Building a LONTALK"-to-PLC Gateway

May 1994 LONWORKS" Engineering Bulletin

Introduction

In the industrial controls arena, centralized Programmable Logic Controllers (PLCs)
have long been the standard control system. LONWORKS technology offers a
powerful means for implementing industrial control systems that perform
distributed sensing, monitoring, and control. As users migrate to distributed control
systems that offer lower cost and better diagnostic capability per I/0 point, these
systems will be found side by side with PLCs on the factory floor.

This bulletin describes a general approach for building a gateway between a
Programmable Logic Controller and a LonTalk network, with specific examples
coming from a gateway implemented between a LonTalk network and an Omron
PLC.

Outside of industrial control applications, users of the Echelon Programmable Serial
Gateway will find this sample gateway application useful for the general concepts
that are necessary for all gateway products: management of the serial link and
migration of control points between a LonTalk network and another type of
network.

The example code in this bulletin was first demonstrated on an Omron CV500 PLC
in September 1993. Echelon has no plans to maintain or support this example.

Glossary of Terms
The following terms are used throughout this bulletin:

Gateway Demo - a gateway to an Omron PLC that was implemented by Echelon for
the Instrument Society of America trade show in September of 1993. This demo
included an Echelon LonWorks Programmable Serial Gateway (PSG) and an Omron
CV500-BSC21 EIA-232 interface unit. The Omron unit is programmed using the
Basic programming language.

I/0O points, blocks and modules - an 1/0 point is an interconnection between a logic
controller and one logical device. An 1/0 block is a grouping of 1/0 points from the
perspective of the control logic. An 1/0 module is a hardware interface, typically
providing physical connection to several 1/0 points.

PLC - Programmable logic controller. A centralized, user-programmable industrial
170 controller.

PLC side - The PLC side of the gateway, consisting of the Omron programmable EIA-
232 interface.

€ ECHELON

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

PSG, PSG side - the term programmable serial gateway refers to two Echelon
products, each containing a Neuron Chip, PROM socket, and UART, which may be
programmed by the user to implement a serial gateway to a LonTalk network. The
model 65200 PSG-10 product is a single in-line module (SIM) that may be embedded
in OEM products. The model 73000-3 Programmable Serial Gateway is the packaged
Echelon Serial LonTalk Adapter (SLTA) product without the SLTA firmware or
control module. The Gateway Demo was implemented with the 73000-3 PSG,
custom firmware, and a TP/XF-78 twisted-pair control module.

Overview of PLC Architecture

PLCs provide the ability to monitor and control industrial processes. The interface
to the physical industrial process is a variety of process control signals conveying
temperature, relay status, motor speed, and other process control information. The
PLC senses and controls the various process control signals according to the user-
defined control logic.

A PLC typically consists of a main system controller unit and 1/0 modules. The
main system controller is responsible for executing the user program. The I/0
modules provide the interface to the 1/0 devices. The main system controller may
be packaged in a separate box, as seen in figure 1, or in the same type of enclosure as
the I/0 modules. The interface between the main system controller and the 1/0
modules is a proprietary design of the manufacturer.

Local I/O Bus
Main System
Controller = — T
| I O I I O \
LI O] |__
LI O] L1 L] | e /_/
LI O] | I I B I/)
LI O] L1 L] |
Process
I/0 Modules qujtrol
Wiring

Figure 1 A Typical PLC Architecture

PLC manufacturers typically provide an EIA-232 interface to the main system
controller—either directly integrated in the system controller or in a form factor
similar to an 1/0 module, as shown in figure 2. This EIA-232 interface allows an

€ ECHELON 2

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

interface device to exchange data with the main system controller, enabling third-
party devices to be integrated into the industrial automation system. Echelon's serial
gateway products, the PSG-10 and the model 73000-3 Programmable Serial Gateway,
can be programmed to communicate with PLCs through an EIA-232 interface,
allowing Neuron-based devices to be integrated into the PLC automation system.

Main System
Controller
[A I | O O e
1l 1101 | O I e
[A I | O O e
1l 1101 | O I e]
1l 1101 | O I e 1
EIA-232
LonTalk Intelligent I/O Modules [
| | | | | PSG

Figure 2 PLC to LonTalk Connectivity

Migration of Control Points

PLC 170 points are controlled through a register map within the system controller.
Blocks of 1/0 points are mapped into registers to allow easy manipulation by the
PLC control program. For example, the Gateway Demo includes 16 input switches
and 16 output LEDs, for a total of 32 1/0 points. Since each of these control points
may only have status values of ON or OFF, each may be mapped to a control register
using just one bit. Thus, one 16-bit input word and one 16-bit output word are
brought out to the LonTalk network by the Gateway Demo.

LonTalk 170 points, known as network variables, are defined to allow devices from
disparate manufacturers to communicate with each other. Echelon's Standard
Network Variable Types, as described in [2], provide standard units of measurement
for common control quantities such as pressure, temperature, and volume.

The task of the gateway is to translate input points from the PLC into output points
on the LonTalk network, and input points on the LonTalk network to output points

€ ECHELON 3

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

on the PLC. The Gateway Demo does this through a set of translation tables, as
shown in figure 3.

One per PLC Block One per Block Word One per Word Field
Direction Number of Fields Field Type
Number of Words Field Structs / First Bit
Words Structs Bit Size
Word Value Net Variable ID
Update Flags

One per Input NV

Block Number

16-bit Value
I Word Number
One bit per Block Word [

One per Block Word

Figure 3 Translation Tables for PLC Gateway

The Gateway Demo groups common control points into 1/0 blocks. PLC 1/0 blocks
are assumed to consist of one or more 16-bit words, with a word being the smallest
unit of update data sent on the PLC-PSG link. Each word is composed of one or
more fields, where each field represents a PLC control point that will be converted to
a LonTalk control point. The field types are: 1) bit fields, consisting of from 1 to 15
bits at any location in the word, 2) char fields, consisting of 8 bits, starting at either
bit 0 or bit 8 in the word, or 3) long fields, consisting of the entire 16-bit word.

Each word update that arrives over the serial link is processed by looking at the
mapping tables. Once the update is reduced to its component fields, a site-specific
routine, set _nv() is called to perform any necessary normalization and set the NV
value for propagation over the network.

In the other direction, when an input network variable is updated, it determines via
table lookup which PLC word should change and sets the update flag for that word.
The next time that the serial link state machine checks for pending updates to the
PLC, it determines which words should be updated and assembles the new values
for those words. This is done by breaking the word up into fields, just as in the PLC

€ ECHELON 4

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

input case, and then calling a site-specific routine, get _nv(), to transform an NV
value into a field value.

The site-specific mapping tables as well as set _nv() and get _nv() are in the file
x| at e. nc of the demo software. The input NV processing resides in a when
statement in the file pl cgat e. nc.

Serial Link Protocol

The serial gateway protocol between the PLC side and the PSG has to meet a few
requirements. It must reliably handle control point updates in both directions on
the serial link, arbitrating ownership of the link. It must verify data received over
the serial link. It must be flexible enough to handle a wide range of functionality on
the PLC side—from dedicated serial port processors to multi-tasking control units
which handle serial input in the background.

The serial link control state machine is shown in figure 4. The states shown are:

IDLE - No link activity.

GUARD - Behaves just like IDLE on incoming events from the PLC gateway side.
No outgoing messages are initiated while in this state. It is used, for example,
right after reset to listen for activity on the serial link when resynching. As
shown in figure 6, when a transmitted message gets a negative
acknowledgment, it is also used to give the other side a chance to transmit
before retrying.

RX_MSG - Receiving an incoming message. An incoming ALERT has been
acknowledged, and we are processing incoming data bytes.

RX_NACK - An incoming message has been invalidated, and we are throwing
away incoming data bytes and waiting a brief amount of time before sending a
NACK.

TX_REQ - An outgoing message request (ALERT) has been sent, and we are
waiting for an ALERT ACK.

TX_MSG - Transmitting an outgoing message.

TX_DONE - Done transmitting an outgoing message, we are waiting for an ACK
or NACK from the other side.

€ ECHELON 5

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

ALERT
ACK

. Transmission
Received

Complete

Send ALERT ACK Received

NACK Received

Guard
Timeout

Send NACK

Send Receive ALERT
ACK
or NACK

Length,
Not Length
Failure

Receive ALERT

Figure 4 The Serial Link State Machine

Due to space limitations, state transitions due to timeouts are not included in the
diagram. The one exception is the transition from GUARD to IDLE state, which is
the only non-exception timeout in the state machine. Other timers and their
timeout handling may be examined in pl cgat e. nc. Timeout values will be site-
specific, dependent on the serial bit rate, processor speeds, UART buffering, etc. To
tune the timeouts for a particular site, choose likely values and observe the
numbers of exception timeouts logged in the Gateway Demo's dbg_. . . variables.
Be sure that initial timeout values are low enough that you see some timeouts, then
raise them until they are rare. See the chapter Using a Programmable Serial
Gateway in [1] for information about using the LonBuilder debugging environment
for tuning the Gateway Demo for your site.

The protocol defined here is meant to contain a superset of features that may be
necessary at a particular site. The link between the gateway sides is a point-to-point
link which needs to communicate control point status changes. In most cases, and
certainly for the Gateway Demo, all status updates for the gateway control points

€ ECHELON 6

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

will fit into one update message. Successful completion of an update message
means that, for the time being, both sides of the gateway agree on the state of its
control points. Features of the link protocol include:

< An ALERT/ACK sequence that ensures that the receiver has time to prepare
for message reception.

= Length, Not Length, and Checksum bytes to verify that the message bytes are
received in order and without bit errors.

« An ACK/NACK to tell the sender when an update message has been
successfully received.

The link layer packet format is shown in figure 5. If the PLC side is capable of
reacting quickly to serial activity and buffering characters, the ALERT/ACK sequence
can be replaced with a simple ALERT byte at the beginning of the message. In this
case, the TX_REQ state should be removed from the state machine as well as the
sending of ALERT ACK byte in the IDLE and GUARD states. This will speed up
response time on a slow serial link.

Sender Receiver

| ALERT ACK (FE)* I

*Only transmitted with
ALERT/ACK link
protocol

/

ALERT (01)

Link-Layer
Header '<

length

not_length

command

[data]

checksum

LLEE |

| ACK (or NACK) I

ACK: 0x06, NACK: 0x15

Figure 5 Link Layer Protocol

€ ECHELON 7

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

There are two update message formats, as shown in figure 6. The Word Update
message will probably be more common during normal system operation, since
only one or two words per block are likely to change within an update window. The
Block Update message is more useful for resynchronization (see next section) or
where many words are likely to change state simultaneously.

Word Update Format, Block Update Format,
One per Changed Word One per Changed Block
Block Number B Block Number]
Word Number No. of Words
Word LSB Word 1 LSB
Word MSB Word 1 MSB
|
|
I I |
I
Word N LSB
Word N MSB
[
l

Figure 6 Update Message Data Formats

Resynchronization upon Reset

In a distributed network, one of the most challenging aspects of the design is
handling resynchronization of the network when some group of nodes is reset.
Data that is distributed throughout a system must find its way back to the places
where it is needed.

Since the PLC gateway will be part of a larger system that will have a specific data
flow, this problem may be site-specific. The Gateway Demo, however, assumes that
the PLC is the master in a master-slave system.

When the Gateway Demo is reset, the PSG side of the gateway sends a Request
Resynch message to the PLC side and waits for a response. The PLC side responds by
sending a current status for all 1/0 blocks, both input and output, that are known to
the gateway. The PSG side updates all network variable values during this time,
output and input. The end of this phase is signaled by a Resynch Complete
command from the PLC side. If the PSG side gets input NV updates after the reset

€ ECHELON 8

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

but before the PLC side resynchs, they will not be overridden by the resynch
information, and instead will be sent to the PLC side after the resynch is complete.

Left As an Exercise for the User

Perhaps as important as the description of what is included in the Gateway Demo is
a description of what is not.

The Gateway Demo has only been tested as a demonstration application. When
integrating it into one of your products, a thorough unit and system test cycle is
required.

No performance analysis has been done on the Gateway Demo. Any such analysis
would specifically apply to the Gateway Demo, and not be generally applicable.
Performance factors to keep in mind when building a gateway are: How often can
PLC registers be polled? What is the maximum speed of the PLC's EIA-232 link?
Can the PLC's EIA-232 unit handle asynchronous serial input without the
ALERT/ACK sequence? Is it acceptable to throw away updates when you get a
checksum error on a received message? In a real installation, expected traffic loads
should be tested and error rates and handling verified.

No diagnosis of the serial link is included, as it is assumed that the LonTalk
network is slave to the PLC control logic. If the LonTalk network has more built-in
alarms, the user may want to add a periodic "pinging" of the serial link and a
network variable giving the link status.

References

1. Serial LonTalk® Adapter and Serial Gateway User's Guide, revision 5, Echelon
Corporation.

2. The SNVT Master List and Programmer's Guide, Echelon Engineering Bulletin.

3. Neuron C Programmer's Guide, revision 2, Echelon Corporation.

€ ECHELON 9

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

Appendix A - The Programmable Serial Gateway Code

The files appear in the following order: pl cgate. h, pl cgat e. nc, x|l at e. nc,
rx_msg. nc andtx_nsg. nc. These were compiled and tested on LonBuilder release
2.2. Debugging was done on a LonBuilder emulator with a model 73000-3
Programmable Serial Gateway, Module Application Interface, and Application
Interface Board as described in [1], in the chapter entitled Using a Programmable
Serial Gateway. Soft copies of these files are available on LONIink.

[| ++++++++++++++++++H+ A

I PLCGATE. H - - Exanpl e LONWORKS gateway to PLC.
I Copyright (c) 1994 by Echel on Corporation.

I Al R ghts Reserved.

/1

11 Date | ast nodified: 1/31/94

/1

I Definitions file for the Programabl e Seri al

/Il Gateway interface to a PLC. Definitions include

/1l protocol constants, tineout values, and PLC register
/1 to Network Variable encodi ng and decodi ng.

/1

| | ++++++++++++++++++H+

#pragma enabl e _sd nv_names // turn on self-docunentation

t ypedef unsigned | ong ul ong;
t ypedef unsigned |ong plc_word;
t ypedef unsigned char bits;

| | ++++++++++++++++++H

11 SI TE- SPECI FI C SECTI ON
| | ++++++++++++++++++H

/1l System Timeouts (in mlliseconds)
#defi ne TI MER_OFF O // nust keep this 0!

€ ECHELON 10

LONWORKS Engineering Bulletin

LonTalk-to-PLC Gateway

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

| NTER BYTE_TI MEQUT 100
OUT_OF SYNCH TI MEQUT 200
RX_NACK_TI MEOUT 100
RETRY_TI MEQUT 100
WAl T_FOR ACK_TI MEQUT 450
ALERT Tl MEOUT 450
RESYNCH_TI MEOUT 10000

/1l CQurrent nunber of PLC register blocks that we are
ing through. Input/output is with respect to
/'l the PLC, so associated Network Variables will have

/'l pass

/'l the opposite direction.

#define NUMINPUT_BLOCKS 1

#define NUM QUTPUT BLOCKS 1

#define NUM PLC BLOCKS 2

#define NUM | NPUT_WORDS 1

#defi ne NUM QUTPUT _WORDS 1

#define NUM. I NPUT _FI ELDS 16

#define NUM QUTPUT FIELDS 16

/1 input NVs go to output PLC register fields
#define NUM. I NPUT_NVS NUM QUTPUT_FI ELDS
#define NUM OQUTPUT _NVS NUM | NPUT _FI ELDS
/1

/1l The follow ng enum has a coupl e of uses:
/1 1) index a case statenment in the PLC

I regi ster to output NV conversion

I routine set_nv(). During nornal

I processing, set_nv() is only used

/11 to set output NV val ues, but during

I a resynch follow ng reset, input

I NV val ues are updated fromthe PLC

[l 2) Used for input NVs to index into

€ ECHELON 11

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1 the nv_to plc array in order to

I det erm ne what PLC word nust be

I updated foll owi ng an NV updat e.

I Use the offset from FI RST_I NPUT_NV
I to determne the place in nv_to _plc.
/1

/1 1n order to work, all Input NVvVs should

/1l be consecutive values in the enum
/1
t ypedef enum {
NVO LEV_ DI SC 0 = 0,
NVO LEV_Di SC 1,
NVO LEV DI SC 2,
NVO LEV_ DI SC 3,
NVO LEV_Di SC 4,
NVO LEV_Di SC 5,
NVO LEV_Di SC 6,
NVO LEV_Di SC 7,
NVO LEV_Di SC 8,
NVO LEV_ DI SC 9,
NVO LEV_DI SC 10,
NVO LEV_Di SC 11,
NVO LEV DI SC 12,
NVO LEV_DI SC 13,
NVO LEV_Di SC 14,
NVO LEV_DI SC 15,

NVI _LEV_ D SC 0, /1 Input NVs
NVI _LEV DI SC 1,
NVI _LEV DI SC 2,
NVI _LEV_Di SC 3,
NVI _LEV_Di SC 4,
NVI _LEV_Di SC 5,
NVI _LEV_Di SC 6,
NVI _LEV DI SC 7,

€ ECHELON 12

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

NVI _LEV_ DI SC 8,
NVI _LEV DI SC 9,
NVI _LEV_ DI SC 10,
NVI _LEV DI SC 11,
NVI _LEV DI SC 12,
NVI _LEV_ DI SC 13,
NVI _LEV_ DI SC 14,
NVI _LEV_ DI SC 15
} nv_ref _id;
#define FIRST_INPUT_NV NVI_LEV DI SC 0O

| | ++++++++++++ bbb bbb+

/1 end S| TE- SPECI FI C SECTI ON
| | ++++++++++++ bbb bbb+

/1 macros for handling bitmap structures
#def i ne MAX _BI TVMAP (256/ 8)

/'l use the following to size a bitmap array declaration
#defi ne SI ZECF_BI TMAP(num bits) ((numbits)/8 + 1)

/1l use the following to manipulate bits within a nmap
#define SET_BI T(bitmap, id) \
bitmap[(id)/8] |= (1 << ((id) %8))
#defi ne CLEAR BI T(bitmap, id) \
bitmap[(id)/8] & ~(1 << ((id) %8))
#define BIT_IS SET(bitmap, id) \
(bitmap[(id)/8] & (1 << ((id) %8)))

/'l Macros for serial protocol encoding and decodi ng
#def i ne ALERT 0x01 /1l Alert for nsg receipt
#def i ne ALERT_ACK OxFE /'l ack upcom ng nsg

€ ECHELON 13

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

#defi ne ACK 0x06 /'l verify nsg receipt
#def i ne NACK 0x15 /'l Negative acknow edge
/| message types

#def i ne WORD_UPDATE_NMSG 0x81 /1 bl ock/word format
#def i ne BLOCK _UPDATE M5G 0x91 /'l Update format of bl ock
#def i ne REQ RESYNCH OxAl /'l Req resynch from PLC
#def i ne RESYNCH COVPLETE 0xB1 /'l PLC resynch done

/1l Macros for locations of bytes within a nessage record
#def i ne M5G_LEN 0
#def i ne M5G_NOT_LEN 1
#defi ne MSG CVD 2

/'l Message header includes a |length byte
/1 and a bitw se NOT of the message |ength.
#def i ne HEADER SI ZE 2

/'l A one-byte checksumat the end of the
/'l message is not included in the nsg | ength
#defi ne CHECKSUM SI ZE 1

/'l Message size does not include the nessage
/'l header. It includes the nessage type, data
/1 and one checksum byte. The maxi mum update
/'l size was chosen to limt the | ength of

/1 timeouts in the |ink protocol.

/1 Most updates should be nmuch snall er.

#defi ne MAX UPDATE SI ZE 64

/'l A structure of the followi ng type will be used
/1l to give the mapping frominput NV to PLC bl ock
/1 and word nunber.

€ ECHELON 14

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

t ypedef struct {
i nt bl ock_num
i nt wor d_num
} nv_to_plc;

/1l The follow ng structures map PLC regi ster bl ocks
/1l to LonTal k Network Variables. Each block is nade
/1 up of words, which are nmade up of one or nore

/1 fields, which map to Network Vari abl es.

t ypedef enum {

FTYPE_CHAR, /1 8-bit field
FTYPE_LONG /1 16-bit field
FTYPE BI TS // 1to 15 bit field

} ftype;

t ypedef struct {
/1 Bit order of wordis 15to O
ftype field_type;

/[l FTYPE BITS, first bit of field
unsi gned first_bit : 4;

/1l FTYPE BITS, nunber of bits in field
unsi gned bit_size : 4

/| #define uniquely identifying NV

nv_ref _id nv_id;
} field_nv;
t ypedef struct {
i nt num fi el ds;

/]l assoc array of field structures
const field nv *field;

} word_fields;

t ypedef enum {

€ ECHELON 15

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

PLC QUTPUT = O,
PLC | NPUT
} block dir;
t ypedef struct {
/1 input or output I/0O bl ock?
bl ock _dir dir;

i nt num wor ds;

/| assoc array of word structures
const word fields *word;

/1 latest word value (not necessarily PLC val ue)
pl c_word *wor d_val ue;

/1 word update needed? bit flags
bits *updat e_f | ags;
} bl ock_words;

/1 The follow ng enum keeps the state of the RS-232 |ink
/1 in order to prevent clashes between incom ng and out -
/'l goi ng nmessages.

t ypedef enum {

| DLE, /1 1dle, no uplink or downlink traffic
RX_VBG /| Receiving a nessage uplink fromPLC
RX_NACK, /'l Received nessage had invalid header,

[l wait for right time to NACK

TX REQ /1 W have ALERTed, waiting for ALERT-ACK
TX _NMBG /1 Sending a nessage downlink to PLC
TX_DONE, /1 Done sending, waiting for ACK or NACK
€ ECHELON 16

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

GUARD /'l A recovery state where we do not
/] attenpt to send any downlink traffic
} link _state;

/1l After a reset, the gateway tries to resynchronize with

/1l the PLC by sending a REQ RESYNCH command down to it. The
/1 PLC shoul d respond by sending the current status of all
/'l bl ocks--input and output--followed by a RESYNCH COVPLETE
/'l message. In a hierarchical systemlike this, you have to
/1 trust that the nmaster--the PLC--is alive and well.

t ypedef enum {

RESYNCH_NOT_NEEDED, /'l no resynch needed
RESYNCH REQUEST, /1 REQ RESYNCH i n progress
RESYNCH | N_PROGRESS, /1 in this state from successful

/1 send of REQ RESYNCH until
/1 either resynch tinmeout or
/'l recei ve RESYNCH COVPLETE
} synch_state;

| | ++++++++++++++++++H+

/1 PLCGATE. NC -- Exanpl e LONWORKS gateway to PLC.

/1 Copyright (c) 1994 by Echel on Corporati on.

/1 Al R ghts Reserved.

/1

11 Date | ast nodified: 1/31/94

/1

/1 This is an interoperabl e LonWwrks Serial Gateway
/1l to Programabl e Logic Controller (PLC) inplenentation.
/1 The site-specific code in this exanple nonitors

/1 one PLC input word and updates one PLC output word.

€ ECHELON 17

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1l Despite the small nunber of control points shared

/1l between the PLC and the LonTal k network, the gateway
/1l code is structured to be easily scalable to | arger

/1 nunbers of nonitored PLC registers or |arger nunbers
/1 of Network Variabl es.

I The serial link protocol is designed to be PLCG

/1 independent. It assumes a PLC I/ O register structure
/1 that is common, and the link timeouts are configurable
/1l to allow for easy tuning.

/1

| | ++++++++++++++++H+H
#i ncl ude <stddef. h>

#i ncl ude <slta. h>

#i ncl ude <SNVT_| ev. h>

#i ncl ude "pl cgate. h"

11
/1 Debugging error counts for fine-tuning the
/1 serial link tinmeouts and debuggi ng transl ation

/] tables. My be renpoved to free some RAMin

/1 the final product.

/1

i nt dbg _al ert _tineout,
dbg_ack_nack_ti meout,
dbg_header _error,
dbg_col |'i si on,
dbg_out _of synch,
dbg_mappi ng_error,
dbg_invalid ftype,
dbg invalid state,
dbg_receive_tineout,
dbg_nacked_nsg,
dbg_early_nack
dbg_resynch_ti neout;

€ ECHELON 18

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

char oos_char;

/1 Serial Link nmessage buffer and state

unsi gned i nt nmsg_buffer [HEADER SIZE + MAX UPDATE_SI ZE +
CHECKSUM Sl ZE] ;

unsi gned i nt curr_nsg_byte = 0;

link state state = I DLE

bool ean pl c_updat e_pendi ng = FALSE
synch_state resynch_state = RESYNCH REQUEST
/1 Serial link protocol tiners

ntinmer data_receive tiner;
ntinmer tx_ack nack tiner;
ntimer resynch_tiner;
ntinmer rx_nack tiner;
ntimer guard_timer;

ninmer alert tinmer;

[| +++++++++++++++HH
/1 Include sonme nore code files after the gl oba

/1l variable declarations. The site-specific code
/1 is confined to xlate.nc, plcgate.h, and a

/] well-marked section of the current file.
[| +++++++++++++++HH

#i ncl ude "xl ate. nc" /1 translation tables: PLC <--> NV
#i ncl ude "rx_nsg. nc" /'l receive updates from PLC
#i ncl ude "tx_nsg. nc" /[l transmt updates to PLC

/'l Programmabl e Serial Gateway initialization
when (reset)

{

int i;

€ ECHELON 19

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1l Initialize the attributes of the PLC |ink

/1 S| TE- SPECI FI C CODE:

slta_init (format_8Nl, baud 19200, intfc_8wre);
/1 end S| TE- SPECI FI C CODE

/'l Queue a request to the PLC for resynch. After
/'l a reset, we reset our current snapshot of all
/1 PLC bl ocks--input and out put--based on val ues
Il we read fromthe PLC. W will then let NV

/'l updates proceed as usual .

/'l First, give any backed up uplink traffic a chance
guard_tinmer = | NTER BYTE_TI MEQUT;
state = GQUARD,

11

/'l Receive bytes on the serial link. Receiving on
/1 the serial link is the highest priority, followed
/[l by transmtting on the I|ink.

/1
priority when (slta_rxrdy())
{
char ch;
ch = (char)slta_getchar(); /1 read UART

swtch (state)

{
/'l Receive nessage state: An ALERT
/'l has been received and acknow edged, and
/1 we expect a full nessage to follow
case RX MG

€ ECHELON 20

LONWORKS Engineering Bulletin

LonTalk-to-PLC Gateway

(nmsg_buf f er [MBSG_LEN] +HEADER SI ZE+CHECKSUM Sl ZE))

11
11
11
11

data receive_tiner = | NTER BYTE TI MEQUT;
nmsg_buffer[curr_nsg byte] = ch;
++curr_nsg_byte;
if (curr_nsg_byte < HEADER Sl ZE)
{

; I/ No error checking to be done yet
}
else if (curr_nsg_byte == HEADER Sl ZE)
{

if (~nmsg_buffer[MSG LEN !=

nmsg_buf fer[MSG NOT_LEN])

{
++dbg_header _error;
rx_nack_tinmer = RX_NACK TI MEQUT;
state = RX NACK;

}

}

else if (curr_nsg_byte ==

{
data receive_tiner = Tl MER OFF;
process_uplink_nsg();
curr_nsg_byte = 0;
/'l check for nessage to transm't
state = check _for_transmt();

}

br eak;

The receive NACK state indicates that an error

occurred while receiving a nessage, and we
are ignoring received chars until the RX
NACK tinmer expires, when we will send a NACK

case RX NACK:

br eak;

€ ECHELON

21

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1l The transmt request state indicates that we
/'l have sent an ALERT in anticipation of sending
/1l a downlink nessage, and are waiting for an
/| acknow edgenent .
case TX REQ
alert _timer = TI MER OFF;
if (ch == ALERT_ACK)
{ /1l the other side is ready for our nessage
state = TX MSG
br eak;
}
else if (ch == ALERT)
{ /1 other side is also sending,
/'l receive its message first
++dbg_col | i si on;
slta_putchar (ALERT_ACK);
curr_nsg_byte = 0;
state = RX M5G
br eak;

/1 NO BREAK HERE!'! Fall through to TX M5@'!

/1l The transmt nessage states indicates that
/'l we are sending a nessage downlink. W do
/1l not expect to receive any bytes in this
/]l state, so any received bytes are in error.
case TX MsG
if (ch == NACK)
{ /1l The other side probably did not
/'l receive the LENGTH and NOT LENGIH
/'l bytes accurately. Set the guard
/1 timer just in case the other side

€ ECHELON 22

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/'l has a message com ng right behind
/1 the NACK. Wien GUARD state tines
/1 out, it wll retry downlink nsg.
++dbg_ear|y_nack

curr_nsg_byte = 0;

guard_timer = | NTER _BYTE_TI MEOUT;
state = GQUARD,

el se

{ /1l out of synch, try to nake the other
/'l side back off, enter GUARD state
++dbg_out _of _synch;
oos_char = ch;
slta_putchar (NACK);
curr_nsg_byte = 0;
guard_tinmer = OUT_OF_SYNCH TI MEQUT
state = GUARD;

}

br eak;

/1l The transmt done state indicates that we
/'l have finished sending a downlink nessage
/1l and are expecting an ACK or NACK fromthe
/'l other side.
case TX DONE
tx_ack nack tinmer = TI MER OFF;
if (ch == ACK)
{ /1 update our PLC status to reflect
/1l the info we just sent downlink
state = downl i nk_nsg_success();

/'l check for nmessage to transm't
if (state == | DLE)
{

state = check _for_transmt();

€ ECHELON 23

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

}

else if (ch == NACK)

{ /] attenpt to resend the nmessage
/'l after giving uplink a chance
++dbg_nacked_nsg;
guard_tinmer = RETRY_TI MEQUT;
state = GQUARD,

el se

{ /'l unexpected uplink data
++dbg_out _of _synch;
oos_char = ch;
slta_putchar (NACK);
guard_tinmer = QUT_OF_SYNCH TI MEQUT,;
state = GUARD;

}

br eak;

/'l The protocol only allows sending a nessage
/'l after a successful ALERT-ALERT/ ACK sequence,
/1l so we only expect to see an ALERT char in
/1 this state. The GUARD state is equival ent
/1l to IDLE on the receive side. Since transmt
/'l messages are inhibited during GUARD st at e,
/1 it provides a nmeans of quieting the link on
/1l this side when the other side is in an
/'l uncertain state.
case | DLE
case GUARD:
if (ch == ALERT)
{ /1l Incomng nessage, ACK it and
/]l get into the receive state
guard_tinmer = TI MER _COFF;
sl ta_put char (ALERT_ACK);

€ ECHELON 24

LONWORKS Engineering Bulletin

LonTalk-to-PLC Gateway

curr_nsg_byte = 0;

State

}

el se

{ /1l Fan mai l

RX_MVBG

fromsone fl ounder?

++dbg_out _of _synch;
0os_char
guard_tinmer = OUT_OF_SYNCH TI MEQUT

= ch;

GQUARD,;

++dbg_i nval i d_st at e;

state
}
br eak;
defaul t:
br eak;
}
}
/1

[l Transmt bytes on the serial

l'ink. The pl acenent

/] of this WHEN cl ause and its character-at-a-tine
/1 output node allow us to check for collisions on

Il the serial link.
11
priority when ((state
{

if (curr_nsg_byte

TX_ MG && slta_txrdy())

0)

{ /'l Assenbl e message before sendi ng
state = assenbl e_downl i nk_nsg();

if (state ==
{ /1

TX_MSQ
if assenbly successful,

still in TX M5G state

slta putchar (nsg_buffer[curr_nsg_byte]);
++curr_nsg_byte;

€ ECHELON

25

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

el se
{ /'l send a character downlink
slta putchar (nsg_buffer[curr_nsg_byte]);
++curr_nsg_byte;
if (curr_nsg_byte ==
(nmsg_buffer[MSG LEN] + HEADER SI ZE + CHECKSUM SI ZE))
{ /| done sendi ng nessage, wait for ack or nack
curr_nsg_byte = 0;
tx_ack nack tinmer = WAIT_FOR_ACK TI MEQUT;
state = TX_DONE;

/ | +++++++++++++++++ A
/1 SI TE- SPECI FI C CODE:
I Handl e i ncom ng network vari abl e updat e
[| +++++++++++++++H
when (nv_update_occurs(NVI | ev_disc))
{

SNVT | ev_di sc val ue;

unsigned int offset;

value = NVl _lev_disc[nv_array_index];// get new val ue

/1 identify the word that has a pendi ng update
of fset = NVI _LEV_DI SC O+nv_array_i ndex- FI RST_I NPUT_NV;,

SET _BI T(bl ock_map[nv_pl c_map[of f set]. bl ock_nunj . update_ fl ags,
nv_pl c_map[of fset].word_nunj;
pl c_updat e_pendi ng = TRUE;

€ ECHELON 26

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

if (state == | DLE)
{ /] alert other side to i nm nent nessage
state = check _for_transmt();

| | ++++++++++++ -+ttt bbb bbb
/1 end S| TE- SPECI FI C CCDE:

| | ++++++++++++ -+ttt bbb bbb

/1
/1 Now exiting the GUARD state, check
/1l for a downlink nessage to send

/1
when (tiner_expires(guard_tinmner))
{
if (state == GQUARD)
{
state = check _for_transmt();
}
}
/1

/1l Update nessage failed to get an
/1 ACK or NACK, try to resend it
/1
when (tinmer_expires(tx_ack _nack tiner))
{
if (state == TX DONE)
{

++dbg_ack_nack_ti neout;

/[l This will force the update to be
/!l reassenbled, in case of new status

€ ECHELON 27

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

curr_nsg_byte = 0;
state = check _for_transmt();

/1

/1 Timed out while receiving a nmessage or...
/1 timng out of RX NACK state.

/1

when (tiner_expires(data_receive_timner))

when (tinmer_expires(rx_nack_tinmer))

{
if (state == RX_ MG
{ /'l inter-byte tineout

++dbg_recei ve_ti nmeout;

}
/1 NACK to get other side to back off.
sl t a_put char (NACK) ;
/1 Mght get some nore hiccups com ng
/1 uplink, allow sone tine for them
guard_tinmer = QUT_OF_SYNCH TI MEQUT,
state = GUARD;

}

/1

/1 Timed out while trying to send a nessage. There
/1 was no answer fromthe PLC to our nessage request.
/1
when (tiner_expires(alert_tiner))
{

if (state == TX_REQ

€ ECHELON 28

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

{
++dbg_al ert _ti neout;
/1 try again to send it
state = check_for_transmt();
}
}
/1

/1 Timed out while waiting for the PLC to send
/1 a RESYNCH COVPLETE nessage.

/1
when (tinmer_expires(resynch_tiner))
{
++dbg_resynch_ti nmeout;
/1 try again to send it
resynch_state = RESYNCH REQUEST;
if (state == | DLE)
{
state = check _for_transmt();
}
}

| | ++++++++++++++++++H+

/1 XLATE. NC -- Exanpl e LONWORKS gateway to PLC.
/1 Copyright (c) 1994 by Echel on Corporati on.
/1 Al R ghts Reserved.

/1

11 Date | ast nodified: 1/31/94

/1

/1 This file is intended to contain all of the gateway

€ ECHELON 29

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1l code and data that is site-specific. The one

/1l exception to that is that there will be a WHEN

/1l statement in PLCGATE. NC for every input Network

/1l Variable. A so, PLCGATE.H has a clearly delineated

/1l section for site-specific definitions.

/1

/1 This file contains the translation tables needed to

/1l convert PLC register data to Network Variable data and
/1l vice versa. The contents of the translation tables are
/1 inplementation-dependent, but the format of the tables
/1l is intended to support a wi de variety of configurations.
/1

/ | +++++++++++++++++ A

/1

/1 The Network Variable interface to this node consists
/1 of 16 discrete |evel inputs and 16 discrete |evel

/1l outputs. Since each of these maps to one bit on the
/1 PLC, only the ST_ON and ST_OFF | evels are supported.
/1 Any other level is translated to a "0" in the PLC

I/l register bitfields. The value translation is done
/'l in the user-defined routines set_nv() and get_nv().
/1

network input SNVT | ev_disc NVI | ev_disc[NUM | NPUT_NVS]
networ k out put SNVT | ev_di sc NVO | ev_di sc[NUM QUTPUT_NVS] ;

/1

/1l The plc_inputs and plc_outputs variables are

/'l copies of the |latest PLC register val ues as

/1 we know them The pending flags for PLC out put
/1 variables tell us that the new val ues have not

/'l yet been sent down the serial link to the PLC

€ ECHELON 30

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1

pl c_word plc_i nput s[NUM | NPUT_WORDS] ;

pl c_word pl c_out put s NUM QUTPUT _WORDS] ;

bits plc_pendi ng_updat es[SI ZECF_BI TMAP(NUM_QUTPUT_WORDS) | ;

/] Translation tabl es

/'l First, the tables to take PLC i nputs and convert
/1l themto Network Variabl e update val ues:
const field nv in_field map[NUMINPUT_FIELDS] = {

FTYPE BITS, 0, 1, NVO LEV DI SC 0,
FTYPE BITS, 1, 1, NVO LEV DI SC 1,
FTYPE BITS, 2, 1, NVO LEV DI SC 2,
FTYPE BITS, 3, 1, NVO LEV Di SC 3,
FTYPE BITS, 4, 1, NVO LEV DI SC 4,
FTYPE BITS, 5, 1, NVO LEV DI SC 5,
FTYPE BITS, 6, 1, NVO LEV DI SC 6,
FTYPE BITS, 7, 1, NVO LEV D SC 7,
FTYPE BITS, 8, 1, NVO LEV DI SC 8,
FTYPE BITS, 9, 1, NVO LEV DI SC 9,

FTYPE_BI TS, 10,
FTYPE_BI TS, 11,
FTYPE_BI TS, 12,
FTYPE_BI TS, 13,
FTYPE_BI TS, 14,
FTYPE_BI TS, 15,

, NVO LEV_DI SC 10,
NVO LEV_ DI SC 11,
NVO LEV_ DI SC 12,
NVO LEV_DI SC 13,
NVO LEV_ DI SC_14,
, NVO LEV_DI SC 15

N e e

1
const word fields in_word _map[NUM I NPUT_WORDS] =
{ NUM_| NPUT_FI ELDS,

(const field nv *)& n_field map};

/1 Now, the tables to take Network Variable inputs
/1 and convert themto PLC output val ues:

€ ECHELON 31

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

const field nv out_field map[NUM QUTPUT _FI ELDS] = {

FTYPE BITS, 0, 1, NVI_LEV DI SC 0,
FTYPE BITS, 1, 1, N\VI_LEV DI SC 1,
FTYPE BITS, 2, 1, N\VI_LEV DI SC 2,
FTYPE BITS, 3, 1, N\VI_LEV DI SC 3,
FTYPE BITS, 4, 1, NVI_LEV DI SC 4,
FTYPE BITS, 5, 1, NVI_LEV DI SC 5,
FTYPE BITS, 6, 1, NVI_LEV DI SC 6,
FTYPE BITS, 7, 1, N\VI_LEV DI SC 7,
FTYPE BITS, 8, 1, NVI_LEV DI SC 8,
FTYPE BITS, 9, 1, N\VI_LEV DI SC 9,
FTYPE BI TS, 10, 1, NVI_LEV D SC 10,
FTYPE BITS, 11, 1, NVI_LEV D SC 11,
FTYPE BITS, 12, 1, NVI_LEV D SC 12,
FTYPE BITS, 13, 1, NVI _LEV D SC 13,
FTYPE BITS, 14, 1, NVI_LEV D SC 14,
FTYPE BITS, 15, 1, NVI_LEV DI SC 15

1
const word fields out_word map[NUM QUTPUT _WORDS] =
{ NUM_OUTPUT_FI ELDS,

(const field nv *)&out field nmap};
const bl ock words bl ock_map[NUM PLC BLOCKS] = {
PLC I NPUT, NUM I NPUT_WORDS, in_word _map, plc_inputs, NULL,

PLC _QUTPUT, NUM QUTPUT_WORDS, out _word_map, plc_outputs,
pl c_pendi ng_updat es

¥

/1

/1 The nv_plc_map is used when an NV update arrives
/1l to set the associated PLC update pending fl ag.
/1

const nv_to _plc nv_plc_map[NUM I NPUT_NVS] =

{ 1, O, /1 In this exanple, all input NVs are
1, O, /1 in block 1, word O
1, O

€ ECHELON 32

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

P PPRPPPPPPPPRPPRPPEPR
O 0O 0000000 OO0 OoOOo

/1

/1 PROCEDURE: set_nv()

/1 The follow ng site-specific procedure shoul d
/'l have a case statement for every output NV in
/1l the gateway that originates froma PLC word
/[l value. It takes a PLC field value input

/1 and nmakes any transformati ons necessary to
/1l update an NV based on the input.

/1

void set_nv (nv_ref id nv_id, plc_word value)
{

SNVT | ev_disc discrete_val ue;

switch (nv_id)

{
case NVO LEV D SC 0:
case NVO LEV DI SC 1:
case NVO LEV D SC 2:
case NVO LEV D SC 3:

€ ECHELON 33

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

case NVO LEV D SC 4:
case NVO LEV D SC 5:
case NVO LEV D SC 6:
case NVO LEV DI SC 7:
case NVO LEV D SC 8:
case NVO LEV DI SC 9:
case NVO LEV_ D SC 10:
case NVO LEV D SC 11:
case NVO LEV D SC 12:
case NVO LEV_ D SC 13:
case NVO LEV_ D SC 14:
case NVO LEV_ D SC 15:

if (value == 1)
{
di screte_value = ST _QON,
}
el se

{ /] fields are 1 bit w de, so
/1 value may only be 0 or 1
di screte_val ue = ST_COFF;
}
NVO lev_disc[nv_id - NVO LEV D SC 0] =
di screte_val ue;
br eak;

/'l These will only be updated during a resynch.
/'l Since we know that a reset will change the
/1 value of these RAMvariables to 0 (as we do
/1 not set themto any other value explicitly),
/1 we should only update the value if the

/1 current value is 0. |F YOQU STATI CALLY

/1 I NITI ALl ZE YOUR NVs, check for your own

/1 initialization value, not necessarily 0!
case NVI _LEV DI SC 0:

case NVI _LEV DI SC 1:

€ ECHELON 34

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

case NVI _LEV Di SC 2:
case NVI _LEV_Di SC 3:
case NVI _LEV DI SC 4:
case NVI _LEV_Di SC 5:
case NVI _LEV_Di SC 6:
case NVI _LEV DI SC 7:
case NVI _LEV_Di SC 8:
case NI _LEV_Di SC 9:
case NVI _LEV_Di SC 10:
case NVI _LEV DI SC 11:
case NVI _LEV DI SC 12:
case NVI _LEV_Di SC 13:
case NVI _LEV DI SC 14:
case NVI _LEV_Di SC 15:

if (value == 1)
{
di screte_value = ST _QON,
}
el se

{ /] fields are 1 bit w de, so
/1 value may only be 0 or 1
di screte _val ue = ST_CFF;

/1l only set value if it has not already
/'l been updated over the network
if (NVI lev_ disc[nv_id - NVI_LEV D SC 0] == 0)

{
NVI lev_ disc[nv_id - NVI_LEV D SC 0] =
di screte_val ue;
}
br eak;
def aul t:
br eak;

€ ECHELON 35

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

Il
/11
/11
/11
/11
/11
/11
/11
Il

plc_

PROCEDURE: get_nv()

The foll ow ng site-specific procedure should
have a case statenent for every input NV in
the gateway that translates to a PLC out put
word. It takes an NV val ue and makes any
necessary transformations to produce a PLC
field val ue.

word get _nv (nv_ref _id nv_id)

pl c_word val ue;

switch (nv_id)

{
case NvVI _LEV D SC 0:
case NVI _LEV DI SC 1:
case NVI _LEV DI SC 2:
case NvVI _LEV D SC 3:
case NVI _LEV DI SC 4:
case NvVI _LEV D SC 5:
case NvVI _LEV DI SC 6:
case NVI _LEV DI SC 7:
case NvVI _LEV D SC 8:
case NvVI _LEV DI SC 9:
case NvVI _LEV DI SC 10:
case NVI _LEV DI SC 11:
case NVI _LEV DI SC 12:
case NvVI_LEV DI SC 13:
case NVI _LEV DI SC 14:

€ ECHELON 36

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

case NvVI _LEV DI SC 15:
value = NVl _lev_disc[nv_id - NVI_LEV D SC 0];
if (value == ST_QON)
{
val ue = 1;
}
el se
{ /'l reduce it to binary value
/1l for the bitfield destination

val ue = 0O;
}
br eak;
def aul t:
val ue = 0O;
br eak;

return (val ue);

| | ++++++++++++++++++H+

/1 RX MSG NC -- Exanpl e LONWORKS gateway to PLC.
/1 Copyright (c) 1994 by Echel on Corporati on.

/1 Al R ghts Reserved.

/1

11 Date | ast nodified: 1/31/94

/1

/1 This file contains nost of the gateway code dealing
/[l wth receiving nessages fromthe PLC. Routines

/1 included here:

/1

€ ECHELON 37

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

I translate_pl c_input()
I conp_checksum()

I checksum checks()

I process_word_format ()
I process_bl ock fornmat ()
I process_uplink _nsg()
/1

| | ++++++++++++ -+ttt bbb bbb bbb+

/1

/1 PROCEDURE: translate_plc_input()

/1l This procedure translates PLC word data into "fields",

/1 which are translated into LonTal k Standard Network

/1l Variable Types. Three types of fields are avail abl e:

/[l 16-bit words, 8-bit bytes, and bitfields from1l to 15

/[l bits wide. This routine extracts fields from PLC words,
/Il one at atinme, and for each field calls the site-specific
/1l procedure set_nv() to make the final transformation from
/1 field data to Network Vari abl e dat a.

/1

void translate plc_input (int block _num int word_num plc_word
new val ue)

{
ul ong new field val ue,
curr_field value, curr_val ue;
i nt i, numflds;
const word fields *word;
const field nv *fld;

if ((block_num>= NUM PLC BLOCKS) ||
(word_num >= bl ock_map[bl ock_nunj . num wor ds))
{ /'l no such bl ock or no such word in bl ock

€ ECHELON 38

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

++dbg_mappi ng_error
}
el se
{
fld = bl ock_map[bl ock_num .word[word_nunj.field;
numflds =
bl ock_map[bl ock_nunj . word[word_nunj . num fi el ds;
curr_value =
bl ock_map[bl ock_nunj . word_val ue[word_nunj ;
for (i =0; i < numflds; i++)
{
switch (fld[i].field type)
{
case FTYPE CHAR
if (i == 0)
{ /1l char is the |ower byte
new field value = 0x00ff & new val ue;
curr_field value =
0x00ff & curr _val ue;
}
el se
{ /1l char is the upper byte
new field value =
(Oxff00 & new val ue) >> 8;
curr_field value =
(Oxff00 & curr_val ue) >> 8;
}

br eak;

case FTYPE_LONG
if (i '=0)
{ /1l only one long field will fit
++dbg_invalid_ftype;
}

el se

€ ECHELON 39

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

{ /1 field takes up entire word
new field val ue = new val ue;
curr_field value = curr_val ue;

}

br eak;

case FTYPE BITS: // extract frombit field

new field val ue = new val ue <<

(16 - fld[i].bit_size-fld[i].first _bit);

new field value = new field value >>
(16 - fld[i].bit_size);

curr_field value = curr_val ue <<

(16 - fld[i].bit_size-fld[i].first _bit);

curr_field value = curr_field value >>
(16 - fld[i].bit_size);

br eak;

def aul t:
++dbg_invalid_ftype;
br eak;

/1 Now, tnp_value contains the extracted

/1 field value fromthe PLC register

if ((newfield value !'= curr_field value) ||
(resynch_state == RESYNCH | N PROGRESS))

set_nv (fld[i].nv_id, newfield_value);

/1l Set the current word value to the updated val ue
bl ock_map[bl ock_nunj . word_val ue[word_nun] =

€ ECHELON 40

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1
/1
/1
/1
/1
/1
unsi

new val ue;

PROCEDURE: conp_checksun()

Conput e the checksum of a nessage just received.
This routine assunes that the nessage is waiting
in the nessage buffer.

gned char conp_checksum (voi d)

unsi gned char sum
int i;

/1 First, sumup the command and data portion of
/'l the nmessage in the buffer.
sum = O;
for (i = MSG_CQVD;
i < (MSG_CWD + nsg_buffer[MSG LEN]); i++)

sum += nsg_buffer[i];

/] Checksumis the bitwi se NOT of the sum
sum = ~sum

return (sunm;

€ ECHELON 41

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1
/1
/1
/1
/1
bool

{

Il
/11
/11
/11
/11
/11

PROCEDURE: checksum checks()
Does the checksum of the current nessage have
t he val ue that we expect?

ean checksum checks (void)

unsi gned char suni
bool ean ret;

/'l conmpute checksum of the input nmessage
sum = conp_checksun();

/] If the checksumis the sane as the checksum recei ved,
/1l the nmessage is validated. If not, it fails.

if (sum == nsg_buffer[M5SG CMD + nsg_buffer[MSG LEN])

{

ret = TRUE;
}
el se
{

ret = FALSE;
}

return (ret);

PROCEDURE: process_word_format ()

Process a nessage in word update format. This
format includes the I ength and ~l ength bytes,
foll owed by the WORD UPDATE MSG command byte
and the bl ock nunber byte. One or nore word

€ ECHELON 42

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/1l updates follow this--word nunber byte, followed
/1l by the two byte PLC word, |east significant

/1l byte first. The nessage is ended with the

/'l checksum byt e.

/1
unsi gned char process _word format (void)
{
unsi gned char ack_code;
i nt bl ock_num
word_num
field num
len, i;
pl c_word dat a_wor d;

/] assume a good nmessage format for now
ack _code = ACK;

/1 In word-format updates, the bl ock nunber
/'l occurs once, at the start of the nessage
bl ock_num = nsg_buf f er [M5SG_CVD+1] ;
| en = nsg_buffer[MSG_LEN] ;
if ((block_num>= NUM PLC BLOCKS) ||
(1 en > MAX_UPDATE_SI ZE) ||
((len %3) '= 2))
{ /1 invalid block nunber or nessage |ength
ack _code = NACK;

}
el se
{ /'l process each update word
for (i =2; i <len;)
{
word_num = nsg_buffer[MSG CVD + i];
++i ;
data word = (plc_word)nsg_buffer[MSG CVD + i];
++i ;

€ ECHELON 43

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

data word +=
((plc_word)nmsg _buffer[MG CVMD + i] << 8);
++i ;

translate_plc_input (block num word_num
data_word);

/] save status in order to Iimt NV changes
bl ock_map[bl ock_nunj . word_val ue[word_nun] =
dat a_wor d;

return (ack_code);

11

/1 PROCEDURE: process_bl ock fornat()

/1l Process a nessage in word update format. This
/1 format includes the I ength and ~l ength bytes,
/1 followed by the BLOCK UPDATE MSG command byt e.
/1 One or nore block updates foll ow this--Dblock
/1 nunber byte, followed by the block | ength byte,
/1l then all of the two byte PLC words in the

/'l block, least significant byte first. The

/'l message is ended with the checksum byte.

11

unsi gned char process_bl ock_format (void)

unsi gned char ack_code;

i nt bl ock_num num wor ds,
bl ock_si ze, pos,
| ast _pos, len, i;

€ ECHELON 44

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

pl c_word dat a_wor d;
ack _code = ACK; /1 assume success for now

/'l get first and | ast positions for nmessage parsing
| ast_pos = nsg_buffer[MSG LEN] + HEADER SI ZE - 1,
pos = M5G CVD + 1,

while (pos < | ast_pos)

{

bl ock_num = nsg_buffer[pos++];

num wor ds nsg_buffer[pos++];

bl ock_size = (int)(sizeof(plc_word) * numwords);

if ((block_num>= NUM PLC BLOCKS) ||
(numwords != bl ock_map[bl ock_num . num words) ||
((pos + block _size - 1) > last_pos))

{ /1 invalid nessage
ack_code = NACK;

br eak;
}
el se
{
for (i =0; i < block_size; i += 2)
{
data_word = (plc_word)nsg_buffer[pos+i];
data word +=
((pl c_word)nmsg_buffer[pos+i +1] << 8);
translate_plc_input (block num i/2,
data_word);
}
/] adjust position in nessage
pos += bl ock_si ze;
}

€ ECHELON 45

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

return (ack_code);

/1

/'l PROCEDURE: process_uplink_nsg()

/'l Process an incom ng nessage fromthe PLC
/1 Call routines to check the checksum and
/1l extract PLC update information. Finally,
/'l send an ACK if the nessage is in the

/1l proper format and the checksumis good,
/1 and send a NACK ot herw se.

/1

void process_uplink_nmsg (void)

{

unsi gned char ack_code; // ack code back to PLC

i f (checksum checks())
{ /'l Message succeeds, process it and ACK it
if (msg_buffer[M5G CVMD] == WORD UPDATE_NM5G)

{
ack _code = process_word format();
}
else if (nsg_buffer[MSG CVMD] == BLOCK UPDATE_NMSG
{
ack _code = process_block format();
}

else if (nsg_buffer[M5SG CVMD] == RESYNCH COVPLETE)
{ /'l no expected PLC resynch outstanding
resynch_state RESYNCH_NOT_NEEDED;
resynch_ti nmer TI MER_OFF;
guard_tinmer = TI MER OFF;

€ ECHELON 46

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

ack _code = ACK;

}

el se

{ /1 unknown conmmand
ack _code = NACK;

}

el se
{ /'l checksum failed, NACK the nessage
ack _code = NACK;

/1 Either ACK it or NACK it
slta_putchar (ack_code);

| | ++++++++++++++++++H+

/1 TX_ MBG NC -- Exanpl e LONWORKS gateway to PLC.
/1 Copyright (c) 1994 by Echel on Corporati on.

/1 Al R ghts Reserved.

/1

11 Date | ast nodified: 1/31/94

/1

/1 This file contains nost of the gateway code dealing
/[l with transmtting nmessages to the PLC. Routines
/1 included here:

/1

/1 check for _transmt()

/1 transl ate_pl c_out put ()
/1 downl i nk_nsg_success()
/1 assenbl e_downl i nk_nsg()
/1

| | ++++++++++++++++++H+

€ ECHELON 47

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

Il
/11
/11
/11
/11
Il

PROCEDURE: check for_transmt ()

This routine is called when the serial |ink
becones idle, to check for an outgoi ng nessage
fromthe Echel on gateway to the PLC

link state check for_transmt (void)

{

link state ret_state;
ret state = |IDLE; /1 default: return to | DLE

/1 1f a downlink nmessage is waiting and
/1l the PLCis not currently sending to us,
/] start the process of sending an update

if (resynch_state == RESYNCH | N_PROGRESS)

{ /] getting initial status fromPLC
ret_state = GUARD,

}

else if (plc_update pending ||
(resynch_state == RESYNCH REQUEST))

{
if (!slta_rxrdy())
{ /] alert other side to i nm nent nessage
slta_putchar (ALERT);
alert timer = ALERT_TI MEQUT;
ret_state = TX REQ
}
}

return (ret_state);

€ ECHELON 48

LONWORKS Engineering Bulletin

LonTalk-to-PLC Gateway

}
/1
/1 PROCEDURE: translate_plc_output()
/1l Determne the value of a PLC output word
/1l based on the current val ues of Network
/1l Variables in the gateway. This procedure
/1 is analogous to translate_plc_input().
/1
plc_ word translate plc_output (int block _num
int word_num
{
const field nv *fld;
unsi gned i nt i, numfields;
pl c_word tenp, val ue
/'l Prepare to cycle through all of the fields in
/1l a word, updating each of themfromthe val ue
/1 of the NV that drives it.
numfields =
bl ock_map[bl ock_nunj . word[word_nunj . num fi el ds;
fld = bl ock_map[bl ock_num . word[word_nunj.field;
val ue = 0;
for (i =0; i < numfields; i++)
{
tenp = get_nv (fld[i].nv_id);
switch (fld[i].field type)
{
case FTYPE LONG /'l no conversion needed
br eak;
case FTYPE CHAR
if (i '=0)
€ ECHELON 49

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

{ /1 only needs shifting if in upper byte
tenp = tenp << 8§;
}

br eak;

case FTYPE BITS:
tenp = tenp &
((-1) >> (16 - fld[i].bit_size));
tenp = tenp << fld[i].first_bit;
br eak;

def aul t:
++dbg_invalid_ftype;
br eak;

// ORin each field value to assenble PLC word
val ue | = tenp;

/] return PLC word val ue
return (val ue);

/1

/1 PROCEDURE: downlink _nsg _success()

/1 This routine is called when a downl i nk

/'l message is successfully conpl eted--an

Il ACK is received fromthe PLC. It resets

/1l the "update pending" flags for all of the

I/l PLC register words that were sent downli nk--
/1 provided that their val ues have not changed

€ ECHELON 50

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

/] in the neantine.

/1
link state downlink nmsg success (Vvoid)
{
link _state ret_state;
unsi gned int bl ock_num
word_num
len, i;

if (msg_buffer[M5G_CMD] == REQ RESYNCH)

{ /1 no downlink traffic until resynch conplete
resynch_state = RESYNCH | N PROGRESS;
guard_timer = RESYNCH TI MEQUT + 50;
resynch_timer = RESYNCH TI MEQUT,
ret_state = GUARD,

el se
{ /1 In word-format updates, the bl ock nunber
/1l occurs once, at the start of the nessage.
/'l This exanpl e program does not support
/'l bl ock-format updates.
bl ock_num = nsg_buf f er [M5SG_CVD+1] ;
| en = nsg_buffer[MSG_LEN] ;
for (i =2; i <len; i += 3)
{
word_num = nsg_buffer[M5SG CVD + i];
i f (block_map[bl ock_num .word_val ue[word_num ==
transl ate_pl c_out put (bl ock_num word_num)
{ /1 if update sent is current, clear status
CLEAR BI T(bl ock_map][bl ock_nunj . updat e_f I ags,
word_nun ;

/'l Update pending status by checking all status flags

€ ECHELON 51

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

pl c_updat e_pendi ng = FALSE;

for (i = 0;
i <SI ZECF_BI TMAP(bl ock_rmap[bl ock_nuni . num wor ds) ;
i ++)
{
i f (block_map[bl ock _num .update flags[i] != 0)
{
pl c_updat e_pendi ng = TRUE;
br eak;
}

/[l goto idle state after this
ret_state = | DLE

return (ret_state);

/1

/1 PROCEDURE: assenbl e_downlink_nsg()

/'l Assenbl e a nessage to send downlink. The gl oba
/1l flag plc_update pending tells whether there are
/1 any PLC words to be updated, and we check it here
/1 when | ooking at individual word status fl ags.

/1
link state assenble _downlink nsg (void)
{
link state ret;
i nt buffer_pos, i, j;
ret = | DLE /'l go to IDLE state if no downlink nsg

€ ECHELON 52

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

buf fer _pos = MSG_CVD;
if (resynch_state == RESYNCH REQUEST)
{ /'l send a resynch request
nmsg_buffer[buffer_pos++] = REQ RESYNCH
ret = TX M5G
}
else if (resynch_state == RESYNCH | N PROGRESS)
{ /1l not yet ready for downlink traffic
ret = GUARD,
}
el se
{ /1 Send a word-format update nessage downlink
nsg_buffer[buffer_pos++] = WORD UPDATE NSG
for (i =0; i < NUMPLC BLOCKS; i ++)
{
if (block _map[i].dir == PLC _QUTPUT)
{ /1 Only word-format updates fromthe gateway
/1l to the PLC are inplenented here.
for (j =0; j < block _map[i].numwords; |++)
{
if (BIT_IS SET(block _map[i].update_ fl ags,
i))

/1 bl ock num
nsg_buffer[buffer_pos++]

/1 word num
msg_buffer[buffer_pos++] = j;

bl ock_map[i].word val ue[j] =
translate _plc_output(i, j);
nmsg_buf fer[buffer_pos++] =
(unsi gned char)
bl ock_map[i].word_val ue[j];
nmsg_buf fer[buffer_pos++] =
(unsi gned char)

€ ECHELON 53

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

(block_map[i].word_value[j] >> 8);

ret = TX MG /] update to send

if (ret == 1DLE)

{ /'l there were no nmessages to be sent
pl c_updat e_pendi ng = FALSE;

}

else if (ret == GQUARD)

{ /1 do not hi ng

}

el se

{ /1 finish formatti ng the nmessage
nmsg_buffer[MSG LEN] = buffer_pos - MG CVD,
nmsg_buffer[MSG NOT_LEN] = ~nsg_buffer[MSG LEN ;
nmsg_buffer[buffer_pos] = conp_checksun();

return (ret);

€ ECHELON 54

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

Appendix B - A gateway to the Omron Sysmac CV500 PLC

The following code, written in a variant of the Basic programming language, runs
on an Omron BSC21 Basic Unit. This unit is available with various serial port
configurations. For the Gateway Demo, the Basic Unit was programmed through
the first EIA-232 port via a Windows 3.1 terminal emulator. The second serial port
was used for the gateway serial link. The PLC 1/0 points were polled every 100 ms,
which is the most frequent clock tick available.

PNAME "

NEW

PNAVE " GATEWAY"
PGEN 1

AUTO 10, 10

PARACT 0 WORK 4096
D M I N LAST% 1
D M STATE%

D M | DLE. CT%

DM | BYTE. CT%

DI M BYTE. NO%

D M ACK. CODE%

DM SUM%

DI M SYN. STATE%
DM MSG LEN%

DI M QUT. V5GP 12
DI M I N. CHAR$ 1
DI M I N. BLK$ 2
DI M QUT. BLK$ 2
DI M SENT. BLK$ 2

CPEN " COVR: 19200, N, 8, 1, XN' AS #2
ON TIMER 1 GOsUB *CLOCK. TI CK
ON COM2) GOsUB *I O IN

€ ECHELON 55

LONWORKS Engineering Bulletin

LonTalk-to-PLC Gateway

TI MER ON
coM2) ON
WA LE 1
PAUSE
VEND

END

* CLOCK. TI CK
| F (1 BYTE. CT = 0) THEN *IDLE. TI CK

| BYTE. CT = IBYTE.CT - 1

| F (1 BYTE. CT <> 0) THEN *IDLE. TI CK
STATE = 0

ACK. CODE = 21

COM 2) OFF

GOSUB * SEND. N. ACK

coM2) ON

*| DLE. TI CK

| F (IDLE. CT = 0) THEN *CHK. PLC. BLOCK
IDLE. CT = IDLE. CT - 1

| F (I DLE. CT <> 0) THEN *CHK. PLC. BLOCK
STATE = 0

| F (SYN. STATE = 2) THEN SYN. STATE = 1

| F (SYN. STATE <> 3) THEN *CHK. PLC. BLOCK
GOSUB * OUT. REQ

GOTO *EXI T. TI CK

* CHK. PLC. BLOCK

| F (SYN. STATE = 1) THEN GOSUB * QUT. REQ
| F (SYN STATE <> 0) THEN *EXI T. TI &K
COM (2) OFF

PC READ "@R 1, 1, 1A3": | N. BLK$

COM (2) ON

| F ((STATE = 0) AND (CVI (I N. BLK$) <> IN.LAST)) THEN GOSUB *OUT. REQ

*EXIT. TICK
RETURN

€ ECHELON

56

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

* QUT. REQ
COM 2) OFF

| F (STATE <> 0) THEN *QUI CK. OUT
QUTSTR$ = SPACES$(1)

M D$(QUTSTRS, 1, 1) = CHR$(1)

PRI NT #2, QUTSTRS;

| DLE. CT = 4

STATE = 1

*QUI CK. OUT

COM 2) ON

RETURN

* SEND. M5G

PC READ " @R 1, 1, 1A3"; | N. BLK$

| F (SYN. STATE = 1) THEN M5G LEN = 9 ELSE MSG LEN = 5
OUT. MBGs = SPACES$(MSG LEN + 3)

M D$(OUT. MBGS, 1, 1) = CHR$(MSG LEN)
M D$(OUT. MBGS, 2, 1) = CHR$((NOT MSG LEN) AND 255)
M D$(OUT. MBGS, 3, 1) = CHR$(145)

M D$(OUT. MSGS, 4, 1) = CHR$(0)

M D$(OUT. MBGS, 5, 1) = CHR$(1)

M D$(OUT. MSGS, 6, 1) = M D$(1 N. BLKS, 2, 1)

M D$(OUT. MSGS, 7, 1) = M D$(1 N. BLKS, 1, 1)

SUM = 146
SUM = SUM + ASC(M D$(1 N. BLKS, 2, 1))

SUM = SUM + ASC(M D$(1 N. BLKS, 1, 1))

| F (SYN STATE <> 1) THEN *WRAP. UP

PC READ " @R 0, 1, 1A3"; OUT. BLK$

M D$(OUT. MBGS, 8, 1) = CHR$(1)

M D$(OUT. MBGS, 9, 1) = CHR$(1)

M D$(OUT. MBGS, 10, 1) = M D$(OUT. BLKS, 2, 1)
M D$(OUT. M5G$, 11, 1) = M D$(OJT. BLKS, 1, 1)
SUM = SUM + 2

SUM = SUM + ASC(M D$(OUT. BLKS, 2, 1))

SUM = SUM + ASC(M D$(OUT. BLKS, 1, 1))

€ ECHELON 57

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

*\\RAP. UP
SUM = NOT SUM

M D$(OUT. MSG$, MSG LEN+3, 1) = CHR$(SUM AND 255)
PRI NT #2, OUT. MBGS;

| DLE. CT = 9

| F (SYN. STATE = 1) THEN SYN. STATE = 2

SENT. BLK$ = | N. BLK$

STATE = 3
RETURN
*SEND. RC. MG

OUT. MBG$ = SPACES$(4)
M D$(OUT. MSGS, 1, 1) = CHR$(1)

M D$(OUT. MSG$, 2, 1) = CHR$(254)
M D$(OUT. MSG$, 3, 1) = CHR$(177)
M D$(OUT. MSGS, 4, 1) = CHR$(78)

PRI NT #2, QUT. M5GS;
IDLE. CT = 4

SYN. STATE = 3
STATE = 3

RETURN

*IOIN

TI MER OFF

|E (LOX(2) = 0) THEN *I N. DONE

I N. CHAR$ = | NPUT$(1, #2)

| E ((STATE = 0) AND (ASC(IN. CHAR$) = 1)) THEN *MSG BEG N
| E (STATE = 4) THEN *MSG. | NPUT

| E (STATE = 3) THEN *RCV. ACK. NACK
| F (STATE = 1) THEN *RCV. ALERT. ACK ELSE *I N. DONE
*MBG BEG N

GCSUB *RX. BEG N
GOTO *| N. DONE
*MBG | NPUT
GCSUB * RX

€ ECHELON 58

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

GOTO *| N. DONE
* ROV. ACK. NACK
| F (ASC(I N. CHAR$) <> 6) THEN * CHK. FOR NACK

| E ((SYN. STATE = 0) OR (SYN. STATE = 2)) THEN I N. LAST =
CVI (SENT. BLK$)

IDLE.CT = 0
STATE = 0

| E (SYN. STATE
| E (SYN. STATE
GOTO *1 N. DONE
* CHK. FOR. NACK
| F (ASC(I N. CHAR$) <> 21) THEN *I N. DONE
IDLE.CT = 0
STATE = 0

| E (SYN. STATE
| E (SYN. STATE
GOTO *1 N. DONE
* RCV. ALERT. ACK
| F (ASC(I N. CHAR$) <> 254) THEN *| N. DONE
STATE = 2

| E ((SYN. STATE
| E ((SYN. STATE
*| N. DONE

TI MER ON
RETURN

3) THEN SYN. STATE = 0O
2) THEN GOSUB *QUT. REQ

2) THEN SYN. STATE = 1
3) THEN GOSUB * QUT. REQ

2) OR (SYN. STATE
0) OR (SYN. STATE

3)) THEN GOSUB * SEND. RC. MSG
1)) THEN GOSUB * SEND. MSG

* SEND. N. ACK
OUT. MSG$ = CHR$(ACK. CODE)
PRI NT #2, OUT. MBGS;

RETURN

*RX. BEG N

QUT. MSGS = CHR$(254)

PRI NT #2, OUT. MBGS;
BYTE.NO = 0

QUT. BLK$ = SPACES$(2)

€ ECHELON 59

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

STATE = 4

RETURN

*RX

BYTE. NO = BYTE.NO + 1
| BYTE. CT = 2

| E (BYTE.NO = 1) THEN *GET. MBG LEN

| E (BYTE. NO = 2) THEN *CHK. MBG LEN

| E (BYTE. NO = 3) THEN *CHK. MBG CVD

| E ((BYTE.NO = 4) AND (SYN. STATE = 1)) THEN *MSG FI NI SH
| E (BYTE. NO = 4) THEN *CHK. MBG BLK

| F (BYTE. NO = 5) THEN *CHK. MBG WORD

| E (BYTE.NO = 6) THEN *GET. BLK. LOW

| F (BYTE.NO = 7) THEN *GET. BLK. H GH

| E (BYTE.NO = 8) THEN *MBG FI NI SH ELSE *RX. EXI T
* GET. MBG. LEN

MBG LEN = ASC(| N. CHARS)

GOTO *RX. EXI T

* CHK. MBG LEN

| F (((NOT MSG LEN) AND 255) = ASC(IN CHAR$)) THEN *RX. EXI T ELSE
*FAl LED. M5G

* CHK. MBG. OVD

SUM = ASC(1 N. CHARS)

| E (ASC(I N. CHAR$) = 129) THEN *RX EXI T

| FE (ASC(I N. CHAR$) = 161) THEN SYN STATE = 1 ELSE *FAl LED. MBG
GOTO *RX. EXI T

* CHK. MBG BLK

SUM = SUM + 1

| E (ASC(| N. CHARS)
* CHK. MBG. WORD

| E (ASC(| N. CHARS)
* GET. BLK. LOW
SUM = SUM + ASC(| N. CHARS)

M D$(OUT. BLK$, 2, 1) = | N. CHARS
GOTO *RX. EXI T

1) THEN *RX. EXIT ELSE *FAI LED. M5G

0) THEN *RX EXIT ELSE *FAI LED. M5G

€ ECHELON 60

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

* GET. BLK. HI GH

SUM = SUM + ASC(| N. CHARS)

M D$(OUT. BLK$, 1, 1) = | N. CHARS

GOTO *RX. EXI T

*VBG FI NI SH

SUM = (NOT SUM AND 255

| F (SUM = ASC(I N. CHAR$)) THEN ACK. CODE = 6 ELSE ACK. OCDE = 21

| E ((ACK. CODE = 6) AND (SYN. STATE = 0)) THEN PC WRI TE
"@R 0, 1, 1A3"; OUT. BLK$

GOSUB * SEND. N. ACK
| BYTE.CT = 0
STATE = 0

QOTO *RX. EXIT

*FAI LED. M5G

ACK. CCDE = 21
GOSUB * SEND. N. ACK
| DLE. CT = 2

| BYTE.CT = 0
STATE = 5
*RXEXIT

RETURN

END PARACT

€ ECHELON 61

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

Disclaimer

Echelon Corporation assumes no responsibility for any errors contained herein.
No part of this document may be reproduced, translated, or transmitted in any form without permission from Echelon.

Part Number 005-0044-01 Rev. A

© 1994 Echelon Corporation. Echelon, LON, Echelon Corporation Echelon Europe Ltd Eche_lon Jape_a_n KK.

Neuron, 3150, LonBuilder, LonTalk, and 4015 Miranda Avenue Elsinore House Kammo_Sholl_BIdg. 8F
LonManager are U.S. registered trademarks of Palo Alto, CA 94304 17 :glzavvgagjaﬁe Road gi’"? Hlv%aslr(n-qrotsndijl-chome
Echelon Corporation. LONWORKS, Telephone (415) 855-7400 England Telophone (03) 34407761
LONMARK, and 3120 are trademarks of Fax (415) 856-6153 Telephone +44-81-563-7077 Fax (03) 3440-7782

Echelon Corporation. Some of the LONWORKS Fax +44-81-563-7055

products are patented and are subject to
licensing Terms and Conditions. For a complete
explanation of these Terms and Conditions,
please call 1-800-258-4LON.

€ ECHELON 62

