Using the Delete Function on a Network Variable14-45

14.8 Configuration Properties (LONWORKS Data Points).....................14-46
14.9 LONWORKS Connections..14-47

15 Modbus Driver .. 15-1
15.1 Modbus Channels..15-1

15.1.1 Using the List Function on Modbus Channels.......................15-1
15.1.2 Using the Get Function on Modbus Channels15-1
15.1.3 Using the Set Function on Modbus Channels.......................15-5
15.1.4 Using the Delete Function on Modbus Channels..................15-6

15.2 Modbus Devices ..15-7
15.2.1 Using the List Function on Modbus Devices15-7
15.2.2 Using the Get Function on Modbus Devices.........................15-7
15.2.3 Using the Set Function on Modbus Devices15-9
15.2.4 Using the Delete Function on Modbus Devices15-10

15.3 Modbus Virtual Functional Blocks ...15-10
15.4 Modbus Data Points ..15-10

15.4.1 Using the List Function on Modbus Data Points15-11
15.4.2 Using the Get Function on Modbus Data Points15-12
15.4.3 Using the Set Function on Modbus Data Points15-16
15.4.4 Using the Delete Function on Modbus Data Points15-17

16 M-Bus Driver... 16-1
16.1 M-Bus Channels ..16-1

i.LON SmartServer 2.0 Programmer’s Reference vii

16.1.1 Using the List Function on M-Bus Channels16-1
16.1.2 Using the Get Function on M-Bus Channels.........................16-1
16.1.3 Using the Set Function on M-Bus Channels16-4
16.1.4 Using the Delete Function on M-Bus Channels16-5

16.2 M-Bus Devices ..16-6
16.2.1 Using the List Function on M-Bus Devices............................16-6
16.2.2 Using the Get Function on M-Bus Devices16-6
16.2.3 Using the Set Function on M-Bus Devices..........................16-10
16.2.4 Using the Delete Function on M-Bus Devices.....................16-11

16.3 M-Bus Virtual Functional Blocks..16-11
16.4 M-Bus Data Points...16-11

16.4.1 Using the List Function on M-Bus Data Points....................16-12
16.4.2 Using the Get Function on M-Bus Data Points16-12
16.4.3 Using the Set Function on M-Bus Data Points....................16-15
16.4.4 Using the Delete Function on M-Bus Data Points...............16-16

17 Virtual Driver... 17-1
17.1 Virtual Channels ..17-1

17.1.1 Using the List Function on Virtual Channels17-1
17.1.2 Using the Get Function on Virtual Channels17-1
17.1.3 Using the Set Function on Virtual Channels17-3
17.1.4 Using the Delete Function on a Virtual Channel17-4

17.2 Virtual Devices...17-4
17.2.1 Using the List Function on Virtual Devices............................17-4
17.2.2 Using the Get Function on Virtual Devices............................17-4
17.2.3 Using the Set Function on Virtual Devices............................17-6
17.2.4 Using the Delete Function on Virtual Devices.......................17-7

17.3 Virtual Functional Blocks ...17-7
17.4 Virtual Data Points...17-8

17.4.1 Using the List Function on Virtual Data Points......................17-8
17.4.2 Using the Get Function on Virtual Data Points......................17-9
17.4.3 Using the Set Function on Virtual Data Points17-11
17.4.4 Using the Delete Function on Virtual Data Points17-12

18 File System Data .. 18-1
18.1 Using the List Function on File System Data18-1
18.2 Using the Read Function on File System Data18-1
18.3 Using the Write Function on File System Data..............................18-3
18.4 Using the Delete Function on File System Data............................18-4

19 System Information Methods.. 19-1
19.1 System Service Methods...19-1

19.1.1 TCP/IP Settings ...19-2
19.1.2 Time Settings...19-4
19.1.3 Security Settings..19-5
19.1.4 Static System Information..19-7
19.1.5 Real-Time System Information..19-9
19.1.6 E-Mail Settings ..19-11
19.1.7 IP-852 Router Settings ..19-12
19.1.8 IP-852 Router Statistics...19-14
19.1.9 LonScanner Protocol Analyzer..19-15
19.1.10 Reboot ...19-16

19.2 System Test Methods..19-16
19.2.1 SMTP E-Mail Server Test..19-16
19.2.2 IP-852 Configuration Server Test..19-19
19.2.3 Connection Test ..19-20

i.LON SmartServer 2.0 Programmer’s Reference viii

20 Using the SOAP Interface as a Web Service 20-1
20.1 Referencing and Inheriting from the WSDL...................................20-1

20.1.1 Referencing and Inheriting from the WSDL
Using .NET 3.5 Framework ...20-1

20.1.2 Referencing and Inheriting from the WSDL
Using .NET 2.0 Framework ...20-6

20.2 Instantiating and Initializing the Web Service Client20-11
20.2.1 Instantiating the Web Service Client in

Visual C# .NET 3.5 ..20-11
20.2.2 Instantiating the Web Service Client in

Visual C# .NET 2.0 ..20-13
20.2.3 Instantiating the Web Service Client in

Visual Basic .NET 3.5..20-14
20.3 Calling Web Services Methods..20-14

20.3.1 Reading and Writing Data Point Values in
Visual C# .NET 3.5 ..20-15

20.3.2 Reading and Writing Data Point Values in
Visual C# .NET 2.0 ..20-16

20.3.3 Reading and Writing Data Point Values in
Visual Basic .NET 3.5..20-19

20.4 Accepting a Web Binding From a SmartServer...........................20-20
21 Programming Examples.. 21-1

21.1 Visual C#.NET Examples ..21-1
21.1.1 Reading and Writing Data Point Values in

Visual C# .NET ..21-1
21.1.2 Creating and Reading a Data Logger in Visual C# .NET......21-2
21.1.3 Creating a Scheduler and Calendar in

Visual C# .NET ..21-7
21.1.4 Creating and Installing a LONWORKS Device in

Visual C# .NET ..21-15
21.1.5 Commissioning External Devices in

Visual C# .NET ..21-18
21.1.6 Discovering and Installing External Devices

in Visual C# .NET ..21-21
21.1.7 Configuring the SmartServer in

Visual C# .NET ..21-26
21.2 Visual Basic.NET Examples ..21-30

21.2.1 Reading and Writing Data Point Values in
Visual Basic.NET...21-30

21.2.2 Creating and Reading a Data Logger in
Visual Basic. NET...21-31

21.2.3 Creating a Scheduler and Calendar in
Visual Basic.NET...21-34

21.2.4 Creating and Installing a LONWORKS Device in
Visual Basic.NET...21-42

21.2.5 Commissioning External Devices in
Visual Basic.NET...21-44

21.2.6 Discovering and Installing External Devices in
Visual Basic.NET...21-47

21.2.7 Configuring the SmartServer in Visual Basic.NET21-51
22 Programming the SmartServer with Java.................................. 22-1

22.1 Setting up the Java Programming Environment............................22-1

i.LON SmartServer 2.0 Programmer’s Reference ix

22.1.1 Installing Echelon SmartServer JAX-ES
Programming Example ..22-1

22.1.2 Installing Eclipse IDE for Java EE Developers......................22-1
22.1.3 Installing the Java Development Kit22-1
22.1.4 Installing Maven 2.2.1..22-1
22.1.5 Setting System Environment Variables22-2

22.2 Creating a JAX-WS Client ...22-3
22.3 Java Programming Examples..22-17

22.3.1 Reading and Writing Data Point Values in Java22-17
22.3.2 Creating and Reading a Data Logger in Java22-19
22.3.3 Creating and Installing a LONWORKS Device in Java22-23
22.3.4 Discovering and Installing External Devices in JAVA22-26

Appendix A: SOAP Tester Example ...A-1

i.LON SmartServer 2.0 Programmer’s Reference x

 i.LON SmartServer 2.0 Programmer’s Reference 1-1

1 Introduction to the SmartServer SOAP/XML Interface
The SmartServer contains a powerful microprocessor with a real-time, multi-tasking operating system
that manages its various applications. These applications include alarming, scheduling, data logging
and network variable type translation. Generally, you will configure these applications with the
SmartServer Web pages, as described in the i.LON SmartServer 2.0 User’s Guide. The i.LON
SmartServer 2.0 User’s Guide provides instructions to follow when configuring the SmartServer
applications with the SmartServer Web interface, as well as general information on the different
SmartServer applications, and guidelines to follow when using these applications.

You can also use the SOAP/XML interface provided with the SmartServer to configure these
applications. XML is a universal format used to deliver data through structured documents over the
Web. It allows developers to store data for any application in a standard, consistent way. SOAP is a
protocol for exchanging XML-based messages over TCP/IP networks, normally using HTTP. SOAP
enables different applications and devices to communicate with each other, regardless of platform, by
sending SOAP messages to each other.

The configuration of each SmartServer application is stored in an XML file. The SmartServer reads
these files during its boot process, and sets the operating parameters of each application based on the
configuration data contained in the XML file for that application.

The SmartServer includes a set of SOAP functions that you can use to create and manage the
configuration of each application. Each time you invoke any of these functions, a SOAP message is
sent to the SmartServer. The content of the SOAP message is based on the input you supply to the
function. The SmartServer reads the contents of the message, writes the contents of the message to the
applicable XML file, and adjusts the operating parameters of its applications accordingly. All of this
occurs while the SmartServer is operating.

It is important to note that the XML files described in this document store the configurations of the
SmartServer applications. They do not store the data generated by these applications. The real-time
data generated by the SmartServer's applications is stored in RAM and log data are stored on the flash
disk.

However, this does not mean that application configuration is the only task you can perform with the
SmartServer SOAP/XML interface. The SOAP/XML interface also includes functions you can use to
access, read and analyze the data generated by the SmartServer applications. And so you can use the
SOAP/XML interface not only to configure the various applications of the SmartServer, but to monitor
them as well.

1.1 About This Document
This document describes the XML files that store the configurations of the various SmartServer
applications, and the SOAP functions you can use with each application. The SOAP interface
provided with the SmartServer conforms to the SOAP 1.1 proposed Technical Recommendation:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

This document also describes how to configure the SmartServer applications by manually creating and
modifying the XML configuration files. Once you have created the XML files, you can download
them to the SmartServer via FTP. The SmartServer will read the downloaded files and adjust its
operating parameters accordingly the next time it is rebooted.

You can create or modify the files using any XML editor or ASCII text editor. This document
provides examples you can use when creating the XML configuration files for your SmartServer, and
instructions to follow when downloading these files to the SmartServer. The XML files used by the
SmartServer applications conform to the XML 1.0 Technical Recommendation:

http://www.w3.org/TR/2000/REC-xml-20001006

http://en.wikipedia.org/wiki/Protocol_%28computing%29
http://en.wikipedia.org/wiki/XML
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/REC-xml-20001006

 i.LON SmartServer 2.0 Programmer’s Reference 1-2

Echelon strongly recommends that you use the SOAP interface to configure the applications of
your SmartServer. The SmartServer performs error-checking on all data written in a SOAP message,
so that invalid data will not be written to any of the XML files. The SmartServer will not perform
error-checking on any XML files downloaded to it via FTP, and so manually editing the XML files
may cause errors during the boot process. Additionally, you can send SOAP messages to the
SmartServer while it is operating, and the SmartServer will update the XML files affected by the
SOAP messages without requiring a reboot.

You may find the information in this document that pertains to manually creating and managing XML
files useful if you are using several SmartServers, and would like to use the same configuration on
each one. In that case, you could configure one of the SmartServers, copy its XML files, and
download them to the appropriate directories of the other SmartServers to obtain the same
configuration in all of them.

1.2 Programming Samples
Chapter 21 of this document includes programming samples written in Visual C# .NET, Visual Basic
.NET, and Java to illustrate concepts described in this manual. To make these samples more easily
understood, they have been simplified. Error checking has been removed, and in some cases, the
examples are only fragments that may not compile without errors or warnings.

1.3 Getting Started
You should review Chapters 2 and 3 before proceeding to the rest of this document and learning about
the functions and applications of the SOAP/XML interface. Chapter 2, SOAP Messages and the
SmartServer WSDL, describes the WSDL file which defines the SOAP/XML interface. Chapter 3,
SmartServer Applications and the SOAP/XML Interface, provides an overview of the SmartServer
applications and includes a roadmap to follow when configuring those applications with a SOAP
application.

You can begin to learn how to program the SmartServer using SOAP/XML using the iLON SOAP
Tester (version 2.0.3994). The SOAP Tester is an unsupported engineering-level tool provided by
Echelon that lets you perform functional testing of the SmartServer’s pre-defined SOAP functions and
your user-defined SOAP functions. You can download the SOAP Tester from the i.LON SmartServer
Community Web site at http://ilonsmartserver.com/files. If you have a SmartServer 2.0 (Release
4.03), the SOAP Tester is also included on the i.LON SmartServer 2.0 DVD in the
iLon100\iLon100\unsupported\SoapTester folder. For more information on using the SOAP Tester,
see Appendix A: SOAP Tester Example.

You can also learn how to program the SmartServer using SOAP/XML by installing an HTTP
debugging proxy program like Charles on your computer. The Charles proxy records all SOAP and
other HTTP traffic to and from your computer. You can use Internet Explorer to perform normal
operations with the SmartServer Web interface and record the SOAP messages that are being sent to
the SmartServer. You can download a free trial version of the Charles proxy from the Charles Web
site. For more information on using and downloading the Charles proxy, go to the Charles Web site at
www.charlesproxy.com.

1.4 SmartServer SOAP/XML Interface Upgrades
The format and contents of the SOAP messages you can send to a SmartServer are defined by the
SOAP namespace that the SmartServer is using. The SOAP/XML interface used for the SmartServer
(software version 4.0) is new. It uses a common set of generic methods (list, get, set, delete, read,
write, clear, and invoke) for retrieving and configuring the data of the various SmartServer
applications. This differs from the SOAP/XML interface that was used for e3 (software version 3.0)
release, in which each application had its own specialized set of messages and structures.

There have been three different SOAP namespaces introduced during the four releases of the i.LON
servers. The version 1.0 namespace was introduced for Release 1.0, the version 1.1 namespace was

http://ilonsmartserver.com/files/folders/utilities/entry277.aspx
http://www.charlesproxy.com/

 i.LON SmartServer 2.0 Programmer’s Reference 1-3

introduced for the e2 release, and the version 3.0 namespace was introduced for the e3 release.
Support for the different namespaces as follows:

• i.LON 100 servers running the Release 1.0 software only support the version 1.0 namespace. This
means that a SmartServer running the Release 1.0 software can only respond to SOAP messages
from other SmartServers running the Release 1.0 software.

• i.LON 100 servers running the e2 software support the version 1.0 and 1.1 namespaces. This
means that an i.LON 100 server running the e2 software can respond to SOAP messages from
other i.LON 100 servers that are running the Release 1.0 or the e2 software.

• i.LON 100 servers running the e3 software support the version 1.1 and 3.0 namespaces. This
means that i.LON 100 servers running the e3 software can respond to SOAP messages sent from
other i.LON 100 servers that are running the e2 or e3 software.

• SmartServers running the SmartServer software support only the version 4.0 namespace. This
means that SmartServers running the SmartServer software can respond to SOAP messages sent
from other SmartServers. SmartServers running the SmartServer software cannot respond to
SOAP messages sent from i.LON 100 servers running the e3 software.

The following section, Version 4.0 SOAP Message Name Schema, describes the changes made to the
SOAP/XML interface between SOAP namespace versions ‘3.0’ and ‘4.0’ (i.e. between the e3 and
SmartServer releases).

Note: This manual often refers to the i.LON 100 and SmartServer releases by the version numbers
used in their SOAP namespace. For example, the SmartServer release is referred to by its software
version number, which is ‘4.0’, and the i.LON 100 e3 release is referred to as ‘3.0’. For more
information on the SOAP namespace, see Chapter 2 of this document.

1.4.1 Version 4.0 SOAP Message Name Schema

The SOAP/XML interface used for the SmartServer (version 4.0) uses a new message name schema.
It uses a common set of generic methods (List, Get, Set, Delete, Read, Write, Clear, and Invoke) for
retrieving and configuring the data of the various SmartServer applications. This section provides an
overview of the changes made to the SOAP message name schema from version 3.0.

1.4.1.1 Version 3.0 Message Name Schema
The message name schema used for version 3.0 was <Application>_<Message>_<Parameter>. The
Parameter was optional and normally not used. The Message was normally List, Get, Set or Delete.
The following provides examples of version 3.0 request messages:

TypeTranslator_List, TypeTranslator_Get_Rule, Read, DriverMOD_Set_Template

The response messages were identified by the message name plus the string <Response>.
The schema was: <Application>_<Message>_<Parameter>Response.

With the version 3.0 message name schema, there were numerous specialized SOAP messages and
SOAP structures, resulting in limited flexibility and intricate handling of a large number of Java or C#
proxy classes.

1.4.1.2 Version 4.0 Message Name Schema
Version 4.0 uses a single set of messages that are common to all applications. The messages for
retrieving and modifying configuration data consists of List, Get, Set, and Delete, and the messages for
retrieving and changing state information are Read and Write.

 i.LON SmartServer 2.0 Programmer’s Reference 1-4

i.LON SmartServer 2.0 Programmer’s Reference 2-1

2 SOAP Messages and the SmartServer WSDL File
This chapter contains general information about the SOAP/XML interface you will need to know
before using the SOAP functions described in this manual. It includes the following major topics:

• SmartServer Naming Structure. The section describes how the SmartServer’s data configuration
is organized.

• SmartServer WSDL File. This section describes the version 4.0 WSDL file, which defines the
SOAP/XML interface. When writing applications to use the SOAP interface, some tools can
import this file and automatically build a class structure for sending and receiving each message.

• Security. This section describes the security provided by the SmartServer for SOAP applications.

• SOAP Request/Response Structure. This section demonstrates the structure of the SOAP request
and response messages used by Version 4.0.

• SOAP Message Formats. This section describes the formats that must be used for all SOAP
messages that are sent to and from the SmartServer. A SOAP message is sent to the SmartServer
each time you invoke any of the functions described in this document.

• Data Point References. The section describes the SmartServer’s new method for referencing data
points on the SmartServer’s embedded applications.

• UCPTCurrentConfig. This section describes the new <UCPTcurrentConfig> element included in
List response messages. This element indicates the namespace version of the client that last set the
configuration of an item.

• Fault Structure. This section describes the new <Fault> structure, which combines the faultcode
and faultstring elements and enables a client to check only for the existence of a fault structure
instead of having to check for both elements.

• LonString Type. This section describes the E_LonString type that is used for enumerations or
element values that have format descriptions that depend on references to other data point formats.

• SOAP Examples. This section includes SOAP examples that demonstrate how to use the Version
4.0 SOAP interface to get the configuration of data point, write a value to a data point in a Web
connection, and read the data in a data logger.

2.1 SmartServer Naming Structure
The naming convention used for the SmartServer’s configuration and data items follows the
LONWORKS network hierarchy (network/channel/device/functional block/data point).

When the SmartServer accesses a device, that device is attached to a given channel in a network. In
the same manner, a data point exists on a functional block that is part of the device. This structure is
reflected by the network/channel/device/functional block/data point naming scheme.

Assuming that there is a channel named “myChannel” on a network called “myNetwork”, the name of a
device accessed through “myChannel” must begin with “myChannel”. For example, the default
<UCPTname> property of the internal automated system device on the SmartServer (i.LON App) is
Net/LON/i.LON App. This means that the SmartServer is located on a channel named LON on a
network named Net. Further consider that i.LON App has a Digital Input 1 functional block that
contains an nvoClsValue_1 data point. By default, the <UCPTname> property of the nvoClsValue_1
data point is Net/LON/iLON App/Digital Input 1/nvoClsValue_1. Note that a <UCPTname>
property has to have at least the size of one char and must be unique in the
network/channel/device/functional block/data point collection.

i.LON SmartServer 2.0 Programmer’s Reference 2-2

2.2 SmartServer WSDL File
Each SmartServer includes two WSDL (Web Service Description Language) files: iLON100.wsdl and
iLON100_System.wsdl.

The iLON100.wsdl file defines most of the SmartServer SOAP/XML interface, and contains all the
information an application will require to use the SOAP/XML interface. The iLON100_System.wsdl
contains the system service methods used to check and configure the SmartServer’s settings.

When writing applications to use the SOAP/XML interface, some tools can import these WSDL files
and automatically build a class structure for sending and receiving each message. The WSDL files are
compatible with numerous programming development environments, such as Microsoft® Visual
Studio® 2008, Microsoft Visual Studio 2005, and Eclipse JAVA EE.

For more detailed information on using a WSDL file as a web service in a .NET programming
environment, see Chapter 20. In addition, Chapter 20 contains step-by-step instructions you can
follow when you reference the version 4.0 WSDL file with a Microsoft Visual Studio project. For
more detailed information on using a WSDL file as a web service in a Java programming environment,
see Chapter 22.

2.3 Security
You can add a basic level of security to the SOAP/XML interface with the i.LON Web Server
Security and Parameters program. You can use this utility to add password protection to all web
content served by the SmartServer. Basic Access Authentication is the security mechanism used by
the SmartServer Web server for HTTP transactions. Basic Access Authentication is described by the
IETF in RFC 2617: http://www.ietf.org/rfc/rfc2617.txt

If you want all SOAP messages sent to your SmartServer to be authenticated, use the i.LON Web
Server Security and Parameters program to password protect the SmartServer SOAP endpoint at the
following path: /WSDL/v4.0/iLON100.WSDL.

A user name and password will then be required each time a SOAP message is sent to the SmartServer.
Since SOAP uses HTTP as a transport, you can use the user name and password pair for an entire
HTTP session. As a result, you can use a single user name and password to authenticate access to Web
pages that send or receive multiple SOAP messages. If a SOAP message is sent to a SmartServer that
does not contain the correct user name and password, it will be ignored. For instructions on using the
i.LON Web Server Security and Parameters utility, see Appendix C of the i.LON SmartServer 2.0
User’s Guide.

To protect FTP access to the XML configuration files, the SmartServer requires a user name and
password for every FTP session. This username and password default to “ilon”, and can be re-defined
with the Setup - Security Web Page. See Chapter 3 of the i.LON SmartServer 2.0 User’s Guide for
how to use this Web page.

2.4 SOAP Request and Response Message Structure
This section demonstrates the generic format of a complete request/response transaction. Italicized
text denotes type definitions and values that are based on the message or use-case. For examples of
actual request/response transactions, see Section 2.10, SOAP Message Examples.

http://www.ietf.org/rfc/rfc2617.txt

i.LON SmartServer 2.0 Programmer’s Reference 2-3

2.4.1 SOAP Request
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 </p:messageProperties>
 </soap:Header>
 <soap:Body>
 <MessageName xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

 <iLonItem>
 <xSelect>xSelectStatement</xSelect>

 <Item xsi:type=“type”>
 <UCPTname>networkName/channelName/deviceName/functionBlockName/pointName<UCPTname>
 <Parameter1>Parameter1Value</Parameter1>

 <Parameter2>Parameter2Value</Parameter2>
 ...
 </Item>
 <Item xsi:type=“type”>
 <UCPTname>networkName/channelName/deviceName/functionBlockName/pointName1<UCPTname>
 <Parameter1>Parameter1Value</Parameter1>

 <Parameter2>Parameter2Value</Parameter2>
 ...
 </Item>
 ...
 </iLonItem>
 </MessageName>
 </soap:Body>
</soap:Envelope>

i.LON SmartServer 2.0 Programmer’s Reference 2-4

2.4.2 SOAP Response
<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2005-02-02T11:30:15.220+01:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>030000066f02</p:UCPTuniqueId>
 <p:UCPTipAddress>172.25.143.222</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2005-02-02T11:31:41Z</p:UCPTlastUpdate>
 <p:UCPTprocessingTime>90</p:UCPTprocessingTime>
 </p:messageProperties>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <MessageNameResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>

 <Item xsi:type=“type”>
 <UCPTname>networkName/channelName/deviceName/functionBlockName/pointName<UCPTname>

 <Parameter1>Parameter1Value</Parameter1>
 <Parameter2>Parameter2Value</Parameter2>

 ...
 </Item>
 <Item xsi:type=“type” >
 <UCPTname>networkName/channelName/deviceName/functionBlockName/pointName1<UCPTname>

 <Parameter1>Parameter1Value</Parameter1>
 <Parameter2>Parameter2Value</Parameter2>

 ...
 </Item>
 ...
 </iLonItem>
 </ MessageNameResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2.5 SOAP Messages Formats
A SOAP message is sent to the SmartServer each time you invoke a SOAP function. The content of
the SOAP message and the affect it has on the SmartServer is based on the input you supply to the
function. Using the Set function for example, the SmartServer reads the contents of the message, and
adjusts its operating parameters of its applications accordingly. It also returns a response message
describing the status or configuration of the modified item. The following sections go through each
part of the SOAP messages to describe the interface.

SOAP messages are XML documents that are transferred from one entity to another; therefore, the first
line in any SOAP message is always the XML version header. SOAP 1.1 and 1.2 both conform to
XML 1.0, so this line will not need to change if the SOAP version is updated.

For more information on the types referenced in this section, see the Version 4.0 XML schema type
(iLON100.xsd), which is installed in the LONWORKS\iLon100\images\iLon100 4.0x\web\WSDL\v4.0
folder on your computer when you install the SmartServer software.

Note: All SOAP messages sent to and from the SmartServer must adhere to the UTF-8 encoding
standard. This is indicated by the <?xml version="1.0" encoding="utf-8"?> tag included in
each SOAP message, as shown in the following sections. However, this restriction is not enforced by
the SmartServer software. As a result, the SmartServer will accept SOAP messages that do not adhere
to the UTF-8 encoding standard without throwing an error, which may result in invalid configuration
data being written to your SmartServer. To avoid this, you should program your application to ensure
that all SOAP messages adhere to the UTF-8 encoding standard. For more information on the UTF-8
encoding standard, see http://www.ietf.org/rfc/rfc3629.txt.

http://www.ietf.org/rfc/rfc3629.txt

i.LON SmartServer 2.0 Programmer’s Reference 2-5

2.5.1 SOAP Envelope

The SOAP envelope is the highest level in a SOAP message. The SOAP envelope is the highest level
of a SOAP message. The SOAP envelope for any message sent to the SmartServer must conform to
the W3C SOAP 1.1 proposed Technical Recommendation:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. The SOAP envelope portion of the sample
input message shown in section 2.3 includes the following:

<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 ...
</SOAP-ENV:Envelope>

Note: The fourth line of this example includes the symbol “...” This denotes the location of the SOAP
body, which is described in section 2.5.3.

2.5.1.1 W3C Namespaces Supported in Version 4.0
Version 4.0 supports the following W3C namespaces:

<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 ...
</SOAP-ENV:Envelope>

2.5.2 SOAP Header

The SOAP header contains general information about the entire message. This section is also tightly
controlled by the W3C standards. Each element in a SOAP header and all immediate child elements
must be Namespace Qualified; therefore, each user-defined element contains a namespace prefix and a
path to the unique Echelon namespace.

Note: The Version 4.0 SOAP header is only used in a response message (except for the
UCPTvalueFormat for WebBinder response messages). You do not need to supply this information
for a SOAP request.

The following provides an example of a SOAP header in a SOAP response message:
<SOAP-ENV:Header>
 <p:messageProperties
 xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2008-02-25T15:10:35.360-08:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>030000197B82</p:UCPTuniqueId>
 <p:UCPTipAddress>10.2.124.82</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2008-02-25T19:11:19Z</p:UCPTlastUpdate>
 <p:UCPTprocessingTime>90</p:UCPTprocessingTime>
 </p:messageProperties>
</SOAP-ENV:Header>

The SOAP header consists of a complex type with six fields describing different properties of the
message:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

i.LON SmartServer 2.0 Programmer’s Reference 2-6

<UCPTtimeStamp> A time stamp indicating when the message was sent. Per the
ISO 8601 standard, the timestamp is in local time, with
appended time zone indicators to denote the difference between
local time and UTC.

<UCPTuniqueId> A unique identifier assigned to the SmartServer. By default, this
is set to the third Neuron ID in the block of 16 Neuron IDs the
SmartServer. You can define the unique ID.

<UCPTipAddress> The IP address of the SmartServer that sent the SOAP message.
The IP address in this field depends on the network interface
used for the SOAP request/response transaction. The
SmartServer has two network interfaces: the LAN interface and
the PPP interface (modem). As a result, when the SmartServer
responds to a SOAP request from the LAN interface, the
response header will contain the LAN IP address, and when an
outgoing WebBinder SOAP message uses the LAN interface, the
SOAP request header will contain the LAN IP address.

Conversely, when a SOAP request is received over a PPP
connection, including GPRS connections, the SOAP response
header will contain the IP address of the PPP interface, and
outgoing WebBinder SOAP messages sent over the PPP
interface will contain the IP address of the PPP interface in the
request header.

<UCPTport> The HTTP port of the SmartServer that sent the SOAP message

<UCPTlastUpdate> A timestamp indicating the last time the configuration of any of
the applications of the SmartServer was modified. After a
reboot, the timestamp is set to match the reboot time. The
timestamp is in local time.

<UCPTprocessingTime> The time elapsed in milliseconds from the server (SmartServer
or LNS Proxy Web service) receiving a SOAP request to
sending the SOAP response.

2.5.3 SOAP Body

The SOAP body contains general information about the SOAP message, and contains the data that is
passed to the function as input. The SOAP body conforms to the W3C SOAP 1.1 proposed Technical
Recommendation.

Request messages are identified by the message name for the SOAP call, and the response messages
are identified by the message name plus the string “Response”. The message name, which serves as
the element name within the XML structure, is uniquely identified by the SmartServer namespace.

Each and every SOAP message in the version 4.0 WSDL has one parameter named <iLonItem>. The
<iLonItem> property is a structure derived from E_xSelect and has a type of Item_Coll. The SOAP
body of the sample input message shown in section 2.4 includes the following:

i.LON SmartServer 2.0 Programmer’s Reference 2-7

 <soap:Body>
 <MessageName xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

 <iLonItem>
 <xSelect>xSelectStatement</xSelect>

 <Item xsi:type=“type”>
 <UCPTname>networkName/channelName/deviceName/functionBlockName/pointName<UCPTname>

 <Parameter1>Parameter1Value</Parameter1>
 <Parameter2>Parameter2Value</Parameter2>

 ...
 </Item>
 ...
 </iLonItem>
 </MessageName>
 </soap:Body>

 <SOAP-ENV:Body>
 <MessageNameResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>

 <Item xsi:type=“type”>
 <UCPTindex>0</UCPTindex>
 <UCPTname>networkName/channelName/deviceName/functionBlockName/pointName<UCPTname>

 <Parameter1>Parameter1Value</Parameter1>
 <Parameter2>Parameter2Value</Parameter2>

 ...
 </Item>
 ...
 </iLonItem>
 </MessageNameResponse>
 </SOAP-ENV:Body>

2.5.3.1 Fault Messages (Application Layer)
The SOAP body in the response for every function in the SOAP/XML interface contains information
indicating whether any errors occurred while processing the request. Each item instance can contain a
fault object. An item instance without a fault object indicates an item that was successfully processed.

The following examples demonstrate instances that succeeded (no fault objects), an instance that was
applied but is not valid (faultType="_warning"), and an instance that was rejected
(faultType="_error"). The <UCPTfaultCount> tag informs the client about the number of warnings
and errors that have occurred. If <UCPTfaultCount> is 0, then no faults occurred.

Example 1 (warning occurs at the item level):
 <SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>1</UCPTfaultCount>
 <Item>
 <fault>
 <faultcode faultType="_warning">4</faultcode>
 <faultstring xml:lang="en-US">fault string</faultstring>
 </fault>
 <UCPTname>networkName/channelName/deviceName/myAG</UCPTname>
 </Item>
 <Item>
 <UCPTname>networkName/channelName/deviceName/yourAG</UCPTname>
 </Item>
 </iLonItem>
 </SetResponse>

Although an item instance has a warning fault code, it can still be processed. All other item instances
with a fault object can be processed.

Example 2 (error occurs at the item level):
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>1</UCPTfaultCount>
 <Item>

i.LON SmartServer 2.0 Programmer’s Reference 2-8

 <fault>
 <faultcode faultType="_error">6</faultcode>
 <faultstring xml:lang="en-US">Instance doesn't exist</faultstring>
 </fault>
 <UCPTname>Net/VirtCh/iLON App</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

Example 3 (error occurs at the global level):
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>1</UCPTfaultCount>
 <fault>
 <faultcode faultType="_error">3</faultcode>
 <faultstring xml:lang="en-US">invalid xSelect expression</faultstring>
 </fault>
 </iLonItem>
</SetResponse>

Because the error occurs at the global level (the error does not occur with a specific item instance),
none of the items are processed.

2.5.3.2 Fault Messages (SOAP Layer)
The SOAP fault message is a standard way to report back unexpected SOAP behavior to the originator
of the message. This response message has a different format than the response message for a message
call that succeeds, and it adheres to a standard format for SOAP 1.1 fault messages. In Version 4.0, all
applications will stop processing when an error occurs. In addition, the applications will return with
the following message:
<?xml version="1.0" encoding="utf8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <SOAP-ENV:faultcode>1</SOAP-ENV:faultcode>
 <SOAP-ENV:faultstring>soap fault</SOAP-ENV:faultstring>
 <SOAP-ENV:detail>Details</<SOAP-ENV:detail>>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2.5.3.3 Error Codes
The error codes used by the SmartServer applications are as follows:

Error Code Error Description Comment
0 No Error
1 Unknown message call
2 Parameter error
3 XML/Parser Error
4 Tag missing
5 <UCPT name> missing
6 <UCPT name> not found
7 <UCPT name> invalid
8 Can’t create For example FB, Data point
9 Can’t delete For example FB, Data point

10 Can’t set For example FB, Data point
11 Format Error
12 Command failed
13 Given Data point has not the given Index
14 Data point Name not found

http://schemas.xmlsoap.org/soap/encoding/

i.LON SmartServer 2.0 Programmer’s Reference 2-9

Error Code Error Description Comment
15 No Data

2.5.4 Namespace

The namespace uniquely identifies message names, parameters, and types within the message call. On
the SmartServer, the namespace identifier displays both the product name and the embedded software
version. This enables a mechanism to distinguish the SOAP interface of different Echelon products
and versions. To ensure that this string points to a unique name on the Internet, the namespace
includes the echelon.com domain suffix. For release 4.0 of the SmartServer the Namespace is as
follows: http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/

2.5.5 SOAP Message Schema

Version 4.0 uses a single set of messages that are common to all applications. The message for
obtaining a list of items with a specific xSelect type is List. The messages for retrieving and modifying
configuration data consist of List, Get, Set, and Delete. The messages for retrieving and changing
dynamic data (for example, data point state and values) are Read and Write.

The Get, Set, and Delete messages and the Read and Write messages contain and return one element of
a collection type. There are only three Collection types which contain objects of one of the following
types: Item (for some request/responses), Item_Cfg (for configuration information), and Item_Data
(for state information).

All types defined in the schema part of the version 4.0 iLon100.wsdl file follow a strict naming
convention. The most important naming conventions you need to adhere to are as follows:

• The prefix used is always the destination separated be an “_”, e.g.: (for example,
UFPTalarmNotifier_ or Dp_)

• Configuration item types always inherit from Item_Cfg and have the postfix “_Cfg” (for example,
UFPTalarmNotifier_Cfg or Dp_Cfg).

• State item types always inherit from Item_Data and have the postfix “_Data” (for example, UFPTalarmNotifier_Data
or Dp_Data).

• Specialized item types have the postfix “_Invoke” and are used with the general Invoke method (for example,
Dp_ResetPrio_Invoke).

2.5.6 SOAP Function Types

The Item type is the common base type for all other top level types which can be added to one of the
Item collections. It contains some common elements and attributes and the fault structure. The types
Item_Cfg and Item_Data inherit from Item; therefore, Item_Cfg is the base types for any configuration
information type, and Item_Data is the base type for any state information type.

http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/

i.LON SmartServer 2.0 Programmer’s Reference 2-10

Because Item is the base class for all types passed in the Get /Set /Delete, Read /Write, and Invoke
functions, you can pass any kind of configuration or state information in the corresponding message.

Message Name Description Request Object Response Object

List Retrieves a list of Items. xSelect Item_Coll

Get Retrieves the configuration of
items.

Item_Coll Item_CfgColl

Set Creates items or overwrites
the configuration of existing
items.

Item_CfgColl Item_Coll

Delete Deletes an item. Item_Coll Item_Coll

Read Reads the value and status of
items.

Item_Coll Item_DataColl

Write Writes values or states to
items.

Item_DataColl Item_Coll

Invoke Sends a network management
command to a LONWORKS
device or calls special
functions on applications or
data points.

Item_Coll Item_Coll

All requests for information (Read and Get, and Delete and Invoke messages) are called with Item_Coll
as the collection type. Item_Coll is a collection of Item and can thus contain any type (also Item_Cfg
and Item_Data).

The Set-Response and Get-Request messages use the Item_CfgColl, which is a collection of types
containing configuration data. The Read-Response and Write-Request messages use the
Item_DataColl collection, which is a collection of types containing dynamic data.

Item_Data and Item_Cfg inherit from Item

i.LON SmartServer 2.0 Programmer’s Reference 2-11

You can cast an item to a more specialized type using meta data (the xsi:type attribute) that is passed
along with the application data. The xsi:type attribute describes the actual type of an item and is
passed as an attribute of the <Item> element. If the sent type is the expected base type (Item, Item_Cfg
or, Item_Data), no xsi:type attribute is sent. For more information on xsi types, go to
www.w3.org/TR/xmlschema-1/#Instance_Document_Construction.

2.5.7 SOAP Message Attributes

Version 4.0 SOAP request messages support some attributes, and the response messages from the
SmartServer always contain all attributes. If the data type of an item is not the declared as a base type
in the SOAP request (Item, Item_Cfg, or Item_Data), the xsi:type attribute will be added to the item
instance. Note that you do not have to set the xsi:type attribute in a SOAP request if you are using a
SOAP framework like .NET or one of Java’s SOAP frameworks. This is because the xsi:type attribute
is part of the XML Schema specification, and it will be added automatically.

For more information on the xsi:type attribute, see the Version 4.0 XML schema type (iLON100.xsd),
which is installed in the LONWORKS\iLon100\images\iLon100 4.0x\web\WSDL\v4.0 folder on your
computer when you install the SmartServer software.

2.5.8 Using xSelect Statements in SOAP Message Requests

You can use xSelect statements in List, Get, Read, and Delete messages to filter the items returned by
the function. The xSelect statement queries the item instances in a given data set and returns those
items meeting the specified criteria. The xSelect statement provides some of the functionality of the
xPath language defined by the W3C, except that you can compare strings to dates using compare
operators “<”, “>”, and “=”.

Each xSelect statement should specify an xsi (item) type. An xSelect statement may reference an item
identifier <UCPTname> and contain some predicates [predicate1] [predicate2]. In any xSelect
statement, the predicates may include a <UCPTlastUpdate> expression and a position () expression.
Common predicates used include contains and starts-with.

The predicates are processed as a cascade of queries. For example, you could first use a
<UCPTlastUpdate> query to get the items that were updated during a specific time period and then
query items 10 to 20 returned by the first result using a position() expression.

 Collection type Item type of

http://www.w3.org/TR/xmlschema-1/%23Instance_Document_Construction

i.LON SmartServer 2.0 Programmer’s Reference 2-12

The following code samples demonstrate supported xSelect statements.

 Example 1 – List or Get all channels on the SmartServer:
<iLonItem>
 <xSelect> = "//Item[@xsi:type="Channel_Cfg"] </xSelect>
</iLonItem>
Example 2 – List or Get all LONWORKS channels on the SmartServer that were updated after a specific
time:
<iLonItem>
 <xSelect>//Item[@xsi:type="LON_Channel_Cfg"][UCPTlastUpdate >"2008-04-01T00:00:00"]
 </xSelect>
</iLonItem>

Example 3 – List or Get all LONWORKS application devices of a specific type (by name) on a specific
channel.
<iLonItem>
 <xSelect>//Item[@xsi:type="LON_Device_Cfg"][contains(UCPTname,"Net/LON/DIO")]</xSelect>
</iLonItem>

Example 4 – List or Get all instantiated functional blocks on the SmartServer automated systems
device [i.LON App (internal)]:
<iLonItem>
 <xSelect>//Item[@xsi:type="Fb_Cfg"][starts-with(UCPTname,"Net/LON/")][UCPThidden=0]</xSelect>
</iLonItem>

Example 4 – List, Get, or Read all data points on the Digital Input 1 functional block on the internal
i.LON App device:
<iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]
 [starts-with(UCPTname, "Net/LON/iLON App/Digital Input 1/")]</xSelect>
</iLonItem>

Example 5 – Get all SNVT_switch data points on the SmartServer that were updated in the time line
defined by <UCPTlastUpdate>:
<iLonItem>
 <xSelect>
 //Item[@xsi:type="Dp_Cfg"][UCPTformatDescription="#0000000000000000[0].SNVT_switch"]
 [UCPTlastUpdate >"2008-04-01T00:00:00" and UCPTlastUpdate <"2008-04-07T00:00:00"]
 </xSelect>
</iLonItem>

Example 6 – List, Get, or Read the data points on the internal i.LON App device in the time line
defined by <UCPTlastUpdate> to return a maximum of the 11th to 29th data points:
<iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"] [starts-with(UCPTname,"Net/LON/iLON App/")]
 [UCPTlastUpdate > "2008-04-01T15:30:21Z" and UCPTlastUpdate < "2008-04-08T15:30:21Z"]
 [position()>10 and position()<30]
 </xSelect>
</iLonItem>

Example 7 – List or Get all instantiated Alarm Generators on the internal i.LON App device;
<iLonItem>
 <xSelect>//Item[@xsi:type="UFPTalarmGenerator_Cfg"]</xSelect>
</iLonItem>

Example 8 – Read the first 10 events scheduled in a Scheduler on the internal i.LON App device:
<iLonItem>

<xSelect>//Item[@xsi:type=”UFPTscheduler_Data”]
[UCPTname="Net/LON/iLON App/Scheduler"]
[UCPTeventFilter="EF_SCHEDULE"][position()<10]"

 </xSelect>
</iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 2-13

Example 9 – Select a formatter report:
xSelect = "//Item[@xsi:type=”TemplateManager_NVT_Cfg”][UCPTlanguage="enu"]

[UCPTname="#0000000000000000[0].standard"][position()>=0 and
position()<10]"

Notes:

• For List functions, you must include an xSelect statement in the SOAP message request.

• For Get, Delete, and Read functions, the xSelect statement in the SOAP message request is
optional.

o If a Get, Delete, or Read function is called only with an xSelect statement, the function returns
all items of the specified xsi type that meet the criteria specified in the xSelect statement.

o If a Get, Delete, or Read function is called with an xSelect statement and one or more item
instances, the xSelect statement is overlaid on the item instances. This means that the xSelect
statement is an and expression (not an or expression or an exclusive or expression).

• You can only filter for properties that are included in a message response (except for the
<UCPTlastUpdate> property, which you can always filter). In a List request of Dp_Cfg items
(data points on the Data Server) for example, you can filter on the <UCPTname> property, but
you cannot filter on the <UCPTformatDescription>. In a Get request of Dp_Cfg items, however,
you can filter on the <UCPTformatDescription> property because this property is returned in the
Get message response.

• The SmartServer can only process one item type (xsi:type) per SOAP message (e.g., only
Channel_Cfg, LON_Dp_Cfg, or UFPTalarmGenerator). This is also true for xSelect responses
(except for UCPTlastUpdate which is a special case), Set messages, and other SOAP commands.
The first item type specified is always the one returned in the response message.

• Not all properties can be filtered and not all filter combinations work.

2.5.8.1 xsi Types
The following section lists the common xsi (items) types that you will include in xSelect statements.
For a list of all the item types included in the SOAP interface, see the Version 4.0 XML schema type
(iLON100.xsd), which is installed in the LONWORKS\iLon100\images\iLon100 4.0x\web\WSDL\v4.0
folder on your computer when you install the SmartServer software

Driver Item xsi type
Network Network_Cfg
Channel Channel_Cfg
Device Device_Cfg
Functional Block Fb_Cfg

SmartServer Applications
Alarm Generator UFPTalarmGenerator_Cfg
Alarm Notifier UFPTalarmNotifier_Cfg
Analog Functional Block UFPTanalogFunctionBlock_Cfg
Calendar UFPTcalendar_Cfg
Data Logger UFPTdataLogger_Cfg
Digital Input UFPTdigitalInput_Cfg
Digital Ouput UFPTdigitalOutput_Cfg
Node Object UFPTnodeObject_Cfg
Pulse Counter UFPTpulseCounter_Cfg
Real-TimeClock UFPTrealTimeClock_Cfg

General (no Driver)

Scheduler UFPTscheduler_Cfg

i.LON SmartServer 2.0 Programmer’s Reference 2-14

Driver Item xsi type
Type Translator UFPTtypeTranslator_Cfg
Type Translator Rule UFPTtypeTranslator_Rule_Cfg

Data Point (configuration) Dp_Cfg
 Data Point (data) Dp_Data
 Data Point Reset Priority Dp_ResetPrio_Invoke

LONWORKS Network LON_Network_Cfg
 Channel LON_Channel_Cfg
 Device LON_Device_Cfg
 Router LON_Device_Router_Cfg
 RNI LON_Device_RNI_Cfg
 Functional Block LON_Fb_Cfg
 Network Variable LON_Dp_Cfg
 Configuration Property LON_Cp_Dp_Cfg
 Configuration Property File LON_Cp_File_Cfg

Modbus Network MOD_Network_Cfg
 Channel MOD_Channel_Cfg
 Device MOD_Device_Cfg
 Functional Block MOD_Fb_Cfg
 Data Point MOD_Cp_Dp_Cfg

M_Bus Network MBS_Network_Cfg
 Channel MBS_Channel_Cfg
 Device MBS_Device_Cfg
 Functional Block MBS_Fb_Cfg
 Data Point MBS_Cp_Dp_Cfg

Virtual Network Virtual_Network_Cfg
 Channel Virtual_Channel_Cfg
 Device Virtual_Device_Cfg
 Functional Block Virtual_Fb_Cfg
 Data Point Virtual_Cp_Dp_Cfg

2.6 Data Point References
The SmartServer has a more abstract and flexible method for referencing data points on the
SmartServer’s embedded applications by their parent functional blocks. Primarily, the data point type
is not specified by the tag name (for example, the SNVT_alarm_2 output tag is obsolete). In Version
4.0, each functional block representing a SmartServer embedded application has a collection of data
point references. The data point type is specified by the dpType attribute, and it is a reference to the
data point’s programmatic name as defined in the functional profile template. Some functional
blocks also extend the base data point reference XML type. In these cases, the <DataPoint> tag also
has an xsi:type attribute with the derived type.

The following code samples demonstrate how data points on the SmartServer’s embedded applications
are referenced. In the first example, the nvoAgAlarmFlag data point on an Alarm Generator functional
block is referenced. In the second example, the nvoDlLevAlarm data point on a Data Logger
functional block is referenced:
<DataPoint dpType="nvoAlarmFlag" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nvoAgAlarmFlag[0]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
</DataPoint>

i.LON SmartServer 2.0 Programmer’s Reference 2-15

<DataPoint dpType="nvoLevelAlarm" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlLevAlarm[0]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_alarm</UCPTformatDescription>
</DataPoint>

2.7 UCPTcurrentConfig
Each application on the SmartServer stores the namespace version of the client that last set its
configuration (via a Set function) its last configuration. When a client sends a List function in a SOAP
request, the SOAP response returns the UCPTcurrentConfig tag, which contains this information. The
client should check this tag because new namespaces may contain new or different tags that older
clients will not understand.

If a SmartServer responds with a newer UCPTcurrentConfig, the client should allow the user either to
continue using the older tool with the risk that it may overwrite changes made with a newer tool, or fail
and preserve the configuration created by the new tool.

The following code demonstrates the UCPTcurrentConfig tag returned by a SOAP response after
receiving a List function in a SOAP request.
<UCPTcurrentConfig>4.0</UCPTcurrentConfig>

2.8 Fault Structure
The faultcode and faultstring are now combined in a fault structure. If a fault structure exists, both the
faultcode and faultstring elements exist. This enables a client to check only for the existence of a fault
structure instead of having to check for both elements.

The following code demonstrates the fault structure used in Version 4.0.
<fault>
 <faultcode faultType="_error">4</faultcode>
 <faultstring xml:lang="en-US">fault string</faultstring>
</fault>

2.9 LonString type
The Version 4.0 XML schema declares the type E_LonString, which is a string type and has a value
that represents a LONWORKS value. The E_LonString also contains the LonFormat attribute which is a
string that contains the format description of the item. The WSDL uses the E_LonString type for
enumerations or element values that have format descriptions that depend on references to other data
point formats.

The following code sample demonstrates the LonFormat attribute of the E_LonString type.
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">100.0 1</UCPTvalue>
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch.value">100.0</UCPTvalue>
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch.state">1</UCPTvalue>
<UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
<UCPTpointStatus LonFormat="UCPTpointStatus">AL_NUL</UCPTpointStatus>

When you use the Read function on a data point on the Data Server (xsi type = Dp_Cfg), the
E_LonString type has a unit attribute that specifies the unit strings defined for the data point.
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch" Unit="value, state">0.0 0</UCPTvalue>

2.10 SOAP Message Examples
The following examples demonstrate how to use the Version 4.0 SOAP interface to get the
configuration of data point, write a value to a data point in a Web connection, and read the data in a
data logger.

i.LON SmartServer 2.0 Programmer’s Reference 2-16

2.10.1 Configuration Data

The following example demonstrates how to use a Get function to obtain the configuration of a data
point on the Data Server (Dp_Cfg) using the unique <UCPTname> of the data point.

Request Message
<?xml version='1.0' encoding='utf-8'?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2008-04-08T11:37:32.156-07:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>0300000A5BF2</p:UCPTuniqueId>
 <p:UCPTipAddress>10.2.124.53</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2008-04-08T18:22:52Z</p:UCPTlastUpdate>
 <p:UCPTprocessingTime>20</p:UCPTprocessingTime>
 </p:messageProperties></SOAP-ENV:Header>
<SOAP-ENV:Body>
 <Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Dp_Cfg">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch_3</UCPTname>
 </Item>
 </iLonItem>
 </Get>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response Message
<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2008-04-08T11:56:41.116-07:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>0300000A5BF2</p:UCPTuniqueId>
 <p:UCPTipAddress>10.2.124.53</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2008-04-08T18:22:52Z</p:UCPTlastUpdate>
 <p:UCPTprocessingTime>46</p:UCPTprocessingTime>
 </p:messageProperties>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Cfg" >
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch_3</UCPTname>
 <UCPTannotation>Dp_In;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-26T16:16:43.070-07:00</UCPTlastUpdate>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTlength>2</UCPTlength>
 <UCPTdirection LonFormat="UCPTdirection" >DIR_IN</UCPTdirection>
 <UCPTunit field="" >value, state</UCPTunit>
 <UCPTunit field="value" >% of full level</UCPTunit>
 <UCPTunit field="state" >state code</UCPTunit>
 <UCPTbaseType LonFormat="UCPTbaseType" >BT_STRUCT</UCPTbaseType>
 <UCPTmaxFields>2</UCPTmaxFields>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>
 <ValueDef>
 <UCPTindex>0</UCPTindex>
 <UCPTname>OFF</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch" >0.0 0</UCPTvalue>

i.LON SmartServer 2.0 Programmer’s Reference 2-17

 </ValueDef>
 <ValueDef>
 <UCPTindex>1</UCPTindex>
 <UCPTname>ON</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch" >100.0 1</UCPTvalue>
 </ValueDef>
 </Item>
 </iLonItem>
 </GetResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2.10.2 Web Binding

You can use the WebBinder application on the SmartServer to send a SOAP message when a data
point update occurs. When the source data point (Dp_Data) in a Web connection is updated, the
SmartServer sends a Write request message for the transaction, and the response is sent by the receiver,
which may be another SmartServer, an LNS server, or a WebBinder Target (a Web server that can
process SOAP requests). The following example shows a Write message that is sent by a SmartServer
and is configured by the WebBinder application.

Request Message
<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2008-04-08T11:14:56.289-07:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>0300000A5BF2</p:UCPTuniqueId>
 <p:UCPTipAddress>10.2.124.53</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2008-04-08T18:10:37Z</p:UCPTlastUpdate>
 <p:UCPTprocessingTime>102</p:UCPTprocessingTime>
 </p:messageProperties>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Data">
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTannotation>Dp_Out;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTaliasName>NVL_nvoClsValue_1</UCPTaliasName>
 <UCPTlastUpdate>2008-04-08T11:14:53.599-07:00</UCPTlastUpdate>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">0.0 0</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 </Item>
 </iLonItem>
 </Write>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response Message
<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2008-04-08T11:37:32.156-07:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>0300000A5BF2</p:UCPTuniqueId>
 <p:UCPTipAddress>10.2.124.53</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2008-04-08T18:22:52Z</p:UCPTlastUpdate>

i.LON SmartServer 2.0 Programmer’s Reference 2-18

 <p:UCPTprocessingTime>20</p:UCPTprocessingTime>
 </p:messageProperties>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <WriteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Data" >
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTannotation>Dp_Out;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTaliasName>NVL_nvoClsValue_1</UCPTaliasName>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch" >100.0 1</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef" >ON</UCPTvalue>
 </Item>
 </iLonItem>
 </WriteResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

2.10.3 Data Log Read

You can read the contents of the alarm logs and data logs stored on the SmartSever. The following
example demonstrates how to use the Read function to read the elements in a Data Log.

Request Message
<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2008-04-08T10:28:36.840-07:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>0300000A5BF2</p:UCPTuniqueId>
 <p:UCPTipAddress>10.2.124.53</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2008-04-07T23:45:19Z</p:UCPTlastUpdate>
 <p:UCPTprocessingTime>54</p:UCPTprocessingTime>
 </p:messageProperties>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item [@xsi:type="UFPTdataLogger_Data"]
 [UCPTlastUpdate > "2008-04-08T00:00:00.000"
 and UCPTlastUpdate <= "2008-04-08T12:00:00.000"]
 [position()< 3]
 </xSelect>
 <Item>
 <UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
 </Item>
 </iLonItem>
 </Read>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response Message
<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <p:UCPTtimeStamp>2008-04-08T11:30:31.272-07:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>0300000A5BF2</p:UCPTuniqueId>
 <p:UCPTipAddress>10.2.124.53</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2008-04-08T18:22:52Z</p:UCPTlastUpdate>
 <p:UCPTprocessingTime>83</p:UCPTprocessingTime>

i.LON SmartServer 2.0 Programmer’s Reference 2-19

 </p:messageProperties>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
 <ReadResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTdataLogger_Meta_Data" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
 <UCPTlastUpdate>2008-04-08T11:30:00.062-07:00</UCPTlastUpdate>
 <UCPTstart>2008-04-08T11:22:42.762-07:00</UCPTstart>
 <UCPTstop>2008-04-08T11:30:00.062-07:00</UCPTstop>
 <UCPTmodificationNumber>0</UCPTmodificationNumber>
 <UCPTlogLevel>8.778</UCPTlogLevel>
 <UCPTtotalCount>59</UCPTtotalCount>
 </Item>
 <Item xsi:type="UFPTdataLogger_Data" >
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTaliasName>NVL_nvoClsValue_1</UCPTaliasName>
 <UCPTlastUpdate>2008-04-08T11:22:42.762-07:00</UCPTlastUpdate>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">0.0 0</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 <UCPTmetaDataPath>//*[@xsi:type=“UFPTdataLogger_Meta_Data”]
 [UCPTname=“Net/LON/iLON App/Data Logger[0]”]
 </UCPTmetaDataPath>
 </Item>
 <Item xsi:type="UFPTdataLogger_Data" >
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTaliasName>NVL_nvoClsValue_1</UCPTaliasName>
 <UCPTlastUpdate>2008-04-08T11:22:52.952-07:00</UCPTlastUpdate>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">0.0 0</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 <UCPTmetaDataPath>//*[@xsi:type=“UFPTdataLogger_Meta_Data”]
 [UCPTname=“Net/LON/iLON App/Data Logger[0]”]
 </UCPTmetaDataPath>

 </Item>
 </iLonItem>

 </Read>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

i.LON SmartServer 2.0 Programmer’s Reference 3-1

3 SmartServer Applications and the SOAP/XML
Interface
This chapter provides an overview of the applications supported by the SmartServer, and of how you
can use the SOAP/XML interface to configure these applications and use the data they generate. This
chapter includes the following major sections:

• Overview of SmartServer Applications. This section provides a description of each of the
applications that the SmartServer supports.

• SmartServer XML Configuration Files. The configuration of each SmartServer application is
stored in an XML file. This section lists those XML files, and it indicates where they are stored
on the SmartServer.

• SmartServer Resource Files. The SmartServer resource files contain information you will need
when using the SOAP functions. This section describes how to use the resource files.

• SOAP Functions. The SmartServer’s SOAP interface includes a generic set of List, Get, Set,
Read, Write, and Delete functions that can be used by the SmartServer applications. Together,
these functions make up a symmetric interface. This section provides an overview of how to use
these functions.

• Performance Issues. This section lists performance issues you should consider when using the
SOAP/XML interface.

3.1 Overview of SmartServer Applications
You can use the SOAP/XML interface to configure the following SmartServer applications:

• Data Server. The SmartServer’s internal Data Server is a software component that abstracts any
data element of any bus into a data point. This enables the SmartServer’s built-in applications and
your custom SmartServer Web pages to operate on these abstractions without regard of the device
driver (e.g., LONWORKS, Modbus, M-Bus, Virtual, and Freely Programmable Module [FPM]).

• Web Binding. You can use the Web Binder application to create Web connections that allow
direct data exchange over a TCP/IP network between a SmartServer and another host device such
as a remote SmartServer, LNS Server, or a WebBinder Target Server (a Web server that can
process SOAP requests such as Apache or IIS).

• Data Logging. You can configure the SmartServer to record updates to the data points on your
network by creating Data Loggers. Each Data Logger will have its own log file, which will
contain log entries for each of the updates to the data points it is monitoring. These logs can be
downloaded and read with the Internet File Transfer Protocol (FTP), or retrieved with the Read
function.

• Alarming. You can configure the SmartServer to trigger alarms based on the values and statuses
of the data points in your control network. The SmartServer can be configured to update any data
point in the LONWORKS network, log the conditions to one or more data logs, or send out emails
notifying recipients of the alarms and the conditions that triggered them. Alarms can be
configured to shut off automatically when certain conditions are met, or they can be configured to
require manual clearance. You will create Alarm Generators and Alarm Notifiers to manage these
alarming tasks.

• Analog Functional Blocks. You can use the Analog Functional Block application to perform
statistical operations on the values of any of the data points in your network.

• Scheduling. You can use the SmartServer to create daily and weekly schedules, as well as
exception schedules and override schedules. These schedules can drive the inputs to data points
bound to any LONWORKS, M-Bus or Modbus device. You can create Schedulers and Calendars to

i.LON SmartServer 2.0 Programmer’s Reference 3-2

manage these tasks. You can also create a Real-Time Cock to create events based on sunrise and
sundown times.

• Type Translation. You can use the Type Translator application to translate data from one network
variable data type to another. You will need to create Type Translators, and optionally Type
Translator Rules, to translate your data.

3.2 SmartServer XML Configuration Files
The configuration of each SmartServer application is stored in an XML file. You will use the
following XML files to configure the applications of your SmartServer:

/root/config/network/<network>/<channel>/i.LON App||<device>/
#8000010128000000[4].UFPTdataLogger.xml

/root/config/network/<network>/<channel>/i.LON App||<device>/
#8000010128000000[4].UFPTalarmNotifier.xml

/root/config/network/<network>/<channel>/i.LON App||<device>/
#8000010128000000[4].UFPTalarmGenerator.xml

/root/config/network/<network>/<channel>/i.LON App||<device>/
#8000010128000000[4].UFPTanalogFunctionBlock.xml

/root/config/network/<network>/<channel>/i.LON App || <device>/
#8000010128000000[4].UFPTscheduler.xml

/root/config/network/<network>/<channel>/i.LON App || <device>/
#8000010128000000[4].UFPTcalendar.xml

/root/config/network/<network>/<channel>/i.LON App || <device>/
#8000010128000000[4].UFPTrealTimeClock.xml

/root/config/network/<network>/<channel>/i.LON App || <device>/
#8000010128000000[4].UFPTtypeTranslator.xml

The /root/config/software directory includes a sub-directory called TranslatorRules, which
contains several XML files you can use when configuring your Type Translators.

Note: The /root/config/software directory also contains a file called RNI.xml, which
contains configuration data used by the SmartServer remote network interface (RNI), and a file called
LSPA.xml, which contains configuration data used when the SmartServer connects to the
LonScanner™ Protocol Analyzer. There is no SOAP interface for these applications, and you should
not manually edit the RNI.xml or LSPA.xml files. You can configure the RNI application using the
SmartServer Web pages. For more information on this, see the i.LON SmartSever User’s Guide. For
more information on the LonScanner Protocol Analyzer, see the LonScanner Protocol Analyzer User’s
Guide.

3.2.1 Modifying the XML Configuration Files

Each application includes a Set function. You can use the Set function to create and write to the XML
file for that application. The SmartServer will modify the XML file, and the operating parameters of
the associated application, each time it receives a Set message.

As an alternative to using SOAP, you can modify the files manually using an ASCII-text or XML
editor, and then download them to the SmartServer via FTP. Echelon does not recommend this, as you
will need to reboot the SmartServer for it to read the downloaded files, and the SmartServer will not
perform error-checking on the downloaded XML files.

i.LON SmartServer 2.0 Programmer’s Reference 3-3

3.3 SmartServer Resource Files
There are many configuration properties you can configure with the SOAP functions described in this
document. This document provides a general description of each property, and other information you
will need when configuring each one, such as minimum and maximum values for scalar properties, and
maximum string lengths for string properties. This information is also contained in the SmartServer
resource files. In order to successfully send a SOAP message to the SmartServer, all data in the
message must be formatted as described in this document and in the resource files.

The SmartServer resource files are added to the LNS resource file catalog by the SmartServer software
installation utility, but they also exist locally on the SmartServer. In fact, like LNS, the SmartServer
maintains a catalog of resource files to use when formatting data in SOAP messages, network variable
updates, and web tag data from the SmartServer web server.

You can use the Node Builder Resource Editor, which is included on the SmartServer software
installation CD, to create new resource files for your own custom data point types and formats. Note
that when creating custom resource files on a PC, it is common to organize the files into subdirectories
such as:

C:\LonWorks\Types\User\YourCompany\YourResourceFiles.*

When adding these files to the SmartServer, it is the best practice to FTP them to a location on the
SmartServer flash disk matching the path on your computer:

/root/lonworks/types/User/YourCompnay/YourResourceFiles.*

You only need to FTP your own custom resource files to the SmartServer. If the name of your file set
is "MyResourceFiles", then you must copy every file which starts with the name "MyResourceFiles".
After you have copied these files to the SmartServer you must reboot to be able to use the new type
definitions and formats. During boot the SmartServer reads the resource files in this directory and
updates its local catalog accordingly.

3.3.1 Standard Network Variable Type (SNVT) Device Resource Files

SNVT device resource files describe the data structures within LonMark® SNVTs, and the formats
used to display SNVT data. On the SmartServer, you can find these files in the
/root/lonworks/types directory. They are named STANDARD.ENU, STANDARD.TYP,
STANDARD.FMT, and STANDARD.FPT.

The default format for a SNVT is its native format, as described in STANDARD.FMT. When you
add a data point to the SmartServer, you will assign that data point a format type. If a specific SNVT
format is desired for a particular data point, the <UCPTformatDescription> of that data point must be
set to the name of that SNVT format.

You can browse the entire SNVT device resource files online at http://types.lonmark.org.

3.3.2 Standard Configuration Property Type (SCPT) Device Resource Files

This is a set of files that describes the data structures within SCPTs, and also describes the formats
used to display SCPT data. On the SmartServer, these files can be found in the directory
/root/lonworks/types directory. These files are named STANDARD.ENU,
STANDARD.TYP, STANDARD.FMT and STANDARD.FPT.

Many configuration properties that are used by the SmartServer applications are based on the SCPTs
defined in these files. The information provided in this document, and in the SCPT resource files, will
help you determine what values to assign to the SCPTs referenced by the SmartServer.

You can browse the entire SCPT device resource files online at http://types.lonmark.org.

http://types.lonmark.org/
http://types.lonmark.org/

i.LON SmartServer 2.0 Programmer’s Reference 3-4

3.3.3 User-Defined Network Variable Type (UNVT) Device Resource Files

Device manufacturers create UNVT device resource files to describe non-standard, manufacturer
specific network variables. Using the same mechanisms as the standard resource files, these files
describe how to format data from a particular manufacturer's device. On the SmartServer, you can find
all device resource files in the /root/lonworks/types directory.

To specify UNVT formats a fully qualified format name is required as follows:

#<progID>[<selector>].<format name>

In this syntax, the “#”, “[“, “]” and “.” characters are literal characters. A hex byte string (in the
“RAW_HEX_PACKED” format described below) represents the program ID. The selector is a one-digit
string. It represents a filter that indicates relevant parts of the program ID, and may be one of the
following:

0 - Standard
1 - Device Class
2 - Device Class and Usage
3 - Manufacturer
4 - Manufacturer and Device Class
5 - Manufacturer, Device Class, and Device Subclass
6 - Manufacturer, Device Class, Device Subclass, and Device Model
The format name syntax is similar to that used for SNVT types, except that the type name starts with
“UNVT” instead of “SNVT”. For example:

#800001128000000[4].UNVT_date_event

3.3.4 User-Defined Configuration Property Type (UCPT) Device Resource
Files

This is a set of files that describes the data structures within UCPTs and also describes the formats
used to display UCPT data. On the SmartServer, these files may be found in the
/root/lonworks/types directory. The files are named BAS_Controller.ENU,
BAS_Controller.TYP, BAS_Controller.FMT and BAS_Controller.FPT.

Echelon added these UCPTs for configuration properties used by SmartServer applications that have
no SCPT definition. You can browse the UCPT resource files online at http://types.echelon.com.

3.3.5 Data Point Templates

There is a set of data point templates in the root/config/template/lonworks/Dp directory that provide
the default configurations for new instances of specific data point types. These XML files contain the
default presets and the default heartbeat, throttle, and offline configuration properties for a number of
common data types, including SNVT_switch, SNVT_occupancy, SNVT_temp (including #SI and
#US formats), and SNVT_temp_f (including #SI and #US formats). This is very useful for working
with the data points of the external devices that you may add to the SmartServer.

3.3.6 Data Formatting

In order to keep the SOAP/XML interface neutral across regions, most of the rules for formatting data,
which would normally be changeable in LNS, are not changeable on the SmartServer. The one
exception is the support of measurement system locale, which was introduced in version 1.1 of the
SOAP/XML interface. The following list describes the various regional settings used by the
SmartServer SOAP / XML interface:

Decimal Symbol – Always period "."

http://types.echelon.com/

i.LON SmartServer 2.0 Programmer’s Reference 3-5

Precision – Single floats always use 7 digits of precision, including digits before and after the decimal
point. Double floats always use 14 digits of precision. For the rest of the base types, precision is
determined by the type definition

Digit Grouping Symbol – Always comma ","

Digit Grouping – Always in the form "123,456,789"

Negative Sign Symbol – Always the minus sign "-"

Negative Number Format – Always "-1.1"; negative symbol in front, and no space between the
symbol and the number

List Separators – If the format uses the localized list separator symbol vertical bar "|", the i.LON
SmartServer will replace it with comma ",". However, if you define a new type in the NodeBuilder
Resource Editor which is a structure, array or union, the default list separator is space " ". The
localized list separator must be explicitly specified in the format.

Measurement System – The SmartServer does not use localization settings for measurement system.
The measurement system used to display a formatted value is determined by the
UCPTformatDescription property of the data point. For example, if you have a data point whose
format is defined as SNVT_temp_f#US, then the UCPTvalue written to a data point Read function will
be in Fahrenheit.

If that data point is an input to the Alarm Generator, then the format of a property which specifies a
comparison value, a delta, or an offset like UCPThighLimit2Offset will also be in US units when you
read it with a Get function. Furthermore, you would have to use US units when setting the property
with a Set function.

You should note that the value stored in the XML file will always be in SI units so that XML files may
be shared between SmartServers. The rule used by the applications is that the format of the primary
data point for the application instance determines the format of measurement system dependent
properties, like offsets, comparison values and deltas.

3.4 SOAP Functions
The SOAP interface includes a generic set of List, Get, Set, and Delete functions that can be used by
the SmartServer applications. Together, these functions make up a symmetric interface. You can use
the response from the List function as the input to the Get function. You can use the response from the
Get function as the input to the Set function.

The SOAP interface also includes Read and Write methods that can be use to read and write values to
the data points on the Data Server, read entries in a data log, alarm log, or scheduler or calendar event
log, and update entries in an alarm log. The Read and Write functions also provide a symmetric
interface. You can use the output from the Read function as the basis for your input to the Write
function.

This section provides an overview of the functions in the SOAP interface, and it briefly describes how
you can use them.

3.4.1 List Functions

Use the List function to retrieve the names of the application instances or items of a specific type on
the SmartServer. For example, the List function can return a list containing the names of the Alarm
Generators, Data Loggers, Schedulers, or other functional blocks representing the SmartServer’s
embedded applications that have been instantiated. Similarly, you can use the List function to return a
list of the data points on the Data Server (Dp_Cfg), or retrieve a list of the channels (Channel_Cfg), the
LONWORKS application devices (LON_Device_Cfg), the Modbus devices (MOD_Device_Cfg), and
other network items on the SmartServer.

i.LON SmartServer 2.0 Programmer’s Reference 3-6

3.4.2 Get Functions

You can use the Get function to retrieve the configuration of any application instance or item that you
have added to the SmartServer. For example, you could use the Get function to retrieve the
configurations of the Alarm Generators, Data Loggers, Schedulers, and other application instances that
have been added to the SmartServer. Similarly, you could use the Get function to retrieve the
configurations of the data points on the Data Server (Dp_Cfg), or retrieve the LONWORKS application
devices (LON_Device_Cfg), the Modbus devices (MOD_Device_Cfg), and other network items on the
SmartServer. Note that you must reference the item whose configuration is to be retrieved by its
<UCPTname>.

Consider a scenario where you have used a List function to retrieve a list containing the <UCPTname>
of each Alarm Generator that has been added to the SmartServer. You could use the list as the input
for the Get function. The Get function would return the configuration of all the Alarm Generators
included in the list. You can also use the Get function to retrieve the configuration of a single Alarm
Generator, by supplying the <UCPTname> of the Alarm Generator functional block as the input.

3.4.3 Set Functions

You can use the Set function to write to each of the XML files described in the previous section.
When you invoke the Set function for an application for the first time, the associated XML file will be
created in the root/config/network/<network>/<channel>/iLONApp ||<device> directory on the
SmartServer, if it has not already been created. All data defined in the input supplied to the function
will be added to the XML file. Following this, you can use the Set function to add more data to the
XML file or to overwrite existing data.

For example, the first time an application invokes the Set function to create an Alarm Generator
functional block, the #8000010128000000[4].UFPTalarmGenerator.xml will be created in the
root/config/network/<network>/<channel>/iLONApp ||<device> directory of the SmartServer (if it
does not already exist based on the creation of another alarm generator functional block instance).
The file will contain an element for each Alarm Generator defined in the input passed to the function.

After its initial invocation, you can use Set function to overwrite the values of the properties defined
for the Alarm Generator application. You can also use it to add new Alarm Generators to the XML
file, or to overwrite the configuration of existing Alarm Generators.

When using the Set function to create an item such as an Alarm Generator, you should consider using
output supplied by the corresponding Get function as the basis for your input. The following
procedure describes how you might do so using the Alarm Generator functions. You could use this
algorithm when programming any of the SmartServer applications.

1. Invoke the List function to generate a list of Alarm Generators that have been added to the
SmartServer. This list includes the <UCPTname> of each Alarm Generator.

2. Invoke the Get function, using the list returned by the List function as the input. The function will
return the configuration of each Alarm Generator included in the list output.

3. Review the output from step 2, and choose an Alarm Generator to serve as your “default” Alarm
Generator. The Get output for this Alarm Generator will serve as the basis for the next Alarm
Generator you create. Modify the values of each property in the response returned by Get to
match the configuration you want for the new Alarm Generator. This will be more efficient than
building the input for the Set function from scratch.

Note: You must change the <UCPTname> of the Alarm Generator when using this algorithm.
Otherwise, the next step of this procedure will overwrite the configuration of the default Alarm
Generator you have chosen.

4. Invoke the Set function, using the modified response from Step 3 as input. The new item is
successfully created, without recreating an input that defines an entire Alarm Generator
configuration from scratch, and with minimal risk of format errors. Chapters 4-12 will clarify the
benefits of this algorithm.

i.LON SmartServer 2.0 Programmer’s Reference 3-7

3.4.4 Read Functions

You can use the Read function to read the value, status, or priority of a data point on the Data Server
(Dp_Cfg), read the entries in an alarm log or data log, and read the events scheduled in a Scheduler or
Calendar. To use the Read function, you need to provide the <UCPTname> of the item to be read.
This could be a data point, or an Alarm Notifier, Data Logger, Scheduler, or Calendar functional block.
The Read function returns a list of <Item> elements of a Dp_Data type for each data point referenced
by the input you supplied to the function.

3.4.5 Write Functions

You can use the Write function to update the value, priority, or status of a data point on the Data Server
or to update an entry in an Alarm Log. To use the Write function, you need to provide an <Item>
element of a Dp_Data type that includes the <UCPTname> of the item to be updated, which could be a
data point or an Alarm Notifier functional block. When using the Write function, you can use the
output supplied by the corresponding Read function as the basis for your input.

3.4.6 Delete Functions

Use the Delete functions to delete items from an application. For example, you can use the Delete
function to delete an Alarm Generator functional block or to delete a data point on Data Logger. To
delete an item, you must provide an <Item> element of a specific xsi:type (corresponding to the item’s
driver) that includes the <UCPTname> of the item to be deleted.

3.5 Performance Issues
The SmartServer contains 64 MB of RAM, which allows for complicated application configurations
and extensive network use. However, even with this amount of memory, it is still possible for very
high levels of network traffic to the SmartServer, especially using the SOAP interface, to eventually
exhaust its memory. This could result in delays in network access of the SmartServer, performance
problems for the SmartServer applications, or in the worst case even a reboot of the SmartServer.

If your SmartServer exhibits some of these symptoms, you should consider reducing the level of
network traffic to it. The following numbers are guidelines that apply to the use of the SmartServer’s
SOAP interface. While they are not absolute limits or guarantees of performance, they may be helpful
to follow when attempting to manage the SmartServer’s network traffic load or troubleshoot a
performance problem.

As a result, you should follow these guidelines when programming SOAP applications:

• Limit the number of data points referenced in a single Get or Read message to no more than 100.

• Limit the number of alarm log records read in a single message to no more than 100. For more
information on reading alarm log records, see Chapter 7.

• Limit the number of data log records read in a single message to no more than 150. For more
information on reading data log records, see Chapter 5.

• If the combined XML file sizes for a given application exceed 100 KB, do not try to read all the
configuration data for that application in a single Get message. This could potentially happen with
the Scheduler application if all of its functional blocks were used, or possibly with the Alarm
Notifier application.

• Do not send a request message larger than 100 KB. Some possible examples of this might be
using a single Set message to define more than 100 data points or write to 40 Alarm Notifiers.

• Limit the number of simultaneous SOAP clients to no more than the number of Web tasks
specified in the WebParams.dat file on the SmartServer, which is eight. Also note that you
should not open more than two or three Web browsers for a given SmartServer.

i.LON SmartServer 2.0 Programmer’s Reference 3-8

i.LON SmartServer 2.0 Programmer’s Reference 4-1

4 Using the SmartServer Data Server
The SmartServer’s internal Data Server is a software component that abstracts any data element of any
bus into a data point. This enables the SmartServer’s built-in applications and your custom
SmartServer Web pages to operate on these abstractions without regard of the device driver (e.g.,
LONWORKS, Modbus, M-Bus, Virtual, and Freely Programmable Module [FPM]).

Data points provide the SmartServer applications and Web server with a generic, open way to handle
any piece of information in any type of network, such as the current value of a network variable in an
LNS-managed network, or an explicit message in a closed LONWORKS system. The Data Server
handles all the details of these data point that are required by the various applications of the
SmartServer, such as how often a data point should be polled, its default value, its heartbeat, its current
status, and its current value.

At the Data Server layer, all data points have the same set of properties, regardless of the network or
device to which each data point is local. This is made possible by the drivers that exist for each data
point type, which handle communication between the Data Server and the physical network to which
each data point is local.

You can use a standard network management tool for the particular data point type to configure each
driver on the SmartServer. For example, you could use an LNS-based network management tool to
configure the data points on the SmartServer’s internal automated systems device (i.LON App). This
layer of abstraction between the drivers and the Data Server provides a mechanism for all SmartServer
applications to use data points of all types in the same way. The Data Server also ensures that the
configuration, status and value of each data point recognized by the tools you can use to configure the
SmartServer remain synchronized with each other, and within the device to which the data point is
local. The tools you can use to configure the SmartServer include custom SOAP applications, the
LonMaker tool, built-in SmartServer Web pages, and custom SmartServer Web pages.

The data elements that that can be abstracted by the Data Server include the following:

• The network variables and configuration properties on the SmartServer’s LON driver, which
include the following:

o The network variables and configuration properties on the SmartServer’s internal automated
systems device (Net/LON/i.LON App). The i.LON App device contains functional blocks
representing the SmartServer’s built-in applications. These data points were referred to as
NVLs in Version 3.0.

o The network variables and configuration properties of the LONWORKS devices connected to
the SmartServer. These data points were referred to as NVEs in Version 3.0.

o The system network variables on the SmartServer that maintain constant values for the
SmartServer’s built-in applications (e.g., Net/LON/iLON App/Alarm
Generator[0]/CompareDP). These data points were referred to as NVCs in Version 3.0.

• The registers of M-Bus and Modbus devices on the SmartServer’s M-Bus and Modbus drivers.

• The network variables on the SmartServer’s Virtual driver. This includes the network variables of
the SmartServer’s internal systems device (Net/VirtCh/i.LON System), which contain connection
manager and LonTalk statistics, and the network variables on Interoperable Self-Installation (ISI)
devices connected to the SmartServer. These data points were referred to as NVVs in Version 3.0.

• The network variables and configuration properties on custom FPM drivers created with the
i.LON SmartServer Programming Tools. You can use FPM drivers as gateways to legacy
systems or nonnative networks such as BACnet and CAN (requires an external interface, sold
separately). For more information on creating FPM drivers, see the i.LON SmartServer
Programming Tools User’s Guide.

The following figure shows the relationship between the buses supported by the SmartServer, the Data
Server, and the SmartServer’s built-in applications.

i.LON SmartServer 2.0 Programmer’s Reference 4-2

Two of the most important properties in the Data Server for any data point are the <UCPTpointStatus>
and <UCPTvalue> properties. The <UCPTpointStatus> property represents the current status of the
data point. The <UCPTvalue> property represents the current value of the data point. The Data Server
updates these properties in real time, and they are very useful to many SmartServer applications.

For example, you could set up an Alarm Generator that will update the <UCPTpointStatus> of a data
point to an alarm condition each time the <UCPTvalue> of that data point reaches a certain level. You
could then set up an Alarm Notifier that will send out an alarm notification each time the
<UCPTpointStatus> of the data point is updated to that condition. These applications are described in
more detail later in this document.

A data point list is generated for each data point when it is created and added to the Data Server. Once
you have created the data points for your SmartServer and added them to the Data Server, you can
reference these data points when using SmartServer applications such as the Analog Function Block,
Scheduler, Calendar, Type Translator, Alarm Generator, and Alarm Notifier. When any of these
applications reference a data point, that application is added to the data point list for the data point, and
the application will be notified each time the data point is updated. In this fashion, each application
has current access to all the network information pertaining to the data points it is using.

This chapter describes how to create data points and add them to the Data Server. Echelon
recommends that you restrict all networks to a maximum of 1,000 data points.

4.1 Creating and Modifying the Data Point XML Files
The SmartServer stores the data points on the Data Server in Dp.XML files under the parent
network/channel/device directory of the data points. Consider the following examples:

i.LON SmartServer 2.0 Programmer’s Reference 4-3

• The data points on the SmartServer’s internal automated systems device (i.LON App), which
contains the functional blocks representing the SmartServer’s built-in applications, are stored in a
Dp.xml file in the root/config/network/Net/LON/iLONApp directory on the SmartServer flash
disk by default.

• The data points for an external LONWORKS digital input/output device connected to the
SmartServer might be stored in a Dp.xml file in the root/config/network/Net/LON/DIO-2
directory on the SmartServer flash disk.

• The data points on the SmartServer’s internal systems device (i.LON System), which contains
Interoperable Self-Installation (ISI) data points and data points containing connection manager and
LonTalk statistics, are stored in a Dp.xml file in the root/config/network/Net/VirtCh/iLONSystem
directory on the SmartServer flash disk.

• Note: The directories containing the Data Server’s Dp.xml files also contain separate
<driver>_Dp.xml files in which the data points’ driver properties are stored. The properties in
these files relate to a specific bus—LONWORKS, Modbus, M-Bus, Virtual, or FPM—and not the
Data Server. These driver-specific properties and how to use the List, Get, Set, and Delete
functions on them are described in Chapters 14–17.

You can manage the Dp.xml files manually using an XML text editor, and download them to the
root/config/network/<network>/<channel>/<device> directory of the SmartServer
via FTP. Echelon does not recommend this, as the SmartServer will require a reboot to read the
configuration of the downloaded XML files. Additionally, the SmartServer performs error checking
on all SOAP messages it receives before writing to the XML files. It will not perform error checking
on any XML files you download via FTP, and so the application may not boot properly.

However, if you plan to create or modify any XML files manually, you should review the rest of this
chapter first. This chapter describes the elements and properties in the Data Server configuration files
that define each data point’s configuration.

4.2 Overview of the Data Point XML File
The Dp.xml files on the SmartServer store the configurations of the data points that you have added to
the SmartServer under their respective parent network/channel/device directories. Each data point is
signified by an <Item> element of a Dp_Cfg type in the XML file. The configuration properties
contained in each <Item> element define the configuration of a data point, and are described later in
this chapter.

You can create new data points using the Set function, or by manually editing the Dp.xml file. You
can read the current value and status of a data point using the Read function, and you can write updated
values to data point using the Write function.

The following code represents a snippet of a sample Dp.xml file with one data point of an external
LONWORKS digital input/output device connected to the SmartServer:
<iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Cfg">
 <UCPTname>Net/LON/DIO-3/Digital Output[0]/DO_Digital_1</UCPTname>
 <UCPTannotation>Dp_In;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-17T16:00:02.202-07:00</UCPTlastUpdate>
 <UCPTdescription>Digital value to output</UCPTdescription>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTlength>2</UCPTlength>
 <UCPTdirection LonFormat="UCPTdirection">DIR_IN</UCPTdirection>
 <UCPTunit field="value">% of full level</UCPTunit>
 <UCPTunit field="state">state code</UCPTunit>
 <UCPTbaseType LonFormat="UCPTbaseType">BT_STRUCT</UCPTbaseType>
 <UCPTmaxFields>2</UCPTmaxFields>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>

i.LON SmartServer 2.0 Programmer’s Reference 4-4

 <ValueDef>
 <UCPTindex>0</UCPTindex>
 <UCPTname>OFF</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">0.0 0</UCPTvalue>
 </ValueDef>
 <ValueDef>
 <UCPTindex>1</UCPTindex>
 <UCPTname>ON</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">100.0 1</UCPTvalue>
 </ValueDef>
 </Item>
</iLonItem>

4.3 Data Server SOAP Interface
You can use the SOAP interface to perform the following functions on a data point on the Data Server.

Function Description

List List the name of each data point that you have added to the Data
Server.

Get Retrieve the configuration of a data point.

Set Create a data point and add it to the Data Server, or modify the
configuration of an existing data point.

Read Read the current values, statuses, and priorities of one or more
data points.

Write Write to the current values, statuses, and priorities of one or more
data points.

Invoke Used with Dp_ResetPrio_Invoke xsi type to reset the priority
level assigned to a data point.

Delete Remove a data point from the Data Server.

Note: Section 21.1.1, Reading and Writing Data Point Values in Visual C# .NET, includes a C#.NET
programming example demonstrating how to use the Data Server SOAP interface to read and write
data point values. Section 21.2.1, Reading and Writing Data Point Values in Visual Basic.NET,
includes a Visual Basic .NET example demonstrating how to do this.

Section 22.3.1, Reading and Writing Data Point Values in Java, includes a Java example
demonstrating how to read and write data point values.

4.3.1 Using the List Function on the Data Server

You can use the List function to retrieve a list of data points that have been added to the Data Server.
The List function takes an <iLonItem> element that has an xSelect statement querying items of a
Dp_Cfg type as its input, as shown in the example below. The List function returns an <Item> element
for each data point that you have added to Data Server.

Request (all data points on the Data Server)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]</xSelect>
 </iLonItem>
</List>

i.LON SmartServer 2.0 Programmer’s Reference 4-5

You can use additional filters in the xSelect statement to return a specific set of data points on the Data
Server. These filters include the data point’s <UCPTname> and <UCPTlastUpdate> properties, and its
position on the data server.

Request (return all data points on the internal SmartServer automated systems device [i.LON
App])
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]
 [starts-with(UCPTname,"Net/LON/iLON App")]
 </xSelect>
 </iLonItem>
</List>

Request (return the first 5 data points on the Net/LON/DIO-1/Digital Encoder functional block
that have been updated since 2008-03-17T00:00:00)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"][position()<5]
 [starts-with(UCPTname,"Net/LON/DIO-1/Digital Encoder")]
 [UCPTlastUpdate>"2008-03-17T00:00:00"]
 </xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/LON/DIO-3/Digital Encoder[0]/DE_D1_1</UCPTname>
 <UCPTannotation>Dp_In;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/DIO-3/Digital Encoder[1]/DE_D1_2</UCPTname>
 <UCPTannotation>Dp_In;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/DIO-3/Digital Encoder[0]/DE_D2_1</UCPTname>
 <UCPTannotation>Dp_In;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/DIO-3/Digital Encoder[1]/DE_D2_2</UCPTname>
 <UCPTannotation>Dp_In;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/DIO-3/Digital Encoder[0]/DE_D3_1</UCPTname>
 <UCPTannotation>Dp_In;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</ListResponse>

4.3.2 Using the Get Function on the Data Server

You can use the Get function to retrieve the configuration of any data point that you have added to the
SmartServer’s Data Server. The input parameters you supply to the function will include one or more
<Item> elements. Each <Item> element includes a <UCPTname> property that you can use to specify
the data point to be returned, as well as any number of child elements you can use to identify the data
points whose configurations are to be returned.

i.LON SmartServer 2.0 Programmer’s Reference 4-6

Alternatively, you can specify one or more data point properties such as <UCPTformatDescription>in
an xSelect statement to filter the items returned by the Get function.

Note: You should not attempt to retrieve the configuration of more than 100 data points with a single
call to the Get function.

Request (return all SNVT_switch data points on the internal SmartServer automated systems
device [i.LON App])
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]
 [starts-with(UCPTname,"Net/LON/iLON App")]
 [UCPTformatDescription="#0000000000000000[0].SNVT_switch"]
 </xSelect>
 </iLonItem>
</List>

Request (return a specific data point)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/DIO-3/Digital Encoder[0]/DE_D1_1</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Cfg">
 <UCPTname>Net/LON/DIO-3/Digital Encoder[0]/DE_D1_1</UCPTname>
 <UCPTannotation>Dp_In;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-17T13:36:48.460-07:00</UCPTlastUpdate>
 <UCPTdescription>Digital encoder input 1. This is the least-significant
bit</UCPTdescription>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTlength>2</UCPTlength>
 <UCPTdirection LonFormat="UCPTdirection">DIR_IN</UCPTdirection>
 <UCPTunit field="value">% of full level</UCPTunit>
 <UCPTunit field="state">state code</UCPTunit>
 <UCPTbaseType LonFormat="UCPTbaseType">BT_STRUCT</UCPTbaseType>
 <UCPTmaxFields>2</UCPTmaxFields>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>
 <ValueDef>
 <UCPTindex>0</UCPTindex>
 <UCPTname>OFF</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">0.0 0</UCPTvalue>
 </ValueDef>
 <ValueDef>
 <UCPTindex>1</UCPTindex>
 <UCPTname>ON</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">100.0 1</UCPTvalue>
 </ValueDef>
 </Item>
<iLonItem>

The Get function returns an <Item> element for each data point referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the data point is added to the DataServer. You can write to these data point properties with the
Set function. The following table describes these properties.

i.LON SmartServer 2.0 Programmer’s Reference 4-7

Property Description

<UCPTname> The name of the data point in the following format:
<network/channel/device/functional block/data point>.

<UCPTannotation> The direction of the data point (Dp_In, Dp_Out, or Dp_In_Out
[unspecified]), and its xsi type, which corresponds to the bus on
which the data point resides (e.g., LON_Dp_Cfg for a
LONWORKS data point) . This determines the icon used to
represent the data point in the navigation pane on the left side of
the SmartServer Web interface.

<UCPThidden> A flag indicating whether the data point is hidden or shown in
the navigation pane on the left side of the SmartServer Web
interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
data point was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the data point. This can be a
maximum of 201 characters long.

<UCPTformatDescription> The data point's program ID; data type (SNVT, SCPT, UNVT,
UCPT, or built-in data type); and format (e.g., SI metric or US
customary if the type has multiple formats such as
SNVT_temp_p). The format description is displayed in the
following format:

#<manufacturer ID>[scope selector].<type name>[#format] .

This determines many factors about the data point, including the
type of values it takes and its base type. This could be any

i.LON SmartServer 2.0 Programmer’s Reference 4-8

Property Description

standard (SNVT) format type included in the resource files on
the SmartServer, or any user-defined (UNVT) format type
included in resource files uploaded to the SmartServer. For
more information on the resource files, see SmartServer
Resource Files.

If you do not set this property, it is set to RAW_HEX and the
data point uses raw hex values.

The SNVT format types included in the SmartServer resource
files are also listed and described in the SNVT Master List,
which can be downloaded from Echelon’s Support Web site at:
www.echelon.com

<UCPTlength> Specifies the size (in bytes) of the data point.

<UCPTdirection> Specifies whether the data point is an input data point (DIR_IN),
output data point (DIR_OUT), or has an unspecified direction
(DIR_NUL).

<UCPTpersist> A flag indicating that the value stored in the data point persists
through SmartServer reboots. If this property is set to 1, the last
data point value is stored in the <UCPTdefOutput> property.
Configuration properties are marked as persistent by default.

<UCPTdefOutput> Optional. The value to be assigned to this data point after a
power-up of the device or during an override of the functional
block.

For external data points and slave devices, Echelon does not
recommend that you define this property, as the value entered
here will be sent to the external device after a power-on.

Note: You can use the Set function to change this value in the
Data Server. However, you must program your application to
enforce the new value, as the SmartServer will continue to
enforce the default value taken from the resource files.

<UCPTunit> This property is a string up to 227 characters long that describes
the units the value in which a data point is measured. It is based
on the network variable type assigned to the data point. A
default value will be assigned to this property if a unit for the
network variable type chosen for the data point exists in the
resource files on the SmartServer.

For scalar and enumerated data points, this property specifies
the units of measures used by the data point. For example, the
unit string of a SNVT_temp_f data point is °F. The unit string
is defined by resource files.

For structured data points, the fields within the data point are
specified in a series of <UCPTunit> properties if the unit strings
can be edited. Using a SNVT_switch data point for example,
value and state fields will be specified in a series of
<UCPTunit> properties with their respective units of measure
(“% of full level” and “state code”). You can use the Set

http://www.echelon.com/

i.LON SmartServer 2.0 Programmer’s Reference 4-9

Property Description

function to edit the unit strings of data point fields.

<UCPTbaseType> This read-only property is assigned to the data point
automatically, and is based on the point’s
<UCPTformatDescription>. It defines the base type of the data
point, as defined in the base_type_t enumeration in the
BAS_Controller resource files for the SmartServer.

<UCPTmaxFields> This property specifies the maximum number of fields that the
data point may have. For scalar and enumerated data point this
property is 0 if the unit string cannot be edited, or it is 1 if the
unit string is editable.

For structured data points, this property is 2 or more based on
the SNVT or UNVT used by the data point. For example, the
default value in <UCPTmaxFields> for a SNVT_switch data
point will be 2 (value and state), and it will be 3 for a
SNVT_setting data point (function, setting, and rotation).

<SCPTmaxSendTime> This property applies to output data points. It defines the
maximum amount of time that may elapse before the data point
is updated on the network, if it is set to a non-zero value.

For example, if a SNVT_temp value data point is changing by
one degree every 10 seconds and this property is set to two
seconds, the SmartServer will update the value of the data point
on the network every two seconds, even though the value of the
data point is not changing more than once every 10 seconds.
The receiver can use this output as a heartbeat. The receiver
will know something is wrong if he or she does not receive an
update every two seconds.

<SCPTminSendTime> This property applies to output data points, and defines the
minimum amount of time that may elapse between data point
updates if it set to a non-zero value.

For example, if a SNVT_temp value data point is changing by
one degree every half second and this value is set to two
seconds, the data point will only be updated every two seconds
with the latest value, even though the value changes more
frequently than that.

<SCPTmaxRcvTime> This property is used to control the maximum time that can
elapse after an update to a bound network input before another
update can occur. If this period elapses without an update, the
<UCPTpointStatus> of the data point will be updated to
AL_OFFLINE. You could create an Alarm Notifier to trigger
an alarm notification when this happens. For more information
on Alarm Notifiers, see Chapter 7, Alarm Notifier.

The valid range for this property is any value between 0.0 sec
and 6,553.4 seconds. Setting <SCPTmaxRcvTime> to the
default value of 0.0 disables the receive failure mechanism.

<UCPTminValue> Optional. This value is initially taken from the resource files, if

i.LON SmartServer 2.0 Programmer’s Reference 4-10

Property Description

it exists for the data point type selected. This value represents
the minimum value the data point can be updated to.

Note: You can use the Set function to change this limit in the
Data Server. However, you must program your application to
enforce the new limit, as the SmartServer will continue to
enforce the limit taken from the resource files.

<UCPTmaxValue> Optional. This value is initially taken from the i.LON 100
resource files, if it exists for the data point type selected. This
value represents the maximum value the data point can be
updated to.

Note: You can use the Set function to change this limit in the
Data Server. However, you must program your application to
enforce the new limit, as the SmartServer will continue to
enforce the limit taken from the resource files.

<UCPTinvalidValue> Optional. The invalid value for the data point. If the data point
is updated to this value, the <UCPTpointStatus> of the data
point will be set to AL_VALUE_INVALID. The status will be
returned to a normal condition (AL_NO_CONDITION) as soon
as the value is set to a valid value again. A default value will be
assigned to the <UCPTinvalidValue> property based on the
<UCPTformatDescription> selected, if an invalid value is
defined for the selected format in the resource files.

You could create an Alarm Notifier to trigger an alarm
notification when an invalid value is written to a data point and
the data point’s status is updated to AL_VALUE_INVALID.
For more information on Alarm Notifiers, see Chapter 7, Alarm
Notifier.

<ValueDef> The <ValueDef> elements specify preset value definitions that
can be assigned to the data point. You can use these preset
values to update the value of the data point when other
SmartServer applications such as the Event Scheduler or the
Alarm Notifier reference them.

Each <ValueDef> element includes three properties:

• <UCPTindex>. The index value assigned to the preset.

• <UCPTname>. The name of the preset. You will use this
name when referencing the preset value with other
applications.

• <UCPTvalue>. The value the data point should be assigned
to when this preset is used. The values entered here must
be in valid format, as defined by the network variable type
assigned to the data point.

4.3.3 Using the Set Function on the Data Server

You can use the Set function to overwrite the configuration of a data point, or to create a new data
point and add it to the Data Server. The input parameters you supply to the function will include one

i.LON SmartServer 2.0 Programmer’s Reference 4-11

or more <Item> elements. Each <Item> element includes a <UCPTname> property that specifies a
unique data point to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) data point within the Data Server. This set of properties is the same, whether you are
creating a new data point or modifying an existing data point. The previous section, Using the Get
Function on the Data Server, details the properties you can include in the Set function.

You can set multiple data points with a single Set message. However, you should not attempt to create
or write to more than 100 data points with a single call to the Set function. Additionally, to optimize
the memory available to the SmartServer, you should not have more than 1,000 data points in your
network at any time.

The following example demonstrates how to add a new SNVT_temp f [1] input data point to the data
server on the Net/LON/iLON App/VirtFB functional block.

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Cfg">
 <UCPTname>Net/LON/iLON App/VirtFb/temp_f[1]</UCPTname>
 <UCPTannotation>Dp_In</UCPTannotation>
 <UCPTformatDescription>#0000000000000000[0].SNVT_temp_f#US</UCPTformatDescription>
 <UCPTdirection LonFormat="UCPTdirection">DIR_IN</UCPTdirection>
 <UCPTpersist>1</UCPTpersist>
 <UCPTdefOutput LonFormat="#0000000000000000[0].SNVT_temp_f#US">72.5</UCPTdefOutput>
 <UCPTunit field="">°F</UCPTunit>
 <ValueDef>
 <UCPTindex>0</UCPTindex>
 <UCPTname>OCCUPIED</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_temp_f#US">69.8</UCPTvalue>
 </ValueDef>
 <ValueDef>
 <UCPTindex>1</UCPTindex>
 <UCPTname>UNOCCUPIED</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_temp_f#US">60.8</UCPTvalue>
 </ValueDef>
 <ValueDef>
 <UCPTindex>2</UCPTindex>
 <UCPTname>STANDBY</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_temp_f#US">66.2</UCPTvalue>
 </ValueDef>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/temp_f[1]</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

4.3.4 Using the Read Function on the Data Server

You can use the Read function to read the value and status of any data point that you have added to the
Data Server. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies the data points whose
values and statuses are to be returned.

Alternatively, you can use an xSelect statement to return the values and statuses of a specific set of
data points on the Data Server. The filters you can use in an xSelect statement in the Read function

i.LON SmartServer 2.0 Programmer’s Reference 4-12

include the data point’s <UCPTname> and <UCPTlastUpdate> properties and the position on the
SmartServer. You can also use the <UCPTvalueFormat> in an xSelect statement to specify that the
Read function return the data point values in raw hex or return the values of the fields within structured
data points individually.

Note: You cannot use the position () filter with in an xSelect statement that includes the
<UCPTlastUpdate> filter. If you write an xSelect statement with both of these filters, the position ()
filter is ignored.

The Read function will return a list of <Item> elements of a Dp_Data type for each data point
referenced by the input you supplied to the function. Each of these <Item> elements contains the
current values of a group of properties and attributes associated with the referenced data point. This
includes the value, status, and the current priority level of the data point.

Request (a specific data point on the Net/LON/DIO-1/Digital Encoder functional block)
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/DIO-3/Digital Encoder[0]/DE_D1_1</UCPTname>
 </Item>
 </iLonItem>
</Read>

Request (use an xSelect statement to return all data points on the Data Server)
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]</xSelect>
 </iLonItem>
</Read>

Request (use an xSelect statement to return the first 50 data points on the internal SmartServer
automated systems device [i.LON App])
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]
 [starts-with(UCPTname,"Net/LON/iLON App")]
 [position()<50]
 </xSelect>
 </iLonItem>
</Read>

Request (use an xSelect statement to return the data points on the Data Server that have been
updated since 2008-03-17T00:00:00 with raw hex values)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]
 [UCPTlastUpdate>"2008-03-17T00:00:00"]
 [UCPTvalueFormat="VF_RAW_HEX"]
 </xSelect>
 </iLonItem>
</List>

Request (use an xSelect statement to return the data points on the Net/LON/i.LON App/VirtFb
functional; individually list values of fields within structured data points)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Cfg"]
 [starts-with(UCPTname,"Net/LON/iLON App/VirtFb")]
 [UCPTvalueFormat="VF_FIELDS"]
 </xSelect>
 </iLonItem>
</List>

i.LON SmartServer 2.0 Programmer’s Reference 4-13

Response
<ReadResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Data" >
 <UCPTname>Net/LON/iLON App/VirtFb/temp_thermostat</UCPTname>
 <UCPTannotation>Dp_In;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-14T16:34:11.310-07:00</UCPTlastUpdate>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_temp" Unit="°C">21.0</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OCCUPIED</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NUL</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 </Item>
 <Item xsi:type="Dp_Data" >
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch</UCPTname>
 <UCPTannotation>Dp_In;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-14T16:34:11.340-07:00</UCPTlastUpdate>

<UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch" Unit="value, state">0.0 0</UCPTvalue>
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch.value" Unit="% of full level" >0.0</UCPTvalue>
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch.state" Unit="state code" >0</UCPTvalue>

 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NUL</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 </Item>
 <Item xsi:type="Dp_Data" >
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSetting</UCPTname>
 <UCPTannotation>Dp_Out;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-14T16:34:11.380-07:00</UCPTlastUpdate>

<UCPTvalue LonFormat="#0000000000000000[0].SNVT_setting" Unit="function, setting, rotation"
>SET_OFF 0.0 0.00</UCPTvalue>
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_setting.function" Unit="setting control
function names">SET_OFF</UCPTvalue>
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_setting.setting" Unit="% of full level"
>0.0</UCPTvalue>
<UCPTvalue LonFormat="#0000000000000000[0].SNVT_setting.rotation" Unit="degrees"
>0.00</UCPTvalue>

 <UCPTpointStatus LonFormat="UCPTpointStatus" >AL_NUL</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 </Item>
 </iLonItem>
</ReadResponse>

The following table describes the properties of each <Item> element returned by the Read function.

Property Description

<UCPTname> The name of the data point in the following format:
<network/channel/device/functional block/data point>.

<UCPTannotation> The direction of the data point (Dp_In, Dp_Out, or Dp_In_Out
[unspecified]), and its xsi type, which corresponds to the bus on
which the data point resides (e.g., LON_Dp_Cfg for a LONWORKS
data point) . This determines the icon used to represent the data
point in the navigation pane on the left side of the SmartServer
Web interface.

i.LON SmartServer 2.0 Programmer’s Reference 4-14

Property Description

<UCPThidden> A flag indicating whether the data point is hidden or shown in the
navigation pane on the left side of the SmartServer Web interface.
This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the data
point was updated. This timestamp uses the ISO 8601 format,
which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

<UCPTvalue> The current value in the data point. This property may also include
the following attributes:

• LonFormat (format description). The format defined by the
data type used by the data point. This attribute is expressed in
the following format: "#<programID>[scope].<data type>".

• LonFormat="UCPTvalueDef". The value definition currently
being used by the data point. Value definitions represent
preset values. They can be created with the Configure – Data
Points Web page in the SmartServer Web interface, or with
the Set function. You can use these value definitions to update
the value of the data point other SmartServer applications such
as the Event Scheduler or the Alarm Notifier.

• Unit. The units of measure used by the data point.

<UCPTpointStatus> The current status of the data point. This can be used when setting
up Alarm Generators and Alarm Notifiers with the SmartServer.
For more information on these applications, see Chapter 6, Alarm
Generator, and Chapter 7, Alarm Notifier.

<UCPTpriority> The priority level currently assigned to the data point (0-255). The
priority level of a data point determines which applications can
write to its value. You can modify the value of this property with
the Write or Invoke functions.

4.3.4.1 Setting the Maximum Age of Data Point Values
When you use the Read function to read the value of a data point on the Data Server, you can specify a <UCPTmaxAge>
property to set the maximum period of time (in seconds) that data point value is cached in the Data Server before it polls
the data point and returns an updated value. This enables you to control the amount of traffic that is generated on a
specific channel by your SOAP application.

The value to which you set <UCPTmaxAge> is compared to the amount of time a data point value has been cached in
the Data Server, which then does the following:

• If <UCPTmaxAge> is less than the period of time the data point value has been cached, the Data
Server polls the data point and returns the updated value.

• If <UCPTmaxAge> is greater than the period of time the data point value has been cached, the
Data Server returns the cached value.

i.LON SmartServer 2.0 Programmer’s Reference 4-15

• If <UCPTmaxAge> is set to 0, the Data Server returns polls the data point and returns the updated
value regardless how current the data point is.

• If <UCPTmaxAge> is disabled, the Data Server returns cached values regardless how old the data
point values are. This is the default.

4.3.5 Using the Write Function on the Data Server

A data point's value and priority level are initially set when the data point is added to the Data Server.
The value is set to the value established for the <UCPTdefOutput> property for the data point, and the
priority defaults to the lowest priority level (255).

You can write to a data point’s current value and priority level with the Write function. The input
parameters you supply to this function will include one or more <Item> elements that have a
<UCPTname> property, specifying the unique name of the data point to be written to with the Write
function. You should not attempt to write to more than 100 data points with a single call to the Write
function.

You can specify the value to be written to the data point with the <UCPTvalue> property. You can
also write an updated value to the data point using a formatted value, a preset, or raw hex. You can
also write values to the individual fields of structured data points.

4.3.5.1 Writing Formatted Values to a Data Point
You can use a formatted value to write to a data point. To do this, you must include a LonFormat
attribute in the <UCPTvalue> property and set it to the format description of the data point. This
attribute indicates how the <UCPTvalue> property should be unformatted by the SmartServer. If the
UCPTformatDescription of the data point being written to is SNVT_temp_f#SI, and the Write function
includes a LonFormat attribute with the value SNVT_temp_f#US, the specified value will be first
unformatted using Fahrenheit, before being written to the Data Point, even though the format of the
Data Point is normally in Celsius. For example, you could write a value of 32 to a SNVT_temp data
point in Fahrenheit by specifying the data type’s customary units (#US) format, and the value will
automatically be converted to 0.0° Celsius.

• <UCPTvalue LonFormat="#0000000000000000[0].SNVT_temp#US">32.0</UCPTvalue>

4.3.5.2 Writing Presets to a Data Point
You can use a preset to write to a data point. To do this, you must include a LonFormat attribute and
set it to the <UCPTvalueDef> property. For example, you could write a value of 100.0 1 to a
SNVT_switch data point by writing the ON preset to the data point.

• <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>

Note: If you pass in both the <UCPTvalue> property and a <UCPTvalue> property with a
<UCPTvalueDef> LonFormat attribute in a single Write function, the <UCPTvalueDef> property will
be used to determine the value to assign to the data point, unless it references an invalid value, in
which case the <UCPTvalue> property will be used to determine the value to assign to the data point.

4.3.5.3 Writing Raw Values to a Data Point
You can write a raw value to a data point. To do this, you must include a LonFormat attribute and set
it to "RAW_HEX".
<UCPTvalue LonFormat="RAW_HEX">10</UCPTvalue>

4.3.5.4 Writing Values to Structured Data Points
You can write to the individual fields of structured data points. To do this, you must include a
LonFormat attribute and set it to the field of the specific data type using the following format:
datatype.field. For example, to write to the setting field of a SNVT_scene data point, you would set
the LonFormat attribute to “SNVT_scene.setting” and then specify the value to be written to the field.

i.LON SmartServer 2.0 Programmer’s Reference 4-16

<UCPTvalue LonFormat= "SNVT_scene.function">SC_RECALL</UCPTvalue>
<UCPTvalue LonFormat= "SNVT_scene.sceneNumber">2</UCPTvalue>

When you are writing to the fields of structured data points, you may also want to fill in the
<UCPTpropagate> property. If you assign the default value 1 to this property, the change you make to
the data point will be propagated to the network. If you assign value 0 to this property, the change will
be made in the Data Server, but it will not be propagated over the LONWORKS network. This may be
useful if you are writing to the different fields of a structure within a call to the Write function, and do
not want to update the structure over the network until all fields have been written by the function.

4.3.5.5 Writing Priority Levels
The priority level specified for each data point is set by the <UCPTpriority> property. You can enter a
value between 0-255 as the priority, where 0 represents the highest priority level and 255 represents
the lowest priority level. The priority level you specify must be higher than (or equal to) the priority
level used by the last application to write to the data point. If it is not, the data point will not be
successfully updated. For more information on priority levels, see Using the Invoke Function to Reset
Data Point Priorities.

4.3.5.6 Data Server Write Function Examples
The following code samples demonstrate how to use the Write function on the Data Server.

Request (write a value to a scalar data point normally measured in Celsius using Fahrenheit)
<Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/temp_f</UCPTname>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_temp_f#US">68.0</UCPTvalue>
 </Item>
 </iLonItem
</Write>

Request (write a value to a structured data point)
<Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 <UCPTvalue>100.0 1</UCPTvalue>
 </Item>
 </iLonItem>
</Write>

Request (write a value to a structured data point with a preset)
<Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
 </Item>
 </iLonItem>
</Write>

Request (write to the field of a structured data point, but don’t propagate the value over the
LONWORKS channel)
<Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 <UCPTvalue LonFormat="SNVT_switch.value">85</UCPTvalue>
 <UCPTpropagate>0</UCPTpropagate>
 </Item>
 </iLonItem>
</Write>

i.LON SmartServer 2.0 Programmer’s Reference 4-17

Response
<WriteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Data" >
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 <UCPTannotation>Dp_Out;xsi:type=“LON_Dp_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTvalue LonFormat="SNVT_switch.value">85</UCPTvalue>
 </Item>
 </iLonItem>
</WriteResponse>

4.3.6 Using the Invoke Function to Reset Data Point Priorities

You can use the Invoke function to reset the priority of a data point to 255—the lowest possible
priority level. The input parameters you supply to this function will include one or more <Item>
elements of a Dp_ResetPrio_Invoke type. Each <Item> element must include a <UCPTname>
property, specifying the unique name of the data point to whose priority is to be reset to 255, and a
<UCPTpriority> property, specifying a priority level that is equal to or greater than the current priority
assigned to the data point. You should not attempt to write to more than 100 data points with a single
call to the Invoke function.

The Invoke function resets the priority level assigned to each data point referenced in the input
parameters to 255. Once the priority level assigned to a data point has been reset to 255, all
applications in which the data point is registered are notified, and the next highest-priority application
can write values to that data point.

The priority level specified in the input must be equal or higher priority than the current priority
assigned to the data point for it to be reset. For more information on priority levels, see Writing
Priority Levels.

Request (reset the priority of a data point that currently has a priority level of 240)
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Dp_ResetPrio_Invoke">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 <UCPTpriority>235</UCPTpriority>
 </Item>
 </iLonItem>
</InvokeCmd>

Response
<InvokeCmdResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 </Item>
 </iLonItem>
</InvokeCmdResponse>

If the priority level you specify in the <UCPTpriority> property is lower than the priority currently
assigned to the data point, the Response message will include the following fault code:
<fault>
 <faultcode faultType="_error">12</faultcode>
 <faultstring xml:lang="en-US">Priority too low to reset priority</faultstring>
</fault>

4.3.7 Data Point Values and Priority Levels

As described in the Using the Write Function on the Data Server section, you must specify a priority
level in the <UCPTpriority> property that is greater than or equal to the priority level used by the last
application in order to write an updated value to a data point.

i.LON SmartServer 2.0 Programmer’s Reference 4-18

For example, consider a scenario where a SOAP application uses the Write function to write to the
value of a data point called “nvoValue”. Assume that the last application to write to the value of
nvoValue used priority level 75 when it updated the data point. In that case, the current application
must use a priority value between 0 and 75 (inclusive) to successfully write a new value to the data
point.

Data point priority levels allow you to give some applications precedence over others when more than
one application might attempt to update the same data point. The following describes a series of
events where various applications write to the value of a single data point. For each event, the priority
level used is listed, as well as a description of whether or not the update was successful, and why. This
should help you understand how you can use data point priority levels to determine which applications
will be given precedence when updating the value of a data point.

Event Priority Level
Assigned

Result of Operation

Power-Up 255 The value of the data point is updated
successfully.

Scheduler Updates Data
Point

240 The value of the data point is updated
successfully, as the priority used by the
Scheduler is greater than that assigned to the data
point during power-up.

Custom Application
Invokes Write Function on
Data Server

75 The value of the data point is updated
successfully, as the priority used in the call to
Write function is greater than that assigned to the
data point by the Scheduler.

Scheduler Updates Data
Point

240 The value of the data point is not updated
successfully, as the priority used by the
Scheduler is less than that used by the last
application to update the data point.

Custom Application Calls
Invoke function to Reset
the Data Point Priority on
Data Server

245 The priority of the data point is not reset to 255,
as the priority level set in the Invoke function
(245) is less than that used by the last application
to update the data point (240).

Custom Application Calls
Invoke function to Reset
the Data Point Priority on
Data Server

75 The custom application calls the Invoke function
and resets the priority level assigned to the data
point to 255, the lowest priority. At this point,
all applications will be able to write to the data
point.

Scheduler Updates Data
Point

240 The Scheduler successfully updates the value of
the data point, as the priority level used here
(240) is greater than current priority assigned to
the data point after being reset by the Invoke
function (255).

4.3.8 Using the Delete Function on the Data Server

You can use the Delete function to delete a data point on the Data Server. To delete a data point, you
provide an <Item> element of a <driver>_Dp_Cfg xsi:type that includes the <UCPTname> property of
the data point to be deleted. If you do not specify the xsi:type, a fault may be returned stating that the

i.LON SmartServer 2.0 Programmer’s Reference 4-19

data point is still registered on its respective bus. The following code sample demonstrates how to use
the Delete function to delete a data point on the Data Server:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Dp_Cfg">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

Note: The xsi:types for the data points on the LONWORKS, Modbus, M-Bus, and Virtual drivers are as
follows:

Driver xsi:type

LONWORKS LON_Dp_Cfg

Modbus MOD_Dp_Cfg

M-Bus MBS_Dp_Cfg

Virtual Virtual_Dp_Cfg

4.4 Using the Web Binder Application
You can use the Web Binder application to create Web connections that allow direct data exchange
over a TCP/IP network between a SmartServer and another host device such as a remote SmartServer,
LNS Server, or a WebBinder Target Server (a Web server that can process SOAP requests such as
Apache or IIS). Once you create a Web connection, the SmartServer will send a Write message to the
target host device in the Web connection (called a WebBinder destination) each time a source data
point on the local SmartServer is updated. This means that you only need to implement the Write
function on the Data Server to create an application on the Web server that receives WebBinder
updates from the SmartServer.

You can create four types of web connections: internal bindings, peer-to-peer bindings, LNS uplink
bindings, and enterprise bindings.

• An internal binding is a connection between two data points on the same SmartServer. You can
create internal bindings on your local SmartServer or on a remote SmartServer that you have
added to the LAN. Internal bindings are useful for translating the data between two LONWORKS
devices that have incompatible formats, as well as translating data between devices on different
buses (LONWORKS, Modbus, and M-Bus).

• A peer-to-peer binding is a connection between two separate SmartServers. For example, you can
create a peer-to-peer binding between a data on your local SmartServer to a data point on a remote
SmartServer that you have added to the LAN. Peer-to-peer bindings provide an alternative
solution to IP-852 connections for connecting devices over multiple networks; however, they are

i.LON SmartServer 2.0 Programmer’s Reference 4-20

much slower (40 data point updates per second) than IP-852 connections (1,000 updates per
second).

• An LNS uplink binding is a connection between a SmartServer and an LNS Server. LNS uplink
bindings replace the LNS uplink feature that was used in the e3 release for data point connections
between an i.LON 100 e3 server and an LNS Server.

• An enterprise binding is a connection between a SmartServer and a Webbinder Target Server.
Enterprise bindings are useful for sending a data log, an alarm log, an event scheduler log, or any
user-defined file to a central enterprise system.

If you are creating peer-to-peer bindings, LNS uplink bindings, or enterprise bindings, you must first
add the host device (remote SmartServer, LNS server, or Webbinder Target Server) to the LAN on
which your local SmartServer resides using the SmartServer Web interface. See Chapter 3 of the
i.LON SmartServer 2.0 User’s Guide for how to add host devices to the LAN.

Note: An application that can receive a Write request from the SmartServer differs from an application
that would use all of the other methods described in this manual in that it must be a “server-side”
application rather than a client application.

You can use the SOAP interface to perform the following functions on a Web connection.

Function Description

List List the name of the Web connections that you have added to the
Data Server.

Get Retrieve the configuration of a Web connection.

Set Create a Web connection and add it to the Data Server, or modify
the configuration of an existing Web connection.

Delete Remove a Web connection from the Data Server.

4.4.1 Using the List Function on a Web Connection

You can use the List function to retrieve a list of the source data points on the local SmartServer
representing the Web connection that have been added to the Data Server. The List function takes an
<iLonItem> element that has an xSelect statement querying items of a Dp_Ref type as its input, as
shown in the example below. The List function returns an <Item> element for each source data point
in the Web connections on the local SmartServer.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Ref"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item >
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTannotation>Dp_In_WebBinding;xsi:type="Dp_Ref"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item >
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>

i.LON SmartServer 2.0 Programmer’s Reference 4-21

 <UCPTannotation>Dp_In_WebBinding;xsi:type="Dp_Ref"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</ListResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

4.4.2 Using the Get Function on a Web Connection

You can use the Get function to retrieve the configuration of any Web connection that you have added
to the SmartServer’s Data Server. The input parameters you supply to the function will include an
<iLonItem> element that has an xSelect statement with a Dp_Ref type, and one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that you can use to specify the
source data point in the Web connection to be returned.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Dp_Ref"]</xSelect>
 <Item>
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 </Item>
 <Item>
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Dp_Ref">
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTannotation>Dp_In_WebBinding</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-17T14:29:35.666-07:00</UCPTlastUpdate>
 <UCPTdescription>Generated by WB web UI</UCPTdescription>
 <UCPTuri>Dp_Ref.htm</UCPTuri>
 <DataPoint dpType="Target" discrim="dir_in_out">
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTserviceType LonFormat="UCPTserviceType">ST_WEB_ACK</UCPTserviceType>
 <UCPTservicePath>//WebService[UCPTindex=1]</UCPTservicePath>
 <UCPTpriority>255</UCPTpriority>
 <UCPTpropagate>1</UCPTpropagate>
 </DataPoint>
 </Item>
 <Item xsi:type="Dp_Ref">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 <UCPTannotation>Dp_In_WebBinding</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-19T16:41:23.338-07:00</UCPTlastUpdate>
 <UCPTdescription>Generated by WB web UI</UCPTdescription>
 <UCPTuri>Dp_Ref.htm</UCPTuri>
 <DataPoint dpType="Target" discrim="dir_in_out">
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTserviceType LonFormat="UCPTserviceType">ST_WEB_ACK</UCPTserviceType>
 <UCPTservicePath></UCPTservicePath>
 <UCPTpriority>255</UCPTpriority>
 <UCPTpropagate>1</UCPTpropagate>
 </DataPoint>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each source data point in a Web connection referenced
in the input parameters you supplied to the function. The properties included within each <Item>
element are initially defined when the Web connection is added to the DataServer. You can write to
these properties with the Set function. The following table describes these properties.

i.LON SmartServer 2.0 Programmer’s Reference 4-22

Property Description

<UCPTname> The name of the source data point in the Web connection in
following format: <network/channel/device/functional
block/data point>.

<UCPTannotation> The direction of the data point in the Web connection. This is
always Dp_In_WebBinding.

<UCPThidden> A flag indicating whether the source data point in the Web
connection is hidden or shown in the navigation pane on the left
side of the SmartServer Web interface. This property may have
the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
data point was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002. If it is not UTC, time shift
has to be defined: 2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the Web connection. This can be
a maximum of 201 characters long. By default, this property is
“Generated by WB web UI”

<UCPTuri> The name of the file containing the Web connection data on the
SmartServer flash disk. This property is always Dp_Ref.htm.

<DataPoint>

Target

The target data point in the Web connection. This data point is
updated every time a Write function is performed on the source
data point in the Web connection. This data point has the
following properties:

• <UCPTname>. The name of the target data point in the
Web connection in following format:
<network/channel/device/functional block/data point>.

• <UCPTserviceType>. Web connections always use

i.LON SmartServer 2.0 Programmer’s Reference 4-23

Property Description

Acknowledged messaging service (ST_WEB_ACK). This
means that the sending device expects to receive
confirmation from the receiving device that a data point
update was delivered. The sending application is notified
when an update fails, but it is up to the developer of the
sending device to handle the notification in the device
application. If you create a Web connection with the Set
function, this property is optional.

• <UCPTservicePath>. A reference to the Web service path
where SOAP calls are pushed in the following format:
//WebService[UCPTindex=x]. For example, if you create
an internal binding, x is set to 0, referring to the local
SmartServer. For the first host device you add to the LAN,
x is set to 1; for the second host device it is set to 2; and so
on.

• <UCPTpriority>. The priority level currently assigned to
the Web connection for writing updated values to the target
data point. This value may range from 0 to 255 (highest to
lowest priority). The default priority is 255. You can
assign the Web connection a higher priority for updating the
target data point. The priority you specify must be equal to
or higher than the priority used by the last application that
updated the data point.

• <UCPTpropagate>. A flag indicating whether updates to
the source data point in a Web connection are to be
propagated over the LONWORKS network to the target data
point. If you assign the default value 1 to this property, the
change you make to the source data point will be
propagated to the LONWORKS network. If you assign value
0 to this property, the change will be made in the Data
Server, but it will not be propagated over the network.

4.4.3 Using the Set Function on a Web Connection

Use the Set function to overwrite the configuration of a Web connection, or to create a new Web
connection and add it to the Data Server. The input parameters you supply to the function will include
one or more <Item> elements with a Dp_Ref type. Each <Item> element specifies the <UCPTname>
property of the source data point in the Web connection to be created and a <DataPoint> property
referencing the target data point in the connection. The <DataPoint> property must specify the
<UCPTname> of the target data point and the <UCPTservicePath> of the WebBinder destination. The
<DataPoint> property may specify the <UCPT priority> and <UCPTpropagate> properties, which by
default are set to 255 and 1, respectively.

You can modify or create multiple Web connections with a single Set message by specifying two or
more target data points in their respective <DataPoint> properties. However, you should not attempt to
create or write to more than 100 Web connections with a single call to the Set function.

The following example demonstrates how to create two peer-to-peer bindings between two
SmartServers. When a Write function is performed on the source data point in the Web connection
(Net/LON/iLON App/Digital Input 1/nvoClsValue_1), the updated value is propagated to the target
data points (Net/LON/iLON App/Digital Output 1/nviClaValue_1 and Net/LON/iLON App/Digital
Output 2/nviClaValue_2) in the Web connection. The target data points are stored on the Data Server
of a remote SmartServer that has been added to the LAN.

i.LON SmartServer 2.0 Programmer’s Reference 4-24

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Dp_Ref">
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <DataPoint dpType="Target">
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTservicePath>//WebService[UCPTindex=1]</UCPTservicePath>
 <UCPTpriority>240</UCPTpriority>
 <UCPTpropagate>1</UCPTpropagate>
 </DataPoint>
 <DataPoint dpType="Target">
 <UCPTname>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTname>
 <UCPTservicePath>//WebService[UCPTindex=1]</UCPTservicePath>
 <UCPTpriority>240</UCPTpriority>
 <UCPTpropagate>1</UCPTpropagate>
 </DataPoint>
 </Item>
 </iLonItem>
</Set>
Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/"><iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 </Item>
</iLonItem>
</SetResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

4.4.4 Using the Delete Function on a Web Connection

You can use the Delete function to delete a Web connection on the Data Server. To delete a Web
connection, you provide an <Item> element with a Dp_Ref type and the <UCPTname> property of the
source data point in the Web connection. Note that using the Delete function will remove all Web
connections in which the specified source data point is a member. To delete a single Web connection
where the source data point is a member of multiple Web connections, use the Set function and omit
the target data point of the Web connection to be removed. The following code sample demonstrates
how to use the Delete function to delete a Web connection:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Dp_Ref">
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 </Item>
 </iLonItem>
</Delete>

 Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname> Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 5-1

5 Data Loggers
You can use Data Loggers to monitor activity on your network. Each Data Logger will record updates
to a group of user-specified data points into a log file. The information recorded for each update
includes the value and status that the data point was updated to.

Each SmartServer supports up to ten Data Loggers. The log files for each Data Logger are stored in
the location specified by the Data Logger’s <UCPTlogFileName> property.

You can create two kinds of Data Loggers: historical Data Loggers, and circular Data Loggers. A
historical Data Logger stops recording data point updates when its log file becomes full. A circular
Data Logger removes the records for older updates when its log file is full, and new updates occur.
The Data Logger can save either type of log file in an ASCII-text (.csv file extension) or binary (.dat
file extension) format. You can optionally store the ASCII-text files in compressed format to save
flash memory on the SmartServer.

You can specify the minimum amount of time that must elapse, and the minimum change in value
required, between log entries for each data point your Data Logger is monitoring. When an update to a
data point is logged, a subsequent update for that data point will not be logged until the minimum time
period specified for the data point has elapsed, and the minimum value change specified for the data
point has been met. If an input data points is updated more than once before the minimum time period
has elapsed after a log entry has been recorded, the older values will be discarded. Only the most
recent update will be recorded by the Data Logger when the minimum time period elapses. This
allows you to throttle the data entry into a log.

You can also define a threshold level for each Data Logger. The threshold level represents a
percentage. When the Data Logger’s log file consumes this percentage of the memory space allocated
to it, the Data Logger will enunciate that it is time to upload the log, and clear out some of the data.
The Data Logger makes this enunciation by updating the Data Logger’s alarm data point (called
nvoDlLevAlarm[x], where x represents the index number assigned to the Data Logger) to the status
AL_ALM_CONDITION. This feature may be useful when working with historical Data Loggers,
which are disabled when they become full. You could create an Alarm Notifier to trigger an alarm
notification when a log becomes full. For more information on Alarm Notifiers, see Chapter 7 of this
document.

You can access the data in a log file by manually opening the log file, or by using the Read function.
You can clear data from a log using the Clear function, or by sending an update to the data point
nviDlClear[x], where x represents the index number of the Data Logger to be affected. This is
described in more detail later in the chapter.

5.1 Overview of the Data Logger XML File
The #8000010128000000[4].UFPTdataLogger.xml file stores the configurations of each Data Logger
that you have added to the SmartServer. Each Data Logger is signified by an <Item> element in the
XML file. The configuration properties contained in each <Item> element define the configuration of
a Data Logger, and are described later in this chapter.

You can create new Data Loggers using the Set function, or by manually editing the
#8000010128000000[4].UFPTdataLogger.xml file. You can create up to 10 Data Loggers per
SmartServer. You can add more than 10 Data Loggers if you load the dynamic v40 XIF on your
SmartServer and you operate your SmartServer in Standalone mode. Note that using the v40 XIF with
the SmartServer operating in LNS mode (LNS Auto or LNS Manual) is not supported.

The following represents a sample #8000010128000000[4].UFPTdataLogger.xml file for a
SmartServer with two Data Loggers defined on it:
<?xml version="1.0" encoding="utf-8" ?>
<iLonItem xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>

i.LON SmartServer 2.0 Programmer’s Reference 5-2

 <Item xsi:type="UFPTdataLogger_Cfg" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTdataLogger</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-02-27T13:41:25.910-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTdataLogger_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nviDlEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviClear" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nviDlClear[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoLevelAlarm" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlLevAlarm[0]
 </UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoStatus" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlStatus[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTdataLogger_DpRef" dpType="Input" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTlogMinDeltaTime>900</UCPTlogMinDeltaTime>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <UCPTlogType LonFormat="UCPTlogType">LT_HISTORICAL</UCPTlogType>
 <UCPTlogSize>100</UCPTlogSize>
 <UCPTlogFormat LonFormat="UCPTlogFormat">LF_TEXT</UCPTlogFormat>
 <UCPTlogLevelAlarm>50</UCPTlogLevelAlarm>
 <UCPTlogFileName>Net/LON/iLON App/Data Logger[0].csv</UCPTlogFileName>
 </Item>
 <Item xsi:type="UFPTdataLogger_Cfg" >
 <UCPTname>Net/LON/iLON App/Data Logger[1]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTdataLogger</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-02-27T13:41:57.430-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTdataLogger_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[1]/nviDlEnable[1]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviClear" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[1]/nviDlClear[1]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoLevelAlarm" discrim="dir_out" >

<UCPTname>Net/LON/iLON App/Data Logger[1]/nvoDlLevAlarm[1]
</UCPTname>

 </DataPoint>
 <DataPoint dpType="nvoStatus" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Data Logger[1]/nvoDlStatus[1]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTdataLogger_DpRef" dpType="Input" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Digital Input 2/nvoClsValue_2</UCPTname>
 <UCPTlogMinDeltaTime>900</UCPTlogMinDeltaTime>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <UCPTlogType LonFormat="UCPTlogType">LT_HISTORICAL</UCPTlogType>
 <UCPTlogSize>100</UCPTlogSize>
 <UCPTlogFormat LonFormat="UCPTlogFormat">LF_TEXT</UCPTlogFormat>
 <UCPTlogLevelAlarm>50</UCPTlogLevelAlarm>
 <UCPTlogFileName>Net/LON/iLON App/Data Logger[1].csv</UCPTlogFileName>
 </Item>
</iLonItem>

5.2 Creating and Modifying the Data Logger XML File
You can create and modify the #8000010128000000[4].UFPTdataLogger.xml file with the Set
function. The following section, Data Logger SOAP Interface, describes how to use the Set function
and the other SOAP functions provided for the Data Logger application.

Alternatively, you can create and modify the #8000010128000000[4].UFPTdataLogger.xml file
manually and download it to the SmartServer via FTP. Echelon does not recommend this, as the

i.LON SmartServer 2.0 Programmer’s Reference 5-3

SmartServer will require a reboot to read the configuration of the downloaded file. Additionally, the
SmartServer performs error checking on all SOAP messages it receives before writing to the XML file.
It will not perform error checking on any XML files you download via FTP, and thus the application
may not boot properly.

However, if you plan to create and manage the #8000010128000000[4].UFPTdataLogger.xml file
manually, you should review the rest of this chapter first, as it describes the elements and properties in
the XML file that define each Data Logger’s configuration.

5.3 Data Logger SOAP Interface
You can use the SOAP interface to perform the following functions on a Data Logger application:

Function Description

List Generate a list of the Data Loggers that you have added to the
SmartServer.

Get Retrieve the configuration of any Data Logger that you have added to
the SmartServer.

Set Create a new Data Logger, or overwrite the configuration of an
existing Data Logger.

Read Read a portion or all of the entries stored in a Data Logger log file.

Clear Remove a portion or all of the log entries stored in a Data Logger log
file.

Delete Delete a Data Logger.

Note: Section 21.1.2, Creating and Reading a Data Logger in Visual C# NET, includes a C#
programming example demonstrating how to use the Data Logger SOAP interface to create and read a
data logger. Section 21.2.2, Creating and Reading a Data Logger in Visual Basic. NET, includes a
Visual Basic example demonstrating how to do this.

Section 22.3.2, Creating and Reading a Data Logger in Java, includes a Java example demonstrating
how to create and read a data logger.

5.3.1 Using the List Function on a Data Logger

Use the List function to retrieve a list of the Data Loggers that you have added to the SmartServer.
The List function takes an <iLonItem> element that includes an xSelect statement querying items of a
UFPTdataLogger_Cfg type as its input, as shown in the example below. The List function returns an
<Item> element for each Data Logger that you have added to the SmartServer. The next section
describes the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each Data Logger included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="UFPTdataLogger_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

i.LON SmartServer 2.0 Programmer’s Reference 5-4

 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTdataLogger;xsi:type=“LON_Fb_Cfg”
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTitemStatus LonFormat="UCPTitemStatus">IS_NOTSYNCED</UCPTitemStatus>
 </Item>
 </iLonItem>
</ListResponse>

5.3.2 Using the Get Function on a Data Logger

You can use the Get function to retrieve the configuration of any Data Logger that you have added to
the SmartServer. You must reference the Data Logger whose configuration is to be returned by its
<UCPTname> in the input you supply to the function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

<iLonItem>
<Item xsi:type="UFPTdataLogger_Cfg">

<UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
</Item>

</iLonItem>
</Get>

Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTdataLogger_Cfg" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTdataLogger</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-02-28T11:54:06.890-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTdataLogger_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nviDlEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviClear" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nviDlClear[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoLevelAlarm" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlLevAlarm[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoStatus" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlStatus[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTdataLogger_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Digital Input 1/nviClsValueFb_1</UCPTname>
 <UCPTlogMinDeltaTime>900</UCPTlogMinDeltaTime>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <UCPTlogType LonFormat="UCPTlogType">LT_HISTORICAL</UCPTlogType>
 <UCPTlogSize>100</UCPTlogSize>
 <UCPTlogFormat LonFormat="UCPTlogFormat">LF_TEXT</UCPTlogFormat>
 <UCPTlogLevelAlarm>50</UCPTlogLevelAlarm>
 <UCPTlogFileName>Building/LON/iLON App/Data Logger[0].csv</UCPTlogFileName>
 </Item>
 </iLonItem>
</GetResponse>

The function returns an <Item> element for each Data Logger referenced in the input parameters
supplied to the function. The properties included in each element are initially defined when the Data
Logger is created. You can write to them with the Set function. The following table describes these
properties.

i.LON SmartServer 2.0 Programmer’s Reference 5-5

Property Description

<UCPTname> The name of the data logger in the following format:
<network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the data
logger. This property is always
8000010128000000[4].UFPTdataLogger.

<UCPThidden> A flag indicating whether the data logger functional block is
hidden or shown in the navigation pane on the left side of the
SmartServer Web interface. This property may have the following
values:

0 – shown

1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not synchronized
with an LNS network database or it has been deleted. In this case,
it has the following values:

IS_NOTSYNCED

IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Data
Logger was updated. This timestamp uses the format ISO 8601:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD) represents
the date the configuration of the Data Logger was last updated.
The second segment (after the T): HH:MM:SS.sss represents the
time of day the configuration of the Data Logger was last updated,
in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour clock,
therefore; an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00.

<UCPTuri> The name of the file containing the configuration web page for the
Data Logger on the SmartServer flash disk, absolute or relative to
/web/user/echelon. This property is
#8000010128000000[4].UFPTdataLogger_Cfg.htm by default.

i.LON SmartServer 2.0 Programmer’s Reference 5-6

Property Description

<UCPTlogType> Either LT_HISTORICAL or LT_CIRCULAR. This indicates
whether the log is a historical or circular. A historical data log
stops recording data point updates when it is full. A circular data
log removes older values when the log is full and it receives new
updates.

<UCPTlogSize> The amount of memory allocated to the log file, in kilobytes. The
total size of the log files for all Data Loggers (and Alarm Notifiers)
on the SmartServer can not exceed the size of the flash memory
stored in the SmartServer. The SmartServer will stop writing to
the log files when it only has 256 Kb of flash memory remaining.

<UCPTlogFormat> Either LF_TEXT, LF_BINARY or LF_COMPRESSED. This
property indicates whether the log file the Data Logger creates will
be an ASCII-text formatted .csv file (LF_TEXT), a proprietary
binary format (LF_BINARY), or an ASCII-text file in compressed
format (.gz file extension) (LF_COMPRESSED).

You can use the LF_COMPRESSED format to save flash memory
space on the SmartServer. All you need to do is extract the .csv
file from the .gz file to view the log file. You can extract the file
with the decompress console command, as described in Appendix
B of the i.LON SmartSever User’s Guide.

<UCPTlogLevelAlarm> Enter a value between 0.0 and 100.0. The default value is 0.0.
This value represents a percentage. When the volume of the Data
Logger reaches this percentage, the status of the output data point
for the Data Logger will be updated to the condition
AL_ALM_CONDITION. The output data point for each Data
Logger is called nvoDlLevAlarm[X], where X represents the index
number assigned to the Data Logger. For example, if you enter
30.0 here, the data point would be updated when the log file has
consumed 30% of the space allocated to it.

You could create an Alarm Notifier to trigger an alarm notification
each time one of your Data Loggers reaches this level. For more
information on this, see Chapter 7, Alarm Notifier.

You can determine the current log level of a Data Logger with the
Read function. You could also use the Read function to read the
value field of the nviDlStatus[X] data point, where X represents
the index number assigned to the Data Logger. The value assigned
to the data point represents the percentage of the Data Logger’s log
file that has been used.

You can clear out a log file with the Clear function, or by updating
the value assigned to the nviDlClear[X] data point, where X
represents the index number assigned to the Data Logger. The
value field you assign the data point when you update it reflects
how much of the total log size will be cleared. For example, if
your log is 50% full (out of 100kB), and you update the value of
the data point to "30.0 1", then the application would go to the
beginning of the log and clear out the first 30% of the log (in this
case, 30K).

i.LON SmartServer 2.0 Programmer’s Reference 5-7

Property Description

<UCPTlogFileName> The path of the data log file on the SmartServer flash disk, relative
to the /root/data folder and including the extension of the format.
By default, a data log file is stored in the root/data/Net/LON/i.LON
App (Internal) folder, and it is named Data Logger [x], where x is
the index number of the Data Logger functional block.

<DataPoint> A Data Logger can record updates for multiple data points. The
data points for which the Data Logger will record updates are
defined by a list of <DataPoint> elements that have an xsi type
attribute of “UFPTdataLogger_DpRef ” and a dpType attribute of
“Input”.

When any of the data points defined by these elements are updated,
the Data Logger will record the updates into its log file. There are
several properties you need to configure within each data point
reference that determine when an update to that data point will be
logged. See the following table for descriptions of these data point
properties.

The data points monitored by a Data Logger are defined by a list of <DataPoint> elements that have
xsi type =“UFPTdataLogger_DpRef ” and dpType=“Input” attributes. The following table describes
the properties that should be defined within each data point reference.

Property Description

<UCPTname> The name of the data point to be monitored by the Data
Logger in the following format:
<network/channel/device/functional block/data point>.

<UCPTlogMinDeltaTime> The minimum amount of time that must pass between log
entries for the data point, in seconds. All updates will be
logged if this value is 0.0, or not defined.

This property has a maximum value of 214,748,364.0
seconds. The default is 0.0 seconds.

<UCPTlogMinDeltaValue> This property applies to scalar data points only. Specify the
change in value required for an entry to the log to be made.
For example, if this property is set to 30.0, the value of the
data point being monitored must change by at least 30.0
during an update for the change to be recorded by the Data
Logger. All updates are logged if this value is 0.0, or not
defined.

This property has minimum and maximum floating point
values of +/-3.402823466e+038.

Note: If the format type used by the data point being
monitored is SNVT_temp_p#US or SNVT_temp#US, then
the value of this property returned by the Get function will be
displayed using the SNVT_temp_f#US_diff format type.
This rule applies to all formats that use the #US specifier.

<UCPTpollRate> The poll rate for the Data Logger can be between 0 and

i.LON SmartServer 2.0 Programmer’s Reference 5-8

Property Description

214,748,364.0 seconds. The Data Logger will check for
updates to the data point at this interval. If you do not want
to poll data before updates to the log are possible, you should
set this to a value greater than or equal to the value specified
for the <UCPTlogMinDeltaTime> property.

If you use the default poll rate of 0 seconds, the Data Logger
will record each update to the data points it is monitoring into
the log, assuming that the time period defined by the
<UCPTlogMinDeltaTime> property has elapsed and the
change in value specified by the <UCPTlogMinDeltaValue>
property has been met by the update.

You should note that other SmartServer applications may
cause the Data Server to poll this data point’s value as well.
The poll rate specified by these applications should be
compatible with each other. For example, if an Alarm
Generator is polling a data point every 15 seconds, and a Data
Logger is polling the same data point every 10 seconds, then
the Data Server will have to poll the value of the data point
every five seconds to ensure that each application gets a
current value for each poll.

It is important to note this as you set poll rates for various
applications, as you may end up causing more polls than is
efficient on your network. For example, if an Alarm
Generator is polling a data point every 9 seconds and a Data
Logger is polling a data point every 10 seconds, the Data
Server would choose the greatest common divisor and
therefore would have to poll the data point every second to
ensure that each application polls for a current value. This
may create a significant amount of undesired traffic.

5.3.3 Using the Set Function on a Data Logger

Use the Set function to create new Data Loggers, or to overwrite the configuration of existing Data
Loggers. The Data Loggers to be created or written are signified by a list of <Item> elements in the
input parameters supplied to the function. The properties you must define within each <Item> element
are the same, whether you are creating a new Data Logger or modifying an existing Data Logger. The
previous section, Using the Get Function on a Data Logger, describes these properties.

Note: If you specify a data logger with the <UCPTname> element, the Set function deletes the
specified data logger before the specified parameters are set. If the <UCPTname> element is not
specified, a new data logger is created.

When modifying an existing Data Logger, any optional properties left out of the input will be erased.
Old values will not be preserved, so you must fill in every property when writing to a Data Logger,
even if you are not changing all of the values.

The first invocation of the Set function will generate the #8000010128000000[4].UFPTdataLogger.xml
file in the root/config/network/<network>/<channel>/iLONApp ||<device> directory of the
SmartServer, if the file does not already exist.

When creating or modifying a Data Logger with the Set function, you may want to use output from the
Get function as the basis for your input. You would then only need to modify the values of each
property to match the new configuration you want, as opposed to re-creating an entire string like the
one shown below.

i.LON SmartServer 2.0 Programmer’s Reference 5-9

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Fb_Cfg">
 <UCPTname>Net/LON/iLON App/Data Logger[3]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTdataLogger;xsi:type="LON_Fb_Cfg"
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-02-28T11:53:57.930-08:00</UCPTlastUpdate>
 <UCPTuri>LON_Fb_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviClear" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Data Logger[3]/nviDlClear[3]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPoint>
 <DataPoint dpType="nviEnable" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Data Logger[3]/nviDlEnable[3]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPoint>
 <DataPoint dpType="nvoStatus" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Data Logger[3]/nvoDlStatus[3]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPoint>
 <DataPoint dpType="nvoLevelAlarm" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Data Logger[3]/nvoDlLevAlarm[3]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_alarm</UCPTformatDescription>
 </DataPoint>
 <UCPTfbIndex xsi:type="number">9</UCPTfbIndex>
 <UCPTfptKey>#8000010128000000[4].UFPTdataLogger</UCPTfptKey>
 <UCPTdynamic xsi:type="string" LonFormat="UCPTdynamic">DDT_STATIC</UCPTdynamic>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Data Logger[3]</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

5.3.4 Using the Read Function on a Data Logger

Use the Read function to retrieve entries from the log files generated by your Data Loggers. You can
specify which log entries the function will return by filling the properties described in the following
table into the input you supply to the function.

You could use a Read request to generate a list of updates recorded for a specific data point or to
generate a list of data point updates recorded during a specific interval.

Note: You should not attempt to read more than 150 log entries with a single Read request. You can
use the following position() expression to ensures that a maximum of 64 values is returned:
“[position()> =last()-64]“

Request (updates recorded for a specific data point)
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect> //Item[@xsi:type="UFPTdataLogger_Data"]
 [UCPTpointName="Net/LON/iLON App/Digital Output 1/nviClaValue_1"]
 </xSelect>
 </iLonItem>
</Read>

i.LON SmartServer 2.0 Programmer’s Reference 5-10

Request (data point updates recorded during a specific interval)
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item [UCPTlastUpdate>=" 2008-02-28T13:15:00.000+00:00"]
 [UCPTlastUpdate<=" 2008-02-28T13:20:00.360+00:00"]
 [position()> =last()-64][@xsi:type="UFPTdataLogger_Data"]
 </xSelect>
 <Item>
 <UCPTname>Net/LON/iLON App/Data Logger[3]</UCPTname>
 </Item>
 </iLonItem>
</Read>

Response
<ReadResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTdataLogger_Meta_Data">
 <UCPTname>Net/LON/iLON App/Data Logger[3]</UCPTname>
 <UCPTlastUpdate>2008-02-28T13:30:10.010-08:00</UCPTlastUpdate>
 <UCPTstart>2008-02-28T13:02:07.220-08:00</UCPTstart>
 <UCPTstop>2008-02-28T13:30:10.000-08:00</UCPTstop>
 <UCPTmodificationNumber>0</UCPTmodificationNumber>
 <UCPTlogLevel>13.392</UCPTlogLevel>
 <UCPTtotalCount>90</UCPTtotalCount>
 </Item>
 <Item xsi:type="UFPTdataLogger_Data" >
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTaliasName>nviClaValue_1</UCPTaliasName>
 <UCPTlastUpdate>2008-02-28T13:18:00.220-08:00</UCPTlastUpdate>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">0.0 0</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 <UCPTmetaDataPath>//*[@xsi:type=“UFPTdataLogger_Meta_Data”]
 [UCPTname=“Net/LON/iLON App/Data Logger[3]”]
 </UCPTmetaDataPath>
 </Item>
 <Item xsi:type="UFPTdataLogger_Data" >
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTaliasName>nviClaValue_1</UCPTaliasName>
 <UCPTlastUpdate>2008-02-28T13:19:00.060-08:00</UCPTlastUpdate>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_switch">100.0 1</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 <UCPTmetaDataPath>//*[@xsi:type=“UFPTdataLogger_Meta_Data”]
 [UCPTname=“Net/LON/iLON App/Data Logger[3]”]
 </UCPTmetaDataPath>
 </Item>
 </iLonItem>

 </ReadResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

In addition to the requested log entries, the Read function returns an <Item> of type
“UFPTdataLogger_Meta_Data” for each log file from which entries were read. This item has the
following properties

<UCPTname> The name of the data logger from which entries were read in
the following format: <network/channel/device/functional
block>.

<UCPTlastUpdate> A timestamp indicating the time that the last log entry was
made.

<UCPTstart>

<UCPTstop>

Timestamps indicating the log times of the first and last log

i.LON SmartServer 2.0 Programmer’s Reference 5-11

entries in the log file.

<UCPTmodificationNumber> A counter indicating the number of times the log file has
been modified. The counter is not increased when data is
added to the end of the log, but only if some modifications
are made to the existing data.

<UCPTlogLevel> The volume of the log file that has been consumed, as a
percentage. For example, the value 90.0 indicates that the
log is 90% full.

<UCPTtotalCount> This property contains the total number of entries contained
in the data log read by the function.

The Read function returns an <Item> element describing each log entry that met the selection criteria
you defined in the input parameters. The following table lists the properties within each of these
elements.

Property Description

<UCPTname> The name of the data point in the following format:
<network/channel/device/functional block/data point>.

<UCPTaliasName> The default or user-defined nickname provided for the data point.

<UCPTlastUpdate> A timestamp indicating the time that the log entry was made. This
timestamp is shown in local time, with an appended time zone
indicator showing the difference between local time and UTC.
For more information on this, see Local Times and Coordinated
Universal Time.

<UCPTvalue> The value the data point was updated to when the log entry was
made. The value may be presented in the following two
LonFormats:

• LonFormat="#<programID>[scope].<data type>". The
format is specified by the data type defined for the data point.
For a SNVT_switch data point, this value could be 100.0 1 or
0.0 0, for example.

• LonFormat="UCPTvalueDef". The value defined for the data
point by a preset. For a SNVT_switch data point, this value
could be ON or OFF, for example. If a preset is not defined
for the data point, this value is AL_NUL.

<UCPTunit> The unit type of the data point.

<UCPTpointStatus> The status the data point was updated to when the log entry was
made.

<UCPTpriority> The priority level currently assigned to the data point (0-255).
The priority level of a data point determines which applications
can write to its value. You can modify the value of this property
with the Write or ResetPriority functions.

i.LON SmartServer 2.0 Programmer’s Reference 5-12

5.3.4.1 Local Times and Coordinated Universal Time
The timestamps for the <UCPTstart> and <UCPTstop> properties conform to the ISO 8601 standard.
They are expressed in local time, with appended time zone indicators that show the relationship to the
Coordinated Universal Time (UTC).

UTC is an international time standard and is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight in Greenwich England, which lies
on the zero longitudinal meridian. Universal time is based on a 24 hour clock, therefore, afternoon
hours such as 4 pm UTC are expressed as 16:00 UTC. The timestamp uses the following format:

[YYYY-MM-DD]T [HH:MM:SS.sss]+/-[HH:MM]

The first segment of the timestamp [YYYY-MM-DD] represents the date. The second segment
(T[HH:MM:SS.MSS]) of the timestamp represents the local time, expressed in hours, minutes, seconds
and fractions of a second.

The third segment of the timestamp (+/-[HH:MM]) represents the difference between the local time
listed in the second segment and UTC. This segment begins with a + or a -. The + indicates that the
local time is ahead of UTC, and the - indicates the local time is behind UTC. If the local time matches
UTC, the third segment will be replaced by the letter Z.

Consider the following example:

2002-08-13T10:24:37.111+02:00

This timestamp indicates a local date and time of 10:24 AM and 37.111 seconds, on August 13, 2002.
Because the third part of the segment reads +02:00, we know the local time here is 2 hours ahead of
UTC.

5.3.5 Using the Clear Function on a Data Logger

You can use the Clear function to remove log entries from a Data Logger’s log file. You can specify
which Data Logger is to be affected, and which log entries will be removed using xSelect statements.
If no filter is specified with an xSelect statement, the whole data log will be deleted.

Note: This function only deletes the log entries. You can delete the Data Logger itself using the
Delete function.

The following call to the Clear function deletes up to 100 log entries from a data logger that occurred after the specified
date and time.

Request
<Clear xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>

 //Item[UCPTlastUpdate>="2008-02-28T14:00:00.000-8:00"]
 [position()>=0 and position()<=99]

 </xSelect>
 <Item>
 <UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
 </Item>
 </iLonItem>
</Clear>

Response
<ClearResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >

 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTdataLogger_ClearResponse" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]</UCPTname>
 <UCPTlastUpdate>2008-02-28T14:14:08.340-08:00</UCPTlastUpdate>
 <UCPTstart>2008-02-28T12:28:52.780-08:00</UCPTstart>

i.LON SmartServer 2.0 Programmer’s Reference 5-13

 <UCPTstop>2008-02-28T14:00:00.070-08:00</UCPTstop>
 <UCPTmodificationNumber>1</UCPTmodificationNumber>
 <UCPTlogLevel>1.485</UCPTlogLevel>
 <UCPTtotalCount>8</UCPTtotalCount>
 </Item>
 </iLonItem>

 </ClearResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

The Clear function returns the following information related to the log file from which entries were
deleted:

Property Description
<UCPTname> The name of the data logger in which entries were cleared in

the following format: <network/channel/device/functional
block>.

<UCPTlastUpdate> A timestamp indicating the time that the log was cleared.

<UCPTfileName> The name of the log file the Data Logger is using.

<UCPTstart>

<UCPTstop>

Timestamps indicating the times of the first and last log
entries in the log file.

<UCPTmodificationNumber> A counter indicating the number of times the log file has
been modified. The counter is not increased when data is
added to the end of the log, but only if some modifications
are made to the existing data.

<UCPTlogLevel> The volume of the log file that has been consumed, as a
percentage. For example, the value 90.0 indicates that the
log is 90% full.

<UCPTtotalCount The total number of entries contained in the data log read by
the function.

5.3.6 Using the Delete Function on a Data Logger

You can use the Delete function to delete a Data Logger. To delete a Data Logger, you provide an
<Item> element with a UFPTdataLogger_Cfg type that includes the <UCPTname> property of the data
logger to be deleted. The following code sample demonstrates how to use the Delete function to delete
a Data Logger:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTdataLogger_Cfg">
 <UCPTname>Net/LON/iLON App/Data Logger[2]</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Data Logger[2]</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 6-1

6 Alarm Generator
Use the Alarm Generator application to generate alarms based on the values of the data points in your
network. Each time you create an Alarm Generator, you will select an input data point and a compare
data point. The Alarm Generator will compare the values of these data points each time either one is
updated. You will select the function the Alarm Generator will use to make the comparison. If the
result of the comparison is true, an alarm will be generated, and the status (UCPTpointStatus) of the
input data point will be updated to an alarm condition.

For example, you could select GreaterThan as the comparison function. The Alarm Generator would
generate an alarm each time either data point is updated, and the value of the input data point is greater
than the value of the compare data point. The Alarm Generator application includes many other
comparison functions like this, such as Less Than, Less Than or Equal, Greater Than or Equal, Equal,
and Null. Each comparison function is described in detail later in the chapter.

The Alarm Generator application also includes a comparison function called Limits. When you select
this comparison function, you will specify four offset limits for the Alarm Generator. The four offset
limits allow you to generate alarms based on how much the value of the input data point exceeds, or is
exceeded by, the value of the compare data point. If the compare or input data points are updated, and
the difference between their values exceeds any of the offset limits, an alarm will be generated.

You will define a hysteresis level for each alarm offset limit when you use the Limits comparison
function. After an alarm has been generated based on an offset limit, the value of the input data point
must return to the hysteresis level defined for that offset limit before the alarm clears, and before
another alarm can be generated based on that offset limit. As a result, the Alarm Generator will not
generate an additional alarm each time the input data point is updated after it reaches an alarm
condition, but before it has returned to a normal condition. The relationship between the offset values,
hysteresis levels, and alarm data points is described in more detail in the following sections.

All of the comparison functions have features like this that will allow you to throttle alarm generation.
You can specify an interval <UCPTalarmSetTime> that must elapse between alarm generations for a
data point. You can also define an interval <UCPTalarmClrTime> that must elapse after an alarm has
returned to normal status before that alarm will be cleared. These features prevent the Alarm
Generator from triggering multiple alarms each time the input data point reaches an alarm condition.

You can optionally select up to two alarm data points for each Alarm Generator, one of type
SNVT_alarm and one of type SNVT_alarm2. The <UCPTpointStatus> of these data points, and of
the input data point, will be updated to an alarm condition each time the Alarm Generator generates an
alarm. The alarm data points are described in more detail later in the chapter.

You can use the Alarm Notifier application to generate e-mail messages when the alarm and input data
points are updated to alarm conditions. For more information on this, see Chapter 7, Alarm Notifier.

6.1 Overview of the Alarm Generator XML File
The #8000010128000000[4].UFPTalarmGenerator.xml file stores the configuration of the Alarm
Generators that you have added to the SmartServer. Each Alarm Generator is signified by an <Item>
element in the XML file.

You can create new Alarm Generators using the Set function, or by manually editing the
#8000010128000000[4].UFPTalarmGenerator.xml file, and rebooting the SmartServer. You can
create up to 40 Alarm Generators per SmartServer. You can add more than 40 Alarm Generators if
you load the dynamic v40 XIF on your SmartServer and you operate your SmartServer in Standalone
mode. Note that using the v40 XIF with the SmartServer operating in LNS mode (LNS Auto or LNS
Manual) is not supported.

The following represents a sample #8000010128000000[4].UFPTalarmGenerator.xml file with one
Alarm Generator.

i.LON SmartServer 2.0 Programmer’s Reference 6-2

<Item xsi:type="UFPTalarmGenerator_Cfg" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTalarmGenerator</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-02-28T15:29:23.220-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTalarmGenerator_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nviAgEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoAlarmFlag" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nvoAgAlarmFlag[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviLatchEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nviAgLatchEnbl[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 </DataPoint>
 <DataPoint dpType="Compare" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/CompareDP</UCPTname>
 </DataPoint>
 <UCPTalrmIhbD>0.000000</UCPTalrmIhbD>
 <UCPTalarmPriority LonFormat="UCPTalarmPriority">PR_LEVEL_1</UCPTalarmPriority>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 <UCPTpollRate>0.0</UCPTpollRate>
 <UCPTalarm2Description></UCPTalarm2Description>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_EQ</UCPTcompFunction>
 <UCPTalarmSetTimeD>0.000000</UCPTalarmSetTimeD>
 <UCPTalarmClrTimeD>0.000000</UCPTalarmClrTimeD>
 <UCPTlowLimit1Offset LonFormat="UNVT_double_float"></UCPTlowLimit1Offset>
 <UCPTlowLimit2Offset LonFormat="UNVT_double_float"></UCPTlowLimit2Offset>
 <UCPThighLimit1Offset LonFormat="UNVT_double_float"></UCPThighLimit1Offset>
 <UCPThighLimit2Offset LonFormat="UNVT_double_float"></UCPThighLimit2Offset>
 <SCPThystHigh1 LonFormat="UNVT_double_float"></SCPThystHigh1>
 <SCPThystHigh2 LonFormat="UNVT_double_float"></SCPThystHigh2>
 <SCPThystLow1 LonFormat="UNVT_double_float"></SCPThystLow1>
 <SCPThystLow2 LonFormat="UNVT_double_float"></SCPThystLow2>
 </Item>

6.2 Creating and Modifying the Alarm Generator XML File
You can create and modify the #8000010128000000[4].UFPTalarmGenerator.xml file with the Set
SOAP function. The following section, Alarm Generator SOAP Interface, describes how to use the Set
function, and the other SOAP functions provided for the Alarm Generator application.

Alternatively, you can create and modify the #8000010128000000[4].UFPTalarmGenerator.xml file
manually using an XML editor, and download the file to the SmartServer via FTP. Echelon does not
recommend this, as the SmartServer will require a reboot to read the configuration of the downloaded
file. Additionally, the SmartServer performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via FTP,
and thus the application may not boot properly.

However, if you plan to create and manage the XML file manually, you should review the rest of this
chapter first, as it describes the elements and properties in the XML file that define each Alarm
Generator’s configuration.

6.3 Alarm Generator SOAP Interface
The SOAP interface for the Alarm Generator application includes the following functions:

Function Description

List Generate a list of the Alarm Generators that you have added to the
SmartServer.

i.LON SmartServer 2.0 Programmer’s Reference 6-3

Get Retrieve the configuration of any Alarm Generator that you have
added to the SmartServer.

Set Create a new Alarm Generator, or overwrite the configuration of an
existing Alarm Generator.

Delete Delete an Alarm Generator.

6.3.1 Using the List Function on an Alarm Generator

Use the List function to retrieve a list of the Alarm Generators that you have added to the SmartServer.
The List function takes an <iLonItem> element that includes an xSelect statement querying items of a
UFPTalarmGenerator_Cfg type as its input, as shown in the example below. The List function returns
an <Item> element for each Alarm Generator that you have added to the SmartServer. The next
section describes the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each Alarm Generator included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="UFPTalarmGenerator_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTalarmGenerator;xsi:type=“LON_Fb_Cfg”
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>

 </ListResponse>

6.3.2 Using the Get Function on an Alarm Generator

You can use the Get function to retrieve the configuration of any Alarm Generator that you have added
to the SmartServer. You must reference the Alarm Generator whose configuration is to be returned by
its <UCPTname> in the input you supply to the function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTalarmGenerator_Cfg" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTalarmGenerator</UCPTannotation>
 <UCPThidden>0</UCPThidden>

i.LON SmartServer 2.0 Programmer’s Reference 6-4

 <UCPTlastUpdate>2008-02-28T15:45:26.060-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTalarmGenerator_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nviAgEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoAlarmFlag" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nvoAgAlarmFlag[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviLatchEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nviAgLatchEnbl[0]</UCPTname>
 </DataPoint>
 <DataPoint dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 </DataPoint>
 <DataPoint dpType="Compare" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/CompareDP</UCPTname>
 </DataPoint>
 <DataPoint dpType="Alarm" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/alarm</UCPTname>
 </DataPoint>
 <UCPTalrmIhbD>0.000000</UCPTalrmIhbD>
 <UCPTalarmPriority LonFormat="UCPTalarmPriority">PR_LEVEL_1</UCPTalarmPriority>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 <UCPTpollRate>0.0</UCPTpollRate>
 <UCPTalarm2Description></UCPTalarm2Description>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_EQ</UCPTcompFunction>
 <UCPTalarmSetTimeD>0.000000</UCPTalarmSetTimeD>
 <UCPTalarmClrTimeD>0.000000</UCPTalarmClrTimeD>
 <UCPTlowLimit1Offset LonFormat="UNVT_double_float"></UCPTlowLimit1Offset>
 <UCPTlowLimit2Offset LonFormat="UNVT_double_float"></UCPTlowLimit2Offset>
 <UCPThighLimit1Offset LonFormat="UNVT_double_float"></UCPThighLimit1Offset>
 <UCPThighLimit2Offset LonFormat="UNVT_double_float"></UCPThighLimit2Offset>
 <SCPThystHigh1 LonFormat="UNVT_double_float"></SCPThystHigh1>
 <SCPThystHigh2 LonFormat="UNVT_double_float"></SCPThystHigh2>
 <SCPThystLow1 LonFormat="UNVT_double_float"></SCPThystLow1>
 <SCPThystLow2 LonFormat="UNVT_double_float"></SCPThystLow2>
 </Item>
 </iLonItem>
</GetResponse>

The function returns an <Item> element for each Alarm Generator referenced in the input parameters
supplied to the function. The properties included in each element are initially defined when the Alarm
Generator is created. You can write to these properties with the Set function. The following table
describes these properties.

Property Description

<UCPTname> The name of the Alarm Generator in the following format:
<network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the
Alarm Generator. This property is always
8000010128000000[4].UFPTalarmGenerator

<UCPThidden> A flag indicating whether the Alarm Generator functional
block is hidden or shown in the navigation pane on the left
side of the SmartServer Web interface. This property may
have the following values:

0 – shown
1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not
synchronized with an LNS network database or it has been

i.LON SmartServer 2.0 Programmer’s Reference 6-5

Property Description

deleted. In this case, it has the following values:

IS_NOTSYNCED
IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Alarm Generator was updated. This timestamp uses the
following format:

YYYY-MM-DDTHH:MM:SSZ

<UCPTuri> The name of the file containing the configuration web page
for the Alarm Generator on the SmartServer flash disk,
absolute or relative to /web/user/echelon folder. This
property is
#8000010128000000[4].UFPTalarmGenerator_Cfg.htm
by default.

<UCPTalrmIhbT> The time period for which alarm generation is to be
inhibited after the application is enabled. This period must
be entered in seconds, as a double precision floating point
value.

<UCPTalarmPriority> Specifies the alarm priority that will be reported in the
priority_level field of the alarm data points for the Alarm
Generator. The alarm priority is independent of the alarm
type. For a list of valid alarm priorities, see Alarm Priority
Levels.

<UCPTpollOnResetDelay> The time period to wait after enabling or starting the
application before polling the value of the input data point,
in seconds. This field has a range of 0.0-6553.0 seconds.

When the default value of 0.0 seconds is used, the Alarm
Generator will resume polling the input data point at the
interval specified by the <UCPTpollRate> property
immediately after a reset.

<UCPTpollRate> The poll rate for the input and compare data points, in
seconds. When this value is greater than 0, the Alarm
Generator will poll the values of the input and compare data
points each time this interval expires. This field has a range
of 0-214,748,364 seconds.

When this value is 0, the Alarm Generator will not poll the
value of the input and compare data points, and will only
check for alarm conditions when it receives event-driven
updates to the data points.

You should note that other SmartServer applications may
cause the Data Server to poll this data point’s value as well.
The poll rate specified by these applications should be
compatible with each other. For example, if an Alarm
Generator is polling a data point every 15 seconds, and a
Data Logger is polling that data point every 10 seconds,
then the Data Server will have to poll the value of the data

i.LON SmartServer 2.0 Programmer’s Reference 6-6

Property Description

point every five seconds to ensure that each application gets
a current value for each poll.

It is important to note this as you set poll rates for various
applications, as you may end up causing more polls than is
efficient on your network. For example, if an Alarm
Generator is polling a data point every 9 seconds and a Data
Logger is polling a data point every 10 seconds, the Data
Server would have to poll the data point every second to
ensure that each application polls for a current value. This
may create a significant amount of undesired traffic.

<UCPTalarm2Description> Optional. The description field of the SNVT_alarm2 data
point selected for the Alarm Generator. This data point can
be selected by setting the SNVT_alarm_2 output data point
property.

The description of the data point could include the value
that increased and caused the alarm, an alarm or error code
defined by the manufacturer, or the alarm limit. This can be
a maximum of 22 characters long, and will be inserted in the
description field of the SNVT_alarm2 data point each time
an alarm is generated.

<UCPTcompFunction> Specifies the function that the Alarm Generator will use to
compare the values of the input data point and the compare
data point. For descriptions of the comparison functions
you can use, see Comparison Functions.

<UCPTalarmSetTime> Specifies the time period an alarm condition must exist
before the Alarm Generator will consider it a valid alarm
and generate an alarm. The time period must be entered in
seconds, as a double precision floating point value.

<UCPTalarmClrTime> Specifies the time period to wait after the condition that
caused an alarm has returned to normal status before the
alarm will be cleared. The time period must be entered in
seconds, as a double precision floating point value.

<UCPTlowLimit1Offset>
<UCPTlowLimit2Offset>
<UCPThighLimit1Offset>
<UCPThighLimit2Offset>

Enter a scalar value for each of these properties. These
values will be used as the offset limits for the Alarm
Generator when the <UCPTcompFunction> property is set
to FN_LIMIT. In this case, alarms will be generated when
any of the following conditions are true:

• Value of Input Data Point> Value of Compare Data
Point + highLimit1Offset

• Value of Input Data Point > Value of Compare Data
Point +highLimit2Offset

• Value of Input Data Point < Value of Compare Data
Point – lowLimit1Offset

• Value of Input Data Point < Value of Compare Data

i.LON SmartServer 2.0 Programmer’s Reference 6-7

Property Description

Point – lowLimit2Offset

The value entered for <UCPThighLimit2Offset> must be
greater than that entered for <UCPThighLimit1Offset>, and
the value entered for <UCPTlowLimit2Offset> must be less
than that entered for <UCPTlowLimit1Offset>. The default
value for each property is 0. If any of these properties are
left empty, they will not be used to check for alarm
conditions. When you set these properties, you must also
set the corresponding hysteresis properties

Each alarm condition caused by the offset properties will
cause the <UCPTpointStatus> of the input data and alarm
data points to be set to a different status. For more
information, see Hysteresis Levels and Offset Limits.

Note: If you use the Get function to retrieve the
configuration of an Alarm Generator whose input or
compare data points use the format type
SNVT_temp_p#US or SNVT_temp#US, then the values of
these properties will be displayed using the
SNVT_temp_f#US format. This rule applies to all formats
that use the #US specifier.

<SCPThystHigh1>
<SCPThystHigh2>
<SCPThystLow1>
<SCPThystLow2>

When an alarm occurs based on one of the offset limits
described above, the value of the input data point must reach
the hysteresis value for that limit before the alarm can be
cleared, and another alarm can be generated based on that
offset limit.

This allows you to set up an Alarm Generator that will
trigger an alarm once each time the value of the input data
point reaches a certain level, as opposed to multiple times
(which would occur each time the data point was updated
and its value remained within the range specified by the
offset limit).

Enter a scalar value for each of these properties. These
values define the hysteresis level that will be used for each
alarm offset limit. For a more detailed description of the
hysteresis fields and how they relate to the offset limit
values, see Hysteresis Levels and Offset Limits.

Note: If you use the Get function to retrieve the
configuration of an Alarm Generator whose input data point
uses the format type SNVT_temp_p#US or
SNVT_temp#US, then the values of these properties will be
displayed using the SNVT_temp_f#US format. This rule
applies to all formats that use the #US specifier.

<DataPoint>

Input

The input data point for this Alarm Generator. The data
point must be referenced by its <UCPTpointName>.

Each time this data point is updated, its value will be
compared to the value of the compare data point using the
comparison function defined by the <UCPTcompFunction>
property. If the result of the comparison is True, an alarm

i.LON SmartServer 2.0 Programmer’s Reference 6-8

Property Description

will be generated.

The <UCPTpointSatus> of this data point will be updated to
the status AL_ALM_CONDITION when an alarm is
generated, unless the <UCPTcompFunction> selected for
the Alarm Generator is FN_LIMIT. In this case, the status
will be updated to any of four alarm statuses, based on the
offset limit that caused the alarm. For more information on
this, see Hysteresis Levels and Offset Limits.

You can register the input data point with the Alarm
Notifier application to generate alarm notifications and
e-mail messages each time it is updated to an alarm status.
For more information on this, see Alarm Notifier.

<DataPoint>

Compare

The compare data point for this Alarm Generator. The data
point must be referenced by the <UCPTpointName>
assigned to it in the Data Server, and must use the same
format type as the input data point. The value of this data
point will be compared to the value of the input data point
each time either point is updated.

You can use a compare data point if you want your Alarm
Generator to generate alarms based on a constant value
configured through software, as opposed to a live value
taken from the network.

<DataPoint>

SNVT_alarm Output

SNVT_alarm2 Output

Optional. These properties define the Alarm Generator’s
alarm data points. Each data point must be referenced by
the <UCPTpointName> assigned to it in the Data Server.
The data point chosen for the SNVT_alarm output data
point must use the format type SNVT_alarm. The data
point chosen for the SNVT_alarm_2 output data point must
use the format type SNVT_alarm_2.

Use a SNVT_alarm data point if your system can handle
this LonMark standard type for alarming. Use a
SNVT_alarm2 data point if your system will require the
additional information you can provide with the
<UCPTalarm2Description> property. If your system can
directly access the <UCPTpointStatus> property of the input
data point, you may not need to use alarm data points, as
your Alarm Generators will update the input data point to an
alarm status each time they generate an alarm. You can
read this property from a data point with Read function.

The <UCPTpointSatus> of each alarm data point will be
updated to the status AL_ALM_CONDITION when an
alarm is generated, unless the <UCPTcompFunction> is
FN_LIMIT. In this case, the status will be updated to any of
four alarm statuses, based on the offset limit that caused the
alarm. For more information on this, see Hysteresis Levels
and Offset Limits.

You can register these alarm data points with the Alarm
Notifier application to generate alarm notifications and

i.LON SmartServer 2.0 Programmer’s Reference 6-9

Property Description

e-mail messages each time they are updated to an alarm
status. For more information on this, see Alarm Notifier.

6.3.2.1 Alarm Priority Levels
You can select a priority level for the Alarm Generator by filling in the <UCPTalarmPriority>
property. When doing so, you must reference each priority level with the identifier listed in the
following table. Each time an Alarm Generator generates an alarm, the priority_level field of the
alarm data points chosen for the Alarm Generator will be updates to the priority level chosen here.

Identifier Notes

PR_LEVEL_0 Lowest alarm priority level

PR_LEVEL_1

PR_LEVEL_2

PR_LEVEL_3 Highest alarm priority level

PR_1 Life Safety Fire Alarms

PR_2 Property Safety Fire Alarms

PR_3 Fire Supervisory Alarm

PR_4 Fire Trouble/Fault (Display)

PR_6 Fire Pre-Alarm, HVAC Critical Equipment Alarm

PR_8 HVAC Alarms (BACnet Priority 8)

PR_10 HVAC Critical Equipment RTN, Fire RTN (Display)

PR_16 HVAC RTN (lowest priority)

PR_NUL Value not available

6.3.2.2 Comparison Functions
The following tables describes the comparison functions an Alarm Generator can use when comparing
the values of the input and compare data points. You can select a comparison function for the Alarm
Generator by filling in the <UCPTcompFunction> property. When doing so, you must reference each
comparison function with the identifier strings listed in the following table.

Identifier Description

FN_GT Greater than. An alarm will be generated if the input value is greater than the
compare value.

FN_LT Less than. An alarm will be generated if the input value is less than the
compare value.

FN_GE Greater than or equal. An alarm will be generated if the input value is greater
than or equal to the compare value.

FN_LE Less than or equal. An alarm will be generated if the input value is less than
or equal to the compare value.

FN_EQ Equal. An alarm will be generated if the input value is equal to the compare
value.

i.LON SmartServer 2.0 Programmer’s Reference 6-10

Identifier Description

FN_NE Not equal. An alarm will be generated if the input value is not equal to the
compare value.

FN_LIMIT Compare against the limits defined by the high and low limit offset fields. For
more information, see Hysteresis Levels and Offset Limits.

Different comparison functions should be used for different data point types, depending on the
<UCPTbaseType> of the data point. The following table lists the different data point base types, and
the comparison functions you can use with them.

Base Type Valid <UCPTcompFunction>

BT_UNKNOWN, BT_ENUM, BT_ARRAY,
BT_STRUCT, BT_UNION, BT_BITFIELD

FN_EQ, FN_NE

BT_SIGNED_CHAR, BT_UNSIGNED_CHAR,
BT_SIGNED_SHORT, BT_UNSIGNED_SHORT,
BT_SIGNED_LONG, BT_UNSIGNED_LONG,
BT_FLOAT, BT_SIGNED_QUAD,
BT_UNSIGNED_QUAD, BT_DOUBLE

FN_GT, FN_LT, FN_GE, FN_LE,
FN_EQ, FN_NE, FN_LIMIT

You can make inequality comparisons between SNVT_switch (BT_STRUCT) data points, or between
SNVT_lev_disc (BT_ENUM) data points. The following table lists the <UCPTcompFunction>
identifiers you could use for these special comparisons. A description of how these comparisons are
made follows the table.

SNVT Valid <UCPTcompFunction>

SNVT_switch FN_GT, FN_LT, FN_GE, FN_LE, FN_EQ, FN_NE

SNVT_lev_disc FN_GT, FN_LT, FN_GE, FN_LE, FN_EQ, FN_NE

Comparisons made with SNVT_switch data points are enumeration-based comparisons based on the
value field of the SNVT_switch. If the value field is between 0.5 and 100.0, the SNVT_switch is
considered ON and that will be the basis of the comparison. If the value field is between 0.0 and 0.4,
the SNVT_switch will be considered OFF. In this way you could compare SNVT_switch data points.
For example, if the input data point was ON, the compare data point was OFF, and the comparison
function selected was FN_GT, the comparison would return TRUE because ON is considered greater
than OFF.

This is also true for SNVT_lev_disc data points, which take five enumerations: OFF, LOW,
MEDIUM, HIGH, and ON. If the input data point was LOW, the compare data point was HIGH and
the comparison function was FN_GT, the function would return FALSE, because LOW is not greater
than HIGH.

6.3.2.3 Hysteresis Levels and Offset Limits
The four offset limit properties are named <UCPTlowLimit1Offset>, <UCPTlowLimit2Offset>,
<UCPThighLimit1Offset>, and <UCPThighLimit2Offset>. The Alarm Generator will use these
offsets to determine if an alarm condition exists when the <UCPTcompFunction> selected for the
Alarm Generator is FN_LIMIT.

The following table lists the four offset limits, and the condition set that causes each one to generate an
alarm. It also lists the status that the <UCPTpointStatus> of the input and alarm data points will be
updated to when an alarm is generated based on each offset limit in the Alarm Status column.

i.LON SmartServer 2.0 Programmer’s Reference 6-11

Offset Limit Alarm Generated When.... Alarm Status

<UCPThighLimit1Offset> Input Value>Compare Value +
UCPThighLimit1Offset

AL_HIGH_LMT_ALM1

<UCPThighLimit2Offset> Input Value>Compare Value +
UCPThighLimit2Offset

AL_HIGH_LMT_ALM2

<UCPTlowLimit1Offset> Input Value<Compare Value –
UCPTlowLimit1Offset

AL_LOW_LMT_ALM1

<UCPTlowLimit2Offset> Input Value<Compare Value –
UCPTlowLimit2Offset

AL_LOW_LMT_ALM2

Each time an alarm is generated based on any of these offset limits, the value of the input data point
must return to a value inside the hysteresis range for that limit, and the time period specified by the
<UCPTclrTime> property must elapse, before the alarm is cleared. Only then could another alarm be
generated based on that offset limit.

The Alarm Generator’s hysteresis levels determine the value the input data point must return to for
each alarm condition to be cleared. The following table describes how these levels are calculated for
each of the offset limits listed above.

Offset Limit Causing Alarm Alarm Cleared When...

<UCPThighLimit1Offset> Input Value<=Comp Value+ UCPThighLimit1Offset –
SCPThysHigh1

<UCPThighLimit2Offset> Input Value<=Comp Value+ UCPThighLimit2Offset –
SCPThysHigh2

<UCPTlowLimit1Offset> Input Value>= Compare Value – UCPTlowLimit1Offset +
SCPThysLow1

<UCPTlowLimit2Offset> Input Value>= Compare Value – UCPTlowLimit2Offset +
SCPThysLow2

When an alarm is cleared, the data point is updated to the next lowest alarm level. For example, when
an AL_LOW_LMT_ALM_2 alarm is cleared, the data point is updated to AL_LOW_LMT_ALM_1.
When that condition clears, the data point is updated to AL_NO_CONDITION. The following table
describes this process in more detail.

Event Input Data Point Status Comments

Value of input data point is
normal.

AL_NO_CONDITION No alarm condition.

Value of input data point
goes above first level
(UCPThighLimit1Offset).

AL_HIGH_LMT_ALM1 Updated to the first alarm
condition.

Value of input data point
goes above second level
(UCPThighLimit2Offset).

AL_HIGH_LMT_ALM2 Updated to the second, and more
severe, alarm condition.

i.LON SmartServer 2.0 Programmer’s Reference 6-12

Event Input Data Point Status Comments

Value of input data point
goes below hysteresis level
for the second alarm
condition.

AL_HIGH_LMT_ALM1 Updated back to the first alarm
condition, as the data point has not
yet reached the hysteresis level for
that condition.

Value of input data point
goes below hysteresis level
for the first alarm condition.

AL_NO_CONDITION Updated back to normal status.

6.3.3 Using the Set Function on an Alarm Generator

Use the Set function to create new Alarm Generators, or to overwrite the configuration of existing
Alarm Generators. The Alarm Generators to be created or written are signified by a list of <Item>
elements in the input parameters supplied to the function. The properties you must define within each
<Item> element are the same, whether you are creating a new Alarm Generator or modifying an
existing Alarm Generator. The previous section, Using the Get Function an Alarm Generator,
describes these properties.

Note: If you specify an Alarm Generator with the <UCPTname> element, the Set function deletes the
specified Alarm Generator before the specified parameters are set. If the <UCPTname> element is not
specified, a new Alarm Generator is created.

When modifying an existing Alarm Generator, any optional properties omitted from the Set Request,
such as the input point, compare point, or SNVT_alarm and SNVT_alarm_2 output data points, will be
erased. Old values will not be preserved, so you must fill in every property when writing to an Alarm
Generator, even if you are not changing all of the values.

The first invocation of the Set function will generate the #8000010128000000[4].UFPTdataLogger.xml
file in the root/config/network/<network>/<channel>/iLONApp ||<device> directory of the
SmartServer, if the file does not already exist.

When creating or modifying an Alarm Generator with the Set function, you may want to use output
from the Get function as the basis for your input. You would then only need to modify the values of
each property to match the new configuration you want, as opposed to re-creating an entire string like
the one shown below.

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Fb_Cfg">
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTalarmGenerator;xsi:type="LON_Fb_Cfg"
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTuri>LON_Fb_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nviAgEnable[0]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPoint>
 <DataPoint dpType="nvoAlarmFlag" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nvoAgAlarmFlag[0]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPoint>
 <DataPoint dpType="nviLatchEnable" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]/nviAgLatchEnbl[0]</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPoint>
 <UCPTalrmIhbD>0.0</UCPTalrmIhbD>

<UCPTalarmPriority LonFormat="UCPTalarmPriority">PR_LEVEL_1</UCPTalarmPriority>
<UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>

i.LON SmartServer 2.0 Programmer’s Reference 6-13

<UCPTpollRate>0.0</UCPTpollRate>
<UCPTalarm2Description>none</UCPTalarm2Description>
<UCPTcompFunction LonFormat="UCPTcompFunction">FN_EQ</UCPTcompFunction>
<UCPTalarmSetTimeD>0.0</UCPTalarmSetTimeD>
<UCPTalarmClrTimeD>0.0</UCPTalarmClrTimeD>
<UCPTlowLimit1Offset LonFormat="UNVT_double_float">10000</UCPTlowLimit1Offset>
<UCPTlowLimit2Offset LonFormat="UNVT_double_float">20000</UCPTlowLimit2Offset>
<UCPThighLimit1Offset LonFormat="UNVT_double_float">10000</UCPThighLimit1Offset>
<UCPThighLimit2Offset LonFormat="UNVT_double_float">20000</UCPThighLimit2Offset>
<SCPThystHigh1 LonFormat="UNVT_double_float">5000.000000</SCPThystHigh1>
<SCPThystHigh2 LonFormat="UNVT_double_float">5000.000000</SCPThystHigh2>
<SCPThystLow1 LonFormat="UNVT_double_float">5000.000000</SCPThystLow1>
<SCPThystLow2 LonFormat="UNVT_double_float">5000.000000</SCPThystLow2>

 </Item>
 </iLonItem

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

6.3.4 Using the Delete Function on an Alarm Generator

You can use the Delete function to delete an Alarm Generator. To delete an Alarm Generator, you
provide an <Item> element with a UFPTalarmGenerator_Cfg type that includes the <UCPTname>
property of the alarm generator to be deleted. The following code sample demonstrates how to use the
Delete function to delete an Alarm Generator:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTalarmGenerator_Cfg">
 <UCPTname>Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname> Net/LON/iLON App/Alarm Generator[0]</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 6-14

i.LON SmartServer 2.0 Programmer’s Reference 7-1

7 Alarm Notifier
Use the Alarm Notifier application to log user-defined alarm conditions, and to generate e-mail
messages and data point updates each time an alarm condition occurs. This section provides an
overview of how Alarm Notifiers work, including how you can define alarm conditions and program
your Alarm Notifiers to respond to them.

User-Defined Alarm Conditions

When you create an Alarm Notifier, you will specify a group of input data points. The Alarm Notifier
will read the status of these data points each time they are updated to determine if they have reached
alarm conditions. The statuses that the Alarm Notifier will consider alarm conditions are user-defined.
You will define these conditions by creating active and passive alarm condition sets for the Alarm
Notifier.

For each condition set you create, you will select an alarm type (active or passive) and a data point
status. Each time an input data point is updated and its <UCPTpointStatus> matches the selected
status, an alarm notification will occur. If it is generated based on a status assigned to an active alarm
condition set, it is considered an active alarm. If it is generated based on a status assigned to a passive
condition set, it is considered a passive alarm. You can create as many active and passive alarm
condition sets as you like per Alarm Notifier.

There are several scenarios you could consider when creating Alarm Notifiers. For example, you
could set up Alarm Notifiers to generate alarm notifications based on the statuses of the data points
updated by your Alarm Generators. For more information on Alarm Generators, see Chapter 6.

You may also recall from Chapter 5 that some data points exist in the Data Server to monitor the
amount of memory that an Alarm Generator’s log file has consumed. You could set up an Alarm
Notifier to generate alarm notifications when a log file becomes full.

Alarm Destinations

You can create destinations for your Alarm Notifiers. These destinations determine how the Alarm
Notifier will respond when an alarm occurs. You can create as many active and passive destination
sets as you like per Alarm Notifier. The passive destination will be used when a passive alarm
notification occurs, and the active destinations will be used when an active alarm notification occurs.

For each destination, you can specify an output data point. This data point will be updated each time
an alarm notification occurs and uses that particular destination. You can also specify an e-mail profile
for each destination. The e-mail profile will cause an e-mail to be sent to an address of your choice
each time the destination is used. The next section provides more information on e-mail profiles.
You can create e-mail profiles and assign these profiles to the destination sets you have created for
your Alarm Notifier. Each e-mail profile contains an e-mail address. When a destination using an
e-mail profile is used, an e-mail will be sent to the address defined for that profile.

You can specify the message text, subject heading, and attachment to be included with each e-mail.
E-mail profiles allow you to notify different people when different alarms occur. This is useful if
different groups of people need to receive notifications about the various alarm conditions that might
occur on your network.

Auto-Generated Log Files

Each Alarm Notifier will generate its own log file. It will add an entry to this log file each time it
generates an alarm notification. You can find these log files in the /root/AlarmLog directory of
the SmartServer. These files are named histlogX, where X represents the index number assigned to the
Alarm Notifier when it was created. An Alarm Notifier will not generate a log file until it has
generated an alarm notification.

i.LON SmartServer 2.0 Programmer’s Reference 7-2

In addition, the Alarm Notifier application generates a summary log that summarizes the log entries
made by all the Alarm Notifiers that were classified as active alarms. This file is called sumlog0, and
can also be found in the /root/AlarmLog directory of your SmartServer.

You can create the log files in either a text format (.csv) or binary format (.dat). You will establish this
when you create your Alarm Notifiers. You can read these log files with the SmartServer Web pages,
by opening the log files via FTP, or by using the Read function. You can use the Write function to
acknowledge and comment on the alarm notifications stored in the log files.

7.1 Overview of the AlarmNotifier XML File
The #8000010128000000[4].UFPTalarmNotifier.xml file stores the configuration of the Alarm
Notifiers that you have added to the SmartServer. Each Alarm Notifier is signified by an <Item>
element in the XML file.

You can create new Alarm Notifiers using the Set function, or by manually editing the
#8000010128000000[4].UFPTalarmNotifier.xml file, and rebooting the SmartServer. You can create
up to 40 Alarm Notifiers per SmartServer. You can add more than 40 Alarm Notifiers if you load the
dynamic v40 XIF on your SmartServer and you operate your SmartServer in Standalone mode. Note
that using the v40 XIF with the SmartServer operating in LNS mode (LNS Auto or LNS Manual) is
not supported.

The following represents a sample #8000010128000000[4].UFPTalarmNotifier.xml file with one
Alarm Notifier. This Alarm Notifier generates alarm notifications based on the status of an
nvoDlLevAlarm data point. This nvoDlLevAlarm data point monitors the log level of a Data
Logger. As you may recall from Chapter 4, this data point will be set to the alarm condition
AL_ALM_CONDITION when the volume of the Data Logger reaches its pre-defined log level. The
Alarm Notifier defined by the example below triggers an alarm notification when this occurs, and
updates the value of the nviDlClear data point to 100.0 1. The update to nviDlClear will clear out the
Data Logger’s log file. In summary, the Alarm Notifier defined by the XML file below monitors the
log level of an Alarm Generator, and empties the Data Logger’s log file when it becomes full.

 <Item xsi:type="UFPTalarmNotifier_Cfg" >
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTalarmNotifier</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-02-29T11:16:53.190-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTalarmNotifier_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]/nviAnEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_Input_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlLevAlarm[0]</UCPTname>
 <AlarmFlags>
 <UCPTlogEnable>1</UCPTlogEnable>
 <UCPTinvisible>0</UCPTinvisible>
 <UCPTclearRequired>0</UCPTclearRequired>
 <UCPTackRequired>1</UCPTackRequired>
 <UCPTdisabled>0</UCPTdisabled>
 <UCPTcovEnabled>1</UCPTcovEnabled>
 </AlarmFlags>
 <UCPTalarmGroup>0</UCPTalarmGroup>
 <UCPTalarmPriority2>0</UCPTalarmPriority2>
 <UCPTdescription/>
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nviDlClear[0]</UCPTname>
 <UCPTnickName>Net/LON/iLON App/Data Logger[0]/nviDlClear[0]</UCPTnickName>
 </DataPoint>
 <SCPTdelayTime>0</SCPTdelayTime>
 <UCPTsumLogSize>50</UCPTsumLogSize>
 <UCPThistLogSize>100</UCPThistLogSize>
 <UCPTlogFormat LonFormat="UCPTlogFormat">LF_TEXT</UCPTlogFormat>
 <UCPTsumLogFileName>Net/LON/iLON App/Alarm Notifier[0]_Summary.csv</UCPTsumLogFileName>
 <UCPThistLogFileName>Net/LON/iLON App/Alarm Notifier[0]_History.csv</UCPThistLogFileName>

i.LON SmartServer 2.0 Programmer’s Reference 7-3

 <UCPTemailAggregTime>0</UCPTemailAggregTime>
 <Mail>
 <UCPTindex>0</UCPTindex>
 <UCPTnickName>Alarm Notification </UCPTnickName>
 <UCPTemailAddress>user@echelon.com</UCPTemailAddress>
 <UCPTemailFormat>{status}{new_line}{alarm_time}</UCPTemailFormat>
 <UCPTemailSubject>Data Logger at Alarm Level</UCPTemailSubject>
 <UCPTemailAttachment/>
 </Mail>
 <ActiveAlarm>
 <UCPTindex>5</UCPTindex>
 <UCPTlevel>240</UCPTlevel>
 <UCPTalarmText>Alarm</UCPTalarmText>
 <UCPTalarmCondition LonFormat="UCPTalarmCondition">AL_ALM_CONDITION</UCPTalarmCondition>
 </ActiveAlarm>
 <PassiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>255</UCPTlevel>
 <UCPTalarmText>Online</UCPTalarmText>
 <UCPTalarmCondition LonFormat="UCPTalarmCondition">AL_NO_CONDITION</UCPTalarmCondition>
 </PassiveAlarm>
 <AlarmDest>
 <UCPTindex>0</UCPTindex>
 <UCPTenablePath/>
 <ActiveDest>
 <UCPTmailPath>Mail[UCPTnickName=“Alarm Notification “]</UCPTmailPath>

<UCPTdataPointPath>DataPoint[@dpType=“Output” and UCPTnickName=“Net/LON/iLON App/Data
Logger[0]/nviDlClear[0]”]</UCPTdataPointPath>

 <UCPTpointValue>ON</UCPTpointValue>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </PassiveDest>
 </AlarmDest>
 </Item>
</iLonItem>

7.2 Creating and Modifying the Alarm Notifier XML File
You can create and manage the #8000010128000000[4].UFPTalarmNotifier.xml file with the Set
SOAP function. The following section, Alarm Notifier SOAP Interface, describes how to use Set and
the other SOAP functions provided for the Alarm Notifier application.

Alternatively, you can create and manage the #8000010128000000[4].UFPTalarmNotifier.xml file
manually with an XML editor and download it to the SmartServer via FTP. Echelon does not
recommend this, as the SmartServer will require a reboot to read the configuration of the downloaded
file. Additionally, the SmartServer performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via FTP,
and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first, as it
describes the elements and properties in the XML file that define each Alarm Notifier’s configuration.

i.LON SmartServer 2.0 Programmer’s Reference 7-4

7.3 Alarm Notifier SOAP Interface
You can use the SOAP interface to perform the following functions on an Alarm Notifier application:

Function Description

List Generate a list of the Alarm Notifiers that you have added to the
SmartServer.

Get Retrieve the configuration of any Alarm Notifier that you have added
to the SmartServer.

Set Create a new Alarm Notifier, or overwrite the configuration of an
existing Alarm Notifier.

Read Read a portion or all of the entries stored in a Alarm Notifier log file.

Write Acknowledge an alarm notification or a group of alarm notifications.
You can optionally insert comments into the log entry for each alarm
notification with this function.

Clear Remove a portion or all of the log entries stored in an Alarm Notifier
log file.

Delete Delete an Alarm Notifier.

7.3.1 Using the List Function on an Alarm Notifier

Use the List function to retrieve a list of the Alarm Notifiers that you have added to the SmartServer.
The List function takes an <iLonItem> element that includes an xSelect statement querying items of a
UFPTalarmNotifier_Cfg type as its input, as shown in the example below. The List function returns
an <Item> element for each Alarm Notifier that you have added to the SmartServer. The next section
describes the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each Alarm Notifier included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="UFPTalarmNotifier_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTalarmNotifier;xsi:type=“LON_Fb_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</ListResponse>

i.LON SmartServer 2.0 Programmer’s Reference 7-5

7.3.2 Using the Get Function on an Alarm Notifier

You can use the Get function to retrieve the configuration of any Alarm Notifier that you have added
to the SmartServer. You must reference the Alarm Notifier whose configuration is to be returned by
its <UCPTname> in the input you supply to the function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTalarmNotifier_Cfg" >
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTalarmNotifier</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-02-29T11:16:53.190-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTalarmNotifier_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]/nviAnEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_Input_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlLevAlarm[0]</UCPTname>
 <AlarmFlags>
 <UCPTlogEnable>1</UCPTlogEnable>
 <UCPTinvisible>0</UCPTinvisible>
 <UCPTclearRequired>0</UCPTclearRequired>
 <UCPTackRequired>1</UCPTackRequired>
 <UCPTdisabled>0</UCPTdisabled>
 <UCPTcovEnabled>1</UCPTcovEnabled>
 </AlarmFlags>
 <UCPTalarmGroup>0</UCPTalarmGroup>
 <UCPTalarmPriority2>0</UCPTalarmPriority2>
 <UCPTdescription/>
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nviDlClear[0]</UCPTname>
 <UCPTnickName>Net/LON/iLON App/Data Logger[0]/nviDlClear[0]</UCPTnickName>
 </DataPoint>
 <SCPTdelayTime>0</SCPTdelayTime>
 <UCPTsumLogSize>50</UCPTsumLogSize>
 <UCPThistLogSize>100</UCPThistLogSize>
 <UCPTlogFormat LonFormat="UCPTlogFormat">LF_TEXT</UCPTlogFormat>
 <UCPTsumLogFileName>Net/LON/iLON App/Alarm Notifier[0]_Summary.csv</UCPTsumLogFileName>
 <UCPThistLogFileName>Net/LON/iLON App/Alarm Notifier[0]_History.csv</UCPThistLogFileName>
 <UCPTemailAggregTime>0</UCPTemailAggregTime>
 <Mail>
 <UCPTindex>0</UCPTindex>
 <UCPTnickName>Alarm Notification </UCPTnickName>
 <UCPTemailAddress>jduval@echelon.com</UCPTemailAddress>
 <UCPTemailFormat>{status}{alarm_time}</UCPTemailFormat>
 <UCPTemailSubject>Data Logger at Alarm Level</UCPTemailSubject>
 <UCPTemailAttachment/>
 </Mail>
 <ActiveAlarm>
 <UCPTindex>5</UCPTindex>
 <UCPTlevel>240</UCPTlevel>
 <UCPTalarmText>Alarm</UCPTalarmText>
 <UCPTalarmCondition LonFormat="UCPTalarmCondition">AL_ALM_CONDITION</UCPTalarmCondition>
 </ActiveAlarm>
 <PassiveAlarm>
 <UCPTindex>0</UCPTindex>

i.LON SmartServer 2.0 Programmer’s Reference 7-6

 <UCPTlevel>255</UCPTlevel>
 <UCPTalarmText>Online</UCPTalarmText>
 <UCPTalarmCondition LonFormat="UCPTalarmCondition">AL_NO_CONDITION</UCPTalarmCondition>
 </PassiveAlarm>
 <AlarmDest>
 <UCPTindex>0</UCPTindex>
 <UCPTenablePath/>
 <ActiveDest>
 <UCPTmailPath>Mail[UCPTnickName=“Alarm Notification “]</UCPTmailPath>

<UCPTdataPointPath>DataPoint[@dpType=“Output” and UCPTnickName=“Net/LON/iLON App/
 Data Logger[0]/nviDlClear[0]”]

 </UCPTdataPointPath>
 <UCPTpointValue>ON</UCPTpointValue>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </PassiveDest>
 </AlarmDest>
 </Item>
 </iLonItem>
</GetResponse>

The function returns an <Item> element for each Alarm Notifier referenced in the input parameters
supplied to the function. The properties included in each element are initially defined when the Alarm
Notifier is created. You can write to these properties with the Set function. The following table
describes these properties.

Property Description

<UCPTname> The name of the Alarm Notifier in the following format:
<network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the
Alarm Notifier. This property is always
8000010128000000[4].UFPTalarmNotifier

<UCPThidden> A flag indicating whether the Alarm Notifier functional
block is hidden or shown in the navigation pane on the left
side of the SmartServer Web interface. This property may
have the following values:

0 – shown
1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not
synchronized with an LNS network database or it has been
deleted. In this case, it has the following values:

IS_NOTSYNCED
IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Alarm Notifier was updated. This timestamp uses the
following format:

[YYYY-MM-DD]T[HH:MM:SS.sss]+/-[
HH:MM]

i.LON SmartServer 2.0 Programmer’s Reference 7-7

Property Description

<UCPTuri> The name of the file containing the configuration web page
for the Alarm Notifier on the SmartServer flash disk,
absolute or relative to /web/user/echelon folder. This
property is
#8000010128000000[4].UFPTalarmNotifier_Cfg.htm
by default.

<SCPTdelayTime> The minimum time (in seconds) that must pass after this
Alarm Notifier has logged an alarm notification before the
e-mail profiles for the Alarm Notifier can be used, or the
output data points for this Alarm Notifier can be updated.

This property defaults to 0.

<UCPTsumLogSize> The size of the summary alarm log file, in kilobytes. The
summary alarm log includes records for all current
acknowledged and unacknowledged alarms.

Please note that the total size of the log files for all Alarm
Notifiers (and Data Loggers) on the SmartServer can not
exceed the size of the flash memory stored in the
SmartServer. The SmartServer will stop writing to the log
files when it only has 256 Kb of flash memory remaining.

<UCPThistLogSize> The size of the historical alarm log file, in kilobytes. The
historical alarm log contains a record for any acknowledged
alarm. Each record includes the description,
acknowledgment time and comment entered for the alarm.

Please note that the total size of the log files for all Alarm
Notifiers (and Data Loggers) on the SmartServer can not
exceed the size of the flash memory stored in the
SmartServer. The SmartServer will stop writing to the log
files when it only has 256 Kb of flash memory remaining.

<UCPTlogFormat> Either LF_BINARY or LF_TEXT. This property
determines whether the log file will be generated as a binary
file, or as a text file.

<UCPTemailAggregTime> The time, in milliseconds, to wait after an alarm occurs
before using the email profiles defined for the Alarm
Notifier. This may be useful if you want to prevent multiple
e-mails from being sent to the same address at the same
time.

The default value used if you do not define this property is
0. The maximum value is 65,535 milliseconds.

Note: The <UCPTemailAggregTime> counter resets every
time an alarm occurs. Therefore, if multiple alarms occur
before the aggregation period expires, the emails for those
alarms will be merged and sent as a single email
notification. The SmartServer will send the email
automatically after 100 alarms have been merged. This may
be useful if multiple alarms occur within a few moments of
each other, but you should take it into consideration before
setting this property to a high value.

i.LON SmartServer 2.0 Programmer’s Reference 7-8

Property Description
<DataPoint> An alarm notification will occur each time any of the input

data points defined for an Alarm Notifier are updated, and
the data point’s <UCPTpointStatus> matches the status
defined for any of the Alarm Notifier’s active or passive
alarm condition sets. You can specify as many input data
points as you like per Alarm Notifier.

The input data points for an Alarm Notifier are signified by
a list of <DataPoint> elements that have an xsi type attribute
of “UFPTalarmNotifier_Input_DpRef ” and a dpType
attribute of “Input”.

For a description of the properties that must be defined
within each <DataPoint> element, see Input Data Points.
You can specify as many input data points as you want for
each Alarm Notifier.

<Mail> An e-mail profile contains an e-mail address, message text,
subject heading, and an attachment file. An e-mail message
with the subject heading, message text and attachment will
be sent to the address provided each time the e-mail profile
is used.

You will reference these e-mail profiles when you set up the
Alarm Notifier’s active and passive alarm destination sets.
You can create as many e-mail profiles as you want for each
Alarm Notifier, but each alarm destination can reference
only one e-mail profile.

The e-mail profiles for an Alarm Notifier are signified by a
list of <Mail> elements. For a description of the properties
that must be defined within each <Mail> element, see
E-mail Profiles.

<ActiveAlarm> If the input data point is updated and matches the conditions
defined by any of the active alarm condition sets, it is
considered an active alarm. In this case, the Alarm Notifier
will use its active destinations. You can create as many
active alarm condition sets as you want per Alarm Notifier.

The active alarm condition sets for an Alarm Notifier are
signified by a list of <ActiveAlarm> elements. For a
description of the properties that must be defined within
each <ActiveAlarm> element, see Active and Passive Alarm
Conditions.

<PassiveAlarm> If the input data point is updated and matches the conditions
defined by any of the passive alarm condition sets, it is
considered a passive alarm. In this case, the Alarm Notifier
will use its passive destinations. You can create as many
passive alarm condition sets as you want per Alarm Notifier.

The passive alarm condition sets for an Alarm Notifier are
signified by a list of <PassiveAlarm> elements. For a
description of the properties that must be defined within
each <PassiveAlarm> element, see Active and Passive
Alarm Conditions.

i.LON SmartServer 2.0 Programmer’s Reference 7-9

Property Description
<AlarmDest> Each <AlarmDest> element defines a group of active and

passive alarm destinations the Alarm Notifier will use. The
active destinations are signified by a list of <ActiveDest>
child elements within the <AlarmDest> element. The
passive destinations are signified by a list of <PassiveDest>
child elements within the <AlarmDest> element. For a
description of the properties that must be defined within
each of these child elements, see Active and Passive Alarm
Destinations.

Each <AlarmDest> element also contains 2 global elements:
its index number (UCPTindex), and its enable data point
(UCPTenablePath). The <UCPTenablePath> property is
optional. You can reference a SNVT_switch data point by
its name (UCPTname) here. The <AlarmDest> will then be
enabled when that data point is set to 100.0 1, or disabled if
that data point is set to 0.0 0. You could set this data point
with a LONWORKS switch, or with the Scheduler
application.

This allows you to enable or disable an Alarm Notifier’s
destination sets under different circumstances.

7.3.2.1 Input Data Points
The following table describes the properties that you must define within each <DataPoint> element.
As described in the previous section, each <DataPoint> element defines an input data point for the
Alarm Notifier. The input data points have an xsi type attribute of “UFPTalarmNotifier_Input_DpRef”
and a dpType attribute of “Input”.

Each time an input data point is updated, the Alarm Notifier will check if it has reached an alarm
condition. If an input data point is updated and meets an active or passive alarm condition, then an
alarm notification will be logged, and the applicable passive or active alarm destinations will be used.
<DataPoint xsi:type="UFPTalarmNotifier_Input_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlLevAlarm[0]</UCPTname>
 <AlarmFlags>
 <UCPTlogEnable>1</UCPTlogEnable>
 <UCPTinvisible>0</UCPTinvisible>
 <UCPTclearRequired>0</UCPTclearRequired>
 <UCPTackRequired>1</UCPTackRequired>
 <UCPTdisabled>0</UCPTdisabled>
 <UCPTcovEnabled>1</UCPTcovEnabled>
 </AlarmFlags>
 <UCPTalarmGroup>0</UCPTalarmGroup>
 <UCPTalarmPriority2>0</UCPTalarmPriority2>
 <UCPTdescription/>
</DataPoint>

Property Description

<UCPTname> The name of the data point to be monitored by the Alarm Notifier
in the following format: <network/channel/device/functional
block/data point>.

<AlarmFlags> This element contains seven properties that determine what
information will be stored in the Alarm History and Alarm
Summary Logs for this data point. The meanings of each

i.LON SmartServer 2.0 Programmer’s Reference 7-10

Property Description

sub-property in the element are described below:

<UCPTlogEnable>: When this property is set to 0, each new
alarm will be recorded in the Alarm History Log when it initially
occurs. No further entries will be recorded into the log for the
alarm. When this property is set to 1, each new alarm will be
recorded in the Alarm History Log when it initially occurs, and
additional entries in the Alarm History Log will be added each
time the status of the alarm changes. For example, an additional
entry would be added for an alarm when it is acknowledged or
cleared.

<UCPTinvisible>: When this property is set to 0, alarm
notifications for this data point will be recorded in the Alarm
Summary Log. When this property is set to 1, log entries for the
data point will not be recorded in the Alarm Summary Log.

<UCPTclearRequired>: When this property is set to 0, the log
entries for this data point will be automatically removed from the
Alarm Summary Log when the alarm associated with the entry is
acknowledged, or the alarm changes to a passive condition. You
can acknowledge an alarm with the Write function. When this
property is set to 1, you will need to clear all log entries from the
Alarm Summary Log manually with the Write function.

Note that the <UCPTcovEnabled> property must be set to 0 to
record log entries for the data point into the summary log.

<UCPTackRequired>: When this property is set to 1, all log
entries made by the Alarm Notifier for this data point must be
manually acknowledged with the Write function. When this
property is set to 0, each alarm triggered by the Alarm Notifier for
this data point will be automatically acknowledged. In this case,
they will not be recorded in the Alarm Summary Log if the
<UCPTclearRequired> property is set to 0.

Note that the <UCPTcovEnabled> property must be set to 0 to
record log entries for the data point into the summary log.

<UCPTdisabled>: Set this property to 1 to disable the recording
of log entries for the data point.

<UCPTcovEnabled>: When this property is set to 0, log entries
for all changes in the alarm status this data point will be stored in
the Alarm Summary Log. When this property is set to 1, only the
most recent change in the data point’s alarm status will be logged
by the Alarm Notifier in the Alarm Summary Log.

The default value for all of these properties is 0.

<UCPTalarmGroup> The group number for alarm notifications caused by this data
point. You can use group numbers to categorize alarms. Alarm
groups can be numbered from 1 to 127.

i.LON SmartServer 2.0 Programmer’s Reference 7-11

Property Description

<UCPTalarmPriority2> The priority level to be assigned to the data point when it reaches
an alarm condition. This must be an integer between 0 (high
priority) and 255 (low priority). You can use priority levels to sort
the alarms with the summary log view, or with the SmartServer
Web pages. The default value is 0.

<UCPTdescription> A user-defined description of the alarm condition for this data
point. This can be a maximum of 201 characters long.

7.3.2.2 E-mail Profiles
The following table describes the properties that you must define within each <Mail> element. As
described previously in this chapter, each <Mail> element defines an e-mail profile for the Alarm
Notifier.

 <Mail>
 <UCPTindex>0</UCPTindex>
 <UCPTnickName>Alarm Notification </UCPTnickName>
 <UCPTemailAddress>user@echelon.com</UCPTemailAddress>
 <UCPTemailFormat>{status}{new_line}{alarm_time}</UCPTemailFormat>
 <UCPTemailSubject>Data Logger at Alarm Level</UCPTemailSubject>
 <UCPTemailAttachment/>
 </Mail>

You will reference these e-mail profiles when creating the active and passive destinations for your
Alarm Notifier. An e-mail will be sent to the e-mail address specified for the profile each time any of
the destinations that reference the profile are used. For more information on the active and passive
alarm destination sets, see Active and Passive Alarm Destinations.

Property Description

<UCPTindex> The index number of the e-mail profile.

<UCPTNickName> The name of the e-mail profile. You will use this name to
reference the e-mail profile when setting up active and passive
alarm destinations. The name can be a maximum of 31 characters
long.

<UCPTemailAddress> The e-mail address for this profile. An e-mail will be sent to this
address each time the profile is used. The address can be a
maximum of 1024 characters long.

<UCPTemailFormat> The message text e-mails sent by this profile will contain, as a
string. The SOAP interface provides a group of variable
substitutions that can be used to automatically insert information
about the alarm into the message. For example:

%al occurred at %dy / %dm/ %dd %pn and reached the level
of %va.

For a description of the variable substitutions you can use, see
the next section, E-mail Variable Substitutions. This message
can be a maximum of 4096 characters long.

<UCPTemailSubject> The subject of the e-mails sent for this profile. This can be a
maximum of 1024 characters long.

i.LON SmartServer 2.0 Programmer’s Reference 7-12

Property Description

<UCPTemailAttachment> The path of the attachment file that will be sent with the e-mails
this profile sends. This must be a file path on the SmartServer
flash disk. For example: /root/Data/log1.csv. The path can be a
maximum of 1024 characters long.

7.3.2.2.1 E-mail Variable Substitutions
The following table lists the variable substitutions you can use to fill in the <UCPTemailFormat>
property within each mail element.

Variable Substitution Description

{status} Alarm type name. The enumerated value of the current
status of the data point <UCPTpointStatus> that caused the
alarm.

{status_code} Alarm type number. The integer value that maps to the
enumerated value of the alarm type stored in
<UCPTpointStatus>. For example, the integer value of
AL_ALM_CONDITION is 5.

{alarm_date} Alarm Date. The date the alarm occurred, expressed in the
following format: YYYY-MM-DD. For example:
2002-30-10

{alarm_day} Alarm Date Day. The day the alarm occurred, as an integer
between 1 and 31.

{alarm_month} Alarm Date Month. The month the alarm occurred, as an
integer between 1 and 12.

{alarm_year} Alarm Date Year. The year the alarm was triggered.

{alarm_group} Alarm Group Number. This is determined by the
<UCPTalarmGroup> property assigned to the data point that
caused the alarm within the Alarm Notifier.

{alarm_limit} Alarm Limit. This is the value limit the input data point
exceeded to be updated to its current alarm status by the
Alarm Generator application. If no Alarm Generator is
being used with the input data point, this will return 0.

{dp_alias_name} Alarm Location String. The <UCPTaliasName> property of
the data point that generated the alarm.

{nv_index} Object Number or NV Index. The index of the network
variable associated with the data point that triggered the
alarm.

{alarm_priority} Alarm priority. The priority of the alarm, as specified by
<UCPTalarmPriority2>.

{snvt_ID} Alarm SNVT ID. The index defined for the standard
network variable type (SNVT) used by the data point, as
defined in the LonMark Resource files.

i.LON SmartServer 2.0 Programmer’s Reference 7-13

Variable Substitution Description

{alarm_hour_12} Alarm Time Hour (12 hour). The time the alarm was
triggered on a 12-hour clock. For example, this would return
10 for an alarm that occurred at 10:00 AM or 10:00 PM.

{alarm_hour} Alarm Time Hour (24 hour). The time the alarm was
triggered on a 24-hour clock. For example, this would return
16 for an alarm that occurred at 4 PM.

{alarm_time_am_pm} Alarm time AM/PM. Returns “AM” for alarms that
occurred in the morning, or “PM” for alarms that occurred in
the afternoon.

{alarm_time} Alarm Time. The time that the alarm occurred, expressed in
the following format: HH:MM:SS. For example, 08:12:22
indicates an alarm time of 8 AM, 12 minutes and 22 seconds.

{alarm_minute} Alarm Time Minutes. The minute when the alarm was
triggered.

{alarm_second} Alarm Time Seconds. The second when the alarm was
triggered.

{alarm_millisecond} Alarm Time Milliseconds. The millisecond when the alarm
was triggered.

{dp_value} Alarm Value. The <UCPTvalue> of the data point that
triggered the alarm expressed with the
LonFormat="#<programID> [scope].<data type>" attribute.
This information is typically received on the SNVT_alarm
input.

{dp_preset}

Data Point Preset. The <UCPTvalue> property of the data
point expressed with the LonFormat="UCPTvalueDef"
attribute. This is the value defined for the data point by a
preset.

{alarm_description} Alarm Description. The description of the alarm that
triggered the alarm, as specified in <UCPTdescription>.

{dp_name} Input Point Name. The name of the data point defined in
<UCPTname>.

{dp_description} Input Point Description. The description of the data point
that generated the alarm as specified in <UCPTdescription>.

{dp_unit} Alarm Value Unit. The units of the data point that generated
the alarm as defined in <UCPTunit>.

If the data point is a SNVT_alarm or SNVT_alarm_2 type
(you are using the Alarm Notifier in conjunction with the
Alarm Generator), SI units will be returned by this variable,
regardless of the data point's format.

i.LON SmartServer 2.0 Programmer’s Reference 7-14

Variable Substitution Description

{dp_value_alias} Data Point Value (by Alias Name). The <UCPTaliasName>
of the data point and its <UCPTvalue> at the time that the
alarm was triggered.

The <UCPTvalue> property is expressed with the
LonFormat="#<programID> [scope].<data type>" attribute.
This is the format defined by the data type used by the data
point.

{dp_preset_alias} Data Point Preset (by Alias Name). The <UCPTaliasName>
of the data point and its <UCPTvalue> at the time that the
alarm was triggered.

The <UCPTvalue> property is expressed with the
LonFormat="UCPTvalueDef" attribute. This is the value
defined for the data point by a preset.

{ip_address} IP Address of the Network Interface. The IP address of the
network interface used to send the e-mail.

{new_line} Line feed. Inserts a carriage return into your e-mail.

7.3.2.3 Active and Passive Alarm Conditions
The following table describes the properties that you must define within each <ActiveAlarm> and
<PassiveAlarm> element. As described earlier in this chapter, each of these elements defines an active
or passive alarm condition for the Alarm Notifier.

If an input data point is updated and meets the conditions defined for any of the active condition sets, it
will be considered an active alarm, and the active alarm destinations will be used for the alarm
notification. If an input data point is updated and meets the conditions defined for any of the passive
condition sets, it will be considered a passive alarm, and the passive alarm destinations will be used for
the alarm notification.
<ActiveAlarm>
 <UCPTindex>5</UCPTindex>
 <UCPTlevel>240</UCPTlevel>
 <UCPTalarmText>Alarm</UCPTalarmText>
 <UCPTalarmCondition LonFormat="UCPTalarmCondition">AL_ALM_CONDITION</UCPTalarmCondition>
</ActiveAlarm>

The next section, Active and Passive Alarm Destinations, describes how you can define the active and
passive destinations for an Alarm Notifier.

Property Description

<UCPTindex> The index number of the alarm condition.

<UCPTlevel> Enter an alarm level for the condition set, in the range 0-255.
The level assigned to a condition will determine which alarm
destinations will be used when an alarm occurs that is based on
that condition set.

For each alarm destination you create, you will specify a range of
levels. For example, you could set up one destination for the
alarm conditions using levels 0-125, and another for the alarm
conditions using levels 126-255. Alarm conditions assigned
levels 0-125 would use the first destination, and alarm conditions

i.LON SmartServer 2.0 Programmer’s Reference 7-15

Property Description

assigned level 126-255 would use the second destination.

NOTE: If you use the Configuration Plug-In to modify the
configuration of an Alarm Notifier after creating it with the
SOAP/XML interface, and the <UCPTlevel> property had been
set to a value greater than 1, the <UCPTlevel> property will be
reset to 0.

<UCPTalarmText> The user-defined text will be used to describe the alarm condition
in the Alarm Notifier’s log file. This can be a maximum of 201
characters long.

<UCPTalarmCondition> Specify one or more alarm types for this condition. If the status
<UCPTpointStatus> of an input data point is updated and
matches any of these types, then the alarm will be declared active
or passive, depending on the condition type. The valid alarm
type identifiers are as follows:

AL_VALUE_INVALID
AL_CONSTANT
AL_OFFLINE
AL_NUL
AL_NO_CONDITION,
AL_TOT_SVC_ALM_1
AL_TOT_SVC_ALM_2
AL_TOT_SVC_ALM_3
AL_LOW_LMT_CLR_1
AL_LOW_LMT_CLR_2
AL_HIGH_LMT_CLR_1
AL_HIGH_LMT_CLR_2
AL_LOW_LMT_ALM_1
AL_LOW_LMT_ALM_2
AL_HIGH_LMT_ALM_1
AL_HIGH_LMT_ALM_2
AL_FIR_ALM, AL_FIR_PRE_ALM,
AL_FIR_TRBL, AL_FIR_SUPV
AL_FIR_TEST_ALM
AL_FIR_TEST_PRE_ALM
AL_FIR_ENVCOMP_MAX
AL_FIR_MONITOR_COND
AL_FIR_MAINT_ALERT

You should consider using less severe conditions, such as
AL_VALUE_INVALID or AL_OFFLINE, for your passive
conditions, and more severe conditions such as
AL_HIGH_LMT_ALM_1 for your active conditions.

7.3.2.4 Active and Passive Alarm Destinations
You can define one or more <AlarmDest> elements per Alarm Notifier. These elements define the
active and passive destinations for the Alarm Notifier.
<AlarmDest>
 <UCPTindex>0</UCPTindex>
 <UCPTenablePath/>
 <ActiveDest>
 <UCPTmailPath>Mail[UCPTnickName=“Alarm Notification”]</UCPTmailPath>

i.LON SmartServer 2.0 Programmer’s Reference 7-16

<UCPTdataPointPath>DataPoint[@dpType=“Output” and UCPTnickName=“Net/LON/iLON App/Data
Logger[0]/nviDlClear[0]”]</UCPTdataPointPath>

 <UCPTpointValue>ON</UCPTpointValue>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </PassiveDest>
</AlarmDest>

You can optionally fill in the <UCPTdestEnable> property for each <AlarmDest> element. You can
reference a SNVT_switch data point by its <UCPTpointName> with this property. The <AlarmDest>
will be enabled if that data point is set to 100.0 1, or disabled if that data point is set to 0.0 0. You can
set this data point with a LONWORKS switch or with the Scheduler application. In this fashion, you can
enable or disable destination sets as you like.

Every <AlarmDest> should contain zero or one <ActiveDest> and zero or one <PassiveDest>
elements. The following table describes the properties you must define for each <ActiveDest> and
<PassiveDest> element. Each <ActiveDest> element defines an active destination for the Alarm
Notifier. Each <PassiveDest> element defines a passive destination for the alarm notifier.

The active destinations for an Alarm Notifier are used when the input data point is updated, and meets
the conditions defined by any of the Alarm Notifier’s active conditions. The passive destinations for
an Alarm Notifier are used when the input data point is updated, and meets any of the conditions
defined by the Alarm Notifier’s passive conditions.

Property Description

<UCPTmailPath> Contains an e-mail nickname, as defined for an e-mail profile created
for the Alarm Notifier. This signifies the e-mail profile to be used
each time an alarm notification uses this destination. The string must
be a valid xPath expression that points to an e-mail profile. The
e-mail will be sent after <UCPTnackDelay> expired.

<UCPTdataPointPath> Contains the xPath to the <DataPoint> with dpType=”Output” that
will be updated when the active destination is used, and the e-mail for
the alarm notification has been sent.

If you want to create a destination that will automatically update the
data point during an alarm notification without waiting for the e-mail
to be sent, do not fill in the <UCPTnackDelay> property. This is only
applicable if the alarm has not been acknowledged.

<UCPTpointValue> The value or preset to be written to the output data point specified by
<UCPTdataPointPath>.

<UCPTminLevel> The minimum alarm level required for this destination to be used.
The alarm level for an alarm notification is determined by the value
assigned to the <UCPTlevel> property for of condition set that caused
it.

<UCPTmaxLevel> The maximum alarm level required for this destination to be used.
The alarm level for an alarm notification is determined by the value
assigned to the <UCPTlevel> property of the condition set that caused
the alarm.

i.LON SmartServer 2.0 Programmer’s Reference 7-17

Property Description

<UCPTnackDelay> The delay, in minutes, to wait for an alarm to be acknowledged before
sending an e-mail to the e-mail profile for the destination. If the alarm
is not acknowledged before this time expires, the e-mail profile will
be used.

The default value used if this property is not set is 0. In this case, the
e-mail profile will be used as soon as the alarm occurs. The
maximum is 65,535.

7.3.3 Using the Set Function on an Alarm Notifier

Use the Set function to create new Alarm Notifiers, or to overwrite the configuration of existing Alarm
Notifiers. The Alarm Notifiers to be created or written to are signified by a list of <Item> elements in
the input parameters supplied to the function. The properties you must define within each <Item>
element are the same, whether you are creating a new Alarm Notifier or modifying an existing Alarm
Notifier. The previous section, Using the Get Function on an Alarm Notifier, describes these
properties.

Note: If you specify an Alarm Notifier with the <UCPTname> element, the Set function deletes the
specified Alarm Notifier before the specified parameters are set. If the <UCPTname> element is not
specified, a new Alarm Notifier is created.

When modifying an existing Alarm Notifier, any optional properties omitted from the Set Request,
such as the input point points, will be erased. Old values will not be preserved, so you must fill in
every property when writing to an Alarm Notifier, even if you are not changing all of the values.

The first invocation of the Set function will generate the
#8000010128000000[4].UFPTalarmNotifier.xml file in the
root/config/network/<network>/<channel>/iLONApp ||<device> directory of the SmartServer, if the
file does not already exist.

When creating or modifying an Alarm Notifier with the Set function, you may want to use output from
the Get function as the basis for your input. You would then only need to modify the values of each
property to match the new configuration you want, as opposed to re-creating an entire string like the
one shown below.

The example below creates an Alarm Notifier that uses an nviRequest input data point. This Alarm
Notifier includes one e-mail profile that it can use each time an alarm notification occurs. It also has
two data points that can be updated when alarm notifications occur. Several factors determine which
of the data points will be updated when the Alarm Notifier logs an alarm, including the status the input
data point and the alarm level assigned to the alarm condition set.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTalarmNotifier_Cfg">
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 <DataPoint dpType="nviEnable" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]/nviAnEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_Input_DpRef" dpType="Input" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/VirtFb/temp_f</UCPTname>
 <AlarmFlags>
 <UCPTlogEnable>1</UCPTlogEnable>
 <UCPTinvisible>0</UCPTinvisible>
 <UCPTclearRequired>0</UCPTclearRequired>
 <UCPTackRequired>1</UCPTackRequired>
 <UCPTdisabled>0</UCPTdisabled>
 <UCPTcovEnabled>1</UCPTcovEnabled>
 </AlarmFlags>
 <UCPTalarmGroup>0</UCPTalarmGroup>
 <UCPTalarmPriority2>0</UCPTalarmPriority2>

i.LON SmartServer 2.0 Programmer’s Reference 7-18

 <UCPTdescription />
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_DpRef" dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/temp_f</UCPTname>
 <UCPTnickName>Net/LON/iLON App/VirtFb/temp_f</UCPTnickName>
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_DpRef" dpType="Output">
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTnickName>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTnickName>
 </DataPoint>
 <DataPoint xsi:type="UFPTalarmNotifier_DpRef" dpType="Output">
 <UCPTname>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTname>
 <UCPTnickName>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTnickName>
 </DataPoint>
 <SCPTdelayTime>0</SCPTdelayTime>
 <UCPTsumLogSize>50</UCPTsumLogSize>
 <UCPThistLogSize>100</UCPThistLogSize>
 <UCPTlogFormat xsi:type="string" LonFormat="UCPTlogFormat">LF_TEXT</UCPTlogFormat>
 <UCPTsumLogFileName>Net/LON/iLON App/Alarm Notifier[0]_Summary.csv</UCPTsumLogFileName>
 <UCPThistLogFileName>Net/LON/iLON App/Alarm Notifier[0]_History.csv</UCPThistLogFileName>
 <UCPTemailAggregTime>0</UCPTemailAggregTime>
 <ActiveAlarm>
 <UCPTindex>5</UCPTindex>
 <UCPTlevel>240</UCPTlevel>
 <UCPTalarmText>Alarm</UCPTalarmText>
 <UCPTalarmCondition LonFormat="UCPTalarmCondition">AL_ALM_CONDITION</UCPTalarmCondition>
 </ActiveAlarm>
 <PassiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>255</UCPTlevel>
 <UCPTalarmText>Online</UCPTalarmText>
 <UCPTalarmCondition LonFormat="UCPTalarmCondition">AL_NO_CONDITION</UCPTalarmCondition>
 </PassiveAlarm>
 <AlarmDest>
 <UCPTindex>0</UCPTindex>
 <UCPTenablePath xsi:type="string" />
 <ActiveDest xsi:type="UFPTalarmNotifier_CfgAlarmDestination">
 <UCPTdataPointPath xsi:type="string">DataPoint[@dpType="Output" and

 UCPTnickName="Net/LON/iLON App/Digital Output 1/nviClaValue_1"]
 </UCPTdataPointPath>
 <UCPTpointValue>ON</UCPTpointValue>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest xsi:type="UFPTalarmNotifier_CfgAlarmDestination">
 <UCPTdataPointPath xsi:type="string">

DataPoint[@dpType="Output" and UCPTnickName="Net/LON/iLON App/Digital Output
2/nviClaValue_2"]

 </UCPTdataPointPath>
 <UCPTpointValue>OFF</UCPTpointValue>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </PassiveDest>
 </AlarmDest>

 </Item>
 </iLonItem>
</Set>

7.3.4 Using the Read Function on an Alarm Notifier

Each time an Alarm Notifier causes an alarm notification, it will record an entry for the notification
into its log file. You can use the Read function to retrieve the log entries that an Alarm Notifier has
recorded. You must reference the Alarm Notifier to return log entries for by its <UCPTname>in the
input you supply to the function.

The alarm log files are stored in the /root/AlarmLog directory of the SmartServer. These files are
named histlogX, where X represents the index number assigned to the Alarm Notifier when it was

i.LON SmartServer 2.0 Programmer’s Reference 7-19

created. An Alarm Notifier will not generate a log file until it has generated an alarm notification.
You should not attempt to read more than 100 log entries with a single Read request.

The following code demonstrates how to use a Read request to generate a list of up to the first 100
entries stored in a specific Alarm Log.

Request
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

 <iLonItem>
 <xSelect>//Item[@xsi:type="UFPTalarmNotifier_Data"][UCPTalarmLog="HISTORICAL"]
 [position()<100]
 </xSelect>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 </Item>
 </iLonItem>
</Read>

Response
<ReadResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTalarmNotifier_Meta_Data" >
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 <UCPTlastUpdate>2008-02-29T15:01:40.650-08:00</UCPTlastUpdate>
 <UCPTalarmLog LonFormat="UCPTalarmLog">HISTORICAL</UCPTalarmLog>
 <UCPTstart>2008-02-29T11:14:41.300-08:00</UCPTstart>
 <UCPTstop>2008-02-29T11:14:41.300-08:00</UCPTstop>
 <UCPTmodificationNumber>0</UCPTmodificationNumber>
 <UCPTlogLevel>0.496</UCPTlogLevel>
 <UCPTtotalCount>1</UCPTtotalCount>
 </Item>
 <Item xsi:type="UFPTalarmNotifier_Data">
 <UCPTname>Net/LON/iLON App/Data Logger[0]/nvoDlLevAlarm[0]</UCPTname>
 <UCPTaliasName>nvoDlLevAlarm[0]</UCPTaliasName>
 <UCPTlastUpdate>2008-02-29T11:14:41.300-08:00</UCPTlastUpdate>
 <UCPTdescription> </UCPTdescription>
 <UCPTvalue LonFormat="#0000000000000000[0].SNVT_alarm#LO">0</UCPTvalue>
 <UCPTpointStatus LonFormat="UCPTpointStatus">AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>255</UCPTpriority>
 <UCPTmetaDataPath>//*[@xsi:type=“UFPTalarmNotifier_Meta_Data”]
 [UCPTname=“Net/LON/iLON App/Alarm Notifier[0]”]
 </UCPTmetaDataPath>
 <UCPTalarmNotifierName>Net/LON/iLON App/Alarm Notifier[0]</UCPTalarmNotifierName>
 <UCPTalarmTime>2008-02-29T11:13:44.560-08:00</UCPTalarmTime>
 <UCPTuserName>iLON</UCPTuserName>
 <UCPTstatus LonFormat="UCPTalarmStatus">AUTO_CLEAR</UCPTstatus>
 <ReadData>
 <UCPTalarmText>Online</UCPTalarmText>
 <UCPTalarmPriority2>0</UCPTalarmPriority2>
 <UCPTalarmGroup>0</UCPTalarmGroup>
 <UCPTalarmType LonFormat="UCPTalarmType">PASSIVE</UCPTalarmType>
 </ReadData>
 </Item>
 </iLonItem>
</ReadResponse>

In addition to the requested log entries, the Read function returns a single <Item> of type
“UFPTalarmNotifier_Meta_Data” for each log file from which entries were read. This
“UFPTalarmNotifier_Meta_Data” <Item> has the following properties:

<UCPTname> The name of the data logger from which entries were read in
the following format: <network/channel/device/functional
block>.

<UCPTlastUpdate> A timestamp indicating the time that the last log entry was

i.LON SmartServer 2.0 Programmer’s Reference 7-20

made.

<UCPTalarmLog> The type of log requested (either HISTORICAL or
SUMMARY).

<UCPTstart>

<UCPTstop>

Timestamps indicating the log times of the first and last log
entries in the log file.

<UCPTmodificationNumber> A counter indicating the number of times the log file has
been modified. The counter is not increased when data is
added to the end of the log, but only if some modifications
are made to the existing data.

<UCPTlogLevel> The volume of the log file that has been consumed, as a
percentage. For example, the value 90.0 indicates that the
log is 90% full.

<UCPTtotalCount> This property contains the total number of entries contained
in the data log read by the function.

The Read function returns an <Item> element of type “UFPTalarmNotifier _Data” for each log entry
that met the selection criteria you defined in the input parameters log file from which entries were read.
Each “UFPTalarmNotifier_Data” <Item> has the following properties:

Property Description

<UCPTname> The name of the data point in the following format:
<network/channel/device/functional block/data point>.

<UCPTaliasName> The default or user-defined nickname provided for the data point.

<UCPTlastUpdate> A timestamp indicating the time that the log entry was made.

<UCPTdescription> The comment entered into the log entry for the log. You can enter
comments into the log with the Write function.

<UCPTvalue> The value the data point was updated to when the log entry was
made. The value may be presented in the following two
LonFormats:

• LonFormat="#<programID>[scope].<data type>". The
format is specified by the data type defined for the data point.
For a SNVT_switch data point, this value could be 100.0 1 or
0.0 0, for example.

• LonFormat="UCPTvalueDef". The value defined for the data
point by a preset. For a SNVT_switch data point, this value
could be ON or OFF, for example. If a preset is not defined
for the data point, this value is AL_NUL.

<UCPTpointStatus> The status the data point was updated to when the log entry was
made.

i.LON SmartServer 2.0 Programmer’s Reference 7-21

Property Description

<UCPTpriority> The priority level currently assigned to the data point (0-255).
The priority level of a data point determines which applications
can write to its value. You can modify the value of this property
with the Write or ResetPriority functions.

<UCPTalarmNotifierName> The name of the alarm notifier in which the log entry is stored in
the following format: <network/channel/device/functional block>.

<UCPTalarmTime> A timestamp indicating the time that the alarm occurred. You
must enter this timestamp in local time, with an appended time
zone indicator that shows the difference between local time and
UTC.

<UCPTuserName> The name of the user who acknowledged the alarm. Alarms can
be acknowledged with the Write function.

<UCPTalarmStatus> The status of the alarm. The status can initially be AUTO_ACK,
AUTO_ACK, or AUTO_CLEAR, depending on the flags that
were set.

The status can be changed to MANUAL_ACK,
MANUAL_CLEAR, MANUAL_ACK_MANUAL_CLEAR,
MANUAL_ACK_AUTO_CLEAR,
AUTO_ACK_AUTO_CLEAR or
AUTO_ACK_MANUAL_CLEAR.

You can clear or acknowledge alarms manually with the Clear
function. For more information, see Using the Clear Function on
an Alarm Notifier Log File.

Alarms may be cleared or acknowledged automatically depending
on how the <UCPTflags> property was defined for the Alarm
Notifier when it was created.

<ReadData>

• This element contains the following properties:

• <UCPTalarmText>. The alarm text for the alarm. You can
specify this text with the Set function.

• <UCPTalarmPriority2>. The priority level that the Alarm
Notifier application is using to update the value of the data
point. The Alarm Notifier will only successfully update the
value of the data point if it is using a priority level higher than
(or equal to) the priority assigned to the data point in the Data
Server.

• <UCPTalarmGroup>. The alarm group of the alarm. This
may be useful when sorting alarms.

• <UCPTalarmType>. ACTIVE or PASSIVE. This indicates
whether the alarm was an active or passive alarm. The
conditions that determine this are defined when the Alarm
Notifier is created. For more information, see Active and
Passive Alarm Conditions.

i.LON SmartServer 2.0 Programmer’s Reference 7-22

7.3.5 Using the Write Function on an Alarm Notifier Log File

You can use the Write function to acknowledge or write a comment to a log entry on an Alarm
Notifier. The following table describes the properties you can define in the input parameters you
supply to the function to acknowledge an alarm.

Request
<Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTalarmNotifier_Data">
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTdescription>enter new comment</UCPTdescription>
 <UCPTalarmNotifierName>Net/LON/iLON App/Alarm Notifier[0]</UCPTalarmNotifierName>
 <UCPTalarmTime>2008-02-29T11:13:44.560-08:00</UCPTalarmTime>
 <UCPTuserName>iLON</UCPTuserName>
 <UCPTstatus xsi:type="string" LonFormat="UCPTalarmStatus">MANUAL_CLEAR</UCPTstatus>
 </Item>
 </iLonItem>
</Write>

Property Description

<UCPTname> The name of the data point that triggered the alarm in the following
format: <network/channel/device/functional block/data point>.

<UCPTdescription> Enter a comment to be recorded in the log file entry for this alarm.
This can be a maximum of 80 characters long.

<UCPTalarmNotifier
Name>

The name of the alarm notifier containing the data point that triggered
the alarm in the following format: <network/channel/device/functional
block>.

<UCPTalarmTime> A timestamp indicating the time that the alarm occurred. You must
enter this timestamp in ISO 8601 format, which is as follows:
[YYYY-MM-DD]T[HH:MM:SS.sss]+/-[HH:MM]

<UCPTuserName> The user name of the person acknowledging the alarm. This will be
logged in the log file. This can be a maximum of 31 characters long.

<UCPTStatus
LonFormat=
"UCPTalarmStatus">

You can select one of four parameters for the <UCPTalarmStatus>
attribute:

• MANUAL_CLEAR : Alarm will be acknowledged and removed
from the active list.

• MANUAL_ACK: Alarm will be acknowledged, but not removed
from the active list. If an alarm is cleared manually before it is
acknowledged manually, the log entry is set to MANUAL_ACK
and deleted from the alarm summary log (cleared =
MANUAL_CLEAR).

• NACK: The alarm will not be acknowledged or removed from
the active list. However, the comment entered for the
<UCPTcomment> property will be entered into the log.

• AUTO_ACK: The alarm was automatically acknowledged by
the Alarm Notifier when it occurred. You can cause an Alarm
Notifier to automatically acknowledge all alarms for a data point
by setting <UCPTackRequired> property for the data point to 1
when you create your Alarm Notifier with Set. You can still enter
comments for the log file using this function if an alarm was
automatically acknowledged. For more information on the

i.LON SmartServer 2.0 Programmer’s Reference 7-23

Property Description

<UCPTackRequired> property, see Input Data Points.

• AUTO_CLEAR: The alarm was automatically cleared from the
alarm log when it occurred. You can cause an Alarm Notifier to
automatically clear all alarms for a data point by setting
<UCPTclearRequired> property for the data point to 1 when you
create your Alarm Notifier with Set.

• MANUAL_ACK_MANUAL_CLEAR: The Alarm has not
been acknowledged or removed from the active list.

• MANUAL_ACK_AUTO_CLEAR: The Alarm was not
acknowledged, but it was automatically cleared from the alarm
log when it occurred.

• AUTO_ACK_AUTO_CLEAR: The alarm was automatically
acknowledged and cleared by the Alarm Notifier when it
occurred.

• AUTO_ACK_MANUAL_CLEAR: The alarm was
automatically acknowledged by the Alarm Notifier, but it was not
cleared.

Response
<WriteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTalarmNotifier_Data" >
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTalarmNotifierName>Net/LON/iLON App/Alarm Notifier[0]</UCPTalarmNotifierName>
 <UCPTalarmTime>2008-02-29T17:47:53.601-08:00</UCPTalarmTime>
 </Item>
 </iLonItem>
</WriteResponse>

7.3.6 Using the Clear Function on an Alarm Notifier Log File

You can use the Clear function to remove log entries from an Alarm Notifier’s log file. You can
specify which Alarm Notifier is to be affected, and which log entries will be removed using xSelect
statements. If no filter is specified with an xSelect statement, the whole alarm log will be deleted.

Note: This function only deletes the log entries. You can delete the Alarm Notifier itself using the
Delete function.

The following call to the Clear function deletes up to 100 log entries from an alarm notifier log that occurred before the
specified date and time.

Request
<Clear xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect> //Item[UCPTlastUpdate>="2008-03-03T10:38:30.000-8:00"]
 [UCPTlastUpdate<="2008-03-03T11:38:29.240-8:00"]
 [position()<=99]
 [UCPTalarmLog="HISTORICAL"]
 </xSelect>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 </Item>
 </iLonItem>
</Clear>

i.LON SmartServer 2.0 Programmer’s Reference 7-24

Response
<ClearResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTalarmNotifier_ClearResponse" >
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 <UCPTlastUpdate>2008-03-03T11:39:21.960-08:00</UCPTlastUpdate>
 <UCPTalarmLog LonFormat="UCPTalarmLog">HISTORICAL</UCPTalarmLog>
 <UCPTstart>2008-02-29T17:50:00.580-08:00</UCPTstart>
 <UCPTstop>2008-02-29T17:50:00.580-08:00</UCPTstop>
 <UCPTmodificationNumber>4</UCPTmodificationNumber>
 <UCPTlogLevel>0.495</UCPTlogLevel>
 <UCPTtotalCount>1</UCPTtotalCount>
 </Item>
 </iLonItem>
</ClearResponse>

The Clear function returns the following information related to the alarm log file from which entries
were deleted:

Property Description
<UCPTname> The name of the alarm log in which entries were cleared in

the following format: <network/channel/device/functional
block>.

<UCPTlastUpdate> A timestamp indicating the time that the log was cleared.

<UCPTalarmLog> The type of log file affected by the function: SUMMARY or
HISTORICAL.

<UCPTfileName> The name of the log file the Alarm log is using.

<UCPTstart>

<UCPTstop>

Timestamps indicating the times of the first and last log
entries in the log file.

<UCPTmodificationNumber> A counter indicating the number of times the log file has
been modified. The counter is not increased when data is
added to the end of the log, but only if some modifications
are made to the existing data.

<UCPTlogLevel> The volume of the log file that has been consumed, as a
percentage. For example, the value 90.0 indicates that the
log is 90% full.

<UCPTtotalCount The total number of entries contained in the data log read by
the function.

7.3.7 Using the Delete Function on an Alarm Notifier

You can use the Delete function to delete an Alarm Notifier. To delete an Alarm Notifier, you
provide an <Item> element with a UFPTalarmNotifier _Cfg type that includes the <UCPTname>
property of the alarm notifier to be deleted. The following code sample demonstrates how to use the
Delete function to delete an Alarm Notifier:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTalarmNotifier_Cfg">
 <UCPTname> Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 </Item>

i.LON SmartServer 2.0 Programmer’s Reference 7-25

 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Alarm Notifier[0]</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 7-26

i.LON SmartServer 2.0 Programmer’s Reference 8-1

8 Analog Function Block
You can use Analog Function Blocks to perform a variety of statistical operations on the values of the
data points in your network, and store the result of each operation in an output data point. You can
perform these operations on as many input data points as you like per Analog Function Block. The
operations you can perform on them include determining the average value of the input data points, the
maximum value of the input data points, the minimum value of the input data points, the sum of the
input data point values, and several others. Each operation is described in detail later in this chapter.

You can also select a comparison function as your operation. In this case, the Analog Function Block
will compare the value of all the input data points to the value of a data point selected as the compare
data point. You can choose from a variety of comparisons that an Analog Function Block can perform
between the data points, including Greater Than, Less Than, and Equal To. The Analog Function
Block will compare the values of the compare and input data point using that comparison, and update
the output data point to a True or False value based on the result of that comparison.

If you are using a comparison function, and your Analog Function Block has multiple input data
points, you can specify a percentage. If that percentage of the comparisons between the input and
compare data points returns True, the output data point will be set to True. Otherwise, it will be set to
False.

For example, consider a case where an Analog Function Block has five input data points and is using
Greater Than as the comparison function. Assume that the percentage is set to 50%. If the value of
50% (at least three) of the input data points is greater than the value of the compare data point, the
output data point will be set to True. Otherwise, it will be set to False.

The Analog Function Block will perform the operation you have selected for it each time any of its
input data points are updated, or at a timed interval you specify. You could use these calculated values
as a part of a control system or to monitor alarm conditions based on multiple inputs.

8.1 Overview of the AnalogFB XML File
The #8000010128000000[4].UFPTanalogFunctionBlock.xml file stores the configuration of the
Analog Function Blocks that you have added to the SmartServer.

You can create new Analog Functional Blocks using the Set function, or by manually editing the
#8000010128000000[4].UFPTanalogFunctionBlock.xml, and rebooting the SmartServer. You can
create up to 20 Analog Functional Blocks per SmartServer. You can add more than 20 Analog
Functional Blocks if you load the dynamic v40 XIF on your SmartServer and you operate your
SmartServer in Standalone mode. Note that using the v40 XIF with the SmartServer operating in LNS
mode (LNS Auto or LNS Manual) is not supported.

The following represents a sample #8000010128000000[4].UFPT
#8000010128000000[4].UFPTanalogFunctionBlock.xml file with one Analog Functional Block. This
Analog Function Block determines the maximum value of the value field of the nviClaValue_1 and
nviClaValue_2 data points on the Digital Output 1 and Digital Output 2 functional blocks on the
SmartServer, and stores that value in the value field of the nvoClsValue_1 data point on the Digital
Input 1 functional block on the SmartServer.
<Item xsi:type="UFPTanalogFunctionBlock_Cfg">
 <UCPTname>Net/LON/iLON App/Analog Fn Block[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTanalogFunctionBlock</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-03T12:25:33.900-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTanalogFunctionBlock_Cfg.htm</UCPTuri>
 <DataPoint dpType="nvoDropOut" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Analog Fn Block[0]/nvoAfbDropOut[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>900</UCPTpollRate>

i.LON SmartServer 2.0 Programmer’s Reference 8-2

 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 </DataPoint>
 <UCPTcompFunction LonFormat="UCPTcompFunction" >FN_NUL</UCPTcompFunction>
 <UCPTmajorityValue>100</UCPTmajorityValue>
 <UCPTtrueThreshold LonFormat="UNVT_float" ></UCPTtrueThreshold>
 <UCPToutputFunction LonFormat="UCPToutputFunction" >FN_MAX</UCPToutputFunction>
 <SCPTminRnge LonFormat="#0000000000000000[0].SNVT_switch.value" >0</SCPTminRnge>
 <SCPTmaxRnge LonFormat="#0000000000000000[0].SNVT_switch.value" >0</SCPTmaxRnge>
 <UCPTcalculationInterval>0.0</UCPTcalculationInterval>
 <SCPTovrBehave LonFormat="SCPTovrBehave" >OV_RETAIN</SCPTovrBehave>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
</Item>

8.2 Creating and Modifying the Analog Functional Block XML
File
You can create and manage the #8000010128000000[4].UFPTanalogFunctionBlock.xml file with the
Set SOAP function. The following section, Analog Functional Block SOAP Interface, describes how
to use Set and the other SOAP functions provided for the Analog Functional Block application.

Alternatively, you can create and manage the #8000010128000000[4].UFPTanalogFunctionBlock.xml
file manually with an XML editor and download it to the SmartServer via FTP. Echelon does not
recommend this, as the SmartServer will require a reboot to read the configuration of the downloaded
file. Additionally, the SmartServer performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via FTP,
and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first, as it
describes the elements and properties in the XML file that define each Analog Functional Block’s
configuration.

8.3 Analog Functional Block SOAP Interface
You can use the SOAP interface to perform the following functions on an Analog Functional Block
application:

Function Description

List Generate a list of the Analog Functional Blocks that you have added
to the SmartServer.

Get Retrieve the configuration of any Analog Functional Block that you
have added to the SmartServer.

Set Create a new Analog Functional Block, or overwrite the configuration
of an existing Analog Functional Block.

Delete Delete an Analog Functional Block.

8.3.1 Using the List Function on an Analog Functional Block

Use the List function to retrieve a list of the Analog Functional Blocks that you have added to the
SmartServer. The List function takes an <iLonItem> element that includes an xSelect statement

i.LON SmartServer 2.0 Programmer’s Reference 8-3

querying items of a UFPTanalogFunctionBlock_Cfg type as its input, as shown in the example below.
The List function returns an <Item> element for each Analog Functional Block that you have added to
the SmartServer. The next section describes the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each Analog Functional Block included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="UFPTanalogFunctionBlock_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Analog Fn Block[0]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTanalogFunctionBlock;xsi:type=“LON_Fb_Cfg”
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</ListResponse>

8.3.2 Using the Get Function on an Analog Functional Block

You can use the Get function to retrieve the configuration of any Analog Functional Block that you
have added to the SmartServer. You must reference the Analog Functional Block whose configuration
is to be returned by its <UCPTname> in the input you supply to the function, as shown in the example
below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Analog Fn Block[0]</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTanalogFunctionBlock_Cfg">
 <UCPTname>Net/LON/iLON App/Analog Fn Block[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTanalogFunctionBlock</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-08-06T16:43:06.160-07:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTanalogFunctionBlock_Cfg.htm</UCPTuri>
 <DataPoint dpType="nvoDropOut" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Analog Fn Block[0]/nvoAfbDropOut[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Input" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Input" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Output" discrim="dir_out">

i.LON SmartServer 2.0 Programmer’s Reference 8-4

 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 </DataPoint>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTmajorityValue>100</UCPTmajorityValue>
 <UCPTtrueThreshold LonFormat="UNVT_float" />
 <UCPToutputFunction LonFormat="UCPToutputFunction">FN_AVERAGE</UCPToutputFunction>
 <SCPTminRnge LonFormat="#0000000000000000[0].SNVT_switch.value">0</SCPTminRnge>
 <SCPTmaxRnge LonFormat="#0000000000000000[0].SNVT_switch.value">100</SCPTmaxRnge>
 <UCPTcalculationInterval>0.0</UCPTcalculationInterval>
 <UCPTcalculationMatrix>1</UCPTcalculationMatrix>
 <SCPTovrBehave LonFormat="SCPTovrBehave">OV_RETAIN</SCPTovrBehave>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 </Item>
 </iLonItem>
</GetResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

The function returns an <Item> element for each Analog Functional Block referenced in the input
parameters supplied to the function. The properties included in each element are initially defined when
the Analog Functional Block is created. You can write to these properties with the Set function. The
following table describes these properties.

Property Description

<UCPTname> The name of the Analog Functional Block in the following
format: <network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the
Analog Functional Block. This property is always
8000010128000000[4].UFPTanalogFunctionBlock.

<UCPThidden> A flag indicating whether the Analog Functional Block
functional block is hidden or shown in the navigation pane
on the left side of the SmartServer Web interface. This
property may have the following values:

0 – shown
1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not
synchronized with an LNS network database or it has been
deleted. In this case, it has the following values:

IS_NOTSYNCED
IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Analog Functional Block was updated. This timestamp uses
the following format:

YYYY-MM-DDTHH:MM:SSZ

<UCPTuri> The name of the file containing the configuration web page
for the Analog Functional Block on the SmartServer flash
disk, absolute or relative to /web/user/echelon. This
property is
#8000010128000000[4].UFPTanalogFunctionBlock
_Cfg by default.

<DataPoint> You can specify as many input data points as you want per

i.LON SmartServer 2.0 Programmer’s Reference 8-5

Property Description
Input Analog Function Block. The input data points for an

Analog Function Block are defined by a list of <DataPoint>
elements with dpType attributes of ="Input".

For each element, you must specify an index number to be
used within the Analog Function Block (UCPTindex), the
name of the data point (UCPTpointName), and the interval
to use when polling the data point’s value (UCPTpollRate).
The poll rate must be specified as an integer between
0-6553. If the input data point is a structure, you must also
specify the name of the field to use when performing
comparisons with the data point (UCPTfieldName).

The value of the selected field for each input data point will
be used to generate a value for the output data point. This
value assigned to the output data point will vary, depending
on the output function (UCPToutputFunction) selected for
the Analog Function Block.

NOTE: You should note that other SmartServer
applications may cause the Data Server to poll this data
point’s value as well. The poll rate specified by these
applications should be compatible with each other. For
example, if an Analog Function Block is polling a data point
every 15 seconds, and the Data Logger is polling that data
point every 10 seconds, then the Data Server will have to
poll the value of the data point every five seconds to ensure
that each application gets a current value for each poll.

It is important to note this as you set poll rates for various
applications, as you may end up causing more polls than is
efficient on your network. For example, if an Analog
Function Block is polling a data point every 9 seconds and
an Alarm Generator is polling a data point every 10 seconds,
the Data Server would have to poll the data point every
second to ensure that each application polls for a current
value. This may create a significant amount of undesired
traffic.

<DataPoint>

Compare
This element defines the compare data point this Analog
Function Block will use.

You must specify the name of the data point
(UCPTpointName), the name of the field to use when
making comparisons with the data point (UCPTfieldName)
if it is a structure, and the interval to use when polling the
data point’s value (UCPTpollRate).

The value of this data point will be compared to the value of
each input data point when the output function selected for
the Analog Function Block is FN_COMPARE, FN_AND or
FN_OR. The comparison to perform is determined by the
<UCPTcompFunction> property, and the result of this
comparison will be stored in the output data point.

This value will not be used in comparisons if the

i.LON SmartServer 2.0 Programmer’s Reference 8-6

Property Description

<UCPTtrueThreshold> property is defined.

<DataPoint>

Output

This element defines the output data point for this function
block.

You must specify the <UCPTpointName> assigned to the
output data point within this element. The value of this data
point will be updated with the result of each comparison or
statistical operation that the Analog Function Block
performs.

<UCPTcompFunction> This property defines the comparison function the Analog
Function Block will use to compare the values of the
compare and input data points. This function will only be
used if the <UCPToutputFunction> property is set to
FN_COMPARE, FN_OR or FN_AND, and if the
<UCPTtrueThreshold> property is not defined. These
properties are described later in the table.

When this function is used, the output data point will be
updated to a True or False value depending on the results of
the comparisons made with this function. If more than one
input data point is defined for the Analog Function Block,
you can specify a percentage with the
<UCPTmajorityValue> property. If that percentage of the
input data points return True, the output data point will be
updated to True. Otherwise, it will be updated to False.
The <UCPTmajorityValue> property is described in more
detail later in this table.

For descriptions of the comparison functions you can use
with your Analog Function Block, see Comparison
Functions.

<UCPTmajorityValue> The percentage of input data points whose comparison
result with the compare data point (or with the value of the
<UCPTtrueThreshold> property, if it is defined) must be
True for the output data point is set to True. The
comparison to be performed between the input and compare
data point values is determined by the
<UCPTcompFunction> selected.

This field has a range of 0.0 to 100.0. For example, if this
field is set to 30.0, 30% of the input data points must return
True in order for the output data point to be set to True.

<UCPTtrueThreshold> This property specifies the compare value to be used with
the input data point when the comparison function selected
for the Analog Function Block is FN_OR, FN_AND or
FN_COMPARE. This property will only be used if the
input data point(s) uses a scalar or enumeration value. This
property can not be used if any of the input data point use
the format type SNVT_switch.

If this property is not defined, all the comparisons will be
made with the value of the compare data point. You can

i.LON SmartServer 2.0 Programmer’s Reference 8-7

Property Description

select a compare data point by filling in the
<CompareDataPoint> element, which is described later in
the table.

Scenarios that may assist you in understanding how to use
this property are included in the Comparison Functions
section.

<UCPToutputFunction> The output function for the Analog Function Block. This
determines the operation the Analog Function Block will
perform each time its data points are updated, and how the
value of the Analog Function Block’s output data point will
be determined.

For descriptions of the output functions you can use with
your Analog Function Block, see Output Functions.

<SCPTminRnge> The minimum value that the output data point can be
assigned.

<SCPTmaxRnge> The maximum value that the output data point can be
assigned.

<UCPTcalculationInterval> The delay, in seconds (0.0 to 6553.0), that must elapse
between updates to the Analog Function Block’s output data
point. This may be useful if you have multiple input data
points, as setting a long interval here could cause the Analog
Function Block to only update the output data point when
all inputs have been received. If you use the default value
of 0.0, the Analog Function Block will update the output
data point each time any of the input data points are
updated.

<UCPTcalculationMatrix> The number of previous averages from which a straight
average is calculated. For example, if you set this property
to 2, the average equals the sum of the last two calculated
averages divided by two. This means that if the last
calculated average was 20, and the previous calculated
average was 30, the average value sent to the output point is
25.

Note: This property is only applicable if you set
<UCPToutputFunction> to FN_AVERAGE.

<SCPTovrBehave> A value to define the behavior of the output data point when
an override request is received for the Analog Function
Block. The valid range for this property is any value within
the defined limits of SNVT_override. Enter
OV_SPECIFIED to assign the output data point an override
value when this occurs. You can specify the value to be
used by filling in the <SCPTovrValue> property.

If you do not fill in this property, the output data point will
maintain its last setting when an override occurs.

i.LON SmartServer 2.0 Programmer’s Reference 8-8

Property Description

<SCPTovrValue> The value the output data point will be assigned when it is
overridden, and the <SCPTovrBehave> property is set to
OV_SPECIFIED.

<UCPTpollOnResetDelay> The delay, in seconds, the Analog Function Block wait after
a reset before polling the values of the input data points.
When this value is 0, the Analog Function Block will
resume polling the input data points at the rate specified by
the <UCPTpollRate> property after a reset.

This field has a range of 0.0-6553.0.

8.3.2.1 Output Functions
The following table lists and describes the output functions you can use to fill in the
<UCPToutputFunction> property. You must reference each function by the identifier listed in the
table. The function selected determines the value that the Analog Function Block will assign to the
output data point.

Identifier Value Assigned To The Output Data Point

FN_MAX Maximum value of all input data points.

FN_MIN Minimum value of all input data points.

FN_SUM The sum of the values of all input data points.

FN_AVERAGE The average of the values of the input data points.

FN_COMPARE The result of the last comparison between the input data point(s) and the
compare data point (or the value assigned to the <UCPTtrueThreshold>
property, if it is defined). If this is selected, you must also select a comparison
function by filling in the <UCPTcompFunction> property. For an example of
how you could use this function, see the FN_COMPARE Example section.

FN_AND This function reports True when all the input data points are True. The
definition of a True input depends on the data point type. If the input type is
SNVT_switch, the input is True if the value and state fields are non-zero. If
the input type is a structure other than SNVT_switch, the Boolean threshold is
undefined, and FN_AND should not be used.

If the input data point(s) type is a scalar or enumeration value, the function
reports True if all the comparisons made by the comparison function for the
analog function block are True. For an example of how you could use the
FN_AND output function in this way, see the FN_AND Example section.

FN_OR This function reports True when any of the input data points are True. The
definition of a True input depends on the data point type. If the input type is
SNVT_switch, the input is True if either state or value field is non-zero. If the
input type is a structure other than SNVT_switch, the Boolean threshold is
undefined, and FN_OR should not be used.

If the input data point(s) type is a scalar or enumeration value, the function
reports True if any of the comparisons made by the comparison function for

i.LON SmartServer 2.0 Programmer’s Reference 8-9

Identifier Value Assigned To The Output Data Point

the analog function block are True. For an example of how you could use the
FN_OR function in this way, see the FN_OR Example section.

i.LON SmartServer 2.0 Programmer’s Reference 8-10

8.3.2.2 Comparison Functions
The following table lists and describes the comparison functions you can use to fill in the
<UCPTcompFunction> property. You must reference each function by the identifier listed in the table.

Identifier Description

FN_GT Greater than. Returns True if the value of the input data point is greater than
that of the compare data point (or the value assigned to the
<UCPTtrueThreshold> property, if it is defined).

FN_LT Less than. Returns True if the value of the input data point is less than that
of the compare data point (or the value assigned to the
<UCPTtrueThreshold> property, if it is defined).

FN_GE Greater than or equal to. Returns True if the value of the input data point is
greater than or equal to that of the compare data point (or the value assigned
to the <UCPTtrueThreshold> property, if it is defined).

FN_LE Less than or equal to. Returns True if the value of the input data point is
less than or equal to that of the compare data point (or the value assigned to
the <UCPTtrueThreshold> property, if it is defined).

FN_EQ Equal. Returns True if the value of the input data point is equal to that of
the compare data point (or the value assigned to the <UCPTtrueThreshold>
property, if it is defined).

FN_NE Not equal. Returns True if the value of the input data point is not equal to
that of the compare data point (or the value assigned to the
<UCPTtrueThreshold> property, if it is defined).

FN_NUL No comparison function is used. This is true if <UCPToutput Function> is
set to FN_MAX, FN_MIN, FN_SUM, or FN_AVERAGE.

8.3.2.2.1 FN_AND Example
In this example, there are four input data points and one compare data point, all of the type
SNVT_count. There is one output data point, of the type SNVT_switch.

<UCPToutputFunction>: FN_AND
<UCPTcompFunction>: FN_GT

Because the output function is FN_AND, the comparisons made with all the input data points must
return True for the output data point to be set to True. The comparison function is FN_GT, so the
value of each input data point must be greater than the value of the compare data point, or greater than
the value of the <UCPTtrueThreshold> value (if defined) for this to happen. If the
<UCPTtrueThreshold> property is defined, then the value of the compare data point is not used in the
comparison.

The following table lists several case scenarios that show when these functions might would evaluate
to True (100.0 1).

Input 1 Input 2 Input 3 Input 4 Value of Compare Data Point UCPTtrueThreshold Output

9 11 12 13 Does not matter since
<UCPTtrueThreshold> is defined.

10 0.0 0

20 30 40 50 Does not matter since
<UCPTtrueThreshold> is defined.

10 100.0 1

i.LON SmartServer 2.0 Programmer’s Reference 8-11

20 30 40 50 35 EMPTY 0.0 0

70 80 40 50 35 EMPTY 100.0 1

8.3.2.2.2 FN_OR Example
In this example, there are four input data points and one compare data point, all of the type
SNVT_count. There is one output data point, of the type SNVT_switch.

<UCPToutputFunction>: FN_OR
<UCPTcompFunction>: FN_LT

Because the output function is FN_OR, and the comparison function is FN_LT, one of the values of
the data inputs must be less than the value of the compare data point, or the <UCPTtrueThreshold>
value if it is defined, for the output data point to be set to True. If the <UCPTtrueThreshold> property
is defined, then value of the compare data point is not used in the comparison.

The following table lists several case scenarios that show when these two functions might evaluate to
True (100.0 1).

Input 1 Input 2 Input 3 Input 4 Value of Compare Data
Point

UCPTtrueThreshold Output

9 11 12 13 Does not matter since
<UCPTtrueThreshold> is

defined.

10 100.0 1

20 30 40 50 15 EMPTY 0.0 0

20 30 40 50 25 EMPTY 100.0 1

20 30 40 50 35 EMPTY 100.0 1

8.3.2.2.3 FN_COMPARE Example
In this example, there are four input data points and one compare data point, all of the type
SNVT_count. There is one output data point, of the type SNVT_switch.

<UCPToutputFunction>: FN_COMPARE
<UCPTcompFunction>: FN_EQ
<UCPTmajorityValue>: 100

Because the <UCPTmajorityValue> is set to 100, all comparisons made between the input and
compare data points must return True for the output data point to be set to True. The comparison
function selected is FN_EQ, so this means the values of the input data points must match the value of
the compare data point, or the <UCPTtrueThreshold> property if it is defined, for this to happen. If the
<UCPTtrueThreshold> is defined then the value of the compare data point is not used in the
comparison.

The following table lists several case scenarios that show when these two functions might evaluate to
True.

Input 1 Input 2 Input 3 Input 4 Value of Compare Data Point UCPTtrueThreshold Output

50 30 50 50 Does not matter since
<UCPTtrueThreshold> is defined.

40 0.0 0

40 40 40 40 Does not matter since
<UCPTtrueThreshold> is defined.

40 100.0 1

50 50 50 50 50 EMPTY 100.0 1

50 50 50 49 50 EMPTY 0.0 0

i.LON SmartServer 2.0 Programmer’s Reference 8-12

8.3.3 Using the Set Function on an Analog Functional Block

Use the Set function to create new Analog Functional Blocks, or to overwrite the configuration of
existing Analog Functional Blocks. The Analog Functional Blocks to be created or written to are
signified by a list of <Item> elements in the input parameters supplied to the function. The properties
you must define within each <Item> element are the same, whether you are creating a new Analog
Functional Block or modifying an existing Analog Functional Block. The previous section, Using the
Get Function on an Analog Functional Block, describes these properties.

Note: If you specify an Analog Functional Block with the <UCPTname> element, the Set function
deletes the specified Analog Functional Block before the specified parameters are set. If the
<UCPTname> element is not specified, a new Analog Functional Block is created.

When modifying an existing Analog Functional Block, any optional properties omitted from the Set
Request, such as the input point, compare point, or output data points, will be erased. Old values will
not be preserved, so you must fill in every property when writing to an Analog Functional Block, even
if you are not changing all of the values.

The first invocation of the Set function will generate the
#8000010128000000[4].UFPTanalogFunctionBlock.xml file in the
root/config/network/<network>/<channel>/iLONApp ||<device> directory of the SmartServer, if the
file does not already exist.

When creating or modifying an Analog Functional Block with the Set function, you may want to use
output from the Get function as the basis for your input. You would then only need to modify the
values of each property to match the new configuration you want, as opposed to re-creating an entire
string like the one shown below.

The example below uses the Set function to create an Analog Function Block that calculates the
maximum value of the value field of the nviClaValue_1 and nviClaValue_2 data points on the
Digital Output 1 and Digital Output 2 functional blocks on the SmartServer, and stores that value in
the value field of the nvoClsValue_1 data point on the Digital Input 1 functional block on the
SmartServer.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTanalogFunctionBlock_Cfg">
 <UCPTname>Net/LON/iLON App/Analog Fn Block[2]</UCPTname>
 <UCPTdescription>enter an optional description</UCPTdescription>
 <DataPoint dpType="nvoDropOut" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Analog Fn Block[2]/nvoAfbDropOut[2]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Input" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Input" discrim="dir_in">
 <UCPTname>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>900</UCPTpollRate>
 </DataPoint>
 <DataPoint xsi:type="UFPTanalogFunctionBlock_DpRef" dpType="Output">
 <UCPTname>Net/LON/iLON App/Digital Input 1/nvoClsValue_1</UCPTname>
 <UCPTfieldName>value</UCPTfieldName>
 </DataPoint>
 <UCPTcompFunction xsi:type="string" LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTmajorityValue>100</UCPTmajorityValue>
 <UCPTtrueThreshold xsi:type="string" LonFormat="UNVT_float"/>

 <UCPToutputFunction xsi:type="string" LonFormat="UCPToutputFunction">FN_INVALID
</UCPToutputFunction>

 <SCPTminRnge xsi:type="string" LonFormat="UNVT_float">0</SCPTminRnge>
 <SCPTmaxRnge xsi:type="string" LonFormat="UNVT_float">0</SCPTmaxRnge>
 <UCPTcalculationInterval>0</UCPTcalculationInterval>
 <SCPTovrBehave xsi:type="string" LonFormat="SCPTovrBehave">OV_RETAIN</SCPTovrBehave>
 <UCPTpollOnResetDelay>0</UCPTpollOnResetDelay>

i.LON SmartServer 2.0 Programmer’s Reference 8-13

 </Item>
 </iLonItem>
 </Set>

8.3.4 Using the Delete Function on an Analog Function Block

You can use the Delete function to delete an Analog Functional Block. To delete an Analog
Functional Block, you provide an <Item> element with a UFPTanalogFunctionBlock_Cfg type that
includes the <UCPTname> property of the analog functional block to be deleted. The following code
sample demonstrates how to use the Delete function to delete an Analog Functional Block:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTanalogFunctionBlock_Cfg">
 <UCPTname> Net/LON/iLON App/Analog Functional Block[2]</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Analog Functional Block[2]</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 9-1

9 Scheduler
You can use the Scheduler application to schedule periodic updates to the data points in your network.
You will select a data point, or group of data points, for each Scheduler you create. These data points
will be updated to specific values on the dates and times that the Scheduler is active. The dates and
times that the Scheduler is active, as well as the values the Scheduler will assign to the data points, are
user-defined. This section provides an overview of how the Scheduler application works.

Day-Based Schedules

For each event schedule, you will create up to seven day-based schedules. Each day-based schedule
will apply to certain days of the week. For example, you could set up one day-based schedule that is
active Monday through Friday, and another that is active Saturday and Sunday. Or, you could set up a
separate day-based schedule for each day of the week.

You will define a series of day-time values for each schedule, meaning that you will be allowed to
specify what value you want your data points to be assigned at any given time during the days that the
schedule is active. For example, you could create a Scheduler that sets a SNVT_switch data point to
on (100.0 1) at 8:00 and off (0.0 0) at 17:00 on weekdays Monday through Friday, and leaves the data
point set to off on Saturday and Sunday.

Date-Based Schedules

You can create date-based exceptions for each Scheduler. These exceptions will allow you to select
specific dates which require a unique schedule, such as holidays, and assign them a schedule that is
different than any of the day-based schedules. You will be able to set up a separate set of day-time
values for each exception. This allows you to specify what value you want your data points to use on
each exception date at any given time, and gives you complete flexibility when creating a Scheduler.
The date-based exceptions must be created with the Calendar application. This is described in Chapter
10.

Sunrise and Sundown Events

You can schedule events to occur at sunrise or sundown (or a configure period of time before or after
sunrise or sundown) in a day-based or date-based schedule.

#UNLOCK and #LOCK Events

You can schedule #UNLOCK events that enable lower-priority events to write updated values to the
data point in the Scheduler, and you can schedule #LOCK events that prevent lower-priority events
from updating the data points. You can schedule #UNLOCK and #LOCK events in a day-based or
date-based schedule.

Data Points

The Scheduler application allows the integrator to dynamically select data points of any standard or
user-defined network variable type to be updated by a Scheduler. These outputs should be bound to
network devices that require activation on a scheduled interval. The data points must be created and
added to the Data Server before they are used by the Scheduler application.

Refreshing Exceptions

You can use the Calendar application to create the exception points that define the date-based
schedules for your Schedulers. Chapter 10 describes this procedure. The exceptions you create are
stored in an exception list (a list of exceptions in UNVT_date_event format) that is stored within the
Node Object. The Node Object maintains the exception list, and it receives this list via the
nviDateEvent point.

All Schedulers on the SmartServer read the exception list from the local NodeObject internally
(without a binding), and as a result only use current exception configurations. By default, the data
points of the NodeObject and the local Calendar are configured in a loop, so that this exception list

i.LON SmartServer 2.0 Programmer’s Reference 9-2

comes from the local Calendar object via an internal binding between the nvoEcDateEvent output of
the Calendar, and the nviDateEvent input of the NodeObject.

After a restart, the Scheduler recalculates the last Scheduler operation. It also sets the data point
nvoDateResync to “100.0 1”, which updates the SmartServer’s exception list. You can set the value
of nvoDateResync to “100.0 1” and then return it back to “0.0 0” with the Write function at any time to
refresh the exception list manually. The data point nviEcResync of the Calendar will be internally
bound to nvoDateResync if no external binding is created. However, the Scheduler pulses the
NodeObject NV to ensure that the NodeObject always has an up-to-date Exception list, so this should
not be necessary.

9.1 Overview of the Scheduler XML File
The #8000010128000000[4].UFPTscheduler.xml file stores the configuration of the Schedulers that
you have added to the SmartServer. You can create new Schedulers using the Set function, or by
manually editing the #8000010128000000[4].UFPTscheduler.xml file, and rebooting the SmartServer.

You can create up to 40 Schedulers per SmartServer. You can add more than 40 Schedulers if you
load the dynamic v40 XIF on your SmartServer and you operate your SmartServer in Standalone
mode. Note that using the v40 XIF with the SmartServer operating in LNS mode (LNS Auto or LNS
Manual) is not supported.

The following represents a sample #8000010128000000[4].UFPTscheduler.xml file for a SmartServer
with one Scheduler.
<Item xsi:type="UFPTscheduler_Cfg" >
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTscheduler</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-03T14:50:04.680-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTscheduler_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviEnable" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Scheduler[0]/nviEsEnable[0]</UCPTname>
 </DataPoint>
 <DataPoint xsi:type="UFPTscheduler_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <SCPTdelayTime>0</SCPTdelayTime>
 </DataPoint>
 <DataPoint xsi:type="UFPTscheduler_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTname>
 <SCPTdelayTime>0</SCPTdelayTime>
 </DataPoint>
 <ScheduleEffectivePeriod>
 <StartDate>2000-01-01</StartDate>
 <EndDate>2037-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <DayBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Weekday</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>1</UCPTindex>
 <UCPTtime>09:00:00</UCPTtime>
 <UCPTvalue LonFormat="">ON</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_POSITIVE</UCPTtimeDirection>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>

i.LON SmartServer 2.0 Programmer’s Reference 9-3

 <UCPTwednesday>1</UCPTwednesday>
 <UCPTthursday>1</UCPTthursday>
 <UCPTfriday>1</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>
 </Weekdays>
 </DayBased>
 <DayBased>
 <UCPTindex>1</UCPTindex>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Weekdays>
 <UCPTsunday>1</UCPTsunday>
 <UCPTmonday>0</UCPTmonday>
 <UCPTtuesday>0</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>
 <UCPTsaturday>1</UCPTsaturday>
 </Weekdays>
 </DayBased>
 </Item>

9.2 Creating and Modifying the Scheduler XML File
You can create and manage the #8000010128000000[4].UFPTscheduler.xml file with the Set SOAP
function. The following section, Scheduler SOAP Interface, describes how to use Set and the other
SOAP functions provided for the Scheduler application.

Alternatively, you can create and manage the #8000010128000000[4].UFPTscheduler.xml file
manually with an XML editor and download it to the SmartServer via FTP. Echelon does not
recommend this, as the SmartServer will require a reboot to read the configuration of the downloaded
file. Additionally, the SmartServer performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via FTP,
and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first, as it
describes the elements and properties in the XML file that define each Scheduler’s configuration.

9.3 Scheduler SOAP Interface
You can use the SOAP interface to perform the following functions on a Scheduler application:

Function Description

List Generate a list of Schedulers that you have added to the SmartServer.

Get Retrieve the configuration of any Scheduler that you have added to
the SmartServer.

Read Retrieve the events scheduled in any Scheduler that you have added
to the SmartServer.

Set Create a new Scheduler, or overwrite the configuration of an existing
Scheduler.

Delete Delete a Scheduler.

i.LON SmartServer 2.0 Programmer’s Reference 9-4

Note: Section 21.1.3, Creating a Scheduler and Calendar in Visual C# .NET, includes a C#
programming example demonstrating how to use the Scheduler SOAP interface to create and read a
data logger. Section 21.2.3, Creating a Scheduler and Calendar in Visual Basic.NET, includes a
Visual Basic example demonstrating how to do this.

9.3.1 Using the List Function on a Scheduler

You can use the List function to retrieve a list of the Schedulers that you have added to the
SmartServer. The List function takes an <iLonItem> element that includes an xSelect statement
querying items of a UFPTscheduler_Cfg type as its input, as shown in the example below. The List
function returns an <Item> element for each Scheduler that you have added to the SmartServer. The
next section describes the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each Scheduler included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type=" UFPTscheduler_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTscheduler;xsi:type="LON_Fb_Cfg”;
 </UCPTannotation>

 <UCPThidden>0</UCPThidden>
</Item>

 </iLonItem>
 </ListResponse>

9.3.2 Using the Get Function a Scheduler

You can use the Get function to retrieve the configuration of any Scheduler that you have added to the
SmartServer. You must reference the Scheduler whose configuration is to be returned by its
<UCPTname> in the input you supply to the function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTscheduler_Cfg" >
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTscheduler</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-03T14:50:04.680-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTscheduler_Cfg.htm</UCPTuri>
 <DataPoint xsi:type="UFPTscheduler_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <SCPTdelayTime>0</SCPTdelayTime>
 </DataPoint>
 <DataPoint xsi:type="UFPTscheduler_DpRef" dpType="Output" discrim="dir_out" >

i.LON SmartServer 2.0 Programmer’s Reference 9-5

 <UCPTname>Net/LON/iLON App/Digital Output 2/nviClaValue_2</UCPTname>
 <SCPTdelayTime>0</SCPTdelayTime>
 </DataPoint>
 <ScheduleEffectivePeriod>
 <StartDate>2000-01-01</StartDate>
 <EndDate>2037-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <DayBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Weekday</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>1</UCPTindex>
 <UCPTtime>09:00:00</UCPTtime>
 <UCPTvalue LonFormat="">ON</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_POSITIVE</UCPTtimeDirection>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>1</UCPTwednesday>
 <UCPTthursday>1</UCPTthursday>
 <UCPTfriday>1</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>
 </Weekdays>
 </DayBased>
 <DayBased>
 <UCPTindex>1</UCPTindex>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Weekdays>
 <UCPTsunday>1</UCPTsunday>
 <UCPTmonday>0</UCPTmonday>
 <UCPTtuesday>0</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>
 <UCPTsaturday>1</UCPTsaturday>
 </Weekdays>
 </DayBased>

 <DateBased>
 <UCPTindex>0</UCPTindex>
 <UCPTpriority>250</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>04:00:00</UCPTtime>
 <UCPTvalue LonFormat="">OFF</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_POSITIVE</UCPTtimeDirection>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Exception>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>2008-03-03</UCPTexceptionName>
 </Exception>
 </DateBased>

 </Item>
 </iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 9-6

</GetResponse>

The function returns an <Item> element for each Scheduler referenced in the input parameters supplied
to the function. The properties included in each element are initially defined when the Scheduler is
created. You can write to these properties with the Set function. The following table describes these
properties.

Property Description

<UCPTname> The name of the Scheduler in the following format:
<network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the
Scheduler. This property is always
8000010128000000[4].UFPTscheduler

<UCPThidden> A flag indicating whether the Scheduler functional block is
hidden or shown in the navigation pane on the left side of
the SmartServer Web interface. This property may have the
following values:

0 – shown
1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not
synchronized with an LNS network database or it has been
deleted. In this case, it has the following values:

IS_NOTSYNCED
IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Scheduler was updated. This timestamp uses the following
format:

YYYY-MM-DDTHH:MM:SSZ

<UCPTuri> The name of the file containing the configuration web page
for the Scheduler on the SmartServer flash disk, absolute or
relative to /web/user/echelon. This property is
#8000010128000000[4].UFPTscheduler _Cfg.htm by
default.

<DataPoint>

Input

For each <Data Point> element, you must enter the name
(UCPTpointName) of the data point to be updated. In
addition, you should fill in the delay time
(SCPTdelayTime) property for each data point. This
integer value represents the period of time, in seconds, that
must elapse before this data point is updated based on a
DayBased or DateBased schedule point. This allows you to
stagger the updating of your data points, which may be
advisable if a Scheduler scheduler is to update multiple data
points at the same time.

NOTE: If a SNVT_tod_event data point is used, it will
only be updated if its value (current_state of next_state) has
changed. If a heartbeat (UNVTminSendTime) is defined for
the SNVT_tod_event data point, the time_to_next_state

i.LON SmartServer 2.0 Programmer’s Reference 9-7

Property Description

will be decreased with every heartbeat.

<ScheduleEffectivePeriod> The <ScheduleEffectivePeriod> element contains two
properties that define the dates that the Scheduler applies to.
The <StartDate> property defines the start date, and the
<EndDate> property defines the end date.

You must fill each property in using the following format:

YYYY-MM-DD

If the start date is undefined (0000-00-00), it means any date
up to and including the end date. If the end date is
undefined, it means any date from the start date. If both are
undefined, it means the Scheduler is always active. The
default value for both properties is 0000-00-00.

<DayBased> Each Scheduler can have up to seven day-based schedules.
These are schedules that operate based on the current day of
the week. This may be useful when setting up a schedule
that requires different update times for different days of the
week, e.g. weekends and weekdays.

The day-based schedules for your Scheduler are defined by
a list of <DayBased> elements. For a detailed description
of how to configure each <DayBased> element, see
Creating a Day-Based Schedule.

<DateBased> Each Scheduler can have one date-based schedule. You will
reference the schedule exceptions created with the Calendar
application to create this date-based schedule.

The <DateBased> element defines the date-based schedule.
For a detailed description of how to configure the properties
and elements that define the <DateBased> element, see
Creating a Date-Based Schedule.

9.3.2.1 Creating a Day-Based Schedule
The following code demonstrates the structure of the <DayBased> element. The subsequent table lists
and describes the properties that should be defined within each <DayBased> element.
<DayBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Weekday</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>1</UCPTindex>
 <UCPTtime>09:00:00</UCPTtime>
 <UCPTvalue LonFormat="">ON</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_POSITIVE</UCPTtimeDirection>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>

i.LON SmartServer 2.0 Programmer’s Reference 9-8

 <Event>
 <UCPTindex>2</UCPTindex>
 <UCPTtime>10:00:00</UCPTtime>
 <UCPTvalue LonFormat="">0.0 0</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">0.0 0</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_POSITIVE</UCPTtimeDirection>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>1</UCPTwednesday>
 <UCPTthursday>1</UCPTthursday>
 <UCPTfriday>1</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>
 </Weekdays>
</DayBased>

Property Description

<UCPTindex> The index number of the day-based schedule.

<UCPTdescription> A user-defined description of the day-based schedule. This
description can be up to 227 characters long.

<UCPTpriority> The priority assigned to the schedule, from 0 (highest priority) to
255 (lowest priority). The priority chosen here must be greater
than or equal to the current priority level assigned to a data point
when the Scheduler attempts to update that data point. If it is not,
the data point will not be updated successfully.

<Event> The update events for each day-based schedule are signified by a
list of <Event> elements. Each update event will be used on the
days that this day-based schedule is active. See Creating Events
for more information. Note that each <Day Based> element has an
<Event> item that specifies a LOCK event to occur at midnight
(00:00).

<Weekdays> The <Weekdays> element contains seven properties, one for each
day of the week. If you set the property for a day to 1, this
day-based schedule will be active on that day. Otherwise, it will
be inactive. For example, to create a day-based schedule that is
active on Monday and Tuesday, use the following <Weekdays>
element:

<Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>
</Weekdays>

9.3.2.2 Creating a Date-Based Schedule
The following code demonstrates the structure of the <DateBased> element. This example includes
two <DateBased> elements that have different <Exception> properties. The first <DateBased>
element is a one-time exception that occurs on a specific date. The second <DateBased> element is an

i.LON SmartServer 2.0 Programmer’s Reference 9-9

exception that occurs over a specific range of dates. The actual date or range of dates in which these
exceptions occur are stored in the #8000010128000000[4].UFPTcalendar.xml file.

The subsequent table lists and describes the properties that should be defined within each <DateBased>
element.
<DateBased>
 <UCPTindex>0</UCPTindex>
 <UCPTpriority>250</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>04:00:00</UCPTtime>
 <UCPTvalue LonFormat="">OFF</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_POSITIVE</UCPTtimeDirection>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Exception>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>2008-03-03</UCPTexceptionName>
 </Exception>
</DateBased>
<DateBased>
 <UCPTindex>1</UCPTindex>
 <UCPTpriority>250</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>1</UCPTindex>
 <UCPTtime>00:15:00</UCPTtime>
 <UCPTvalue LonFormat="">OFF</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_NEGATIVE</UCPTtimeDirection>
 <UCPTbaseTimePath>../../DataPoint[UCPTnickName="Sunrise"]</UCPTbaseTimePath>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Exception>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>SunriseSchedule</UCPTexceptionName>
 </Exception>

 </DateBased>

Property Description

<UCPTindex> The index number for the date-based schedule.

<UCPTpriority> The priority to be assigned the schedule, from 0 (highest priority) to
255 (lowest priority). The priority chosen here must be greater than
or equal to the priority assigned to the data point when the Scheduler
attempts to update the data point. If it is not, the data point will not
be updated successfully.

<Event> The update events for each date-based schedule are signified by a list
of <Event> elements. Each update event will be used on the days
that this date-based schedule is active. See Creating Events for more
information.

i.LON SmartServer 2.0 Programmer’s Reference 9-10

Property Description

<Exception> The exceptions for the date-based schedule specify the dates on
which the date-based schedule will be active. These exceptions are
signified by a list of <Exception> elements. Each exception must be
referenced by its name (UCPTexceptionName).

You will define the name of an exception and the dates is applies to
when you create it with the Calendar application. For more
information on this, see Chapter 10, Calendar.

9.3.2.3 Creating Events
The update events for each day-based or date-based schedule are signified by a list of <Event>
elements. Each update event will be used on the days that this day-based or date-based schedule is
active. Note that there is no limit on the number of events supported by the Scheduler application.
<Event>
 <UCPTindex>1</UCPTindex>
 <UCPTtime>00:15:00</UCPTtime>
 <UCPTvalue LonFormat="">OFF</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_NEGATIVE</UCPTtimeDirection>
 <UCPTbaseTimePath>../../DataPoint[UCPTnickName="Sunrise"]</UCPTbaseTimePath>
 <UCPTeventType LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>

Each <Event> element contains the following properties:

Property Description

<UCPTindex> The index number for the event.

<UCPTtime> If you are creating a time-of-day event, this is the local time that
defines the time of day when the data points selected for your
Scheduler will be updated to the value specified for the
<UCPTValue> property. This time must be entered in 24-hour
format, e.g. 15:30:00 represents 3:30:00 PM.

If you are creating an event that is to occur sometime before or after
sunrise or sundown, enter the offset to be applied to the calculated
sunrise or sundown time. The offset must be entered in 24-hour
format with a valid range between 00:01:00 and 23:59:00.

<UCPTvalue> The value to be written to the data point at the time specified in the
<UCPTtime> property. You can specify one or more <UCPTvalue>
elements with an empty LonFormat attribute, or with a LonFormat
attribute that is set to "UCPTvalueDef", and you can set
<UCPTvalue> to a value string such as “100.0 1” or a value
definition (preset) such as “ON”. The last <UCPTvalue> property
defined is the one that is used.

For example, you can define a value string for a SNVT_switch data
point using either of the following statements:
<UCPTvalue LonFormat="">100.0 1</UCPTvalue>
<UCPTvalue LonFormat="UCPTvalueDef">100.0 1</UCPTvalue>

Alternatively, you can define a value definition (preset) for a

i.LON SmartServer 2.0 Programmer’s Reference 9-11

Property Description

SNVT_switch data point using either of the following statements:
<UCPTvalue LonFormat="">ON</UCPTvalue>
<UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>

<UCPTtimeDirection> If you are creating an event that is to occur sometime before or after
sunrise or sundown, specify in a LonFormat attribute whether the
offset specified in the <UCPTtime> property is to be added to or
subtracted from the calculated sunrise or sundown time. This
property can have one of the following values:

• TD_POSITIVE: The offset specified in the <UCPTtime>
property is to be added to the calculated sunrise or sundown
time. For all time-of-day events, you must specify
TD_POSITIVE.

• TD_NEGATIVE: The offset specified in the <UCPTtime>
property is to be subtracted from the calculated sunrise or
sundown time.

For example, to specify that an event is to occur 15 minutes before
sunrise, you would use the following code:
<UCPTtimeDirection LonFormat="UCPTtimeDirection">TD_NEGATIVE
</UCPTtimeDirection>

Note: You can omit this property if you are creating a time-of-day
event.

<UCPTbaseTimePath> If you are creating a sunrise or sundown event, specify a reference to
the data point information which is used as base time for this event.
The reference is written as xPath statement relative to the actual
element.
To create a sunrise event, you would use the following code:
<UCPTbaseTimePath>../../DataPoint[UCPTnickName="Sunrise"]
</UCPTbaseTimePath>

To create a sundown event, you would use the following code:
<UCPTbaseTimePath>../../DataPoint[UCPTnickName="Sunset"]
</UCPTbaseTimePath>

<EventType> You can use this element to create a #LOCK or #UNLOCK event.
This element may have one of the following values:

• ET_LOCK: Locks out lower priority events and prevents them
from writing to the data points in the Scheduler. Applications
with lower priorities can only override a data point value once
the Scheduler has executed an #UNLOCK event.

• ET_UNLOCK: Enables lower priority events to write to the
data points in the Scheduler.

• ET_NUL: This is the default, indicating that the event is based
on the time-of-day, or sunrise or sundown.

You need to specify this value in a LonFormat attribute that has the
following value: "UCPTeventType". For example, to create a
#LOCK event, you would use the following code:
<UCPTeventType LonFormat="UCPTeventType">ET_LOCK </UCPTeventType>

i.LON SmartServer 2.0 Programmer’s Reference 9-12

9.3.3 Using the Read Function on a Scheduler

You can use the Read function to retrieve the events scheduled in any Scheduler that you have added
to the SmartServer. You can filter events using an xSelect statement and specifying one or more
Scheduler items. You can use the following filters in an xSelect statement when using the Read
function on a Scheduler:

UCPTlastUpdate When an event occurs. You can compare the specified start and stop
times using equal, less (or equal), great (or equal). UCPTstop is set
to time of last shown event. You need to check whether UCPTstop
differs from UCPTlastUpdate to make the next request start from the
UCPTstop time.

UCPTeventFilter This property may have one of following values:

• EF_NUL: Show all events. This is the same as not specifying
and UCPTeventFilter.

• EF_DAY: Show only first event scheduled for each day.

• EF_SCHEDULE: Show only one event for each scheduler.

position() Position of the event in previously selected list. You can use this
filter to limit the number of events in a result. You can compare the
number of events to be returned using equal, less (or equal), or great
(or equal). You can request a maximum of 2,500 events; however,
more than 2,500 events may be returned.

Note: The last instance of an event before the specified start date is
always returned (if it exists), and it is not counted by the position()
constraint.

You can include one item of type UFPTscheduler_Calendar_Request_Data, which causes a Read
function on a Calendar item. This information is used to calculate date-based events. You can also
include an item of type UFPTscheduler_RealTimeClock_Request_Data, which defines start point for
relative times for each day. By default, all relative times are calculated from 0:00:00. If calendar
and/or real time clock data is specified, the data in the response is bound to given start and stop dates.

Request
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect> //Item[@xsi:type="UFPTscheduler_Data"]

 [UCPTlastUpdate>= "2008-03-01T00:00:00.000" and
 UCPTlastUpdate<= "2008-04-01T00:00:00.000"]
 [UCPTeventFilter="EF_NUL"]
 [position()<500]

 </xSelect>
 <Item xsi:type="UFPTscheduler_Calendar_Request_Data">
 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 </Item>
 <Item xsi:type="UFPTscheduler_RealTimeClock_Request_Data">
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 </Item>
 <Item>
 <UCPTname>Net/LON/iLON App/Scheduler[0]__TEMP_OBJECT</UCPTname>
 </Item>
 </iLonItem>
</Read>

Response
<ReadResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>

i.LON SmartServer 2.0 Programmer’s Reference 9-13

 <Item xsi:type="UFPTscheduler_Meta_Data" >
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 <UCPTstart>2008-03-01T00:00:00.000-08:00</UCPTstart>
 <UCPTstop>2008-04-01T00:01:00.000-07:00</UCPTstop>
 </Item>
 <Item xsi:type="UFPTscheduler_Data" >
 <UCPTname/>
 <UCPTlastUpdate>2008-03-01T00:00:00.000-08:00</UCPTlastUpdate>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>

<UCPTmetaDataPath>//*[@xsi:type=“UFPTscheduler_Meta_Data”][UCPTname=“Net/LON/iLON
App/Scheduler[0]”]</UCPTmetaDataPath>

 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 <UCPTeventSource>DayBased[UCPTindex=1]/Event[UCPTindex=0]</UCPTeventSource>
 <UCPTeventInfo LonFormat="UCPTeventInfo">EI_BEGIN</UCPTeventInfo>
 </Item>
 <Item xsi:type="UFPTscheduler_Data" >
 <UCPTname/>
 <UCPTlastUpdate>2008-03-02T00:00:00.000-08:00</UCPTlastUpdate>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>

<UCPTmetaDataPath>//*[@xsi:type=“UFPTscheduler_Meta_Data”][UCPTname=“Net/LON/iLON
App/Scheduler[0]”]</UCPTmetaDataPath>

 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 <UCPTeventSource>DayBased[UCPTindex=1]/Event[UCPTindex=0]</UCPTeventSource>
 <UCPTeventInfo LonFormat="UCPTeventInfo">EI_END</UCPTeventInfo>
 </Item>

<Item xsi:type="UFPTscheduler_Data" >
 <UCPTname/>
 <UCPTlastUpdate>2008-03-15T00:00:00.000-07:00</UCPTlastUpdate>
 <UCPTdescription/>
 <UCPTpriority>250</UCPTpriority>

<UCPTmetaDataPath>//*[@xsi:type=“UFPTscheduler_Meta_Data”][UCPTname=“Net/LON/iLON
App/Scheduler[0]”]</UCPTmetaDataPath>

 <UCPTeventType LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
<UCPTeventSource>DateBased[UCPTindex=1]/(Event[UCPTindex=0] |
Exception[UCPTindex=0])</UCPTeventSource>

 <UCPTexceptionName>WeekendShutdown</UCPTexceptionName>
 <UCPTeventInfo LonFormat="UCPTeventInfo">EI_BEGIN</UCPTeventInfo>
 </Item>
 </iLonItem>

 </ReadResponse>

The Read function returns the following properties for each day or date read from the specified
Scheduler:

<UCPTname> The name of the scheduler from which events were read in
the following format: <network/channel/device/functional
block>.

<UCPTstart>

<UCPTstop>

Timestamps indicating the times of the first and last dates of
the events returned by the Read function.

<UCPTlastUpdate> A timestamp indicating the time that the last event occurred.

<UCPTdescription> The name of the day-based schedule in which the event is
scheduled. This property is empty for date-based events.

<UCPTpriority> The priority assigned the schedule, from 0 (highest priority)
to 255 (lowest priority).

<UCPTmetaDataPath> The queried data type and the UCPT name of the queried
Scheduler.

i.LON SmartServer 2.0 Programmer’s Reference 9-14

<EventType> This element may have one of the following values:

• ET_LOCK: A #LOCK event.

• ET_UNLOCK: An #UNLOCK event.

• ET_NUL: Event is based on the time-of-day, or sunrise
or sundown.

<EventSource> This element indicates whether the event is in a day-based
schedule or a date-based exception schedule. This property
may have one of the following values:

• DayBased: Event is scheduled in a daily schedule.

• DateBased: Event is scheduled in an exception
schedule.

• This property includes the UCPTindex of the DayEvent
or DateEvent and the UCPTindex of the event itself.

<UCPTexceptionName> The name of the date-based exception schedule in which the
event is scheduled. This property is not included for
day-based events.

<UCPTeventInfo> Indicates how the day or date in which the event occurs
relates to the specified range of days or dates in which that
event is scheduled. This property may have one of the
following values:

• EI_BEGIN: First day in the range of days or dates.

• EI_END: Last day in the range of days or dates.

• EI_CONTINUE: A day in between the beginning and
the end of the range of days or dates.

• EI_BEGIN_END: Event occurs only on one day.

9.3.4 Using the Set Function on a Scheduler

You can use the Set function to create new Schedulers, or to overwrite the configuration of existing
Schedulers. The Schedulers to be created or written to are signified by a list of <Item> elements in the
input you supply to the function. The properties you must define within each <Item> element are the
same, whether you are creating a new Scheduler or modifying an existing Scheduler. The previous
section, Using the Get Function on a Scheduler, describes these properties.

Note: If you specify a Scheduler with the <UCPTname> element, the Set function deletes the
specified Scheduler before the specified parameters are set. If the <UCPTname> element is not
specified, a new Scheduler is created.

The first invocation of the Set function will generate the #8000010128000000[4].UFPTscheduler.xml
file in the root/config/network/<network>/<channel>/iLONApp ||<device> directory of the
SmartServer, if the file does not already exist.

When modifying an existing Scheduler, any optional properties omitted from the input will be erased.
Old values will not be preserved, so you should fill in every property when writing to a Scheduler,
even if you are not changing all of the values.

i.LON SmartServer 2.0 Programmer’s Reference 9-15

When creating or modifying a Scheduler with this function, you may want to use output from the Get
function as the basis for your input. You would then only need to modify the values of each property
to match the new configuration you want, as opposed to re-creating an entire string like the one shown
below, to generate your input.

The following example updates the nviClaValue_1 SNVT_switch data point on the Digital Ouput 1
functional block on the SmartServer. It includes one <DayBased> items that sets the data point to ON
at 05:00, OFF at 09:00, and ON again at 17:00, and it contains one <DateBased> sets the data point to
OFF 15 minutes before sunrise and unlocks the data point at sundown so that the Day Based schedule
can update the data point.

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTscheduler_Cfg">
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 <UCPTdescription>enter an optional description</UCPTdescription>
 <DataPoint xsi:type="UFPTscheduler_DpRef" dpType="Output" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Digital Output 1/nviClaValue_1</UCPTname>
 <SCPTdelayTime>0</SCPTdelayTime>
 </DataPoint>
 <DataPoint xsi:type="UFPTscheduler_BaseTime_DpRef" dpType="BaseTime">
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunrise</UCPTname>
 <UCPTnickName>Sunrise</UCPTnickName>
 </DataPoint>
 <DataPoint xsi:type="UFPTscheduler_BaseTime_DpRef" dpType="BaseTime">
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunset</UCPTname>
 <UCPTnickName>Sunset</UCPTnickName>
 </DataPoint>
 <ScheduleEffectivePeriod xsi:type="UFPTscheduler_CfgEffectivePeriod">
 <StartDate>2000-01-01</StartDate>
 <EndDate>2037-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <DayBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Weekday</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>1</UCPTindex>
 <UCPTtime>05:00:00</UCPTtime>
 <UCPTvalue LonFormat="">ON</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
 <UCPTtimeDirection xsi:type="string" LonFormat="UCPTtimeDirection">TD_POSITIVE
 </UCPTtimeDirection>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>2</UCPTindex>
 <UCPTtime>09:00:00</UCPTtime>
 <UCPTvalue LonFormat="">OFF</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTtimeDirection xsi:type="string" LonFormat="UCPTtimeDirection">TD_POSITIVE
 </UCPTtimeDirection>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>3</UCPTindex>
 <UCPTtime>17:00:00</UCPTtime>
 <UCPTvalue LonFormat="">ON</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">ON</UCPTvalue>
 <UCPTtimeDirection xsi:type="string" LonFormat="UCPTtimeDirection">TD_POSITIVE
 </UCPTtimeDirection>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_NUL</UCPTeventType>

i.LON SmartServer 2.0 Programmer’s Reference 9-16

 </Event>
 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>1</UCPTwednesday>
 <UCPTthursday>1</UCPTthursday>
 <UCPTfriday>1</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>
 </Weekdays>
 </DayBased>
 <DayBased>
 <UCPTindex>1</UCPTindex>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>255</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Weekdays>
 <UCPTsunday>1</UCPTsunday>
 <UCPTmonday>0</UCPTmonday>
 <UCPTtuesday>0</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>
 <UCPTsaturday>1</UCPTsaturday>
 </Weekdays>
 </DayBased>
 <DateBased>
 <UCPTindex>0</UCPTindex>
 <UCPTpriority>250</UCPTpriority>
 <Event>
 <UCPTindex>0</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_LOCK</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>1</UCPTindex>
 <UCPTtime>00:15:00</UCPTtime>
 <UCPTvalue LonFormat="">OFF</UCPTvalue>
 <UCPTvalue LonFormat="UCPTvalueDef">OFF</UCPTvalue>
 <UCPTtimeDirection xsi:type="string" LonFormat="UCPTtimeDirection">TD_NEGATIVE
 </UCPTtimeDirection>
 <UCPTbaseTimePath xsi:type="string">../../DataPoint[UCPTnickName="Sunrise"]
 </UCPTbaseTimePath>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_NUL</UCPTeventType>
 </Event>
 <Event>
 <UCPTindex>2</UCPTindex>
 <UCPTtime>00:00:00</UCPTtime>
 <UCPTtimeDirection xsi:type="string" LonFormat="UCPTtimeDirection">TD_POSITIVE
 </UCPTtimeDirection>
 <UCPTbaseTimePath xsi:type="string">../../DataPoint[UCPTnickName="Sunset"]
 </UCPTbaseTimePath>
 <UCPTeventType xsi:type="string" LonFormat="UCPTeventType">ET_UNLOCK</UCPTeventType>
 </Event>
 <Exception>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>WeekdayException</UCPTexceptionName>
 </Exception>
 </DateBased>

 </Item>
 </iLonItem>
 </Set

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 9-17

 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

9.3.5 Using the Delete Function on a Scheduler

You can use the Delete function to delete a Scheduler. To delete a Scheduler, you provide an <Item>
element with a UFPTscheduler_Cfg type that includes the <UCPTname> property of the scheduler to
be deleted. The following code sample demonstrates how to use the Delete function to delete a
Scheduler:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTscheduler_Cfg">
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 9-18

i.LON SmartServer 2.0 Programmer’s Reference 10-1

10 Calendar
You can use the Calendar application to define the exceptions that you will reference when creating the
date-based schedules for your Schedulers. Each exception you create represents a date, or a group of
dates. When you reference an exception in a Scheduler, you will be able to assign the dates for that
exception a unique schedule. This may be useful when creating a Scheduler that requires different
schedules for holidays than regular weekdays, or during different seasons of the year.

This chapter describes how to create exceptions with the Calendar application. Chapter 9, Scheduler,
describes how to create a Scheduler and reference the exceptions you create.

You can create one-time exceptions, exceptions that occur over a specific range of dates, or recurring
exceptions that occur over a range of dates in a specific pattern such as every weekday or every fourth
Sunday of every month. The SmartServer supports one active Calendar, with no limit on the number
of exceptions scheduled in the Calendar.

When a Scheduler references an exception point, the Calendar application supplies the dates an
exception point references to the Node Object using the nvoEcDateEvent data point. The Scheduler
then reads this exception list from the local Node Object. The information contained in the exception
list includes when the exception is valid, and when the exception will recur.

Whenever an exception is modified with the functions described in this chapter, all exceptions in the
Calendar are recalculated and copied to the nvoEcDateEvent data point as a series of updates. By
default, the nvoEcDateEvent data point of the Calendar and the nviDateEvent data point of the Node
Object are internally bound, so that no network traffic is generated. Thus, the update from the
Calendar is passed to the local Node Object, and all the Schedulers will read the updated exception list
from the local Node Object.

In this fashion, each Scheduler will always have up-to-date definitions of the exceptions it references.
To force all exceptions to be recalculated and copied to the nvoEcDateEvent data point, you may
update the nviEcDateResync data point (which will be internally bound to the nvoDateResync data
point of the Node Object if no external binding is created) with a value of “100.0 1” and then return it
back to “0.0 0”.

10.1 Overview of the Calendar XML File
The #8000010128000000[4].UFPTcalendar.xml file stores the configuration of the Calendars that you
have added to the SmartServer. You can create multiple Calendars with an unlimited number of
exceptions per SmartServer. However, the SmartServer supports only 1 active Calendar at a time.

The following represents a sample #8000010128000000[4].UFPTcalendar.xml file for a SmartServer
with a Calendar that has an exception group named Holiday that recurs annually with exception
schedules defined for Christmas and the Fourth of July.
<Item xsi:type="UFPTcalendar_Cfg" >
 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTcalendar;xsi:type=“LON_Fb_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-05T11:43:29.440-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTcalendar_Cfg.htm</UCPTuri>
 <DataPoint dpType="nviDateResync" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Calendar/nviEcDateResync</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoDateEvent" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Calendar/nvoEcDateEvent</UCPTname>
 </DataPoint>
 <ScheduleEffectivePeriod>
 <StartDate>2000-01-01</StartDate>
 <EndDate>2037-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <Exception>
 <UCPTindex>4</UCPTindex>
 <UCPTexceptionName>Holiday</UCPTexceptionName>

i.LON SmartServer 2.0 Programmer’s Reference 10-2

 <UCPTaliasName>Holiday</UCPTaliasName>
 <UCPTtemporary>0</UCPTtemporary>
 <Schedule>
 <StartDate>
 <UCPTdate>2008-03-12</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2015-12-31</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay LonFormat="UCPTschedDay">DM_DAY_4</UCPTschedDay>
 <UCPTschedMonth LonFormat="UCPTschedMonth">MN_JUL</UCPTschedMonth>
 </Schedule>
 <Schedule>
 <StartDate>
 <UCPTdate>2008-03-12</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2015-12-31</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay LonFormat="UCPTschedDay">DM_DAY_25</UCPTschedDay>
 <UCPTschedMonth LonFormat="UCPTschedMonth">MN_DEC</UCPTschedMonth>
 </Schedule>
 <UCPTmaxClient>1</UCPTmaxClient>
 <Client>
 <UCPTname>Net/LON/iLON App/Scheduler[0]</UCPTname>
 <UCPTservicePath/>
 </Client>
 </Exception>
 </Item>

10.2 Creating and Modifying the Calendar XML File
You can create and manage the #8000010128000000[4].UFPTcalendar.xml file with the Set SOAP
function. The following section, Calendar SOAP Interface, describes how to use Set and the other
SOAP functions provided for the Calendar application.

Alternatively, you can create and manage the #8000010128000000[4].UFPTcalendar.xml file
manually with an XML editor and download it to the SmartServer via FTP. Echelon does not
recommend this, as the SmartServer will require a reboot to read the configuration of the downloaded
file. Additionally, the SmartServer performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via FTP,
and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first, as it
describes the elements and properties in the XML file that define each Calendar’s configuration.

10.3 Calendar SOAP Interface
You can use the SOAP interface to perform the following functions on the Calendar:

Function Description

List Generate a list of the Calendars that you have added to the

i.LON SmartServer 2.0 Programmer’s Reference 10-2

SmartServer.

Get Retrieve the configuration of the Calendar that you have added to the
SmartServer.

Set Create a new Calendar, or overwrite the configuration of an existing
Calendar.

Read Retrieve information about exceptions for some period of time

Delete Delete a Calendar.

Note: Section 21.1.3, Creating a Scheduler and Calendar in Visual C# .NET, includes a C#
programming example demonstrating how to use the Calendar SOAP interface to create and read a
data logger. Section 21.2.3, Creating a Scheduler and Calendar in Visual Basic.NET, includes a
Visual Basic example demonstrating how to do this.

10.3.1 Using the List Function on a Calendar

You can use the List function to retrieve a list of the Calendars that you have added to the SmartServer.
The List function takes an <iLonItem> element that includes an xSelect statement querying items of a
UFPTcalendar_Cfg type as its input, as shown in the example below. The List function returns an
<Item> element for each Calendar that you have added to the SmartServer. The next section describes
the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each Calendar included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type=" UFPTcalendar_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>

<UCPTcurrentConfig>4.0</UCPTcurrentConfig>
<Item>

 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTcalendar;xsi:type=”LON_Fb_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>

 </ListResponse>

10.3.2 Using the Get Function a Calendar

You can use the Get function to retrieve the configuration of any Calendar that you have added to the
SmartServer. You must reference the Calendar whose configuration is to be returned by its
<UCPTname> in the input you supply to the function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 </Item>
 </iLonItem>
</Get>

i.LON SmartServer 2.0 Programmer’s Reference 10-3

Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTcalendar_Cfg" >
 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTcalendar;xsi:type=“LON_Fb_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-05T16:09:15.700-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTcalendar_Cfg.htm</UCPTuri>
 <ScheduleEffectivePeriod>
 <StartDate>2000-01-01</StartDate>
 <EndDate>2037-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <Exception>
 <UCPTindex>4</UCPTindex>
 <UCPTexceptionName>Holiday</UCPTexceptionName>
 <UCPTaliasName>Holiday</UCPTaliasName>
 <UCPTtemporary>0</UCPTtemporary>
 <Schedule>
 <StartDate>
 <UCPTdate>2008-03-12</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2015-12-31</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay LonFormat="UCPTschedDay">DM_DAY_4</UCPTschedDay>
 <UCPTschedMonth LonFormat="UCPTschedMonth">MN_JUL</UCPTschedMonth>
 </Schedule>
 <Schedule>
 <StartDate>
 <UCPTdate>2008-03-12</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2015-12-31</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay LonFormat="UCPTschedDay">DM_DAY_25</UCPTschedDay>
 <UCPTschedMonth LonFormat="UCPTschedMonth">MN_DEC</UCPTschedMonth>
 </Schedule>
 </Exception>
 </Item>
 </iLonItem>
</GetResponse>

The function returns an <Item> element for each Calendar referenced in the input parameters supplied
to the function. The properties included in each element are initially defined when the Calendar is
created. You can write to these properties with the Set function. The following table lists and
describes these properties.

Property Description

<UCPTname> The name of the Calendar in the following format:
<network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the

i.LON SmartServer 2.0 Programmer’s Reference 10-4

Property Description

Calendar. This property is always
8000010128000000[4].UFPTcalendar

<UCPThidden> A flag indicating whether the Calendar functional block is
hidden or shown in the navigation pane on the left side of
the SmartServer Web interface. This property may have the
following values:

0 – shown
1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not
synchronized with an LNS network database or it has been
deleted. In this case, it has the following values:

IS_NOTSYNCED
IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Calendar was updated. This timestamp uses the following
format:

YYYY-MM-DDTHH:MM:SSZ

<UCPTuri> The name of the file containing the configuration web page
for the Calendar on the SmartServer flash disk, absolute or
relative to /web/user/echelon. This property is
#8000010128000000[4].UFPTcalendar _Cfg.htm by
default.

<ScheduleEffectivePeriod> The <ScheduleEffectivePeriod> element contains two
properties that define the dates that the Event Calendar
applies to. The <StartDate> property defines the start date,
and the <EndDate> property defines the end date. You
must fill each property in using the following format:

YYYY-MM-DD

If the start date is undefined, it means any date up to and
including the end date. If the end date is undefined, it
means any date from the start date. If both are undefined, it
means the Event Calendar is always active.

The default <StartDate> is 2000-01-01. The default
<EndDate> is 2037-12-31.

i.LON SmartServer 2.0 Programmer’s Reference 10-5

Property Description

<Exception> You can specify the dates that the Event Calendar applies to
by creating exceptions. The exceptions that have been
created for an Event Calendar are signified by a series of
<Exception> elements. Each <Exception> element contains
a group of <Schedule> child elements, each of which
defines an exception date.

The ability to create multiple <Schedule> elements allows
you to create groups of exceptions that can be applied to a
schedule together. For example, you may want to create a
group of exceptions to apply to the first floor of a building,
and another group of exceptions to apply to the second
floor. In this case, you could specify two <Exception>
elements, one for each floor.

For a description of how to configure the properties you
must define within each <Exception> element, see the next
section, Creating an Exception.

10.3.2.1 Creating an Exception
The exception points for a Calendar are defined by a series of <Exception> elements.
<Exception>
 <UCPTindex>4</UCPTindex>
 <UCPTexceptionName>Holiday</UCPTexceptionName>
 <UCPTaliasName>Holiday</UCPTaliasName>
 <UCPTtemporary>0</UCPTtemporary>
 <Schedule></Schedule>
 <UCPTmaxClient>1</UCPTmaxClient>
 <Client>
 <UCPTname>Net/LON/iLON App/Scheduler[10]</UCPTname>
 <UCPTservicePath/>
 </Client>
</Exception>

The following table lists and describes the properties that must be defined within each <Exception>
element.

Property Description

<UCPTindex> The index number assigned to the exception.

<UCPTexceptionName> The name of the exception that you will use to reference it. This
can be a maximum of 27 characters long.

<UCPTaliasName> The name of the exception. There is no limit on the number and
type of characters in this property.

<UCPTtemporary> Either 0 or 1. If 0, this exception will be repeated annually. If 1,
this will be a temporary exception. In this case, it will be
removed from the Calendar, and any Schedulers referencing the
exception, after the first time it is referenced.

i.LON SmartServer 2.0 Programmer’s Reference 10-6

Property Description

<Schedule> The <Schedule> element contains a series of child elements and
properties that define the dates that the exception applies to.
These are described in the next section, Defining Exception
Dates.

10.3.2.2 Defining Exception Dates
The <Schedule> element contains a series of child elements and properties that define the dates that the
Calendar is active.
<Schedule>
 <StartDate>
 <UCPTdate>2008-03-14</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2037-03-31</UCPTdate>
 <UCPTyearMask LonFormat="UCPTyearMask">DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay LonFormat="UCPTschedDay">DM_EVERY_WEEKDAY</UCPTschedDay>
 <UCPTschedMonth LonFormat="UCPTschedMonth">MN_EVERY_MONTH</UCPTschedMonth>
</Schedule>

The following table lists and describes the elements and properties in a <Schedule> element:

<StartDate>
<EndDate>

The <StartDate> and <EndDate> elements each contain the
following properties that define the start and end dates for the
exception:

• <UCPTdate> . The date the exception starts or ends in the
following format: YYYY-MM-DD.

• <UCPTyearMask>. Indicates whether the exception
applies to the years specified by the date range (DW_NUL),
or to all years (DW_WILDCARD).

• Setting the <StartDate> of <UCPTyearMask> to DW_
WILDCARD means that the starting year is 2000.

• Setting the <EndDate> of <UCPTyearMask> to DW_
WILDCARD means that the ending year is 2037.

• <UCPTmonthMask>. Indicates whether the exception
applies to the pattern of months specified by the date range
(DW_NUL), or to all months (DW_WILDCARD).

• Setting the <StartDate> of <UCPTmonthMask> to DW_
WILDCARD means that the starting month is January.

• Setting the <EndDate> of <UCPTmonthMask> to DW_
WILDCARD means that the ending month is December.

• <UCPTdayMask>. Indicates whether the exception applies
to the pattern of days marks specified by the date range
(DW_NUL), or to all days (DW_WILDCARD).

• Setting the <StartDate> of <UCPTdayMask> to DW_

i.LON SmartServer 2.0 Programmer’s Reference 10-7

WILDCARD means that the starting date is the 1st.

• Setting the <EndDate> of <UCPTdayMask> to DW_
WILDCARD means that the ending date is the 31st.

<UCPTschedDay> Specifies the days of the month in which the exception will be
valid during the interval specified by the <StartDate> and
<EndDate> elements. For example, you could specify every
third day during the interval, every fourth day, and so on. See
Daily Recursions for a table listing the possible values for this
property.

<UCPTschedMonth> Specifies the months in which the exception will be valid during
the interval specified by the <StartDate> and <EndDate>
elements. For example, you could specify every other month
during the interval, quarterly, and so on. See Monthly Recursions
for a table listing the possible values for this property.

10.3.2.3 Daily Recursions
The following table lists and describes the values you can specify in the <UCPTschedDay> property of
the <UCPTSchedule> element. The calendar will be active during the dates specified by this property.

Identifier Description

DM_LAST_DAY_OF_MONTH Last day of month

DM_LAST_SECOND_DAY Second-to-last day of the month.

DM_LAST_THIRD_DAY Third-to-last day of the month

NOTE: There are many other identifiers that use the DM_LAST_XXX_DAY format described
by the last three identifiers. XXX represents an integer specifying the exact day to use, in the
range of 4-30. For example, you could enter the identifier DM_LAST_20_DAY to have the
exception occur on the 20th to last day of each month the exception applies to.

DM_LAST_30_DAY 30th to last day of the month

DM_FIRST_SUN First Sunday of each month

DM_FIRST_MON First Monday of each month

DM_SECOND_MON Second Monday of each month

DM_THIRD_MON Third Monday of each month

DM_FOURTH_MON Fourth Monday of each month

DM_FIFTH_MON Fifth Monday of each month

DM_FIRST_SAT First Saturday of month

DM_SECOND_SUN Second Sunday of each month

i.LON SmartServer 2.0 Programmer’s Reference 10-8

Identifier Description

DM_SECOND_MON Second Monday of each month

DM_SECOND_TUE Second Tuesday of each month

DM_SECOND_WED Second Wednesday of each month

DM_SECOND_THU Second Thursday of each month

DM_SECOND_FRI Second Friday of each month

DM_SECOND_SAT Second Saturday of each month

DM_THIRD_SUN Third Sunday of each month

DM_THIRD_MON Third Monday of each month

DM_THIRD_TUE Third Tuesday of each month

DM_THIRD_WED Third Wednesday of each month

DM_THIRD_THU Third Thursday of each month

DM_THIRD_FRI Third Friday of each month

DM_THIRD_SAT Third Saturday of each month

DM_FOURTH_SUN Fourth Sunday of each month

DM_FOURTH_MON Fourth Monday of each month

DM_FOURTH_TUE Fourth Tuesday of each month

DM_FOURTH_WED Fourth Wednesday of each month

DM_FOURTH_THU Fourth Thursday of each month

DM_FOURTH_FRI Fourth Friday of each month

DM_FOURTH_SAT Fourth Saturday of each month

DM _FIFTH_SUN Fifth Sunday of each month

DM_FIFTH_MON Fifth Monday of each month

DM_FIFTH_TUE Fifth Tuesday of each month

DM_FIFTH_WED Fifth Wednesday of each month

DM_FIFTH_THU Fifth Thursday of each month

i.LON SmartServer 2.0 Programmer’s Reference 10-9

Identifier Description

DM_FIFTH_FRI Fifth Friday of each month

DM_FIFTH_SAT Fifth Saturday of each month

DM_LAST_SUN Last Sunday of each month

DM_LAST_MON Last Monday of each month

DM_LAST_TUE Last Tuesday of each month

DM_LAST_WED Last Wednesday of each month

DM_LAST_THU Last Thursday of each month

DM_LAST_FRI Last Friday of each month

DM_LAST_SAT Last Saturday of each month

DM_EVERY_SUN Every Sunday of the date interval.

DM_EVERY_MON Every Monday of the date interval.

DM_EVERY_TUE Every Tuesday of the date interval.

DM_EVERY_WED Every Wednesday of the date interval.

DM_EVERY_THU Every Thursday of the date interval.

DM_EVERY_FRI Every Friday of the date interval.

DM_EVERY_SAT Every Saturday of date interval

DM_EVERY_SECOND_DAY Every second day of date interval

DM_EVERY_THIRD_DAY Every third day of date interval

DM_EVERY_FOURTH_DAY Every fourth day of the date interval

DM_EVERY_FIFTH_DAY Every fifth day of the date interval

DM_EVERY_SIXTH_DAY Every sixth day of the date interval

DM_NUL Value not available. If this is chosen, the Calendar will use
every day.

10.3.2.4 Monthly Recursions
The following table lists and describes the values you can specify in the <UCPTschedMonth> property
of the <UCPTSchedule> element. The calendar will be active during the months specified by this
property.

i.LON SmartServer 2.0 Programmer’s Reference 10-10

Identifier Description

MN_JAN January

MN_FEB February

MN_MAR March

MN_APR April

MN_MAY May

MN_JUN June

MN_JUL July

MN_AUG August

MN_SEP September

MN_OCT October

MN_NOV November

MN_DEC December

MN_EVERY_MONTH Every month during the interval the Calendar is active.

MN_EVERY_2_MONTH Every other month during the interval the Calendar is
active.

MN_QUARTERLY Every third month during the interval the Calendar is active.

MN_EVERY_4_MONTH Every fourth month during the interval the Calendar is
active.

MN_EVERY_5_MONTH Every fifth month during the interval the Calendar is active.

MN_EVERY_6_MONTH Every sixth month during the interval the Calendar is
active.

MN_EVERY_7_MONTH Every seventh month during the interval the Calendar is
active.

MN_EVERY_8_MONTH Every eighth month during the interval the Calendar is
active.

MN_EVERY_9_MONTH Every ninth month during the interval the Calendar is
active.

MN_EVERY_10_MONTH Every tenth month during the interval the Calendar is

i.LON SmartServer 2.0 Programmer’s Reference 10-11

Identifier Description

active.

MN_EVERY_11_MONTH Every eleventh month during the interval the Calendar is
active.

MN_NUL Value not available. If this is chosen, the Calendar will use
every month.

10.3.2.5 Exception Examples
The following section presents a series of examples that demonstrate how to create exceptions that use
wild cards and recursions.

Consider a case where you need to create an exception to apply to a specific range of dates, year after
year. You could set the <UCPTyearMask> property in both the <StartDate> and <EndDate> elements
to DW_WILDCARD. This applies the exception to all years, not just the ones specified by the
<UCPTDate> element. The other properties are set to DW_NUL, so the exception applies to the days
and months specified by the start and stop dates. As a result, the exception shown below applies to
April 5th through 7th, every year.

 <StartDate>
 <UCPTdate>2008-04-05</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
</StartDate>

 <EndDate>
 <UCPTdate>2008-04-07</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>
<UCPTschedDay LonFormat="UCPTschedDay">DM_NUL</UCPTschedDay>
<UCPTschedMonth LonFormat="UCPTschedMonth">MN_NUL</UCPTschedMonth>

Consider a case where you need to create an exception to apply to the first ten days of every month,
year after year. You could do so by setting the <UCPTyearMask> and <UCPTmonthMask> properties
to DW_WILDCARD, so the years and months specified in the start and stop dates are ignored. The
<UCPTdayMask> property is set to DW_NUL, so the days specified (1 through 10) are used. As a
result, the exception shown below applies to April 1st through April 10th, every year.
<StartDate>
 <UCPTdate>2008-04-01</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
</StartDate>

 <EndDate>
 <UCPTdate>2008-04-10</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>
<UCPTschedDay LonFormat="UCPTschedDay">DM_NUL</UCPTschedDay>
<UCPTschedMonth LonFormat="UCPTschedMonth">MN_NUL</UCPTschedMonth>

Now consider a case where you need to create an exception to apply to every weekday of every month,
year after year. You could do so by setting the <UCPTyearMask>, <UCPTmonthMask>, and
<UCPTschedDay> to DW_WILDCARD, the <UCPTschedDay> property to
DM_EVERY_WEEKDAY, and the <UCPTschedMonth> property to MN_NUL.
<StartDate>
 <UCPTdate>2008-04-01</UCPTdate>

i.LON SmartServer 2.0 Programmer’s Reference 10-12

 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask>DW_WILDCARD </UCPTdayMask>
</StartDate>

 <EndDate>
 <UCPTdate>2008-05-31</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask> DW_WILDCARD</UCPTdayMask>
 </EndDate>
<UCPTschedDay LonFormat="UCPTschedDay">DM_FOURTH_SUN </UCPTschedDay>
<UCPTschedMonth LonFormat="UCPTschedMonth">MN_NUL</UCPTschedMonth>

Now consider a case where you need to create an exception to apply to every fourth Sunday of every
month, for the next 10 years. You could do so by setting the <UCPTyearMask> to DW_NUL, the
<UCPTmonthMask> to DW_WILDCARD and the <UCPTdayMask> to DW_NUL. You would also
set the <UCPTschedDay> property to DM_FOURTH_SUN, and the <UCPTschedMonth> property to
MN_NUL.
<StartDate>
 <UCPTdate>2008-04-01</UCPTdate>
 <UCPTyearMask> DW_NUL</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
</StartDate>

 <EndDate>
 <UCPTdate>2018-04-01</UCPTdate>
 <UCPTyearMask> DW_NUL</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>
<UCPTschedDay LonFormat="UCPTschedDay">DM_FOURTH_SUN </UCPTschedDay>
<UCPTschedMonth LonFormat="UCPTschedMonth">MN_NUL</UCPTschedMonth>

10.3.3 Using the Set Function on a Calendar

You can use the Set function to create new Calendars, or to overwrite the configuration of existing
Calendars. The Calendars to be created or written to are signified by a list of <Item> elements in the
input you supply to the function. The properties you must define within each <Item> element are the
same, whether you are creating a new Calendar or modifying an existing Calendar. The previous
section, Using the Get Function on a Calendar, describes these properties.

Note: If you specify a Calendar with the <UCPTname> element, the Set function deletes the specified
Calendar before the specified parameters are set. If the <UCPTname> element is not specified, a new
Calendar is created.

The first invocation of the Set function will generate the #8000010128000000[4].UFPTcalendar.xml
file in the root/config/network/<network>/<channel>/iLONApp ||<device> directory of the
SmartServer, if the file does not already exist.

When modifying an existing Calendar, any optional properties omitted from the input will be erased.
Old values will not be preserved, so you should fill in every property when writing to a Calendar, even
if you are not changing all of the values.

When creating or modifying a Calendar with this function, you may want to use output from the Get
function as the basis for your input. You would then only need to modify the values of each property
to match the new configuration you want, as opposed to re-creating an entire string like the one shown
below, to generate your input.

The following example creates a Calendar with one exception that recurs every weekday day of every
month, year after year.

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTcalendar_Cfg">

i.LON SmartServer 2.0 Programmer’s Reference 10-13

 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 <UCPTdescription>enter an optional description</UCPTdescription>
 <ScheduleEffectivePeriod xsi:type="UFPTscheduler_CfgEffectivePeriod">
 <StartDate>2000-01-01</StartDate>
 <EndDate>2037-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <Exception>
 <UCPTindex>3</UCPTindex>
 <UCPTexceptionName>RecurringWeekendException</UCPTexceptionName>
 <UCPTaliasName>Recurring Weekend Exception</UCPTaliasName>
 <UCPTtemporary>0</UCPTtemporary>
 <Schedule>
 <StartDate xsi:type="UFPTcalendar_CfgESDate">
 <UCPTdate>2008-03-06</UCPTdate>
 <UCPTyearMask xsi:type="string" LonFormat="UCPTyearMask">DW_NUL</UCPTyearMask>
 <UCPTmonthMask xsi:type="string" LonFormat="UCPTmonthMask">DW_NUL</UCPTmonthMask>
 <UCPTdayMask xsi:type="string" LonFormat="UCPTdayMask">DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate xsi:type="UFPTcalendar_CfgESDate">
 <UCPTdate>2037-12-31</UCPTdate>

 <UCPTyearMask xsi:type="string" LonFormat="UCPTyearMask">DW_WILDCARD
 </UCPTyearMask>

 <UCPTmonthMask xsi:type="string" LonFormat="UCPTmonthMask">DW_WILDCARD
 </UCPTmonthMask>
 <UCPTdayMask xsi:type="string" LonFormat="UCPTdayMask">DW_WILDCARD</UCPTdayMask>
 </EndDate>
 <UCPTschedDay xsi:type="string" LonFormat="UCPTschedDay">DM_EVERY_WEEKEND_DAY
 </UCPTschedDay>
 <UCPTschedMonth xsi:type="string" LonFormat="UCPTschedMonth">MN_NUL</UCPTschedMonth>
 </Schedule>
 </Exception>
 </Item>

 </iLonItem>
 </Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/"><iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Calendar__TEMP_OBJECT</UCPTname>
 </Item>
</iLonItem>
</SetResponse>

10.3.4 Using the Read Function on a Calendar

You can use the Read function to retrieve the events scheduled in the exceptions on a Calendar on the
SmartServer. Optionally, you can filter events using an xSelect statement and specifying one or more
Calendar items. If you do not filter the results with an xSelect statement, the Read function returns the
first 50 events in the selected calendar starting from January 1st, 2000.

You can use the following filters in an xSelect statement when using the Read function on a Calendar:

UCPTlastUpdate When an event occurs. You can compare the specified start and stop
times using equal, less (or equal), great (or equal). UCPTstop is set
to time of last shown event. You need to check whether UCPTstop
differs from UCPTlastUpdate to make the next request start from the
UCPTstop time.

UCPTexeptionName The name of the exception in which the events are scheduled.

i.LON SmartServer 2.0 Programmer’s Reference 10-14

position() Position of the events in previously selected list. You can use this
filter to limit the number of events in a result. You can compare the
number of events to be returned using equal, less (or equal), or great
(or equal). You can request a maximum of 500 events, however,
more than 500 events may be returned.

Note: The last instance of an exception before the specified start date
is always returned (if it exists), and it is not counted by the position()
constraint.

The following code demonstrates how to use the Read function to return a list of up to the first 100
events on a Calendar on the SmartServer:

Request
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="UFPTcalendar_Data"]
 [UCPTlastUpdate>="2008-03-07T00:00:00.000"
 and UCPTlastUpdate<="2037-12-31T00:00:00.000"]
 [position()<100]
 </xSelect>
 <Item>
 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 </Item>
 </iLonItem>
</Read>

Response
<ReadResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTcalendar_Data" >
 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 <UCPTstart>2008-03-07T00:00:00.000-08:00</UCPTstart>
 <UCPTstop>2008-09-01T00:00:00.000-07:00</UCPTstop>
 <UCPTexceptionName>HolidayScheduler</UCPTexceptionName>
 <DateEvent LonFormat="UNVT_date_event">80 80 HolidayScheduler</DateEvent>
 <DateEvent LonFormat="UNVT_date_event">178 178 HolidayScheduler</DateEvent>
 </Item>
 <Item xsi:type="UFPTcalendar_Data" >
 <UCPTname>Net/LON/iLON App/Calendar</UCPTname>
 <UCPTstart>2008-03-07T00:00:00.000-08:00</UCPTstart>
 <UCPTstop>2008-04-27T00:00:00.000-07:00</UCPTstop>
 <UCPTexceptionName>Inventory</UCPTexceptionName>
 <DateEvent LonFormat="UNVT_date_event">23 23 Inventory</DateEvent>
 <DateEvent LonFormat="UNVT_date_event">51 51 Inventory</DateEvent>
 </Item>
 </iLonItem>
</ReadResponse>

The Read function returns the following properties for each event from the specified Calendar:

<UCPTname> The name of the calendar from which events were read in
the following format: <network/channel/device/functional
block>.

<UCPTstart>

<UCPTstop>

Timestamps indicating the times of the first and last dates of
the events returned by the Read function.

<UCPTexceptionName> The name of the exception from which events were read.

<DateEvent> A set of structures containing signed longs indicating the
number of days from <UCPTstart> to the first and last

i.LON SmartServer 2.0 Programmer’s Reference 10-15

events within the timeframe from <UCPTstart> to
<UCPTstop>.

The first <DateEvent> element specifies the number of days
from <UCPTstart> to the first event in the specified
timeframe. The first signed long in the structure indicates
the number of days until the event is valid, and the second
one indicates the days until the event is invalid.

The second <DateEvent> element specifies the number of
days from <UCPTstart> to the last event in the specified
timeframe.

10.3.5 Using the Delete Function on a Calendar

You can use the Delete function to delete a Calendar. To delete a Calendar, you provide an <Item>
element with a UFPTcalendar_Cfg type that includes the <UCPTname> property of the calendar to be
deleted. The following code sample demonstrates how to use the Delete function to delete a Calendar:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTcalendar_Cfg">
 <UCPTname>Net/LON/iLON App/Calendar1</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Calendar1</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 10-16

i.LON SmartServer 2.0 Programmer’s Reference 11-1

11 Real-Time Clock
You can use the real-time clock on the SmartServer to schedule events to start or stop based on the
calculated sundown or sunrise, or a configured amount of time before or after the sundown or sunrise.
The real-time clock includes an astronomical position sensor that calculates the position of the sun
based on the time-of-day stored on the SmartServer and the location (geographic coordinates) of the
SmartServer, which you specify. Based on the calculated position of the sun, the real-time clock can
determine the sunrise and sundown times and pass this information to the Schedulers on the
SmartServer.

11.1 Overview of the Real-Time Clock XML File
The #8000010128000000[4].UFPTrealTimeClock.xml file stores the configuration of the real-time
clock on the SmartServer. You can create multiple real-time clocks; however, the SmartServer
supports only 1 active real-time clock at a time. The following represents a sample
#8000010128000000[4].UFPTrealTimeClock.xml file for a SmartServer:
<Item xsi:type="UFPTrealTimeClock_Cfg" >
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTrealTimeClock;xsi:type=“LON_Fb_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-07T14:21:09.390-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTrealTimeClock_Cfg.htm</UCPTuri>
 <DataPoint dpType="nvoTimeDate" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoRtTimeDate</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviTimeSet" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Node Object/nviTimeSet</UCPTname>
 </DataPoint>
 <DataPoint dpType="nciMasterSlave" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nciRtMasterSlave</UCPTname>
 </DataPoint>
 <DataPoint dpType="nciUpdateRate" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nciRtUpdateRate</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoSummerTime" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoRtSummerTime</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoWinterTime" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoRtWinterTime</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviTimeZone" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nviRtTimeZone</UCPTname>
 </DataPoint>
 <DataPoint dpType="Elevation" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoElevation</UCPTname>
 </DataPoint>
 <DataPoint dpType="Azimuth" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoAzimuth</UCPTname>
 </DataPoint>
 <DataPoint dpType="Sunrise" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunrise</UCPTname>
 </DataPoint>
 <DataPoint dpType="Sunset" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunset</UCPTname>
 </DataPoint>
 <UCPTdegLongitude>-121.913</UCPTdegLongitude>
 <UCPTdegLatitude>37.3182</UCPTdegLatitude>
</Item>

11.2 Creating and Modifying the Real-Time Clock XML File
You can create and manage the #8000010128000000[4].UFPTrealTimeClock.xml file with the Set
SOAP function. The following section, Real-Time Clock SOAP Interface, describes how to use Set
and the other SOAP functions provided for the real-time clock application.

i.LON SmartServer 2.0 Programmer’s Reference 11-2

Alternatively, you can create and manage the #8000010128000000[4].UFPTrealTimeClock.xml file
manually with an XML editor and download it to the SmartServer via FTP. Echelon does not
recommend this, as the SmartServer will require a reboot to read the configuration of the downloaded
file. Additionally, the SmartServer performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via FTP,
and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first, as it
describes the elements and properties in the XML file that define each real-time clock’s configuration.

11.3 Real-Time Clock SOAP Interface
You can use the SOAP interface to perform the following functions on the real-time clock:

Function Description

List Generate a list of the real-time clocks on the SmartServer.

Get Retrieve the configuration of the real-time clocks on the SmartServer.

Set Create a new real-time clock, or overwrite the configuration of an
existing real-time clock.

Delete Delete a real-time clock.

11.3.1 Using the List Function on a Real-Time Clock

You can use the List function to retrieve a list of the real-time clocks that you have added to the
SmartServer. The List function takes an <iLonItem> element that includes an xSelect statement
querying items with a UFPTrealTimeClock_Cfg type as its input, as shown in the example below. The
List function returns an <Item> element for each real-time clock that you have added to the
SmartServer. The next section describes the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each real-time clock included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type=" UFPTrealTimeClock_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>

<UCPTcurrentConfig>4.0</UCPTcurrentConfig>
<Item>

 <UCPTname>Net/LON/iLON App/RealTimeClock</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTrealTimeClock;xsi:type=”LON_Fb_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>

 </ListResponse>

11.3.2 Using the Get Function on a Real-Time Clock

You can use the Get function to retrieve the configuration of any real-time clock that you have added
to the SmartServer. You must reference the real-time clock whose configuration is to be returned by
its <UCPTname> in the input you supply to the function, as shown in the example below.

i.LON SmartServer 2.0 Programmer’s Reference 11-3

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 </Item>
 </iLonItem>
</Get>
 Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTrealTimeClock_Cfg" >
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTrealTimeClock;xsi:type=“LON_Fb_Cfg”</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-07T14:21:09.390-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTrealTimeClock_Cfg.htm</UCPTuri>
 <DataPoint dpType="nvoTimeDate" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoRtTimeDate</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviTimeSet" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Node Object/nvoIpAddress#2</UCPTname>
 </DataPoint>
 <DataPoint dpType="nciMasterSlave" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nciRtMasterSlave</UCPTname>
 </DataPoint>
 <DataPoint dpType="nciUpdateRate" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nciRtUpdateRate</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoSummerTime" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoRtSummerTime</UCPTname>
 </DataPoint>
 <DataPoint dpType="nvoWinterTime" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoRtWinterTime</UCPTname>
 </DataPoint>
 <DataPoint dpType="nviTimeZone" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nviRtTimeZone</UCPTname>
 </DataPoint>
 <DataPoint dpType="Elevation" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoElevation</UCPTname>
 </DataPoint>
 <DataPoint dpType="Azimuth" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoAzimuth</UCPTname>
 </DataPoint>
 <DataPoint dpType="Sunrise" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunrise</UCPTname>
 </DataPoint>
 <DataPoint dpType="Sunset" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunset</UCPTname>
 </DataPoint>
 <UCPTdegLongitude>-121.913</UCPTdegLongitude>
 <UCPTdegLatitude>37.3182</UCPTdegLatitude>
 </Item>
 </iLonItem>
</GetResponse>

The function returns an <Item> element for each real-time clock referenced in the input parameters
supplied to the function. The properties included in each element are initially defined when the
real-time clock is created. You can write to these properties with the Set function. The following table
describes these properties.

Property Description

<UCPTname> The name of the real-time clock in the following format:
<network/channel/device/functional block>.

i.LON SmartServer 2.0 Programmer’s Reference 11-4

Property Description

<UCPTannotation> The program ID and functional profile template used by the
real-time clock. This property is always
8000010128000000[4].UFPTrealTimeClock

<UCPThidden> A flag indicating whether the real-time clock functional
block is hidden or shown in the navigation pane on the left
side of the SmartServer Web interface. This property may
have the following values:

0 – shown
1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not
synchronized with an LNS network database or it has been
deleted. In this case, it has the following values:

IS_NOTSYNCED
IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
real-time clock was updated. This timestamp uses the
following format:

YYYY-MM-DDTHH:MM:SSZ

<UCPTuri> The name of the file containing the configuration web page
for the Real-Time Clock on the SmartServer flash disk,
absolute or relative to /web/user/echelon. This property is
#8000010128000000[4].UFPTrealTimeClock _Cfg.htm by
default.

<UCPTdegLongitude>

The north-south location of the SmartServer relative to the
equator as a decimal fraction. If the SmartServer is located
south of the equator, this is a negative value between 0 and
–90. If it is located north of the equator, it is a positive
value between 0 and 90.

<UCPTdegLatitude> The east-west location of the SmartServer relative to the
Prime Meridian as a decimal fraction. If the SmartServer is
located west of the Prime Meridian, this is a negative value
between 0 and –180. If it is located is located east of the
Prime Meridian, it is a positive value between 0 and 180.

11.3.3 Using the Set Function on a Real-Time Clock

You can use the Set function to create new real-time clocks, or to overwrite the configuration of
existing real-time clocks. The real-time clocks to be created or written to are signified by a list of
<Item> elements in the input you supply to the function. The properties you must define within each
<Item> element are the same, whether you are creating a new real-time clock or modifying an existing
real-time clock. The previous section, Using the Get Function on a Real-Time Clock, describes these
properties.

Note: If you specify a real-time clock with the <UCPTname> element, the Set function deletes the
specified real-time clock before the specified parameters are set. If the <UCPTname> element is not
specified, a new real-time clock is created.

i.LON SmartServer 2.0 Programmer’s Reference 11-5

The first invocation of the Set function will generate the
#8000010128000000[4].UFPTrealTimeClock.xml file in the
root/config/network/<network>/<channel>/iLONApp ||<device> directory of the SmartServer, if the
file does not already exist.

When modifying an existing real-time clock, any optional properties omitted from the input will be
erased. Old values will not be preserved, so you should fill in every property when writing to a
real-time clock, even if you are not changing all of the values.

When creating or modifying a real-time clock with this function, you may want to use output from the
Get function as the basis for your input. You would then only need to modify the values of each
property to match the new configuration you want, as opposed to re-creating an entire string like the
one shown below, to generate your input.

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTrealTimeClock_Cfg">
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 <UCPTdescription>enter an optional description</UCPTdescription>
 <DataPoint dpType="Elevation" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoElevation</UCPTname>
 </DataPoint>
 <DataPoint dpType="Azimuth" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoAzimuth</UCPTname>
 </DataPoint>
 <DataPoint dpType="Sunrise" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunrise</UCPTname>
 </DataPoint>
 <DataPoint dpType="Sunset" discrim="dir_out">
 <UCPTname>Net/LON/iLON App/Real Time Clock/nvoSunset</UCPTname>
 </DataPoint>
 <UCPTdegLongitude>-121.913</UCPTdegLongitude>
 <UCPTdegLatitude>37.3182</UCPTdegLatitude>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

11.3.4 Using the Delete Function on a Real-Time Clock

You can use the Delete function to delete a Real-Time Clock. To delete a Real-Time Clock, you
provide an <Item> element with a UFPTrealTimeClock_Cfg type that includes the <UCPTname>
property of the real-Time clock to be deleted. The following code sample demonstrates how to use the
Delete function to delete a Real-Time Clock:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTrealTimeClock_Cfg">
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 </Item>
 </iLonItem>
</Delete>

i.LON SmartServer 2.0 Programmer’s Reference 11-6

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Real Time Clock</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 12-1

12 Type Translator
You can use Type Translators to convert data points from one network variable type to another. This
may be useful when comparing data points from different vendors that use different types, and are not
compatible with each other.

When creating a Type Translator, you will choose a Type Translator Rule. The Type Translator Rule
defines the network variable type of the data points the Type Translator will accept as input, and the
network variable type it will convert these data points to. The Type Translator Rule defines the scaling
factors, case structures for handling enumerations and fields within structures, and offsets that will be
used to determine the value to assign the output data point.

The SmartServer software includes nine pre-defined Type Translator Rules. Each one is described
later in this chapter. It is also possible to perform translations without using a Type Translator Rule.
This is possible when converting data from one scalar type to another when no offset or multipliers are
required, or when converting one type to another with the same format description.

You can convert multiple input data points to a single output data point type, or you can convert a
single input data point to multiple output data points of different types using Type Translators.

You can optionally create your own Type Translator Rules, or modify the Type Translator Rules
provided with the SmartServer software, with the TypeTranslator_Rule SOAP functions. For more
information on creating Type Translator Rules, or on modifying the Type Translator Rules provided
with the SmartServer software, see Chapter 13, Type Translator Rules.

12.1 Overview of the Type Translator XML File
The #8000010128000000[4].UFPTtypeTranslator.xml file stores the configuration of all Type
Translators you have added to the SmartServer. You can create new Schedulers using the Set function,
or by manually editing the #8000010128000000[4].UFPTtypeTranslator.xml file, and rebooting the
SmartServer.

You can create up to 40 Type Translators per SmartServer. You can add more than 40 Type
Translators if you load the dynamic v40 XIF on your SmartServer and you operate your SmartServer
in Standalone mode. Note that using the v40 XIF with the SmartServer operating in LNS mode (LNS
Auto or LNS Manual) is not supported.

The following represents a sample #8000010128000000[4].UFPTtypeTranslator.xml file for a
SmartServer with one Type Translator that translates a SNVT_temp data point to a SNVT_temp_p
data point.

 <Item xsi:type="UFPTtypeTranslator_Cfg" >
 <UCPTname>Net/LON/iLON App/Type Translator[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTtypeTranslator</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-07T17:19:37.790-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTtypeTranslator_Cfg.htm</UCPTuri>
 <DataPoint xsi:type="UFPTtypeTranslator_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/VirtFb/temp_thermostat</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_temp</UCPTformatDescription>
 <UCPTnickName>temp_thermostat</UCPTnickName>
 </DataPoint>
 <DataPoint xsi:type="UFPTtypeTranslator_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/VirtFb/temp_chiller</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_temp_p</UCPTformatDescription>
 <UCPTnickName>temp_chiller</UCPTnickName>
 </DataPoint>
 <SCPTdelayTime>0</SCPTdelayTime>

</Item>

i.LON SmartServer 2.0 Programmer’s Reference 12-2

12.2 Creating and Modifying the Type Translator XML File
You can create and manage the #8000010128000000[4].UFPTtypeTranslator.xml file with the Set
SOAP function. The following section, Type Translator SOAP Interface, describes how to use Set and
the other SOAP functions provided for the Type Translator application.

Alternatively, you can create and manage the #8000010128000000[4].UFPTtypeTranslator.xml file
manually with an XML editor and download it to the SmartServer via FTP. Echelon does not
recommend this, as the SmartServer will require a reboot to read the configuration of the downloaded
file. Additionally, the SmartServer performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via FTP,
and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first, as it
describes the elements and properties in the XML file that define each Type Translator’s configuration.

12.3 Type Translator SOAP Interface
You can use the SOAP interface to perform the following functions on a type translator:

Function Description

List Generate a list of the type translators on the SmartServer.

Get Retrieve the configuration of the type translators on the SmartServer.

Set Create a new type translator, or overwrite the configuration of an
existing type translators.

Delete Delete a type translators.

12.3.1 Using the List Function on a Type Translator

You can use the List function to retrieve a list of the type translators that you have added to the
SmartServer. The List function takes an <iLonItem> element that includes an xSelect statement
querying items of UFPTtypeTranslator_Cfg type as its input, as shown in the example below. The
List function returns an <Item> element for each type translator that you have added to the
SmartServer. The next section describes the properties included in each of these elements.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each type translator included in the list.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type=" UFPTtypeTranslator_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>

<UCPTcurrentConfig>4.0</UCPTcurrentConfig>
<Item>

 <UCPTname>Net/LON/iLON App/Type Translator[0]</UCPTname>
 <UCPTannotation>#8000010128000000[4].UFPTtypeTranslator;xsi:type=”LON_Fb_Cfg”
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>

i.LON SmartServer 2.0 Programmer’s Reference 12-3

 </iLonItem>
 </ListResponse>

12.3.2 Using the Get Function on a Type Translator

You can use the Get function to retrieve the configuration of any type translator that you have added to
the SmartServer. You must reference the type translator whose configuration is to be returned by its
<UCPTname> in the input you supply to the function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Net/LON/iLON App/Type Translator[0]</UCPTname>
 </Item>
 </iLonItem>
</Get>
 Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTtypeTranslator_Cfg" >
 <UCPTname>Net/LON/iLON App/Type Translator[0]</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTtypeTranslator</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-07T17:19:37.790-08:00</UCPTlastUpdate>
 <UCPTuri>#8000010128000000[4].UFPTtypeTranslator_Cfg.htm</UCPTuri>
 <DataPoint xsi:type="UFPTtypeTranslator_DpRef" dpType="Input" discrim="dir_in" >
 <UCPTname>Net/LON/iLON App/VirtFb/temp_thermostat</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_temp</UCPTformatDescription>
 <UCPTnickName>temp_thermostat</UCPTnickName>
 </DataPoint>
 <DataPoint xsi:type="UFPTtypeTranslator_DpRef" dpType="Output" discrim="dir_out" >
 <UCPTname>Net/LON/iLON App/VirtFb/temp_chiller</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_temp_p</UCPTformatDescription>
 <UCPTnickName>temp_chiller</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>My Custom Rule: SNVT_temp to SNVT_temp_p</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</GetResponse>

The function returns an <Item> element for each type translator referenced in the input parameters
supplied to the function. The properties included in each element are initially defined when the type
translator is created. You can write to these properties with the Set function. The following table
describes these properties.

Property Description

<UCPTname> The name of the real-time clock in the following format:
<network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the
real-time clock. This property is always
8000010128000000[4].UFPTrealTimeClock

<UCPThidden> A flag indicating whether the real-time clock functional
block is hidden or shown in the navigation pane on the left
side of the SmartServer Web interface. This property may
have the following values:

0 – shown

i.LON SmartServer 2.0 Programmer’s Reference 12-4

Property Description

1 – hidden

<UCPTitemStatus> This property only appears if the data logger is not
synchronized with an LNS network database or it has been
deleted. In this case, it has the following values:

IS_NOTSYNCED
IS_DELETED

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
real-time clock was updated. This timestamp uses the
following format:

YYYY-MM-DDTHH:MM:SSZ

<UCPTuri> The name of the file containing the configuration web page
for the Type Translator on the SmartServer flash disk,
absolute or relative to /web/user/echelon. This property is
#8000010128000000[4].UFPTtypeTranslator_Cfg.htm
by default.

<SCPTdelayTime> This property specifies the time period to wait after any one
of the Type Translator’s input data points are updated before
a translation will be performed, in seconds. You might
consider setting this to a value greater than 0 if the Type
Translator has multiple input data points. That way,
translations may only occur after most or all of the input
data points have been updated. The translation will reflect
any other data point updates that occur during the delay
interval.

If this property is set to 0, the Type Translator will perform
a translation each time any of the input data points are
updated.

<UCPTTranslatorRule> The name of the Type Translator Rule that this Type
Translator will use. This determines the network variable
type of the data points the Type Translator will accept as
input, and the network variable type that these data points
will be translated to. It also determines the value to be
assigned to the output data point(s) after the translation.
The input and output data points you select for a Type
Translator must use the network variable types specified by
the Type Translator Rule.

Chapter 12 describes the pre-defined type translator rules
included with the SmartServer software, the identifiers you
can use to reference them, and the input and output data
point types you can use with them. You can also use the
SOAP interface to create your own Type Translator Rules.

If no translator rule is specified, then the Type Translator
will convert the input data point specified for the Type
Translator to the format type of the output data point
specified for the Type Translator (e.g. scalar to scalar
translation with no offset and no constant, or enumeration to

i.LON SmartServer 2.0 Programmer’s Reference 12-5

Property Description

enumeration). In this case, the value of the output data point
will be updated with the value of the input data point each
time a translation is made.

<DataPoint>

Input
Output

The input and output data points that the Type Translator
will translate are signified by a list of <DataPoint>
elements. Each <DataPoint> element contains the following
three properties:

• <UCPTName>. The name of the data point in the
following format: <network/channel/device/functional
block/data point>.

• <UCPTformatDescription>. The data point's program
ID; data type (SNVT, SCPT, UNVT, UCPT, or built-in
data type); and format (e.g., SI metric or US customary
if the type has multiple formats such as
SNVT_temp_p). The format description is displayed
in the following format:

• #<manufacturer ID>[scope selector].<type
name>[#format]

• <UCPTnickname>. A user-defined name for the data
point that is used to reference the data point. You can
use this property to reference a data point in the
<InputPath> and <OutputPath> properties in a type
translation. By default, the nickname of the data point
is the data point’s name.

• For example, a data point with a <UCPTname> of
“Net/LON/iLON App/VirtFb/nvoLevDisc” has a
default <UCPTnickname> of “nvoLevDisc”.

Chapter 12 describes the Type Translator Rules provided
with the SmartServer software, and the format types that
each rule requires for the input data points.

12.3.3 Using the Set Function on a Type Translator

You can use the Set function to create new type translators, or to overwrite the configuration of
existing type translators. The type translators to be created or written to are signified by a list of
<Item> elements in the input you supply to the function. The properties you must define within each
<Item> element are the same, whether you are creating a new type translator or modifying an existing
type translator. The previous section, Using the Get Function on a Type Translator, describes these
properties.

Note: If you specify a type translator with the <UCPTname> element, the Set function deletes the
specified type translator before the specified parameters are set. If the <UCPTname> element is not
specified, a new type translator is created.

The first invocation of the Set function will generate the
#8000010128000000[4].UFPTtypeTranslator.xml file in the
root/config/network/<network>/<channel>/iLONApp ||<device> directory of the SmartServer, if the
file does not already exist.

i.LON SmartServer 2.0 Programmer’s Reference 12-6

When modifying an existing type translator, any optional properties omitted from the input will be
erased. Old values will not be preserved, so you should fill in every property when writing to a type
translator, even if you are not changing all of the values.

When creating or modifying a type translator with this function, you may want to use output from the
Get function as the basis for your input. You would then only need to modify the values of each
property to match the new configuration you want, as opposed to re-creating an entire string like the
one shown below, to generate your input.

The following uses the Set function to create a Type Translator that uses the Type Translator Rule
“SNVT_switch_TO_SNVT_lev_disc” to translate a SNVT_switch data point (nviSwitch) to a
SNVT_lev_disc data point (nvoLevDisc). Because the “SNVT_switch_TO_SNVT_lev_disc” rule is
being used, nviSwitch must be a SNVT_switch data point and nvoLevDisc must be a SNVT_lev_disc
data point. The input and output data point types that must be used with the other Type Translator
Rules provided with the SmartServer software are listed in Chapter 13.

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[1]</UCPTname>
 <UCPTdescription>enter an optional description</UCPTdescription>
 <DataPoint xsi:type="UFPTtypeTranslator_DpRef" dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint xsi:type="UFPTtypeTranslator_DpRef" dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoLevDisc</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_lev_disc</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_switch_TO_SNVT_lev_disc</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Type Translator[1]</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

12.3.4 Pre-Defined Type Translator Rules

The following sections list the identifiers you can use to fill in the <UCPTtranslatorRule> property of a
UFPTtypeTranslator_Cfg item when you create a new Type Translator. They also provide
descriptions of the Type Translator Rules these identifiers reference, and the network variable types of
the input and output data points you must use with each rule.

You can find the XML files that store the configuration of these Type Translator Rules in the
/root/config/Software/TranslatorRules directory of the SmartServer.

12.3.4.1 16xSNVT_switch_TO_SNVT_state
You can use this Type Translator Rule to convert up to 16 SNVT_switch input data points to a single
SNVT_state output data point. The value of the state field of each of the SNVT_switch input data
points will be assigned to a field in the SNVT_state output data point.

i.LON SmartServer 2.0 Programmer’s Reference 12-7

• The 16 SNVT_switch data points to be translated are defined by a list of <DataPoint> elements
that have a “Dp Type” attribute of “Input”. The input data points referenced by <UCPTname>
must have a <UCPTformatDescription> property of #0000000000000000[0]. SNVT_switch data
point and a <UCPTnickName> in the range of Input0 to Input15.

• The SNVT_state output data point is defined by a <DataPointFormat> element that have a “Dp
Type” attribute of “Output”. The output data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_state and a
<UCPTnickName> of “Output0”.

The value of the state field of each input data point will be read and stored in bitX of the output data
point, where X represents the <UCPTnickName> of the input data point. For example, the state field
of the SNVT_switch data point that has a <UCPTnickName> of Input0 would be stored in Bit0 of the
output SNVT_state data point. Or, the state field of the SNVT_switch data point that has a
<UCPTnickName> of Input8 would be stored in Bit8 of the output SNVT_state data point.

If any of the <UCPTnickName> properties for the input data points are not used (meaning that less
than 16 SNVT_switch data points were supplied to the Type Translator), then the corresponding field
in the SNVT_state output data point will be assigned a value of 0.

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[0]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch_2</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Input1</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoState</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_state</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>16xSNVT_switch_TO_SNVT_state</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.2 SNVT_lev_disc_TO_SNVT_occupancy
You can use this Type Translator Rule to translate an input data point of type SNVT_lev_disc to an
output data point of type SNVT_occupancy.

• The SNVT_lev_disc input data point to be translated is defined by a <DataPoint> element that
have a “Dp Type” attribute of “Input”. The input data point referenced by <UCPTname> must
have a <UCPTformatDescription> of #0000000000000000[0]. SNVT_lev_disc and a
<UCPTnickName> of Input0.

• The SNVT_occupancy output data point is defined by a <DataPointFormat> element that has a
“Dp Type” attribute of “Output”. The output data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_occupancy and a
<UCPTnickName> property of Output0.

i.LON SmartServer 2.0 Programmer’s Reference 12-8

Each time a type translation is made, the SNVT_occupancy output data point is assigned a value
based on the current enumeration stored in the SNVT_lev_desc input data point, as described in the
following table:

SNVT_lev_desc (input point) SNVT_occupancy (ouput point)

ST_NUL OC_NUL

ST_OFF OC_UNOCCUPIED

ST_ON OC_OCCUPIED

ST_HIGH OC_BYPASS

ST_LOW or ST_MED OC_STANDBY

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[0]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nvilevDisc</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_lev_disc</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoOccupancy</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_occupancy</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_lev_disc_TO_SNVT_occupancy</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.3 SNVT_lev_disc_TO_SNVT_switch
You can use this Type Translator Rule to translate an input data point of type SNVT_lev_disc to an
output data point of type SNVT_switch.

• The SNVT_lev_disc input data point to be translated is defined by a <DataPoint> element that
have a “Dp Type” attribute of “Input”. The input data point referenced by <UCPTname> must
have a <UCPTformatDescription> of #0000000000000000[0]. SNVT_lev_disc and a
<UCPTnickName> of Input0.

• The SNVT_switch output data point is defined by a <DataPointFormat> element that has a “Dp
Type” attribute of “Output”. The output data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_switch and a
<UCPTnickName> property of Output0.

Each time a type translation is made, the SNVT_switch output data point is assigned a value and state
based on the current enumeration stored in the SNVT_lev_desc input data point, as described in the
following table:

SNVT_lev_desc (input point) SNVT_switch (ouput point)

ST_NUL OFF

ST_OFF value: 0.0
state: 0 (OFF)

ST_ON value: 100.0
state: 1 (ON)

i.LON SmartServer 2.0 Programmer’s Reference 12-9

ST_HIGH value: 75.0
state: 1 (ON)

ST_MED value: 50.0
state: 1 (ON)

ST_LOW value: 25.0
state: 1 (ON)

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[0]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nvilevDisc</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_lev_disc</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_lev_disc_TO_SNVT_switch</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.4 SNVT_occupancy_TO_SNVT_setting
You can use this Type Translator Rule to translate an input data point of type SNVT_setting to an
output data point of type SNVT_occupancy.

• The SNVT_occupancy input data point is defined by a <DataPointFormat> element that has a
“Dp Type” attribute of “Input”. The input data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_occupancy and a
<UCPTnickName> property of Input0.

• The SNVT_setting output data point to be translated is defined by a <DataPoint> element that
have a “Dp Type” attribute of “Output”. The output data point referenced by <UCPTname> must
have a <UCPTformatDescription> of #0000000000000000[0]. SNVT_setting and a
<UCPTnickName> of Output0.

Each time a type translation is made, the function, rotation, and setting fields of the SNVT_setting
ouput data point are assigned values based on the current enumeration stored in the SNVT_occupancy
input data point, as described in the following table:

SNVT_occupancy (input
point)

SNVT_setting (ouput point)

OC_NUL function: SET_STATE (enumerated value is 5)
setting: 0
rotation: 0

OC_UNOCCUPIED function: SET_STATE
setting: 60
rotation: -80.01

OC_OCCUPIED function: SET_STATE
setting: 100
rotation: 80.24

i.LON SmartServer 2.0 Programmer’s Reference 12-10

OC_BYPASS function: SET_STATE
setting: 100
rotation: 80.24

OC_STANDBY function: SET_STATE
setting: 60.2
rotation: -40

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[5]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviOccupancy_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_occupancy</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSetting_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_setting</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_occupancy_TO_SNVT_setting</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.5 SNVT_scene_TO_SNVT_setting
You can use this Type Translator Rule to translate an input data point of type SNVT_scene to an
output data point of type SNVT_setting.

• The SNVT_scene input data point is defined by a <DataPointFormat> element that has a “Dp
Type” attribute of “Input”. The input data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_scene and a
<UCPTnickName> property of Input0.

• The SNVT_setting output data point to be translated is defined by a <DataPoint> element that
have a “Dp Type” attribute of “Output”. The output data point referenced by <UCPTname> must
have a <UCPTformatDescription> of #0000000000000000[0]. SNVT_setting and a
<UCPTnickName> of Output0.

Each time a type translation is made, the function, rotation, and setting fields of the SNVT_setting
ouput data point are assigned values based on the current values stored in the scene_function and
scene_number fields of the SNVT_scene input data point, as described in the following table:

SNVT_scene (input point) SNVT_setting (ouput point)

function: SC_RECALL
scene_number: <= 4

function: SET_STATE (enumerated value is 5)
setting: <=25*scene_number>
rotation: 0

function: SC_RECALL
scene_number: >= 5

function: SET_NUL (enumerated value is -1)
setting: 100
rotation: 0

function: SC_NUL
scene_number: any

function: SET_NUL
setting: 100
rotation: 0

i.LON SmartServer 2.0 Programmer’s Reference 12-11

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[6]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviScene_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_scene</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSetting_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_setting</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_scene_TO_SNVT_setting</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.6 SNVT_scene_TO_SNVT_switch
You can use this Type Translator Rule to translate an input data point of type SNVT_scene to an
output data point of type SNVT_switch.

• The SNVT_scene input data point is defined by a <DataPointFormat> element that has a “Dp
Type” attribute of “Input”. The input data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_scene and a
<UCPTnickName> property of Input0.

• The SNVT_switch output data point to be translated is defined by a <DataPoint> element that
have a “Dp Type” attribute of “Output”. The output data point referenced by <UCPTname> must
have a <UCPTformatDescription> of #0000000000000000[0]. SNVT_switch and a
<UCPTnickName> of Output0.

You can use this Type Translator Rule to translate an input data point of type SNVT_scene to an
output data point of type SNVT_switch. When you use this rule, you must reference the SNVT_scene
data point that is to be translated by its <UCPTpointName> in the <InDataPoint> element. You must
reference the SNVT_switch data point to store the result of the translation by its <UCPTpointName>
in the <OutDataPoint> element.

SNVT_scene (input point) SNVT_switch (ouput point)

function: SC_NUL
scene_number: 0

No update made to output data point

function: SC_NUL
scene_number: >0

value: 0.0
state: 0 (OFF)

function: SC_RECALL
scene_number: 1

value: 25.0
state: 1 (ON)

function: SC_RECALL
scene_number: 2

value: 50.0
state: 1 (ON)

function: SC_RECALL
scene_number: 3

value: 75.0
state: 1 (ON)

function: SC_RECALL
scene_number: >3

value: 100.0
state: 1 (ON)

function: SC_RECALL
scene_number: 255

value: 0.0
state: 0 (OFF)

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:

i.LON SmartServer 2.0 Programmer’s Reference 12-12

<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[7]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviScene_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_scene</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_scene_TO_SNVT_switch</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.7 SNVT_setting_TO_SNVT_switch
You can use this Type Translator Rule to translate an input data point of type SNVT_setting to an
output data point of type SNVT_switch.

• The SNVT_setting input data point is defined by a <DataPointFormat> element that has a “Dp
Type” attribute of “Input”. The input data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_setting and a
<UCPTnickName> property of Input0.

• The SNVT_switch output data point to be translated is defined by a <DataPoint> element that
have a “Dp Type” attribute of “Output”. The output data point referenced by <UCPTname> must
have a <UCPTformatDescription> of #0000000000000000[0]. SNVT_switch and a
<UCPTnickName> of Output0.

Each time a type translation is made, the value and state fields of the SNVT_switch ouput data point
are assigned values based on the current values stored in the function and setting fields of the
SNVT_setting input data point, as described in the following table:

SNVT_setting (input point) SNVT_switch (ouput point)

function: SET_STATE
setting: <=100.0

value: 0.0
state: 0 (OFF)

function: SET_STATE
setting: >100.0

value: <=setting>
state: 0 (OFF)

function: SET_NUL
setting: any

value: 0.0
state: 0 (OFF)

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[8]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSetting_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_setting</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoSwitch_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>

i.LON SmartServer 2.0 Programmer’s Reference 12-13

 <UCPTtranslatorRule>SNVT_setting_TO_SNVT_switch</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.8 SNVT_state_TO_16xSNVT_switch
You can use this Type Translator Rule to convert a single SNVT_state input data point to up to 16
SNVT_switch output data points. The value of the state field of each of the SNVT_switch input data
points will be assigned to a field in the SNVT_state output data point.

• The SNVT_state input data point is defined by a <DataPointFormat> element that have a “Dp
Type” attribute of “Input”. The input data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_state and a
<UCPTnickName> of “Input0”.

• The 16 SNVT_switch data points to be translated are defined by a list of <DataPoint> elements
that have a “Dp Type” attribute of “Output”. The output data points referenced by <UCPTname>
must have a <UCPTformatDescription> property of #0000000000000000[0]. SNVT_switch and
a <UCPTnickName> in the range of Output0 to Output15.

The value of the state field of each input data point will be read and stored in bitX of the output data
point, where X represents the <UCPTnickName> of the input data point. The state field in each
SNVT_switch output data point will be assigned a value based on the <UCPTnickName> of the
output data point and the corresponding value in bitX of the SNVT_state input data point. For
example, the SNVT_switch output data point with a <UCPTnickName> of Output0 will be assigned a
value based on Bit0 of the input data point. Or, the SNVT_switch output data point with a
<UCPTnickName> of Output8 will be assigned a value based on Bit8 of the input data point.

If the value of a BitX field of the SNVT_state input data point is 0, then the applicable SNVT_switch
output data point will be assigned the value 0.0 0. If the value of a BitX field of the SNVT_state input
data point is 1, then the applicable SNVT_switch output data point will be assigned the value 100.0 1.

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[10]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nvoState</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_state</UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch_1</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch_2</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTnickName>Output1</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_state_TO_16xSNVT_switch</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.4.9 SNVT_switch_TO_SNVT_lev_disc
You can use this Type Translator Rule to translate an input data point of type SNVT_switch to an
output data point of type SNVT_lev_disc.

i.LON SmartServer 2.0 Programmer’s Reference 12-14

• The SNVT_switch input data point is defined by a <DataPointFormat> element that has a “Dp
Type” attribute of “input”. The input data point referenced by <UCPTname> must have a
<UCPTformatDescription> property of #0000000000000000[0]. SNVT_switch and a
<UCPTnickName> property of Input0.

• The SNVT_lev_disc output data point to be translated is defined by a <DataPoint> element that
have a “Dp Type” attribute of “Output”. The output data point referenced by <UCPTname> must
have a <UCPTformatDescription> of #0000000000000000[0]. SNVT_lev_disc and a
<UCPTnickName> of Output0.

Each time a type translation is made, the SNVT_lev_desc output data point is assigned an enumeration
based on the current value and state stored in the SNVT_switch input data point, as described in the
following table:

SNVT_switch (input point) SNVT_lev_desc (output point)

value: any
state: 0

ST_NUL

value: 0.0
state: 1

ST_OFF

value: 0.1–25.0
state: 1

ST_LOW

value: 25.0–50.0
state: 1

ST_MED

value: 50.0–75.0
state: 1

ST_HIGH

value: 75.0–100.0
state: 1

ST_ON

value: >100.0
state: 1

ST_NUL

The following code demonstrates how to use the Set function to create a type translator that uses this
<UCPTtranslatorRule>:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[11]</UCPTname>
 <DataPoint dpType="Input">
 <UCPTname>Net/LON/iLON App/VirtFb/nviSwitch</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch </UCPTformatDescription>
 <UCPTnickName>Input0</UCPTnickName>
 </DataPoint>
 <DataPoint dpType="Output">
 <UCPTname>Net/LON/iLON App/VirtFb/nvolevDisc</UCPTname>
 <UCPTformatDescription>#0000000000000000[0].SNVT_lev_disc</UCPTformatDescription>
 <UCPTnickName>Output0</UCPTnickName>
 </DataPoint>
 <UCPTtranslatorRule>SNVT_switch_TO_SNVT_lev_disc</UCPTtranslatorRule>
 <SCPTdelayTime>0</SCPTdelayTime>
 </Item>
 </iLonItem>
</Set>

12.3.5 Using the Delete Function on a Type Translator

You can use the Delete function to delete a Type Translator. To delete a Type Translator, you provide
an <Item> element with a UFPTtypeTranslator_Cfg type that includes the <UCPTname> property of
the type translator to be deleted. The following code sample demonstrates how to use the Delete
function to delete a Type Translator:

i.LON SmartServer 2.0 Programmer’s Reference 12-15

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Cfg">
 <UCPTname>Net/LON/iLON App/Type Translator[1]</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/iLON App/Type Translator[1]</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 12-16

i.LON SmartServer 2.0 Programmer’s Reference 13-1

13 Type Translator Rules
You can use the Type Translator Rule SOAP functions to create additional Type Translator Rules for
the SmartServer, or to modify the Type Translator Rules provided with the SmartServer software.
Each Type Translator Rule defines the network variable type of the data points a Type Translator will
accept as input, and the network variable type these data points will be translated to. In addition, they
define the factors that are required to determine the value to be assigned to the output data point during
a translation, such as scaling, offsets, and case structures to handle enumerations and fields within
structures. This section provides an overview of how this works.

A Type Translator referencing a Type Translator Rule will specify input data points matching the input
network variable types for that rule, and output data points matching the output types for that rule. The
values of the input data points will then be translated and stored in the output data points each time any
of the input data points are updated.

If an input data point is a structure, you can specify which field(s) in the input data point is to be
translated. Similarly, if the output data point is a structure, you can specify which field(s) the result of
a translation will be stored in. Using these features, you can configure a Type Translator Rule to
convert multiple input data points into a single output data point, or a single input data point into
multiple output data points.

You can optionally create case structures that define the logic for a translation. For example, if the
input data point has a scalar value and the output data point is an enumeration, you could set up a case
structure to map ranges of scalar values to different enumerations for the output data point.
Alternatively, you could set up case rules to map the various enumeration values an input data point to
scalar values, or to different enumeration values, for an output data point.

This chapter describes how to create a Type Translator Rule. Once you have created a Type Translator
Rule, you can reference it from a Type Translator. In addition, this chapter describes the pre-defined
type translator rules included with the SmartServer software. For more information on the Type
Translator application, see Chapter 12, Type Translator.

13.1 Type Translator Rule XML Files
The configuration of each Type Translator Rule defined for the SmartServer will be stored in an XML
file in the /root/config/Software/translatorRules directory of the SmartServer. All
files in this directory are read during boot, and valid rules are made available to the Type Translator
application. By default, this directory contains several XML files that you can use with your Type
Translators.

This chapter describes how to use the SOAP interface to create a new Type Translator Rule, how to
modify an existing Type Translator Rule, and how to use the pre-defined Type Translator Rules on the
SmartServer.

The following sample shows the XML file that stores the configuration of a Type Translator Rule
called 2xSwitch_to_Switch. This Type Translator Rule takes two SNVT_switch data points as input.
It stores the state field of the first input data point, and the value field of the second input data point, in
the output data point, which is also a SNVT_switch data point.
<Item xsi:type="UFPTtypeTranslator_Rule_Cfg" >
 <UCPTname>2xSwitch_to_Switch</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTtypeTranslator_Rule</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-13T13:47:47.330-07:00</UCPTlastUpdate>
 <UCPTdescription>(New Rule)</UCPTdescription>
 <UCPTuri>#8000010128000000[4].UFPTtypeTranslator_Rule_Cfg.htm</UCPTuri>
 <DataPointFormat>
 <UCPTnickName>nviSwitch1</UCPTnickName>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPointFormat>
 <DataPointFormat>
 <UCPTnickName>nviSwitch2</UCPTnickName>

i.LON SmartServer 2.0 Programmer’s Reference 13-2

 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPointFormat>
 <DataPointFormat>
 <UCPTnickName>nvoSwitch</UCPTnickName>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPointFormat>
 <Case>
 <UCPTindex>0</UCPTindex>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTcompValue LonFormat="">0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName=“nviSwitch1”]</UCPTinputPath>
 <UCPTinputFieldName>state</UCPTinputFieldName>
 <UCPToutputPath>DataPointFormat[UCPTnickName=“nvoSwitch”]</UCPToutputPath>
 <UCPToutputFieldName>state</UCPToutputFieldName>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 </Rule>
 </Case>
 <Case>
 <UCPTindex>1</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName=“nviSwitch1”]</UCPTinputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTcompValue LonFormat="">0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName=“nviSwitch2”]</UCPTinputPath>
 <UCPTinputFieldName>value</UCPTinputFieldName>
 <UCPToutputPath>DataPointFormat[UCPTnickName=“nvoSwitch”]</UCPToutputPath>
 <UCPToutputFieldName>value</UCPToutputFieldName>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 </Rule>
 </Case>
</Item>

13.2 Creating and Modifying the Type Translator Rule XML Files
You can create and manage the Type Translator rules with the Set SOAP function. The following
section, Type Translator Rule SOAP Interface, describes how to use Set and the other SOAP functions
provided for use with Type Translator rules.

Alternatively, you can create the XML files for your Type Translator Rules manually, with an XML
editor, and download them to the SmartServer via FTP. Echelon does not recommend this, as the
SmartServer will require a reboot to read the configuration of the downloaded file. Additionally, the
SmartServer performs error checking on all SOAP messages it receives before writing to the file. It
will not perform error checking on any XML files you download via FTP, and thus the application may
not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first, as it
describes the elements and properties in the XML file that define each Type Translator’s configuration.

13.3 Type Translator Rule SOAP Interface
You can use the SOAP interface to perform the following functions on a type translator rule:

Function Description

List Generate a list of the type translator rules on the SmartServer.

Get Retrieve the configuration of the type translator rules on the
SmartServer.

Set Create a new type translator rule, or overwrite the configuration of an
existing type translator rule.

i.LON SmartServer 2.0 Programmer’s Reference 13-3

Delete Delete a type translator rule.

13.3.1 Using the List Function on a Type Translator Rule

You can use the List function to retrieve a list of the Type Translator Rules that you have added to the
SmartServer. The List function takes an <iLonItem> element that includes an xSelect statement
querying items of a UFPTtypeTranslator_Rule_Cfg type as its input, as shown in the example below.
The List function returns an <Item> element for each type translator rule on the SmartServer included
in the specified xSelect statement. The next section describes the properties included in each of these
elements.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="UFPTtypeTranslator_Rule_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<ListResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>

<UCPTcurrentConfig>4.0</UCPTcurrentConfig>
<Item>

 <UCPTname>My Custom Rule: SNVT_temp to SNVT_temp_p</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTtypeTranslator_Rule;
 xsi:type=“UFPTtypeTranslator_Rule_Cfg”
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>My Custom Rule: 2xSwitch_to_Switch</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTtypeTranslator_Rule;
 xsi:type=“UFPTtypeTranslator_Rule_Cfg”
 </UCPTannotation>
 <UCPThidden>0</UCPThidden>

 </Item>
 </iLonItem>
 </ListResponse>

13.3.2 Using the Get Function on a Type Translator Rule

You can use the Get function to retrieve the configuration of any type translator rule on the
SmartServer. You must reference the type translator whose configuration is to be returned by its
<UCPTname> in the input you supply to the function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>My Custom Rule: 2xSwitch_to_Switch</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<GetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="UFPTtypeTranslator_Rule_Cfg" >
 <UCPTname>2xSwitch_to_Switch</UCPTname>
 <UCPTannotation>8000010128000000[4].UFPTtypeTranslator_Rule</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-13T13:47:47.330-07:00</UCPTlastUpdate>

i.LON SmartServer 2.0 Programmer’s Reference 13-4

 <UCPTdescription>Translates the state and value fields from two SNVT_switch input DPs to one
 output SNVT_swicth DP

</UCPTdescription>
 <UCPTuri>#8000010128000000[4].UFPTtypeTranslator_Rule_Cfg.htm</UCPTuri>
 <DataPointFormat>
 <UCPTnickName>nviSwitch1</UCPTnickName>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPointFormat>
 <DataPointFormat>
 <UCPTnickName>nviSwitch2</UCPTnickName>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPointFormat>
 <DataPointFormat>
 <UCPTnickName>nvoSwitch</UCPTnickName>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPointFormat>
 <Case>
 <UCPTindex>0</UCPTindex>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTcompValue LonFormat="">0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName=“nviSwitch1”]</UCPTinputPath>
 <UCPTinputFieldName>state</UCPTinputFieldName>
 <UCPToutputPath>DataPointFormat[UCPTnickName=“nvoSwitch”]</UCPToutputPath>
 <UCPToutputFieldName>state</UCPToutputFieldName>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 </Rule>
 </Case>
 <Case>
 <UCPTindex>1</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName=“nviSwitch1”]</UCPTinputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTcompValue LonFormat="">0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName=“nviSwitch2”]</UCPTinputPath>
 <UCPTinputFieldName>value</UCPTinputFieldName>
 <UCPToutputPath>DataPointFormat[UCPTnickName=“nvoSwitch”]</UCPToutputPath>
 <UCPToutputFieldName>value</UCPToutputFieldName>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 </Rule>
 </Case>
 </Item>
 </iLonItem>
</GetResponse>

The function returns an <Item> element for each type translator rule referenced in the input parameters
supplied to the function. The properties included in each element are initially defined when the type
translator rule is created. You can write to these properties with the Set function. The following table
describes these properties.

Property Description

<UCPTname> The name of the type translator rule in the following format:
<network/channel/device/functional block>.

<UCPTannotation> The program ID and functional profile template used by the
type translator rule. This property is always
8000010128000000[4].UFPTtypeTranslator_Rule

<UCPThidden> A flag indicating whether the type translator rule functional
block is hidden or shown in the navigation pane on the left
side of the SmartServer Web interface. This property may
have the following values:

i.LON SmartServer 2.0 Programmer’s Reference 13-5

Property Description

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
type translator rule was updated. This timestamp uses the
following format:

YYYY-MM-DDTHH:MM:SSZ

<UCPTuri> The name of the file containing the configuration web page
for the Type Translator Rule on the SmartServer flash disk,
absolute or relative to /web/user/echelon. This property is
#8000010128000000[4].UFPTtypeTranslator_Rule_Cfg.htm
by default.

<UCPTdescription> A description of the Type Translator Rule. This can be a
maximum of 227 characters long.

<DataPointFormat> You can define the input and output data points that a Type
Translator Rule accepts with a series of <DataPointFormat>
elements. Each <DataPointFormat> element is a structure
that contains two properties: <UCPTnickName> and
<UCPTformatDescription>.

• <UCPTnickName>. When you create a Type
Translator to use a rule, you can assign each data point
a nickname. that is used to reference the data point.
You can use this property to reference a data point in
the <InputPath> and <OutputPath> properties in a type
translator rule. By default, the nickname of the data
point is the data point’s name.
For example, a data point with a <UCPTname> of
“Net/LON/iLON App/VirtFb/nviSwitch2” has a default
<UCPTnickname> of “nviSwitch2”.

• <UCPTformatDescription>. The data point's program
ID; data type (SNVT, SCPT, UNVT, UCPT, or built-in
data type); and format (e.g., SI metric or US customary
if the type has multiple formats such as
SNVT_temp_p). The format description is displayed
in the following format:

• #<manufacturer ID>[scope selector].<type
name>[#format] .

<Case> You can create case structures to determine the values that
will be assigned to the output data points when translations
are made. This may be useful when converting to and from
scalar, structured, and enumerated data point values. The
case structures for a Type Translator Rule are defined by a
list of <Case> elements.

For more information on case structures, see the next
section, Creating a Case Structure.

i.LON SmartServer 2.0 Programmer’s Reference 13-6

13.3.2.1 Creating a Case Structure
You can create case structures for each Type Translator Rule that defines the set of operations that will
be performed when a type translation is made with that rule. Each case structure includes several
global elements, and a series of case rules. The case rules are signified by a list of <Rule> elements.
You can use these rules to establish the value that will be assigned to the data point that the Type
Translator Rule generates as output. See Case Rules for more information on the <Rule> element.

For example, consider a Type Translator Rule that converts a SNVT_occupancy input data point
(nviOccupancy) to a SNVT_switch output data point (nvoSwitch). You could set up one case
structure that sets nvoSwitch to ON (100.0 1) when nviOccupancy is set to OC_OCCUPIED. You
could set up another case structure that sets nvoSwitch to OFF (0.0 0) when nviOccupancy is set to
OC_UNOCCUPIED. Each structure could have a different set of case rules that will be used to assign
the output data point, or data points, a different value.

 <Case>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviOccupancy"]</UCPTinputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_EQ</UCPTcompFunction>
 <UCPTcompValue LonFormat="">OC_OCCUPIED</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviOccupancy"]</UCPTinputPath>
 <UCPToutputPath>DataPointFormat[UCPTnickName="nvoSwitch"]</UCPToutputPath>
 <UCPToutputFieldName />
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant LonFormat="">100.0 1</UCPTconstant>
 </Rule>
 </Case>
 <Case>
 <UCPTindex>1</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviOccupancy"]</UCPTinputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_EQ</UCPTcompFunction>
 <UCPTcompValue LonFormat="">OC_UNOCCUPIED</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviOccupancy"]</UCPTinputPath>
 <UCPToutputPath>DataPointFormat[UCPTnickName="nvoSwitch"]</UCPToutputPath>
 <UCPToutputFieldName />
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant LonFormat="">0.0 0</UCPTconstant>
 </Rule>
 </Case>

Before the operations defined by the case rules are performed, the Type Translator Rule will use its
global elements to compare the value of an input data point (and field, where applicable) to a value of
your choice. You will select a comparison function with which the comparison is to be made.

If the result of the operation is True, each of the case rules defined for the case structure will be used.
If the result is False, the case rules will not be used. These comparisons are meant to give you
flexibility when setting up your case structures.

Note: If none of the case structures for a Type Translator Rule evaluate to True, the data point will be
updated during the translation. However, its value will not change.

The following table describes the global elements you will fill in to define the comparison that will be
performed. These elements must be inserted at the top of the case structure, before the <Rule>
elements.

i.LON SmartServer 2.0 Programmer’s Reference 13-7

Property Description

<UCPTindex>

The index number of the case structure.

<UCPTinputPath> If you are using an existing type translator rule (a
pre-defined type translator rule on the SmartServer or a
custom rule you previously created), you need to specify
the <UCPTnickName> property of the input point’s
DataPointFormat element using the following format:
<UCPTinputPath>
 DataPointFormat[UCPTnickName=“Input0”]
</UCPTinputPath>

You do not need to specify this property if you are creating
a custom type translator rule.

<UCPTinputValue> If you are using an existing type translator rule on the
SmartServer and the specified input point has a structured
data type, you need to specify the field to be translated.
For example, you would use the following code to specify
that the value field of a SNVT_switch input point is to be
translated an output point:
<UCPTinputFieldName>value</UCPTinputFieldName>

You do not need to specify this property if you are creating
a custom type translator rule.

<UCPTcompFunction>

Select a comparison function (UCPTcompFunction) for the
case. The following lists and describes the comparison
functions that can be used to fill in the
<UCPTcompFunction> property.

FN_GT Greater than. Returns True if the value of
the input data point is greater than that of
the compare data point.

FN_LT Less than. Returns True if the value of the
input data point is less than that of the
compare data point.

FN_GE Greater than or equal to. Returns True if
the value of the input data point is greater
than or equal to that of the compare data
point.

FN_LE Less than or equal to. Returns True if the
value of the input data point is less than or
equal to that of the compare data point.

FN_EQ Equal. Returns True if the value of the
input data point is equal to that of the
compare data point.

FN_NE Not equal. Returns True if the value of the

i.LON SmartServer 2.0 Programmer’s Reference 13-8

input data point is not equal to that of the
compare data point.

FN_NUL Null. Returns True for all values of the
input. Use this if you want the case rules
for a structure to be used each time there is
a translation.

The value of the input data point, or input data point field,
selected for the case structure will be compared to the
compare value using the selected comparison function. If
the result of this comparison is True, the case rules defined
for the case structure will be used.

For more information on case rules, see Case Rules.

<UCPTcompValue> Specify a value to be compared against the value of the
selected data point or data point field. This property is not
used if <UCPTcompFunction> is FN_NUL.

13.3.2.2 Case Rules
You can use case rules to determine the value(s) to be assigned to the output data point(s) when a Type
Translator Rule is used. If the output data point is a structure, you can create case rules to determine
the value that will be assigned to each field in the structure.

For each rule, you will specify an input data point (and a field name if the input data point is a
structure) to determine the input value. You will also specify a compare value and a comparison
function. The input value will be compared to the compare value using the specified comparison
function. If the result of the comparison is True, the operation defined by the case rule will be
performed. If the result of the comparison is False, the operation will not be performed, and the value
of the output data point (or field) will not change.

For example, consider a Type Translator Rule that converts a SNVT_scene data point (nviScene) to a
SNVT_switch data point (nvoSwitch). You could create a case rule to assign the value or state fields
of the SNVT_switch data point a value based on scene_number of the SNVT_scene data point. For
example, you could assign the SNVT_switch data point the value 100.0 1 if the scene_number is less
than 2, or 0.0 if it is greater than 2. You can create as many case rules as you want per case structure,
so you can plan on as many contingencies as you like.
<Case>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviScene"]</UCPTinputPath>
 <UCPTinputFieldName>scene_number</UCPTinputFieldName>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_GT</UCPTcompFunction>
 <UCPTcompValue LonFormat="">2</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviScene"]</UCPTinputPath>
 <UCPTinputFieldName>scene_number</UCPTinputFieldName>
 <UCPToutputPath>DataPointFormat[UCPTnickName="nvoSwitch"]</UCPToutputPath
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NE</UCPTcompFunction>
 <UCPTcompValue LonFormat="">SC_RESET</UCPTcompValue>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant LonFormat="">0.0 0</UCPTconstant>
 </Rule>
</Case>
<Case>
 <UCPTindex>1</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviScene"]</UCPTinputPath>
 <UCPTinputFieldName>scene_number</UCPTinputFieldName>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_LT</UCPTcompFunction>

i.LON SmartServer 2.0 Programmer’s Reference 13-9

 <UCPTcompValue LonFormat="">2</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviScene"]</UCPTinputPath>
 <UCPTinputFieldName>scene_number</UCPTinputFieldName>
 <UCPToutputPath>DataPointFormat[UCPTnickName="nvoSwitch"]</UCPToutputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant LonFormat="">100.0 1</UCPTconstant>
 </Rule>
</Case>

Each case rule is defined by a <Rule> element. The following table describes the properties that
should be filled in within each <Rule> element to define each case rule.

Property Description

<UCPTindex>

The index number of the case rule.

NOTE: If more than one case rule attempts to assign a value to the
same data point or data point field, the case rule listed last in the
XML file (i.e. the one with the highest index number) takes
precedence.

<UCPTinputPath> A reference to the <UCPTnickName> property of the input data
point. The value of this data point will be compared to the
<UCPTcompValue> selected for the case rule using the
comparison function defined by the <UCPTcompFunction>
property.

If the result of the comparison is True, the case rule will modify the
value of the input data point using the operations determined by the
<UCPTmultiplier> and <UCPTconstant> properties, and assign the
resulting value to the output data point specified in the
<UCPToutputPath> property.

<UCPTinputValue> If the input point has a structured data type and you need to
evaluate a field within the structure, you need to specify that field
in this property.

You do not need to specify this property if you are evaluating a
scalar data point or a structured data point as a whole.

<UCPToutputPath> A reference to the <UCPTnickName> property of the output data
point in which the value calculated by this case rule is to be stored.

<UCPToutputValue> If the output point has a structured data type and you are writing to
a field within the structure, you need to specify that field in this
property.

You do not need to specify this property if you are writing to a
scalar data point or a structured data point as a whole.

<UCPTcompFunction>

<UCPTcompValue>

If you are evaluating a data point in the case rule, specify the
<UCPTcompFunction> and <UCPTcompValue> properties.

If you are not evaluating a data point in the rule, specify FN_NUL
for <UCPTcompFunction>. You do not need to specify a
<UCPTcompValue> property in this case.

The <UCPTcompValue> selected must use the same value format

i.LON SmartServer 2.0 Programmer’s Reference 13-10

Property Description

as the input data point or field selected for the case rule. The
following table lists and describes the comparison functions you
can use to fill in the <UCPTcompFunction> property.

FN_GT Greater than. Returns True if the value of
the input data point is greater than that of
the compare data point.

FN_LT Less than. Returns True if the value of the
input data point is less than that of the
compare data point.

FN_GE Greater than or equal to. Returns True if
the value of the input data point is greater
than or equal to that of the compare data
point.

FN_LE Less than or equal to. Returns True if the
value of the input data point is less than or
equal to that of the compare data point.

FN_EQ Equal. Returns True if the value of the
input data point is equal to that of the
compare data point.

FN_NE Not equal. Returns True if the value of the
input data point is not equal to that of the
compare data point.

FN_NUL Null. Returns True for all values of the
input. Use this if you want the case rules
for a structure to be used each time there is
a translation.

The value of the input data point or field will be compared to the
compare value using the function selected here. If the result of the
comparison is True, the operation defined by the
<UCPTmultiplier> and <UCPTconstant> properties will be
performed. If the result of the comparison is False, the operation
will not be performed and the value of the output data point (or
field) will not change.

<UCPTmultiplier> If the output data point or field takes a numeric value as its value
type, enter a numeric value here. The Type Translator will
multiply the value of the input data point or field for the case rule
by this number and store the resulting value in the output data point
(field) if the comparison for the case rule evaluates as True. You
can use the <UCPTconstant> field to add a sum to this value after
the multiplication has been performed.

If the output data point takes an enumeration as its value, leave this
property empty.

i.LON SmartServer 2.0 Programmer’s Reference 13-11

Property Description

<UCPTconstant> If the output data point or field takes an enumeration as its value
type, enter the enumeration the output data point is to be assigned
when the comparison for the case rule evaluates to True.

If the output data point or field takes a numeric value as its value
type, enter a numeric value here. The Type Translator will add this
to the value of the input data point (or data point field) and store the
resulting sum in the output data point (field). This Type Translator
will perform this operation after the multiplication operation
defined by the <UCPTmultiplier> property is performed.

13.3.3 Using the Set Function on a Type Translator Rule

You can use the Set function to create new type translator rules, or to overwrite the configuration of
existing type translator rule. The type translator rules to be created or written are signified by a list of
<Item> elements in the input you supply to the function. The properties you must define within each
<Item> element are the same, whether you are creating a new type translator or modifying an existing
type translator. The previous section, Using the Get Function on a Type Translator Rule, describes
these properties.

Each time you use this function to create a new Type Translator Rule, an XML file for that rule will be
generated in the /root/config/software/TranslatorRules directory of your SmartServer.
Once the file has been generated, you can reference the rule when creating a Type Translator, as
described in Chapter 12.

Notes: If you specify a type translator rule with the <UCPTname> element, the Set function deletes
the specified type translator rule before the specified parameters are set. If the <UCPTname> element
is not specified, a new type translator rule is created.

When modifying an existing type translator rule, any optional properties omitted from the input will be
erased. Old values will not be preserved, so you should fill in every property when writing to a type
translator, even if you are not changing all of the values.

When creating or modifying a type translator rule with this function, you may want to use output from
the Get function as the basis for your input. You would then only need to modify the values of each
property to match the new configuration you want, as opposed to re-creating an entire string like the
one shown below, to generate your input.

The following example uses the Set function to create a Type Translator Rule definition that translates
a SNVT_switch data point (nviSwitch) to a SNVT_hvac_mode data point (nvoHVACmode).

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Rule_Cfg">
 <UCPTname>My Custom Rule: SNVT_switch to SNVT_hvac_mode</UCPTname>
 <UCPTdescription>converts SNVT_switch ON to SNVT_hvac_mode HVAC_COOL</UCPTdescription>
 <DataPointFormat>
 <UCPTnickName>nviSwitch</UCPTnickName>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </DataPointFormat>
 <DataPointFormat>
 <UCPTnickName>nvoHVACmode</UCPTnickName>
 <UCPTformatDescription>#0000000000000000[0].SNVT_hvac_mode</UCPTformatDescription>
 </DataPointFormat>
 <Case>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviSwitch"]</UCPTinputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_EQ</UCPTcompFunction>
 <UCPTcompValue LonFormat="">100.0 1</UCPTcompValue>

i.LON SmartServer 2.0 Programmer’s Reference 13-12

 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviSwitch"]</UCPTinputPath>
 <UCPToutputPath>DataPointFormat[UCPTnickName="nvoHVACmode"]</UCPToutputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant LonFormat="">HVAC_COOL</UCPTconstant>
 </Rule>
 </Case>
 <Case>
 <UCPTindex>1</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviSwitch"]</UCPTinputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_EQ</UCPTcompFunction>
 <UCPTcompValue LonFormat="">0.0 0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTinputPath>DataPointFormat[UCPTnickName="nviSwitch"]</UCPTinputPath>
 <UCPToutputPath>DataPointFormat[UCPTnickName="nvoHVACmode"]</UCPToutputPath>
 <UCPTcompFunction LonFormat="UCPTcompFunction">FN_NUL</UCPTcompFunction>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant LonFormat="">HVAC_OFF</UCPTconstant>
 </Rule>
 </Case>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>My Custom Rule: SNVT_switch to SNVT_hvac_mode</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

13.3.4 Using the Delete Function on a Type Translator Rule

You can use the Delete function to delete a Type Translator Rule. To delete a Type Translator Rule,
you provide an <Item> element with a UFPTtypeTranslator_Rule_Cfg type that includes the
<UCPTname> property of the type translator rule to be deleted. The following code sample
demonstrates how to use the Delete function to delete a Type Translator Rule:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="UFPTtypeTranslator_Rule_Cfg">
 <UCPTname>My Custom Rule: SNVT_switch to SNVT_hvac_mode</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>My Custom Rule: SNVT_switch to SNVT_hvac_mode</UCPTname>
 </Item>
 </iLonItem>
</DeleteResponse>

i.LON SmartServer 2.0 Programmer’s Reference 14-1

14 LONWORKS Driver
The following chapter describes how to manage the networks, channels, devices, functional blocks,
and data points on the LONWORKS driver on the SmartServer. Note that the functions and properties
listed in this chapter are applicable for both the Web service on the SmartServer and the LNS Proxy
Web service.

14.1 LONWORKS Networks
The following section describes how to use the List, Get, Set, and Delete functions on LONWORKS
networks.

14.1.1 Using the List Function on a LONWORKS Network

You can use the List function to retrieve the network connected to the SmartServer or a list of the LNS
network databases in a specific LNS Server computer through the LNS Proxy Web service. The List
function takes an <iLonItem> element that has an xSelect statement with a LON_Network_Cfg or
Network_Cfg type as its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="LON_Network_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>MyNetwork</UCPTname>
 <UCPTannotation>iLonNS;xsi:type="LON_Network_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

The List function returns an <Item> element for the network connected to the SmartServer or a list of
<Item> elements for the LNS network databases in an LNS Server computer.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each network included in the list. The next section
describes the properties included in each of these elements.

14.1.2 Using the Get Function on a LONWORKS Network

You can use the Get function to retrieve the configuration of the network connected to the SmartServer
or the LNS network databases stored in an LNS Server computer. The input parameters you supply to
this function will include one or more <Item> elements with a LON_Network_Cfg type. Each <Item>
element will include the <UCPTname> of each network whose configuration is to be returned by this
function, as shown in the example below.

Note: If you omit the xSelect statement, the generic Network_Cfg item is returned also.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_Cfg">
 <UCPTname>MyNetwork</UCPTname>
 </Item>
 </iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 14-2

</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Network_Cfg">
 <UCPTname>MyNetwork</UCPTname>
 <UCPTannotation>iLonNS;xsi:type="LON_Network_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-20T15:26:55.610-07:00</UCPTlastUpdate>
 <UCPTuri>LON_Network_Cfg.htm</UCPTuri>
 <UCPThandle>873906929</UCPThandle>
 <LnsDatabase>
 <UCPTname>MyNetwork</UCPTname>
 <UCPTservicePath>//WebService[UCPTindex=4]</UCPTservicePath>
 </LnsDatabase>
 <UCPTlnsSync LonFormat="UCPTlnsSync">SYNC_NUL</UCPTlnsSync>
 <UCPTmgmtMode LonFormat="UCPTmgmtMode">LCA_ONNET</UCPTmgmtMode>
 <UCPTlnsNetworkInterface>X.Default.SmartServer_RNI</UCPTlnsNetworkInterface>
 <Domain>
 <UCPTdomainIndex>0</UCPTdomainIndex>
 <UCPTdomainLength>1</UCPTdomainLength>
 <UCPTdomainKey>C0</UCPTdomainKey>
 </Domain>
 <Domain>
 <UCPTdomainIndex>1</UCPTdomainIndex>
 <UCPTdomainLength>0</UCPTdomainLength>
 <UCPTdomainKey />
 </Domain>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each network referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the network is added to the SmartServer or LNS network database. You can write to these
network properties with the Set function. The following table describes these properties.

Property Description

<UCPTname> The name of the network in the following format: <network >.

You can only rename a network if <UCPTlnsSync> is set to
SYNC_STANDALONE. To rename a network, provide the
<UCPThandle> of the network and the desired <UCPTname>
property.

You cannot rename networks if <UCPTlnsSync> is set to
SYNC_NUL or SYNC_LNS. This means you cannot rename
networks stored in an LNS network database via the LNS Proxy
Web service.

<UCPTannotation> The type of object and its xsi type, which is
LON_Network_Cfg. This determines the icon used to represent
the network in the SmartServer Web interface.

For the network on the SmartServer this property is “ iLONNS ”
if the network database was created with the SmartServer, or it
is “LNS” if the network was created with an LNS application
such as the LonMaker tool.

<UCPThidden> A flag indicating whether the network is hidden or shown in the
navigation pane on the left side of the SmartServer Web

i.LON SmartServer 2.0 Programmer’s Reference 14-3

Property Description

interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
network was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour
clock, therefore; an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the network. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the network. This property is always
LON_Network_Cfg.htm.

<UCPThandle> The handle of the network assigned by the LNS server.

<LnsDatabase> The LNS network database associated with the network. This
property is applicable for a network on the SmartServer that is
synchronized with an LNS network database, or an LNS
network database stored in an LNS Server computer that is
accessible via the LNS Proxy Web service. This element has
the following properties:

• <UCPTname>. The name of the network in following
format: <network >. This property may be a maximum of
14 characters, and it may include embedded spaces.

• <UCPTservicePath>. A reference to the Web service path
of the LNS Server where SOAP calls are transmitted in the
following format: //WebService[UCPTindex=x]. The x
refers to the index assigned to the LNS Server when it was
added to the LAN.

i.LON SmartServer 2.0 Programmer’s Reference 14-4

Property Description

<UCPTlnsSync> Specifies the network management service used to manage the
network. This property can be one of the following values:

• SYNC_STANDALONE. The SmartServer is the network
manager. It transmits all network management commands
to the devices attached to its channel, and network
configuration changes are stored in the internal SmartServer
database.

In standalone mode, the network functions as a master-slave
system, where the SmartServer is the master to the slave
devices.

You can use standalone mode to operate a small,
single-channel network that does not require LNS services,
LONWORKS connections, or connections to other network
management tools. FT-10 networks running in standalone
mode are limited to a maximum of 64 devices; PL-20
networks are limited to a maximum of 200 devices.

• SYNC_LNS. Network messages are routed through the
LNS server specified in the <LnsDatabase> property. The
SmartServer and the devices connected to it communicate
in a peer-to-peer manner. In this mode, the SmartServer
independently initiates communication with the LNS Proxy
Web service, and the SmartServer automatically
synchronizes with the LNS network database.

You should use this mode as long as a firewall is not
blocking the SmartServer’s access to the port on the LNS
Server computer selected for the LNS Proxy Web service
(port 80 by default).

• SYNC_NUL. Similar to SYNC_LNS except that the
SmartServer has to be manually synchronized with the LNS
server specified in the <LnsDatabase> property. This
mode does not require the opening of any ports on firewalls
blocking the SmartServer’s access to the LNS Server
computer.

In this mode, the SmartServer Web interface serves as a
proxy between the SmartServer and an LNS Server that is
behind a firewall.

When you manually synchronize the SmartServer to an
LNS network database, the SmartServer Web interface
requests a list of objects to be synced from the SmartServer
via SOAP and forwards the objects returned by the
SmartServer to the LNS Proxy Web service. The LNS
Proxy Web service returns a set of synced objects to the
SmartServer Web interface, which forwards these objects
back to the SmartServer.

You should only use this mode if a firewall is blocking the
SmartServer’s access to the LNS Proxy Web service port on
the LNS Server computer (port 80 by default). This is the
default.

i.LON SmartServer 2.0 Programmer’s Reference 14-5

Property Description

<UCPTmgmtMode> Specifies when network configuration changes are propagated
over the network to devices. This property can be one of the
following values:

• LCA_ONNET. Changes are sent immediately to the
devices on the network. Use LCA_ONNET if you are
installing an engineered network, or if you are designing
and installing an ad-hoc network at the same time.

• LCA_OFFNET. Changes are stored in the network
database and then sent to the devices on the network when
you place the SmartServer OnNet. Use LCA_OFFNET if
you are designing an engineered network.

<UCPTlnsNetworkInterface> Specifies the network interface to be used for communication
between the LNS Server and the network. To specify that the
SmartServer is not attached to a network, you can omit this
property in a Set function. This may be desired if you are
performing network design tasks.

<UCPTdomain> The domain length, index and key. If both the length and key
are provided in a Set function, but they don’t match, an error is
thrown.

14.1.3 Using the Set Function on a LONWORKS Network

You can use the Set function to overwrite the configuration of a network, or to create a new network.
The input parameters you supply to the function will include one or more <Item> elements. Each
<Item> element includes a <UCPTname> property (case-insensitive) that specifies a unique network to
be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) network. This set of properties is the same, whether you are creating a new network or
modifying an existing network. The previous section, Using the Get Function on a LONWORKS
Network, details the properties you can include in the Set function.

You can set multiple networks with a single Set message. However, you should not attempt to create
or write to more than 100 networks with a single call to the Set function.

Request (using the SmartServer Web service, create a new network and set it to Standalone
mode)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_Cfg">
 <UCPTname>MyNewNetwork_1</UCPTname>
 <UCPThandle xsi:type="number">873906929</UCPThandle>
 <LnsDatabase>
 <UCPTname>MyNewNetwork</UCPTname>
 <UCPTservicePath xsi:type="string">//WebService[UCPTindex=4]</UCPTservicePath>
 </LnsDatabase>
 <UCPTlnsSync xsi:type="string" LonFormat="UCPTlnsSync">SYNC_STANDALONE</UCPTlnsSync>
 <UCPTmgmtMode xsi:type="string" LonFormat="UCPTmgmtMode">LCA_ONNET</UCPTmgmtMode>
 <UCPTlnsNetworkInterface>X.Default.SmartServer_RNI</UCPTlnsNetworkInterface>
 </Item>
 </iLonItem>
</Set>

Note: In the Set function, you need to specify the <UCPThandle> property of the current network on
the SmartServer. You can use the List and Get functions to get the network currently on the

i.LON SmartServer 2.0 Programmer’s Reference 14-6

SmartServer and get its <UCPThandle> property. If you don’t specify the <UCPThandle> of the
current network, you will receive a response message with the following fault structure:
<fault>
 <faultcode faultType="_error">8</faultcode>

 <faultstring xml:lang="en-US">It's not allowed to set more then one network.
 </faultstring>
</fault>

Request (using the SmartServer Web service, select an existing LNS network database to which
the SmartServer will automatically be synchronized)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Network_Cfg">
 <UCPTname>MyNewNetwork_1</UCPTname>
 <UCPThandle>873906929</UCPThandle>
 <LnsDatabase>
 <UCPTname>MyNewNetwork_1</UCPTname>
 <UCPTservicePath>//WebService[UCPTindex=4]</UCPTservicePath>
 </LnsDatabase>
 <UCPTlnsSync LonFormat="UCPTlnsSync">SYNC_LNS</UCPTlnsSync>
 <UCPTmgmtMode LonFormat="UCPTmgmtMode">LCA_ONNET</UCPTmgmtMode>
 <UCPTlnsNetworkInterface>X.Default.SmartServer_RNI</UCPTlnsNetworkInterface>
 </Item>
 </iLonItem>
</Set>

Note: You need to specify the <UCPThandle> property with the handle of the current network on the
SmartServer or the response message will return an error.

Request (create a new network using the SmartServer Web service; use the same Set function to
create the LNS network database via the LNS Proxy Web service and automatically synchronize
the SmartServer to it)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>MyNewNetwork_1</UCPTname>
 <UCPThandle xsi:type="number">873906929</UCPThandle>
 <LnsDatabase>
 <UCPTname>MyNewNetwork_1</UCPTname>
 <UCPTservicePath xsi:type="string">//WebService[UCPTindex=4]</UCPTservicePath>
 </LnsDatabase>
 <UCPTlnsSync xsi:type="string" LonFormat="UCPTlnsSync">SYNC_LNS</UCPTlnsSync>
 <UCPTmgmtMode xsi:type="string" LonFormat="UCPTmgmtMode">LCA_ONNET</UCPTmgmtMode>
 <UCPTlnsNetworkInterface>X.Default.SmartServer_RNI</UCPTlnsNetworkInterface>
 </Item>
 </iLonItem>
</Set>

Note: You need to specify the <UCPThandle> property with the handle of the current network on the
SmartServer or the response message will return an error.

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>MyNewNetwork_1</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

14.1.3.1 Issuing Network Synchronization Commands
You can use the InvokeCmd function to manually synchronize the objects in a LONWORKS network to
an LNS network database. If <UCPTlnsSync> is set to SYNC_NUL (LNS Manual; manual

i.LON SmartServer 2.0 Programmer’s Reference 14-7

synchronization), you can perform a manual synchronization to update the LNS network database with
network configuration changes made with the SmartServer. Even if <UCPTlnsSync> is set to
SYNC_LNS (LNS Auto; automatic synchronization), you may still want to periodically synchronize
the SmartServer to update the SmartServer with changes made to the LNS network database by the
LonMaker tool or other LNS application.

You can synchronize an entire LONWORKS network at one time, or you can select individual items to
be synchronized. The input parameters you supply to this function include one <Item> element with a
LON_Network_Command_Invoke type and a Command attribute that is set to “Syncronize”
(misspelled intentionally). The <Item> element must include the <UCPTname> of the network object
or objects being synchronized.

If you are synchronizing the entire network at once, you can synchronize only those objects in the
network that have been modified in the SmartServer’s internal database, or you can synchronize all
objects regardless if they have been modified. To synchronize all the objects in the network, you insert
a <UCPTannotation> element and set its action attribute to “SyncAll” in the <Item> element. The
benefit of using the “SyncAll” option is that it synchronizes the LON driver properties of the objects if
they have been changed in the SmartServer’s internal database or the LNS network database.
Examples of LON driver properties that you may want to keep synced include the timing parameters of
a channel, the commission and application statuses of a device, and the format description of a data
point.

If you are synchronizing individual channels, devices, or functional blocks, you can also synchronize
the child objects of the specified objects. For example, when you synchronize a device, you can
synchronize just that device, or you can synchronize the device and all of its child functional blocks
and data points. To synchronize an object and all of its child objects, you insert a <UCPTannotation>
element set its action attribute to “SyncRecursive” in the <Item> element.

Consider a scenario where you have multiple external devices on “Channel 1” of the “Building”
network (Building/Channel 1/Device <x>, where x differentiates the devices).

• The following example demonstrates how to synchronize the network to the LNS network
database (only objects that have been changed in the SmartServer’s internal database):
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_Command_Invoke" Command="Syncronize">
 <UCPTname>Building</UCPTname>
 </Item>
 </iLonItem>
</InvokeCmd>

• The following example demonstrates how to synchronize the network to the LNS network
database (updating all objects and their LON driver properties):
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_Command_Invoke" Command="Syncronize">
 <UCPTname>Building</UCPTname>
 <UCPTannotation>action="SyncAll"</UCPTannotation>
 </Item>
 </iLonItem>
</InvokeCmd>

• The following example demonstrates how to synchronize two devices on the network to the LNS
network database (but no child functional blocks or data points):
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_Command_Invoke" Command="Syncronize">
 <UCPTname>Building/Channel 1/Device 1</UCPTname>
 </Item>
 <Item xsi:type="LON_Network_Command_Invoke" Command="Syncronize">
 <UCPTname>Building/Channel 1/Device 2</UCPTname>
 </Item>
 </iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 14-8

</InvokeCmd>

• The following example demonstrates how to synchronize the two devices on the network and their
child functional blocks and data points to the LNS network database:
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_Command_Invoke" Command="Syncronize">
 <UCPTname>Building/Channel 1/Device 1</UCPTname>
 <UCPTannotation>action="SyncRecursive"</UCPTannotation>
 </Item>
 <Item xsi:type="LON_Network_Command_Invoke" Command="Syncronize">
 <UCPTannotation>action="SyncRecursive"</UCPTannotation>
 </Item>
 </iLonItem>
</InvokeCmd>

In the <Item> element, you can insert a <UCPTannotation> element with the following attributes
specifying synchronization options:

Option Description

action Setting this attribute to “SyncAll” synchronizes all objects in the
SmartServer’s internal database with the LNS network database,
including hidden items (items with their <UCPThidden> flag set
to 1). Objects are synchronized regardless if they have been
modified in the SmartServer’s internal database. Selecting this
option also synchronizes the LON driver properties of the
objects if they have been changed in the SmartServer’s internal
database or the LNS network database.

Setting this attribute to "SyncRecursive" synchronizes the
specified objects and all of their child objects in the
SmartServer’s internal database with the LNS network database.

;clearHiddenFbs Setting this attribute to "true" removes all functional blocks on
the SmartServer that do not have a corresponding functional
block shape in the LonMaker tool or other LNS application, and
deletes their XML configuration files from the SmartServer’s
internal database.

;sync You can set this attribute to the following values:

• abort. Stops the current synchronization operation.

• restart. Stops and then re-starts the current synchronization
operation.

• state. Returns the number of remaining items to be synced.

The following example demonstrates how to synchronize a network with the synchronization options
set in the <UCPTannotation> element:
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_Command_Invoke" Command="Syncronize">
 <UCPTname>Net</UCPTname>
 <UCPTannotation>;action="SyncAll";clearHiddenFbs="true";sync="restart"</UCPTannotation>
 </Item>
 </iLonItem>
</InvokeCmd>

i.LON SmartServer 2.0 Programmer’s Reference 14-9

14.1.3.2 Issuing Network Scan Commands to Discover Devices
You can use the InvokeCmd function to discover all the uncommissioned devices on a LONWORKS
network. When you send this command, a message is broadcast to the devices on the network that
triggers the devices to identify themselves by their Neuron IDs.

The network scan automatically generates a Data Log named “<network>/#DeviceDiscovery” that
includes entries for each uncommissioned device discovered by the network scan. Each entry includes
a Net/VirtCh/iLON System/VirtFb/LonDiscoveryMessage data point that is set to the program ID
and Neuron ID of a discovered device. You can periodically read the data log for uncommissioned
devices while the network scan is ongoing based on the log’s <UCPTlastUpdate> property, or you can
wait until the network scan has been completed to read the uncommissioned devices in the data log all
at once. See Processing Discovered Devices later in this section for more information.

Note: Section 21.1.6, Discovering and Installing External Devices in Visual C# .NET, includes a C#
programming example demonstrating how to discover and install uncommissioned LONWORKS
devices. Section 21.2.6, Discovering and Installing External Devices in Visual Basic.NET, describes
how to do this in Visual Basic. Section 22.3.4, Discovering and Installing External Devices in JAVA,
describes how to do this in JAVA.

The following example demonstrates how to scan a LONWORKS network for uncommissioned devices:
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Network_ScanCommand_Invoke" ScanCommand="SetScan">
 <UCPTname>Net</UCPTname>
 <Command>
 <UCPTcommand>ScanOnce</UCPTcommand>
 <UCPTstatus xsi:type="string" LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 <UCPTscan LonFormat="UCPTscan">NST_ILON_DOMAIN</UCPTscan>
 </Item>
 </iLonItem>
</InvokeCmd>

The input parameters you supply to this function include one <Item> element with a
LON_Network_Scan_Command_Invoke xsi type and a LONNetworkEScanCommand attribute that is
set to “SetScan”. The <Item> element must include the <UCPTname> of the network being scanned; a
<UCPTcommand> that is set to “ScanOnce” to scan the network once; and a <UCPTscan> property
that is set to “NST_ILON_DOMAIN”. The following table lists the required properties of the <Item>
element.

Option Description

<UCPTname> The name of the LONWORKS to be scanned for uncommissioned
devices.

<Command> A LONNetworkEScanCommand type that requires the
following two properties:

<UCPTcommand>. The network scan command. Set this
property to ScanOnce, so that the SmartServer scans the
network once.

• <UCPTstatus>. An E_LonString type that indicates the
status of the network scan command. When issuing a
network scan command, you must set this property to
STATUS_REQUEST.

This property may be one of the following values:

STATUS_REQUEST

i.LON SmartServer 2.0 Programmer’s Reference 14-10

Option Description

STATUS_CANCEL
STATUS_PENDING
STATUS_DONE
STATUS_FAIL
STATUS_INVOKE

When this property is STATUS_PENDING, the network
scan is ongoing. When this property is STATUS_DONE,
the network scan is finished. See Checking the Network
Scan Status for more information.

<UCPTscan> An E_LonString type with a LonFormat attribute that must be
set to <”UCPTscan”>. This property must be set to
NST_ILON_DOMAIN.

14.1.3.2.1 Checking the Network Scan Status
After you initiate the network scan, you can check its status to see whether it is still being performed or
it has been completed. The following example demonstrates how to check the status of a network
scan:
<iLonItem>
 <Item xsi:type="LON_Network_ScanCommand_Invoke" ScanCommand="GetScan">
 <UCPTname>Net</UCPTname>
 </Item>
</iLonItem>

To check the network scan status, you supply the InvokeCmd function one <Item> element with a
LON_Network_Scan_Command_Invoke xsi type and a LONNetworkEScanCommand attribute that is
set to “GetScan”. The <Item> element only requires the <UCPTname> of the network being scanned.

The InvokeCmd function returns the status of the network scan.
<iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Network_ScanCommand_Invoke" ScanCommand="GetScan">
 <UCPTname>Net</UCPTname>
 <Command>
 <UCPTcommand>ScanOnce</UCPTcommand>
 <UCPTlastUpdate>2009-12-09T17:52:19.570-08:00</UCPTlastUpdate>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_DONE</UCPTstatus>
 </Command>
 <UCPTscan>NST_ILON_DOMAIN</UCPTscan>
 <UCPTunCfgOnly>0</UCPTunCfgOnly>
 </Item>
</iLonItem>

14.1.3.2.2 Processing Discovered Uncommissioned Devices
When you scan a network for uncommissioned devices, the SmartServer automatically generates a
Data Log named “<network>/#DeviceDiscovery” that includes entries for each uncommissioned
device discovered by the network scan. Each entry includes a Net/VirtCh/iLON
System/VirtFb/LonDiscoveryMessage data point that contains the program ID and Neuron ID of a
discovered device. You will need to parse the program ID and Neuron ID from each data point, get
the device template for each device based off the program ID, and then create and install the devices.
The C#, VB, and JAVA programming example for discovering and installing uncommissioned devices
in Chapters 21 and 22 demonstrate how to do this.

You can periodically read the data log for uncommissioned devices while the network scan is ongoing.
This approach lets you begin processing uncommissioned devices without waiting; however, it is more
complex. This is because you need to process the <UCPTtimeStamp> in the HEADER of the last

i.LON SmartServer 2.0 Programmer’s Reference 14-11

Read response and store it in the <UCPTlastUpdate> property of the subsequent Read request to avoid
missing entries or receiving duplicate entries. This is the approach used by the SmartServer Web
interface.

Alternatively, you can wait until the network scan has been completed to read the uncommissioned
devices in the data log all at once. This approach requires you to wait for the scan to be completed, but
is much simpler to program. The C#, VB, and JAVA programming example for discovering and
installing uncommissioned devices in Chapters 21 and 22 use this approach.

14.1.4 Using the Delete Function on a LONWORKS Network

You can use the Delete function to delete a LONWORKS network in an LNS network database via the
LNS Proxy Web service. You cannot delete a network via the SmartServer Web service as the current
network is registered to the LON driver. To delete a LONWORKS network in an LNS network
database, you provide the database’s <UCPTname> property in the Delete Request as demonstrated in
the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>MyOldNetwork</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname> MyOldNetwork</UCPTname>
 </Item>
 </iLonItem>

14.2 LONWORKS Channels
The following section describes how to use the List, Get, Set, and Delete functions on LONWORKS
channels.

14.2.1 Using the List Function on a LONWORKS Channel

You can use the List function to retrieve a list of LONWORKS channels on the SmartServer or to
retrieve a list of LONWORKS channels in a specific LNS network database via the LNS Proxy Web
service. The List function takes an <iLonItem> element that has an xSelect statement with a
LON_Channel_Cfg type as its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="LON_Channel_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/LON</UCPTname>
 <UCPTannotation>TP;xsi:type="LON_Channel_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>

i.LON SmartServer 2.0 Programmer’s Reference 14-12

 <Item>
 <UCPTname>Net/LON IP</UCPTname>
 <UCPTannotation>IP;xsi:type="LON_Channel_Cfg"</UCPTannotation>
 <UCPThidden>1</UCPThidden>
 </Item>
 </iLonItem>
</List>

The List function returns a list of <Item> elements for each LONWORKS channel defined on the
SmartServer or each LONWORKS channel defined in a specific LNS network database.

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each channel included in the list. The next section
describes the properties included in each of these elements.

14.2.2 Using the Get Function on a LONWORKS Channel

You can use the Get function to retrieve the configuration of a LONWORKS channel defined on the
SmartServer or a LONWORKS channel in a specific LNS network database. The input parameters you
supply to this function will include one or more <Item> elements with a LON_Channel_Cfg type.
Each <Item> element will include the <UCPTname> of each channel whose configuration is to be
returned by this function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Channel_Cfg">
 <UCPTname>Net/LON</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Channel_Cfg">
 <UCPTname>Net/LON</UCPTname>
 <UCPTannotation>TP;xsi:type="LON_Channel_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-20T17:42:54.903-07:00</UCPTlastUpdate>
 <UCPTuri>LON_Channel_Cfg.htm</UCPTuri>
 <UCPThandle>0</UCPThandle>
 <UCPTchannelType LonFormat="UCPTchannelType">CT_LON</UCPTchannelType>
 <UCPTtransceiverId LonFormat="UCPTtransceiverId">TP_FT_10</UCPTtransceiverId>
 <UCPTtransmitTimer LonFormat="UCPTtransmitTimer">TT_96</UCPTtransmitTimer>
 <UCPTretryCount>3</UCPTretryCount>
 <UCPTmaxPriority>4</UCPTmaxPriority>
 <UCPTchannelMode LonFormat="UCPTchannelMode">AM_ONLINE</UCPTchannelMode>
 <UCPTdynamic LonFormat="UCPTdynamic">DDT_STATIC</UCPTdynamic>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each channel referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the channel is added to the SmartServer or LNS network database. You can write to these
channel properties with the Set function. The following table describes these properties.

Property Description

<UCPTname> The name of the channel in the following format:
<network/channel>. You can rename a LONWORKS channel by
providing its <UCPThandle> and specifying the new

i.LON SmartServer 2.0 Programmer’s Reference 14-13

Property Description

<UCPTname> property to which the channel is to be renamed.

<UCPTannotation> The type of channel and its xsi type, which is
LON_Channel_Cfg. This determines the icon used to represent
the channel in the SmartServer Web interface.

<UCPThidden> A flag indicating whether the channel is hidden or shown in the
navigation pane on the left side of the SmartServer Web
interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
channel was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour
clock, therefore; an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the channel. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the LONWORKS channel. This property is
always LON_Channel_Cfg.htm.

<UCPThandle> The handle of the channel assigned by the LNS server. When
you use the Set function to modify the configuration of an
existing channel, you must specify the channel’s handle. If you
do not specify the handle, a new channel is created. You
cannot use the Set function to modify the handle assigned to the
channel.

<UCPTchannelType> The channel type. This value is typically CT_LON.

This value must be set to CT_LON_REPEATING if the channel

i.LON SmartServer 2.0 Programmer’s Reference 14-14

Property Description

is a power line channel that uses the Enhanced LonTalk® Proxy
Protocol to transmit network messages from the SmartServer to
the devices attached to the channel. For more information on
the Enhanced LonTalk Proxy Protocol and power line
repeating, see the i.LON SmartServer Power Line Repeating
Network Management Guide.

<UCPTtransceiverId> The transceiver ID of the channel. To create a new channel with
the Set function, you must include this property. This property
may be one of the following values:

IP_10L
IP_10W
TP_FT_10
TP_XF_78
TP_XF_1250
PL_20C
PL_20N
PL_20C_LOW
PL_20A
PL_20A_LOW
TP_RS485_39
TP_RS485_78
TP_RS485_625
TP_RS485_1250
RF_10
CUSTOM

<UCPTtransmitTimer> The interval (in milliseconds) network messages wait for
confirmation before being re-sent over the network. The default
value is TT_96 for FT-10 channels and TT_512 for PL
channels.

The default interval is calculated based on the network topology,
specifically the transmission time for each channel that the
message must cross. By default, the transmission time for each
channel is determined by its type.

<UCPTretryCount> The number of times a network message is re-sent when no
confirmation is received. The default value is 3 for FT-10
channels, and it is 5 for PL-20 channels.

The default retry count, which can range from 0 to 15 attempts,
is calculated based on network topology. Typically, the default
retry count is set to 3 attempts; however, if a message must pass
through certain channel types, the default may be increased. For
example, if a message must cross a PL-20 channel, the default
retry count would be increased to 5 attempts.

<UCPTmaxPriority> The maximum number of priority slots available on the channel.
Priority slots may be used by the critical devices on a network
that use priority messaging.

With priority messaging, the device with the highest priority
sends its packet before any other devices can send theirs. This

i.LON SmartServer 2.0 Programmer’s Reference 14-15

Property Description

is accomplished by assigning each priority device a time
(priority) slot where it can transmit before all other lower
priority and non-priority devices. These time slots consume
network bandwidth; therefore, priority messaging should only
be used for critical devices and data.

<UCPTdelay> The expected longest round-trip time (in milliseconds) of a
message (for example, message and response). This option
allows expected traffic patterns to be input into the system so
that the timer calculations can be affected accordingly.

The default round-trip delay is two packet cycles based on the
average packet size.

This property is optional. If you do not specify this property in
a Set function, the current value stored in it is erased. You must
specify this property even if you are not changing it in order to
preserve the current value.

<UCPTchannelMode> This property is always set to AM_ONLINE.

<UCPTminOfflineTime> If a network message fails, a data point and its device are
marked offline. You can specify the <UCPTminOfflineTime>
property so that all the data points on the offline device with
pending network messages (read/write requests, polls, or
heartbeats) are marked offline and network messages are not
sent to them. This ensures that network performance is not
impacted by an offline device.

You can set the minimum period of time (in seconds) that the
SmartServer waits before transmitting network messages to
offline data points. During this period, an offline device
transmits an OFFLINE status in response to data point requests.
Once <UCPTminOfflineTime> elapses, the SmartServer sends a
read/write request to one offline data point. If the read/write
request succeeds, the data point and its device are marked
online, and all cached read/write requests for the offline data
points on the device are executed.

This property is optional. If you do not specify this property in
a Set function, the current value stored in it is erased. You must
specify this property even if you are not changing it in order to
preserve the current value.

<UCPTofflineIhbD> You can set the period of time (in seconds) that a device
executes data point requests from the SmartServer after one
request fails. Once this timer expires, the device transmits an
OFFLINE status in response to data point requests.

This property is optional. If you do not specify this property in
a Set function, the current value stored in it is erased. You must
specify this property even if you are not changing it in order to
preserve the current value.

<UCPTdynamic> Indicates whether the channel is static (DDT_STATIC) or
dynamic (DDT_DYNAMIC). All channels in the LNS Proxy

i.LON SmartServer 2.0 Programmer’s Reference 14-16

Property Description

Web service should be set to DDT_DYNAMIC. You cannot
use the Set function to modify this property

14.2.3 Using the Set Function on a LONWORKS Channel

You can use the Set function to overwrite the configuration of a channel, or to create a new channel.
The input parameters you supply to the function will include one or more <Item> elements. Each
<Item> element includes a <UCPTname> property that specifies a unique channel to be created or
modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) channel. This set of properties is the same whether you are creating a new channel or
modifying an existing channel.

• If you are creating a new channel, you only need to specify the <UCPTtransceiverId> property; all
other properties are optional.

• If you are modifying an existing channel, you must specify the channel’s <UCPThandle>. If you
do not specify the handle, a new channel is created. All other properties must be filled; otherwise
the values stored in them are erased. The previous section, Using the Get Function on a
LONWORKS Channel, details the properties you can include in the Set function.

You can set multiple channels with a single Set message. However, you should not attempt to create or
write to more than 100 channels with a single call to the Set function.

Request (create a new LONWORKS channel on the SmartServer)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Channel_Cfg">
 <UCPTname>MyNewNetwork/myNewChannel</UCPTname>
 <UCPTannotation>TP</UCPTannotation>
 <UCPTtransceiverId LonFormat="UCPTtransceiverId">TP_FT_10</UCPTtransceiverId>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>MyNewNetwork/myNewChannel</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

14.2.4 Using the Delete Function on a LONWORKS Channel

You can use the Delete function to delete a LONWORKS channel on the SmartServer or a channel in an
LNS network database via the LNS Proxy Web service. The Delete function takes an <Item> element
with a LON_Channel_Cfg type as its input. The <Item> element only needs to include the channel’s
<UCPTname> property in the Delete Request as demonstrated in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Channel_Cfg">
 <UCPTname>MyOldNetwork/MyOldChannel</UCPTname>
 </Item>
 </iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 14-17

</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>MyOldNetwork/MyOldChannel</UCPTname>
 </Item>
 </iLonItem>

14.3 LONWORKS Devices
The following section describes how to use the List, Get, Set, and Delete functions on LONWORKS
devices.

Note: Section 21.1.4, Creating and Installing a LonWorks Device in Visual Basic.NET, includes a C#
programming example demonstrating how to use the LONWORKS Device SOAP interface to create and
install LONWORKS devices. Section 21.2.4, Creating and Installing a LonWorks Device in Visual
Basic.NET, includes a Visual Basic example demonstrating how to do this.

Section 22.3.3, Creating and Installing a LonWorks Device in Java, includes a Java programming
example demonstrating how to create and install external LONWORKS devices.

14.3.1 Using the List Function on a LONWORKS Device

You can use the List function to retrieve a list of LONWORKS devices on the SmartServer or to retrieve
a list of LONWORKS devices in a specific LNS network database via the LNS Proxy Web service. The
List function takes an <iLonItem> element that has an xSelect statement with a LON_Device_Cfg type
as its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="LON_Device_Cfg"]</xSelect>
 </iLonItem>
</List>

Alternatively, you can specify one or more device properties in the xSelect statement to filter the items
returned by the List function, including the <UCPTname>, <UCPTitemStatus>, and
<UCPTlastUpdate> properties.

Request (return all devices on a specific LONWORKS channel)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect> //Item[@xsi:type="LON_Device_Cfg"][starts-with(UCPTname,"MyNetwork/Channel 1")]
</xSelect>

 </iLonItem>
</List>

Request (return all devices that are uncommissioned)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect> //Item[@xsi:type="LON_Device_Cfg"] [UCPTitemStatus="IS_UNCONFIGURED"]
 </xSelect>
 </iLonItem>
</List>

Request (return all devices that were updated after a specific time)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect> //Item[@xsi:type="LON_Device_Cfg"] [UCPTlastUpdate> "2008-03-26T16:25:00"]
</xSelect>

 </iLonItem>
</List>

i.LON SmartServer 2.0 Programmer’s Reference 14-18

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/LON/iLON App</UCPTname>
 <UCPTannotation>900001012881040c;xsi:type="LON_Device_Cfg";local</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/AI-1</UCPTname>
 <UCPTannotation>App;xsi:type="LON_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/AO-1</UCPTname>
 <UCPTannotation>App;xsi:type="LON_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPTannotation>App;xsi:type="LON_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/LON/DIO-2</UCPTname>
 <UCPTannotation>App;xsi:type="LON_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each device included in the list. The next section
describes the properties included in each of these elements.

i.LON SmartServer 2.0 Programmer’s Reference 14-19

14.3.2 Using the Get Function on a LONWORKS Device

You can use the Get function to retrieve the configuration of a LONWORKS device defined on the
SmartServer or in a specific LNS network database. The input parameters you supply to this function
will include one or more <Item> elements with a LON_Device_Cfg type. Each <Item> element will
include the <UCPTname> of each device whose configuration is to be returned by this function, as
shown in the example below.

Alternatively, you can specify one or more device properties in the xSelect statement to filter the items
returned by the Get function, including the <UCPTname> to filter devices based on their parent
channel; <UCPThidden> to filter devices based on whether they are hidden or shown in the
SmartServer Web interface; <UCPTlocal> to filter devices based on whether they are external or
internal to the SmartServer; <UCPTitemStatus> to filter devices based on whether they are
uncommissioned, offline, or out of sync with an LNS network database; and <UCPTprogramID> to
filter devices based on the manufacturer.

Request (return a specific device)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 </Item>
 </iLonItem>
</Get>

Request (use an xSelect statement return all the devices on a specific LONWORKS channel)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect> //Item[@xsi:type="LON_Device_Cfg"][starts-with(UCPTname,"Net/LON")]</xSelect>
 </iLonItem>
</Get>

Request (use an xSelect statement return all internal devices on the SmartServer)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>
 //Item[@xsi:type="LON_Device_Cfg"] [UCPTlocal="1"]
 </xSelect>
 </iLonItem>
</Get>

Request (use an xSelect statement return all external devices that are currently shown in the
SmartServer Web interface)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>
 //Item[@xsi:type="LON_Device_Cfg"][UCPTlocal="0"][UCPThidden="0"]
 </xSelect>
 </iLonItem>
</Get>

Request (use an xSelect statement return any devices that are out of sync with an LNS network
database)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>
 //Item[@xsi:type="LON_Device_Cfg"] [UCPTitemStatus="IS_NOTSYNCED”]
 </xSelect>
 </iLonItem>
</Get>

Request (use an xSelect statement return any devices that are uncommissioned)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 14-20

 <xSelect>
 //Item[@xsi:type="LON_Device_Cfg"] [UCPTitemStatus="IS_UNCONFIGURED”]
 </xSelect>
 </iLonItem>
</Get>

Request (use an xSelect statement return any devices that are offline)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>
 //Item[@xsi:type="LON_Device_Cfg"] [UCPTitemStatus="IS_APP_STOPPED”]
 </xSelect>
 </iLonItem>
</Get>

Request (use an xSelect statement to return all devices from a specific manufacturer using the
program ID)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>
 //Item[@xsi:type="LON_Device_Cfg"] [UCPTprogramId="80000105288a0403"] </xSelect>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPTannotation>App;xsi:type="LON_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-26T17:09:46.160-07:00</UCPTlastUpdate>
 <UCPTuri>LON_Device_Cfg.htm</UCPTuri>
 <UCPThandle>5</UCPThandle>
 <UCPTuniqueId>00a145791500</UCPTuniqueId>
 <UCPTprogramId>80000105288a0403</UCPTprogramId>
 <UCPTgeoPosition>1</UCPTgeoPosition>
 <UCPTlocationId>000000000000</UCPTlocationId>
 <UCPTmaxDynamicFb>0</UCPTmaxDynamicFb>
 <UCPTmaxDynamicDp>0</UCPTmaxDynamicDp>
 <UCPTmaxTxTransactions>0</UCPTmaxTxTransactions>
 <UCPTmaxTxLifetime>0</UCPTmaxTxLifetime>
 <UCPTlocal>0</UCPTlocal>
 <UCPTapplicationStatus LonFormat="UCPTapplicationStatus">APP_RUNNING</UCPTapplicationStatus>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>
 <UCPTurlImage />

<UCPTurlTemplate>/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.xif</UCPTurlTemplat
e>

 <UCPTdynamic LonFormat="UCPTdynamic">DDT_DYNAMIC</UCPTdynamic>
 <Address>
 <UCPTdomainIndex>0</UCPTdomainIndex>
 <UCPTdomainLength>6</UCPTdomainLength>
 <UCPTdomainKey>7DEF1857C766</UCPTdomainKey>
 <UCPTsubnet>1</UCPTsubnet>
 <UCPTnodeId>5</UCPTnodeId>
 </Address>
 <Address>
 <UCPTdomainIndex>1</UCPTdomainIndex>
 <UCPTdomainLength>0</UCPTdomainLength>
 <UCPTdomainKey />
 <UCPTsubnet>0</UCPTsubnet>
 <UCPTnodeId>0</UCPTnodeId>
 </Address>
 <Command>
 <UCPTcommand>Wink</UCPTcommand>
 <UCPTlastUpdate>2008-03-26T17:09:46.160-07:00</UCPTlastUpdate>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_DONE</UCPTstatus>
 </Command>
 </Item>

i.LON SmartServer 2.0 Programmer’s Reference 14-21

 </iLonItem>
</Get>

The Get function returns an <Item> element for each device referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the device is added to the SmartServer or LNS network database. You can write to these device
properties with the Set function. The following table describes these properties.

Property Description

<UCPTname> The name of the device in the following format:
<network/channel/device>. You can rename a LONWORKS
device by providing its <UCPThandle> and specifying the new
<UCPTname> property to which the device is to be renamed.

<UCPTannotation> The type of device (App by default) and its xsi type, which is
LON_Device_Cfg. This determines the icon used to represent
the device in the SmartServer Web interface.

You can use custom icons (.gif images) to represent your
company’s devices in the SmartServer Web interface. If a
custom icon is being used for a device, this property is set to
programID.

To use a custom device icon, upload the programID.gif file for
your custom device icon to both the root/Web/images/tree and
the root/Web/images/app folders on the SmartServer flash disk.
The root/web/images/tree stores the icons shown in the
SmartServer tree. The root/web/images/app folder stores the
icons shown in the upper left-hand corner of an object’s
configuration and driver Web pages.

<UCPThidden> A flag indicating whether the device is hidden or shown in the
navigation pane on the left side of the SmartServer Web
interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTitemStatus> This property only appears if the device has one of the following
exceptions:

• IS_UNCONFIGURED. The device is uncommissioned.

• IS_APP_STOPPED. The device application is offline.

• IS_DELETED. The device has been deleted.

• IS_NOTSYNCED. The device is out of sync with the LNS
network database.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
device was updated. This timestamp uses the ISO 8601 format,
which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss

i.LON SmartServer 2.0 Programmer’s Reference 14-22

Property Description

represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the device. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the LONWORKS device. This property is
always LON_Device_Cfg.htm.

<UCPThandle> The handle of the device assigned by the LNS server. When
you use the Set function to modify the configuration of an
existing device, you must specify the device’s handle. If you do
not specify the handle, a new device is created. You cannot use
the Set function to modify the handle assigned to the device.

<UCPTuniqueId> The current Neuron ID of the device. The Neuron ID is a
unique 48-bit number that is burnt into the Neuron chip of an
external device or assigned to one of the SmartServer's 16
internal devices.

<UCPTprogramId> The program ID of the device as a set of hex digits. The
program ID uniquely defines the static portion of the device
interface. It is hard coded into an external device (in the
EEPROM of the device’s Neuron Chip), and it is assigned the
16 internal devices on the SmartServer. You should not change
this property for external or internal devices.

<UCPTgeoPosition> The waypoint of the device. A waypoint is a set of coordinates
(latitude and longitude) that identifies the device’s location in
physical space. Typically, waypoints are acquired with a GPS
and then uploaded to the SmartServer using SOAP/HTTP
messages over the console port.

<UCPTlocationId> The 6-byte hexadecimal location string that documents the
device’s location within the network.

<UCPTmaxDynamicFb> The maximum number of dynamic functional blocks that you
can add to the device.

A dynamic functional block is a functional block that is not

i.LON SmartServer 2.0 Programmer’s Reference 14-23

Property Description

pre-loaded on a device. Devices that support dynamic
functional blocks include controllers that do not have a static
interface. For example, the v40 SmartServer XIF, which has a
dynamic interface, supports a maximum of 500 dynamic
functional blocks.

<UCPTmaxDynamicDp> The maximum number of dynamic network variables/data
points that you can add to the device.

A dynamic network variable/data point can be added to a
functional block after the device has been commissioned.
Devices that support dynamic network variables/data points
include controllers and gateways with dynamic interfaces. For
example, the v40 SmartServer XIF, which has a dynamic
interface, supports a maximum of 3000 dynamic network
variables/data points.

<UCPTmaxTxTransactions> The maximum number of simultaneous transactions supported
by the device application. If the device application exceeds this
maximum value, then any attempt to begin a new transaction
will fail.

<UCPTmaxTxLifetime> Displays the timeout value (in milliseconds) for a transaction.
This value represents the longest period of time a transaction
can be active.

<UCPTlocal> A flag indicating whether the device is internal or external to the
SmartServer. This property may be one of the following values:

0 – External. An application device that is physically installed
on the network.

1 – Internal. An emulation of a device that resides on the
SmartServer and encapsulates the functional blocks and data
points within an XIF or template. The SmartServer contains
16 internal devices.

One of these internal devices is the SmartServer automated
systems device (the iLON App device), which contains the
SmartServer's built-in embedded applications.

Ten of the internal devices are reserved for the custom
embedded applications (called Freely Programmable
Modules [FPMs]) that you can write and deploy on your
SmartServer using the full version of i.LON FPM
Programming tools.

The other five internal devices on the SmartServer consist of
the iLON System device in which all the virtual data points
(formerly referred to as NVVs) are stored, the IP-852 router,
the local network interface, the RNI, and the LonTalk device.

<UCPTapplicationStatus>

Indicates the current device configuration, which can be one of
the following values:

• AP_NUL. Never reached.

i.LON SmartServer 2.0 Programmer’s Reference 14-24

Property Description

• APP_RUNNING. Online.

• APP_STOPPED. Offline.

<UCPTcommissionStatus> Indicates the current device configuration, which can be one of
the following values:

• COMSTATE_NUL. Never reached.

• COMMISSIONED. Configured.

• UNCOMMISSIONED. Unconfigured.

<UCPTurlImage> The full path on the SmartServer flash disk of an application
image to be downloaded to the device by the SmartServer. You
can use the SmartServer to upgrade a Neuron-hosted device that
has writeable application memory (EEPROM or flash). An
upgrade may be needed to improve the device’s capabilities or
to repair a damaged device application.

<UCPTurlTemplate> The full path on the SmartServer flash disk of the external
interface (.XIF or .XML file) loaded on the SmartServer for the
device. The external interface is the logical interface to a
device. A device's external interface specifies the number and
types of functional blocks, and the number, types, directions,
and connection attributes of data points.

The program ID field is used as the key to identify each external
interface. Each program ID uniquely defines the static portion
of the interface. However, two devices with identical static
portions may differ if dynamic data points are added or
removed, or if the types of changeable data points are modified.
Thus it is possible to have devices with the same program ID but
different external interfaces.

<UCPTdynamic> Indicates whether the device is static (DDT_STATIC) or
dynamic (DDT_DYNAMIC). All devices in the LNS Proxy
Web service should be set to DDT_DYNAMIC. You cannot
use the Set function to modify this property

<Address>

Each device contains a set of <Address> elements listing the
domainKey, subnet, and node of their primary and secondary
addresses. A device may have a secondary address if it is a
member of another network.

The domainKey is the domain ID of the network. The
subnet/node ID is used for addressing messages. The subnet ID
identifies the channel (subnet) on which the device resides, and
the node ID identifies the device on that channel.

The subnet/node IDs begin with an address of 1/1 and increase
sequentially to 1/2, 1/3, and so on for devices on the same
channel (subnet). For a second channel created on the network,
the subnet/node IDs would begin with an address of 2/1 and
increase sequentially to 2/2, 2/3, and so on. This property
contains the following child elements

i.LON SmartServer 2.0 Programmer’s Reference 14-25

Property Description

<Command>

Lists the network management and debugging commands issued
for the device and their statuses.

You can issue network management commands
(ChangeApplicationStatus, ChangeCommissionStatus,
ImageDownload, GetTemplate, Wink, and FetchProgID) in a
Set function.

You can issue debugging commands (QueryStatus and
ClearStatus) with the Invoke_Cmd function. Note that these
commands require the Item type of
LON_Device_Command_Invoke.

To issue a network management or debugging command, you
provide the desired command, any required properties as
described in this table, and setting the <UCPTstatus> property
to STATUS_REQUEST.

Each <Command> object contains the following properties:

• <UCPTcommand>. The network management or
debugging command issued. See Issuing Network
Management Commands and Issuing Debugging
Commands for more information.

• <UCPTlastUpdate time>. Indicates when the status of the
command was last changed.

• <UCPTstatus>. The status of the network management
command. When issuing a network management or
debugging command, you must set this property to
STATUS_REQUEST. This property may be one of the
following values:

• STATUS_REQUEST

• STATUS_CANCEL

• STATUS_PENDING

• STATUS_DONE

• STATUS_FAIL

• STATUS_INVOKE

i.LON SmartServer 2.0 Programmer’s Reference 14-26

14.3.3 Using the Set Function on a LONWORKS Device

You can use the Set function to overwrite the configuration of a device, or to create a new device. The
input parameters you supply to the function will include one or more <Item> elements. Each <Item>
element includes a <UCPTname> property that specifies a unique device to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) device. This set of properties is the same whether you are creating a new device or
modifying an existing device.

• If you are creating a new device, you only need to specify the <UCPTtransceiverId> property; all
other properties are optional. You can commission the device and set the device application
online by providing the <UCPTcommissionStatus> and <UCPTapplicationStatus> properties and
setting them to COMMISSIONED and APP_RUNNING respectively. Otherwise, the device will
be decommissioned and/or set offline upon creation.

• If you are modifying an existing device, you must specify the <UCPThandle> property. In
addition, all other properties should be filled; otherwise the values stored in them are erased. The
previous section, Using the Get Function on a LONWORKS Device, details the properties you can
include in the Set function.

You can set multiple devices with a single Set message. However, you should not attempt to create or
write to more than 100 devices with a single call to the Set function. The following example
demonstrates how to create a new LONWORKS device. Note that in this example, the device interface
(XIF) file is also activated. This automatically creates the device’s functional blocks and data points
without having to explicitly add them using a Set command. See Issuing Network Management
Commands for more information on using the GetTemplate network management command.

Request (create a new LONWORKS device on the SmartServer and activate the device interface)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-2</UCPTname>
 <UCPTuniqueId>00a145784600</UCPTuniqueId>
 <UCPTprogramId>80000105288a0403</UCPTprogramId>
 <UCPTapplicationStatus LonFormat="UCPTapplicationStatus">APP_RUNNING</UCPTapplicationStatus>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>

<UCPTurlTemplate>/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.xif</UCPTurlTemplat
e>

 <Command>
 <UCPTcommand>GetTemplate</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/LON/DIO-2</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

14.3.3.1 Issuing Network Management Commands
You can use the Set function to issue network management commands on LONWORKS devices. You
can use network management commands to commission/decommission devices, set device
applications online/offline, upgrade devices by downloading application images files (.apb extension)
to them, activate device templates, reset devices, wink devices, and fetch the program IDs of devices.

i.LON SmartServer 2.0 Programmer’s Reference 14-27

To issue a network management command, you need to provide one or more <Item> elements with a
LON_Device_Cfg type. Each <Item> element needs to include the <UCPTname>, <UCPThandle>,
<UCPTuniqueId>, and <UCPTprogramId> properties of the device upon which network management
commands are to be issued. In addition, you should provide any other properties whose values are to
be preserved (if you do not provide a property, the current value stored in it is erased). Particularly,
you should provide the <UCPTcommissionStatus and <UCPTapplicationStatus> properties when
appropriate; otherwise, the device may be decommissioned and set offline. Specific network
management commands require additional properties as described in the following sections that
describe how to use each command.

Note: Section 21.1.5, Commissioning External Devices in Visual Basic.NET, includes a C#
programming example demonstrating how to issue network management commands in the LONWORKS
Device SOAP interface in order to commission unconfigured external LONWORKS devices. Section
21.2.5, Commissioning External Devices in Visual Basic.NET, includes a Visual Basic example
demonstrating how to do this.

ChangeApplicationStatus

You can use this command to set the device application online or offline. This command requires the
desired <UCPTapplicationStatus> property, which may be APP_RUNNING (online) or
APP_STOPPED (offline).

If you are setting a device application offline, you should still provide the <UCPTcommissionStatus>
property and set it to COMMISSIONED; otherwise, the commission status will be changed to
COMSTATE_NUL (never reached) and the device is decommissioned. The following example
demonstrates how to set a device application offline.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPThandle>5</UCPThandle>
 <UCPTuniqueId>00a145791500</UCPTuniqueId>
 <UCPTprogramId>80000105288a0403</UCPTprogramId>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>
 <UCPTapplicationStatus>APP_STOPPED</UCPTapplicationStatus>
 <Command>
 <UCPTcommand>ChangeApplicationStatus</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>
ChangeCommissionStatus

You can use this command to commission or decommission a device. If you are commissioning a
device, you should also set the device application online using the ChangeApplicationStatus command.
If you are decommissioning a device, you need to provide the <UCPTcommissionStatus> property and
set it to DECOMMISSIONED. The following example demonstrates how to commission a device and
set the device application online.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPThandle>5</UCPThandle>
 <UCPTuniqueId>00a145791500</UCPTuniqueId>
 <UCPTprogramId>80000105288a0403</UCPTprogramId>
 <UCPTapplicationStatus>APP_RUNNING</UCPTapplicationStatus>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>
 <Command>
 <UCPTcommand>ChangeApplicationStatus</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 <Command>
 <UCPTcommand>ChangeCommissionStatus</UCPTcommand>

i.LON SmartServer 2.0 Programmer’s Reference 14-28

 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>

ImageDownload

You can use the ImageDownload command to download an application image file (.apb extension)
stored on the SmartServer flash disk to the device. When using the ImageDownload command, you
must specify the desired <UCPTurlImage> of the application image file to be downloaded to the
device. If the device interface of the device being loaded has changed, you can include the
<UCPTurlTemplate> property and set it to the full path of the external interface file (.XIF extension)
or device template (.XML extension) on the SmartServer flash disk, and then use the GetTemplate
command to activate the new device interface on the SmartServer. The following example
demonstrates how to download an application to a device and activate a new device interface file on
the SmartServer.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/AI-1</UCPTname>
 <UCPThandle>3</UCPThandle>
 <UCPTuniqueId>000256654500</UCPTuniqueId>
 <UCPTprogramId>80000105188a0403</UCPTprogramId>
 <UCPTapplicationStatus LonFormat="UCPTapplicationStatus">APP_RUNNING</UCPTapplicationStatus>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>
 <UCPTurlImage>/root/lonWorks/import/Echelon/LonPoint/Version3/ai-10v3.apb</UCPTurlImage>

<UCPTurlTemplate>/root/lonWorks/Import/Echelon/LonPoint/Version3/ai-10v3.xif</UCPTurlTemplate
>

 <Command>
 <UCPTcommand>ImageDownload</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUESTUCPTstatus>
 </Command>
 <Command>
 <UCPTcommand>GetTemplate</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>

GetTemplate

You can use the GetTemplate command to activate a new device interface on the SmartServer. When
using the GetTemplate command, you must specify the device’s <UCPTurlTemplate> property and set
it to the full path of the external interface file (.XIF extension) or device template (.XML extension) on
the SmartServer flash disk. The following example demonstrates how to activate a new device
interface file on the SmartServer.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/AI-1</UCPTname>
 <UCPThandle>3</UCPThandle>
 <UCPTuniqueId>000256654500</UCPTuniqueId>
 <UCPTprogramId>80000105188a0403</UCPTprogramId>
 <UCPTapplicationStatus LonFormat="UCPTapplicationStatus">APP_RUNNING</UCPTapplicationStatus>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>

<UCPTurlTemplate>/root/lonWorks/Import/Echelon/LonPoint/Version3/ai-10v3.xif</UCPTurlTemplate
>

 <Command>
 <UCPTcommand>GetTemplate</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>

i.LON SmartServer 2.0 Programmer’s Reference 14-29

Reset

You can use the Reset command to stop a device application, terminate all incoming and outgoing
messages, set all temporary settings to their initial values, and then restart the device application. The
following example demonstrates how to reset a device.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPThandle>5</UCPThandle>
 <UCPTuniqueId>00a145791500</UCPTuniqueId>
 <UCPTprogramId>80000105288a0403</UCPTprogramId>
 <UCPTapplicationStatus LonFormat="UCPTapplicationStatus">APP_RUNNING</UCPTapplicationStatus>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>
 <Command>
 <UCPTcommand>Reset</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>

Wink

You can use the Wink command to identify a LONWORKS device on the network and verify that it is
communicating properly. A device that supports the Wink command generates an
application-dependent audio or visual feedback such as a beep or a flashing service LED when winked.
When using the Wink command, you should provide the <UCPTcommissionStatus and
<UCPTapplicationStatus> properties; otherwise, the device will be decommissioned and set offline.
The following example demonstrates how to wink a device.
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPThandle>5</UCPThandle>
 <UCPTuniqueId>00a145791500</UCPTuniqueId>
 <UCPTprogramId>80000105288a0403</UCPTprogramId>
 <UCPTapplicationStatus LonFormat="UCPTapplicationStatus">APP_RUNNING</UCPTapplicationStatus>
 <UCPTcommissionStatus LonFormat="UCPTcommissionStatus">COMMISSIONED</UCPTcommissionStatus>
 <Command>
 <UCPTcommand>Wink</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>

FetchProgID

You can use the FetchProgID command to retrieves the <UCPTprogramId> property of the device.
Note that this command is not required when a network is synchronized with an LNS network
database. This is because the Get function automatically fetches the program ID, if needed. The
following example demonstrates how to retrieve the program ID of a device:
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPThandle>5</UCPThandle>
 <UCPTuniqueId>00a145791500</UCPTuniqueId>
 <Command>
 <UCPTcommand>FetchProgID</UCPTcommand>
 <UCPTstatus LonFormat="UCPTstatus">STATUS_REQUEST</UCPTstatus>
 </Command>
 </Item>
 </iLonItem>
</Set>

i.LON SmartServer 2.0 Programmer’s Reference 14-30

14.3.3.2 Issuing Debugging Commands
You can use the InvokeCmd function to issue debugging commands on LONWORKS devices. The
debugging commands consist of QueryStatus, ClearStatus, and SendServicePin. You can use the
QueryStatus debugging command to test the performance of a device and diagnose any problems. You
can use the ClearStatus debugging command to clear the device statistics returned by the QueryStatus
command. You can use the SendServicePin command to send a service pin message from one of the
16 internal devices stored on the SmartServer.

The input parameters you supply to this function will include one or more <Item> elements with a
LON_Device_Command_Invoke type and an attribute specifying the debugging command to be
performed on the device. Each <Item> element will include the <UCPTname> of the device upon
which a debugging command is to be issued.

QueryStatus

You can use the QueryStatus debugging command to test the performance of a device. The following
example demonstrates how to query a device:

Request
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Command_Invoke" Command="QueryStatus">
 <UCPTname>Net/LON/iLON App</UCPTname>
 </Item>
 </iLonItem>
</InvokeCmd>

Response
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Device_StatusData_InvokeResponse">
 <UCPTname>Net/LON/DIO-1</UCPTname>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-28T15:35:24.070-07:00</UCPTlastUpdate>
 <UCPTuniqueId>00a145791500</UCPTuniqueId>
 <UCPTtransmitErrors>0</UCPTtransmitErrors>
 <UCPTtransactionTimeouts>0</UCPTtransactionTimeouts>
 <UCPTrcvTransactionFull>0</UCPTrcvTransactionFull>
 <UCPTlostMessages>0</UCPTlostMessages>
 <UCPTmissedMessages>0</UCPTmissedMessages>
 <UCPTresetCause LonFormat="UCPTresetCause">DRC_SOFTWARE_RESET</UCPTresetCause>
 <UCPTversionNumber>100</UCPTversionNumber>
 <UCPTerrorLog LonFormat="UCPTerrorLog">DELT_NO_ERROR</UCPTerrorLog>
 <UCPTneuronModel LonFormat="UCPTneuronModel">MN_NEURON_3150</UCPTneuronModel>
 <UCPTonlineStatus LonFormat="UCPTonlineStatus">DST_CONFIGURED_ONLINE</UCPTonlineStatus>
 </Item>
 </iLonItem>
</InvokeCmd>

The QueryStatus command returns the following device statistics:

<UCPTname> The name of the device in the following format:
<network>/<channel>/<device>

<UCPTuniqueId> The Neuron ID of the device as a 12-digit hex string. The
Neuron ID is a unique 48-bit number burnt into the device’s
Neuron chip.

<UCPTtransmitErrors> Transmission errors typically indicate cyclical redundancy check
(CRC) errors. CRC errors are commonly caused by
electromagnetic interference (EMI) on the channel.

i.LON SmartServer 2.0 Programmer’s Reference 14-31

<UCPTtransactionTimeouts> Transaction timeouts occur when an acknowledged message
times out after the last retry without the receiving device sending
a confirmation that the message was delivered.

<UCPTrcvTransactionFull> Transaction full errors occur when the device’s transaction
database, which is used to detect duplicate message packets,
overflows. This may indicate excessive network traffic or
transaction timers that are set too high.

<UCPTlostMessages> Lost messages occur when a device’s application buffer
overflows. This may indicate excessive network traffic or a
busy device application. If the incoming message is too large
for the application buffer, an error is logged but the lost message
count is not incremented.

<UCPTmissedMessages> Missed messages occur when a device’s network buffer
overflows or network buffers are not large enough to accept all
packets on the channel, whether or not addressed to this device.

<UCPTresetCause> An error code that indicates the cause for the device’s most
recent reset. This property may be one of the following values:

• DRC_CLEARED

• DRC_POWER_UP

• DRC_EXTERNAL_RESET

• DRC_WATCHDOG_RESET

• DRC_SOFTWARE_RESET

<UCPTversionNumber> The firmware version used by the device hardware
<UCPTerrorLog> Indicates whether errors have been logged for the device. Check

the LonMaker Turbo Editions Help file to locate a description of
the error.

<UCPTneuronModel> Displays the model number of the device’s Neuron chip (3120®
or 3150®) or generic

<UCPTonlineStatus> Indicates the status of the device and the device application.
This property may be one of the following values:
• DST_UNCONFIGURED

• DST_APPLICATIONLESS

• DST_CONFIGURED_ONLINE

• DST_CONFIGURED_HARD_OFFLINE

• DST_UNCONFIGURED_OFFLINE

• DST_APPLICATIONLESS_OFFLINE

• DST_CONFIGURED_SOFT_OFFLINE

Non-zero values indicate that the device was unable to receive and/or respond to a message. Small
values are expected; rapidly increasing values may indicate a problem. If the device is consistently
reporting failures and new errors are being logged, the device may have a configuration problem or the
network may be overloaded.

ClearStatus

i.LON SmartServer 2.0 Programmer’s Reference 14-32

You can use the ClearStatus debugging command to clear the device statistics returned by the
QueryStatus command. The following example demonstrates how to use this command:
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Command_Invoke" Command="ClearStatus">
 <UCPTname>Net/LON/iLON App</UCPTname>
 </Item>
 </iLonItem>
</InvokeCmd>

SendServicePin

You can use the SendServicePin command to send a service pin message from one of the 16 internal
devices stored on the SmartServer. You can use this command to commission or re-commission an
internal device on the SmartServer, such as the automated systems device (i.LON App) or an FPM
application device, using an LNS application such as the LonMaker tool.

This command is useful because if you press the service pin on the SmartServer hardware when
commissioning an internal device, it sends service pin messages from three of the internal devices
defined on the SmartServer: i.LON App, the IP-852 router, and the SmartServer’s network interface
(i.LON NI). The following example demonstrates how to use this command on an internal
SmartServer device:
<InvokeCmd xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Command_Invoke" Command="SendServicePin">
 <UCPTname>Net/LON/HVAC FPM</UCPTname>
 </Item>
 </iLonItem>
</InvokeCmd>

14.3.4 Using the Delete Function on a LONWORKS Device

You can use the Delete function to delete a LONWORKS device on the SmartServer, or in an LNS
network database via the LNS Proxy Web service. The Delete function takes an <Item> element with
a LON_Device_Cfg type as its input. The <Item> element only needs to include the device’s
<UCPTname> property in the Delete Request as demonstrated in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Device_Cfg">
 <UCPTname>MyOldNetwork/MyOldChannel/MyOldDevice</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname> MyOldNetwork/MyOldChannel/MyOldDevice</UCPTname>
 </Item>
 </iLonItem>
</Delete>

14.4 Routers
You can use the List, Get, Set, and Delete functions on routers as described in the previous section,
LONWORKS Devices. Routers have the same properties as devices except for the following differences:

• A router has the xsi type LON_Device_Router_Cfg.

i.LON SmartServer 2.0 Programmer’s Reference 14-33

• The <UCPTannotation> property is Router.

• The <UCPTuri> property is LON_Device_Router_Cfg.htm.

Note that LON_Device_Router_Cfg has three additional properties:

<Device> The network path of the channel attached to the far side of the
router in the following format: <network>/<channel>/<router>.

<UCPTrouterClass> • This property specifies one of the following seven router
types:

• LCA_CONFIGURED_ROUTER. The router determines
which packets to forward based on internal routing tables.
These routing tables contain one entry for each subnet in
the application domain. Whenever a router receives a
packet, it examines the source and destination subnet ID to
determine whether to forward the packet. This is the
recommended type because it optimizes network traffic and
enables the channels on which devices are attached to be
determined automatically. Configured routers also support
the use of redundant routers (multiple routers connecting
two channels), which provide for redundant message paths
and greater system reliability.

• LCA_LEARNING_ROUTER. Like a configured router,
the router determines which packets to forward based on
internal routing tables. Learning routers, though, have their
routing tables stored in volatile memory; therefore, the
router forwards packets addressed to all subnets in the
application domain after being reset. Whenever a learning
router receives a packet from one of its channels, it uses the
source subnet ID to learn the network topology. It sets the
corresponding routing table entries to indicate that the
subnet in question is to be found in the direction from
which the packet was received. A learning router always
forwards all group-addressed messages.

• LCA_REPEATER. The router forwards all valid packets
received on one channel to the other channel. Subnets
cannot span non-permanent repeaters. You can use a
non-permanent repeater to maintain flexibility in order to
change the router type later. This is the default.

• LCA_BRIDGE. The router forwards all valid packets that
match the network domain. Subnets cannot span
non-permanent bridges. You can use a non-permanent
bridge to maintain flexibility in order to change the router
type later.

• LCA_PERMANENT_REPEATER. The router behaves
like a repeater, except that you cannot change the router
type after the router has been created. Subnets may span
permanent repeaters. You can use permanent repeaters to
preserve subnet IDs.

• LCA_PERMANENT_BRIDGE. The router behaves like a
bridge, except that you cannot change the router type after
the router has been created. Subnets may span permanent

i.LON SmartServer 2.0 Programmer’s Reference 14-34

bridges. You can use permanent bridges to preserve subnet
IDs.

• LCA_NUL. The SmartServer automatically select the
appropriate router type.

<UCPTport> The port on the SmartServer used for receiving messages from
the IP-852 Configuration Server. The default port is 1628.

14.5 Remote Network Interface
You can use the List, Get, Set, and Delete functions on a remote network interface (RNI) as described
in the previous section, LONWORKS Devices. An RNI has the same properties as devices except for the
following differences:

• An RNI has an xsi type of LON_Device_RNI_Cfg.

• The <UCPTannotation> property is RNI.

• The <UCPTuri> property is LON_Device_RNI_Cfg.htm.

Note that LON_Device_RNI_Cfg has three additional properties:

<UCPTport> The port on the SmartServer used to listen for LonTalk packets
when it is being used as an RNI. The default port is 1628.

<UCPTmaxRxTransactions> The maximum number of receive transactions that the RNI
application can receive at one time. This value may range from
1 to 32,768. The default value is 16. You can increase this
value if you observe buffer overflows. You can decrease this
value if you observe that the SmartServer's memory is low.

A receive transaction entry is required for any incoming
message which uses either repeating or acknowledged
messaging service (a receive transaction is not required for
messages using unacknowledged service). A receive transaction
entry is also required for each unique source address/destination
address/priority attribute.

Each receive transaction entry contains a current transaction
number. A message is considered to be a duplicate if its source
address, destination address, and priority attribute vector into an
existing receive transaction and the message's transaction
number matches the entry's transaction number.

Receive transaction entries are freed after the receive timer
expires. The receive timer duration is determined by the
destination device and varies as a function of the message
addressing mode. For group addressed messages, the receive
timer is determined by the address table. For Neuron ID
addressed messages, the receive timer is fixed at eight seconds.
For other addressing modes, the non-group receive timer in the
configuration data structure is used.

14.6 LONWORKS Functional Blocks
The following section describes how to use the List, Get, Set, and Delete functions on LONWORKS
functional blocks.

i.LON SmartServer 2.0 Programmer’s Reference 14-35

14.6.1 Using the List Function on a LONWORKS Functional Block

You can use the List function to retrieve a list of functional blocks on the SmartServer or to retrieve a
list of functional blocks in a specific LNS network database via the LNS Proxy Web service. The List
function takes an <iLonItem> element that has an xSelect statement with a LON_Fb_Cfg type as its
input, as shown in the example below.

Request (return all the functional blocks of all the devices on the SmartServer or in an LNS
network database)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="LON_Fb_Cfg"]</xSelect>
 </iLonItem>
</List>

Alternatively, you can filter the functional blocks returned by the List function to those on a specific
device by including the <UCPTname>of the parent device in the xSelect statement, or you can filter
functional blocks returned by using the <UCPTname>, <UCPTlastUpdate>, or the <UCPThidden>
properties of the functional block.

Request (return all the functional blocks of a specific device that were updated after a specific
time)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="LON_Fb_Cfg"][starts-with(UCPTname,"Building 2/Channel 1/DIO-5")]
 [UCPTlastUpdate>"2008-03-31T00:00:00"]
</xSelect>

 </iLonItem>
</List>

Request (return all the functional blocks of a specific type on all devices based on name)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="LON_Fb_Cfg"][contains(UCPTname,"Digital Output")]</xSelect>
 </iLonItem>
</List>

Request (use an xSelect statement return all functional blocks on a specific device that are
currently hidden in the SmartServer Web interface)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect> //Item[@xsi:type="LON_Fb_Cfg"][starts-with(UCPTname,"Building 2/Channel 1/iLON
 App")][UCPThidden="1"]
 </xSelect>
 </iLonItem>
</Get>

Request (return all the functional blocks of a specific type based on name)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="LON_Fb_Cfg"][starts-with(UCPTname,"Building 2/Channel 1/DIO-5/Digital
Output")]</xSelect>

 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[0]</UCPTname>
 <UCPTannotation>#8000010000000000[3].UFPTDigitalOutput;xsi:type="LON_Fb_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>

i.LON SmartServer 2.0 Programmer’s Reference 14-36

 <Item>
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[1]</UCPTname>
 <UCPTannotation>#8000010000000000[3].UFPTDigitalOutput;xsi:type="LON_Fb_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

14.6.2 Using the Get Function on a LONWORKS Functional Block

You can use the Get function to retrieve the configuration of a functional block defined on the
SmartServer or in a specific LNS network database. The input parameters you supply to this function
will include one or more <Item> elements with a LON_Fb_Cfg type. Each <Item> element will
include the <UCPTname> of each functional block whose configuration is to be returned by this
function, as shown in the example below.
Request (return a specific functional block)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Fb_Cfg">
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[0]</UCPTname>
 </Item>
 </iLonItem>
</Get>

Alternatively, you can specify one or more functional block properties in the xSelect statement to filter
the items returned by the Get function, including the <UCPTname> to filter functional blocks based on
their parent device, and the <UCPTfptKey> to filter functional blocks based on the functional profile
template.
Request (use an xSelect statement return all the functional blocks on a specific LONWORKS
device)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect> //Item[@xsi:type="LON_Fb_Cfg"][starts-with(UCPTname,"Building 2/Channel
1/DIO-5/")]</xSelect>

 </iLonItem>
</Get>

Request (use an xSelect statement to return all functional blocks from a specific manufacturer
based on the functional profile template)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect> //Item[@xsi:type="LON_Fb_Cfg"][UCPTfptKey="#8000010000000000[3].UFPTDigitalCounter"]
</xSelect>

 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Fb_Cfg">
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Counter[0]</UCPTname>

 <UCPTannotation>#8000010000000000[3].UFPTDigitalCounter;xsi:type="LON_Fb_Cfg"
 </UCPTannotation>

 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-31T12:33:52.013-07:00</UCPTlastUpdate>
 <UCPTuri>LON_Fb_Cfg.htm</UCPTuri>
 <UCPTfbIndex>1</UCPTfbIndex>
 <UCPTfptKey>#8000010000000000[3].UFPTDigitalCounter</UCPTfptKey>
 <UCPTdynamic LonFormat="UCPTdynamic">DDT_STATIC</UCPTdynamic>
 </Item>
 <Item xsi:type="LON_Fb_Cfg">
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Counter[1]</UCPTname>
 <UCPTannotation>#8000010000000000[3].UFPTDigitalCounter;xsi:type="LON_Fb_Cfg"
 </UCPTannotation>

i.LON SmartServer 2.0 Programmer’s Reference 14-37

 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-31T12:33:54.133-07:00</UCPTlastUpdate>
 <UCPTuri>LON_Fb_Cfg.htm</UCPTuri>
 <UCPTfbIndex>2</UCPTfbIndex>
 <UCPTfptKey>#8000010000000000[3].UFPTDigitalCounter</UCPTfptKey>
 <UCPTdynamic LonFormat="UCPTdynamic">DDT_STATIC</UCPTdynamic>
 </Item>
 </iLonItem>

The Get function returns an <Item> element for each functional block referenced in the input
parameters you supplied to the function. The properties included within each <Item> element are
initially defined when the functional block is added to the SmartServer or LNS network database. You
can write to these functional block properties with the Set function. The following table describes
these properties.

Property Description

<UCPTname> The name of the functional block in the following format:
<network/channel/device/functionalblock>. You can rename a
functional block by providing its <UCPTfbIndex> and
specifying the new <UCPTname> property to which the
functional block is to be renamed.

<UCPTannotation> The type of functional block (DefaultFb by default) and its xsi
type, which is LON_Fb_Cfg. This determines the icon used to
represent the functional block in the SmartServer Web interface.

You can use custom icons (.gif images) to represent your
company’s functional blocks in the SmartServer Web interface.
If a custom icon is being used for a functional block, this
property is set to <manufacturer ID>[scope selector].
<functional profile programmatic name>.

To use a custom functional block icon, upload the
<manufacturer ID>[scope selector]. <functional profile
programmatic name>.gif file for your custom functional block
icon to both the root/Web/images/tree and the
root/Web/images/app folders on the SmartServer flash disk.
The root/web/images/tree stores the icons shown in the
SmartServer tree. The root/web/images/app folder stores the
icons shown in the upper left-hand corner of an object’s
configuration and driver Web pages.

<UCPThidden> A flag indicating whether the functional block is hidden or
shown in the navigation pane on the left side of the SmartServer
Web interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
functional block was updated. This timestamp uses the ISO
8601 format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point

i.LON SmartServer 2.0 Programmer’s Reference 14-38

Property Description

was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the functional block. This can be
a maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the functional block. This property is
LON_Fb_Cfg.htm by default.

<DataPoint> The input and output data points encapsulated by the functional
block are signified by an array of <DataPoint> elements. Each
<DataPoint> element includes “dpType” and “discrim”
attributes signifying the data point’s programmatic name, as
defined by the functional profile template, and the data point’s
direction.

Each <DataPoint> element contains the following two
properties:

• <UCPTName>. The name of the data point in the
following format: <network/channel/device/functional
block/data point>.

• <UCPTformatDescription>. The data point's program ID;
data type (SNVT, SCPT, UNVT, UCPT, or built-in data
type); and format (e.g., SI metric or US customary if the
type has multiple formats such as SNVT_temp_p). The
format description is displayed in the following format:

• #<manufacturer ID>[scope selector].<type name>[#format]

<UCPTfbIndex> The index number of the functional block within its associated
device. When you use the Set function to modify the
configuration of an existing functional block, you must specify
the functional block’s index.

<UCPTfptKey> The functional profile that is valid for this functional block in
the following format: #<device program ID>[scope selector].
<functional profile name>. This field is read-only.

The scope selector specifies the context in which the network
variables and configuration properties within a functional block
are interpreted. The scope selector may be any of the following

i.LON SmartServer 2.0 Programmer’s Reference 14-39

Property Description

values:

• 0. Standard functional profile defined in the standard
resource file set.

• 3. User-defined functional profile, defined in a
manufacturer-specific resource file set.

• 4. User-defined functional profile, defined in a
manufacturer and device class specific resource file set.

• 5. User-defined functional profile, defined in a
manufacturer and device class/subclass specific resource
file set.

6. User-defined functional profile, defined in manufacturer, and
device class/subclass/model number specific resource file set.

This property cannot be null for dynamic functional blocks.

<UCPTdynamic> Indicates whether the functional block is static (DDT_STATIC)
or dynamic (DDT_DYNAMIC). You cannot use the Set
function to modify this property.

14.6.3 Using the Set Function on a LONWORKS Functional Block

You can use the Set function to overwrite the configuration of a functional block, or to create a new
functional block. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique functional
block to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) functional block. This set of properties is the same whether you are creating a new
functional block or modifying an existing functional block.

• If you are creating a new functional block, you need to specify the <UCPTfbIndex> and
<UCPTfptKey> properties; all other properties are optional.

• If you are modifying an existing functional block, you must specify the <UCPTfbIndex> property.
In addition, all other properties should be filled; otherwise the values stored in them are erased.
The previous section, Using the Get Function on a LonWorks Functional Block, details the
properties you can include in the Set function.

You can set multiple functional blocks with a single Set message. However, you should not attempt to
create or write to more than 100 functional blocks with a single call to the Set function. The following
example demonstrates how to create a new functional block.

Request (add a functional block to a device)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Counter[0]</UCPTname>
 <UCPTfbIndex>1</UCPTfbIndex>
 <UCPTfptKey>#8000010000000000[3].UFPTDigitalCounter</UCPTfptKey>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

i.LON SmartServer 2.0 Programmer’s Reference 14-40

 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname> Building 2/Channel 1/DIO-5/Digital Counter[0]</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

14.6.4 Using the Delete Function on a LONWORKS Functional Block

You can use the Delete function to delete a functional block on the SmartServer, or in an LNS network
database via the LNS Proxy Web service. The Delete function takes an <Item> element with a
LON_Fb_Cfg type as its input. The <Item> element only needs to include the functional block’s
<UCPTname> property in the Delete Request as demonstrated in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Fb_Cfg">
 <UCPTname>MyOldNetwork/MyOldChannel/MyOldDevice/MyOldFb</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>MyOldNetwork/MyOldChannel/MyOldDevice/MyOldFb</UCPTname>
 </Item>
 </iLonItem>
</Delete>

14.7 Network Variables (LONWORKS Data Points)
The following section describes how to use the List, Get, Set, and Delete functions on network
variables (LONWORKS data points). For information on reading and writing values to network
variables, see Chapter 4, Using the SmartServer Data Server.

14.7.1 Using the List Function on Network Variables

You can use the List function to retrieve a list of network variables (LONWORKS data points) on the
SmartServer or to retrieve a list of network variables in a specific LNS network database via the LNS
Proxy Web service. The List function takes an <iLonItem> element that has an xSelect statement with
a LON_Dp_Cfg type as its input, as shown in the example below.

Request (return all the Network variables of all the functional blocks on the SmartServer or in
an LNS network database)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="LON_Dp_Cfg"]</xSelect>
 </iLonItem>
</List>

Alternatively, you can filter the network variables (LONWORKS data points) returned by the List
function to those on a specific functional block by including the <UCPTname>of the parent functional
block in the xSelect statement, or you can filter the network variables returned using the <UCPTname>
and <UCPTlastUpdate> data point properties.

Request (use an xSelect statement to return all the network variables on a specific functional
block)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 14-41

<xSelect>//Item[@xsi:type="LON_Dp_Cfg"][starts-with(UCPTname,"Building 2/Channel 1/DIO-5/Digital
Output[0]")]
</xSelect>

 </iLonItem>
</List>

Request (use an xSelect statement to return all the network variables that were updated after a
specific time)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="LON_Dp_Cfg"][UCPTlastUpdate>"2008-03-31T00:00:00"]
</xSelect>

 </iLonItem>
</List>

Request (return all the network variables of a specific type based on name)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="LON_Dp_Cfg"][contains(UCPTname,"DO_Digital")]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[0]/DO_Digital_1</UCPTname>
 <UCPTannotation>Dp_In;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[1]/DO_Digital_2</UCPTname>
 <UCPTannotation>Dp_In;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

14.7.2 Using the Get Function on Network Variables

You can use the Get function to retrieve the configuration of network variables (LONWORKS data
points) defined on the SmartServer or in a specific LNS network database. The input parameters you
supply to this function will include one or more <Item> elements with a LON_Dp_Cfg type. Each
<Item> element will include the <UCPTname> of each network variable whose configuration is to be
returned by this function, as shown in the example below.

Request (use an xSelect statement to return a specific network variable)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Dp_Cfg">
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[0]/DO_Digital_1/</UCPTname>
 </Item>
 </iLonItem>
</Get>

Alternatively, you can specify one or more network variable (LONWORKS data point) properties in the
xSelect statement to filter the items returned by the Get function, including the <UCPTname> to filter
data points based on their parent functional block.

Request (use an xSelect statement return all the network variables on a specific functional block)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect> //Item[@xsi:type="LON_Fb_Cfg"][starts-with(UCPTname,"Building 2/Channel 1/DIO-5/
Digital Output[0]")]</xSelect>

i.LON SmartServer 2.0 Programmer’s Reference 14-42

 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="LON_Dp_Cfg">
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[0]/DO_Digital_1</UCPTname>
 <UCPTannotation>Dp_In;xsi:type="LON_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-31T12:34:28.483-07:00</UCPTlastUpdate>
 <UCPTdescription>Digital value to output</UCPTdescription>
 <UCPTuri>LON_Dp_Cfg.htm</UCPTuri>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTlength>2</UCPTlength>
 <UCPTdirection LonFormat="UCPTdirection">DIR_IN</UCPTdirection>
 <UCPTpersist>0</UCPTpersist>
 <UCPTunit field="value">% of full level</UCPTunit>
 <UCPTunit field="state">state code</UCPTunit>
 <UCPTnvIndex>12</UCPTnvIndex>
 <UCPTnvSelector>3ff3</UCPTnvSelector>
 <UCPTdynamic LonFormat="UCPTdynamic">DDT_STATIC</UCPTdynamic>
 <UCPTpollRate>600.0</UCPTpollRate>
 </Item>
 </iLonItem>

The Get function returns an <Item> element for each network variable (LONWORKS data point)
referenced in the input parameters you supplied to the function. The properties included within each
<Item> element are initially defined when the network variable is added to the SmartServer or LNS
network database. You can write to these data point properties with the Set function. The following
table describes these properties.

Property Description

<UCPTname> The name of the network variable in the following format:
<network/channel/device/functionalblock/data point>. You can
rename a network variable by providing its <UCPTnvIndex>
and specifying the new <UCPTname> property to which the
network variable is to be renamed.

<UCPTannotation> The type of network variable and its xsi type, which is
LON_Dp_Cfg. This determines the icon used to represent the
network variable in the SmartServer Web interface.

<UCPThidden> A flag indicating whether the network variable is hidden or
shown in the navigation pane on the left side of the SmartServer
Web interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
network variable was updated. This timestamp uses the ISO
8601 format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point

i.LON SmartServer 2.0 Programmer’s Reference 14-43

Property Description

was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the network variable. This can be
a maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the network variable. This property is
LON_Dp_Cfg.htm by default.

<UCPTformatDescription> • The network variable’s program ID; data type (SNVT,
SCPT, UNVT, UCPT, or built-in data type); and format
(e.g., SI metric or US customary if the type has multiple
formats such as SNVT_temp_p). The format description is
displayed in the following format:

#<manufacturer ID>[scope selector].<type name>[#format] .

This determines many factors about the network variable,
including the type of values it takes and its base type. This
could be any standard (SNVT) format type included in the
resource files on the SmartServer, or any user-defined (UNVT)
format type included in resource files uploaded to the
SmartServer. For more information on the resource files, see
SmartServer Resource Files.

If you do not set this property, it is set to RAW_HEX and the
network variable uses raw hex values.

The SNVT format types included in the SmartServer resource
files are also listed and described in the SNVT Master List,
which can be downloaded from Echelon’s Support Web site at:
www.echelon.com

<UCPTlength> Specifies the size (in bytes) of the network variable.

<UCPTdirection> Specifies whether the network variable is an input data point
(DIR_IN), output data point (DIR_OUT), or has an unspecified
direction (DIR_NUL).

<UCPTpersist> A flag indicating that the value stored in the network variable
persists through SmartServer reboots. If this property is set to 1,
the last network variable value is stored in the

http://www.echelon.com/

i.LON SmartServer 2.0 Programmer’s Reference 14-44

Property Description

<UCPTdefOutput> property.

<UCPTunit> This property is a string up to 227 characters long that describes
the units the value in which a network variable is measured. It
is based on the data type assigned to the network variable. A
default value will be assigned to this property if a unit for the
network variable type chosen for the data point exists in the
resource files on the SmartServer.

For scalar and enumerated data points, this property specifies
the units of measures used by the data point. For example, the
unit string of a SNVT_temp_f data point is °F. The unit string
is defined by resource files.

For structured data points, the fields within the data point are
specified in a series of <UCPTunit> properties if the unit strings
can be edited. Using a SNVT_switch data point for example,
value and state fields will be specified in a series of
<UCPTunit> properties with their respective units of measure
(“% of full level” and “state code”). You can use the Set
function to edit the unit strings of data point fields.

<UCPTnvIndex>

The index number of the network variable within its device.
You cannot use the Set function on this property.

<UCPTnvSelector> Displays the value that uniquely associates the network variable
with its connections. If the network variable is not a member of
a connection, the selector is set to a value representing an
unbound network variable.

For LONWORKS connections, a selector is a 14-bit number used
to identify connected network variable. When placing the
network variable in a LONWORKS connection, the SmartServer
assigns the network variable a value representing that
connection. All network variables in a given connection use the
same selector. The LNS Server shares a network variable
selector among connections if the connections share one or more
data points.

You cannot use the Set function on this property.

<UCPTdynamic> Indicates whether the network variable is static
(DDT_STATIC), dynamic (DDT_DYNAMIC), or is changeable
(DDT_CHANGEABLE). You cannot use the Set function to
modify this property.

i.LON SmartServer 2.0 Programmer’s Reference 14-45

Property Description

<UCPTpollRate> The frequency in which the SmartServer’s internal data server
polls the network variable. The recommended minimum poll
rate is 30 seconds; the maximum poll rate is 1 second.

The default poll rate for network variables is 600 seconds. You
should set poll rates for the data points of the external devices
that are connected to the SmartServer.

Note: The actual poll rate is determined by calculating the least
common denominator of all the poll rates set for the data point
from the applications to which it has been added.

14.7.3 Using the Set Function on a Network Variable

You can use the Set function to overwrite the configuration of a network variable, or to create a new
network variable. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique network
variable to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) network variable. This set of properties is the same whether you are creating a new
network variable or modifying an existing network variable.

• If you are creating a new network variable, you need to specify the <UCPTnvIndex> and
<UCPTformatDescription> properties; all other properties are optional.

• If you are modifying an existing network variable, you must specify the <UCPTnvIndex>
property. In addition, all other properties should be filled; otherwise the values stored in them are
erased. The previous section, Using the Get Function on Network Variables, details the properties
you can include in the Set function.

You can set multiple network variables with a single Set message. However, you should not attempt to
create or write to more than 100 network variables with a single call to the Set function. The following
example demonstrates how to create a new network variable.

Request (add a data point to a functional block)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item>
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[0]/DO_Digital_1</UCPTname>
 <UCPTnvIndex>1</UCPTfbIndex>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Building 2/Channel 1/DIO-5/Digital Output[0]/DO_Digital_1</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

14.7.4 Using the Delete Function on a Network Variable

You can use the Delete function to delete a network variable on the SmartServer, or in an LNS
network database via the LNS Proxy Web service. The Delete function takes an <Item> element with

i.LON SmartServer 2.0 Programmer’s Reference 14-46

a LON_Dp_Cfg type as its input. The <Item> element only needs to include the network variable’s
<UCPTname> property in the Delete Request as demonstrated in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="LON_Dp_Cfg">
 <UCPTname>MyOldNetwork/MyOldChannel/MyOldDevice/MyOldFb/MyOldNv</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>MyOldNetwork/MyOldChannel/MyOldDevice/MyOldFb/MyOldNv</UCPTname>
 </Item>
 </iLonItem>
</Delete>

14.8 Configuration Properties (LONWORKS Data Points)
You can use the List, Get, Set, and Delete functions on configuration properties as described in the
previous section, Network Variables (LONWORKS Data Points). For information on reading and
writing values to configuration properties, see Chapter 4, Using the SmartServer Data Server.

Configuration properties have the same properties as network variables except for the following
differences:

• A configuration property has an xsi type of LON_Cp_Dp_Cfg. A configuration property file has
an xsi type of LON_Cp_File_Cfg.

• The <UCPTuri> property is LON_Cp_Dp_Cfg.htm for configuration properties and
LON_Cp_File_Cfg for configuration property files.

• The default poll rate for configuration properties is 0 seconds, which means that means polling is
disabled. You must set a poll rate for configuration properties to update their values via polling.

Note that LON_Cp_File_Cfg includes an additional <UCPThandle> property, and both
LON_Cp_Dp_Cfg and LON_Cp_File_Cfg have a set of read-only restriction flags that determine
whether a configuration property value can be changed in a given scenario. The values of these
restriction flags are determined by the device interface (XIF) file. They cannot be modified with the
Set function. The following table describes these additional CP properties:

<UCPThandle> This property is applicable to configuration property files only
(LON_Cp_File_Cfg). The handle of the configuration property
file assigned by the LNS server. You cannot use the Set
function to modify the handle assigned to the configuration
property file. Note that you cannot rename configuration
property files.

<UCPTreadOnlyFlag> The configuration property is a constant; its value cannot be
changed.

<UCPTdeviceFlag> The value of the configuration property is always read from the
device and can be modified independent of the LNS database.

<UCPTmanufactureFlag> The configuration property value can only be changed when the
device is being licensed.

i.LON SmartServer 2.0 Programmer’s Reference 14-47

<UCPTobjDisableFlag> The device must be disabled for the configuration property
value to be changed.

<UCPTofflineFlag> The device must be offline for the configuration property value
to be changed.

<UCPTresetFlag> The device is reset after the configuration property value is
changed.

<UCPToffset>

This property is applicable to configuration property files only
(LON_Cp_File_Cfg). The offset in the file with the given index
where the configuration property begins.

<UCPTfileIndex> This property is applicable to configuration property files only
(LON_Cp_File_Cfg). The file index on the device in which the
configuration property exists.

<UCPTrelation> If the configuration property applies to a specific network
variable, displays network path of the network variable.

14.9 LONWORKS Connections
You can use the LNS Proxy Web service to create LONWORKS connections that bind the network
variables of LONWORKS devices that are in the same LNS network database on the same LNS Server.
Creating LONWORKS connections is similar to creating Web connections as they use the same SOAP
interface. You use the same List, Get, Set, and Delete functions as described in the Using the Web
Binder Application section in Chapter 4.

LONWORKS connections have the same properties as Web connections except for the following
differences with the <DataPoint> property referencing the target data point in the LONWORKS
connection:

• You can specify one of the following options for the <UCPTserviceType>. These service types
vary in reliability and resources consumed:

o ST_LON_ACK (Acknowledged). The sending device expects to receive confirmation from
the receiving device or devices that a network variable update was delivered. The sending
application is notified when an update fails, but it is up to the developer of the sending device
to handle the notification in the device application.

While acknowledged service is very reliable, it can create excessive message traffic,
especially for large fan-out or polled fan-in connections. When acknowledged messaging is
used, every receiving device has to return an acknowledgment.

Acknowledged messaging can be used with up to 63 receiving devices, but an acknowledged
message to 63 devices generates at least 63 acknowledgements—more if any retries are
required due to lost acknowledgements.

o ST_LON_REPEATED (Repeated). The sending device sends out a series of network variable
updates, but does not expect any confirmation from the receiving device. Repeated service
with three repeats has a 99.999% success rate in delivering messages.

Repeated service provides the same probability of message delivery as acknowledged
messaging with the same number of retries, with significantly lower network overhead for
large multicast fan-out connections.

For example, a repeated message with three retries to 64 devices generates four packets on the
network, whereas an acknowledged message requires at least 64 packets.

i.LON SmartServer 2.0 Programmer’s Reference 14-48

o ST_LON_UNACK (Unacknowledged). The sending device sends out the network variable
update only once and does not expect any confirmation from the receiving device. This
message service type consumes the least amount of resources, but is the least reliable.

o ST_NUL (Unknown). The SmartServer selects the service type.

• The <UCPTservicePath> property is always set to //WebService[UCPTindex=0], where 0 is
referring to the LNS Server containing the LNS network database in which the source and target
network variables are stored.

• The <UCPTpropagate> property is set to 1 by default and cannot be modified with the Set
function.

The following example demonstrates how to use the Set function create a LONWORKS connection
between an internal SmartServer device and an external device connected to the SmartServer. When a
Write function is performed on the source data point in the Web connection (Building 2/Channel
1/iLON App/Digital Input 2/nvoClsValue_2), the updated value is propagated to the target data points
(Building 2/Channel 1/DIO-1/Digital Output[0]/DO_Digital_1) in the LONWORKS connection.

Request
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Dp_Ref">
 <UCPTname>Building 2/Channel 1/iLON App/Digital Input 2/nvoClsValue_2</UCPTname>
 <DataPoint dpType="Target">
 <UCPTname>Building 2/Channel 1/DIO-1/Digital Output[0]/DO_Digital_1</UCPTname>
 <UCPTserviceType xsi:type="string" LonFormat="UCPTserviceType">ST_LON_ACK
 </UCPTserviceType>
 <UCPTservicePath xsi:type="string">//WebService[UCPTindex=0]</UCPTservicePath>
 <UCPTpriority>240</UCPTpriority>
 </DataPoint>
 </Item>
 </iLonItem>
</Set>

Note: All LONWORKS connections created with the LNS Proxy Web service use subnet/node ID
addressing. This means that a message packet travels from the sending device to the destination device
using the 2-byte logical address of the destination device in the network. Overall, LONWORKS
connections use the following connection options:

Service Type Acknowledged (the default), Repeated, or Unacknowledged. See the
previous section for specifying the service type in the <UCPTserviceType>
property.

Addressing Subnet/Node ID.

Priority Used if hub (source) network variable specifies priority.

Authentication Used if target network variable has authentication enabled.

Retry Count Calculated based on topology and service type.

Repeat Count Calculated based on topology and service type.

Repeat Timer Calculated based on topology and service type.

Receive Timer Calculated based on topology and service type.

i.LON SmartServer 2.0 Programmer’s Reference 14-49

Transaction Timer Calculated based on topology and service type.

Broadcast Options Broadcast addressing is not used.

Alias Options Network variable aliases are used to resolve selector conflicts.

i.LON SmartServer 2.0 Programmer’s Reference 15-1

15 Modbus Driver
The following chapter describes how to manage Modbus channels, devices, and data points on the
SmartServer.

15.1 Modbus Channels
The following section describes how to use the List, Get, Set, and Delete functions on Modbus
channels.

15.1.1 Using the List Function on Modbus Channels

You can use the List function to retrieve a list of Modbus channels on the SmartServer. The List
function takes an <iLonItem> element that has an xSelect statement with a MOD_Channel_Cfg type as
its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MOD_Channel_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/Modbus</UCPTname>
 <UCPTannotation>RS485;xsi:type="MOD_Channel_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

The List function returns a list of <Item> elements for each Modbus channel defined on the
SmartServer. You could use the list of <Item> elements returned by this function as input for the Get
function. The Get function would then return the configuration of each Modbus channel included in
the list. The next section describes the properties included in each of these elements.

15.1.2 Using the Get Function on Modbus Channels

You can use the Get function to retrieve the configuration of a Modbus channel defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with a MOD_Channel_Cfg type. Each <Item> element will include the <UCPTname> of
each channel whose configuration is to be returned by this function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Channel_Cfg">
 <UCPTname>Net/Modbus Channel</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MOD_Channel_Cfg">
 <UCPTname>Net/Modbus Channel</UCPTname>

i.LON SmartServer 2.0 Programmer’s Reference 15-2

 <UCPTannotation>RS232</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T11:07:27.860-07:00</UCPTlastUpdate>
 <UCPTuri>MOD_Channel_Cfg.htm</UCPTuri>
 <UCPThandle>0</UCPThandle>
 <UCPTchannelType LonFormat="UCPTchannelType">CT_RS232_MASTER</UCPTchannelType>
 <InterfaceOptions>
 <UCPTspeed LonFormat="UCPTspeed">MS_9600</UCPTspeed>
 <UCPTsize LonFormat="UCPTsize">CS_8</UCPTsize>
 <UCPTparity LonFormat="UCPTparity">P_NONE</UCPTparity>
 <UCPTstopBits LonFormat="UCPTstopBits">SB_1</UCPTstopBits>
 </InterfaceOptions>
 <UCPTserialMode LonFormat="UCPTserialMode">SM_RTU</UCPTserialMode>
 <UCPTretryCount LonFormat="UCPTretryCount">1</UCPTretryCount>
 </Item>
 </iLonItem>
 </Get>

The Get function returns an <Item> element for each channel referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the channel is added to the SmartServer. You can write to these channel properties with the Set
function. The following table describes these properties.

Property Description

<UCPTname> The name of the channel in the following format:
<network/channel>. You can rename a Modbus channel by
providing its <UCPThandle> and specifying the new
<UCPTname> property to which the channel is to be renamed.

<UCPTannotation> The type of Modbus channel, which may be IP, RS232, or
RS485. This determines the icon used to represent the Modbus
channel in the SmartServer Web interface.

<UCPThidden> A flag indicating whether the Modbus channel is hidden or
shown in the navigation pane on the left side of the SmartServer
Web interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Modbus channel was updated. This timestamp uses the ISO
8601 format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour
clock, therefore; an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of

i.LON SmartServer 2.0 Programmer’s Reference 15-3

Property Description

10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the channel. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the Modbus channel. This property is
always MOD_Channel_Cfg.htm.

<UCPThandle> The handle assigned to the Modbus channel assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing Modbus channel, you must specify
the channel’s handle. If you do not specify the handle, a new
channel is created. You cannot use the Set function to modify
the handle assigned to the channel.

<UCPTchannelType> The channel type. This property may be one of the following
values:

• CT_RS485_MASTER. RS-485 is a balanced line,
half-duplex system that allows transmission distances of up
to 1.2 km. RS-485 allows for transmission over longer
distances at higher speeds. This is the default.

• CT_RS232_MASTER. RS-232 uses serial binary data for
transmitting data between two devices.

• CT_TCP_IP_MASTER. Modbus messages are enveloped
in TCP/IP packets. TCP/IP allows for more versatile
network systems, as Modbus connection can co-exists with
other types of connections.

<UCPTport> The port used on the SmartServer for listening for messages
from the Modbus driver. The default port is 502.

This property is available for TCP/IP Modbus channels only
(<UCPTchannelType> is CT_TCP_IP_MASTER).

i.LON SmartServer 2.0 Programmer’s Reference 15-4

Property Description

<InterfaceOptions>

This element contains the following options for Modbus
channels attached to the RS-232 or RS-485 serial ports on the
SmartServer (<UCPTchannelType> is CT_RS485_MASTER
or CT_RS232 _MASTER):

• <UCPTspeed>. The baud rate at which the SmartServer
communicates with the Modbus devices on the channel.
The default value is MS_9600. This property may be one
of the following values:

 MS_110
 MS_300
 MS_600
 MS_1200
 MS_2400
 MS_4800
 MS_9600
 MS_19200
 MS_38400
 MS_57600
 MS_115200

• <UCPTsize>. The data bit size for messages sent over the
Modbus network. A data bit is a group of 5 to 8 bits that
represents a single character of data for transmission over
the network. Data bits are preceded by a start bit, and they
are followed by an optional parity bit and one or more stop
bits. The default value is CS_8. This property may be one
of the following values:

 CS_5
 CS_6
 CS_7
 CS_8

• <UCPTparity>. The parity bit size for messages sent over
the Modbus network. A parity bit is an extra bit used to
check for errors in groups of data bits transferred between
devices. The default parity size is P_NONE. This property
may be one of the following values:

 P_NONE
 P_ODD
 P_EVEN

• <UCPTstopBits>. The number of stop bits used on the
Modbus network. The default value is SB_1. This property
may be one of the following values:

 SB_1
 SB_2

This property is not available for TCP/IP Modbus channels.

i.LON SmartServer 2.0 Programmer’s Reference 15-5

Property Description

<UCPTserialMode> The transmission mode used by the SmartServer for
communicating with Modbus devices. The default transmission
mode is MM_RTU. You have the following two choices:

• MM_RTU. Data is sent as two 4-bit, hexadecimal
characters. RTU mode provides a higher throughput than
ASCII mode at equivalent baud rates.

• MM_ASCII. Data is sent as two ASCII characters. ASCII
mode provides increased flexibility in regards to the timing
sequence, as there can be up to a 1-second interval between
character transmissions without communication errors
occurring.

<UCPTretryCount> The number of times a network message is re-sent when no
confirmation is received. The default value is 1 for Modbus
channels.

<UCPTminOfflineTime> If a network message fails, a data point and its device are
marked offline. You can specify the <UCPTminOfflineTime>
property so that all the data points on the offline device with
pending network messages (read/write requests, polls, or
heartbeats) are marked offline and network messages are not
sent to them. This ensures that network performance is not
impacted by an offline device.

You can set the minimum period of time (in seconds) that the
SmartServer waits before transmitting network messages to
offline data points. During this period, an offline device
transmits an OFFLINE status in response to data point requests.
Once <UCPTminOfflineTime> elapses, the SmartServer sends a
read/write request to one offline data point. If the read/write
request succeeds, the data point and its device are marked
online, and all cached read/write requests for the offline data
points on the device are executed.

This property is optional. If you do not specify this property in
a Set function, the current value stored in it is erased. You must
specify this property even if you are not changing it in order to
preserve the current value.

The default <UCPTminOfflineTime> for a Modbus channel is
60 seconds.

15.1.3 Using the Set Function on Modbus Channels

You can use the Set function to overwrite the configuration of a Modbus channel, or to create a new
Modbus channel. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique Modbus
channel to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) Modbus channel. This set of properties is the same whether you are creating a new
Modbus channel or modifying an existing Modbus channel.

i.LON SmartServer 2.0 Programmer’s Reference 15-6

• If you are creating a new Modbus channel, you only need to specify the <UCPTchannelType>
property; all other properties are optional.

• If you are modifying an existing Modbus channel, you must specify the channel’s
<UCPThandle>. If you do not specify the handle, a new channel is created. All other properties
must be filled; otherwise the values stored in them are erased. The previous section, Using the Get
Function on Modbus Channels, details the properties you can include in the Set function.

Request (create a new TCP/IP Modbus channel on the SmartServer)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Channel_Cfg">
 <UCPTname>Net/Modbus Channel 2</UCPTname>
 <UCPTannotation>IP</UCPTannotation>
 <UCPTchannelType LonFormat="UCPTchannelType">CT_TCP_IP_MASTER</UCPTchannelType>
 </Item>
 </iLonItem>
</Set>
Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MOD_Channel_Cfg">
 <UCPTname>Net/Modbus Channel 2</UCPTname>
 <UCPTannotation>IP</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T11:43:37.460-07:00</UCPTlastUpdate>
 <UCPTuri>MOD_Channel_Cfg.htm</UCPTuri>
 <UCPThandle>1</UCPThandle>
 <UCPTchannelType LonFormat="UCPTchannelType">CT_TCP_IP_MASTER</UCPTchannelType>
 <UCPTport>502</UCPTport>
 <UCPTretryCount LonFormat="UCPTretryCount">1</UCPTretryCount>
 </Item>
 </iLonItem>
</SetResponse>

15.1.4 Using the Delete Function on Modbus Channels

You can use the Delete function to delete a Modbus channel on the SmartServer. The Delete function
takes an <Item> element with a MOD_Channel_Cfg type as its input. The <Item> element only needs
to include the Modbus channel’s <UCPTname> property in the Delete Request as demonstrated in the
following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Channel_Cfg">
 <UCPTname>Net/Modbus Channel 2</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Modbus Channel 2</UCPTname>
 </Item>
 </iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 15-7

15.2 Modbus Devices
The following section describes how to use the List, Get, Set, and Delete functions on Modbus devices.

15.2.1 Using the List Function on Modbus Devices

You can use the List function to retrieve a list of Modbus devices on the SmartServer. The List
function takes an <iLonItem> element that has an xSelect statement with a MOD_Device_Cfg type as
its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MOD_Device_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1</UCPTname>
 <UCPTannotation>App;xsi:type="MOD_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
</iLonItem>
</List>

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each device included in the list. The next section
describes the properties included in each of these elements.

15.2.2 Using the Get Function on Modbus Devices

You can use the Get function to retrieve the configuration of a Modbus device defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with a MOD_Device_Cfg type. Each <Item> element will include the <UCPTname> of each
device whose configuration is to be returned by this function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Device_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MOD_Device_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1</UCPTname>
 <UCPTannotation>App</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T12:15:22.960-07:00</UCPTlastUpdate>
 <UCPTuri>MOD_Device_Cfg.htm</UCPTuri>
 <UCPThandle>0</UCPThandle>
 <UCPTmaxElements>1</UCPTmaxElements>
 <Address>
 <UCPTaddress>0</UCPTaddress>
 </Address>

i.LON SmartServer 2.0 Programmer’s Reference 15-8

 </Item>
</iLonItem>
</Get>

The Get function returns an <Item> element for each device referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the device is added to the SmartServer. You can write to these device properties with the Set
function. The following table describes these properties.

Property Description

<UCPTname> The name of the Modbus device in the following format:
<network/channel/device>. You can rename a Modbus device
by providing its <UCPThandle> and specifying the new
<UCPTname> property to which the Modbus device is to be
renamed.

<UCPTannotation> The type of Modbus device (App by default) and its xsi type,
which is MOD_Device_Cfg. This determines the icon used to
represent the Modbus device in the SmartServer Web interface.

<UCPThidden> A flag indicating whether the Modbus device is hidden or shown
in the navigation pane on the left side of the SmartServer Web
interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTitemStatus> • This property only appears if the device has the following
exception: IS_OFFLINE. The device application is offline.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Modbus device was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the Modbus device. This can be a
maximum of 201 characters long.

i.LON SmartServer 2.0 Programmer’s Reference 15-9

Property Description

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the Modbus device. This property is always
MOD_Device_Cfg.htm.

<UCPThandle> The handle assigned to the Modbus device assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing Modbus device, you must specify
the device’s handle. If you do not specify the handle, a new
Modbus device is created. You cannot use the Set function to
modify the handle assigned to the Modbus device.

<UCPTmaxElements> The maximum number of Modbus data points (registers) that
can be transferred in one Modbus message.

<Address> The logical address of the device on the Modbus network in
decimal or hexadecimal format.

15.2.3 Using the Set Function on Modbus Devices

You can use the Set function to overwrite the configuration of a Modbus device, or to create a new
Modbus device. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique Modbus
device to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) Modbus device. This set of properties is the same whether you are creating a new
Modbus device or modifying an existing Modbus device.

• If you are modifying an existing Modbus device, you must specify the <UCPThandle> property.
In addition, all other properties should be filled; otherwise the values stored in them are erased.
The previous section, Using the Get Function on a Modbus Device, details the properties you can
include in the Set function.

You can set multiple Modbus devices with a single Set message. However, you should not attempt to
create or write to more than 100 Modbus devices with a single call to the Set function. The following
example demonstrates how to create a new Modbus device.

Request (create a new Modbus device on the SmartServer)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Device_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2</UCPTname>
 <UCPTmaxElements>1</UCPTmaxElements>
 <Address>
 <UCPTaddress>0</UCPTaddress>
 </Address>
 </Item>
 </iLonItem
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2</UCPTname>
 </Item>
 </iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 15-10

</SetResponse>

15.2.4 Using the Delete Function on Modbus Devices

You can use the Delete function to delete a Modbus device on the SmartServer. The Delete function
takes an <Item> element with a MOD_Device_Cfg type as its input. The <Item> element only needs
to include the device’s <UCPTname> property in the Delete Request as demonstrated in the following
code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Device_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2</UCPTname>
 </Item>
 </iLonItem>
</Delete>

15.3 Modbus Virtual Functional Blocks
Before you can add data points to a Modbus device, you need to use the Set function to create a Virtual
functional block under the Modbus device. This virtual functional block is used to encapsulate the
Modbus data points and enable the Modbus driver to adhere to the network hierarchy naming
convention. The Set function takes an <Item> element with a MOD_Fb_Cfg type as its input, as
shown in the example below.

Request (add a virtual functional block to a Modbus device)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Fb_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2/VirtFb</UCPTname>
 </Item>
</iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2/VirtFb</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

15.4 Modbus Data Points
The following section describes how to use the List, Get, Set, and Delete functions on Modbus data
points. For information on reading and writing values to Modbus data points, see Chapter 4, Using the
SmartServer Data Server.

i.LON SmartServer 2.0 Programmer’s Reference 15-11

15.4.1 Using the List Function on Modbus Data Points

You can use the List function to retrieve a list of Modbus data points on the SmartServer. The List
function takes an <iLonItem> element that has an xSelect statement with a MOD_Dp_Cfg type as its
input, as shown in the example below.

Request (use an xSelect statement to return all the Modbus data points on the SmartServer)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MOD_Dp_Cfg"]</xSelect>
 </iLonItem>
</List>

Alternatively, you can filter the Modbus data points returned by the List function to those on a specific
device by including the <UCPTname>of the parent device in the xSelect statement, or you can filter
the Modbus data points returned using the <UCPTname> and <UCPTlastUpdate> data point
properties.

Request (use an xSelect statement to return all the Modbus data points on a specific device)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="MOD_Dp_Cfg"][starts-with(UCPTname,"Net/Modbus Channel/LAE_LCD15_2")]
</xSelect>

 </iLonItem>
</List>

Request (use an xSelect statement to return all the Modbus data points that were updated after a
specific time)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="MOD_Dp_Cfg"][UCPTlastUpdate>"2008-03-31T00:00:00"]
</xSelect>

 </iLonItem>
</List>

Request (return all the Modbus data points of a specific type based on name)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MOD_Dp_Cfg"][contains(UCPTname,"Alrm")]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1/VirtFb/Alrm_1</UCPTname>
 <UCPTannotation>Dp_In_Out;xsi:type="MOD_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1/VirtFb/Alrm-Prb1_1</UCPTname>
 <UCPTannotation>Dp_In_Out;xsi:type="MOD_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1/VirtFb/Alrm-Prb2_1</UCPTname>
 <UCPTannotation>Dp_In_Out;xsi:type="MOD_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1/VirtFb/Alrm-Prb3_1</UCPTname>
 <UCPTannotation>Dp_In_Out;xsi:type="MOD_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
</List>

i.LON SmartServer 2.0 Programmer’s Reference 15-12

15.4.2 Using the Get Function on Modbus Data Points

You can use the Get function to retrieve the configuration of Modbus data points defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with a MOD_Dp_Cfg type. Each <Item> element will include the <UCPTname> of each
Modbus data point whose configuration is to be returned by this function, as shown in the example
below.

Request (use an xSelect statement to return a specific Modbus data point)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Dp_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1/VirtFb/Alrm_1
 </Item>
 </iLonItem>
</Get>

Alternatively, you can specify one or more Modbus data point properties in the xSelect statement to
filter the items returned by the Get function, including the <UCPTname> to filter data points based on
their parent device.

Request (use an xSelect statement return all the Modbus data points on a specific device)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MOD_Dp_Cfg"][starts-with(UCPTname,"Net/Modbus Channel/LAE_LCD15_1")]
 </xSelect>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MOD_Dp_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_1/VirtFb/T1_1</UCPTname>
 <UCPTannotation>Dp_In_Out</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T12:15:22.020-07:00</UCPTlastUpdate>
 <UCPTdescription>Temperature 1</UCPTdescription>
 <UCPTuri>MOD_Dp_Cfg.htm</UCPTuri>
 <UCPTformatDescription>#8000010128000000[4].UNVT_signed_long#dec</UCPTformatDescription>
 <UCPTlength>2</UCPTlength>
 <UCPTunit field="">°C</UCPTunit>
 <UCPThandle>0</UCPThandle>
 <UCPTbaseType LonFormat="UCPTbaseType">BT_SIGNED_LONG</UCPTbaseType>
 <UCPTmodbusTable LonFormat="UCPTmodbusTable">MTT_HR</UCPTmodbusTable>
 <UCPTstartAddress>0</UCPTstartAddress>
 <UCPTstartBit>0</UCPTstartBit>
 <UCPTbitLength>16</UCPTbitLength>
 <UCPTdataOrdering LonFormat="UCPTdataOrdering">DO_BIG_ENDIAN</UCPTdataOrdering>
 <UCPTpollRate>20.0</UCPTpollRate>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each Modbus data point referenced in the input
parameters you supplied to the function. The properties included within each <Item> element are
initially defined when the Modbus data point is added to the SmartServer. You can write to these data
point properties with the Set function. The following table describes these properties.

Property Description

<UCPTname> The name of the Modbus data point in the following format:
<network/channel/device/functionalblock/data point>. You can

i.LON SmartServer 2.0 Programmer’s Reference 15-13

Property Description

rename a Modbus data point by providing its <UCPThandle>
and specifying the new <UCPTname> property to which the
Modbus data point is to be renamed.

<UCPTannotation> The type of Modbus data point, which is Dp_In_Out by default.
This determines the icon used to represent the Modbus data
point in the SmartServer Web interface.

<UCPThidden> A flag indicating whether the Modbus data point is hidden or
shown in the navigation pane on the left side of the SmartServer
Web interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Modbus data point was updated. This timestamp uses the ISO
8601 format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the Modbus data point. This can
be a maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the Modbus data point. This property is
MOD_Dp_Cfg.htm by default.

<UCPTformatDescription> • The Modbus data point’s program ID; data type (SNVT,
SCPT, UNVT, UCPT, or built-in data type); and format
(e.g., SI metric or US customary if the type has multiple
formats. The format description is displayed in the
following format:

#<manufacturer ID>[scope selector].<type name>[#format] .

This determines many factors about the Modbus data point,

i.LON SmartServer 2.0 Programmer’s Reference 15-14

Property Description

including the type of values it takes and its base type. If you do
not set this property, it is set to RAW_HEX and the Modbus
data point uses raw hex values.

<UCPTlength> Specifies the size (in bytes) of the Modbus data point.

<UCPTunit> This property is a string up to 227 characters long that describes
the units the value in which a Modbus data point is measured. It
is based on the data type assigned to the Modbus data point. A
default value will be assigned to this property if a unit for the
Modbus data point type chosen for the data point exists in the
resource files on the SmartServer.

<UCPThandle> The handle assigned to the Modbus data point assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing Modbus data point, you must
specify the data point’s handle. If you do not specify the handle,
a new Modbus device is created. You cannot use the Set
function to modify the handle assigned to the Modbus data
point.

<UCPTbaseType>

The base type of a Modbus data point. This property may be
one of the following values:

• BT_DOUBLE

• BT_FLOAT

• BT_SIGNED_QUAD

• BT_UNSIGNED_QUAD

• BT_SIGNED_LONG

• BT_UNSIGNED_LONG

• BT_SIGNED_SHORT

• BT_UNSIGNED_SHORT

• BT_SIGNED_CHAR

• BT_UNSIGNED_CHAR

• BT_ENUM

• BT_BITFIELD

• BT_ARRAY

• BT_STRUCT

• BT_UNION

<UCPTmodbusTable>

The data access types based on the associated Modbus device
This property may be one of the following values:

• MTT_C [Coil Functions (Functions 1 & 5 single-write)].
For a single coil. Single bit, read-write data that has two

i.LON SmartServer 2.0 Programmer’s Reference 15-15

Property Description

states (on/off).

• MTT_C_MO [Coil Functions (Functions 1 & 15
multi-write)]. For multiple coils. Single bit, read-write
data that has two states (on/off).

• MTT_DI [Discrete Input (Function 2)]. Single bit,
read-only data that has two states (on/off).

• MTT_IR [Input Register (Function 4)]. 16-bit read-only
data that can be interpreted as a numeric value, a bit map, or
an ASCII character.

• MTT_HR [Hold Register (Functions 3 & 6 single-write)].
For a single register. 16-bit write data that can be
interpreted as a numeric value, a bit map, or an ASCII
character.

• MTT_HR_M [Hold Register (Functions 3 & 16
multi-write)]. For multiple registers. 16-bit write data that
can be interpreted as a numeric value, a bit map, or an
ASCII character. This is the default.

<UCPTstartAddress>

The start address of the register to be used to read or write to the
data point. If the <UCPTlength> property is configured to use
bits, you can select the start and stop bits in the address.

The Modbus driver is configured to ensure that the start and stop
addresses remain consistent with the <UCPTlength> property.
This means that if <UCPTlength> is changed, the
<UCPTstartAddress> and <UCPTstartAddress> properties are
automatically updated to fit the desired length. Similarly, if the
<UCPTstartAddress> or <UCPTstartAddress> properties are
changed, the <UCPTlength> property is updated accordingly.

<UCPTstopAddress>

The stop address of the register to be used to read or write to the
data point.

<UCPTstartBit> The start bit of a Modbus data word.

<UCPTbitLength> The length of an Modbus data word in bits

<UCPTdataOrdering>

The ordering scheme to be used for interpreting Modbus data.
This property may be one of the following values:

• DO_BIG_ENDIAN. The highest order byte of data is sent
first and all subsequent bytes of data are arranged from
highest to lowest order. This is the default.

• DO_LITTLE_ENDIAN. Lowest order byte of data is sent
first, and each subsequent byte is arranged from lowest to
highest order

• DO_BYTE_SWAP. Data is first arranged from highest to
lowest order, but every pair of bytes in the structure is
interchanged.

i.LON SmartServer 2.0 Programmer’s Reference 15-16

Property Description

• DO_WORD_SWAP. Data is first arranged from highest to
lowest order, but every pair of 16-bit words is swapped.

For example, consider a device that uses an unsigned 32-bit
integer to report runtime accumulation. Selecting the data
ordering scheme is required because the Modbus protocol leaves
the interpretation of 32-bit integers to the discretion of the
implementer.

In Big Endian format, the value of 120,000 hours (0x01D4C0 in
hexadecimal format) would be represented as a value of: 00 01
D4 C0 in memory. This requires two adjacent Modbus registers
(each holding 16 bits of data). If the device manufacture defines
the unit runtime to be at register address 0x8, the Big Endian
formatted response to a read function would return data 0x0001
0xD4C0 in that order.

Now suppose the manufacture states the U32 value is returned
in Little Endian format. One interpretation of the value returned
to the driver from the read function would be 0xC0D4 0x0100.

Alternatively, the manufacture may interpret Little Endian to be
the ordering of registers and not bytes. In this case, the read
function would return 0xD4C0 0x0001 and the driver would
need to swap words to handle the value. If the device returned a
value of 0x0100 0xC0D4A, a byte swapped format would need
to be applied.

<UCPTpollRate> The frequency in which the SmartServer’s internal data server
polls the Modbus data point. The recommended minimum poll
rate is 30 seconds; the maximum poll rate is 1 second.

The default poll rate for Modbus data points is 20 seconds.

Note: The actual poll rate is determined by calculating the least
common denominator of all the poll rates set for the data point
from the applications to which it has been added.

15.4.3 Using the Set Function on Modbus Data Points

You can use the Set function to overwrite the configuration of a Modbus data point, or to create a new
Modbus data point. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique Modbus
data point to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) Modbus data point. This set of properties is the same whether you are creating a new
Modbus data point or modifying an existing Modbus data point.

• If you are creating a new Modbus data point, you need to specify the <UCPTmodbusTable>,
<UCPTstartAddress>, and <UCPTstartBit> properties; all other properties are optional.

• If you are modifying an existing Modbus data point, you must specify the <UCPThandle>
property. In addition, all other properties should be filled; otherwise the values stored in them are
erased. The previous section, Using the Get Function on Modbus Data Points, details the
properties you can include in the Set function.

i.LON SmartServer 2.0 Programmer’s Reference 15-17

You can set multiple Modbus data points with a single Set message. However, you should not attempt
to create or write to more than 100 Modbus data points with a single call to the Set function. The
following example demonstrates how to create a new Modbus data point.

Request (add a Modbus data point to a Modbus device)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MOD_Dp_Cfg">
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2/VirtFb/T1_1</UCPTname>
 <UCPTformatDescription>#8000010128000000[4].UNVT_signed_long#dec</UCPTformatDescription>
 <UCPTbaseType LonFormat="UCPTbaseType">BT_SIGNED_LONG</UCPTbaseType>
 <UCPTmodbusTable LonFormat="UCPTmodbusTable">MTT_HR</UCPTmodbusTable>
 <UCPTstartAddress>0</UCPTstartAddress>
 <UCPTstartBit>0</UCPTstartBit>
 <UCPTbitLength>16</UCPTbitLength>
 </Item>
 </iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2/VirtFb/T1_1</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

15.4.4 Using the Delete Function on Modbus Data Points

You can use the Delete function to delete a Modbus data point on the SmartServer. The Delete
function takes an <Item> element with a MOD_Dp_Cfg type as its input. The <Item> element only
needs to include the Modbus data point’s <UCPTname> property in the Delete Request as
demonstrated in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MOD_Dp_Cfg">
 <UCPTname> Net/Modbus Channel/LAE_LCD15_2/VirtFb/T1_1</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Modbus Channel/LAE_LCD15_2/VirtFb/T1_1</UCPTname>
 </Item>
 </iLonItem>
</Delete>

i.LON SmartServer 2.0 Programmer’s Reference 15-18

i.LON SmartServer 2.0 Programmer’s Reference 16-1

16 M-Bus Driver
The following chapter describes how to manage M-Bus channels, devices, and data points on the
SmartServer.

16.1 M-Bus Channels
The following section describes how to use the List, Get, Set, and Delete functions on M-Bus channels.

16.1.1 Using the List Function on M-Bus Channels

You can use the List function to retrieve a list of M-Bus channels on the SmartServer. The List
function takes an <iLonItem> element that has an xSelect statement with an MBS_Channel_Cfg type
as its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MBS_Channel_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/M-Bus Channel</UCPTname>
 <UCPTannotation>RS232;xsi:type="MBS_Channel_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

The List function returns a list of <Item> elements for each M-Bus channel defined on the
SmartServer. You could use the list of <Item> elements returned by this function as input for the Get
function. The Get function would then return the configuration of each M-Bus channel included in the
list. The next section describes the properties included in each of these elements.

16.1.2 Using the Get Function on M-Bus Channels

You can use the Get function to retrieve the configuration of an M-Bus channel defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with an MBS_Channel_Cfg type. Each <Item> element will include the <UCPTname> of
each channel whose configuration is to be returned by this function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Channel_Cfg">
 <UCPTname>Net/M-Bus Channel</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MBS_Channel_Cfg">
 <UCPTname>Net/M-Bus Channel</UCPTname>
 <UCPTannotation>RS232</UCPTannotation>

i.LON SmartServer 2.0 Programmer’s Reference 16-2

 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T13:06:24.430-07:00</UCPTlastUpdate>
 <UCPTuri>MBS_Channel_Cfg.htm</UCPTuri>
 <UCPThandle>0</UCPThandle>
 <UCPTchannelType LonFormat="UCPTchannelType">CT_RS232_MASTER</UCPTchannelType>
 <InterfaceOptions>
 <UCPTspeed LonFormat="UCPTspeed">MS_2400</UCPTspeed>
 <UCPTsize LonFormat="UCPTsize">CS_8</UCPTsize>
 <UCPTparity LonFormat="UCPTparity">P_EVEN</UCPTparity>
 <UCPTstopBits LonFormat="UCPTstopBits">SB_1</UCPTstopBits>
 </InterfaceOptions>
 <UCPTretryCount LonFormat="UCPTretryCount">1</UCPTretryCount>
 </Item>
 </iLonItem>
 </Get>

The Get function returns an <Item> element for each channel referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the channel is added to the SmartServer. You can write to these channel properties with the Set
function. The following table describes these properties.

Property Description

<UCPTname> The name of the channel in the following format:
<network/channel>. You can rename an M-Bus channel by
providing its <UCPThandle> and specifying the new
<UCPTname> property to which the channel is to be renamed.

<UCPTannotation> The type of M-Bus channel, which may be RS232 or RS485.
This determines the icon used to represent the M-Bus channel in
the SmartServer Web interface.

<UCPThidden> A flag indicating whether the M-Bus channel is hidden or shown
in the navigation pane on the left side of the SmartServer Web
interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
M-Bus channel was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour
clock, therefore; an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

i.LON SmartServer 2.0 Programmer’s Reference 16-3

Property Description

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the channel. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the M-Bus channel. This property is always
MBS_Channel_Cfg.htm.

<UCPThandle> The handle assigned to the M-Bus channel assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing M-Bus channel, you must specify
the channel’s handle. If you do not specify the handle, a new
channel is created. You cannot use the Set function to modify
the handle assigned to the channel.

<UCPTchannelType> The channel type. This property may be one of the following
values:

• CT_RS485_MASTER. RS-485 is a balanced line,
half-duplex system that allows transmission distances of up
to 1.2 km. RS-485 allows for transmission over longer
distances at higher speeds. This is the default.

• CT_RS232_MASTER. RS-232 uses serial binary data for
transmitting data between two devices.

<InterfaceOptions>

This element contains the following options for M-Bus
channels:

• <UCPTspeed>. The baud rate at which the SmartServer
communicates with the M-Bus devices on the channel. The
default value is MS_2400. This property may be one of the
following values:

 MS_300
 MS_600
 MS_1200
 MS_2400
 MS_4800
 MS_9600

• <UCPTsize>. The data bit size for messages sent over the
M-Bus network. A data bit is a group of 5 to 8 bits that
represents a single character of data for transmission over
the network. Data bits are preceded by a start bit, and they
are followed by an optional parity bit and one or more stop
bits. The default value is CS_8. This property may be one
of the following values:

 CS_5
 CS_6
 CS_7
 CS_8

• <UCPTparity>. The parity bit size for messages sent over

i.LON SmartServer 2.0 Programmer’s Reference 16-4

Property Description

the M-Bus network. A parity bit is an extra bit used to
check for errors in groups of data bits transferred between
devices. The default parity size is P_EVEN. This property
may be one of the following values:

 P_NONE
 P_ODD
 P_EVEN

• <UCPTstopBits>. The number of stop bits used on the
M-Bus network. The default value is SB_1. This property
may be one of the following values:

 SB_1
 SB_2

This property is not available for TCP/IP M-Bus channels.

<UCPTretryCount> The number of times a network message is re-sent when no
confirmation is received. The default value is 1 for M-Bus
channels.

<UCPTminOfflineTime> If a network message fails, a data point and its device are
marked offline. You can specify the <UCPTminOfflineTime>
property so that all the data points on the offline device with
pending network messages (read/write requests, polls, or
heartbeats) are marked offline and network messages are not
sent to them. This ensures that network performance is not
impacted by an offline device.

You can set the minimum period of time (in seconds) that the
SmartServer waits before transmitting network messages to
offline data points. During this period, an offline device
transmits an OFFLINE status in response to data point requests.
Once <UCPTminOfflineTime> elapses, the SmartServer sends a
read/write request to one offline data point. If the read/write
request succeeds, the data point and its device are marked
online, and all cached read/write requests for the offline data
points on the device are executed.

This property is optional. If you do not specify this property in
a Set function, the current value stored in it is erased. You must
specify this property even if you are not changing it in order to
preserve the current value.

The default <UCPTminOfflineTime> for an M-Bus channel is
60 seconds.

16.1.3 Using the Set Function on M-Bus Channels

You can use the Set function to overwrite the configuration of an M-Bus channel, or to create a new
M-Bus channel. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique M-Bus
channel to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) M-Bus channel. This set of properties is the same whether you are creating a new
M-Bus channel or modifying an existing M-Bus channel.

i.LON SmartServer 2.0 Programmer’s Reference 16-5

• If you are creating a new M-Bus channel, you only need to specify the <UCPTchannelType>
property; all other properties are optional.

• If you are modifying an existing channel, you must specify the channel’s <UCPThandle>. If you
do not specify the handle, a new channel is created. All other properties must be filled; otherwise
the values stored in them are erased. The previous section, Using the Get Function on M-Bus
Channels, details the properties you can include in the Set function.

Request (create a new M-Bus channel on the SmartServer)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Channel_Cfg">
 <UCPTname>Net/M-Bus Channel</UCPTname>
 <UCPTannotation>IP</UCPTannotation>
 <UCPTchannelType LonFormat="UCPTchannelType">CT_TCP_IP_MASTER</UCPTchannelType>
 </Item>
 </iLonItem>
</Set>
Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MBS_Channel_Cfg">
 <UCPTname>Net/M-Bus Channel</UCPTname>
 <UCPTannotation>IP</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T11:43:37.460-07:00</UCPTlastUpdate>
 <UCPTuri>MBS_Channel_Cfg.htm</UCPTuri>
 <UCPThandle>1</UCPThandle>
 <UCPTchannelType LonFormat="UCPTchannelType">CT_TCP_IP_MASTER</UCPTchannelType>
 <UCPTport>502</UCPTport>
 <UCPTretryCount LonFormat="UCPTretryCount">1</UCPTretryCount>
 </Item>
 </iLonItem>
</SetResponse>

16.1.4 Using the Delete Function on M-Bus Channels

You can use the Delete function to delete an M-Bus channel on the SmartServer. The Delete function
takes an <Item> element with an MBS_Channel_Cfg type as its input. The <Item> element only needs
to include the M-Bus channel’s <UCPTname> property in the Delete Request as demonstrated in the
following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Channel_Cfg">
 <UCPTname>Net/M-Bus Channel</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/M-Bus Channel</UCPTname>
 </Item>
 </iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 16-6

16.2 M-Bus Devices
The following section describes how to use the List, Get, Set, and Delete functions on M-Bus devices.

16.2.1 Using the List Function on M-Bus Devices

You can use the List function to retrieve a list of M-Bus devices on the SmartServer. The List function
takes an <iLonItem> element that has an xSelect statement with an MBS_Device_Cfg type as its input,
as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MBS_Device_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/M-Bus Channel/M-Bus Device</UCPTname>
 <UCPTannotation>App;xsi:type="MBS_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
</iLonItem>
</List>

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each device included in the list. The next section
describes the properties included in each of these elements.

16.2.2 Using the Get Function on M-Bus Devices

You can use the Get function to retrieve the configuration of an M-Bus device defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with an MBS_Device_Cfg type. Each <Item> element will include the <UCPTname> of
each device whose configuration is to be returned by this function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Device_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MBS_Device_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device</UCPTname>
 <UCPTannotation>App</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T14:47:25.970-07:00</UCPTlastUpdate>
 <UCPTuri>MBS_Device_Cfg.htm</UCPTuri>
 <UCPThandle>0</UCPThandle>
 <UCPTspeed LonFormat="UCPTspeed">MS_2400</UCPTspeed>
 <UCPTmbusFcbEnable>1</UCPTmbusFcbEnable>
 <UCPTmbusFcvEnable>1</UCPTmbusFcvEnable>
 <UCPTmbusMode LonFormat="UCPTmbusMode">MD_MODE1</UCPTmbusMode>

i.LON SmartServer 2.0 Programmer’s Reference 16-7

 <UCPTmbusMedId>MED_NUL</UCPTmbusMedId>
 <UCPTmbusManId />
 <UCPTmbusGenId>ff</UCPTmbusGenId>
 <Address>
 <UCPTmbusAddressTyp LonFormat="UCPTmbusAddressTyp">AT_SECONDARY</UCPTmbusAddressTyp>
 <UCPTmbusPrimaryAddress>0</UCPTmbusPrimaryAddress>
 <UCPTmbusSecondaryAddress>00000000</UCPTmbusSecondaryAddress>
 </Address>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each device referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the device is added to the SmartServer. You can write to these device properties with the Set
function. The following table describes these properties.

Property Description

<UCPTname> The name of the M-Bus device in the following format:
<network/channel/device>. You can rename an M-Bus device
by providing its <UCPThandle> and specifying the new
<UCPTname> property to which the M-Bus device is to be
renamed.

<UCPTannotation> The type of M-Bus device (App by default) and its xsi type,
which is MBS_Device_Cfg. This determines the icon used to
represent the M-Bus device in the SmartServer Web interface.

<UCPThidden> A flag indicating whether the M-Bus device is hidden or shown
in the navigation pane on the left side of the SmartServer Web
interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTitemStatus> • This property only appears if the device has the following
exception: IS_OFFLINE. The device application is offline.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
M-Bus device was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of

i.LON SmartServer 2.0 Programmer’s Reference 16-8

Property Description

10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the M-Bus device. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the M-Bus device. This property is always
MBS_Device_Cfg.htm.

<UCPThandle> The handle assigned to the M-Bus device assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing M-Bus device, you must specify the
device’s handle. If you do not specify the handle, a new M-Bus
device is created. You cannot use the Set function to modify
the handle assigned to the M-Bus device.

<UCPTspeed> • The baud rate (bits per second [bps)] at which the M-Bus
device communicates on the serial port. See the
documentation for your M-Bus device for more information
on supported baud rates. The default value is MS_2400.
This property may be one of the following values:

• MS_300

• MS_600

• MS_1200

• MS_2400

• MS_4800

• MS_9600

<UCPTmbusFcbEnable> Specifies whether the device uses the Frame Count-Bit (FCB)
for sending requests. The default value is 1.

<UCPTmbusFcvEnable> Specifies whether the device uses the Frame Count Valid Bit
(FCV) for sending requests. The default value is 1.

If <UCPTmbusFcbEnable> and <UCPTmbusFcvEnable> are
set to 1, you can select the C field in the M-Bus request
telegram:

0x4b fcv=0 fcb=0
0x5b fcv=1 fcb=0
0x6b fcv=0 fcb=1
0x7b fcv=1 fcb=1

Multi-Telegram Support

If a total answer sequence from a device will not fit into a single
RSP_UD telegram from the M-Bus device to the SmartServer,
the last DIF is set to 0x1f. The SmartServer signals by a toggled
FCB-Bit together with a set FCV-Bit in the next REQ_UD
telegram that the last RSP_UD-telegram has been properly

i.LON SmartServer 2.0 Programmer’s Reference 16-9

Property Description

received from the device. The device answers to a
REQ_UD-request with toggled FCB-Bit with a set FCV-bit
from the SmartServer with a RSP_UD containing the data
telegram section of a multi-telegram answer.

Notes: An M-Bus device with a single RSP_UD-telegram may
ignore the FCB in the REQ_UD2-telegram and always send the
same (single) telegram.

An M-Bus device with exactly two (sequential)
RSP_UD-answer telegrams may use the FCB of the REQ_UD2
to decide which of both telegrams should be transmitted.

<UCPTmbusMode> The communication mode for the requested device. This
property may be one of the following values:

• MD_MODE1

• MD_MODE2

<UCPTmbusMedId> The device’s medium ID as a 1-byte enumeration that identifies
the device functionality. This read-only property is filled when
the device responds to a request correctly. The following is a
list of possible medium IDs:

MED_NUL Invalid
MED_OTH ER Others
MED_OIL Oil
MED_ELECTRICITY Electricity
MED_GAS Gas
MED_RETURN_TEMP Return temperature
MED_STEAM Steam
MED_HOT_WATER Hot water
MED_WATER Water
MED_HEAT_METER Heat meter
MED_COMPRESSED_AIR Compressed-air
MED_RES1 Reserved
MED_RES2 Reserved
MED_FLOW_TEMP Flow temperature,

outgoing/supply temperature
MED_RES3 Reserved
MED_SYS_BUS System / Bus
MED_UNKNOWN Unknown

<UCPTmbusManId> The device’s manufacturer ID as a 3-byte string. This read-only
property is filled when the device responds to a request
correctly.

<UCPTmbusGenId> The generation or version of the device as 1-byte char. This
read-only property is filled when the device responds to a
request correctly. The value depends on the manufacturer.

<Address> This element contains the following options for M-Bus devices:

• <UCPTmbusAddressTyp>. Specifies whether the M-Bus
device uses primary (AT_PRIMARY) or secondary

http://dict.leo.org/?p=iB2QE.&search=return
http://dict.leo.org/?p=iB2QE.&search=temperature

i.LON SmartServer 2.0 Programmer’s Reference 16-10

Property Description

(AT_SECONDARY) addressing. Primary addressing is
preferred because it makes replacing M-Bus devices more
transparent. Each of these addressing methods is described
as follows:

 Primary. The primary address is assigned by the
network management tool used to install the M-Bus
device (analogous to a LONWORKS subnet/icon
address).

 Secondary. The secondary address is burned into the
device at the factory (analogous to a LONWORKS
Neuron ID).

• <UCPTmbusPrimaryAddress>. The primary address must
be between 0 to 250.

• <UCPTmbusSecondaryAddress>. The secondary address
must be between 0 to 99,999,999.

16.2.3 Using the Set Function on M-Bus Devices

You can use the Set function to overwrite the configuration of an M-Bus device, or to create a new
M-Bus device. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique M-Bus
device to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) M-Bus device. This set of properties is the same whether you are creating a new M-Bus
device or modifying an existing M-Bus device.

• If you are modifying an existing M-Bus device, you must specify the <UCPThandle> property. In
addition, all other properties should be filled; otherwise the values stored in them are erased. The
previous section, Using the Get Function on M-Bus Devices, details the properties you can include
in the Set function.

You can set multiple M-Bus devices with a single Set message. However, you should not attempt to
create or write to more than 100 M-Bus devices with a single call to the Set function. The following
example demonstrates how to create a new M-Bus device.

Request (create a new M-Bus device on the SmartServer)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Device_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device 2</UCPTname>
 </Item>
 </iLonItem
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/M-Bus Channel/M-Bus Device 2</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

i.LON SmartServer 2.0 Programmer’s Reference 16-11

16.2.4 Using the Delete Function on M-Bus Devices

You can use the Delete function to delete an M-Bus device on the SmartServer. The Delete function
takes an <Item> element with an MBS_Device_Cfg type as its input. The <Item> element only needs
to include the device’s <UCPTname> property in the Delete Request as demonstrated in the following
code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Device_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device 2</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/M-Bus Channel/M-Bus Device 2</UCPTname>
 </Item>
 </iLonItem>
</Delete>

16.3 M-Bus Virtual Functional Blocks
Before you can add data points to an M-Bus device, you need to use the Set function to create a Virtual
functional block under the M-Bus device. This virtual functional block is used to encapsulate the
M-Bus data points and enable the M-Bus driver to adhere to the network hierarchy naming convention.
The Set function takes an <Item> element with an MBS_Fb_Cfg type as its input, as shown in the
example below.

Request (add a virtual functional block to an M-Bus device)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Fb_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device/VirtFb</UCPTname>
 </Item>
</iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/M-Bus Channel/M-Bus Device/VirtFb</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

16.4 M-Bus Data Points
The following section describes how to use the List, Get, Set, and Delete functions on M-Bus data
points. For information on reading and writing values to M-Bus data points, see Chapter 4, Using the
SmartServer Data Server.

i.LON SmartServer 2.0 Programmer’s Reference 16-12

16.4.1 Using the List Function on M-Bus Data Points

You can use the List function to retrieve a list of M-Bus data points on the SmartServer. The List
function takes an <iLonItem> element that has an xSelect statement with an MBS_Dp_Cfg type as its
input, as shown in the example below.

Request (return all the M-Bus data points on the SmartServer)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MBS_Dp_Cfg"]</xSelect>
 </iLonItem>
</List>

Alternatively, you can filter the M-Bus data points returned by the List function to those on a specific
device by including the <UCPTname>of the parent device in the xSelect statement, or you can filter
the M-Bus data points returned using the <UCPTname> and <UCPTlastUpdate> data point properties.

Request (use an xSelect statement to return all the M-Bus data points on a specific device)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="MBS_Dp_Cfg"][starts-with(UCPTname,"Net/M-Bus Channel/M-Bus Device")]
</xSelect>

 </iLonItem>
</List>

Request (use an xSelect statement to return all the M-Bus data points that were updated after a
specific time)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="MBS_Dp_Cfg"][UCPTlastUpdate>"2008-03-31T00:00:00"]
</xSelect>

 </iLonItem>
</List>

Request (return all the M-Bus data points of a specific type based on name)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MBS_Dp_Cfg"][contains(UCPTname,"In")]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <Item>
 <UCPTname>Net/M-Bus Channel/M-Bus Device/Virtual Fb/In</UCPTname>
 <UCPTannotation>Dp_In;xsi:type="MBS_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
</List>

16.4.2 Using the Get Function on M-Bus Data Points

You can use the Get function to retrieve the configuration of M-Bus data points defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with an MBS_Dp_Cfg type. Each <Item> element will include the <UCPTname> of each
Modbus data point whose configuration is to be returned by this function, as shown in the example
below.

Request (use an xSelect statement to return a specific M-Bus data point)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Dp_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device/Virtual Fb/In</UCPTname>
 </Item>

i.LON SmartServer 2.0 Programmer’s Reference 16-13

 </iLonItem>
</Get>

Alternatively, you can specify one or more M-Bus data point properties in the xSelect statement to
filter the items returned by the Get function, including the <UCPTname> to filter data points based on
their parent device.

Request (use an xSelect statement return all the M-Bus data points on a specific device)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="MBS_Dp_Cfg"][starts-with(UCPTname,"Net/M-Bus Channel/LAE_LCD15_1")]
 </xSelect>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="MBS_Dp_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device/Virtual Fb/In</UCPTname>
 <UCPTannotation>Dp_In</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T15:29:01.570-07:00</UCPTlastUpdate>
 <UCPTuri>MBS_Dp_Cfg.htm</UCPTuri>
 <UCPTformatDescription>RAW_HEX</UCPTformatDescription>
 <UCPTlength>1</UCPTlength>
 <UCPTdirection LonFormat="UCPTdirection">DIR_IN</UCPTdirection>
 <UCPThandle>0</UCPThandle>
 <UCPTpollRate>10.0</UCPTpollRate>
 <UCPTmbusType LonFormat="UCPTmbusType">MBST_READ</UCPTmbusType>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each M-Bus data point referenced in the input
parameters you supplied to the function. The properties included within each <Item> element are
initially defined when the M-Bus data point is added to the SmartServer. You can write to these data
point properties with the Set function. The following table describes these properties.

Property Description

<UCPTname> The name of the M-Bus data point in the following format:
<network/channel/device/functionalblock/data point>. You can
rename an M-Bus data point by providing its <UCPThandle>
and specifying the new <UCPTname> property to which the
M-Bus data point is to be renamed.

<UCPTannotation> The type of M-Bus data point, which is Dp_In by default. This
determines the icon used to represent the M-Bus data point in
the SmartServer Web interface.

<UCPThidden> A flag indicating whether the M-Bus data point is hidden or
shown in the navigation pane on the left side of the SmartServer
Web interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
M-Bus data point was updated. This timestamp uses the ISO
8601 format, which is as follows:

i.LON SmartServer 2.0 Programmer’s Reference 16-14

Property Description

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the M-Bus data point. This can be
a maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the M-Bus data point. This property is
MBS_Dp_Cfg.htm by default.

<UCPTformatDescription> • The M-Bus data point’s program ID; data type (SNVT,
SCPT, UNVT, UCPT, or built-in data type); and format
(e.g., SI metric or US customary if the type has multiple
formats. The format description is displayed in the
following format:

#<manufacturer ID>[scope selector].<type name>[#format] .

This determines many factors about the M-Bus data point,
including the type of values it takes and its base type. If you do
not set this property, it is set to RAW_HEX and the M-Bus data
point uses raw hex values.

<UCPTlength> Specifies the size (in bytes) of the M-Bus data point.

<UCPTdirection> Specifies whether the Modbus data point is an input data point
(DIR_IN), output data point (DIR_OUT), or undefined
(DIR_NUL).

<UCPThandle> The handle assigned to the M-Bus data point assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing M-Bus data point, you must specify
the data point’s handle. If you do not specify the handle, a new
M-Bus device is created. You cannot use the Set function to
modify the handle assigned to the M-Bus data point.

i.LON SmartServer 2.0 Programmer’s Reference 16-15

Property Description

<UCPTpollRate> The frequency in which the SmartServer’s internal data server
polls the M-Bus data point. The recommended minimum poll
rate is 30 seconds; the maximum poll rate is 1 second.

The default poll rate for M-Bus data points is 10 seconds.

Note: The actual poll rate is determined by calculating the least
common denominator of all the poll rates set for the data point
from the applications to which it has been added.

<UCPTmbusType> Specifies the type (read or write) of the M-Bus data point. This
property may have one of the following values:

• MBST_READ

• MBST_WRITE

16.4.3 Using the Set Function on M-Bus Data Points

You can use the Set function to overwrite the configuration of an M-Bus data point, or to create a new
M-Bus data point. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique M-Bus data
point to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) M-Bus data point. This set of properties is the same whether you are creating a new
M-Bus data point or modifying an existing M-Bus data point.

• If you are modifying an existing M-Bus data point, you must specify the <UCPThandle> property.
In addition, all other properties should be filled; otherwise the values stored in them are erased.
The previous section, Using the Get Function on M-Bus Data Points, details the properties you
can include in the Set function.

You can set multiple M-Bus data points with a single Set message. However, you should not attempt
to create or write to more than 100 M-Bus data points with a single call to the Set function. The
following example demonstrates how to create a new M-Bus data point.

Request (add an M-Bus data point to an M-Bus device)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Dp_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device/VirtFb/MBS3</UCPTname>
 <UCPTannotation>Dp_In</UCPTannotation>
 <UCPTformatDescription>#8000014600000000[4].UCPT_MBS3</UCPTformatDescription>
 <UCPTdirection xsi:type="string" LonFormat="UCPTdirection">DIR_IN</UCPTdirection>
 <UCPTlength>24</UCPTlength>
 <UCPTpollRate>10.0</UCPTpollRate>
 </Item>
 </iLonItem>
<Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/M-Bus Channel/M-Bus Device/VirtFb/MBS3</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

i.LON SmartServer 2.0 Programmer’s Reference 16-16

16.4.4 Using the Delete Function on M-Bus Data Points

You can use the Delete function to delete an M-Bus data point on the SmartServer. The Delete
function takes an <Item> element with an MBS_Dp_Cfg type as its input. The <Item> element only
needs to include the M-Bus data point’s <UCPTname> property in the Delete Request as demonstrated
in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="MBS_Dp_Cfg">
 <UCPTname>Net/M-Bus Channel/M-Bus Device/VirtFb/MBS3</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/M-Bus Channel/M-Bus Device/VirtFb/MBS3</UCPTname>
 </Item>
 </iLonItem>
</Delete>

i.LON SmartServer 2.0 Programmer’s Reference 17-1

17 Virtual Driver
The virtual channel is the SmartServer's internal channel. It is used as a gateway for system
information that is used by the data points on the SmartServer. The Virtual driver contains data points
representing the SmartServer's free RAM, free disk space, CPU usage, software version number, last
received service pin message, and other information. The following chapter describes how to manage
virtual channels, and devices and data points on the virtual channel.

17.1 Virtual Channels
The following section describes how to use the List, Get, Set, and Delete functions on Virtual channels.

17.1.1 Using the List Function on Virtual Channels

You can use the List function to retrieve a list of Virtual channels on the SmartServer. The List
function takes an <iLonItem> element that has an xSelect statement with a Virtual_Channel_Cfg type
as its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Virtual_Channel_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/VirtCh</UCPTname>
 <UCPTannotation>VirtualChannel;xsi:type="Virtual_Channel_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

The List function returns a list of <Item> elements for each Virtual channel defined on the
SmartServer. You could use the list of <Item> elements returned by this function as input for the Get
function. The Get function would then return the configuration of each Virtual channel included in the
list. The next section describes the properties included in each of these elements.

17.1.2 Using the Get Function on Virtual Channels

You can use the Get function to retrieve the configuration of a Virtual channel defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with a Virtual_Channel_Cfg type. Each <Item> element will include the <UCPTname> of
each channel whose configuration is to be returned by this function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Channel_Cfg">
 <UCPTname>Net/Virtual Channel</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 17-2

 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Virtual_Channel_Cfg">
 <UCPTname>Net/Virtual Channel</UCPTname>
 <UCPTannotation>VirtualChannel</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-04-02T17:05:45.270-07:00</UCPTlastUpdate>
 <UCPTuri>Virtual_Channel_Cfg.htm</UCPTuri>
 <UCPThandle>1</UCPThandle>
 <UCPTchannelType>Virtual</UCPTchannelType>
 </Item>
 </iLonItem>
 </Get>
The Get function returns an <Item> element for each channel referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the channel is added to the SmartServer. You can write to these channel properties with the Set
function. The following table describes these properties.

Property Description

<UCPTname> The name of the channel in the following format:
<network/channel>. You can rename a Virtual channel by
providing its <UCPThandle> and specifying the new
<UCPTname> property to which the channel is to be renamed.

<UCPTannotation> The type of Virtual channel, which is Virtual Channel. This
determines the icon used to represent the Virtual channel in the
SmartServer Web interface.

<UCPThidden> A flag indicating whether the Virtual channel is hidden or
shown in the navigation pane on the left side of the SmartServer
Web interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Virtual channel was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24-hour
clock, therefore; an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

i.LON SmartServer 2.0 Programmer’s Reference 17-3

Property Description

<UCPTdescription> A user-defined description of the channel. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the Virtual channel. This property is
always Virtual_Channel_Cfg.htm.

<UCPThandle> The handle assigned to the Virtual channel assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing Virtual channel, you must specify
the channel’s handle. If you do not specify the handle, a new
channel is created. You cannot use the Set function to modify
the handle assigned to the channel.

<UCPTchannelType> • The channel type, which is always Virtual.

17.1.3 Using the Set Function on Virtual Channels

You can use the Set function to overwrite the configuration of a Virtual channel, or to create a new
Virtual channel. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique Virtual
channel to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) Virtual channel. This set of properties is the same whether you are creating a new
Virtual channel or modifying an existing Virtual channel.

• If you are creating a new Virtual channel, you only need to specify the <UCPTchannelType>
property and set it to “Virtual”; all other properties are optional.

• If you are modifying an existing channel, you must specify the channel’s <UCPThandle>. If you
do not specify the handle, a new channel is created. All other properties must be filled; otherwise
the values stored in them are erased. The previous section, Using the Get Function on Virtual
Channels, details the properties you can include in the Set function. You can create up to two
Virtual channels with a single Set message.

Request (create a new Virtual channel on the SmartServer)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Channel_Cfg">
 <UCPTname>Net/Virtual Channel 1</UCPTname>
 <UCPTannotation>VirtualChannel</UCPTannotation>
 <UCPTchannelType>Virtual</UCPTchannelType>
 </Item>
 </iLonItem>
</Set>
Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Virtual_Channel_Cfg">
 <UCPTname>Net/Virtual Channel 1</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

i.LON SmartServer 2.0 Programmer’s Reference 17-4

17.1.4 Using the Delete Function on a Virtual Channel

You can use the Delete function to delete a Virtual channel on the SmartServer. The Delete function
takes an <Item> element with a Virtual_Channel_Cfg type as its input. The <Item> element only
needs to include the Virtual channel’s <UCPTname> property in the Delete Request as demonstrated
in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Channel_Cfg">
 <UCPTname>Net/Virtual Channel 1</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Virtual Channel 1</UCPTname>
 </Item>
 </iLonItem>

17.2 Virtual Devices
The following section describes how to use the List, Get, Set, and Delete functions on Virtual devices.

17.2.1 Using the List Function on Virtual Devices

You can use the List function to retrieve a list of Virtual devices on the SmartServer. The List function
takes an <iLonItem> element that has an xSelect statement with a Virtual_Device_Cfg type as its
input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Virtual_Device_Cfg"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/VirtCh/iLON System</UCPTname>
 <UCPTannotation>VirtualDevice;local;xsi:type="Virtual_Device_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
</iLonItem>
</List>

You could use the list of <Item> elements returned by this function as input for the Get function. The
Get function would then return the configuration of each device included in the list. The next section
describes the properties included in each of these elements.

17.2.2 Using the Get Function on Virtual Devices

You can use the Get function to retrieve the configuration of a Virtual device defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>

i.LON SmartServer 2.0 Programmer’s Reference 17-5

elements with a Virtual_Device_Cfg type. Each <Item> element will include the <UCPTname> of
each device whose configuration is to be returned by this function, as shown in the example below.

Request
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Device_Cfg">
 <UCPTname>Net/VirtCh/iLON System</UCPTname>
 </Item>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Virtual_Device_Cfg">
 <UCPTname>Net/VirtCh/iLON System</UCPTname>
 <UCPTannotation>VirtualDevice;local</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-26T11:09:27.420-07:00</UCPTlastUpdate>
 <UCPTuri>Virtual_Device_Cfg.htm</UCPTuri>
 <UCPThandle>0</UCPThandle>
 <UCPTprogramId>0000000000000000</UCPTprogramId>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each device referenced in the input parameters you
supplied to the function. The properties included within each <Item> element are initially defined
when the device is added to the SmartServer. You can write to these device properties with the Set
function. The following table describes these properties.

Property Description

<UCPTname> The name of the Virtual device in the following format:
<network/channel/device>. You can rename a Virtual device by
providing its <UCPThandle> and specifying the new
<UCPTname> property to which the Virtual device is to be
renamed.

<UCPTannotation> The type of device, which is “Virtual Device”, and its location
relative to the SmartServer, which is “ local ”. This determines
the icon used to represent the Virtual device in the SmartServer
Web interface.

<UCPThidden> A flag indicating whether the Virtual device is hidden or shown
in the navigation pane on the left side of the SmartServer Web
interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Virtual device was updated. This timestamp uses the ISO 8601
format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss

i.LON SmartServer 2.0 Programmer’s Reference 17-6

Property Description

represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the Virtual device. This can be a
maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the Virtual device. This property is always
Virtual_Device_Cfg.htm.

<UCPThandle> The handle assigned to the Virtual device assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing Virtual device, you must specify the
device’s handle. If you do not specify the handle, a new Virtual
device is created. You cannot use the Set function to modify
the handle assigned to the Virtual device.

<UCPTprogramId> The program ID of the Virtual device as a set of hex digits.

17.2.3 Using the Set Function on Virtual Devices

You can use the Set function to overwrite the configuration of a Virtual device, or to create a new
Virtual device. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique Virtual
device to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) Virtual device. This set of properties is the same whether you are creating a new Virtual
device or modifying an existing Virtual device.

• If you are modifying an existing Virtual device, you must specify the <UCPThandle> property. In
addition, all other properties should be filled; otherwise the values stored in them are erased. The
previous section, Using the Get Function on Virtual Devices, details the properties you can
include in the Set function.

You can set multiple Virtual devices with a single Set message. However, you should not attempt to
create or write to more than 100 Virtual devices with a single call to the Set function. The following
example demonstrates how to create a new Virtual device.

Request (create a new Virtual device on the SmartServer)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Device_Cfg">

i.LON SmartServer 2.0 Programmer’s Reference 17-7

 <UCPTname>Net/Virtual Channel/Virtual Device</UCPTname>
 </Item>
 </iLonItem
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Virtual Channel/Virtual Device</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

17.2.4 Using the Delete Function on Virtual Devices

You can use the Delete function to delete a Virtual device on the SmartServer. The Delete function
takes an <Item> element with a Virtual_Device_Cfg type as its input. The <Item> element only needs
to include the device’s <UCPTname> property in the Delete Request as demonstrated in the following
code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Device_Cfg">
 <UCPTname>Net/Virtual Channel 1/Virtual Device</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Virtual Channel 1/Virtual Device</UCPTname>
 </Item>
 </iLonItem>
</Delete>

17.3 Virtual Functional Blocks
Before you can add data points to a Virtual device, you need to use the Set function to create a virtual
functional block under the Virtual device. This virtual functional block is used to encapsulate the
virtual data points and enable the Virtual driver to adhere to the network hierarchy naming convention.
The Set function takes an <Item> element with a Virtual_Fb_Cfg type as its input, as shown in the
example below.

Request (add a virtual functional block to a Virtual device)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Fb_Cfg">
 <UCPTname>Net/Virtual Channel 1/Virtual Device/VirtFb</UCPTname>
 </Item>
</iLonItem>
</Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/Virtual Channel 1/Virtual Device/VirtFb</UCPTname>
 </Item>

i.LON SmartServer 2.0 Programmer’s Reference 17-8

 </iLonItem>
</SetResponse>

17.4 Virtual Data Points
The following section describes how to use the List, Get, Set, and Delete functions on Virtual data
points. For information on reading and writing values to Virtual data points, see Chapter 4, Using the
SmartServer Data Server.

17.4.1 Using the List Function on Virtual Data Points

You can use the List function to retrieve a list of Virtual data points on the SmartServer. The List
function takes an <iLonItem> element that has an xSelect statement with a Virtual_Dp_Cfg type as its
input, as shown in the example below.

Request (return all the Virtual data points on the SmartServer)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Virtual_Dp_Cfg"]</xSelect>
 </iLonItem>
</List>

Alternatively, you can filter the Virtual data points returned by the List function to those on a specific
device by including the <UCPTname>of the parent device in the xSelect statement, or you can filter
the Virtual data points returned using the <UCPTname> and <UCPTlastUpdate> data point properties.

Request (use an xSelect statement to return all the Virtual data points on a specific device)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="Virtual_Dp_Cfg"][starts-with(UCPTname,"Net/Virtual Channel/Virtual
Device")]
</xSelect>

 </iLonItem>
</List>

Request (use an xSelect statement to return all the Virtual data points that were updated after a
specific time)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="Virtual_Dp_Cfg"][UCPTlastUpdate>"2008-03-31T00:00:00"]
</xSelect>

 </iLonItem>
</List>

Request (return all the Virtual data points related to the connection manager based on name)
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="Virtual_Dp_Cfg"][contains(UCPTname,"CM")]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <UCPTcurrentConfig>4.0</UCPTcurrentConfig>
 <Item>
 <UCPTname>Net/VirtCh/iLON System/VirtFb/CMdialInNum</UCPTname>
 <UCPTannotation>Dp_Out;xsi:type="Virtual_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 <Item>
 <UCPTname>Net/VirtCh/iLON System/VirtFb/CMgprsIp</UCPTname>
 <UCPTannotation>Dp_Out;xsi:type="Virtual_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>

i.LON SmartServer 2.0 Programmer’s Reference 17-9

 </Item>
 <Item>
 <UCPTname>Net/VirtCh/iLON System/VirtFb/CMdialInIp</UCPTname>
 <UCPTannotation>Dp_Out;xsi:type="Virtual_Dp_Cfg"</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 </Item>
 </iLonItem>
</List>

17.4.2 Using the Get Function on Virtual Data Points

You can use the Get function to retrieve the configuration of Virtual data points defined on the
SmartServer. The input parameters you supply to this function will include one or more <Item>
elements with a Virtual_Dp_Cfg type. Each <Item> element will include the <UCPTname> of each
Modbus data point whose configuration is to be returned by this function, as shown in the example
below.

Request (use an xSelect statement to return a specific Virtual data point)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Dp_Cfg">
 <UCPTname>Net/VirtCh/iLON System/VirtFb/CMdialInNum</UCPTname>
 </Item>
 </iLonItem>
</Get>

Alternatively, you can specify one or more Virtual data point properties in the xSelect statement to
filter the items returned by the Get function, including the <UCPTname> to filter data points based on
their parent device.

Request (use an xSelect statement return all the Virtual data points on a specific device)
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//Item[@xsi:type="Virtual_Dp_Cfg"][starts-with(UCPTname,"Net/VirtCh/iLON
System/VirtFb")]

 </xSelect>
 </iLonItem>
</Get>

Response
<Get xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Virtual_Dp_Cfg">
 <UCPTname>Net/VirtCh/iLON System/VirtFb/CMdialInNum</UCPTname>
 <UCPTannotation>Dp_Out</UCPTannotation>
 <UCPThidden>0</UCPThidden>
 <UCPTlastUpdate>2008-03-26T11:09:27.420-07:00</UCPTlastUpdate>
 <UCPTuri>Virtual_Dp_Cfg.htm</UCPTuri>
 <UCPTformatDescription>#0000000000000000[0].SNVT_str_asc</UCPTformatDescription>
 <UCPTlength>31</UCPTlength>
 <UCPTdirection LonFormat="UCPTdirection">DIR_OUT</UCPTdirection>
 <UCPThandle>0</UCPThandle>
 </Item>
 </iLonItem>
</Get>

The Get function returns an <Item> element for each Virtual data point referenced in the input
parameters you supplied to the function. The properties included within each <Item> element are
initially defined when the Virtual data point is added to the SmartServer. You can write to these data
point properties with the Set function. The following table describes these properties.

Property Description

<UCPTname> The name of the Virtual data point in the following format:

i.LON SmartServer 2.0 Programmer’s Reference 17-10

Property Description

<network/channel/device/functionalblock/data point>. You can
rename a Virtual data point by providing its <UCPThandle> and
specifying the new <UCPTname> property to which the Virtual
data point is to be renamed.

<UCPTannotation> The type of Virtual data point, which may be Dp_In, Dp_Out, or
Dp_In_Out (undefined). This determines the icon used to
represent the Virtual data point in the SmartServer Web
interface.

<UCPThidden> A flag indicating whether the Virtual data point is hidden or
shown in the navigation pane on the left side of the SmartServer
Web interface. This property may have the following values:

0 – shown
1 – hidden

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Virtual data point was updated. This timestamp uses the ISO
8601 format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

The first segment of the time stamp (YYYY-MM-DD)
represents the date the configuration of the Data Point was last
updated. The second segment (after the T): HH:MM:SS.sss
represents the time of day the configuration of the Data Point
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is
midnight in Greenwich England, which lies on the zero
longitudinal meridian. Universal time is based on a 24 hour
clock; therefore, an afternoon hour such as 4 pm UTC would be
expressed as 16:00 UTC. The Z appended to the timestamp
indicates that it is in UTC. It can be left out.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

If it is not UTC, time shift has to be defined:
2008-02-28T09:59:53.660+01:00

<UCPTdescription> A user-defined description of the Virtual data point. This can be
a maximum of 201 characters long.

<UCPTuri> The name of the file on the SmartServer flash disk containing
the configuration of the Virtual data point. This property is
Virtual_Dp_Cfg.htm by default.

<UCPTformatDescription> • The Virtual data point’s program ID; data type (SNVT,
SCPT, UNVT, UCPT, or built-in data type); and format
(e.g., SI metric or US customary if the type has multiple
formats. The format description is displayed in the
following format:

i.LON SmartServer 2.0 Programmer’s Reference 17-11

Property Description

#<manufacturer ID>[scope selector].<type name>[#format] .

This determines many factors about the Virtual data point,
including the type of values it takes and its base type. If you do
not set this property, it is set to RAW_HEX and the Virtual data
point uses raw hex values.

<UCPTlength> Specifies the size (in bytes) of the Virtual data point.

<UCPTdirection> Specifies whether the Modbus data point is an input data point
(DIR_IN), output data point (DIR_OUT), or undefined
(DIR_NUL).

<UCPThandle> The handle assigned to the Virtual data point assigned by the
SmartServer. When you use the Set function to modify the
configuration of an existing Virtual data point, you must specify
the data point’s handle. If you do not specify the handle, a new
Virtual device is created. You cannot use the Set function to
modify the handle assigned to the Virtual data point.

<UCPTpollRate> The frequency in which the SmartServer’s internal data server
polls the Virtual data point. The recommended minimum poll
rate is 30 seconds; the maximum poll rate is 1 second.

Polling for Virtual data points is disabled (0 seconds) by default.

Note: The actual poll rate is determined by calculating the least
common denominator of all the poll rates set for the data point
from the applications to which it has been added.

17.4.3 Using the Set Function on Virtual Data Points

You can use the Set function to overwrite the configuration of a Virtual data point, or to create a new
Virtual data point. The input parameters you supply to the function will include one or more <Item>
elements. Each <Item> element includes a <UCPTname> property that specifies a unique Virtual data
point to be created or modified.

Each <Item> element may also include a series of properties that define the configuration of the new
(or modified) Virtual data point. This set of properties is the same whether you are creating a new
Virtual data point or modifying an existing Virtual data point.

• If you are creating a new Virtual data point, you should specify the <UCPTformatDescription>
property; all other properties are optional.

• If you are modifying an existing Virtual data point, you must specify the <UCPThandle> property.
In addition, all other properties should be filled; otherwise the values stored in them are erased.
The previous section, Using the Get Function on Virtual Data Points, details the properties you
can include in the Set function.

You can set multiple Virtual data points with a single Set message. However, you should not attempt
to create or write to more than 100 Virtual data points with a single call to the Set function. The
following example demonstrates how to create a new Virtual data point.

Request (add a Virtual data point to a Virtual device)
<Set xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Dp_Cfg">
 <UCPTname>Net/VirtCh/iLON System/VirtFb/virt_switch</UCPTname>

i.LON SmartServer 2.0 Programmer’s Reference 17-12

 <UCPTannotation>Dp_Out</UCPTannotation>
 <UCPTformatDescription>#0000000000000000[0].SNVT_switch</UCPTformatDescription>
 <UCPTdirection LonFormat="UCPTdirection">DIR_OUT</UCPTdirection>
 <UCPTpollRate>1.0</UCPTpollRate>
 </Item>
 </iLonItem>
<Set>

Response
<SetResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/VirtCh/iLON System/VirtFb/virt_switch</UCPTname>
 </Item>
 </iLonItem>
</SetResponse>

17.4.4 Using the Delete Function on Virtual Data Points

You can use the Delete function to delete a Virtual data point on the SmartServer. The Delete function
takes an <Item> element with a Virtual_Dp_Cfg type as its input. The <Item> element only needs to
include the Virtual data point’s <UCPTname> property in the Delete Request as demonstrated in the
following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="Virtual_Dp_Cfg">
 <UCPTname>Net/VirtCh/iLON System/VirtFb/virt_switch</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<DeleteResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem >
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item>
 <UCPTname>Net/VirtCh/iLON System/VirtFb/virt_switch</UCPTname>
 </Item>
 </iLonItem>
</Delete>

i.LON SmartServer 2.0 Programmer’s Reference 18-1

18 File System Data
You can use the List, Read, Write, and Delete functions to download, upload, and delete the data logs,
alarm logs, the eventlog.txt file on the root directory of the SmartServer flash disk, and other
user-defined .txt and .csv files under the web/user directory on the SmartServer flash disk.

18.1 Using the List Function on File System Data
You can use the List function to return a list of directories containing .txt or .csv files on the
SmartServer. The List function takes an <iLonItem> element that has an xSelect statement with a
FileSystem_Data type as its input, as shown in the example below.

Request
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <xSelect>//Item[@xsi:type="FileSystem_Data"]</xSelect>
 </iLonItem>
</List>

Response
<List xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Item xsi:type="Item_Service">
 <UCPTname>/alarmLog/</UCPTname>
 <UCPTlastUpdate>2007-12-20T01:03:38Z</UCPTlastUpdate>
 <UCPTdescription />
 <UCPTfileSize>2048</UCPTfileSize>
 </Item>
 <Item xsi:type="Item_Service">
 <UCPTname>/data/</UCPTname>
 <UCPTlastUpdate>2007-12-20T01:03:40Z</UCPTlastUpdate>
 <UCPTdescription />
 <UCPTfileSize>2048</UCPTfileSize>
 </Item>
 <Item xsi:type="Item_Service">
 <UCPTname>/web/</UCPTname>
 <UCPTlastUpdate>2007-12-20T01:03:40Z</UCPTlastUpdate>
 <UCPTdescription />
 <UCPTfileSize>2048</UCPTfileSize>
 </Item>
 <Item xsi:type="Item_Service">
 <UCPTname>/eventlog.txt</UCPTname>
 <UCPTlastUpdate>2008-02-05T17:32:46Z</UCPTlastUpdate>
 <UCPTdescription />
 <UCPTfileSize>25000</UCPTfileSize>
 </Item>
 </iLonItem>
</List>

18.2 Using the Read Function on File System Data
You can use the Read function to download the contents of a specific alarm log, data log, the event log
file on the root directory on the SmartServer flash disk, or other .txt or .csv file in the web/user
directory on the SmartServer flash disk.

The Read function takes an <iLonItem> element that has an xSelect statement with a FileSystem type
as its input, as shown in the example below. You can have the data returned in text format by
specifying the <UCPTfileFormat> attribute and setting it to “text”. Otherwise, the data will be
returned as a hex dump.

Request (return the data in the event log file on the SmartServer)
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

i.LON SmartServer 2.0 Programmer’s Reference 18-2

 <xSelect>//*[@xsi:type="FileSystem"][UCPTname="/eventlog.txt"][UCPTfileFormat="text"]</xSelect>
 </iLonItem>
</Read>

Request (return the data in a Data Logger)
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>

<xSelect>//*[@xsi:type="FileSystem"][UCPTname="/root/data/Net/LON/iLON App/Data
Logger[1].csv"][UCPTfileFormat="text"]</xSelect>

 </iLonItem>
</Read>

Response
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="FileSystem_Data">
 <UCPTname>/root/data/Net/LON/iLON App/Data Logger[1].csv</UCPTname>
 <UCPTlastUpdate>2008-02-27T21:41:56Z</UCPTlastUpdate>
 <UCPTdescription />
 <UCPTfileFormat LonFormat="UCPTfileFormat">text</UCPTfileFormat>
 <UCPTfileSize>98052</UCPTfileSize>

<Value>
"UCPTlogTime","UCPTpointName","UCPTaliasName","Reserved","UCPTpointStatus","UCPTvalueDef","UC
PTvalue","UCPTunit","UCPTpriority"

2008-02-27T13:41:57.440-08:00,"Net/LON/iLON App/Digital Input
2/nvoClsValue_2","NVL_nvoClsValue_2","","AL_NO_CONDITION","OFF","0.0 0","","255"

2008-02-27T13:45:00.000-08:00,"Net/LON/iLON App/Digital Input
2/nvoClsValue_2","NVL_nvoClsValue_2","","AL_NO_CONDITION","OFF","0.0 0","","255"

2008-02-27T14:00:00.040-08:00,"Net/LON/iLON App/Digital Input
2/nvoClsValue_2","NVL_nvoClsValue_2","","AL_NO_CONDITION","OFF","0.0 0","","255"

 </Value>
 </iLonItem>
<Read>

The following C# sample code demonstrates how to read a file in hex mode:
ilonWebRef.Item_Coll itemColl = new ilonWebRef.Item_Coll();

itemColl.xSelect =
"//*[@xsi:type=\"FileSystem\"][UCPTname=\"/root/data/myfile.txt\"][UCPTfileFormat=\"hex\"]";

ilonWebRef.Item_DataColl readResp = ilon.Read(itemColl);

if (readResp.UCPTfaultCount > 0)
 MessageBox.Show(readResp.fault.faultstring);
else
 String str = (readResp.Item[0] as ilonWebRef.FileSystem_Data).Value;

Note: You can read and write file system data that includes new line characters. For example, using
the Read function on the following file system data:
<Read xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

<iLonItem>
<Item xsi:type="FileSystem_Data">

 <UCPTname>/data/writetest.txt</UCPTname>
 <UCPTfileFormat>text</UCPTfileFormat>
 <Value>
 Hello
 World

!
 </Value>

</Item>
</iLonItem>

<Read>

i.LON SmartServer 2.0 Programmer’s Reference 18-3

returns the following data:
Hello
World
!

18.3 Using the Write Function on File System Data
You can use the Write function to upload a new alarm log, data log, or other user-defined file to the
SmartServer or to overwrite an existing file.

The Write function takes an <Item> element with a FileSystem_Data type as its input. You can specify
the format (text or hex) of the file in the <UCPTfileFormat> property. If you do not include the
<UCPTfileFormat> property and set it to “text”, the data is stored as a hex dump. The data to be
stored in the file must be included within the <Value> property.

The Write response message includes a <UCPTfileSize> that contains the length of the new file in
bytes.

Request (create a new user-defined file on the SmartServer)
<Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="FileSystem_Data">
 <UCPTname>/data/myCustomFile.csv</UCPTname>
 <UCPTfileFormat>text</UCPTfileFormat>
 <Value>Hello i.LON SmartServer</Value>
 </Item>
 </iLonItem>
</Write>

Response
<Write xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="FileSystem_Data">
 <UCPTname>/Data/Test</UCPTname>
 <UCPTlastUpdate>2008-04-04T00:00:24Z</UCPTlastUpdate>
 <UCPTdescription />
 <UCPTfileFormat LonFormat="UCPTfileFormat">text</UCPTfileFormat>
 <UCPTfileSize>31</UCPTfileSize>
 <Value>
 Hello i.LON SmartServer
 </Value>
 </Item>
 </iLonItem>
<Write>

Note: You can write to a file in hex mode, and store the data in ASCII printable characters (text) and
control characters (e.g., new line). To do this, you enter a space-separated ascii hex string in the
<Value> property in the Write request. For example, you can write two lines to a text file (the first is
“ABC” and the second is “DEF”) by passing in the following ascii hex string in the <Value> property:

 <Value>41 42 43 0D 0A 44 45 46</Value>

The following C# sample code demonstrates how to write to a file in hex mode using the previous
example:
ilonWebRef.Item_DataColl itemDataColl = new ilonWebRef.Item_DataColl();
itemDataColl.Item = new ilonWebRef.Item_Data[1];
ilonWebRef.FileSystem_Data fsData = new ilonWebRef.FileSystem_Data();
itemDataColl.Item[0] = fsData;

fsData.UCPTname = "/data/myfile.txt";
fsData.UCPTfileFormat = new ilonWebRef.E_LonString();
fsData.UCPTfileFormat.Value = "hex";

fsData.Value = “41 42 43 0D 0A 44 45 46”;

i.LON SmartServer 2.0 Programmer’s Reference 18-4

ilonWebRef.Item_Coll wrteResp = ilon.Write(itemDataColl);

18.4 Using the Delete Function on File System Data
You can use the Delete function to delete an alarm log, data log, or other user-defined file on the
SmartServer. The Delete function takes an <Item> element with a FileSystem_Data type as its input.
The <Item> element only needs to include the file’s <UCPTname> property in the Delete request as
demonstrated in the following code sample:

Request
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="FileSystem_Data">
 <UCPTname>/Data/Test</UCPTname>
 </Item>
 </iLonItem>
</Delete>

Response
<Delete xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLonItem>
 <Item xsi:type="FileSystem_Data">
 <UCPTname>/Data/Test</UCPTname>
 </Item>
 </iLonItem>
</Delete>

i.LON SmartServer 2.0 Programmer’s Reference 18-5

i.LON SmartServer 2.0 Programmer’s Reference 19-1

19 System Information Methods
You can use the SystemService_Read_Info and SystemService_Write_Info functions in the
iLON100_System.wsdl to read system information about the SmartServer and modify the
SmartServer’s configuration. You can use the SystemService_Test function to test connections to
various host devices such as SMTP mail servers, SNTP time servers, and remote SmartServers and
read the results of the tests.

Note: To use the system information methods, you must reference the iLON100_System.wsdl in your
code. See Chapter 20, Using the SOAP Interface as a Web Service, for more information on adding
service references.

19.1 System Service Methods
You can use the SystemService_Read_Info and SystemService_Write_Info functions to read system
information about the SmartServer and modify the SmartServer’s configuration.

The SystemService_Read_Info and SystemService_Write_Info functions take a string consisting of an
<iLONSystemService> element that includes one <UCPTsystemInfoType> property. The
<UCPTsystemInfoType> property specifies an enumeration representing the type of system
information to be read from and written to the SmartServer. The following example demonstrates how
to use the SystemService_Read_Info function in your code:
string systemData = "<iLONSystemService><UCPTsystemInfoType>SI_TIME
</UCPTsystemInfoType></iLONSystemService>"

Tip: Section 21.1.7, Configuring the SmartServer in Visual C# .NET, includes a C# programming
example demonstrating how to use the SystemService_Read_Info and SystemService_Write_Info
functions. Section 21.2.7, Configuring the SmartServer in Visual Basic.NET, includes a Visual Basic
example demonstrating how to do this.

The following table lists the values to which you can set <UCPTsystemInfoType> and the type of
system information returned by the SystemService_Read_Info function:

<UCPTsystemInfoType> Data Returned by SystemService_Read_Info

SI_NETWORK SmartServer IP connections, including IPv4, IPv6, and
DNS server connections.

SI_TIME SmartServer real-time clock settings.

SI_SECURITY SmartServer security settings.

SI_STATIC
(read-only)

General information about the SmartServer, including
the following:
• Hardware and firmware versions.

• Flash memory capacity and limits.

• FPM license status.

SI_REAL_TIME
(read-only)

General network performance statistics for the
SmartServer, including the following:
• Current flash memory usage.

• CPU utilization.

• Data point message failures.

i.LON SmartServer 2.0 Programmer’s Reference 19-2

• Time of last refresh.

SI_MAIL E-mail (SMTP) server settings.

SI_RTR IP-852 router settings.

SI_RTR_STAT
(read-only)

Network performance statistics for the SmartServer as
an IP-852 router.

SI_LSPA LonScanner Protocol Analyzer settings.

The SystemService_Read_Info function returns a string listing all the system information provided by
the <UCPTsystemInfoType> property specified in the request message. You can use the
SystemService_Write_Info function to configure the read/write properties of the item. The tables that
follow the code samples for the various items list whether a property is writable (r/w) or read-only (r).
Note that the system module also includes a simple SystemService_Reboot function that you can use to
reboot a SmartServer.

19.1.1 TCP/IP Settings

You can use the SystemService_Read_Info function to get the SmartServer’s IP connections, including
its IPv4, IPv6, and DNS server connections. To do this, you provide the SystemService_Read_Info
function with an <iLONSystemService> element that includes one <UCPTsystemInfoType> property
that is set to SI_NETWORK.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_NETWORK</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <NETWORK>
 <UCPTipAddress>10.2.124.82</UCPTipAddress>
 <UCPTipMask>255.255.128.0</UCPTipMask>
 <UCPTgateway>10.2.0.1</UCPTgateway>
 <UCPTdnsServer1>0.0.0.0</UCPTdnsServer1>
 <UCPTdnsServer2>0.0.0.0</UCPTdnsServer2>
 <UCPTipv6DnsServer1 />
 <UCPTipv6DnsServer2 />
 <UCPThostName>SmartServer</UCPThostName>
 <UCPTdomainSuffix />
 <UCPTdhcpEnabled>0</UCPTdhcpEnabled>
 <UCPTdnsDomainViaDhcpEnabled>0</UCPTdnsDomainViaDhcpEnabled>
 <UCPTdnsAddressViaDhcpEnabled>0</UCPTdnsAddressViaDhcpEnabled>
 <UCPTsecureAccessAllowed>1</UCPTsecureAccessAllowed>
 <UCPTmacID>00-D0-71-02-0A-18</UCPTmacID>
 <UCPTcurrentIpAddress>10.2.124.82</UCPTcurrentIpAddress>
 <UCPTcurrentIpMask>255.255.128.0</UCPTcurrentIpMask>
 <UCPTcurrentGateway>10.2.0.1</UCPTcurrentGateway>
 <UCPTgprsIpAddress />
 <UCPTipv4Only>1</UCPTipv4Only>
 <UCPTipv6StaticConfigEnable>0</UCPTipv6StaticConfigEnable>
 <UCPTipv6AddressStatic>::/64</UCPTipv6AddressStatic>
 <UCPTipv6Gateway />
 <UCPTipv6AddressAutoConfigLocal>fe80::2d0:71ff:fe02:a18</UCPTipv6AddressAutoConfigLocal>
 <UCPTipv6AddressAutoConfigGlobal />
 <UCPTipv6AddressViaDHCPEnable>0</UCPTipv6AddressViaDHCPEnable>
 <UCPTipv6DNSServerViaDHCPEnable>0</UCPTipv6DNSServerViaDHCPEnable>
 <UCPTipv6DNSDomainViaDHCPv6Enabled>0</UCPTipv6DNSDomainViaDHCPv6Enabled>
 <UCPTipv6AddressDHCP>TBD</UCPTipv6AddressDHCP>

i.LON SmartServer 2.0 Programmer’s Reference 19-3

 <UCPTethernetMode>Auto</UCPTethernetMode>
 <UCPTSoftwareDisabledByDownRevHardware>false</UCPTSoftwareDisabledByDownRevHardware>
 </NETWORK>
 </iLONSystemService>
</SystemService_Read_Info>

The SystemService_Read_Info function returns one <NETWORK> item. The following table lists and
describes the properties of the <NETWORK> item. You can use the SystemService_Write_Info
function to configure those properties that are marked (r/w). Properties that are read-only are marked
with an (r).

Property Description R/W

<UCPTipAddress> The SmartServer’s configured IPv4 address.

You must reboot the SmartServer to implement changes
made to this property.

r/w

<UCPTipMask> The SmartServer’s configured IPv4 mask.

You must reboot the SmartServer to implement changes
made to this property.

r/w

<UCPTgateway> The SmartServer’s configured IPv4 gateway.

You must reboot the SmartServer to implement changes
made to this property.

r/w

<UCPTdnsServer1> The SmartServer’s first IPv4 DNS server r/w

<UCPTdnsServer2> The SmartServer’s second IPv4 DNS server (fail over) r/w

<UCPTipv6dnsServer1> The SmartServer’s first IPv6 DNS server r/w

<UCPTipv6dnsServer2> The SmartServer’s second IPv6 DNS server (fail over) r/w

<UCPThostName> The SmartServer’s hostname, which is “SmartServer”
by default.

r/w

<UCPTdomainSuffix> The SmartServer’s domain suffix r/w

<UCPTdhcpEnabled> A flag indicating whether IPv4 DHCP is enabled. r/w

<UCPTdnsDomainViaDhcpE
nabled>

A flag indicating whether acquiring the DNS domain via
DHCP is enabled.

r/w

<UCPTdnsAddressViaDhcp
Enabled>

A flag indicating whether acquiring the DNS server
address via DHCP enabled.

r/w

<UCPTsecureAccessAllow
ed>

A flag indicating whether secure access mode is
enabled.

r/w

<UCPTmacID>

The MAC identification number used for the
SmartServer’s Ethernet port

r

<UCPTcurrentIpAddress> The SmartServer’s current configured IPv4 address.
This property does not reflect changes made to the IPv4

r

i.LON SmartServer 2.0 Programmer’s Reference 19-4

Property Description R/W

address prior to a reboot.

<UCPTcurrentIpMask> The SmartServer’s current configured IPv4 mask. This
property does not reflect changes made to the IPv4 mask
prior to a reboot.

r

<UCPTcurrentGateway> The SmartServer’s current configured IPv4 gateway.
This property does not reflect changes made to the IPv4
gateway prior to a reboot.

r

<UCPTgprsIpAddress> If the SmartServer connects to the LAN via a GPRS
modem connection, this is the SmartServer’s IP address
assigned by the provider

r

<UCPTipv4Only> A flag indicating whether the IP mode used is IPV4 only
(1) or IPV4/IPV6 (0).

r/w

<UCPTipv6StaticConfigE
nable>

A flag indicating whether IPV6 static configuration is
enabled.

r/w

<UCPTipv6AddressStatic
>

The SmartServer’s static IPV6 address r/w

<UCPTipv6Gateway> The SmartServer’s static IPV6 gateway address r/w

<UCPTipv6AddressAutoCo
nfigLocal>

The SmartServer’s link local IPV6 address r

<UCPTipv6AddressAutoCo
nfigGlobal>

The SmartServer’s router advisement IPV6 address r

<UCPTipv6AddressViaDHC
PEnable>

A flag indicating whether acquiring the SmartServer’s
IPv6 address via DHCP is enabled.

r/w

<UCPTipv6DNSServerViaD
HCPEnable>

A flag indicating whether acquiring the SmartServer’s
IPv6 DNS server via DHCP is enabled.

r/w

<UCPTipv6DNSDomainViaD
HCPv6Enabled>

A flag indicating whether acquiring the SmartServer’s
IPv6 DNS server domain via DHCP is enabled.

r/w

<UCPTipv6AddressDHCP> The SmartServer’s IPv6 address assigned by the DHCP
server.

r

19.1.2 Time Settings

You can use the SystemService_Read_Info function to get the SmartServer’s real-time clock settings.
To do this, you provide the SystemService_Read_Info function with an <iLONSystemService> element
that includes one <UCPTsystemInfoType> property that is set to SI_TIME.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_TIME</UCPTsystemInfoType>

i.LON SmartServer 2.0 Programmer’s Reference 19-5

 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <TIME>
 <UCPTtimeServer1>10.1.0.21</UCPTtimeServer1>
 <UCPTtimeServer2>192.6.38.127</UCPTtimeServer2>
 <UCPTtimeLastSynched>FRI APR 04 12:57:39 2008</UCPTtimeLastSynched>
 <UCPTsystemTime>2008-04-04T12:57:41</UCPTsystemTime>
 <UCPTtimeZone>(GMT-0800) Pacific:-480:1:2.1.3.2:1.1.11.2</UCPTtimeZone>
 </TIME>
 </iLONSystemService>
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

The SystemService_Read_Info function returns one <TIME> item. The following table lists and
describes the properties of the <TIME> item. You can use the SystemService_Write_Info function to
configure those properties that are marked (r/w). Properties that are read-only are marked (r).

Property Description R/W

<UCPTtimeServer1> The IP address of the designated default SNTP time
server.

r/w

<UCPTtimeServer2> The IP address of the designated backup SNTP time
server.

r/w

<UCPTtimeLastSynched>

The last time in which the SmartServer synchronized its
clock with the default SNTP time server. The amount of
time varies between 1 to 15 minutes, depending on the
difference in time between the SmartServer’s clock and
the SNTP time server. As the difference approaches 75
ms or less, the interval will keep increasing until it
reaches the maximum of 15 minutes.

r

<UCPTsystemTime>

Displays the time and date currently stored in the
SmartServer’s real time clock.

Note: If you have configured an SNTP time server,
changes to the time and date will be overwritten the next
time the SmartServer is synchronized with the SNTP
time server.

r

<UCPTtimeZone> The time zone in which the SmartServer is located. r/w

19.1.3 Security Settings

You can use the SystemService_Read_Info function to get the SmartServer’s security settings. To do
this, you provide the SystemService_Read_Info function with an <iLONSystemService> element that
includes one <UCPTsystemInfoType> property that is set to SI_SECURITY.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_SECURITY</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

i.LON SmartServer 2.0 Programmer’s Reference 19-6

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <SECURITY>
 <UCPTauthKeyRaw>00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00</UCPTauthKeyRaw>
 <UCPTauthKeyHashed />
 <UCPTrtrAuthKeyRaw>Not Available</UCPTrtrAuthKeyRaw>
 <UCPTautoAnswer>1</UCPTautoAnswer>
 <UCPTtelnetEnable>1</UCPTtelnetEnable>
 <UCPTftpEnable>1</UCPTftpEnable>
 <UCPTrniEnable>1</UCPTrniEnable>
 <UCPTftpUserName>ilon</UCPTftpUserName>
 <UCPTftpPassword />
 <UCPTremoteBootEnable>1</UCPTremoteBootEnable>
 <UCPTsecureAccessAllowed>1</UCPTsecureAccessAllowed>
 <UCPTsecureAccessAlways>1</UCPTsecureAccessAlways>
 <UCPThttpPort>80</UCPThttpPort>
 <UCPTftpPort>21</UCPTftpPort>
 <UCPTtelnetPort>23</UCPTtelnetPort>
 <UCPTwebEnable>1</UCPTwebEnable>
 <UCPTsysReboot />
 <UCPTsysFactoryDefault />
 </SECURITY>
 </iLONSystemService>
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

The SystemService_Read_Info function returns one <SECURITY> item. The following table lists and
describes the properties of the <TIME> item. You can use the SystemService_Write_Info function to
configure those properties that are marked (r/w). Properties that are read-only are marked (r).

Property Description R/W

<UCPTauthKeyRaw> The MD5 authentication key used for authentication
when using the SmartServer as an RNI. This value
must match the one specified in the LONWORKS
Interfaces control panel application.

r/w

<UCPTauthKeyHashed> A text secret phase for authentication when using the
SmartServer as an RNI. This can be used instead of
the Raw MD5 authentication key specified by
<UCPTauthKeyRaw>.

r/w

<UCPTautoAnswer> A flag indicating whether the modem is responding to
incoming calls.

r

<UCPTtelnetEnable A flag indicating whether the SmartServer console
application can be accessed via Telnet.

r/w

<UCPTftpEnable> A flag indicating whether the SmartServer can be
accessed via FTP.

r/w

<UCPTrniEnable> A flag indicating whether the SmartServer can be used
as an RNI.

r/w

<UCPTftpUserName> The user name used to access the SmartServer via
FTP. The default user name is ilon. You can specify
a different user name, which may be up to 20
characters long and contain letters, numerals, and the
underscore character.

r/w

i.LON SmartServer 2.0 Programmer’s Reference 19-7

Property Description R/W

<UCPTftpPassword The password used to access the SmartServer via FTP.
The default password is ilon. You can specify a
different password, which may be up to 20 characters
long and contain letters, numerals, and the underscore
character.

r/w

<UCPTremoteBootEnable> A flag indicating whether the SmartServer can be
rebooted remotely via the Setup - Reboot Web page.

r/w

<UCPTsecureAccessAllowed
>

A flag indicating whether the security settings on the
Setup – Security Web page can be modified if secure
access mode is temporarily disabled.

r/w

<UCPTsecureAccessAlways> A flag indicating whether the security settings on the
Setup – Security Web page can be modified if secure
access mode is permanently disabled.

r/w

<UCPThttpPort> The port the SmartServer uses for HTTP
communication. The default port is 80.

r/w

<UCPThttpsPort> The port the SmartServer uses for HTTPS
communication. The default port is 443.

r/w

<UCPTftpPort> The port the SmartServer uses for HTTP
communication. The default port is 80.

r/w

<UCPTtelnetPort> The port the SmartServer uses for HTTP
communication. The default port is 80.

r/w

<UCPTwebEnable> A flag indicating whether the SmartServer can be
accessed via HTTP.

r/w

19.1.4 Static System Information

You can use the SystemService_Read_Info function to get general information about the SmartServer, including
hardware and firmware versions, flash memory capacity and limits, and FPM license status. To do this, you provide the
SystemService_Read_Info function with an <iLONSystemService> element that includes one <UCPTsystemInfoType>
property that is set to SI_STATIC.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_STATIC</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <STATIC>
 <UCPTlogTime>2008-04-03T17:29:47.314-07:00</UCPTlogTime>
 <UCPTcpuClockRate>264000000</UCPTcpuClockRate>
 <UCPTtotalDiskSpace>65398784</UCPTtotalDiskSpace>
 <UCPTmodelNumber>72102</UCPTmodelNumber>

i.LON SmartServer 2.0 Programmer’s Reference 19-8

 <UCPTmodemPresent>true</UCPTmodemPresent>
 <UCPTip852RouterPresent>true</UCPTip852RouterPresent>
 <UCPTbootromVersion>4.01.112</UCPTbootromVersion>
 <UCPTtransceiverId>TP_FT_10</UCPTtransceiverId>
 <UCPTfirmwareVersion>4.01.012</UCPTfirmwareVersion>
 <UCPTcpldVersion>74</UCPTcpldVersion>
 <UCPThwVersion>3</UCPThwVersion>
 <UCPTlonTalkUID0>3 0 0 19 7b 80</UCPTlonTalkUID0>
 <UCPTdiskSpareBlocksTotal>94</UCPTdiskSpareBlocksTotal>
 <UCPTdiskSpareBlocksMinRec>8</UCPTdiskSpareBlocksMinRec>
 <UCPTdiskEraseRateMaxRec>78</UCPTdiskEraseRateMaxRec>
 <UCPTprogrammabilityState>PS_REGISTERED</UCPTprogrammabilityState>
 <UCPTSoftwareDisabledByDownRevHardware>false</UCPTSoftwareDisabledByDownRevHardware>
 </STATIC>
 </iLONSystemService>
</SystemService_Read_Info>

The SystemService_Read_Info function returns one <STATIC> item. The following table lists and
describes the properties of the <STATIC> item. Note that all of the <STATIC> item’s properties are
read-only.

Property Description R/W

<UCPTlogTime> A timestamp indicating the time that the static system
information was returned. This timestamp uses the
ISO 8601 format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

r

<UCPTcpuClockRate> The CPU speed (in MHz) of the SmartServer. r

<UCPTtotalDiskSpace> The total disk space available on the SmartServer (in
bytes). The SmartServer hardware has a 64MB flash
disk.

r

<UCPTmodelNumber> The SmartServer's model number. r

<UCPTmodemPresent> A flag indicating whether the SmartServer has an
internal modem.

r

<UCPTip852RouterPresent> A flag indicating whether IP-852 routing is licensed
on the SmartServer.

r

<UCPTbootromVersion> The bootrom version of the SmartServer. r

<UCPTtransceiverID> The channel type of the SmartServer. For free
topology models of the SmartServer, this is
TP_FT_10. For power line models, this is PL_20N
(or PL-20C if CENELEC is enabled).

r

<UCPTfirmwareVersion> The firmware version of the SmartServer. r

<UCPTcpldVersion> The CPLD version. r

<UCPTlonTalkUID0> The first of the SmartServer’s 16 Neuron IDs. r

<UCPTdiskSpareBlocksTotal> The total number of spare flash blocks initially
available on the SmartServer. The SmartServer
hardware contains up to 94 spare flash blocks that are

r

i.LON SmartServer 2.0 Programmer’s Reference 19-9

Property Description R/W

used to accommodate block failures.

<UCPTdiskSpareBlocksMinRec> The recommended minimum number of spare flash
blocks (8 blocks). If a flash block on the SmartServer
fails and there are no spare blocks remaining, the flash
disk may become unreliable. The SmartServer should
be replaced before this happens.

r

<UCPTdiskEraseRateMaxRec> The maximum rate of erases/minute of the
SmartServer flash disk.

r

<UCPTprogrammabilityState> This property specifies whether a SmartServer
Programming Activation Key is installed on the
SmartServer. This property may be one of the
following values:

• PS_REGISTERED

• PS_ UNREGISTERED

A SmartServer Programming Activation Key must be
installed on a SmartServer in order to deploy freely
programmable modules (FPMs) on it. For more
information on creating and deploying FPMs, see the
i.LON SmartServer Programming Tools User’s Guide.

r

19.1.5 Real-Time System Information

You can use the SystemService_Read_Info function to get general network performance statistics for
the SmartServer, including the current flash memory usage, CPU utilization, data point message
failures, and the time of last Web browser refresh. To do this, you provide the
SystemService_Read_Info function with an <iLONSystemService> element that includes one
<UCPTsystemInfoType> property that is set to SI_REAL_TIME.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_REAL_TIME</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <REAL_TIME>
 <UCPTlogTime>2008-04-03T17:35:45.971-07:00</UCPTlogTime>
 <UCPTminutesSinceReboot>28859</UCPTminutesSinceReboot>
 <UCPTcpuUsage>4.9342679879218938</UCPTcpuUsage>
 <UCPTfreeDiskSpace>21635072</UCPTfreeDiskSpace>
 <UCPTdiskSpareBlocks>94</UCPTdiskSpareBlocks>
 <UCPTdiskEraseRates>0 1 0 1</UCPTdiskEraseRates>
 <UCPTfreeMemory>21914320</UCPTfreeMemory>
 <UCPTmaxBlockSizeFree>13623392</UCPTmaxBlockSizeFree>
 <UCPTnumBlocksFree>724</UCPTnumBlocksFree>
 <UCPTnumBlocksAlloc>221653</UCPTnumBlocksAlloc>
 <AoUCPTdpMessageFailures>
 <UCPTdpMessageFailures>2 0</UCPTdpMessageFailures>
 <UCPTdpMessageFailures>10 0</UCPTdpMessageFailures>
 <UCPTdpMessageFailures>60 0</UCPTdpMessageFailures>

i.LON SmartServer 2.0 Programmer’s Reference 19-10

 <UCPTdpMessageFailures>1440 0</UCPTdpMessageFailures>
 </AoUCPTdpMessageFailures>
 </REAL_TIME>
 </iLONSystemService>
</SystemService_Read_Info>

The SystemService_Read_Info function returns one <REAL_TIME> item. The following table lists
and describes the properties of the < REAL_TIME> item. Note that all of the <REAL_TIME> item’s
properties are read-only.

Property Description R/W

<UCPTlogTime> A timestamp indicating the time that the real-time
system information was returned. This timestamp
uses the ISO 8601 format, which is as follows:

YYYY-MM-DDTHH:MM:SS.sssZPhh:mm

r

<UCPTminutesSinceReboot> Total number of minutes that have elapsed since the
SmartServer was last rebooted.

r

<UCPTcpuUsage> The percentage of time the SmartServer's processor is
working. This property is a primary indicator of
processor activity. If your SmartServer seems to be
running slowly, this property may display a higher
percentage.

r

<UCPTfreeDiskSpace>

The current available space on the SmartServer flash
disk (bytes). The SmartServer hardware has a 64MB
flash disk, and initially has approximately 28 MB of
free disk space.

r

<UCPTdiskSpareBlocks> The total number of spare flash blocks remaining on
the SmartServer. Initially, the SmartServer hardware
contains up to 94 spare flash blocks that are used to
accommodate block failures. However, it is normal
for a small number of flash blocks to initially be
marked as failed by the flash manufacturer, and
additional blocks may fail after extended use, so the
number of available spare blocks on your
SmartServer may vary. This does not adversely affect
the normal operation of the flash disk, as long as some
spare blocks are available.

r

<UCPTdiskEraseRates>

A space-separated array listing the average rate of
flash disk erases/minute over the last 3 minutes, over
the last 1 hour, from the moving average calculation,
and since the last reboot.

r

<UCPTfreeMemory> The current available RAM (in bytes) on the
SmartServer. The SmartServer initially has
approximately 35 MB of free RAM.

r

<UCPTmaxBlockSizeFree> The size (in bytes) of the largest block of RAM on the
SmartServer.

r

i.LON SmartServer 2.0 Programmer’s Reference 19-11

Property Description R/W

<UCPTnumBlocksFree> The number of free blocks of RAM on the
SmartServer.

r

<UCPTnumBlocksAlloc> The number of blocks of RAM that have been
allocated on the SmartServer.

r

<AoUCPTdpMessageFailures>

An array of <UCPTdpMessageFailures> that indicate
the rate and number of data point message failures
over the last 2 minutes, 10 minutes, 60 minutes, and
24 hours (1440 minutes).

Data point message failures occur when the
SmartServer's data server passes data point updates to
an application. This problem can be caused by
high-network traffic, misconfigured applications, or
overactive remote applications attempting read or
write to the SmartServer's data points.

r

19.1.6 E-Mail Settings

You can use the SystemService_Read_Info function to get the settings of the e-mail (SMTP) servers
connected to your SmartServer. To do this, you provide the SystemService_Read_Info function with
an <iLONSystemService> element that includes one <UCPTsystemInfoType> property that is set to
SI_MAIL.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_MAIL</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <MAIL>
 <UCPTmailServer>10.2.120.3</UCPTmailServer>
 <UCPTmailOriginator>ilon@echelon.com</UCPTmailOriginator>
 <UCPTmailLogin>ilon</UCPTmailLogin>
 <UCPTmailPassword>ilon</UCPTmailPassword>
 </MAIL>

 </iLONSystemService>
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

The SystemService_Read_Info function returns one <MAIL> item. The following table lists and
describes the properties of the <MAIL> item. You can use the SystemService_Write_Info function to
configure those properties that are marked (r/w).

Property Description R/W

<UCPTmailServer> The IP address of the designated default SMTP e-mail
server.

r/w

<UCPTmailOriginator> The string that appears in the From field of e-mail
messages sent through this SMTP service (e.g.
lonfloor1@echelon.com).

r/w

i.LON SmartServer 2.0 Programmer’s Reference 19-12

Property Description R/W

<UCPTmailLogin> The user name for logging in to an SMTP server that
requires authentication. The SmartServer and the SMTP
server will automatically negotiate the authentication
mechanism to be used (PLAIN, LOGIN, or
CRAM-MD5). The SmartServer does not support the
POP before SMTP authentication mechanism.

r/w

`<UCPTmailPassword> The password used for logging in to an SMTP server
that requires authentication.

r/w

19.1.7 IP-852 Router Settings

You can use the SystemService_Read_Info function to get the settings of the SmartServer’s internal
IP-852 router. To do this, you provide the SystemService_Read_Info function with an
<iLONSystemService> element that includes one <UCPTsystemInfoType> property that is set to
SI_RTR.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_RTR</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <RTR>
 <UCPTrouterType>Configured</UCPTrouterType>
 <UCPTrouterAuthKey>00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00</UCPTrouterAuthKey>
 <UCPTip852ConfigServerAddr>10.2.124.77</UCPTip852ConfigServerAddr>
 <UCPTip852ConfigServerPort>1629</UCPTip852ConfigServerPort>
 <UCPTip852LocalPort>1628</UCPTip852LocalPort>
 <UCPTrouterLONWORKSAddr_IP>B3/2/1</UCPTrouterLONWORKSAddr_IP>
 <UCPTrouterLONWORKSAddr_LT>B3/1/2</UCPTrouterLONWORKSAddr_LT>
 </RTR>
 </iLONSystemService>
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

The SystemService_Read_Info function returns one <RTR> item. The following table lists and
describes the properties of the <RTR> item. You can use the SystemService_Write_Info function to
configure those properties that are marked (r/w).

Property Description R/W

<UCPTrouterType> • This property specifies the router type. You can use
the SystemService_Write_Info function to change
the IP-852 router to a Repeater. You cannot change
the IP-852 router to any other router type.

• Configured. The router determines which packets
to forward based on internal routing tables. These
routing tables contain one entry for each subnet in
the application domain. Whenever a router receives
a packet, it examines the source and destination
subnet ID to determine whether to forward the
packet. This is the recommended type because it
optimizes network traffic and enables the channels

r

i.LON SmartServer 2.0 Programmer’s Reference 19-13

Property Description R/W

on which devices are attached to be determined
automatically. Configured routers also support the
use of redundant routers (multiple routers
connecting two channels), which provide for
redundant message paths and greater system
reliability.

• Learning. Like a configured router, the router
determines which packets to forward based on
internal routing tables. Learning routers, though,
have their routing tables stored in volatile memory;
therefore, the router forwards packets addressed to
all subnets in the application domain after being
reset. Whenever a learning router receives a packet
from one of its channels, it uses the source subnet
ID to learn the network topology. It sets the
corresponding routing table entries to indicate that
the subnet in question is to be found in the direction
from which the packet was received. A learning
router always forwards all group-addressed
messages.

• Repeater. The router forwards all valid packets
received on one channel to the other channel.
Subnets cannot span non-permanent repeaters. You
can use a non-permanent repeater to maintain
flexibility in order to change the router type later.

• Bridge. The router forwards all valid packets that
match the network domain. Subnets cannot span
non-permanent bridges. You can use a
non-permanent bridge to maintain flexibility in
order to change the router type later.

• Unknown. The SmartServer automatically select
the appropriate router type.

<UCPTrouterAuthKey> A 16-digit hexadecimal MD5 authentication key to be
used for the IP-852 channel.

r/w

<UCPTip852ConfigServerAddr> The IP address of the IP-852 Configuration Server
connected to the SmartServer.

r/w

<UCPTip852ConfigServerPort> The port used by the IP-852 Configuration Server to
receive messages from the SmartServer. The default
port is 1629.

r/w

<UCPTip852LocalPort>

The port used by the SmartServer to receive messages
from the IP-852 Configuration Server. The default port
is 1628.

r/w

<UCPTrouterLONWORKSAddr_IP> The domain, subnet, node address of the IP-852 router
on the IP channel connected to the SmartServer.

r

i.LON SmartServer 2.0 Programmer’s Reference 19-14

Property Description R/W

<UCPTrouterLONWORKSAddr_LT> The domain, subnet, node address of the IP-852 router
on the LonTalk channel connected to the SmartServer.

r

19.1.8 IP-852 Router Statistics

You can use the SystemService_Read_Info function to get network performance statistics for the
SmartServer’s internal IP-852 router. To do this, you provide the SystemService_Read_Info function
with an <iLONSystemService> element that includes one <UCPTsystemInfoType> property that is set
to SI_RTR_STAT

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_RTR_STAT</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <RTR_STAT>
 <UCPTlastClear>2008-04-04T17:14:44.840-07:00</UCPTlastClear>
 <UCPTltPacketsSent>11</UCPTltPacketsSent>
 <UCPTltPacketsReceived>2444</UCPTltPacketsReceived>
 <UCPTltPacketsLost>0</UCPTltPacketsLost>
 <UCPTipPacketsSent>0</UCPTipPacketsSent>
 <UCPTipPacketsReceived>0</UCPTipPacketsReceived>
 <UCPTipPacketsStale>0</UCPTipPacketsStale>
 <UCPTcfgPacketsSent>20</UCPTcfgPacketsSent>
 <UCPTcfgPacketsReceived>20</UCPTcfgPacketsReceived>
 </RTR_STAT>
 </iLONSystemService>
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

The SystemService_Read_Info function returns one <RTR_STAT> item. The following table lists and
describes the properties of the <RTR_STAT> item. Note that all of the <RTR_STAT> item’s
properties are read-only.

Property Description R/W

<UCPTltPacketsSent> The number of LonTalk packets transmitted by the
SmartServer’s IP-852 router.

r

<UCPTltPacketsReceived> The number of LonTalk packets received by the
SmartServer’s IP-852 router.

r

<UCPTltPacketsLost The number of LonTalk packets lost. r

<UCPTipPacketsSent> The number of IP packets transmitted by the
SmartServer’s IP-852 router.

r

<UCPTipPacketsReceived>

The number of IP packets received by the SmartServer’s
IP-852 router.

r

<UCPTipPacketsStale> The number of IP packets lost. r

<UCPTcfgPacketsSent> Packets sent by the SmartServer's IP-852 router to the r

i.LON SmartServer 2.0 Programmer’s Reference 19-15

Property Description R/W

IP-852 Configuration Server on the IP-852 channel.

<UCPTcfgPacketsReceived> Packets received by the SmartServer's IP-852 router
from the IP-852 Configuration Server on the IP-852
channel.

R

19.1.9 LonScanner Protocol Analyzer

You can use the SystemService_Read_Info function to get the SmartServer’s LonScanner Protocol
Analyzer (LSPA) settings. To do this, you provide the SystemService_Read_Info function with an
<iLONSystemService> element that includes one <UCPTsystemInfoType> property that is set to
SI_LSPA.

Request
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <UCPTsystemInfoType>SI_LSPA</UCPTsystemInfoType>
 </iLONSystemService>
</SystemService_Read_Info>

Response
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <LSPA>
 <UCPTlspaPort>1629</UCPTlspaPort>
 <UCPTlspaEnable>true</UCPTlspaEnable>
 <UCPTlspaCaptureAllPackets>false</UCPTlspaCaptureAllPackets>
 </LSPA>
 </iLONSystemService>
<SystemService_Read_Info xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">

The SystemService_Read_Info function returns one < SI_LSPA> item. The following table lists and
describes the properties of the < SI_LSPA> item. You can use the SystemService_Write_Info function
to configure those properties that are marked (r/w).

Property Description R/W

<UCPTlspaPort> The port the SmartServer uses for communication with
the LonScanner Protocol Analyzer tool.

r/w

<UCPTlspaEnable> This property enables the SmartServer to be connected
to the LonScanner Protocol Analyzer tool, which you
can use to monitor and diagnose network traffic.

To enable the SmartServer to be connected to the
LonScanner Protocol Analyzer tool, set this property to
“true”. To disable this feature, set this property to
“false”.

 r/w

i.LON SmartServer 2.0 Programmer’s Reference 19-16

Property Description R/W

<UCPTlspaCaptureAllPackets> This property enables packets directly transmitted to the
internal devices on the SmartServer to be viewed with
the LonScanner Protocol Analyzer tool. These packets
will still not be sent on the physical network.

To enable packets sent by the internal devices on the
SmartServer to be viewed with the LonScanner Protocol
Analyzer tool, set this property to “true”. To disable
this feature, set this property to “false”.

r/w

19.1.10 Reboot

The system module includes a SystemService_Reboot function that you can use to reboot a
SmartServer.

Request
<SystemService_Reboot xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/" />

Response
<SystemService_RebootResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <Result />
</SystemService_RebootResponse>

19.2 System Test Methods
You can use the SystemService_Test function to test SMTP mail servers, test the connections between
the SmartServer and IP-852 Configuration servers, and to test connections between the SmartServer
and host devices such as SMTP mail servers, SNTP time servers, remote SmartServers, and LNS
Servers.

The SystemService_Test function takes a string consisting of an <iLONSystemService> element that
includes one <Test> element. The <Test> element has a <UCPTtestType> property that specifies an
enumeration representing the type of test to be performed (SMTP CONNECTION_TEST,
CONFIG_SERVER_TEST, or CONNECTION_TEST) and other properties (required or optional)
specific to the type of test being performed.

The SystemService_Test function returns a string containing <iLONSystemService> element that
includes a single <RESULTS> item listing the results of the test.

The following example demonstrates how to use the SystemService_Test function in your code:
string testData = "<iLONSystemService><Test><UCPTTestType>SMTP_TEST<UCPTTestType>
<UCPTstate>ST_BEGIN</UCPTstate></Test></iLONSystemService>"

19.2.1 SMTP E-Mail Server Test

You can use the SystemService_Test function to test that the default SMTP e-mail server that is
connected to the SmartServer can send out e-mail messages. To do this, you provide the
SystemService_Test function with an <iLONSystemService> element that includes one <Test> element
that specifies the following properties:

Property Description
Required/
Optional

<UCPTTestType> Enumeration that defines the type of test to
perform. This property must be set to
SMTP_TEST.

Required

i.LON SmartServer 2.0 Programmer’s Reference 19-17

<UCPTstate> This property specifies whether to start a test or
get the current status of the test. This property
may be set to one of the following values:

• ST_BEGIN. Starts the test.

• ST_STATUS. Returns the status of the test.

Required

<UCPTemailAddress> A string specifying the e-mail address to where
the test e-mail will be sent.

Optional

<UCPToriginator> A string specifying the originator of the e-mail
message.

Optional

<UCPTemailSubject> A string specifying the subject line of the test
e-mail message.

Optional

<UCPTemailFormat> A string specifying the text of the test e-mail
message. Note that you may not include flags
such as those used by the Alarm Notifier
application.

Optional

<UCPTemailAttachment> A string specifying a full path on the SmartServer
flash disk of a file to be attached to the test e-mail
message such as “/root/AlarmLog/sumlog1.csv”
if you were attaching an alarm log.

Optional

UCPTcount This property specifies the number of times the
e-mail message will be sent.

Optional

Note: If you are checking the status of a test (<UCPTstate> is set to ST_STATUS), you only need to
provide the <UCPTTestType> and <UCPTstate> properties.

The following examples demonstrate how to use the SystemService_Test function to test that the
default SMTP e-mail server can send out e-mail messages and check the status of the test:

Request (test the SMTP e-mail server)
<SystemService_Test xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <Test>
 <UCPTtestType>SMTP_TEST</UCPTtestType>
 <UCPTstate>ST_BEGIN</UCPTstate>
 <UCPTemailAddress>ilonuser@echelon.com</UCPTemailAddress>
 <UCPToriginator>sender</UCPToriginator>
 <UCPTemailSubject>This is a test</UCPTemailSubject>
 <UCPTemailFormat></UCPTemailFormat>
 <UCPTemailAttachment></UCPTemailAttachment>
 </Test>
 </iLONSystemService>
</SystemService_Test>

Request (check the status of the SMTP e-mail server test)
<SystemService_Test xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <Test>
 <UCPTtestType>SMTP_TEST</UCPTtestType>
 <UCPTstate>ST_STATUS</UCPTstate>
 </iLONSystemService>
</SystemService_Test>

i.LON SmartServer 2.0 Programmer’s Reference 19-18

Response
<SystemService_TestResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <Result>
 <iLONSystemService>
 <Test>
 <UCPTtestType>SMTP_TEST</UCPTtestType>
 <UCPTlastUpdate>2008-04-10T15:40:37.488-07:00</UCPTlastUpdate>
 <UCPTstate>IDLE</UCPTstate>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr></UCPTdetailDescr>
 <AoTestLog>
 <TestLog>
 <UCPTindex>0</UCPTindex>
 <UCPTlogTime>2008-04-10T15:36:44.202-07:00</UCPTlogTime>
 <UCPTdescription>SMTPsend</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>ilonuser@echelon.com</UCPTdetailDescr>
 </TestLog>
 <TestLog>
 <UCPTindex>1</UCPTindex>
 <UCPTlogTime>2008-04-10T15:36:45.202-07:00</UCPTlogTime>
 <UCPTdescription>Connection released</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>10.2.120.87</UCPTdetailDescr>
 </TestLog>
 </AoTestLog>
 </Test>
 </iLONSystemService>
 </Result>
<SystemService_TestResponse>

The SystemService_Test function returns a <iLONSystemService> element that includes a single
<RESULTS> item that has the following properties.

Note: These properties also apply to the Reponses to IP-852 Configuration Server tests, connection
tests, and test status checks.

Property Description

<UCPTtestType> An enumeration that defines the type of test
performed, which can be one of the following values:

• SMTP CONNECTION_TEST

• CONFIG_SERVER_TEST

• CONNECTION_TEST

<UCPTlastUpdate> Time stamp of the beginning of the last connection
test (in ISO 8601 format with an offset). When this
message is a response to a successful test, this time
stamp displays the start time of the current test;
therefore, this timestamp may be used to match status
responses to a specific begin message.

<UCPTstate> An enumeration specifying the status of the test. This
property may be one of the following values:

• SS_IDLE

• SS_CONNECTING

• SS_DISCONNECTING

i.LON SmartServer 2.0 Programmer’s Reference 19-19

• SS_SENDING_MAIL

• SS_BUSY

<UCPTerror> A flag indicating whether there was an error with the
test.

<UCPTdetailDescr> A string that displays the last SMTP error received
from either the server or client. This may be
implementation specific between SMTP servers, so
the entire string is copied to this parameter.

<AoTestLog> An array of connection log entries <UCPTtestLog>.
Each <UCPTtestLog> entry has the following
properties:

• <UCPTindex>. The index value assigned to the
log entry.

• <UCPTlogTime>. The time the entry was
recorded.

• <UCPTdescription>. A description of the action
performed. This may have the following values:

• SMTP tests: “Send SMTP” or “Connection
Released”.

• IP-852 Configuration Server tests: “Connection
established”, Request configuration server status”,
“Configuration server is not responding”, or
“connection released”

• Connection tests: “Create Socket”, “Connect
Socket ”, or “Close Socket”.

• <UCPTerror>. A flag indicating whether there
was an error with the test.

• <UCPTdetailDescr>. A string that displays the IP
address of the host device being tested or the
value specified in the <UCPTemailAddress>
property of an SMTP test.

19.2.2 IP-852 Configuration Server Test

You can use the SystemService_Test function to test the connections between the SmartServer and the
default IP-852 Configuration Server. To do this, you provide the SystemService_Test function with an
<iLONSystemService> element that includes one <Test> element. The <Test> element must specify a
<UCPTtestType> that is set to CONFIG_SERVER_TEST, and it must specify a <UCPTstate>
property that is set to ST_BEGIN (to start the test) or ST_STATUS (to check the status of the test).

Request (test the connection to an IP-852 Configuration Server)
<SystemService_Test xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <Test>
 <UCPTtestType>CONFIG_SERVER_TEST</UCPTtestType>
 <UCPTstate>ST_STATUS</UCPTstate>
 </Test>
 </iLONSystemService>

i.LON SmartServer 2.0 Programmer’s Reference 19-20

</SystemService_Test>

Request (check the status of the test)
<SystemService_Test xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <Test>
 <UCPTtestType>CONFIG_SERVER_TEST</UCPTtestType>
 <UCPTstate>ST_STATUS</UCPTstate>
 </Test>
 </iLONSystemService>
</SystemService_Test>

Response
<SystemService_TestResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <Result>
 <iLONSystemService>
 <Test>
 <UCPTtestType>CONFIG_SERVER_TEST</UCPTtestType>
 <UCPTlastUpdate>2008-04-10T15:51:04.350-07:00</UCPTlastUpdate>
 <UCPTstate>IDLE</UCPTstate>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr></UCPTdetailDescr>
 <AoTestLog>
 <TestLog>
 <UCPTindex>0</UCPTindex>
 <UCPTlogTime>2008-04-10T15:50:48.350-07:00</UCPTlogTime>
 <UCPTdescription>Connection established</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr></UCPTdetailDescr>
 </TestLog>
 <TestLog>
 <UCPTindex>1</UCPTindex>
 <UCPTlogTime>2008-04-10T15:50:48.350-07:00</UCPTlogTime>
 <UCPTdescription>Request configuration server status</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>10.2.124.77</UCPTdetailDescr>
 </TestLog>
 <TestLog>
 <UCPTindex>2</UCPTindex>
 <UCPTlogTime>2008-04-10T15:50:54.350-07:00</UCPTlogTime>
 <UCPTdescription>Configuration server is not responding</UCPTdescription>
 <UCPTerror>39</UCPTerror>
 <UCPTdetailDescr>10.2.124.77</UCPTdetailDescr>
 </TestLog>
 <TestLog>
 <UCPTindex>3</UCPTindex>
 <UCPTlogTime>2008-04-10T15:50:54.360-07:00</UCPTlogTime>
 <UCPTdescription>Connection released</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>10.2.124.77</UCPTdetailDescr>
 </TestLog>
 </AoTestLog>
 </Test>
 </iLONSystemService>
 </Result>
<SystemService_TestResponse>

19.2.3 Connection Test

You can use the SystemService_Test function to test the connections between the SmartServer and host
devices such as SMTP mail servers, SNTP time servers, remote SmartServers, LNS Servers, and
WebBinder Target Servers. To do this, you provide the SystemService_Test function with an
<iLONSystemService> element that includes one <Test> element that has the following properties:

i.LON SmartServer 2.0 Programmer’s Reference 19-21

Property Description
Required/
Optional

<UCPTTestType> Enumeration that defines the type of test to
perform. This property must be set to
CONNECTION_TEST.

Required

<UCPTstate> This property specifies whether to start a test or get
the current status of the test. This property may be
set to one of the following values:

• ST_BEGIN. Starts the test.

• ST_STATUS. Returns the status of the test.

Required

<UCPThostURL> The IP address or hostname of the host device
whose connection to the SmartServer is to be
tested.

Required

<UCPTport> The port the SmartServer uses to communicate with
the host device whose connection to the
SmartServer is to be tested.

Optional

Note: If you are checking the status of a test (<UCPTstate> is set to ST_STATUS), you only need to
provide the <UCPTTestType> and <UCPTstate> properties.

The following examples demonstrate how to use the SystemService_Test function to test a connection
with another host device (a remote SmartServer) and check the status of the test.

Request (test the connection to a Remote SmartServer)
<SystemService_Test xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <Test>
 <UCPTtestType>CONNECTION_TEST</UCPTtestType>
 <UCPTstate>ST_BEGIN</UCPTstate>
 <UCPThostURL>10.2.124.53</UCPThostURL>
 <UCPTport>80</UCPTport>
 </Test>
 </iLONSystemService>
</SystemService_Test>

Request (check the status of the test)
<SystemService_Test xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <iLONSystemService>
 <Test>
 <UCPTtestType> CONNECTION_TEST</UCPTtestType>
 <UCPTstate>ST_STATUS</UCPTstate>
 </Test>
 </iLONSystemService>
</SystemService_Test>

Response
<SystemService_TestResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/">
 <Result>
 <iLONSystemService>
 <Test>
 <UCPTtestType>CONNECTION_TEST</UCPTtestType>
 <UCPTlastUpdate>2008-04-10T16:18:29.540-07:00</UCPTlastUpdate>
 <UCPTstate>IDLE</UCPTstate>
 <UCPTerror>0</UCPTerror>

i.LON SmartServer 2.0 Programmer’s Reference 19-22

 <UCPTdetailDescr></UCPTdetailDescr>
 <AoTestLog>
 <TestLog>
 <UCPTindex>0</UCPTindex>
 <UCPTlogTime>2008-04-10T16:18:25.550-07:00</UCPTlogTime>
 <UCPTdescription>Create socket</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>10.2.124.82:80</UCPTdetailDescr>
 </TestLog>
 <TestLog>
 <UCPTindex>1</UCPTindex>
 <UCPTlogTime>2008-04-10T16:18:25.560-07:00</UCPTlogTime>
 <UCPTdescription>Connect socket</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>10.2.124.82:80</UCPTdetailDescr>
 </TestLog>
 <TestLog>
 <UCPTindex>2</UCPTindex>
 <UCPTlogTime>2008-04-10T16:18:25.560-07:00</UCPTlogTime>
 <UCPTdescription>Close socket</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>10.2.124.82:80</UCPTdetailDescr>
 </TestLog>
 <TestLog>
 <UCPTindex>3</UCPTindex>
 <UCPTlogTime>2008-04-10T16:18:25.560-07:00</UCPTlogTime>
 <UCPTdescription>Connection released</UCPTdescription>
 <UCPTerror>0</UCPTerror>
 <UCPTdetailDescr>10.2.124.82</UCPTdetailDescr>
 </TestLog>
 </AoTestLog>
 </Test>
 </iLONSystemService>
 </Result>
<SystemService_TestResponse>

i.LON SmartServer 2.0 Programmer’s Reference 20-1

20 Using the SOAP Interface as a Web Service
This chapter assumes that you have some familiarity with Web services programming, and that you are
using the Microsoft Visual Studio .NET development environment. All sample code in this chapter is
written in Visual Basic .NET and Visual C# .NET using Microsoft Visual Studio 2008. However, you
can use any development tool that is able to call standard Web services with the SmartServer
SOAP/XML interface.

20.1 Referencing and Inheriting from the WSDL
You can use the SOAP interface as a reference with Microsoft Visual Studio .NET Framework 3.5 or
.NET Framework 2.0, and create an application to modify the configuration of your SmartServer.
Some development tools can import the i.LON SmartServer WSDL File and automatically build a class
structure for sending and receiving each message. The following sections describe how to use Visual
Studio .NET Framework 3.5 and .NET Framework 2.0 to reference the SmartServer SOAP interface
and then inherit from the reference.

20.1.1 Referencing and Inheriting from the WSDL Using .NET 3.5 Framework

The following procedure describes how to use Visual Studio 2008 .NET Framework 3.5 to reference
the SOAP interface and then inherit from the service reference.

1. Open the Microsoft Visual Studio .NET development environment.

2. Click File, point to New, and then click Project. The New Project dialog opens.

3. Enter a name, location, and project type for the project, and then click OK.

i.LON SmartServer 2.0 Programmer’s Reference 20-2

4. Add a service reference to the version 4.0 WSDL to your project. To do this, follow these steps:

a. Click Project and then click Add Service Reference.

b. The Add Service Reference dialog opens.

i.LON SmartServer 2.0 Programmer’s Reference 20-3

c. In the URL or Address box, enter the following address:

http://SmartServer IP address/WSDL/v4.0/iLON100.WSDL

SmartServer IP address represents the IP address of the SmartServer your application is to
reference.

If you are using the system information methods to read system information and modify the
SmartServer’s configuration, enter the following address in the URL or Address box:

http://SmartServer IP address/WSDL/v4.0/iLON100_System.wsdl

See Chapter 19 for more information on using the system information methods, and see
Chapter 22 for sample code demonstrating how to use the system information methods.

Note: All examples in this section can also be applied to LNS Proxy Web service. The LNS
Proxy supports the same WSDL as the SmartServer Web service; therefore, the same
programming model can be applied to program a LNS network database in a transparent
manner. To program a LNS Proxy Web service instead of a SmartServer, enter the URL of
the LNS Proxy in this form:

http://LNS Proxy IP address/LnsProxy/LnsProxyService?wsdl

d. Click Go. The SmartServer’s iLON100 WSDL file is displayed.

i.LON SmartServer 2.0 Programmer’s Reference 20-4

e. In the Namespace box, enter a name for the service reference. You will use this name when

you instantiate the Web services object because it becomes a name for the proxy class that is
generated automatically by Visual Studio .NET. This is described in more detail in the next
section. The name used for the service reference in this example is “iLON_SmartServer”.

i.LON SmartServer 2.0 Programmer’s Reference 20-5

f. Click OK. The new service reference appears in the list of references in the Solution
Explorer pane.

5. Click Project, and then click Add Class.

6. The Add New Item dialog opens.

i.LON SmartServer 2.0 Programmer’s Reference 20-6

7. In the Name box, enter “iLON_SoapCalls” and then click Add.

8. You should now use the iLON_SoapCalls class to instantiate the SmartServer Web service as

described in the section 20.2.1, Instantiating the Web Service Client in Visual C# .NET 3.5 or
section 20.2.3, Instantiating the Web Service Client in Visual Basic .NET 3.5.

20.1.2 Referencing and Inheriting from the WSDL Using .NET 2.0 Framework

The following procedure describes how to use Visual Studio 2008 .NET Framework 2.0 to reference
the SOAP interface and then inherit from the service reference.

1. Open the Microsoft Visual Studio .NET development environment.

2. Click File, point to New, and then click Project. The New Project dialog opens.

i.LON SmartServer 2.0 Programmer’s Reference 20-7

3. Enter a name, location, and project type for the project, and then click OK.

4. Add a Web reference to the version 4.0 WSDL to your project. To do this, follow these steps:

a. Click Project and then click Add Web Reference. The Add Web Reference dialog opens.

i.LON SmartServer 2.0 Programmer’s Reference 20-8

b. In the URL or Address box, enter the following address:

http://SmartServer IP address/WSDL/v4.0/iLON100.WSDL

SmartServer IP address represents the IP address of the SmartServer your application is to
reference.

Note: All examples in this section can also be applied to LNS Proxy Web service. The LNS
Proxy supports the same WSDL as the SmartServer Web service; therefore, the same
programming model can be applied to program a LNS network database in a transparent
manner. To program a LNS Proxy Web service instead of a SmartServer, enter the URL of
the LNS Proxy in this form:

http://LNS Proxy IP address/LnsProxy/LnsProxyService?wsdl

c. Click Go.

d. In the Web Reference Name box, enter a name for the Web reference. You will use this
name when you instantiate the Web services object because it becomes a name for the proxy
class that is generated automatically by Visual Studio .NET. This is described in more detail
in the next section. This example uses “iLON_SmartServer” for the name of the Web
reference.

i.LON SmartServer 2.0 Programmer’s Reference 20-9

e. Click Add Reference. The new Web reference appears in the list of references in the

Solution Explorer pane.

i.LON SmartServer 2.0 Programmer’s Reference 20-10

5. A .NET 2.0 client must turn off the keep-alive attribute to communicate with the SmartServer
without exceptions being generated. To turn off the keep-alive attribute, the generated web
reference class must be inherited, and the GetWebRequest method must be overridden, where the
KeepAlive flag can be turned off. The following procedure describes how to do so.

a. Click Project, and then click Add Class. The Add New Item dialog opens.

b. In the Name box, enter “iLON_WebService” and then click Add.

c. Insert a using System.Net statement at the beginning of the ilon_WebService class.

d. Inside the iLON_WebService class, enter the following code to override the GetWebRequest
function so that it turns off the KeepAlive flag:

i.LON SmartServer 2.0 Programmer’s Reference 20-11

 class iLON_WebService : iLON_SmartServer.iLON100

 // iLON_SmartServer refers to the name of the Web reference created in step 4
 {
 protected override WebRequest GetWebRequest(Uri uri)
 {
 HttpWebRequest res = (HttpWebRequest)base.GetWebRequest(uri);
 res.KeepAlive = false;
 return res;
 }
 }

6. You should now use the iLON_WebService class to instantiate the SmartServer Web
reference as described in section 20.2.2, Instantiating the Web Service Client in Visual C#
.NET 2.0.

20.2 Instantiating and Initializing the Web Service Client
Before you can use the functions of the SOAP/XML interface, you must instantiate the Web service
object that was referenced in the previous section from within your application. This section contains
programming samples written in Visual C# .NET 3.5, Visual C#.NET 2.0, and Visual Basic .NET 3.5
that demonstrate how to do so. For simplicity, the programming samples include all the code required
to instantiate the Web service within a single function. This function, for example, could be an event
handler for a button click event. You can instantiate the Web service in any routine, although you
should generally consider doing this in an initialization routine.

Once you have instantiated the Web service object, you have to set the Web service’s URL. This is
also known as the SOAP endpoint, EndPointURL, or Service endpoint, depending on which
development tool you are using. This is the destination on the SmartServer where SOAP messages
from your application will be sent.

In addition, if you have password-protected the WSDL file on the SmartServer with the i.LON Web
Server Security and Parameters utility, your application needs to specify the correct user ID and
password to successfully send SOAP messages to the SmartServer. You can perform this task after
you instantiate the Web service, as shown below. For more information on the i.LON Web Server
Security and Parameters utility, see Appendix C of the i.LON SmartServer 2.0 User’s Guide.

20.2.1 Instantiating the Web Service Client in Visual C# .NET 3.5
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel; //make sure you add this statement to iLON_SoapCalls class

i.LON SmartServer 2.0 Programmer’s Reference 20-12

namespace SmartServerConsoleExample
{
 class iLON_SoapCalls
 {
 // your SmartServer's IpAddress
 public static string _iLonEndpointIpAddress = "<SmartServer IP address>";

 // your SmartServer’s Web service reference
 static public iLON_SmartServer.iLON100portTypeClient _iLON = null;

 /// <summary>
 /// Instantiates the SmartServer Web service for
 /// .NET 3.5
 /// </summary>
 static public void BindClientToSmartServer()
 {
 // Specify the binding to be used for the client.
 BasicHttpBinding binding = new BasicHttpBinding();

 // Initialize the namespace

 binding.Namespace = "http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/";

 // Obtain the URL of the Web service on the i.LON SmartServer.
 System.ServiceModel.EndpointAddress endpointAddress
 = new System.ServiceModel.EndpointAddress("http://"
 + _iLonEndpointIpAddress + "/WSDL/iLON100.wsdl");

 // Instantiate the SmartServer Web service object with this address and binding.
 _iLON = new iLON_SmartServer.iLON100portTypeClient(binding, endpointAddress);

 // Uncommment the lines below to enable authentication

// binding.Security.Mode =
// System.ServiceModel.BasicHttpSecurityMode.TransportCredentialOnly;

// binding.Security.Transport.ClientCredentialType =
// System.ServiceModel.HttpClientCredentialType.Basic;

// _iLON.ChannelFactory.Credentials.UserName.UserName = "ilon";
// _iLON.ChannelFactory.Credentials.UserName.Password = "ilon";

 }

 /// <summary>
 /// Close the SmartServer Web service
 /// </summary>
 static public void CloseBindingToSmartServer()
 {
 // Closing the client gracefully
 // closes the connection and cleans up resources
 try
 {
 _iLON.Close();
 }
 finally
 {
 _iLON = null;
 }
 }
 }
}

i.LON SmartServer 2.0 Programmer’s Reference 20-13

20.2.2 Instantiating the Web Service Client in Visual C# .NET 2.0
using System;
using System.Collections.Generic;
using System.Text;

namespace CodeExample
{
 class iLON_SoapCalls
 {
 // your SmartServer's Web service reference
 static public iLON_WebService _iLON = null;

 /// <summary>
 /// Instantiates the SmartServer Web service for .NET 2.0
 /// </summary>
 static public void BindClientToSmartServer(string _iLonEndpointIpAddress)
 {
 _iLON = new iLON_WebService();
 String strOrigUrl = _iLON.Url;
 _iLON.Url = strOrigUrl.Replace("localhost", _iLonEndpointIpAddress);
 _iLON.messagePropertiesValue = new iLON_SmartServer.messageProperties();

 // uncomment the 2 lines below to enable authentication
 // _iLON.Credentials = new System.Net.NetworkCredential("ilon", "ilon");
 // _iLON.PreAuthenticate = true;
 }

 }
}

i.LON SmartServer 2.0 Programmer’s Reference 20-14

20.2.3 Instantiating the Web Service Client in Visual Basic .NET 3.5

The following example shows how to instantiate the Web service in Visual Basic. NET:
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.ServiceModel 'make sure you add this statement to iLON_SoapCalls class

Public Class iLON_SoapCalls

 'your SmartServer’s IpAddress
 Public _iLonEndpointIpAddress As String = "<SmartServer IP address>"

 'your SmartServer’s Web service reference
 Public _iLON As iLON_SmartServer.iLON100portTypeClient = Nothing

 ''' <summary>
 ''' Instantiate the SmartServer Web service for .NET 3.0 and 3.5 (NOT 2.0)
 ''' </summary>

 Public Sub BindClientToSmartServer()

 ' Specify the binding to be used for the client.
 Dim binding As BasicHttpBinding = New BasicHttpBinding()

 ' Initialize the namespace
 binding.Namespace = "http:'wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/"

 ' Obtain the URL of the Web service on the i.LON SmartServer.
 Dim endpointAddress As System.ServiceModel.EndpointAddress =
 New System.ServiceModel.EndpointAddress("http://" + _iLonEndpointIpAddress + "/WSDL/iLON100.wsdl")

 ' Instantiate the SmartServer Web service object with this address and binding.
 _iLON = New iLON_SmartServer.iLON100portTypeClient(binding, endpointAddress)

 ' uncomment the lines below to enable authentication
 ' binding.Security.Mode = System.ServiceModel.BasicHttpSecurityMode.TransportCredentialOnly
 ' binding.Security.Transport.ClientCredentialType = System.ServiceModel.HttpClientCredentialType.Basic
 ' _iLON.ChannelFactory.Credentials.UserName.UserName = "ilon"
 ' _iLON.ChannelFactory.Credentials.UserName.Password = "ilon"

 End Sub

 ''' <summary>
 ''' Close the SmartServer Web service
 ''' </summary>

 Public Sub CloseBindingToSmartServer()
 ' Closing the client gracefully
 ' closes the connection and cleans up resources
 Try
 _iLON.Close()
 Finally
 _iLON = Nothing
 End Try

 End Sub

End Class

20.3 Calling Web Services Methods
The following examples demonstrate how to read and write values to a data point in Visual C# .NET
3.5, Visual C#.NET 2.0, and Visual Basic .NET 3.5, and how to setup a Web connection between a
SmartServer and a WebBinder Target Server.

i.LON SmartServer 2.0 Programmer’s Reference 20-15

Note: The following examples assume that you are using a SmartServer that has been set to its factory
default settings. This prevents compilation errors based on mismatching <UCPTname> properties of
the objects in the LONWORKS network hierarchy (network/channel/device/functional block/data point).

20.3.1 Reading and Writing Data Point Values in Visual C# .NET 3.5

The following Visual C# .NET 3.5 example reads the value of the Net/LON/iLON App/Digital Output
1/nviClaValue_1 data point on the SmartServer, and then writes a value of “100.0 1” to it. This
SNVT_switch data point is one of the relay outputs on the SmartServer. You can execute this code
after you have completed section 20.1.1, Referencing and Inheriting from the WSDL Using .NET 3.5
Framework, and section 20.2.1, Instantiating the Web Service Client in Visual C# .NET 3.5.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SmartServerConsoleExample
{

 class Program
 {
 static void Main(string[] args)
 {
 iLON_SoapCalls.BindClientToSmartServer();

iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

 // -------------- READING A DATA POINT VALUE --------------

 try
 {

 // instantiate the member object
 iLON_SmartServer.Item_Coll itemColl = new iLON_SmartServer.Item_Coll();
 itemColl.Item = new iLON_SmartServer.Item[1];
 itemColl.Item[0] = new iLON_SmartServer.Dp_Data();

 // set the DP name
 itemColl.Item[0].UCPTname = "Net/LON/iLON App/Digital Output 1/nviClaValue_1";

 // set maxAge to get the updated DP value in case it has been cached for more than 10
 // seconds on the Data Server (see section 4.3.4.1 for more information)
 ((iLON_SmartServer.Dp_Data)(itemColl.Item[0])).UCPTmaxAge = 10;
 ((iLON_SmartServer.Dp_Data)(itemColl.Item[0])).UCPTmaxAgeSpecified = true;

 //call the Read Function
 iLON_SmartServer.Item_DataColl dataColl = SmartServer.Read(itemColl);

 if (dataColl.Item == null)
 {
 // sanity check. this should not happen
 Console.Out.WriteLine("No items were returned");
 }

 else if (dataColl.Item[0].fault != null)
 {
 // error
 Console.Out.WriteLine("An error occurred. Fault code = " +
 dataColl.Item[0].fault.faultcode +
 ". Fault text = %s." +
 dataColl.Item[0].fault.faultstring);
 }

 else
 {
 // success
 Console.Out.WriteLine("Read is successful");
 Console.Out.WriteLine(((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTname + " = " +
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0].Value + "\n");
 }

i.LON SmartServer 2.0 Programmer’s Reference 20-16

 // -------------- WRITING A DATA POINT VALUE --------------

 // reset the DP priority (see section 4.3.6 for more information)
 iLON_SmartServer.Item_Coll itemCollInvoke = new iLON_SmartServer.Item_Coll();
 itemCollInvoke.Item = new iLON_SmartServer.Item[1];
 itemCollInvoke.Item[0] = new iLON_SmartServer.Dp_ResetPrio_Invoke();

 ((iLON_SmartServer.Dp_ResetPrio_Invoke)(itemCollInvoke.Item[0])).UCPTname =
 "Net/LON/iLON App/Digital Output 1/nviClaValue_1";
 ((iLON_SmartServer.Dp_ResetPrio_Invoke)(itemCollInvoke.Item[0])).UCPTpriority = 200;
 ((iLON_SmartServer.Dp_ResetPrio_Invoke)(itemCollInvoke.Item[0])).UCPTprioritySpecified = true;
 SmartServer.InvokeCmd(ref itemCollInvoke);

 // set the DP priority to 200 (see section 4.3.7 for more information)
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTpriority = 200;
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTprioritySpecified = true;

 // set 100.0 1 as the value
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue = new iLON_SmartServer.E_LonString[1];
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0].Value = "100.0 1";

 // to write a preset, do this (see section 4.3.5.2 for more information)
 // dpData.UCPTvalue[0].LonFormat = "UCPTvalueDef";
 // dpData.UCPTvalue[0].Value = "ON";

 // call the write function
 iLON_SmartServer.Item_Coll writeResp = SmartServer.Write(dataColl);

 if (writeResp.Item == null)
 {
 // sanity check. this should not happen
 Console.Out.WriteLine("No items were returned");
 }

 else if (writeResp.Item[0].fault != null)
 {
 // error
 Console.Out.WriteLine("An error occurred. Fault code = " +
 writeResp.Item[0].fault.faultcode +
 ". Fault text = %s." +
 writeResp.Item[0].fault.faultstring);
 }

 else
 {
 // success
 Console.Out.WriteLine("Write is successful");
 Console.Out.WriteLine(((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTname + " = " +
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0].Value);
 }

 Console.ReadLine();

 }

 finally

 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }
 }

 }

}

20.3.2 Reading and Writing Data Point Values in Visual C# .NET 2.0

The following Visual C# .NET 2.0 example reads the value of the Net/LON/iLON App/Digital Output
1/nviClaValue_1 data point on the SmartServer, and then writes a value of “100.0 1” to it. This
SNVT_switch data point is one of the relay outputs on the SmartServer. You can execute this code

i.LON SmartServer 2.0 Programmer’s Reference 20-17

after you have completed section 20.2.1, Referencing and Inheriting from the WSDL Using .NET 2.0
Framework, and section 20.2.2, Instantiating the Web Service Client in Visual C# .NET 2.0.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SmartServerConsoleExample
{
 class Program
 {
 // your SmartServer's IpAddress
 public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

 static void Main(string[] args)
 {
 iLON_SoapCalls.BindClientToSmartServer(_iLonEndpointIpAddress);
 iLON_SmartServer.iLON100 SmartServer = iLON_SoapCalls._iLON;

 // -------------- READ DATA POINT VALUE --------------

 try
 {
 // instantiate the member object
 iLON_SmartServer.Item_Coll itemColl = new iLON_SmartServer.Item_Coll();
 itemColl.Item = new iLON_SmartServer.Item[1];
 itemColl.Item[0] = new iLON_SmartServer.Dp_Data();

 // set the DP name
 itemColl.Item[0].UCPTname = "Net/LON/iLON App/Digital Output 1/nviClaValue_1";

 // set maxAge to get the updated DP value in case it has been cached for more than 10
 // seconds on the Data Server (see section 4.3.4.1 for more information)
 ((iLON_SmartServer.Dp_Data)(itemColl.Item[0])).UCPTmaxAge = 10;
 ((iLON_SmartServer.Dp_Data)(itemColl.Item[0])).UCPTmaxAgeSpecified = true;

 //call the Read Function
 iLON_SmartServer.Item_DataColl dataColl = SmartServer.Read(itemColl);

 if (dataColl.Item == null)
 {
 // sanity check. this should not happen
 Console.Out.WriteLine("No items were returned");
 }

 else if (dataColl.Item[0].fault != null)
 {
 // error
 Console.Out.WriteLine("An error occurred. Fault code = " +
 dataColl.Item[0].fault.faultcode +
 ". Fault text = %s." +
 dataColl.Item[0].fault.faultstring);
 }

 else
 {
 // success
 Console.Out.WriteLine("Read is successful");
 Console.Out.WriteLine(((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTname + " = " +
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0].Value + "\n");
 }

 // -------------- WRITE DATA POINT VALUE --------------

 // reset the DP priority (see section 4.3.6 for more information)
 iLON_SmartServer.Item_Coll itemCollInvoke = new iLON_SmartServer.Item_Coll();
 itemCollInvoke.Item = new iLON_SmartServer.Item[1];
 itemCollInvoke.Item[0] = new iLON_SmartServer.Dp_ResetPrio_Invoke();

 ((iLON_SmartServer.Dp_ResetPrio_Invoke)(itemCollInvoke.Item[0])).UCPTname =

i.LON SmartServer 2.0 Programmer’s Reference 20-18

 "Net/LON/iLON App/Digital Output 1/nviClaValue_1";
 ((iLON_SmartServer.Dp_ResetPrio_Invoke)(itemCollInvoke.Item[0])).UCPTpriority = 200;
 ((iLON_SmartServer.Dp_ResetPrio_Invoke)(itemCollInvoke.Item[0])).UCPTprioritySpecified = true;
 SmartServer.InvokeCmd(ref itemCollInvoke);

 // set the DP priority to 200 (see section 4.3.7 for more information)
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTpriority = 200;
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTprioritySpecified = true;

 // set 100.0 1 as the value
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue = new iLON_SmartServer.E_LonString[1];
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0].Value = "100.0 1";

 // to write a preset, do this (see section 4.3.5.2 for more information)
 // dpData.UCPTvalue[0].LonFormat = "UCPTvalueDef";
 // dpData.UCPTvalue[0].Value = "ON";

 // call the write function
 iLON_SmartServer.Item_Coll writeResp = SmartServer.Write(dataColl);

 if (writeResp.Item == null)
 {
 // sanity check. this should not happen
 Console.Out.WriteLine("No items were returned");
 }

 else if (writeResp.Item[0].fault != null)
 {
 // error
 Console.Out.WriteLine("An error occurred. Fault code = " +
 writeResp.Item[0].fault.faultcode +
 ". Fault text = %s." +
 writeResp.Item[0].fault.faultstring);
 }

 else
 {
 // success
 Console.Out.WriteLine("Write is successful");
 Console.Out.WriteLine(((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTname + " = " +
 ((iLON_SmartServer.Dp_Data)dataColl.Item[0]).UCPTvalue[0].Value);
 }

 Console.ReadLine();
 }

 finally

 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }
 }

 }

}

i.LON SmartServer 2.0 Programmer’s Reference 20-19

20.3.3 Reading and Writing Data Point Values in Visual Basic .NET 3.5

The following Visual Basic .NET 3.5 example reads the value of the Net/LON/iLON App/Digital
Output 1/nviClaValue_1 data point on the SmartServer, and then writes a value of “100.0 1” to it. This
SNVT_switch data point is one of the relay outputs on the SmartServer. You can execute this code
after you have completed section 20.1.1, Referencing and Inheriting from the WSDL Using .NET 3.5
Framework, and section 20.2.3,Instantiating the Web Service Client in Visual Basic .NET 3.5.
Module Module1

 Sub Main()

 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls

 // Enter your SmartServer's IpAddress
 SmartServer.BindClientToSmartServer("<SmartServer IP Address>")

 Try

 ' -------------- READING A DATA POINT VALUE --------------

 ' instantiate the member object
 Dim itemColl As New iLON_SmartServer.Item_Coll()
 itemColl.Item = New iLON_SmartServer.Item(0) {}
 itemColl.Item(0) = New iLON_SmartServer.Dp_Data()

 ' set the DP name
 itemColl.Item(0).UCPTname = "Net/LON/iLON App/Digital Output 1/nviClaValue_1"

 ' set maxAge to get the updated DP value in case it has been cached for more than 10
 ' seconds on the Data Server (see section 4.3.4.1 for more information)
 DirectCast((itemColl.Item(0)), iLON_SmartServer.Dp_Data).UCPTmaxAge = 10
 DirectCast((itemColl.Item(0)), iLON_SmartServer.Dp_Data).UCPTmaxAgeSpecified = True

 'call the Read Function
 Dim dataColl As iLON_SmartServer.Item_DataColl = SmartServer._iLON.Read(itemColl)

 If dataColl.Item Is Nothing Then

 ' sanity check. this should not happen
 Console.Out.WriteLine("No items were returned")

 ElseIf dataColl.Item(0).fault IsNot Nothing Then

 ' error

Console.Out.WriteLine(("An error occurred. Fault code = " +
dataColl.Item(0).fault.faultcode.Value + ". Fault text = %s.") +
dataColl.Item(0).fault.faultstring)

 Else

 ' success
 Console.Out.WriteLine("Read is successful")

 Console.Out.WriteLine((DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTname &
 " = ") + DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTvalue(0).Value &
 vbLf)

 End If

 ' -------------- WRITING A DATA POINT VALUE --------------

 ' reset the DP priority (see section 4.3.6 for more information)
 Dim itemCollInvoke As New iLON_SmartServer.Item_Coll()
 itemCollInvoke.Item = New iLON_SmartServer.Item(0) {}
 itemCollInvoke.Item(0) = New iLON_SmartServer.Dp_ResetPrio_Invoke()

 DirectCast((itemCollInvoke.Item(0)), iLON_SmartServer.Dp_ResetPrio_Invoke).UCPTname =
"Net/LON/iLON App/Digital Output 1/nviClaValue_1"

 DirectCast((itemCollInvoke.Item(0)), iLON_SmartServer.Dp_ResetPrio_Invoke).UCPTpriority = 200
 DirectCast((itemCollInvoke.Item(0)), iLON_SmartServer.Dp_ResetPrio_Invoke).UCPTprioritySpecified = True

i.LON SmartServer 2.0 Programmer’s Reference 20-20

 SmartServer._iLON.InvokeCmd(itemCollInvoke)

 ' set the DP priority to 200 (see section 4.3.7 for more information)
 DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTpriority = 200
 DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTprioritySpecified = True

 ' set 100.0 1 as the value
 DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTvalue(0).Value = "100.0 1"

 ' to write a preset, do this (see section 4.3.5.2 for more information)
 ' DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTvalue(0).LonFormat = "UCPTvalueDef"
 ' DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTvalue(0).Value = "ON"

 ' call the write function
 Dim writeResp As iLON_SmartServer.Item_Coll = SmartServer._iLON.Write(dataColl)

 If writeResp.Item Is Nothing Then
 ' sanity check. this should not happen
 Console.Out.WriteLine("No items were returned")

 ElseIf writeResp.Item(0).fault IsNot Nothing Then
 ' error

 Console.Out.WriteLine(("An error occurred. Fault code = " +
 writeResp.Item(0).fault.faultcode.Value + ". Fault text = %s.") +
 writeResp.Item(0).fault.faultstring)

 Else

 ' success
 Console.Out.WriteLine("Write is successful")
 Console.Out.WriteLine((DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTname
 & " = ") + DirectCast(dataColl.Item(0), iLON_SmartServer.Dp_Data).UCPTvalue(0).Value)
 End If

 Console.ReadLine()

 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try

 End Sub

End Module

20.4 Accepting a Web Binding From a SmartServer
To create a Web connection between the SmartServer and your Web server, you need to expose a Web
service on your server. This section describes how to do so with Microsoft Visual Studio 2008 and
.NET Framework 3.5. You need to configure IIS (Web server) on your computer so that it can serve
the Web service that you are going to write in the following section. This section assumes you are
familiar with IIS configuration and Web server administration.

Notes:

• In order for your .NET application to support Web connection file attachment, you must download
the Web Services Enhancements 2.0 Add-On from Microsoft’s Web site at msdn.microsoft.com
and install it on your computer.

• If you are not running the .NET Framework 3.5, you can download the wsdl.exe file from
Microsoft’s Web site at msdn.microsoft.com to use this example with another development
environment.

To create a Web Binding, follow these steps:

1. Create a proxy class with the wsdl.exe Web services description language tool. To do this follow
these steps:

http://msdn.microsoft.com/
http://msdn.microsoft.com/

i.LON SmartServer 2.0 Programmer’s Reference 20-21

a. Open a Command Prompt window to the following folder on your computer:

C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin folder.

b. Enter the following command (in one line):

wsdl.exe /language:CS /serverInterface /protocol:SOAP /n:iLon100e4 /u:<SmartServer user
name> /p:< SmartServer password> “http://<SmartServer IP
address>/WSDL/V4.0/iLON100.wsdl” /out: “<output directory>\iLON100proxy.cs”

SmartServer user name is the name used to log on to your SmartServer. This is ilon by
default.

SmartServer password is the password used to log on to your SmartServer. This is ilon
by default.

SmartServer IP address is the IP address of your SmartServer.

output directory is the destination folder on your computer where the proxy class is to be
stored.

The following example demonstrates how to enter a command that stores the proxy class
in a C:/LonWorks/SmartServerProxyClass folder:

wsdl.exe /language:CS /serverInterface /protocol:SOAP /n:iLon100e4 /u:ilon /p:ilon
"http://10.2.124.82/WSDL/V4.0/iLON100.wsdl"
/out:"C:\lonworks\SmartServerProxyClass\iLON100proxy.cs"

Note: /serverInterface is used instead of /server because the /server Server switch has been
deprecated. Using the /serverInterface switch generates an abstract class for an XML web
service implementation using ASP.NET based on the contracts. The default is to generate a
client proxy class.

2. A file called iLON100.cs is generated in the specified destination folder. You will use this file
after you create a new Web service project. You can optionally specify other languages such as
Visual Basic .NET. See the MSDN documentation for more information on this command.

3. Create a new Web service project using ASP .NET Web Service. The sample code below is
written in Visual C# .NET, and uses “WebBinder” as the project name.

i.LON SmartServer 2.0 Programmer’s Reference 20-22

4. Add a reference to the Microsoft.Web.Services2.dll component. To do this, click Project and

then select Add References. The Add References dialog opens. Click the Browse tab, browse to
the C:\Program Files\Microsoft WSE\v2.0 folder on your computer, click the
Microsoft.Web.Services2.dll file, and then click OK.

5. Add the iLON100.cs proxy class to the project (you can copy the file to the same folder used to
store your source code). To add the proxy class, click Project, click Add Existing Item, browse
to the folder where the iLON100.cs file is stored, and then select the iLON100.cs file. This
allows you to use the complex soap types that the Write function uses on the data points on the
Data Server.

6. Optionally, you can change the target framework to .NET Framework 3.5. Note that the IIS
ASP.NET 2.0x version will still be used because the ASP.NET used by .NET Framework 3.5 is
simply an extension of the 2.0x version. To do this, click Project and then click WebBinder
Properties. In the Target Framework box of the WebBinder tab, select .NET Framework 3.5.

i.LON SmartServer 2.0 Programmer’s Reference 20-23

7. Write the code for web service. You can simply copy and paste the following code snippet into
the public class Service1 : System.Web.Services.WebService.
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Linq;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Linq;
using iLon100e4;
using Microsoft.Web.Services2;

namespace WebBinder
{
 /// <summary>
 /// Summary description for Service1
 /// </summary>
 [WebService(Namespace = "http://tempuri.org/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [ToolboxItem(false)]

 // To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the
 //following line:

 // [System.Web.Script.Services.ScriptService]

 public class Service1 : System.Web.Services.WebService, IILON100soap11Binding {
 private messageProperties _messagePropertiesValue = null;
 public messageProperties messagePropertiesValue {
 get;
 set;
 }

 /// <remarks/>
 public Item_Coll List(E_xSelect iLonItem) {
 return null;
 }

 /// <remarks/>
 public Item_CfgColl Get(Item_Coll iLonItem) {
 return null;
 }

 /// <remarks/>
 public Item_Coll Set(Item_CfgColl iLonItem) {
 return null;
 }

 /// <remarks/>
 public void Delete(ref Item_Coll iLonItem) {
 }

 /// <remarks/>
 public Item_DataColl Read(Item_Coll iLonItem) {
 return null;
 }

 /// <remarks/>
 public Item_Coll Write(Item_DataColl iLonItem) {

System.Diagnostics.Trace.WriteLine("Got message from : " +
messagePropertiesValue.UCPTipAddress);

 #region just for debugging, not needed as system throws exceptions anyway
 // are the expected object existing ?
 if ((null == iLonItem) || (null == iLonItem.Item[0])) {
 System.Diagnostics.Trace.WriteLine("ERROR, Null object");
 throw new System.NullReferenceException();
 }
 #endregion

i.LON SmartServer 2.0 Programmer’s Reference 20-24

 // create the response object
 Item_Coll itemColl_resp = new Item_Coll();
 itemColl_resp.Item = new Item[] { new Item() };
 itemColl_resp.Item[0].UCPTname = iLonItem.Item[0].UCPTname;

 // is the Item of the expected type?
 if (!(iLonItem.Item[0] is Dp_Data)) {
 System.Diagnostics.Trace.WriteLine("ERROR, unexpected object type");
 ++itemColl_resp.UCPTfaultCount;
 itemColl_resp.UCPTfaultCountSpecified = true;

 itemColl_resp.Item[0].fault = new E_Fault();
 itemColl_resp.Item[0].fault.faultcode = new E_FaultFaultcode();
 itemColl_resp.Item[0].fault.faultcode.faultType = Fault_eType._error;
 itemColl_resp.Item[0].fault.faultcode.Value = 12; /* eFECommandFailed */
 itemColl_resp.Item[0].fault.faultstring = "Unexpected object type";
 }
 // everything is fine, proceed..
 else {
 Dp_Data dpData = (Dp_Data)iLonItem.Item[0];
 System.Diagnostics.Trace.WriteLine(String.Format("The value is: '{0}'",
 dpData.UCPTvalue[0].Value));

 // Handle the attachment file
 SoapContext soapContext = RequestSoapContext.Current;

 if (soapContext != null) {
 // If there is an attachment file
 if (soapContext.Attachments.Count > 0) {
 System.Diagnostics.Trace.WriteLine("attachment-id: " +
 soapContext.Attachments[0].Id);
 if (soapContext.Attachments[0].ContentType == "text/plain"
 || soapContext.Attachments[0].ContentType == "text/xml")
 {
 string attachment;

 System.IO.StreamReader attachmentStream
 = new System.IO.StreamReader(soapContext.Attachments[0].Stream);

 // Read the attachment file to the end
 attachment = attachmentStream.ReadToEnd();
 attachmentStream.Close();

 // Write the contents of the file
 System.Diagnostics.Trace.WriteLine(attachment);
 }
 }
 }
 }
 return itemColl_resp;
 }

 /// <remarks/>
 public void Clear(ref Item_Coll iLonItem) {
 }

 /// <remarks/>
 public void InvokeCmd(ref Item_Coll iLonItem) {
 }
 }
}

8. Before you run the application, you need to change web.config file as follows. You can open
web.config file from the Solution Explorer. Add the following snippet at the top of the
<configuration> element.
<?xml version="1.0"?>
 <configuration>
 <configSections>

i.LON SmartServer 2.0 Programmer’s Reference 20-25

 <section name="microsoft.web.services2"
type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration, Microsoft.Web.Services2,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

 <sectionGroup name="system.web.extensions"
type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">

 <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup,
System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">

 <section name="scriptResourceHandler"
type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="MachineToApplication"/>

 <sectionGroup name="webServices"
type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35">

 <section name="jsonSerialization"
type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="Everywhere"/>

 <section name="profileService"
type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="MachineToApplication"/>

 <section name="authenticationService"
type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="MachineToApplication"/>

 <section name="roleService"
type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions,
Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false"
allowDefinition="MachineToApplication"/>

 </sectionGroup>
 </sectionGroup>
 </sectionGroup>
 </configSections>

 <microsoft.web.services2>
 <diagnostics>
 <detailedErrors enabled="false" />
 </diagnostics>
 </microsoft.web.services2>

9. Add the following code under the <system.web> tag:
 <appSettings/>
 <connectionStrings/>
 <system.web>
 <webServices>
 <soapExtensionTypes>

<add type="Microsoft.Web.Services2.WebServicesExtension, Microsoft.Web.Services2,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" priority="1" group="0"
/>

 </soapExtensionTypes>
 </webServices>

10. Your server side code is now ready to accept WebBinder calls from the SmartServer, and you can
now add your server as a host device to the SmartServer’s LAN connection. To do this, follow
these steps:

i.LON SmartServer 2.0 Programmer’s Reference 20-26

a. Right-click the LAN icon or a dial-out connection icon, point to Add Host, and then click
Server (LNS, E-mail, Time, IP 852 Config, WebTarget) on the shortcut menu, or if are you
adding the WebBinder Target to an existing server on the LAN, skip to step 4.

b. The Setup – Host Web page opens, and a server icon is added one level below the LAN icon

at the bottom of the navigation pane or one level below the dial-out connection icon.

c. Enter the IP address or hostname of the WebBinder Target server and then click Submit. The

server icon in the tree is updated with the IP address or hostname you entered.

d. Right-click the server icon, point to Add Service, then and click WebBinder Target on the
shortcut menu.

e. The Setup – Web Service Web page opens.

i.LON SmartServer 2.0 Programmer’s Reference 20-27

f. Configure the following properties for the WebBinder Target server:

i.LON
SmartServer
Property

SOAP Path Enter the path on the WebBinder Target server to which SOAP
messages should be transmitted. This is typically the location of
the WSDL or ASMX file on the WebBinder target where it receives
SOAP messages.

For example, if you are exposing your Web service with the
namespace of “WebBinder/Service1.asmx”, then enter the
following text in the SOAP Path box:

 /WebBinder/Service1.asmx.

Note: You must include the leading “/” in the SOAP Path.

HTTP Port (Web
Server/SOAP)

Enter the port that the WebBinder Target server uses to serve HTTP
requests (SOAP and WebDAV). The default value is 80, but you
may change it to any valid port number. Contact your IS
department to ensure your firewall is configured to allow access to
the server on this port.

SOAP User Name Optionally, you can enter a user name to be used for logging in to
the WebBinder Target server.

SOAP Password If you create a user name, click Change Password to enter the
password to be used for logging in to the WebBinder Target server.

Retry Time Set the amount of time (in seconds) after which the SmartServer
will stop attempting to resend failed WebBinder connection
messages to the WebBinder Target server. The default value is 120
seconds.

The SmartServer automatically attempts to resend failed
WebBinder connection messages every 45 seconds.

Format Values in
WebBinder SOAP
Messages Using

Select how data point values are formatted in SOAP messages sent
to this WebBinder Target server via Web connections. You have
two choices:

• Data Point Format. Data point values are formatted based on
the SNVT, UNVT, SCPT, or UCPT defined for the data point.

• Raw HEX. Data point values are transmitted in raw

i.LON SmartServer 2.0 Programmer’s Reference 20-28

hexadecimal format.

Maximum Age Specify the maximum age (in seconds) to be written to the target
data points on the WebBinder destination when the local
SmartServer sends updated values to them.

If the WebBinder destination cannot communicate with the parent
device of the target data point, the WebBinder destination caches
the updated value it received from the local SmartServer. When the
device goes online, the cached value is written to the target data
point provided that time the value has been cached is less than the
maximum age. If the value has been cached longer than the
maximum age, the value is not written to the target data point.

g. Click Submit to save the changes.

11. You can open a Web browser and enter the IP address of your Web service, such as
http://192.168.1.100/WebBinder/Service1.asmx. This lets you test the Web page for Service1,
where the Write function is the available Web service. The SmartServer will consume this Web
service when it makes WebBinder calls.

12. Create a Web connection between a source data point on your SmartServer and the WebBinder
Target Server. To do this follow these steps:

a. From the navigation pane in the left frame of the SmartServer Web interface, right-click a
source data point and then click Add Binding in the shortcut menu.

b. The Configure – WebBinder Web page opens and the hostnames of the local SmartServer

and the WebBinder Target server appear in the application frame to the right. The host
devices in the right frame are collectively referred to as WebBinder Destinations.

c. From the Webbinder Destinations tree on the right frame, expand the WebBinder Target
Server containing the target data points to be connected and then click the ***Target*** item
below it.

http://192.168.1.100/WebBinder/Service1.asmx

i.LON SmartServer 2.0 Programmer’s Reference 20-29

d. Click Submit.

13. Return to your .NET project, put a break point on the first line in Write function, and run the
project in debug mode. When you change the value of the source data point you selected in step
12, your server-side code’s break point should be hit.

14. Attach a text based file attachment such as event log to the Web connection, and run the
server-side code in debug mode again. You can see the contents of the file as a text stream in the
output window of the debugger as you step through the code.

i.LON SmartServer 2.0 Programmer’s Reference 20-30

i.LON SmartServer 2.0 Programmer’s Reference 21-1

21 Programming Examples
This chapter includes programming examples, written in Visual C# (.NET 3.5 and .NET 2.0
Frameworks) and Visual Basic with Microsoft Visual Studio 2008, that demonstrate how to use the
SmartServer’s SOAP API to create custom applications. These programming examples create simple
console applications that do the following:

• Read and write data point values.
• Create and read a data logger.
• Create a scheduler and a calendar.
• Create and install LONWORKS devices
• Commission unconfigured external devices.
• Discover and install uncommissioned external devices.
• Configure the SmartServer (with System Service Methods).

Notes:

All examples assume that you are using a SmartServer that has been set to its factory default settings.
This prevents compilation errors based on mismatching <UCPTname> properties of the objects in the
LONWORKS network hierarchy (network/channel/device/functional block/data point).

You can download these programming examples from the i.LON SmartServer Community Web site at
ilonsmartserver.com.

21.1 Visual C#.NET Examples
21.1.1 Reading and Writing Data Point Values in Visual C# .NET

This C# console example toggles the SmartServer’s digital relay outputs when run. It demonstrates
how to use an xSelect statement to filter items returned by a List() method, and it demonstrates how to
write to data points using values and presets.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2.

For more information on the data point properties set and read in this example, see section 4.3.2,
Using the Get Function on the Data Server, and section 4.3.3, Using the Read Function on the Data
Server, respectively.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SmartServerConsoleExample
{

 class DpProgram
 {
 // If you are using NET 2.0 Framework, uncomment the following line of code to enter your
 // SmartServer’s IP Address

 // public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

static void Main(string[] args)
 {

iLON_SoapCalls.BindClientToSmartServer();

// If you are using NET 2.0 Framework, comment out the previous line of code, and then
// uncomment the following line of code

// iLON_SoapCalls.BindClientToSmartServer(_iLonEndpointIpAddress);

iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

http://ilonsmartserver.com/files/folders/soap_programming_examples/default.aspx

i.LON SmartServer 2.0 Programmer’s Reference 21-2

 try
 {

// See Section 20.2.1 (NET 3.5) or 20.2.2 (NET 2.0)for more information on iLON_SoapCalls class

SmartServerConsoleExample.iLON_SmartServer.E_xSelect xSelect =
new SmartServerConsoleExample.iLON_SmartServer.E_xSelect();

xSelect.xSelect = "//Item[@xsi:type=\"Dp_Cfg\"][contains(UCPTaliasName,\"nviClaValue\")]";

 iLON_SmartServer.Item_Coll ItemColl = SmartServer.List(xSelect);
iLON_SmartServer.Item_DataColl ItemDataColl = SmartServer.Read(ItemColl);

 if (ItemColl.UCPTfaultCount > 0)
 {
 Console.Out.WriteLine("you've got errors");
 }

 else
 {
 for (int i = 0; i < ItemColl.Item.Length; i++)
 {
 iLON_SmartServer.Item Dps = ItemColl.Item[i];
 Console.Out.WriteLine(Dps.UCPTname);

iLON_SmartServer.Dp_Data DpValues =
(iLON_SmartServer.Dp_Data)ItemDataColl.Item[i];

 Console.Out.WriteLine(DpValues.UCPTvalue[0].Value);

 if (DpValues.UCPTvalue[0].Value == "0.0 0")
 {
 DpValues.UCPTvalue[0].Value = "100.0 1";
 DpValues.UCPTvalue[1].Value = "ON";

 Console.Out.WriteLine(DpValues.UCPTvalue[0].Value);
 }
 else if (DpValues.UCPTvalue[0].Value == "100.0 1")
 {
 DpValues.UCPTvalue[0].Value = "0.0 0";
 DpValues.UCPTvalue[1].Value = "OFF";

 Console.Out.WriteLine(DpValues.UCPTvalue[0].Value);
 }

 }

 SmartServer.Write(ItemDataColl);

 }

 Console.ReadLine();

 }

 finally
 {

 iLON_SoapCalls.CloseBindingToSmartServer();
 }

 }
 }
 }

21.1.2 Creating and Reading a Data Logger in Visual C# .NET

The following C# console example creates a data logger and then reads the data recorded by it. You
can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2.

i.LON SmartServer 2.0 Programmer’s Reference 21-3

21.1.2.1 Creating a Data Logger
The following C# console example creates a new data logger from an existing uninstantiated (hidden)
data logger on the SmartServer, specifies the type, format, and size of the new data logger, and then
specifies that the data logger record both of the SmartServer’s digital relay outputs every minute (the
Net/LON/iLON App/Digital Output 1/nviClaValue_1 and Net/LON/iLON App/Digital Output
2/nviClaValue_2 data points).

For more information on the data logger properties set in this example, see section 5.3.2, Using the
Get Function on a Data Logger.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace SmartServerConsoleExample
{
 class Program
 {

// If you are using NET 2.0 Framework, uncomment the following line of code to enter your
 // SmartServer’s IP Address

 // public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

 static void PrintGetError(iLON_SmartServer.Item_CfgColl ItemCfgColl)
 {
 // print out error and exit
 Console.Out.WriteLine("An error occurred:");
 for (int j = 0; j < ItemCfgColl.Item.Length; j++)
 {
 if (ItemCfgColl.Item[j].fault != null)
 {

Console.Out.WriteLine("Item: " + ItemCfgColl.Item[j].UCPTname + ", fault code: " +
ItemCfgColl.Item[j].fault.faultcode + ", fault string: " +
ItemCfgColl.Item[j].fault.faultstring);

 }
 }
 }

 static void PrintGetError(iLON_SmartServer.Item_Coll ItemColl)
 {
 // print out error and exit
 Console.Out.WriteLine("An error occurred:");
 for (int j = 0; j < ItemColl.Item.Length; j++)
 {
 if (ItemColl.Item[j].fault != null)
 {

Console.Out.WriteLine("Item: " + ItemColl.Item[j].UCPTname + ", fault code: " +
ItemColl.Item[j].fault.faultcode + ", fault string: " +
ItemColl.Item[j].fault.faultstring);

 }
 }
 }

 static void Main(string[] args)
 {
 iLON_SoapCalls.BindClientToSmartServer();

// If you are using NET 2.0 Framework, comment out the previous line of code, and then
// uncomment the following line of code

// iLON_SoapCalls.BindClientToSmartServer(_iLonEndpointIpAddress);

 iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

 try
 {

i.LON SmartServer 2.0 Programmer’s Reference 21-4

 // -------------- CREATING A DATA LOGGER --------------

 //Create an xSelect object and then specify the filter to be used

iLON_SmartServer.E_xSelect xSelect =
 new iLON_SmartServer.E_xSelect();

 xSelect.xSelect =
 "//Item[@xsi:type=\"LON_Fb_Cfg\"][contains(UCPTname,\"Log\")][UCPThidden = \"1\"]";

 //Create an ItemColl that stores objects returned by List()function that takes an xSelect object

 iLON_SmartServer.Item_Coll ItemColl = SmartServer.List(xSelect);

 //Create an ItemCfgColl that stores the objects to be returned by a Get() function
 //that takes the ItemColl returned by the List()

 ItemColl.xSelect = "//Item[@xsi:type=\"LON_Fb_Cfg\"]";
 iLON_SmartServer.Item_CfgColl ItemCfgColl = SmartServer.Get(ItemColl);

 //check that there are obejcts in the ItemCfgColl

 if (ItemCfgColl.UCPTfaultCount > 0)
 {
 PrintGetError(ItemCfgColl);
 }

 else
 {
 //Create LON_Fb_Cfg item
 ItemCfgColl.Item[0].UCPThidden = 0;
 ItemCfgColl.Item[0].UCPTname = "Net/LON/iLON App/myDataLogger";
 iLON_SmartServer.Item_Coll ItemColl_SetReturn = SmartServer.Set(ItemCfgColl);

 //create new Data Logger from existing one
 iLON_SmartServer.UFPTdataLogger_Cfg myDataLogger =
 new ConsoleApplication_CSharp_Test_3._5.iLON_SmartServer.UFPTdataLogger_Cfg();
 myDataLogger.UCPTname = "Net/LON/iLON App/myDataLogger";
 myDataLogger.UCPTannotation = "#8000010128000000[4].UFPTdataLogger";
 myDataLogger.UCPTlogFileName = "Net/LON/iLON App/myDataLogger.csv";
 myDataLogger.UCPTlogSize = 100;
 myDataLogger.UCPTlogLevelAlarm = 50;

 myDataLogger.UCPTlogType =
 new ConsoleApplication_CSharp_Test_3._5.iLON_SmartServer.E_LonString();
 myDataLogger.UCPTlogType.Value = "LT_HISTORICAL";
 myDataLogger.UCPTlogType.LonFormat = "UCPTlogType";

 myDataLogger.UCPTlogFormat =
 new ConsoleApplication_CSharp_Test_3._5.iLON_SmartServer.E_LonString();
 myDataLogger.UCPTlogFormat.Value = "LF_TEXT";
 myDataLogger.UCPTlogFormat.LonFormat = "UCPTlogFormat";

 //create DP reference array to store data points by new Data Logger
 myDataLogger.DataPoint =
 new ConsoleApplication_CSharp_Test_3._5.iLON_SmartServer.E_DpRef[2];

 //speficy data points to be logged by new Data Logger

 iLON_SmartServer.UFPTdataLogger_DpRef dataPointRef1 =
 new iLON_SmartServer.UFPTdataLogger_DpRef();
 dataPointRef1.UCPTname = "Net/LON/iLON App/Digital Output 2/nviClaValue_2";
 dataPointRef1.UCPTformatDescription = "#0000000000000000[0].SNVT_switch";
 dataPointRef1.UCPTpollRate = 60;
 dataPointRef1.dpType = "Input";

 iLON_SmartServer.UFPTdataLogger_DpRef dataPointRef2 =
 new iLON_SmartServer.UFPTdataLogger_DpRef();
 dataPointRef2.UCPTname = "Net/LON/iLON App/Digital Output 1/nviClaValue_1";
 dataPointRef2.UCPTformatDescription = "#0000000000000000[0].SNVT_switch";

i.LON SmartServer 2.0 Programmer’s Reference 21-5

 dataPointRef2.UCPTpollRate = 60;
 dataPointRef2.dpType = "Input";

 //store data points in DP reference array
 myDataLogger.DataPoint[0] = dataPointRef1;
 myDataLogger.DataPoint[1] = dataPointRef2;

 //call Set function
 iLON_SmartServer.Item_CfgColl itemCfgColl = new iLON_SmartServer.Item_CfgColl();
 itemCfgColl.Item = new iLON_SmartServer.Item_Cfg[1];
 itemCfgColl.Item[0] = myDataLogger;

 iLON_SmartServer.Item_Coll ItemColl_Set_DataLogger_Return =
 SmartServer.Set(itemCfgColl);

 if (ItemColl_Set_DataLogger_Return.UCPTfaultCount > 0)
 {
 PrintGetError(ItemColl_Set_DataLogger_Return);
 }

 else
 {
 iLON_SmartServer.Item newDataLogger = ItemColl_Set_DataLogger_Return.Item[0];
 Console.WriteLine("New Data Logger = " + newDataLogger.UCPTname);
 }

 }
 Console.ReadLine();

 }

 finally

 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }

 }
 }
 }

21.1.2.2 Reading a Data Logger
The following C# console example reads and prints out the last 10 entries for one of the two data
points recorded by the new data logger you created in the previous section, Creating a Data Logger.
For more information on the data logger properties used in this example, see section 5.3.4, Using the
Read Function on a Data Logger.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace SmartServerConsoleExample
{
 class Program
 {

// If you are using NET 2.0 Framework, uncomment the following line of code to enter your
 // SmartServer’s IP Address

 // public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

 static void PrintGetError(iLON_SmartServer.Item_Coll ItemColl)
 {
 // print out error and exit
 Console.Out.WriteLine("An error occurred:");
 for (int j = 0; j < ItemColl.Item.Length; j++)
 {
 if (ItemColl.Item[j].fault != null)
 {

i.LON SmartServer 2.0 Programmer’s Reference 21-6

Console.Out.WriteLine("Item: " + ItemColl.Item[j].UCPTname + ", fault code: " +
ItemColl.Item[j].fault.faultcode + ", fault string: " +
ItemColl.Item[j].fault.faultstring);

 }
 }
 }

 static void Main(string[] args)
 {
 iLON_SoapCalls.BindClientToSmartServer();

// If you are using NET 2.0 Framework, comment out the previous line of code, and then
// uncomment the following line of code

// iLON_SoapCalls.BindClientToSmartServer(_iLonEndpointIpAddress);

 iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

 try
 {

 // -------------- READING A DATA LOGGER --------------

 //Create an xSelect object and then specify the UCPTname of the Data Logger created
 // in the previous section as the filter (“Net/LON/iLON App/myDataLogger”)

 ConsoleApplication_CSharp_Test_3._5.iLON_SmartServer.E_xSelect xSelect =
 new ConsoleApplication_CSharp_Test_3._5.iLON_SmartServer.E_xSelect();

 xSelect.xSelect = "//Item[UCPTname = \"Net/LON/iLON App/myDataLogger\"]";

 //Create an ItemColl that stores objects returned by List()function that takes an xSelect object

 iLON_SmartServer.Item_Coll ItemColl = SmartServer.List(xSelect);

 //check that there are obejcts in the ItemColl

 if (ItemColl.UCPTfaultCount > 0)
 {
 PrintGetError(ItemColl);
 }
 else
 {
 iLON_SmartServer.Item myDataLogger = ItemColl.Item[0];
 Console.WriteLine("Data Logger = " + myDataLogger.UCPTname + "\r\n");
 }

 //we use an xSelect to read only the last 10 records in the Data Logger for one data point
 ItemColl.xSelect = "//Item
 [UCPTpointName=\"Net/LON/iLON App/Digital Output 1/nviClaValue_1\"]
 [position()>=last()-10]";

 // Read Data Logger
 iLON_SmartServer.Item_DataColl dataLogger = SmartServer.Read(ItemColl);

 for (int i = 0; i < dataLogger.Item.Length; i++)
 {
 iLON_SmartServer.UFPTdataLogger_Data dataLoggerDataCheck =
 dataLogger.Item[i] as iLON_SmartServer.UFPTdataLogger_Data;

 if (dataLoggerDataCheck != null)
 {
 iLON_SmartServer.UFPTdataLogger_Data dataLoggerData =
 (iLON_SmartServer.UFPTdataLogger_Data)dataLogger.Item[i];

 Console.Out.WriteLine(dataLoggerData.UCPTname + " was " +
 dataLoggerData.UCPTvalue[0].Value + " at " +
 dataLoggerData.UCPTlastUpdate + "\r\n");
 }
 }

i.LON SmartServer 2.0 Programmer’s Reference 21-7

 Console.ReadLine();
 }

 finally

 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }

 }
 }
}

21.1.3 Creating a Scheduler and Calendar in Visual C# .NET

This C# console example creates a Scheduler and Calendar for hypothetically controlling the lighting
and heating of a store. You can execute this code after you have referenced and inherited from the
SmartServer WSDL as described in section 20.1, and instantiated and initialized the Web service client
as described in section 20.2.

The example creates a new Scheduler from an existing uninstantiated (hidden) Scheduler on the
SmartServer. It creates separate daily schedules for weekdays, Saturdays, and Sundays, and it
specifies that the scheduler turn on and off the SmartServer’s digital relay outputs (the Net/LON/iLON
App/Digital Output 1/nviClaValue_1 and Net/LON/iLON App/Digital Output 2/nviClaValue_2 data
points) at specific times based on the day of the week. The example then creates an exception that
keeps the lighting and heating off on holidays.

After creating the Scheduler, this example either gets the Calendar on the SmartServer if it has already
been instantiated or creates a new Calendar. The example then specifies the dates of the holidays for
the exception created in the Scheduler, and it specifies over how many years the holiday exceptions are
to occur.

For more information on the Scheduler and Calendar properties set in this example, see section 9.3.2,
Using the Get Function a Scheduler and section 10.3.2, Using the Get Function a Calendar,
respectively.

Note: The <UCPTexceptionName> property is the unique identifier for exceptions defined in the
Scheduler and Calendar. This means that the <UCPTexceptionName> property of new exceptions
you create must be unique to the Calendar; otherwise, the exception you create will overwrite an
existing exception. To prevent overwriting an existing exception, you can loop through the existing
exceptions on the Calendar and check whether the <UCPTexceptionName> property of the exception
you are creating matches that of any existing exceptions. This example assumes that your SmartServer
has been set to its factory default settings and therefore does not perform this check.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace SmartServerConsoleExample
{
 class Program
 {

// If you are using NET 2.0 Framework, uncomment the following line of code to enter your
 // SmartServer’s IP Address

 // public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

 static void PrintGetError(iLON_SmartServer.Item_CfgColl ItemCfgColl)
 {
 // print out error and exit
 Console.Out.WriteLine("An error occurred:");
 for (int j = 0; j < ItemCfgColl.Item.Length; j++)
 {
 if (ItemCfgColl.Item[j].fault != null)
 {

i.LON SmartServer 2.0 Programmer’s Reference 21-8

 Console.Out.WriteLine("Item: " + ItemCfgColl.Item[j].UCPTname + ", fault code: "
 + ItemCfgColl.Item[j].fault.faultcode + ", fault string: " +
 ItemCfgColl.Item[j].fault.faultstring);
 }
 }
 }

 static void PrintGetError(iLON_SmartServer.Item_Coll ItemColl)
 {
 // print out error and exit
 Console.Out.WriteLine("An error occurred:");
 for (int j = 0; j < ItemColl.Item.Length; j++)
 {
 if (ItemColl.Item[j].fault != null)
 {
 Console.Out.WriteLine("Item: " + ItemColl.Item[j].UCPTname + ", fault code: "
 + ItemColl.Item[j].fault.faultcode + ", fault string: " +
 ItemColl.Item[j].fault.faultstring);
 }
 }
 }

 static void Main(string[] args)
 {
 iLON_SoapCalls.BindClientToSmartServer();

// If you are using NET 2.0 Framework, comment out the previous line of code, and then
// uncomment the following line of code

// iLON_SoapCalls.BindClientToSmartServer(_iLonEndpointIpAddress);

 iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

 try
 {

 // -------------- CREATING A SCHEDULER --------------

 //Create an xSelect object and then specify the filter to be used

 iLON_SmartServer.E_xSelect xSelect = new iLON_SmartServer.E_xSelect();
 xSelect.xSelect = "//Item[@xsi:type=\"LON_Fb_Cfg\"]
 [contains(UCPTname,\"Scheduler\")][UCPThidden = \"1\"]";

 //Create an ItemColl that stores objects returned by List()function that takes an xSelect object

 iLON_SmartServer.Item_Coll ItemColl = SmartServer.List(xSelect);

//Create an ItemCfgColl that stores the objects to be returned by a Get() function that
//takes the ItemColl returned by the List()

 ItemColl.xSelect = "//Item[@xsi:type=\"LON_Fb_Cfg\"]";
 iLON_SmartServer.Item_CfgColl ItemCfgColl = SmartServer.Get(ItemColl);

 //check that there are obejcts in the ItemCfgColl

 if (ItemCfgColl.UCPTfaultCount > 0)
 {
 PrintGetError(ItemCfgColl);
 }

 else
 {
 //Create LON_Fb_Cfg item
 ItemCfgColl.Item[0].UCPThidden = 0;
 ItemCfgColl.Item[0].UCPTname = "Net/LON/iLON App/myScheduler";
 iLON_SmartServer.Item_Coll ItemColl_SetReturn = SmartServer.Set(ItemCfgColl);

 //create new Scheduler from existing one
 iLON_SmartServer.UFPTscheduler_Cfg myScheduler = new iLON_SmartServer.UFPTscheduler_Cfg();

i.LON SmartServer 2.0 Programmer’s Reference 21-9

 myScheduler.UCPTname = "Net/LON/iLON App/myScheduler";
 myScheduler.UCPTannotation = "#8000010128000000[4].UFPTscheduler";

 //create DP reference array to store data points controlled by new Scheduler
 myScheduler.DataPoint = new iLON_SmartServer.E_DpRef[2];

 //speficy data points to be controlled by new Scheduler

 iLON_SmartServer.UFPTscheduler_DpRef dataPointRef1 = new iLON_SmartServer.UFPTscheduler_DpRef();
 dataPointRef1.UCPTname = "Net/LON/iLON App/Digital Output 1/nviClaValue_1";
 dataPointRef1.UCPTformatDescription = "#0000000000000000[0].SNVT_switch";
 dataPointRef1.SCPTdelayTime = 0;
 dataPointRef1.SCPTdelayTimeSpecified = true;
 dataPointRef1.dpType = "Output";

 iLON_SmartServer.UFPTscheduler_DpRef dataPointRef2 = new iLON_SmartServer.UFPTscheduler_DpRef();
 dataPointRef2.UCPTname = "Net/LON/iLON App/Digital Output 2/nviClaValue_2";
 dataPointRef2.UCPTformatDescription = "#0000000000000000[0].SNVT_switch";
 dataPointRef2.SCPTdelayTime = 0;
 dataPointRef2.SCPTdelayTimeSpecified = true;
 dataPointRef2.dpType = "Output";

 //store data points in DP reference array
 myScheduler.DataPoint[0] = dataPointRef1;
 myScheduler.DataPoint[1] = dataPointRef2;

 //set range of dates in which Scheduler is effective
 iLON_SmartServer.UFPTscheduler_CfgEffectivePeriod effectivePeriod =
 new iLON_SmartServer.UFPTscheduler_CfgEffectivePeriod();
 effectivePeriod.StartDate = new DateTime(2009, 6, 8);
 effectivePeriod.EndDate = new DateTime(2020, 12, 31);
 effectivePeriod.StartDateSpecified = true;
 effectivePeriod.EndDateSpecified = true;
 myScheduler.ScheduleEffectivePeriod = effectivePeriod;

 //create daily schedule for weekdays
 iLON_SmartServer.UFPTscheduler_CfgDayBased dayBasedSchedule_weekdays =
 new iLON_SmartServer.UFPTscheduler_CfgDayBased();
 dayBasedSchedule_weekdays.UCPTindex = 0;
 dayBasedSchedule_weekdays.UCPTindexSpecified = true;
 dayBasedSchedule_weekdays.UCPTdescription = "Weekday";
 dayBasedSchedule_weekdays.UCPTpriority = 255;

 //create events for weekday schedule

 dayBasedSchedule_weekdays.Event = new iLON_SmartServer.UFPTscheduler_CfgEvent[2];
 dayBasedSchedule_weekdays.Event[0] = new iLON_SmartServer.UFPTscheduler_CfgEvent();
 dayBasedSchedule_weekdays.Event[1] = new iLON_SmartServer.UFPTscheduler_CfgEvent();

 //---create ON event----
 iLON_SmartServer.UFPTscheduler_CfgEvent onEvent = new iLON_SmartServer.UFPTscheduler_CfgEvent();
 onEvent.UCPTindex = 0;
 onEvent.UCPTindexSpecified = true;
 onEvent.UCPTtime = new DateTime(2009, 6, 8, 10, 00, 00);

 onEvent.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 onEvent.UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 onEvent.UCPTvalue[0].Value = "ON";
 onEvent.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 dayBasedSchedule_weekdays.Event[0] = onEvent;

 //---create OFF event---
 iLON_SmartServer.UFPTscheduler_CfgEvent offEvent = new iLON_SmartServer.UFPTscheduler_CfgEvent();
 offEvent.UCPTindex = 1;
 offEvent.UCPTindexSpecified = true;
 offEvent.UCPTtime = new DateTime(2009, 6, 8, 21, 00, 00);

 offEvent.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 offEvent.UCPTvalue[0] = new iLON_SmartServer.E_LonString();

i.LON SmartServer 2.0 Programmer’s Reference 21-10

 offEvent.UCPTvalue[0].Value = "OFF";
 offEvent.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 dayBasedSchedule_weekdays.Event[1] = offEvent;

 //set Monday--Friday as the days in this daily schedule
 iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays mon_to_fri =
 new iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays();
 mon_to_fri.UCPTmonday = 1;
 mon_to_fri.UCPTtuesday = 1;
 mon_to_fri.UCPTwednesday = 1;
 mon_to_fri.UCPTthursday = 1;
 mon_to_fri.UCPTfriday = 1;

 mon_to_fri.UCPTsaturday = 0;
 mon_to_fri.UCPTsunday = 0;

 dayBasedSchedule_weekdays.Weekdays = mon_to_fri;

 //create daily schedule for Saturdays

 iLON_SmartServer.UFPTscheduler_CfgDayBased dayBasedSchedule_Sat =
 new iLON_SmartServer.UFPTscheduler_CfgDayBased();
 dayBasedSchedule_Sat.UCPTindex = 1;
 dayBasedSchedule_Sat.UCPTindexSpecified = true;
 dayBasedSchedule_Sat.UCPTdescription = "Saturday";
 dayBasedSchedule_Sat.UCPTpriority = 255;

 //create events for Saturday schedule

 dayBasedSchedule_Sat.Event = new iLON_SmartServer.UFPTscheduler_CfgEvent[2];
 dayBasedSchedule_Sat.Event[0] = new iLON_SmartServer.UFPTscheduler_CfgEvent();
 dayBasedSchedule_Sat.Event[1] = new iLON_SmartServer.UFPTscheduler_CfgEvent();

 //---create ON event----
 iLON_SmartServer.UFPTscheduler_CfgEvent onEvent_Sat =
 new iLON_SmartServer.UFPTscheduler_CfgEvent();
 onEvent_Sat.UCPTindex = 0;
 onEvent_Sat.UCPTindexSpecified = true;
 onEvent_Sat.UCPTtime = new DateTime(2009, 6, 8, 10, 00, 00);

 onEvent_Sat.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 onEvent_Sat.UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 onEvent_Sat.UCPTvalue[0].Value = "ON";
 onEvent_Sat.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 dayBasedSchedule_Sat.Event[0] = onEvent_Sat;

 //---create OFF event---
 iLON_SmartServer.UFPTscheduler_CfgEvent offEvent_Sat =
 new iLON_SmartServer.UFPTscheduler_CfgEvent();
 offEvent_Sat.UCPTindex = 1;
 offEvent_Sat.UCPTindexSpecified = true;
 offEvent_Sat.UCPTtime = new DateTime(2009, 6, 8, 19, 00, 00);

 offEvent_Sat.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 offEvent_Sat.UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 offEvent_Sat.UCPTvalue[0].Value = "OFF";
 offEvent_Sat.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 dayBasedSchedule_Sat.Event[1] = offEvent_Sat;

 //set Saturday as only day in this daily schedule
 iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays sat =
 new iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays();

 sat.UCPTsaturday = 1;

 sat.UCPTsunday = 0;
 sat.UCPTmonday = 0;
 sat.UCPTtuesday = 0;

i.LON SmartServer 2.0 Programmer’s Reference 21-11

 sat.UCPTwednesday = 0;
 sat.UCPTthursday = 0;
 sat.UCPTfriday = 0;

 dayBasedSchedule_Sat.Weekdays = sat;

 //create daily schedule for Sundays
 iLON_SmartServer.UFPTscheduler_CfgDayBased dayBasedSchedule_Sun =
 new iLON_SmartServer.UFPTscheduler_CfgDayBased();
 dayBasedSchedule_Sun.UCPTindex = 2;
 dayBasedSchedule_Sun.UCPTindexSpecified = true;
 dayBasedSchedule_Sun.UCPTdescription = "Sunday";
 dayBasedSchedule_Sun.UCPTpriority = 255;

 //create events for Sunday Schedule

 dayBasedSchedule_Sun.Event = new iLON_SmartServer.UFPTscheduler_CfgEvent[2];
 dayBasedSchedule_Sun.Event[0] = new iLON_SmartServer.UFPTscheduler_CfgEvent();
 dayBasedSchedule_Sun.Event[1] = new iLON_SmartServer.UFPTscheduler_CfgEvent();

 //---create ON event----
 iLON_SmartServer.UFPTscheduler_CfgEvent onEvent_Sun =
 new iLON_SmartServer.UFPTscheduler_CfgEvent();
 onEvent_Sun.UCPTindex = 0;
 onEvent_Sun.UCPTindexSpecified = true;
 onEvent_Sun.UCPTtime = new DateTime(2009, 6, 8, 12, 00, 00);

 onEvent_Sun.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 onEvent_Sun.UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 onEvent_Sun.UCPTvalue[0].Value = "ON";
 onEvent_Sun.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 dayBasedSchedule_Sun.Event[0] = onEvent_Sun;

 //---create OFF event---
 iLON_SmartServer.UFPTscheduler_CfgEvent offEvent_Sun =
 new iLON_SmartServer.UFPTscheduler_CfgEvent();
 offEvent_Sun.UCPTindex = 1;
 offEvent_Sun.UCPTindexSpecified = true;
 offEvent_Sun.UCPTtime = new DateTime(2009, 6, 8, 18, 00, 00);

 offEvent_Sun.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 offEvent_Sun.UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 offEvent_Sun.UCPTvalue[0].Value = "OFF";
 offEvent_Sun.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 dayBasedSchedule_Sun.Event[1] = offEvent_Sun;

 //set Sunday as only day in this daily schedule
 iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays sun =
 new iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays();
 sun.UCPTsunday = 1;

 sun.UCPTsaturday = 0;
 sun.UCPTmonday = 0;
 sun.UCPTtuesday = 0;
 sun.UCPTwednesday = 0;
 sun.UCPTthursday = 0;
 sun.UCPTfriday = 0;

 dayBasedSchedule_Sun.Weekdays = sun;

 //store daily schedules we created in a DayBased[]

 myScheduler.DayBased = new iLON_SmartServer.UFPTscheduler_CfgDayBased[3];

 myScheduler.DayBased[0] = new iLON_SmartServer.UFPTscheduler_CfgDayBased();
 myScheduler.DayBased[0] = dayBasedSchedule_weekdays;

 myScheduler.DayBased[1] = new iLON_SmartServer.UFPTscheduler_CfgDayBased();
 myScheduler.DayBased[1] = dayBasedSchedule_Sat;

i.LON SmartServer 2.0 Programmer’s Reference 21-12

 myScheduler.DayBased[2] = new iLON_SmartServer.UFPTscheduler_CfgDayBased();
 myScheduler.DayBased[2] = dayBasedSchedule_Sun;

 //create a date-based schedule (an exception) for some American Holidays

//*** NOTE: You must use Calendar application to specify the dates in which this
//alterntate schedule is applicable***

 iLON_SmartServer.UFPTscheduler_CfgDateBased holidays =
 new iLON_SmartServer.UFPTscheduler_CfgDateBased();
 holidays.UCPTindex = 0;
 holidays.UCPTindexSpecified = true;
 holidays.UCPTpriority = 250;

 //create events for Holiday schedule

 holidays.Event = new iLON_SmartServer.UFPTscheduler_CfgEvent[3];
 holidays.Event[0] = new iLON_SmartServer.UFPTscheduler_CfgEvent();
 holidays.Event[1] = new iLON_SmartServer.UFPTscheduler_CfgEvent();
 holidays.Event[2] = new iLON_SmartServer.UFPTscheduler_CfgEvent();

 //create LOCK event at 00:00 for Holiday schedule
 iLON_SmartServer.UFPTscheduler_CfgEvent lockEvent_holiday =
 new iLON_SmartServer.UFPTscheduler_CfgEvent();
 lockEvent_holiday.UCPTindex = 0;
 lockEvent_holiday.UCPTindexSpecified = true;
 lockEvent_holiday.UCPTtime = new DateTime(2009, 6, 8, 00, 00, 00);

 lockEvent_holiday.UCPTeventType = new iLON_SmartServer.E_LonString();
 lockEvent_holiday.UCPTeventType.Value = "ET_LOCK";
 lockEvent_holiday.UCPTeventType.LonFormat = "UCPTeventType";

 holidays.Event[0] = lockEvent_holiday;

 //create ON event for Holiday schedule
 iLON_SmartServer.UFPTscheduler_CfgEvent onEvent_holiday =
 new iLON_SmartServer.UFPTscheduler_CfgEvent();
 onEvent_holiday.UCPTindex = 1;
 onEvent_holiday.UCPTindexSpecified = true;
 onEvent_holiday.UCPTtime = new DateTime(2009, 6, 8, 12, 00, 00);

 onEvent_holiday.UCPTeventType = new iLON_SmartServer.E_LonString();
 onEvent_holiday.UCPTeventType.Value = "ET_NUL";
 onEvent_holiday.UCPTeventType.LonFormat = "UCPTeventType";

 onEvent_holiday.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 onEvent_holiday.UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 onEvent_holiday.UCPTvalue[0].Value = "ON";
 onEvent_holiday.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 holidays.Event[1] = onEvent_holiday;

 //create OFF event for Holiday schedule

 iLON_SmartServer.UFPTscheduler_CfgEvent offEvent_holiday =
 new iLON_SmartServer.UFPTscheduler_CfgEvent();
 offEvent_holiday.UCPTindex = 2;
 offEvent_holiday.UCPTindexSpecified = true;
 offEvent_holiday.UCPTtime = new DateTime(2009, 6, 8, 18, 00, 00);

 offEvent_holiday.UCPTeventType = new iLON_SmartServer.E_LonString();
 offEvent_holiday.UCPTeventType.Value = "ET_NUL";
 offEvent_holiday.UCPTeventType.LonFormat = "UCPTeventType";

 offEvent_holiday.UCPTvalue = new iLON_SmartServer.E_LonString[1];
 offEvent_holiday.UCPTvalue[0] = new iLON_SmartServer.E_LonString();
 offEvent_holiday.UCPTvalue[0].Value = "OFF";
 offEvent_holiday.UCPTvalue[0].LonFormat = "UCPTvalueDef";

 holidays.Event[2] = offEvent_holiday;

i.LON SmartServer 2.0 Programmer’s Reference 21-13

 //create Exception item
 holidays.Exception = new iLON_SmartServer.UFPTscheduler_CfgDateBasedException[1];
 holidays.Exception[0] = new iLON_SmartServer.UFPTscheduler_CfgDateBasedException();
 holidays.Exception[0].UCPTexceptionName = "Holidays";
 holidays.Exception[0].UCPTindex = 0;
 holidays.Exception[0].UCPTindexSpecified = true;

 //store date-based (exception) schedule we created in a DateBased[]

 myScheduler.DateBased = new iLON_SmartServer.UFPTscheduler_CfgDateBased[1];

 myScheduler.DateBased[0] = new iLON_SmartServer.UFPTscheduler_CfgDateBased();
 myScheduler.DateBased[0] = holidays;

 //call Set function
 iLON_SmartServer.Item_CfgColl itemCfgColl = new iLON_SmartServer.Item_CfgColl();
 itemCfgColl.Item = new iLON_SmartServer.Item_Cfg[1];
 itemCfgColl.Item[0] = myScheduler;

 iLON_SmartServer.Item_Coll ItemColl_Set_Scheduler_Return = SmartServer.Set(itemCfgColl);

 if (ItemColl_Set_Scheduler_Return.UCPTfaultCount > 0)
 {
 PrintGetError(ItemColl);
 }

 else
 {
 iLON_SmartServer.Item newScheduler = ItemColl_Set_Scheduler_Return.Item[0];
 Console.WriteLine("New Scheduler = " + newScheduler.UCPTname);
 }

 }

 // -------------- CREATING A CALENDAR --------------

 //Create a new UFPTcalendar_Cfg item
 myCalendar = new iLON_SmartServer.UFPTcalendar_Cfg();
 myCalendar.UCPTname = "Net/LON/iLON App/myCalendar";
 myCalendar.UCPTannotation = "#8000010128000000[4].UFPTcalendar";

 //Configure the Calendar
 iLON_SmartServer.UFPTscheduler_CfgEffectivePeriod effectivePeriod_calendar =
 new iLON_SmartServer.UFPTscheduler_CfgEffectivePeriod();
 effectivePeriod_calendar.StartDate = new DateTime(2009, 6, 8);
 effectivePeriod_calendar.EndDate = new DateTime(2020, 12, 31);
 effectivePeriod_calendar.StartDateSpecified = true;
 effectivePeriod_calendar.EndDateSpecified = true;
 myCalendar.ScheduleEffectivePeriod = effectivePeriod_calendar;

 //create an exception
 myCalendar.Exception = new iLON_SmartServer.UFPTcalendar_CfgException[1];
 myCalendar.Exception[0] = new iLON_SmartServer.UFPTcalendar_CfgException();

 myCalendar.Exception[0].UCPTexceptionName = "Holidays";
 myCalendar.Exception[0].UCPTaliasName = "Holidays";
 myCalendar.Exception[0].UCPTindex = 0;
 myCalendar.Exception[0].UCPTindexSpecified = true;
 myCalendar.Exception[0].UCPTtemporary = 0;
 myCalendar.Exception[0].UCPTtemporarySpecified = true;
 myCalendar.Exception[0].UCPTmaxClient = 1;
 myCalendar.Exception[0].UCPTmaxClientSpecified = true;

 myCalendar.Exception[0].Client = new iLON_SmartServer.UFPTcalendar_CfgExceptionClient[1];
 myCalendar.Exception[0].Client[0] = new iLON_SmartServer.UFPTcalendar_CfgExceptionClient();
 myCalendar.Exception[0].Client[0].UCPTname = "Net/LON/iLON App/myScheduler";

myCalendar.Exception[0].Client[0].UCPTservicePath =
 new ConsoleApplication_CSharp_Test_3._5.iLON_SmartServer.E_Path();

 myCalendar.Exception[0].Client[0].UCPTservicePath.Value = "";

i.LON SmartServer 2.0 Programmer’s Reference 21-14

 //create exception dates
 myCalendar.Exception[0].Schedule = new iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule[4];
 myCalendar.Exception[0].Schedule[0] = new iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule();
 myCalendar.Exception[0].Schedule[1] = new iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule();
 myCalendar.Exception[0].Schedule[2] = new iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule();
 myCalendar.Exception[0].Schedule[3] = new iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule();

 //create 4th of July exception
 //==========================

 myCalendar.Exception[0].Schedule[0].UCPTschedMonth = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[0].UCPTschedMonth.LonFormat = "UCPTschedMonth";
 myCalendar.Exception[0].Schedule[0].UCPTschedMonth.Value = "MN_JUL";

 myCalendar.Exception[0].Schedule[0].UCPTschedDay = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[0].UCPTschedDay.LonFormat = "UCPTschedDay";
 myCalendar.Exception[0].Schedule[0].UCPTschedDay.Value = "DM_DAY_4";

 //set start date
 myCalendar.Exception[0].Schedule[0].StartDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[0].StartDate.UCPTdate = new DateTime(2009, 6, 8);

 //set end date
 myCalendar.Exception[0].Schedule[0].EndDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[0].EndDate.UCPTdate = new DateTime(2020, 12, 31);

 //create Labor Day exception
 //==========================

 myCalendar.Exception[0].Schedule[1].UCPTschedMonth = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[1].UCPTschedMonth.LonFormat = "UCPTschedMonth";
 myCalendar.Exception[0].Schedule[1].UCPTschedMonth.Value = "MN_SEP";

 myCalendar.Exception[0].Schedule[1].UCPTschedDay = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[1].UCPTschedDay.LonFormat = "UCPTschedDay";
 myCalendar.Exception[0].Schedule[1].UCPTschedDay.Value = "DM_FIRST_MON";

 //set start date
 myCalendar.Exception[0].Schedule[1].StartDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[1].StartDate.UCPTdate = new DateTime(2009, 6, 8);

 //set end date
 myCalendar.Exception[0].Schedule[1].EndDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[1].EndDate.UCPTdate = new DateTime(2020, 12, 31);

 //create Thanksgiving exception
 //==========================

 myCalendar.Exception[0].Schedule[2].UCPTschedMonth = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[2].UCPTschedMonth.LonFormat = "UCPTschedMonth";
 myCalendar.Exception[0].Schedule[2].UCPTschedMonth.Value = "MN_NOV";

 myCalendar.Exception[0].Schedule[2].UCPTschedDay = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[2].UCPTschedDay.LonFormat = "UCPTschedDay";
 myCalendar.Exception[0].Schedule[2].UCPTschedDay.Value = "DM_FOURTH_THU";

 //set start date
 myCalendar.Exception[0].Schedule[2].StartDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[2].StartDate.UCPTdate = new DateTime(2009, 6, 8);

 //set end date
 myCalendar.Exception[0].Schedule[2].EndDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[2].EndDate.UCPTdate = new DateTime(2020, 12, 31);

 //Create Christmas exception
 //==========================

 myCalendar.Exception[0].Schedule[3].UCPTschedMonth = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[3].UCPTschedMonth.LonFormat = "UCPTschedMonth";
 myCalendar.Exception[0].Schedule[3].UCPTschedMonth.Value = "MN_DEC";

i.LON SmartServer 2.0 Programmer’s Reference 21-15

 myCalendar.Exception[0].Schedule[3].UCPTschedDay = new iLON_SmartServer.E_LonString();
 myCalendar.Exception[0].Schedule[3].UCPTschedDay.LonFormat = "UCPTschedDay";
 myCalendar.Exception[0].Schedule[3].UCPTschedDay.Value = "DM_DAY_25";

 //set start date
 myCalendar.Exception[0].Schedule[3].StartDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[3].StartDate.UCPTdate = new DateTime(2009, 6, 8);

 //set end date
 myCalendar.Exception[0].Schedule[3].EndDate = new iLON_SmartServer.UFPTcalendar_CfgESDate();
 myCalendar.Exception[0].Schedule[3].EndDate.UCPTdate = new DateTime(2020, 12, 31);

 //call Set function
 iLON_SmartServer.Item_CfgColl itemCfgColl_Calendar = new iLON_SmartServer.Item_CfgColl();
 itemCfgColl_Calendar.Item = new iLON_SmartServer.Item_Cfg[1];
 itemCfgColl_Calendar.Item[0] = myCalendar;

 iLON_SmartServer.Item_Coll ItemColl_Set_Calendar_Return =
 SmartServer.Set(itemCfgColl_Calendar);

 if (ItemColl_Set_Calendar_Return.UCPTfaultCount > 0)
 {
 PrintGetError(ItemColl);
 }

 else
 {
 iLON_SmartServer.Item newCalendar = ItemColl_Set_Calendar_Return.Item[0];
 Console.WriteLine("Calendar used for this Scheduler is " + newCalendar.UCPTname);
 }

 Console.ReadLine();
 }

 finally

 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }

 }
 }
 }

21.1.4 Creating and Installing a LONWORKS Device in Visual C# .NET

This C# console example creates two LONWORKS devices, and then it commissions the devices, starts
the devices’ applications, and gets the devices’ templates (to display the devices’ functional blocks and
data points in the SmartServer Web interface). The example then prints out the names and statuses of
the devices that have been installed. Note that you need to replace the values of the <UCPTname>,
<UCPTuniqueID>, <UCPTprogramID>, and <UCPTurlTemplate> properties provided in this example
with those of the devices you are creating and installing.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2. You must also upload the device interface (XIF) files of the devices you are creating to the
root/LonWorks/import folder on the SmartServer flash disk.

For more information on the LONWORKS device properties set in this example, see section 14.3.2,
Using the Get Function on a LonWorks Device. For more information on the network management
commands issues in this example, see section 14.3.3.1, Issuing Network Management Commands.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication_LON_Device
{

i.LON SmartServer 2.0 Programmer’s Reference 21-16

 class Program
 {
 //Function required for converting device Neuron IDs and program IDs to a byte[]
 static public byte[] HexStringToArray(string str)
 {
 int nLen = str.Length / 2;
 byte[] arr = new byte[nLen];

 for (int i = 0; i < nLen; i++)
 {
 string strByte = str.Substring(i * 2, 2);
 arr[i] = Byte.Parse(strByte, System.Globalization.NumberStyles.HexNumber);
 }
 return arr;
 }
 static void Main(string[] args)
 {
 iLON_SoapCalls.BindClientToSmartServer();
 iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

 try
 {

 // -------------- CREATING LONWORKS DEVICES --------------

 //Create a new LON_Device_Cfg Item

 iLON_SmartServer.LON_Device_Cfg my_LON_Device1 = new iLON_SmartServer.LON_Device_Cfg();
 iLON_SmartServer.LON_Device_Cfg my_LON_Device2 = new iLON_SmartServer.LON_Device_Cfg();

 //Create an ItemCfgColl to store the LON Devices we just created

 iLON_SmartServer.Item_CfgColl ItemCfgColl = new iLON_SmartServer.Item_CfgColl();
 ItemCfgColl.Item = new iLON_SmartServer.Item_Cfg[2];
 ItemCfgColl.Item[0] = my_LON_Device1;
 ItemCfgColl.Item[1] = my_LON_Device2;

 //=====CREATING AND INSTALLING LON DEVICE #1==================

 // specify properties of new LON Device #1
 my_LON_Device1.UCPTname = "Net/LON/DIO-1";
 my_LON_Device1.UCPTlocal = 0;
 my_LON_Device1.UCPTuniqueId = HexStringToArray("00a145791500");
 my_LON_Device1.UCPTprogramId = HexStringToArray("80000105288a0403");
 my_LON_Device1.UCPTurlTemplate = "/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.XIF";

 my_LON_Device1.UCPTcommissionStatus = new iLON_SmartServer.E_LonString();
 my_LON_Device1.UCPTcommissionStatus.Value = "COMMISSIONED";
 my_LON_Device1.UCPTapplicationStatus = new iLON_SmartServer.E_LonString();
 my_LON_Device1.UCPTapplicationStatus.Value = "APP_RUNNING";

 //create a command array to store device commands to be sent
 my_LON_Device1.Command = new iLON_SmartServer.LON_Device_CfgCommand[3];

 //commission device
 my_LON_Device1.Command[0] =
 new ConsoleApplication_LON_Device.iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device1.Command[0].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device1.Command[0].UCPTcommand = iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus;
 my_LON_Device1.Command[0].UCPTstatus =
 new ConsoleApplication_LON_Device.iLON_SmartServer.E_LonString();
 my_LON_Device1.Command[0].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device1.Command[0].UCPTstatus.Value = "STATUS_REQUEST";

 //run device application
 my_LON_Device1.Command[1] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device1.Command[1].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device1.Command[1].UCPTcommand = iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus;
 my_LON_Device1.Command[1].UCPTstatus =
 new ConsoleApplication_LON_Device.iLON_SmartServer.E_LonString();
 my_LON_Device1.Command[1].UCPTstatus.LonFormat = "UCPTstatus";

i.LON SmartServer 2.0 Programmer’s Reference 21-17

 my_LON_Device1.Command[1].UCPTstatus.Value = "STATUS_REQUEST";

 //get the device template to show FBs and DPs in Web UI
 my_LON_Device1.Command[2] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device1.Command[2].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device1.Command[2].UCPTcommand = iLON_SmartServer.LON_Device_eCommand.GetTemplate;
 my_LON_Device1.Command[2].UCPTstatus =
 new ConsoleApplication_LON_Device.iLON_SmartServer.E_LonString();
 my_LON_Device1.Command[2].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device1.Command[2].UCPTstatus.Value = "STATUS_REQUEST";

 //=====CREATING AND INSTALLING LON DEVICE #2==================

 // specify properties of new LON Device #2
 my_LON_Device2.UCPTname = "Net/LON/DIO-2";
 my_LON_Device2.UCPTlocal = 0;
 my_LON_Device2.UCPTuniqueId = HexStringToArray("00a145784600");
 my_LON_Device2.UCPTprogramId = HexStringToArray("80000105288a0403");
 my_LON_Device2.UCPTurlTemplate = "/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.XIF";
 my_LON_Device2.UCPTcommissionStatus = new iLON_SmartServer.E_LonString();
 my_LON_Device2.UCPTcommissionStatus.Value = "COMMISSIONED";
 my_LON_Device2.UCPTapplicationStatus = new iLON_SmartServer.E_LonString();
 my_LON_Device2.UCPTapplicationStatus.Value = "APP_RUNNING";

 //create a command array to store device commands to be sent
 my_LON_Device2.Command = new iLON_SmartServer.LON_Device_CfgCommand[3];

 //commission device
 my_LON_Device2.Command[0] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device2.Command[0].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device2.Command[0].UCPTcommand = iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus;
 my_LON_Device2.Command[0].UCPTstatus =
 new ConsoleApplication_LON_Device.iLON_SmartServer.E_LonString();
 my_LON_Device2.Command[0].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device2.Command[0].UCPTstatus.Value = "STATUS_REQUEST";

 //run device application
 my_LON_Device2.Command[1] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device2.Command[1].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device2.Command[1].UCPTcommand = iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus;
 my_LON_Device2.Command[1].UCPTstatus =
 new ConsoleApplication_LON_Device.iLON_SmartServer.E_LonString();
 my_LON_Device2.Command[1].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device2.Command[1].UCPTstatus.Value = "STATUS_REQUEST";

 //get the device template to show FBs and DPs in Web UI
 my_LON_Device2.Command[2] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device2.Command[2].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device2.Command[2].UCPTcommand = iLON_SmartServer.LON_Device_eCommand.GetTemplate;
 my_LON_Device2.Command[2].UCPTstatus =
 new ConsoleApplication_LON_Device.iLON_SmartServer.E_LonString();
 my_LON_Device2.Command[2].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device2.Command[2].UCPTstatus.Value = "STATUS_REQUEST";

 //Call the Set() function

 iLON_SmartServer.Item_Coll Device_Return_ItemColl = SmartServer.Set(ItemCfgColl);

 Device_Return_ItemColl.xSelect = "//Item[@xsi:type=\"LON_Device_Cfg\"]";

 if (Device_Return_ItemColl.UCPTfaultCount > 0)
 {
 // print out error and exit
 Console.Out.WriteLine("An error occurred:");

 for (int j = 0; j < Device_Return_ItemColl.Item.Length; j++)
 {
 if (Device_Return_ItemColl.Item[j].fault != null)
 {
 Console.Out.WriteLine("Item: " + Device_Return_ItemColl.Item[j].UCPTname +
 ", fault code: " + Device_Return_ItemColl.Item[j].fault.faultcode +

i.LON SmartServer 2.0 Programmer’s Reference 21-18

 ", fault string: " + Device_Return_ItemColl.Item[j].fault.faultstring);
 }
 }
 }
 else
 {
 ItemCfgColl = SmartServer.Get(Device_Return_ItemColl);

 for (int j = 0; j < ItemCfgColl.Item.Length; j++)
 {
 iLON_SmartServer.LON_Device_Cfg newDevice = (iLON_SmartServer.LON_Device_Cfg)ItemCfgColl.Item[j];
 Console.WriteLine("New Device Created = " + newDevice.UCPTname + ". Status = " +
 newDevice.UCPTcommissionStatus.Value + " and " +
 newDevice.UCPTapplicationStatus.Value + ".\r");
 }
 }

 Console.ReadLine();
 }

 finally

 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }

 }
 }
}

21.1.5 Commissioning External Devices in Visual C# .NET

This C# console example reads the <UCPTitemStatus> of external LonWorks devices (obtained using
an xSelect), commissions any unconfigured devices, and reports the status of the network management
commands.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2.

For more information on the network management commands issued in this example, see section
14.3.3.1, Issuing Network Management Commands.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace SmartServerConsoleExample
{
 class MyDeviceProgram
 {

// If you are using NET 2.0 Framework, uncomment the following line of code to enter your
 // SmartServer’s IP Address

 // public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

 static void PrintGetError(iLON_SmartServer.Item_CfgColl ItemCfgColl)
 {
 // print out error and exit
 Console.Out.WriteLine("An error occurred:");
 for (int j = 0; j < ItemCfgColl.Item.Length; j++)
 {
 if (ItemCfgColl.Item[j].fault != null)
 {

Console.Out.WriteLine("Item: " + ItemCfgColl.Item[j].UCPTname + ", fault code: " +
ItemCfgColl.Item[j].fault.faultcode + ", fault string: " +
ItemCfgColl.Item[j].fault.faultstring);

 }
 }
 }

i.LON SmartServer 2.0 Programmer’s Reference 21-19

 // If you are using NET 2.0 Framework, uncomment the following line of code to enter your
 // SmartServer’s IP Address

 // public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

static void Main(string[] args)

 {
iLON_SoapCalls.BindClientToSmartServer();

// If you are using NET 2.0 Framework, comment out the previous line of code, and then
// uncomment the following line of code

// iLON_SoapCalls.BindClientToSmartServer(_iLonEndpointIpAddress);

iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

// See Section 20.2.1 (NET 3.5) or 20.2.2 (NET 2.0)for more information on iLON_SoapCalls class

 try
 {

 //------------Commissioning Uncommissioned External LonWorks Devices---------------------

Console.Out.WriteLine("Commissioning Uncommissioned External LonWorks Devices with an
xSelect\r\n -------------------------------\r\n -------------------------------\r\n");

 //we create an xSelect object and then specify the filter to be used

iLON_SmartServer.E_xSelect xSelect =
 new SmartServerConsoleExample.iLON_SmartServer.E_xSelect();

xSelect.xSelect =
"//Item[@xsi:type=\"LON_Device_Cfg\"][UCPTitemStatus=\"IS_UNCONFIGURED\"]";

 //Create an ItemColl that stores objects returned by List()function that takes an xSelect

//object

 iLON_SmartServer.Item_Coll ItemColl = SmartServer.List(xSelect);

 //we use an xSelect to further filter the items returned by the List() function
 ItemColl.xSelect = "//Item[@xsi:type=\"LON_Device_Cfg\"][UCPTlocal =\"0\"]";

 //we create an ItemCfgColl that stores the objects returned by a Get() function that

//takes the ItemColl returned by the List()

 iLON_SmartServer.Item_CfgColl ItemCfgColl = SmartServer.Get(ItemColl);

 //check that there are obejcts in the ItemCfgColl

 if (ItemCfgColl.UCPTfaultCount > 0)
 {
 PrintGetError(ItemCfgColl);
 }

 else
 {

 for (int i = 0; i < ItemCfgColl.Item.Length; i++)
 {

 iLON_SmartServer.LON_Device_Cfg deviceItems =
 (iLON_SmartServer.LON_Device_Cfg)ItemCfgColl.Item[i];

 Console.Out.WriteLine(deviceItems.UCPTname + ", STATUS = " +

 deviceItems.UCPTitemStatus.Value + "\r\n");

 deviceItems.UCPTcommissionStatus.Value = "COMMISSIONED";
 deviceItems.UCPTapplicationStatus.Value = "APP_RUNNING";

i.LON SmartServer 2.0 Programmer’s Reference 21-20

 deviceItems.Command[0].UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus;
 deviceItems.Command[0].UCPTstatus.Value = "STATUS_REQUEST";

 deviceItems.Command[1].UCPTcommand =

 iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus;
 deviceItems.Command[1].UCPTstatus.Value = "STATUS_REQUEST";

 deviceItems.Command[2].UCPTcommand = iLON_SmartServer.LON_Device_eCommand.Reset;
 deviceItems.Command[2].UCPTstatus.Value = "STATUS_REQUEST";

Console.Out.WriteLine("*DEVICE CONFIGURATION CHECK**\r\n\r\n" +
deviceItems.UCPTname + "\r\n---------------------------------\r\n\r\n" + "STATUS
= " + deviceItems.UCPTitemStatus.Value + "\r\n COMMISSION STATUS = " +
deviceItems.UCPTcommissionStatus.Value + "\r\n APPLICATION STATUS = " +
deviceItems.UCPTapplicationStatus.Value + "\r\n");

 }
 }

 iLON_SmartServer.Item_Coll ItemColl_SetReturn = SmartServer.Set(ItemCfgColl);

 ItemColl_SetReturn.xSelect = "//Item[@xsi:type=\"LON_Device_Cfg\"]";

 bool bAllDone = false;
 do
 {
 ItemCfgColl = SmartServer.Get(ItemColl_SetReturn);

 if (ItemCfgColl.UCPTfaultCount > 0)
 {
 PrintGetError(ItemCfgColl);
 break;
 }
 bAllDone = true;

 // now check all the items to make sure all the commands are done
 for (int i = 0; i < ItemCfgColl.Item.Length; i++)
 {
 iLON_SmartServer.LON_Device_Cfg deviceItemsCheck =

 (iLON_SmartServer.LON_Device_Cfg)ItemCfgColl.Item[i];

 bool bOnlinePass = (deviceItemsCheck.Command[0].UCPTstatus.Value == "STATUS_DONE");
 bool bCommissionPass = (deviceItemsCheck.Command[1].UCPTstatus.Value == "STATUS_DONE");
 bool bResetPass = (deviceItemsCheck.Command[2].UCPTstatus.Value == "STATUS_DONE");
 bool bOnlineFail = (deviceItemsCheck.Command[0].UCPTstatus.Value == "STATUS_DONE");
 bool bCommissionFail = (deviceItemsCheck.Command[1].UCPTstatus.Value == "STATUS_DONE");
 bool bResetFail = (deviceItemsCheck.Command[2].UCPTstatus.Value == "STATUS_DONE");

 // print out status
 Console.Out.WriteLine("\r\n *INSTALLATION STATUS CHECK**\r\n\r\n");

 Console.Out.WriteLine(deviceItemsCheck.UCPTname + "ONLINE REQUEST STATUS = " +

 deviceItemsCheck.Command[0].UCPTstatus.Value);

 if (bOnlineFail && deviceItemsCheck.Command[0].fault != null)
 {
 Console.Out.WriteLine("Error string: " +

deviceItemsCheck.Command[0].fault.faultstring + ", Error Code" +
deviceItemsCheck.Command[0].fault.faultcode);

 }

 Console.Out.WriteLine(deviceItemsCheck.UCPTname + "COMMISSION REQUEST
 STATUS = " + deviceItemsCheck.Command[1].UCPTstatus.Value);
 if (bOnlineFail && deviceItemsCheck.Command[1].fault != null)
 {
 Console.Out.WriteLine("Error string: " +

deviceItemsCheck.Command[1].fault.faultstring + ", Error Code" +
deviceItemsCheck.Command[1].fault.faultcode);

 }

i.LON SmartServer 2.0 Programmer’s Reference 21-21

 Console.Out.WriteLine(deviceItemsCheck.UCPTname + "RESET REQUEST STATUS =
 " + deviceItemsCheck.Command[2].UCPTstatus.Value);
 if (bOnlineFail && deviceItemsCheck.Command[2].fault != null)
 {
 Console.Out.WriteLine("Error string: " +

deviceItemsCheck.Command[2].fault.faultstring + ", Error Code" +
deviceItemsCheck.Command[2].fault.faultcode);

 }

 if ((bOnlinePass || bOnlineFail) &&
 (bCommissionPass || bCommissionFail) &&
 (bResetPass || bResetFail))
 {
 // this device is done

 }
 else
 {
 bAllDone = false;
 break;
 }
 }

 if (!bAllDone)
 {
 Thread.Sleep(15000);
 }
 }
 while (!bAllDone);

}

 finally
 {

 iLON_SoapCalls.CloseBindingToSmartServer();
 }

 }
 }
 }

21.1.6 Discovering and Installing External Devices in Visual C# .NET

This console example scans a LONWORKS network for uncommissioned devices, processes the Neuron
ID and program ID data of the discovered devices, and then commissions the devices, starts the
devices’ applications, and gets the devices’ templates (to display the devices’ functional blocks and
data points in the SmartServer Web interface). The example then prints out the names and statuses of
the devices that have been installed.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2. You must also upload the device interface (XIF) files of the devices you are discovering and
installing to the root/LonWorks/import folder on the SmartServer flash disk, or create device templates
(XML files) for the devices.

For more information on discovering uncommissioned LONWORKS devices, see section 14.1.3.2,
Issuing Network Scan Commands to Discover Devices.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace ConsoleApplication_CSharp_Test_3._5
{
 class Program
 {

 static public byte[] HexStringToArray(string str)

i.LON SmartServer 2.0 Programmer’s Reference 21-22

 {
 int nLen = str.Length / 2;
 byte[] arr = new byte[nLen];

 for (int i = 0; i < nLen; i++)
 {
 string strByte = str.Substring(i * 2, 2);
 arr[i] = Byte.Parse(strByte, System.Globalization.NumberStyles.HexNumber);
 }
 return arr;
 }

 static void Main(string[] args)
 {
 iLON_SoapCalls.BindClientToSmartServer();
 iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

 try
 {
 //create LONNetworkScanCommandInvoke item and ScanCommand attribute
 iLON_SmartServer.LON_Network_ScanCommand_Invoke networkScan =
 new iLON_SmartServer.LON_Network_ScanCommand_Invoke();
 networkScan.ScanCommand = iLON_SmartServer.LON_Network_eScanCommand.SetScan;

 //***set LONNetworkScanCommandInvoke properties***

 //1. Set network UCPTname
 networkScan.UCPTname = "Net";

 //2. Set Scan Command

 //a. set scan frequency
 iLON_SmartServer.LON_Network_ScanCommand_InvokeCommand scanFrequency =
 new iLON_SmartServer.LON_Network_ScanCommand_InvokeCommand();
 scanFrequency.UCPTcommand = iLON_SmartServer.LON_Device_IlonNi_eCommand.ScanOnce;

 //b. set scan status
 iLON_SmartServer.E_LonString scanStatus = new iLON_SmartServer.E_LonString();
 scanStatus.LonFormat = "UCPTstatus";
 scanStatus.Value = "STATUS_REQUEST";
 scanFrequency.UCPTstatus = scanStatus;

 //c. add scan command to LONNetworkScanCommandInvoke item
 networkScan.Command = new iLON_SmartServer.LON_Network_ScanCommand_InvokeCommand[1];
 networkScan.Command[0] = scanFrequency;

 //3. Set UCPTscan
 iLON_SmartServer.E_LonString domain = new iLON_SmartServer.E_LonString();
 domain.LonFormat = "ucptScan";
 domain.Value = "NST_ILON_DOMAIN";
 networkScan.UCPTscan = new iLON_SmartServer.E_LonString[1];
 networkScan.UCPTscan[0] = domain;

 //send InvokeCmd

 iLON_SmartServer.Item_Coll itemColl = new iLON_SmartServer.Item_Coll();
 itemColl.Item = new iLON_SmartServer.Item[1];
 itemColl.Item[0] = networkScan;
 SmartServer.InvokeCmd(ref itemColl);

 Console.WriteLine("starting scan");

 //send the GetScan command to check network scan progress
 iLON_SmartServer.LON_Network_ScanCommand_Invoke networkScan_Check =
 new iLON_SmartServer.LON_Network_ScanCommand_Invoke();
 networkScan_Check.ScanCommand = iLON_SmartServer.LON_Network_eScanCommand.GetScan;
 networkScan_Check.UCPTname = "Net";

 iLON_SmartServer.Item_Coll itemColl_Check = new iLON_SmartServer.Item_Coll();
 itemColl_Check.Item = new iLON_SmartServer.Item[1];
 itemColl_Check.Item[0] = networkScan_Check;

i.LON SmartServer 2.0 Programmer’s Reference 21-23

 //Check scan status
 bool scanDone = false;
 while (!scanDone)
 {
 SmartServer.InvokeCmd(ref itemColl_Check);

 iLON_SmartServer.InvokeCmdResponse scanCheck_Response =
 new iLON_SmartServer.InvokeCmdResponse();
 scanCheck_Response.iLonItem = itemColl_Check;
 iLON_SmartServer.LON_Network_ScanCommand_Invoke scanStatusCheck =
 (iLON_SmartServer.LON_Network_ScanCommand_Invoke)scanCheck_Response.iLonItem.Item[0];

 //if the scan is done set scanDone flag to true
 if (scanStatusCheck.Command[0].UCPTstatus.Value == "STATUS_DONE")
 {
 Console.WriteLine("Network Scan Status = " +
 scanStatusCheck.Command[0].UCPTstatus.Value);
 scanDone = true;
 }

 //if the scan is not done, keep scanDone flag at false, wait 10 seconds, and check again
 else if (scanStatusCheck.Command[0].UCPTstatus.Value == "STATUS_PENDING")
 {
 Console.WriteLine("Network Scan Status = " +
 scanStatusCheck.Command[0].UCPTstatus.Value);
 Thread.Sleep(10000);
 }
 }
 // A "<network>/#DeviceDiscovery" data logger is automatically created by the network scan
 // read the Data Logger and process the data of the discovered data
 iLON_SmartServer.UFPTdataLogger_Data deviceDiscovered =
 new iLON_SmartServer.UFPTdataLogger_Data();
 deviceDiscovered.UCPTname = "Net/#DeviceDiscovery";
 iLON_SmartServer.Item_Coll itemColl_DataLog = new iLON_SmartServer.Item_Coll();
 itemColl_DataLog.xSelect = "//Item[@xsi:type=\"UFPTdataLogger_Data\"]";
 itemColl_DataLog.Item = new iLON_SmartServer.Item[1];
 itemColl_DataLog.Item[0] = deviceDiscovered;

 iLON_SmartServer.Item_DataColl dataLogger = SmartServer.Read(itemColl_DataLog);
 Console.WriteLine("Devices Discovered = " + (dataLogger.Item.Length - 1));
 Console.WriteLine("==");

 iLON_SmartServer.Item_CfgColl itemCfgColl = new iLON_SmartServer.Item_CfgColl();

 //Create a new ItemCfgColl to store discovered devices
 itemCfgColl.Item = new iLON_SmartServer.Item_Cfg[dataLogger.Item.Length - 1];

 for (int i = 1; i < dataLogger.Item.Length; i++)
 //we start at 1 to account for the metaData item in Data Logger
 {
 iLON_SmartServer.UFPTdataLogger_Data dataLoggerData =
 (iLON_SmartServer.UFPTdataLogger_Data)dataLogger.Item[i];

 if (dataLoggerData != null)
 {
 Console.WriteLine("Device #" + i + ": Neuron ID and Program ID = " +
 dataLoggerData.UCPTvalue[0].Value);
 }
 // -------------- CREATING DISCOVERED LONWORKS DEVICES--------------

 //Create a new LON_Device_Cfg Item and add it to ItemCfgColl
 iLON_SmartServer.LON_Device_Cfg my_LON_Device =
 new iLON_SmartServer.LON_Device_Cfg();

 itemCfgColl.Item[i - 1] = my_LON_Device;
 //subtract 1 for the metaData item in Data Logger

 //parse Neuron ID and Program ID from Data Logger
 String NID_PID = dataLoggerData.UCPTvalue[0].Value;
 String NID = NID_PID.Substring(0, 12);

i.LON SmartServer 2.0 Programmer’s Reference 21-24

 Console.WriteLine("Neuron ID = " + NID);
 String PID = NID_PID.Substring(13, 16);
 Console.WriteLine("Program ID = " + PID);

 //set Neuron ID, which is a byte[]
 my_LON_Device.UCPTuniqueId = (HexStringToArray(NID));

 //set Program ID, which is a byte[]
 my_LON_Device.UCPTprogramId = (HexStringToArray(PID));

 //set template
 iLON_SmartServer.E_xSelect xSelect = new iLON_SmartServer.E_xSelect();
 xSelect.xSelect = "//Item[@xsi:type=\"TemplateManager_Cfg\"]
 [UCPTfileType=\"TEMPLATE_OR_XIF\"]
 [UCPTprogramId=\"" + PID + "\"]";
 itemColl = SmartServer.List(xSelect);

 iLON_SmartServer.TemplateManager_Surrogate_Cfg template =
 (iLON_SmartServer.TemplateManager_Surrogate_Cfg)itemColl.Item[0];
 String templateName = template.UCPTname;
 Console.WriteLine("Device Template = " + templateName);
 my_LON_Device.UCPTurlTemplate = templateName;

 //set the device name

 //1. get the name of the channel ("Net/LON")
 xSelect.xSelect = "//Item[@xsi:type=\"LON_Channel_Cfg\"][UCPThidden=0]";
 itemColl = SmartServer.List(xSelect);
 iLON_SmartServer.Item channel = itemColl.Item[0];

 //2. get the name of the xif
 string[] separator = new string[] { "/" };
 String[] templateName_justxif = templateName.Split(separator, 0);
 int templateNameLength = templateName_justxif.Length;
 String xifName = templateName_justxif[templateNameLength - 1];
 Console.WriteLine("XIF Name = " + xifName);

 //3. name device using channel name, /device [index], and xif name
 // ("Net/LON/Device 1 (ai-10v3.xif)")
 String deviceName = channel.UCPTname + "/" + "Device " + i + " (" + xifName + ")";
 Console.WriteLine("Device Name = " + deviceName);
 Console.WriteLine("===");
 my_LON_Device.UCPTname = deviceName;

 //set Commission status
 iLON_SmartServer.E_LonString commissionStatus_LonString =
 new iLON_SmartServer.E_LonString();
 commissionStatus_LonString.Value = "COMMISSIONED";
 my_LON_Device.UCPTcommissionStatus = commissionStatus_LonString;

 //set Application status
 iLON_SmartServer.E_LonString applicationStatus_LonString =
 new iLON_SmartServer.E_LonString();
 applicationStatus_LonString.Value = "APP_RUNNING";
 my_LON_Device.UCPTapplicationStatus = applicationStatus_LonString;

 //set tree and app icon; based on program ID
 my_LON_Device.UCPTannotation = PID;

 //++++send device commands++++++

 //commission device
 //create a command array to store device commands to be sent
 my_LON_Device.Command = new iLON_SmartServer.LON_Device_CfgCommand[3];

 //commission device
 my_LON_Device.Command[0] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device.Command[0].UCPTcommand =
 new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device.Command[0].UCPTcommand =

i.LON SmartServer 2.0 Programmer’s Reference 21-25

 iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus;
 my_LON_Device.Command[0].UCPTstatus = new iLON_SmartServer.E_LonString();
 my_LON_Device.Command[0].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device.Command[0].UCPTstatus.Value = "STATUS_REQUEST";

 //run device application
 my_LON_Device.Command[1] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device.Command[1].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device.Command[1].UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus;
 my_LON_Device.Command[1].UCPTstatus = new iLON_SmartServer.E_LonString();
 my_LON_Device.Command[1].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device.Command[1].UCPTstatus.Value = "STATUS_REQUEST";

 //get the device template to show FBs and DPs in Web UI
 my_LON_Device.Command[2] = new iLON_SmartServer.LON_Device_CfgCommand();
 my_LON_Device.Command[2].UCPTcommand = new iLON_SmartServer.LON_Device_eCommand();
 my_LON_Device.Command[2].UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.GetTemplate;
 my_LON_Device.Command[2].UCPTstatus = new iLON_SmartServer.E_LonString();
 my_LON_Device.Command[2].UCPTstatus.LonFormat = "UCPTstatus";
 my_LON_Device.Command[2].UCPTstatus.Value = "STATUS_REQUEST";
 }

 //Call the Set() function

 iLON_SmartServer.Item_Coll Device_Return_ItemColl = SmartServer.Set(itemCfgColl);

 Device_Return_ItemColl.xSelect = "//Item[@xsi:type=\"LON_Device_Cfg\"]";

 if (Device_Return_ItemColl.UCPTfaultCount > 0)
 {
 // print out error and exit
 Console.WriteLine("An error occurred:");

 for (int j = 0; j < Device_Return_ItemColl.Item.Length; j++)
 {
 if (Device_Return_ItemColl.Item[j].fault != null)
 {
 Console.WriteLine("Item: " + Device_Return_ItemColl.Item[j].UCPTname +
 ", fault code: " + Device_Return_ItemColl.Item[j].fault.faultcode +
 ", fault string: " +
 Device_Return_ItemColl.Item[j].fault.faultstring);
 }
 }
 }
 else
 {
 itemCfgColl = SmartServer.Get(Device_Return_ItemColl);

 for (int j = 0; j < itemCfgColl.Item.Length; j++)
 {
 if (itemCfgColl.Item[j].fault != null)
 {
 Console.WriteLine("Item: " + itemCfgColl.Item[j].UCPTname
 + ", fault code: " + itemCfgColl.Item[j].fault.faultcode +
 ", fault string: " +
 itemCfgColl.Item[j].fault.faultstring);
 }
 else
 {
 iLON_SmartServer.LON_Device_Cfg newDevice =
 (iLON_SmartServer.LON_Device_Cfg)itemCfgColl.Item[j];
 Console.WriteLine("New Device Created = " + newDevice.UCPTname +
 ". Status = " + newDevice.UCPTcommissionStatus.Value +
 " and " + newDevice.UCPTapplicationStatus.Value + ".");
 }
 }
 }
 Console.ReadLine();
 }

i.LON SmartServer 2.0 Programmer’s Reference 21-26

 finally
 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }
 }
 }
}

21.1.7 Configuring the SmartServer in Visual C# .NET

This console example uses the system information methods in the SmartServer’s system WSDL
(iLON100_System.wsdl) to check the SmartServer's current time and system information and then
sets a new time. Note that the iLON_SoapCalls class references the iLON100_System Web service
instead of the iLON100 Web service. The instantiation of the iLON100_System Web service for the
NET 3.5 and NET 2.0 Frameworks are presented after this example.

For more information on the system information properties set in this example, see section 19.1,
System Service Methods.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1.

Main Program
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

namespace SystemServiceExample
{
 class System_Time
 {
 // If you are using NET 2.0 Framework, uncomment the following line of code to enter your

 // SmartServer’s IP Address

 // public static string _iLonEndpointIpAddress = "<SmartServer IP Address>";

static void Main(string[] args)
 {

iLON_SoapCalls.BindClientToSmartServer();

// If you are using NET 2.0 Framework, comment out the previous line of code, and then
// uncomment the following line of code

// iLON_SoapCalls.BindClientToSmartServer(_iLonEndpointIpAddress);

iLON_SmartServer.iLON100portTypeClient SmartServer = iLON_SoapCalls._iLON;

// See Section 20.2.1 (NET 3.5) or 20.2.2 (NET 2.0)for more information on iLON_SoapCalls class

 try
 {

 //------------Checking System Time---
 //This code checks the SmartServer's time and system info and then sets a new time

 Console.Out.WriteLine("Checking the SmartServer's System Time\r\n");

 iLON_SmartServer_System.messageProperties_system time =

 new iLON_SmartServer_System.messageProperties_system();

 string timeData =
"<iLONSystemService><UCPTsystemInfoType>SI_TIME</UCPTsystemInfoType></iLONSystemService>";

 string timeResult = SmartServer.SystemService_Read_Info(ref time, timeData);
 Console.Out.WriteLine(timeResult);

 Console.Out.WriteLine("\r\nChecking the SmartServer's System Information\r\n");

i.LON SmartServer 2.0 Programmer’s Reference 21-27

 iLON_SmartServer_System.messageProperties_system systemInfo =
new iLON_SmartServer_System.messageProperties_system();

string staticData =
"<iLONSystemService><UCPTsystemInfoType>SI_STATIC</UCPTsystemInfoType></iLONSystemService>";

 string staticResult = SmartServer.SystemService_Read_Info(ref systemInfo, staticData);
 Console.Out.WriteLine(staticResult);

 Console.Out.WriteLine("\r\n Changing the SmartServer's System Time\r\n");

 iLON_SmartServer_System.messageProperties_system revisedTime =

 new iLON_SmartServer_System.messageProperties_system();

string revisedTimeData =
"<iLONSystemService><TIME>SI_TIME<UCPTsystemTime>2008-07-05T10:20:00</UCPTsystemTime></TI
ME></iLONSystemService>";

string revisedTimeResult = SmartServer.SystemService_Write_Info(ref revisedTime,
revisedTimeData);

 Console.Out.WriteLine(revisedTimeResult);

 Console.Out.WriteLine("\r\nTake a 10-second break to see if time updates properly \r\n");
 Thread.Sleep(10000);

iLON_SmartServer_System.messageProperties_system newTime = new
iLON_SmartServer_System.messageProperties_system();

string newTimeData =
"<iLONSystemService><UCPTsystemInfoType>SI_TIME</UCPTsystemInfoType></iLONSystemService>";

 string newTimeResult = SmartServer.SystemService_Read_Info(ref newTime, newTimeData);

Console.Out.WriteLine(newTimeResult);

 Console.In.ReadLine();
 }

 finally

 {
 iLON_SoapCalls.CloseBindingToSmartServer();
 }

 }
 }
}

Web Service Instantiation in iLON_SoapCalls Class for NET 3.5 Framework
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace SystemServiceExample
{
 class iLON_SoapCalls
 {
 // your SmartServers's IpAddress
 public static string _iLonEndpointIpAddress = "your SmartServer's IP address";

 // your SmartServer’s web service reference
 static public iLON_SmartServer_System.iLON100portTypeClient _iLON = null;

 /// <summary>
 /// Instantiates the i.LON web service for
 /// .NET 3.5
 /// </summary>
 static public void BindClientToSmartServer()

i.LON SmartServer 2.0 Programmer’s Reference 21-28

 {
 // Specify the binding to be used for the client.
 BasicHttpBinding binding = new BasicHttpBinding();

 // Initialize the namespace
 binding.Namespace = "http://wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/";

 // Obtain the URL of the Web service on the SmartServer.
 System.ServiceModel.EndpointAddress endpointAddress
 = new System.ServiceModel.EndpointAddress("http://"
 + _iLonEndpointIpAddress + "/WSDL/iLON100_System.wsdl");

 // Instantiate the i.LON web service object with this address and binding.
 _iLON = new iLON_SmartServer_System.iLON100portTypeClient(binding, endpointAddress);

 // Uncommment the lines below to enable authentication

// binding.Security.Mode =
// System.ServiceModel.BasicHttpSecurityMode.TransportCredentialOnly;
// binding.Security.Transport.ClientCredentialType =
// System.ServiceModel.HttpClientCredentialType.Basic;
// _iLON.ChannelFactory.Credentials.UserName.UserName = "ilon";
// _iLON.ChannelFactory.Credentials.UserName.Password = "ilon";

 }

 /// <summary>
 /// Close the i.LON web service
 /// </summary>
 static public void CloseBindingToSmartServer()
 {
 // Closing the client gracefully
 // closes the connection and cleans up resources
 try
 {
 _iLON.Close();
 }
 finally
 {
 _iLON = null;
 }
 }
 }
 }

Web Service Instantiation in iLON_SoapCalls Class for NET 2.0 Framework
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.ServiceModel;

namespace SystemServiceExample
{
 class iLON_SoapCalls
 {

 // your SmartServer’s Web service reference
 static public iLON_SmartServer_System _iLON = null;

/// <summary>
 /// Instantiates the SmartServer Web service for .NET 2.0
 /// </summary>
 static public void BindClientToSmartServer(string iLonEndpointIpAddress)
 {
 _iLON = new iLON_WebService();
 String strOrigUrl = _iLON.Url;
 _iLON.Url = strOrigUrl.Replace("localhost", iLonEndpointIpAddress);
 _iLON.messagePropertiesValue = new iLON_SmartServer.messageProperties();

 // uncomment the 2 lines below to enable authentication

i.LON SmartServer 2.0 Programmer’s Reference 21-29

 // _iLON.Credentials = new System.Net.NetworkCredential("ilon", "ilon");
 // _iLON.PreAuthenticate = true;
 }

 }
}

i.LON SmartServer 2.0 Programmer’s Reference 21-30

21.2 Visual Basic.NET Examples
21.2.1 Reading and Writing Data Point Values in Visual Basic.NET

This VB console example toggles the SmartServer’s digital relay outputs when run. It demonstrates
how to use an xSelect statement to filter items returned by a List() method, and it demonstrates how to
write to data points using values and presets.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2.3.

For more information on the data point properties set and read in this example, see section 4.3.2,
Using the Get Function on the Data Server, and section 4.3.3, Using the Read Function on the Data
Server, respectively.
Module DpModule

 Sub Main()

'See Section 20.2.3 for more information on iLON_SoapCalls class
 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

 Try

Console.Out.WriteLine(vbNewLine + vbNewLine + "Reading and Writing DP Values with an xSelect"
+ vbNewLine + "-------------------------------" + vbNewLine)

 'we create an xSelect object and then specify the filter to be used

 Dim xSelect As iLON_SmartServer.E_xSelect = New iLON_SmartServer.E_xSelect
 xSelect.xSelect = "//Item[@xsi:type=""Dp_Cfg""][contains (UCPTname,""nviClaValue"")]"

 'Create an ItemColl that stores the objects returned by a List() function that takes our

 'xSelect object
 Dim ItemColl As iLON_SmartServer.Item_Coll = SmartServer._iLON.List(xSelect)

 'we create an ItemDataColl that stores the objects returned by a Read() function that takes

'the ItemColl returned by the List()
 Dim ItemDataColl As iLON_SmartServer.Item_DataColl = SmartServer._iLON.Read(ItemColl)

 'check that there are obejcts in the ItemDataColl
 If (ItemDataColl.UCPTfaultCount > 0) Then

 Console.Out.WriteLine("you've got Read errors")

 Else

 Console.Out.WriteLine("Reading Data Point Values" + vbNewLine)
 For i As Integer = 0 To ItemDataColl.Item.Length - 1

 ' we allocate a Item-Data array object to read DP names and values

 Dim dpItems As iLON_SmartServer.Dp_Data = ItemDataColl.Item(i)
 Console.Out.WriteLine(dpItems.UCPTname + " = " + dpItems.UCPTvalue(0).Value)

 If (dpItems.UCPTvalue(0).Value = "100.0 1") Then
 dpItems.UCPTvalue(0).Value = "0.0 0"
 dpItems.UCPTvalue(1).Value = "OFF"

 ElseIf (dpItems.UCPTvalue(0).Value = "0.0 0") Then
 dpItems.UCPTvalue(0).Value = "100.0 1"
 dpItems.UCPTvalue(1).Value = "ON"

 End If

i.LON SmartServer 2.0 Programmer’s Reference 21-31

 Next

 Dim ItemWriteDpValues As ILON_SmartServer.Item_Coll = SmartServer._iLON.Write(ItemDataColl)

 'check that there are obejcts in the ItemWriteDpValues

 If (ItemWriteDpValues.UCPTfaultCount > 0) Then

 Console.Out.WriteLine("you've got errors")

 Else

 Console.Out.WriteLine(vbNewLine + "Reading Updated Data Point Values" + vbNewLine)
 For j As Integer = 0 To ItemWriteDpValues.Item.Length - 1

 ' we allocate a Item-Data array object to read DP values, which should all be 100.0 1

 Dim dpItems As iLON_SmartServer.Dp_Data = ItemWriteDpValues.Item(j)
 Console.Out.WriteLine(dpItems.UCPTname + " = " + dpItems.UCPTvalue(0).Value)

 Next

 End If

 End If

 Console.ReadLine()

 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try

 End Sub

End Module

21.2.2 Creating and Reading a Data Logger in Visual Basic. NET

The following VB console example creates a data logger and then reads the data recorded by it. You
can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2.

21.2.2.1 Creating a Data Logger
This VB console example creates a new data logger from an existing uninstantiated (hidden) data
logger on the SmartServer, specifies the type, format, and size of the new data logger, and then
specifies that the data logger record both of the SmartServer’s digital relay outputs every minute (the
Net/LON/iLON App/Digital Output 1/nviClaValue_1 and Net/LON/iLON App/Digital Output
2/nviClaValue_2 data points).

For more information on the data logger properties set in this example, see section 5.3.2, Using the
Get Function on a Data Logger.
Module DataLogModule

 Private Sub PrintGetError(ByVal ItemCfgColl As iLON_SmartServer.Item_CfgColl)
 ' print out error and exit
 Console.Out.WriteLine("An error occurred:")
 For j As Integer = 0 To ItemCfgColl.Item.Length - 1
 If ItemCfgColl.Item(j).fault IsNot Nothing Then
 Console.Out.WriteLine((("Item: " & ItemCfgColl.Item(j).UCPTname & ", fault code: ") +
 ItemCfgColl.Item(j).fault.faultcode.Value & ", fault string: ") +
 ItemCfgColl.Item(j).fault.faultstring)
 End If
 Next
 End Sub

 Public Sub Main()

i.LON SmartServer 2.0 Programmer’s Reference 21-32

 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

 Try

 ' -------------- CREATING A DATA LOGGER --------------

 'Create an xSelect object and then specify the filter to be used

 Dim xSelect As New iLON_SmartServer.E_xSelect()
 xSelect.xSelect = "//Item[@xsi:type=""LON_Fb_Cfg""][contains(UCPTname,""Data Logger"")][UCPThidden = ""1""]"

 'Create an ItemColl that stores objects returned by List()function that takes an xSelect object

 Dim ItemColl As iLON_SmartServer.Item_Coll = SmartServer._iLON.List(xSelect)

 'Create an ItemCfgColl that stores the objects to be returned by a Get() function that takes
 'the ItemColl returned by the List()

 ItemColl.xSelect = "//Item[@xsi:type=""LON_Fb_Cfg""]"
 Dim ItemCfgColl__1 As iLON_SmartServer.Item_CfgColl = SmartServer._iLON.Get(ItemColl)

 'check that there are obejcts in the ItemCfgColl

 If ItemCfgColl__1.UCPTfaultCount > 0 Then
 PrintGetError(ItemCfgColl__1)
 Else

 'Create LON_Fb_Cfg item
 ItemCfgColl__1.Item(0).UCPThidden = 0
 ItemCfgColl__1.Item(0).UCPTname = "Net/LON/iLON App/myDataLogger"
 Dim ItemColl_SetReturn As iLON_SmartServer.Item_Coll =
 SmartServer._iLON.Set(ItemCfgColl__1)

 'create new Data Logger from existing one
 Dim myDataLogger As iLON_SmartServer.UFPTdataLogger_Cfg =
 New iLON_SmartServer.UFPTdataLogger_Cfg()
 myDataLogger.UCPTname = "Net/LON/iLON App/myDataLogger"
 myDataLogger.UCPTannotation = "#8000010128000000[4].UFPTdataLogger"
 myDataLogger.UCPTlogFileName = "Net/LON/iLON App/myDataLogger.csv"
 myDataLogger.UCPTlogSize = 100
 myDataLogger.UCPTlogLevelAlarm = 50

 myDataLogger.UCPTlogType = New iLON_SmartServer.E_LonString()
 myDataLogger.UCPTlogType.Value = "LT_HISTORICAL"
 myDataLogger.UCPTlogType.LonFormat = "UCPTlogType"

 myDataLogger.UCPTlogFormat = New iLON_SmartServer.E_LonString()
 myDataLogger.UCPTlogFormat.Value = "LF_TEXT"
 myDataLogger.UCPTlogFormat.LonFormat = "UCPTlogFormat"

 'create DP reference array to store data points by new Data Logger
 myDataLogger.DataPoint = New iLON_SmartServer.E_DpRef(1) {}

 'speficy data points to be logged by new Data Logger

 Dim dataPointRef1 As New iLON_SmartServer.UFPTdataLogger_DpRef()
 dataPointRef1.UCPTname = "Net/LON/iLON App/Digital Output 2/nviClaValue_2"
 dataPointRef1.UCPTformatDescription = "#0000000000000000[0].SNVT_switch"
 dataPointRef1.UCPTpollRate = 60
 dataPointRef1.dpType = "Input"

 Dim dataPointRef2 As New iLON_SmartServer.UFPTdataLogger_DpRef()
 dataPointRef2.UCPTname = "Net/LON/iLON App/Digital Output 1/nviClaValue_1"
 dataPointRef2.UCPTformatDescription = "#0000000000000000[0].SNVT_switch"
 dataPointRef2.UCPTpollRate = 60
 dataPointRef2.dpType = "Input"

 'store data points in DP reference array
 myDataLogger.DataPoint(0) = dataPointRef1

i.LON SmartServer 2.0 Programmer’s Reference 21-33

 myDataLogger.DataPoint(1) = dataPointRef2

 'call Set function
 Dim itemCfgColl__2 As New iLON_SmartServer.Item_CfgColl()
 itemCfgColl__2.Item = New iLON_SmartServer.Item_Cfg(0) {}
 itemCfgColl__2.Item(0) = myDataLogger

 Dim ItemColl_Set_DataLogger_Return As iLON_SmartServer.Item_Coll =
 SmartServer._iLON.Set(itemCfgColl__2)

 If ItemColl_Set_DataLogger_Return.UCPTfaultCount > 0 Then
 Exit Sub
 Else

 Dim newDataLogger As iLON_SmartServer.Item = ItemColl_Set_DataLogger_Return.Item(0)
 Console.WriteLine("New Data Logger = " & newDataLogger.UCPTname)
 End If
 End If

 Console.ReadLine()
 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try

 End Sub

End Module

21.2.2.2 Reading a Data Logger
This VB console example reads and prints out the last 10 entries for one of the two data points
recorded by the new data logger you created in the previous section, Creating a Data Logger. For
more information on the data logger properties used in this example, see section 5.3.4, Using the Read
Function on a Data Logger.
Module ReadDataLogModule

 Private Sub PrintGetError(ByVal ItemColl As iLON_SmartServer.Item_Coll)
 ' print out error and exit
 Console.Out.WriteLine("An error occurred:")
 For j As Integer = 0 To ItemColl.Item.Length - 1
 If ItemColl.Item(j).fault IsNot Nothing Then
 Console.Out.WriteLine((("Item: " & ItemColl.Item(j).UCPTname & ", fault code: ") +
 ItemColl.Item(j).fault.faultcode.Value & ", fault string: ") +
 ItemColl.Item(j).fault.faultstring)
 End If
 Next
 End Sub

 Public Sub Main()

 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

 Try

 ' -------------- READING A DATA LOGGER --------------

 'Create an xSelect object and then specify the filter to be used

 Dim xSelect As New iLON_SmartServer.E_xSelect()
 xSelect.xSelect = "//Item[UCPTname = ""Net/LON/iLON App/myDataLogger""]"

 'Create an ItemColl that stores objects returned by List()function that takes an xSelect object

 Dim ItemColl As iLON_SmartServer.Item_Coll = SmartServer._iLON.List(xSelect)

 'check that there are obejcts in the ItemColl

 If ItemColl.UCPTfaultCount > 0 Then

i.LON SmartServer 2.0 Programmer’s Reference 21-34

 PrintGetError(ItemColl)
 Else
 Dim myDataLogger As iLON_SmartServer.Item = ItemColl.Item(0)
 Console.WriteLine("Data Logger = " & myDataLogger.UCPTname & vbCr & vbLf & vbCr & vbLf)
 End If

 'we use an xSelect to read only the last 10 records in the Data Logger for one data point
 ItemColl.xSelect =
 "//Item[UCPTpointName=""Net/LON/iLON App/Digital Output 1/nviClaValue_1""][position()>=last()-10]"

 ' Read Data Logger
 Dim dataLogger As iLON_SmartServer.Item_DataColl = SmartServer._iLON.Read(ItemColl)

 For i As Integer = 0 To dataLogger.Item.Length - 1
 Dim dataLoggerDataCheck As iLON_SmartServer.UFPTdataLogger_Data =
 TryCast(dataLogger.Item(i), iLON_SmartServer.UFPTdataLogger_Data)

 If dataLoggerDataCheck IsNot Nothing Then
 Dim dataLoggerData As iLON_SmartServer.UFPTdataLogger_Data =
 DirectCast(dataLogger.Item(i), iLON_SmartServer.UFPTdataLogger_Data)
 Console.Out.WriteLine(((dataLoggerData.UCPTname & " was ") +
 dataLoggerData.UCPTvalue(0).Value & " at ") + dataLoggerData.UCPTlastUpdate & vbCr & vbLf)
 Next
 Console.ReadLine()
 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try

 End Sub

End Module

21.2.3 Creating a Scheduler and Calendar in Visual Basic.NET

This VB console example creates a Scheduler and Calendar for hypothetically controlling the lighting
and heating of a store. You can execute this code after you have referenced and inherited from the
SmartServer WSDL as described in section 20.1, and instantiated and initialized the Web service client
as described in section 20.2.

The example creates a new Scheduler from an existing uninstantiated (hidden) Scheduler on the
SmartServer. It creates separate daily schedules for weekdays, Saturdays, and Sundays, and it
specifies that the scheduler turn on and off the SmartServer’s digital relay outputs (the Net/LON/iLON
App/Digital Output 1/nviClaValue_1 and Net/LON/iLON App/Digital Output 2/nviClaValue_2 data
points) at specific times based on the day of the week. The example then creates an exception that
keeps the lighting and heating off on holidays.

After creating the Scheduler, this example either gets the Calendar on the SmartServer if it has already
been instantiated or creates a new Calendar. The example then specifies the dates of the holidays for
the exception created in the Scheduler, and it specifies over how many years the holiday exceptions are
to occur.

For more information on the Scheduler and Calendar properties set in this example, see section 9.3.2,
Using the Get Function a Scheduler and section 10.3.2, Using the Get Function a Calendar,
respectively.

Note: The <UCPTexceptionName> property is the unique identifier for exceptions defined in the
Scheduler and Calendar. This means that the <UCPTexceptionName> property of new exceptions
you create must be unique to the Calendar; otherwise, the exception you create will overwrite an
existing exception. To prevent overwriting an existing exception, you can loop through the existing
exceptions on the Calendar and check whether the <UCPTexceptionName> property of the exception
you are creating matches that of any existing exceptions. This example assumes that your SmartServer
has been set to its factory default settings and therefore does not perform this check.
Module SchedulerModule

 Private Sub PrintGetError(ByVal ItemCfgColl As iLON_SmartServer.Item_CfgColl)

i.LON SmartServer 2.0 Programmer’s Reference 21-35

 ' print out error and exit
 Console.Out.WriteLine("An error occurred:")
 For j As Integer = 0 To ItemCfgColl.Item.Length - 1
 If ItemCfgColl.Item(j).fault IsNot Nothing Then
 Console.Out.WriteLine((("Item: " & ItemCfgColl.Item(j).UCPTname & ", fault code: ") +
 ItemCfgColl.Item(j).fault.faultcode.Value & ", fault string: ") +
 ItemCfgColl.Item(j).fault.faultstring)
 End If
 Next
 End Sub

 Private Sub PrintGetError(ByVal ItemColl As iLON_SmartServer.Item_Coll)
 ' print out error and exit
 Console.Out.WriteLine("An error occurred:")
 For j As Integer = 0 To ItemColl.Item.Length - 1
 If ItemColl.Item(j).fault IsNot Nothing Then
 Console.Out.WriteLine((("Item: " & ItemColl.Item(j).UCPTname & ", fault code: ") +
 ItemColl.Item(j).fault.faultcode.Value & ", fault string: ") +
 ItemColl.Item(j).fault.faultstring)
 End If
 Next
 End Sub

 Public Sub Main()

 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

 Try

 ' -------------- CREATING A SCHEDULER --------------

 'Create an xSelect object and then specify the filter to be used

 Dim xSelect As New iLON_SmartServer.E_xSelect()
 xSelect.xSelect =
 "//Item[@xsi:type=""LON_Fb_Cfg""][contains(UCPTname,""Scheduler"")][UCPThidden = ""1""]"

 'Create an ItemColl that stores objects returned by List()function that takes an xSelect object

 Dim ItemColl As iLON_SmartServer.Item_Coll = SmartServer._iLON.List(xSelect)

 'Create an ItemCfgColl that stores the objects to be returned by a Get() function that takes
 'the ItemColl returned by the List()

 ItemColl.xSelect = "//Item[@xsi:type=""LON_Fb_Cfg""]"
 Dim ItemCfgColl__1 As iLON_SmartServer.Item_CfgColl = SmartServer._iLON.Get(ItemColl)

 'check that there are obejcts in the ItemCfgColl

 If ItemCfgColl__1.UCPTfaultCount > 0 Then
 PrintGetError(ItemCfgColl__1)
 Else

 'Create LON_Fb_Cfg item
 ItemCfgColl__1.Item(0).UCPThidden = 0
 ItemCfgColl__1.Item(0).UCPTname = "Net/LON/iLON App/myScheduler"
 Dim ItemColl_SetReturn As iLON_SmartServer.Item_Coll = SmartServer._iLON.Set(ItemCfgColl__1)

 'create new Scheduler from existing one
 Dim myScheduler As New iLON_SmartServer.UFPTscheduler_Cfg()
 myScheduler.UCPTname = "Net/LON/iLON App/myScheduler"
 myScheduler.UCPTannotation = "#8000010128000000[4].UFPTscheduler"

 'create DP reference array to store data points controlled by new Scheduler
 myScheduler.DataPoint = New iLON_SmartServer.E_DpRef(1) {}

 'speficy data points to be controlled by new Scheduler

 Dim dataPointRef1 As New iLON_SmartServer.UFPTscheduler_DpRef()

i.LON SmartServer 2.0 Programmer’s Reference 21-36

 dataPointRef1.UCPTname = "Net/LON/iLON App/Digital Output 1/nviClaValue_1"
 dataPointRef1.UCPTformatDescription = "#0000000000000000[0].SNVT_switch"
 dataPointRef1.SCPTdelayTime = 0
 dataPointRef1.SCPTdelayTimeSpecified = True
 dataPointRef1.dpType = "Output"

 Dim dataPointRef2 As New iLON_SmartServer.UFPTscheduler_DpRef()
 dataPointRef2.UCPTname = "Net/LON/iLON App/Digital Output 2/nviClaValue_2"
 dataPointRef2.UCPTformatDescription = "#0000000000000000[0].SNVT_switch"
 dataPointRef2.SCPTdelayTime = 0
 dataPointRef2.SCPTdelayTimeSpecified = True
 dataPointRef2.dpType = "Output"

 'store data points in DP reference array
 myScheduler.DataPoint(0) = dataPointRef1
 myScheduler.DataPoint(1) = dataPointRef2

 'set range of dates in which Scheduler is effective
 Dim effectivePeriod As New iLON_SmartServer.UFPTscheduler_CfgEffectivePeriod()
 effectivePeriod.StartDate = New DateTime(2009, 6, 8)
 effectivePeriod.EndDate = New DateTime(2020, 12, 31)
 effectivePeriod.StartDateSpecified = True
 effectivePeriod.EndDateSpecified = True
 myScheduler.ScheduleEffectivePeriod = effectivePeriod

 'create daily schedule for weekdays
 Dim dayBasedSchedule_weekdays As New iLON_SmartServer.UFPTscheduler_CfgDayBased()
 dayBasedSchedule_weekdays.UCPTindex = 0
 dayBasedSchedule_weekdays.UCPTindexSpecified = True
 dayBasedSchedule_weekdays.UCPTdescription = "Weekday"
 dayBasedSchedule_weekdays.UCPTpriority = 255

 'create events for weekday schedule

 dayBasedSchedule_weekdays.[Event] = New iLON_SmartServer.UFPTscheduler_CfgEvent(1) {}
 dayBasedSchedule_weekdays.[Event](0) = New iLON_SmartServer.UFPTscheduler_CfgEvent()
 dayBasedSchedule_weekdays.[Event](1) = New iLON_SmartServer.UFPTscheduler_CfgEvent()

 '---create ON event----
 Dim onEvent As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 onEvent.UCPTindex = 0
 onEvent.UCPTindexSpecified = True
 onEvent.UCPTtime = New DateTime(2009, 6, 8, 10, 0, 0)

 onEvent.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 onEvent.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 onEvent.UCPTvalue(0).Value = "ON"
 onEvent.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 dayBasedSchedule_weekdays.[Event](0) = onEvent

 '---create OFF event---
 Dim offEvent As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 offEvent.UCPTindex = 1
 offEvent.UCPTindexSpecified = True
 offEvent.UCPTtime = New DateTime(2009, 6, 8, 21, 0, 0)

 offEvent.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 offEvent.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 offEvent.UCPTvalue(0).Value = "OFF"
 offEvent.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 dayBasedSchedule_weekdays.[Event](1) = offEvent

 'set Monday--Friday as the days in this daily schedule
 Dim mon_to_fri As New iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays()
 mon_to_fri.UCPTmonday = 1
 mon_to_fri.UCPTtuesday = 1
 mon_to_fri.UCPTwednesday = 1
 mon_to_fri.UCPTthursday = 1
 mon_to_fri.UCPTfriday = 1

i.LON SmartServer 2.0 Programmer’s Reference 21-37

 mon_to_fri.UCPTsaturday = 0
 mon_to_fri.UCPTsunday = 0

 dayBasedSchedule_weekdays.Weekdays = mon_to_fri

 'create daily schedule for Saturdays

 Dim dayBasedSchedule_Sat As New iLON_SmartServer.UFPTscheduler_CfgDayBased()
 dayBasedSchedule_Sat.UCPTindex = 1
 dayBasedSchedule_Sat.UCPTindexSpecified = True
 dayBasedSchedule_Sat.UCPTdescription = "Saturday"
 dayBasedSchedule_Sat.UCPTpriority = 255

 'create events for Saturday schedule

 dayBasedSchedule_Sat.[Event] = New iLON_SmartServer.UFPTscheduler_CfgEvent(1) {}
 dayBasedSchedule_Sat.[Event](0) = New iLON_SmartServer.UFPTscheduler_CfgEvent()
 dayBasedSchedule_Sat.[Event](1) = New iLON_SmartServer.UFPTscheduler_CfgEvent()

 '---create ON event----
 Dim onEvent_Sat As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 onEvent_Sat.UCPTindex = 0
 onEvent_Sat.UCPTindexSpecified = True
 onEvent_Sat.UCPTtime = New DateTime(2009, 6, 8, 10, 0, 0)

 onEvent_Sat.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 onEvent_Sat.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 onEvent_Sat.UCPTvalue(0).Value = "ON"
 onEvent_Sat.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 dayBasedSchedule_Sat.[Event](0) = onEvent_Sat

 '---create OFF event---
 Dim offEvent_Sat As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 offEvent_Sat.UCPTindex = 1
 offEvent_Sat.UCPTindexSpecified = True
 offEvent_Sat.UCPTtime = New DateTime(2009, 6, 8, 19, 0, 0)

 offEvent_Sat.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 offEvent_Sat.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 offEvent_Sat.UCPTvalue(0).Value = "OFF"
 offEvent_Sat.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 dayBasedSchedule_Sat.[Event](1) = offEvent_Sat

 'set Saturday as only day in this daily schedule
 Dim sat As New iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays()
 sat.UCPTsaturday = 1

 sat.UCPTsunday = 0
 sat.UCPTmonday = 0
 sat.UCPTtuesday = 0
 sat.UCPTwednesday = 0
 sat.UCPTthursday = 0
 sat.UCPTfriday = 0

 dayBasedSchedule_Sat.Weekdays = sat

 'create daily schedule for Sundays
 Dim dayBasedSchedule_Sun As New iLON_SmartServer.UFPTscheduler_CfgDayBased()
 dayBasedSchedule_Sun.UCPTindex = 2
 dayBasedSchedule_Sun.UCPTindexSpecified = True
 dayBasedSchedule_Sun.UCPTdescription = "Sunday"
 dayBasedSchedule_Sun.UCPTpriority = 255

 'create events for Sunday Schedule

 dayBasedSchedule_Sun.[Event] = New iLON_SmartServer.UFPTscheduler_CfgEvent(1) {}
 dayBasedSchedule_Sun.[Event](0) = New iLON_SmartServer.UFPTscheduler_CfgEvent()
 dayBasedSchedule_Sun.[Event](1) = New iLON_SmartServer.UFPTscheduler_CfgEvent()

i.LON SmartServer 2.0 Programmer’s Reference 21-38

 '---create ON event----
 Dim onEvent_Sun As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 onEvent_Sun.UCPTindex = 0
 onEvent_Sun.UCPTindexSpecified = True
 onEvent_Sun.UCPTtime = New DateTime(2009, 6, 8, 12, 0, 0)

 onEvent_Sun.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 onEvent_Sun.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 onEvent_Sun.UCPTvalue(0).Value = "ON"
 onEvent_Sun.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 dayBasedSchedule_Sun.[Event](0) = onEvent_Sun

 '---create OFF event---
 Dim offEvent_Sun As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 offEvent_Sun.UCPTindex = 1
 offEvent_Sun.UCPTindexSpecified = True
 offEvent_Sun.UCPTtime = New DateTime(2009, 6, 8, 18, 0, 0)

 offEvent_Sun.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 offEvent_Sun.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 offEvent_Sun.UCPTvalue(0).Value = "OFF"
 offEvent_Sun.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 dayBasedSchedule_Sun.[Event](1) = offEvent_Sun

 'set Sunday as only day in this daily schedule
 Dim sun As New iLON_SmartServer.UFPTscheduler_CfgDayBasedWeekdays()
 sun.UCPTsunday = 1

 sun.UCPTsaturday = 0
 sun.UCPTmonday = 0
 sun.UCPTtuesday = 0
 sun.UCPTwednesday = 0
 sun.UCPTthursday = 0
 sun.UCPTfriday = 0

 dayBasedSchedule_Sun.Weekdays = sun

 'store daily schedules we created in a DayBased[]

 myScheduler.DayBased = New iLON_SmartServer.UFPTscheduler_CfgDayBased(2) {}

 myScheduler.DayBased(0) = New iLON_SmartServer.UFPTscheduler_CfgDayBased()
 myScheduler.DayBased(0) = dayBasedSchedule_weekdays

 myScheduler.DayBased(1) = New iLON_SmartServer.UFPTscheduler_CfgDayBased()
 myScheduler.DayBased(1) = dayBasedSchedule_Sat

 myScheduler.DayBased(2) = New iLON_SmartServer.UFPTscheduler_CfgDayBased()
 myScheduler.DayBased(2) = dayBasedSchedule_Sun

 'create a date-based schedule (an exception) for Holidays

 '*** NOTE: You must use Calendar application to spcify the dates in which this alterntate
 'schedule is applicable***

 Dim holidays As New iLON_SmartServer.UFPTscheduler_CfgDateBased()
 holidays.UCPTindex = 0
 holidays.UCPTindexSpecified = True
 holidays.UCPTpriority = 250

 'create events for Holiday schedule

 holidays.[Event] = New iLON_SmartServer.UFPTscheduler_CfgEvent(2) {}
 holidays.[Event](0) = New iLON_SmartServer.UFPTscheduler_CfgEvent()
 holidays.[Event](1) = New iLON_SmartServer.UFPTscheduler_CfgEvent()
 holidays.[Event](2) = New iLON_SmartServer.UFPTscheduler_CfgEvent()

 'create LOCK event at 00:00 for Holiday schedule

i.LON SmartServer 2.0 Programmer’s Reference 21-39

 Dim lockEvent_holiday As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 lockEvent_holiday.UCPTindex = 0
 lockEvent_holiday.UCPTindexSpecified = True
 lockEvent_holiday.UCPTtime = New DateTime(2009, 6, 8, 0, 0, 0)

 lockEvent_holiday.UCPTeventType = New iLON_SmartServer.E_LonString()
 lockEvent_holiday.UCPTeventType.Value = "ET_LOCK"
 lockEvent_holiday.UCPTeventType.LonFormat = "UCPTeventType"

 holidays.[Event](0) = lockEvent_holiday

 'create ON event for Holiday schedule
 Dim onEvent_holiday As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 onEvent_holiday.UCPTindex = 1
 onEvent_holiday.UCPTindexSpecified = True
 onEvent_holiday.UCPTtime = New DateTime(2009, 6, 8, 12, 0, 0)

 onEvent_holiday.UCPTeventType = New iLON_SmartServer.E_LonString()
 onEvent_holiday.UCPTeventType.Value = "ET_NUL"
 onEvent_holiday.UCPTeventType.LonFormat = "UCPTeventType"

 onEvent_holiday.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 onEvent_holiday.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 onEvent_holiday.UCPTvalue(0).Value = "ON"
 onEvent_holiday.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 holidays.[Event](1) = onEvent_holiday

 'create OFF event for Holiday schedule

 Dim offEvent_holiday As New iLON_SmartServer.UFPTscheduler_CfgEvent()
 offEvent_holiday.UCPTindex = 2
 offEvent_holiday.UCPTindexSpecified = True
 offEvent_holiday.UCPTtime = New DateTime(2009, 6, 8, 18, 0, 0)

 offEvent_holiday.UCPTeventType = New iLON_SmartServer.E_LonString()
 offEvent_holiday.UCPTeventType.Value = "ET_NUL"
 offEvent_holiday.UCPTeventType.LonFormat = "UCPTeventType"

 offEvent_holiday.UCPTvalue = New iLON_SmartServer.E_LonString(0) {}
 offEvent_holiday.UCPTvalue(0) = New iLON_SmartServer.E_LonString()
 offEvent_holiday.UCPTvalue(0).Value = "OFF"
 offEvent_holiday.UCPTvalue(0).LonFormat = "UCPTvalueDef"

 holidays.[Event](2) = offEvent_holiday

 'create Exception item
 holidays.Exception = New iLON_SmartServer.UFPTscheduler_CfgDateBasedException(0) {}
 holidays.Exception(0) = New iLON_SmartServer.UFPTscheduler_CfgDateBasedException()
 holidays.Exception(0).UCPTexceptionName = "Holidays"
 holidays.Exception(0).UCPTindex = 0
 holidays.Exception(0).UCPTindexSpecified = True

 'store date-based (exception) schedule we created in a DateBased[]

 myScheduler.DateBased = New iLON_SmartServer.UFPTscheduler_CfgDateBased(0) {}

 myScheduler.DateBased(0) = New iLON_SmartServer.UFPTscheduler_CfgDateBased()
 myScheduler.DateBased(0) = holidays

 'call Set function
 Dim itemCfgColl__2 As New iLON_SmartServer.Item_CfgColl()
 itemCfgColl__2.Item = New iLON_SmartServer.Item_Cfg(0) {}
 itemCfgColl__2.Item(0) = myScheduler

 Dim ItemColl_Set_Scheduler_Return As iLON_SmartServer.Item_Coll =
 SmartServer._iLON.Set(itemCfgColl__2)

 If ItemColl_Set_Scheduler_Return.UCPTfaultCount > 0 Then
 PrintGetError(ItemColl_Set_Scheduler_Return)
 Else

i.LON SmartServer 2.0 Programmer’s Reference 21-40

 Dim newScheduler As iLON_SmartServer.Item = ItemColl_Set_Scheduler_Return.Item(0)
 Console.WriteLine("New Scheduler = " & newScheduler.UCPTname)
 End If
 End If

 ' -------------- CREATING A CALENDAR --------------

 Create a new UFPTcalendar_Cfg item
 Dim myCalendar As New iLON_SmartServer.UFPTcalendar_Cfg()
 myCalendar.UCPTname = "Net/LON/iLON App/myCalendar"
 myCalendar.UCPTannotation = "#8000010128000000[4].UFPTcalendar"

 End Try

 'Configure the Calendar
 Dim effectivePeriod_calendar As New iLON_SmartServer.UFPTscheduler_CfgEffectivePeriod()
 effectivePeriod_calendar.StartDate = New DateTime(2009, 6, 8)
 effectivePeriod_calendar.EndDate = New DateTime(2020, 12, 31)
 effectivePeriod_calendar.StartDateSpecified = True
 effectivePeriod_calendar.EndDateSpecified = True
 myCalendar.ScheduleEffectivePeriod = effectivePeriod_calendar

 'create an exception
 myCalendar.Exception = New iLON_SmartServer.UFPTcalendar_CfgException(0) {}
 myCalendar.Exception(0) = New iLON_SmartServer.UFPTcalendar_CfgException()

 myCalendar.Exception(0).UCPTexceptionName = "Holidays"
 myCalendar.Exception(0).UCPTaliasName = "Holidays"
 myCalendar.Exception(0).UCPTindex = 0
 myCalendar.Exception(0).UCPTindexSpecified = True
 myCalendar.Exception(0).UCPTtemporary = 0
 myCalendar.Exception(0).UCPTtemporarySpecified = True
 myCalendar.Exception(0).UCPTmaxClient = 1
 myCalendar.Exception(0).UCPTmaxClientSpecified = True

 myCalendar.Exception(0).Client = New iLON_SmartServer.UFPTcalendar_CfgExceptionClient(0) {}
 myCalendar.Exception(0).Client(0) = New iLON_SmartServer.UFPTcalendar_CfgExceptionClient()
 myCalendar.Exception(0).Client(0).UCPTname = "Net/LON/iLON App/myScheduler"
 myCalendar.Exception(0).Client(0).UCPTservicePath = New iLON_SmartServer.E_Path()
 myCalendar.Exception(0).Client(0).UCPTservicePath.Value = ""

 'create exception dates
 myCalendar.Exception(0).Schedule = New iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule(3) {}
 myCalendar.Exception(0).Schedule(0) = New iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule()
 myCalendar.Exception(0).Schedule(1) = New iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule()
 myCalendar.Exception(0).Schedule(2) = New iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule()
 myCalendar.Exception(0).Schedule(3) = New iLON_SmartServer.UFPTcalendar_CfgExceptionSchedule()

 'create 4th of July exception
 '==========================

 myCalendar.Exception(0).Schedule(0).UCPTschedMonth = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(0).UCPTschedMonth.LonFormat = "UCPTschedMonth"
 myCalendar.Exception(0).Schedule(0).UCPTschedMonth.Value = "MN_JUL"

 myCalendar.Exception(0).Schedule(0).UCPTschedDay = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(0).UCPTschedDay.LonFormat = "UCPTschedDay"
 myCalendar.Exception(0).Schedule(0).UCPTschedDay.Value = "DM_DAY_4"

 'set start date
 myCalendar.Exception(0).Schedule(0).StartDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(0).StartDate.UCPTdate = New DateTime(2009, 6, 8)

 'set end date
 myCalendar.Exception(0).Schedule(0).EndDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(0).EndDate.UCPTdate = New DateTime(2020, 12, 31)

 'create Labor Day exception
 '==========================

i.LON SmartServer 2.0 Programmer’s Reference 21-41

 myCalendar.Exception(0).Schedule(1).UCPTschedMonth = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(1).UCPTschedMonth.LonFormat = "UCPTschedMonth"
 myCalendar.Exception(0).Schedule(1).UCPTschedMonth.Value = "MN_SEP"

 myCalendar.Exception(0).Schedule(1).UCPTschedDay = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(1).UCPTschedDay.LonFormat = "UCPTschedDay"
 myCalendar.Exception(0).Schedule(1).UCPTschedDay.Value = "DM_FIRST_MON"

 'set start date
 myCalendar.Exception(0).Schedule(1).StartDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(1).StartDate.UCPTdate = New DateTime(2009, 6, 8)

 'set end date
 myCalendar.Exception(0).Schedule(1).EndDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(1).EndDate.UCPTdate = New DateTime(2020, 12, 31)

 'create Thanksgiving exception
 '==========================

 myCalendar.Exception(0).Schedule(2).UCPTschedMonth = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(2).UCPTschedMonth.LonFormat = "UCPTschedMonth"
 myCalendar.Exception(0).Schedule(2).UCPTschedMonth.Value = "MN_NOV"

 myCalendar.Exception(0).Schedule(2).UCPTschedDay = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(2).UCPTschedDay.LonFormat = "UCPTschedDay"
 myCalendar.Exception(0).Schedule(2).UCPTschedDay.Value = "DM_FOURTH_THU"

 'set start date
 myCalendar.Exception(0).Schedule(2).StartDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(2).StartDate.UCPTdate = New DateTime(2009, 6, 8)

 'set end date
 myCalendar.Exception(0).Schedule(2).EndDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(2).EndDate.UCPTdate = New DateTime(2020, 12, 31)

 'Create Christmas exception
 '==========================

 myCalendar.Exception(0).Schedule(3).UCPTschedMonth = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(3).UCPTschedMonth.LonFormat = "UCPTschedMonth"
 myCalendar.Exception(0).Schedule(3).UCPTschedMonth.Value = "MN_DEC"

 myCalendar.Exception(0).Schedule(3).UCPTschedDay = New iLON_SmartServer.E_LonString()
 myCalendar.Exception(0).Schedule(3).UCPTschedDay.LonFormat = "UCPTschedDay"
 myCalendar.Exception(0).Schedule(3).UCPTschedDay.Value = "DM_DAY_25"

 'set start date
 myCalendar.Exception(0).Schedule(3).StartDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(3).StartDate.UCPTdate = New DateTime(2009, 6, 8)

 'set end date
 myCalendar.Exception(0).Schedule(3).EndDate = New iLON_SmartServer.UFPTcalendar_CfgESDate()
 myCalendar.Exception(0).Schedule(3).EndDate.UCPTdate = New DateTime(2020, 12, 31)

 'call Set function
 Dim itemCfgColl_Calendar__4 As New iLON_SmartServer.Item_CfgColl()
 itemCfgColl_Calendar__4.Item = New iLON_SmartServer.Item_Cfg(0) {}
 itemCfgColl_Calendar__4.Item(0) = myCalendar

 Dim ItemColl_Set_Calendar_Return As iLON_SmartServer.Item_Coll =
 SmartServer._iLON.Set(itemCfgColl_Calendar__4)

 If ItemColl_Set_Calendar_Return.UCPTfaultCount > 0 Then
 PrintGetError(ItemColl_Set_Calendar_Return)
 Else

 Dim newCalendar As iLON_SmartServer.Item = ItemColl_Set_Calendar_Return.Item(0)
 Console.WriteLine("Calendar used for this Scheduler is " & newCalendar.UCPTname)

 End If

i.LON SmartServer 2.0 Programmer’s Reference 21-42

 Console.ReadLine()
 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try

 End Sub

End Module

21.2.4 Creating and Installing a LONWORKS Device in Visual Basic.NET

This VB console example creates two LONWORKS devices, and then it commissions the devices, starts
the devices’ applications, and gets the devices’ templates (to display the devices’ functional blocks and
data points in the SmartServer Web interface). The example then prints out the names and statuses of
the devices that have been installed. Note that you need to replace the values of the <UCPTname>,
<UCPTuniqueID>, <UCPTprogramID>, and <UCPTurlTemplate> properties provided in this example
with those of the devices you are creating and installing.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2. You must also upload the device interface (XIF) files of the devices you are creating to the
root/LonWorks/import folder on the SmartServer flash disk.

For more information on the LONWORKS device properties set in this example, see section 14.3.2,
Using the Get Function on a LonWorks Device. For more information on the network management
commands issues in this example, see section 14.3.3.1, Issuing Network Management Commands.
Module InstallDeviceModule

 'Function required for converting device Neuron IDs and program IDs to a byte[]
 Public Function HexStringToArray(ByVal str As String) As Byte()
 Dim nLen As Integer = str.Length / 2
 Dim arr As Byte() = New Byte(nLen - 1) {}

 For i As Integer = 0 To nLen - 1
 Dim strByte As String = str.Substring(i * 2, 2)
 arr(i) = [Byte].Parse(strByte, System.Globalization.NumberStyles.HexNumber)
 Next
 Return arr
 End Function

 Public Sub Main()

 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

 Try

 ' -------------- CREATING LONWORKS DEVICES --------------

 'Create a new LON_Device_Cfg Item

 Dim my_LON_Device1 As New iLON_SmartServer.LON_Device_Cfg()
 Dim my_LON_Device2 As New iLON_SmartServer.LON_Device_Cfg()

 'Create an ItemCfgColl to store the LON Devices we just created

 Dim ItemCfgColl As New iLON_SmartServer.Item_CfgColl()
 ItemCfgColl.Item = New iLON_SmartServer.Item_Cfg(1) {}
 ItemCfgColl.Item(0) = my_LON_Device1
 ItemCfgColl.Item(1) = my_LON_Device2

 '=====CREATING AND INSTALLING LON DEVICE #1==================

 ' specify properties of new LON Device #1
 my_LON_Device1.UCPTname = "Net/LON/DIO-1"
 my_LON_Device1.UCPTlocal = 0
 my_LON_Device1.UCPTuniqueId = HexStringToArray("00a145791500")

i.LON SmartServer 2.0 Programmer’s Reference 21-43

 my_LON_Device1.UCPTprogramId = HexStringToArray("80000105288a0403")
 my_LON_Device1.UCPTurlTemplate = "/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.XIF"

 my_LON_Device1.UCPTcommissionStatus = New iLON_SmartServer.E_LonString()
 my_LON_Device1.UCPTcommissionStatus.Value = "COMMISSIONED"
 my_LON_Device1.UCPTapplicationStatus = New iLON_SmartServer.E_LonString()
 my_LON_Device1.UCPTapplicationStatus.Value = "APP_RUNNING"

 'create a command array to store device commands to be sent
 my_LON_Device1.Command = New iLON_SmartServer.LON_Device_CfgCommand(2) {}

 'commission device
 my_LON_Device1.Command(0) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device1.Command(0).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device1.Command(0).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus
 my_LON_Device1.Command(0).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device1.Command(0).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device1.Command(0).UCPTstatus.Value = "STATUS_REQUEST"

 'run device application
 my_LON_Device1.Command(1) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device1.Command(1).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device1.Command(1).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus
 my_LON_Device1.Command(1).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device1.Command(1).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device1.Command(1).UCPTstatus.Value = "STATUS_REQUEST"

 'get the device template to show FBs and DPs in Web UI
 my_LON_Device1.Command(2) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device1.Command(2).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device1.Command(2).UCPTcommand = iLON_SmartServer.LON_Device_eCommand.GetTemplate
 my_LON_Device1.Command(2).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device1.Command(2).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device1.Command(2).UCPTstatus.Value = "STATUS_REQUEST"

 '=====CREATING AND INSTALLING LON DEVICE #2==================

 ' specify properties of new LON Device #2
 my_LON_Device2.UCPTname = "Net/LON/DIO-2"
 my_LON_Device2.UCPTlocal = 0
 my_LON_Device2.UCPTuniqueId = HexStringToArray("00a145784600")
 my_LON_Device2.UCPTprogramId = HexStringToArray("80000105288a0403")
 my_LON_Device2.UCPTurlTemplate = "/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.XIF"
 my_LON_Device2.UCPTcommissionStatus = New iLON_SmartServer.E_LonString()
 my_LON_Device2.UCPTcommissionStatus.Value = "COMMISSIONED"
 my_LON_Device2.UCPTapplicationStatus = New iLON_SmartServer.E_LonString()
 my_LON_Device2.UCPTapplicationStatus.Value = "APP_RUNNING"

 'create a command array to store device commands to be sent
 my_LON_Device2.Command = New iLON_SmartServer.LON_Device_CfgCommand(2) {}

 'commission device
 my_LON_Device2.Command(0) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device2.Command(0).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device2.Command(0).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus
 my_LON_Device2.Command(0).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device2.Command(0).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device2.Command(0).UCPTstatus.Value = "STATUS_REQUEST"

 'run device application
 my_LON_Device2.Command(1) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device2.Command(1).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device2.Command(1).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus
 my_LON_Device2.Command(1).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device2.Command(1).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device2.Command(1).UCPTstatus.Value = "STATUS_REQUEST"

i.LON SmartServer 2.0 Programmer’s Reference 21-44

 'get the device template to show FBs and DPs in Web UI
 my_LON_Device2.Command(2) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device2.Command(2).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device2.Command(2).UCPTcommand = iLON_SmartServer.LON_Device_eCommand.GetTemplate
 my_LON_Device2.Command(2).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device2.Command(2).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device2.Command(2).UCPTstatus.Value = "STATUS_REQUEST"

 'Call the Set() function

 Dim Device_Return_ItemColl As iLON_SmartServer.Item_Coll = SmartServer._iLON.Set(ItemCfgColl)

 Device_Return_ItemColl.xSelect = "//Item[@xsi:type=""LON_Device_Cfg""]"

 If Device_Return_ItemColl.UCPTfaultCount > 0 Then
 ' print out error and exit
 Console.Out.WriteLine("An error occurred:")

 For j As Integer = 0 To Device_Return_ItemColl.Item.Length - 1
 If Device_Return_ItemColl.Item(j).fault IsNot Nothing Then
 Console.Out.WriteLine(("Item: " & Device_Return_ItemColl.Item(j).UCPTname &
 ", fault code: " & Device_Return_ItemColl.Item(j).fault.faultcode.Value &
 ", fault string: ") & Device_Return_ItemColl.Item(j).fault.faultstring)
 End If
 Next
 Else
 ItemCfgColl = SmartServer._iLON.Get(Device_Return_ItemColl)

 For j As Integer = 0 To ItemCfgColl.Item.Length - 1
 Dim newDevice As iLON_SmartServer.LON_Device_Cfg =
 DirectCast(ItemCfgColl.Item(j), iLON_SmartServer.LON_Device_Cfg)
 Console.WriteLine((("New Device Created = " & newDevice.UCPTname & ". Status = ") +
 newDevice.UCPTcommissionStatus.Value & " and ") +
 newDevice.UCPTapplicationStatus.Value & "." & vbCr)
 Next
 End If

 Console.ReadLine()
 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try
 End Sub
End Module

21.2.5 Commissioning External Devices in Visual Basic.NET

This VB console example reads the <UCPTitemStatus> of external LonWorks devices (obtained using
an xSelect), commissions any unconfigured devices, and reports the status of the network management
commands. Note that this example does not include code for checking that all the network
management commands have been completed before terminating.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2.3.

For more information on the network management commands issued in this example, see section
14.3.3.1, Issuing Network Management Commands.
Module CommDeviceModule

 Sub Main()

'See Section 20.2.3 for more information on iLON_SoapCalls class
 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

Try

i.LON SmartServer 2.0 Programmer’s Reference 21-45

 'we create an xSelect object and then specify the filter to be used

 Dim xSelect_Device As ILON_SmartServer.E_xSelect = New iLON_SmartServer.E_xSelect

 xSelect_Device.xSelect =
"//Item[@xsi:type=""LON_Device_Cfg""][UCPTitemStatus=""IS_UNCONFIGURED""]"

 'we create an ItemColl that stores the objects returned by a List() function that takes our
 'xSelect object

 Dim ItemColl_Device As ILON_SmartServer.Item_Coll = SmartServer._iLON.List(xSelect_Device)

 'we use an xSelect to further filter the items returned by the List() function

 ItemColl_Device.xSelect = "//Item[@xsi:type=""LON_Device_Cfg""][UCPTlocal =""0""]"

 'we create an ItemCfgColl that stores the objects returned by a Get() function that takes the
 'ItemColl returned by the List()

 Dim ItemCfgColl As ILON_SmartServer.Item_CfgColl = SmartServer._iLON.Get(ItemColl_Device)

 'check that there are obejcts in the ItemCfgColl

 If (ItemCfgColl.UCPTfaultCount > 0) Then

 Console.Out.WriteLine("you've got Get errors")

 Else

 For i As Integer = 0 To ItemCfgColl.Item.Length - 1

 ' we allocate a Item-Data array object to read Device configurations

 Dim deviceItems As iLON_SmartServer.LON_Device_Cfg = ItemCfgColl.Item(i)

 Console.Out.WriteLine(deviceItems.UCPTname + ", STATUS = " +
 deviceItems.UCPTitemStatus.Value + vbNewLine)

 deviceItems.UCPTcommissionStatus.Value = "COMMISSIONED"
 deviceItems.UCPTapplicationStatus.Value = "APP_RUNNING"

 ReDim deviceItems.Command(0 To 2)

 deviceItems.Command(0) = New iLON_SmartServer.LON_Device_CfgCommand
 deviceItems.Command(0).UCPTcommand =

 iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus
 deviceItems.Command(0).UCPTstatus = New iLON_SmartServer.E_LonString
 deviceItems.Command(0).UCPTstatus.Value = "STATUS_REQUEST"

 deviceItems.Command(1) = New iLON_SmartServer.LON_Device_CfgCommand
 deviceItems.Command(1).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus
 deviceItems.Command(1).UCPTstatus = New iLON_SmartServer.E_LonString
 deviceItems.Command(1).UCPTstatus.Value = "STATUS_REQUEST"

 deviceItems.Command(2) = New iLON_SmartServer.LON_Device_CfgCommand
 deviceItems.Command(2).UCPTcommand = iLON_SmartServer.LON_Device_eCommand.Reset
 deviceItems.Command(2).UCPTstatus = New iLON_SmartServer.E_LonString
 deviceItems.Command(2).UCPTstatus.Value = "STATUS_REQUEST"

 Console.Out.WriteLine(vbNewLine + "*DEVICE CONFIGURATION CHECK*" + vbNewLine +

 vbNewLine + deviceItems.UCPTname + vbNewLine +
 "STATUS = " + deviceItems.UCPTitemStatus.Value + vbNewLine +
 "COMMISSION STATUS = " + deviceItems.UCPTcommissionStatus.Value + vbNewLine +
 "APPLICATION STATUS = " + deviceItems.UCPTapplicationStatus.Value + vbNewLine)

 Next

 End If

 Dim ItemColl_SetReturn As ILON_SmartServer.Item_Coll = SmartServer._iLON.Set(ItemCfgColl)

i.LON SmartServer 2.0 Programmer’s Reference 21-46

 ItemColl_SetReturn.xSelect = "//Item[@xsi:type=""LON_Device_Cfg""]"

 Dim ItemCfgColl_SetReturn As ILON_SmartServer.Item_CfgColl = SmartServer._iLON.Get(ItemColl_SetReturn)

 If (ItemCfgColl_SetReturn.UCPTfaultCount > 0) Then

 Console.Out.WriteLine("you've got Get errors")

 Else

 For i As Integer = 0 To ItemCfgColl_SetReturn.Item.Length - 1

 Console.Out.WriteLine(vbNewLine + "*INSTALLATION STATUS CHECK*" + vbNewLine +

 vbNewLine)

 Dim deviceItemsCheck As iLON_SmartServer.LON_Device_Cfg =
 ItemCfgColl_SetReturn.Item(i)

 Console.Out.WriteLine(deviceItemsCheck.UCPTname & vbNewLine +

 "COMMISSION REQUEST STATUS = " + deviceItemsCheck.Command(0).UCPTstatus.Value +
 vbNewLine +
 "ONLINE REQUEST STATUS = " + deviceItemsCheck.Command(1).UCPTstatus.Value + vbNewLine
 + "RESET REQUEST STATUS = " + deviceItemsCheck.Command(2).UCPTstatus.Value +
 vbNewLine)

Do Until ((deviceItemsCheck.Command(0).UCPTstatus.Value = "STATUS_DONE") And
(deviceItemsCheck.Command(1).UCPTstatus.Value = "STATUS_DONE") And
(deviceItemsCheck.Command(2).UCPTstatus.Value = "STATUS_DONE"))

 Threading.Thread.Sleep(1500)

 ItemCfgColl_SetReturn = SmartServer._iLON.Get(ItemColl_SetReturn)

 For j As Integer = 0 To ItemCfgColl_SetReturn.Item.Length – 1

 Console.Out.WriteLine(vbNewLine + "*INSTALLATION STATUS CHECK*" + vbNewLine)
 deviceItemsCheck = ItemCfgColl_SetReturn.Item(j)
 Console.Out.WriteLine(deviceItemsCheck.UCPTname & vbNewLine +

 "COMMISSION REQUEST STATUS = " + deviceItemsCheck.Command(0).UCPTstatus.Value
 + vbNewLine +
 "ONLINE REQUEST STATUS = " + deviceItemsCheck.Command(1).UCPTstatus.Value +
 vbNewLine +
 "RESET REQUEST STATUS = " + deviceItemsCheck.Command(2).UCPTstatus.Value +
 vbNewLine)

 Next
 Loop
 Console.Out.WriteLine(vbNewLine + "*DEVICE INSTALLATION COMPLETE*" + vbNewLine +

 vbNewLine + deviceItemsCheck.UCPTname & vbNewLine + vbNewLine +
 "COMMISSION REQUEST STATUS = " + deviceItemsCheck.Command(0).UCPTstatus.Value +
 vbNewLine +
 "ONLINE REQUEST STATUS = " + deviceItemsCheck.Command(1).UCPTstatus.Value +
 vbNewLine +
 "RESET REQUEST STATUS = " + deviceItemsCheck.Command(2).UCPTstatus.Value +
 vbNewLine)

 Next

 End If

 Console.ReadLine()

 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try

 End Sub

End Module

i.LON SmartServer 2.0 Programmer’s Reference 21-47

21.2.6 Discovering and Installing External Devices in Visual Basic.NET

This console example scans a LONWORKS network for uncommissioned devices, processes the Neuron
ID and program ID data of the discovered devices, and then commissions the devices, starts the
devices’ applications, and gets the devices’ templates (to display the devices’ functional blocks and
data points in the SmartServer Web interface). The example then prints out the names and statuses of
the devices that have been installed.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1, and instantiated and initialized the Web service client as described in section
20.2.3.

For more information on discovering uncommissioned LONWORKS devices, see section 14.1.3.2,
Issuing Network Scan Commands to Discover Devices. You must also upload the device interface
(XIF) files of the devices you are discovering and installing to the root/LonWorks/import folder on the
SmartServer flash disk, or create device templates (XML files) for the devices.
Imports System.Threading

Module Module1
 'Function required for converting device Neuron IDs and program IDs to a byte[]
 Public Function HexStringToArray(ByVal str As String) As Byte()
 Dim nLen As Integer = str.Length / 2
 Dim arr As Byte() = New Byte(nLen - 1) {}

 For i As Integer = 0 To nLen - 1
 Dim strByte As String = str.Substring(i * 2, 2)
 arr(i) = [Byte].Parse(strByte, System.Globalization.NumberStyles.HexNumber)
 Next
 Return arr
 End Function

 Public Sub Main()

 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

 Try
 'create LONNetworkScanCommandInvoke item and ScanCommand attribute
 Dim networkScan As New iLON_SmartServer.LON_Network_ScanCommand_Invoke()
 networkScan.ScanCommand = iLON_SmartServer.LON_Network_eScanCommand.SetScan

 '***set LONNetworkScanCommandInvoke properties***

 '1. Set network UCPTname
 networkScan.UCPTname = "Net"

 '2. Set Scan Command

 'a. set scan frequency
 Dim scanFrequency As New iLON_SmartServer.LON_Network_ScanCommand_InvokeCommand()
 scanFrequency.UCPTcommand = iLON_SmartServer.LON_Device_IlonNi_eCommand.ScanOnce

 'b. set scan status
 Dim scanStatus As New iLON_SmartServer.E_LonString()
 scanStatus.LonFormat = "UCPTstatus"
 scanStatus.Value = "STATUS_REQUEST"
 scanFrequency.UCPTstatus = scanStatus

 'c. add scan command to LONNetworkScanCommandInvoke item
 networkScan.Command = New iLON_SmartServer.LON_Network_ScanCommand_InvokeCommand(0) {}
 networkScan.Command(0) = scanFrequency

 '3. Set UCPTscan
 Dim domain As New iLON_SmartServer.E_LonString()
 domain.LonFormat = "ucptScan"
 domain.Value = "NST_ILON_DOMAIN"
 networkScan.UCPTscan = New iLON_SmartServer.E_LonString(0) {}

i.LON SmartServer 2.0 Programmer’s Reference 21-48

 networkScan.UCPTscan(0) = domain

 'send InvokeCmd

 Dim itemColl As New iLON_SmartServer.Item_Coll()
 itemColl.Item = New iLON_SmartServer.Item(0) {}
 itemColl.Item(0) = networkScan
 SmartServer._iLON.InvokeCmd(itemColl)

 Console.WriteLine("starting scan")

 'send the GetScan command to check network scan progress
 Dim networkScan_Check As New iLON_SmartServer.LON_Network_ScanCommand_Invoke()
 networkScan_Check.ScanCommand = iLON_SmartServer.LON_Network_eScanCommand.GetScan
 networkScan_Check.UCPTname = "Net"

 Dim itemColl_Check As New iLON_SmartServer.Item_Coll()
 itemColl_Check.Item = New iLON_SmartServer.Item(0) {}
 itemColl_Check.Item(0) = networkScan_Check

 'Check scan status
 Dim scanDone As Boolean = False
 While Not scanDone
 SmartServer._iLON.InvokeCmd(itemColl_Check)

 Dim scanCheck_Response As New iLON_SmartServer.InvokeCmdResponse()
 scanCheck_Response.iLonItem = itemColl_Check
 Dim scanStatusCheck As iLON_SmartServer.LON_Network_ScanCommand_Invoke =
 DirectCast(scanCheck_Response.iLonItem.Item(0),
 iLON_SmartServer.LON_Network_ScanCommand_Invoke)

 'if the scan is done set scanDone flag to true
 If scanStatusCheck.Command(0).UCPTstatus.Value = "STATUS_DONE" Then
 Console.WriteLine("Network Scan Status = " &
 scanStatusCheck.Command(0).UCPTstatus.Value)
 scanDone = True

 'if the scan is not done, keep scanDone flag at false, wait 10 seconds, and check again
 ElseIf scanStatusCheck.Command(0).UCPTstatus.Value = "STATUS_PENDING" Then
 Console.WriteLine("Network Scan Status = " &
 scanStatusCheck.Command(0).UCPTstatus.Value)
 Thread.Sleep(10000)
 End If
 End While
 ' A "<network>/#DeviceDiscovery" data logger is automatically created by the network scan
 ' read the Data Logger and process the data of the discovered data
 Dim deviceDiscovered As New iLON_SmartServer.UFPTdataLogger_Data()
 deviceDiscovered.UCPTname = "Net/#DeviceDiscovery"
 Dim itemColl_DataLog As New iLON_SmartServer.Item_Coll()
 itemColl_DataLog.xSelect = "//Item[@xsi:type=""UFPTdataLogger_Data""]"
 itemColl_DataLog.Item = New iLON_SmartServer.Item(0) {}
 itemColl_DataLog.Item(0) = deviceDiscovered

 Dim dataLogger As iLON_SmartServer.Item_DataColl =
 SmartServer._iLON.Read(itemColl_DataLog)
 Console.WriteLine("Devices Discovered = " & (dataLogger.Item.Length - 1))

 Console.WriteLine("==")

 Dim itemCfgColl As New iLON_SmartServer.Item_CfgColl()

 'Create a new ItemCfgColl to store discovered devices
 itemCfgColl.Item = New iLON_SmartServer.Item_Cfg(dataLogger.Item.Length - 2) {}

 For i As Integer = 1 To dataLogger.Item.Length - 1
 'we start at 1 to account for the metaData item in Data Logger
 Dim dataLoggerData As iLON_SmartServer.UFPTdataLogger_Data =
 DirectCast(dataLogger.Item(i), iLON_SmartServer.UFPTdataLogger_Data)

 If dataLoggerData IsNot Nothing Then
 Console.WriteLine(("Device #" & i & ": Neuron ID and Program ID = ") &
 dataLoggerData.UCPTvalue(0).Value)

i.LON SmartServer 2.0 Programmer’s Reference 21-49

 End If
 ' -------------- CREATING DISCOVERED LONWORKS DEVICES--------------

 'Create a new LON_Device_Cfg Item and add it to ItemCfgColl
 Dim my_LON_Device As New iLON_SmartServer.LON_Device_Cfg()
 itemCfgColl.Item(i - 1) = my_LON_Device
 'subtract 1 for the metaData item in Data Logger
 'parse Neuron ID and Program ID from Data Logger
 Dim NID_PID As [String] = dataLoggerData.UCPTvalue(0).Value
 Dim NID As [String] = NID_PID.Substring(0, 12)
 Console.WriteLine("Neuron ID = " & NID)
 Dim PID As [String] = NID_PID.Substring(13, 16)
 Console.WriteLine("Program ID = " & PID)

 'set Neuron ID, which is a byte[]
 my_LON_Device.UCPTuniqueId = (HexStringToArray(NID))

 'set Program ID, which is a byte[]
 my_LON_Device.UCPTprogramId = (HexStringToArray(PID))

 'set template
 Dim xSelect As New iLON_SmartServer.E_xSelect()
 xSelect.xSelect = "//Item[@xsi:type=""TemplateManager_Cfg""]
 [UCPTfileType=""TEMPLATE_OR_XIF""]
 [UCPTprogramId=""" & PID & """]"
 itemColl = SmartServer._iLON.List(xSelect)

 Dim template As iLON_SmartServer.TemplateManager_Surrogate_Cfg =
 DirectCast(itemColl.Item(0), iLON_SmartServer.TemplateManager_Surrogate_Cfg)
 Dim templateName As [String] = template.UCPTname
 Console.WriteLine("Device Template = " & templateName)
 my_LON_Device.UCPTurlTemplate = templateName

 'set the device name

 '1. get the name of the channel ("Net/LON")
 xSelect.xSelect = "//Item[@xsi:type=""LON_Channel_Cfg""][UCPThidden=0]"
 itemColl = SmartServer._iLON.List(xSelect)
 Dim channel As iLON_SmartServer.Item = itemColl.Item(0)

 '2. get the name of the xif
 Dim separator As String() = New String() {"/"}
 Dim templateName_justxif As [String]() = templateName.Split(separator, 0)
 Dim templateNameLength As Integer = templateName_justxif.Length
 Dim xifName As [String] = templateName_justxif(templateNameLength - 1)
 Console.WriteLine("XIF Name = " & xifName)

 '3. name device using channel name, /device [index], and xif name ("Net/LON/Device 1 (ai-10v3.xif)")
 Dim deviceName As [String] = ((channel.UCPTname & "/" & "Device ") & i & " (") &
 xifName & ")"
 Console.WriteLine("Device Name = " & deviceName)
 Console.WriteLine("==")
 my_LON_Device.UCPTname = deviceName

 'set Commission status
 Dim commissionStatus_LonString As New iLON_SmartServer.E_LonString()
 commissionStatus_LonString.Value = "COMMISSIONED"
 my_LON_Device.UCPTcommissionStatus = commissionStatus_LonString

 'set Application status
 Dim applicationStatus_LonString As New iLON_SmartServer.E_LonString()
 applicationStatus_LonString.Value = "APP_RUNNING"
 my_LON_Device.UCPTapplicationStatus = applicationStatus_LonString

 'set tree and app icon; based on program ID
 my_LON_Device.UCPTannotation = PID

 '&&&&send device commands&&&&&&

 'commission device
 'create a command array to store device commands to be sent

i.LON SmartServer 2.0 Programmer’s Reference 21-50

 my_LON_Device.Command = New iLON_SmartServer.LON_Device_CfgCommand(2) {}

 'commission device
 my_LON_Device.Command(0) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device.Command(0).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device.Command(0).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeCommissionStatus
 my_LON_Device.Command(0).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device.Command(0).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device.Command(0).UCPTstatus.Value = "STATUS_REQUEST"

 'run device application
 my_LON_Device.Command(1) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device.Command(1).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device.Command(1).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.ChangeApplicationStatus
 my_LON_Device.Command(1).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device.Command(1).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device.Command(1).UCPTstatus.Value = "STATUS_REQUEST"

 'get the device template to show FBs and DPs in Web UI
 my_LON_Device.Command(2) = New iLON_SmartServer.LON_Device_CfgCommand()
 my_LON_Device.Command(2).UCPTcommand = New iLON_SmartServer.LON_Device_eCommand()
 my_LON_Device.Command(2).UCPTcommand =
 iLON_SmartServer.LON_Device_eCommand.GetTemplate
 my_LON_Device.Command(2).UCPTstatus = New iLON_SmartServer.E_LonString()
 my_LON_Device.Command(2).UCPTstatus.LonFormat = "UCPTstatus"
 my_LON_Device.Command(2).UCPTstatus.Value = "STATUS_REQUEST"
 Next

 'Call the Set() function

 Dim Device_Return_ItemColl As iLON_SmartServer.Item_Coll =
 SmartServer._iLON.[Set](itemCfgColl)

 Device_Return_ItemColl.xSelect = "//Item[@xsi:type=""LON_Device_Cfg""]"

 If Device_Return_ItemColl.UCPTfaultCount > 0 Then
 ' print out error and exit
 Console.WriteLine("An error occurred:")

 For j As Integer = 0 To Device_Return_ItemColl.Item.Length - 1
 If Device_Return_ItemColl.Item(j).fault IsNot Nothing Then
 Console.WriteLine((("Item: " & Device_Return_ItemColl.Item(j).UCPTname
 & ", fault code: ") & Device_Return_ItemColl.Item(j).fault.faultcode.Value
 & ", fault string: ") & Device_Return_ItemColl.Item(j).fault.faultstring)
 End If
 Next
 Else
 itemCfgColl = SmartServer._iLON.[Get](Device_Return_ItemColl)

 For j As Integer = 0 To itemCfgColl.Item.Length - 1
 If itemCfgColl.Item(j).fault IsNot Nothing Then
 Console.WriteLine((("Item: " & itemCfgColl.Item(j).UCPTname &
 ", fault code: ") & itemCfgColl.Item(j).fault.faultcode.Value &
 ", fault string: ") & itemCfgColl.Item(j).fault.faultstring)
 Else
 Dim newDevice As iLON_SmartServer.LON_Device_Cfg =
 DirectCast(itemCfgColl.Item(j), iLON_SmartServer.LON_Device_Cfg)
 Console.WriteLine((("New Device Created = " & newDevice.UCPTname &
 ". Status = ") & newDevice.UCPTcommissionStatus.Value & " and ") &
 newDevice.UCPTapplicationStatus.Value & ".")
 End If
 Next
 End If
 Console.ReadLine()
 Finally
 SmartServer.CloseBindingToSmartServer()
 End Try
 End Sub
End Module

i.LON SmartServer 2.0 Programmer’s Reference 21-51

21.2.7 Configuring the SmartServer in Visual Basic.NET

This console example uses the system information methods in the SmartServer’s system WSDL
(iLON100_System.wsdl) to check the SmartServer's current time and system information and then
sets a new time. Note that the iLON_SoapCalls class references the iLON100_System Web service
instead of the iLON100 Web service.

You can execute this code after you have referenced and inherited from the SmartServer WSDL as
described in section 20.1.

For more information on the system information properties set in this example, see section 19.1,
System Service Methods.

Main Program
Imports System.Threading 'make sure you add this statement

Module SystemTimeModule

 Sub Main()

'See Section 20.2.3 for more information on iLON_SoapCalls class
 Dim SmartServer As iLON_SoapCalls = New iLON_SoapCalls
 SmartServer.BindClientToSmartServer()

Try

 'This code checks the SmartServer's time and system info and then sets a new time

 '------------Checking System Time---

Console.Out.WriteLine("Checking the SmartServer's System Time" + vbNewLine)

 Dim time As New iLON_SmartServer_System.messageProperties_system()

 Dim timeData As String =
 "<iLONSystemService><UCPTsystemInfoType>SI_TIME</UCPTsystemInfoType></iLONSystemService>"

 Dim timeResult As String = SmartServer._iLON.SystemService_Read_Info(time, timeData)
 Console.Out.WriteLine(timeResult)

'------------Checking System Information---

Console.Out.WriteLine(vbNewLine + "Checking the SmartServer's System Information" +

 vbNewLine)

 Dim systemInfo As New iLON_SmartServer_System.messageProperties_system()

 Dim staticData As String =
 "<iLONSystemService><UCPTsystemInfoType>SI_STATIC</UCPTsystemInfoType></iLONSystemService>"

 Dim staticResult As String =
 SmartServer._iLON.SystemService_Read_Info(systemInfo, staticData)

 Console.Out.WriteLine(staticResult)

 '------------Changing System Time---

Console.Out.WriteLine(vbNewLine + "Changing the SmartServer's System Time" + vbNewLine)

 Dim revisedTime As New iLON_SmartServer_System.messageProperties_system()

 Dim revisedTimeData As String = "<iLONSystemService><TIME>SI_TIME<UCPTsystemTime>
 2008-07-05T10:20:00</UCPTsystemTime></TIME></iLONSystemService>"

 Dim revisedTimeResult As String =

 SmartServer._iLON.SystemService_Write_Info(revisedTime, revisedTimeData)

 Console.Out.WriteLine(revisedTimeResult)

 Console.Out.WriteLine(vbNewLine + "Take a 10-second break to see if time updates properly " +

i.LON SmartServer 2.0 Programmer’s Reference 21-52

 vbNewLine)

 Thread.Sleep(10000)

 Dim newTime As New iLON_SmartServer_System.messageProperties_system()

 Dim newTimeData As String =
 "<iLONSystemService><UCPTsystemInfoType>SI_TIME</UCPTsystemInfoType></iLONSystemService>"

 Dim newTimeResult As String =
 SmartServer._iLON.SystemService_Read_Info(newTime, newTimeData)

 Console.Out.WriteLine(newTimeResult)

 Console.ReadLine()

 Finally

 SmartServer.CloseBindingToSmartServer()

 End Try

End Sub

End Module

Web Service Instantiation in iLON_SoapCalls Class
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.ServiceModel

Public Class iLON_SoapCalls
 'your SmartServer’s IpAddress
 Public _iLonEndpointIpAddress As String = "<SmartServer IP address>"

 'your SmartServer’s Web service reference
 Public _iLON As iLON_SmartServer_System.iLON100portTypeClient = Nothing

 ''' <summary>
 ''' Instantiates the i.LON web service for
 ''' .NET 3.5
 ''' </summary>
 Public Sub BindClientToSmartServer()
 ' Specify the binding to be used for the client.
 Dim binding As BasicHttpBinding = New BasicHttpBinding()

 ' Initialize the namespace
 binding.Namespace = "http:'wsdl.echelon.com/web_services_ns/ilon100/v4.0/message/"

 ' Obtain the URL of the Web service on the SmartServer.
 Dim endpointAddress As System.ServiceModel.EndpointAddress =
 New System.ServiceModel.EndpointAddress("http://" + _iLonEndpointIpAddress + "/WSDL/iLON100_System.wsdl")

 ' Instantiate the SmartServer Web service object with this address and binding.
 _iLON = New iLON_SmartServer_System.iLON100portTypeClient(binding, endpointAddress)

 ' uncomment the lines below to enable authentication
 ' binding.Security.Mode = System.ServiceModel.BasicHttpSecurityMode.TransportCredentialOnly
 ' binding.Security.Transport.ClientCredentialType =
 ' System.ServiceModel.HttpClientCredentialType.Basic
 ' _iLON.ChannelFactory.Credentials.UserName.UserName = "ilon"
 ' _iLON.ChannelFactory.Credentials.UserName.Password = "ilon"

 End Sub

 ''' <summary>
 ''' Close the i.LON web service
 ''' </summary>

 Public Sub CloseBindingToSmartServer()

i.LON SmartServer 2.0 Programmer’s Reference 21-53

 ' Closing the client gracefully
 ' closes the connection and cleans up resources
 Try
 _iLON.Close()
 Finally
 _iLON = Nothing
 End Try

 End Sub

End Class

i.LON SmartServer 2.0 Programmer’s Reference 22-1

22 Programming the SmartServer with Java
You can write custom applications for the SmartServer in Java. The SmartServer supports the Java
API for XML Web Services (JAX-WS 2.0 and 2.1), which is Java programming language API for
creating web services.

22.1 Setting up the Java Programming Environment
To setup your Java programming environment for the SmartServer, you need to download and install
the following software:

• Echelon SmartServer JAX-ES programming example.
• Eclipse IDE for Java EE Developers 3.5.
• JAVA Development Kit.
• Maven 2.2.1.

After you download and install this software, you need to add environment variables for the JDK and
Maven 2.2.1.

22.1.1 Installing Echelon SmartServer JAX-ES Programming Example

To download and setup the Echelon SmartServer JAX-ES programming example, follow these steps:

1. Download the Echelon SmartServer JAX-ES programming example (.zip file) from the Echelon
Web site at www.echelon.com/downloads.

2. Extract the .zip file to your computer’s local drive (for example, C:\).

3. Browse to the C:\eclipse\eclipse 3.5\ilon.ws.clients folder on your computer and confirm that
there is a jax-ws folder.

22.1.2 Installing Eclipse IDE for Java EE Developers

To download and setup the Eclipse IDE for JAVA EE Developers, follow these steps:

1. Browse to the Eclipse downloads Web page at
www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/galileo/R/ecli
pse-jee-galileo-win32.zip.

2. Download the .zip file.

3. Browse to the C:\eclipse\eclipse 3.5 folder, and then create a new folder named eclipse-jee-
galileo-win32.

4. Extract the .zip file to the C:\eclipse\eclipse 3.5\eclipse-jee-galileo-win32 folder.

22.1.3 Installing the Java Development Kit

To download and setup JAVA Development Kit (JDK), follow these steps:

Browse to the Sun Developer Network (SDN) Java SE download s Web page at
www.java.sun.com/javase/downloads/index.jsp.

1. Download the JDK 6 Update 17 with Java EE bundle.

2. Install the JDK into the C:\Sun directory following the setup instructions.

3. Open a command prompt, change the directory to C:\Sun (enter cd c:\Sun), and then enter the set
command. This displays your system environment.

22.1.4 Installing Maven 2.2.1

To download and setup Maven 2.2.1, follow these steps:

1. Browse to the Maven download Web page at http://maven.apache.org/download.html.

http://en.wikipedia.org/wiki/Application_programming_interface
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/galileo/R/eclipse-jee-galileo-win32.zip
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/galileo/R/eclipse-jee-galileo-win32.zip
http://java.sun.com/javase/downloads/index.jsp
http://maven.apache.org/download.html

i.LON SmartServer 2.0 Programmer’s Reference 22-2

2. Download the Maven 2.2.1 .zip file.

3. Browse to the C:\eclipse\eclipse 3.5\ilon.ws.clients folder, and then create a new folder named tools.

4. Extract the .zip file to the C:\eclipse\eclipse 3.5\ilon.ws.clients\tools folder.

22.1.5 Setting System Environment Variables

To add environment variables for the JDK and Maven 2.2.1, follow these steps:

1. Open the System Properties dialog for your computer. To access this dialog, open the Windows
Control Panel, and then click System. Alternatively, you can right-click the MyComputer or
Computer icon on you desktop and click Properties.

2. In the System Properties dialog, click Advanced System Settings or Advanced, and then click
the Environment Variables tab.

3. Create the system environment variables for the JDK following these steps:

a. Under System Variables, click New, enter JAVA_HOME in the Variable Name property,
enter C:\Sun\SDK\jdk in the Variable Value property, and then click OK.

b. Under System variables, click Path, and then click Edit. Prepend the following variables to
the Variable Value property (these entries should be listed first):

;%JAVA_HOME%\jre\bin;C:\Sun\SDK\bin;

Note: Delete any other JAVA entries if they are listed (for example, jre-).

4. Create the system environment variables for Maven 2.2.1 following these steps:

a. Under System variables, click New, enter M2_HOME in the Variable Name property, enter
C:\eclipse\eclipse 3.5\ilon.ws.clients\tools\apache-maven-2.2.1 in the Variable Value
property, and then click OK.

b. Under System Variables, click Path, and then click Edit. Append the following variables to
the Variable Value property:

;%M2_HOME%\bin;%MAVEN_PATH%\bin;

i.LON SmartServer 2.0 Programmer’s Reference 22-3

22.2 Creating a JAX-WS Client
To create a JAX-WS client, follow these steps:

1. Create the java proxy classes for the SmartServer’s WSDL and create a sample Eclipse project for
programming the SmartServer in Java. To do this, follow these steps:

a. Browse to the C:\eclipse\eclipse 3.5\ilon.ws.clients\jax-ws\src\wsdl folder, open the
iLON100.wsdl file with a text editor, change the IP address at the bottom of the file to the IP
address of your SmartServer, and then save the file.

b. Open a Windows command prompt and change the directory to C:\eclipse\eclipse
3.5\ilon.ws.clients\jax-ws (enter cd C:\eclipse\eclipse 3.5\ilon.ws.clients\jax-ws).

c. This directory contains a pom.xml configuration file for Maven that enables you to quickly
create a JAX-WS project for a SmartServer client.

d. Enter the following command to verify that you set the Path system variables correctly:

mvn –version

The current version will be displayed if you set the Path system variables correctly.

e. Enter the following command to download all the required dependencies to your computer
and generate the corresponding java proxy classes for the iLON100.wsdl. Ignore any
warnings that appear.

mvn clean jaxws:wsimport

f. Enter the following command to create an Eclipse project:

mvn eclipse:eclipse

2. Start Eclipse. To do this, browse to the C:\eclipse\eclipse 3.5\eclipse-jee-galieo-win32 folder and then double-
click the eclipse.exe executable. The Eclipse JAVA EE development tool opens.

3. Import the sample Eclipse project for programming the SmartServer in Java following these steps:

a. Click File, and then click Import.

i.LON SmartServer 2.0 Programmer’s Reference 22-4

b. The Import dialog opens with the Select window. Expand General, click Existing Projects

into Workspace, and then click Next.

i.LON SmartServer 2.0 Programmer’s Reference 22-5

c. The Import window opens. In the Root Directory property, enter C:\eclipse\eclipse

3.5\ilon.ws.clients\jax-ws and then press ENTER or TAB, or click Browse and select the
C:\eclipse\eclipse 3.5\ilon.ws.clients\jax-ws folder. Click Finish.

4. Install Maven integration software following these steps:

a. Click Help and then click Install New Software.

i.LON SmartServer 2.0 Programmer’s Reference 22-6

b. In the Work With property, enter http://m2eclipse.sonatype.org/update/. In the Type Filter

Text property, enter Maven.

c. Under Maven Integration, select the Maven Embedder and Maven Integration for Eclipse

check boxes, click Next, and then click Finish.

http://m2eclipse.sonatype.org/update/

i.LON SmartServer 2.0 Programmer’s Reference 22-7

d. Restart Eclipse. To do this, click File and then click Restart. If the following warning dialog

opens, click OK.

5. Set Eclipse to the JDK you installed in the Installing the Java Development Kit section following

these steps:

a. Click Windows and then click Preferences.

i.LON SmartServer 2.0 Programmer’s Reference 22-8

b. The Preferences dialog opens. Expand JAVA and then click Installed JREs.

c. Add the JDK that you installed in the Installing the Java Development Kit section. To do this

click Add, click Next, enter C:\Sun\SDK\jdk in the JRE Home property or click Directory
and browse to the C:\Sun\SDK\jdk folder, and then click Finish.

i.LON SmartServer 2.0 Programmer’s Reference 22-9

d. A jdk entry is listed under Installed JREs.

e. Delete the existing jre6 entry. To do this, click jre6 and then click Remove.

i.LON SmartServer 2.0 Programmer’s Reference 22-10

f. Click OK.

g. Browse to C:\WINDOWS\system32 and rename the java.exe, javaw.exe, javaws.exe files
to java.exe_bak, javaw.exe_bak, javaws.exe_bak, respectively. This prevents Eclipse from
being confused by these files.

h. Restart Eclipse.

i. Set the Java Build Path to the JDK you installed following these steps:

• Open the Project Explorer view. To do this, click Window, point to Show View, and then click Project
Explorer.

• In the Project Explorer view, right-click the ilon-ws folder and then click Properties.

i.LON SmartServer 2.0 Programmer’s Reference 22-11

• In the Properties dialog, click Java Build Path and then click the Libraries tab. If there is a JRE System

Library [JavaSE-1.6] entry listed, remove it. To remove it, click it and then click Remove.

• Click Add Library, click the JRE System Library, click Next, and then click Finish.

i.LON SmartServer 2.0 Programmer’s Reference 22-12

• A JRE System Library [jdk] entry is listed

• Click OK.

6. Enable Maven to manage your Java project following these steps:

i.LON SmartServer 2.0 Programmer’s Reference 22-13

a. In the Project Explorer view, right-click the ilon-ws folder, point to Maven, and then click
Enable Dependency Management.

b. Browse to the C:\eclipse\eclipse 3.5\ilon.ws.clients\jax-ws folder, open the .classpath file

with a text editor and change the following line:
<classpathentry kind="con"
path="org.eclipse.jdt.launching.JRE_CONTAINER/org.eclipse.jdt.internal.debug.u
i.launcher.StandardVMType/J2SE-1.5"/>

to the following:

<classpathentry kind="con"
path="org.eclipse.jdt.launching.JRE_CONTAINER/org.eclipse.jdt.internal.debug.u
i.launcher.StandardVMType/JavaSE-1.6"/>

c. Restart Eclipse.

7. Generate the java proxy classes and build the jar following these steps:

a. In the Project Explorer view, right-click the ilon-ws folder, point to Run As, and then click
Maven Package. This generates the java proxy classes and builds the jar.

b. Refresh the ilon-ws folder. To do this, right-click the ilon-ws folder in the Project Explorer,
and then click Refresh.

i.LON SmartServer 2.0 Programmer’s Reference 22-14

8. Enter the following command in the C:\eclipse\eclipse 3.5\ilon.ws.clients folder to generate the documentation for

the example SmartServer Java project:

mvn javadoc:javadoc

This creates an index.html file in the C:\eclipse\eclipse 3.5\ilon.ws.clients\jax-
ws\target\site\apidocs folder that you can open to view the SmartServer’s API.

i.LON SmartServer 2.0 Programmer’s Reference 22-15

9. Enter the following command in the C:\eclipse\eclipse 3.5\ilon.ws.clients\jax-ws folder to generate the
documentation for the project Web pages:

mvn site

This creates an index.html file in the C:\eclipse\eclipse 3.5\ilon.ws.clients\jax-ws\target\site
folder that you can open to view the project Web pages.

10. Open the Client.java class. Observe the example code in the main() method.

i.LON SmartServer 2.0 Programmer’s Reference 22-16

11. Run the Client.java class. To do this, click Run and then click Run or Debug.

i.LON SmartServer 2.0 Programmer’s Reference 22-17

12. Observe the output in the Console view at the bottom of the development environment.

22.3 Java Programming Examples
This section includes Java programming examples that demonstrate how to use the SmartServer’s
SOAP API to create custom applications. These programming examples create simple console
applications that do the following:

• Read and write data point values.
• Create and read a data logger.
• Create and install LONWORKS devices
• Discover and install uncommissioned external device

Notes:

All examples assume that you are using a SmartServer that has been set to its factory default settings.
This prevents compilation errors based on mismatching <UCPTname> properties of the objects in the
LONWORKS network hierarchy (network/channel/device/functional block/data point).

You can download these programming examples from the i.LON SmartServer Community Web site at
ilonsmartserver.com.

22.3.1 Reading and Writing Data Point Values in Java

This Java example toggles the SmartServer’s digital relay outputs when run. It demonstrates how to
use an xSelect statement to filter items returned by a List() method, and it demonstrates how to write to
data points using values and presets.

You can execute this code after you have setup the Java programming environment as described in
section 22.1, and created the Web service client as described in section 22.2.

For more information on the data point properties set and read in this example, see section 4.3.2, Using
the Get Function on the Data Server, and section 4.3.3, Using the Read Function on the Data Server,
respectively.

http://ilonsmartserver.com/files/folders/soap_programming_examples/default.aspx

i.LON SmartServer 2.0 Programmer’s Reference 22-18

package com.echelon.sample.client.ilon;

import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.DpData;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.EXSelect;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemDataColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100PortType;

 public class Client_DpReadWrite {

 /**
 * @param args
 */
 public static void main(String[] args) {
 ILON100 iLon100 = null;
 ILON100PortType SmartServer = null;

 try {
 iLon100 = new ILON100();
 SmartServer = iLon100.getILON100HttpPort();

 try {
 // _________________________
 // Soap::List
 EXSelect xSelect = new EXSelect();
 xSelect.setXSelect("//Item[@xsi:type=\"Dp_Cfg\"]
 [contains(UCPTaliasName,\"nviClaValue\")]");
 ItemColl itemColl = SmartServer.list(xSelect);

 if(0 < itemColl.getUCPTfaultCount()) {
 System.out.printf("List-Response contains %s faults\r\n",
 itemColl.getUCPTfaultCount());
 }
 // just print the returned count of Item-s
 System.out.println("Items returned = " + itemColl.getItem().size());

 if(itemColl.getItem().size()> 0) {
 // _________________________
 // Soap::Read

 ItemDataColl itemDataColl = SmartServer.read(itemColl);

 if(0 < itemDataColl.getUCPTfaultCount()) {
 System.out.printf("Read-Response contains %s faults\r\n",
 itemColl.getUCPTfaultCount());
 }

 // just print some properties
 for (int i = 0; i <itemColl.getItem().size(); i++)
 {
 System.out.print(((DpData)(itemDataColl.getItem().get(i))).getUCPTname()+ " = ");
 System.out.print(((DpData)(itemDataColl.getItem().get(i))).getUCPTvalue()
 .get(0).getValue() + "(Value Read)" + "\r\n");

 DpData dpData = (DpData) itemDataColl.getItem().get(i);

 if(dpData.getUCPTvalue().get(0).getValue().compareTo ("0.0 0")== 0)
 {
 dpData.getUCPTvalue().get(0).setValue("100.0 1");
 dpData.getUCPTvalue().get(1).setValue("ON");
 itemDataColl.getItem().add(dpData);
 }

 else if(dpData.getUCPTvalue().get(0).getValue().compareTo ("100.0 1")== 0)
 {
 dpData.getUCPTvalue().get(0).setValue("0.0 0");
 dpData.getUCPTvalue().get(1).setValue("OFF");
 itemDataColl.getItem().add(dpData);
 }

i.LON SmartServer 2.0 Programmer’s Reference 22-19

 }

 ItemColl writeResponse = SmartServer.write(itemDataColl);

 if(writeResponse.getUCPTfaultCount()> 0)
 {
 // print out error and exit
 System.out.println("An error occurred:");

 for (int j = 0; j <itemColl.getItem().size(); j++)
 {
 System.out.println("Item: " + itemColl.getItem().get(j).getUCPTname() + ",
 fault code: " + itemColl.getItem().get(j).getFault().getFaultcode() + ",
 fault string: " + itemColl.getItem().get(j).getFault().getFaultstring());
 }
 }

 else
 {
 // success
 System.out.println("\r\n" + "Write is successful");

 for (int j = 0; j <itemColl.getItem().size(); j++)
 {
 System.out.print(((DpData)(itemDataColl.getItem().get(j))).getUCPTname()+
 " = ");

System.out.print(((DpData)(itemDataColl.getItem().get(j))).getUCPTvalue().
get(0).getValue()+ "(Value Written)" + "\r\n");

 }
 }
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 finally {
 iLon100 = null;
 SmartServer = null;
 }
 }
}

22.3.2 Creating and Reading a Data Logger in Java

The following Java example creates a data logger and then reads the data recorded by it. You can
execute this code after you have setup the Java programming environment as described in section 22.1,
and created the Web service client as described in section 22.2.

22.3.2.1 Creating a Data Logger
The following Java example creates a new data logger from an existing uninstantiated (hidden) data
logger on the SmartServer, specifies the type, format, and size of the new data logger, and then
specifies that the data logger record both of the SmartServer’s digital relay outputs every minute (the
Net/LON/iLON App/Digital Output 1/nviClaValue_1 and Net/LON/iLON App/Digital Output
2/nviClaValue_2 data points).

package com.echelon.sample.client.ilon;

import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ELonString;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.EXSelect;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.Item;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemCfgColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONFbCfg;

i.LON SmartServer 2.0 Programmer’s Reference 22-20

import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.UFPTdataLoggerCfg;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.UFPTdataLoggerDpRef;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100PortType;

 public class Client_DataLoggerCreate {

 /**
 * @param args
 */
 public static void main(String[] args) {
 ILON100 iLon100 = null;
 ILON100PortType SmartServer = null;

 try {
 iLon100 = new ILON100();
 SmartServer = iLon100.getILON100HttpPort();

 try {

 // _________________________
 // Soap::List

 //Create LON Fb for the Data Logger

 EXSelect xSelect = new EXSelect();
 xSelect.setXSelect("//Item[@xsi:type=\"LON_Fb_Cfg\"]
 [starts-with(UCPTname,\"Net/LON/iLON App/Data\")][UCPThidden = \"1\"]");
 ItemColl itemColl = SmartServer.list(xSelect);

 if(0 < itemColl.getUCPTfaultCount())
 {
 System.out.println("List-Response contains " + itemColl.getUCPTfaultCount() + " faults");
 }

 itemColl.setXSelect("//Item[@xsi:type=\"LON_Fb_Cfg\"]");
 ItemCfgColl itemCfgColl = SmartServer.get(itemColl);

 if(0 < itemCfgColl.getUCPTfaultCount())
 {
 System.out.println("List-Response contains " + itemCfgColl.getUCPTfaultCount() + " faults");
 }

 //specify Data Logger name for LonFb name
 itemCfgColl.getItem().get(0).setUCPThidden((short)(0));
 itemCfgColl.getItem().get(0).setUCPTname("Net/LON/iLON App/myDataLogger");
 ItemColl itemColl_SetReturn = SmartServer.set(itemCfgColl);

 Item myLonFb = itemColl_SetReturn.getItem().get(0);
 System.out.println("Successfully created the following LonFb = " + myLonFb.getUCPTname());

 //create new UFPTDataLogger

 UFPTdataLoggerCfg myDataLogger = new UFPTdataLoggerCfg();
 myDataLogger.setUCPTname("Net/LON/iLON App/myDataLogger");
 myDataLogger.setUCPTannotation("8000010128000000[4].UFPTdataLogger");
 myDataLogger.setUCPTlogFileName("Net/LON/iLON App/myDataLogger.csv");
 myDataLogger.setUCPTlogSize(100);
 myDataLogger.setUCPTlogLevelAlarm(50);

 //set Data Log Type
 ELonString logType_LonString = new ELonString();
 logType_LonString.setValue("LT_HISTORICAL");
 logType_LonString.setLonFormat("UCPTlogType");
 myDataLogger.setUCPTlogType(logType_LonString);

 //set Data Log Format
 ELonString logFormat_LonString = new ELonString();
 logFormat_LonString.setValue("LF_TEXT");

i.LON SmartServer 2.0 Programmer’s Reference 22-21

 logFormat_LonString.setLonFormat("UCPTlogFormat");
 myDataLogger.setUCPTlogFormat(logFormat_LonString);

 //specify two data points to be logged by new Data Logger
 UFPTdataLoggerDpRef dataPointRef1 = new UFPTdataLoggerDpRef();
 dataPointRef1.setUCPTname("Net/LON/iLON App/Digital Output 1/nviClaValue_1");
 dataPointRef1.setUCPTformatDescription ("0000000000000000[0].SNVT_switch");
 dataPointRef1.setUCPTpollRate(60);
 dataPointRef1.setDpType("Input");

 UFPTdataLoggerDpRef dataPointRef2 = new UFPTdataLoggerDpRef();
 dataPointRef2.setUCPTname("Net/LON/iLON App/Digital Output 2/nviClaValue_2");
 dataPointRef2.setUCPTformatDescription ("0000000000000000[0].SNVT_switch");
 dataPointRef2.setUCPTpollRate(60);
 dataPointRef2.setDpType("Input");

 //add the two data points to the Data Logger
 myDataLogger.getDataPoint().add(dataPointRef1);
 myDataLogger.getDataPoint().add(dataPointRef2);

 //call Set function
 ItemCfgColl itemCfgColl_DataLogger_Set = new ItemCfgColl();
 itemCfgColl_DataLogger_Set.getItem().add(myDataLogger);
 ItemColl itemColl_Set_DataLogger_Return = SmartServer.set(itemCfgColl_DataLogger_Set);

 if (itemColl_Set_DataLogger_Return.getUCPTfaultCount() > 0)
 {
 System.out.println("Set-Response contains " +
 itemColl_Set_DataLogger_Return.getUCPTfaultCount() + "faults");
 }

 else
 {
 //Check whether Data Logger was created
 Item newDataLogger = itemColl_Set_DataLogger_Return.getItem().get(0);
 System.out.println("Successfully created the following UFPT Data Logger = " +
 newDataLogger.getUCPTname());
 }

 //*/

 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 finally {
 iLon100 = null;
 SmartServer = null;
 }
 }
 }

22.3.2.2 Reading a Data Logger
The following Java example reads and prints out the last 10 entries for one of the two data points
recorded by the new data logger you created in the previous section, Creating a Data Logger. For
more information on the data logger properties used in this example, see section 5.3.4, Using the Read
Function on a Data Logger.

package com.echelon.sample.client.ilon;

import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.DpData;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.EXSelect;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemDataColl;

i.LON SmartServer 2.0 Programmer’s Reference 22-22

import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100PortType;

public class Client_DpReadWrite {

 /**
 * @param args
 */
 public static void main(String[] args) {
 ILON100 iLon100 = null;
 ILON100PortType SmartServer = null;

 try {
 iLon100 = new ILON100();
 SmartServer = iLon100.getILON100HttpPort();

 try {
 // _________________________
 // Soap::List
 EXSelect xSelect = new EXSelect();
 xSelect.setXSelect("//Item[@xsi:type=\"Dp_Cfg\"]
 [contains(UCPTaliasName,\"nviClaValue\")]");
 ItemColl itemColl = SmartServer.list(xSelect);

 if(0 < itemColl.getUCPTfaultCount()) {
 System.out.printf("List-Response contains %s faults\r\n",
 itemColl.getUCPTfaultCount());
 }
 // just print the returned count of Item-s
 System.out.println("Items returned = " + itemColl.getItem().size());

 if(itemColl.getItem().size()> 0) {
 // _________________________
 // Soap::Read

 ItemDataColl itemDataColl = SmartServer.read(itemColl);

 if(0 < itemDataColl.getUCPTfaultCount()) {
 System.out.printf("Read-Response contains %s faults\r\n",
 itemColl.getUCPTfaultCount());
 }

 // just print some properties
 for (int i = 0; i <itemColl.getItem().size(); i++)
 {
 System.out.print(((DpData)(itemDataColl.getItem().get(i))).getUCPTname()+ " = ");
 System.out.print(((DpData)(itemDataColl.getItem().get(i))).
 getUCPTvalue().get(0).getValue()+ "(Value Read)" + "\r\n");

 DpData dpData = (DpData) itemDataColl.getItem().get(i);

 if(dpData.getUCPTvalue().get(0).getValue().compareTo ("0.0 0")== 0)
 {
 dpData.getUCPTvalue().get(0).setValue("100.0 1");
 dpData.getUCPTvalue().get(1).setValue("ON");
 itemDataColl.getItem().add(dpData);
 }

 else if(dpData.getUCPTvalue().get(0).getValue().compareTo ("100.0 1")== 0)
 {
 dpData.getUCPTvalue().get(0).setValue("0.0 0");
 dpData.getUCPTvalue().get(1).setValue("OFF");
 itemDataColl.getItem().add(dpData);
 }

 }

 ItemColl writeResponse = SmartServer.write(itemDataColl);

 if(writeResponse.getUCPTfaultCount()> 0)
 {

i.LON SmartServer 2.0 Programmer’s Reference 22-23

 // print out error and exit
 System.out.println("An error occurred:");

 for (int j = 0; j <itemColl.getItem().size(); j++)
 {
 System.out.println("Item: " + itemColl.getItem().get(j).getUCPTname() + ",
 fault code: " + itemColl.getItem().get(j).getFault().getFaultcode() + ",
 fault string: " + itemColl.getItem().get(j).getFault().getFaultstring());
 }
 }

 else
 {
 // success
 System.out.println("\r\n" + "Write is successful");

 for (int j = 0; j <itemColl.getItem().size(); j++)
 {
 System.out.print(((DpData)(itemDataColl.getItem().get(j))).getUCPTname()+ " = ");
 System.out.print(((DpData)(itemDataColl.getItem().get(j))).
 getUCPTvalue().get(0).getValue()+ "(Value Written)" + "\r\n");
 }
 }
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 finally {
 iLon100 = null;
 SmartServer = null;
 }

 }
}

22.3.3 Creating and Installing a LONWORKS Device in Java

This Java example creates two LONWORKS devices, and then it commissions the devices, starts the
devices’ applications, and gets the devices’ templates (to display the devices’ functional blocks and
data points in the SmartServer Web interface). The example then prints out the names and statuses of
the devices that have been installed. Note that you need to replace the values of the <UCPTname>,
<UCPTuniqueID>, <UCPTprogramID>, and <UCPTurlTemplate> properties provided in this example
with those of the devices you are creating and installing.

You can execute this code after you have setup the Java programming environment as described in
section 22.1, and created the Web service client as described in section 22.2. You must also upload the
device interface (XIF) files of the devices you are creating to the root/LonWorks/import folder on the
SmartServer flash disk.

For more information on the LONWORKS device properties set in this example, see section 14.3.2,
Using the Get Function on a LonWorks Device. For more information on the network management
commands issues in this example, see section 14.3.3.1, Issuing Network Management Commands.

package com.echelon.sample.client.ilon;

import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ELonString;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemCfgColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONDeviceCfg;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONDeviceECommand;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100PortType;

public class Client_LonDevice {

i.LON SmartServer 2.0 Programmer’s Reference 22-24

 /**
 * @param args
 */

 public static byte[] hexStringToByteArray(String s) {
 int len = s.length();
 byte[] data = new byte[len / 2];
 for (int i = 0; i < len; i += 2) {
 data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
 + Character.digit(s.charAt(i+1), 16));
 }
 return data;
 }

 public static void main(String[] args) {
 ILON100 iLon100 = null;
 ILON100PortType SmartServer = null;

 try {
 iLon100 = new ILON100();
 SmartServer = iLon100.getILON100HttpPort();

 try {
 // -------------- CREATING LONWORKS DEVICES --------------

 //Create a new LON_Device_Cfg Item

 LONDeviceCfg my_LON_Device1 = new LONDeviceCfg();
 LONDeviceCfg my_LON_Device2 = new LONDeviceCfg();

 //Create an ItemCfgColl to store the LON Devices we just created

 ItemCfgColl itemCfgColl = new ItemCfgColl();
 itemCfgColl.getItem().add(0, my_LON_Device1);
 itemCfgColl.getItem().add(1, my_LON_Device2);

 //=====CREATING AND INSTALLING LON DEVICE #1==================

 // ++++++ specify properties of new LON Device #1++++++
 my_LON_Device1.setUCPTname("Net/LON/DIO-1");
 my_LON_Device1.setUCPThidden((short)0);
 my_LON_Device1.setUCPTurlTemplate ("/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.XIF");

 //set Neuron ID, which is a byte[]
 my_LON_Device1.setUCPTuniqueId(hexStringToByteArray("00a145791500"));

 //set Program ID, which is a byte[]
 my_LON_Device1.setUCPTprogramId(hexStringToByteArray("80000105288a0403"));

 //set Commission status
 ELonString commissionStatus_LonString = new ELonString();
 commissionStatus_LonString.setValue("COMMISSIONED");
 my_LON_Device1.setUCPTcommissionStatus(commissionStatus_LonString);

 //set Application status
 ELonString applicationStatus_LonString = new ELonString();
 applicationStatus_LonString.setValue("APP_RUNNING");
 my_LON_Device1.setUCPTapplicationStatus(applicationStatus_LonString);

 //++++send device commands++++++

 //commission device
 LONDeviceCfg.Command commission_my_LON_Device1 = new LONDeviceCfg.Command();
 commission_my_LON_Device1.setUCPTcommand(LONDeviceECommand.CHANGE_COMMISSION_STATUS);

 ELonString my_LON_Device1_commissionStatus = new ELonString();
 my_LON_Device1_commissionStatus.setLonFormat("UCPTstatus");
 my_LON_Device1_commissionStatus.setValue("STATUS_REQUEST");
 commission_my_LON_Device1.setUCPTstatus(my_LON_Device1_commissionStatus);

 my_LON_Device1.getCommand().add(commission_my_LON_Device1);

i.LON SmartServer 2.0 Programmer’s Reference 22-25

 //run device application
 LONDeviceCfg.Command setOnline_my_LON_Device1 = new LONDeviceCfg.Command();
 setOnline_my_LON_Device1.setUCPTcommand(LONDeviceECommand.CHANGE_APPLICATION_STATUS);

 ELonString my_LON_Device1_applicationStatus = new ELonString();
 my_LON_Device1_applicationStatus.setLonFormat("UCPTstatus");
 my_LON_Device1_applicationStatus.setValue("STATUS_REQUEST");
 setOnline_my_LON_Device1.setUCPTstatus(my_LON_Device1_applicationStatus);

 my_LON_Device1.getCommand().add(setOnline_my_LON_Device1);

 //get the device template to show FBs and DPs in Web UI
 LONDeviceCfg.Command getTemplate_my_LON_Device1 = new LONDeviceCfg.Command();
 getTemplate_my_LON_Device1.setUCPTcommand(LONDeviceECommand.GET_TEMPLATE);

 ELonString my_LON_Device1_templateStatus = new ELonString();
 my_LON_Device1_templateStatus.setLonFormat("UCPTstatus");
 my_LON_Device1_templateStatus.setValue("STATUS_REQUEST");
 getTemplate_my_LON_Device1.setUCPTstatus(my_LON_Device1_templateStatus);

 my_LON_Device1.getCommand().add(getTemplate_my_LON_Device1);

 //=====CREATING AND INSTALLING LON DEVICE #2==================

 // ++++++ specify properties of new LON Device #2++++++
 my_LON_Device2.setUCPTname("Net/LON/DIO-2");
 my_LON_Device2.setUCPThidden((short)0);
 my_LON_Device2.setUCPTurlTemplate ("/root/lonWorks/Import/Echelon/LonPoint/Version3/dio-10v3.XIF");

 //set Neuron ID, which is a byte[]
 my_LON_Device2.setUCPTuniqueId(hexStringToByteArray("00a145784600"));

 //set Program ID, which is a byte[]
 my_LON_Device2.setUCPTprogramId(hexStringToByteArray("80000105288a0403"));

 //set Commission status
 ELonString commissionStatus_LonString_device2 = new ELonString();
 commissionStatus_LonString_device2.setValue("COMMISSIONED");
 my_LON_Device2.setUCPTcommissionStatus(commissionStatus_LonString);

 //set Application status
 ELonString applicationStatus_LonString_device2 = new ELonString();
 applicationStatus_LonString_device2.setValue("APP_RUNNING");
 my_LON_Device2.setUCPTapplicationStatus(applicationStatus_LonString);

 //++++send device commands++++++

 //commission device
 LONDeviceCfg.Command commission_my_LON_Device2 = new LONDeviceCfg.Command();
 commission_my_LON_Device2.setUCPTcommand(LONDeviceECommand.CHANGE_COMMISSION_STATUS);

 ELonString my_LON_Device2_commissionStatus = new ELonString();
 my_LON_Device2_commissionStatus.setLonFormat("UCPTstatus");
 my_LON_Device2_commissionStatus.setValue("STATUS_REQUEST");
 commission_my_LON_Device2.setUCPTstatus(my_LON_Device2_commissionStatus);

 my_LON_Device2.getCommand().add(commission_my_LON_Device2);

 //run device application
 LONDeviceCfg.Command setOnline_my_LON_Device2 = new LONDeviceCfg.Command();
 setOnline_my_LON_Device2.setUCPTcommand(LONDeviceECommand.CHANGE_APPLICATION_STATUS);

 ELonString my_LON_Device2_applicationStatus = new ELonString();
 my_LON_Device2_applicationStatus.setLonFormat("UCPTstatus");
 my_LON_Device2_applicationStatus.setValue("STATUS_REQUEST");
 setOnline_my_LON_Device2.setUCPTstatus(my_LON_Device2_applicationStatus);

 my_LON_Device2.getCommand().add(setOnline_my_LON_Device2);

 //get the device template to show FBs and DPs in Web UI

i.LON SmartServer 2.0 Programmer’s Reference 22-26

 LONDeviceCfg.Command getTemplate_my_LON_Device2 = new LONDeviceCfg.Command();
 getTemplate_my_LON_Device2.setUCPTcommand(LONDeviceECommand.GET_TEMPLATE);

 ELonString my_LON_Device2_templateStatus = new ELonString();
 my_LON_Device2_templateStatus.setLonFormat("UCPTstatus");
 my_LON_Device2_templateStatus.setValue("STATUS_REQUEST");
 getTemplate_my_LON_Device2.setUCPTstatus(my_LON_Device2_templateStatus);

 my_LON_Device2.getCommand().add(getTemplate_my_LON_Device2);

 //Call the Set() function

 ItemColl Device_Return_ItemColl = SmartServer.set(itemCfgColl);

 Device_Return_ItemColl.setXSelect("//Item[@xsi:type=\"LON_Device_Cfg\"]");

 if (Device_Return_ItemColl.getUCPTfaultCount() > 0)
 {
 // print out error and exit
 System.out.println("An error occurred:");

 for (int j = 0; j < Device_Return_ItemColl.getItem().size(); j++)
 {
 if (Device_Return_ItemColl.getItem().get(j).getFault() != null)
 {

System.out.println("Item: " +
Device_Return_ItemColl.getItem().get(j).getUCPTname() + ", fault code: " +
Device_Return_ItemColl.getItem().get(j).getFault().getFaultcode() +
", fault string: " +
Device_Return_ItemColl.getItem().get(j).getFault().getFaultstring());

 }
 }
 }
 else
 {
 itemCfgColl = SmartServer.get(Device_Return_ItemColl);

 for (int j = 0; j < itemCfgColl.getItem().size(); j++)
 {
 LONDeviceCfg newDevice = (LONDeviceCfg)itemCfgColl.getItem().get(j);
 System.out.println("New Device Created = " + newDevice.getUCPTname() +
 ".Status = " + newDevice.getUCPTcommissionStatus().getValue()+ " and " +
 newDevice.getUCPTapplicationStatus().getValue() + ".\r");
 }
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 finally {
 iLon100 = null;
 SmartServer = null;
 }
 }
}

22.3.4 Discovering and Installing External Devices in JAVA

This Java example scans a LONWORKS network for uncommissioned devices, processes the Neuron ID
and program ID data of the discovered devices, and then commissions the devices, starts the devices’
applications, and gets the devices’ templates (to display the devices’ functional blocks and data points
in the SmartServer Web interface). The example then prints out the names and statuses of the devices
that have been installed.

i.LON SmartServer 2.0 Programmer’s Reference 22-27

You can execute this code after you have setup the Java programming environment as described in
section 22.1, and created the Web service client as described in section 22.2. You must also upload the
device interface (XIF) files of the devices you are discovering and installing to the
root/LonWorks/import folder on the SmartServer flash disk, or create device templates (XML files) for
the devices.

For more information on discovering uncommissioned LONWORKS devices, see section 14.1.3.2,
Issuing Network Scan Commands to Discover Devices.

package com.echelon.sample.client.ilon;

import javax.xml.ws.Holder;

import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ELonString;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.EXSelect;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.InvokeCmdResponse;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.Item;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemCfg;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemCfgColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.ItemDataColl;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONDeviceCfg;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONDeviceECommand;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONDeviceIlonNiECommand;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONNetworkEScanCommand;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.LONNetworkScanCommandInvoke;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.TemplateManagerSurrogateCfg;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.message.UFPTdataLoggerData;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100;
import com.echelon.wsdl.web_services_ns.ilon100.v4_0.wsdl.ILON100PortType;

public class Client_LonNetwork {

 /**
 * @param args
 */

 public static byte[] hexStringToByteArray(String s) {
 int len = s.length();
 byte[] data = new byte[len / 2];
 for (int i = 0; i < len; i += 2) {
 data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
 + Character.digit(s.charAt(i+1), 16));
 }
 return data;
 }

 public static void main(String[] args) {
 ILON100 iLon100 = null;
 ILON100PortType SmartServer = null;

 try {
 iLon100 = new ILON100();
 SmartServer = iLon100.getILON100HttpPort();

 try {

 //create LONNetworkScanCommandInvoke item and ScanCommand attribute
 LONNetworkScanCommandInvoke networkScan = new LONNetworkScanCommandInvoke();
 networkScan.setScanCommand(LONNetworkEScanCommand.SET_SCAN);

 //***set LONNetworkScanCommandInvoke properties***

 //1. Set network UCPTname
 networkScan.setUCPTname("Net");

 //2. Set Scan Command

 //a. set scan frequency (once or continuously)
 LONNetworkScanCommandInvoke.Command scanFrequency =

i.LON SmartServer 2.0 Programmer’s Reference 22-28

 new LONNetworkScanCommandInvoke.Command();
 scanFrequency.setUCPTcommand(LONDeviceIlonNiECommand.SCAN_ONCE);

 //b. set scan status
 ELonString scanStatus = new ELonString();
 scanStatus.setLonFormat("UCPTstatus");
 scanStatus.setValue("STATUS_REQUEST");
 scanFrequency.setUCPTstatus(scanStatus);

 //c. add scan command to LONNetworkScanCommandInvoke item
 networkScan.getCommand().add(scanFrequency);

 //3. Set UCPTscan
 ELonString domain = new ELonString();
 domain.setLonFormat("ucptScan");
 domain.setValue("NST_ILON_DOMAIN");
 networkScan.getUCPTscan().add(domain);

 //send InvokeCmd
 ItemColl itemColl = new ItemColl();
 itemColl.getItem().add(networkScan);

 //**note that invokeCmd requires ItemColl to be placed in Holder class**
 Holder<ItemColl> holder = new Holder<ItemColl>();
 holder.value = itemColl;

 SmartServer.invokeCmd(holder);
 System.out.println("starting scan");

 //send the GetScan command to check network scan progress
 LONNetworkScanCommandInvoke networkScan_Check = new LONNetworkScanCommandInvoke();
 networkScan_Check.setScanCommand(LONNetworkEScanCommand.GET_SCAN);
 networkScan_Check.setUCPTname("Net");

 ItemColl itemColl_Check = new ItemColl();
 itemColl_Check.getItem().add(networkScan_Check);

 Holder<ItemColl> holder_Check = new Holder<ItemColl>();
 holder_Check.value = itemColl_Check;

 //Check scan status
 boolean scanDone = false;
 while (!scanDone)
 {
 SmartServer.invokeCmd(holder_Check);

 InvokeCmdResponse scanCheck_Response = new InvokeCmdResponse();
 scanCheck_Response.setILonItem(holder_Check.value);

 LONNetworkScanCommandInvoke scanStatusCheck =
 (LONNetworkScanCommandInvoke)
 scanCheck_Response.getILonItem().getItem().get(0);

 //if the scan is done set scanDone flag to true
 if (scanStatusCheck.getCommand().get(0).getUCPTstatus().getValue().
 compareTo("STATUS_DONE")== 0)
 {
 System.out.println("Network Scan Status = " +
 scanStatusCheck.getCommand().get(0).getUCPTstatus().getValue());
 scanDone = true;
 }

 //if the scan is not done, keep scanDone flag at false, wait 10 seconds, and check again
 else if (scanStatusCheck.getCommand().get(0).getUCPTstatus().getValue().
 compareTo("STATUS_DONE")!= 0)
 {
 System.out.println("Network Scan Status = " +
 scanStatusCheck.getCommand().get(0).getUCPTstatus().getValue());
 Thread.sleep(10000);
 }
 }

i.LON SmartServer 2.0 Programmer’s Reference 22-29

 // A "<network>/#DeviceDiscovery" data logger is automatically created by the network scan
 // read the Data Logger and process the data of the discovered data
 UFPTdataLoggerData deviceDiscovered = new UFPTdataLoggerData();
 deviceDiscovered.setUCPTname("Net/#DeviceDiscovery");
 ItemColl itemColl_DataLog = new ItemColl();
 itemColl_DataLog.setXSelect("//Item[@xsi:type=\"UFPTdataLogger_Data\"]");
 itemColl_DataLog.getItem().add(deviceDiscovered);

 ItemDataColl dataLogger = SmartServer.read(itemColl_DataLog);
 System.out.println("Devices Discovered = " + (dataLogger.getItem().size()-1));
 System.out.println("===");

 ItemCfgColl itemCfgColl = new ItemCfgColl();

 for (int i = 1; i < dataLogger.getItem().size(); i++)
 {
 UFPTdataLoggerData dataLoggerData =
 (UFPTdataLoggerData)dataLogger.getItem().get(i);

 if (dataLoggerData != null)
 {
 System.out.println("Device #" + i + ": Neuron ID and Program ID = " +
 dataLoggerData.getUCPTvalue().get(0).getValue());
 }
 // -------------- CREATING DISCOVERED LONWORKS DEVICES--------------

 //Create a new LON_Device_Cfg Item

 LONDeviceCfg my_LON_Device = new LONDeviceCfg();
 itemCfgColl.getItem().add(my_LON_Device);

 //parse Neuron ID and Program ID from Data Logger
 String NID_PID = dataLoggerData.getUCPTvalue().get(0).getValue();
 String NID = NID_PID.substring(0, 12);
 String PID = NID_PID.substring(13, 29);
 System.out.println("Neuron ID = " + NID);
 System.out.println("Program ID = " + PID);

 //set Neuron ID, which is a byte[]
 my_LON_Device.setUCPTuniqueId(hexStringToByteArray(NID));

 //set Program ID, which is a byte[]
 my_LON_Device.setUCPTprogramId(hexStringToByteArray(PID));

 //set template
 EXSelect xSelect = new EXSelect();
 xSelect.setXSelect("//Item[@xsi:type=\"TemplateManager_Cfg\"]
 [UCPTfileType=\"TEMPLATE_OR_XIF\"]
 [UCPTprogramId=\"" + PID + "\"]");

 itemColl = SmartServer.list(xSelect);

 TemplateManagerSurrogateCfg template =
 (TemplateManagerSurrogateCfg) itemColl.getItem().get(0);
 String templateName = template.getUCPTname();
 System.out.println("Device Template = " + templateName);

 my_LON_Device.setUCPTurlTemplate(templateName);

 //set the device name

 //1. get the name of the channel ("Net/LON")
 xSelect.setXSelect("//Item[@xsi:type=\"LON_Channel_Cfg\"]
 [UCPThidden=0]");
 itemColl = SmartServer.list(xSelect);

 Item channel = itemColl.getItem().get(0);

 //2. get the name of the xif
 String[] templateName_justxif = templateName.split("/");
 int templateNameLength = templateName_justxif.length;

i.LON SmartServer 2.0 Programmer’s Reference 22-30

 String xifName = templateName_justxif[templateNameLength-1];
 System.out.println("XIF Name = " + xifName);

 //3. name device using channel name, /device [index], and xif name
 //("Net/LON/Device 1 (ai-10v3.xif)")

 String deviceName = channel.getUCPTname() + "/" + "Device " + i + "
 (" + xifName + ")";
 System.out.println("Device Name = " + deviceName);
 System.out.println("==");
 my_LON_Device.setUCPTname(deviceName);

 //set Commission status
 ELonString commissionStatus_LonString = new ELonString();
 commissionStatus_LonString.setValue("COMMISSIONED");
 my_LON_Device.setUCPTcommissionStatus(commissionStatus_LonString);

 //set Application status

 getTemplate_my_LON_Device);
 }

 //Call the Set() function

 ItemColl Device_Return_ItemColl = SmartServer.set(itemCfgColl);

 Device_Return_ItemColl.setXSelect("//Item[@xsi:type=\"LON_Device_Cfg\"]");

 if (Device_Return_ItemColl.getUCPTfaultCount() > 0)
 {
 // print out error and exit
 System.out.println("An error occurred:");

 for (int j = 0; j < Device_Return_ItemColl.getItem().size(); j++)
 {
 if (Device_Return_ItemColl.getItem().get(j).getFault() != null)
 {
 System.out.println("Item: " +
 Device_Return_ItemColl.getItem().get(j).getUCPTname() + ",
 fault code: " + Device_Return_ItemColl.getItem().get(j).
 getFault().getFaultcode() + ", fault string: " +
 Device_Return_ItemColl.getItem().get(j).getFault().
 getFaultstring());
 }
 }
 }
 else
 {
 itemCfgColl = SmartServer.get(Device_Return_ItemColl);

 if (itemCfgColl.getUCPTfaultCount() > 0)
 {
 // print out error and exit
 System.out.println("An error occurred:");
 }

 for (int j = 0; j < itemCfgColl.getItem().size(); j++)
 {
 if (itemCfgColl.getItem().get(j).getFault() != null)
 {
 System.out.println("Item: " +
 itemCfgColl.getItem().get(j).getUCPTname() + ", fault code: " +
 itemCfgColl.getItem().get(j).getFault().getFaultcode() +
 ", faultstring: " + itemCfgColl.getItem().get(j).getFault().
 getFaultstring());
 }
 else
 {
 LONDeviceCfg newDevice = (LONDeviceCfg) itemCfgColl.getItem().get(j);
 System.out.println("New Device Created = " + newDevice.getUCPTname() +
 ". Status = " + newDevice.getUCPTcommissionStatus().getValue()+ " and " +

i.LON SmartServer 2.0 Programmer’s Reference 22-31

 newDevice.getUCPTapplicationStatus().getValue() + ".");
 }
 }
 }
 }

 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 finally {
 iLon100 = null;
 SmartServer = null;
 }
 }
}

i.LON SmartServer 2.0 Programmer’s Reference A-1

Appendix A: SOAP Tester Example
You can use the iLON SOAP Tester (version 2.0.3994) to perform functional testing of the
SmartServer’s pre-defined SOAP functions and your user-defined SOAP functions. The SOAP Tester
is an unsupported engineering-level tool provided by Echelon. You can download the SOAP Tester
from the i.LON SmartServer Community Web site at http://ilonsmartserver.com/files. If you have a
SmartServer 2.0 (Release 4.03), the SOAP Tester is also included on the i.LON SmartServer 2.0 DVD
in the iLon100\iLon100\unsupported\SoapTester folder.

This appendix provides a quick example that demonstrates how to uses the SOAP Tester to toggle the
digital relay outputs on the SmartServer (the Net/LON/iLON App/Digital Output 1/nviClaValue_1 and
Net/LON/iLON App/Digital Output 2/nviClaValue_2 data points). This example uses the List, Get,
Read, and Write functions in the Data Server’s SOAP interface.

This example assumes that you are using a SmartServer that has been set to its factory default settings.
This prevents compilation errors based on mismatching <UCPTname> properties of the objects in the
LONWORKS network hierarchy (network/channel/device/functional block/data point).

To use the SOAP Tester to toggle the digital relay outputs on the SmartServer, follow these steps:

1. Start the SOAP Tester.

Note: By default, the SOAP Tester is set to the version 4.0 SOAP namespace used by the
SmartServer. You can change the SOAP namespace to 3.0 to use the SOAP Tester with an i.LON
e3 server, or you can change it to 1.1 to use the SOAP Tester with an i.LON e3 or e2 server.

2. In the URL box, enter the IP address of your SmartServer.

3. In the Application property, select DP. This sets the xsi type to Dp_Cfg (data point
configuration). The selected xsi type will be used in the xSelect property to filter the items
returned by the subsequent SOAP functions. For more information on the xsi types that you can
use in xSelect statements, see section 2.5.8.1 xsi Types.

http://ilonsmartserver.com/files/folders/utilities/entry277.aspx

i.LON SmartServer 2.0 Programmer’s Reference A-2

4. Click List. This calls the Data Server’s List function and returns all the data points on the
SmartServer in the SOAP response. The upper pane of the SOAP Tester displays the SOAP
header, and the lower displays the SOAP body of the SOAP response.

5. Click the left arrow in the upper-left hand corner. This returns you to the List request used in the

previous SOAP call.

i.LON SmartServer 2.0 Programmer’s Reference A-3

6. In this example, we want to read and write only to the SmartServer’s digital relay outputs;

therefore, we need to modify the List function so that it returns the subject data points. To do this,
change the xSelect statement from:
//Item[@xsi:type="Dp_Cfg"]

to the following:
 //Item[@xsi:type="Dp_Cfg"][contains(UCPTaliasName,"nviClaValue")]

This means that the List function will return only those data points that have “nviClaValue” in
their alias names. The xSelect statements you will use will depend on the subject data points, as
you can filter for desired items using the appropriate xsi type and predicates such as contains and
starts-with.

i.LON SmartServer 2.0 Programmer’s Reference A-4

7. Click List. This calls the Data Server’s List function and returns all the data points that meet

criteria specified in the xSelect statement. In this case, the Net/LON/iLON App/Digital Output
1/nviClaValue_1 and Net/LON/iLON App/Digital Output 2/nviClaValue_2 data points are
returned because they are the only data points that include “nviClaValue” in their alias names (by
default). For more information on using the Data Server List function, see section 4.3.1, Using
the List Function on the Data Server.

i.LON SmartServer 2.0 Programmer’s Reference A-5

8. Click Read. This calls the Data Server’s Read function and returns the Dp_Data type for the

subject data points, which includes their values, statuses, and their current priority levels. For
more information on using the Data Server Read function, see section 4.3.4, Using the Read
Function on the Data Server.

i.LON SmartServer 2.0 Programmer’s Reference A-6

9. Toggle the values of the data points. By default, the subject data points have pre-defined ON
(100.0 1) and OFF (0.0 0) presets, as specified in the root/config/template/lonworks/Dp/
#0000000000000000[0].SNVT_switch.xml file. These presets are specified in the <UCPTvalue
LonFormat="UCPTvalueDef"> property. Because these data points have presets defined for
them, you can toggle their values in the following two ways:

• Change the preset (the <UCPTvalue LonFormat="UCPTvalueDef"> property) to ON or
OFF.

• Delete the preset, and change the formatted value (the <UCPTvalue
LonFormat="#0000000000000000[0].SNVT_switch"> property) to 100.0 1 or 0.0 0.

This is because if you pass in both the <UCPTvalue> property with the formatted LonFormat
attribute and a <UCPTvalue> property with the <UCPTvalueDef> LonFormat attribute in a single
Write function, the <UCPTvalueDef> property will be used to determine the value to assign to the
data point—unless it references an invalid value.

10. Click Write. This calls the Data Server’s Write function and returns the updated values of the
subject data points.

For more information on using the Data Server Write function, including how to write formatted
values and presets, see section 4.3.5, Using the Write Function on the Data Server.

www.echelon.com

	Table of Contents
	1 Introduction to the SmartServer SOAP/XML Interface
	1.1 About This Document
	1.2 Programming Samples
	1.3 Getting Started
	1.4 SmartServer SOAP/XML Interface Upgrades
	1.4.1 Version 4.0 SOAP Message Name Schema
	1.4.1.1 Version 3.0 Message Name Schema
	1.4.1.2 Version 4.0 Message Name Schema

	2 SOAP Messages and the SmartServer WSDL File
	2.1 SmartServer Naming Structure
	2.2 SmartServer WSDL File
	2.3 Security
	2.4 SOAP Request and Response Message Structure
	2.4.1 SOAP Request
	2.4.2 SOAP Response

	2.5 SOAP Messages Formats
	2.5.1 SOAP Envelope
	2.5.1.1 W3C Namespaces Supported in Version 4.0

	2.5.2 SOAP Header
	2.5.3 SOAP Body
	2.5.3.1 Fault Messages (Application Layer)
	2.5.3.2 Fault Messages (SOAP Layer)
	2.5.3.3 Error Codes

	2.5.4 Namespace
	2.5.5 SOAP Message Schema
	2.5.6 SOAP Function Types
	2.5.7 SOAP Message Attributes
	2.5.8 Using xSelect Statements in SOAP Message Requests
	2.5.8.1 xsi Types

	2.6 Data Point References
	2.7 UCPTcurrentConfig
	2.8 Fault Structure
	2.9 LonString type
	2.10 SOAP Message Examples
	2.10.1 Configuration Data
	2.10.2 Web Binding
	2.10.3 Data Log Read

	3 SmartServer Applications and the SOAP/XML Interface
	3.1 Overview of SmartServer Applications
	3.2 SmartServer XML Configuration Files
	3.2.1 Modifying the XML Configuration Files

	3.3 SmartServer Resource Files
	3.3.1 Standard Network Variable Type (SNVT) Device Resource Files
	3.3.2 Standard Configuration Property Type (SCPT) Device Resource Files
	3.3.3 User Defined Network Variable Type (UNVT) Device Resource Files
	3.3.4 User Defined Configuration Property Type (UCPT) Device Resource Files
	3.3.5 Data Point Templates
	3.3.6 Data Formatting

	3.4 SOAP Functions
	3.4.1 List Functions
	3.4.2 Get Functions
	3.4.3 Set Functions
	3.4.4 Read Functions
	3.4.5 Write Functions
	3.4.6 Delete Functions

	3.5 Performance Issues

	4 Using the SmartServer Data Server
	4.1 Creating and Modifying the Data Point XML Files
	4.2 Overview of the Data Point XML File
	4.3 Data Server SOAP Interface
	4.3.1 Using the List Function on the Data Server
	4.3.2 Using the Get Function on the Data Server
	4.3.3 Using the Set Function on the Data Server
	4.3.4 Using the Read Function on the Data Server
	4.3.4.1 Setting the Maximum Age of Data Point Values

	4.3.5 Using the Write Function on the Data Server
	4.3.5.1 Writing Formatted Values to a Data Point
	4.3.5.2 Writing Presets to a Data Point
	4.3.5.3 Writing Raw Values to a Data Point
	4.3.5.4 Writing Values to Structured Data Points
	4.3.5.5 Writing Priority Levels
	4.3.5.6 Data Server Write Function Examples

	4.3.6 Using the Invoke Function to Reset Data Point Priorities
	4.3.7 Data Point Values and Priority Levels
	4.3.8 Using the Delete Function on the Data Server

	4.4 Using the Web Binder Application
	4.4.1 Using the List Function on a Web Connection
	4.4.2 Using the Get Function on a Web Connection
	4.4.3 Using the Set Function on a Web Connection
	4.4.4 Using the Delete Function on a Web Connection

	5 Data Loggers
	5.1 Overview of the Data Logger XML File
	5.2 Creating and Modifying the Data Logger XML File
	5.3 Data Logger SOAP Interface
	5.3.1 Using the List Function on a Data Logger
	5.3.2 Using the Get Function on a Data Logger
	5.3.3 Using the Set Function on a Data Logger
	5.3.4 Using the Read Function on a Data Logger
	5.3.4.1 Local Times and Coordinated Universal Time

	5.3.5 Using the Clear Function on a Data Logger
	5.3.6 Using the Delete Function on a Data Logger

	6 Alarm Generator
	6.1 Overview of the Alarm Generator XML File
	6.2 Creating and Modifying the Alarm Generator XML File
	6.3 Alarm Generator SOAP Interface
	6.3.1 Using the List Function on an Alarm Generator
	6.3.2 Using the Get Function on an Alarm Generator
	6.3.2.1 Alarm Priority Levels
	6.3.2.2 Comparison Functions
	6.3.2.3 Hysteresis Levels and Offset Limits

	6.3.3 Using the Set Function on an Alarm Generator
	6.3.4 Using the Delete Function on an Alarm Generator

	7 Alarm Notifier
	7.1 Overview of the AlarmNotifier XML File
	7.2 Creating and Modifying the Alarm Notifier XML File
	7.3 Alarm Notifier SOAP Interface
	7.3.1 Using the List Function on an Alarm Notifier
	7.3.2 Using the Get Function on an Alarm Notifier
	7.3.2.1 Input Data Points
	7.3.2.2 E mail Profiles
	7.3.2.3 Active and Passive Alarm Conditions
	7.3.2.4 Active and Passive Alarm Destinations

	7.3.3 Using the Set Function on an Alarm Notifier
	7.3.4 Using the Read Function on an Alarm Notifier
	7.3.5 Using the Write Function on an Alarm Notifier Log File
	7.3.6 Using the Clear Function on an Alarm Notifier Log File
	7.3.7 Using the Delete Function on an Alarm Notifier

	8 Analog Function Block
	8.1 Overview of the AnalogFB XML File
	8.2 Creating and Modifying the Analog Functional Block XML File
	8.3 Analog Functional Block SOAP Interface
	8.3.1 Using the List Function on an Analog Functional Block
	8.3.2 Using the Get Function on an Analog Functional Block
	8.3.2.1 Output Functions

	8.3.3 Using the Set Function on an Analog Functional Block
	8.3.4 Using the Delete Function on an Analog Function Block

	9 Scheduler
	9.1 Overview of the Scheduler XML File
	9.2 Creating and Modifying the Scheduler XML File
	9.3 Scheduler SOAP Interface
	9.3.1 Using the List Function on a Scheduler
	9.3.2 Using the Get Function a Scheduler
	9.3.2.1 Creating a Day Based Schedule
	9.3.2.2 Creating a Date Based Schedule
	9.3.2.3 Creating Events

	9.3.3 Using the Read Function on a Scheduler
	9.3.4 Using the Set Function on a Scheduler
	9.3.5 Using the Delete Function on a Scheduler

	10 Calendar
	10.1 Overview of the Calendar XML File
	10.2 Creating and Modifying the Calendar XML File
	10.3 Calendar SOAP Interface
	10.3.1 Using the List Function on a Calendar
	10.3.2 Using the Get Function a Calendar
	10.3.2.1 Creating an Exception
	10.3.2.2 Defining Exception Dates
	10.3.2.3 Daily Recursions
	10.3.2.4 Monthly Recursions
	10.3.2.5 Exception Examples

	10.3.3 Using the Set Function on a Calendar
	10.3.4 Using the Read Function on a Calendar
	10.3.5 Using the Delete Function on a Calendar

	11 Real Time Clock
	11.1 Overview of the Real Time Clock XML File
	11.2 Creating and Modifying the Real Time Clock XML File
	11.3 Real Time Clock SOAP Interface
	11.3.1 Using the List Function on a Real Time Clock
	11.3.2 Using the Get Function on a Real Time Clock
	11.3.3 Using the Set Function on a Real Time Clock
	11.3.4 Using the Delete Function on a Real Time Clock

	12 Type Translator
	12.1 Overview of the Type Translator XML File
	12.2 Creating and Modifying the Type Translator XML File
	12.3 Type Translator SOAP Interface
	12.3.1 Using the List Function on a Type Translator
	12.3.2 Using the Get Function on a Type Translator
	12.3.3 Using the Set Function on a Type Translator
	12.3.4 Pre Defined Type Translator Rules
	12.3.4.1 16xSNVT_switch_TO_SNVT_state
	12.3.4.2 SNVT_lev_disc_TO_SNVT_occupancy
	12.3.4.3 SNVT_lev_disc_TO_SNVT_switch
	12.3.4.4 SNVT_occupancy_TO_SNVT_setting
	12.3.4.5 SNVT_scene_TO_SNVT_setting
	12.3.4.6 SNVT_scene_TO_SNVT_switch
	12.3.4.7 SNVT_setting_TO_SNVT_switch
	12.3.4.8 SNVT_state_TO_16xSNVT_switch
	12.3.4.9 SNVT_switch_TO_SNVT_lev_disc

	13 Type Translator Rules
	13.1 Type Translator Rule XML Files
	13.2 Creating and Modifying the Type Translator Rule XML Files
	13.3 Type Translator Rule SOAP Interface
	13.3.1 Using the List Function on a Type Translator Rule
	13.3.2 Using the Get Function on a Type Translator Rule
	13.3.2.1 Creating a Case Structure
	13.3.2.2 Case Rules

	13.3.3 Using the Set Function on a Type Translator Rule
	13.3.4 Using the Delete Function on a Type Translator Rule

	14 LonWorks Driver
	14.1 LonWorks Networks
	14.1.1 Using the List Function on a LonWorks Network
	14.1.2 Using the Get Function on a LonWorks Network
	14.1.3 Using the Set Function on a LonWorks Network
	14.1.3.1 Issuing Network Synchronization Commands
	14.1.3.2 Issuing Network Scan Commands to Discover Devices

	14.1.4 Using the Delete Function on a LonWorks Network

	14.2 LonWorks Channels
	14.2.1 Using the List Function on a LonWorks Channel
	14.2.2 Using the Get Function on a LonWorks Channel
	14.2.3 Using the Set Function on a LonWorks Channel
	14.2.4 Using the Delete Function on a LonWorks Channel

	14.3 LonWorks Devices
	14.3.1 Using the List Function on a LonWorks Device
	14.3.2 Using the Get Function on a LonWorks Device
	14.3.3 Using the Set Function on a LonWorks Device
	14.3.3.1 Issuing Network Management Commands
	14.3.3.2 Issuing Debugging Commands

	14.3.4 Using the Delete Function on a LonWorks Device

	14.4 Routers
	14.5 Remote Network Interface
	14.6 LonWorks Functional Blocks
	14.6.1 Using the List Function on a LonWorks Functional Block
	14.6.2 Using the Get Function on a LonWorks Functional Block
	14.6.3 Using the Set Function on a LonWorks Functional Block
	14.6.4 Using the Delete Function on a LonWorks Functional Block

	14.7 Network Variables (LonWorks Data Points)
	14.7.1 Using the List Function on Network Variables
	14.7.2 Using the Get Function on Network Variables
	14.7.3 Using the Set Function on a Network Variable
	14.7.4 Using the Delete Function on a Network Variable

	14.8 Configuration Properties (LonWorks Data Points)
	14.9 LonWorks Connections

	15 Modbus Driver
	15.1 Modbus Channels
	15.1.1 Using the List Function on Modbus Channels
	15.1.2 Using the Get Function on Modbus Channels
	15.1.3 Using the Set Function on Modbus Channels
	15.1.4 Using the Delete Function on Modbus Channels

	15.2 Modbus Devices
	15.2.1 Using the List Function on Modbus Devices
	15.2.2 Using the Get Function on Modbus Devices
	15.2.3 Using the Set Function on Modbus Devices
	15.2.4 Using the Delete Function on Modbus Devices

	15.3 Modbus Virtual Functional Blocks
	15.4 Modbus Data Points
	15.4.1 Using the List Function on Modbus Data Points
	15.4.2 Using the Get Function on Modbus Data Points
	15.4.3 Using the Set Function on Modbus Data Points
	15.4.4 Using the Delete Function on Modbus Data Points

	16 M Bus Driver
	16.1 M Bus Channels
	16.1.1 Using the List Function on M Bus Channels
	16.1.2 Using the Get Function on M Bus Channels
	16.1.3 Using the Set Function on M Bus Channels
	16.1.4 Using the Delete Function on M Bus Channels

	16.2 M Bus Devices
	16.2.1 Using the List Function on M Bus Devices
	16.2.2 Using the Get Function on M Bus Devices
	16.2.3 Using the Set Function on M Bus Devices
	16.2.4 Using the Delete Function on M Bus Devices

	16.3 M Bus Virtual Functional Blocks
	16.4 M Bus Data Points
	16.4.1 Using the List Function on M Bus Data Points
	16.4.2 Using the Get Function on M Bus Data Points
	16.4.3 Using the Set Function on M Bus Data Points
	16.4.4 Using the Delete Function on M Bus Data Points

	17 Virtual Driver
	17.1 Virtual Channels
	17.1.1 Using the List Function on Virtual Channels
	17.1.2 Using the Get Function on Virtual Channels
	17.1.3 Using the Set Function on Virtual Channels
	17.1.4 Using the Delete Function on a Virtual Channel

	17.2 Virtual Devices
	17.2.1 Using the List Function on Virtual Devices
	17.2.2 Using the Get Function on Virtual Devices
	17.2.3 Using the Set Function on Virtual Devices
	17.2.4 Using the Delete Function on Virtual Devices

	17.3 Virtual Functional Blocks
	17.4 Virtual Data Points
	17.4.1 Using the List Function on Virtual Data Points
	17.4.2 Using the Get Function on Virtual Data Points
	17.4.3 Using the Set Function on Virtual Data Points
	17.4.4 Using the Delete Function on Virtual Data Points

	18 File System Data
	18.1 Using the List Function on File System Data
	18.2 Using the Read Function on File System Data
	18.3 Using the Write Function on File System Data
	18.4 Using the Delete Function on File System Data

	19 System Information Methods
	19.1 System Service Methods
	19.1.1 TCP/IP Settings
	19.1.2 Time Settings
	19.1.3 Security Settings
	19.1.4 Static System Information
	19.1.5 Real Time System Information
	19.1.6 E Mail Settings
	19.1.7 IP 852 Router Settings
	19.1.8 IP 852 Router Statistics
	19.1.9 LonScanner Protocol Analyzer
	19.1.10 Reboot

	19.2 System Test Methods
	19.2.1 SMTP E Mail Server Test
	19.2.2 IP 852 Configuration Server Test
	19.2.3 Connection Test

	20 Using the SOAP Interface as a Web Service
	20.1 Referencing and Inheriting from the WSDL
	20.1.1 Referencing and Inheriting from the WSDL Using .NET 3.5 Framework
	20.1.2 Referencing and Inheriting from the WSDL Using .NET 2.0 Framework

	20.2 Instantiating and Initializing the Web Service Client
	20.2.1 Instantiating the Web Service Client in Visual C# .NET 3.5
	20.2.2 Instantiating the Web Service Client in Visual C# .NET 2.0
	20.2.3 Instantiating the Web Service Client in Visual Basic .NET 3.5

	20.3 Calling Web Services Methods
	20.3.1 Reading and Writing Data Point Values in Visual C# .NET 3.5
	20.3.2 Reading and Writing Data Point Values in Visual C# .NET 2.0
	20.3.3 Reading and Writing Data Point Values in Visual Basic .NET 3.5

	20.4 Accepting a Web Binding From a SmartServer

	21 Programming Examples
	21.1 Visual C#.NET Examples
	21.1.1 Reading and Writing Data Point Values in Visual C# .NET
	21.1.2 Creating and Reading a Data Logger in Visual C# .NET
	21.1.2.1 Creating a Data Logger
	21.1.2.2 Reading a Data Logger

	21.1.3 Creating a Scheduler and Calendar in Visual C# .NET
	21.1.4 Creating and Installing a LonWorks Device in Visual C# .NET
	21.1.5 Commissioning External Devices in Visual C# .NET
	21.1.6 Discovering and Installing External Devices in Visual C# .NET
	21.1.7 Configuring the SmartServer in Visual C# .NET

	21.2 Visual Basic.NET Examples
	21.2.1 Reading and Writing Data Point Values in Visual Basic.NET
	21.2.2 Creating and Reading a Data Logger in Visual Basic. NET
	21.2.2.1 Creating a Data Logger
	21.2.2.2 Reading a Data Logger

	21.2.3 Creating a Scheduler and Calendar in Visual Basic.NET
	21.2.4 Creating and Installing a LonWorks Device in Visual Basic.NET
	21.2.5 Commissioning External Devices in Visual Basic.NET
	21.2.6 Discovering and Installing External Devices in Visual Basic.NET
	21.2.7 Configuring the SmartServer in Visual Basic.NET

	22 Programming the SmartServer with Java
	22.1 Setting up the Java Programming Environment
	22.1.1 Installing Echelon SmartServer JAX-ES Programming Example
	22.1.2 Installing Eclipse IDE for Java EE Developers
	22.1.3 Installing the Java Development Kit
	22.1.4 Installing Maven 2.2.1
	22.1.5 Setting System Environment Variables

	22.2 Creating a JAX-WS Client
	22.3 Java Programming Examples
	22.3.1 Reading and Writing Data Point Values in Java
	22.3.2 Creating and Reading a Data Logger in Java
	22.3.2.1 Creating a Data Logger
	22.3.2.2 Reading a Data Logger

	22.3.3 Creating and Installing a LonWorks Device in Java
	22.3.4 Discovering and Installing External Devices in JAVA

	Appendix A: SOAP Tester Example

