

LNS Plug-In
Programmer's Guide

Version 3.1
Revision 2

@echelon

C o r p o r a t i o n

078-0178-02E

Echelon, LON, LONWORKS, LonBuilder, LonManager, LonTalk, LonUsers, Neuron, 3120, 3150, the
LonUsers logo, the Echelon logo, and the LONMARK logo are registered trademarks of Echelon
Corporation. LNS, LonMaker, LonSupport, and NodeBuilder are trademarks of Echelon
Corporation.

Other brand and product names are trademarks or registered trademarks of their
respective holders.

Smart Transceivers, Neuron Chips, and other OEM Products were not designed for
use in equipment or systems which involve danger to human health or safety or a risk
of property damage and Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and referenced in this document
have been described for illustrative purposes only, and may not have been tested by
Echelon. It is the responsibility of the customer to determine the suitability of these
parts for each application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR CONDITION OF
ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE OR IN ANY
COMMUNICATION WITH YOU, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR
ANY PARTICULAR PURPOSE, NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Echelon Corporation.

Document No. 39820

Printed in the United States of America.
Copyright ©1998-2003 by Echelon Corporation.

Echelon Corporation
www.echelon.com

Contents
Preface... i

Purpose ... ii
Audience... ii
Content ... ii
Related Manuals ... ii
Other Related Material ... ii
Key Terms And Concepts.. iii

1 Introduction... 1-1
Introduction ... 1-2
What Makes A Plug-in A Plug-in.. 1-2

Types of Plug-ins... 1-2
LNS Plug-in Commands.. 1-3
LNS Plug-in Properties.. 1-3

2 Generating a Plug-in with the LNS Device Plug-in Wizard ... 2-1
Installing the Plug-in Wizard... 2-2
Starting the LNS Device Plug-in Wizard .. 2-2
Using the LNS Device Plug-in Wizard.. 2-3

LNS Device Plug-in Wizard: Introduction .. 2-3
LNS Device Plug-in Wizard: Identification .. 2-4
LNS Device Plug-in Wizard: Device Template... 2-5
LNS Device Plug-in Wizard: Command Table ... 2-6
LNS Device Plug-in Wizard: Add or Edit Command.. 2-7
LNS Device Plug-in Wizard: Resource Table ... 2-9
LNS Device Plug-in Wizard: Director-side Instancing Control .. 2-10
LNS Device Plug-in Wizard: Summary .. 2-11
LNS Device Plug-in Wizard: User Interface Editor .. 2-12

3 Modifying Code Generated by the LNS Device Plug-in Wizard.. 3-1
Introduction ... 3-2
Initializing the Device ... 3-2
Initializing Formats.. 3-2
Customizing the Plug-in User Interface... 3-3
Changing the Start-up Tab... 3-5
Reading and Monitoring a Network Variable.. 3-5
Reading a Configuration Property ... 3-6
Updating an Output Network Variable or Configuration Property.. 3-7
Changing a Network Variable Type .. 3-7
Accessing a Network Variable Object... 3-10
Accessing a Configuration Property Object .. 3-10
Adding a Custom Property, Method, or Command ... 3-11
Creating a Stand-alone Plug-in.. 3-13
Using Utility Functions ... 3-14
Design Rules For Future Revisions Of Your Plug-ins... 3-14

4 How Plug-Ins Work — The Big Picture ... 4-1
How Plug-ins Are Represented In The LNS Object Server... 4-2
How Plug-ins Are Installed On A User's Computer and Registered with LNS... 4-3
How Directors Launch And Manipulate Plug-ins ... 4-4

How Directors Support Prelaunch ... 4-6
How Directors Support MultiObject and SingleInstance .. 4-6
How Directors Pass Object Names.. 4-7
How Plug-ins Let Directors Know About Errors... 4-8
How Plug-Ins Know When To Exit... 4-8

What Plug-ins Do When They Run Stand-alone ... 4-10
Uninstallation Issues.. 4-10

5 How Plug-Ins Work — The Details... 5-1
Introduction ... 5-2
Registering Your Plug-in's Registration Command... 5-4

Purpose Of This Step ... 5-4
When And How It Is Done .. 5-6
How It Is Done In The Plug-in Framework ... 5-7

Registering Your Plug-in's Other Commands ... 5-8
Purpose Of This Step ... 5-8
When And How It Is Done .. 5-8
How It Is Implemented In The Plug-in framework.. 5-9

Responding to Property Reads and Writes .. 5-11
Purpose Of This Step ... 5-11
When And How It Is Done .. 5-11
How It Is Implemented In The Plug-in framework.. 5-11

Responding to Commands from a Director Other than Registration... 5-12
Purpose Of This Step ... 5-12
When And How It Is Done .. 5-12
How It Is Implemented In The Plug-in framework.. 5-13

Determining When To Exit ... 5-13
Purpose Of This Step ... 5-13
When And How It Is Done .. 5-13
How It Is Implemented In The Plug-in framework.. 5-14

Creating an Installation for an LNS Device Plug-in .. 5-15
A Standard Plug-in Commands... A-1
B Standard Plug-in Properties... B-1
C Standard Plug-in Classes.. C-1
D Standard Plug-in Exceptions ... D-1
E Plug-in Framework Components... E-1

Plug-in Files...E-2
Plug-in Event Handlers..E-2
Plug-in Functions...E-3

LNS Plug-In Programmer's Guide i

Preface

This document describes how to write plug-ins. The most common type of plug-
ins are device plug-ins, which are used to simplify and automate the installation of
your devices by network integrators. Therefore, the focus of this manual is on
how to write device plug-ins using the LNS Device Plug-in Wizard, an add-in for
Microsoft® Visual Basic® 6. Most of the information in this manual is applicable
to writing plug-ins regardless of which development environment you choose to
use.

ii Preface

Purpose
This document describes how to write plug-ins using Visual Basic 6. After reading this
document, you should understand not only the basic mechanics of how plug-ins work, but
how to write a plug-in as well.

Audience
This document assumes that the reader has a basic understanding of both the LNS
Object Server and Visual Basic.

Content
This document has four chapters as follows:

• Chapter 1, Introduction, provides an introduction to plug-ins and how they operate.
• Chapter 2, Generating a Plug-in with the LNS Device Plug-in Wizard, describes how to use the

LNS Device Plug-in Wizard to generate customized device plug-ins.
• Chapter 3, Modifying Code Generated by the LNS Device Plug-in Wizard, describes how to

customize the code generated by the plug-in wizard to provide a custom look-and-feel for your
plug-in, and to further customize the plug-in for your device.

• Chapter 4, How Plug-Ins Work — The Big Picture, provides an overview of the life cycle of a
plug-in. It describes how plug-ins make themselves known to directors, how plug-ins let directors
know what they can do, and how directors and plug-ins interact.

• Chapter 5, How Plug-Ins Work — The Details, provides more detail on each of the tasks
introduced in Chapter 4. For each task it describes why the task is done, how it is done when you
are writing a plug-in from scratch (i.e., when not using the LNS Device Plug-in Wizard), and in
some instances shows an example of how it is done.

Related Manuals
The following manuals provide supplemental information to the material in this guide:

LNS for Windows Programmer's
Guide (Echelon)

Describes how to develop LNS host applications for Windows
XP, Windows 2000, Windows NT 4, Windows Me, and
Windows 98 hosts using the LNS Object Server ActiveX
Control.

Visual Basic User's Guide (Microsoft) Describes how to develop applications using Visual Basic.

LonMaker User’s Guide (Echelon) Describes how to use the LonMaker Integration Tool to design,
commission, modify, and maintain LONWORKS networks.

NodeBuilder™ 3 User's Guide
(Echelon)

Describes how to use the LNS Device Plug-In Wizard for
creation of device plug-in software as part of a LONWORKS
device development project.

Other Related Material
This document refers to and describes the LNS Plug-in API that all plug-ins use. This
document also describes how to use the LNS Device Plug-in Wizard, a tool that simplifies
the development of device plug-ins using Visual Basic 6. The wizard produces Visual

LNS Plug-In Programmer's Guide iii

Basic source code that implements the basic framework of a device plug-in, and is
included with the NodeBuilder Development Tool and the LNS Application Developer's
Kits for Windows. Different wizards are included with the NodeBuilder tool and the LNS
developer’s kit. This document describes the wizard included with the NodeBuilder tool.

Because plug-ins work in concert with directors, a director is needed in order to fully test
and debug the plug-ins that you write. While any director can be used for this purpose,
this guide describes the use of the LonMaker tool as the director. See the LonMaker
User’s Guide for more detailed information on the use of the LonMaker tool.

Key Terms And Concepts
The following important terms and concepts are used in this document. These
definitions might seem unfamiliar at first glance. However, as you read this document
and come across these terms in the various chapters, if you refer back to this list, you
should find that the you can understand the definitions when the terms are used in
context.

Action A command/object class pair implemented by a plug-in. A plug-
in is defined by the actions that it can perform (i.e., by the set of
commands that it provides and by the class of objects that those
commands operate on). For example, a plug-in might implement
two actions, a test command of AppDevice class objects and a
test command of Router class objects.

ActiveX A Windows standard for component-based software. ActiveX
defines a hierarchy of components, objects, and interfaces.
ActiveX components are made up of one or more objects, where
each object encapsulates functionality and data. ActiveX objects
expose their functionality and data to other components through
one or more interfaces.

ActiveX
Automation Server

A software component that exposes one or more programmable
objects to other software components that are called ActiveX
automation clients. The definition for a programmable object is
called an ActiveX class.

ActiveX Class The definition for a programmable ActiveX object.

Class See Object Class.

Class ID A number that defines a particular LNS object class. Each
action implemented by a plug-in applies to a specific class of
LNS object. For example, a plug-in might implement two
actions, a test command of AppDevice objects and a test
command of Router objects.

Command Operations that a plug-in can perform on an object. Each action
implemented by a plug-in performs a specific command on a
specific class of objects. For example, a plug-in might implement
two actions, a test command of AppDevice objects and a test
command of Router objects.

Command ID A number that defines a particular plug-in command.

ComponentApp The type of LNS object used to represent plug-ins and their

iv Preface

Object actions in the LNS Object Server. There is one ComponentApp
object for each action that a plug-in implements and one
ComponentApp object for the plug-in itself. For example, a plug-
in might implement two actions, a test command of AppDevice
objects and a test command of Router objects. Each of these
actions would be represented by a ComponentApp object (one
with a command ID/object class pair of [LcaCommandTest (33),
LcaClassIdAppDevice (7)] and the other with command
ID/object class pair of [LcaCommandTest (33),
LcaClassIdRouter (9)]. For the plug-in itself, the command
ID of the ComponentApp object is always
LcaCommandRegister (50).

Each ComponentApp object contains the following properties:

ClassId The class ID of ComponentApp objects.
For ComponentApp objects this value is
lcaClassIdComponentApp (30).

 CommandId The command ID implemented by this
ComponentApp, for example
LcaCommandTest (33). If this
ComponentApp object represents the plug-
in itself, the CommandId is always
LcaCommandRegister (50).

ComponentClassId The class ID of the LNS object to which
this command applies. For example,
LcaClassIdAppDevice (7).

DefaultAppFlag A flag that indicates if this command is the
default action for objects of this type.
Directors can use this flag to launch
component applications as a default action,
such as when a users double-clicks an icon
representing the object. There can only be
one ComponentApp object per
ComponentApps collection with this flag
set.

Description A description of this command. Typically
directors display this information in a
tooltip or status bar.

ManufacturerId The manufacturer ID of the company that
wrote the plug-in that implements the
command.

Name The name of this command. Typically
directors display this information in a
context-sensitive menu.

Parent The ComponentApps collection object to
which this ComponentApp object belongs.

RegisteredServer The name of the ActiveX class (i.e., the
plug-in) that implements this command.

VersionNumber The version number of the plug-in that
implements this command.

LNS Plug-In Programmer's Guide v

Director A special kind of LNS application that makes use of the LNS
Plug-in API. Directors have the ability to start plug-ins.

GUID A 128-bit Globally Unique IDentifier. GUIDs are used to
uniquely identify entries in the Windows registry. Visual Basic
automatically generates GUIDs that identify your type library,
each public class, and each interface in your application. In
Windows documentation, the GUIDs for public classes are often
referred to as class IDs (CLSID); the GUIDs for interfaces are
often referred to as interface IDs (IID). Windows class IDs and
Windows interface IDs are the keys to version compatibility for
components authored using Visual Basic; see Design Rules For
Future Revisions Of Your Plug-ins in Chapter 3,

Generating a Plug-in with the LNS Device Plug-in Wizard, for
details. Note that the term Windows class ID does NOT mean
the same thing as the term class ID used in this document.

LNS Object The items managed by LNS. LNS treats each network as a
collection of objects. These objects include application devices,
routers, connections, functional blocks, network variables, and
the system.

LNS Plug-in API The items managed by LNS. LNS treats each network as a
collection of objects. These objects include application devices,
routers, connections, functional blocks, configuration properties,
network variables, and the system.

Object See LNS Object.

Object Class The category of an LNS object. Each object managed by LNS
(such as application devices and routers) is in a particular class,
identified by ID (such as LcaClassIdAppDevice [7] and
LcaClassIdRouter [9]).

Object Name A string passed from a director to a plug-in that specifies the
location of the target object in the LNS object hierarchy. The
name includes any qualification required to find the appropriate
object in the hierarchy.

Plug-in A special kind of LNS application, implemented as an ActiveX
automation server, that implements the LNS Plug-in API. Plug-
ins provides a standard way to extend and customize the
functionality of LNS applications.

Registered Server The plug-in's ActiveX class that implements the LNS Plug-in
API. In Visual Basic, this name is always the name of your
project (as set in the project properties dialog box) followed by a
dot and the name of the class that implements the LNS Plug-in
API. Windows requires that this name contain no more than 38
characters. The project name is set automatically by the LNS
Device Plug-in Wizard or manually by selecting the <your
project name> Properties option from the Project menu
and filling in the Project Name field. For example, if the
project name is MyPlugIn, and if the class that implements
the LNS Plug-in API is named LNSPlugInAPI, the registered

vi Preface

server name for this plug-in would be
MyPlugIn.LNSPlugInAPI.

Registration The two-step process by which a plug-in installed is imported
into the LNS Object Server. In the first phase of registration,
the plug-in registers a registration command for itself in the
Windows registry. This step is typically performed when the
plug-in is installed onto the user's machine.

In the second phase of registration, the plug-in creates
ComponentApp objects in the LNS Object Server that represent
the plug-in’s functionality. This phase of registration is initiated
by a director sending a registration command to the plug-in.
The director knows which plug-ins are installed on the user's
machine by accessing the information that was placed into the
Windows registry during the first phase of the registration
process.

Scope The “breadth” of a particular plug-in or one of its actions. For
example, if the scope of a command that applies to AppDevice
objects is ObjectServer (1), the command applies to all
AppDevice objects managed by the LNS Object Server. If the
scope of the same command were System (2), then the command
would apply to all AppDevice objects in a particular system. If
the scope of the same command were DeviceTemplate (3), then
the command would apply to all AppDevice objects that use a
particular device template (i.e., all devices of a particular type).
If the scope of the same command were LonMarkObject (4), then
the command would apply only to a specific functional block on
all AppDevice objects that use a particular device template.

The scope of an action is indicated by the ComponentApps
collection that the command is in. If an action is in the
ObjectServer object's ComponentApps collection, the action
has object server-wide scope. If it is in a System object's
ComponentApps collection, the action has system-wide scope. If
it is in a DeviceTemplate object's ComponentApps collection,
the action applies only to devices of that type. If it is in a
LonMarkObject object's ComponentApps collection, the action
applies only to functional blocks on devices of that type.

The Registration command is a special kind of command that
must be supported by every LNS plug-in. It has either server-
wide scope (1) or system-wide scope (2). The scope of the
Registration command is often referred to as the plug-in scope.

Server See Registered Server.

Target Object The LNS object on which a director has asked a plug-in to
operate.

Windows Registry The Windows registry is a shared resource on the computer that
contains information about how the computer runs. Among
other functions, the registry provides a simple database-like
mechanism that allows programs to store and exchange
information. Information in the registry is stored by key. You

LNS Plug-In Programmer's Guide vii

can think of a key as being like a directory. Each key contains
one or more values (just as a directory contains files) and can
contain additional keys (just as a directory can contain
additional directories). Each value is identified by a name and
contains data. All keys have at least one value, named
(Default).

viii Preface

LNS Plug-In Programmer's Guide 1-1

1

Introduction

This chapter introduces plug-ins. It describes the types of plug-ins that are used
with LONWORKS networks, and describes how director application request actions
from plug-ins.

1-2 Introduction

Introduction
Plug-ins are a special kind of LNS application, implemented as Windows® ActiveX
automation servers, that implement the LNS Plug-in API. The LNS Plug-in API is
described in Chapter 4, How Plug-Ins Work — The Details. Plug-ins provide a standard
way to extend and customize the functionality of LNS applications. For example, plug-
ins allow device manufacturers to provide customized software that simplify
configuration, monitoring, or control of their devices1. Plug-ins can also add new
functionality to tools2, such as alarming, logging, and trending.

LNS applications that can use plug-ins are called directors. Directors are LNS
applications that make use of the LNS Plug-in API. By calling the functions of the LNS
Plug-in API, directors can determine which plug-ins a user has installed on their
computer and call the plug-ins at appropriate times. If it chooses to do so, the director
can make access to plug-ins completely transparent to the end-user. That is, the user
cannot tell when a task is built-in to the director and when it is being provided by a plug-
in called by the director — to the user it looks like one seamless application.

Plug-ins provide many benefits to network integrators, who are the end-users of tools.
Plug-ins make tools easier to use and make network integrators more productive. They
reduce the cost of training network integrators on the use of tools. They also reduce the
time and cost of installing, configuring, and maintaining systems.

Tool and device manufactures also benefit from plug-ins. For tool manufacturers, plug-
ins make their tools extensible and thus more valuable. Network integrators can
incrementally add features — from the tool’s manufacturer or from other plug-in vendors
— to adapt the tool to their needs. A tool that supports plug-ins is a tool that will become
easier to use, more productive, and more powerful over time.

For device manufacturers, plug-ins allow them to make their devices easy to install,
configure, and maintain — without the cost of having to develop an entire, customized
tool. Devices that come with plug-ins are devices that have a competitive edge — they
are lower cost to install, lower cost to service, and easier to use.

What Makes A Plug-in A Plug-in
A plug-in is a type of LNS application that is also an ActiveX automation server and that
implements the LNS Plug-in API interface. The Plug-in API consists of the LNS Plug-in
Commands (see Appendix A), the LNS Plug-in Properties (see Appendix B), and LNS
Plug-in Exceptions (see Appendix D). A plug-in is defined by the actions that it can
perform (i.e., by the set of commands that it provides and by the class of objects that each
command operates on). For example, a plug-in might implement two actions, a test
command of AppDevice class objects and a test command of Router class objects.

Types of Plug-ins
There are two types of plug-ins. They are device plug-ins and system plug-ins.

1 Plug-ins that are specific to a particular type of device are sometimes called device plug-ins.
2 In this guide, the term tool is used as shorthand for “an LNS tool that is a director application.”

LNS Plug-In Programmer's Guide 1-3

Device plug-ins apply to a single device or a single functional block within a device. For
example, you could create a device plug-in for a device developed with the NodeBuilder
tool that would allow users to monitor and control the device through a custom interface
tailored to the device. You can create a device plug-in executable that operates on
multiple device types. Although contained in one executable file or installation, from the
point of view of the LNS Object Server, these are separate plug-ins. The single
executable that is able to operate on multiple device types is a programming convenience.
You can also create a separate device plug-in for each functional block in a device, but it
is typical to include the support for all functional blocks of a device type in a single plug-
in. The LNS Device Plug-in Wizard, described in Chapters 2 and 3, automatically
creates the framework for a device plug-in.

System plug-ins apply to an entire network, or to a subsystem within that network. For
example, a system plug-in could provide a custom interface that would allow you to test
all devices on a network and see the results. A system plug-in could also be designed to
manage all of the devices in a room, or on a floor of a building. The LNS Device Plug-in
Wizard does not generate a system plug-in. You can implement a system plug-in based
on the descriptions of the plug-in API in Chapters 4 and 5.

LNS Plug-in Commands
The LNS Plug-in API defines a single method and a number of properties that a plug-in
must implement. The method, SendCommand, is used by directors to ask a plug-in to
perform a command (specified by ID) on an object (specified by class ID and object name).
Plug-ins can implement standard commands defined by LNS or custom commands that
they define. The plug-in designer is responsible for having the plug-in implement
commands in a way that makes sense (i.e. if a plug-in implements the Browse command,
the plug-in designer must design the implementation of the plug-in’s Browse command).
The standard plug-in commands are listed in Appendix A, Standard Plug-in Commands.

Device plug-ins typically implement the LcaCommandConfigure command. This
command is used by network tools to provide an option to network integrators to
configure a device or functional block. Device plug-ins may also implement the
LcaCommandBrowse command if they are used for monitoring and control in addition to
device configuration.

Plug-ins can also implement custom commands. The values for custom command values
are assigned by the plug-in, and may be any value greater than or equal to
LcaCommandUserStart (10000).

LNS Plug-in Properties
All plug-ins must also implement a standard set of properties along with any custom
properties required by the developer3. The standard properties allow the director to tell
the plug-in information about the network is it operating on (such as the NetworkName
and the NetworkInterfaceName properties) as well as to control the appearance of the
plug-in (such as the Left, Height, and Visible properties). The complete list of
required and optional properties is given in Appendix B. Read access must be provided
to all properties. Write access may optionally be provided for most properties. Some
properties however, as noted in Appendix B, must be read-only or must be read-write.

3 The property names CharacterEncoding and LanguageId are reserved for future use.

LNS Plug-In Programmer's Guide 2-1

2

Generating a Plug-in with the
LNS Device Plug-in Wizard

The LNS Device Plug-in Wizard is a Microsoft Visual Basic 6 add-in that creates
a customized LNS device plug-in for your device from a standard device plug-in
framework . The Device Plug-in Wizard creates the customized LNS device
plug-in for a device that you are developing, although you can add support for
multiple device types later. You can add additional Visual Basic forms, classes,
and modules as you continue to develop your device plug-in.

You can only use the plug-in wizard if you are developing a device plug-in with
Visual Basic 6. If you are developing a device plug-in but not using Visual Basic
6, you can still use the plug-in wizard to generate an initial prototype of your
plug-in. You cannot use the plug-in wizard if you are developing a system plug-
in.

2-2 Generating a Plug-in with the LNS Device Plug-in Wizard

Installing the Plug-in Wizard
The plug-in wizard is automatically installed when you install the NodeBuilder software
as long as you have installed Microsoft Visual Basic 6 (SP 5 or better) before you install
the NodeBuilder software. If you have installed the NodeBuilder software before
installing Visual Basic, you will need to re-install the NodeBuilder software again from
the NodeBuilder installation CD.

When you install the plug-in wizard, its Visual Basic add-in and bitmap will be installed
into the Visual Basic application directory (the location of which varies depending upon
your operating system and configuration), and a number of other files into the default
Visual Basic Templates directories.

The plug-in wizard installation also adds the plug-in wizard add-in to the set of active
Visual Basic add-ins. If for some reason this did not happen automatically, you can add
it manually by starting Visual Basic, opening the Add-Ins menu, and clicking Add-Ins
Manager. Select LNS Device Plug-In Wizard and then set the Loaded/Unloaded
checkbox in Load Behavior as shown in Figure 2-1.

Figure 2-1. The Visual Basic 6 Add-in Manager

The LNS Device Plug-in Wizard will now appear on your Add-Ins menu and is ready for
use.

Starting the LNS Device Plug-in Wizard
You can start the LNS Device Plug-in Wizard from Visual Basic or from the NodeBuilder
tool. If you are using the NodeBuilder tool, the NodeBuilder tool automatically sets the
plug-in wizard start-up options. See the Creating an LNS Device Plug-in for a
NodeBuilder Device chapter in the NodeBuilder User’s Guide for more information about

LNS Plug-In Programmer's Guide 2-3

starting the LNS Device Plug-in Wizard from the NodeBuilder tool. To start the LNS
Device Plug-in Wizard from Visual Basic, follow these steps:

1. Start Visual Basic and open a new project.

2. When you are asked to select a project type, choose LNS Device Plug-in.

3. Select LNS Device Plug-in Wizard from the Visual Basic Add-Ins menu. If LNS
Device Plug-in Wizard is not available in this menu, ensure that the LNS Device
Plug-in Wizard is loaded in the Add-Ins Manager as described in Installing the Plug-
in Wizard, earlier in this chapter. The LNS Device Plug-in Wizard appears.

Using the LNS Device Plug-in Wizard
The plug-in wizard displays a series of windows that allow you to specify the interface to
your plug-in and to design an initial user interface for your plug-in. The following
sections describe the LNS Device Plug-in Wizard windows.

LNS Device Plug-in Wizard: Introduction
If you start the plug-in wizard from the NodeBuilder tool, the following Plug-in Wizard
Introduction window appears:

This window shows the Manufacturer, Device Class, Subclass Model Number, and
Transceiver Type indicated by the program ID of the device template. If you start the
plug-in wizard from the Visual Basic development environment, the Identification tab
appears first, but you can click Back to see the Introduction window. If you have not
selected a device template, this dialog will not contain summary information. Click Next
to open the Identification window.

2-4 Generating a Plug-in with the LNS Device Plug-in Wizard

LNS Device Plug-in Wizard: Identification
The following window appears when you click Next from the Introduction window, or if
you start the plug-in wizard from Visual Basic:

This window shows the identification information for the plug-in. This window contains
the following fields:

VB Project Name The name to be used for the Visual Basic project. By
default, this will be the same as the LNS device
template name. This field may contain letters,
numbers, and the underscore character. This field is
enabled for a new project and disabled if you are
opening an existing one

Manufacturer Name The manufacturer name indicated by the program ID.
This information will be stored in the plug-in code.
Do not change this value, since that will cause the
registered manufacturer to disagree with the one
documented in the code.

Manufacturer ID The manufacturer ID indicated by the program ID.
Do not change this value, since that will cause the
registered manufacturer to disagree with the one
documented in the code.

Required LNS Version The minimum version of the LNS Server
redistribution needed to run this plug-in. By default,
the version of LNS currently on your computer will be
entered here. Do not change this value unless you

LNS Plug-In Programmer's Guide 2-5

have verified compatibility with the new value. The
minimum required version is 3.0.

Plug-in Scope The scope of the LNS device plug-in. You can choose
between lcaScopeSystem and
lcaScopeObjectServer. A single instantiation of a
LNS device plug-in with a scope of lcaScopeSystem
can only affect devices in a single network. A single
instantiation of a LNS device plug-in with a scope of
lcaScopeObjectServer can affect devices on all
networks on the computer.

Plug-in Version The version of the LNS device plug-in. By default, the
version is 1.0. If this is a new plug-in, this should not
be changed. If this plug-in is updated after release,
this field can be used to indicate the major and minor
version number.

Product Name The name of the product that will use this LNS device
plug-in. This should be a unique name that identifies
the LNS device plug-in.

Plug-in description A description of the purpose of this LNS device plug-
in. This description may be displayed by LNS tools
that support LNS plug-ins, such as the LonMaker
tool.

Enter the product name and LNS device plug-in description, set the scope, and then click
Next. If this project is not yet associated with an LNS device template, the Device
Template dialog opens. If this project is already associated with an LNS device template,
for example if started the plug-in wizard from the NodeBuilder tool, the Command Table
dialog opens.

LNS Device Plug-in Wizard: Device Template
The following window appears when you click Next from the Identification window and
you have not selected a device template:

2-6 Generating a Plug-in with the LNS Device Plug-in Wizard

This window allows you to browse all LNS device templates on your computer. Select the
device template of the device for which you are creating a plug-in. Click Next to open
the Command Table window.

LNS Device Plug-in Wizard: Command Table
The following window appears when you click Next from the Device Template window:

LNS Plug-In Programmer's Guide 2-7

This window allows you to add LNS device plug-in actions that are invoked by LNS tools
that support LNS plug-ins. To add a LNS device plug-in action, click the button to
open the Add Command dialog. Click this button for each action to be implemented by
your plug-in, and then enter command information for each command as described in the
next section. You can add multiple actions. For example, if your device implements
three functional blocks, you can add three actions, each specifying an
lcaCommandConfigure command on each of the three functional blocks on the device.

Double-click existing commands to edit them. An Edit Command dialog appears as
described in the next section.

Once you have added all commands for this LNS device plug-in, click Next to open the
Resource Table window.

LNS Device Plug-in Wizard: Add or Edit Command
An Add Command dialog opens when you click the button in the Command Table
window. An Edit Command dialog appears if you double-click a command in the
Command Table window. These dialogs appear as shown in the following figure (the title
is Edit Command for the Edit Command dialog):

2-8 Generating a Plug-in with the LNS Device Plug-in Wizard

This dialog allows you to add a new command or modify an existing one. Enter the
following:

Command ID The command type for this command. Select
lcaCommandConfigure if you are developing a
device plug-in that allows users to configure a device
or functional block. Select lcaCommandBrowse if
you are developing a device plug-in that provides a
monitoring and control interface for a device or
functional block. Appendix A lists additional
commands that you may implement. You can also
enter a user-defined command type. You cannot
select the LcaCommandRegister command. All LNS
device plug-ins handle this command as described in
Registering Your Plug-in's Registration Command in
Chapter 5, How Plug-Ins Work — The Details.

Default Specifies that this plug-in is the default handler for
this action. Set this checkbox if you want director
applications to run your plug-in when the user selects
a device or functional block based on your selected
device template and invokes a Configure or Browse
command.

Command Name The name of the new command. If Command ID
specifies a standard command, the command name
should incorporate the standard command name and
add a unique modifier that identifies the object that
the plug-in acts on. For example, a configuration
plug-in command for the Sensor functional block on a
MyCo device could be named “Configure MyCo
Sensor,” or a configuration plug-in command for the
MyCo device could be named “Configure MyCo
Temperature Sensor.”

Command Object The class of LNS object the command applies to.
When this command is invoked, an object of this class

LNS Plug-In Programmer's Guide 2-9

will be passed to the LNS device plug-in. Object
classes are listed in Appendix C, Standard Plug-in
Classes. Most device plug-ins commands apply to
functional blocks, though a device plug-in command
may also apply to an entire device. Choose
lcaClassIdLonMarkObject to indicate the
command applies to a functional block. Choose
lcaClassIdAppDevice to indicate the command
applies to the entire device. See How Directors Pass
Object Names in Chapter 4 for information about how
the address of the object is passed to the plug-in.

Command Scope The scope of this command. This indicates whether
this plug-in command can be enacted on any object of
the type specified in Command Object or only on
specific ones. Select lcaScopeDevice to allow this
command to be called by any functional blocks
associated with the device type, or the device itself.
Select lcaScopeLonMarkObject to only allow this
command to be called by a specific functional block. If
lcaScopeLonMarkObject is selected LonMark
Object appears.

LonMark Object Specifies the functional block on the device to which
this command applies. Only appears if
lcaScopeLonMarkObject is selected in Command
Scope.

Command Description Describes the command. This is optional, but can be
used to provide additional documentation for the plug-
in command.

Enter the command information and then click OK. The dialog closes and the command
will be added to the Command Table window.

LNS Device Plug-in Wizard: Resource Table
The following window appears when you click Next from the Command Table window.

2-10 Generating a Plug-in with the LNS Device Plug-in Wizard

This window contains all resource files in the resource catalog available to the selected
device template. You can select any resource files with a scope of 3, 4, 5, or 6. When the
plug-in is registered with an LNS application, it will ensure that all selected resource
files are available. Once you have selected all applicable resource files, click Next to
open the Director-side Instancing Control window.

LNS Device Plug-in Wizard: Director-side Instancing
Control

The following window appears when you click Next from the Resource Table window:

LNS Plug-In Programmer's Guide 2-11

This window allows you to set options relating to optional plug-in behavior. Each of
these fields can be set to Not Supported, Supported, or Disabled. The code generated
by the plug-in wizard does not implement any of the optional behaviors, so you should
typically leave all three behaviors set to Not Supported. If you choose to implement
any of the optional behaviors, you must implement code for it. Enter the following:

Pre-launch Notifies LNS director tools that they should start the
plug-in in the background as soon as the director
starts. The LonMaker tool supports the pre-
launching of plug-ins. This can improve the perceived
startup performance of your plug-in.

Multi-object Indicates if the plug-in accepts multiple
SendCommand calls with different objects, i.e. if
supported, this allows for the LNS device plug-in to be
simultaneously open with multiple objects.

Single Instance Indicates if a separate instance of the plug-in will be
launched for every new command applying to the
same object.

Set any desired behaviors and click Next to open the Summary window.

LNS Device Plug-in Wizard: Summary
The following window appears when you click Next from the Director-side Instancing
Control window:

2-12 Generating a Plug-in with the LNS Device Plug-in Wizard

This window displays a summary of the information entered in the plug-in wizard.
Review this information to ensure it is correct. Click User Interface to open the User
Interface Editor window. You can use the User Interface window to build your initial
user interface as described in the next section. Once you have finished using the User
Interface Editor window, click Finish to exit the plug-in wizard and generate your plug-
in framework.

LNS Device Plug-in Wizard: User Interface Editor
This window appears when you click User Interface from the Summary window.

WARNING: The user interface editor overrides existing code and controls for the fMain
form, be careful and don’t run it again if you need to preserve your existing development.

The User Interface Editor window appears as shown in the following figure. The left
pane is the Application Interface pane. It displays all the functional blocks, network
variables, and configuration properties in the selected device template. The right pane is
the User Interface pane. It displays the network variables and configuration properties
to be displayed on the tab selected above the User Interface pane.

LNS Plug-In Programmer's Guide 2-13

This dialog allows you to add network variables and configuration properties to be
configured, monitored, and controlled by your plug-in. The plug-in initially contains a
single tab labeled Monitor.

To add additional tabs, click the Add Tab button (). If you are implementing
commands to configure the functional blocks on your device, you can implement one or
more tabs for each functional block.

To edit existing tabs, click the Edit Tab button (). For example, you can edit the
default Monitor tab to change the name of the tab.

To remove existing tabs, click the Delete Tab button ().

When you add or edit a tab, the Tab Properties dialog appears.

To add a network variable or configuration property to a tab, follow these steps:

1. Select the desired tab above the User Interface pane.

2. Expand the interface in the Application Interface pane until the network variable or
configuration property is visible.

3. Drag the network variable or configuration property from the Application Interface
pane to the User Interface pane.

To clear all network variables and configuration properties from the User Interface pane,
click the Reset button () to clear all network variables and configuration properties.

Once you have added all the tabs for your LNS device plug-in, drag and drop the network
variable and configuration property values you want available in each tab from the left
pane of the User Interface Editor. This pane will contain all network variables and

2-14 Generating a Plug-in with the LNS Device Plug-in Wizard

configuration properties for the device. Click the reset button () to clear all network

variables and configuration properties. Click the save button () to generate visual
basic code.

The monitoring done with an LNS Device Plug-in created using the LNS Device Plug-in
Wizard is single-point monitoring, rather than monitor set monitoring (see the LNS for
Windows Programmer's Guide for more information on the two types of monitoring). This
method was chosen because each device that uses monitor set monitoring must have its
own monitor set, and there is a limit of 8000 monitor sets per network. In very large
networks where each device has a LNS device plug-in, this limit could be problematic.
Single-point monitoring creates and removes monitor points dynamically, so there is no
limit.

If you are creating an LNS Device Plug-in for a device that contains a configuration
property that is shared between members of a functional block or network variable array
(static sharing) or between different functional blocks or network variables (global
sharing), you will see the configuration property in all functional blocks and network
variable it is shared by. For example, a configuration property shared between all
members array of functional blocks appears on all elements of that array. The
configuration properties will be named <CP name> <CP name>~1, <CP name>~2, etc,
but they all point to a single configuration property on the device. If you add more than
one of these instances to the device interface, the user-interface of your Device Plug-in
could get out of sync; when one is updated, the value won't be reflected in the others until
the plug-in is refreshed. Therefore, whenever one instance of a shared configuration
property is updated, all the other instances should be refreshed.

Once you are done with the User Interface Editor, click the save button, then close the
editor. Note that if you have previously generated a user interface and made changes to
the resulting code, these changes will be lost when the User Interface Editor is run again
(this is not true of the LNS Device Plug-in Wizard in general). You will be returned to the
final screen of the LNS Device Plug-in Wizard.

WARNING: If you have previously generated a user interface and made changes to the
generated code, your changes will be lost when you click the Save button. This only
applies to the Save button on the User Interface Editor window; you can run the rest of
the plug-in wizard at any time without overwriting your existing code.

LNS Device Plug-in Wizard: Device Interface Editor Tab Properties
The following Tab Properties dialog appears whenever you add or edit a tab in the Device
Interface Editor window:

Set Caption to the name that you want displayed on the selected tab.

LNS Plug-In Programmer's Guide 3-1

3

 Modifying Code Generated by
the LNS Device Plug-in Wizard

The plug-in wizard creates a complete working plug-in application for you. This
plug-in software is a fully functioning LNS device plug-in. You can customize
this plug-in to tailor it to your device and further simplify device installation for
your device installers and users. This chapter describes the code generated by the
plug-in wizard and how you can customize it.

3-2 Modifying Code Generated by the LNS Device Plug-in Wizard

Introduction
The plug-in wizard generates the forms, modules, event handlers, and functions listed in
Appendix E. You can modify the components shown in italics as described in this
chapter. The plug-in wizard also generates a ReadMe file that lists all the forms and
functions in the generated code.

The forms and modules generated by the plug-in wizard are a complete working plug-in.
Even though changes are not required, you will typically modify the plug-in to customize
it for your device. For example, your device may have configuration properties that have
a limited set of valid values and combinations. Your plug-in can present just these valid
values and combinations to the user, making it much easier for the user to set-up your
device.

The only change that you have to make to the code generated by the wizard is to delete
the MsgBox() function calls in the ProcessLonMarkObjectCommand() and
ProcessDeviceCommand() functions within the fMain form. These MsgBox() calls
identify where you can start adding your customization code.

Initializing the Device
You can add custom code to initialize your device. Your code should verify that the
network is attached and the device is available before attempting to communicate with
the device. The InitDevice() function in the fMain form determines the device state and
collects initial values for items being monitored. You can add any required custom
initialization code to this function.

Initializing Formats
You can add custom code to select the formats used to display and enter network variable
and configuration property values. The ReadInitValue() function in the fMain form sets
default formatting options for network variables and configuration properties, and
retrieves initial values for configuration properties. The following code in this function is
commented out. You can remove the comment marks to activate this code and enforce
formats specified by your plug-in.

‘ ToDo: Uncomment the following block to enforce NV formats
' If nv.DsFormatType <> g_NvsCpsTable(i).Format Then
' nv.DsFormatType = g_NvsCpsTable(i).Format
' nv.DsSaveOptions
' End If

…

‘ ToDo: Uncomment the following block to enforce CP formats
' If cp.FormatName <> g_NvsCpsTable(i).Format Then
' cp.FormatName = g_NvsCpsTable(i).Format
' End If

This code sets the formats to the formats specified in the g_NvsCpsTable array. These
formats are written in the FillNvsCpsTable() function in the modFramework module.
For example, the following statement sets the format to SNVT_tmpe_p#SI for the first
entry in the g_NvsCpsTable:

LNS Plug-In Programmer's Guide 3-3

g_NvsCpsTable(0).Format = “SNVT_temp_p#SI”

You can modify the assigned formats to any format name with the following syntax:

[#<programIdTemplate>[<scope>].]<formatName>[#<modifier>]”

The programIdTemplate and scope fields are an optional program ID template and scope
of the resource file containing the format definition (both must be specified if either one
is specified); formatName is the name of the format in the specified resource file, and
modifier is an optional modifier. If the program ID template is not specified, the
specified format must be defined in a resource file with a program ID template that
matches the program ID of your device.

For example, “SNVT_switch” specifies a SNVT_switch format; “SNVT_temp_p#US” or
“SNVT_temp_p#SI” specify a SNVT_temp_p format with a US or SI modifier

Alternatively, you can specify one of the following built-in types:

• REAL – The value will be formatted as a single-precision, 32-bit, IEEE 754 floating
point number. This format may be used for any network variable that is 1, 2, or 4
bytes in length.

• INT – The value will be formatted as a signed, 32-bit integer. This format may be
used for any network variable that is 1, 2, or 4 bytes in length.

• DISCRETE – The value will be formatted as an 8-bit value that contains either 0 or
1 for each bit. This format may be used for any network variable that is 1 byte in
length.

• BINARY – The value will not be formatted. Byte and bitfield ordering is big endian.

• RAW – The value will be formatted as a text string. Each byte of the value appears
as a text-formatted integer value from “0” to “255.” Each byte is separate by the Raw
Format Separator character, which is a tab character (0x09) by default.

• RAW_HEX – The value will be formatted as a text string. Each byte of the value
appears as a text-formatted hex value from “0” to “ff.” Each byte is separate by the
Raw Format Separator character, which is a tab character (0x09) by default.

Customizing the Plug-in User Interface
You can modify the plug-in user interface by modifying the fMain form. The fMain form
is where most of the wizard-defined and user-defined action takes place. For example,
you can add additional user interface controls to this form. If you define monitor and
control points using the User Interface Editor window, and then you can add Visual
Basic or third party ActiveX controls to read and set the values in monitor and control
point text boxes to provide a graphical interface to the monitor and control points.

The fMain form contains the following controls:

• 1 Tabbed Dialog Control 6.0 (SP5). This control accommodates the elements used
by the monitoring and control feature provided by the plug-in.

• N text control(s): When generating a user interface with the user interface editor,
a text control is added for each network variable and configuration property,
grouped in tabs according to your selection in the user interface editor.

• Apply and Cancel buttons.

3-4 Modifying Code Generated by the LNS Device Plug-in Wizard

• An EchLog control: This is an ActiveX control named EchLog, similar to a
ListBox. The EchLog control is used to record all user and system events.

• An EchStsBar control: This is an ActiveX control named EchStsBar, similar to a
standard status bar. EchStsBar displays the device name, the device's state, the
functional blocks, and status and alarm information for each functional block.

• Device Template Label. The device template label displays the name of the LNS
device template the plug-in software applies to.

You can modify the functions listed in Table 3-1 to customize your user interface.

Table 3-1. Typically Modified User Interface Functions

Function Purpose
ProcessLonMarkObjectCommand()
and ProcessDeviceCommand()
Command Handlers

These functions are handlers that process a command that
applies to a functional block (LcaLonMarkObject), or an entire
device (LcaAppDevice), respectively. The default
implementation for each function contains code to perform a
complete resource file look-up to adjust the scope of the
implemented functional blocks. It also contains pre-defined code
to set the device template label and to initialize the device.
The default implementation also contains a MsgBox() function
call, reminding you that these handlers are subject to review and
enhancement; at a minimum, you must remove the MsgBox()
function calls.
You can add code to enhance the plug-in functionality and to
tailor the plug-in software to meet the requirements of your
device and its intended user.

txtNvi_KeyPress() and
txtCp_KeyPress() Event Handlers

These event handlers mark changes in the relevant text controls
when using the wizard-generated user-interface. The plug-in
code tries to commit pending changes when Apply is clicked.
You must add similar handlers for any controls that you add to
the interface and were therefore not added by the plug-in wizard.
You must add code for your controls to commit pending changes
from within the Apply handler.

cmdApply_Click() and
cmdCancel_Click() Functions

These functions commit or cancel the changes pending in the
altered text controls. You can add your Apply and Cancel
methods if you add any controls that are not added by the plug-
in wizard. For example, you may add controls for monitoring
and control network variable fields or configuration property
fields.

EnableControls() Function This function prepares the text controls that are used for
monitoring. You must add your own code if you add any
controls that are not added by the plug-in wizard.

EXAMPLE:

For example, you can add a Button control to the NodeBuilder Quick-start tutorial
plug-in example that causes the light on the Gizmo 4 hardware to toggle when the
button is clicked. To do this, drag a Button control to the fMain form, name the new
control Toggle Light, and add the following code to the fMain code:

LNS Plug-In Programmer's Guide 3-5

'Clicking this button toggles the input to the LED functional
'block by updating the nviValue field created by the User
'Interface Editor, then clicking the Apply button.

Private Sub cmdToggleLight_Click()
 If txtNvi(0) = "100.0 1" Then
 txtNvi(0) = "0.0 0"
 cmdApply.Enabled = True
 txtNvi(0).ForeColor = DIRTYCOLOR
 m_UnsavedChanges = True
 cmdApply_Click
 Else
 txtNvi(0) = "100.0 1"
 cmdApply.Enabled = True
 txtNvi(0).ForeColor = DIRTYCOLOR
 m_UnsavedChanges = True
 cmdApply_Click
 End If

End Sub

This code sets the m_UnsavedChanges variable to True, the text color to
DIRTYCOLOR, and enables the cmdApply button. These operations mimic the
behavior of the text box when text is entered manually (see the Keypress procedure
for the txtCp, txtNvo, and txtNvi textboxes). See Updating and Output Network
Variable or Configuration Property for more details.

Changing the Start-up Tab
You can change the tab that is displayed when the plug-in starts. The SelectActiveTab()
function in the fMain form sets the tab to a default page. If all network variables and
configuration properties that belong to a single functional block are hosted on the same
tab page, the SelectActiveTab() function automatically selects this page whenever it
receives a command associated with the relevant functional block. If you have network
variables and configuration properties from the same functional block on different pages,
you may need to modify the SelectActiveTab() function to select the appropriate tab for
each functional block.

Reading and Monitoring a Network Variable
You can use the plug-in wizard User Interface Editor window to add network variables to
be monitored by your plug-in. The plug-in wizard generates a single monitor point for
each input network variable that you select. Monitor sets are not used (see the LNS for
Windows Programmer's Guide for more information on the two types of monitoring).
Single-point monitoring method is used because each device that uses monitor set
monitoring must have its own monitor set, and there is a limit of 8000 monitor sets per
network. Device plug-ins should typically use single-point monitoring to conserve
monitor sets for use by HMI applications. Single-point monitoring creates and removes
monitor points dynamically, so there is no limit. You can customize your plug-in to use
monitor sets, but if you do that you must provide an option for the user to delete monitor
sets since a very large network could reach the 8000 monitor set limit.

The FillNvsCpsTable() function in the modFramework module builds a g_NvsCpsTable
array containing an entry for each network variable and configuration property that you
added to the user interface using the user interface wizard. When a network variable
update is received by your plug-in, the following steps occur:

3-6 Modifying Code Generated by the LNS Device Plug-in Wizard

1. The LNS network operating system calls the lcaOS_OnNetworkVariableUpdate()
event handler in fMain.

2. The lcaOS_OnNetworkVariableUpdate() event handler calls the
NetworkVariableUpdateReceived() function with the updated network variable value
and the entry in the g_NvsCpsTable array that corresponds to the updated network
variable. The g_NvsCpsTable entry contains a reference to the user interface control
associated with the network variable.

3. The NetworkVariableUpdateReceived() function verifies that the referenced control
is a text box. If it is, it assigns the new network variable value to the text box.

If you need access to a network variable value, you can get the value from the Text Box
control Text property. For example, if the name of the Text Box control is txtNvo, the
txtNvo.text property contains the string value of the network variable.

You can update a custom control that you add to the plug-in with a network variable
update. You can do this by creating a Change event handler for the text box control and
updating your custom control from this event handler.

EXAMPLE:

The following event handler copies new values for the txtNvo control to a slider
control.
Private Sub txtNvo_Change(Index As Integer)
 SldNvo.value = Val(txtNvo.text)
End Sub

Alternatively, you can manually create a monitor point for the network variable to be
monitored, assign it a unique monitor tag, modify the FillNvsCpsTable() function in the
modFramework module to create a new entry in the g_NvsCpsTable array with an index
equal to the monitor tag - 1, and modify the NetworkVariableUpdateReceived() function
to update your control.

WARNING: Do not rerun the user interface editor if you add custom entries into the
g_NvsCpsTable array.

The tabData_Click() event handler in the fMain form is activated when the tab page
changes. This event handler ensures that monitoring is enabled only for items on the
currently visible tab page. You can modify this code if you wish to permanently monitor
any network variables. Be sure to manage your network bandwidth utilization if you
permanently enable monitoring on many network variables.

Reading a Configuration Property
You can use the plug-in wizard User Interface Editor window to add configuration
properties to be accessed by your plug-in.

The FillNvsCpsTable() function in the modFramework module builds a g_NvsCpsTable
array containing an entry for each network variable and configuration property that you
added to the user interface using the user interface wizard.

If you need access to a configuration property value, you can get the value from the Text
Box control Text property. For example, if the name of the Text Box control is txtCp, the
txtCp.text property contains the string value of the configuration property.

LNS Plug-In Programmer's Guide 3-7

EXAMPLE:

The following statement copies the value for the txtCp control to a slider control.
SldNvo.value = Val(txtCp.text)

If you are creating a LNS device plug-in for a device that uses a static configuration
property in a functional block array (see Adding a Configuration Property to the Device
Interface in the Generating Neuron C Code Using the Code Wizard chapter in the
NodeBuilder User’s Guide), you will see the configuration property in all functional
blocks in the array. The configuration properties will be named <CP name> <CP
name>~1, <CP name>~2, etc. These all really point to the same configuration property.
If you add more than one of these to the device interface, your plug-in may get out of
sync; when one is updated, the value won't be reflected in the others until the plug-in is
reloaded.

Updating an Output Network Variable or Configuration
Property

You can use the plug-in wizard User Interface Editor window to add network variables
and configuration properties to be updated by your plug-in. To update a network
variable or configuration property, follow these steps:

1. Update the value of the text box.

2. Set the Enable property of the cmdApply control to True.

3. Set the ForeColor property of the text box to DIRTYCOLOR.

4. Set the m_UnsavedChanges variable to True.

5. Call the cmdApply_Click() event handler.

EXAMPLE:

The following code updates the value of the txtNvi text box and its associated
network variable:

txtNvi(0) = "0.0 0"
cmdApply.Enabled = True
txtNvi(0).ForeColor = DIRTYCOLOR
m_UnsavedChanges = True
cmdApply_Click

Changing a Network Variable Type
Your plug-in can change the type of network variables that support changeable types.
To implement support for a changeable type network variable, follow these steps:

1. Create a device with a changeable type network variable as described in the
NodeBuilder User’s Guide and the Neuron C Programmer’s Guide.

2. Add a user interface to your plug-in that allows the user to select different types
for the network variable. For example, you can add a ComboBox control and code
that initializes the control with the network variable types supported by your
application. Alternatively, you can add two controls, one that allows the user to

3-8 Modifying Code Generated by the LNS Device Plug-in Wizard

select a resource file and one that allows the user to select a type from the
selected resource file.

3. Add an event handler for the network variable type control. This event handler
must perform the following functions:

a Write the new type to the SCPTnvType configuration property associated
with the network variable. The following example describes the fields in a
SCPTnvType configuration property.

EXAMPLE:

The following code updates a SCPTnvType configuration property defined at
index R of the g_NvsCpsTable array. This index may be acquired from the
g_NvsCpsTable initialization within the modFramework module.

Dim cp As LcaConfigProperty
Dim cps As LcaConfigProperties
Dim devInterface As LcaInterface

Set devInterface = m_Device.Interface
Set cps = devInterface.ConfigProperties
Set cp = cps.ItemByHandle(g_NvsCpsTable(R).ItemHandle)

cp.Value = “PID S:S:S:S:S:S:S:S, Scope T, Index U, V, W bytes, A=a, B=b, C=c”

The formatted string used to update the SCPTnvType configuration property
is based on the following symbol mapping to the SCPTnvType structure.

Symbol Mapped Field SCPTnvType Structure
S type_program_ID[8]
T type_scope
U type_index
V type_category
W type_length
a scaling_factor_a
b scaling_factor_b
c scaling_factor_c

typedef struct {
 unsigned short type_program_ID[8];
 unsigned long type_scope;
 unsigned short type_index;
 nv_type_category_t type_category;
 unsigned short type_length;
 signed long scaling_factor_a;
 signed long scaling_factor_b;
 signed long scaling_factor_c;
} SCPTnvType;

The type_program_ID and type_scope values specify a program ID
template and a resource scope that together uniquely identify a resource file
set. The type_index value identifies the network variable type within that
resource file set. If the type_scope value is 0, the type_index value is a
SNVT index. The type_program_ID and type_scope values uniquely
identify a type to the device application as well as to any network tools that
wish to determine the current type, or modify the type, of the network
variable to which the property applies. The device application may ignore
these values if the remaining fields in the SCPTnvType structure provide
sufficient information for the application.

The type_category field is defined by the following definition from the
<snvt_nvt.h> include file and requires that it equal the enumerated symbol
rather than an integer value.

typedef enum nv_type_category_t {
 /* 0 */ NVT_CAT_INITIAL = 1, // Initial unassigned value

LNS Plug-In Programmer's Guide 3-9

 /* 1 */ NVT_CAT_SIGNED_CHAR = 1, // Signed Char
 /* 2 */ NVT_CAT_UNSIGNED_CHAR, // Unsigned Char
 /* 3 */ NVT_CAT_SIGNED_SHORT, // 8-bit Signed Short
 /* 4 */ NVT_CAT_UNSIGNED_SHORT, // 8-bit Unsigned Short
 /* 5 */ NVT_CAT_SIGNED_LONG, // 16-bit Signed Long
 /* 6 */ NVT_CAT_UNSIGNED_LONG, // 16-bit Unsigned Long
 /* 7 */ NVT_CAT_ENUM, // Enumeration
 /* 8 */ NVT_CAT_ARRAY, // Array
 /* 9 */ NVT_CAT_STRUCT, // Structure
 /* 10 */ NVT_CAT_UNION, // Union
 /* 11 */ NVT_CAT_BITFIELD, // Bitfield
 /* 12 */ NVT_CAT_FLOAT, // 32-bit Floating Point
 /* 13 */ NVT_CAT_SIGNED_QUAD, // 32-bit Signed Quad
 /* 14 */ NVT_CAT_REFERENCE, // Reference
 /* -1 */ NVT_CAT_NUL = 1 // Invalid Value
} nv_type_category_t;

This enumeration describes the type, stating whether it is a signed short, or
floating-point, or structure, for example, but not providing information about
structure or union fields or other similar details. The type_length field is
necessary to provide the number of bytes of a structure or union type, though
it is set for all types. To support all scalar types, test for a type_category
value between NVT_CAT_SIGNED_CHAR and NVT_UNSIGNED_LONG,
plus NVT_CAT_SIGNED_QUAD. To also support floating point types, also
test for a type_category value of NVT_FLOAT.

The scaling_factor_a, scaling_factor_b, and scaling_factor_c fields
enable the device application to convert raw fixed-point network variable
values to scaled values. For example, the SNVT_lev_cont, type represents
percentages from 0 to 100 percent, with a resolution of 0.5%, in an unsigned
short. The actual data values (also called raw values) in the variable range
from 0 to 200. The scaling factors for SNVT_lev_cont are a=5, b= -1, c=0.
To convert a raw fixed-point value to a scaled value, use the following
formula:

scaled = (a * (10 ** b) * (raw + c))

The device application may also use the scaling factors to convert scaled
values back to raw values to be stored in the network variable. To convert
from a scaled value to a raw fixed-point value, use the following formula:

raw = (scaled / (a * (10 ** b))) - c

It is entirely up to the device application to programmatically deal with
varying representations of data based upon the current values in the
SCPTnvType property for the network variable. This is described in
Changeable Type Network Variables in Chapter 3, How Devices Communicate
Using Network Variables, of the Neuron C Programmer’s Guide.

b Update the LNS Property LcaNetworkVariable::SNVTid for the network
variable. Set this property to the standard network variable identifier for a
SNVT or 0 (zero) for a user-defined network variable type.

c If you were using non-default formatting, or want to use non-default
formatting for the network variable, set the LNS Property
LcaNetworkVariable::DsFormatType to reflect the new format.

d Refresh the display of the network variable, so that the format that is
associated with the new type is used.

3-10 Modifying Code Generated by the LNS Device Plug-in Wizard

e If the network variable has configuration properties associated with it, and
if these configuration properties inherit their types from the network
variable, refresh the display of these properties. This allows the correct
format to be used as required by the new type.

f If the changeable type network variable shares a SCPTnvType property
with other network variables, repeat steps b through e for each network
variable.

g If attached and OnNet, check the status reported on the device’s nvoStatus
network variable (see the LcaObjectStatus object for details). An invalid
request indicates that the device does not support the desired type. In this
case, revert back to the previously known, valid type, using the procedure as
outlined above.
Type rejection and roll-back requires the device to be available, attached and
accessible, and requires the network database to be in OnNet management
mode.

Accessing a Network Variable Object
You can directly access the LNS Network Variable object for any network variable on the
device associated with the plug-in. You can use this object to get or set the current value
of a network variable or to control its formatting. The m_Nvs collection contains all the
network variables for the plug-ins device, so you can access the Network Variable object
using the ItemByIndex() function for the m_Nvs collection.

WARNING: If you update the Value property of a LNS Network Variable object directly
without also updating the displayed value in your plug-in interface, the displayed and
actual value will get out of synchronization. Use the technique described in Updating an
Output Network Variable to update both the network variable and its value in the user
interface.

EXAMPLE:

The following code fetches the Network Variable object for the network variable
assigned to the i'th entry in the g_ NvsCpsTable array (this entry corresponds to
monitor tag i+1) and then increments its value by 1.
Dim nv As LcaNetworkVariable

Set nv = m_Nvs.ItemByIndex(Val (g_NvsCpsTable(i).ItemHandle))
Set nv.Value = CStr(Val(nv.Value) + 1)

The g_NvsCpsTable function supports an ItemHandle property. This property
should not be confused with any of the LNS Handle properties; it is a plug-in
framework-specific handle. (For network variables, ItemHandle is set to the
network variable index.)

The ItemHandle property is a string-type property. A function such as the Val()
conversion function must be used to convert the string-encoded network variable
index.

Accessing a Configuration Property Object
You can directly access the LNS Configuration Property object for any configuration
property on the device associated with the plug-in. You can use this object to get or set

LNS Plug-In Programmer's Guide 3-11

the current value of a configuration property or to control its formatting. The m_Device
object contains the LNS Device object for the plug-ins device. This object contains an
Interface property that stores the device interface. This property contains a
ConfigProperties collection with the configuration properties on the device.

The LNS Plug-In Wizard-generated framework uses the GetCpByTypeIndex routine to
fetch a configuration property object. This routine, defined in fMain.bas, accepts a string
identifying the configuration property by scope selector and index. This string is
formatted in one of the following ways:

Device Configuration Property:

C:<CPT scope>:<CPT index>
e.g. C:3:15

Functional Block Configuration Property:

F:<FB index>/C:<CPT scope>:<CPT index>
e.g. F:4/C:3:1

Network Variable Configuration Property:

N:<NV index>/C:<CPT scope>:<CPT index>
e.g. N:23/C:3:5

The ItemHandle property in g_NvsCpsTable stores this string.

WARNING: If you update the Value property of a LNS Configuration Property object
directly without also updating the displayed value in your plug-in interface, the
displayed and actual value will get out of synchronization. Use the technique described
in Updating a Configuration Property to update both the network variable and its value
in the user interface.

EXAMPLE:

The following code fetches the Configuration Property object for the configuration
property assigned to the i'th entry in the g_ NvsCpsTable array, and then increments
its value by 1.
Dim cp As LcaConfigProperty

Set cp = GetCPByTypeIndex(g_NvsCpsTable(i).ItemHandle)
Set cp.Value = CStr(Val(cp.Value) + 1)

Using Shared Configuration Properties
If your plug-in exposes a shared configuration property in multiple places, when you
update one instance of the shared configuration property, the other instances may not
reflect the change immediately. You should add code that refreshed the other instances
of the shared configuration property when any instance is updated.

See Sharing a Configuration Property in Chapter 6 of the NodeBuilder User’s Guide for
more information about sharing configuration properties

Adding Support for Configuration Property Arrays
The LNS Plug-in Wizard does not support automatic generation of user interface and
code to monitor and control configuration properties that are implemented as

3-12 Modifying Code Generated by the LNS Device Plug-in Wizard

configuration property arrays. When a configuration property array is added to one of
the tabs in the Plug-in Wizard User Interface Editor (see Chapter 2), the generated code
will affect only the first element of the configuration property array.

To add support for monitoring and control of configuration property arrays within the
Plug-In Wizard-generated plug-in framework, follow these steps:

1. Use the Plug-In Wizard to create a user-interface. By default, this user interface will
only allow you to access the first element of that array.

2. Open Mmain.bas and edit the NvCpTableType structure to include information
about the array index or the range or array indices to be controlled from the
graphical user interface.

3. Open ModFramework.bas and edit the FillNvsCpsTable() function to use the fields
you have added to the NvCpTableType structure.

4. Open fMain.frm and modify the user interface to accommodate your chosen method
of configuration property array access. This might require removing a Plug-In
Wizard-generated control (i.e. a textbox), and adding controls that meet your
requirements. For a small array, the user interface could be a small number of
textbox controls, one for each element of the array. For a larger array, you could
implement a spin control that allows the user to select index into the array, and a
textbox control that allows the value at the selected index to be read and changed.

5. In fMain.frm, optionally edit the OnLoad function to initialize your newly added
controls. For example, if you implement a spin control that allows the user to select
an index of the configuration property array, you will need to initialize a starting
index and define the index boundaries will have to be set. A separate function,
ReadInitValues(), is used to obtain initial network variable and configuration
property values.

6. In fMain.frm, edit the ReadInitValues() function to read data from your
NvCpTable as required by your user interface. The LNS method
LcaConfigProperty::GetElement() is used to obtain the value of an element of a
configuration property array.

7. In fMain.frm, edit the cmdApply_Click event handler to update the values in your
configuration property array as defined in your NvCpTable. The LNS method
LcaConfigProperty::SetElement() is used to set individual elements of a configuration
property array.

8. Add user interface event handlers as needed by your controls. For example,
implementing a spin control that allows the user to select an element of the
configuration property array requires an OnChange event handler to respond to the
newly selected index.

Adding a Custom Property, Method, or Command
The LNSPlugInAPI class module defines the standard properties and methods that are
implemented by your plug-in. These properties and methods are used by network tools
to configure and call the plug-in. You can add custom properties and methods to the
LNSPlugInAPI class.

When a command is received, the SendCommand() function in the LNSPlugInAPI class
calls the appropriate functions in the plug-in. The SendCommand() function looks up
commands in the g_CommandTable array, which is created by the FillCommandTable()
function in the modFramework module. The FillCommandTable() function is created

LNS Plug-In Programmer's Guide 3-13

automatically based on your inputs to the plug-in wizard. If you need to add any custom
commands, use the plug-in wizard to add them.

Creating a Stand-alone Plug-in
The plug-in wizard generates a plug-in that may be called by a network tool, and that
may also run standalone. By default, the standalone operation is limited to providing
registration and deregistration commands.

When run stand-alone, the plug-in automatically registers itself if it is started with a
command line flag of /regplugin, such as MyPlugIn /regplugin. The registration
information used comes from the project and from constants entered into the plug-in
wizard and contained in the modFramework module.

If a plug-in created using the plug-in wizard is started stand-alone without any command
switches , the registration dialog appears, as shown in the following figure:

You can set the project name and constants by typing the desired values into the code, or
you can use the plug-in wizard to generate the value.

You can enhance the plug-in to provide additional standalone capability. The
fRegisterPlugIn form provides the standalone interface for the plug-in. You can modify
this form to provide additional standalone functionality.

Note: In Visual Basic, the name of your plug-in's server class is always the name of your
project (as set in the project properties dialog box) followed by a dot and the name of the
class that implements the LNS Plug-in API. For example, if your project name is
MyPlugIn and your class that implements the LNS Plug-in API is named
LNSPlugInAPI, the name of your plug-in's server class (and thus the value for
g_RegisteredServer) must be MyPlugIn.LNSPlugInAPI. The LNS Device Plug-in Wizard
automatically sets the correct value for this constant. If you change the project name
manually, you must either rerun the LNS Device Plug-in Wizard or manually update the
value of g_RegisteredServer.

Click the Deregister Plug-in button to remove the plug-in's registration command from
the Windows registry. When deregistering a plug-in, you can choose from three
deregistration modes using the drop-down menu beneath the Deregister Plug-in
Button:

3-14 Modifying Code Generated by the LNS Device Plug-in Wizard

Minimal Mode Removes the entries for this plug-in from the
Windows registry and unregisters the automation
server.

Complete Mode Does everything a Minimal Mode deregistration does,
plus removes plug-in registration data from all
network databases including the global database.

Exhaustive Mode Does everything a Complete Mode deregistration
does, plus removes all device templates that this plug-
in uses from all network databases unless they are in
use (i.e. a device of that type exists in the network).

To re-register a plug-in that you have de-registered, you must quit the plug-in and
restart it before invoking the register command.

Note: Do not try to deregister the plug-in when it is run stand-alone from the Visual
Basic debugger. This will cause the deregistration to fail.

 Using Utility Functions
The plug-in framework provides a number of utility functions, listed in Table 3-2. You
can call these functions from your custom code.

Table 3-2 Utility Functions Provided by the Plug-in framework

Function Purpose
GetClassIdName() This function is defined in the MMain module. Given a class ID,

this function returns the name of the class in a string.
GetCommandIdName() This function is defined in the MMain module. Given a

command ID, this function returns the name of the command in
a string.

GetNumObjectNameParameterStrings() This function is defined in the MMain module. Returns the
number of substrings in the last object name passed to the
plug-in by a director.

GetObjectNameParameterString() This function is defined in the MMain module. Returns the ith
substring of the last object name passed to the plug-in by a
director and optionally trims the class identifier, if any.

ParseWord() This function is defined in the MMain module. Given a string
and a character to search for, returns all of the characters
before the search character as the result of the function (or the
entire input string if the search character is not found) and
returns all of the characters after the search character (or an
empty string if the search character is not found) in the
RemainingString parameter.

Design Rules For Future Revisions Of Your Plug-ins
If your plug-in is a new version of a plug-in that you have previously distributed, there
are several rules that you must follow. Some of these rules are imposed by Windows;
others are imposed by LNS.

As mentioned in Footnote 5 in Chapter 4, Windows requires that ActiveX servers register
certain information about themselves in the Windows registry. One side-effect of these

LNS Plug-In Programmer's Guide 3-15

requirements are that, if the user does not uninstall previous versions of your plug-in
and installs a new version into a different directory than the previous version, Windows
may not be able to find your plug-in when directors try to launch it. This phenomenon is
caused by the way in which Windows locates and launches ActiveX servers.

When a director creates a new instance of a plug-in (referenced by name), Windows
searches in the registry for an ActiveX class with the specified name. If a matching
name is found, Windows fetches the class's GUID from the registry. Windows then looks
in the registry for a Class ID with the specified GUID. If one is found, Windows next
looks at the data setting of LocalServer32 value, which specifies the full path and file
name of the executable that implements the class that the director asked to launch.

This can cause the following problem. If the user does not uninstall the old version of
your plug-in, its GUID will still be in the registry when your new version is installed. If
the new plug-in has the same GUID as the old plug-in, Windows will not create the
proper registry entries when the new plug-in is installed (since it will think that the
plug-in is already registered). If the user installs the new version into a different
directory than the previous version, Windows will not have the correct path information
in the LocalServer32 value.

There are two easy ways to prevent this problem. One way is to give new versions of
your plug-ins a new GUID. This is done by setting the Project Compatibility option
(selected using the Component tab of the project properties dialog) to Project
Compatibility or No Compatibility. When project compatibility is set to either of
these options, Visual Basic automatically generates a new GUID for your server class
every time you compile. The other way to avoid this problem is to give the new version of
your plug-in a new ActiveX class name. This is done by changing the name of the
registered server (i.e. the name of the Visual Basic project) using either the plug-in
wizard or the Visual Basic Project Properties dialog. The new plug-in can have the same
executable name as the old plug-in; only the project name needs to be changed.

The second rule you must follow has to do with LNS. If the new version of your plug-in
does not implement the same commands as the old version (i.e., if the command set is not
backwards compatible) you must be sure to deregister old versions of your plug-in as part
of registration of your new plug-in. That is, when your plug-in receives an
LcaCommandRegister (50) command from a director, before you add ComponentApp
objects for your new plug-in’s commands, you must remove any ComponentApp objects
that list your plug-in as the RegisteredServer and that indicate commands that you
no longer support. Since you know what commands have become obsolete in the new
version, it is a straight-forward task to find and remove them. See the
DeregisterSupportedCommands() function in the MMain module of the plug-in
framework for an example.

3-16 Modifying Code Generated by the LNS Device Plug-in Wizard

LNS Plug-In Programmer's Guide 4-1

4

 How Plug-Ins Work — The
Big Picture

This chapter presents an overview of the life-cycle of a plug-in. It describes
how plug-ins make themselves known to directors, how plug-ins let directors
know what they can do, and how directors and plug-ins interact. Once you
understand the basic interaction between directors and plug-ins, you will find
that writing a plug-in using Visual Basic is quite straightforward. The plug-in
framework generated by the plug-in wizard implements the interfaces
described in this chapter. You can skip this chapter if you are using the plug-
in wizard and you do not need to modify the standard plug-in interfaces.

4-2 How Plug-Ins Work — The Big Picture

How Plug-ins Are Represented In The LNS Object
Server

Before discussing how plug-ins are installed on a user's computer and how they are
registered with the LNS Object Server, it helps to understand what the end result of
these actions is. That is, when all is said and done, how does the LNS Object Server
represent a plug-in and its functionality?

The LNS Object Server represents a plug-in and its functionality through
ComponentApp objects. There is one ComponentApp object for each action that a
plug-in implements and one ComponentApp object for the plug-in itself. Each
ComponentApp object defines, among other things, an action, which is a
command/object class pair. That is, it defines a specific command (such as
LcaCommandTest) that the plug-in can perform on a specific class of object (such as
an AppDevice). This means that if a plug-in can perform the same command on
many different classes of objects, it represents this by multiple ComponentApp
objects (all with the same command ID, but each with a different object class ID).
For example, a plug-in might implement two actions, a test command of AppDevice
objects and a test command of Router objects. Each of these actions would be
represented by a ComponentApp object (one with a command ID/object class pair of
[LcaCommandTest (33), LcaClassIdAppDevice (7)] and the other with command
ID/object class pair of [LcaCommandTest (33), LcaClassIdRouter (9)].

Similarly, if a plug-in can perform many different commands on a particular class of
object, each of these commands is represented by a separate ComponentApp object
(all with the same object class ID, but each with a different command ID). For
example a plug-in might implement two actions, a Test command of AppDevice
objects and a Configure command of AppDevice objects. Each of these actions would
be represented by a ComponentApp object (one with a command ID/object class pair
of [LcaCommandTest (33), LcaClassIdAppDevice (7)] and the other with command
ID/object class pair of [LcaCommandConfigure (13), LcaClassIdAppDevice (9)].

The plug-in itself is also represented in the LNS Object Server by a ComponentApp
object. For the plug-in itself, the command ID of the ComponentApp object is always
LcaCommandRegister (50).

Four classes of objects in the LNS Object Server contain ComponentApps collections
— the ObjectServer object, System objects, DeviceTemplate objects, and
LonMarkObject objects. The ComponentApps collection to which a ComponentApp
object belongs defines the scope of the item.

If an item is in the ObjectServer object's ComponentApps collection, the item
applies to all systems managed by the LNS Object Server. If an item is in a System
object's ComponentApps collection, the item applies only to that system. If an item
is in a DeviceTemplate object's ComponentApps collection, the item applies only to
devices of that type in that particular system. If an item is in a LonMarkObject
object's ComponentApps collection, the item applies only to functional blocks on
devices of that type in that particular system.

LNS Plug-In Programmer's Guide 4-3

How Plug-ins Are Installed On A User's Computer
and Registered with LNS

To the user, installing a plug-in is a simple process. As with all Windows
applications, the user runs a setup program (such as one created using Visual Basic
Application Setup Wizard) that copies all of the files required by the application onto
their machine and that makes whatever changes in the Windows registry the
application requires. The next time that the user run a director, the new plug-in will
be listed as available4 and the user can then register the plug-in with LNS. Once it is
registered, the user can then use the plug-in’s functionality and, depending upon how
the director has exposed plug-ins, may not even be aware that they are doing so. As
with all software, much is going on behind the scenes to make this process easy for
the end-user.

When the user runs the plug-in's setup program to install the plug-in onto their
computer, a number of things happen. As with all Windows applications, the setup
program copies all of the files needed to run the plug-in onto the user's computer
while checking to make sure that it does not overwrite newer versions. Next, the
setup program adds a number of items to the Windows registry. Some of these items
are required because plug-ins are implemented as ActiveX servers5. Other entries
are required by LNS.

LNS requires that a plug-in register a registration command for itself in the
Windows registry6. This item provides background information about the plug-in
(such as its version number and the name of the company that wrote it) along with
operational information (such as the name of the plug's ActiveX class that implement
the LNS Plug-in API and a description of what the plug-in does). Directors use this
information (along with the other registry information required of all ActiveX
components) to complete the plug-in installation process.

There are several different ways that a plug-in's setup program can add all of this
required information to the Windows registry. One way is for the setup program to
explicitly create all of the required registry information. Some setup toolkits can
create setup applications that can do this, but the Visual Basic Package and
Deployment Wizard does not support this. A plug-in can also be registered by being
run in stand-alone with the /regplugin switch7 after installing all of its required

4 How a director treats new plug-ins is up to the director. Some may display them in list boxes and let the user select which
ones are imported; others may automatically import all new plug-ins (although this not recommended since it can result in
lots of time spent registering plug-ins that the user does not want to use).
5 Windows requires that ActiveX components register a number of items about themselves. This includes registering the
GUID, the name of the ActiveX class that implements the LNS Plug-in API (the registered server), and the full path and
name of the application that implements the registered server. The GUID is in the CLSID value under the keys
HKEY_CLASSES_ROOT\<server class name> and HKEY_LOCAL_MACHINE\SOFTWARE\Classes\<server
class name>, such as HKEY_CLASSES_ROOT\MyPlugIn.LNSPlugInAPI and
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\MyPlugIn.LNSPlugInAPI. The executable name that
implements the class is registered in the LocalServer32 value under the key
HKEY_CLASSES_ROOT\CLSID\<GUID>, such as HKEY_CLASSES_ROOT\CLSID\{52816344-5E5B-11D1-
865D-0060974528A0}.
6 The required information is described fully in Chapter 1, Introduction.
7 ActiveX servers can run in two modes, server or stand-alone. A plug-in is running in server mode when it is launched by
another application (i.e., a director) though ActiveX automation. It is running stand-alone when it was launched without
ActiveX automation (for example, by the user double clicking on the plug-in's icon).

4-4 How Plug-Ins Work — The Big Picture

files8. LNS requires that plug-ins add their registration command to the Windows
registry when they are run stand-alone with the /regplugin switch. Plug-ins
created using the Plug-in Wizard automatically show a dialog that allows them to be
registered and unregistered in the Windows registry when they are run stand-alone.

After the plug-in is registered with Windows, the next time the user runs a director,
the director will see the new plug-in. The way this is implemented by the director is
as follows. When started, directors check the Windows registry to see which plug-ins
have registration commands listed. For each plug-in registration command listed in
the Windows registry, the director checks to see if a more recent version of that plug-
in already exists in the LNS Object Server. It does this by looking to see if there is
already a ComponentApp object for the plug-in's registration command at the
appropriate scope. If the Windows registry gives the scope as 1
(LcaScopeObjectServer), the director looks in the ObjectServer object's
ComponentApps collections to see if a registration command already exists for this
plug-in. If the scope is 2 (LcaScopeSystem), the director looks in the
ComponentApps collections of the ActiveNetwork's System object. If the plug-in is
not already registered or if the registered version is older, the director may
automatically add the plug-in or the director may allow the user to select which plug-
ins are added9.

In either case, at some point the user (or the director) decides that it wants to
register the new plug-in. To do this, the director launches the plug-in (see How
Directors Launch And Manipulate Plug-ins later in this chapter for details) and
sends it a LcaCommandRegister (50) command.

When a plug-in receives this command, it registers all of the actions that it supports
by adding ComponentApp objects for each action that it implements to the
appropriate ComponentApps collections based upon the action's scope and carries
out any other initialization that it requires. The plug-in does not register its
registration command; the director automatically adds a ComponentApp object for
this command if the plug-in is successfully registered. Registration is considered
successful if the plug-in didn’t crash. Failure to register any of the supported
commands (for example if unable to create a device template) is not considered a
plug-in registration failure.

How Directors Launch And Manipulate Plug-ins
The first question a director must answer is when should it launch a plug-in. During
initial registration, a plug-in is launched to complete the registration process. In this
case, the plug-in is launched either automatically by the director or in response to the
user requesting to add the plug-in to the system. Directors may pre-launch a plug-in
when opening a system if the plug-in indicates that pre-launch is supported in the
Windows registry by adding a Prelaunch subkey and setting it to 1 (see Prelaunch in

8 The Application Setup Wizard included with Visual Basic does not support registration of plug-ins in this way either.
However, since Microsoft provides the source code for the Setup1 program, it is possible to modify the program to work
in this way. A better option, however, is to install your plug-in using a more full-featured setup toolkit, such as
InstallShield.
9 If the scope of the plug-in's registration command is 1, the plug-in has asked to be registered in the global
ComponentApps collection under the ObjectServer object. Plug-ins registered at this level only need to be registered
once. After they are registered, they are available to all systems managed by this server. If the scope is 2, the plug-in has
asked to be registered in the System object's ComponentApps collection. Because each System object has its own
ComponentApps collection, plug-ins registered at this level must be registered once per System.

LNS Plug-In Programmer's Guide 4-5

Table 3-1, earlier in this chapter). During on-going operation, plug-ins can be
launched (or made visible, if already pre-launched) in response to a user selecting an
item from a menu; for example, right-clicking a device in the LonMaker tool and
selecting Configure from the shortcut menu starts the plug-in and invokes the
Configure command. The director determines what plug-ins apply to what objects by
searching the appropriate ComponentApps collections10 for ComponentApp objects
that have a ComponentClassId of LcaClassIdAppDevice (7).

When a director decides to launch a plug-in to perform an action on an object, it
follows the flow outlined in Table 4-1.

Table 4-1. Interaction Between a Director and a Plug-In

Director Does This Plug-in Responds Like This
Creates an instance of the plug-in by creating an
instance of the plug-in's ActiveX class that
implements the LNS Plug-in API. The director gets
the class's name from either the Windows registry
(for initial registration) or from a ComponentApp
object (for subsequent commands).

The Class_Initialize method of the
class that implements the LNS Plug-in API
runs. The plug-in increments its usage count.
If this is the first user of the plug-in, the plug-in
also performs whatever initialization it
requires.

If this is a remote client, sets the Remote property to
True and the sets then NetworkInterfaceName
property11 to identify the interface that the plug-in
should use to communicate with the LNS Object
Server. All plug-ins must support these properties.

Stores the state of the Remote property and
the name of the network interface for future
use.

Sets the NetworkName property to identify the
network on which the plug-in will act. All plug-ins
must support this property.

Opens the network, using the specified
network interface name (if one was previously
given).

Optionally sets additional properties, such as the
Visible property (to cause the plug-in to show
itself).

Responds appropriately.

Invokes the SendCommand method to tell the plug in
the command that it should perform and the target
object on which to perform it. The command is
identified by ID, as listed in Table 1-1. The target
object is identified by class ID and by object name,
as described in later in this chapter.

Validates that it supports the requested
command and, if so, executes it. Some
command execution may be deferred until the
Visible property is set to True.

Optionally sets additional properties, such as the
Visible property.

Responds appropriately.

Releases the instance of the plug-in it created by
setting the variable that references the plug-in to
Nothing.

The Class_Terminate method of the class
that implements the LNS Plug-in API runs.
The plug-in decrements its usage count. If
this is the last user of the plug-in and the plug-
in is not visible (i.e., the Visible property is
False), the plug-in exits. See How Plug-Ins
Know When To Exit later in this chapter for
more details.

10 The appropriate collections are those that are in scope. In this case, that would be the ObjectServer object's
ComponentApps collection, the ComponentApps collection of the ActiveNetwork's System object, and the
ComponentApps collection of the device's DeviceTemplate object.
11 After creating an instance of a plug-in, the director can set any property, at any time, with two exceptions. If they are set,
the NetworkInterfaceName and Remote properties must be set before the NetworkName property.

4-6 How Plug-Ins Work — The Big Picture

How Directors Support Prelaunch
Director can support pre-launch, a feature that allows a plug-in to initialize and open
the network when the director is started (see Table 1-3, earlier in this Chapter). A
pre-launch sequence initiated by the director performs all plug-in launch operations
except setting the plug-in visible. A director will launch a plug-in that supports pre-
launch immediately after opening the network, according to the following algorithm:

1. If a plug-in supports pre-launch, launch it. This is determined by the existence of
the Prelaunch subkey in the Windows registry with an entry value of 1.

2. Since a plug-in that supports pre-launch also exposes the Prelaunch property in
its LnsPluginAPI class, the director sets this property to 1 (pre-launch in
progress).

3. After the director is finished setting properties for the pre-launch operation, the
director sets the Prelaunch property in the plug-in’s LnsPluginAPI class to 0
(end of pre-launch property-setting sequence).

4. The plug-in performs its pre-launch sequence, based upon the properties that the
director has set. For instance, any time-consuming activity that you want to be
performed during the pre-launch period, such as open a network, should be
contained in a property-setting method of the plug-in such as the
SetNetworkName() method. Leave the minimum possible activity in the
SendCommand() and SetVisible() methods, which will be called during the actual
plug-in launch that the user sees. There must be no progress dialogs or message
boxes displayed during the pre-launch period—the server must run hidden. The
plug-in must also terminate if it is never made visible and it is released by the
director.

If the plug-in has the Prelaunch property set to 1, the director will periodically check
if the plug-in process is still available and attached to its reference, and will
immediately pre-launch a new instance if the reference becomes invalid or if it was
released.

For example, the NodeBuilder tool has Prelaunch subkey set to 1 in the Windows
registry. Once the NodeBuilder plug-in is registered with the LonMaker tool, the
NodeBuilder tool will launch in the background when the LonMaker tool starts.

How Directors Support MultiObject and SingleInstance
The following algorithm is used by the director to decide when to keep the reference
to the plug-in, when to release it, and when to launch a new instance:

1. If this plug-in has the optional MultiObject subkey in the Windows registry, and
the MultiObject entry value in the registry is set to 1, (see Table 2-1 in chapter
2), and the director is sending several commands in a batch, the director sets the
plug-in’s MultiObject property (in the ActiveX automation server class that
implements the LNS Plug-in API) to 1 (batch started).

2. The director then sends the commands with multiple invocations of the
SendCommand method.

LNS Plug-In Programmer's Guide 4-7

3. After the last SendCommand of the batch, the director sets the plug-in’s
MultiObject property to 0 (batch complete) to have the plug-in execute the
cached commands in the order they were received.

4. The director then sets the Visible property to True.

5. If the plug-in doesn't have the SingleInstance or MultiObject subkeys entry
values set to 1 in the Windows registry, release the reference to it.
SingleInstance functionality is described in Chapter 4, How Plug-Ins Work — The
Details.

The director holds a reference to the plug-in so that it can send additional objects (in
the case of MultiObject support) or can activate the existing instance (in the case of
SingleInstance support). In these two cases, the director will always keep a reference
to the plug-in until the director has terminated.

The desired instancing is achieved in the plug-in source code by setting the ActiveX
Instancing property of the LnsPluginAPI class to MultiUse for a plug-in supporting
MultiObject or SingleInstance functionality, and to SingleUse for a plug-in which
supports neither of these properties, in combination with the algorithm used by the
director to release the plug-in reference and creating a new instance. The desired
effect requires coordinated behavior between the director and the plug-in.

The device plug-in source code generated by the LNS Device Plug-in Wizard does not
entirely support SingleInstance functionality, as it may have problems when multiple
SendCommands are called because cached objects are not cleared out. If you intend to
use SingleInstance, you must add code to handle re-entry calls. For example, you
could add the following code to the ProcessDeviceCommand() function:
Static BeenHereBefore as Boolean

If BeenHereBefore Then

 //if Single Instance is set, it is safe to exit

If g_SingleInstance = 1 then Exit Sub

End IF

BeenHereBefore = True

//Continue with the code here

How Directors Pass Object Names
The objectName parameter of the SendCommand method specifies the location of the
target object in the LNS object hierarchy. The name includes any qualification
required to find the appropriate object in the hierarchy. The qualification is provided
with a path name, where each element of the path name consists of a string in the
following format:

 className:objectName

Multiple elements are separated by slashes, so the complete syntax is:

 className:objectName[/className:objectName…]

4-8 How Plug-Ins Work — The Big Picture

The class name is optional if it is unambiguous. The class ID of the target object is
passed as a parameter in SendCommand, so the class name for the last object in the
path (which is the target) is always unambiguous. Network, System, Subsystem,
and AppDevice names are also unambiguous.

Collection object names are not specified in the path name. Subsystem paths can be
specified with a shorthand syntax using periods to separate the system name and
subsystem names.

For example, the following object name specifies an application device named “Motor
Controller 5” in the “Belt 2” subsystem of the “Assembly Line 1” subsystem in the
“240 Main Street” network:

240 Main Street/240 Main Street.Assembly Line 1.Belt 2/Motor
Controller 5

The same name, with all optional class names included, would be:

LcaNetwork:240 Main Street/LcaSystem:240 Main
Street/LcaSubsystem:Assembly Line 1/LcaSubsystem:Belt
2/LcaAppDevice:Motor Controller 5

Appendix C, Standard Plug-in Classes, lists the addressing syntax and class ID of
each object class. Classes that appear in multiple places in the object hierarchy have
more than one addressing syntax. Optional class names are left off of the addressing
syntax descriptions.

Object names that include an Interface object show <interface> as the first
element of the path name. This represents one of the four options for specifying an
Interface object as shown for the LcaInterface class.

How Plug-ins Let Directors Know About Errors
Plug-ins inform directors of errors by raising ActiveX exceptions. If an error occurs
during an operation, a plug-in can raise one of the standard exceptions listed in
Appendix D or it can raise a custom exception. Custom exception codes must be
greater than or equal to LcaErrRangeUserStart (22000).

How Plug-Ins Know When To Exit
Because a plug-in can receive commands from both directors and users, the question
of when to exit is not as clear-cut as it might at first seem. From a director's point of
view, the life cycle of the plug-in is as described in Table 4-1. The plug-in comes into
existence when the director creates the plug-in by creating an instance of it's class
that implements the LNS Plug-in API and ceases to exist when the director releases
the reference to the class.

From the user's point of view, the plug-in does not come into existence until it
appears on the screen (i.e., not until the director sets the Visible property to True
and the plug-in displays a visible window). The user does not expect the plug-in to
terminate until the user tells it to do so, for example by clicking on an Exit button.
This also means that the user has no concept of the life-cycle of “helper” plug-ins that
may run only in the background (that is, of plug-ins that do all their work without
becoming visible).

LNS Plug-In Programmer's Guide 4-9

These two perceived life-cycles can overlap. A user might want to close a plug-in
while one or more directors still have references to it. If the plug-in were to exit at
this time, the directors would all now have references to invalid objects. This means
that all subsequent attempts by the directors to interact with the (now terminated)
plug-in will result in exceptions in the directors. The desired behavior would be for
the plug-in to become invisible (instead of exiting) when the user clicked the exit
button and to delay exiting until the last director released its reference to the plug-in.

The overlap can also be in the other direction. A plug-in might not be visible when
the last director releases its reference to it. Some plug-ins might be designed to
always run as helpers in the background, without a user-interface. Even plug-ins
that normally run as visible might be invisible when the director releases the
reference. For example, the director might have started the plug-in to gather
information from it (such as its default window height) or to register it (by sending it
an LcaCommandRegister (50) command) and then released the reference without
making the plug-in visible. In this case, there is no way for the user (short of killing
the plug-in from the Windows task manager) to end the plug-in. In this case, the
desired behavior is for the plug-in to exit if it is invisible when the last director
releases its reference to the plug-in.

Both of these overlaps can be handled in the same way. A plug-in should keep track
of how many directors are using it. The plug-in should not exit until the last director
has released its reference and either the user has asked the plug-in to exit or the
plug-in is invisible (and thus not available for the user to ask it to exit).

The question now becomes one of what is the best way for a plug-in to track how
many directors are using it. For ActiveX automation servers (such as LNS plug-ins)
Windows automatically keeps track of how many applications are referencing the
server and automatically terminates the server when there are no more references.
While this might seem like the solution (and one with no work too), it has a
fundamental shortcoming.

Applications implemented in Visual Basic count all references to them12, including
references from the application itself. If the plug-in has one or more of its forms
loaded, it counts as a reference and Windows will not release the plug-in, even if all
directors have released it. The problem is that it is impossible for an invisible plug-in
to know when to unload its forms. For example, as described earlier, the director
might start the plug-in to gather information from it (such as its default window
height) and release the plug-in without ever making it visible. Unfortunately, the
plug-in's main window will be loaded as a side effect of reading the Height property.
The plug-in will thus not automatically exit when the director releases it because the
plug-in has a reference to itself.

The solution, therefore, is for the plug-in to keep track of usage counts on its own.
Fortunately, this is quite easy to do. Each time a director creates a new reference to
the plug-in the Class_Initialize method of the class that implements the LNS
Plug-in API runs. The plug-in can increment a global usage counter at this time.
Each time a director releases a reference to the plug-in, the Class_Terminate
method of the class that implements the LNS Plug-in API runs. The plug-in can
decrement a global usage counter at this time. If the usage count goes to zero and
the plug-in is invisible, the plug-in can explicitly exit by closing the LNS Object
Server and calling the Visual Basic End method. If the plug-in is visible, it continues

12 This is done automatically by the Visual Basic run-time support system. This is not the case for all languages. For
example, it is not done automatically Visual C++ applications.

4-10 How Plug-Ins Work — The Big Picture

to run. When the user clicks the plug-in’s Exit button, instead of exiting, the plug-in
should check the global usage count. If it is non-zero, the plug-in should set itself to
invisible instead of exiting (or at least warn the user that there are active reference
to the plug-in and give the user the option to select what the plug-in should do). If
the global usage count is zero, the plug-in should explicitly exit by closing the LNS
Object Server and calling the Visual Basic End method.

Using the Prelaunch, MultiObject, and SingleInstance registry keys and LNS Plug-in
API properties can make the determination of when to exit more complicated.

What Plug-ins Do When They Run Stand-alone
Plug-ins must provide an option to run stand-alone. When they are started with a
command line option of /regplugin, such as MyPlugIn /regplugin, they must
register themselves in the Windows registry. If started without this option, a plug-in
must, at a minimum, either automatically register its registration command in the
Windows registry or provide an option to allow the user to request that it register
itself. An optional command line option is /deregplugin; if started with this option a
plug-in should remove its LNS registration and automation server registration in the
Windows registry. This optional command line option is implemented in the plug-in
framework. The plug-in may also provide other portions of its normal functionality,
but it is not required to do so.

Uninstallation Issues
If an LNS device plug-in need to be uninstalled, the registration command in the
Windows registry needs to be removed first. A typical plug-in setup program created
with Visual Basic Plug-in wizard does not automatically delete the LNS registration
command from the Windows registry as part of the uninstallation procedure. Before
running the uninstall program, you should therefore run the LNS device plug-in
stand-alone with /deregister, then run the uninstall program. You may choose to
modify the uninstall program, or to provide your own uninstall program, so that the
deletion of the registration command occurs as part of the uninstall procedure.
Furthermore, a plug-in should offer a means to unregister from LNS network
databases and thus to revert to being registered with Windows, but not with the LNS
database.

After running the uninstall program (and deleting the registration command in the
Windows registry as described above), the LNS device plug-in is properly uninstalled
from a Windows operating system point of view. However, within one or more LNS
databases, there may be ComponentApp objects that refer to this now-uninstalled
plug-in. An LNS director may choose to remove the ComponentApp references to an
LNS device plug-in within an LNS database if it determines that the plug-in has
been uninstalled from the computer. If these references are not removed, a director
will get an ActiveX exception when it attempts to launch the now uninstalled plug-in
and can display an appropriate error message to the user.

Uninstalling a Plug-in should not remove manufacturer resource files since other
devices from the manufacturer may use these.

The Plug-in framework supports three levels of deregistration, minimal,
comprehensive, and exhaustive. See Chapter 3, Modifying Code Generated by the
LNS Device Plug-in Wizard, for more information.

LNS Plug-In Programmer's Guide 4-11

LNS Plug-In Programmer's Guide 5-1

5

 How Plug-Ins Work — The
Details

For each of the tasks introduced in the previous chapter, this chapter
provides more detail. For each task it describes why and how the task is
done and describes where and how the task is implemented in the plug-in
framework generated by the LNS Device Plug-in Wizard. The plug-in
framework generated by the plug-in wizard implements the interfaces
described in this chapter. You can skip this chapter if you are using the
plug-in wizard and you do not need to modify the standard plug-in
interfaces.

5-2 How Plug-Ins Work — The Details

Introduction
Table 5-1 describes the interaction between a director such as the LonMaker
Integration Tool and a plug-in generated by the plug-in wizard. None of the
advanced activation flags are enabled in this interaction. The following sections
describe this interaction in more detail.

Table 5-1. Interaction Between a Director and the Plug-in Framework

Director Does This Plug-in framework Responds Like
This

Creates an instance of the plug-in by
creating an instance of the plug-in's
ActiveX class that implements the LNS
Plug-in API. The director gets the class's
name from either the Windows registry
(for initial registration) or from a
ComponentApp object (for subsequent
commands).

The Class_Initialize method of the
plug-in's LNSPlugInAPI class runs. If
this is the first user of the plug-in, the
plug-in initializes its global variables
and calls the FillCommandTable()
function. This function fills in the
g_CommandTable global table, which
defines all of the commands supported
by this plug-in.

If this is a remote client, sets the
NetworkInterfaceName property13 to
identify the interface that the plug-in
should use to communicate with the LNS
Object Server. All plug-ins must support
this property.

Stores the name of the network
interface in the
m_networkInterfaceName variable of
the LNSPlugInAPI class.

Sets the NetworkName property to
identify the network on which the plug-in
will act. All plug-ins must support this
property.

Opens the network specified by the
LNSPlugInAPI NetworkName
property, using the specified network
interface name (if one was previously
given). After the network is opened,
the framework calls the
NetworkOpened() user function in the
modFramework module so that you
can do any additional processing that
your plug-in may require.

Optionally sets additional properties, such
as the Visible property (to cause the plug-
in to show itself).

All mandatory properties are
automatically handled in the
LNSPlugInAPI class. If you wish to
add any custom properties, you will
need to add them to the
LNSPlugInAPI class file.

Invokes the SendCommand method to tell
the plug in the command that it should
perform and the target object on which to
perform it.

If this is a registration command, the
plug-in calls the
RegisterSupportedCommands()
function in the MMain module, which

13 After creating an instance of a plug-in; the director can set any property, at any time, with one exception. If it is set,
the NetworkInterfaceName property must be set before the NetworkName property.

LNS Plug-In Programmer's Guide 5-3

 registers all the commands supported
by this plug-in. After each command is
registered, the plug-in calls the
CommandRegistered() user function in
the modFramework module so that you
can do any additional processing that
your plug-in may require.

If the command is something other
than registration, the framework
validates the command by making sure
that it is in the g_CommandTable
table. If the command is found, the
framework calls the
ParseObjectName() function to parse
the object name into its constituent
pieces and then calls
getObjectNameObject() to attempt to
find the object referenced by the
command14. So that you can process
the command, the framework then
calls the CommandReceived() user
function in the modFramework
module, passing the command (by
index into the command table), the
object that the command acts upon (or
Nothing if the object was not found),
and the number of parameters passed
to the command. If the object is passed
as Nothing, you can call the
getObjectNameParameterString()
utility function to retrieve the various
parameters passed to the command so
that you can locate the object for
yourself.

If the command operates on a device,
the plug-in wizard adds code to call the
ProcessDeviceCommand() function in
the fMain form. If the command
operates on a functional block, the
plug-in wizard adds code to call the
ProcessLonMarkObjectCommand()
function in the fMain form.

Optionally sets additional properties. All mandatory properties are
automatically handled in the
LNSPlugInAPI class. If you wish to
add any custom properties, add them

14 The function only attempts to locate objects of the lcaAppDevice and lcaLonMarkObject types. If your
plug-in operates on other object types, you will need to locate the object yourself. The parser function also does not
support subsystem names that are passed as multiple strings. If a director passes object names in this way, you will
also need to locate the object yourself.

5-4 How Plug-Ins Work — The Details

to the LNSPlugInAPI class file.

Releases the instance of the plug-in it
created by setting the variable that
references the plug-in to Nothing.

The Class_Terminate method of the
plug-in's LNSPlugInAPI class runs.
The plug-in decrements its usage
count. If this is the last user of the
plug-in and the plug-in's main form is
not visible, the plug-in exits.

Registering Your Plug-in's Registration Command

Purpose Of This Step
As described in the previous chapter, when a plug-in is first installed on a
computer, it must register its registration command in the Windows registry.
Directors use this information to determine which plug-ins a user has installed
on their computer and to determine how to add the plug-in to LNS.

All plug-ins must store their registration command under the main key
HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LCA\Plug-Ins. Each plug-in
creates its own key, with the key name the same as the plug-in's name, under
this main entry. For example, a plug-in named "MyCo Plug-in" would store its
registration command under the key
USER_MACHINE\SOFTWARE\LonWorks\LCA\Plug-Ins\MyCo Plug-in. Under
this key, the plug-in stores a set of subkeys and associated entry values, as
described in Table 5-2. The entry values are required unless the description of
the Entry Value description indicates that it is optional.

Table 5-2. Values Stored In The Windows Registry For A Plug-in's Registration Command

Registry Subkey Entry Value
(default) The name of the ActiveX class that implements the LNS Plug-

in API. In Visual Basic, this name is always the name of your
project followed by a dot and the name of the class that
implements the LNS Plug-in API.

Description A description of what the plug-in does. Typically a director will
display this information in a tooltip or status bar.

LcaVersion The minimum version of the LNS Object Server that this plug-
in requires. The version number is specified as <major
release>.<minor release>. The minor release can contain
either one or two digits. If the minor release contains only one
digit, it is assumed that the second digit is a zero. That is,
“1.5” is assumed to mean “1.50.”

ManufacturerName The name of the company that wrote this plug-in.
MultiObject The optional MultiObject subkey allows a plug-in to indicate to

a director whether or not it can support MultiObject
functionality. When supported, the MultiObject functionality
allows the plug-in to cache multiple SendCommand method
invocations from a director and to defer the execution of those
requests until told to do so by the director.
If the MultiObject subkey is present in the registry and the
entry value is set to 1 (which indicates that MultiObject

LNS Plug-In Programmer's Guide 5-5

functionality is supported), then the plug-in must include the
MultiObject property in the ActiveX automation server class
that implements the LNS Plug-in API, and must behave as
described in How Directors Support MultiObject and
SingleInstancein Chapter 4. The MultiObject subkey entry
value can also be set to 0, which indicates that this feature is
disabled at the present time although the plug-in does include
MultiObject support. Finally, the MultiObject subkey entry
value can also be set to –1, which indicates that this feature is
unsupported. If the MultiObject subkey is not present in the
Windows registry, the director assumes that MultiObject
functionality is not supported.

Name The name of this action. Typically a director will display this
name in a menu. The standard name for the registration
action is <company> <plug-in name>, such as "The Plug-In
Company Sample Plug-In."

Prelaunch The optional Prelaunch subkey allows a plug-in to indicate to
a director whether or not the director may launch the plug-in in
the background before the plug-in is needed. Supporting this
property can improve the perceived startup performance of
your plug-in, as the plug-in can open the specified network
and perform any required initialization before receiving the
information from the director when the director decides to
invoke a command that the plug-in supports. The plug-in
should remain running in the background until a command to
that plug-in is sent, at which point the plug-in should become
visible (when the director sets the Visible property to True)
and behave normally.
If the Prelaunch subkey is present in the registry and the entry
value is set to 1 (which indicates that Prelaunch functionality is
supported), then the plug-in must include the Prelaunch
property in the ActiveX automation server class that
implements the LNS Plug-in API, and must behave as
described in How Directors Support Prelaunch in Chapter 4.
The Prelaunch subkey entry value can also be set to 0, which
indicates that this feature is disabled at the present time
although the plug-in does include pre-launch support. Finally,
the Prelaunch subkey entry value can be set to –1, which
indicates that this feature is unsupported by the plug-in. If the
Prelaunch subkey is not present, the director assumes that
the plug-in does not support pre-launch functionality.

Scope The scope at which the plug-in should be registered. Set to 1
to indicate that the plug-in should be registered in the
ObjectServer object's ComponentApps collection. Set to
2 to indicate that the plug-in should be registered in the
ComponentApps collection of the ActiveNetwork's
System object.
Specify system-level scope if your plug-in requires special
initialization for each system. For example, if you are creating
a device plug-in, your plug-in will need to create a device
template for the device type you support if one does not
already exist in the system. It must do this for every new

5-6 How Plug-Ins Work — The Details

system that is created.
If your plug-in does not require any system-specific
initialization, you can register it at either scope. If you want to
allow the user to decide, on a system-by-system basis,
whether or not to use your plug-in, specify the scope as
system-level. If you want to ensure that all applications
accessing all systems have access to your plug-in, select the
Object Server scope.

SingleInstance The optional SingleInstance subkey allows a plug-in to
indicate to a director whether or not a single instance of the
plug-in should be used per object that the plug-in operates on.
The purpose of the SingleInstance functionality is to specify to
the director that if multiple commands are to be performed on
the same LNS object, that an existing instance of the plug-in
(if there is one) operating on that object should be passed the
new command. If SingleInstance functionality is not
supported, multiple commands on the same object would
result in multiple instances of the plug-in being launched.
From the user’s point of view, rather than have multiple plug-in
instances operating on the same object (and possibly causing
interaction with each other), a more friendly approach is to
pass the new command to the existing instance of the plug-in
instance operating on that object if it is still active, or launch a
new plug-in instance if one is not currently active. For plug-ins
which accept commands on a single object, the plug-in must
return success to a SendCommand for the same
command/object if is still active (and the director’s re-issuing
of the SendCommand should have no other effect).
If the SingleObject subkey is present in the registry and the
entry value is set to 1 (which indicates that SingleObject
functionality is supported), then the plug-in must behave as
described in How Directors Support MultiObject and
SingleInstancein Chapter 4. The MultiObject subkey entry
value can also be set to 0, which indicates that this feature is
disabled at the present time although the plug-in does include
SingleObject support. Finally, the SingleObject subkey entry
value can also be set to –1, which indicates that this feature is
unsupported by the plug-in. If the SingleObject subkey is not
present in the Windows registry, the director assumes that the
plug-in does not support SingleObject functionality.

Version The version number of this plug-in. The version number is in
the same format as LcaVersion. The version number may be
followed with a space, and then optional text information. For
example: “1.01 Controller Device Configuration Applet.” The
text information is not required, and directors may ignore it.

When And How It Is Done
Your plug-in's registration command should be added to the Windows registry
when your plug-in is installed on the user's computer as part of your setup
program as described in the previous chapter. In this way, the plug-in will be
available to directors (i.e., they will see it in the registry) immediately after the
plug-in is installed.

LNS Plug-In Programmer's Guide 5-7

Your plug-in must register itself when it is started stand-alone with a command-
line switch of /regplugin, such as MyPlugIn /regplugin. It must also
provide the ability (either automatically or at the user's discretion) to register
itself when it is run stand-alone without this command-line switch. A Visual
Basic application can determine if it is running stand-alone by checking the
StartMode property of the App object in it Main procedure. If the value is
vbSModeStandalone, the application was launched stand-alone. A Visual Basic
application can retrieve the command line arguments used to start it by calling
the Command() function. Access to the Windows registry is provided through a
number of functions in the Windows API. The plug-in framework, described in
the next chapter, provides simplified access to these functions through the
CRegistry class.

Note: Before adding your registration command to the Windows registry, you
must check to see if a newer version of the plug-in is already registered.
If so, your plug-in must not overwrite the existing registration
command.

How It Is Done In The Plug-in Framework
The plug-in framework created by the Plug-in Wizard registers the registration
command in the RegisterRegistrationCommand() function, which is called
when the user clicks the Register Plug-in button of the fRegisterPlugIn
form or starts the plug-in with the /regplugin switch. The
RegisterRegistrationCommand() function uses the setting in Table 5-3. It
uses the CRegistry class to simplify access to the Windows registry and the
GetVersionNumber() function to parse a version string into major and minor
version numbers. The code for RegisterRegistrationCommand can be found
in the MMain module.

Table 5-3. Where the Sample Plug-In Framework Stores the Settings for its Registration Command

Item Data Source
(default) Global constant g_RegisteredServer in the modFramework module.
Description Global constant g_PlugInDescription in the modFramework module
LcaVersion Global constant g_MinimumRequiredLCAVersion in the modFramework module
ManufacturerID Global constant g_ManufacturerID in the modFramework module
ManufacturerName Global constant g_ManufacturerName in the modFramework module
Name Global constant g_PlugInProductName in the modFramework module
Scope Global constant g_PlugInScope in the modFramework module
Version Global constant g_PlugInVersion in the modFramework module
Prelaunch Global constant g_Prelaunch in the modFramework module
MultiObject Global constant g_MultiObject in the modFramework module
SingleInstance Global constant g_SingleInstance in the modFramework module

5-8 How Plug-Ins Work — The Details

Registering Your Plug-in's Other Commands

Purpose Of This Step
As described earlier, registration is a two-step process. The first step is
registering your plug-in's registration command, as described above. The second
step, described here, is registering the set of actions that your plug-in supports.

When And How It Is Done
Plug-ins must register the actions that they support when they receive a
LcaCommandRegister (50) command from a director (i.e., when a director
invokes the SendCommand method with a CommandId of LcaCommandRegister
(50)).

The plug-in must do the following for each action (i.e., command/object pair) to be
registered:

1. Fetch the appropriate ComponentApps collection, based on the scope of the
action. If the scope of the action is device or functional-block specific (i.e., the
action will be added to a DeviceTemplate's ComponentApps collection or a
DeviceTemplate.LonMarkObject's ComponentApps collection), you may
need to create a DeviceTemplate before you can add the ComponentApp
object. To see if the system already contains a device template for your
device type, use the ItemByProgramId method. If a device template is not
found, and the plug-in is not running as a remote client, create one by adding
a new DeviceTemplate object to the DeviceTemplates collection and
importing the appropriate device interface file into the newly created
DeviceTemplate object.

A plug-in running on a remote LNS client (where either the LNS Server or
LNS Remote Client redistribution is also installed) can successfully create a
device template if the device interface text and binary files (“.xif” and “.xfb”
extensions) are located in the same directory both on the client and on the
server system and a binary (“.xfb extension”) file exists on the server system.
Since there is no way to guarantee this unless the remote client actually runs
on the same system as the server, the Plug-in framework will not allow a
plug-in running on a remote client system to create a new device template,
and will not register a command using such a template. One workaround is
to create a template on the server system prior to running a remote client. If
you hard-code the locations of device interface files and ensure that they will
be in the same directory on the client and server systems, you can remove the
blocking code in the plug-in source code.

2. Fetch or create a new ComponentApp object for your action. To do this,
search the ComponentApps collection to see if a ComponentApp object
already exists that specifies your server as a provider of the desired command
ID for the desired class ID. If your server is already registered as a provider
of this action, move to step 4. If it is not, you need to add a new
ComponentApp object to the collection.

When you add the new object, you must give it a name. Typically directors
will display this name in a context menu as appropriate. Since
ComponentApps collections use the name as a key into the collection, the

LNS Plug-In Programmer's Guide 5-9

name that you choose for your action must be unique within the collection.
Therefore, before adding your new action, you must check to see if a
ComponentApp object with your desired name already exists in the collection.
For example, if your action has a very general name, such as Test, it is quite
likely that another plug-in already provides an action with this name. If your
action name is more specific, such as Test My Device Type, it is less likely
(although still possible) that another plug-in has already registered an action
with this name.

If there is no object with your desired name, move to step 3. If your desired
name is already in use, you must pick a new name for your action. For
example, you might add your plug-in name to the action name, such as Test
(My Plug-in). Continue the process until you have found an unused name.
Once you have found an unused name, move to step 3.

3. Create a new ComponentApp object, specifying the name for this action, the
class ID of the object to which it applies, and the name of your plug-in's
server class. In Visual Basic, the name of your plug-in's server class is
always the name of your project (as set in the project properties dialog)
followed by a dot and the name of the class that implements the LNS Plug-in
API.

4. Set the following properties of the ComponentApp object:
commandId The command that you are registering
description The description of the service the plug-in provides for this

command. Typically a director will display this description in a
tooltip or status bar.

VersionNumber The version number of your plug-in.
ManufacturerId Your manufacturer ID.

5. If you want your plug-in to provide the default action for this object type, set
the defaultAppFlag property to True. The default application is the plug-
in that the director will, by default, call when the user invokes the specified
command on the specified object. Since there can only be one default action
for any given ComponentApps collection, you must examine all other
ComponentApps in the collection and set their defaultAppFlag properties
to False.

The plug-in does not need to register its registration command; the director will
automatically add the registration command by adding a ComponentApp object
at the appropriate scope with a command ID of LcaCommandRegister [50]) if
the plug-in is successfully registered15.

How It Is Implemented In The Plug-in framework
The plug-in framework created by the Plug-in Wizard registers all of the
commands implemented by the plug-in. When the plug-in framework receives a
LcaCommandRegister (50) command, it calls the
RegisterSupportedCommands() function in the MMain module. This function

15 Directors use this ComponentApp object differently than the ComponentApp objects created by plug-ins. Rather
than signifying an action that is provided by a plug-in, this ComponentApp object signifies that the plug-in has been
successfully registered (and thus does not need to be register again).

5-10 How Plug-Ins Work — The Details

steps through the g_CommandTable array (which has one entry per action that
the plug-in supports) and registers the actions into the appropriate
ComponentApps collection. The g_CommandTable array is initialized in the
FillCommandTable() function contained in the modFramework module, which
is called from the LNSPlugInAPI class module's Class_Initialize() function.

If the scope field of the command table entry is device-level or functional-block
level, the RegisterSupportedCommands() function looks to see if a
DeviceTemplate object with the required program ID (specified by the
programId field of the command table entry) already exists. If one does not, the
function creates a new DeviceTemplate object (using the devTemplateName
field of the command table entry as the template name if possible or a derived
name if the desired name is already in use) and attempts to import a device
interface file into the new template. It does this by looking at every device
interface file (.xif extension) under the LNS import directory (specified by the
ImportDirectory property of the System object) and its subdirectories until an
interface file is found that defines a device with the desired program ID.

If a matching device interface file is not found, the
NeedToCreateDeviceType() function in the modFramework module is called.
This function displays a dialog asking the user to locate the device interface file.
The user can click Cancel, which will result in the failure of the command
registration. As described in Registering Your Plug-in's Other Commands in
Chapter 5, the RegisterSupportedCommands() method in the MMAin module
caches the failed program ID and skips registration of all commands applied to
that device template. This cache is not persistent, i.e. the plug-in will attempt to
register this command when the registration procedure is run again. If you want
to provide some other method for locating the device interface file, replace the
code in the NeedToCreateDeviceType() function.

If command registration fails because the device template could not be created
(for example because the device interface file can't be located), the plug-in adds
the program ID to the tblFailedProgID table as shown here:
tblFailedProgID.Add g_CommandTable(i).programId

The plug-in checks the program ID table when attempting to add future
commands:
' Check if this progID already failed

For Each varPID In tblFailedProgID

' If this progID is found in the table of failed program IDs

' then just bail, do not continue

bMessage = False

If (CStr(varPID) = g_CommandTable(i).programId) Then

GoTo Err_RegisterNextSupportedCommand

Next varPID

After each command is registered, the plug-in calls the CommandRegistered()
function in the modFramework module so that you can do any additional item-
related initialization that your plug-in requires.

LNS Plug-In Programmer's Guide 5-11

Responding to Property Reads and Writes

Purpose Of This Step
The LNS Plug-in API defines a set of properties that all plug-ins must
implement. Directors write to these properties to tell the plug-in how it should
display itself (in the case of properties such as Left, Top, Height, Width, and
Visible) or how to interact with networks (in the case of properties such as
NetworkName and NetworkInterfaceName). Directors can also read from
these properties (and from an additional set of read-only properties, such as
Version and ManufacturerID). You can add custom properties to a plug-in,
but your plug-in must operate correctly even if a director never sets or gets any of
these custom properties.

When And How It Is Done
After creating an instance of a plug-in, the director can set any property at any
time, with the exception that the NetworkInterfaceName property, if it is set,
must be set before the NetworkName property.

For the most part, how a plug-in should respond when a director sets and gets its
properties is clear. There are, however, a few scenarios that could be handled in
multiple ways, all of which are potentially correct. For these scenarios, there are
conventions that define how the plug-in should behave, as discussed below.

When a plug-in is minimized, it should return its current Top, Left, Height,
and Width, not the values that it would have were it to be un-minimized. If
these properties are set while the plug-in is minimized, the plug-in should ignore
the set and raise a LcaComponentErrCantSetProperty error.

If a plug-in is not visible when its minimized property is set, the plug-in should
raise a LcaComponentErrCantSetProperty error, store the value, and apply
the values the next time that the plug-in becomes visible; the plug-in should not
become visible as a side-effect of the set to the minimized property.

If a director sets a plug-in's Top, Left, Width, or Height properties to values that
cause the plug-in to not fit on the screen or to have a display area that is too
small to display the plug-in's contents, the plug-in can behave in any of the
following ways:
• Apply the new value without raising an error.
• If the value is too large, the plug-in can clip the value to its maximum

allowable setting. In this case, the plug-in should not raise an error.
• If the value is too small, the plug-in can expand the value to its minimum

allowable setting. In this case, the plug-in should not raise an error.
• The plug-in can reject the value and raise a

LcaComponentErrCantSetProperty error.

How It Is Implemented In The Plug-in framework
The plug-in framework generated by the Plug-in Wizard defines Get and Let
methods for plug-in properties in the LNSPlugInAPI class module. For example,
the following code defines the Set and Let methods for the Visible property:

5-12 How Plug-Ins Work — The Details

Public Property Let Visible(bNewValue As Boolean)
 fMain.Visible= bNewValue
End Property

Public Property Get Visible() As Boolean
 Visible = fMain.Visible
End Property

Other Let methods are more complex. For example, see the Let networkName
method. This method sets lightweight (i.e. remote IP) clients to use exclusive
mode:

 ' An IP-remote client must access data points through the Data Server operating
 ' in the LNS Server Application's process on the server PC. The client can
access
 ' points in either exclusive or shared mode. The mode is set by the DsMode
property
 ' of the System object.
 '
 ' Set exclusive mode if running as Remote IP Client. Find the appropriate mode
 ' constants.
 '
 If (isIpFlag = True) Then
 g_currentSystem.DsPause = True
 g_currentSystem.DsMode = lcaDsModeExclusive
 g_currentSystem.DsPause = False
 End If

Responding to Commands from a Director Other
than Registration

Purpose Of This Step
The primary purpose of plug-ins is to provide simplified ways of carrying out
operations, usually customized to a particular type of device, application, or end-
user. The way that this is done is by directors sending action requests to plug-
ins, specifying the command that they should perform and the target object on
which they should perform it.

When And How It Is Done
Directors invoke the SendCommand method to request that a plug-in perform a
command on an object. This method has three parameters: the ID of the
command to execute (as given given in Appendix A), the class ID of the target
object to which it applies, and the object name (as given in Table 1-5) of the object
to which it applies. When a plug-in's SendCommand method is executed, if the
command is something other than LcaCommandRegister or
LcaCommandUnregister, the plug-in must validate that the command passed in
the commandId parameter is one that it supports. If it is, the plug-in must next
locate the target object to which the command applies, using the objectClassId
and objectName parameters. Once this is done, the plug-in can carry out that
the requested operation. The plug-in must not display itself at this time; the
plug-in is not displayed until the director sets the Visible property to True. If
the command is the LcaCommandRegister (50) command, the plug-in should
carry out the steps described in Registering Your Plug-in's Other Commands,
earlier in this chapter.

LNS Plug-In Programmer's Guide 5-13

How It Is Implemented In The Plug-in framework
The plug-in framework generated by the Plug-in Wizard defines the
SendCommand procedure in the LNSPluginAPI class module. This procedure
first checks for the LcaCommandRegister and LcaCommandUnregister
commands.

Select Case commandId
 Case lcaCommandIdRegister ' See if this is a registration command

 ' Set the caption of the progress box
 fProgress.Status.Caption = "Registering plug-in . . ."
 DoEvents

 ' Register the commands that we support with the LCA Object Server
 RegisterSupportedCommands

 Case lcaCommandIdUnregister ' See if this is a unregistration command
 ' Set the caption of the progress box
 fProgress.Status.Caption = "Unregistering plug-in . . ."
 DoEvents

 ' Deregister the commands that we support with the LCA Object Server
 DeregisterSupportedCommands False

Determining When To Exit

Purpose Of This Step
As described in Chapter 4, to avoid errors a plug-in must not exit until the last
director has released its reference and either the user has asked the plug-in to
exit or the plug-in is invisible (and thus not available for the user to ask it to
exit).

When And How It Is Done
Each time a director creates a new reference to the plug-in, the
Class_Initialize method of the class that implements the LNS Plug-in API
runs. The plug-in should increment a global usage counter at this time. Each
time a director releases a reference to the plug-in, the Class_Terminate
method of the class that implements the LNS Plug-in API runs. The plug-in
should decrement the global usage counter at this time. If the usage count goes
to zero and the plug-in is invisible, the plug-in can explicitly exit by closing the
LNS Object Server and calling the Visual Basic End method. If the plug-in is
visible, it continues to run. When the user clicks the plug-in’s Exit button,
instead of exiting, the plug-in should check the global usage count. If it is non-
zero, the plug-in should set itself to invisible instead of exiting (or at least warn
the user that there are active reference to the plug-in and give the user the
option to select what the plug-in should do). If the global usage count is zero, the
plug-in should explicitly exit by closing the LNS Object Server and calling the
Visual Basic End method.

5-14 How Plug-Ins Work — The Details

How It Is Implemented In The Plug-in framework
The plug-in framework created by the LNS Device Plug-in Wizard implements
Initialize and Terminate methods in the LNSPlugInAPI class module to keep
track of the number of references the plug-in has. These functions use the global
variable g_useCount defined in the MMain module:

Private Sub Class_Initialize()
 ' If this is the first user of the class, init some stuff
 If g_useCount = 0 Then
 ' Fill in the table of all the commands our plug-in supports
 FillCommandTable

 g_lcaOSIsOpen = False
 g_networkIsOpen = False
 Set g_lcaOS = fMain.lcaOS
 End If

 ' Increase the use count
 g_useCount = g_useCount + 1
End Sub

Private Sub Class_Terminate()
 ' Decrease the use count
 g_useCount = g_useCount - 1

 ' When the last director releases its reference to us,
 ' if we are invisible at this time we need to exit
 ' because the user can't do the exit (since we are invisble)
 If g_useCount = 0 And fMain.Visible = False Then fMain.EndPlugIn
End Sub

The fMain form created by the LNS Device Plug-in Wizard contains the
ConditionalExit method, which exits the plug-in if no directors are referencing it;
otherwise the plug-in is hidden, but continues to run until the last reference is
removed:

Private Sub ConditionalExit ()
 ' If no directors are using the plug-in, exit
 ' Otherwise just hide.
 If g_useCount = 0 Then
 ' End the plug-in
 EndPlugIn
 Else
 ' Hide
 Me.Visible= False
 End If
End Sub

The fMain form also defines the mnuExit_Click method that allows the user to
force the plug-in to exit when the Exit menu item is selected, even if it is still
referenced by one or more directors:

Private Sub cmdExit_Click()
 Dim Warning As String

 ' If no directors are using the plug-in, exit
 ' Otherwise warn the user and ask them if they mean it
 If g_useCount = 0 Then
 ' End the plug-in
 EndPlugIn
 Else
 If g_useCount = 1 Then
 Warning = " A director is using this plug-in. Exiting may cause the" + _
 " director to experience errors. Are you sure that you want to
exit?"
 Else

LNS Plug-In Programmer's Guide 5-15

 Warning = "There are " + Trim$(Str(g_useCount)) + _
 " directors using this plug-in. Exiting may cause the directors" +
_
 " to experience errors. Are you sure that you want to exit?"
 End If
 If MsgBox(Warning, vbYesNo + vbDefaultButton2, g_PlugInProductName) = vbYes Then
 ' End the plug-in
 EndPlugIn
 Else
 ‘ Just hide the form
 Me.Hide
 End If
 End If
End Sub

Finally, the fMain form defines the EndPlugIn method, which terminates the
plug-in and closes the network and the LNS Object Server:

Public Sub EndPlugIn()
 On Error Resume Next

 ' Release local object cache
 Set m_LonMarkObject = Nothing
 Set m_Device = Nothing

 'Detach from the network.
 If Not g_currentSystem Is Nothing Then If g_currentSystem.IsOpen Then
g_currentSystem.Close

 ' Force LNS to release the system
 ' When remote, must be done BEFORE closing the network
 Set g_currentSystem = Nothing

 'Close the network database.
 If Not g_currentNetwork Is Nothing Then If g_currentNetwork.IsOpen Then
 g_currentNetwork.Close
 End If

 ' Force LNS to release the network
 Set g_currentNetwork = Nothing

 ' Close the object server
 If g_lcaOS.IsOpen Then g_lcaOS.Close

 ' Set all our flags
 g_lcaOSIsOpen = False
 g_networkIsOpen = False

 ' Unload the main form (which as a side-effect will unload all other forms in use)
 Unload Me

 ' Exit the application
 End
End Sub

Creating an Installation for an LNS Device Plug-in
Once you have completed plug-in development, you should create an installation
for your LNS Device Plug-in. Typically, this is an installation program
(setup.exe) that can be used by the end user, your customer, to install the plug-
in software and all support files needed. To create an installation, you will need
to use an installation tool such as InstallShield®.

LNS Plug-ins require an LNS Server or LNS Remote Client redistribution to be
available on the target machine. However, the LNS redistribution is typically
installed by directors, so it is not usually necessary to install the LNS

5-16 How Plug-Ins Work — The Details

redistribution with your LNS Plug-in. If your plug-in is designed to be run stand-
alone, you may need to install the LNS redistribution. Contact your nearest
Echelon sales office, technical support office, or any Echelon distributor for
details about redistributing the LNS Server of the LNS Remote Client. The LNS
Server or LNS Remote Client redistributions are licensed software, and may not
be redistributed except under a signed license agreement.

An LNS Device Plug-in installation should perform the following steps:

1. Find the LONWORKS folder. When a user first installs as LNS tool, such as
the LonMaker tool, a LONWORKS folder is created. This folder is typically
located in c:\LonWorks by default, but the user or installer may choose a
different folder. The location of this folder is stored in the following Windows
registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonWorks Path

If the target computer does not have this registry key, your installation
should either install the LNS redistribution (see above) or return a message
informing the user that they must install an LNS tool that includes the LNS
redistribution before installing your plug-in.
If you are using the InstallShield tool, this can be accomplished by following
these steps:
i. Open the InstallShield power editor and select RegLocator to create a

new Signature_(32) with the following properties:
Signature_(32) LonWorksPathValue

Root(I2) 2

Key(S255) SOFTWARE\LonWorks

Name(S255) LonWorks Path

Type(I2) 2

ii. Select Directory to create a folder with the following properties:
Directory(S32) LONWORKS

Directory_Parent(S32) TARGETDIR

DefaultDir(S255) LonWorks

iii. Select AppSearch and add the following property:
Property(S32) LONWORKS

Signature_(S32) LonWorksPathValue

2. Install your plug-in executable (.exe extension) in a folder on the target
computer. This may be any folder, but plug-ins are typically installed in a
folder with your manufacturer name within a Plug-Ins folder within the
LONWORKS folder. For example, the default location is the following:
c:\LonWorks\Plug-Ins\<Manufacturer Name>.

3. Install LnsDevCtrls.ocx in the LONWORKS bin folder (c:\LonWorks\bin
by default). This file contains the EchStatusBar and EchLog Visual Basic
controls.

4. Install any third party controls (“.ocx” extension) and DLLs. These are

LNS Plug-In Programmer's Guide 5-17

typically installed in the target computer’s Windows system folder. You can
run a dependency check to find which ones you need. A dependency check
may return files that are part of the LNS Server or LNS Remote Client
redistributions. You may not distribute any LNS files other than
LnsDevCtrls.ocx without permission and a license from Echelon. If the
target machine has an LNS tool, it will already have the necessary LNS
controls and DLLs installed.

5. If your Plug-in requires resource files, install them in a folder on the target
computer. This may be any folder, but resource files are typically installed in
a folder with your manufacturer name within a Types\User folder within the
LONWORKS folder. For example, the default location is the following:
c:\LonWorks \Types\User\<Manufacturer Name>. Then use the Resource
File API to add your files to the resource catalog and then to refresh the resource catalog.
Uninstalling a Plug-in should not remove manufacturer resource files, since
other devices from the device manufacturer may also use these files. See
Chapter 14 of the NodeBuilder User's Guide for more information.

6. Install any other files that you need, such as bitmaps, installation videos, and help files.
7. Install the device interface (.xif, .xfb, and .xfo extensions) and application

image files (.apb and .nxe extensions), if required, to a folder on the target
computer. This may be any folder, but resource files are typically installed in
a folder with your manufacturer name within an Imports folder within the
LONWORKS folder. For example, the default location is the following:
c:\LonWorks\Import\<Manufacturer Name>. See Chapter 14 of the
NodeBuilder User's Guide for more information. The program ID of the
device interface file must exactly match the program ID in the command
table of the device plug-in.

8. Run the plug-in executable with the /regplugin command line switch. This
will register the plug-in in the Windows registry.

LNS Plug-In Programmer's Guide A-1

Appendix A

Standard Plug-in
Commands

This Appendix lists the standard commands that may be
implemented by plug-ins. Plug-ins may also implement
manufacturer-specific commands.

A-2 Standard Plug-in Commands

Table A-1. Standard LNS Plug-in Commands

Command Description
LcaCommandBrowse 20 Monitor and control the object.
LcaCommandBuildImage 10 Build the image for the object. Only applies to AppDevice class

objects.
LcaCommandCalibrate 14 Set calibration configuration properties for an object.
LcaCommandCommission 11 Load the network image into an object. Only applies to AppDevice

class objects.
LcaCommandConfigure 13 Set the configuration properties for an object.
LcaCommandConnect 15 Connect an object to other objects. Only applies to AppDevice

and Subsystem class objects.
LcaCommandControl 22 Control the object.
LcaCommandEditSource 2 Edit source code for the object. Only applies to AppDevice class

objects.
LcaCommandLoad 12 Load an application image into an object. Only applies to

AppDevice class objects.
LcaCommandMonitor 21 Monitor the object.
LcaCommandMonitorRecovery 61 Monitor recovery of an object.
LcaCommandNew 1 Create a new object of the specified class with the specified name.
LcaCommandOffline 31 Change the state of the object to offline.
LcaCommandOnline 30 Change the state of the object to online.
LcaCommandRecover 60 Recover object.
LcaCommandRegister 50 Register a component with the object.
LcaCommandReplace 41 Replace the object with a new object.
LcaCommandReport 23 Generate a report for the object.
LcaCommandReset 32 Reset the object.
LcaCommandSecurityLevel 70 Set the security level for an object
LcaCommandTest 33 Test the object.
LcaCommandUninstall 40 Uninstall the object.
LcaCommandUnregister 51 Unregister the component.
LcaCommandWink 34 Wink the object. Only applies to AppDevice and Router class

objects.

Plug-ins can also implement custom commands. The values for custom command
values are assigned by the plug-in, and may be any value greater than or equal to
LcaCommandUserStart (10000).

LNS Plug-In Programmer's Guide B-1

Appendix B

Standard Plug-in Properties

This Appendix lists the standard properties that must be
implemented by plug-ins, as well as optional properties that
may also be implemented by plug-ins. Plug-ins may also
implement manufacturer-specific properties.

B-2 Standard Plug-in Properties

Table B-1. Standard LNS Plug-in Properties

Name Type Description
Height Long The height, in pixels, of the plug-in's main window. Note that in

Visual Basic, a form's height is specified in twips16, not pixels.
You can convert to pixels by multiplying the form's Height
property (when setting the property) or dividing (when getting the
property) by the value Screen.TwipsPerPixelY.

LcaVersion Read-Only
String

Minimum version of the LNS Server redistribution required by this
plug-in.

Left Long The x location, in pixels, of the upper left corner of the plug-in's
main window. 0 is at the leftmost of the user’s display. Note that
in Visual Basic, a form's left position is specified in twips, not
pixels. You can convert to pixels by multiplying the form's Left
property (when setting the property) or dividing (when getting the
property) by the value Screen.TwipsPerPixelX.

ManufacturerID Read-Only
String

An identifier that is unique to each LONWORKS device
manufacturer. Manufacturer IDs may be one of two types:
standard manufacturer IDs and temporary manufacturer IDs.
Standard manufacturer IDs are assigned to manufacturers when
they join the LONMARK Interoperability Association, and are also
published by the LONMARK Interoperability Association so that the
device manufacturer of a LONMARK certified device or plug-in is
easily identified. Standard manufacturer IDs are never reused or
reassigned. Temporary manufacturer IDs are available to anyone
on request by filling out a simple form at www.lonmark.org/mid. If
your company is a LONMARK member, but you do not know your
manufacturer ID, you can find your ID in the list of manufacturer
IDs at www.lonmark.org/spid. The most current list at the time of
release of the NodeBuilder tool is also included with the
NodeBuilder software. If your company is not a LONMARK
member, get a manufacturer ID at www.lonmark.org/mid.

ManufacturerName Read-Only
String

The name of the company that wrote this plug-in.

Minimized Boolean Specifies whether the plug-in is minimized (True) or not (False).
Setting the property sets the plug-in's main window state.

MultiObject Read-Write
Long

The optional MultiObject property allows plug-ins that support the
MultiObject operation to cache incoming requests from directors
and defer the execution of those requests until told to do so by
the director. This is known as a batch operation.
If a director finds the MultiObject property in the interface of your
plug-in, it can set it to 1 (indicating the beginning of the batch)
before sending the first request and set it to 0 to indicate that the
plug-in should execute all the cached requests in the order
received.
Not all directors support batch operations, and if not this property

16 The Visual Basic help file defines a twip as “a screen-independent unit used to ensure that placement and proportion
of screen elements in your screen application are the same on all display systems. A twip is a unit of screen
measurement equal to 1/20 of a printer's point. There are approximately 1440 twips to a logical inch or 567 twips to a
logical centimeter (the length of a screen item measuring one inch or one centimeter when printed).”

LNS Plug-In Programmer's Guide B-3

is ignored. If a directory does not support batch operations, it will
never send batch operations to the plug-in even though a plug-in
may support them.
A plug-in implementing the MultiObject property must also set the
MultiObject key in the Windows registry. This can be done using
the LNS Device Plug-in Wizard, as described in Chapter 2,
Generating a Plug-in with the LNS Device Plug-in Wizard. You
can also set the g_Prelaunch constant in the modFramework
module of the generated plug-in framework to have this key and
its entry value set in the registry for you. The Windows registry
key is described in the next chapter.

Name Read-Only
String

The plug-in's name.

NetworkInterfaceName Read-Write
String

The name of the network interface object associated with the
network. This name is required by applications accessing the
LNS Object Server from a remote client. In the remote case, the
director will set this property before setting the NetworkName
property.

NetworkName Read-Write
String

The name of the network on which to operate.

Prelaunch Long The optional Prelaunch property allows a director to launch the
plug-in in the background, typically when the director is started.
Not all directors support the use of pre-launch, and if not this
property is ignored, and the plug-in would never be pre-launched
by that director. When the plug-in is pre-launched, the plug in
should remain running in the background until a command to that
plug-in is sent from the director, at which point the plug-in should
become visible and behave normally. This allows plug-ins with a
long launch time to be called quickly once the director is running.
A plug-in implementing the Prelaunch property must also define
the Prelaunch key and set its entry value in the Windows registry.
This can be done using the LNS Device Plug-in Wizard, as
described in Chapter 3. You can also set the g_Prelaunch
constant in the modFramework module of the LNS Device Plug-
in framework to have the key and its entry value set for you. The
Windows registry key is described in chapter 5.
A plug-in supporting pre-launch operation should not display any
messages or become visible while going through the pre-launch
sequence. A director can tell a plug-in to pre-launch by setting
the Prelaunch property to 1.

Remote Boolean Optionally set by the director to indicate if the plug-in is running
on the same computer as the LNS Object Server (Remote is
False) or on a different computer (Remote is True). In the remote
case, the director will set this property before setting the
NetworkName property.

Top Long The y location, in pixels, of the upper left corner of the plug-in's
main window. 0 is at the topmost of the user’s display. Note that
in Visual Basic, a form's Top position is specified in twips, not
pixels. You can convert to pixels by multiplying the form's Top
property (when setting the property) or dividing (when getting the
property) by the value Screen.TwipsPerPixelY.

Version Read-Only Version number of the plug-in. The version number is in “<major

B-4 Standard Plug-in Properties

String release>.<minor release>” format. The minor release can contain
either one or two digits. If it contains only one digit, it is assumed
that the second digit is a zero. That is, "3.5" is assumed to mean
"3.50". The version number may be followed with a space, and
then optional text information. For example: “1.01 Controller
Device Configuration Plug-in”.

Visible Boolean The display state (visible or not visible) of the plug-in. Plug-ins
are not required to display a window or become visible at the time
that this property is set to True. For example, your plug-in might
choose to wait until it has received a request to execute a
command (via the SendCommand method). Or, your plug-in
might be one that performs a task that never requires it to
become visible. In these cases, the plug-in should not raise an
exception to the director’s set request — it should just cache the
requested state value for future use or ignore the set request as
appropriate. Reads of the Visible state should, as always, return
the actual display state of the plug-in.

Width Long The width, in pixels, of the plug-in's main window. Note that in
Visual Basic, a form's width is specified in twips, not pixels. You
can convert to pixels by multiplying the form's Width property
(when setting the property) or dividing (when getting the property)
by the value Screen.TwipsPerPixelX.

LNS Plug-In Programmer's Guide C-1

Appendix C

Standard Plug-in Classes

This Appendix lists the standard classes of objects that may be
passed to plug-ins, as well as the addressing syntax used to
identify objects.

C-2 Standard Plug-in Classes

Table C-1. Class IDs and Addressing Syntax For The LNS Objects.

Object Class ID Addressing Syntax
LcaClassIdAppDevice 7 network/system.subsystem[.subsystem…]/appDevice
LcaClassIdAppDevices 8 network/system.subsystem[.subsystem…]
LcaClassIdBuildTemplate 34 network/system

network/system/buildTemplate
network/system/LcaProgramTemplate:programTemplate

LcaClassIdBuildTemplates 35 network/system
LcaClassIdChannel 12 network/channel
LcaClassIdChannels 13 network
LcaClassIdComponentApp 30 ComponentApp

network/system/componentApp
network/system/LcaDeviceTemplate:deviceTemplate/componentApp

LcaClassIdComponentApps 31 n/a (for ObjectServer)network/system
network/system/LcaDeviceTemplate:deviceTemplate

LcaClassIdConfigProp 26 <interface>/configProp
<interface>/LcaLonMarkObject:lonMarkObject/configProp
<interface>/LcaNetworkVariable:networkVariable/configProp

LcaClassIdConfigProps 27 <interface>
<interface>/LcaLonMarkObject:lonMarkObject
<interface>/LcaNetworkVariable:networkVariable

LcaClassIdConnectDescTemplate 42 network/system/connectDescTemplate
LcaClassIdConnectDescTemplates 43 network/system
LcaClassIdConnections 18 network/system
LcaClassIdDataValue 49 <interface>/networkVariable/dataValue

<interface>/LcaLonMarkObject:lonMarkObject/networkVariable/dataValue
<interface>/LcaConnections:connections/networkVariable/dataValue

LcaClassIdDetailInfo 49 network/system.subsystem[.subsystem…]/appDevice
network/system.subsystem[.subsystem…]/LcaRouter:router

LcaClassIdDeviceTemplate 36 network/system/deviceTemplate
LcaClassIdDeviceTemplates 37 network/system
LcaClassIdError 44 network/system
LcaClassIdExtension 50 extension (for Object Server)

network/extension
network/system.subsystem[.subsystem…]/appDevice/extension
network/system.subsystem[.subsystem…]/LcaRouter:router/extension
network/LcaChannel:channel/extension
network/system/LcaDeviceTemplate:deviceTemplate/extension
network/system/LcaHardwareTemplate:deviceTemplate/extension

LcaClassIdExtensions 51 n/a (for Object Server)
network
network/system.subsystem[.subsystem…]/appDevice
network/system.subsystem[.subsystem…]/LcaRouter:router

LNS Plug-In Programmer's Guide C-3

network/LcaChannel:channel
network/system/LcaDeviceTemplate:deviceTemplate
network/system/LcaHardwareTemplate:deviceTemplate

LcaClassIdHardwareTemplate 32 network/system/hardwareTemplate
LcaClassIdHardwareTemplates 33 network/system
LcaClassIdInterface 19 network/system.subsystem[.subsystem…]/appDevice

network/system/LcaDeviceTemplate:deviceTemplate
network/LcaNetworkServiceDevice:networkServiceDevice/interface
network/system/LcaNetworkServiceDevice/interface

LcaClassIdInterfaces 20 network/LcaNetworkServiceDevice:networkServiceDevice
network/system/LcaNetworkServiceDevice

LcaClassIdLonMarkAlarm 46 <interface>/LonMarkObject
LcaClassIdLonMarkObject 28 <interface>/lonMarkObject
LcaClassIdLonMarkObjects 29 <interface>
LcaClassIdMessageTag 24 <interface>/messageTag

<interface>/LcaConnections:connections/messageTag
LcaClassIdMessageTags 25 <interface>
LcaClassIdNetwork 1 network
LcaClassIdNetworkInterface 14 network/LcaNetworkServiceDevice:networkServiceDevice/

networkInterface
network/system/networkInterface

LcaClassIdNetworkInterfaces 15 network/LcaNetworkServiceDevice:networkServiceDevice
network/system

LcaClassIdNetworks 2 n/a
LcaClassIdNetworkServiceDevice 40 network/LcaNetworkServiceDevice:networkServiceDevice

network/system
LcaClassIdNetworkServiceDevices 41 network
LcaClassIdNetworkVariable 22 <interface>/networkVariable

<interface>/LcaLonMarkObject:lonMarkObject/networkVariable
<interface>/LcaConnections:connections/networkVariable

LcaClassIdNetworkVariableField 48 <interface>/LcaNetworkVariable:nv/field
<interface>/LcaLonMarkObject:lonMarkObject/LcaNetworkVariable:
nv/field

LcaClassIdNetworkVariables 23 <interface>
LcaClassIdObjectServer 0 n/a
LcaClassIdObjectStatus 47 <interface>/LonMarkObject
LcaClassIdProgramTemplate 38 network/system/programTemplate
LcaClassIdProgramTemplates 39 network/system
LcaClassIdRecoveryStatus 52 network/system
LcaClassIdRouter 9 network/system.subsystem[.subsystem…]/router
LcaClassIdRouters 10 network/system.subsystem[.subsystem…]
LcaClassIdRouterSide 11 network/system.subsystem[.subsystem…]/router/LcaFarSide

network/system.subsystem[.subsystem…]/router/LcaNearSide
LcaClassIdSubnet 16 network/system/subnet
LcaClassIdSubnets 17 network/system
LcaClassIdSubsystem 5 network/system.subsystem[.subsystem…]
LcaClassIdSubsystems 6 network/system[.subsystem[.subsystem…]]

C-4 Standard Plug-in Classes

LcaClassIdSystem 3 network/system
LcaClassIdSystems 4 network
LcaClassIdTemplateLibrary 21 network/system

LNS Plug-In Programmer's Guide D-1

Appendix D

Standard Plug-in
Exceptions

This Appendix lists the standard properties that may be thrown
by plug-ins. Plug-ins may also throw manufacturer-specific
exceptions.

D-2 Standard Plug-in Exceptions

Table D-1. Standard Plug-in Exception Codes

Exception Code Meaning
LcaComponentErrCantFindObject 20005 The plug-in could not locate the object specified by the

ObjectName parameter.
LcaComponentErrCantGetProperty 20007 An error occurred while the plug-in was attempting to get the

property.
LcaComponentErrCantSetProperty 20006 An error occurred while the plug-in was attempting to set the

property.
LcaComponentErrGeneric 20000 Some unspecified error occurred.
LcaComponentErrInit 20001 An error occurred during the plug-in's initialization.
LcaComponentErrInvalidCommandId 20003 The plug-in does not support the command specified by the

CommandId parameter for the object class specified by the
objectClassId parameter.

LcaComponentErrInvalidObjectType 20004 The plug-in does not support the command specified by the
CommandId parameter for the object class specified by the
objectClassId parameter.

LcaComponentErrWriteNotSupported 20002 The director attempted to write to a read-only property.

LNS Plug-In Programmer's Guide E-1

Appendix E

Plug-in Framework
Components

This Appendix lists the standard components that are contained in the
plug-in framework generated by the LNS Device Plug-in Wizard.
These components include the files, event handlers, and functions
contained within the framework.

E-2 Plug-in Framework Components

Plug-in Files
Table E-1 lists the files generated by the plug-in wizard. Files listed in italics are the
files that you will typically modify when customizing the plug-in for your device.
Modifications are described in Chapter 3.

Table E-1. The Plug-In Framework Files

File Purpose
CRegistry.cls A class that simplifies access to the Windows registry. It is used by the

RegisterRegistrationCommand() function to register the plug-in in the Windows registry.
Do not modify this file.

fMain.frm The main form for your plug-in. This form contains the tabs and monitor and control
points added using the User Interface Editor window.

fHidden.frm This form is an invisible container for the ActiveX Common Dialog control that is used to
display a dialog that allows the user to select the device interface file for the plug-in. This
feature is used by the RegisterSupportedCommands() function if an appropriate
DeviceTemplate is not found within the current network database. Do not modify this file.

fProgress.frm A form that provides a progress indicator when the plug-in is working. You can modify
this form to customize what the user sees when the plug-in is working. You can display
this form from within any function that requires a noticeable execution time such as, for
example, downloading an application image to your device.

fRegisterPlugIn.frm A form that allows the user to register and deregister the plug-in. This form is displayed
when your plug-in is run standalone.

LnsPluginAPI.cls A class that implements the required properties and methods of the LNS Plug-in API,
providing the public interface to your plug-in. Whenever a director sends a command
request for one of your supported commands, the class calls the CommandReceived()
function in the modFramework module. You will only need to modify the LnsPluginAPI file
if you wish to add custom properties or methods to your plug-in.

MMain.bas A module file that provides various utility functions used by the other files. You will only
need to modify this file if you wish to complete the getObjectNameObject method (which,
as described later fetches the object identified in the SendCommand method for some but
not all object types).

modFramework.bas This module contains various constants and methods used by the plug-in. Much of the
code contained in this module is managed by the plug-in wizard. Use the plug-in wizard
to change this code. Do not edit the framework code in modFramework.bas.
You can modify the callback functions at the end of the module. These functions are
initially empty or mostly empty. They exist to allow you to add application-specific
processing when events such as command registration or network opening occur.

WalkDir.bas A module file that provides functions that searches for a device interface file in a specified
directory (and all its subdirectories) that contains a specified program ID. For device-
scope commands, this function is used by the RegisterSupportedCommands() function to
import an appropriate device interface file. Do not modify this file.

Plug-in Event Handlers
Table E-2 lists the event handlers generated by the plug-in wizard. Event handlers
listed in italics are the event handlers that you will typically modify when customizing
the plug-in for your device. Modifications are described in Chapter 3.

LNS Plug-In Programmer's Guide E-3

Table E-2. Plug-in Framework Event Handlers.

Event Handler File Purpose
cmdApply_Click() fMain.frm Commits the changes pending in the altered text controls.
cmdCancel_Click() fMain.frm Cancels the changes pending in the altered text controls.
lcaOS_OnNetworkVariableUpdate() fMain.frm Calls the NetworkVariableUpdateReceived() function to process an

incoming network variable update.
lcaOS_OnNvUpdateError() fMain.frm Logs errors for monitored network variables.
smnuMonitor_Click() fMain.frm Menu handler to control monitoring of network variables and

configuration properties.
txtCp_KeyPress() fMain.frm Marks changes in the relevant text controls when using the wizard-

generated user-interface. The plug-in code tries to commit pending
changes when Apply is clicked.

txtNvi_KeyPress ()

fMain.frm Marks changes in the relevant text controls when using the wizard-
generated user-interface. The plug-in code tries to commit pending
changes when Apply is clicked.

Plug-in Functions
Table E-3 lists the functions generated by the plug-in wizard. Functions listed in italics
are the functions that you will typically modify when customizing the plug-in for your
device. Modifications are described in Chapter 3.

Table E-3. Plug-in Framework Functions.

Function File Purpose
DeregisterRegistrationCommand() MMain.bas Removes registration entries from the Windows registry.
DeregisterSupportedCommands() MMain.bas Deregisters all supported commands from all device templates

within the supported program ID range for complete and
exhaustive deregistration modes.

DrfLookUp() fMain.frm Sets the functional block scope using the LNS functional block
Mode property

EnableControls() fMain.frm Prepares the text controls that are used for monitoring.
EnableMonitor() fMain.frm Initializes monitoring for network variables and configuration

properties.
GetClassIdName() MMain.bas Given a class ID, this function returns the name of the class in a

string.
GetCPTByTypeIndex fMain.bas Given a string-encoded reference to a configuration property, this

function returns the related LcaConfigProperty object.
GetCommandIdName() MMain.bas Given a command ID, this function returns the name of the

command in a string.
GetNumObjectNameParameterStrings() MMain.bas Returns the number of substrings in the last object name passed to

the plug-in by a director.
GetObjectNameParameterString() MMain.bas Returns the ith substring of the last object name passed to the plug-

in by a director and optionally trims the class identifier, if any.
InitDevice() fMain.frm Initializes the plug-in interface to a device during plug-in startup. It

reads the device state, sets the monitor tags, initializes formats,
and retrieves initial values.

NetworkVariableUpdateReceived() fMain.frm Updates text box controls added by the plug-in wizard.
ParseWord() MMain.bas Given a string and a character to search for, returns all of the

E-4 Plug-in Framework Components

characters before the search character as the result of the function
(or the entire input string if the search character is not found) and
returns all of the characters after the search character (or an empty
string if the search character is not found) in the RemainingString
parameter.

ProcessDeviceCommand()

fMain.frm A handler that processes a command that applies to a device
(LcaAppDevice). The default implementation contains code to
perform a complete resource file look-up to adjust the scope of the
implemented functional blocks. It also contains pre-defined code to
set the device template label and to initialize the device.
The default implementation also contains a MsgBox() function call,
reminding you that these handlers are subject to review and
enhancement.

ProcessLonMarkObjectCommand()

fMain.frm A handler that processes a command that applies to a functional
block (LcaLonMarkObject). The default implementation for each
function contains code to perform a complete resource file look-up
to adjust the scope of the implemented functional blocks. It also
contains pre-defined code to set the device template label and to
initialize the device.
The default implementation also contains a MsgBox() function call,
reminding you that these handlers are subject to review and
enhancement.

ReadInitValues() fMain.frm Adjust formatting options for network variables and configuration
properties, and retrieve initial values for configuration properties.

RegisterRegistrationCommand() MMain.bas Registers the plug-in and the commands it supports within the
Windows registry.

RegisterSupportedCommands() MMain.bas Registers all supported commands within the current LNS network
database. The commands are registered for all existing device
templates within the configured program ID range.

SelectActiveTab() fMain.frm Sets the active tab during start-up.
SetDevTemplateLabel() fMain.frm Sets the caption for the Device Template label. Called during plug-

in startup.

LNS Plug-In Programmer's Guide i

Index
actions

default, 2-8
defined, iii, 4-2
scope, 4-2

ActiveX
classes

defined, iii
defined, iii

Application Interface pane. See user interface editor
automation servers

defined, iii
binary formats, 3-3
Browse command, A-2

defined, 1-3
Build Image command, A-2
Calibrate command, A-2
changeable types

supporting, 3-8
class IDs, 4-8

defined, iii
class names, 4-8
Class_Initialize method, 4-10, 5-2, 5-14
Class_Terminate method, 4-10, 5-4, 5-14
classes

commands, 2-9
defined, v, 4-2
reference, C-2

ClassId property
defined, iv

cmdApply_Click() event handler, E-3
cmdApply_Click() function

customizing, 3-5
cmdCancel_Click() event handler, E-3
cmdCancel_Click() function

customizing, 3-5
command IDs

defined, iv
command line options

deregplugin, 4-10
regplugin, 4-10, 5-7, 5-18

command table
defining, 2-6

commandId property, 5-9
CommandId property

defined, iv
CommandReceived() function, 5-3
CommandRegistered() function, 5-3, 5-11
commands

adding, 2-7
adding custom plug-in commands, 3-11
custom

defined, 1-3
default, 2-8

defined, iii, 4-2
defining, 2-6
describing, 2-9
editing, 2-7
IDs

selecting, 2-8
naming, 2-8
objects, 2-9
scope, 4-2
scopes, 2-9

commands tables
entering commands, 2-9

Commission command, A-2
ComponentApp object, 5-9

creating a plug-in instance, 5-2
defined, iv

ComponentApp objects
defined, 4-2

ComponentApps collection, 4-2, 5-8
ComponentClassId property

defined, iv
configuration properties

accessing configuration property objects, 3-11
adding, 2-13, 3-7, 3-8
clearing, 2-14
reading, 3-7
SCPTnvType, 3-9
updating, 3-8

Configure
command, 4-5

Configure command, A-2
defined, 1-3

Configure LcaCommandConfigure command. See
Configure command

Connect command, A-2
Control command, A-2
controls

Device Template Label, 3-4
EchLog, 3-4
EchStsBar, 3-4
fMain form, 3-4
Tabbed Dialog, 3-4
text, 3-4

CRegistry class, E-2
custom commands, A-2
defaultAppFlag property, 5-10
DefaultAppFlag property, iv
defaults

selecting, 2-8
Defaults

default plug-in action, 5-10
DeregisterRegistrationCommand() function, E-3
DeregisterSupportedCommands() function, E-3

ii Index

deregplugin
command line option, 4-10

description property, 5-9
Description property

defined, iv
Description subkey, 5-4
descriptions, 2-5

commands, 2-9
design rules, 3-14
device interface files

installation, 5-18
device plug-ins

defined, 1-3
Device Template Lable control

fMain form, 3-4
device templates

selecting, 2-5
devices

initializing, 3-2
directors

defined, v, 1-2
interaction with plug-ins, 4-5
launching plug-ins, 4-4
plug-in interaction, 5-2
pre-launching plug-ins, 4-4

director-side instancing controls. See instancing
controls

discrete formats, 3-3
DrfLookUp() function, E-3
EchLog control

fMain form, 3-4
EchStsBar control

fMain form, 3-4
Edit Source command, A-2
EnableControls() function, E-3

customizing, 3-5
EnableMonitor() function, E-3
errors

reporting, 4-8
examples

accessing configuration property objects, 3-11
accessing network variable objects, 3-11
adding a Button control, 3-5
converting between scaled and raw values, 3-10
handling a network variable update, 3-7
object name, 4-8
reading a configuration property, 3-7
setting a changeable type, 3-9
updating a network variable, 3-8

exceptions
reporting, 4-8
standard, D-2

fHidden form, E-2
FillCommandTable() function, 3-12, 5-2
FillNvsCpsTable()

operation, 3-7

FillNvsCpsTable() function
operation, 3-6

fMain form, E-2
controls, 3-4
Device Template Label control, 3-4
EchLog control, 3-4
EchStsBar control, 3-4
Tabbed Dialog control, 3-4
Tabbed text controls, 3-4

formats
initializing, 3-2

fProgress form, E-2
fRegisterPlug-In form

customizing, 3-12
functional blocks

selecting, 2-9
functions

utility, 3-13
g_CommandTable array, 5-2, 5-3, 5-10
g_NvsCpsTable

construction, 3-6
GetClassIdName() function, 3-13, E-3
GetCommandIdName() function, 3-13, E-4
GetNumObjectNameParameterStrings() function, 3-

13, E-4
GetObjectNameParameterString() function, 3-13, E-4
GUIDs

defined, v
Height property, 5-12, B-2
hex formats, 3-3
InitDevice() function, E-4
Initialize method, 5-14
instancing

SingleInstance, 4-7
instancing controls

defining, 2-10
int formats, 3-3
LcaCommandBrowse command. See Browse

command
LcaCommandRegister command. See Register

command
LcaCommandUserStart command, A-2. See

command, custom
LcaComponentErrCantSetProperty exception, 5-12
lcaOS_OnNetworkVariableUpdate() event handler,

E-3
operation, 3-6

lcaOS_OnNvUpdateError() event handler, E-3
LcaVersion property, B-2
LcaVersion subkey, 5-5
Left property, 5-12, B-2
LNS

redistribution, 5-16
runtimes, 5-16

LNS Device Plug-in wizard. See plug-in wizard
LnsPluginAPI class, E-2

LNS Plug-In Programmer's Guide iii

Load command, A-2
LONMARK Interoperability Association, B-2
LonMark objects. See functional blocks
LonWorks

folder, 5-16
m_networkInterfaceName variable, 5-2
manufacturer IDs, 2-4

temporary, B-2
manufacturer names, 2-4
ManufacturerId property, 5-9

defined, iv
ManufacturerID property, B-2
ManufacturerName property, B-2
ManufacturerName subkey, 5-5
methods

adding custom plug-in methods, 3-12
Minimized property, B-2
MMain module, E-2
modFramework module, E-2
Monitor command, A-2
monitor points, 3-6
Monitor Recovery command, A-2
monitor sets, 3-6
MsgBox() function

removing, 3-4
multi-object

defined, 2-11
MultiObject property, 4-7, B-2
MultiObject subkey, 4-7
MultipObject subkey, 5-5
Name property, B-3

defined, iv
Name subkey, 5-5
names

commands, 2-8
NeedToCreateDeviceType() function, 5-10
network variables

accessing network variable objects, 3-10
adding, 2-13, 3-8
changeable types, 3-8
clearing, 2-14
monitor points, 3-6
monitor sets, 3-6
monitoring, 3-6
reading, 3-6
update processing, 3-6
updating, 3-8

NetworkInterfaceName property, 5-2, B-3
relationship to NetworkName property, 5-11

NetworkName property, 5-2, B-3
relationship to NetworkInterfaceName property,

5-11
NetworkOpened() function, 5-2
NetworkVariableUpdateReceived() function, E-4

operation, 3-6
New command, A-2

object classes. See classes
object names, 4-8

defined, vi
objectName

parameter, 4-8
objects

commands, 2-9
defined, v

Offline command, A-2
Online command, A-2
Parent property

defined, iv
ParseWord() function, 3-14, E-4
plug-in API

defined, v
plug-in framework

adding custom commands, 3-11
adding custom methods, 3-11
adding custom properties, 3-11
contents, 3-2
deregistration, 3-13, 4-11
design rules, 3-14
device initialization, 3-2
enhancing standalone operation, 3-12
event handlers, E-3
files, E-2
format initialization, 3-2
manufacturer ID, 2-4
manufacturer name, 2-4
monitoring network variables, 3-6
naming, 3-12
plug-in description, 2-5
plug-in scope, 2-5
plug-in version, 2-5
product name, 2-5
project name, 2-4
reading configuration properties, 3-7
reading network variables, 3-6
ReadMe file, 3-2
running standalone, 3-12
supporting changeable types, 3-8
user interface, 3-3
utility functions, 3-13

plug-in frameworks
changing the start-up tab, 3-6
LNS version, 2-5
updating configuration properties, 3-8
updating network variables, 3-8

plug-in framwork
registration, 3-12

plug-in wizard
add-in, 2-2
Command Table windows, 2-6
defined, 2-1
Device Template window, 2-5
Identification window, 2-4

iv Index

installing, 2-2
Instancing Control window, 2-10
Introduction window, 2-3
overwrite warning, 2-14
Resource Table window, 2-9
starting, 2-2
Summary window, 2-11
User Interface Editor window. See user interface

editor
versions, iii

plug-ins
benefits, 1-2
commands, 5-13. See commands
creating an installation, 5-16
custom commands, A-2
default action, 5-10
defined, vi, 1-2
deregistration, 4-11
design rules, 3-14
director interaction, 5-2
exiting, 4-9, 5-14
installing a new version, 3-14
instancing, 4-7
interaction with directors, 4-5
launching, 4-4
life cycle, 4-9
pre-launch, 4-4
properties, 5-11
reference

classes, C-2
commands, A-2
exceptions, D-2
properties, B-2

registration
actions, 5-8
commands, 5-8
initial, 5-4
overview, 4-3

remote operation, 5-9
representation, 4-2
setup

overview, 4-3
setup.exe, 5-16
standalone operation, 4-10, 5-7, 5-18
starting the LNS Device Plug-in Wizard, 2-2
types, 1-3
uninstallation, 4-11
wizard. See plug-in wizard

Plug-ins, 2-5
pre-launch, 4-4

defined, 2-11
Prelaunch property, B-3
Prelaunch subkey, 4-5, 4-6, 5-5, B-3
ProcessDeviceCommand() function, 5-3, E-4

customizing, 3-4

ProcessLonMarkObjectCommand() function, 5-3, E-
4
customizing, 3-4

product names, 2-5
projects

names, 2-4
properties

adding custom plug-in properties, 3-12
raw formats, 3-3
ReadInitValues() function, E-4
ReadMe file

plug-in framework, 3-2
real formats, 3-3
Recover command, A-2
Register command, 2-8, 3-14, 5-8, 5-13, A-2
registered server, 3-14
registered servers

defined, vi
RegisteredServer property

defined, iv
RegisterRegistrationCommand() function, 5-7, E-4
RegisterSupportedCommands() function, 5-3, 5-10,

E-2, E-4
registration

defined, vi
registry

adding entries, 4-3
creating a plug-in instance, 5-2
defined, vii
Description subkey, 5-4
LcaVersion subkey, 5-5
ManufacturerName subkey, 5-5
MultiObject subkey, 4-7, 5-5
Name subkey, 5-5
plug-in registration, 5-4
Prelaunch subkey, 4-5, 4-6, 5-5, B-3
registration commands, 4-3
Scope subkey, 5-6
SingleInstance subkey, 4-7, 5-6
Version subkey, 5-7

regplugin
command line option, 4-10, 5-7, 5-18

regplugin command line option, 4-3
Remote property, B-3
Replace command, A-2
Report command, A-2
Reset command, A-2
resource table

defining, 2-9
resources

identifying, 2-9
rRegisterPlugIn form, E-2
scaling_factor_a field, 3-10
scaling_factor_b field, 3-10
scaling_factor_c field, 3-10
Scope subkey, 5-6

LNS Plug-In Programmer's Guide v

scopes
commands, 2-9
defined, vi
plug-in scopes, 2-5

SCPTnvType configuration property, 3-9
SecurityLevel command, A-2
SelectActiveTab() function, E-4

customizing, 3-6
SendCommand method, 4-7, 5-3, 5-13

defined, 1-3
objectName parameter, 4-8

SendCommand() function, 3-12
servers. See registered servers
SetDevTemplateLabel() function, E-4
single instance

defined, 2-11
SingleInstance subkey, 4-7, 5-6
smnuMonitor_Click() event handler, E-3
standalone

plug-ins, 4-10, 5-7, 5-18
StartMode property, 5-7
system plug-ins

defined, 1-3
Tabbed Dialog control

fMain form, 3-4
tabData_Click() event handler

customizing, 3-7
tabs

adding, 2-13
adding configuration properties, 2-13
adding network variables, 2-13
changing the start-up, 3-6
clearing, 2-14
editing, 2-13
naming, 2-14
removing, 2-13

target objects
defined, vii

tblFailedProgID array, 5-11
temporary manufacturer IDs, B-2
Terminate method, 5-14
Test command, A-2
text controls

fMain form, 3-4
Top property, 5-12, B-4
txtCp_KeyPress() event handler, E-3

customing, 3-4
txtNvi_KeyPress() event handler, E-3

customing, 3-4
type_category field, 3-9
type_index field, 3-9
type_length field, 3-10
type_program_ID field, 3-9
type_scope field, 3-9
Uninstall command, A-2
Unregister command, A-2

user interface
customizing, 3-3

user interface editor
adding configuration properties, 2-13
adding network variables, 2-13
adding tabs, 2-13
Application Interface pane, 2-12
clearing tabs, 2-14
defined, 2-12
editing tabs, 2-13
naming tabs, 2-14
overwrite warning, 2-12
removing tabs, 2-13
starting, 2-12
User Interface pane, 2-12

User Interface pane. See user interface editor
utility functions, 3-13
Version property, B-4
Version subkey, 5-7
VersionNumber property, 5-9

defined, iv
versions, 2-5

plug-in LNS versions, 2-5
Visible property, 4-7, 5-2, B-4
WalkDir module, E-2
Width property, 5-12, B-4
Windows registry. See registry
Wink command, A-2

vi Index

	Preface
	Purpose
	Audience
	Content
	Related Manuals
	Other Related Material
	Key Terms And Concepts

	Introduction
	Introduction
	What Makes A Plug-in A Plug-in
	Types of Plug-ins
	LNS Plug-in Commands
	LNS Plug-in Properties

	Generating a Plug-in with the LNS Device Plug-in Wizard
	Installing the Plug-in Wizard
	Starting the LNS Device Plug-in Wizard
	Using the LNS Device Plug-in Wizard
	LNS Device Plug-in Wizard: Introduction
	LNS Device Plug-in Wizard: Identification
	LNS Device Plug-in Wizard: Device Template
	LNS Device Plug-in Wizard: Command Table
	LNS Device Plug-in Wizard: Add or Edit Command
	LNS Device Plug-in Wizard: Resource Table
	LNS Device Plug-in Wizard: Director-side Instancing Control
	LNS Device Plug-in Wizard: Summary
	LNS Device Plug-in Wizard: User Interface Editor
	LNS Device Plug-in Wizard: Device Interface Editor Tab Properties

	Modifying Code Generated by the LNS Device Plug-in Wizard
	Introduction
	Initializing the Device
	Initializing Formats
	Customizing the Plug-in User Interface
	Changing the Start-up Tab
	Reading and Monitoring a Network Variable
	Reading a Configuration Property
	Updating an Output Network Variable or Configuration Property
	Changing a Network Variable Type
	Accessing a Network Variable Object
	Accessing a Configuration Property Object
	Using Shared Configuration Properties
	Adding Support for Configuration Property Arrays
	Adding a Custom Property, Method, or Command
	Creating a Stand-alone Plug-in
	Using Utility Functions
	Design Rules For Future Revisions Of Your Plug-ins

	How Plug-Ins Work — The Big Picture
	How Plug-ins Are Represented In The LNS Object Server
	How Plug-ins Are Installed On A User's Computer and Registered with LNS
	How Directors Launch And Manipulate Plug-ins
	How Directors Support Prelaunch
	How Directors Support MultiObject and SingleInstance
	How Directors Pass Object Names
	How Plug-ins Let Directors Know About Errors
	How Plug-Ins Know When To Exit

	What Plug-ins Do When They Run Stand-alone
	Uninstallation Issues

	How Plug-Ins Work — The Details
	Introduction
	Registering Your Plug-in's Registration Command
	Purpose Of This Step
	When And How It Is Done
	How It Is Done In The Plug-in Framework

	Registering Your Plug-in's Other Commands
	Purpose Of This Step
	When And How It Is Done
	How It Is Implemented In The Plug-in framework

	Responding to Property Reads and Writes
	Purpose Of This Step
	When And How It Is Done
	How It Is Implemented In The Plug-in framework

	Responding to Commands from a Director Other than Registration
	Purpose Of This Step
	When And How It Is Done
	How It Is Implemented In The Plug-in framework

	Determining When To Exit
	Purpose Of This Step
	When And How It Is Done
	How It Is Implemented In The Plug-in framework

	Creating an Installation for an LNS Device Plug-in

	Standard Plug-in Commands
	Standard Plug-in Properties
	Standard Plug-in Classes
	Standard Plug-in Exceptions
	Plug-in Framework Components
	Plug-in Files
	Plug-in Event Handlers
	Plug-in Functions
	Index

