
Building a LONTALK
®-to-PLC Gateway

May 1994 LONWORKS™ Engineering Bulletin

Introduction
In the industrial controls arena, centralized Programmable Logic Controllers (PLCs)
have long been the standard control system. LONWORKS technology offers a
powerful means for implementing industrial control systems that perform
distributed sensing, monitoring, and control. As users migrate to distributed control
systems that offer lower cost and better diagnostic capability per I/O point, these
systems will be found side by side with PLCs on the factory floor.

This bulletin describes a general approach for building a gateway between a
Programmable Logic Controller and a LonTalk network, with specific examples
coming from a gateway implemented between a LonTalk network and an Omron
PLC.

Outside of industrial control applications, users of the Echelon Programmable Serial
Gateway will find this sample gateway application useful for the general concepts
that are necessary for all gateway products: management of the serial link and
migration of control points between a LonTalk network and another type of
network.

The example code in this bulletin was first demonstrated on an Omron CV500 PLC
in September 1993. Echelon has no plans to maintain or support this example.

Glossary of Terms
The following terms are used throughout this bulletin:

Gateway Demo - a gateway to an Omron PLC that was implemented by Echelon for
the Instrument Society of America trade show in September of 1993. This demo
included an Echelon LonWorks Programmable Serial Gateway (PSG) and an Omron
CV500-BSC21 EIA-232 interface unit. The Omron unit is programmed using the
Basic programming language.

I/O points, blocks and modules - an I/O point is an interconnection between a logic
controller and one logical device. An I/O block is a grouping of I/O points from the
perspective of the control logic. An I/O module is a hardware interface, typically
providing physical connection to several I/O points.

PLC - Programmable logic controller. A centralized, user-programmable industrial
I/O controller.

PLC side - The PLC side of the gateway, consisting of the Omron programmable EIA-
232 interface.

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

2

PSG, PSG side - the term programmable serial gateway refers to two Echelon
products, each containing a Neuron Chip, PROM socket, and UART, which may be
programmed by the user to implement a serial gateway to a LonTalk network. The
model 65200 PSG-10 product is a single in-line module (SIM) that may be embedded
in OEM products. The model 73000-3 Programmable Serial Gateway is the packaged
Echelon Serial LonTalk Adapter (SLTA) product without the SLTA firmware or
control module. The Gateway Demo was implemented with the 73000-3 PSG,
custom firmware, and a TP/XF-78 twisted-pair control module.

Overview of PLC Architecture
PLCs provide the ability to monitor and control industrial processes. The interface
to the physical industrial process is a variety of process control signals conveying
temperature, relay status, motor speed, and other process control information. The
PLC senses and controls the various process control signals according to the user-
defined control logic.

A PLC typically consists of a main system controller unit and I/O modules. The
main system controller is responsible for executing the user program. The I/O
modules provide the interface to the I/O devices. The main system controller may
be packaged in a separate box, as seen in figure 1, or in the same type of enclosure as
the I/O modules. The interface between the main system controller and the I/O
modules is a proprietary design of the manufacturer.

Main System
Controller

I/O Modules

Local I/O Bus

Process
Control
Wiring

Figure 1 A Typical PLC Architecture

PLC manufacturers typically provide an EIA-232 interface to the main system
controller—either directly integrated in the system controller or in a form factor
similar to an I/O module, as shown in figure 2. This EIA-232 interface allows an

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

3

interface device to exchange data with the main system controller, enabling third-
party devices to be integrated into the industrial automation system. Echelon's serial
gateway products, the PSG-10 and the model 73000-3 Programmable Serial Gateway,
can be programmed to communicate with PLCs through an EIA-232 interface,
allowing Neuron-based devices to be integrated into the PLC automation system.

PSG

LonTalk Intelligent I/O Modules

EIA-232

Main System
Controller

Figure 2 PLC to LonTalk Connectivity

Migration of Control Points
PLC I/O points are controlled through a register map within the system controller.
Blocks of I/O points are mapped into registers to allow easy manipulation by the
PLC control program. For example, the Gateway Demo includes 16 input switches
and 16 output LEDs, for a total of 32 I/O points. Since each of these control points
may only have status values of ON or OFF, each may be mapped to a control register
using just one bit. Thus, one 16-bit input word and one 16-bit output word are
brought out to the LonTalk network by the Gateway Demo.

LonTalk I/O points, known as network variables, are defined to allow devices from
disparate manufacturers to communicate with each other. Echelon's Standard
Network Variable Types, as described in [2], provide standard units of measurement
for common control quantities such as pressure, temperature, and volume.

The task of the gateway is to translate input points from the PLC into output points
on the LonTalk network, and input points on the LonTalk network to output points

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

4

on the PLC. The Gateway Demo does this through a set of translation tables, as
shown in figure 3.

Direction

Number of Words

Words Structs

Word Value

Update Flags

Number of Fields

Field Structs

Field Type

First Bit

Bit Size

Net Variable ID

One per PLC Block One per Block Word One per Word Field

16-bit Value

One per Block Word

One bit per Block Word

Block Number

Word Number

One per Input NV

Figure 3 Translation Tables for PLC Gateway

The Gateway Demo groups common control points into I/O blocks. PLC I/O blocks
are assumed to consist of one or more 16-bit words, with a word being the smallest
unit of update data sent on the PLC-PSG link. Each word is composed of one or
more fields, where each field represents a PLC control point that will be converted to
a LonTalk control point. The field types are: 1) bit fields, consisting of from 1 to 15
bits at any location in the word, 2) char fields, consisting of 8 bits, starting at either
bit 0 or bit 8 in the word, or 3) long fields, consisting of the entire 16-bit word.

Each word update that arrives over the serial link is processed by looking at the
mapping tables. Once the update is reduced to its component fields, a site-specific
routine, set_nv() is called to perform any necessary normalization and set the NV
value for propagation over the network.

In the other direction, when an input network variable is updated, it determines via
table lookup which PLC word should change and sets the update flag for that word.
The next time that the serial link state machine checks for pending updates to the
PLC, it determines which words should be updated and assembles the new values
for those words. This is done by breaking the word up into fields, just as in the PLC

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

5

input case, and then calling a site-specific routine, get_nv(), to transform an NV
value into a field value.

The site-specific mapping tables as well as set_nv() and get_nv() are in the file
xlate.nc of the demo software. The input NV processing resides in a when
statement in the file plcgate.nc.

Serial Link Protocol
The serial gateway protocol between the PLC side and the PSG has to meet a few
requirements. It must reliably handle control point updates in both directions on
the serial link, arbitrating ownership of the link. It must verify data received over
the serial link. It must be flexible enough to handle a wide range of functionality on
the PLC side—from dedicated serial port processors to multi-tasking control units
which handle serial input in the background.

The serial link control state machine is shown in figure 4. The states shown are:

IDLE - No link activity.

GUARD - Behaves just like IDLE on incoming events from the PLC gateway side.
No outgoing messages are initiated while in this state. It is used, for example,
right after reset to listen for activity on the serial link when resynching. As
shown in figure 6, when a transmitted message gets a negative
acknowledgment, it is also used to give the other side a chance to transmit
before retrying.

RX_MSG - Receiving an incoming message. An incoming ALERT has been
acknowledged, and we are processing incoming data bytes.

RX_NACK - An incoming message has been invalidated, and we are throwing
away incoming data bytes and waiting a brief amount of time before sending a
NACK.

TX_REQ - An outgoing message request (ALERT) has been sent, and we are
waiting for an ALERT ACK.

TX_MSG - Transmitting an outgoing message.

TX_DONE - Done transmitting an outgoing message, we are waiting for an ACK
or NACK from the other side.

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

6

IDLE

TX_REQ

TX_MSG

TX_DONE

RX_MSG

Send ALERT

GUARD
Receive ALERT

RX_NACK

Length,
Not Length
Failure

ALERT
ACK
Received

Transmission
Complete

Receive ALERT

NACK Received

ACK Received

Send NACK

Send
ACK
or NACK

Guard
Timeout

Figure 4 The Serial Link State Machine

Due to space limitations, state transitions due to timeouts are not included in the
diagram. The one exception is the transition from GUARD to IDLE state, which is
the only non-exception timeout in the state machine. Other timers and their
timeout handling may be examined in plcgate.nc. Timeout values will be site-
specific, dependent on the serial bit rate, processor speeds, UART buffering, etc. To
tune the timeouts for a particular site, choose likely values and observe the
numbers of exception timeouts logged in the Gateway Demo's dbg_... variables.
Be sure that initial timeout values are low enough that you see some timeouts, then
raise them until they are rare. See the chapter Using a Programmable Serial
Gateway in [1] for information about using the LonBuilder debugging environment
for tuning the Gateway Demo for your site.

The protocol defined here is meant to contain a superset of features that may be
necessary at a particular site. The link between the gateway sides is a point-to-point
link which needs to communicate control point status changes. In most cases, and
certainly for the Gateway Demo, all status updates for the gateway control points

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

7

will fit into one update message. Successful completion of an update message
means that, for the time being, both sides of the gateway agree on the state of its
control points. Features of the link protocol include:

• An ALERT/ACK sequence that ensures that the receiver has time to prepare
for message reception.

• Length, Not Length, and Checksum bytes to verify that the message bytes are
received in order and without bit errors.

• An ACK/NACK to tell the sender when an update message has been
successfully received.

The link layer packet format is shown in figure 5. If the PLC side is capable of
reacting quickly to serial activity and buffering characters, the ALERT/ACK sequence
can be replaced with a simple ALERT byte at the beginning of the message. In this
case, the TX_REQ state should be removed from the state machine as well as the
sending of ALERT ACK byte in the IDLE and GUARD states. This will speed up
response time on a slow serial link.

length

ALERT (01)

not_length

command

[data]

checksum

ACK (or NACK)

Link-Layer
Header

Sender Receiver

ACK: 0x06, NACK: 0x15

ALERT ACK (FE)*

*Only transmitted with
ALERT/ACK link

protocol

Figure 5 Link Layer Protocol

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

8

There are two update message formats, as shown in figure 6. The Word Update
message will probably be more common during normal system operation, since
only one or two words per block are likely to change within an update window. The
Block Update message is more useful for resynchronization (see next section) or
where many words are likely to change state simultaneously.

Block Number

Word Number

Word LSB

Word MSB

Block Number

No. of Words

Word 1 LSB

Word 1 MSB

Word N LSB

Word N MSB

Block Update Format,
One per Changed Block

Word Update Format,
One per Changed Word

Figure 6 Update Message Data Formats

Resynchronization upon Reset
In a distributed network, one of the most challenging aspects of the design is
handling resynchronization of the network when some group of nodes is reset.
Data that is distributed throughout a system must find its way back to the places
where it is needed.

Since the PLC gateway will be part of a larger system that will have a specific data
flow, this problem may be site-specific. The Gateway Demo, however, assumes that
the PLC is the master in a master-slave system.

When the Gateway Demo is reset, the PSG side of the gateway sends a Request
Resynch message to the PLC side and waits for a response. The PLC side responds by
sending a current status for all I/O blocks, both input and output, that are known to
the gateway. The PSG side updates all network variable values during this time,
output and input. The end of this phase is signaled by a Resynch Complete
command from the PLC side. If the PSG side gets input NV updates after the reset

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

9

but before the PLC side resynchs, they will not be overridden by the resynch
information, and instead will be sent to the PLC side after the resynch is complete.

Left As an Exercise for the User
Perhaps as important as the description of what is included in the Gateway Demo is
a description of what is not.

The Gateway Demo has only been tested as a demonstration application. When
integrating it into one of your products, a thorough unit and system test cycle is
required.

No performance analysis has been done on the Gateway Demo. Any such analysis
would specifically apply to the Gateway Demo, and not be generally applicable.
Performance factors to keep in mind when building a gateway are: How often can
PLC registers be polled? What is the maximum speed of the PLC's EIA-232 link?
Can the PLC's EIA-232 unit handle asynchronous serial input without the
ALERT/ACK sequence? Is it acceptable to throw away updates when you get a
checksum error on a received message? In a real installation, expected traffic loads
should be tested and error rates and handling verified.

No diagnosis of the serial link is included, as it is assumed that the LonTalk
network is slave to the PLC control logic. If the LonTalk network has more built-in
alarms, the user may want to add a periodic "pinging" of the serial link and a
network variable giving the link status.

References

1. Serial LonTalk® Adapter and Serial Gateway User's Guide, revision 5, Echelon
Corporation.

2. The SNVT Master List and Programmer's Guide, Echelon Engineering Bulletin.

3. Neuron C Programmer's Guide, revision 2, Echelon Corporation.

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

10

Appendix A - The Programmable Serial Gateway Code
The files appear in the following order: plcgate.h, plcgate.nc, xlate.nc,
rx_msg.nc and tx_msg.nc. These were compiled and tested on LonBuilder release
2.2. Debugging was done on a LonBuilder emulator with a model 73000-3
Programmable Serial Gateway, Module Application Interface, and Application
Interface Board as described in [1], in the chapter entitled Using a Programmable
Serial Gateway. Soft copies of these files are available on LONlink.

//+++

// PLCGATE.H -- Example LONWORKS gateway to PLC.

// Copyright (c) 1994 by Echelon Corporation.

// All Rights Reserved.

//

// Date last modified: 1/31/94

//

// Definitions file for the Programmable Serial

// Gateway interface to a PLC. Definitions include

// protocol constants, timeout values, and PLC register

// to Network Variable encoding and decoding.

//

//+++

#pragma enable_sd_nv_names // turn on self-documentation

typedef unsigned long ulong;

typedef unsigned long plc_word;

typedef unsigned char bits;

//+++

// SITE-SPECIFIC SECTION

//+++

// System Timeouts (in milliseconds)

#define TIMER_OFF 0 // must keep this 0!

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

11

#define INTER_BYTE_TIMEOUT 100

#define OUT_OF_SYNCH_TIMEOUT 200

#define RX_NACK_TIMEOUT 100

#define RETRY_TIMEOUT 100

#define WAIT_FOR_ACK_TIMEOUT 450

#define ALERT_TIMEOUT 450

#define RESYNCH_TIMEOUT 10000

// Current number of PLC register blocks that we are

// passing through. Input/output is with respect to

// the PLC, so associated Network Variables will have

// the opposite direction.

#define NUM_INPUT_BLOCKS 1

#define NUM_OUTPUT_BLOCKS 1

#define NUM_PLC_BLOCKS 2

#define NUM_INPUT_WORDS 1

#define NUM_OUTPUT_WORDS 1

#define NUM_INPUT_FIELDS 16

#define NUM_OUTPUT_FIELDS 16

// input NVs go to output PLC register fields

#define NUM_INPUT_NVS NUM_OUTPUT_FIELDS

#define NUM_OUTPUT_NVS NUM_INPUT_FIELDS

//

// The following enum has a couple of uses:

// 1) index a case statement in the PLC

// register to output NV conversion

// routine set_nv(). During normal

// processing, set_nv() is only used

// to set output NV values, but during

// a resynch following reset, input

// NV values are updated from the PLC.

// 2) Used for input NVs to index into

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

12

// the nv_to_plc array in order to

// determine what PLC word must be

// updated following an NV update.

// Use the offset from FIRST_INPUT_NV

// to determine the place in nv_to_plc.

//

// In order to work, all Input NVs should

// be consecutive values in the enum.

//

typedef enum {

 NVO_LEV_DISC_0 = 0,

 NVO_LEV_DISC_1,

 NVO_LEV_DISC_2,

 NVO_LEV_DISC_3,

 NVO_LEV_DISC_4,

 NVO_LEV_DISC_5,

 NVO_LEV_DISC_6,

 NVO_LEV_DISC_7,

 NVO_LEV_DISC_8,

 NVO_LEV_DISC_9,

 NVO_LEV_DISC_10,

 NVO_LEV_DISC_11,

 NVO_LEV_DISC_12,

 NVO_LEV_DISC_13,

 NVO_LEV_DISC_14,

 NVO_LEV_DISC_15,

 NVI_LEV_DISC_0, // Input NVs

 NVI_LEV_DISC_1,

 NVI_LEV_DISC_2,

 NVI_LEV_DISC_3,

 NVI_LEV_DISC_4,

 NVI_LEV_DISC_5,

 NVI_LEV_DISC_6,

 NVI_LEV_DISC_7,

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

13

 NVI_LEV_DISC_8,

 NVI_LEV_DISC_9,

 NVI_LEV_DISC_10,

 NVI_LEV_DISC_11,

 NVI_LEV_DISC_12,

 NVI_LEV_DISC_13,

 NVI_LEV_DISC_14,

 NVI_LEV_DISC_15

} nv_ref_id;

#define FIRST_INPUT_NV NVI_LEV_DISC_0

//+++

// end SITE-SPECIFIC SECTION

//+++

// macros for handling bitmap structures

#define MAX_BITMAP (256/8)

// use the following to size a bitmap array declaration

#define SIZEOF_BITMAP(num_bits) ((num_bits)/8 + 1)

// use the following to manipulate bits within a map

#define SET_BIT(bitmap, id) \

bitmap[(id)/8] |= (1 << ((id) % 8))

#define CLEAR_BIT(bitmap, id) \

bitmap[(id)/8] &= ~(1 << ((id) % 8))

#define BIT_IS_SET(bitmap, id) \

(bitmap[(id)/8] & (1 << ((id) % 8)))

// Macros for serial protocol encoding and decoding

#define ALERT 0x01 // Alert for msg receipt

#define ALERT_ACK 0xFE // ack upcoming msg

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

14

#define ACK 0x06 // verify msg receipt

#define NACK 0x15 // Negative acknowledge

// message types

#define WORD_UPDATE_MSG 0x81 // block/word format

#define BLOCK_UPDATE_MSG 0x91 // Update format of block

#define REQ_RESYNCH 0xA1 // Req resynch from PLC

#define RESYNCH_COMPLETE 0xB1 // PLC resynch done

// Macros for locations of bytes within a message record

#define MSG_LEN 0

#define MSG_NOT_LEN 1

#define MSG_CMD 2

// Message header includes a length byte

// and a bitwise NOT of the message length.

#define HEADER_SIZE 2

// A one-byte checksum at the end of the

// message is not included in the msg length

#define CHECKSUM_SIZE 1

// Message size does not include the message

// header. It includes the message type, data

// and one checksum byte. The maximum update

// size was chosen to limit the length of

// timeouts in the link protocol.

// Most updates should be much smaller.

#define MAX_UPDATE_SIZE 64

// A structure of the following type will be used

// to give the mapping from input NV to PLC block

// and word number.

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

15

typedef struct {

 int block_num;

 int word_num;

} nv_to_plc;

// The following structures map PLC register blocks

// to LonTalk Network Variables. Each block is made

// up of words, which are made up of one or more

// fields, which map to Network Variables.

typedef enum {

 FTYPE_CHAR, // 8-bit field

 FTYPE_LONG, // 16-bit field

 FTYPE_BITS // 1 to 15 bit field

} ftype;

typedef struct {

 // Bit order of word is 15 to 0

 ftype field_type;

 // FTYPE_BITS, first bit of field

 unsigned first_bit : 4;

 // FTYPE_BITS, number of bits in field

 unsigned bit_size : 4;

 // #define uniquely identifying NV

 nv_ref_id nv_id;

} field_nv;

typedef struct {

 int num_fields;

 // assoc array of field structures

 const field_nv *field;

} word_fields;

typedef enum {

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

16

 PLC_OUTPUT = 0,

 PLC_INPUT

} block_dir;

typedef struct {

 // input or output I/O block?

 block_dir dir;

 int num_words;

 // assoc array of word structures

 const word_fields *word;

 // latest word value (not necessarily PLC value)

 plc_word *word_value;

 // word update needed? bit flags

 bits *update_flags;

} block_words;

// The following enum keeps the state of the RS-232 link

// in order to prevent clashes between incoming and out-

// going messages.

typedef enum {

 IDLE, // Idle, no uplink or downlink traffic

 RX_MSG, // Receiving a message uplink from PLC

 RX_NACK, // Received message had invalid header,

 // wait for right time to NACK

 TX_REQ, // We have ALERTed, waiting for ALERT-ACK

 TX_MSG, // Sending a message downlink to PLC

 TX_DONE, // Done sending, waiting for ACK or NACK

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

17

 GUARD // A recovery state where we do not

 // attempt to send any downlink traffic

} link_state;

// After a reset, the gateway tries to resynchronize with

// the PLC by sending a REQ_RESYNCH command down to it. The

// PLC should respond by sending the current status of all

// blocks--input and output--followed by a RESYNCH_COMPLETE

// message. In a hierarchical system like this, you have to

// trust that the master--the PLC--is alive and well.

typedef enum {

 RESYNCH_NOT_NEEDED, // no resynch needed

 RESYNCH_REQUEST, // REQ_RESYNCH in progress

 RESYNCH_IN_PROGRESS, // in this state from successful

 // send of REQ_RESYNCH until

 // either resynch timeout or

 // receive RESYNCH_COMPLETE

} synch_state;

//+++

// PLCGATE.NC -- Example LONWORKS gateway to PLC.

// Copyright (c) 1994 by Echelon Corporation.

// All Rights Reserved.

//

// Date last modified: 1/31/94

//

// This is an interoperable LonWorks Serial Gateway

// to Programmable Logic Controller (PLC) implementation.

// The site-specific code in this example monitors

// one PLC input word and updates one PLC output word.

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

18

// Despite the small number of control points shared

// between the PLC and the LonTalk network, the gateway

// code is structured to be easily scalable to larger

// numbers of monitored PLC registers or larger numbers

// of Network Variables.

// The serial link protocol is designed to be PLC-

// independent. It assumes a PLC I/O register structure

// that is common, and the link timeouts are configurable

// to allow for easy tuning.

//

//+++

#include <stddef.h>

#include <slta.h>

#include <SNVT_lev.h>

#include "plcgate.h"

//

// Debugging error counts for fine-tuning the

// serial link timeouts and debugging translation

// tables. May be removed to free some RAM in

// the final product.

//

int dbg_alert_timeout,

 dbg_ack_nack_timeout,

 dbg_header_error,

 dbg_collision,

 dbg_out_of_synch,

 dbg_mapping_error,

 dbg_invalid_ftype,

 dbg_invalid_state,

 dbg_receive_timeout,

 dbg_nacked_msg,

 dbg_early_nack,

 dbg_resynch_timeout;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

19

char oos_char;

// Serial Link message buffer and state

unsigned int msg_buffer [HEADER_SIZE + MAX_UPDATE_SIZE +
CHECKSUM_SIZE];

unsigned int curr_msg_byte = 0;

link_state state = IDLE;

boolean plc_update_pending = FALSE;

synch_state resynch_state = RESYNCH_REQUEST;

// Serial link protocol timers

mtimer data_receive_timer;

mtimer tx_ack_nack_timer;

mtimer resynch_timer;

mtimer rx_nack_timer;

mtimer guard_timer;

mtimer alert_timer;

//+++

// Include some more code files after the global

// variable declarations. The site-specific code

// is confined to xlate.nc, plcgate.h, and a

// well-marked section of the current file.

//+++

#include "xlate.nc" // translation tables: PLC <--> NV

#include "rx_msg.nc" // receive updates from PLC

#include "tx_msg.nc" // transmit updates to PLC

// Programmable Serial Gateway initialization

when (reset)

{

 int i;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

20

 // Initialize the attributes of the PLC link

 // SITE-SPECIFIC CODE:

 slta_init (format_8N1, baud_19200, intfc_8wire);

 // end SITE-SPECIFIC CODE

 // Queue a request to the PLC for resynch. After

 // a reset, we reset our current snapshot of all

 // PLC blocks--input and output--based on values

 // we read from the PLC. We will then let NV

 // updates proceed as usual.

 // First, give any backed up uplink traffic a chance

 guard_timer = INTER_BYTE_TIMEOUT;

 state = GUARD;

}

//

// Receive bytes on the serial link. Receiving on

// the serial link is the highest priority, followed

// by transmitting on the link.

//

priority when (slta_rxrdy())

{

 char ch;

 ch = (char)slta_getchar(); // read UART

 switch (state)

 {

 // Receive message state: An ALERT

 // has been received and acknowledged, and

 // we expect a full message to follow.

 case RX_MSG:

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

21

 data_receive_timer = INTER_BYTE_TIMEOUT;

 msg_buffer[curr_msg_byte] = ch;

 ++curr_msg_byte;

 if (curr_msg_byte < HEADER_SIZE)

 {

 ; // No error checking to be done yet

 }

 else if (curr_msg_byte == HEADER_SIZE)

 {

 if (~msg_buffer[MSG_LEN] !=

msg_buffer[MSG_NOT_LEN])

 {

 ++dbg_header_error;

 rx_nack_timer = RX_NACK_TIMEOUT;

 state = RX_NACK;

 }

 }

 else if (curr_msg_byte ==

 (msg_buffer[MSG_LEN]+HEADER_SIZE+CHECKSUM_SIZE))

 {

 data_receive_timer = TIMER_OFF;

 process_uplink_msg();

 curr_msg_byte = 0;

 // check for message to transmit

 state = check_for_transmit();

 }

 break;

 // The receive NACK state indicates that an error

 // occurred while receiving a message, and we

 // are ignoring received chars until the RX

 // NACK timer expires, when we will send a NACK.

 case RX_NACK:

 break;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

22

 // The transmit request state indicates that we

 // have sent an ALERT in anticipation of sending

 // a downlink message, and are waiting for an

 // acknowledgement.

 case TX_REQ:

 alert_timer = TIMER_OFF;

 if (ch == ALERT_ACK)

 { // the other side is ready for our message

 state = TX_MSG;

 break;

 }

 else if (ch == ALERT)

 { // other side is also sending,

 // receive its message first

 ++dbg_collision;

 slta_putchar (ALERT_ACK);

 curr_msg_byte = 0;

 state = RX_MSG;

 break;

 }

 // NO BREAK HERE!! Fall through to TX_MSG!!

 // The transmit message states indicates that

 // we are sending a message downlink. We do

 // not expect to receive any bytes in this

 // state, so any received bytes are in error.

 case TX_MSG:

 if (ch == NACK)

 { // The other side probably did not

 // receive the LENGTH and NOT LENGTH

 // bytes accurately. Set the guard

 // timer just in case the other side

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

23

 // has a message coming right behind

 // the NACK. When GUARD state times

 // out, it will retry downlink msg.

 ++dbg_early_nack;

 curr_msg_byte = 0;

 guard_timer = INTER_BYTE_TIMEOUT;

 state = GUARD;

 }

 else

 { // out of synch, try to make the other

 // side back off, enter GUARD state

 ++dbg_out_of_synch;

 oos_char = ch;

 slta_putchar (NACK);

 curr_msg_byte = 0;

 guard_timer = OUT_OF_SYNCH_TIMEOUT;

 state = GUARD;

 }

 break;

 // The transmit done state indicates that we

 // have finished sending a downlink message

 // and are expecting an ACK or NACK from the

 // other side.

 case TX_DONE:

 tx_ack_nack_timer = TIMER_OFF;

 if (ch == ACK)

 { // update our PLC status to reflect

 // the info we just sent downlink

 state = downlink_msg_success();

 // check for message to transmit

 if (state == IDLE)

 {

 state = check_for_transmit();

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

24

 }

 }

 else if (ch == NACK)

 { // attempt to resend the message

 // after giving uplink a chance

 ++dbg_nacked_msg;

 guard_timer = RETRY_TIMEOUT;

 state = GUARD;

 }

 else

 { // unexpected uplink data

 ++dbg_out_of_synch;

 oos_char = ch;

 slta_putchar (NACK);

 guard_timer = OUT_OF_SYNCH_TIMEOUT;

 state = GUARD;

 }

 break;

 // The protocol only allows sending a message

 // after a successful ALERT-ALERT/ACK sequence,

 // so we only expect to see an ALERT char in

 // this state. The GUARD state is equivalent

 // to IDLE on the receive side. Since transmit

 // messages are inhibited during GUARD state,

 // it provides a means of quieting the link on

 // this side when the other side is in an

 // uncertain state.

 case IDLE:

 case GUARD:

 if (ch == ALERT)

 { // Incoming message, ACK it and

 // get into the receive state

 guard_timer = TIMER_OFF;

 slta_putchar (ALERT_ACK);

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

25

 curr_msg_byte = 0;

 state = RX_MSG;

 }

 else

 { // Fan mail from some flounder?

 ++dbg_out_of_synch;

 oos_char = ch;

 guard_timer = OUT_OF_SYNCH_TIMEOUT;

 state = GUARD;

 }

 break;

 default:

 ++dbg_invalid_state;

 break;

 }

}

//

// Transmit bytes on the serial link. The placement

// of this WHEN clause and its character-at-a-time

// output mode allow us to check for collisions on

// the serial link.

//

priority when ((state == TX_MSG) && slta_txrdy())

{

 if (curr_msg_byte == 0)

 { // Assemble message before sending

 state = assemble_downlink_msg();

 if (state == TX_MSG)

 { // if assembly successful, still in TX_MSG state

 slta_putchar (msg_buffer[curr_msg_byte]);

 ++curr_msg_byte;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

26

 }

 }

 else

 { // send a character downlink

 slta_putchar (msg_buffer[curr_msg_byte]);

 ++curr_msg_byte;

 if (curr_msg_byte ==

 (msg_buffer[MSG_LEN] + HEADER_SIZE + CHECKSUM_SIZE))

 { // done sending message, wait for ack or nack

 curr_msg_byte = 0;

 tx_ack_nack_timer = WAIT_FOR_ACK_TIMEOUT;

 state = TX_DONE;

 }

 }

}

//+++

// SITE-SPECIFIC CODE:

// Handle incoming network variable update

//+++

when (nv_update_occurs(NVI_lev_disc))

{

 SNVT_lev_disc value;

 unsigned int offset;

 value = NVI_lev_disc[nv_array_index];// get new value

 // identify the word that has a pending update

 offset = NVI_LEV_DISC_0+nv_array_index-FIRST_INPUT_NV;

SET_BIT(block_map[nv_plc_map[offset].block_num].update_flags,

 nv_plc_map[offset].word_num);

 plc_update_pending = TRUE;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

27

 if (state == IDLE)

 { // alert other side to imminent message

 state = check_for_transmit();

 }

}

//+++

// end SITE-SPECIFIC CODE:

//+++

//

// Now exiting the GUARD state, check

// for a downlink message to send

//

when (timer_expires(guard_timer))

{

 if (state == GUARD)

 {

 state = check_for_transmit();

 }

}

//

// Update message failed to get an

// ACK or NACK, try to resend it

//

when (timer_expires(tx_ack_nack_timer))

{

 if (state == TX_DONE)

 {

 ++dbg_ack_nack_timeout;

 // This will force the update to be

 // reassembled, in case of new status

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

28

 curr_msg_byte = 0;

 state = check_for_transmit();

 }

}

//

// Timed out while receiving a message or...

// timing out of RX_NACK state.

//

when (timer_expires(data_receive_timer))

when (timer_expires(rx_nack_timer))

{

 if (state == RX_MSG)

 { // inter-byte timeout

 ++dbg_receive_timeout;

 }

 // NACK to get other side to back off.

 slta_putchar(NACK);

 // Might get some more hiccups coming

 // uplink, allow some time for them.

 guard_timer = OUT_OF_SYNCH_TIMEOUT;

 state = GUARD;

}

//

// Timed out while trying to send a message. There

// was no answer from the PLC to our message request.

//

when (timer_expires(alert_timer))

{

 if (state == TX_REQ)

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

29

 {

 ++dbg_alert_timeout;

 // try again to send it

 state = check_for_transmit();

 }

}

//

// Timed out while waiting for the PLC to send

// a RESYNCH_COMPLETE message.

//

when (timer_expires(resynch_timer))

{

 ++dbg_resynch_timeout;

 // try again to send it

 resynch_state = RESYNCH_REQUEST;

 if (state == IDLE)

 {

 state = check_for_transmit();

 }

}

//+++

// XLATE.NC -- Example LONWORKS gateway to PLC.

// Copyright (c) 1994 by Echelon Corporation.

// All Rights Reserved.

//

// Date last modified: 1/31/94

//

// This file is intended to contain all of the gateway

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

30

// code and data that is site-specific. The one

// exception to that is that there will be a WHEN

// statement in PLCGATE.NC for every input Network

// Variable. Also, PLCGATE.H has a clearly delineated

// section for site-specific definitions.

//

// This file contains the translation tables needed to

// convert PLC register data to Network Variable data and

// vice versa. The contents of the translation tables are

// implementation-dependent, but the format of the tables

// is intended to support a wide variety of configurations.

//

//+++

//

// The Network Variable interface to this node consists

// of 16 discrete level inputs and 16 discrete level

// outputs. Since each of these maps to one bit on the

// PLC, only the ST_ON and ST_OFF levels are supported.

// Any other level is translated to a "0" in the PLC

// register bitfields. The value translation is done

// in the user-defined routines set_nv() and get_nv().

//

network input SNVT_lev_disc NVI_lev_disc[NUM_INPUT_NVS];

network output SNVT_lev_disc NVO_lev_disc[NUM_OUTPUT_NVS];

//

// The plc_inputs and plc_outputs variables are

// copies of the latest PLC register values as

// we know them. The pending flags for PLC output

// variables tell us that the new values have not

// yet been sent down the serial link to the PLC.

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

31

//

plc_word plc_inputs[NUM_INPUT_WORDS];

plc_word plc_outputs[NUM_OUTPUT_WORDS];

bits plc_pending_updates[SIZEOF_BITMAP(NUM_OUTPUT_WORDS)];

// Translation tables

// First, the tables to take PLC inputs and convert

// them to Network Variable update values:

const field_nv in_field_map[NUM_INPUT_FIELDS] = {

 FTYPE_BITS, 0, 1, NVO_LEV_DISC_0,

 FTYPE_BITS, 1, 1, NVO_LEV_DISC_1,

 FTYPE_BITS, 2, 1, NVO_LEV_DISC_2,

 FTYPE_BITS, 3, 1, NVO_LEV_DISC_3,

 FTYPE_BITS, 4, 1, NVO_LEV_DISC_4,

 FTYPE_BITS, 5, 1, NVO_LEV_DISC_5,

 FTYPE_BITS, 6, 1, NVO_LEV_DISC_6,

 FTYPE_BITS, 7, 1, NVO_LEV_DISC_7,

 FTYPE_BITS, 8, 1, NVO_LEV_DISC_8,

 FTYPE_BITS, 9, 1, NVO_LEV_DISC_9,

 FTYPE_BITS, 10, 1, NVO_LEV_DISC_10,

 FTYPE_BITS, 11, 1, NVO_LEV_DISC_11,

 FTYPE_BITS, 12, 1, NVO_LEV_DISC_12,

 FTYPE_BITS, 13, 1, NVO_LEV_DISC_13,

 FTYPE_BITS, 14, 1, NVO_LEV_DISC_14,

 FTYPE_BITS, 15, 1, NVO_LEV_DISC_15

};

const word_fields in_word_map[NUM_INPUT_WORDS] =
{NUM_INPUT_FIELDS,

(const field_nv *)&in_field_map};

// Now, the tables to take Network Variable inputs

// and convert them to PLC output values:

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

32

const field_nv out_field_map[NUM_OUTPUT_FIELDS] = {

 FTYPE_BITS, 0, 1, NVI_LEV_DISC_0,

 FTYPE_BITS, 1, 1, NVI_LEV_DISC_1,

 FTYPE_BITS, 2, 1, NVI_LEV_DISC_2,

 FTYPE_BITS, 3, 1, NVI_LEV_DISC_3,

 FTYPE_BITS, 4, 1, NVI_LEV_DISC_4,

 FTYPE_BITS, 5, 1, NVI_LEV_DISC_5,

 FTYPE_BITS, 6, 1, NVI_LEV_DISC_6,

 FTYPE_BITS, 7, 1, NVI_LEV_DISC_7,

 FTYPE_BITS, 8, 1, NVI_LEV_DISC_8,

 FTYPE_BITS, 9, 1, NVI_LEV_DISC_9,

 FTYPE_BITS, 10, 1, NVI_LEV_DISC_10,

 FTYPE_BITS, 11, 1, NVI_LEV_DISC_11,

 FTYPE_BITS, 12, 1, NVI_LEV_DISC_12,

 FTYPE_BITS, 13, 1, NVI_LEV_DISC_13,

 FTYPE_BITS, 14, 1, NVI_LEV_DISC_14,

 FTYPE_BITS, 15, 1, NVI_LEV_DISC_15

};

const word_fields out_word_map[NUM_OUTPUT_WORDS] =
{NUM_OUTPUT_FIELDS,

(const field_nv *)&out_field_map};

const block_words block_map[NUM_PLC_BLOCKS] = {

PLC_INPUT, NUM_INPUT_WORDS, in_word_map, plc_inputs, NULL,

PLC_OUTPUT, NUM_OUTPUT_WORDS, out_word_map, plc_outputs,
plc_pending_updates

};

//

// The nv_plc_map is used when an NV update arrives

// to set the associated PLC update pending flag.

//

const nv_to_plc nv_plc_map[NUM_INPUT_NVS] =

{ 1, 0, // In this example, all input NVs are

 1, 0, // in block 1, word 0

 1, 0,

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

33

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0,

 1, 0

};

//

// PROCEDURE: set_nv()

// The following site-specific procedure should

// have a case statement for every output NV in

// the gateway that originates from a PLC word

// value. It takes a PLC field value input

// and makes any transformations necessary to

// update an NV based on the input.

//

void set_nv (nv_ref_id nv_id, plc_word value)

{

 SNVT_lev_disc discrete_value;

 switch (nv_id)

 {

 case NVO_LEV_DISC_0:

 case NVO_LEV_DISC_1:

 case NVO_LEV_DISC_2:

 case NVO_LEV_DISC_3:

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

34

 case NVO_LEV_DISC_4:

 case NVO_LEV_DISC_5:

 case NVO_LEV_DISC_6:

 case NVO_LEV_DISC_7:

 case NVO_LEV_DISC_8:

 case NVO_LEV_DISC_9:

 case NVO_LEV_DISC_10:

 case NVO_LEV_DISC_11:

 case NVO_LEV_DISC_12:

 case NVO_LEV_DISC_13:

 case NVO_LEV_DISC_14:

 case NVO_LEV_DISC_15:

 if (value == 1)

 {

 discrete_value = ST_ON;

 }

 else

 { // fields are 1 bit wide, so

 // value may only be 0 or 1

 discrete_value = ST_OFF;

 }

 NVO_lev_disc[nv_id - NVO_LEV_DISC_0] =

discrete_value;

 break;

 // These will only be updated during a resynch.

 // Since we know that a reset will change the

 // value of these RAM variables to 0 (as we do

 // not set them to any other value explicitly),

 // we should only update the value if the

 // current value is 0. IF YOU STATICALLY

 // INITIALIZE YOUR NVs, check for your own

 // initialization value, not necessarily 0!

 case NVI_LEV_DISC_0:

 case NVI_LEV_DISC_1:

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

35

 case NVI_LEV_DISC_2:

 case NVI_LEV_DISC_3:

 case NVI_LEV_DISC_4:

 case NVI_LEV_DISC_5:

 case NVI_LEV_DISC_6:

 case NVI_LEV_DISC_7:

 case NVI_LEV_DISC_8:

 case NVI_LEV_DISC_9:

 case NVI_LEV_DISC_10:

 case NVI_LEV_DISC_11:

 case NVI_LEV_DISC_12:

 case NVI_LEV_DISC_13:

 case NVI_LEV_DISC_14:

 case NVI_LEV_DISC_15:

 if (value == 1)

 {

 discrete_value = ST_ON;

 }

 else

 { // fields are 1 bit wide, so

 // value may only be 0 or 1

 discrete_value = ST_OFF;

 }

 // only set value if it has not already

 // been updated over the network

 if (NVI_lev_disc[nv_id - NVI_LEV_DISC_0] == 0)

 {

 NVI_lev_disc[nv_id - NVI_LEV_DISC_0] =

discrete_value;

 }

 break;

 default:

 break;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

36

 }

}

//

// PROCEDURE: get_nv()

// The following site-specific procedure should

// have a case statement for every input NV in

// the gateway that translates to a PLC output

// word. It takes an NV value and makes any

// necessary transformations to produce a PLC

// field value.

//

plc_word get_nv (nv_ref_id nv_id)

{

 plc_word value;

 switch (nv_id)

 {

 case NVI_LEV_DISC_0:

 case NVI_LEV_DISC_1:

 case NVI_LEV_DISC_2:

 case NVI_LEV_DISC_3:

 case NVI_LEV_DISC_4:

 case NVI_LEV_DISC_5:

 case NVI_LEV_DISC_6:

 case NVI_LEV_DISC_7:

 case NVI_LEV_DISC_8:

 case NVI_LEV_DISC_9:

 case NVI_LEV_DISC_10:

 case NVI_LEV_DISC_11:

 case NVI_LEV_DISC_12:

 case NVI_LEV_DISC_13:

 case NVI_LEV_DISC_14:

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

37

 case NVI_LEV_DISC_15:

 value = NVI_lev_disc[nv_id - NVI_LEV_DISC_0];

 if (value == ST_ON)

 {

 value = 1;

 }

 else

 { // reduce it to binary value

 // for the bitfield destination

 value = 0;

 }

 break;

 default:

 value = 0;

 break;

 }

 return (value);

}

//+++

// RX_MSG.NC -- Example LONWORKS gateway to PLC.

// Copyright (c) 1994 by Echelon Corporation.

// All Rights Reserved.

//

// Date last modified: 1/31/94

//

// This file contains most of the gateway code dealing

// with receiving messages from the PLC. Routines

// included here:

//

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

38

// translate_plc_input()

// comp_checksum()

// checksum_checks()

// process_word_format()

// process_block_format()

// process_uplink_msg()

//

//+++

//

// PROCEDURE: translate_plc_input()

// This procedure translates PLC word data into "fields",

// which are translated into LonTalk Standard Network

// Variable Types. Three types of fields are available:

// 16-bit words, 8-bit bytes, and bitfields from 1 to 15

// bits wide. This routine extracts fields from PLC words,

// one at a time, and for each field calls the site-specific

// procedure set_nv() to make the final transformation from

// field data to Network Variable data.

//

void translate_plc_input (int block_num, int word_num, plc_word
new_value)

{

 ulong new_field_value,

 curr_field_value, curr_value;

 int i, num_flds;

 const word_fields *word;

 const field_nv *fld;

 if ((block_num >= NUM_PLC_BLOCKS) ||

 (word_num >= block_map[block_num].num_words))

 { // no such block or no such word in block

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

39

 ++dbg_mapping_error;

 }

 else

 {

 fld = block_map[block_num].word[word_num].field;

 num_flds =

block_map[block_num].word[word_num].num_fields;

 curr_value =

block_map[block_num].word_value[word_num];

 for (i = 0; i < num_flds; i++)

 {

 switch (fld[i].field_type)

 {

 case FTYPE_CHAR:

 if (i == 0)

 { // char is the lower byte

 new_field_value = 0x00ff & new_value;

 curr_field_value =

0x00ff & curr_value;

 }

 else

 { // char is the upper byte

 new_field_value =

(0xff00 & new_value) >> 8;

 curr_field_value =

(0xff00 & curr_value) >> 8;

 }

 break;

 case FTYPE_LONG:

 if (i != 0)

 { // only one long field will fit

 ++dbg_invalid_ftype;

 }

 else

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

40

 { // field takes up entire word

 new_field_value = new_value;

 curr_field_value = curr_value;

 }

 break;

 case FTYPE_BITS: // extract from bit field

 new_field_value = new_value <<

 (16 - fld[i].bit_size-fld[i].first_bit);

 new_field_value = new_field_value >>

 (16 - fld[i].bit_size);

 curr_field_value = curr_value <<

 (16 - fld[i].bit_size-fld[i].first_bit);

 curr_field_value = curr_field_value >>

 (16 - fld[i].bit_size);

 break;

 default:

 ++dbg_invalid_ftype;

 break;

 }

 // Now, tmp_value contains the extracted

 // field value from the PLC register

 if ((new_field_value != curr_field_value) ||

 (resynch_state == RESYNCH_IN_PROGRESS))

 {

 set_nv (fld[i].nv_id, new_field_value);

 }

 }

 // Set the current word value to the updated value

 block_map[block_num].word_value[word_num] =

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

41

new_value;

 }

}

//

// PROCEDURE: comp_checksum()

// Compute the checksum of a message just received.

// This routine assumes that the message is waiting

// in the message buffer.

//

unsigned char comp_checksum (void)

{

 unsigned char sum;

 int i;

 // First, sum up the command and data portion of

 // the message in the buffer.

 sum = 0;

 for (i = MSG_CMD;

 i < (MSG_CMD + msg_buffer[MSG_LEN]); i++)

 {

 sum += msg_buffer[i];

 }

 // Checksum is the bitwise NOT of the sum

 sum = ~sum;

 return (sum);

}

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

42

//

// PROCEDURE: checksum_checks()

// Does the checksum of the current message have

// the value that we expect?

//

boolean checksum_checks (void)

{

 unsigned char sum;

 boolean ret;

 // compute checksum of the input message

 sum = comp_checksum();

 // If the checksum is the same as the checksum received,

 // the message is validated. If not, it fails.

 if (sum == msg_buffer[MSG_CMD + msg_buffer[MSG_LEN]])

 {

 ret = TRUE;

 }

 else

 {

 ret = FALSE;

 }

 return (ret);

}

//

// PROCEDURE: process_word_format()

// Process a message in word update format. This

// format includes the length and ~length bytes,

// followed by the WORD_UPDATE_MSG command byte

// and the block number byte. One or more word

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

43

// updates follow this--word number byte, followed

// by the two byte PLC word, least significant

// byte first. The message is ended with the

// checksum byte.

//

unsigned char process_word_format (void)

{

 unsigned char ack_code;

 int block_num,

 word_num,

 field_num,

 len, i;

 plc_word data_word;

 // assume a good message format for now

 ack_code = ACK;

 // In word-format updates, the block number

 // occurs once, at the start of the message

 block_num = msg_buffer[MSG_CMD+1];

 len = msg_buffer[MSG_LEN];

 if ((block_num >= NUM_PLC_BLOCKS) ||

 (len > MAX_UPDATE_SIZE) ||

 ((len % 3) != 2))

 { // invalid block number or message length

 ack_code = NACK;

 }

 else

 { // process each update word

 for (i = 2; i < len;)

 {

 word_num = msg_buffer[MSG_CMD + i];

 ++i;

 data_word = (plc_word)msg_buffer[MSG_CMD + i];

 ++i;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

44

 data_word +=

((plc_word)msg_buffer[MSG_CMD + i] << 8);

 ++i;

 translate_plc_input (block_num, word_num,

data_word);

 // save status in order to limit NV changes

 block_map[block_num].word_value[word_num] =

data_word;

 }

 }

 return (ack_code);

}

//

// PROCEDURE: process_block_format()

// Process a message in word update format. This

// format includes the length and ~length bytes,

// followed by the BLOCK_UPDATE_MSG command byte.

// One or more block updates follow this--block

// number byte, followed by the block length byte,

// then all of the two byte PLC words in the

// block, least significant byte first. The

// message is ended with the checksum byte.

//

unsigned char process_block_format (void)

{

 unsigned char ack_code;

 int block_num, num_words,

 block_size, pos,

 last_pos, len, i;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

45

 plc_word data_word;

 ack_code = ACK; // assume success for now

 // get first and last positions for message parsing

 last_pos = msg_buffer[MSG_LEN] + HEADER_SIZE - 1;

 pos = MSG_CMD + 1;

 while (pos < last_pos)

 {

 block_num = msg_buffer[pos++];

 num_words = msg_buffer[pos++];

 block_size = (int)(sizeof(plc_word) * num_words);

 if ((block_num >= NUM_PLC_BLOCKS) ||

 (num_words != block_map[block_num].num_words) ||

 ((pos + block_size - 1) > last_pos))

 { // invalid message

 ack_code = NACK;

 break;

 }

 else

 {

 for (i = 0; i < block_size; i += 2)

 {

 data_word = (plc_word)msg_buffer[pos+i];

 data_word +=

((plc_word)msg_buffer[pos+i+1] << 8);

 translate_plc_input (block_num, i/2,

data_word);

 }

 // adjust position in message

 pos += block_size;

 }

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

46

 }

 return (ack_code);

}

//

// PROCEDURE: process_uplink_msg()

// Process an incoming message from the PLC.

// Call routines to check the checksum and

// extract PLC update information. Finally,

// send an ACK if the message is in the

// proper format and the checksum is good,

// and send a NACK otherwise.

//

void process_uplink_msg (void)

{

 unsigned char ack_code; // ack code back to PLC

 if (checksum_checks())

 { // Message succeeds, process it and ACK it

 if (msg_buffer[MSG_CMD] == WORD_UPDATE_MSG)

 {

 ack_code = process_word_format();

 }

 else if (msg_buffer[MSG_CMD] == BLOCK_UPDATE_MSG)

 {

 ack_code = process_block_format();

 }

 else if (msg_buffer[MSG_CMD] == RESYNCH_COMPLETE)

 { // no expected PLC resynch outstanding

 resynch_state = RESYNCH_NOT_NEEDED;

 resynch_timer = TIMER_OFF;

 guard_timer = TIMER_OFF;

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

47

 ack_code = ACK;

 }

 else

 { // unknown command

 ack_code = NACK;

 }

 }

 else

 { // checksum failed, NACK the message

 ack_code = NACK;

 }

 // Either ACK it or NACK it

 slta_putchar (ack_code);

}

//+++

// TX_MSG.NC -- Example LONWORKS gateway to PLC.

// Copyright (c) 1994 by Echelon Corporation.

// All Rights Reserved.

//

// Date last modified: 1/31/94

//

// This file contains most of the gateway code dealing

// with transmitting messages to the PLC. Routines

// included here:

//

// check_for_transmit()

// translate_plc_output()

// downlink_msg_success()

// assemble_downlink_msg()

//

//+++

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

48

//

// PROCEDURE: check_for_transmit()

// This routine is called when the serial link

// becomes idle, to check for an outgoing message

// from the Echelon gateway to the PLC.

//

link_state check_for_transmit (void)

{

 link_state ret_state;

 ret_state = IDLE; // default: return to IDLE

 // If a downlink message is waiting and

 // the PLC is not currently sending to us,

 // start the process of sending an update

 if (resynch_state == RESYNCH_IN_PROGRESS)

 { // getting initial status from PLC

 ret_state = GUARD;

 }

 else if (plc_update_pending ||

(resynch_state == RESYNCH_REQUEST))

 {

 if (!slta_rxrdy())

 { // alert other side to imminent message

 slta_putchar (ALERT);

 alert_timer = ALERT_TIMEOUT;

 ret_state = TX_REQ;

 }

 }

 return (ret_state);

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

49

}

//

// PROCEDURE: translate_plc_output()

// Determine the value of a PLC output word

// based on the current values of Network

// Variables in the gateway. This procedure

// is analogous to translate_plc_input().

//

plc_word translate_plc_output (int block_num,

int word_num)

{

 const field_nv *fld;

 unsigned int i, num_fields;

 plc_word temp, value;

 // Prepare to cycle through all of the fields in

 // a word, updating each of them from the value

 // of the NV that drives it.

 num_fields =

 block_map[block_num].word[word_num].num_fields;

 fld = block_map[block_num].word[word_num].field;

 value = 0;

 for (i = 0; i < num_fields; i++)

 {

 temp = get_nv (fld[i].nv_id);

 switch (fld[i].field_type)

 {

 case FTYPE_LONG: // no conversion needed

 break;

 case FTYPE_CHAR:

 if (i != 0)

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

50

 { // only needs shifting if in upper byte

 temp = temp << 8;

 }

 break;

 case FTYPE_BITS:

 temp = temp &

((-1) >> (16 - fld[i].bit_size));

 temp = temp << fld[i].first_bit;

 break;

 default:

 ++dbg_invalid_ftype;

 break;

 }

 // OR in each field value to assemble PLC word

 value |= temp;

 }

 // return PLC word value

 return (value);

}

//

// PROCEDURE: downlink_msg_success()

// This routine is called when a downlink

// message is successfully completed--an

// ACK is received from the PLC. It resets

// the "update pending" flags for all of the

// PLC register words that were sent downlink--

// provided that their values have not changed

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

51

// in the meantime.

//

link_state downlink_msg_success (void)

{

 link_state ret_state;

 unsigned int block_num,

 word_num,

 len, i;

 if (msg_buffer[MSG_CMD] == REQ_RESYNCH)

 { // no downlink traffic until resynch complete

 resynch_state = RESYNCH_IN_PROGRESS;

 guard_timer = RESYNCH_TIMEOUT + 50;

 resynch_timer = RESYNCH_TIMEOUT;

 ret_state = GUARD;

 }

 else

 { // In word-format updates, the block number

 // occurs once, at the start of the message.

 // This example program does not support

 // block-format updates.

 block_num = msg_buffer[MSG_CMD+1];

 len = msg_buffer[MSG_LEN];

 for (i = 2; i < len; i += 3)

 {

 word_num = msg_buffer[MSG_CMD + i];

 if (block_map[block_num].word_value[word_num] ==

 translate_plc_output(block_num, word_num))

 { // if update sent is current, clear status

 CLEAR_BIT(block_map[block_num].update_flags,

word_num);

 }

 }

 // Update pending status by checking all status flags

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

52

 plc_update_pending = FALSE;

 for (i = 0;

 i<SIZEOF_BITMAP(block_map[block_num].num_words);

i++)

 {

 if (block_map[block_num].update_flags[i] != 0)

 {

 plc_update_pending = TRUE;

 break;

 }

 }

 // go to idle state after this

 ret_state = IDLE;

 }

 return (ret_state);

}

//

// PROCEDURE: assemble_downlink_msg()

// Assemble a message to send downlink. The global

// flag plc_update_pending tells whether there are

// any PLC words to be updated, and we check it here

// when looking at individual word status flags.

//

link_state assemble_downlink_msg (void)

{

 link_state ret;

 int buffer_pos, i, j;

 ret = IDLE; // go to IDLE state if no downlink msg

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

53

 buffer_pos = MSG_CMD;

 if (resynch_state == RESYNCH_REQUEST)

 { // send a resynch request

 msg_buffer[buffer_pos++] = REQ_RESYNCH;

 ret = TX_MSG;

 }

 else if (resynch_state == RESYNCH_IN_PROGRESS)

 { // not yet ready for downlink traffic

 ret = GUARD;

 }

 else

 { // Send a word-format update message downlink

 msg_buffer[buffer_pos++] = WORD_UPDATE_MSG;

 for (i = 0; i < NUM_PLC_BLOCKS; i++)

 {

 if (block_map[i].dir == PLC_OUTPUT)

 { // Only word-format updates from the gateway

 // to the PLC are implemented here.

 for (j = 0; j < block_map[i].num_words; j++)

 {

 if (BIT_IS_SET(block_map[i].update_flags,

j))

 {

 // block num

 msg_buffer[buffer_pos++] = i;

 // word num
msg_buffer[buffer_pos++] = j;

 block_map[i].word_value[j] =

translate_plc_output(i, j);

 msg_buffer[buffer_pos++] =

 (unsigned char)

block_map[i].word_value[j];

 msg_buffer[buffer_pos++] =

 (unsigned char)

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

54

(block_map[i].word_value[j] >> 8);

 ret = TX_MSG; // update to send

 }

 }

 }

 }

 }

 if (ret == IDLE)

 { // there were no messages to be sent

 plc_update_pending = FALSE;

 }

 else if (ret == GUARD)

 { // do nothing

 ;

 }

 else

 { // finish formatting the message

 msg_buffer[MSG_LEN] = buffer_pos - MSG_CMD;

 msg_buffer[MSG_NOT_LEN] = ~msg_buffer[MSG_LEN];

 msg_buffer[buffer_pos] = comp_checksum();

 }

 return (ret);

}

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

55

Appendix B - A gateway to the Omron Sysmac CV500 PLC
The following code, written in a variant of the Basic programming language, runs
on an Omron BSC21 Basic Unit. This unit is available with various serial port
configurations. For the Gateway Demo, the Basic Unit was programmed through
the first EIA-232 port via a Windows 3.1 terminal emulator. The second serial port
was used for the gateway serial link. The PLC I/O points were polled every 100 ms,
which is the most frequent clock tick available.

PNAME ""

NEW

PNAME "GATEWAY"

PGEN 1

AUTO 10, 10

PARACT 0 WORK 4096

DIM IN.LAST% 1

DIM STATE%

DIM IDLE.CT%

DIM IBYTE.CT%

DIM BYTE.NO%

DIM ACK.CODE%

DIM SUM%

DIM SYN.STATE%

DIM MSG.LEN%

DIM OUT.MSG$ 12

DIM IN.CHAR$ 1

DIM IN.BLK$ 2

DIM OUT.BLK$ 2

DIM SENT.BLK$ 2

OPEN "COM2:19200,N,8,1,XN" AS #2

ON TIMER 1 GOSUB *CLOCK.TICK

ON COM(2) GOSUB *IO.IN

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

56

TIMER ON

COM(2) ON

WHILE 1

PAUSE

WEND

END

*CLOCK.TICK

IF (IBYTE.CT = 0) THEN *IDLE.TICK

IBYTE.CT = IBYTE.CT - 1

IF (IBYTE.CT <> 0) THEN *IDLE.TICK

STATE = 0

ACK.CODE = 21

COM(2) OFF

GOSUB *SEND.N.ACK

COM(2) ON

*IDLE.TICK

IF (IDLE.CT = 0) THEN *CHK.PLC.BLOCK

IDLE.CT = IDLE.CT - 1

IF (IDLE.CT <> 0) THEN *CHK.PLC.BLOCK

STATE = 0

IF (SYN.STATE = 2) THEN SYN.STATE = 1

IF (SYN.STATE <> 3) THEN *CHK.PLC.BLOCK

GOSUB *OUT.REQ

GOTO *EXIT.TICK

*CHK.PLC.BLOCK

IF (SYN.STATE = 1) THEN GOSUB *OUT.REQ

IF (SYN.STATE <> 0) THEN *EXIT.TICK

COM (2) OFF

PC READ "@R,1,1,1A3";IN.BLK$

COM (2) ON

IF ((STATE = 0) AND (CVI(IN.BLK$) <> IN.LAST)) THEN GOSUB *OUT.REQ

*EXIT.TICK

RETURN

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

57

*OUT.REQ

COM(2) OFF

IF (STATE <> 0) THEN *QUICK.OUT

OUTSTR$ = SPACE$(1)

MID$(OUTSTR$,1,1) = CHR$(1)

PRINT #2,OUTSTR$;

IDLE.CT = 4

STATE = 1

*QUICK.OUT

COM(2) ON

RETURN

*SEND.MSG

PC READ "@R,1,1,1A3";IN.BLK$

IF (SYN.STATE = 1) THEN MSG.LEN = 9 ELSE MSG.LEN = 5

OUT.MSG$ = SPACE$(MSG.LEN + 3)

MID$(OUT.MSG$,1,1) = CHR$(MSG.LEN)

MID$(OUT.MSG$,2,1) = CHR$((NOT MSG.LEN) AND 255)

MID$(OUT.MSG$,3,1) = CHR$(145)

MID$(OUT.MSG$,4,1) = CHR$(0)

MID$(OUT.MSG$,5,1) = CHR$(1)

MID$(OUT.MSG$,6,1) = MID$(IN.BLK$,2,1)

MID$(OUT.MSG$,7,1) = MID$(IN.BLK$,1,1)

SUM = 146

SUM = SUM + ASC(MID$(IN.BLK$,2,1))

SUM = SUM + ASC(MID$(IN.BLK$,1,1))

IF (SYN.STATE <> 1) THEN *WRAP.UP

PC READ "@R,0,1,1A3";OUT.BLK$

MID$(OUT.MSG$,8,1) = CHR$(1)

MID$(OUT.MSG$,9,1) = CHR$(1)

MID$(OUT.MSG$,10,1) = MID$(OUT.BLK$,2,1)

MID$(OUT.MSG$,11,1) = MID$(OUT.BLK$,1,1)

SUM = SUM + 2

SUM = SUM + ASC(MID$(OUT.BLK$,2,1))

SUM = SUM + ASC(MID$(OUT.BLK$,1,1))

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

58

*WRAP.UP

SUM = NOT SUM

MID$(OUT.MSG$,MSG.LEN+3,1) = CHR$(SUM AND 255)

PRINT #2,OUT.MSG$;

IDLE.CT = 9

IF (SYN.STATE = 1) THEN SYN.STATE = 2

SENT.BLK$ = IN.BLK$

STATE = 3

RETURN

*SEND.RC.MSG

OUT.MSG$ = SPACE$(4)

MID$(OUT.MSG$,1,1) = CHR$(1)

MID$(OUT.MSG$,2,1) = CHR$(254)

MID$(OUT.MSG$,3,1) = CHR$(177)

MID$(OUT.MSG$,4,1) = CHR$(78)

PRINT #2,OUT.MSG$;

IDLE.CT = 4

SYN.STATE = 3

STATE = 3

RETURN

*IO.IN

TIMER OFF

IF (LOC(2) = 0) THEN *IN.DONE

IN.CHAR$ = INPUT$(1,#2)

IF ((STATE = 0) AND (ASC(IN.CHAR$) = 1)) THEN *MSG.BEGIN

IF (STATE = 4) THEN *MSG.INPUT

IF (STATE = 3) THEN *RCV.ACK.NACK

IF (STATE = 1) THEN *RCV.ALERT.ACK ELSE *IN.DONE

*MSG.BEGIN

GOSUB *RX.BEGIN

GOTO *IN.DONE

*MSG.INPUT

GOSUB *RX

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

59

GOTO *IN.DONE

*RCV.ACK.NACK

IF (ASC(IN.CHAR$) <> 6) THEN *CHK.FOR.NACK

IF ((SYN.STATE = 0) OR (SYN.STATE = 2)) THEN IN.LAST =
CVI(SENT.BLK$)

IDLE.CT = 0

STATE = 0

IF (SYN.STATE = 3) THEN SYN.STATE = 0

IF (SYN.STATE = 2) THEN GOSUB *OUT.REQ

GOTO *IN.DONE

*CHK.FOR.NACK

IF (ASC(IN.CHAR$) <> 21) THEN *IN.DONE

IDLE.CT = 0

STATE = 0

IF (SYN.STATE = 2) THEN SYN.STATE = 1

IF (SYN.STATE = 3) THEN GOSUB *OUT.REQ

GOTO *IN.DONE

*RCV.ALERT.ACK

IF (ASC(IN.CHAR$) <> 254) THEN *IN.DONE

STATE = 2

IF ((SYN.STATE = 2) OR (SYN.STATE = 3)) THEN GOSUB *SEND.RC.MSG

IF ((SYN.STATE = 0) OR (SYN.STATE = 1)) THEN GOSUB *SEND.MSG

*IN.DONE

TIMER ON

RETURN

*SEND.N.ACK

OUT.MSG$ = CHR$(ACK.CODE)

PRINT #2,OUT.MSG$;

RETURN

*RX.BEGIN

OUT.MSG$ = CHR$(254)

PRINT #2,OUT.MSG$;

BYTE.NO = 0

OUT.BLK$ = SPACE$(2)

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

60

STATE = 4

RETURN

*RX

BYTE.NO = BYTE.NO + 1

IBYTE.CT = 2

IF (BYTE.NO = 1) THEN *GET.MSG.LEN

IF (BYTE.NO = 2) THEN *CHK.MSG.LEN

IF (BYTE.NO = 3) THEN *CHK.MSG.CMD

IF ((BYTE.NO = 4) AND (SYN.STATE = 1)) THEN *MSG.FINISH

IF (BYTE.NO = 4) THEN *CHK.MSG.BLK

IF (BYTE.NO = 5) THEN *CHK.MSG.WORD

IF (BYTE.NO = 6) THEN *GET.BLK.LOW

IF (BYTE.NO = 7) THEN *GET.BLK.HIGH

IF (BYTE.NO = 8) THEN *MSG.FINISH ELSE *RX.EXIT

*GET.MSG.LEN

MSG.LEN = ASC(IN.CHAR$)

GOTO *RX.EXIT

*CHK.MSG.LEN

IF (((NOT MSG.LEN) AND 255) = ASC(IN.CHAR$)) THEN *RX.EXIT ELSE
*FAILED.MSG

*CHK.MSG.CMD

SUM = ASC(IN.CHAR$)

IF (ASC(IN.CHAR$) = 129) THEN *RX.EXIT

IF (ASC(IN.CHAR$) = 161) THEN SYN.STATE = 1 ELSE *FAILED.MSG

GOTO *RX.EXIT

*CHK.MSG.BLK

SUM = SUM + 1

IF (ASC(IN.CHAR$) = 1) THEN *RX.EXIT ELSE *FAILED.MSG

*CHK.MSG.WORD

IF (ASC(IN.CHAR$) = 0) THEN *RX.EXIT ELSE *FAILED.MSG

*GET.BLK.LOW

SUM = SUM + ASC(IN.CHAR$)

MID$(OUT.BLK$,2,1) = IN.CHAR$

GOTO *RX.EXIT

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

61

*GET.BLK.HIGH

SUM = SUM + ASC(IN.CHAR$)

MID$(OUT.BLK$,1,1) = IN.CHAR$

GOTO *RX.EXIT

*MSG.FINISH

SUM = (NOT SUM) AND 255

IF (SUM = ASC(IN.CHAR$)) THEN ACK.CODE = 6 ELSE ACK.CODE = 21

IF ((ACK.CODE = 6) AND (SYN.STATE = 0)) THEN PC WRITE
"@R,0,1,1A3";OUT.BLK$

GOSUB *SEND.N.ACK

IBYTE.CT = 0

STATE = 0

GOTO *RX.EXIT

*FAILED.MSG

ACK.CODE = 21

GOSUB *SEND.N.ACK

IDLE.CT = 2

IBYTE.CT = 0

STATE = 5

*RX.EXIT

RETURN

END PARACT

LONWORKS Engineering Bulletin LonTalk-to-PLC Gateway

62

Disclaimer

Echelon Corporation assumes no responsibility for any errors contained herein.
No part of this document may be reproduced, translated, or transmitted in any form without permission from Echelon.

Part Number 005-0044-01 Rev. A

© 1994 Echelon Corporation. Echelon, LON,
Neuron, 3150, LonBuilder, LonTalk, and
LonManager are U.S. registered trademarks of
Echelon Corporation. LONWORKS,
LONMARK, and 3120 are trademarks of
Echelon Corporation. Some of the LONWORKS
products are patented and are subject to
licensing Terms and Conditions. For a complete
explanation of these Terms and Conditions,
please call 1-800-258-4LON.

Echelon Corporation
4015 Miranda Avenue
Palo Alto, CA 94304
Telephone (415) 855-7400
Fax (415) 856-6153

Echelon Europe Ltd
Elsinore House
77 Fulham Palace Road
London W6 8JA
England
Telephone +44-81-563-7077
Fax +44-81-563-7055

Echelon Japan K.K.
Kamino Shoji Bldg. 8F
25-13 Higashi-Gotanda 1-chome
Shinagawa-ku, Tokyo 141
Telephone (03) 3440-7781
Fax (03) 3440-7782

