

NodeBuilder
®

User’s Guide

Release 3.1
Revision 3

@ ECHELON®

C o r p o r a t i o n

078-0141-01E

A-2 NodeBuilder User’s Guide

Echelon, LON, LONWORKS, LonTalk, Neuron, LONMARK,
3120, 3150, NodeBuilder, ShortStack, the LonUsers logo,
the Echelon logo, and the LONMARK logo are registered
trademarks of Echelon Corporation. LonPoint, LonPoint
Schedule Maker, LonMaker and LonSupport are
trademarks of Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips, LonPoint Modules, and other OEM
Products were not designed for use in equipment or
systems which involve danger to human health or safety
or a risk of property damage and Echelon assumes no
responsibility or liability for use of the Neuron Chips or
LonPoint Modules in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Model Number 65150

Printed in the United States of America.
Copyright ©1997-2003 by Echelon
Corporation.
Echelon Corporation
www.echelon.com

Table of Contents i

Table of Contents

Introduction 1-1
Introduction to LONWORKS Networks...1-2

Introduction to the NodeBuilder Tool 2-1
Introduction to the NodeBuilder Tool..2-2
New Features in Release 3.1 ...2-2

PL Smart Transceiver Support...2-2
Toshiba TMPN3150FR4F Neuron Chip Support2-3
Neuron Chip Operation at 6.5536MHz...2-3
Configuration Property Arrays..2-4
Enhanced Configuration Property Sharing ..2-4
Enhanced Changeable Type Network Variable Support2-4
Resource Editor Enhancements ..2-5
Resource Report Generation ...2-5
Neuron C Enhancements...2-6
Enhanced Support for Clone Domain Configurations............................2-7

What's Included with the NodeBuilder Tool..2-8
Documentation ...2-9
LTM-10A Platform..2-10
LNS DDE Server CD..2-11
LonMaker Integration Tool CD...2-12
NodeBuilder Development Tool CD...2-13
NodeBuilder Gizmo 4 I/O Board ..2-14

Using a LonBuilder Emulator..2-16
What's Required to use the NodeBuilder Tool ...2-17
Installing the NodeBuilder Tool...2-18

Installing the NodeBuilder Software...2-19
Installing the NodeBuilder Hardware ...2-22

Getting More Information and Technical Support.......................................2-23
NodeBuilder Quick-Start Tutorial..2-24

Goals..2-24
NodeBuilder Quick-Start Tutorial: Introduction2-25
NodeBuilder Quick-Start Tutorial: Creating a LonMaker Network2-25
NodeBuilder Quick-Start Tutorial: Creating a NodeBuilder Project2-27
NodeBuilder Quick-Start Tutorial: Creating a NodeBuilder
Device Template ..2-27
NodeBuilder Quick-Start Tutorial: Automatically
Generating Neuron C Source Code...2-31
NodeBuilder Quick-Start Tutorial: Editing Your Neuron C Source Code2-37
NodeBuilder Quick-Start Tutorial: Compiling, Building,
and Downloading Your Application..2-38
NodeBuilder Quick-Start Tutorial: Testing Your Device Interface2-41
NodeBuilder Quick-Start Tutorial: Debugging Your Device Application2-42
NodeBuilder Quick-Start Tutorial:
Installing and Testing your Device in a Network..................................2-45
NodeBuilder Quick-Start Tutorial:
Generating Visual Basic Code for an LNS Device Plug-in2-48
NodeBuilder Quick-Start Tutorial: Testing Your LNS Device Plug-in ..2-51

ii NodeBuilder User’s Guide

Developing a LONWORKS Device 3-1
Introduction to Developing a LONWORKS Device.......................................3-2

Sign and Return the OEM License ..3-2
Design the Device Application and Hardware3-2
Develop the Device Hardware ...3-3
Define the Device Interface..3-3
Create a LonMaker Network ..3-4
Create a NodeBuilder Project ..3-5
Create a NodeBuilder Device Template ..3-6
Create the Neuron C Application ...3-6
Compile, Build, and Download the Application3-7
Test the Device Interface ...3-7
Debug the Device Application..3-8
Install and Test Your Device in a Network...3-8
Create a LonMaker Stencil ..3-8
Create an LNS Device Plug-in ...3-8
Develop an Operator Interface...3-9
Apply for LONMARK Certification ..3-9
Create an Installation Application for your Device3-9

Creating and Opening NodeBuilder Projects 4-1
Introduction to NodeBuilder Projects..4-2
Introduction to the NodeBuilder Project Manager ..4-2
Using the Project Pane...4-3
Creating a NodeBuilder Project ..4-4

Creating a New Project ..4-5
Specifying New Project Name ...4-5
Specifying the Project Default Settings..4-6
Starting the NodeBuilder Tool from the New Device Wizard.................4-8

Opening a NodeBuilder Project ..4-10
Selecting a NodeBuilder Project File ...4-11

Copying a NodeBuilder Project to Another Computer................................4-11
Copying a NodeBuilder Device Template to Another Computer................4-13
Viewing and Printing NodeBuilder XML Files...4-13

Creating and Using Device Templates 5-1
Introduction to Device Templates...5-2

Using Device Templates ..5-2
Using the New Device Template Wizard..5-5

New Device Template Wizard: New Device Template5-5
New Device Template Wizard: Program ID ...5-7
New Device Template Wizard: Hardware Templates5-10

Using the Standard Program ID Calculator ..5-11
Using Device Template Targets ...5-16

Inserting a Library into a Device Template ..5-17
Using Hardware Templates ..5-18

Creating and Editing Hardware Templates..5-20
Generating Neuron C Code Using the Code Wizard 6-1

Introduction to the NodeBuilder Code Wizard ..6-2
Starting the Code Wizard...6-2
Defining the Device Interface...6-4

Editing Properties in the Code Wizard ...6-32
Generating Code with the Code Wizard...6-32

Files Created by the Code Wizard ...6-33
Code Generated by the Code Wizard..6-35

Table of Contents iii

Modifying Code Generated by the Code Wizard6-37
Neuron C Version 2 Features Not Supported by the Code Wizard6-40

Editing Resource Files 7-1
Introduction to Resource Files..7-2
Starting the Resource Editor ..7-5
Setting Resource Editor Options ..7-6
Introduction to Resource Folders ...7-7
Browsing the Resource Catalog...7-8
Adding a Resource Folder..7-10
Removing a Resource Folder...7-10
Moving a Resource Folder ...7-10
Refreshing the Resource Catalog ..7-11
Searching for a Resource...7-11
Creating and Editing a Resource File Set ..7-13
Creating and Editing Resources...7-17

Creating and Editing a Network Variable
or Configuration Property Type..7-18
Creating and Modifying a Functional Profile ..7-27
Creating and Modifying an Enumeration Type7-37
Creating and Editing a Language String..7-40

Copying Resources ..7-55
Removing and Obsoleting Resources..7-56

Purging a Resource File Set ..7-57
Converting a Resource File Set..7-58
Viewing Resource File Properties ..7-61
Generating Resource Files...7-62
Resource Reports...7-63

Editing Neuron C Source Code 8-1
Introduction to Editing...8-2
Using Syntax Highlighting...8-2
Searching Source Files ..8-3
Using Bookmarks ...8-7
Setting Editor Options...8-8

Compiling, Building, and Loading Applications 9-1
Building an Application Image ..9-2

Files Created When You Build An Application Image............................9-3
Excluding Targets from a Build ..9-4
Cleaning Build Output Files ...9-5
Viewing Build Status ..9-5
Setting Build Options..9-6

Loading an Application Image ..9-8
Programming 3150 Off-chip Memory...9-9
Programming 3150 On-chip Memory...9-10
Programming 3120 On-chip Memory...9-13

Adding Targets ...9-13
Adding a Target with the LonMaker Tool ...9-14
Adding a Target with the Project Manager ..9-19

Using Targets in the Project Manager..9-19
Editing Target Device Settings...9-20

Using the NodeBuilder Debugger 10-1
Using the Debugger..10-2

Starting and Stopping an Application...10-4

iv NodeBuilder User’s Guide

Setting and Using Breakpoints...10-5
Stepping Through Applications ..10-6
Using the Watch List ..10-6
Using the Call Stack...10-9
Using the Debug Device Manager Pane..10-10
Peeking and Poking Memory ...10-11
Executing Code in Development Targets Only..................................10-12
Using the Debug Error Log Tab ...10-12
Editing Source Code While Debugging..10-13
Setting Debugger Options..10-13

Testing a NodeBuilder Device Using the LonMaker Tool 11-1
Testing a NodeBuilder Device..11-2

Creating Custom LonMaker Shapes 12-1
Creating a New LonMaker Stencil ..12-2
Creating a Custom Shape for a Device..12-2
Creating Custom Shapes for Functional Blocks...12-3
Creating Complex Custom LonMaker Shapes ...12-4

Creating an LNS Device Plug-in for a NodeBuilder Device 13-1
Introduction to LNS Device Plug-ins...13-2

Starting the LNS Device Plug-in Wizard ..13-2
Registering and Running your LNS Device Plug-in....................................13-3
Deregistering your LNS Device Plug-in..13-4

Creating a Human-Machine Interface 14-1
Human-Machine Interfaces ..14-2

LonMaker Integration Tool ...14-2
Third-Party HMIs and the LNS DDE Server ..14-3

Creating a Software Installation 15-1
Creating a Software Installation..15-2

Appendix A A-1

NodeBuilder Example A-1
Introduction to the NodeBuilder Example.. A-2
NodeBuilder Example Task 1: Setting Up The Project A-3
NodeBuilder Example Task 2: Configuring the Node Object A-4
NodeBuilder Example Task 3: Adding Digital I/O.. A-5
NodeBuilder Example Task 4: Analog Input and Output............................. A-8
NodeBuilder Example Task 5: Simple Translator...................................... A-12
NodeBuilder Example Task 6: Enhancing the Translator A-14
NodeBuilder Example Task 7: Temperature Sensor................................. A-16
NodeBuilder Example Task 8: Real Time Keeper..................................... A-19
NodeBuilder Example Task 9: Wheel Input... A-22
Continuing with the NodeBuilder Example .. A-26

Appendix B B-1

Converting a NodeBuilder 1.5 Project to a NodeBuilder 3 Project B-1
Converting a NodeBuilder 1.5 Project to a NodeBuilder 3 Project.............. B-2
Converting a Neuron C Version 1 Application
to a Neuron C Version 2 Application ... B-4

Step 1: Build the old application.. B-4
Step 2: Create a new device template.. B-4

Table of Contents v

Step 3: Create Resource Files.. B-5
Step 4: Create code using the code wizard .. B-5
Step 5: Move global declarations.. B-5
Step 6: Move global utility functions and system event handlers B-5
Step 7: Move functional block-specific state management................... B-5
Step 8: Set resource scopes... B-6
Step 9: Test #1.. B-6
Step 10: Move input network variable handler...................................... B-6
Step 11: Move declarations and handlers
for timer and I/O-related events .. B-7
Step 12: Move application messaging code ... B-7
Step 13: Test #2.. B-7

NodeBuilder Project Conversion Tips ... B-8
Running NodeBuilder 1.5 and NodeBuilder 3 Concurrently........................ B-9

Appendix C C-1

The Command Line Project Make Utility C-1
Using the Command Line Project Make Utility .. C-2

Appendix D D-1

Using the LonBuilder Emulator D-1
Using the LonBuilder Emulator.. D-2

Appendix E E-1

Using Source Control E-1
Using Source Control .. E-2

Appendix F F-1

NodeBuilder Software License Agreement F-1
NOTICE ..F-2
SOFTWARE LICENSE AGREEMENT...F-2
DEFINITIONS...F-2
LICENSE ..F-3
TERMINATION...F-5
TRADEMARKS...F-5
LIMITED WARRANTY AND DISCLAIMER ..F-5
LIMITATION OF LIABILITY ..F-6
SAFE OPERATION ..F-6
LANGUAGE..F-7
SUPPORT ..F-7
GENERAL...F-7

Index i

Introduction 1-1

1

Introduction

This chapter explains the basics of LONWORKS networks,
LONWORKS devices, and the Nodebuilder tool. For more
detailed information on the LONWORKS platform, see the
Introduction to LONWORKS document included in the
NodeBuilder program folder (to open, click the Windows Start
menu, point to Programs, point to Echelon NodeBuilder
Software, and then click Introduction to LONWORKS).

1-2 NodeBuilder User’s Guide

Introduction to LONWORKS Networks
A LONWORKS network consists of intelligent devices (such as sensors,
actuators, and controllers) that communicate with each other using a
common protocol over one or more communications channels. Network
devices are sometimes called nodes.

Devices may be Neuron hosted or host-based. Neuron hosted devices run a
compiled Neuron C application on a Neuron Chip or Smart Transceiver.
Host-based devices run applications on a processor other than a Neuron Chip
or Smart Transceiver. Host-based devices may run applications written in
any language available to the processor. A host-based device may use a
Neuron Chip or Smart Transceiver as a communications processor, or it may
handle both application processing and communications processing itself or
using a different processor.

Each device includes one or more processors that provide its intelligence and
implement the LonTalk® protocol. Each device also includes a component
called a transceiver to provide its electrical interface to the communications
channel. All devices on a channel share the bandwidth provided by the
channel. Devices need to supply addressing information when sending
information on a LONWORKS network to ensure that the message is received
by the correct device or devices.

A device publishes information as instructed by the application that it is
running. The applications on different devices are not synchronized, and it is
possible that multiple devices may all try to talk at the same time.
Meaningful transfer of information between devices on a network, therefore,
requires organization in the form of a set of rules and procedures. These
rules and procedures are the communication protocol, often called the
protocol. The protocol defines the format of the messages being transmitted
between devices and defines the actions expected when one device sends a
message to another. The protocol normally takes the form of embedded
software or firmware code in each device on the network. LONWORKS devices
communicate using the LonTalk protocol, which is an open protocol defined
by the ANSI/EIA/CEA 709.1 standard.

Channels
The path between devices exhibits various physical characteristics and is
called the communications channel, or simply channel. Different transceivers
may be able to interoperate on the same channel, so channels are categorized
by channel type, and every type of transceiver must identify the channel type
or types that it supports. The choice of channel type affects transmission
speed and distance as well as the network topology.

Multiple channels can be connected using routers. Routers are used to
manage network traffic, extend the physical size of a channel (both length
and number of devices attached), and connect channels that use different
media (channel types) together. Unlike other devices, routers are always
attached to two channels.

Introduction 1-3

Applications
Every LONWORKS device contains an application that defines the device’s
behavior. The application defines the inputs and outputs of the device. The
inputs to a device can include information sent on LONWORKS channels from
other devices, as well as information from the device hardware (i.e. the
temperature from a temperature sensing device). The outputs from a device
can include information sent on LONWORKS channels to other devices, as well
as commands sent to the device hardware (i.e. a fan, light, heater, or
actuator).

Program IDs
Every LONWORKS application has a unique, 16 digit, hexadecimal standard
program ID with the format FM:MM:MM:CC:CC:UU:TT:NN. This program ID
is broken down into the following fields:

Format (F) A 1 hex-digit value defining the structure of the
program ID. The upper bit of the format defines
the program ID as a standard program ID (SPID)
or a text program ID. The upper bit is set for
standard program IDs, so formats 8 – 15 (0x8 –
0xF) are reserved for standard program IDs.
Program ID format 8 is reserved for LONMARK
certified devices. Program ID format 9 is used for
devices that will not be LONMARK certified, or for
devices that will be certified but are still in
development or have not yet completed the
certification process. Program ID formats 10 - 15
(0xA – 0xF) are reserved for future use. Text
program ID formats are used by network
interfaces and legacy devices and, with the
exception of network interfaces, should not be
used for new devices. The NodeBuilder tool can
be used to create applications with program ID
format 8 or 9, can be used to create network
interfaces using text program IDs, and is also
compatible with legacy applications using text
program IDs.

Manufacturer ID (M) A 5 hex-digit ID that is unique to each LONWORKS
device manufacturer. The upper bit identifies the
manufacturer ID as a standard manufacturer ID
(upper bit clear) or a temporary manufacturer ID
(upper bit set). Standard manufacturer IDs are
assigned to manufacturers when they join the
LONMARK Interoperability Association, and are
also published by the LONMARK Interoperability
Association so that the device manufacturer of a
LONMARK certified device is easily identified.
Standard manufacturer IDs are never reused or
reassigned. Temporary manufacturer IDs are
available to anyone on request by filling out a
simple form at www.lonmark.org/mid. If your
company is a LONMARK member, but you do not

1-4 NodeBuilder User’s Guide

know your manufacturer ID, you can find your ID
in the list of manufacturer IDs at
www.lonmark.org/spid. The most current list at
the time of release of the NodeBuilder tool is also
included with the NodeBuilder software. This list
is described in Using the Standard Program ID
Calculator in Chapter 5.

Device Class (C) A 4 hex-digit value identifying the primary
function of the device. This value is drawn from a
registry of pre-defined device class definitions. If
an appropriate device class designation is not
available, the LONMARK Association Secretary
will assign one, upon request.

Usage (U) A 2 hex-digit value identifying the intended usage
of the device. The upper bit specifies whether the
device has a changeable interface. The next bit
specifies whether the remainder of the usage field
specifies a standard usage or a functional-profile
specific usage. The standard usage values are
drawn from a registry of pre-defined usage
definitions. If an appropriate usage designation is
not available one will be assigned upon request. If
the second bit is set, a custom set of usage values
is specified by the primary functional profile for
the device.

Channel Type (T) A 2 hex-digit value identifying the channel type
supported by the device’s LONWORKS transceiver.
The standard channel-type values are drawn from
a registry of pre-defined channel-type definitions.
A custom channel-type is available for channel
types not listed in the standard registry.

Model Number (N) A 2 hex-digit value identifying the specific product
model. Model numbers are assigned by the
product manufacturer and must be unique within
the device class, usage, and channel type for the
manufacturer. The same hardware may be used
for multiple model numbers depending on the
program that is loaded into the hardware. The
model number within the program ID does not
have to conform to the manufacturer's model
number.

See the LONMARK Application Layer Interoperability Guidelines for more
information about program IDs.

Network Variables
Applications exchange information with other LONWORKS devices using
network variables. Every network variable has a direction, type, and length.
The network variable direction can be either input or output, depending on
whether the network variable is used to receive or send data. The network
variable type determines the format of the data.

http://www.lonmark.org/mid
http://www.lonmark.org/spid

Introduction 1-5

Network variables of identical type and length but opposite directions can be
connected to allow the devices to share information. For example, an
application on a lighting device could have an input network variable that
was of the switch type, while an application on a dimmer-switch device could
have an output network variable of the same type. A network tool such as
the LonMaker Integration Tool could be used to connect these two devices,
allowing the switch to control the lighting device, as shown in the following
figure:

The direction indicated by the triangle in the above figure indicates the
direction of the network variable. A single network variable may be
connected to multiple network variables of the same type but opposite
direction. The following example shows the same switch being used to
control three lights:

The application program in a device does not need to know anything about
where input network variable values come from or where output network
variable values go. When the application program has a changed value for an
output network variable, it simply passes the new value to the device
firmware. Through a process called binding that takes place during network
design and installation, the device firmware is configured to know the logical
address of the other device or group of devices in the network expecting that
network variable’s values. It assembles and sends the appropriate packets to
these devices. Similarly, when the device firmware receives an updated
value for an input network variable required by its application program, it
passes the data to the application program. The binding process thus creates
logical connections between an output network variable in one device and an
input network variable in another device or group of devices. Connections

1-6 NodeBuilder User’s Guide

may be thought of as “virtual wires.” For example, the dimmer-switch device
in the dimmer-switch-light example could be replaced with an occupancy
sensor, without making any changes to the lighting device.

Configuration Properties
LONWORKS applications may also contain configuration properties.
Configuration properties allow the device’s behavior to be customized using a
network tool such as the LonMaker tool or a customized plug-in created for
the device (you can create a custom plug-in using the LNS™ Device Plug-in
Wizard included with the NodeBuilder tool). For example, an application
may allow an arithmetic function (add, subtract, multiply, or divide) to be
performed on two values received from two network variables. The function
to be performed could be determined by a configuration property. Like
network variables, configuration properties have types that determine the
type and format of the data they contain.

Functional Blocks
Applications in devices are divided into one or more functional blocks. A
functional block is a collection of network variables and configuration
properties, which are used together to perform a task. These network
variables and configuration properties are called the functional block
members. For example, a LonPoint DI-10 module has four digital input
functional blocks that contain the configuration properties and output
network variable members for each of the four hardware digital inputs on the
DI-10 device.

A functional block is an implementation of a functional profile.

Functional Profiles
A functional profile defines mandatory and optional network variable and
configuration property members for a type of functional block. For example,
a functional profile for a light controller could have a mandatory network
variable for a switch input, and an optional network variable to determine
the light color (since not all lights will have multiple color options). The
following diagram shows the components of a functional profile:

Introduction 1-7

When a functional block is created from a functional profile, the application
designer can determine which of the optional configuration properties and
network variables to implement. The application designer can also choose to
implement members that are not defined in the functional profile. These are
called implementation-specific members.

Hardware Templates
A hardware template is a file with a “.nbHwt” extension that defines the
hardware configuration for a device. It specifies hardware attributes
including platform, transceiver type, Neuron Chip or Smart Transceiver
model, clock speed, system image, and memory configuration. Several
hardware templates are included with the NodeBuilder tool. You can use
these or create your own. Third-party development platform suppliers may
also include hardware templates for their platforms.

Neuron C
Neuron C is a programming language, based on ANSI C, used to develop
applications for devices that use a Neuron Chip or Smart Transceiver as the
application processor. Neuron C includes extensions for network
communication, device configuration, hardware I/O, and event-driven
scheduling.

Device Templates
A device template defines a device type. The NodeBuilder tool uses two types
of device templates. The first is a NodeBuilder device template. The
NodeBuilder device template is a file with a “.NbDt” extension that specifies
the information required for the NodeBuilder tool to build the application for
a device. It contains a list of the application Neuron C source files and the
hardware template name. When you build the application, the NodeBuilder
tool automatically produces an LNS device template. The LNS device
template defines the external interface to the device, which is called the

1-8 NodeBuilder User’s Guide

device interface (XIF), and is used by LNS tools such as the LonMaker tool to
configure and bind the device.

Device Interface Files
A device interface file (also known as a XIF file or an external interface file) is
a file that specifies the external interface of a device. It includes a list of all
the functional blocks, network variables, configuration properties, and
configuration property default values defined by the device application. LNS
tools such as the LonMaker tool use device interface files to create an LNS
device template. This enables the tool to be used to create network designs
without being connected to the physical devices. A text device interface file
with a “.xif” extension is required by the LONMARK Application Layer
Interoperability Guidelines. A text device interface file is automatically
produced by the NodeBuilder tool when you build an application. The
NodeBuilder tool also automatically creates binary (“.xfb” extension) and
optimized-binary (“.xfo” extension) versions of the device interface file that
speed the import process for LNS tools such as the LonMaker tool.

Resource Files
Resource files define network variable types, configuration property types,
and functional profiles. Resource files for standard types and profiles are
distributed by the LONMARK Interoperability Association. The standard
resource files define standard network variable types (SNVTs), standard
configuration property types (SCPTs), and standard functional profiles. For
example, SCPTlocation is a standard configuration property type for
configuration properties containing the device location as a text string, and
SNVT_temp_f is a network variable type for network variables containing a
temperature value represented as a floating-point number. The standard
network variable and configuration property types are defined in the
LONMARK SNVT and SCPT Guide included with the NodeBuilder tool (to see
this guide, click the Windows Start menu, point to Programs, point to
Echelon NodeBuilder Software, and then click LONMARK SNVT and
SCPT Guide). As new SNVTs and SCPTs are defined, updated resource
files and documentation are posted to the LONMARK Web site
(www.lonmark.org). Standard functional profiles are included with the
NodeBuilder tool; their documentation is available on the Design Guidelines
area of the LONMARK Web site. Device manufacturers may also create user
resource files that contain manufacturer-defined types and profiles called
user network variable types (UNVTs), user configuration property types
(UCPTs), and user functional profiles .

You can create applications that only use the standard types and profiles, in
which case you will not have to create user resource files. If you need to
define any new user types or profiles, you will use the NodeBuilder Resource
Editor to create new user resource files as described in Chapter 7.

Targets
A target is a LONWORKS device whose application is built by the NodeBuilder
tool. There are two types of targets, development targets and release targets.
Development targets are used during development; release targets are used
when development is complete and the device will be released to production.
Each NodeBuilder device template specifies the definition for a development

Introduction 1-9

target and a release target. Both target definitions use the same source code,
program ID, interface, and resource files, but can use different hardware
templates and compiler, linker, and exporter options. The source code may
include code that is conditionally compiled based on the type of target.

http://www.lonmark.org/

1-10 NodeBuilder User’s Guide

Introduction to the NodeBuilder Tool 2-1

2

Introduction to the
NodeBuilder Tool

This chapter provides an overview of the NodeBuilder tool,
installation instructions, and a quick-start tutorial.

2-2 NodeBuilder User’s Guide

Introduction to the NodeBuilder Tool
The NodeBuilder tool is a hardware and software platform that is used to
develop applications for Neuron Chips and Echelon Smart Transceivers. The
NodeBuilder tool enables you to do the following tasks:
• View standard resource file definitions for SNVTs, SCPTs, and standard

functional profiles.
• Create your own resource files with your UNVTs, UCPTs, and user functional

profiles.
• Automatically generate Neuron C code that implements your device

interface.
• Edit your Neuron C code to implement your device functionality.
• Compile and build your application, and download it to the LTM-10A

Platform or to your own devices.
• Test with prototype I/O hardware on the Gizmo 4 I/O Board, use the Gizmo 4

board to prototype and test your own I/O hardware, or use your own custom
device.

• Install your device into a LONWORKS network and test your device
interoperating with other LONWORKS devices.

• Automatically generate Visual Basic code that implements an LNS plug-in
for your device.

• Test your LNS plug-in with the LonMaker tool to ensure that your device is
easy to configure and install.

New Features in Release 3.1
Release 3.1 of the NodeBuilder Tool includes enhancements in the following
areas:
• PL Smart Transceiver support
• Toshiba TMPN3150FR4F Neuron Chip support
• Configuration property arrays
• Enhanced Configuration property sharing
• Enhanced changeable type network variable support
• Resource editor enhancements
• Resource report generation
• Neuron C enhancements
• Enhanced support for clone domain configurations

PL Smart Transceiver Support
You can develop applications for Echelon’s power line Smart Transceivers.
The PL Smart Transceiver can be used to implement low-cost, high-reliability
devices that use power line communication. You can develop devices with PL
Smart Transceivers that communicate on a PL-20A, PL-20C, or PL-20N
channel.

Introduction to the NodeBuilder Tool 2-3

To use one of these chips, select the appropriate transceiver type and model
from Transceiver Type and Neuron Chip Model in the Hardware tab of
the NodeBuilder Hardware Template Properties dialog. See the PL
Smart Transceiver Data Book for more information on these chips.

If you are developing a PL-20A power line device with version 14 Neuron
firmware, you can use a new 6.5536MHz Neuron input clock speed to share a
crystal between your Neuron core and transceiver. Sharing a crystal may
reduce your device cost and reduce the board space required to implement
your device.

To use the new clock speed, select the appropriate clock frequency from
Clock Speed in the Hardware tab of the NodeBuilder Hardware
Template Properties dialog. The Clock Speed list shows clock speeds
available for the selected Neuron Chip and transceiver, or the selected Smart
Transceiver. Only A-band power line transceivers can be used with Neuron
Chips or Smart Transceivers running at the new clock rate. Not all
transceiver and Neuron Chip combinations support these new clock rates; see
your Neuron Chip or Smart Transceiver data book for more information.

Toshiba TMPN3150FR4F Neuron Chip Support
You can develop applications for Tosiba’s TMPN3150FR4F Neuron Chip.
This chip has a 2KB extendend RAM, providing a total of 4KB of on-chip
RAM. To use this chip, select TMPN3150FR4F from Neuron Chip Model
in the Hardware tab of the NodeBuilder Hardware Template
Properties dialog. See the Toshiba TMPN3150FR4F Neuron Chip Data
Book for more information on this chip.

Toshiba includes extended RAM support. Extended RAM is on-chip RAM
beyond the 2KB RAM in most Neuron 3150 Chips. If you are using the
Toshiba TMPN3150FR4F chip, you can enable the extended RAM and assign
its starting address to any available page boundary. You cannot use
extended RAM if you use off-chip RAM, but you can use extended RAM with
off-chip EEPROM, flash memory, or memory-mapped I/O. See Using On-
Chip Extended RAM in Chapter 5 for more information.

Neuron Chip Operation at 6.5536MHz
If you are developing a PL-20A power line device with version 14 (or newer)
Neuron firmware, you can use the 6.5536MHz Neuron input clock speed to
share a crystal between your Neuron core and transceiver. Sharing a crystal
may reduce your device cost and reduce the board space required to
implement your device.

To use this new clock speed, select 6.5536MHz as the clock frequency in the
Hardware tab of the NodeBuilder Hardware Template Properties
dialog. The Clock Speed field shows clock speeds available for the selected
Neuron Chip and transceiver, or the selected Smart Transceiver. Only A-
band power line transceivers can be used with Neuron Chips running at the
new clock rate. Not all power line transceivers or transceiver and Neuron
Chip combinations support this new clock rate; see your Neuron Chip or
Smart Transceiver data book for more information.

2-4 NodeBuilder User’s Guide

Configuration Property Arrays
You can define a functional profile that contains a configuration property
array, and you can implement a functional block that contains a
configuration property array using either the NodeBuilder Code Wizard or
manually in Neuron C. A configuration property array is a set of
configuration properties, organized as a single-dimensional array where you
can access any member of the array by name and index. A single
configuration property array can, circumstances permitting, accommodate
the entire Neuron address space (its maximum size is limited to 64KB). For
example, you can use a configuration property array to implement tabular
configuration data such as a schedule or telephone directory.

Implementing a configuration property array is similar to implementing a
scalar (non-array) configuration property. The configuration property array
can apply to a single functional block, a single network variable, a functional
block array, or a network variable array.

Unless the configuration property array is shared, each of the objects the
configuration property array applies to will have its own, private copy of the
entire array. See Adding a Configuration Property Member to a Functional
Profile in Chapter 7 for information on adding a configuration property array
to a functional profile template and Implementing Optional Configuration
Properties in Chapter 6 for information on adding configuration property
arrays to a device template.

Enhanced Configuration Property Sharing
You can share a configuration property among multiple functional blocks or
network variables. This was possible using the NodeBuilder 3 Neuron C
compiler, but NodeBuilder 3.1 adds support for sharing configuration
properties using the NodeBuilder Code Wizard. Sharing configuration
properties can simplify device configuration by reducing the number of
configuration properties that must be set by an integrator, and can also
reduce the memory required for the device application. See Using Global
Configuration Property Sharing in Chapter 6 for more information.

Enhanced Changeable-Type Network Variable
Support

You can use a changeable-type network variable to implement a generic
functional block that works with different types of inputs and outputs. For
example, you can create a general-purpose device that can be used with a
variety of sensors or actuators, and then create a functional block that allows
the integrator to select the network variable type depending on the physical
sensor or actuator attached to the device. Another example is a scheduler
that can control a variety of device types by allowing the integrator to change
the type of the output of the scheduler. The NodeBuilder 3 tool supported
changeable-type network variables, but the NodeBuilder 3.1 tool adds
enhanced support for changeable types in the Neuron firmware, Neuron C
compiler, and the NodeBuilder Code Wizard. The Code Wizard generates

Introduction to the NodeBuilder Tool 2-5

code that contains a framework for supporting changeable-type network
variables.

The new Neuron firmware version 14 included with the NodeBuilder 3.1 tool
implements a new method for changing the size of a network variable. This
new method uses an NV length override system image extension that is
managed by the application. Whenever the firmware needs the length of a
network variable, it calls the NV length override system image extension to
get it. This new method provides more reliable updates to network variable
sizes, since the old method could cause a device to go applicationless if a
power failure occurred in the middle of a network variable size update. The
new system image extension method only works with version 14 firmware, or
newer. Since the LTM-10A platform does not use version 14 firmware, you
can develop an application that supports both methods, enabling only one of
the methods for each type of platform.

See Using a Changeable-Type Network Variable in Chapter 6 and
Changeable Type Network Variables in Chapter 3 of the Neuron C
Programmer’s Guide for more information and a sample changeable-type
network variable implementation.

Resource Editor Enhancements
NodeBuilder 3.1 includes a number of resource editor enhancements,
including:
• Resource file conversion. You can convert resource file sets to earlier format

versions to provide compatibility with legacy tools. See Converting a
Resource File Set in Chapter 7 for more information.

• Resource deletion. You can purge resources that you have deleted from a
resource file, removing them completely from the file. See Purging a
Resource File Set in Chapter 7 for more information.

• Resource file string search. See Searching for a Language String in Chapter
7 for more information.

• Format priority modification. When creating or modifying a format, you can
now indicate that the selected format is the default for the type, or the
default for the type in the specified measuring system. See Creating and
Modifying a Format in Chapter 7 for more information.

• Testing scaling factors. Scaling factors can now be tested with sample data
when defining a network variable or configuration property type. See
Creating and Editing a Network Variable or Configuration Property Type.

Resource Report Generation
You can create a resource report that contains a summary of all the resources
in a resource file set, or in multiple resource file sets. You can use a resource
report during development as a reference guide for your resource definitions.
You can also define supplementary documentation that is automatically
included in your resource report. See types.lonmark.org and
types.echelon.com for two examples of resource reports.

WARNING: The resource report generator is included as an unsupported
component of the NodeBuilder 3.1 product. It has not undergone the same

http://types.echelon.com/

2-6 NodeBuilder User’s Guide

level of testing as the remainder of the NodeBuilder tool. However, you may
find it to be a useful aid to your product development.

See the Resource Report Generator User’s Guide for more information on
creating resource reports. To access this document, click Start, point to
Programs, point to Echelon NodeBuilder Software, and then click the
Resource Report Generator Guide.

Neuron C Enhancements
This section describes new features in the Neuron C programming language.
These new features are described more fully in the Neuron C Programmer’s
Guide, and Neuron C Reference Guide.

Compacting the Template File
You can compact the template file that defines the configuration properties
implemented within configuration files for your application. You can either
compact the template file by merging adjacent CP family members, or by re-
ordering and merging CP family members. You can control the template file
compacting and ordering using new extensions to the #pragma codegen
directive.

CP Files Off-chip and On-chip
You can control the memory location of the CP template and value files using
new extensions to the #pragma codegen directive.

IO11 Pin
You can access the new IO11 pin on the PL Smart Transceivers. To access
this pin, use the bit I/O object and related I/O functions such as
io_set_direction(). The #pragma enable_io_pullups directive also
enables an internal pullup for the IO_11 pin.

New I/O Models
The following new I/O models are described in the Neuron C Reference Guide:
• Hardware SCI (UART) I/O
• Hardware SPI I/O
• Extended touch input/output
• Single timer/counter edgelog I/O
• I2C I/O enhancements
• Infrared pattern output
• Magcard/bitstream input

Other Neuron C Changes
You can create functional blocks without any network variable members.
You can use such a functional block to collect various configuration properties
into a unit of control.

Introduction to the NodeBuilder Tool 2-7

Enhanced Support for Clone Domain Configurations
If you are exporting your application image as a configured image, you can
configure the domain as a clone domain. A clone domain is a domain ID
within a device that specifies that the device can receive messages from other
devices with the same network address. A clone domain is typically only
used in self-installed devices where multiple devices within a network may
have the same address. Devices using a clone domain have the following
reduced capabilities:
• Devices using a clone domain can no longer receive messages in that domain

using subnet/node addressing. Some other addressing mode must be used
(Neuron ID, group, or broadcast). Use only group and broadcast addressing
for self-installed devices since the use of Neuron ID addressing makes
systems more difficult to maintain.

• The device cannot receive acknowledgements and responses. The device will,
however, continue to send acknowledgements and responses with proper
subnet/node information.

• Authentication cannot be used in a clone domain because the reply to a
challenge is sent using subnet/node addressing regardless of the addressing
format of the original message.

• Devices are no longer protected against receiving their own messages in
looping topologies. This must be considered when designing the application.
For example, if a device sends out a network variable update, and it also had
an input network variable defined with the same network variable selector,
its input network variable will get updated if the message is reflected or
routed back, which may not be the intention.

To create a clone domain, follow these steps:

1. From the NodeBuilder Project Manager, open a device template, right-click
the Development or Release target, and then select Settings from the
shortcut menu. The NodeBuilder Device Template Target Properties
dialog appears.

2. Select the Configuration tab, as shown in the following figure:

2-8 NodeBuilder User’s Guide

3. Set the Clone checkbox.
4. Set Length to anything other than <None>. Setting Length to <None>

deactivates the Clone checkbox.

What's Included with the NodeBuilder Tool
The NodeBuilder Development Tool is a hardware and software platform that
is used to develop applications and LNS device plug-ins for Neuron Chip and
Echelon Smart Transceiver based devices. There are three editions of the
NodeBuider tool: the Full Edition, the Classroom Edition, and the Upgrade
Edition. The Classroom Edition is for educational-use only. The Upgrade
Edition is a product available to anyone who has licensed any previous
version of the NodeBuilder or the LonBuilder Development Tool.

The three editions of the NodeBuilder tool consist of the components listed in
the following table:

Introduction to the NodeBuilder Tool 2-9

Component Full Edition Classroom
Edition

Upgrade
Edition

Printed Documentation
Online Documentation

LTM-10A Platform

LNS DDE Server OEM
Edition

LNS DDE Server Demo
Edition

LonMaker Integration Tool
Professional Edition CD

LonMaker Integration Tool
Standard Edition CD
Microsoft Visio Professional
Microsoft Visio Standard
NodeBuilder Development
Tool CD

NodeBuilder Gizmo 4 I/O
Board

This section describes each of the components.

Documentation
All documentation for the NodeBuilder tool is provided as online Adobe
Acrobat PDF files and Windows Help files. Several of the manuals are also
provided in printed versions with the Full and Upgrade Editions. The
manual you are reading now, the NodeBuilder User’s Guide, should be your
starting point for using the NodeBuilder tool.
• Gizmo 4 User's Guide. Describes how to use the I/O devices on the Gizmo 4

I/O Board, and how to use the Gizmo 4 I/O Board to prototype your own I/O
hardware.

• LNS DDE Server User’s Guide. Describes how to use the LNS DDE Server as
an I/O driver for human-machine interface (HMI), supervisory control and
data acquisition (SCADA), operator interface, and visualization applications.

• LNS Plug-in Programmer's Guide. Describes how to develop an LNS device
plug-in using the NodeBuilder tool.

2-10 NodeBuilder User’s Guide

• LTM-10A User's Guide. Describes how to use the LTM-10A Platform for
testing your applications and I/O hardware prototypes. Also describes how
you can design the LTM-10A Flash Control Module into your products.

• Neuron C Programmer's Guide. Describes how to write programs using the
Neuron C programming language.

• Neuron C Reference Guide. Provides reference information for the Neuron C
programming language.

• NodeBuilder Errors Guide. Provides reference information for Neuron C
errors, NodeBuilder build process errors, and Neuron firmware errors. This
is shipped as an Adobe Acrobat PDF file only.

• Resource Report Generator User’s Guide. Provides information on using the
Resource Report Generator utility to automatically generate resource file
documentation. This is shipped as an Adobe Acrobat PDF file only.

• NodeBuilder User’s Guide. This document. Describes how to install and use
the NodeBuilder tool to develop applications and LNS device plug-ins for
Neuron Chip and Echelon Smart Transceiver based devices.

LTM-10A Platform
The LTM-10A Platform is a complete LONWORKS device with downloadable
flash memory and RAM that you can use for testing your applications and I/O
hardware prototypes.

LTM-10A Platform

The LTM-10A Platform includes an LTM-10A Flash Control Module that you
can design into your prototypes and products. The LTM-10A module includes
a Neuron Chip, 64KByte flash memory, 32Kbyte static RAM, 10MHz crystal
oscillator, and custom Neuron firmware. The custom firmware allocates the
memory to the Neuron Chip 64Kbyte address space and automatically
initializes the transceiver interface for standard transceivers.

LTM-10A Flash Control Module

Introduction to the NodeBuilder Tool 2-11

The NodeBuilder tool can load your application image into the RAM or flash
memory of the LTM-10A module. An application image loaded into the flash
memory is preserved when the module is powered down. An application
image loaded into the RAM is preserved when the module is reset, but not
when it is powered down. You can use the Neuron C Debugger to debug
applications running in the RAM or flash memory.

The LTM-10A Platform also includes a transceiver for attaching the platform
to a LONWORKS network. The Full and Classroom Editions of the TP/FT-10
NodeBuilder tool include an FTM-10A free topology twisted pair transceiver.
The Full Edition of the TP/FT-10 NodeBuilder tool also includes a
TPM/XF-1250 twisted pair transceiver that you can use to convert the LTM-
10A Platform for TP/XF-1250 application development. The Full Edition of
the PL-20 NodeBuilder tool includes a PLM-22 power line transceiver with
external power line coupler. Two power line couplers are included, one for 0 -
120V line-to-earth coupling and one for 0 - 240Vline-to-neutral coupling.

The LTM-10A module also includes a Microprocessor Interface Program
(MIP) function that enables the LTM-10A module to be used as a LONWORKS
network interface for any microprocessor or microcontroller of your choice.
The NodeBuilder software supports development of MIP-based devices using
LTM-10A modules. You can develop custom network interfaces by
downloading the ShortStack Developer’s Kit from
www.echelon.com/shortstack, or by licensing the MIP/P20 and MIP/P50
Developer’s Kit or the MIP/DPS Developer’s Kit.

See the LTM-10A User’s Guide for more information on the LTM-10A
Platform and Flash Control Module.

LNS DDE Server CD
The LNS DDE Server is an I/O driver for human-machine interface (HMI),
supervisory control and data acquisition (SCADA), operator interface, and
visualization applications. The LNS DDE Server is not required by the
NodeBuilder software, but it provides an easy and high-performance way to
access your LONWORKS networks and devices from applications that support
a DDE, Fast DDE, or SuiteLink interface such as Wonderware InTouch. The
following figure shows a typical operator interface display built with an HMI
application running with the LNS DDE Server.

2-12 NodeBuilder User’s Guide

HMI Using LNS DDE Server

The Full Edition of the NodeBuilder tool includes the OEM Edition of the
LNS DDE Server, which is the full edition of the LNS DDE Server. The
Classroom and Upgrade Editions of the NodeBuilder Tool include the Demo
Edition of the LNS DDE Server. The Demo Edition can be upgraded to the
full edition by purchasing a key as described in the LNS DDE Server
documentation. See the LNS DDE Server User’s Guide for information on
installing and using the LNS DDE Server.

LonMaker Integration Tool CD
The LonMaker Integration Tool is a software application for designing,
installing, operating, and maintaining multi-vendor, open, interoperable
LONWORKS networks. Based on the LNS network operating system, the
LonMaker tool combines a powerful client-server architecture with an easy-
to-use Microsoft Visio user interface. The result is a tool that is
sophisticated enough to be used to design, commission, operate, and maintain
a LONWORKS network yet economical enough to be left behind as an
operation and maintenance tool.

The LonMaker tool is available in Professional, Standard, and Upgrade
Editions. The NodeBuilder tool Full Edition includes the LonMaker
Professional Edition, which includes Microsoft Visio Professional. The
NodeBuilder tool Classroom Edition includes the LonMaker Standard
Edition, which includes Microsoft Visio Standard. The NodeBuilder tool
Upgrade Edition does not include the LonMaker tool—it must be ordered
separately. You already have the LonMaker tool if you are upgrading from
the NodeBuilder 3 (or newer) tool.

LonMaker Integration Tool

The LonMaker tool is an integral part of your NodeBuilder tool. The
NodeBuilder Project Manager is an LNS plug-in that is called from the

Introduction to the NodeBuilder Tool 2-13

LonMaker tool, much like your own LNS device plug-ins may be called from
the LonMaker tool.

The LonMaker tool lets you do the following tasks:
• Network Design — The LonMaker tool allows you to design a network

without being connected to it. This allows network design to be done off site
(engineered system installation scenario). The LonMaker tool also allows
network design to take place on site (ad-hoc installation scenario), which is
what you will use with the NodeBuilder tool, and is also desirable for smaller
networks or networks in which the network topology is unknown until on-
site. The LonMaker tool can learn the design from an existing network; this
process is called recovery. The LonMaker tool also enables an engineered,
ad-hoc, or recovered network to be changed at any time.

• Network Installation — The LonMaker tool allows an engineered network to
be rapidly installed once the network design is brought on site. The
engineered device definitions can be quickly and easily associated with their
corresponding physical devices to reduce on-site commissioning time. The
LonMaker Browser provides complete access to all network variables and
configuration properties. The LonMaker Manage window allows you to test
and manage your devices. The LonMaker Browser and Manage windows are
very useful both for development and for field use.

• Network Documentation — Since the LonMaker tool creates a Visio drawing
in parallel with the network design and installation process, this drawing
accurately represents the installed network, making it an essential
component of as-built reports.

• Network Operation — The LonMaker tool supports the operation of a network
using operator interface pages contained within the LonMaker drawing.

• Network Maintenance — The LonMaker tool allows devices, routers,
channels, subsystems, and connections to be easily added, tested, removed,
modified, or replaced to support system maintenance.

This guide describes many of the LonMaker functions that you will use with
the NodeBuilder tool. See the LonMaker User’s Guide for more information
on the LonMaker tool and to learn how it can be used to install, operate, and
maintain your operational networks in addition to your development
networks.

NodeBuilder Development Tool CD
The NodeBuilder Development Tool CD contains the software required to
develop and debug Neuron C applications and LNS device plug-ins for your
LONWORKS devices. This software includes the following components:
• NodeBuilder Quick-Start Tutorial – Learn how to use the NodeBuilder tool to

develop devices and LNS device plug-ins with this animated tutorial.
• NodeBuilder Resource Editor – Define your device interface by selecting

appropriate standard types and functional profiles, or create your own if you
need types or profiles not included in the standard resource files.

• NodeBuilder Code Wizard – Automatically generate Neuron C source code
that implements your device interface.

• NodeBuilder Project Manager – Customize the generated Neuron C source
code; build and download your application image to the LTM-10A Platform or

2-14 NodeBuilder User’s Guide

your own hardware; and debug your application running on the LTM-10A
Platform or your own hardware with a source-level view of your application
as it executes.

NodeBuilder Project Manager

• LNS Device Plug-in Wizard – Develop LNS device plug-ins to configure your
devices.

NodeBuilder Gizmo 4 I/O Board
The NodeBuilder Gizmo 4 I/O Board is a collection of I/O devices that you can
use with the LTM-10A Platform for developing prototype devices and I/O
circuits, developing special-purpose devices for testing, or running the
NodeBuilder examples. The following figure illustrates the Gizmo 4 plugged
into the LTM-10A Platform.

Introduction to the NodeBuilder Tool 2-15

Gizmo 4 Plugged-into LTM-10A Platform

You can also plug a TP/FT-10 or TP/FT-10F Control Module into the Gizmo 4
to create a self-contained LONWORKS device. This requires separate purchase
of the TP/FT-10 or TP/FT-10F Control Module. The following figure
illustrates this configuration.

2-16 NodeBuilder User’s Guide

Gizmo 4 with a TP/FT-10F Flash Control Module

The Gizmo 4 includes the following I/O devices:
• 4 line x 20 character LCD display
• 2 10-bit resolution analog inputs with screw terminal connector
• 2 8-bit resolution analog outputs with screw terminal connector
• 2 digital inputs with screw terminal connector and pushbutton inputs
• 2 digital outputs with screw terminal connector and LED outputs
• Digital shaft encoder
• Piezoelectric transducer
• Real-time clock
• Temperature sensor
A Gizmo 4 I/O library is included with the NodeBuilder software that
provides easy-to-use high-level functions for accessing the display, analog I/O,
piezo transducer, real-time clock, and temperature sensor.

This user’s guide describes how to use the NodeBuilder 3 examples with the
Gizmo 4 board. See the Gizmo 4 User’s Guide for a description of the I/O
devices on the Gizmo 4 board and a description of the Gizmo 4 I/O library.

Using a LonBuilder Emulator
The NodeBuilder 3.1 software can be used to download applications to a
LonBuilder Emulator and debug applications on the emulator. The
NodeBuilder software does not use the debugging hardware support built
into the emulator. Instead, it uses the emulator as any other downloadable

Introduction to the NodeBuilder Tool 2-17

device and interfaces to the emulator using the NodeBuilder debug kernel
linked with your application. See Appendix D, Using the LonBuilder
Emulator for details.

What's Required to use the NodeBuilder Tool
You will need a LONWORKS network interface and a computer to use the
NodeBuilder tool.

You can use any LNS compatible network interface. Your computer must be
able to communicate with your target device. A high-performance network
interface is recommended, such as a PCC-10 or PCLTA-20 with the PCCVNI
firmware selected in the Windows Control Panel. You can accomplish this by
using compatible transceivers in both devices, or you can accomplish this by
using a router between your PC and the target device. The NodeBuilder tool
has been tested with the following network interfaces and routers:
• i.LON 1000 Internet Server. Enables development from a computer with a

standard IP LAN card. The i.LON 1000 is used as a router to your
development network.

• i.LON 100 Internet Server. Enables development from a computer with a
standard IP LAN card. The i.LON 100 is used as a remote network interface,
connecting your computer with your devices over the LAN or the Internet.
You can also use the i.LON 100 as a Web server, scheduler, data logger, and
alarm monitor for your devices.

• i.LON 10 Ethernet Adapter. Enables development from a computer with a
standard IP LAN card. The i.LON 10 is used as a remote network interface,
connecting your computer with your devices over the LAN or the Internet.

• PCLTA-20 Network Interface. Enables development from a desktop computer
with a PCI bus.

• PCLTA-10 Network Interface. Enables development from a desktop computer
with an ISA bus.

• PCC-10 Network Interface. Enables development from a laptop computer
with PC Card slot.

Note: Running the NodeBuilder software on a different computer than the
LNS Server is not supported.

The NodeBuilder tool Full and Classroom editions include drivers for the
i.LON 100, i.LON 10, PCLTA-20, PCLTA-10, and PCC-10 interfaces. If you
are using an i.LON 1000 Internet Server, the i.LON software must be
installed on your computer, and the LONWORKS/IP channel must be
configured using the i.LON Configuration Server software. The i.LON 1000
software is available at www.echelon.com/ilon.

If you are using an i.LON 100 or i.LON 10 interface with the NodeBuilder 3.1
Upgrade Edition, you must download and install LNS 3 Service Pack 8 or
newer. LNS service packs are available at www.echelon.com/downloads.

Your computer must meet the following minimum requirements:
• Microsoft Windows XP, Windows 2000, or Windows 98 (Windows XP or

Windows 2000 recommended)
• Pentium 200MHz or faster (Pentium II 350MHz or faster recommended)

2-18 NodeBuilder User’s Guide

• 128MB RAM minimum (256MB or more recommended)
• 440MB free hard disk space. The LonMaker tool requires 350MB of free

space, and the NodeBuilder tool requires 90MB of free space.
• CD-ROM drive
• Super VGA (800 × 600) or higher-resolution display with 256 colors
• Mouse or other Windows compatible pointing device
If you will be using the LonMaker tool to design or manage large networks,
there are additional computer requirements described under Enhancement
for Larger Networks in Chapter 2 of the LonMaker User’s Guide.

If you licensed the NodeBuilder upgrade, you will also need a development
platform. You can use the LTM-10 platform if you originally licensed a
NodeBuilder 1.5 tool, or you can use the LonBuilder Development Station if
you originally licensed a LonBuilder 3.01 tool.

Installing the NodeBuilder Tool
To install your NodeBuilder tool, follow these steps:

WARNING: You must install the LonMaker software before installing the
NodeBuilder software, as described in the following procedure.

1. You will need a manufacturer ID to use many of the functions of the
NodeBuilder tool. Standard manufacturer IDs are assigned to manufacturers
when they join the LONMARK Interoperability Association, and are also
published by the LONMARK Interoperability Association so that the device
manufacturer of a LONMARK certified device is easily identified. Standard
manufacturer IDs are never reused or reassigned. If you need a tempoarary
manufacturer ID, fill out the simple form at www.lonmark.org/mid and you
will be assigned a temporary ID instantly while you are online. If your
company is a LONMARK member, but you do not know your manufacturer ID,
find your ID in the list of manufacturer IDs at www.lonmark.org/spid. The
most current list at the time of release of the NodeBuilder tool is also
included with the NodeBuilder software. This list is described in Using the
Standard Program ID Calculator in Chapter 5.

2. If you will be developing an LNS device plug-in for your device, install
Microsoft Visual Basic 6 (with SP5 or newer) as described in the Visual Basic
documentation. You can install this software later, but you will need to
reinstall the NodeBuilder software after installing Visual Basic to activate
the LNS Device Plug-in Wizard.

3. If you will be using an i.LON device as a network interface, install the i.LON
software and hardware as described in thei.LON documentation. If you are
using the i.LON 1000, you must be using at least version 1.01 of the i.LON
software. If you have the 1.0 i.LON 1000 software, download the 1.01 (or
newer) upgrade from www.echelon.com/ilon.

4. Install the LonMaker software as described in the LonMaker User’s Guide. If
you will be using a PCLTA-20, PCLTA-10, PCC-10, PCNSI, or SLTA-10
network interface, install the driver from the LonMaker CD as described in
the LonMaker User’s Guide.

http://www.echelon.com/ilon

Introduction to the NodeBuilder Tool 2-19

5. Install the NodeBuilder software as described in the next section, Installing
the NodeBuilder Software.

6. If you will be using the LNS DDE Server, install the LNS DDE Server as
described in the LNS DDE Server User’s Guide. You do not need to reinstall
the LNS runtime or any of the drivers from the LNS DDE Server installation.
The LNS DDE Server is not required to use the NodeBuilder software and
can be installed at any time.

7. Install the NodeBuilder hardware as described in Installing the NodeBuilder
Hardware later in this chapter.

8. Install your network interface hardware. If you will be using a PCLTA-20,
PCLTA-10, PCC-10, PCNSI, or SLTA-10 network interface, install the
hardware as described in the LonMaker User’s Guide. If you will be using an
SLTA-10 network interface, install the hardware as described in the SLTA-
10 User’s Guide. If you will be using an i.LON device as a network interface,
ensure that you have a standard IP interface such as an Ethernet NIC
installed in your PC and install the i.LON interface as described in the i.LON
documentation.

9. Your licensed copy of the LonMaker software includes 64 free LonMaker
credits. A LonMaker credit is a token representing a prepaid fee to
commission a device. You can use LonMaker credits in one network or in
multiple networks. LonMaker credits are associated with the LonMaker
application and the PC running it and are stored in a file called the
LonMaker license file. The LonMaker tool keeps track of the number of
credits you have available. When you initially install the LonMaker tool, you
have 64 free LonMaker credits to start your development. You can order up
to 500 free credits for development use per year per device type that you
develop. To get started, order 500 development credits as described in
Chapter 8 of the LonMaker User’s Guide.

10. Your licensed copy of the LNS DDE Server requires an application key to
operate in unlimited mode. A credit for a free application key is included
with the NodeBuilder tool Full Edition. To order your free application key—
or to order an application key for the Upgrade or Classroom Edition—
generate and send an application key order as described in the License
Settings section in Chapter 3 of the LNS DDE Server User’s Guide.

Installing the NodeBuilder Software
To install the NodeBuilder software, follow these steps:

1. If you are planning to use the LNS Device Plug-in Wizard included with the
NodeBuilder tool, install Microsoft Visual Basic 6 before installing the
NodeBuilder software.

2. Insert the NodeBuilder CD into your CD-ROM drive. The NodeBuilder setup
application should start automatically. If it does not, open the Windows
Start menu, and then click Run. Browse to the Setup application in the
root folder of the NodeBuilder CD then click Run. A Welcome window opens.

3. Click the Next button to continue. The License Agreement window opens.
This window contains the NodeBuilder Software License.

http://www.echelon.com/downloads
http://www.lonmark.org/mid

2-20 NodeBuilder User’s Guide

4. Read the terms of the software license. If you agree with the terms of the
license, set the I Accept option, and then click Next. The Customer
Information Screen opens, as shown in the following figure:

5. Enter the following information. Much of this information is automatically

entered into resource files that you will create with the NodeBuilder tool, so
it will save you time later if you enter complete information now.

User Name The name of the person who will be using the
NodeBuilder tool on this computer.

Organization The name of the company for whom the user works.

Phone Number A phone number where a contact can be reached.

Email Address An email address where a contact can be reached.

Web Address The Web site of the individual or company using the
NodeBuilder tool.

LonMark Mnfr. ID If your company has a LONMARK manufacturer ID,
enter it here. If you do not have a manufacturer ID,
get a free temporary manufactuer ID from
www.lonmark.org/mid.

Serial Number The serial number printed on the back of the
NodeBuilder CD. Save this number since it will be
required to install future upgrades of the NodeBuilder
software. Echelon will save a copy of your serial
number if you send in your registration card, or if you
register online as described on the registration card.

http://www.echelon.com/ilon

Introduction to the NodeBuilder Tool 2-21

6. Click Next. The Program Group window opens.

7. This window allows you to determine where the NodeBuilder program group
will appear in the Windows Start menu. By default, it will appear in
Echelon NodeBuilder Software. Select a Program Group and click
Next. The Setup Type window opens, as shown in the following figure:

8. Choose whether you will perform a complete or a custom installation. Set the

Complete option unless you need to save disk space or select the installation
folder. Click Next. If you chose Complete, skip to step 6. If you chose
Custom, the Custom Setup window opens, as shown in the following figure:

2-22 NodeBuilder User’s Guide

9. Select which parts of the NodeBuilder installation to install. There are two

components, NodeBuilder and Examples. The NodeBuilder component is
required. If you do not want to install the Examples, click the Examples
component and select This Feature will not be Available. You can install
the examples at a later time by running the installation again. Click the
Space button for a status report on the amount of hard drive space required
on the computer. Click Next to continue. An Installation Ready window
opens.

10. Click Install to begin the installation. The NodeBuilder software will be
installed on your computer. The NodeBuilder software is automatically
installed into your computers LONWORKS directory. By default, this is
C:\LONWORKS. The LonMaker installation allows you to choose a LONWORKS
directory; this location cannot be changed by the NodeBuilder installation.
Once the installation has completed, you will be given the option to view the
ReadMe file. See the ReadMe file for updates to the NodeBuilder
documentation.

Installing the NodeBuilder Hardware
To install the NodeBuilder hardware, follow these steps:

1. Install the LTM-10A Platform as described in the LTM-10A User’s Guide. If
you licensed the NodeBuilder 3 Upgrade and you have a LTM-10 Platform,
you can optionally upgrade it to an LTM-10A Platform by purchasing and
installing an LTM-10A Flash Control Module. This upgrade is described in
the LTM-10A User’s Guide.

2. Plug the Gizmo 4 into the LTM-10A Platform using the cable included with

Introduction to the NodeBuilder Tool 2-23

the Gizmo 4. The following figure illustrates the Gizmo 4 attached to an
LTM-10A Platform.

 Gizmo 4 Plugged-into LTM-10A Platform

You can still use the NodeBuilder software if you licensed the
NodeBuilder 3 Upgrade and you do not have an LTM-10A Platform, but
you may have to modify some of the examples to try them on actual
hardware.

Getting More Information and Technical Support
If you have technical questions that are not answered by the
documentation, on-line help, or Echelon Support Web site at
www.echelon.com/support, you can get technical support from Echelon.
Your LonMaker distributor may also provide customer support. You can
also entroll in training classes at Echelon to learn more about how to use
the NodeBuilder tool. To receive technical support from Echelon for the
NodeBuilder tool, you must register your copy with Echelon and you must
purchase one of Echelon’s incident-based support services. Detailed
information about Echelon’s support and training services may be found
on the Echelon Support home page at www.echelon.com/support. There
is no charge for software installation-related questions during the first 30
days after you receive the NodeBuilder CD. You can obtain technical
support via phone, fax, or email from your closest Echelon support center.
The contact information is listed in the following table, and is also
available at www.echelon.com/support.

Caution The support programs and the information in the following table are subject to
change. See the Echelon Services home page at www.echelon.com/support

2-24 NodeBuilder User’s Guide

for a description of the current offerings and support contracts. Your LonMaker
distributor may provide you with alternate contacts for support.

 London San Jose Tokyo

Language English/French/
German/Italian

English Japanese

Hours (Mon-
Fri*)

0900-1700 London Time 8:30am-4:30pm PDT 0900-1700 Tokyo Time

Telephone +44 (0) 1923 430200 +1-408-938-5200
+1-888-ECHELON (888-
324-3566; US and
Canada only)

+81 3 3440 7781

Fax +44 (0) 1923 430300 +1-408-328-3801 +81 3 3440 7782

Email lonsupport@echelon.co.uk lonsupport@echelon.com lonsupport@echelon.co.jp

*Excluding holidays at center location

NodeBuilder Quick-Start Tutorial
The objective of the Quick-Start Tutorial is to walk through the steps used to
create a device and its LNS device plug-in using the NodeBuilder 3
Development Tool. It introduces NodeBuilder 3 features and provides you
with a quick overview of the NodeBuilder interface.

Goals
The goal of this tutorial is for the developer to be able to:
• Use the NodeBuilder Project Manager from within the LonMaker tool
• Create a new NodeBuilder project
• Add a new NodeBuilder device template
• Use the Code Wizard
• Use the project manager
• Use the standard program ID (SPID) calculator
• Use the debugger
• Use the Neuron C features for developing LONMARK compliant devices
• Use the LonMaker tool to install and load target devices
• Use the NodeBuilder Plug-in Wizard to create an LNS device plug-in
The NodeBuilder 3 Development Tool dramatically reduces the time required
to develop LONWORKS devices, while at the same time producing devices that
are easier to install, configure, and maintain. The result is lower
development cost and more competitive products. The NodeBuilder tool can
be used to create electric meters, VAV controllers, thermostats, washing
machines, card-access readers, refrigerators, lighting ballasts, blinds, pumps,
and many other types of devices. These devices can be used in a variety of

http://www.echelon.com/support

Introduction to the NodeBuilder Tool 2-25

systems including building controls, factory automation, home automation,
and transportation.

This tutorial is divided into the following sections:
• Introduction to the Quick-Start Tutorial
• Create a LonMaker network
• Create a NodeBuilder project
• Create a NodeBuilder device template
• Automatically generate Neuron C source code
• Edit your Neuron C source code
• Compile, build, and download your application
• Test your device interface
• Debug your device application
• Install and test your device in a network
• Generate Visual Basic code for an LNS device plug-in
• Test your LNS device plug-in
• Congratulations!

NodeBuilder Quick-Start Tutorial: Introduction
This tutorial will take you through the process of developing a device and its
LNS plug-in with the NodeBuilder tool.

The first step required to develop a device is to define the requirements for
the device. For this tutorial, you will develop a device with two sensors and
an actuator. The first sensor is a simple sensor that monitors a push button
and toggles a network variable output each time the button is pressed. The
second sensor is a temperature sensor that reports the temperature value on
a network variable output. The actuator drives the state of an LED based on
the state of a network variable input. The hardware platform will be the
LTM-10A Platform and the Gizmo 4 I/O Board included with the
NodeBuilder tool.

This tutorial will include the steps required to develop and configure the
temperature interface, but will not include the complete implementation of
the code required to read the temperature sensor. The Neuron C example
included with the NodeBuilder tool demonstrates how to read the
temperature sensor on the Gizmo 4.

The next section describes how to Create a LonMaker Network.

NodeBuilder Quick-Start Tutorial: Creating a
LonMaker Network

The LonMaker Integration Tool is a software tool for designing, installing,
operating, and maintaining multi-vendor open, interoperable LONWORKS
networks. You will use it to install devices that you develop in a network and
to test your devices and their interactions with other devices. After your

http://www.echelon.com/support

2-26 NodeBuilder User’s Guide

development is complete, you can continue to use the LonMaker tool to install
your production devices.

The LonMaker tool incorporates Microsoft Visio, providing an easy-to-use
drawing tool for designing and documenting your networks.

To create a new LonMaker network, follow these steps:

1. Click the Windows Start menu, point to Programs, and click LonMaker
for Windows. The LonMaker Design Manager appears.

2. Click the New Network button. The Network Wizard appears.
3. Enter NB3QuickStart for the Network Name in the following dialog, and

then click Next.

4. Set Network Attached and select your network interface under Network
Interface Name, and then click Next.

5. Select the OnNet Management Mode, and then click Next.
6. Click Finish. The LonMaker tool creates and opens a new network drawing.
The next section describes how to Create a NodeBuilder Project.

Introduction to the NodeBuilder Tool 2-27

NodeBuilder Quick-Start Tutorial: Creating a
NodeBuilder Project

A NodeBuilder project collects all the information about a set of devices that
you are developing. You can use the same NodeBuilder project with multiple
LonMaker networks, and you can use a LonMaker network with multiple
NodeBuilder projects. However, a LonMaker network can only be used with
one NodeBuilder project at a time.

You will create, manage, and use NodeBuilder projects from the NodeBuilder
Project Manager. The project manager provides an integrated view of your
entire project and provides the tools you will use to define and build your
project.

To create a NodeBuilder project, follow these steps:

1. Open the LonMaker menu and click NodeBuilder.
2. Set the Create a New NodeBuilder Project option, and then click Next.
3. Use the default name, which is the same name as the network drawing.
4. Click Next.
5. Click Finish to close the New Project wizard. The NodeBuilder New Device

Template wizard starts. This wizard is described in the next section.

NodeBuilder Quick-Start Tutorial: Creating a
NodeBuilder Device Template

Each type of device that you develop with the NodeBuilder tool is defined by
two device templates. The first is a NodeBuilder device template. The
NodeBuilder device template specifies the information required for the
NodeBuilder tool to build the application for a device such as a list of the
source code files and up to two hardware platforms for the device. The second
is an LNS device template. The LNS device template defines the external
interface to the device, and is used by LNS tools such as the LonMaker tool to
configure and bind the device.

Each pair of device templates is identified by a unique program ID. Every
device on a network with the same program ID must have the same external
interface.

For NodeBuilder 1.5 Users: NodeBuilder 3 now supports the ability to
have more than one device template in a project. This allows the
development of a network of different devices to be easily accomplished with
one LonMaker drawing, and one project in NodeBuilder. To add a new device
template at any time, right-click the Device Templates folder in the project
pane, and then click New.

This section shows how to create a NodeBuilder device template. The LNS
device template will be created automatically when you build the application.
To create the NodeBuilder device template, follow these steps:

1. Enter Example1 for the NodeBuilder Device Template Name as shown in
the following figure, and then click Next. The Program ID window appears.

2-28 NodeBuilder User’s Guide

For NodeBuilder 1.5 Users: The legacy method of defining the program ID
by compiler #pragma directives is no longer recommended. Instead they are
managed as part of the device template. This allows the re-use of Neuron C
source-code for different device templates that have different program IDs
(perhaps due to different channel types), and allows for automatic program
ID management.

2. Click the Calculator button next to the program ID. The Standard Program
ID Calculator appears.

3. Enter the values shown in the following figure. The manufacturer ID that
you entered during installation of the NodeBuilder tool is shown by default.
You can use your manufacturer ID, use a new manufacturer ID that is
instantly assigned at www.lonmark.org/mid, or select the Examples
manufacturer ID if you are developing an example or training device.

Introduction to the NodeBuilder Tool 2-29

The manufacturer IDs, device classes, usage values, and channel types are
defined in the spidData.xml file that is included with the NodeBuilder tool
in the LONWORKS Types folder. Updated versions are available on the
LONMARK website (www.lonmark.org). This file will be updated as the
LONMARK Association adds new device classes, usage values, channel types,
and manufacturer IDs.

4. Click OK. The Standard Program ID Calculator closes, and the Program ID
field displays the program ID you selected, as shown in the following figure.

http://www.lonmark.org/mid

2-30 NodeBuilder User’s Guide

Leave Automatic Program ID Management enabled so that whenever the
device interface is changed, the program ID model field will automatically be
incremented. This allows for the easy development of a device with a
changing external interface during development. The program ID will cycle
through the range of specified model numbers to avoid two devices having the
same program ID but different interfaces.

5. Click Next. The Target Platforms window appears, as shown in the following
figure.

http://www.lonmark.org/

Introduction to the NodeBuilder Tool 2-31

6. Choose LTM-10A RAM for the Development Build Hardware Template

and LTM-10A Flash for the Release Build Hardware Template, and then
click Finish to close the New Device Template wizard. The NodeBuilder
Code Wizard starts. There will be an initial pause as it reads the available
resource files. This wizard is described in the next section.

NodeBuilder Quick-Start Tutorial: Automatically
Generating Neuron C Source Code

You will develop applications with the NodeBuilder tool using the Neuron C
programming language. Neuron C is based on ANSI C, with extensions for
network communication, device configuration, hardware I/O, and event-
driven scheduling.

2-32 NodeBuilder User’s Guide

The NodeBuilder tool includes the NodeBuilder Code Wizard, shown in the
previous figure. The Code Wizard automatically generates Neuron C Version
2 source code that defines the device interface of your device. The device
interface includes all the functional blocks, network variables, and
configuration properties for your device. The Code Wizard also generates
much of the code for a standard functional block called the Node Object. The
Node Object functional block is used by network tools to test and manage the
other functional blocks on your device and is also used to report alarms
generated by your device.

The left pane is the Resource pane, used to display the resources that are
available for your application. The right pane is the Interface pane, used to
display and modify your device interface. You will drag profiles and types
from the Resource pane to the Interface pane to define your external
interface.

After you run the Code Wizard, you will modify the generated code to
implement your device’s functionality. You can rerun the Code Wizard at any
time to modify your device interface, while maintaining any changes that you
have implemented in the source code.

This section shows how to automatically create Neuron C source code for a
device with the following functional blocks:
• A Node Object with no configuration properties.
• An open-loop sensor with no configuration properties
• An open-loop sensor with configuration properties
• An open-loop actuator with no configuration properties
To automatically create Neuron C source code using the Code Wizard, follow
these steps:

1. Expand the Standard scope 0 resource file set in the LONWORKS Types

Introduction to the NodeBuilder Tool 2-33

folder, then expand the functional profiles folder. To expand a folder, click
the plus sign () next to the folder. The standard functional profiles are
displayed.

2. Scroll the Resource pane until you see the SFPTopenLoopSensor functional
profile (SFPT stands for standard functional profile template, which is
another name for a standard functional profile), as shown in the following
figure.

3. Drag the SFPTopenLoopSensor functional profile to the Functional

Blocks folder in the Interface pane on the right, as shown in the following
figure.

2-34 NodeBuilder User’s Guide

4. Right-click the new openLoopSensor functional block in the Interface pane

and click Rename on the shortcut menu.
5. Enter Switch as the new name, then press Enter. A warning message

appears warning that new source files will be generated.
6. Click OK to ignore the warning message.
7. Expand the Switch functional block in the Interface pane.
8. Expand the Mandatory NVs folder under the Switch functional block.
9. Double-click the nvoValue Mandatory NV. The NV Properties dialog opens,

as shown in the following figure.

Introduction to the NodeBuilder Tool 2-35

10. Change NV type to SNVT_switch, and then click OK.
11. Drag another SFPTopenLoopSensor functional profile from the Resource

pane to the Functional Blocks folder in the Interface pane. When asked if
you would like to create a Functional Block array, click No, because the two
sensors will be different.

12. Repeat steps 4 through 10 for the openLoopSensor1 functional block,
changing the functional block name to Temperature, the name of the
network variable to nvoTemp, NV type to SNVT_temp_p, and then click OK.

13. Right-click the Optional CPs folder under the Temperature functional
block, and then click Implement Optional CP on the shortcut menu.

14. Select nciMinDelta for the FPT Member Name, and then click OK.
The SCPTsndDelta configuration property is used to specify the minimum
change in the output that must occur before the device will send the new
value to the network. Network integrators use this configuration property to
configure devices with very precise measuring capabilities to update the
network variable only when a significant change in the sensed value occurs.
The configuration property provides the value used to tell the device what the
minimum change must be, however it is left to the developer to write the code
that uses this value and actually limits the rate at which the network
variable is updated. This will not be implemented during this tutorial, but is
left as an exercise for the more advanced user to try.

2-36 NodeBuilder User’s Guide

15. Drag an SFPTopenLoopActuator functional profile from the Resource pane
to the Interface pane.

16. Repeat steps 4 through 10 for the openLoopActuator functional block,
changing the functional block name to LED, NV type to SNVT_switch, and
then click OK.
You have completed designing your device interface. You will now use the
NodeBuilder Code Wizard to generate the source files for you.

17. Click the Generate and Close button in the top right of the Code Wizard
window. The Code Wizard generates Neuron C source files that implement
your specified external interface. The Code Wizard closes and you are
returned to the Project Manager window. The following Project pane within
the project manager displays the files and templates defined for your project.

18. Double-click the Example1.nc file in the Project pane to open the main

Neuron C file for this new device template.
19. Open the following header files and look at the declarations of the functional

blocks and the configuration properties:
• Switch.h

• Temperature.h

• LED.h

20. Open the Neuron C files and look at the default implementation of the
director function (named SwitchDirector or equivalent):
• Switch.nc

• Temperature.nc

• LED.nc

NodeBuilder 1.5 Users: The director function is a new element of the

Introduction to the NodeBuilder Tool 2-37

Neuron C Version 2 language starting with NodeBuilder 3. The director
function is one of several features added to ease the development of
LONMARK compliant devices and to promote modular design of Neuron C
code.
The director function is a mechanism that allows the developer to easily
dispatch events to all the functional blocks in a device with a single function
call. For instance, during reset, the when(reset) clause can dispatch the
reset event for each functional block in the device when it is done initializing
the global pieces in the device. This is done using the following line of code:

executeOnEachFblock(FBC_WHEN_RESET);

The next section describes how to edit the Neuron C source code.

NodeBuilder Quick-Start Tutorial: Editing Your Neuron
C Source Code

The Neuron C source code generated by the NodeBuilder Code Wizard
implements your device interface, but not your device functionality. You will
edit the code generated by the Code Wizard to implement your device
functionality, including any required interaction with the I/O hardware
within your device.

For this section, you will add Neuron C I/O declarations to the following files:
• Switch.h
• LED.h
Then you will need to implement your desired I/O functionality in the
following files:
• Switch.nc
• LED.nc
The code in this section is designed to work with the LTM-10A Platform and
the Gizmo 4 I/O Board. You can modify the code if you are using different
hardware. To modify code, follow these steps:

1. Double-click the Switch.h file in the Project pane to edit the source file. To
declare the I/O hardware for the Switch, find the following line of code in the
Editor window:

//}}NodeBuilder Code Wizard End

Add the following line after it:

IO_6 input bit ioSwitch1;

2. Double-click the Switch.nc file in the Project pane. Then add the following
when clause to the end of the Switch.nc file, before the "#endif //
_Switch_NC_" line:

when(io_changes(ioSwitch1))
{
 Switch::nvoValue.state = !input_value;

2-38 NodeBuilder User’s Guide

 Switch::nvoValue.value = input_value ? (short) 0: 200;
}

3. Double-click the LED.h file in the Project pane. To declare the I/O hardware
for the LED, add the following line after the NodeBuilder Code Wizard
End line in the LED.h file:

IO_0 output bit ioLamp = 1;

4. Double-click the LED.nc file in the Project pane. Then edit the
LEDprocessNV() function in the LED.nc file as follows:

void LEDprocessNV(void)
{
io_out(ioLamp,
 !(nviValue.value && LED::nviValue.state));
}

5. Open the File menu then click Save All to save all your changes to the
source files.

The next section describes how to compile, build, and download your
application.

NodeBuilder Quick-Start Tutorial: Compiling, Building,
and Downloading Your Application

The NodeBuilder tool includes a complete set of tools for compiling your
Neuron C application, building an application image that can be loaded into
your device, and downloading your application image to your device.

When you build your application, the NodeBuilder tool will create a set of
files called the device file set. The device file set includes an application
image file that can be downloaded to your device and a device interface (XIF)
file that describes your device interface. The device interface file is used by
network tools to determine how to bind and configure your device. The device
interface file is also used by the NodeBuilder tool to automatically create the
LNS device template.

The NodeBuilder tool can create two device sets for each device that you
build, one for a development version of your device and one for a release, or
production, version of your device. The default project directory for your
NB3QuickStart project is c:\Lm\Source\NB3QuickStart. The two device file
sets are written to different directories, Example1\Development and
Example1\Release directory, both within your project directory.

To compile, build, and download your application, follow these steps:

1. Right-click the Example1 device template icon in the Project pane, and then
click Build on the shortcut menu.

2. If you receive any build errors, double-check that the code you entered
matches the above (you will receive some warnings, this is normal).

3. Click the LonMaker button in the Windows taskbar to switch to the

Introduction to the NodeBuilder Tool 2-39

LonMaker window.
You will use the LonMaker Integration Tool to install, bind, configure, and
test the devices in your project. The LonMaker tool displays a network
drawing that shows the devices, functional blocks, and connections in your
network.
The LonMaker tool also displays stencils that contain shapes that you can
drag to your LonMaker drawing. The LonMaker tool includes a NodeBuilder
Basic Shapes stencil with shapes that you will use to add new devices,
functional blocks, and connections to your network drawing. The
NodeBuilder Basic Shapes stencil contains shapes that can be used with any
device. You can also create custom stencils with shapes customized for your
devices and networks.
The NodeBuilder Basic Shapes stencil contains two shapes that you will use
to define your devices during development. They are the Development Target
Device shape and the Release Target Device shape. These special device types
help distinguish between other devices on the network and the target devices
used by the NodeBuilder tool. The NodeBuilder tool allows you to create a
mixed network of development hardware (LTM-10A Platforms or LonBuilder
Emulators), release hardware (your own hardware), and other devices.

4. Drag a Development Target Device shape from the NodeBuilder Basic
Shapes stencil to your network drawing. You can drop the shape anywhere,
but a good location is near the Network Interface shape on your drawing.
The New Device Wizard starts, as shown in the following figure:

5. Enter Example 1 as the device name.
6. Set the Commission Device option, and then click Next. A window opens

2-40 NodeBuilder User’s Guide

that allows you to select the NodeBuilder device template to use for this
target device, as shown in the following figure. You can select a NodeBuilder
device template from a list of all NodeBuilder device templates that you have
built for this project.

7. Select Example1 as the NodeBuilder Device Template, and then click
Next. The Channel Selection window appears.

8. Click Next for this window and for the next two windows, selecting all
defaults. A window appears with a Load Application Image option.

9. Set the Load Application Image checkbox, and then click Next. The final
window of the New Device Wizard appears.

10. Select the Online device state option to start your device online, and then
click Finish. The Press Service Pin window appears.

Introduction to the NodeBuilder Tool 2-41

11. Press the service pin on the LTM-10A Platform you wish to load and
commission. The LonMaker tool loads the application image for your
Example1 application to the LTM-10A Platform and makes it operational.
The application will not do anything until you test it or connect it to other
devices as described in the next two sections, Testing Your Device Interface,
and Debugging Your Device Application.

NodeBuilder Quick-Start Tutorial: Testing Your Device
Interface

The NodeBuilder tool makes it easy to test your device by itself, as well as to
integrate your device into a test network and test its interaction with other
devices.

The first tool that you will typically use for testing is the LonMaker Browser.
The browser displays all the input and output network variables and
configuration properties for your device. You will typically exercise the
hardware or network variable inputs to your device and observe the
hardware and network outputs from your device.

This section shows how to test your device interface with the LonMaker
Browser.

1. Right-click the Example1 device in your LonMaker drawing, and then click
Browse on the shortcut menu. The following LonMaker Browser window
appears. It displays your four functional blocks and the network variables
and configuration properties for each. The color coding indicates which
values can be written.

2. Click the Monitor All button on the toolbar to start polling all values.
3. Push and hold the left button at the bottom of your Gizmo 4. The Switch

nvoValue Value changes to 100.0 1. This output is displayed as a
percentage and a state, so the new value represents 100% and On.

4. Release the Gizmo 4 button. The nvoValue output changes back to 0.0 0,
which represents 0% and Off. The Switch functional block does not toggle
the value of nvoValue with each press of the button as desired; we will debug
the code in a few steps, after checking the LED.

2-42 NodeBuilder User’s Guide

5. Click the Value for the LED nviValue network variable. The value of the
nviValue network variable is copied to the Value field in the Browser
toolbar.

6. Click the Value field to highlight the value, then enter 100 1 and press
Enter. The LonMaker browser updates the nviValue input network
variable with a value of 100% and On. The left LED at the bottom of the
Gizmo 4 lights.

7. Click the Value field to highlight the value, then enter 0 0 and press Enter.
The LonMaker browser updates the nviValue input network variable with a
value of 0% and Off. The left LED at the bottom of the Gizmo 4 turns off.
The LED functional block appears to be functioning correctly.

The next section describes how to Debug your Device Application.

NodeBuilder Quick-Start Tutorial: Debugging Your
Device Application

If everything works as expected when you test your device interface, you can
skip this step and go on to the next step of connecting your device to other
devices and testing your device as part of a system. If things do not go as
expected, you can use the NodeBuilder debugger to get an inside view of the
Neuron C source code executing within your device.

To debug your device’s application with the LonMaker Debugger, follow these
steps:

1. Click the LonMaker button in the Windows taskbar to switch to the
LonMaker window.

2. Right-click the Example 1 device shape, and then click Debug on the
shortcut menu. The NodeBuilder Project Manager appears, and a debug
session for the device starts. There is a short pause as the debug session is
started while the NodeBuilder tool establishes communication with the
device’s debug kernel.

Introduction to the NodeBuilder Tool 2-43

3. Double-click the Switch.nc file in the Project pane. A Debug window

appears for the Switch.nc file.
4. Find the when(io_changes(ioSwitch)) clause that you added near the

end of the file.
5. Right-click the following line, and then click Toggle Breakpoint on the

shortcut menu. A breakpoint marker () appears next to the line, and the
line is added to the Breakpoint List pane.

Switch::nvoValue.state = !input_value;

6. Press and release the bottom left button on the Gizmo 4. Program execution
stops at your breakpoint.

7. Right-click the input_value variable, and then click Watch Variable on
the shortcut menu. The Watch Variable window appears.

2-44 NodeBuilder User’s Guide

8. Click Add Watch in the Watch Variable window. The variable is added to

the Watchlist pane at the bottom of the NodeBuilder Project Manager. This
pane displays each of the variables added to the watchlist and their current
values.

9. Using the Step Into button ()in the debug toolbar, single-step through
the code in the function until you reach the end of the when statement. The
input_value variable is 0.

10. Use the Step Into button to observe that the function executes a second time.
The input_value variable is 1.

11. Click the Resume button (). Your application resumes normal execution.
12. Open the Debug menu, click Stop Debugging, and then select All Devices

from the shortcut menu.
The debugger has shown that an event occurs when the button is pressed,
then a second event occurs when the button is released. To implement the
desired behavior, you will modify the code to toggle the output value when
the button is pressed.

13. Change the following lines:

Switch::nvoValue.state = !input_value;
Switch::nvoValue.value = input_value ? (short) 0: 200;

to the following:

 if (!input_value) {
Switch::nvoValue.state = !Switch::nvoValue.state;
Switch::nvoValue.value = Switch::nvoValue.state ? (short)
200 : 0;
 }

Introduction to the NodeBuilder Tool 2-45

14. Verify that the Load after Build option is set.
15. Right-click the Example1 device template in the Project pane, and then click

Build on the shortcut menu. The NodeBuilder tool rebuilds the Example1
application and downloads it to all devices using the Example1 device
template.

16. Repeat the steps described under Testing Your Device Interface to test the
change. The device should now be working correctly.

The next section describes how to Install and Test your Device in a Network

NodeBuilder Quick-Start Tutorial: Installing and
Testing your Device in a Network

Now that your device appears to be functioning correctly by itself, it is time to
test it as part of a network. You will use the LonMaker tool to connect your
development devices to other devices and to verify their operation within a
network.

If compatible, the network variable outputs of a device may be connected to
network variable inputs of the same device. These are called turnaround
connections. For this tutorial, you will create a turnaround connection so
that the switch on the Gizmo 4 controls the LED on the Gizmo 4. The
procedure is exactly the same for creating connections between different
devices.

To create Functional Block shapes with Network Variable shapes for each of
your functional blocks, and then connect the network variables, follow these
steps:

1. Click the LonMaker button in the Windows taskbar to switch to the
LonMaker window. In this section, you will update the LonMaker drawing
as shown in the following figure:

2. Drag a Functional Block shape from the NodeBuilder Basic Shapes

2-46 NodeBuilder User’s Guide

stencil on the left of the LonMaker window to the drawing. The New
Functional Block wizard appears. You will use this wizard to associate the
new Functional Block shape with the Example 1 device and the Switch
functional block. The Example 1 device is already selected under Device.

3. Select the Switch functional block under Functional Block Name, and
then click Next.

Introduction to the NodeBuilder Tool 2-47

4. Enter Left Switch for the FB Name.
5. Set the Create Shapes for All Network Variables option, and then click

Finish. The New Functional Block wizard closes and the LonMaker drawing
appears. A new Switch shape appears on the drawing.

6. Repeat steps 2 through 5 to create a Functional Block shape for the LED
functional block, and its nviValue network variable. Enter Left LED for
the functional block name.

7. Drag the Connector shape from the NodeBuilder Basic Shapes stencil to
the drawing. Position the left end of the shape over the tip of the nvoValue
output network variable of the Left Switch functional block before releasing
the mouse button. A red box appears around the end of the Connector
shape when you have positioned it correctly over the Network Variable
shape.

8. Drag the other end of the Connector shape to the nviValue network
variable input of the Left LED shape until it snaps into place and a square
box appears around the end of the Connector shape. There is a brief pause
as the LonMaker tool updates the Example 1 device over the network.

9. Double-click the new Connector shape to enable connection monitoring.
The current value of the LED functional block nviValue network variable
displays on the connector.

10. Test the connection by pressing the left button on the Gizmo 4. The left LED
turns on and off each time you press the button. The current value of the
nviValue network variable on the Connector shape updates each time you
press the button.

2-48 NodeBuilder User’s Guide

The next section describes how to generate visual basic code for an LNS
Device Plug-in.

NodeBuilder Quick-Start Tutorial: Generating Visual
Basic Code for an LNS Device Plug-in

Once your device is functioning correctly, you will want to make your device
easy to install and configure. To do this, you will create an LNS device plug-
in. AN LNS device plug-in is a small application whose sole function is to
set-up your device’s initial configuration when it is installed in a network.
Integrators will start your LNS device plug-in from the LonMaker tool, or
from any other installation tool that supports LNS device plug-ins.

LNS device plug-ins may be written in Visual Basic 6 or Visual C++. The
LNS Device Plug-in Wizard included with the NodeBuilder tool generates an
initial LNS device plug-in written in Visual Basic 6. You may update this
LNS device plug-in to make it easier for integrators to install and configure
your device.

This section shows how to create an LNS device plug-in for your example
device.

LNS Developers: This is a different plug-in wizard than that which ships
with the LNS 3 Application Developer’s Kit for Windows. The LNS Device
Plug-in Wizard included with the NodeBuilder 3 tool is an update of the LNS
3 Application Developer’s Kit for Windows LNS plug-in wizard, except that it
cannot be used to create system plug-ins.

NOTE: The LNS Device Plug-in Wizard requires Microsoft Visual Basic 6
with service pack 5 or better. If you do not have Visual Basic 6, skip this
section. If you install Visual Basic 6 after installing the NodeBuilder 3
software, reinstall the NodeBuilder 3 software after installing Visual Basic 6.

1. Click the NodeBuilder button in the Windows taskbar to switch to the
NodeBuilder window.

2. Right-click the Example1 device template in the Project pane, and then click
Plug-in Wizard in the shortcut menu. The LNS Device Plug-in Wizard
Launcher appears.

Introduction to the NodeBuilder Tool 2-49

3. Click the New Project button to create a new Visual Basic project. A
prompt appears that asks if you want to create the default folder.

4. Click Yes to create the folder. A New LNS Device Plug-in Project window
appears.

5. Click Save to save the project file in the default location (the Plug-in folder
within the device template’s folder). Visual Basic 6 starts, then the LNS
Device Plug-in Wizard starts and the wizard’s Introduction window appears.

6. Click Next. The following warning dialog may appear if you used the
Examples manufacturer ID to create the NodeBuilder device template as
recommended above.

7. Click Yes to use the Examples manufacturer ID. The wizard’s Identification

window appears.

2-50 NodeBuilder User’s Guide

8. Enter Example1 as the Product Name, and then click Next. The wizard’s
Command Table window opens. You will use this window to specify which
commands your LNS device plug-in supports.

9. Click the button to add a new command to the LNS device plug-in.
10. Fill out the Add Command window as shown below, and then click OK:

When an LNS tool launches your plug-in, the lcaCommandConfigure
Command ID will be passed to your plug-in along with the name of a device
and functional block to run the command on. That is how the Command ID
and the Command Object are related. The Command Scope determines

Introduction to the NodeBuilder Tool 2-51

where the command will be available. Setting CommandScope to
lcaScopeDevice allows it to be used on all devices that use the Example1
Device Template.

11. Click Next. The wizard’s Resource Table window appears.
12. Click Next without setting any checkboxes since your plug-in only uses

standard resource files. The wizard’s Instancing Control window appears.
13. Click Next. The wizard’s summary window appears.
14. Click the User Interface button in the lower right to start the editor for the

plug-in’s user interface.
15. Expand the Switch, Temperature, and LED functional blocks then drag

the nvoValue, nvoTemp, and nviValue network variables from the Device
Interface pane on the left to the User Interface pane on the right. When you
drag nvoTemp, you will also get the SCPTsndDelta configuration property.
This is because dragging any element of the tree over to the pane on the right
will cause all the sub-elements to be moved over as well.

16. Click the button to save the user interface definition.
17. Close the User Interface Editor window, clear the View ReadMe.txt

checkbox, and then click Finish to close the LNS Device Plug-in Wizard. The
LNS Device Plug-in Wizard generates the Visual Basic code for your LNS
device plug-in and returns to Visual Basic. If the Visual Basic window is not
visible, click the Visual Basic button in the Windows taskbar to switch to
Visual Basic.

18. Open the File menu, and then click the Make Example1.exe command.
Click OK to save the LNS device plug-in executable file in the default
directory. A LONWORKS Object Server warning dialog appears with a
warning message that there can be only one instance per process. You can
safely ignore this message in this context, as it is caused by the way Visual
Basic executables are generated.

19. Click OK to close the warning.
The next section, NodeBuilder Quick-Start Tutorial: Test Your LNS device
plug-in, describes how to test your LNS device plug-in.

NodeBuilder Quick-Start Tutorial: Testing Your LNS
Device Plug-in

Once you have created a plug-in, you will test it with the LonMaker tool and
your prototype device. To test the plug-in with the LonMaker tool, you must
first register the LNS device plug-in with Windows so that the LonMaker tool
can find it. The installation program for the plug-in typically handles this
procedure so that the users of your plug-in do not have to register it
manually. We will skip building a Windows installation program for your
plug-in in this tutorial.

This section shows how to manually register a plug-in, and then test it with
the LonMaker tool.

1. Open the Windows Start menu, click Run, and then click Browse and
browse to your plug-in. By default, your plug-in will be in the
c:\lm\source\NB3QuickStart\Example1\plug-in folder. If you have

2-52 NodeBuilder User’s Guide

changed the location from the default, browse to that location instead.
2. Run the Example1.exe program. The plug-in starts and displays the

Registration window.
3. Click the Register Plug-in button, and then click Exit. Your plug-in has

now been registered with Windows. A dialog box appears that confirms the
registration. Click OK, and then click Exit.

4. Click the Visio button in the Windows taskbar to switch to the LonMaker
drawing.

5. Open the LonMaker menu, and then click Network Properties.
6. Select the Plug-in Registration tab.
7. Select the Example1 plug-in in the list of Not Registered plug-ins, and then

click the Add button. The Example1 plug-in is added to the To Be
Registered list.

8. Click the OK button to close the Network Properties dialog and register the
LNS device plug-in with the network.

9. Click Yes if prompted to make Configure the default action for Example1
devices.
This completes registration of your plug-in with Windows and your
development network. You will now run the plug-in from the LonMaker tool.

10. Right-click the Left Switch functional block, and then click Configure on
the shortcut menu. A dialog appears reminding you to add code to the plug-
in. This information dialog is being displayed by your plug-in, and indicates
that LonMaker is able to successfully start your plug-in.

11. Click OK to close the dialog. This dialog provides a reminder of where you
would start customizing the plug-in. It is found in the
ProcessDeviceCommands() function of the frmMain form in the Visual
Basic project.
The plug-in displays real-time values from the device’s outputs, and allows
you to set both the value for the configuration property and the input
network variable. To change the value of either the configuration property or
the input network variable, enter a new value and then click Apply.
If you close and re-run the plug-in, you will see that the configuration
property value is still the same value you last entered, while the input value
may have changed. This is because the configuration property value is stored
in the database at the same time it is written to non-volatile memory in the
device. The network variable is a real-time-only value, and may have been
changed between closing and re-opening the plug-in.

Developing a LONWORKS Device 3-1

3

Developing a LONWORKS
Device

This chapter provides an overview of the steps that you will
follow to develop a LONWORKS device. The details of these
steps will be discussed in the ensuing chapters.

3-2 NodeBuilder User’s Guide

Introduction to Developing a LONWORKS Device
The NodeBuilder tool makes it easy to develop your device by providing tools
for every step of the development process. To develop a device with the
NodeBuilder tool, follow these steps:

1. Sign and return the OEM license.
2. Design the device application and hardware.
3. Develop the device hardware.
4. Define the device interface.
5. Create a LonMaker network.
6. Create a NodeBuilder project.
7. Create a NodeBuilder device template.
8. Create the Neuron C application.
9. Compile, build, and load the application.
10. Test the device interface.
11. Debug the device application.
12. Install and test the device in a network.
13. Create a LonMaker stencil.
14. Create an LNS device plug-in.
15. Develop an operator interface.
16. Apply for LONMARK certification.
17. Create an installation application for your device.
These steps are described in the following sections.

Sign and Return the OEM License
A LONWORKS OEM License is required to purchase Neuron Chips or Echelon
Smart Transceivers, and is also required to manufacture devices that contain
Neuron Chips or Echelon Smart Transceivers. A LONWORKS OEM License is
included with the NodeBuilder tool. Sign and return this license so that you
can purchase Neuron Chips or Echelon Smart Transceivers when you are
ready to start building hardware.

Design the Device Application and Hardware
The first step in developing a LONWORKS device is planning and designing.
What is the purpose of the device? What hardware inputs and outputs will it
have? What information will it share with other devices in the LONWORKS
network? How will the device be configured? What functional profiles,
standard network variable types, and configuration property types will it
use? Will the device require a Human-Machine Interface (HMI)?

Developing a LONWORKS Device 3-3

Develop the Device Hardware
You may choose to develop your device hardware before, after, or in parallel
with your device application development. If you will be developing
hardware after your device application, you will need a development platform
to use for testing your device application. Even if your hardware is available
during your application development, you may choose to use a development
platform because the NodeBuilder debugger performs many writes to the
program memory, which may stress the limits of writes to a flash memory
device. To prevent this, your development platform should support writing
the application to RAM. Two suitable development platforms are the LTM-
10A Platform included with the NodeBuilder tool (but not the upgrade) and
the LonBuilder Emulator, or you can use any other development platform
that uses RAM for the program memory. .

To develop a device with the NodeBuilder tool, the hardware must contain a
Neuron Chip or an Echelon Smart Transceiver that implements the LonTalk
protocol. See the Neuron Chip Data Book, Smart Transceiver Data Book,
LONWORKS FTT-10A Free Topology Transceiver User's Guide, the LONWORKS
PLT-22 Power Line Transceiver User's Guide, the ShortStack™ User’s Guide,
and the LONWORKS Twisted Pair Control Module User's Guide for more
information on hardware development.

To simplify hardware design and I/O software debugging, you may choose to
develop prototype I/O hardware that you test with your development
platform. Both the LTM-10A Platform and the LonBuilder Emulator include
an I/O connector that gives you access to the 11 I/O pins of the Neuron Chip
or Smart Transceiver in the platform. You can use this connector to test your
prototype I/O hardware with your device application. See the LTM-10A
User’s Guide or the LonBuilder Hardware Guide for more information on
using the I/O connector on either platform.

You can also use the Gizmo 4 I/O Board included with the NodeBuilder tool
(but not the upgrade) for testing your application with I/O hardware. The
Gizmo 4 includes commonly used I/O devices including analog and digital
inputs and outputs, a rotary shaft encoder, a temperature sensor, a piezo
transducer, a real-time clock, and a 4 line by 20 character display that you
may find useful for debugging your device application. You can also
prototype your own I/O hardware on a prototyping area on the Gizmo 4
board. See the Gizmo 4 User’s Guide for more information on using the
Gizmo 4 board.

Define the Device Interface
The device interface for your device consists of the functional blocks, network
variables, and configuration properties that allow the device to communicate
with other LONWORKS devices and to be configured by network tools. A
network variable defines an operational input or output for the device, with
the structure, range, units, and format of the network variable defined by a
network variable type. A configuration property specifies a configuration
option for a network variable, functional block, or the entire device. The
structure, range, units, and format of a configuration property are defined by
a configuration property type. A functional block groups network variables
and configuration properties that are related to a particular function for the

3-4 NodeBuilder User’s Guide

device. Functional blocks make a device easier to install and configure. Each
functional block is defined by a functional profile that defines the network
variables and configuration properties that comprise the profile.

Functional profiles, network variable types, and configuration property types
are defined in resource files as described in Using the Resource Editor.
Resource files are grouped into resource file sets, where each set defines
functional profiles, network variable types, and configuration properties for a
particular scope and program ID mask. A standard resource file set is
included with the NodeBuilder tool. This file set defines many standard
functional profiles, standard network variable types (SNVTs), and standard
configuration property types (SCPTs) that you may find suitable for your
device interface. If you need additional functional profiles or types that are
not defined in the standard resource file set, you can define your own
functional profiles and types as described in Using the Resource Editor.

To define your device interface, first determine the functional profiles to be
implemented by your device. To select the functional profile or profiles to be
implemented by your device, first look through the standard functional
profiles that are available in the standard resource file set. You can view
these profiles from the NodeBuilder Resource Editor. Detailed
documentation for each of the standard functional profiles is available on the
Design Guidelines area of the LONMARK Web site (types.lonmark.org).

Each functional profile has a name and number that is unique for the scope of
the resource file set. The number is called the functional profile number, and
is also called the functional profile key or FPT key. If your device is a simple
sensor or actuator, you can use functional profiles 1 through 4: the open-loop
sensor (SFPTopenLoopSensor; profile 1), the closed-loop sensor
(SFPTclosedLoopSensor; profile 2), the open-loop actuator
(SFPTopenLoopActuator; profile 3), or the closed-loop actuator
(SFPTclosedLoopActuator; profile 4). If your device is more complex, look
through the other functional profiles to see if any suitable standard profiles
have been defined. If you cannot find any, you will define a manufacturer-
defined functional profile as described in Creating and Modifying a
Functional Profile in the Editing Resource Files chapter. If you find an
existing functional profile that is close to what you require, but needs minor
changes or extensions, you can create a new functional profile that inherits
from the standard profile. This is also described in Creating and Modifying a
Functional Profile in Chapter 7.

Create a LonMaker Network
The LonMaker Integration Tool is a software tool for designing, installing,
operating, and maintaining multi-vendor open, interoperable LONWORKS
networks. You will use it to install devices that you develop in a network,
and to test your devices and their interactions with other devices. After your
development is complete, you can continue to use the LonMaker tool to install
your production devices.

The LonMaker tool incorporates Microsoft Visio, providing an easy-to-use
drawing tool for designing and documenting your networks.

To create a new LonMaker network, follow these steps:

1. Click the Windows Start menu, point to Programs, and then click

Developing a LONWORKS Device 3-5

LonMaker for Windows. The LonMaker Design Manager appears.
2. Click the New Network button. The Network Wizard appears.
3. Enter a name for your development network for the Network Name in the

following dialog, and then click Next.

4. If your are attached to your development network, set Network Attached

and select your network interface under Network Interface Name, and
then click Next. If you are not attached, clear Network Attached then click
Next.

5. If you are attached to your development network, select the OnNet
Management Mode, and then click Next. This option will not be displayed if
you are not attached.

6. Click Finish. The LonMaker tool creates and opens a new network drawing.
See the LonMaker User’s Guide for more information on using the LonMaker
tool.

Create a NodeBuilder Project
A NodeBuilder project collects all the information about a set of devices that
you are developing. You can use the same NodeBuilder project with multiple
LonMaker networks, and you can use a LonMaker network with multiple
NodeBuilder projects. However, you can use a LonMaker network with one
only NodeBuilder project at a time.

You will create, manage, and use NodeBuilder projects from the NodeBuilder
Project Manager. The project manager provides an integrated view of your

3-6 NodeBuilder User’s Guide

entire project, and provides the tools you will use to define and build your
project.

To start the NodeBuilder Project Manager, select NodeBuilder from the
LonMaker tool’s LonMaker menu. Alternately, you can drag a NodeBuilder
Target shape to a LonMaker drawing and set the Start NodeBuilder
checkbox in the LonMaker New Device Wizard. You can also start the
NodeBuilder Project Manager by opening the Windows Start menu, pointing
to Programs, pointing to Echelon NodeBuilder Software, and then
clicking NodeBuilder Development Tool. Once the NodeBuilder tool has
been started, you can use the Device Template Wizard to define a new device
template as described in the next section. See Creating a NodeBuilder
Project for more information on creating a NodeBuilder project.

Create a NodeBuilder Device Template
Each type of device that you develop with the NodeBuilder tool is defined by
two device templates. The first is a NodeBuilder device template. The
NodeBuilder device template specifies the information required for the
NodeBuilder tool to build the application for a device such as a list of the
source code files and up to two hardware platforms for the device. The second
is an LNS device template. The LNS device template defines the device
interface, and is used by LNS tools such as the LonMaker tool to configure
and bind the device.

Each pair of device templates is identified by a unique program ID. Every
device on a network with the same program ID must have the same device
interface and use the same device template.

You will use the New Device Template Wizard to create a device template.
You may automatically start this wizard when you create a new project as
described in the previous section, or you may start the wizard at any time by
right-clicking the Device Templates folder in the NodeBuilder Project
Manager and then clicking New Device Template on the shortcut menu.
See Using the New Device Template Wizard for more information on creating
a NodeBuilder device template.

Create the Neuron C Application
You will develop applications with the NodeBuilder tool using the Neuron C
programming language. Neuron C is a programming language based on
ANSI C, with extensions for network communication, device configuration,
hardware I/O, and event-driven scheduling.

You can develop your Neuron C applications from scratch, by modifying an
existing application, or by using the NodeBuilder Code Wizard. The Code
Wizard accelerates your development by generating the declarations required
to implement your device interface, and also generating some of the code used
by network tools to interact with your device, saving days of development for
every functional block. The Using the Code Wizard chapter describes how to
use the Code Wizard to generate your initial application. Once you have run
the Code Wizard, or if you are creating your Neuron C application from
scratch or from an existing application, you will use the NodeBuilder Project
Manager to edit your application’s Neuron C code and to add additional files

http://types.lonmark.org/

Developing a LONWORKS Device 3-7

required to complete its functionality. You can also use your own
programming editor if you prefer. Introduction to the NodeBuilder Project
Manager in the Using NodeBuilder Projects chapter describes how to use the
project manager. The Neuron C Programmer’s Guide and Neuron C Reference
Guide describe the Neuron C programming language and how to use it.

Compile, Build, and Download the Application
The NodeBuilder tool includes a complete set of tools for compiling your
Neuron C application, building an application image that can be loaded into
your device, and downloading your application image to your device.

When you build your application, the NodeBuilder tool creates a set of files
called the device file set. The device file set includes an application image file
that can be downloaded to your device and a device interface file that
describes your device interface. The device interface file is used by network
tools to determine how to bind and configure your device. The device
interface file is also used by the NodeBuilder tool to automatically create the
LNS device template.

The NodeBuilder tool will create two device file sets for each device that you
build, one for a development version of your device and one for a release, or
production, version of your device. The two device file sets are written to
Development and Release directories within your device template directory,
which is a directory within your project directory.

See Building an Application Image in the Compiling, Building and Loading
Your Application chapter for a description of how to use the NodeBuilder
Project Manager and the LonMaker Integration Tool to compile, build, and
download your application.

Test the Device Interface
The NodeBuilder tool makes it easy to test your device by itself, and to also
integrate your device into a test network and test its interaction with other
devices.

The first tool that you will typically use for testing is the LonMaker browser.
The browser displays all the network inputs, network outputs, and
configuration inputs for your device. You will typically exercise the hardware
or network inputs to your device and observe the hardware and network
outputs from your device.

Testing a NodeBuilder Device describes how you can use the LonMaker tool
and LonMaker browser to verify that all of the functional blocks,
configuration properties, and network variables have been created and are
using the desired formats. You will typically do your initial testing on a
development platform such as the LTM-10A Platform or the LonBuilder
Emulator. The development platform may be connected to prototype I/O
devices, or to the Gizmo 4 I/O Board if its I/O devices are suitable. If your
device hardware is ready, you can alternatively load your application into it
to verify that the application performs correctly in the hardware. See the
LonMaker User’s Guide for more detailed information about the LonMaker
tool and LonMaker browser.

3-8 NodeBuilder User’s Guide

Debug the Device Application
If everything works as expected when you test your device interface, you can
skip this step and go on to the next step of connecting your device to other
devices and testing your device as part of a system. If things don’t go as
expected, you can use the NodeBuilder debugger to get an inside view of the
Neuron C source code executing within your device.

The debugger allows you to set breakpoints and flags to help you pinpoint
any problems in your application. Use the debugger to troubleshoot and fix
any problems contained in your Neuron C code. See Using the Debugger for
more information on using the NodeBuilder debugger.

Install and Test Your Device in a Network
Once your device appears to be functioning correctly in a small test network,
you will test it as part of a larger network. You will use the LonMaker tool to
connect your development device to other devices and to verify their
operation within a production-scale network. See Testing a NodeBuilder
Device for more information on using the LonMaker tool to install and test a
network.

Create a LonMaker Stencil
If your device will be installed by integrators, you can create a LonMaker
stencil for your device. This stencil should contain custom LonMaker shapes
for your device and for each functional block defined by your application. A
custom stencil is not required, but if you have one your device will be easier
to install for network integrators. See Creating a New LonMaker Stencil for
more information on creating a LonMaker stencil.

Create an LNS Device Plug-in
Once your device is functioning correctly, you will want to make your device
easy to install and configure for network integrators who will be installing it.
To do this, you will create an LNS device plug-in. An LNS device plug-in is
an application that you will create whose sole function is to set-up your
device’s initial configuration when it is installed in a network. Integrators
will start your plug-in from the LonMaker tool or from any other LNS based
installation tool that supports LNS plug-ins.

Plug-ins may be written in Visual Basic 6 or Visual C++ 6 or any other
language that supports ActiveX automation servers. Echelon supports the
development of plug-ins in Visual Basic 6 and Visual C++ 6, so it is
recommended that you use one of these two languages.

You must have Visual Basic 6 with service pack 5 or better installed on your
PC before installing the NodeBuilder software in order to use LNS Device
Plug-in Wizard. The wizard is not compatible with Visual Basic.NET, and
Visual Basic.NET cannot be used to create LNS plug-ins. See Creating an
LNS Plug in and the LNS Plug-in Programmer’s Guide for more information
on creating LNS device plug-ins.

Developing a LONWORKS Device 3-9

Develop an Operator Interface
Once you have developed one or more LONWORKS devices designed to be used
in LONWORKS networks, you may wish to develop an operator interface. You
will typically do this if you are building complete systems that require some
form of operator interface. If your device will be installed by integrators
where each installation is unique, your integrators will develop the required
operator interfaces. You or your integrator can use the LNS DDE Server in
concert with an HMI development tool such as Wonderware InTouch to
create a graphical operator interface to allow end users to monitor and
control networks with your devices. You can also use the LonMaker tool to
create simple operator interfaces based on the LNS Text Box. See the
Human-Machine Interfaces chapter, the LNS DDE Server User’s Guide, and
the LonMaker User’s Guide for more information on creating operator
interfaces.

Apply for LONMARK Certification
The LONMARK Interoperability Association is an independent, non-profit
organization that defines guidelines for developing interoperable LONWORKS
devices. If your device will be installed by integrators, you will want to apply
for LONMARK certification for your device since most integrators require
LONMARK certified devices for their projects. LONMARK certified devices are
assured to be compliant with the LONMARK guidelines and can be easily
integrated into LONWORKS networks with other LONWORKS devices from
multiple vendors. For information on having your device LONMARK certified,
see www.lonmark.org/products/lmcerti.htm on the LONMARK Web site.

Create an Installation Application for your Device
If your device will be installed by integrators, they will need a number of
different files to successfully install the device into a LONWORKS network,
including the device application (if your device uses downloadable application
memory), the device interface files, any new resource files, and optionally the
LonMaker stencil, the device plug-in, and the device operator interface. The
Creating a Software Installation chapter describes how to create an
installation application that installs these files in the proper directories on
the network integrator’s computer.

Creating and Opening NodeBuilder Projects 4-1

4

Creating and Opening
NodeBuilder Projects

This chapter describes how to create a new NodeBuilder
project or open an existing project. You will typically create
NodeBuilder projects from the LonMaker tool, but you may also
create NodeBuilder projects standalone from the NodeBuilder
tool.

4-2 NodeBuilder User’s Guide

Introduction to NodeBuilder Projects
A NodeBuilder project collects all the information about a set of devices that
you are developing. You can use the same NodeBuilder project with multiple
LonMaker networks, and you can use a LonMaker network with multiple
NodeBuilder projects. However, you can use a LonMaker network with only
one NodeBuilder project at a time.

You will create, manage, and use NodeBuilder projects from the NodeBuilder
Project Manager. The project manager provides an integrated view of your
entire project, and provides the tools you will use to define and build your
project.

A NodeBuilder project is defined by two XML files called the NodeBuilder
project files. The base name of each file is the project name. The extensions
are “.NbPrj” and “.NbOpt”. The NodeBuilder Project Manager automatically
creates and updates these files. You should not modify these files directly,
but you may print them using Internet Explorer, Microsoft XML Notepad, or
any text editor if you would like a printed record of your project. See Viewing
and Printing NodeBuilder XML Files for more information.

Introduction to the NodeBuilder Project Manager
The NodeBuilder Project Manager is a software tool that allows you to create,
edit, build, and debug a NodeBuilder project. The NodeBuilder Project
Manager appears as shown in the following figure:

Creating and Opening NodeBuilder Projects 4-3

The NodeBuilder Project Manager initially contains three panes, the Project
pane, the Edit pane, and the Results pane. You can move and resize these
panes, and you can close the Project and Results panes. By default the three
panes appear as shown in the figure above.

The Project pane is located on the left side of the Project Manager window by
default. It contains a hierarchical display of all the components of a
NodeBuilder project.

The Edit pane is located on the right side of the Project Manager window by
default. It allows you to edit any of the Neuron C source files or header files
that are used in the project. See the Editing Neuron C Source Code chapter
for more information.

The Results pane is located on the bottom of the Project Manager window by
default. This pane contains Messages, Search Results, and Event Log
tabs. The Messages tab displays compiler and other messages generated
when you build the application image for a NodeBuilder device template (see
Building an Application Image in Building, Compiling, and Loading). If any
errors or warnings are generated during the build, you can double-click them
to open the file containing the error or warning and go to the line of code that
generated the error or warning. The Search Results tab displays the
results of a Find in Files search. You can double-click any of these results
to open the file containing the search text and go to the line containing the
search text (see Searching Source Files, in the Editing Neuron C Source Code
chapter). The Event Log contains debugger event messages (see the Using
the NodeBuilder Debugger chapter).

Using the Project Pane
The Project pane allows you to browse the files used in the NodeBuilder
Project. The Project pane appears as shown in the following figure:

The top level of the Project pane is always a project folder labeled Project
‘<Project Name>’: where <Project Name> is the name of your project.
Right-click the project folder to see a shortcut menu with the following
options:

Settings Displays project settings.

Properties Displays file properties of the NodeBuilder project
file (.NbPrj extension). The properties include the

4-4 NodeBuilder User’s Guide

file name, location, size, and dates the file was
created, last modified, and last accessed.

The Project folder normally contains Device Templates, Devices, and
Hardware Templates folders. The Device Templates folder contains all
of the device templates that have been created or referenced in this
NodeBuilder project, and is described in the Creating and Using Device
Templates chapter. The Devices folder contains a list all devices in
LonMaker drawings that have been associated with device templates in this
NodeBuilder project and is described in Files Created When You Build An
Application Image in the Compiling, Building, and Loading Applications
chapter. The Devices folder will not appear if the NodeBuilder project is
not associated with a LonMaker network. The Hardware Templates folder
contains a list of the hardware templates available in this NodeBuilder
project, and is described in Chapter 4, Creating and Using Device Templates.

Creating a NodeBuilder Project
To create a NodeBuilder project, start the NodeBuilder Project Manager. You
can start the NodeBuilder Project Manager from the LonMaker tool, or
directly from the NodeBuilder program folder. You will typically start the
project manager from the LonMaker tool since that simplifies associating the
NodeBuilder project with the LonMaker network.

To create a NodeBuilder project by starting the NodeBuilder Project Manager
from the LonMaker tool, follow these steps:

1. Create or open a LonMaker drawing. See the LonMaker User’s Guide for
more information on creating and opening LonMaker drawings. If you will
want to load the application you develop into a device, make sure the
LonMaker computer is attached to the network.

2. Open the LonMaker menu then click NodeBuilder. The NodeBuilder
Project Manager starts. If you have not previously created a NodeBuilder
project for this network, the New Project wizard automatically starts.

3. If you have previously created a project for this network and you want to
create a new project, open the NodeBuilder File menu, and then click Create
Project.

4. Enter project information into the wizard as described in the following
sections.

To create a NodeBuilder project by starting the NodeBuilder Project Manager
standalone from the NodeBuilder program folder, follow these steps:

1. Click the Windows Start menu, point to Programs, point to Echelon
NodeBuilder Software, and then click NodeBuilder Development Tool.
The NodeBuilder Project Manager starts.

2. Open the NodeBuilder File menu then click Create Project. The New
Project wizard starts.

3. Enter project information into the wizard as described in the following
sections.

You can also start the NodeBuilder tool from the LonMaker tool’s New Device
Wizard. See Starting the NodeBuilder tool from the New Device Wizard, later
in this chapter, for more information.

Creating and Opening NodeBuilder Projects 4-5

Creating a New Project
If you started the NodeBuilder Project Manager standalone, the project
manager opens the following window. This window is not displayed if you
started the NodeBuilder Project Manager from the LonMaker tool.

This window allows you to select the LonMaker network that you want to use
with this NodeBuilder project. Select the LonMaker network under
Network. If the physical network is attached, select the network interface
under Network Interface.

You can set the Do Not Open Any Network checkbox to create a project
that is not associated with a LonMaker network. Setting this option will
disable automatic LNS device template creation, automatic load after build,
and use of the LNS Device Plug-in Wizard.

Once you have chosen a network, click Next. The Specify New Project Name
dialog opens.

Specifying New Project Name
This window appears as shown in the following figure:

4-6 NodeBuilder User’s Guide

This window contains the following fields:

Project Name The name of the project. Project files with this
name and NbPrj and NbOpt extensions will be
created in the folder specified in Location. This
field defaults to the name of the current
LonMaker drawing. You can use this name or
enter a new one.

Location The folder containing the project file. This folder
is called the project folder. The default location is
c:\lm\Source\<Project name>. To change

the location, click the button to browse to a
new location. You can use $LonWorks$ to specify
the PCs LONWORKS folder (this is C:\LonWorks
by default).

Set as Default Project Set this option to automatically open this
NodeBuilder project when the NodeBuilder tool is
started from the current LonMaker drawing.

Click Next. The Specify Project Default Settings window opens.

Specifying the Project Default Settings
This window appears as shown in the following figure:

Creating and Opening NodeBuilder Projects 4-7

This window contains the following fields:

Project Name The name of the project as specified in the
Specify New Project Name window.

Location The location of the project folder as specified
in the Specify New Project Name window.

Default Transceiver Type The transceiver type to be used for Hardware
Templates that specify default for the
transceiver type. The default value for this
field is TP/FT-10. See Setting Hardware
Template Properties: Hardware for more
information.

Include Search Path An optional semi-colon separated list of
directories that are to be searched for include
files when a NodeBuilder project is compiled.
This list is blank by default, and only the
device template source file directories will be
searched for include files. If relative path
names are specified, they are relative to the
location of the NodeBuilder project directory
(location of the NbPrj project file). This list
applies to the entire project, and affects
include files specified with names in double
quotes (e.g. #include “abc.h”). The user-
defined include search path does not affect
system include files, which are NodeBuilder
system files specified in angle brackets (e.g.
#include <mem.h>)

 You can include the phrase $LonWorks$ as a
machine-independent reference to the

4-8 NodeBuilder User’s Guide

LONWORKS directory within the search path
(e.g. “$LonWorks$\NodeBuilder\Gizmo4”).
This simplifies copying projects between
different computers.

Run Device Template Wizard If this checkbox is set, the device template
wizard opens immediately after you click
Finish. The Device Template Wizard will
guide you through the process of creating the
first NodeBuilder device template for this
project. See Using the Device Template
Wizard in Chapter 6 for more information.

Set the desired options, set the Run NodeBuilder Device Template
Wizard checkbox, and then click Finish.

Starting the NodeBuilder Tool from the New Device
Wizard

You can start the NodeBuilder tool from the LonMaker tool’s New Device
Wizard. This is described in the following steps:

1. Create or open a LonMaker network. See the LonMaker User’s Guide for
more information on creating and opening LonMaker drawings. If you will
want to load the application you develop into a device, make sure the
LonMaker computer is attached to the network.

2. Drag one of the Target Device shapes to the LonMaker drawing. The
NodeBuilder tool includes a Development Target Device shape and a
Release Target Device shape. If you are going to build for production
hardware, use the Release Target Device shape. If you are going for build
to a test platform such as an LTM-10A or LonBuilder Emulator, use the
Development Target Device shape. The LonMaker New Device Wizard
opens, as shown in the following figure:

Creating and Opening NodeBuilder Projects 4-9

3. Enter a name for the device in Device Name . This name determines the

name of the device in the LonMaker drawing and has no effect on the name of
the NodeBuilder project. If you will want to load the application into the
device immediately, set the Commission Device checkbox. Click Next.
The second window of the New Device Wizard opens, as shown in the
following figure:

This window displays the name of the device and the target type of the

4-10 NodeBuilder User’s Guide

device. Click the arrow on NodeBuilder Device Template to select an
existing NodeBuilder device template. All NodeBuilder device templates that
you have successfully built will be listed. This list is updated when you click
the arrow. The LNS Device Template box contains the name of the
currently selected device template, which is typically the same as the
NodeBuilder Device Template field.

4. Click Start NodeBuilder to begin creation of a new NodeBuilder project.
The NodeBuilder tool will start.

Opening a NodeBuilder Project
To open an existing NodeBuilder project, you must first start the
NodeBuilder Project Manager if it is not already running. You can start the
NodeBuilder Project Manager from the LonMaker tool, or directly from the
NodeBuilder program folder. You will typically start the project manager
from the LonMaker tool since that simplifies associating the NodeBuilder
project with the LonMaker network.

To open a NodeBuilder project if the NodeBuilder Project Manager is already
running, follow these steps:

1. Open the NodeBuilder File menu, and then click Open Project.
2. Locate and open the folder containing your project file (“.NbPrj” extension).
3. Double-click the NodeBuilder project file.
To open a NodeBuilder project by starting the NodeBuilder Project Manager
from the LonMaker tool, follow these steps:

1. Create or open a LonMaker drawing. See the LonMaker User’s Guide for
more information on creating and opening LonMaker drawings. If you will
want to load the application you develop into a device, make sure the
LonMaker computer is attached to the network.

2. Open the LonMaker menu then click NodeBuilder. The NodeBuilder
Project Manager starts. If you have previously created a NodeBuilder project
for this network, the default project for the network opens.

3. To open a different project, open the NodeBuilder File menu, and then click
Open Project.

4. Locate and open the folder containing your project file (“.NbPrj” extension).
5. Double-click the NodeBuilder project file.
You can open a project and start the New Device Template wizard at the
same time by dragging a Development Target or Release Target shape from
the LonMaker stencil to your drawing.

You can open specific windows within the default project by right-clicking a
Development Target or Release Target shape in the LonMaker drawing, and
then clicking Edit Source, NodeBuilder Properties, Build, or Debug on
the shortcut menu.

To open a NodeBuilder project by starting the NodeBuilder Project Manager
standalone from the NodeBuilder program folder, follow these steps:

1. Click the Windows Start menu, point to Programs, point to Echelon
NodeBuilder Software, and then click NodeBuilder Development Tool.

Creating and Opening NodeBuilder Projects 4-11

The NodeBuilder Project Manager starts.
2. Open the NodeBuilder File menu and then click Open Project. The New

Project wizard starts.
3. Locate and open the folder containing your project file (“.NbPrj extension).”
4. Double-click the project file.

Selecting a NodeBuilder Project File
This dialog appears as shown in the following figure:

Enter the path and filename of the NodeBuilder Project file (“.NbPrj”
extension) to be opened. Click the button to browse to the file. Set the
Set as Default Project for this Network checkboxto have the selected file
set as the default project for the LonMaker network that was used to open
the NodeBuilder Project Manager.

Copying a NodeBuilder Project to Another
Computer

You can copy a NodeBuilder project to another computer. To copy a
NodeBuilder project, follow these steps:

1. Ensure that the target computer and the computer currently containing the
NodeBuilder project have the same version of the NodeBuilder and
LonMaker tools.

2. Start the LonMaker tool. The LonMaker Design Manager opens.
3. Select the LonMaker network associated with the NodeBuilder project to be

copied and then click Backup. The LonMaker Backup dialog opens.
4. Set Backup Drawing, Backup Database, and Backup NodeBuilder

4-12 NodeBuilder User’s Guide

Project. See the LonMaker User’s Guide and help file for more information.
5. Click OK. The LonMaker drawing and database, and the NodeBuilder

project, are all archived in a single LonMaker backup file (“.zip” extension).
6. Copy the LonMaker backup file to the new computer. Start the LonMaker

tool and then click Restore. The LonMaker drawing and database and the
NodeBuilder project are copied to the new computer. The NodeBuilder
project is associated with the LonMaker network.

7. Copy any user hardware templates and custom libraries to the new
computer. Place the user hardware templates into the LONWORKS
NodeBuilder\Templates\Hardware\User folder. Place the custom
libraries in the same folder they were in on the original computer. If this is
not possible, re-add them to the project as described in Inserting a Library
into a NodeBuilder Device Template.

Alternatively, you can copy all the files associated with the project manually,
though this is more difficult than using LonMaker backup and restore. In
order to do this, follow these steps:

1. Ensure that the target computer and the computer currently containing the
NodeBuilder project have the same version of the NodeBuilder tool.

2. Copy the entire project folder and its contents to the target computer. By
default, the project folder has the same name as the NodeBuilder project and
is stored in the Lm\Source folder. The project folder will contain one
subdirectory for each device template in the NodeBuilder project.

3. Copy any user hardware templates and custom libraries to the new
computer. Place the user hardware templates into the LONWORKS
NodeBuilder\Templates\Hardware\User folder. Place the custom
libraries in the same folder they were in on the original computer. If this is
not possible, re-add them to the project as described in Inserting a Library
into a NodeBuilder Device Template.

4. Start the NodeBuilder tool as described in Opening a NodeBuilder Project
earlier in this Chapter and browse to the project file to open it.

Note: To simplify copying a NodeBuilder project to another computer, use the
$LonWorks$ phrase when specifying include search paths. You can use this
phase in a search path to automatically specify the LONWORKS directory.
Even if two computers have the LONWORKS directory in different places, or on
different drives, you can copy a project to the new computer as long as you
place it in the same relative path to the LONWORKS directory.

For example, a project may include files from the Gizmo 4 library, which
requires NodeBuilder\Gizmo4\gizmo4.h to be included from the LonWorks
directory. This can be achieved by adding
$LonWorks$\NodeBuilder\Gizmo4 to the project include search path (see
Specifying the Project Default Settings, earlier in this chapter, for more
information on include search paths).

Some devices share include files that reside in a headers folder which is a
directory within the project directory. This could be accomplished by adding
headers to the project include search path, or by adding ..\headers to each
device template include search path.

Creating and Opening NodeBuilder Projects 4-13

Copying a NodeBuilder Device Template to
Another Computer

You can copy a NodeBuilder device template to another computer. To do this,
follow these steps:

1. Ensure that the target computer and the computer currently containing the
NodeBuilder device template have the same version of the NodeBuilder tool.

2. If the NodeBuilder project that will contain the device template has not been
created, create it as described in Creating a New Project earlier in this
chapter

3. Copy the entire device template folder and its contents to the target
computer. Place the device template folder inside the project folder of the
NodeBuilder project that will contain the device template.

4. Copy any user hardware templates and custom libraries to the new
computer. Place the user hardware templates into the LONWORKS
NodeBuilder\Templates\Hardware\User folder. Place the custom
libraries in the same folder they were in on the original computer. If this is
not possible, re-add them to the project as described in Inserting a Library
into a NodeBuilder Device Template.

5. Open the NodeBuilder tool if it is not already open.
6. Right-click the Device Templates folder and then click Insert on the

shortcut menu. Browse to the device template folder copied in step 3, open it,
and then select the NodeBuilder device template file (“.NbDt” extension).
The device template will now be added to the NodeBuilder project.

Viewing and Printing NodeBuilder XML Files
Many of the files created by the NodeBuilder tool are XML files. You can
view and print these files using a variety of tools including Internet Explorer,
Microsoft Excel, or Microsoft XML Notepad (see
msdn.microsoft.com/xml/notepad/intro.asp). This can be useful for generating
printed summaries of the options contained in these files. Do not change the
contents of these files. To open one of these files, right-click the file in
Windows Explorer and then click Open With on the shortcut menu. Choose
Microsoft Excel, Internet Explorer, XML NotePad, or another XML browsing
tool in the Open With dialog.

The NodeBuilder tool creates and maintains the following XML files :

Project File (*.NbProj) Contains a project definition including the project
version and a list of the device templates and the
hardware templates for a project. There is one
project file per project. It is kept in the project
folder.

Options File (*.NbOpt) Contains the NodeBuilder project options for a
project. There is one options file per project. It is
kept in the project folder.

Device Template File
(*.NbDt)

Contains a device template, including the
options specified for the device template and
device template targets. There is one device

4-14 NodeBuilder User’s Guide

template file per device template. It is kept in
the device template folder.

Hardware Template File
(*.NbHwt)

Contains a hardware template, including the
options specified for the hardware template.
There is one hardware template file per
hardware template. Standard hardware
template files are kept in the LONWORKS
Templates\Hardware\Standard folder. User
hardware template files are kept in the
LONWORKS Templates\Hardware\User
folder. Hardware templates specific to the
project can also be contained in the project
folder.

Creating and Using Device Templates 5-1

5

Creating and Using Device
Templates

This chapter describes how to create a new NodeBuilder
device template using the New Device Template Wizard and
describes hardware templates, libraries, and targets.

5-2 NodeBuilder User’s Guide

Introduction to Device Templates
A device template defines a device type. The NodeBuilder tool uses two types
of device templates. The first is a NodeBuilder device template. The
NodeBuilder device template is an XML file with a “.NbDt” extension that
specifies the information required for the NodeBuilder tool to build the
application for a device. It contains a list of the application Neuron C source
files and the hardware template name. When you build an application, the
NodeBuilder tool automatically produces an LNS device template. The LNS
device template defines the interface, and is used by LNS tools such as the
LonMaker tool to configure and bind the device.

You will create device templates using the New Device Template Wizard.
This wizard starts automatically if you set the Run Device Template
Wizard checkboxwhen you create a new NodeBuilder project. You can also
start this wizard by right-clicking the Device Templates folder in the Project
pane and clicking New on the shortcut menu.

Using Device Templates
You can view and edit device templates using the NodeBuilder Project
Manager The Device Templates folder in the Project pane of the project
manager lists all the device templates that are defined as part of the
currently open NodeBuilder project. Right-click the Device Templates
folder to see a shortcut menu with the following commands:

New Creates a new device template in the currently
open NodeBuilder project. This starts the New
Device Template Wizard described later in this
chapter.

Insert Inserts an existing NodeBuilder device template
into the currently open NodeBuilder project. A
dialog opens allowing you to browse to and select
a NodeBuilder device template file (“.NbDt”
extension). This option allows you to reuse device
templates in multiple projects, and allows you to
share a single device template among multiple
projects to.

Insert Copy Creates a copy of an existing NodeBuilder device
template and inserts it into the currently open
NodeBuilder project. You can copy a NodeBuilder
3 or 3.1 device template (“.NbDt” extension) or
convert and copy a NodeBuilder 1.5 device file
(“.dev” extension). A dialog opens allowing you to
browse to and select a NodeBuilder device
template file (“.NbDt” or “.dev” extension). Once
you have selected an existing device template, the
New Device Template Wizard opens. Use this
wizard to select a path, change the program ID,
etc. All files associated with the device template

Creating and Using Device Templates 5-3

(i.e. all files in the Source Files sub-folder) will
be copied to the new device template.

Build Builds the application images for all qualifying
targets. See Building an Application Image in the
Compiling, Building, and Loading Applications
chapter for more information.

Clean Deletes all output files created when building the
currently open NodeBuilder project for all
qualifying targets. See Cleaning Build Output
Files in the Compiling, Building, and Loading
Applications chapter for more information.

Status Displays the build status for all device templates.
See Viewing Build Status in the Compiling,
Building, and Loading Applications chapter for
more information.

Right-click one of the device templates in the Device Template folder to see a
shortcut menu with the following commands:

Settings Opens the NodeBuilder Device Template
Properties dialog. This dialog allows you to
change the options set in the Device Template
Wizard’s New Device Template and Program ID
windows.

Set Source File Sets the main source file (.nc extension) for this
device template. By default the main source file is
<Device Template Name>.nc.

Code Wizard Starts the NodeBuilder Code Wizard for this
device template. See the Generating Neuron C
Source Code Using the Code Wizard chapter for
more information about the code wizard.

Plug-in Wizard Starts the LNS Device Plug-in Wizard for this
device template. See the Creating an LNS Device
Plug-in chapter and the LNS Plug-in
Programmer's Guide for more information on the
LNS Device Plug-in Wizard.

Remove Removes this device template from the currently
open NodeBuilder project. This does not delete
the device template file or source files. Use
Windows Explorer to delete these files.

Build Builds the application image specified by this
device template for all qualifying targets. See
Setting Build Options in the Compiling, Building,
and Loading Applications chapter for more
information.

Clean Deletes all output files created when building this
device template for all qualifying targets. See
Cleaning Build Output Files in the Compiling,

5-4 NodeBuilder User’s Guide

Building, and Loading Applications chapter for
more information.

Build Exclude Determines if this device template will be
included or excluded when you click the Build
command for the Device Templates folder. If
you set this checkbox, the device template will be
excluded from a device templates build, the device
template name is dimmed, and a checkmark will
appear next to Build Exclude on the shortcut
menu. When you exclude a device template, you
can still explicitly build the device template by
right-clicking the device template and selecting
Build from the shortcut menu.

Status Displays the build status for this device template.
See Viewing Build Status in the Compiling,
Building, and Loading Applications chapter for
more information.

Properties Displays file properties of the NodeBuilder device
template file (“.NbDt” extension). The properties
include the file name, location, size, and dates the
file was created, last modified, and last accessed.

Each device template contains the following items:

Main Source File The first item in the device template is the main
Neuron C source file (.nc extension) for this device
template. This file may include other source files
by using Neuron C #include “filename”
statements. By default, this file is named
<Device Template Name>.nc. Double-click
this file to edit it as described in the Editing
Neuron C Source Code chapter.

Source Files This folder contains all source files associated
with this device template, with the exception of
the main source file. When you add source files to
the NodeBuilder project directly or using the
NodeBuilder Code Wizard, they will be added to
this folder. Double-click any source file to edit it
as described in the Editing Neuron C Source Code
chapter.

 To add source files, right-click the Source Files
folder, and then click Insert on the shortcut
menu. You can add any file, but you will typically
add Neuron C files (“.nc” extension), header files
(“.h” extension), C files (“.c” extension), text files
(“.txt” extension), or other specification or
documentation files. All files to be included when
you build the application image must be explicitly
included in the Neuron C code using #include
“filename” statements; adding files to this
folder does not automatically include them in the

Creating and Using Device Templates 5-5

build. You can add non-source code files to this
folder to allow them to be easily accessed from the
project.

 Right-click a source file and then click Remove
on the shortcut menu to remove it from the device
template. Right-click a source file and then click
Properties on the shortcut menu to view the
location, size, and date stamps of the file.

Libraries This folder contains all libraries explicitly used by
this device template. A library is a file containing
one or more compiled ANSI C functions. When
you build the application image for a device
template, functions are included from libraries if
they are referenced by any code included in the
device template. The code for any unreferenced
functions is not included in the application image.
To add a library, right-click the Libraries folder
and then click Insert on the shortcut menu. The
Specify Library Type dialog opens. Select a
custom or standard library type and then click
Next. See Inserting Libraries into a NodeBuilder
Project in the Creating and Using Device
Templates chapter for more information.

Development/Release The development and release targets contain
information specific to building application images
for development and release targets, respectively.
See Using Device Template Development and
Release Targets, later in this chapter, for more
information.

Using the New Device Template Wizard
The Device Template Wizard guides you through the process of creating a
new NodeBuilder device template. You will specify a device template name,
working directories, a Program ID, and hardware templates. The Device
Template Wizard contains three windows: New Device Template, Program ID,
and Target Platforms.

New Device Template Wizard: New Device Template
The New Device Template window is the first window of the Device
Template Wizard. This window is shown in the following figure:

5-6 NodeBuilder User’s Guide

This step of the Device Template Wizard allows you to assign a name and
select a location for a new NodeBuilder device template. This window
contains the following fields:

Device Template Name The name of the device template. A
NodeBuilder device template file with this
name and a “.NbDt” extension will be created
in the folder specified in the NodeBuilder
Device Template Folder field. This entry
must be non-empty and a valid Windows file
name. The name can contain up to 210
characters, including spaces. The name
cannot contain the following characters: \ / : *
? " < > |.

Source File Name Enter the name of the Neuron C source file for
this device template. By default, this field is
set to <Device Template Name>.nc, and
the file will be created in the folder specified
in the NodeBuilder Device Template Folder
field. Click Browse to select an existing
source file.

NodeBuilder Device Template Enter the folder into which the device
template file will be placed. This is called the
device template folder. By default, this is a
folder with the same name as the device
template that is contained within the project
folder. Click Change to browse to a different
folder.

Creating and Using Device Templates 5-7

Output Enter the root folder for output files generated
by the build process. You can enter either an
absolute or relative path name. Relative
paths are based on the device template folder.
The default value is .\ (the build target
folder).

Set your desired options, and then click Next. The Program ID window
opens.

New Device Template Wizard: Program ID
The Program ID window is the second window of the Device Template
Wizard. You can access these options after creating a device template by
right-clicking the device template and selecting Settings, then selecting the
Program ID tab. This window is shown in the following figure:

This step of the Device Template Wizard allows you to specify the program
ID and determine whether automatic program ID management will be used.
Enter the following information:

NodeBuilder Device
Template Name

The name of the device template. This field is
read-only.

Automatic Program ID
Management

When this checkbox is set, the NodeBuilder tool
automatically increments the model number field
within the program ID whenever the device
interface changes. It also automatically modifies
the LNS device template name whenever the

5-8 NodeBuilder User’s Guide

program ID is changed. The program ID is
incremented within the range defined by the Min
Model # and Max Model # fields. This ensures
that the program ID uniquely identifies a device
template. When selected, the Min Model # and
Max Model # fields are enabled, and the
Nonstandard (ASCII) Program ID Type is
disabled. This option is set by default. If you
disable this option, you must manually manage
the program ID and device template name to
ensure they are unique for each unique device
interface.

 If you set this checkbox, the NodeBuilder tool
automatically upgrades all target devices using
this device template if Load After Build is set.
To upgrade the target devices, the NodeBuilder
tool creates a new device template with the new
name and program ID, and then downloads the
new application to the target devices, preserving
connections for compatible network variables.

 When the Max Model # value is reached, the
model number field of the program ID will be
reset to the Min Model # value. The
NodeBuilder tool automatically deletes old LNS
device templates with the minimum model
number as long as they are not in use by any
devices. If the old LNS device template is in use,
the NodeBuilder tool reports an error.

 Clear this checkbox if you are creating a resource
file for the device template and the resource file
specifies a scope of 6 (model number specific). If
this option is set with a scope 6 resource file, you
will have to modify the program ID template in
the resource file each time you change the device
interface.

Re-register Plug-ins When this option is set, the NodeBuilder tool
automatically re-registers LNS plug-ins whenever
the program ID changes. This option is only
available if the Automatic Program ID
Management option is set.

 Only LNS plug-ins that were registered for the
most recent previous device template will be
registered (i.e. if you turn this option off for
several program ID changes, then turn it back on,
you will need to manually re-register LNS plug-
ins for the newest version of the device template).

Min and Max Model # These fields are only active if the Automatic
Program ID Management checkbox is set.
Enter the range of model numbers allowed for
automatic program ID management. After the

Creating and Using Device Templates 5-9

Max Model # value has been reached, it is reset
to the Min Model # value. The Max Model #
value must be greater than the Min Model #
value. The fields are specified as 2-digit hex
numbers (00 – FF). By default, Min Model # is
set to 00 and Max Model # is set to 07..

Program ID Type Select the type of program ID to be used – Non-
standard (ASCII), Standard
development/prototype (format 9), or
StandardLONMARK certified (format 8). The
setting of this value determines the format of the
data for the Program ID field. The Standard
LONMARK Certified (format 8) option is reserved
for LONMARK certified devices. With the
exception of LONMARK certified, legacy, and
network interface devices, most devices should
use the default Standard Development/Prototype
(format 9) option. You cannot use the
NodeBuilder Code Wizard or the LNS Device
Plug-in Wizard if you select the Non-standard
(ASCII) option.

Program ID Enter the program ID for the device template.
The program ID is a 16-hex-digit number that
uniquely identifies the device interface for a
device. Network tools assume that two different
devices with the same program ID have the same
device interface.

 Depending on the Program ID Type selected,
this value has the following constraints:

 Non-standard (ASCII) - The field accepts up to 8
text characters.

 Standard development/prototype (format 9).
Enter 16 hex digits, the first of which must be a
‘9’. Pairs of digits are automatically delimited by
colons (“:”) for readability; the colons are not part
of the program ID.

 Standard LONMARK certified (format 8). Enter 16
hex digits, the first of which must be an ‘8’. Pairs
of digits are delimited by colons (:) for readability;
the colons are not part of the program ID.

 Click the Calculator button to start the
Standard Program ID Calculator. You can
use the wizard to generate a program ID based on
information you supply for each field of the
program ID. See Using the Program ID
Calculator for more information.

LNS Device Template
Name

Enter the name of the LNS device template. This
is the name that the device template will be
referred to by LNS tools such as the LonMaker

5-10 NodeBuilder User’s Guide

tool. Each LNS device template has a unique
program ID. You may not have multiple LNS
device templates with the same name in a
network, so if you change the program ID of a
NodeBuilder device template, you must also
change the LNS device template name. If you are
using automatic program ID management, the
name of the LNS device template will
automatically be updated in the format <Device
Template Name> [version number]. To
revert to the old LNS device template name, you
must remove the LNS device template with the
old name from the LNS database (for example by
using the Device Templates dialog in the
LonMaker tool). The default LNS device
template name is the same as the NodeBuilder
device template name.

Set your desired options, and then click Next. The Hardware Templates
window opens.

New Device Template Wizard: Hardware Templates
The Hardware Templates window is the third window of the Device Template
Wizard. To access these options after the device template has been created,
right-click the device template in the NodeBuilder Project pane and select
Settings, then select the Hardware Templates tab. This window is shown
in the following figure:

Creating and Using Device Templates 5-11

Specify the hardware templates used for Debug and Release targets.

A hardware template is a file that defines the hardware configuration for a
device. It specifies hardware attributes including platform, transceiver type,
Neuron Chip or Smart Transceiver model, clock speed, system image, and
memory configuration.

A target is a LONWORKS device whose application is built by the NodeBuilder
tool. There are two types of targets, development targets and release targets.
Use development targets during development to facilitate debugging your
application; use release targets when you complete development and you are
ready to release the device to production.

You do not have to select the hardware templates at this point, but you must
select them before you can build the device template. Enter the following
information:

NodeBuilder Device
Template Name

The name of the device template.

Development Build
Hardware Template

The hardware template for development
targets. Click the arrow to display all the
hardware templates in the Hardware
Templates folder in the Project pane.

Release Build Hardware
Template

The hardware template for release targets.
Click the arrow to display all the hardware
templates in the Hardware Templates folder in
the Project pane.

Run Code Wizard Set this checkbox to run the NodeBuilder Code
Wizard immediately after clicking Finish. This
option is not available if the Program ID Type of
the device template is set to Non-Standard
(ASCII). The Run NodeBuilder Code Wizard
After Creating New Device Template
checkbox in the NodeBuilder Project Settings
dialog’s Options tab determines whether this
checkbox is set by default.

Set your desired options, and then click Finish. If you have set the Run
NodeBuilder Code Wizard option, the NodeBuilder Code Wizard starts.
See the Generating Neuron C Code Using the Code Wizard chapter for more
information about the NodeBuilder Code Wizard.

Using the Standard Program ID Calculator
The program ID is a 16-hex-digit number that uniquely identifies the device
interface for a device. You can format the program ID as a standard or non-
standard program ID. When formatted as a standard program ID, The 16
hex digits are organized as 6 fields that identify the manufacturer,
classification, usage, channel type, and model number of the device. The
Standard Program ID Calculator makes it easy for you to select the
appropriate values for these fields by allowing you to select from lists
contained in a program ID definition file included with the NodeBuilder tool
and updated by the LONMARK Interoperability Association.

5-12 NodeBuilder User’s Guide

To start the Standard Program ID Calculator from the Device Template
Wizard (see Creating a Nodebuilder Project from the LonMaker Tool), click
Calculator in the Program ID window. To start the Standard Program ID
Calculatorfrom the New Resource File Set dialog (see Creating a New
Resource File Set or Editing an Existing Set in Chapter 6), click Calculator
in the dialog. The Standard Program ID Calculator appears as shown in the
following figure:

This dialog allows you to choose a value for each part of the standard
program ID. The Program ID field at the bottom of the dialog displays the
current program ID. Enter the following values to set the program ID:

Manufacturer The device manufacturer. Click the arrow to
select from a list of all the LONWORKS device
manufacturers who are members of the LONMARK
Interoperability Association. If your company is a
member of the LONMARK association but is not
included in the list, download the latest program
ID data from www.lonmark.org/spid. If your
company is not a member of the LONMARK
association, get a temporary manufacturer ID
from www.lonmark.org/mid. If your company is a
LONMARK member, but not listed in the updated
program ID list, or if you have a temporary
manufacturer ID, select <Enter Number
[Decimal]> in the Manufacturer list, then enter
your manufacturer ID in the field to the right of

Creating and Using Device Templates 5-13

the Manufacturer field. Enter the value in
decimal, the calculator converts it to hex for the
program ID. You do not have to join the
LONMARK association to get a temporary
manufacturer ID, the information required to get
one is very minimal, and there is no fee to get one.
However, if your company is not a member of the
LONMARK Interoperability Association, now is a
good time to join. For more information, see
www.lonmark.org.

Category The general purpose or industry of the device.
Click the arrow to select from a list of categories
maintained by the LONMARK association. The
Category determines the device classes that will
be available in Device Class. Select ALL to have
Device Class show all existing device classes.
Select Profiles By Name to have Device Class
show an alphabetical list of all device classes with
a profile on the LONMARK website. Select
Profiles By Number to have Device Class show
a numerical list (sorted by device class number) of
all device classes with a profile on the LONMARK
website. .

Device Class The primary function of the device. The primary
function of the device is determined by the
primary functional profile implemented by your
device. Your device must implement at least one
functional profile, and may implement multiple
functional profiles. If you implement multiple
functional profiles, determine which is the
primary based on the most typical usage of your
device. Enter one of the following depending on
your primary functional profile:

• If you are using a standard functional profile
other than functional profiles 0 through 6 and
the functional profile is included in the
standard resource file set, click the arrow and
select the functional profile name. The device
class will be set to the functional profile
number for the selected functional profile.

• If you are using a standard functional profile
other than functional profiles 0 through 6 that
has not yet been included in the standard
resource file set, click the arrow and select
<Enter Number [Decimal]>, and then enter
the functional profile key in the two boxes to
the right of Device Class. Enter the last two
decimal digits in the second box, and the
remaining decimal digits in the first box.

5-14 NodeBuilder User’s Guide

• If your primary functional profile is based on
standard functional profiles 1 through 5 (you
cannot use functional profiles 0 or 6 as the
primary functional profile) or a user
functional profile, click the arrow to select
from a list of device classes maintained by the
LONMARK association. You can update the
list by downloading the latest program ID
data from www.lonmark.org/spid. To enter a
device class value that has not yet been added
to the standard list, select <Enter
Number[Decimal]> and enter a decimal
value from 0 to 255 in each of the fields to the
right of the Device Class field (the calculator
converts the values to hex for the program
ID).

Usage The intended usage of the device. The most
significant two bits are determined by the Has
Changeable Interface and Use Field Values
Defined By Functional Profile checkboxes
below the Usage box. If you are using a standard
usage value, set Defined By Functional
Profile, and then click the arrow to select from a
list of standard usage values maintained by the
LONMARK association. You can update the list by
downloading the latest program ID data from
www.lonmark.org/spid. If the primary functional
profile implemented by your device specifies
custom usage values, clear Defined By
Functional Profile, select <Enter
Number[Decimal]> in the Usage list, and then
enter a decimal value from 0--255 in the field next
to the Usage list (the calculator translates the
value to hex for the program ID).

Channel Type The channel type supported by the device’s
LONWORKS transceiver. Click the arrow to select
from a list of channel types maintained by the
LONMARK association. You can update the list by
downloading the latest program ID data from
www.echelon.com/spid. Select Custom if you are
using a transceiver that is not compatible with
any of channel types in the list. To enter a
channel type value that has not yet been added to
the standard list, select <Enter
Number[Decimal]> and enter a decimal value
from 0 to 255 in the box to the right of the
Channel Type box (the calculator converts the
value to hex for the program ID).

Model Number The specific product model. Assign a unique
model number for the specified manufacturer,
device class, usage, and channel type. You may
use the same hardware for multiple model

Creating and Using Device Templates 5-15

numbers depending on the program that is loaded
into the hardware. The model number within the
program ID does not have to conform to your
published model number. This value can be
automatically updated by setting Automatic
Program ID Management in the Program ID
window of the device template wizard (described
earlier in this chapter). Enter a model number
within the range specified in the device template
wizard.

Standard Development
Program ID

Identifies this device as a development or
prototype device. Set this checkbox if the device
has not been certified by the LONMARK
Interoperability Association. When set, the
calculator sets the F field of the program ID to 9.
When cleared, the calculator sets the F field of the
program ID to 8.

Has Changeable Interface Set this checkbox to indicate that the device has a
changeable device interface. Set this checkboxif
the device has any network variables with
changeable types, or if the device supports
dynamic network variables.

 Dynamic network variables are network variables
that are added at installation time by a network
tool. You can only implement dynamic network
variables on host-based devices, so you cannot use
them in any Neuron Chip or Smart Transceiver-
hosted devices that you develop with the
NodeBuilder tool.

 Network variables with changeable types are
network variables whose type can be modified at
installation time by a network tool. You can
implement changeable type network variables on
any type of device. See the Using the Resource
Editor chapter in this document and The Neuron
C Programmer’s Guide for more information.

Usage Fields Defined By
Functional Profile

Set this checkbox if the primary functional profile
implemented by this device defines usage values.
Otherwise, clear the checkbox to specify standard
usage values. When set, the Usage value will be
set to <Enter Number>. Enter the custom usage
value in the box to the right of the Usage box.

Program ID This box is automatically updated when changes
are made to the other boxes. You can also enter
some or all of the program ID components directly
into this box. If you enter values directly, the
calculator updates the other boxes to match what
you have entered.

5-16 NodeBuilder User’s Guide

Using Device Template Targets
Each NodeBuilder device template in the project manager Project pane
contains a Development target and a Release target. These device
template targets define the hardware properties and file dependencies for the
two types of targets that you can build for each device template. Each of
these targets contains the following items:

Hardware Template A file that defines the hardware configuration for
a target. It specifies hardware attributes
including platform, transceiver type, Neuron Chip
or Smart Transceiver model, clock speed, system
image, and memory configuration. Double-click
the hardware template to change the hardware
template properties (see Creating and Editing
Hardware Templates for more information).

Dependencies Lists all the files required to build the application
image for this target. This list is created
automatically when you build the application
image for this target. The list is empty until you
successfully build an application image for this
target.

Right-click the Development or Release target to see a shortcut menu
containing the following commands:

Settings Displays compiling, linking, exporting, and
configuration options for the target.

Set Hardware Template Sets the hardware template to be used for this
target. You can select from all hardware
templates contained in the Hardware
Templates folder. You can also drag a hardware
template from the Hardware Templates folder to
the Development or Release target to specify a
hardware template. You cannot build or clean a
target until it has a hardware template.

Build Builds the application image for this target only.
See Building an Application Image in the
Compiling, Building and Downloading
Applications chapter for more information.

Compile Compiles the application for this target only.
Only the compilation step of the build process is
completed; the application is not linked and the
application image is not created.

Clean Deletes all output files created when building the
target. See Cleaning Build Output Files in the
Compiling, Building, and Loading Applications
chapter for more information.

Build Exclude Determines if this target will be included or
excluded when you build this device template.
When this option is set, the target will be

Creating and Using Device Templates 5-17

excluded from a device templates build, the target
name is dimmed, and a checkmark will appear
next to Build Exclude on the shortcut menu.
When you exclude a target, you can still explicitly
build the target by right-clicking the target and
selecting Build from the shortcut menu. See
Excluding Targets from a Build in the Compiling,
Building, and Loading Applications chapter for
more information

Status Displays the build status for this target. See
Viewing Build Status in the Compiling, Building,
and Loading Applications chapter for more
information.

Inserting a Library into a Device Template
You can add a library to a NodeBuilder device template. A library is a file
with a “.lib” extension containing one or more compiled ANSI C functions.
When you build the application image for a device template, functions are
included from libraries if they are referenced by any code included in the
device template. The code for any unreferenced functions is not included in
the application image.

There are two types of libraries: standard and custom. The standard
libraries are included with the NodeBuilder tool and are automatically
included when you build a device template. Custom libraries are any
libraries that you or a third party creates. Custom libraries must be
explicitly included in a NodeBuilder project. You may also explicitly include
standard libraries in a NodeBuilder project for documentation purposes.

The following standard libraries are included with the NodeBuilder tool, and
are automatically included in every NodeBuilder project (but are not
explicitly listed in the Project pane unless you add them):

Extarith.lib The extended arithmetic function library.
Provides floating point and 32-bit integer math
functions. For more information see the Neuron C
Programmer’s Guide.

Psg.lib The programmable serial gateway library.
Provides serial I/O functions for the PSG/3 and
PSG-20 programmable serial gateways. See the
programmable serial gateway documentation for
more information.

Gen.lib The standard Neuron C support library. Provides
general support functions for Neuron C.

To see a summary of the contents of any library file, type “nlib –r <file
name>”at a command line prompt. To save the summary, redirect the output
to a file by typing “nlib –r <library file name> > <text file
name>”.

You can create your own custom and standard libraries. See the Neuron C
Programmer’s Guide for more information on creating libraries.

5-18 NodeBuilder User’s Guide

To insert a library into a NodeBuilder device template, follow these steps:

1. Expand the device template in the project manager Project pane

2. Right-click the Libraries folder and then click Insert on the shortcut menu.
The following dialog opens:

3. Choose whether you would like to insert a Standard Library or a Custom

Library. Standard libraries are stored in the LONWORKS Images folder;
custom libraries can be stored anywhere.

4. If you chose Standard Library, a dialog opens allowing you to chose from
the libraries in the LONWORKS Images folder. If you select a standard
library, when you build the application image the NodeBuilder tool first
searches for this library in the folder within the Images folder that contains
the system image for the target (for example: c:\LonWorks\Images\Ver12).
If the library is not in that folder, the library in the LONWORKS Images folder
is used (for example: c:\LonWorks\Images).
If you chose Custom Library a dialog opens allowing you to enter the path
name of the library or libraries to be inserted. You can enter multiple library
files by separating the paths with a semi-colon. To browse to a library file,
click the button and then browse to any file with the .lib extension.

Using Hardware Templates
You can create, edit, and assign hardware templates with the NodeBuilder
Project Manager. A hardware template is a file with a .nbHwt extension that
defines the hardware configuration for a target device. It specifies hardware
attributes including platform, transceiver type, Neuron Chip or Smart
Transceiver model, clock speed, system image, and memory configuration.
Several hardware templates are included with the NodeBuilder tool. You can
use these or create your own. Third-party development platform suppliers
may include NodeBuilder hardware templates for their platforms.

Creating and Using Device Templates 5-19

To view the currently defined hardware templates, expand the Hardware
Templates folder in the project manager Project pane. The Hardware
Templates folder contains Standard Templates and User Templates
folders. The Standard Templates folder contains standard NodeBuilder
hardware templates that are included with the NodeBuilder tool. The User
Templates folder contains your custom hardware templates that you can use
in any NodeBuilder projects on this commputer. Any hardware templates
unique to this project are located in the Hardware Templates folder, and
are not contained in the Standard Templates or User Templates folders.

Right-click the Hardware Templates or User Templates folders to open a
shortcut menu that allows you to select from the following commands:

New Creates a new hardware template that will be
added to the selected folder. The Hardware
Template Properties dialog opens. See Setting
Hardware Template Properties for more
information.

 If you are creating a hardware template in the
Hardware Templates folder, you will be
prompted to browse to a location for the hardware
template file. If you are creating a hardware
template in the User Templates folder, the new
hardware template will be placed in the user
hardware templates directory. This folder can be
set in the Options tab of the NodeBuilder Project
Properties dialog. By default, the user hardware
templates directory is
c:\lm\Source\Templates\Hardware. You can
create folders in the user hardware templates
folder, but the NodeBuilder tool will only show
them if they contain at least one hardware
template.

Insert Adds an existing hardware template to the
Hardware Templates folder. A dialog appears
that allows you to browse to and select an existing
hardware template file (“.NbHwt” extension).
This command is only displayed for the
Hardware Templates folder.

Insert Copy Adds a new hardware template to the Hardware
Templates folder that is based on an existing
hardware template. A dialog opens that allows
you to browse to and select an existing hardware
template file. Once you have a hardware template
file, the Hardware Template Properties dialog
opens with the values of the selected hardware
template. You can change these properties as
desired. Otherwise this option is identical to the
New command. You can also drag a standard or
user hardware template to the Hardware
Templates folder to create a copy.

5-20 NodeBuilder User’s Guide

 You cannot add hardware templates to the
Standard Templates folder, so this folder has no
shortcut menu.

 You can also use this command to insert a
NodeBuilder 1.5 device template file (.DTM
extension). In NodeBuilder 1.5, device template
files contained hardware properties.

You can add a hardware template to a device template’s development or
release target by dragging the hardware template from the Hardware
Templates folder to the appropriate Release or Development folder. Each
of these folders can contain only one hardware template. When you drag a
hardware template to one of these folders, it replaces the old one if the folder
already contained a hardware template. You can edit an existing hardware
template by double-clicking it. The Hardware Template Properties dialog
opens.

Do not modify hardware templates in the Standard Templates folder since
any changes that you make will be overwritten by future NodeBuilder
updates. To change a standard template, first insert a copy in the User
Templates folder, and then make any changes to the copy. Future upgrades
of the NodeBuilder tool will not modify any user templates.

You cannot remove hardware templates in the Standard Templates and
User Templates folders since they may be used by other NodeBuilder
projects. You can remove project-specific hardware templates in the
Hardware Templates folder by right-clicking them and then clicking
Remove on the shortcut menu. Removing a hardware template does not
delete the hardware template file; in only removes the hardware template
from the project. After removing the hardware template from the project, you
can use Windows Explorer to delete the file if desired.

Creating and Editing Hardware Templates
You can create and edit hardware templates that describe the hardware
properties for a NodeBuilder target. To create or edit a hardware template,
create a new hardware template, copy a hardware template, or open an
existing hardware template as described in Using Hardware Templates in the
previous section. Then set the hardware properties as defined in the
following sections.

Setting Hardware Properties
You can set hardware properties for a hardware template on the Hardware
tab of the NodeBuilder Hardware Template Properties dialog. This tab
appears as shown in the following figure:

Creating and Using Device Templates 5-21

You can use this tab to set the properties of the hardware template. If you
open an existing template or create a new hardware template using Insert
Copy, this tab shows the properties of the selected hardware template. If
you create a new hardware template, it contains the default values shown
above. This tab contains the following:

Hardware Template Name The name of the hardware template. By default,
new hardware templates are named Custom 1,
Custom 2, etc. The name may be any valid
Windows file name. The name can contain up to
210 characters, including spaces. The name
cannot contain the following characters: \ / : * ? "
< > |.

Platform The hardware platform. Click the arrow to select
the LTM-10, LTM-10A, LonBuilder Emulator
3150, or a Custom platform. Select Custom if
you are not using an LTM-10 Platform, LTM-10A
Platform, or LonBuilder Emulator as the target
platform, otherwise select your platform.

Transceiver Type The transceiver type. Each transceiver type
identifies a unique set of transceiver parameters
that are included in the application image if the
boot image is included. Click the arrow to select
from a list of transceiver types supported by the
selected Neuron Chip or Smart Transceiver.
Select <Default> to use the default transceiver
specified in the project default settings.

5-22 NodeBuilder User’s Guide

Neuron Chip Model The Neuron Chip or Smart Transceiver model.
Click the arrow to select from a list of all Neuron
Chip and Smart Transceiver models supported by
the selected platform.

Clock Speed The input clock speed for the Neuron Chip or
Smart Transceiver. Click the arrow to select from
a list of the available clock speeds for the selected
Neuron Chip and transceiver, or the selected
Smart Transceiver. See your Neuron Chip or
Smart Transceiver data book for more
information.

System Image Version The system image version number. Click the
arrow to select from a list of the available system
image versions for the selected Neuron Chip or
Smart Transceiver model. See your Neuron Chip
or Smart Transceiver data book for more
information. Select <Default> to use the default
system image which is the most current system
image version included with this version of the
NodeBuilder tool and any applied service packs.
Select <Custom> to specify your own custom
system image in the Image Name field. See the
Neuron C Programmer’s Guide for information on
creating custom system images.

Image Name The file name of the system image. If you select
<Custom> in System Image Version you can
enter a system image file name or browse to a
system image symbol file (.sym extension) by
clicking the button.

Viewing and Setting Memory Properties
You can view the on-chip memory properties for a hardware template on the
On-chip Memory tab of the NodeBuilder Hardware Template Properties
dialog. This tab appears as shown in the following figure:

Creating and Using Device Templates 5-23

This tab provides details on how on-chip and off-chip memory is organized on
the selected Neuron Chip or Smart Transceiver model.

On-chip memory values are dependent on the chip type and may not be
modified with the exception of extended RAM (see Using On-Chip Extended
RAM, later in the chapter). A value of 0x0000 will be shown for Start and
End for any unavailable memory category.

Off-chip memory values are shown for chips that support off-chip memory.
The Neuron 3120 Chip and 3120 Smart Transceiver do not support off-chip
memory, so all fields in this tab will be set to N/A for these parts. A value of
0x0000 will be shown for Start and End for any unavailable memory. You
can modify the off-chip memory start and end locations by clicking the arrows
or by manually entering the hexadecimal values.

If you are using a Neuron 3150 Chip or 3150 Smart Transceiver, this tab
specifies the type of non-volatile memory (EEPROM, FLASH, and
NVRAM), if any. If EEPROM is selected, the Write Time field specifies the
EEPROM write time. If Flash is selected, the Sector Size field specifies for
flash memory sector size. See the Neuron Chip or Smart Transceiver data
book for more information.

For devices where the system image is kept in non-volatile memory, select
either Flash or NVRAM. EEPROM is not supported for this configuration.

Using On-Chip Extended RAM
You can use the 2KB extended RAM on the Toshiba TMPN3150FR4F Neuron
Chip. Extended RAM is on-chip RAM beyond the 2KB RAM in most Neuron
3150 Chips. If you are using the Toshiba TMPN3150FR4F chip, you can
enable the extended RAM and assign its starting address to any available

5-24 NodeBuilder User’s Guide

page boundary. You cannot use extended RAM if you use off-chip RAM, but
you can use extended RAM with off-chip EEPROM, flash memory, or
memory-mapped I/O. To use extended RAM on a Toshiba TMPN3150FR4F
chip, follow these steps:

1. Create a new Hardware Template or edit an existing one.

2. Select the Hardware tab, and then set the Neuron Chip Model to
TMPN3150FR4F.

3. Select the Memory tab. The Enable On-chip Extended RAM
checkbox will be set. When this checkbox is set, the Off-chip RAM field
changes to On-chip, Extended RAM, as shown in the following figure:

4. Set the starting address for the on-chip extended RAM. This address

must be a multiple of 256 bytes (i.e. a page boundary).

If you are using off-chip RAM with a Toshiba TMPN3150FR4F chip, you
must disable the extended RAM. To disable extended RAM, follow these
steps:

1. Create a new Hardware Template by right-clicking the Hardware
Templates or User Templates folder and selecting New from the
shortcut menu (see Using Hardware Templates, earlier in this chapter).
The NodeBuilder Hardware Template Properties dialog opens.

2. Select the Hardware tab, and then set the Neuron Chip Model to
TMPN3150FR4F.

3. Select the Memory tab. Clear the Enable On-chip Extended RAM
checkbox.

Setting the Hardware Template Description
You can enter a description for a hardware template using the Description
tab of the NodeBuilder Hardware Template Properties dialog. This tab
appears as shown in the following figure:

Creating and Using Device Templates 5-25

Enter an optional description of the hardware template. This description will
be saved in the hardware template file and will be available if this hardware
template is used in other NodeBuilder projects.

5-26 NodeBuilder User’s Guide

Generating Neuron C Code Using the Code Wizard 6-1

6

Generating Neuron C Code
Using the Code Wizard

This chapter describes how to define your device interface and
generate source code that implements the device interface. It
explains how to use the NodeBuilder Code Wizard to define the
network variables, configuration properties, and functional
blocks to be implemented by the device.

6-2 NodeBuilder User’s Guide

Introduction to the NodeBuilder Code Wizard
The NodeBuilder Code Wizard generates Neuron C source code that
implements a device interface that you specify. The device interface defines
the functional blocks, network variables, and configuration properties that
are implemented by your device. As described in Introduction to LONWORKS
Networks, network variables define the information the device can share with
other LONWORKS devices on the network. Configuration properties define the
information that can be configured by an LNS plug-in or a configuration
property browser such as the LonMaker Browser. Functional blocks group
network variables and configuration properties into functional units.

Starting the Code Wizard
You can start the NodeBuilder Code Wizard when you are creating a new
device template with from the New Device Template Wizard. To do this, set
the Start NodeBuilder Code Wizard checkbox in the Target Platforms
window of the New Device Template Wizard.

You can also start the Code Wizard at any time from within the NodeBuilder
Project Manager by right-clicking a device template in the Project pane and
clicking Code Wizard on the shortcut menu.

Enter the following information:

Generating Neuron C Code Using the Code Wizard 6-3

Device Template The name and program ID of the NodeBuilder
device template. To change the device template
program ID, right-click the device template in the
Project pane and select Properties from the
shortcut menu.

Configuration Property
Access Method

Configuration properties may be accessed using
read and write network management commands,
or they be accessed using the LONWORKS File
Transfer Protocol (FTP). The Direct Memory
Read/Write option is the default, requires less
space and code on the target device, and is the
recommended option.

If you select Direct Memory Read/Write, the
Code Wizard automatically implements the
NodeObject functional block’s nvoFileDirectory
optional network variable. It will not be allowed to
implement the nviFileReq, nviFilePos, or
nvoFileStat optional network variables.

If you select File Transfer Protocol , the Code
Wizard automatically implements the
NodeObject functional block’s nviFileReq,
nviFilePos, and nvoFileStat optional network
variables. It will not be allowed to implement the
nvoFileDirectory optional network variable.

Resource Pane Lists all the resources in the resource catalog.
Also lists all the resources that are available in
these resource files. You will drag resources from
the Resource pane to the Interface Pane to define
your device interface. The Resource pane behaves
identically to the NodeBuilder Resource Editor.
The resource catalog is typically stored in the
LONWORKS Types\LDRF.CAT file.

Interface Pane The functional blocks, network variables, and
configuration properties in the device interface.
You will drag resources from the Resource pane to
the Interface Pane to define your device interface.
See Defining the Device Interface for more
information.

Generate and Close Click this button to generate a Neuron C code
framework and close the Code Wizard. The
Neuron C code generated by the Code Wizard is
described under Code Generated by the Code
Wizard later in this chapter.

Close Click this button to close the Code Wizard. If you
have made changes, you will be asked whether you
want to save them or not.

Use this button to save changes you made without
generating the Neuron C source code. You are

6-4 NodeBuilder User’s Guide

responsible for synchronizing the Neuron C source
and Code Wizard’s view of the device interface.
Click Generate and Close to have the source
code generated that matches the interface defined
in the Code Wizard.

Defining the Device Interface
When you open the NodeBuilder Code Wizard with a new device template,
the Interface pane looks as follows:

You can use the Interface pane to browse the device interface. At the top
level is the device template name, called NcExample in this example, and
beneath it are three folders labeled Functional Blocks, Network
Variables, and Configuration Properties.

The Functional Blocks folder contains all the functional blocks contained in
this device interface. The Network Variables folder contains all the device
network variables for this device interface. The Configuration Properties
folder contains all device configuration properties for this device interface.
Device network variables and device configuration properties belong to the
device as a whole; they are not contained by any functional block.

If an item in the Interface pane has a next to it, the item contains other
items. Click the plus to expand an item. If you expand the initial
NodeObject functional block and its Manadatory NVs folder, the Interface
pane looks like this:

The Code Wizard requires every device interface to contain a Node Object
functional block with nviRequest and nvoStatus network variables. The
Node Object functional block is used by network tools to test and manage the
other functional blocks on a device. The Node Object functional block is
required by the Code Wizard, though you can manually delete it from the
generated code. If you remove the Node Object functional block with the
Code Wizard before generating code, you cannot generate code with the Code
Wizard. See the LONMARK Application Interoperability Guidelines and the
Node Object functional profile for more information about the Node Object.

Generating Neuron C Code Using the Code Wizard 6-5

Right-click the device template to open a shortcut menu containing the
following commands:

CP Access Method Specifies a configuration property access method,
as described in Opening the Code Wizard.

Use External FB Name Toggles whether network tools, such as the
LonMaker tool, will see the functional block name
set in the Code Wizard. If this option is turned
off, network tools will see the functional profile
name.

Generate and Close Generate codes and closes the Code Wizard.

Refresh Catalog Refreshes the Code Wizard. If you made any
changes in the Resource pane to network variable
types, configuration property types, or functional
profiles used by the device template, they will now
be reflected in the Interface pane. If you change
the name of a network variable type,
configuration property type, or functional profile
in the Resource pane, it will be removed from the
Interface pane when the Code Wizard is
refreshed and must be re-added.

 You can also refresh an individual functional
block or the device’s Network Variables and
Configuration Properties folders by right-
clicking them and selecting Refresh Catalog
from the shortcut menu.

Properties Select this option to view device template
properties.

Adding a Functional Block to the Device Interface
Each functional block represents a specific function your device performs.
For example, the LonPoint DI-10 device contains 4 hardware digital inputs,
and each has its own functional block. To add a functional block to a device
template, follow these steps:

1. Find the functional profile that defines the functional block in the Resource
pane. Functional profiles are contained in functional profile folders within
each resource file set. The Standard (Scope 0: Standard) resource file set
contains the standard functional profiles. If you have defined your own
functional profiles, they will be located in your resource file sets.

2. Drag the functional profile from the Resource pane to the Functional Blocks
folder in the Interface pane. A new functional block with the same name as
the functional profile (without the SFPT or UFPT prefix, and truncated to 16
characters or less) is added to the device interface. For example, dragging a
SFPTsccChilledCeiling functional profile to the Interface pane creates a
functional block named sccChilledCeilin. If additional functional blocks
are created from the same functional profile, a number is appended to the
name to make the name unique. The functional blocks are sorted by name.

3. If you have selected a functional profile of the same type and scope as an
existing one, you will be asked whether you want to create an array. Click

6-6 NodeBuilder User’s Guide

Yes to create an array of functional blocks. Click No to create a new
functional block using the same functional profile.
You can use a functional block array for two similar functional blocks rather
than two separate functional blocks to reduce RAM and code space
requirements.

4. Right-click the new functional block name then select Rename from the
shortcut menu to change the name of the functional block. LNS network
tools use this name to identify the functional block. This name is not case
sensitive; however, creating a functional block, then removing it and creating
another with different capitalization can cause compilation errors; to avoid
this problem, be sure to delete the old Neuron C file (“.nc” extension) before
creating the new functional block. You may choose to use the functional
profile name to identify the functional block instead. To do this, right-click
the device template in the Code Wizard, and clear Use External FB Name.

5. If you need more than one instance of a functional block in the device
interface, use an array of functional blocks. This will save RAM, code space,
and when clauses. To create a functional block array, right-click the new
functional block name then select Properties from the shortcut menu. Set
Use Array and enter the size of the array.

6. When you add a new functional block, any mandatory network variables
specified by the functional profile are automatically added to the Mandatory
NVs folder within the functional block. This folder exists only if the
functional profile contains mandatory network variables. Similarly, any
mandatory configuration properties specified by the functional profile are
automatically added to the Mandatory CPs folder within the functional
block. This folder exists only if the functional profile contains mandatory
configuration properties. You cannot delete mandatory items from the
functional block.

7. If any of the mandatory network variables do not have a default type set by
the functional profile, set the network variable type for those network
variables. To set the type, double-click the network variable or right-click the
network variable and select Properties to open the Edit Network Variable
Properties dialog. If the NV Type field is not set, choose a network variable
type.

8. Add any optional or implementation-specific network variables or
configuration properties for this functional block. See Implementing Optional
Network Variables, Implementing Optional Configuration Properties, Adding
Implementation-specific Network Variables, Adding Implementation-specific
Configuration Properties, Adding Network Variables to the Device Interface,
and Adding Configuration Properties to the Device Interface for more
information.
You can also add a functional block by right-clicking the Functional Blocks
folder in the Interface pane and selecting Add Functional Block from the
shortcut menu. See Adding a Functional Block to the Device Interface Using
the Add Functional Block Command in the help file for details.

Implementing Optional Network Variables
Functional profiles may specify mandatory network variables that must be
implemented by any implementation of the profile, and may also specify
optional network variables that may be implemented but are not required.
When you add a functional profile to the device interface in the NodeBuilder

Generating Neuron C Code Using the Code Wizard 6-7

Code Wizard, the wizard adds all the mandatory members of the functional
profile to the device interface but does not add any of the optional members.
To implement an optional network variable on a functional block, follow these
steps:

1. Right-click the Optional NVs folder for the functional block in the Code
Wizard Program Interface pane and select Implement Optional NV from
the shortcut menu. Alternately, you can drag a network variable from the
functional profile’s Optional NVs folder in the Resource pane to the
functional block’s Optional NVs folder in the Interface pane. If this
functional profile does not have any optional network variables defined, the
Optional NVs folder will not exist. A dialog appears that is similar to the
following figure:

2. Use this dialog to select the optional network variable to implement from the

optional network variables available in the functional profile. This dialog
contains the following information:
Name The name of the optional network variable as

it will appear to the network integrator. This
name defaults to the name specified by the
functional profile. This name must be unique
within the device, can be a maximum of 16
characters, and is case sensitive.

6-8 NodeBuilder User’s Guide

 Once you add a network variable, you can
rename it by right-clicking it and then clicking
Rename on the shortcut menu.

Array Element Count Indicates if the functional block containing
this network variable is an array, and if so
how many members are in the array. The
optional network variable will be implemented
for each functional block in the array. This
information can be useful when determining
how many network variables have been
created on the device.

Type The type of network variable to implement.

FPT Member Name The name of the network variable member as
specified in the functional profile. Click the
arrow to display all optional network
variables for this functional profile that have
not yet been implemented for this functional
block. If you change this value, the Type and
FPT Member Number values are updated
automatically.

FPT Member Number Each mandatory and optional network
variable in a functional profile is assigned a
unique member number for the profile. This
field indicates the member number of the
currently selected optional network variable.

Direction The direction of the currently selected
optional network variable (Input or Output)
as specified in the functional profile.

Service Type The service type of the network variable
(Unspecified, Acknowledged, Repeated,
or Unacknowledged). This selection is only
available for output network variables. You
can specify the service type of the network
variable if the functional profile has not
specified one. See Adding Implementation-
specific Network Variables, later in this
chapter for more information about service
types.

Modifiers Indicates whether this network variable has
the Synchronized or Polled modifiers. This
selection is only available for output network
variables. See Adding Implementation-
specific Network Variables, later in this
chapter, for more information about network
variable modifiers.

Self-document (sd_string) Optional additional text to be appended to the
self-documentation string for this network
variable. Network variable members of

Generating Neuron C Code Using the Code Wizard 6-9

functional blocks use a standard self-
documentation format that is detailed in the
LONMARK Application Layer Interoperability
Guidelines. The Neuron C Compiler
automatically generates all required self-
documentation information. You can enter a
text string to provide additional notes, which
can be accessed from a network tool. The total
length of the self-documentation string can be
up to 1024 characters, including the
characters automatically generated by the
Neuron C Compiler.

Initializer An optional initializer value for the network
variable. This is the value that will be set
when the device is reset. If this network
variable is a structure, union, float, signed 32-
bit, or enum type, click to open the Edit
Initializer dialog to get more information
about the network variable type (see Editing
the Initializer for Network Variables and
Configuration Properties for more
information).

Set your desired options, and then click OK. The optional network variable
appears in the Optional NVs folder.

Implementing Optional Configuration Properties
A functional profile may specify mandatory configuration properties that
must be implemented by any implementation of the profile, and may also
specify optional configuration properties that may be implemented but are
not required. When a functional profile is added to the device interface in the
NodeBuilder Code Wizard, the wizard adds all the mandatory members of the
functional profile to the device interface but does not add any of the optional
members. To implement an optional configuration property, follow these
steps:

1. Right-click the Optional CPs folder for the functional block in the Code
Wizard Interface pane and then click Implement Optional CP on the
shortcut menu. Alternately, you can drag a configuration property from the
functional profile’s Optional CPs folder in the Resource pane to the
functional block’s Optional CPs folder in the Interface pane. If this
functional profile does not have any optional configuration properties defined,
the Optional CPs folder will not exist. A dialog appears that is similar to
the following figure:

6-10 NodeBuilder User’s Guide

2. Use this dialog to select the optional configuration property to implement

from the optional configuration properties available on the functional profile.
This dialog contains the following information:
Name The name of the configuration property as it

will be used in the Neuron C program. This
name defaults to the name specified by the
functional profile. This name must be unique
within the device, can be a maximum of 16
characters, and is case sensitive.

 Once a configuration property has been added,
you can rename it by right-clicking it and then
clicking Rename on the shortcut menu.

Implement as CP Array Set this checkbox to implement this
configuration property as an array. The
functional profile template may indicate that
this configuration property must be
implemented as an array or that it may not be
implemented as an array; in either of these
cases, this checkbox will be set appropriately
and deactivated.

Generating Neuron C Code Using the Code Wizard 6-11

 See the Neuron C Programmer’s Guide and
Neuron C Reference Guide for more details on
configuration property arrays.

Size The size of the configuration property array if
the Implement as CP Array checkbox is set.
The functional profile template may specify a
minimum or maximum size for the
configuration property array; if you set Size to
a value outside of this range, it will be reset to
the minimum or maximum value (depending
on whether the value you set was too low or
too high). The functional profile may specify a
fixed size for the array; in this case Size will
be set appropriately and deactivated. A
configuration property array can be up to
65500 bytes.

Type The type of configuration property to
implement. If you are implementing a CP
array, this is the type of each element of the
array.

FPT Member Name The name of the configuration property as
specified in the functional profile. Click the
arrow to display all optional configuration
properties for this functional profile that have
not yet been implemented for this functional
block. If you change this value, the Type
value is automatically updated.

FPT Member Number Not applicable to configuration properties.

Restriction Flags Sets the configuration property flags.
Network tools are responsible for checking
these flags and handling configuration
properties appropriately.

 See the Neuron C Programmer’s Guide and
Neuron C Reference Guide for more
information about configuration property
restriction flags.

Implement As Specifies implementation options for the
configuration property. Specifies the following
options:

 Configuration Network Variable – If this
option is set, the configuration property is
implemented as a configuration network
variable. This takes up network variable
resources on the device but the configuration
property can be read, written, and bound just
like a network variable. If this option is
cleared, the configuration property is
implemented within a configuration file.

6-12 NodeBuilder User’s Guide

Configuration properties implemented within
configuration files do not use up any network
variable resources, but they cannot be bound
to output network variables on other devices.

 Static CP – This option is available only if the
configuration property is in a functional block
array. Setting this option creates a single
configuration property to be shared among all
functional blocks in the array. Modifying the
value of the configuration property for any
functional block on the array will modify all of
them - there is actually only one variable
allocated. If this option is cleared, a separate
configuration property will be created for each
functional block in the array. To share a
configuration property between several
functional blocks or network variables that
are not part of an array, see Sharing a
Configuration Property, later in this chapter.

Initializer An optional initializer value for the
configuration property. This is the value that
will be set when the device is reset. If this
configuration property is a structure, union,
float, signed 32-bit, or enum type, click to
open the Edit Initializer dialog to get more
information about the configuration property
type (see Editing the Initializer for Network
Variables and Configuration Properties for
more information).

3. Set your desired options, and then click OK to implement the configuration
property on the functional block. The configuration property appears in the
Optional CPs folder.

Adding Implementation-specific Network Variables
You can add a network variable member that is not defined by the functional
profile. This is called an implementation-specific network variable.
Implementation-specific network variables should be avoided as part of a
device's interoperable interface since they are not documented by a functional
profile. An alternate method to add members to a functional profile is to
define a new functional profile that inherits from an existing profile. This
method results in a new functional profile that you can easily reuse in new
devices and is described in Creating or Modifying aFunctional Profile in the
Editing Resource Files chapter.

In order to add an implementation-specific network variable to a functional
block, the scope of the network variable type must be less than or equal to the
scope of the functional profile upon which the functional block is based. For
example, a UNVT could not be added to a standard function profile, but a
SNVT may be added to a user functional profile.

To add an implementation-specific network variable to a functional block or
device, follow these steps:

Generating Neuron C Code Using the Code Wizard 6-13

1. To add the network variable to a functional block, right-click the
Implementation-specific NVs folder contained by the functional block in
the Code Wizard Interface pane and select Add NV from the shortcut menu.
Alternatively, you can drag a network variable from a Network Variables
folder in the Resource pane to the functional block’s Implementation-
specific NVs folder to add the network variable to the device. A dialog
appears that is similar to the following figure:

2. Specify the type, direction, and other information about the new network

variable using this dialog. This dialog contains the following information:
Name The name of the network variable to be

created as it will appear to the network
integrator. This name must be unique within
the device. This name may contain only
letters, numerals, and the underscore
character, and can be a maximum of 16
characters.

Array Element Count This option cannot be set for an
implementation-specific network variable on a

6-14 NodeBuilder User’s Guide

functional block that is not part of a functional
block array. It can only be enabled for
network variables created directly on the
device interface, as described in Adding
Network Variables to the Device Interface. If
the functional block containing the network
variable is part of an functional block array,
the size of the network variable array is set to
the size of the functional block array.

Changeable Type Set this option to allow the network integrator
to change the type of this network variable.
This allows you to create a network variable
that can send or receive different kinds of
information, depending on how the device is
used. For example, a generic PID controller
device can be implemented using
SNVT_temp_f as the initial type, but allow
this type to be changed by a network
integrator to a range of other types to allow
the PID controller to control, light, pressure,
or other types. You must implement
additional code in your application to support
changeable types. See Using a Changeable-
Type Network Variable , later in this chapter,
and the Neuron C Programmer’s Guide, for
more information.

 This option will only be enabled if the
program ID indicates a changeable interface
(e.g. by setting the Has Changeable
Interface checkbox in the Standard Program
ID Calculator).

Select Resource Types Specifies the resource file containing the
network variable type definition for this
network variable. To use a standard network
variable type (SNVT) for this network
variable, select the Standard option. To use
a user network variable type (UNVT), select
the User-defined option. In order to use a
UNVT, you must first add the resource file
containing the UNVT to the resource catalog,
as described in Editing Resource Files.

Scope The scope of the resource file containing the
UNVT definition. You can only change the
scope if you select User-defined under
Select Resource Types. Each resource file
has a scope and a program ID template. In
order to use a UNVT from a user resource file,
you must select the scope of that resource file,
and the program ID template of the resource
file must match the program ID of the
application to the degree specified by the

Generating Neuron C Code Using the Code Wizard 6-15

scope (e.g. if the scope selector is 4, the
manufacturer and device class components of
the two program IDs must match). Possible
scope selector values for user-defined
resources are the following:

 3 – Manufacturer

 4 – Manufacturer and Device Class

 5 – Manufacturer, Device Class, and
Usage

 6 – Manufacturer, Device Class, Usage,
and Device Model

 Scope selectors 0, 1, and 2 are reserved for use
by the LONMARK association

 Devices that use scope selector 6 should not
use automatic program ID management (see
Device Template Wizard: Program ID in the
Creating and Using Device Templates chapter
for more information).

File Path The path of the resource file containing the
selected SNVT or UNVT definition.

SNVT/UNVT The label and contents of this field will change
depending on the option selected in Select
Resource Types. If you select Standard,
this field will be labeled SNVT and the list
displayed by clicking the arrow will contain all
the SNVTs. If you select User-defined, this
field will be labeled UNVT and the list
displayed by clicking the arrow will contain all
the UNVTs in resource files of the scope
specified in Scope that match the program ID
template to the degree specified by the scope.
The added network variable’s type must have
a scope that is equal to or lower than the scope
of the functional profile upon which the
functional block is based.

 If the network variable has a changeable type,
this value represents the default type.

Direction Specifies whether this network variable used
to receive or send information. Network
variables can only be connected to network
variables of the opposite direction.

Service Type If Direction is set to Output, this value
specifies the default LONWORKS messaging
service that will be used to send network
variable updates for this output network
variable. The network integrator can override

6-16 NodeBuilder User’s Guide

the value selected here. The following options
are available:

 Unspecified — There is no specified service
type. A network tool will determine what
service type is used.

 Acknowledged — This service causes the
device that receives the network variable
message to send a response message
confirming that it was received. If the
response is not received, the message will be
sent again, up to a configurable maximum
number of retries. This service should only be
used for critical data sent to a single device or
small fan-out connection where missing an
update will cause an application failure. This
is the default service.

 Unacknowledged — This service causes the
network variable message to be sent once with
no verification of it being received. This
service should be used for non-critical updates
that can tolerate occasional loss such as a
sensor value with a heartbeat output.

 Unacknowledged Repeat – This service type –
typically called the Repeated service – causes
network variable messages to be sent a
number of times configurable by the network
integrator. There is no verification of the
network variable being received. If the
sending device is not programmed to do
something about network variable update
failures, this service provides reliability equal
to the Acknowledged service while consuming
less network bandwidth for fan-out
connections to more devices than the retry
count. This is because each device must send
at least one acknowledgment for
acknowledged connections. For example, an
acknowledged message to 10 devices will
generate a minimum of 11 packets (one
update, and 10 acknowledgements). A
repeated message with a repeat count of four
to the same ten devices will generate exactly
four packets and will provide the same
probability of delivery as an Acknowledged
message with four retries..

 Note: The Repeated service prevents backlog
estimation from functioning correctly. since
Repeated messages do not indicate the
number of repeated packets that will be
generated. Backlog estimation is a traffic-

Generating Neuron C Code Using the Code Wizard 6-17

prediction mechanism built into the LonTalk
protocol. Repeated messaging in lieu of
Acknowledged messaging can significantly
reduce the number of acknowledgement
packets, and typically provides better system
performance even with the decrease in
backlog estimation accuracy.

Modifiers Indicates if the network variable is
synchronous or polled. These options are only
available on output network variables. If
Polled is specified for the network variable in
the functional profile, this option will be set to
Polled and cannot be modified. Select one of
the following options:

 None — The new network variable is neither
synchronous nor polled.

 Synchronized — The new network variable is
a synchronous network variable. Normally,
when a device application updates an output
network variable multiple times before the
device has a chance to send all the values to
the network, the device sends only the most
recent value. Similarly, when a device
receives several updates from an input
network variable before the device application
can process them, the device application
processes only the most recent update. The
Synchronized option causes the device to
queue and send all output network variable
updates, and causes the device to queue and
process all input network variable updates.
The size of the input and output queues is
limited to the size of the application buffer
queues on the device, so you may need to
allocate additional buffer space on the device
if this option is selected.

 Polled — This option is only available for
output network variables. If this option is set,
this network variable will not automatically
send its value to the network when the value
changes. It will only send the current value to
a device when the device requests the update
via a poll request.

Self-documentation Optional additional text to be appended to the
self-documentation string for this network
variable. Network variable members of
functional blocks use a standard self-
documentation format that is detailed in the
LONMARK Application Layer Interoperability
Guidelines. The Neuron C Compiler

6-18 NodeBuilder User’s Guide

automatically generates all required self-
documentation information. This field can be
used to provide additional notes, which can be
accessed from a network tool. The total length
of the self-documentation string can be up to
1024 characters, including the text that is
automatically generated by the Neuron C
Compiler.

Initializer An optional initializer value for the network
variable. This is the value that will be set
when the device is reset. If this network
variable is a structure, union, float, signed 32-
bit, or enum type, click to open the Edit
Initializer dialog to get more information
about the network variable type (see Editing
the Initializer for Network Variables and
Configuration Properties for more
information).

Advanced Click this button to open the Advanced
Network Variable Properties dialog. This
dialog allows you to view and set advanced
network variable properties. Press F1 while
this dialog is open for more information on the
properties presented there.

3. Set your desired options, then click OK to add the network variable to the
Implementation-specific NVs or Network Variables folder.

Adding Implementation-specific Configuration Properties
You can add a configuration property to a functional block that is not defined
by the functional profile. This is called an implementation-specific
configuration property. Implementation-specific configuration properties
should be avoided as part of a device's interoperable interface since they are
not documented by a functional profile. An alternate method to add members
to a functional profile is to define a new functional profile that inherits from
an existing standard profile. This method results in a new functional profile
that you can easily reuse in new devices and is described in Creating or
Modifying a functional profile in the Editing Resource Files chapter.

In order to add an implementation-specific configuration property to a
functional block, the scope of the configuration property type must be less
than or equal to the scope of the functional profile upon which the functional
block is based. For example, you cannot add a UCPT to a standard functional
profile (except by inheritance), but you may add a SCPT to a user functional
profile.

To add implementation-specific configuration properties to a functional block,
follow these steps:

1. Right-click the Implementation-specific CPs folder contained by a
functional block in the Interface pane and then click Add CP on the
shortcut menu. Alternatively, you can drag configuration properties from
a Configuration Properties folder in the Resource pane to the

Generating Neuron C Code Using the Code Wizard 6-19

functional block’s Implementation-specific CPs folder. A dialog
appears that is similar to the following figure:

2. Specify the type and other information about the new configuration property

using this dialog. Enter the following information:
Name The name of the configuration property as it

will be used in the Neuron C program. This
name must be unique within the device. This
name may contain only letters, numerals, and
the underscore character, and can be a
maximum of 16 characters.

 Once a configuration property has been added,
you can rename it by right-clicking it and then
clicking Rename on the shortcut menu.

Array Element Count You may implement an implementation-
specific configuration property as a single

6-20 NodeBuilder User’s Guide

element, or as an array. An array has a
minimum size of 2 elements, and a maximum
size of 65,500 bytes. The array size is limited
by the amount of available persistent,
modifyable, memory in the device. A linker
error will occur if the specified array size
exceeds the device’s resources.

 See the Neuron C documentation for more
details about implementing configuration
property arrays.

Select Resource Types The type of configuration property to
implement. To use a standard configuration
property type (SCPT) for this configuration
property, select Standard. To use a user
configuration property type (UCPT), first
create or add the UCPT as described in
Editing Resource Files, and then select User-
defined.

Scope The scope of the resource file containing the
UCPT defintion. You can only change the
scope if you select User-defined, specifies the
scope of the resource file containing the UCPT
definition. Each resource file has a scope and
a program ID template. To select a UCPT,
first select the scope of the resource file
containing the UCPT definition. The program
ID template of the resource file must match
the program ID of the application to the
degree specified by the scope (e.g. if the scope
selector is 4, the manufacturer and device
class components of the two program IDs
must match). Possible scope selector values
for user-defined resources are the following:

 3 – Manufacturer

 4 – Manufacturer and Device Class

 5 – Manufacturer, Device Class, and
Usage

 6 – Manufacturer, Device Class, Usage,
and Device Model

 Scope selectors 0, 1, and 2 are reserved for use
by the LONMARK association

 Devices that use scope selector 6 should not
use automatic program ID management (see
Device Template Wizard: Program ID in the
Creating and Using Device Templates chapter
for more information).

FilePath The path of the resource file containing the

Generating Neuron C Code Using the Code Wizard 6-21

selected SCPT or UCPT definition.

SCPT/UCPT The label and contents of this field will change
depending on the option selected in Select
Resource Types. If you select Standard,
this field will be labeled SCPT and the list
displayed by clicking the arrow will contain all
the SCPTs. If you select User-defined, this
field will be labeled UCPT and the list
displayed by clicking the arrow will contain all
the UCPTs in resource files of the scope
specified in Scope that match the program ID
template to the degree specified by the scope.
The added configuration property’s type must
have a scope that is numerically equal to or
lower than the scope of the functional profile
upon which the functional block is based.

Restriction Flags These options allow you to set configuration
property flags. Network tools are responsible
for checking these flags and handling
configuration properties appropriately. You
can set any combination of the following
options:

 These options allow you to set configuration
property flags. Network tools are responsible
for checking these flags and handling
configuration properties appropriately.

 See the Neuron C Programmer’s Guide and
Neuron C Reference Guide for more
information about configuration property
restriction flags.

Implement As Specifies implementation options for the
configuration property. Specifies the following
options:

 Configuration Network Variable – If this
option is set, the configuration property is
implemented as a configuration network
variable. This takes up network variable
resources on the device but the configuration
property can be read, written, and bound just
like a network variable. If this option is
cleared, the configuration property is
implemented within a configuration file.
Configuration properties implemented within
configuration files do not use up any network
variable resources, but they cannot be bound
to output network variables on other devices.

 Static CP – This option is available only if the
configuration property is in a functional block
array. Setting this option creates a single

6-22 NodeBuilder User’s Guide

configuration property to be shared among all
functional blocks in the array. Modifying the
value of the configuration property for any
functional block on the array will modify all of
them - there is actually only one variable
allocated. If this option is cleared, a separate
configuration property will be created for each
functional block in the array.

Initializer An optional initializer value for the
configuration property. This is the value that
will be set when the device is reset. If this
configuration property is a structure, union,
float, signed 32-bit, or enum type, click to
open the Edit Initializer dialog to get more
information about the network variable type
(see Editing the Initializer for Network
Variables and Configuration Properties for
more information).

Applies To A configuration property can apply to an
entire functional block or to any of the
network variables on the functional block (in
any of the Mandatory NVs, Optional NVs,
or Implementation-specific NVs folders).
You can share a configuration property
between multiple functional blocks or network
variables as described in Sharing a
Configuration Property, later in this chapter.

3. Click OK to add the configuration property to the Implementation-specific
CPs or Configuration Properties folder.

Adding Device Network Variables
You can add a network variable to the device interface outside of any
functional blocks. This allows you to create a non-LONMARK portion of your
device interface for proprietary or legacy information. To add a network
variable directly to the device interface, right-click the Network Variables
folder contained by the device and select Add NV from the shortcut menu.
Alternately, you can drag a network variable from a resource file set’s
Network Variables folder to the device’s Network Variables folder. The
Add Network Variable dialog opens. See Adding Implementation-specific
Network Variables, earlier in this chapter, for more information on this
dialog.

Adding Device Configuration Properties
You can add a configuration property to the device interface outside of any
functional blocks. This allows you to create a non-LONMARK portion of your
device interface for proprietary or legacy information. To add a configuration
property directly to the device interface, right-click the Configuration
Properties folder contained by the device and select Add CP. Alternately,
you can drag a configuration property from a resource file set’s
Configuration Properties folder to the device’s Configuration

Generating Neuron C Code Using the Code Wizard 6-23

Properties folder. The Add Configuration Property dialog opens. See
Adding Implementation-specific Configuration Properties, earlier in this
chapter, for more information.

Editing the Initializer for Network Variables and Configuration
Properties
You can set the initial value for any network variable or configuration
property. For network variables, this is the value that will be set when the
device is reset. For configuration properties, the value will be stored in the
LNS database, and will be set the first time the device is reset after the
application has been loaded into the device. Each network variable and
configuration property dialog has an Initializer field and a button. You
can enter the initial value in the field or click the button to get more
information about the network variable or configuration property type. If you
click the button, a dialog appears that is similar to the following figure:

When this dialog opens, Initializer and Structure Fields will be empty if
no initializer has been previously created for this network variable or
configuration property. If either Initializer or Structure Field are
updated, the other one will be automatically updated, and any fields not set
explicitly will be set to the default values. Click Use Default to set
Initializer and Structure Fields to default values. If it is available, the
default value that is defined in the appropriate resource file will be used,
otherwise it will be zero or the minimum value allowed if zero is out of range.

You can set or change the value of a field by either selecting the field and
single-clicking Value in Structure Fields or directly editing the value in
Initializer. You can add comments or arrange the initializer value to be
displayed in a separate line by editing Initializer directly. If you select a

6-24 NodeBuilder User’s Guide

field in Structure Fields, the corresponding value in Initializer will be
highlighted and vice versa.

You can expand the structure of the network variable or configuration
property using the + and – buttons in the Type column. You can resize the
columns under Structure Fields so you can see all relevant data.

To see the Scalar Details and Limits for a field on the right side of the
dialog, select the field in Structure Fields.

If you change the value in Structure Fields and the selected value is an
enumeration, a list of available enumeration values will be displayed.

Click Use Default to reset the entire structure to its default values. If it is
available, the default value that is defined in the appropriate resource file
will be used, otherwise it will be zero or the minimum value allowed if zero is
out of range.

You can use a preprocessor #define statement to define a string that can be
used as a structure initializer. For example:
#define myInit {FS_XFER_OK, 0, 0 {{{0},
{0x00, 0x00, 0x00, 0x000}, 0}}}

If you do this, you can enter myInit directly in the Initializer field when
creating the network variable or configuration property. The Edit
Initializer dialog will not be aware of the #define statement, and it will not
verify any data you enter.

Click OK to save the changes. The value specified in the Initializer will be
transferred to the Initializer field of the network variable or configuration
property dialog. The Code Wizard will not do any validation on the value
that you specify in Initializer.

If you define an initializer for an array of configuration properties or network
variables and the array size changes, you must redefine the initializer to
reflect the new size. A warning will appear when you change the array size
reminding you to do this.

Sharing a Configuration Property
You can share a configuration property among multiple functional blocks or
network variables. Sharing configuration properties can simplify device
configuration by reducing the number of configuration properties that must
be set by an integrator, and can also reduce the memory required for the
device application. You can use one of the following two methods to share a
configuration property: static configuration property sharing and global
configuration property sharing.

Using Static Configuration Property Sharing
You can share a single configuration property or configuration property array
among all elements of a functional block or network variable array. This is
called static configuration property sharing. To statically share a
configuration property using the NodeBuilder Code Wizard, follow these
steps:

1. Create a new configuration property in a functional block array or open
an existing one.

Generating Neuron C Code Using the Code Wizard 6-25

2. Set the Static CP checkbox. This checkbox is only available if the
functional block is an array.

Using Global Configuration Property Sharing
You can share a single configuration property or configuration property array
among multiple network variables or functional blocks. This is called global
configuration property sharing.

To globally share a configuration property using the NodeBuilder Code
Wizard, follow these steps:

1. Create a new Configuration Property or open an existing one (if you are
sharing optional configuration properties, you will need to implement the
optional configuration property, then double-click it or right-click it and
then click Properties on the shortcut menu). For example, if you
implement two co2Sensor functional blocks (co2Sensor1 and co2Sensor2)
and select the SCPTminDeltaC02 mandatory configuration property for
the first one, the following dialog opens:

6-26 NodeBuilder User’s Guide

If another configuration property with the same type, array size, Implement
As setting, and Applies To setting (i.e. Functional Block or Network
Variable) exists on the device, it will appear in Applies To under Network
Variables or Functional Blocks. In the example above, the device contains
one other SCPTminDeltaCO2 configuration property that applies to a
network variable.

2. To share the configuration property, select one or more of the items from

the Network Variables or Functional Blocks list and click . You
will see a warning that you are about to create a global configuration
property. Click OK to move the selected functional block or network
variable to the Selected Network Variables or Selected Functional
Blocks list. In the example above, the bottom of the dialog will now
appear as shown in the following figure:

Generating Neuron C Code Using the Code Wizard 6-27

The network variable that the originally selected configuration property
applied to will appear in bold gray text to indicate that it is the root
configuration property and cannot be removed from the list of shared
configuration properties. You can remove any of the other configuration
properties..

3. Click OK. If you have shared two mandatory or optional configuration
properties or if you have shared two implementation-specific
configuration properties from a different functional block, they will
appear in the Interface pane of the Code Wizard with the same
configuration property name in their respective folders, as shown in the
following figure:

If you share an implementation-specific configuration property with an
optional or mandatory configuration property within the same functional
block, the implementation-specific configuration property will be removed
from the Program Interface pane.
In this example, the configuration property being created will apply to both
the nvoCO2ppm1 network variable on the co2Sensor1 functional block and
the nvoCO2ppm2 network variable on the co2Sensor2 functional block; the
Neuron C expression co2Sensor1::nvoCO2ppm1::cpValue ==
co2Sensor2::nvoCO2ppm2::cpValue will always be true, since these two
expressions are two different names for the same configuration property.

6-28 NodeBuilder User’s Guide

Note: When using the LonMaker Browser or an LNS Plug-in to update a
shared configuration property, the display may not automatically update the
other shared configuration properties. You can force the Browser to update
its display by opening the Browse menu and selecting Refresh All.
Refreshing an LNS Plug-in display is plug-in specific.

Removing a Shared Configuration Property
To remove a configuration property from a set of shared configuration
propertieshare, follow these steps:

1. Right-click one of the configuration properties that will remain and then
click Properties on the short-cut menu. The CP Properties dialog
appears.

2. Select the configuration property to be removed, and then click . The
configuration property originally selected in the Code Wizard will be
shown in bold gray text and cannot be removed through this dialog. To
remove the configuration property that is shown in bold gray, close the
CP Properties dialog and re-open it for one of the configuration
properties that is to remain.

Each configuration property that is removed from the Selected Network
Variables or Selected Functional Blocks list will be implemented as a
separate, non-shared, configuration property.

Configuration Property Sharing Rules
The following rules apply to configuration property sharing:

1. A configuration property can only be shared between multiple network
variables, or between multiple functional blocks, but not between a
combination of network variables and functional blocks at the same time.

2. All configuration property types can be shared.

3. A configuration property that applies to the entire device cannot be
shared.

4. Multiple functional blocks or network variables can share a configuration
property. A shared configuration property can apply to multiple singular
functional blocks or network variables, a functional block or network
variable array, a number of functional block or network variable arrays,
or any combination thereof.

5. A configuration property that is shared among the members of a
functional block or network variable array must always be shared among
all members of that array.

6. A configuration property can be shared between network variables on
different functional blocks.

7. A configuration property that inherits its type from a network variable
can only be shared between network variables that are all of the same
type. Therefore, all changeable type network variables that share an
inheriting configuration property must also share an instantiation of
SCPTnvType, so that the set of changeable network variables will always
have the same, single, type and so that type changes occur at the same

Generating Neuron C Code Using the Code Wizard 6-29

time.

8. Two (or more) mandatory functional profile template configuration
properties can be implemented using a single, shared, configuration
property provided the shared configuration property meets the
requirements of all individually listed FPT members (e.g. same type,
same array size, etc.).

9. A single configuration property that inherits its type from a network
variable cannot be shared simultaneously by both changeable and non-
changeable network variables.

10. Configuration property arrays that are implemented as arrays of
configuration network variables and that apply to a functional block
array or to a network variable array must be shared.

Using a Changeable-Type Network Variable
You can use changeable-type network variables to implement generic
functional blocks that work with different types of inputs and outputs. For
example, you can create a general-purpose dev ice that can be used with a
variety of sensors or actuators, and then create a functional block that allows
the integrator to select the network variable type depending on the physical
sensor or actuator attached to the device. Another example is a scheduler
that can control a variety of device types by allowing the integrator to change
the type of the output of the scheduler. The Code Wizard generates code that
contains a framework for supporting changeable network variable types.

Starting with version 14, the Neuron firmware implements a new method for
changing the size of a network variable. This new method uses an NV length
override system image extension that is managed by the application.
Whenever the firmware needs the length of a network variable, it calls the
NV length override system image extension to get it. This new method
provides more reliable updates to network variable sizes, since the old
method could cause a device to go applicationless if a power failure occurred
in the middle of a network variable size update. The new system image
extension method only works with version 14 firmware, or newer. Since the
LTM-10A platform does not use version 14 firmware, you can develop an
application that supports both methods, enabling only one of the methods for
each type of platform.

For an in depth discussion of changeable-type network variables and the NV
length override system image extension, as well as a commented source code
example, illustrating all aspects of creating an application that uses
changeable type network variables, see the Neuron C Programmer’s Guide.

To implement a changeable-type network variable using the NodeBuilder tool
and the Code Wizard, follow these steps (see the Neuron C Programmer’s
Guide for a more detailed discussion of each step):

1. Assure that the Program ID selected when the device template was
created has the Changeable Interface option set. You can view this
option by right clicking the device template in the NodeBuilder Project
Manager and clicking Settings on the shortcut menu, and then clicking
the Calculator button to open the Program ID Calculator.

2. Start the Code Wizard.

6-30 NodeBuilder User’s Guide

3. Create a new network variable or open an existing one.

4. Set the Changeable Type checkbox.

5. Click OK to close the network variable dialog and then click Generate
And Close to close the Code Wizard and generate code.

6. Complete the implementation of the nv_length_override function.
Code Wizard provides an empty implementation of this function in the
device template’s main source file. This function should return the length
of any changeable type network variable in the device.

The Code Wizard in NodeBuilder 3.1 uses the #pragma
unknown_system_image_extension_isa_warning directive to to generate
Neuron C source code that will compile, for example, on both a LTM-10A
target (debug platform) and a TP/FT-10F Flash Control Module (release
platform). Code Wizard enables this directive in the device template’s main
header file. If you use a combination of Code Wizard-managed and
handcrafted, you may want to override Code Wizard’s preferences in that
regard by editing the relevant portion of the main header file.
You should only use the older nv_len method to support debugging of an
application containing changeable type network variables on platforms that
do not support the system image extension. For production release, the more
robust system image extension method should be used, and both methods
should not coexist in a production device.

7. Define the behavior of the application when a request to change the
network variable type is received. The application must validate that the
requested type change is supported. If it is not, it must reject the request
(either by setting invalid_request or by setting an application-specific
error and putting the device offline) and set the network variable type
back to the last valid type. If the type change is valid, it must implement
the type and size change.

The Code Wizard does not provide framework code for this task, but a
commented source code example is provided in the Neuron C Programmer’s
Guide.

8. Define how the functional block behaves when sending or receiving
values on changeable type network variables. For each valid type, the
functional block must perform any necessary conversion before operating
on the value.

The Code Wizard does not provide framework code for this task, but a
commented source code example is provided in the Neuron C Programmer’s
Guide.

Changing a Network Variable Type Using an LNS Tool
See the LNS Plug-in Programmer’s Guide for more information on changing
the type of a changeable type network variable from an LNS plug-in.

To change the type of a changeable type network variable using the
LonMaker Browser, right-click the network variable and then click Change
Type on the shortcut menu. This menu item is only available for network
variables with changeable types. The Change Network Variable Type dialog
appears, as shown in the following figure:

Generating Neuron C Code Using the Code Wizard 6-31

Set Standard Network Variable Type to select the type from the SNVTs
detailed in the SNVT and SCPT Master List. Clear this option to select a
type from the available user-defined types.

Set Display Types of Same Size Only to view only network variable types
of the same size as the selected network variable, or clear this option to view
all available network variable types. Although it is possible to change a
network variable to a type that is a different length than the original network
variable, not all LonWorks devices support such a change, and some devices
support such a change only through related LNS device plug-in software.
Check the documentation for the functional block to verify that it supports
changes to types with different lengths before changing the length. Failure
to follow the correct procedures could result in unpredictable
behavior.Requesting an Unsupported Type

The protocol to support changeable type network variables, described in the
Neuron C Programmer’s Guide, details how and when a device should
respond to a request for a type change when the device does not support the
desired type.

This validation and notification requires the device to be attached,
commissioned, and accessible. When designing and configuring a large
LonWorks network, this may not be the case. In this situation, a type change
will be requested during the planning phase, but the device will only be able
to validate and reject a type change when the device is commissioned.

Generic configuration tools like the LonMaker Browser therefore cannot
inform the user of an invalid type request. Specialized tools such as LNS
device plug-in software should be used, when available, and the affected
devices should be validated after the commissioning is complete. The
LonMaker tool’s Manage and Test functions can be used to confirm correct
operation or to detect errors.

6-32 NodeBuilder User’s Guide

Editing Properties in the Code Wizard
You can view and modify properties for the device as a whole or for any
functional block, network variable or configuration property on the device. To
modify the properties for one of these objects, double-click it, or right-click it
and select Properties from the short-cut menu. Any changes that you make
to the properties are reflected the next time you generate code from the Code
Wizard as described in Generating Code with the Code Wizard.

Generating Code with the Code Wizard
You can generate Neuron C source code that implements a device interface
that you specify. The device interface specifies the functional blocks, network
variables, and configuration properties to be implemented by the device. You
can also use the Code Wizard to modify code previously generated by the
Code Wizard.

To generate new or modified Neuron C source code, follow these steps:

1. Start the NodeBuilder Code Wizard by creating a new device template or
from the NodeBuilder Project Manager as described in Starting the Code
Wizard, earlier in this chapter.

2. Define or modify the device interface as described in Defining the Device
Interface earlier in this chapter.

3. Click the Generate and Close button to generate or modify the Neuron C
source code that implements the device interface. The Code Wizard
generates the Neuron C source code. If any read-only files will be
overwritten, a confirmation dialog opens.

See Files Created by the Code Wizard for a description of the files generated
by the Code Wizard. See Code Generated by the Code Wizard for a
description of the features supported by the Code Wizard-generated code.
See Modifying Code Generated by the Code Wizard for information about the
code generated by the Code Wizard and how that code should be modified.
Also see Neuron C Version 2 Features Not Supported by the Code Wizard.

The Code Wizard will perform limited validation on the device template
interface. It will check the following:
• The device template must have a Node Object functional block with an index

of 0.
• Each functional block, network variable, and configuration property name

must not be longer than 16 characters and must be alphanumeric
• The Node Object functional block’s mandatory nvoStatus network variable

must have the synchronized option set. See Viewing Network Variable
Properties in the Code Wizard, earlier in this chapter, for more information.

• The Changeable Type option must not be set for any network variables if
the program ID doesn't have the Changeable Type option set (see Using the
Standard Program ID Calculator.

• A member name must be defined for each implementation-specific network
variable.

• All configuration property types, network variable types, and functional
profiles must have defined resources when code is being generated.

Generating Neuron C Code Using the Code Wizard 6-33

• All network variables must have a specific type. Some functional profiles
contain network variables with no pre-determined type (referred to as
SNVT_xxx); The Code Wizard forces a specific and valid type to be assigned to
these network variables.

Files Created by the Code Wizard
The Code Wizard generates the following files into the source file folder (see
New Device Template Wizard: New Device Template in the Creating and
Using Device Template Wizard.

Main Source File:
<Device Template
Name>.nc

The main source file for the Neuron C application.
All other files generated by the Code Wizard are
included in this one using #include statements.

This file also contains the declaration of globally
shared CP families , global when tasks, such as
the when (reset) task, and the
get_nv_length_override() system extension
function.

Main Header File:
<Device Template
Name>.h

Header information and function declarations for
the main source file. Defines a number of
constants that are used in the application code.

This file also contains most global preferences
and compiler directives. .

Functional Block Source
Files: <Functional Block
Name>.nc

Contains a Neuron C code framework for each
network variable and configuration property
defined in the functional block. A functional
block source file is generated for every functional
block defined in the device interface.

Once the Code Wizard has generated the
framework, you will implement the functional
blocks’ algorithms. Most of this implementation
will normally be done in the functional block
source files.

Functional Block Header
Files: <Functional Block
Name>.h

Contains header information and function
declarations for the corresponding functional
block source file.

Once the Code Wizard has generated the
framework, you will implement the functional
blocks’ algorithms. Most of the related function
prototypes, type definitions or I/O object and
timer declarations will be done in the functional
block header files.

The following files are common files generated by the Code Wizard. You can
move them to a shared folder so that they can be shared with other
NodeBuilder projects or device templates. To share files that have been
moved to a common share folder, you will need to specify the path in Include
Search Path (see Creating a NodeBuilder Project: Specify Project Default
Settings in the Creating and Opening NodeBuilder Projects chapter and New

6-34 NodeBuilder User’s Guide

Device Template Wizard: New Device Template in the Creating and Using
Device Templates Chapter.

Each time you generate code using Code Wizard, it searches for each of the
common files on the Include Search Path. If it exists, Code Wizard uses
the one in the common folder; otherwise it creates the file in the source files
folder.

common.nc Common functional block functions such as
enable, disable, and override. Several utility
functions contained in this file may remain
unused. You can remove these functions to re-
gain code and data space on the device (you
should not do this if you are sharing this file
between multiple projects). You typically do not
have to modify the functions in this file.

 When compiling, the Neuron C compiler will issue
several messages referring to symbols being
defined in common.nc, but not used. The Code
Wizard-generated framework does not include the
#pragma ignore_notused compiler directive to
supress these warnings. Review each of these
efficiency warnings once your device’s
implementation nears completion; you may find
many of these functions useful during your
development but you may also find some of them
are not required for your application.

common.h Header information and function declarations for
common.nc.

filesys.nc Functions used to facilitate transfer of
configuration properties implemented as
configuration files. This file is generated only if
the File Transfer Protocol configuration
property transfer mode is selected. (see Opening
the Code Wizard, earlier in this chapter).

 The filesys.nc file implements a simple file system
that targets the Neuron memory space. You may
chose to implement a different filesystem to
support, for example, storage of configuration
property values in off-chip I2C EEPROM devices.
See comments in filesys.nc and filesys.h files for
more information.

filesys.h Header information and function declarations for
configuration properties implemented as
configuration files.

 This file contains type definitions and macros that
are used to define the File Directory structure,
and will be included irrespective of the chosen
configuration propert transfer mode.

Generating Neuron C Code Using the Code Wizard 6-35

filexfer.nc Functions used to implement FTP transfer of
configuration properties. This file is generated
only if the File Transfer Protocol configuration
property transfer mode is selected.

 This file contains the implementation of the
actual file transfer protocol, and does not
normally require changes.

filexfer.h Header information and function declarations for
filexfer.nc. This file is generated only if the
File Transfer Protocol configuration property
transfer mode is selected, and does not normally
require modification

NodeObject.nc Implementation of the Node Object functional
block. This file contains the core of the Code
Wizard-generated framework; it contains code
that responds to updates to the nviRequest
network variable and routes requests to the
individual functional block director functions.
You will not normally edit this file, but you can
change the feature set and functionality of the
Code Wizard generated framework from here.

NodeObject.h Header for Node Object declarations.

All files generated by the Code Wizard are added to the device template’s
Source Files folder in the Project pane of the NodeBuilder Project Manager.

Code Generated by the Code Wizard
Once you have generated code with the Code Wizard, you can build the device
without error immediately (see Building a NodeBuilder Project).

The Code Wizard generates a number of utility functions for your
convenience. If you do not use these functions, they will unnecessarily
increase the size of your application image and you will see warnings about
unused functions when you compile your application. You can eliminate
these warnings, reduce application image size, and decease your application
download time by commenting out or removing any unused functions. You
can build your application and look for NCC#310 warnings to identify your
unused functions.

Code Wizard-generated code contains the following features:
• File directory structure. If the application has any configuration properties

implemented within configuration files, the Code Wizard creates code to
reference the configuration property template and value files, for both direct
memory read/write and FTP configuration property access. The two access
methods cannot co-exist, and are thus treated as mutually exclusive.

• FTP Server. If FTP is used to access configuration property template and
value files, and at least one configuration property within a configuration file
has been implemented, the Code Wizard code also provides an
implementation of the FTP server. The default implementation of the FTP
server supports read and write access with both sequential and random

6-36 NodeBuilder User’s Guide

access. The FTP server supports configuration files with sizes up to the
amount of available space on the Neuron Chip or Smart Transceiver. This
space is equal to 64 KB minus any address space used for code, data, I/O, or
other firmware features. The default implementation of the FTP server does
not support local initiation or dynamic creation of files, but partially
implements the framework for these operations. See filexfer.h for more
details, if you wish to enhance or reduce the feature set provided by the
default FTP server implementation.

• File System. If FTP is used to access configuration property template and
value files and the default FTP server is used, a minimalistic file access
system is implemented in filesys.nc. The FTP server uses this file system
to read or write data to the local files. The default file system is used to
access data located in the Neuron memory space, but can be changed or
extended to support other data storage techniques. For example, a modified
file system could support storage of CP value files in an offchip EEPROM
that is accessed using a Neuron Touch I/O model.

• Default directors for each functional block or functional block array. The
source code for each functional block or functional block or array contains a
default implementation of a director function. When refining the Code
Wizard-generated code for a less generic, but more resource-efficient
implementation, you can change this scheme and implement a smaller
number of more powerful director functions, shared between multiple
functional blocks or functional block arrays. In some cases, the default
framework results in multiple, almost identical, director functions. Code
space can be saved in cases where a single director can serve multiple
functional blocks or functional block arrays.

• when() task for each functional block or functional block array. This task
provides notification upon incoming network variable updates for the
functional block or array of functional blocks. If the functional block has no
input network variables, no when task is generated. If the functional block
implements multiple input network variables, a single when task is created
to serve all associated input network variables. Implementing one when task
to process updates to multiple input network variables may require extra
code to determine which network variable received an update. On the other
hand, the Neuron firmware’s scheduler turnaround time benefits from a
smaller number of when tasks. You will sometimes need to optimize the
implementation to meet your application’s needs in that regard, balancing
runtime performance, device responsiveness, and memory requirements.

• Code to handle device and functional block requests on the Node Object. The
Code Wizard generates code for the nviRequest and nvoStatus network
variables on the Node Object functional block. This implementation routes
requests to the functional block or blocks concerned by calling the relevant
director functions, and provides a default implementation that allows for the
following requests to be honored: RQ_REPORT_MASK, RQ_UPDATE_STATUS,
RQ_DISABLED, and RQ_ENABLE. Handling for other requests is partially
implemented but must be completed by the developer. See the comments in
the director functions generated by the Code Wizard and the LONMARK
Application-Layer Interoperability Guidelines for more information.

• A set of utility functions to manage functional block state. Code Wizard
generates common.h and common.nc, which contain a number of utility
functions. See these files for more information on these functions. You may

Generating Neuron C Code Using the Code Wizard 6-37

choose not to use some or all of these functions. Unused functions in the
common.nc file will cause a compiler warning (NCC#310, Symbol defined but
not used). You should remove unused functions to reduce code space and
application download time.

• Default implementation for system event handling. These are events such as
when reset, online, offline. These system events also get routed to the
different director functions, allowing each functional block director function
to respond to each event in an appropriate way.

Modifying Code Generated by the Code Wizard
The code produced by the Code Wizard provides a framework for your
application. It implements the device interface that you define, but does not
include your application-specific code. Edit the source files generated by the
Code Wizard to implement the functionality required by your device. See the
Editing Neuron C Source Code chapter for more information on editing code
using the NodeBuilder project manager.

Each file generated by the Code Wizard has sections that look like this:
//{{NodeBuilder Code Wizard Start

//{{NodeBuilder Code Wizard End

Neuron C code inside these comments will be modified by the Code Wizard
every time you generate code for the device template. You can edit the
Neuron C code outside these tags, and your changes will not be overwritten
when you run the Code Wizard again.

Inside this Code Wizard generated code, there are commands used by the
Code Wizard that look like this:
//<Command>

These commands indicate where the Code Wizard puts certain pieces of
generated code. For example, a //<Include Headers> statement precedes
the Code Wizard generated list of include statements. If you want to remove
the Code Wizard statements from Code Wizard control, you can move them
outside the Code Wizard generated code. Once you have moved code outside
of the Code Wizard section indicated by the Code Wizard start
(//{{NodeBuilder Code Wizard Start) and end (//{{NodeBuilder
Code Wizard End) statements you can manage the code on your own
and the Code Wizard will not modify it.

For example, the Code Wizard automatically calculates the number of alias
table entries based on the number of network variables that are currently
implemented, with a maximum of 62. Due to limited resources on the target
device, you may want to set a different different value than provided by the
Code Wizard. The following example is taken from the NodeBuilder example
(see Appendix A). When the Code Wizard generates code, NcExample.h
contains the following statements:

//{{NodeBuilder Code Wizard Start
:
:
// <CP Access>

6-38 NodeBuilder User’s Guide

#define _USE_DIRECT_CPARAMS_ACCESS
//
//<Alias Entries>
#pragma num_alias_table_entries 15
//
//<Node Description String>
//
//<External Name>
#define USE_EXTERNAL_NAME
//
:
:
:
:
//}}NodeBuilder Code Wizard End

You can override the Code Wizard generated code by moving the //<Alias
Entries> command and statements out of the Code Wizard section, as
shown below:

//{{NodeBuilder Code Wizard Start
:
:
// <CP Access>
#define _USE_DIRECT_CPARAMS_ACCESS
//
//<Node Description String>
//
//<External Name>
#define USE_EXTERNAL_NAME
//
:
:
:
:
//}}NodeBuilder Code Wizard End

//<Alias Entries>
#pragma num_alias_table_entries 15
//

Once you take the //<Alias Entries> command out of the Code Wizard
managed section of the code, the Code Wizard will no longer create the
num_alias_table_entries directive. If you add more network variables, you
may need to change the number of alias table entries manually.

The following list suggests ways to modify the Code Wizard-generated code.
The list is not comprehensive and the modifications you make will vary
depending on the purpose of your device:
• Add I/O and timer declarations. Initialize global I/O, timers, and variables in

the when (reset) task (in the main Neuron C file). Initialize functional
block-specific I/O, timers, and variables in the relevant functional block’s
director function. Upon completion of the initialization for each functional
block, release the lockout bit for each functional block and thus allow it to

Generating Neuron C Code Using the Code Wizard 6-39

operate. Here's an example, taken from the NcExample project
(DigitalOutput.nc):

 else if ((TFblock_command)iCommand == FBC_WHEN_RESET)
 // raised by when (reset) task
 {
 // initialize output lines:
 GizmoSetLed(0,
 DigitalOutput[0]::cpDigitalDefault.state);
 GizmoSetLed(1,
 DigitalOutput[1]::cpDigitalDefault.state);
 setLockedOutBit(uFblockIndex, FALSE);
 }

• Add when() tasks to respond to I/O and timer-related events as needed. Add
these event handlers to the main source file if they concern global I/O or
timers, and add them to the individual functional block’s source file if they
concern functional block-specific items.

• The status of each functional block needs to be stored in non-volatile memory
(one byte per functional block). By default, the Code Wizard locates this in
onchip eeprom. If you require additional onchip eeprom and your hardware
template has offchip eeprom available, you can relocate the
PersistentFblockStatus array in far offchip eeprom by changing the statement

#define FBLOCK_PERSISTENT_STATUS_STORAGE onchip eeprom

to

#define FBLOCK_PERSISTENT_STATUS_STORAGE far offchip eeprom

The FBLOCK_PERSISTENT_STATUS_STORAGE macro is defined in the
main header file.

• For functional blocks that implement input network variables, add code to
the Code Wizard-generated <FbName>processNv() function (with
<FbName> being the name of the fblock or fblock array in question). The
CodeWizard-generated framework will only call this function if the object is
in an appropriate state. You can use the built-in Neuron C variables such
nv_in_addr, nv_in_index, or nv_array_index, to obtain more details
about the update from within the <FbName>processNv() function.

For example, the Code Wizard-generated code implements one input network
variable event handler for each functional block or functional block array in
order to achieve short scheduler-cycles, and thus a responsive device. See
step 11 in NodeBuilder Example Task 8: Real Time Keeper for an example
and explanation of how to modify the Code Wizard-generated code in order to
create a when(nv_update_occurs) event handler for each input network
variable.

• When adding code that deals with application messages and contains
unqualified when(msg_arrives) event handlers on a device that
implements FTP with the sender-capability enabled, the sender routine
already implements such an event handler. Since there can only be one such
event handler and since this handler must be the last when-task in
compilation order, you must share your code with the code provided in

6-40 NodeBuilder User’s Guide

filexfer.nc. The FTP server implementation uses the #pragma
scheduler_reset directive if the sender-capability is enabled (this is the
default). See filexfer.nc and filexfer.h for more details.

• The Code Wizard automatically calculates a recommended number of alias
table entries. This number is a function of the total number of network
variables being declared, and will always be larger than 0. Remove
{{NodeBuilder Code Wizard Start <Alias Entries> and
}}NodeBuilder Code Wizard End from the following Code Wizard
generated lines to disable that feature and to provide your own number of
alias table entries:

//{{NodeBuilder Code Wizard Start <Alias Entries>
#pragma num_alias_table_entries XXX
//}}NodeBuilder Code Wizard End

A number of alias table entries must be given. Set XXX to zero to disable
support for LONWORKS network variable aliases. It is highly recommended to
support aliases, resources allowing, due to the benefits when incorporating
the device into a network.

• Consider adding the #pragma enable_sd_name directive. This directive
causes network variables names to be stored in the device’s self-
documentation information. This is useful if the device gets installed when
the device interface file is not available. See the Neuron C Reference Guide
for more information about this directive.

• The code generated by the Code Wizard does not include code to support
LonMark self test routines. See the LONMARK Application-Layer
Interoperability Guidelines for more information.

Neuron C Version 2 Features Not Supported by the
Code Wizard

The following overview summarizes features of the Neuron C Version 2.1
language that are not used or not supported by the Code Wizard. See the
Neuron C Programmer’s Guide and Neuron C Reference Guide for more
information about Neuron C Version 2.1.

Message Tags
• The generation of declarations or the use of message tags is not supported

with the exception of the automatically generated FTP server
implementation that contains an fx_explicit_tag message tag. See also
the unqualified when() clauses, described below.

I/O models
• The Code Wizard does not generate code that declares or uses I/O objects.

Network Variables
• NV arrays. The Code Wizard only generates declarations for an array of

network variables if the network variable applies to an array of functional
blocks. The sizes of the two arrays will be the same (i.e. one network

Generating Neuron C Code Using the Code Wizard 6-41

variable per functional block). The Code Wizard does not support declaring
an array of network variables and distributing the elements of this array
amongst multiple functional blocks or arrays of functional blocks.

• polled network variable modifier. The Code Wizard supports the polled
network variable modifier for output network variables. It does not support
the polled network variable modifier for input network variables. The
latter is used by ShortStack Neuron C model files. This feature is not
required or supported for development of Neuron Chip or Smart Transceiver
hosted devices.

Configuration Properties
• Network variable class config. The Code Wizard does not support the

config network variable class, as this keyword is obsolete. The Code Wizard
supports configuration network variables using the new Neuron C cp
network variable class instead.

• cp_family re-use. Code Wizard-generated code declares one cp_family of a
given type for each instance of a configuration property, unless the
configuration property it references is an array of functional blocks. That is,
if the complete device requires two (or more) configuration properties of type
T, the Code Wizard will generate two (or more) cp_families of type T even
though only one may be required.

To put it another way, a CodeWizard-generated cp_family will always have
a single member unless the configuration properties applies to an array of
functional blocks, in which case the size of that array equals the size of the
cp_family.

• The Code Wizard does not support declaring a configuration network variable
as an array and distributing the elements of this array amongst multiple
functional blocks or functional block arrays.

• The Code Wizard does not support sharing a configuration property amongst
the members of a network variable array that applies to the entire device (i.e.
it is not part of a functional block or functional block array). This restriction
applies to both static and global configuration property sharing scopes.

• range_mode_string. The Code Wizard does not support the Neuron C
Version 2.1 range_mode_string option to support setting the LONMARK
range modification for a configuration property.

when() clauses
• Unqualified when(msg_arrives). The Code Wizard generates an

unqualified when(msg_arrives) task as part of the pre-defined FTP server
implementation (see filexfer.nc). This code is only generated if you
choose the FTP configuration property access method.

If your application processes incoming application messages and includes the
pre-defined FTP server, you must use the existing implementation and
branch out from there into your own handler code. See Modifying Code
Generated by the Code Wizard, earlier in this chapter, for information about
removing part of the Code Wizard-generated code from the Code Wizard's
control.

• when(nv_update_occurs(nv1..nvx)). For functional block or
functional block arrays that contain input network variables, the Code

6-42 NodeBuilder User’s Guide

Wizard always generates a single when() task to handle incoming network
variable updates, using the Neuron C Version 2
when(nv_update_occurs(nv1..nvX)) construct.

Code for multiple when tasks per functional block or functional block array
(assuming each functional block has more than one input network variable) is
not generated.
This implies that all input network variables that belong to a given
functional block or functional block array are to be declared in subsequent
order; refer to the Neuron C Programmer's Guide for more details about the
use of network variable range specifications as arguments to the
nv_update_occurs() function.
The Code Wizard does not generate code to handle the arrival of updates to
configuration network variables.

• #pragma scheduler_reset. The Code Wizard implementation of the FTP
server requires the presence of #pragma scheduler_reset. This is
automatically inserted as needed by the Code Wizard (see filexfer.nc) .

• Note additional comments on the use of the FTP server above.

LONMARK style
• NodeObject. The Code Wizard is limited to generation of devices that have a

valid Node Object functional block, and it enforces this functional block to be
the first functional block in the device’s list of functional blocks. Node Object
functional blocks are identified by their functional profile number being zero
at present scope so you can use your own functional profile for the Node
Object by creating a functional profile with a functional profile number of
zero that inherits from the scope 0 functional profile.

Miscellaneous
• Director Functions. The Code Wizard always creates one director function

per functional block or functional block array. It does not support functional
blocks without director functions, nor does it support the sharing of one
director function amongst multiple functional blocks (with the exception of
functional block arrays). Modifying the director functions to perform these
tasks can lead to significant gains in the application’s memory footprint and
runtime performance, while causing the application to become less generic.
You can optimize the default director scheme if needed.

Generating Neuron C Code Using the Code Wizard 6-43

Editing Resource Files 7-1

7

Editing Resource Files

This chapter describes how to view, create, and edit resource
files using the NodeBuilder Resource Editor.

7-2 NodeBuilder User’s Guide

Introduction to Resource Files
Resource files provide definitions of functional profiles, type definitions,
enumerations, and formats that can be used by network tools such as the
LonMaker tool. The type definitions include definitions for network variable
types and configuration property types.

Resource files are grouped into resource file sets, where each set applies to a
specified range of program IDs. The program ID range is determined by a
program ID template in the file, and a scope value for the resource file set
that specifies the fields of the program ID template that are used when
matching the program ID template to the program ID of a device. The
program ID template has an identical structure to the program ID of a
device, except that the applicable fields may be restricted by the scope. The
scope value can be seen as a filter, indicating the relevant parts of the
program ID. The scope may be one of the following:

0 – Standard

3 – Manufacturer

4 – Manufacturer and Device Class

5 – Manufacturer, Device Class, and Device Subclass

6 – Manufacturer, Device Class, Device Subclass, and Device Model

For a device to use a resource file set, the program ID of the device must
match the program ID template of the resource file set to the degree specified
by the scope. This allows each LONWORKS manufacturer to create resource
files that are unique to their devices.

For example, consider a resource file set with a program ID template of
81:23:45:01:02:05:04:00 and manufacturer and device class scope
(scope 4). Any device with the manufacturer ID fields of the program ID set
to 1:23:45 and the device class ID fields set to 01:02 would be able to use
types defined in this resource file set, whereas resources on devices of the
same class but by a different manufacturer could not access this resource file
set.

A resource file set may also reference information in any resource file set
with a numerically lower scope provided the relevant fields of their program
ID templates match. For example, a scope 4 resource file set can reference
resources in a scope 3 resource file set, provided the manufacturer ID
components of the resource file sets’ program ID templates match.

Scopes 0 through 2 are reserved for standard resource definitions published
by Echelon and distributed by the LONMARK association. Scope 0 applies to
all devices, and scopes 1 and 2 are reserved for future use. Since scope 0
applies to all devices, there is a single scope 0 resource file set called the
standard resource file set. A standard resource file set is included with the
NodeBuilder tool, but periodic updates are available from the LONMARK
association at www.lonmark.org.

You can define your own functional profiles, types, and formats in scope 3
through 6 resource files.

Editing Resource Files 7-3

Most LNS tools, including the LonMaker tool assume a default scope of 3 for
all user resources. If you use scope 4, 5, or 6 resource files, you must
explicitly set the scope in LNS so that LNS uses the appropriate scope. There
are two ways to do this. The first method is to develop a plug-in as described
in Chapter 13, Introduction to LNS Device Plug-ins. Your plug-in will
automatically set the appropriate scope values when it is registered on a
user’s computer. The second method is to modify the device shape's
FbModes user cell as described in Additional Device User Cells in the
LonMaker User's Guide and help file.

Each resource file set may contain definitions for the following resources:

Network Variable Types Type information for network variables. This
information includes the size, units, scaling
factors, and type category (float, integer, signed,
etc) for each type. Network variables can contain
a single value or they can contain a structure or
union containing multiple fields (for example, the
SNVT_date_cal network variable contains 3
fields for the year, month, and day). Network
variables can also contain enumerated values
which allow the network variable to be set to one
of a discrete number of values. Network variables
types are defined in a resource file with a .typ
extension.

Configuration Property
Types

Type information for configuration properties.
This information includes the size, units, scaling
factors, and type category (float, integer, signed,
etc) for each type. Like network variables,
configuration properties can contain structures,
unions, and enumerated values. Configuration
property types are defined in a resource file with
a .typ extension (this is the same file used for
network variable types).

Functional Profiles Functional profiles define a template for
functional blocks. A functional block is a
collection of network variables and configuration
properties designed to perform a single function
on a device. Each functional profile can define
mandatory and optional configuration properties
and network variables. When a functional block
implements a functional profile, it must
implement all mandatory network variables and
configuration properties defined by the functional
profile, and it may implement some, all, or none of
the optional network variables and configuration
properties. Functional profiles are defined in a
resource file with a .fpt extension. Functional
profiles are also called functional profile
templates.

Enumerations An enumeration type is a list of numerical values,
each associated with a mnemonic name. If a
network variable or configuration property type

7-4 NodeBuilder User’s Guide

contains an enumeration, the definitions of the
enumerated values are maintained separately as
an enumeration type. Enumeration types are
defined in a resource file with a .typ extension
(along with network variable and configuration
property types), and may also be defined in a
separate C header file (.h extension).

Language Files Network variable types, configuration property
types, functional profiles, and enumeration types
can all reference text information used to describe
their name, units, and function. This text
information is contained in separate language
files. There is one language file for every
language your resource file set supports. When a
language file is translated, the references
contained in the network variable types,
configuration property types, and functional
profiles still point to the appropriate strings. The
file extension of each language file depends on the
language, and is one of the following:

 Czech "csy"
Danish "dan"
Dutch (Belgian) "nlb"
Dutch (default) "nld"
English (UK) "eng"
English (US) "enu"
Finnish "fin"
French (Belgian) "frb"
French (Canadian) "frc"
French (default) "fra"
French (Swiss) "frs"
German (Austrian) "dea"
German (default) "deu"
German (Swiss) "des"
Greek "ell"
Hungarian "hun"
Icelandic "isl"
Italian (default) "ita"
Italian (Swiss) "its"
Norwegian (Bokmal) "nor"
Polish "plk"
Portuguese (Brazilian) "ptb"
Portuguese (default) "ptg"
Russian "rus"
Slovak "sky"
Spanish (default) "esp"
Spanish (Mexican) "esm"
Swedish "sve"
Turkish "trk"

 Resource files may support localization using
these languages, but cannot support localization

Editing Resource Files 7-5

that requires Unicode (or any other multibyte)
encoding.

Formats Each network variable and configuration property
type must have at least one format defined. This
format describes how the value will be displayed
to or entered by network integrators and network
operators. It is possible to define multiple formats
for a network variable type or configuration
property type. Different formats can provide the
information in a different order (if the value is a
structure or union) or provide a different scaling
factor (for example, the SNVT_temp_f network
variable type has three formats, one for
Fahrenheit, one for differential Fahrenheit, and
one for Celsius). Formats are defined in format
files with a .fmt extension.

You will use the NodeBuilder Resource Editor to create, modify, and view
resource files. The resource editor is a standalone application that you can
start from within the NodeBuilder Project Manager, or that you can start
independently from the NodeBuilder program folder.

Since there may be many resource file sets installed on a user’s computer, a
resource catalog file is used to identify all the directories containing resource
file sets. These directories are called resource folders. The resource catalog is
stored in a file with a .cat extension. By default, the resource catalog is
contained in C:\LonWorks\Types\ldrf.cat, but the directory and
filename may be changed. You can use the resource editor to add and remove
resource folders in the resource catalog.

The SNVT and SCPT Master List defines the SNVTs, SCPTs, and standard
enumeration types. You can view this list by opening the Windows Start
menu, pointing to Echelon LNS Utilities, and then clicking LNS Utilities
and LONMARK Reference Help. Periodic updates to the standard
definitions are published by the LONMARK Assocation at www.lonmark.org.
Standard profile definitions are also available at ww.lonmark.org. You can
also view the current standard resourceSNVT, SCPT, and standaqrd
enumeration type definitions, defined by the LONMARK Association, at
types.lonmark.org.

You can use the Resource Report Generator, as detailed in the Resource
Report Generator User’s Guide to generate documentation of standard and
user-defined resource file sets.

Starting the Resource Editor
You will use the NodeBuilder Resource Editor to create, modify, and view
resource files, and also to add user resource files to the resource catalog. You
can use any of the following methods to start the resource editor:
• Click the Windows Start button, point to Programs>Echelon

NodeBuilder Software, and then click NodeBuilder Resource Editor.
• If you are running the NodeBuilder Project Manager, open the Tools menu

and then click NodeBuilder Resource Editor.

7-6 NodeBuilder User’s Guide

• If you are running the NodeBuilder Code Wizard, the Resource pane provides
the full functionality of the resource editor.

If you open the resource editor from the Start menu or from the NodeBuilder
Project Manager, the NodeBuilder Resource Editor window appears,
displaying a hierarchical view of your resource catalog, as shown in the
following figure:

If you are using the Resource pane in the NodeBuilder Code Wizard, you will
see the same hierarchical view of the resource catalog, but you will not see
the resource editor menus and buttons. As described in this chapter, the full
functionality of the resource editor is available from shortcut menus accessed
from the resource catalog; so all resource editor functionality is available
from within the code wizard Resource pane.

Setting Resource Editor Options
You can set resource editor options that control how resources are displayed
and specify the active language file. To view and modify resource editor
options, click Options on the resource editor’s View menu. The following
dialog opens:

Editing Resource Files 7-7

This dialog allows you to set the following options:

Sort Device Resources Displays resource items sorted by name or by
index. If By Name is selected, resource items are
sorted alphabetically. If By Index is selected,
they are sorted by resource file index.

Active Language Determines the language file that new strings will
be placed in. You can create other language files
and translate the strings as described in Creating,
Modifying, and Translating a Language File. See
Creating and Editing a Language String, later in
this chapter, for more information.

Show Obsolete Resource
Items

Displays resource items that have been marked
obsolete. See Removing and Obsoleting
Resources for more information.

Show Removed Resource
Items

Displays resource items that have been removed.
See Removing and Obsoleting Resources for more
information.

Introduction to Resource Folders
A resource folder is a directory containing one or more resource file sets. You
will typically create your resource file sets in a resource folder with your
company name that is contained in the LONWORKS Types\User folder. For
example, if you work for MyCo, you may create a resource folder in
C:\LonWorks\Types\User\MyCo. If you anticipate creating many resource
file sets, you may organize them in resource folders contained within your
company resource folder.

A resource catalog is a file containing a list of resource folders. The resource
catalog file is a file with a .cat extension. By default, the resource catalog file
is contained in your LONWORKS Types folder and is named ldrf.cat (the full
path is C:\LonWorks\Types\ldrf.cat by default, but you can change the
folder and filename). Network tools use the resource catalog to find all the

7-8 NodeBuilder User’s Guide

resources that are defined on your computer. The resource editor also uses
the resource catalog to display all of your available resources.

The resource editor displays a hierarchical view of your resource catalog, and
all the resource folders and resource files that it contains. The resource
catalog is the top of the hierarchy. The second level of the hierarchy below
the resource catalog file contains entries for each of the resource folders
contained in the resource catalog. In the following figure, the resource catalog
file is C:\LonWorks\type\Ldrf.Cat and it contains two resource folders –
c:\LonWorks\Types and c:\LonWorks\Types\User\Echelon. The
C:\LonWorks\Types folder contains the standard resource file set, and the
C:\LonWorks\Types\User\Echelon folder contains Echelon-specific resource
file sets.

Browsing the Resource Catalog
You can browse the resource catalog to view all the resource definitions
contained within it. Click the icon next to a resource folder to expand the
hierarchy beneath it.

When you expand a resource folder you will see all resource file sets
contained in that folder. Each folder can hold multiple resource file sets.
Each resource file set in the folder is listed with its name and its scope. For
example, the Echelon user resource folder may appear as shown in the
following figure:

Editing Resource Files 7-9

To view or modify the contents of a resource file set, expand it using the
button. When you expand a resource file set you will see six folders
containing resource file components, as shown in the following figure:

Each resource file set contains all of these folders, but some of them may be
empty: Expand these folders to view or modify the following resources:

Network Variable Types

Contains the network variable types defined by this
resource file set.

The network variable types defined here are used to
implement network variables. They can also be
referenced by other network variable or configuration
property types, and may be referenced by functional
profile templates.

Configuration Property
Types

Contains the configuration property types defined by
this resource file set.

The configuration property types defined here are
used to implement configuration properties. These
types will typically be referenced by one or more
functional profile templates.

Functional Profile
Templates

Contains the functional profiles defined by this
resource file set.

Enumerations Contains the enumeration types defined by this
resource file set. Network variable and configuration
property types can use these enumeration types.

Language Files Contains the language files defined by this resource
file set. Each language file contains a set of strings
translated into a specific language. Expand a
language file to browse the individual strings in the
language file.

Language string resources are used to provide
language-dependent details for all of the above
resources.

Formats Contains the formats defined by this resource file set.
Each network variable type and configuration
property type must have at least one format.

7-10 NodeBuilder User’s Guide

Adding a Resource Folder
You can add a new resource folder to the resource catalog. This makes all
resource file sets contained within the folder available to network tools
running on your computer, and also allows you to view and modify the
resource files contained within the folder using the resource editor. To add a
resource folder, follow these steps:

1. Right-click the resource catalog file at the top of the resource catalog, and
then click Add Folder on the shortcut menu. You can also click the Add
Folder () button on the toolbar, or open the File menu and then click
Add Folder. An Add Folder window appears.

2. Browse to the folder to be added to the resource catalog, and then click
OK. The folder should be located in a Types\User\<Manufacturer
Name> folder within your LONWORKS folder (this is
C:\LonWorks\Types\User\<Manufacturer Name> by default). The
resource folder appears in the resource catalog.

Removing a Resource Folder
You can remove a resource folder from the resource catalog. Removing a
resource folder does not delete the resource files within the folder but will
exclude the removed resources from the resource look-up mechanism.

To remove a resource folder, right-click the resource folder to be removed in
the resource catalog, and then click Remove on the shortcut menu. The
resource folder name is removed from the resource catalog.

Be careful not to remove resource folders that contain resource file sets that
are referenced by your remaining resource file sets, or that contain resources
that are used by any Neuron C application you may have in production or
under development.

Use Windows Explorer to delete the related resource files, if you want to
delete them.

Moving a Resource Folder
You can move a resource folder to a different directory. To move a resource
folder, follow these steps:

1. Use Windows Explorer to create the new folder.

2. Use Windows Explorer to move the resource file set to the new folder. A
resource file set consists of a type file (“.typ” extension), functional profile
file (“.fpt” extenstion), format file (“.fmt” extension), and one or more
language files with an extension dependent on the language (“.enu” for
English US strings). A resource file set may become unusable if one or
more of these files are missing, so copy all of these files together if you
copy or move the resource file set to another directory or computer.

3. Remove the old resource folder from the resource catalog as described in
Removing a Resource Folder.

Editing Resource Files 7-11

4. Add the new resource folder to the resource catalog as described in
Adding a Resource Folder.

Refreshing the Resource Catalog
The resource catalog may get out of synchronization with the resource files on
your computer if you update resource files using a tool other than the
resource editor, if you delete a resource file set using Windows Explorer, or if
you copy new resource files into a resource folder using Windows Explorer. If
this occurs, refresh the resource editor by right-clicking the resource catalog
file at the top of the resource catalog and then clicking Refresh Catalog on
the shortcut menu. Any empty resource folders are removed when you
refresh the resource catalog.

Any folders that are not present in your file system will automatically be
removed from the resource catalog. This means that if you add a resource
folder that is in a network or removable drive, and that folder becomes
inaccessible, you will have to add the folder to the resource catalog again once
the folder becomes available.

Searching for a Resource
You can search for specific resources in the resource catalog. You can search
for network variable types, configuration property types, functional profiles,
enumeration types, language strings, or formats. You can search an
individual resource file, a resource file set, a resource folder, or the entire
resource catalog. To search for resources, follow these steps:

1. Right-click the folder to search and then click Search on the shortcut menu.
The search will cover all resources within the folder that you select. The
following dialog opens:

7-12 NodeBuilder User’s Guide

2. Enter the parameters for the search by filling in the following information:

Find What The string to search for. You can enter all or
part of a variable type name, configuration
property type name, functional profile name,
enumeration type name, language string, or
format name. For example, you can enter
“switch” to search for SNVT_switch.

Look in The resource catalog, resource folder, resource
file set, or resource file to search. By default,
this will contain the folder you selected to
begin the search. Click the arrow to increase
the scope of the search. A list of you original
selection and all levels of the resource catalog
above your selection appears.

Resource Types The type of resource to search for. You can
limit the search to Network Variable
Types, Configuration Property Types,
Functional Profile Templates,
Enumerations, Resource Strings, or
Formats. Clear Resource types to search
all resource types.

Match Case Searches for strings with the same case that
you enter in Find What.

Find Whole Word Only Searches for strings where the whole string
matches what you enter in Find What. The
search will not return results that contain the

Editing Resource Files 7-13

string in Find What if it is part of a larger
word.

3. Click Find. The first search result appears in the resource catalog. Close
the Search window to operate on the result, or click Find Next to search for
more results. To stop a search in progress, click Stop.

Creating and Editing a Resource File Set
You can create a new scope 3, 4, 5, or 6 resource file set within any resource
folder. Each resource file set has a number of properties that you will set
when you create the set. You can edit these properties at any time.

The number of resource file sets that you will create will depend on the
number of device types that you expect your company to develop, and the
level of coordination that exists between your developers. For all but the
largest enterprises, you may find it easiest to create a single manufacturer
scope (scope 3) resource file set for your company, and use it to maintain and
distribute all of your company’s user types. Larger enterprises may find it
easier to coordinate manufacturer and device class scope (scope 4) resource
file sets, where a unique resource file set is created for each class of devices.
Very large enterprises can request multiple manufacturer IDs from the
LONMARK association, assign a different manufacturer ID to each major
division that does LONWORKS development, and then maintain a separate
scope 3 resource file set for each division. If your company has multiple
LONWORKS developers, you may find it useful to initially create
manufacturer, device class, and device subclass scope (scope 5) resource file
sets during development, and then copy the definitions to the appropriate
scope 3 or 4 resource file set when complete. You can create a manufacturer,
device class, device subclass, and device model scope (scope 6) resource file
set for any special-purpose types that you want to apply only to a single
device type.

To create a new resource file set or edit an existing one, follow these steps:

1. Add a resource folder for your company if you do not have one already as
described in Adding, Moving, and Removing Resource Folders.

2. To create a new resource file set, right-click the resource folder and then click
New Resource File Set on the shortcut menu. To modify the properties for
an existing resource file set, right-click the resource file set and then click
Open on the shortcut menu. The following dialog opens:

http://types.lonmark.org/

7-14 NodeBuilder User’s Guide

3. Specify the following properties of the resource file set:

Scope/Program ID Locked Prevents modification of the scope or program
ID template for this resource file set. This
option is not displayed when you are creating
a new resource file set because the scope and
program ID template can be freely changed
when you are creating a resource file set. This
option appears when you are modifying a
resource file set because modifying these
options in an existing resource file set can
break resources that reference this resource
file set. You can modify the Scope and
Program ID for an existing resource file set
by clearing Scope/Program ID Locked. Be
sure to fix any references to the resource file
set and any references within the resources
contained in this resource file set if you do
this.

Scope The scope for the resource file set. See
Introduction to Resource Files for more
information.

Program ID The program ID template for the resource file
set. Click Calculator to open the Standard
Program ID Calculator (see Using the
Standard Program ID Calculator). You only
need to specify the program ID template fields
that are required for the selected scope. Set

Editing Resource Files 7-15

all other fields to 0. If you use the standard
program ID calculator, verify that these fields
are set to 0 after closing the calculator. The
Standard Development Program ID
setting is always ignored for resource files and
should be cleared. The required values for
each scope are as follows:

• Scope 3: Manufacturer.

• Scope 4: Manufacturer and Device
class.

• Scope 5: Manufacturer, Device Class,
Usage, Channel Type, Has
Changeable Interface, and Usage
Field Values Defined by Functional
Profile.

• Scope 6: Manufacturer, Device class,
Usage, Channel Type, Has
Changeable Interface, Usage Field
Values Defined by Functional Profile,
and Model Number.

 To change the program ID of an existing
resource file set, create a new resource file set
with the desired program ID and copy the
resources from the old resource file set to the
new one.

 If you attempt to add or create a resource file
set with a duplicate scope and program ID
template to an existing resource file set, a
warning is displayed when you generate the
resource file set. You can resolve the conflict
by removing one of the conflicting sets, or by
changing the scope and program ID template
of one of the sets.

Resource File Set Name The name of the resource file set as it will
appear in the resource catalog. To change the
name of an existing resource file set, you must
copy it and remove the old resource file set, or
edit the resource file names using Windows
Explorer and restart the Resource Editor.

Resource File Set Location The resource folder containing the resource
file set. Depending on which method you used
to create the resource file set, you may be able
to change the resource folder. If enabled, click

 to create or select a new folder. If you
select a folder that is not in the resource
catalog, it will automatically be added. You
cannot change the location for an existing
resource file set. To change the location of an

7-16 NodeBuilder User’s Guide

existing resource file set, copy it to the new
location, then remove the old resource file set.

Data Version The version number of the resource files. By
default, Major is set to 1 and Minor is set to
0 for a new resource file set (i.e. version 1.0).
Increment the major or minor version number
whenever you publish new resource files (see
Generating Resource Files Using the Resource
Editor).

4. Set your desired options, and then click the File Header tab. The following
dialog opens:

5. Enter the following company information for the resource file set:

Creator The name of the company, and optionally the
person, to contact about this resource file set.
The default value is taken from the
NodeBuilder Registration Properties tab.

Phone Number The phone number to contact for questions
about this resource file set. The default value
is taken from the NodeBuilder Registration
Properties tab.

Web ID The Web address of the company that created
this resource file set. The default value is
taken from the NodeBuilder Registration

Editing Resource Files 7-17

Properties tab.

Email Address The email address to write to for more
information about this resource file set. The
default value is taken from the NodeBuilder
Registration Properties tab. Enter a valid
email address for general inquiries, such as
lonworks@echelon.com, or the specific
email address of the resource file set creator
(e.g. joe.block@acme.com).

File Description Text descriptions for the type file, functional
profile, or language file (depending on what
tab is selected). The default value is a string
specifying the scope and file type.

Creator Description Optional additional creator information
(company name, contact information, etc) for
the type file, functional profile, or string file
(depending on what tab is selected). The
default value is a string containing the
information from the NodeBuilder
Registration Properties tab. Changing the
Creator, Phone Number, Web ID, and
Email address fields in this tab will not
update this string.

6. Click OK. If you are creating a new resource file set, it is created and added
to the resource catalog. If you are updating a resource file set, any changes
are written to the resource file set. You can now add new network variable
types, configuration property types, functional profiles, enumeration types,
language strings, and formats to the resource file set. See Creating and
Editing Resources for more information.

The Resource Editor can open older resource file formats. If you open a
resource file set of an older resource file format version, the version will
automatically be updated to the latest available format when you generate
the resource files as described in Generating Resource Files, later in this
chapter. To convert a resource file set to a older version, see Converting a
Resource File, later in this chapter.

Creating and Editing Resources
You can create and edit any resources within a scope 3, 4, 5, or 6 resource file
set. If you are editing a resource file set that you have previously released,
you must be careful to make changes that are backward-compatible with your
released products. You can add a resource at any time and not affect your
existing products. The following sections describe how to create and edit
resources.

7-18 NodeBuilder User’s Guide

Creating and Editing a Network Variable or
Configuration Property Type

You can create and edit network variable types and configuration property
types in any scope 3, 4, 5, or 6 resource file set. Do not attempt to do this in
resource file sets that do not have your manufacturer ID or that you do not
manage. If you create a configuration property types in a scope 6 resource
file set, then create a configuration property in a device based on that type,
note that the network integrator will be unable to preserve the value of the
configuration property when the device is upgraded, since a new
configuration property type (with a new Program ID) will have to be created,
and the tool doing the upgrading will identify it as being a new configuration
property.

To add a network variable type or configuration property type to a resource
file set or to modify an existing network variable type or configuration
property type, follow these steps:

1. To create a new type in a resource file set, right-click the Network Variable
Types or Configuration Property Types folder in the resource file set and
then click New NVT or New CPT on the shortcut menu. To modify an
existing type, double-click the type. The following dialog opens:

The figure above shows the New or Existing Configuration Property
Type dialog. The New Network Variable Type dialog is identical except it
does not contain Type Range Override and Default Value or Inherited

Editing Resource Files 7-19

from a Network Variable.
2. Enter a name for the new network variable type or configuration property

type in NV Name or CP Name. Network variable type names must start
with the letters “UNVT”. Configuration property type names must start with
the letters “UCPT”. By default the name of the network variable or
configuration property type is UNVT<NV Index> or UCPT<CP Index>,
respectively. The network variable or configuration property index is shown
in the status bar at the bottom of the window. Every new network variable
and configuration property in a resource file set will be assigned a unique
index (i.e. if you create a network variable with an index of 1 and then
remove it, the next network variable you create will still have an index of 2.
See Removing and Obsoleting Resources for more information).
By convention, user network variable type (UNVT) names have an
underscore after “UNVT”; the first letter after the underscore is lower case;
and the name uses all lower case with words separated by underscores (i.e.
UNVT_scale_data). By convention, user configuration property type
(UCPT) names do not have an underscore after the “UCPT” prefix, the first
letter after UCPT is lower case, and the name uses mixed case (i.e.
UCPTadcFilter). Network variable type names are limited to 64 characters,
including the “UNVT_” and “UCPT” prefixes. You can use upper and lower
case alphanumeric characters and underscores. You cannot use spaces or
other special characters in names.

3. Select the network variable or configuration property data type in Data
Type.
If you are defining a configuration property type, and the type depends on the
type of a network variable that the configuration property type applies to, set
Inherited From a Network Variable. You can use this to create a
configuration property type that will be used in multiple functional profiles
that require different types. If this checkbox is set, the data type will be set
to INHERITED and cannot be changed and Type Range and Default
Value will be dimmed. When you implement a configuration property that
uses an inherited configuration property type, the network variable the
configuration property inherits from depends on how you implement the
configuration property. If you associate the configuration property with a
network variable, it will inherit its type from the network variable. If you
associate the configuration property with a functional block, it will inherit its
type from the prinicipal network variable on that functional block.
Configuration properties that inherit their type from a changeable type
network variable will automatically change type when the network variable’s
type is changed. See the Neuron C Programmer’s Guide for details about
changeable type network variables. Configuration properties that inherit
their type from a network variable cannot apply to the entire device.
You can create an array type if you are defining fields of a structure or union.
To create a network variable or configuration property type array, first
construct a structure, create a field within the structure, set Array, and then
specify the size of the array in Dimension. See Creating and Modifying a
Structure or Union NV or CP Type.
Also see Adding a Configuration Property Member to a Functional Profile,
later in this chapter, for details about creating arrays of configuration
properties as functional profile members.

7-20 NodeBuilder User’s Guide

If the type is not inherited, click the arrow to select from the following data
types:
BITFIELD A signed or unsigned bitfield, 1-8 bits wide. Only

available for fields within a structure or union.
See Creating and Modifying a Bitfield.

ENUMERATED A signed 8-bit enumerated value. See Creating
and Modifying an Enumerated NV or CP Type.

FLOAT An IEEE 754 standard 32 bit floating point value.

REFERENCE A reference to a network variable type. Uses the
type definition of the referenced network variable
type. If you are creating a structure or union, an
individual field can reference a network variable
type (see Creating and Modifying a Structure or
Union NV or CP Type). If the referenced network
variable type changes in some way, the
referencing type or field will automatically change
as well. See Creating and Modifying a Reference
NV or CP Type for more information.

SIGNED_CHAR An 8-bit signed character value.

SIGNED_LONG A 16-bit signed integer value.

SIGNED_QUAD A 32-bit signed integer value.

SIGNED_SHORT An 8-bit signed integer value.

STRUCTURE A structure containing multiple fields. See
Creating and Modifying a Structure or Union NV
or CP Type.

UNION A union containing multiple fields. See Creating
and Modifying a Structure or Union NV or CP
Type.

UNSIGNED_CHAR An 8-bit unsigned character.

UNSIGNED_LONG A 16-bit unsigned integer value.

UNSIGNED_SHORT An 8-bit unsigned integer value.

4. If you have opened an existing type, Make this Item Obsolete will appear
beneath Data Type. Set this checkbox to make this type obsolete as
described in Removing and Obsoleting Resources, later in this chapter.

5. If you are creating a configuration property type, set the values in Type
Range Override and Default Value (if you are creating a network variable
type, skip to step 6). Set the default value, as well as override minimum and
maximum values. If this is a reference configuration property, these limits
will override the minimum and maximum values set in the Limits tab of the
referenced network variable type.
Use Type Range Override and Default Value to select Minimum,
Maximum, or Default. Enter a hexadecimal value for each of these. You
can only enter raw hexadecimal data, so when setting the default value for a
structure, union, or floating point type, you must know the hexadecimal
representation of the structure, union, or floating point type. See Using the

Editing Resource Files 7-21

LonMaker Browser to Calculate a Raw Value for information on using the
LonMaker browser to determine the hexadecimal representation of complex
types.
You can inspect the formatted version of the data entered into Type Range
Override and Default Value in Formatted Value. If changes have been
made to the type, this value may be based on outdated formatting rules; to
ensure that the latest rules are applied, click OK to save changes and re-open
the configuration property type by right-cliking it and clicking Open on the
shortcut menu.

6. Click the Strings tab. This tab appears as shown in the following figure:

7. Enter or link to text to provide a language-dependent name for the type, a

language-dependent comment about the type, and a language-dependent
name of the units for the type (for example, “Celsius” or “Kilometers-per-
Hour”). If you enter a new string, it is created as a new language string in
the currently active language file (see Setting Resource Editor Options). You
can later translate this string to other languages as described in Searching
for a Language String. See Creating and Editing a Language String for more
information on creating and linking to language strings.

8. Click the Limits tab. This tab appears as shown in the following figure:

9. For scalar types or scalar members of aggregates, set minimum and

maximum allowable values for the type in the Min and Max fields, and the
value to which the network variable or configuration property will be set
when its value is unknown in the Invalid field. By default, Min and Max
will contain the largest and smallest possible values for the Data Type in the

7-22 NodeBuilder User’s Guide

Attributes tab (see Step 3). You can set the limits for each field of a structure
or union. You must create a format for the type for these limits to appear
correctly in network tools such as the LonMaker tool. See Creating and
Editing a Resource File Format for more information.

10. Click the Scales tab. This tab appears as shown in the following figure:

11. Set scaling factors for this type. This allows types to represent values outside

of the limits of the base type. For example, an UNSIGNED_SHORT data
type can contain raw values between 0 and 255. By changing the scale, it
could be used to represent values from 50-305, or from 0 to 510 (but contain
only even values). The formula for converting the raw value to the scaled
value is shown on the tab. By default, Scale A is 1, and Scale B and Scale
C are 0, resulting in identical values for the raw value and scaled value (i.e.
Scaled Value = 1 * 100 * (Unscaled Value + 0)). You can test your scaling
factors by entering a value into Raw Value Example and observing the
scaled value that appears in Scaling Result. You must create a format for
the type for these limits to appear correctly in network tools such as the
LonMaker tool. See Creating and Modifying a Format for more information.

12. Enter your desired values, and then click OK. The new network variable or
configuration property type is added to the Network Variable Types or
Configuration Property Types folder. A default format will be created for
the network variable or configuration property type as described in Creating
and Editin a Resource File Format.

Using the LonMaker Browser to Calculate Raw Values
You can use the LonMaker browser to simplify setting default and
minimum/maximum override configuration property values in the resource
editor (see step 5 in Creating and Editing a Network Variable or
Configuration Property Type). The LonMaker browser calculates the raw
hexadecimal values that you must enter. This value can be difficult to
determine without the LonMaker browser for configuration property types
that use structure, union, or floating point types. To determine the raw
hexadecimal value of a value, follow these steps:

1. Create the configuration property type using the resource editor as described
in Creating and Editing a Network Variable or Configuration Property Type.

2. Add a configuration property based on the configuration property type to the
device interface for a new device type using the Code Wizard (see Adding a
Network Variable to the Device Interface in the Generating Neuron C Code

Editing Resource Files 7-23

Using the Code Wizard chapter).
3. Generate code using the Code Wizard.
4. Build the device as described in Building an Application Image. You do not

need to load the application into a device.
5. Add the device to the LonMaker network drawing.
6. Right-click the device and then click Browse on the shortcut menu. The

LonMaker browser opens.
7. Find the configuration property you created. Right-click the configuration

property and then click Details on the shortcut menu. The LonMaker
browser’s Details dialog opens.

8. Set the individual values of the fields in the structure, union, or the floating-
point value to the desired default or override value and then click OK to
return to the browser.

9. Right-click the configuration property and then click Change Format on the
shortcut menu. The LonMaker browser’s Change Format dialog appears.

10. Select Built-in data types from Format Files, then select Raw (Hex) from
Formats Available, and then click OK to return to the browser. If the
device you are browsing is not commissioned, you will get a warning message,
which you can ignore.

11. In the browser, the value will now be displayed as a comma-separated list of
values. Each value is a two-byte hexadecimal number (the browser removes
leading zeroes).

12. Return to the configuration property type in the resource editor and enter the
hexadecimal value for the default or override. Prepend a zero to any single
digit values in the comma-separated list. For example, if the LonMaker
browser shows a value of 0,5,b,36,c,3,db, enter 00050b360c03db.

Creating and Modifying a Structure or Union NV or CP Type
You can create network variable and configuration property types with
multiple fields, each with their own data type, by defining a type as a
structure or union. The fields in a structure are separate, whereas the fields
in a union may overlap. For example, if a structure type contained an
UNSIGNED_SHORT and an UNSIGNED_LONG field, the total size is 24
bits (8 bits for the short, and 16 bits for the long). If a union type contained
these same two fields, the total size is 16 bits; the short shares the first 8 bits
of the long. Unions and structures can both contain any data types, including
other unions and structures, with the exception of bitfields, which can be
used in structures, but not unions.

Note: While the display of the structure type bears a resemblance to Neuron
C code, it is not in Neuron C syntax, and cannot be cut and pasted directly
into a Neuron C file. To implement a variable using a network variable or
configuration property type in Neuron C, simply declare this variable using
the type name defined in the resource file. For example, SNVT_count
MyCount; defines a variable, not a network variable, of type SNVT_count.

To create a union or structure type, follow these steps:

1. Create a new type as described in Creating and Editing a Network
Variable or Configuration Property Type.

7-24 NodeBuilder User’s Guide

2. Set Data Type to UNION or STRUCTURE. The left pane displays
typedef struct { } or typedef union { }.

3. Right-click the typedef struct or typedef union statement, and
then click Insert Field on the shortcut menu. Enter attributes, strings,
limits, and scales for the new field as described in Creating and Editing a
Network Variable or Configuration Property Type). Name must be a
valid name for an aggregate member in the Neuron C language, but is
otherwise not limited (i.e. it does not have to start with “UNVT” or
“UCPT” for fields). Each field contains its own data type, strings, limits,
and scales. Repeat this step for each field in the structure.

4. Click OK. The new type appears in the Network Variable Types or
Configuration Property Types folder.

To make changes to a field, click the field in the left pane and modify the field
definition.

To remove a field, right-click the field in the left pane, and then click
Remove Field on the shortcut menu.

Creating and Modifying an Enumerated NV or CP Type
You can assign an enumerated type to a network variable type, configuration
property type, or a field in a structure or union. To create an enumerated
type, follow these steps:

1. If the enumeration type you will use does not already exist, create it as
described in Creating and Modifying an Enumeration Type.

2. Create a new type as described in Creating and Editing a Network
Variable or Configuration Property Type. In step 3, set Data Type to
ENUMERATED. Enum Information appears in the dialog as shown in
the following figure:

3. Set Enum Scope to the scope of the resource file set containing the

enumeration type. You can select an enumeration type from the resource
file set containing the type you are creating, or from any resource file set
with a numerically lower scope and compatible program ID template.
File Path is automatically updated to the path of the resource file set
with the appropriate scope and program ID type. Enum Set is updated
to contain all enumerations available in that resource file set.

4. Select the enumeration type to use in Enum Set. Minimum and

Editing Resource Files 7-25

Maximum display the minimum and maximum values for the selected
enumeration type. You can use these values to further restrict the range
of available values for this type.

5. Continue creating the network variable or configuration property type as
described in Creating and Editing a Network Variable or Configuration
Property Type.

Creating and Modifying a Bitfield
You can define a field of a structure as a bitfield. This data type is defined as
a Neuron C bitfield. A bitfield is packed into a byte that can have from 1 to 8
bitfields that can each be 1 to 8 bits, for a total of no more than 8 bits per byte
(for example, you can have one 8-bit field, two 4-bit fields, or 8 1-bit fields in a
byte, or various combinations of these). Two subsequent bitfields whose total
size exceeds the 8 bit boundary automatically cause a gap of unused data
between the fields. To create a bitfield, follow these steps:

1. Create a new structure or union type as described in Creating and
Modifying a Structure or Union NV or CP Type. Set Data Type to
BITFIELD for the bitfield.

2. Enter the following information:

Size The size of the bitfield, in bits, from 1 to 8. The
bitfield size determines the maximum value the
field can contain. An unsigned bitfield of W bits
width can accept values 0..2W-1, a signed bitfield
of width W can hold values -2W/2..+2W/2-1

Offset The offset of the bitfield within the byte. A full
byte is always required regardless of how many
bits in the bitfield are used. This value
determines where in the byte the values will be
set. This value can be from 0 to (8 – Size).

Signed/Unsigned Specifies a signed or unsigned value. An unsigned
bitfield can only contain positive values. A signed
bitfield can contain positive or negative values
with negative numbers values stored using twos
complement notation. Twos complement notation
is created by converting the number to binary,
complementing each bit, and adding 1 to the
resultant binary number.

A signed bitfield with a width of 1 can contain
only two values: -1 (minus one) and 0 (zero). This
is often unwanted; the developer is likely to
require an unsigned bitfield of the same width,
accepting 0 (zero) and +1 (plus one). The use of
unsigned bitfields is recommended due to a
slightly better performance on the Neuron Chip,
but also in order to avoid the common mistake of
declaring bitfields with a width of one bit as
signed.

mailto:lonworks@echelon.com

7-26 NodeBuilder User’s Guide

Unlike the ANSI-C and Neuron C programming languages, device resource
files do not support anonymous bitfields (bitfields that are declared with
signedness and width, but without a name, e.g. int : 3;) or bitfields with a
width of 0. To control the positioning of a bitfield within the compound byte,
set the offset value accordingly. If the Resource Editor detects a gap between
bitfields, it will raise a warning describing the situation and offer to leave the
gap intact, or to close the gap by adjusting the offset preferences accordingly.
Do not allow automatic adjustment if you have purposefully laid out the
bitfields to match some specific requirement.

Creating and Modifying a Reference NV or CP Type
Network variable types, configuration property types, and fields within
structure or union types can be based on existing network variable types (but
not configuration property types) that are defined within the same resource
file, within the standard resource file, or within any other resource file that
has a compatible program ID and scope selector. When this is done, if the
referenced type changes in some way (type size, fields, etc), any configuration
property and network variable types that reference it will automatically be
changed as well. To create a type based on an existing type, follow these
steps:

1. Create a new type as described in Creating and Editing a Network
Variable or Configuration Property Type. In step 3, set Data Type to
REFERENCE. Reference Information appears in the dialog as shown
in the following figure:

2. Set Type Scope to the scope of the resource file set containing the

referenced network variable type. You can select a network variable type
from the resource file set containing the network variable or
configuration type you are creating, or from any resource file set with a
numerically lower scope and matching program ID template. You can
always choose a standard network variable type. File Path is
automatically updated to the path of the resource file set with the
appropriate scope and program ID template, and NV Name is updated to
contain all network variable types available in that resource file set.

3. Set NV Name to the network variable type to use. Type Index and
Type Size are automatically updated when you set this value. Type
Index indicates the index of the network variable type within its
resource file set. Type Size indicates the number of bytes in the selected
network variable type.

Editing Resource Files 7-27

4. Continue creating the network variable or configuration property type as
described in Creating and Editing a Network Variable or Configuration
Property Type.

Creating and Modifying a Functional Profile
You can create and edit a functional profile in any scope 3, 4, 5, or 6 resource
file set. You can define a functional profile that inherits members from a
scope 0 profile, or you can create a new functional profile. When you inherit
from a scope 0 profile, you can add your own members to the scope 0 profile,
or you can override members in the scope 0 profile.

Do not attempt to create or modify functional profiles in resource file sets
that do not have your manufacturer ID or that you do not manage.
Functional profiles are used to create functional blocks. Each functional
profile can contain mandatory and optional network variables and
configuration properties. To create or modify a functional profile in a
resource file set, follow these steps:

1. To create a new functional profile, right-click the Functional Profile
Templates folder in the resource file set and then click New FPT on the
shortcut menu. A new functional profile template will be added to the
resource file set. To modify an existing functional profile, skip to step 3.

2. If this is a new functional profile, enter the name. The name must start with
“UFPT” and may not contain spaces. By convention, there is no underscore
following UFPT; the first letter after UFPT is lower case; and the name uses
mixed case. Functional profile names are limited to 64 characters, including
the “UFPT” prefix. You can use upper and lower case alphanumeric
characters and underscores. You cannot use spaces or other special
characters in names; a functional profile name must meet the requirements
of a Neuron C variable name with the additional restriction that the dollar
character is not permitted in a functional profile name. By convention, the
functional profile name should indicate the application set of the profile, e.g.
“SFPToccupancySensor”, or “UFPTturboCharger”.

3. Double-click the functional profile. The following dialog appears. This dialog
contains three panes: a Resource pane showing all resources that may be
referenced by this functional profile; a Profile pane that displays the network
variables and configuration properties defined as part of this functional
profile; and a Properties pane that displays functional profile properties or
properties of member network variables and configuration properties.

7-28 NodeBuilder User’s Guide

4. Enter the following information about this functional profile in the Properties

pane:
Inherit Members from
Scope 0

Specifies that this functional profile inherits
network variable and configuration property
members from the scope 0 profile with the
same key. You can use this option to add new
members to an existing standard functional
profile, to redefine existing members of an
existing standard functional profile, or both.

 FPT key must be set to a value less than
20000 to inherit from a scope 0 profile. When
this checkbox is set, all network variables and
configuration properties from the selected
standard profile will be referenced by the
functional profile (if there is no standard
functional profile template with the same
profile number, setting this option will have
no effect). You cannot remove any of the
inherited members, but you can add
additional network variables and
configuration properties to the functional
profile as described below, and you can
redefine any of the existing members. All
inherited members will be displayed in pink,
while new ones will be shown in light blue.

 You cannot remove any of the inherited
network variables and configuration
properties, but you can override them. To
override an inherited network variable or

Editing Resource Files 7-29

configuration property, add a new
configuration property or network variable
with the same direction and name. The
capitalization of the name must match. When
you close the pane (e.g. by clicking OK), you
will be prompted to confirm the override.
Overridden network variables and
configuration properties will inherit string
information.

 You must override all configuration properties
that apply to the overridden network variable.
A warning will list any configuration
properties without overrides if you fail to meet
this requirement.

 Inheriting members from a standard
functional profile allows you to extend and
customize the standard functional profiles to
suit your device, while maintaining the
standard interface for increased
interoperability.

Name The name of the functional profile. This name
must start with "UFPT" and may not contain
spaces. By convention, there should be no
underscore following “UFPT, the first letter
after “UFPT should be lower case; and the
name uses mixed case.

 Devices that implement the profile can choose
to publish the profile’s name as part of the
device’s self-documentation, thereby
promoting interoperability. It is therefore good
practice to choose a profile name that
indicates the basic function of the profile.
Examples include UFPTtempSensor,
SFPToccupancyDetector, etc.

FPT Key A unique ID for this functional profile within
this resource file set. Enter a key of 20000 or
greater if you are creating a new functional
profile. Enter the original key (which will be
less than 20000) if you are redefining a
standard functional profile using Inherit
Members from Scope 0. This is the same as
the functional profile number.

FPT Index The index of the functional profile within the
resource file set. The FPT Key (the profile
number) is typically used to reference the
functional profile, not the FPT Index.

Principal NV The name of the principal network variable.
The principal network variable is used to
determine the type of configuration properties

7-30 NodeBuilder User’s Guide

assigned to the functional profile that use an
inherited type, and may also be used to assist
the network integrator by highlighting the
prime network variable associated with this
profile. Since a profile may not contain any
mandatory network variables at all, this name
can be empty. See Adding a Network Variable
or Configuration Property to a Functional
Profile for more information.

Mandatory NV Count The number of mandatory network variables
that have been created in this functional
profile.

Optional NV Count The number of optional network variables
that have been created in this functional
profile.

Mandatory CP Count The number of mandatory configuration
properties that have been created in this
functional profile.

Optional CP Count The number of optional configuration
properties that have been created for in
functional profile.

String Information A language-specific name for the functional
profile and a comment that describes the
purpose of the functional profile. See Adding
Strings to a Language Resource File, later in
this chapter, for more information on creating
and linking to language strings.

5. Add mandatory and optional network variable and configuration property
types to the Profile pane as described in Adding a Network Variable
Member to a Functional Profile and Adding a Configuration Property
Member to a Functional Profile, later in this chapter.

Adding a Network Variable Member to a Functional Profile
You can add mandatory and optional network variables to a functional
profile. When you create a functional block from a functional profile, it must
implement all the mandatory network variables defined by the functional
profile, if any. It may implement some, all, or none of the optional network
variables, and it may add implementation-specific network variables.

You can also add mandatory and optional network variables to a functional
profile that inherits members from scope 0 (see Creating and Modifying a
Functional Profile). The inherited profile initially contains all the members
defined in the scope 0 profile. You can add new members, or your can
redefine existing members. To redefine a member, define a new member
with the same name as the scope 0 member to be redefined

To add mandatory and optional network variables to a functional profile,
follow these steps:

1. Drag a network variable type or configuration property type from the

Editing Resource Files 7-31

Resource (leftmost) pane to the appropriate in the Profile (center) pane.
The Profile pane contains the functional profile definition with
Mandatory NVs, Optional NVs, Mandatory CPs, and Optional CPs
folders for the network variables and configuration properties in the
profile.

2. Select the new network variable to set options for it. The Properties
(rightmost) pane appears as follows:

3. Enter the following information:

Name The name of the network variable member within
the functional profile. The name may contain only
letters, numerals, and the underscore character,
and it must not start with a digit. A prefix is not
required, but you may start input network
variable member names with "nvi” and output
network variable member names with "nvo” to
simplify identifying inputs and outputs in your
functional profile. If you do not use one of these

7-32 NodeBuilder User’s Guide

prefixes, start the network variable name with an
initial capital and use mixed case for the name.

Member A member number for the network variable
within the functional profile. Each network
variable must have a unique member number.
Member numbers may start with a “#” or “|”
character. The “#” prefix identifies members
within a user functional profile. The “|” prefix
identifies member numbers in a scope 0 profile,
both for scope 0 profiles as well as profiles with
members that are inherited from a scope 0 profile.

Reference/Scope The name and scope of the network variable type
of this network variable. You can use Reference
to change the network variable type. You can
change which network variable types are
available in Reference by changing Scope.

Principal NV Designates this network variable as the principal
network variable of this functional profile. Each
functional profile may have one principal network
variable. The principal network variable is used
to determine the type of configuration properties
with inherited types that apply to the functional
profile.

Input/Output Determines whether this network variable is an
input or output.

Service Type Sets the default communication service to use for
an output network variable member. You can
select Acknowledged, Unacknowledged, or
Repeated to specify a specific service, or you can
select Unspecified to leave the default up to the
network tool used to install a device containing a
functional block based on this profile. The service
type may be changed by a network tool when the
device is added to a network, or by the
development tool when the network variable is
being declared. The Service Type field should be
seen as a recommendation, not a requirement.

Polled Identifies an output network variable as a polled
output. Polled outputs do not propagate their
values on the network until they are polled by a
receiving device. The Polled flag should be seen
as a recommendation; the polling preference can
be changed when this profile is implemented with
a development tool.

String Information A language-specific name for the network variable
within the profile and a comment that describes
the purpose of the network variable within this
profile. See Creating and Editing a Language
String for more information on creating and

Editing Resource Files 7-33

linking to language strings.

Referenced Type Range
Override Value

Minimum and maximum values for the network
variable member. A network variable member
with a reference type can have a minimum and
maximum range restriction that is more
restrictive than the range restriction for the
network variable type.

You can enter raw data into this field using any of
the following methods:

• A continuous stream of hexadecimal digits.
Example: 01010101ABCDABCD00

• Dash, colon, or dot separators for optional
grouping. Example: 01010101-ABCDABCD-
00

• A single asterisk character followed by a
decimal multiplier, which repeats the
preceding sequence of hexadecimal digits.
Example: 01*4-ABCD*2-00. The raw data
display may not match what you originally
entered. For example, if you enter “00-00*4,”
it will later be shown as “00*5.”

Formatted Value Displays the translated value based on the raw
value entered in Referenced Type Range
Override and Default Value.

Adding a Configuration Property Member to a Functional
Profile
You can add mandatory and optional configuration properties to a functional
profile. When you create a functional block from a functional profile, it must
implement all the mandatory configuration properties defined by the
functional profile. It may implement some, all, or none of the optional
configuration properties, and it may add implementation-specific
configuration properties.

You can also add mandatory and optional configuration properties to a
functional profile that inherits members from scope 0 (see Creating and
Modifying a Functional Profile). The inherited profile initially contains all
the members defined in the scope 0 profile. You can add new members, or
your can redefine existing members. To redefine a member, define a new
member with the same name as the scope 0 member to be redefined

To add mandatory and optional configuration properties to a functional
profile, follow these steps:

1. Drag a configuration property type from the Resource (leftmost) pane to
the appropriate folder in the Profile (center) pane. The Profile pane
contains the functional profile definition with Mandatory CPs and
Optional CPs folders for the configuration properties in the profile.
Each type that you drag becomes a new member in the profile. You can
drag the same type multiple times to create multiple members of the

7-34 NodeBuilder User’s Guide

same type, however, you cannot create more than one configuration
property of the same type that applies to the same interface within a
functional profile. For example, you can create multiple
SCPTmaxSendTime configuration properties, but you cannot create
two SCPTmaxSendTime configuration properties that apply to the
same network variable. You can, however, create an array of
SCPTmaxSendTime configuration properties that apply to a single
network variable.

2. Select the new configuration property to set options for it. The Properties
(rightmost) pane appears as follows:

3. Enter the following information:

Name The name of the configuration property member
within the functional profile. This name may
contain only letters, numerals, and the underscore
character, and it must not start with a digit. A
prefix is not required, but “nci” and “cp” are
commonly used. If you do not use this prefix,

Editing Resource Files 7-35

start the configuration property name with an
initial capital and use mixed case for the name.

Member A member number of the configuration property
within the functional profile. Each configuration
property must have a unique member number.
Member numbers may start with a “#” or “|”
character. The “#” prefix identifies members
within a user functional profile. The “|” prefix
identifies member numbers in a scope 0 profile,
both for scope 0 profiles as well as profiles with
members that are inherited from a scope 0 profile.

Reference/Scope The name and scope of the configuration property
type of this configuration property. You can use
Reference to change the configuration property
type. You can change which configuration
property types are available in Reference by
changing Scope.

Array
Implementation/Min
Array Size/Max Array
Size

Specifies whether the configuration property
within the profile may be implemented as an
array, must be implemented as an array, or may
not be implemented as an array. Select from the
following values:

Prevent — Functional blocks created using this
functional profile template cannot implement this
configuration property as an array. Min Array
Size and Max Array Size will be deactivated.
This is the default setting, and also applies to all
functional profiles created prior to NodeBuilder
3.1.

Permit — Functional blocks created using this
functional profile template can implement this
configuration property as an array at the
discretion of the implementer. Use Max Array
Size to limit the maximum size of this array.
Min Array Size will be deactivated.

Require — Functional blocks created using this
functional profile template must implement this
configuration property as an array. Use Max
Array Size and Min Array Size to limit the
minimum and maximum size of this array.

CP Settings Options that control how network tools update the
configuration property. See the Neuron C
Programmer’s Guide and the Neuron C Reference
Guide for details about the configuration property
restriction flags.

Configuration property restriction flags are
requirements. When a functional block
implements a profile, each of the implemented
member configuration properties must specify at

7-36 NodeBuilder User’s Guide

least those restriction flags that are set in the
profile. Restriction flags that are not set in the
profile may be set by the implementing property,
unless this would cause an ambiguous restriction
flag set.

Applies To Specifies whether the configuration property
applies to a network variable or the entire
functional block. If the configuration property
applies to a network variable, Applies To also
specifies the specific network variable.

If the configuration property applies to the entire
functional block but itself implements an
inheriting type, the property will derive its type
from the principal network variable. A principal
network variable must be defined in this case.

String Information A language-specific name for the configuration
property within the profile and a comment that
describes the purpose of the configuration
property within this profile. See Creating and
Editing a Language String for more information
on creating and linking to language strings.

Type Range Override
and Default Value

Minimum, maximum, and default values for the
configuration property member. A configuration
property member can have a minimum and
maximum range restriction that is more
restrictive than the range restriction for the
configuration property type it is based upon, and
can have a different default value than the base
type.

You can enter raw data into this field using any of
the following methods:

• A continuous stream of hexadecimal digits.
Example: 01010101ABCDABCD00

• Dash, colon, or dot separators for optional
grouping. Example: 01010101-ABCDABCD-
00

• A single asterisk character followed by a
decimal multiplier, which repeats the
preceding sequence of hexadecimal digits.
Example: 01*4-ABCD*2-00. The raw data
display may not match what you originally
entered. For example, if you enter “00-00*4,”
it will later be shown as “00*5.”

Formatted Value Displays the translated value based on the raw
value entered in Type Range Override and
Default Value.

Editing Resource Files 7-37

Using Cascading Resource File Sets
When adding network variable or configuration property members to a
functional profile, you can add resources that are defined at the profile’s
scope, at the standard scope (i.e. scope selector 0), or at any matching scope
that is numerically less than the profile’s scope.

For example, your company may maintain several resource file sets at
different scopes: a corporation wide set with general-purpose definitions at
manufacturer scope (scope selector 3), and a second set with more specific
resources at device class scope (scope selector 4). This is known as cascading
resource file sets.

It is possible that both sets will contain resources using the same name. For
example, both resource file sets might contain a configuration property type
named UCPTsetpoint.

From a functional profile editing point of view, it is possible to add both
UCPTsetpoint (scope selector 3) and UCPTsetpoint (scope selector 4) to the
same functional profile.

However, the Neuron C language is commonly used to implement functional
profiles. The hypothetical example can cause the Neuron C compiler to
implement the UCPTsetpoint that is defined at the highest scope level
(device class scope, scope selector 4) in both cases.

The Neuron C language requires a configuration property to be implemented
using a declaration that relies on the property type name (UCPTsetpoint).
When searching the entire contents of the resource file catalog for a matching
resource, the Neuron C Compiler will be satisfied with the one found at
device class scope.

Therefore, you should avoid reusing names of network variable or
configuration property types in cascading resource file sets.

Creating and Modifying an Enumeration Type
You can create and edit enumeration types in any scope 3, 4, 5, or 6 resource
file set. Do not attempt to do this in resource file sets that do not have your
manufacturer ID or that you do not manage. An enumeration type is a list of
enumerators that may be assigned to an enumeration network variable,
configuration property, or field of one of these. Each enumerator consists of a
name, value, and associated language string or strings. Network variable
and configuration property types can reference enumeration types as
described in Creating and Editing Enumerated Network Variable and
Configuration Property Types, earlier in this chapter. To create or modify
enumeration types in a resource file set, follow these steps:

1. To create a new enumeration type in a resource file set, right-click the
Enumerations folder in the resource file set and then click New Enum on
the shortcut menu. To modify an existing enumeration type, double-click the
enumeration type. The following enumeration type editor appears:

7-38 NodeBuilder User’s Guide

2. Enter or change the name of the enumeration type in Tag Name. This name

is called the tag name. By convention, the tag name is all lower case, with
each word in the name separated by an underscore, and ending with “_t” (for
example: count_control_t). Tag names are limited to 64 characters, including
the “_t” suffix. You can use upper and lower case alphanumeric characters
(though upper case is typically not used for tag names) and underscores. You
cannot use spaces or other special characters in tag names. When you enter
a name in Tag Name, Header File is automatically set to <Tag Name>.h.
Header File contains the name of the C header file (.h extension) that will
store the enumeration definition. Each enumeration type is stored in its own
header file, which is placed in the resource folder. When resource files are
generated (see Generating Resource Files, later in this chapter), the
enumeration types are stored in the type file (.typ extension). In order to use
the enumeration types in a NodeBuilder project, you must add the directory
containing the header files to the Include Search Path in the Project tab of
the NodeBuilder Project Properties dialog.

3. Enter or change the enumerators in the table. For each enumerator, enter
the following information:

Editing Resource Files 7-39

Member The name of the enumerator. The name must
be unique for all enumeration types that may
be used in an application. To ensure
uniqueness, select a unique prefix for each
enumeration type. By convention, enumerator
names use all upper case, with words
separated by underscores (for example:
DSIT_DRY_CONTACT). Enumerator names
are limited to 64 characters, including the
unique prefix. You can use upper and lower
case alphanumeric characters (though lower
case is typically not used) and underscores.
You cannot use spaces or other special
characters in names.

Value The value associated with the enumerator.
This value must be between -128 and 127
(inclusive). A value of -1 is used to indicate an
invalid value, and must be included in every
enumeration type.

Comment The language string associated with the
enumerator. You can enter a new string or
select an existing one. When a network
integrator or network operator uses the
enumeration, they will see this value for the
enumerator.

 To enter a new string, double-click Comment
and enter a new value. The new value will be
added to the language file for this resource file
set (see Using Resource Strings, later in this
chapter).

 To reference an existing string, click
Comment and then click the button that
appears when Comment is selected. The
Link dialog appears that allows you to browse
to the desired string as described in Adding
Strings to a Language Resource File.

Example: The following diagram shows the fire_initiator_t
enumeration type from the standard resource file set:

7-40 NodeBuilder User’s Guide

Creating and Editing a Language String
You can create and edit language strings that may be referenced by network
variable types, configuration property types, enumeration types, functional
profiles, and resource files. These strings are contained in a language file.
Each resource file set contains a language file for each language it supports.
You can create new language strings directly (see Adding a String to a
Language File), or create them as you define the types that will use them (see
Adding a String to a Language File While Defining a Resource). Once you
have a language file created in one language, you can create other language
files and translate the strings as described in Creating, Modifying, and
Translating a Language File.

Adding a String to a Language File
You can add a language string directly to a language file. You can then
reference the string from any resource that requires a string reference. To
add a string to a language file, follow these steps:

Editing Resource Files 7-41

1. Expand the Language Files folder in the resource file set.

2. Right-click a language file, and then click New Resource String on the
shortcut menu. This command will only be available if the active language is
the same as the selected language resource file. See Setting Resource Editor
Options for information about setting the active language. The following
dialog appears. This dialog shows the name and scope of the selected
language file and the index of the new string within that file.

3. Enter the text of the new language string into Resource String, and then

click OK.
You can also create new strings by copying existing strings. To copy a string,
follow these steps:

4. Right-click the source string and then click Copy on the shortcut menu.
5. Right-click the destination language file and then click Paste on the shortcut

menu.
You can only paste language strings into a language file of the same language
as the file from which the string was copied (i.e. a string copied from a USA
English resource file can only be pasted into a USA English resource file).

You can create new language strings as you define the network variable
types, configuration property types, functional profiles, and enumeration
types that reference them. See Adding a String While Defining a Resource,
later in this chapter, for more information.

Adding a String While Defining a Resource
You can create language strings as you create network variable types,
configuration property types, functional profiles, and enumeration types (see
Creating and Editing a Network Variable or Configuration Property Type,
Creating and Editing a Functional Profile, and Creating and Editing an
Enumeration Type, earlier in this chapter).

7-42 NodeBuilder User’s Guide

The functional profile dialog and the Strings tab of the network variable
type and configuration property type dialogs each contain fields that appear
similar to the following figure:

The title of the field may vary (this one is intended for entering comments
about the resource file element being created), but there is always a text
field, with New and Link buttons.

To create a new language string, click New to create a new language string.
The text string will automatically be saved in the active language file.

To link to an existing language string, follow these steps:

1. Click Link. The following dialog opens. This dialog allows you to choose
a string from the current resource file set, or from any other applicable
resource file set.

2. Set Scope to the scope of the resource file set containing the language string.

You can only select a scope value equal to or less than the scope of the
current resource file set. To select a string from the current resource file set,
set Scope to the current resource file set’s scope.

3. Set Index to the language string index. The selected string is displayed in
Resource String.

4. Click OK.

Searching for a Language String
You can search for a language string within a language file. To search for a
language string, follow these steps:

Editing Resource Files 7-43

1. In the Resource Editor, right-click a language file and then click Open on
the shortcut menu. The Modify dialog appears as shown in the following
figure:

2. Type a string into Highlight Strings Containing This Text to have all

strings containing the specified string highlighted. Set the Match Case
checkbox to make the search case sensitive, for example:

7-44 NodeBuilder User’s Guide

You can also search for a language string when using the Link button in the
Strings tab when creating or modifying a network variable or configuration
property type, as shown in the following figure:

Editing Resource Files 7-45

Creating, Modifying, and Translating a Language File
You can create a new language file to hold language strings in a new
language, you can edit language strings in a language file, and you can
translate language strings in a language file to new language strings in a
second language file.

To create a new language file in a resource file set, follow these steps:

1. Right-click the Language Files folder and then click New Language File
on the shortcut menu. The New Language File dialog appears.

2. Select the language for the new language file under Select Language.
3. To translate a string as you create the file, double-click the string and enter

the translated version based on the selected language. Repeat this step for
each string to translate. You can translate strings after you create the file as
described later in this section.

To modify a language file in a resource file set, follow these steps:

1. Set the active language to the language of the language file as described
in Setting Resource Editor Options.

2. Double-click the language file in the Language Files folder. A dialog appears
listing all the strings in the language file. The dialog does not open if you
double-click a language file that is not active. To set the active language, see
Setting Resource Editor Options, earlier in this chapter.

3. To modify a string as you create the file, double-click the string and modify
the contents. Repeat this step for each string to modify.

You can view language strings from two language files side-by-side so that
you can translate the strings in one file to the other. To translate language
files in a resource file set, follow these steps:

1. Expand the Resource Strings folder. This folder contains all language files
for the resource file set.

7-46 NodeBuilder User’s Guide

2. Right-click the active language file and then click Translate on the shortcut
menu. You can change the active language by opening the resource editor
View menu, clicking Options, and changing the value of Active Language.
See Setting Resource Editor Options for information on setting the active
language file. The following dialog opens:

This figure shows the American English language resource file for the
Echelon resource file set.

3. Set To to the language you want to translate to.
When selecting a language that does not yet have a language file within the
current resource file set, the Resource Editor will create generic strings for
each language string resource that is listed in the Resource pane. For those
strings that are deleted but still listed in the Resource pane, or those that
were previously purged from the source language shown in the Resource pane
(indicated by a "Purged Record~" placeholder), the Resource Editor will
generate a string that is marked deleted (e.g. "String7~"). You can undelete
such a string by removing the tilde character, and you can overwrite a

Editing Resource Files 7-47

previously purged string (shown with a "Purged Record~" placeholder) by
overwriting the placeholder. This feature simplifies synchronization between
multiple translations of the same string resources.

4. For each string on the left pane, provide a translation in the selected
language in the right pane. Some strings may not have a translation in all
languages, in that the text from the source language translates to an empty
string. In those cases, delete all text from the translated string. A language
string resource may be an empty string. The Resource Editor issues a
warning when you save your changes containing an empty string.
You can export the selected language files to text files for use by translation
services. To export the selected language files to text files, open the File
menu and then click Export to Text.

5. Open the File menu and then click Save to save the changes.
6. Open the File menu and then click Exit to close the Translate dialog.

Creating and Modifying a Format
You can create and modify formats for each network variable type or
configuration property type. A format specifies how a value is to be
displayed, printed, or entered. Formats allow the physical representation of
data to be independent of how users view the data. This is especially
important for any type of measurement data since most measurement types
have at least two display formats — one for United States (US) units and one
for Système Internationale (SI or metric) units. Formats are also important
for data that is viewed differently in different locales. For example, times
and dates are displayed differently in different regions of the world. Formats
may include locale-specific interpretation of times and dates, using locale
information from the user’s operating system.

If a format is not available for a network variable or configuration property,
most network tools will display the value as raw hex bytes. Formats allow
you to customize how network integrators and network operators see the
values. When you create a network variable or configuration property type, a
default format is created. The default format uses the text format specifier
(see Using The Text Format Specifier, later in this chapter). In the case of
character, short, long, enumeration, float, or quad types, this format will
display the raw value. In the case of an array, structure, union, bitfield, or
reference type, the format will be set to Missing format for
<TYPENAME>, where <TYPENAME> is replaced by the name of the network
variable or configuration property type. If the network variable or
configuration property type is a structure or union type that contains more
than 127 fields, the resource editor will create a placeholder default format
that contains the text >>Note: This item can not be displayed due to a large
number of fields.<<. You can modify this format to display up to 127 fields of
the network variable or configuration property type.

Each format is named with a type name followed by an optional modifier.
For example, if you create a network variable type named UNVT_my_type,
you will have a default format also named UNVT_my_type. You can create
multiple formats for a type by appending a modifier to the additional formats.
A modifier is a string that is appended to the format name, following a “#”
character. Standard modifiers are defined for SI, US, and localized formats,
and you can also create your own modifiers. For example, you can create

7-48 NodeBuilder User’s Guide

UNVT_my_type#SI and UNVT_my_type#US if you want your type to be
formatted differently when displayed in US or SI units.

To create or modify a format in a resource file, expand the Formats folder in
the resource file set. All formats defined for the resource file set are
displayed. There will be a minimum of one format per network variable and
configuration property type, but there may be more than one format for some
(or all) types. To modify a format, right-click it and then click Open on the
shortcut menu. To create a new format, right-click the Formats folder and
then click New Format on the shortcut menu. The following dialog opens:

If you are modifying a format, this dialog will be titled Modify Format and
will contain the selected format.

Enter the following information:

Network Variables Creates a network variable format.

Configuration Properties Creates a configuration property format.

Editing Resource Files 7-49

Type Specification Name Specifies a type in the resource file set.

Base Type Displays the base type of the network variable or
configuration property type.

Type Id Displays the index of the selected network
variable or configuration property type within the
resource file set.

Base Type Displays the data type of the selected network
variable or configuration property type.

Type Length Displays the length in bytes of the selected
network variable or configuration property type,
in bytes.

Field List If the selected network variable or configuration
property type contains a structure or union, this
box displays the type and name of each field.
These names are for use within the Format
Specifier.

 The field list presents a close approximation to a
C-language equivalent typedef of the respective
network variable or configuration property type,
but may not always provide correct ANSI C
language syntax.

Modifier Specifies that one of the following modifiers is
used:

 Localized — Time and date formats are
determined by the settings on the user’s
computer. If you are creating a format for a
network variable type or configuration property
type that contains the time or date, or requires a
localized list separator, select this option.

 Systeme Internationale (metric) — Indicates that
this format displays SI units. If a format file
contains SI formats, these formats will
automatically be selected if the user’s computer is
configured to use SI units.

 United States — Indicates that this format
displays US units. If a format file contains US
formats, these formats will automatically be
selected if the user’s computer is configured to use
US units.

 Custom — Specifies a custom format modifier. If
this modifier is selected, enter the name in the
accompanying field. This modifier can only
contain letters, numbers, and the underscore
character.

7-50 NodeBuilder User’s Guide

Format Priority Specifies whether the format is the default for the
type, or the default for the type within a specified
measuring system. Select one of the following:

 Standard Priority — No special priority. This is
the default setting.

 Default For This Data Type — The format is the
default for network variables or configuration
properties created from this data type. The
format name will be preceded with an asterisk (*)
in the format file (.fmt extension).

 Default For This Data Type and Measurement
System — The format is the default for the
currently selected measurement system (i.e. SI or
US). The format name will be preceded with a
plus (+) in the format file.

Format Specifier The formatting instructions for this type. There
are 4 format specifiers:

 real — The value will be displayed as a single-
precision, 32-bit, IEEE 754 floating point number.

 int — The value will be displayed as a signed, 32-
bit integer.

 discrete — The value will be displayed as an 8-bit
value that contains either 0 or 1 for each bit.

 text(…)— The text format specifier can be used for
data that is not a simple number (enumerations,
strings, characters, and structures); for data that
must be localized, scaled, or conditionally
formatted; or where data formatted as text is
preferred. The standard formats defined in
STANDARD.FMT are all text format specifications,
since most network tools are adept at handling
text-formatted data, and text-formatted data may
be specified for every data type. See Using the
Text Format Specifier, later in this chapter, for
more details.

Using the Text Format Specifier
The text format specifier has the following syntax: text(<text format
list>). The text format list is similar to the ANSI C printf() arguments,
with some simplifications and extensions. The text format list is a comma-
separated list of text formats. Each text format consists of one of the
following:
• A quoted string called a format string. The format string consists of

characters to be included in the formatted output, and may include
conversion specifications that specify how a corresponding field data
argument is formatted. A conversion specification may apply to the entire
value to be formatted, or may apply to fields within the value by adding the

Editing Resource Files 7-51

field names to the text format list. You can also include localized list
separators in format strings. See Using Conversion Specifications and Using
Localized List Separators for more information.

• A field name from the value being formatted. The value must be a structure
or union type. Field names are applied to conversion specifications in format
specifications that precede the field name in the text format list, applied from
left to right. A format can display up to a maximum of 127 fields of a
structure or array type. See Using Conversion Specifications for more
information.

• A conditional format to specify one of two different formats, where one format
is selected when a value is formatted based on a conditional value. See Using
Conditional Formats for more information.

• A scaling factor to specify a multiplier and adder, and an optional unit string
suffix, that are used to scale the value to be formatted. A scaling factor may
be applied to the entire value, or to an individual field of a structure or union.
See Using Scaling Factors for more information.

• A localized time or date function. These functions format a time or date
according to the user’s operating system’s locale settings. See Using
Localized Time and Date Formats for more information.

Following are a few examples from the standard format file (standard.fmt).
See the standard format file for more examples.

Example 1: A simple integer that does not require localization, with a “%d”
conversion specification:
SNVT_count: text("%d");

Example 2: A simple floating point value that does not require localization,
with a “%f” conversion specification:
SNVT_count_f: text("%f");

Example 3: A temperature value that must be displayed differently in US,
SI, and US differential units, with a “%f” conversion specification and scaling
factors:
SNVT_temp#SI: text("%f", *1+0(0:854)); ! degrees C
SNVT_temp#US: text("%f", *1.8+32(0:855)); ! degrees F
SNVT_temp#US_diff: text("%f", *1.8+0(0:855));

Example 4: A time that must be localized, with an LO modifier and time()
localization function:
SNVT_date_time#LO: text(time(hour, minute, second));

Example 5: A refrigeration type that requires a string, floating-point values,
and locale-specific list-separators:
SCPTrefrigType#LO:text("%s %f|%f|%f", refrigerant, A, B, C);

This format definition displays the refrigerant field as a string, and A, B,
and C as floating point values.

7-52 NodeBuilder User’s Guide

Example 6: A geographic position that includes conditional text:
SNVT_earth_pos#SI: text(("%d %d ",
 latitude_direction, longitude_direction),
 ((latitude_direction == 0) ? ("S") : ("N")),
 (" %d %d ", latitude_deg, latitude_min),
 ((longitude_direction == 0) ? ("E") : ("W")),
 (" %d %d %f", longitude_deg, longitude_min,
 height_above_sea));

Following is a formal definition of the text format:
<text format group> = '(' <text format list> ')'

= <text format>

<text format list> = <text format list> ',' <text format>
= <text format>

<text format> = '(' <condition> '?' <text format
group> ':' <text format group> ')'
= '(' <text format string> ',' <field
spec list> ')'
= 'time' '(' < field spec string > ','
< field spec string > [',' < field
spec string >]
[',' < field spec string >] ')'
= 'date' '(' <field spec string> ','
<field spec string> ',' <field spec
string> ')'

<condition> = '(' <field spec string> <conditional
operator> <decimal const> ')'

<conditional operator> = '=='
= '!='

<field spec list> = <field spec list> ',' <field spec
with modifiers>
= <field spec with modifiers>

<field spec with modifiers> = <field spec with multiplier
and adder> <string resource reference>
= <field spec with multiplier and
adder>

<field spec with multiplier and adder> = <field spec
string> <multiplier> <adder>
= <multiplier><adder>
= <field spec string>

<field spec string> = <field spec string> '.' <field name>
= <field name>

<string resource reference> = '(' <mode> ':' <index> ')'

Using Conversion Specifications
You can use a conversion specification within a format string to specify how
the value of a field should be formatted. To format a field, append the field
name in the text format list after the format string. Include one field name
for each conversion specification in the list. The conversion specifications are

Editing Resource Files 7-53

applied to the field names from left to right. You can specify the following
conversion specifications
%c A single character. The base type in Neuron C must be char, int, or

enum.
%d A signed or unsigned decimal number (based on the signedness defined in

the type file). The base type must be a Neuron C char, int, enum, or long
or a structure or array. If it is a structure or an array of at least four
bytes in length, it is assumed to be a Neuron C signed 32-bit number of
s32_type.

%f A floating point number. The base type must be a structure, an array, or
a fixed point Neuron C int or long. If it is a structure or array of at least
four bytes in length, it is assumed to be a Neuron C floating-point
number of float_type or SNVT_xxx_f type.

%m An enumeration. The base type must be an enumerated list. If an
enumeration does not exist for the value, the format string is processed
as if it were %d.

%s A null-terminated string. The base type must be an array of 8-bit data.
String data must be null terminated.

%x An unsigned hexadecimal integer. The size is determined from the type
file. The data are always treated as unsigned. The base type must be
char, int, or long. If it is a structure, or an array of at least four bytes in
length, it is assumed to be a Neuron C signed 32-bit number of s32_type.

You can use a backslash (“\”) character as an escape character to include
other format characters as text. For example, the following characters can be
included in a format string:
\% The % character.
\\ The \ character.
\" The " character.
\| The | character.

Using a Conditional Format
You can use a conditional format to specify one of two different formats,
where one format is selected when a value is formatted based on a
conditional value. The syntax for a conditional format is similar to the ANSI
C “?:” conditional expression. The syntax is as follows:
<condition> ? <format if condition is true> : <format if
condition is false>

The condition is limited to expressions with the equal to (”==”) and is not
equal to (”!=”) comparison operators.

The field that appears in the conditional statement must appear in a text
format list before it appears in the conditional statement. Formats are
processed in left-to-right order.

Following is an example of a format definition with conditional format
specifiers extracted from the SNVT_earth_pos#SI format definition (much of
the format definition has been deleted for simplification):

UNVT_DM_Command: text(("%m ", cmd),
 ((cmd == 1) ? ("%d", cmdData.databaseId) :

7-54 NodeBuilder User’s Guide

 ((cmd == 2) ? (" ") :
 ((cmd == 3) ? ("%d", cmdData. deviceIndex) :
 <additional conditions deleted>
))));

Using Scaling Factors
You can use a scaling factor within a format string to specify a multiplier and
adder, and an optional unit string suffix, that are used to scale the value to
be formatted. You can scale any simple data type, and you can also scale any
field in a structure or union that is a simple data type. The scaling factors
are applied as a multiplication and an addition when data is converted for
output, and they are applied in the reverse order, as a subtraction and a
division when data is input.

You can also specify a scope and language string index that specifies a
language string to use as the unit description. This string overrides the unit
description string found in the type file.

Alternate formats with scaling factors can be used for converting units to the
United States (US) or other measurement systems.

The syntax for a scaling factor is as follows:
*<Multiplier>+<Adder>[(<Unit Description Scope>:<Unit
Description Index>)]

Following are example formats using scaling factors.

Example 1: The following lines define SI and US formats for the
SNVT_temp_f standard network variable type:
SNVT_temp_f#SI: text("%f", *1+0(0:854)); ! degrees C
SNVT_temp_f#US: text("%f", *1.8+32(0:855)); ! degrees F

The SI format multiplies the value by 1 and adds 0 (i.e. shows the raw value)
and appends “degrees C” (scope 0, string index 854). The US format
multiplies the value by 1.8 and adds 32 and appends “degrees F” (scope 0,
string index 855).

Example 2: The following lines define the SI and US formats for the
SCPTsetPnts standard configuration property type:
SCPTsetPnts#SI: text("%f,%f,%f,%f,%f,%f",

 occupied_cool, standby_cool, unoccupied_cool,
 occupied_heat, standby_heat, unoccupied_heat);

SCPTsetPnts#US: text("%f,%f,%f,%f,%f,%f", ! degrees F
 occupied_cool*1.8+32(0:855),
 standby_cool*1.8+32(0:855),
 unoccupied_cool*1.8+32(0:855),
 occupied_heat*1.8+32(0:855),
 standby_heat*1.8+32(0:855),
 unoccupied_heat*1.8+32(0:855));

Using Localized List Separators
You can include a locale-specific list-separator character in a format string.
To do this, specify a localized (“#LO”) modifier and include a vertical bar (“|”)
where you want the list separator in the format string. The vertical bar is
translated to the operating system list-separator character for the current
operating system default locale. The current setting of the Windows list-

Editing Resource Files 7-55

separator character may be found in the List Separator setting on the
Number tab of the Regional Options in the Windows Control Panel. The list-
separator character can only be used with localized alternate formats, as
described under Using Localized Time and Date Formats.

Using Localized Time and Date Formats
You can include time and date localization functions to format a time or date
value as specified by the operating system default locale method. The date
format specifier requires three parameters, which specify the data fields
where it will find the year, month, and day values to be formatted. The time
format specifier requires two to four parameters, specifying hour and minute
values to be formatted, and optionally, second and millisecond values.

For the Windows operating system, the current setting of the date format
may be found under Short Date Style on the Date tab of Regional Settings in
the Windows Control Panel. The current setting of the time format may be
found under Time Style on the Time tab of the Regional Settings, with the
following exceptions:

1. The time format specifier does not support AM/PM time formats, so this type
of time format will be converted to a 24-hour format.

2. The time format specifier supports display of milliseconds, which is not
defined in Windows time styles. If supplied, the milliseconds field will be
appended to the seconds field, and separated from the seconds field by the
Decimal Symbol character from the Number tab of the Regional Settings.

The time and date format specifiers may only be used in localized formats
(formats with the “#LO” modifier).

Following are examples of the time and date localization functions.

Example 1: A time format specifier from the SCPTmaxSntT#LO format
definition:
SCPTmaxSndT#LO: text(("%d ", day),

 time(hour, minute, second, millisecond));

Example 2: A date format specifier from the SNVT_date_cal#LO format
definition:
SNVT_date_cal#LO: text(date(year, month, day));

Copying Resources
You can copy any resources in the resource catalog. You can copy resources
to a new resource file set, or copy them within the same resource file set if
you created the original resource file set. To copy a resource, follow these
steps:

1. Right-click the resource to be copied and then click Copy on the shortcut
menu.

2. Right-click the folder that will contain the copied resource and then click
Paste on the shortcut menu.

3. If you are copying a functional profile, the resource editor will attempt to use
the same functional profile number (key) for the new profile. If the profile
number is already in use, you are given the option of overwriting the existing
profile or using a different profile number.

7-56 NodeBuilder User’s Guide

Resources may reference other resources in the same resource file set or in
resource file sets with numerically lower scopes and compatible program ID
templates. If you copy a resource to a new resource file set, some of the
references may become invalid. If the resource editor determines that a
reference may be invalid, it removes the index number from the reference.
This gives you an opportunity to find the invalid references and correct them.
To fix an invalid reference, first ensure that the referenced item is available
within the new resource file set or within a resource file set with a
numerically lower scope and compatible program ID template. Then change
the invalid reference to the new resource.

If you are making additions to a standard functional profile, create a new
functional profile that inherits from the standard profile instead of copying
and modifying the profile. This enables your new profile to stay consistent
with any changes to the original profile. If you create a new profile by
copying and pasting an existing profile, any changes to the original profile
that are made after you make the copy will not be reflected in your new
profile. See Creating and Editing a Functional Profile for more information.

Removing and Obsoleting Resources
 Resources may reference other resources in the same resource file set or
other resource file sets, so deleting a resource could impact other resources,
even in resource file sets that you may no longer have loaded on your
computer. Applications can also reference resources, and it is important that
an invalid resource not be passed to an application because the original
resource was replaced by another. To help prevent references to non-existent
resources or invalid resources (due to reuse of a deleted index), the resource
editor does not allow you to delete an individual resource. It instead provides
two alternatives: you can either mark a resource as deleted (and later purge
it from the resource file), or mark it as obsolete.

During development, you can delete resources that you have defined, but not
yet released to production. To mark a resource as deleted, right-click it and
then click Remove on the shortcut menu. Alternatively, you can select the
resource and then press DEL. This does not physically delete the resource
from the resource file. Instead, a tilde (“~”) character is appended to the
name to indicate that the resource has been removed. By default, the
resource editor does not display resources with a tilde as the last character,
so the resource will appear to be deleted. You can see any resources that you
have removed by opening the View menu, clicking Options, and then setting
Show Removed Resource Items. You can undelete a removed resource by
first showing removed resource items, and then deleting the tilde from the
resource name. To remove a deleted resource, you can purge removed
resources from the resource file set as described in Purging a Resource File
Set, later in this chapter.

You should not delete any resources that you have released to production.
You may have users that have created devices based on those resources,
created resource files that reference those resources, or created applications
that use those resources. However, you may decide that a resource that you
have created should no longer be used for new designs, even if it is used in
existing designs. In this case you can mark the resource as obsolete. This
tells your users that they should no longer use the resource in new designs,

Editing Resource Files 7-57

but allows the resource to continue to be used in existing designs. For
example, the SNVT_lev_disc type is marked as obsolete in the standard
resource file set because it has been replaced by SNVT_switch. The
SNVT_lev_disc type continues to be used in many devices, but newly
designed devices should use SNVT_switch instead.

To mark a resource as obsolete, double-click the resource and then set Mark
this item obsolete. You can specify whether you want to see obsolete
resources by opening the View menu, clicking Options, and then setting or
clearing Show Obsolete Resource Items. You can remove the obsolete flag
from a resource by clearing Mark this Item Obsolete for the resource.

Purging a Resource File Set
You can purge a resource file set. When you delete a resource in the Resource
Editor, it is marked as deleted, but it is still physically in the resource file.
This helps prevent serious problems that could occur if you had other
resources referencing the deleted resource. This is most important once you
have started shipping a device. You should never delete resources used by
devices in the field, though you can mark them as obsolete. However, during
development, you may create resources that you decide never to ship. In this
case, you may prefer that these deleted resources not remain in your resource
file. In this case, you can purge the resource file. Purging physically removes
all deleted resources from the resource file. You must be careful not to purge
a resource file that contains deleted resources that are in use by devices that
you have shipped, and you must also be careful not to purge a resource file
set that contains deleted resources that are referenced by other resources.

To purge a resource file set, follow these steps:

1. Close all applications that may be using the resource files to be purged.
This includes the NodeBuilder and LonMaker tools.

2. Click the Windows Start button, point to Programs, point to Echelon
NodeBuilder Software, and then click Resource Converter Utility.
The Resource Converter opens.

3. Select the Resource File Set to be Converted.

4. Select which files in the resource file set you want to purge by setting the
Convert option for each resource file type to be purged.

5. Set New File Version to the latest version for each selected resource file
type.

6. Set Purge Deleted Items for each selected resource file type.

7. Select an output folder for the purged resource file set, or set the
Replace checkbox. If you replace the resource file set, the utility will
automatically create a backup folder and a backup copy of the original,
un-purged, resource file set, for you. This folder is named “Backups” and
is a subfolder to the location that contains the original resource files.

8. Click Convert.

7-58 NodeBuilder User’s Guide

Converting a Resource File Set
You can convert the file format of a resource file. This may be necessary to
generate a resource file using an older file format for compatibility with a tool
or device that does not support the current resource file formats. For
example, the resource files generated by NodeBuilder 3.1 can only be read by
tools or devices that are based on version 2.3 or newer of the Resource File
API, or by tools or devices that have a compatible API. LNS tools such as the
LonMaker tool can be upgraded by installing the latest version of the
Resource File API. Updates may be available from tool or device
manufacturers that install the new API, as well as on the LONMARK website
(www.lonmark.org). You can convert the file format of a resource file set to
provide compatibility with older tools or devices that have not been upgraded.
The following table lists the file formats that have been defined for each of
the types of resource files:

File Type Format
Version Format Changes

Minimum
Required
Resource
File API

1 Initial release. 1.0

2 Added support for larger
profiles and for marking
profiles as obsolete.

2.0

3 Added support for
inheriting profiles and for
non-contiguous member
numbers.

2.1 Functional
Profile

4 Added support for
configuration property
arrays and for deleting
profiles.

2.2

1 Initial release. N/A

2 Added support for scale
factors.

N/A
Format File

3 Added support for
language localization.

N/A

1 Initial release. 1.0

2 Added support for larger
language files.

2.0 Language
File

3 Added support for
deleting language strings.

2.2

Type File 1 Initial release. Included
NVTs only.

N/A

Editing Resource Files 7-59

File Type Format
Version Format Changes

Minimum
Required
Resource
File API

2 Added CPTs and
enumeration types.

1.0

3 Added support for invalid
values and for marking
types as obsolete.

2.1

4 Added support for
configuration property
arrays and for deleting
types.

2.2

5 Added support for
unsigned quad and
double float

2.3

Converting a resource file set can result in a loss of data that was introduced
in later resource file formats. Always save a copy of your resource file set
prior to converting it to an older file format.

To convert the format of a resource file, follow these steps:

1. Click the Windows Start button, point to Programs, point to Echelon
NodeBuilder Software, and select Resource Converter Utility. The
Resource Converter opens, as shown in the following figure:

7-60 NodeBuilder User’s Guide

2. Select the Resource File Set to be Converted.

3. Determine which files in the resource file set you want to convert. Set
Convert Functional Profiles File, Convert Type File, and Convert
Language Resource Files as desired.

4. For each file type you choose to convert, set New File Version. See the
table above for a summary of the characteristics of older file format
versions.

5. If you wish to replace the existing resource file set, set Replace Existing
Resource File Set With New Version (save a backup copy of the
resource file set before using this option). If you wish to save the
converted resource file set to a different location, clear this option and
enter a folder name in Output Folder (click the Browse button to

Editing Resource Files 7-61

browse to a location). If you choose to replace the existing set, a sub-
folder named Backup.ResConv will be created and the old version of the
resource file set will be saved there. The backed up files will get a .Vx
suffix, where x is the format version number (e.g. a version 2 file would
get a .v2 suffix).

6. Click Convert.

You may choose to convert and purge a resource file set at the same time. In
this case, the source file will be purged, and then converted. You may also
choose to convert a resource file without changing the format version (e.g.,
converting a type file from version 4 to version 4). Such a conversion enables
some housekeeping work and error-checking to be performed within the
resource file, and may result in a resource file of a slightly different size.

When converting a resource file set to an older format, advanced features and
related data will be removed from the set. This includes previously purged
resources; although purging of deleted resources actually removes the
resource from the file set, a non-continous sequence of resource indices
results. Only the more recent resource file formats support this case; for
older file formats, the gaps in the sequence of consecutive indices must be
filled. The Resource Converter does this by creating “dummy” resources as
needed, and marking them as deleted at the same time. Thus, file format
conversion might seem to “unpurge” previously purged resources, however,
this is not the case. The resources that are created in the empty indices
during the conversion will be of a simple type, and will not have any any
properties of the original, purged, resource.

Viewing Resource File Properties
You can see a summary of many of the items in the resource catalog by right-
clicking them and then clicking Properties on the shortcut menu. A window
appears showing information about the resource that was selected. You can
view the following properties:

Catalog Right-click the resource catalog file at the top of
the resource catalog, and then click Catalog
Properties on the shortcut menu to display a
window showing the number of directories,
number of type files, number of functional profile
files, number of format files, and number of
language files contained in the resource catalog.

Resource File Set Right-click a resource file set and then click
Properties on the shortcut menu to display a
window showing the header information for the
resource file set, as well as the header information
for each type file, functional profile file, format
file, and language file contained in the resource
file set.

Network Variable Types,
Configuration Property
Types, Functional Profile
Templates, Enumerations,

Right-click a resource file folder and then click
Properties on the shortcut menu to display a
window showing the header of the resource file set
and the header or headers of the files that contain

7-62 NodeBuilder User’s Guide

Language Files, and Format
Files

the definitions displayed in the selected folder.

Generating Resource Files
You can generate a resource file set at any time while editing the resource file
set. If you have made any changes to a resource file set, you must generate
the new resource file set before exiting the resource editor, otherwise your
changes may be lost.

You can only make changes to one resource file set at a time. Once you have
made any changes to a resource file set, it becomes the active set. The active
set is shown in the status bar at the bottom of the Resource Editor window.
If you have made any changes to the active set, the name of the active set is
followed by an asterisk (‘*’) to indicate that you need to generate resource
files. Once you have made any changes to a resource file set, it becomes the
active set and you can only make changes to the active set. If you attempt to
make changes to another resource file set, you will be given the option to
either generate the resource file set for the active set, or cancel changes.

To generate a resource file set, follow these steps:

1. Right-click the active set in the resource catalog and then click Generate
Resource Files on the shortcut menu. A dialog opens listing the files that
will be generated (only files that have had changes made will be generated).

2. Click Set Version to set the version of the resource files to be generated.
The following dialog opens:

Editing Resource Files 7-63

This dialog displays the current versions of the type file, functional profile
file, and the language files (File Name for the language file will contain the
name of the language file for the language currently selected as the active
language; see Setting Resource Editor Options, earlier in this chapter, for
more information). The format file does not contain versioning information
and is not listed.

3. Set the major and minor version numbers for each of these files. The files
may have differing minor versions, but use the same major version number
for all files in a resource file set to simplify configuration management. Once
you have set the version information, click OK. You will be returned to the
resource file generation confirmation dialog.

4. Click Yes to generate resource files. The new resource files will be placed in
the directory indicated by the resource file catalog. If you do not wish to
generate resource files at this time click Cancel. If you wish to revert to the
most recently generated version of the resource files, click No (this will cancel
all changes you have made using the resource editor since the last time
resource files were generated).

Resource Reports
You can create a resource report that contains a summary of all the resources
in a resource file set, or in multiple resource file sets. You can use a resource
report during development as a reference guide for your resource definitions.
You can also define supplementary documentation that is automatically
included in your resource report. See types.lonmark.org and
http://types.echelon.com for two examples of resource reports.

WARNING: The resource report generator is included as an unsupported
component of the NodeBuilder 3.1 product. It has not undergone the same
level of testing as the remainder of the NodeBuilder tool. However, you may
find it to be a useful aid to your product development.

To start the Resource Report Generator, right-click the resource you wish to
report and then click Report on the shortcut menu.

See the Resource Report Generator User’s Guide for more information on
creating resource reports, available from the Windows Start menu under
Echelon NodeBuilder Software.

7-64 NodeBuilder User’s Guide

Editing Neuron C Source Code 8-1

8

Editing Neuron C Source
Code

This chapter describes how to use the NodeBuilder editor to
edit, search, and bookmark Neuron C code.

8-2 NodeBuilder User’s Guide

Introduction to Editing
You can display and edit source and text files using the NodeBuilder Project
Manager; this includes Neuron C files (.nc extension), header files (.h
extension), C files (.c extension), and text files (.txt extension). You can open
any file in a device template folder or device template Source Files folder by
double-clicking it. You can open multiple files in the Edit pane. You can
switch between open files using the Window menu.

You can cut, copy, and paste text using standard Windows commands. For
example, you can cut selected text using CTRL+X, the Cut button on the
toolbar, or by clicking Cut on the Edit menu. You can search for a text string
in a single source files or in all source files in the project as described in
Searching Source Files, later in this chapter. The Edit pane automatically
highlights source code based on Neuron C syntax as described in Using
Syntax Highlighting. You can return to frequently used parts of your code as
described in Using Bookmarks.

The editor includes a command that allows you to find a matching bracket,
parenthesis, or brace. Place your cursor in front of or select any of the
following characters: [] { } (), and press Ctrl-]. Your cursor will jump to the
matching bracket, parenthesis, or brace, if it exists.

Using Syntax Highlighting
If you are editing a Neuron C (.nc extension), header file (.h extension), or C
(.c extension) file, the Edit pane automatically color-codes text based on
Neuron C syntax. This color-coding is designed to make your Neuron C code
easier to read. You can change these colors using the editor options (see
Setting Editor Options, later in this chapter). The default colors and their
significance are shown below:

Green Green indicates that the text is part of a Neuron C
comment. Commented text is not compiled during
a build.

Blue Blue indicates that the text is a Neuron C
language specific keyword or function.

Pink Pink indicates that the text is a string or number.
This includes the arguments to #include
statements and numerical values assigned to
variables.

Dark Blue Dark blue indicates that the text is a constant or
preprocessor directive.

Grey Grey indicates that the code is generated and
updated by the NodeBuilder Code Wizard. See
Modifying Code Generated by the Code Wizard in
the Generating Neuron C Code Using the Code
Wizard chapter for more information.

Black All text that does not fit one of the above
classifications is black.

Editing Neuron C Source Code 8-3

Searching Source Files
You can search for a string in a single source file or multiple source files, or
you can search for a string and replace it with another.

Searching a Single File for a String
You can search a single file for a text string. To search for a text string,
follow these steps:

1. Open the file that you want to search in the NodeBuilder Project Manager.
Click anywhere in the file.

2. Type CTRL+F, or open the Edit menu and then click Find. The following
dialog opens:

3. Enter the text string to search for in Find what.
4. Set Match whole word only to find only whole words that match the

string. Set Match case to make the search case sensitive.
5. Click Find Next to find the next occurrence of the string, starting from the

current cursor position and moving down. Click Mark All to add a bookmark
to every line in the file containing the string (see Using Bookmarks, later in
this chapter, for more information).

Replacing Text
You can search for a string and automatically replace it with another string.
To search and replace, follow these steps:

1. Open the file that you want to search in the NodeBuilder Project Manager.
Click anywhere in the file.

2. Type CTRL+H, or open the Edit menu and then click Replace. The following
dialog opens:

3. Enter the text string to search for in Find what.
4. Enter the text string that you want to replace it with in Replace with.

8-4 NodeBuilder User’s Guide

5. Set Match whole word only to find only whole words that match the
string. Set Match case to make the search case sensitive.

6. If you selected text prior to opening this dialog, set Selection to search only
the selected text for the string. Set Whole file to search and replace in the
entire file.

7. Click Find Next to find the first instance of the string. It will be selected
and this dialog will remain open.

8. Click Replace to replace the selected string with the string in Replace
with. Click Replace All to automatically replace all the selected strings
without confirmation.

Searching Multiple Files for a String
You can search for a string in multiple source files at once. You can use this
capability to find all calls of a certain function or uses of a certain variable in
an entire project. To search for a string in one or more files, follow these
steps:

1. Type CTRL+SHIFT+F, or open the Edit menu and then click Find in Files.
The following dialog opens:

This dialog contains the following fields:
Text to find The text string to search for.

File Types The file types to be searched. The type of a
file is determined by its file extension. By
default, the search will look in Neuron C files
(.nc extension), C files (.c extension), and
header files (.h extension). You can remove a

Editing Neuron C Source Code 8-5

file type from the search by removing the
corresponding *.<file type extension>
entry. You can add additional file types by
adding *.<file type extension> to this
field.

Case sensitive Performs a case-sensitive search.

Whole words only Limits the search to whole words that match
the search string.

Regular expressions Enables regular expression syntax in the
search string. If this option is set, you can use
the following expressions in your search
string:

 * – An asterisk in the search string replaces
zero or more characters. An asterisk must be
accompanied by at least two other characters
(i.e. you could search for zo*, which would
find instances of zo, zoo, zoom, zoot, but not
z*). Use * to represent an asterisk
character.

 + – The plus sign behaves just like the
asterisk, but it must replace at least one
character (i.e., if you search for zoo+, it will
return zoot and zoom, but not zoo. Use \+ to
represent a plus character.

 ? – The question mark replaces one or zero
characters. The search must contain at least
two other characters. Use \? to represent a
question mark character.

 . – The period replaces exactly one
character. The search must contain at least
two other characters. Use \. to represent a
period character.

 (pattern) – Matches the pattern and
remembers the match. The matched
substring can be retrieved by using '\0'-'\9'
later in the regular expression, where '0'-'9'
are the number of the pattern. Example:
regular expression (re).*\0s+ion will
match regular expression. First the
search matches re string and stores that
pattern with index 0. .* will match gular
exp in regular expression. The \0
expression retrieves the pattern with index 0
(i.e. re). This re matches the re in
expression. Finally the s+ion expression
matches ssion.

http://www.lonmark.org/

8-6 NodeBuilder User’s Guide

 x|y – Matches either character x or y. You
can combine more than two characters like
x|y|z.

 {n} – The preceding character must match
exactly n times. For example
bo{2}k{2}e{2}per would match
bookkeeper. n must be a positive integer.

 {n,} – The preceding character must match n
or more times (i.e. bo{2,}k{2,}e{2,}per
would find instances of bookkeeper,
boookkeeeeper, etc.). n must be a positive
integer.

 {n,m} – The preceding character must match
between n and m times. n and m must be
positive integers, and m must be greater than
n.

 [xyz] – Matches any of the enclosed
characters. [xyz] produces identical results
to x|y|z.

 [^xyz] – Matches any character other than
the enclosed characters.

 \b – Matches a word boundary.

 \B – Matches anything other than a word
boundary.

 \d – Matches any numerical digit (0-9).

 \D – Matches any non-digit.

 \f – Matches a formfeed.

 \n – Matches a new line character.

 \s – Matches any white space character.

 \S – Matches any non-white space character.

 \t – Matches any tab character.

 \v – Matches any vertical tab character.

 \w – Matches any letter, number, or
underscore.

 \W – Matches anything other than a letter,
number or underscore.

 \<num> - Where <num> a number from 0-9.
Matches indexed pattern (see, (pattern),
above).

Editing Neuron C Source Code 8-7

 /n/ - Where n is any number from 1-255.
Matches the character with the ASCII value
n.

Where Determines which files to search. Choose one
of the following options:

 Search all files in project –Searches all files in
the current NodeBuilder project.

 Search all open files –Searches all currently
open files. Open the Window menu to see
which files are currently open.

 Search in directories –Search all files in a
specific directory.

Directory Specifies the directory to search if Search in
directories is selected. Choose a directory to
search. The NodeBuilder project directory
will be selected by default. Click the
button to browse to a different directory.

Include subdiretories Searches all subdiretories of the selected
directory if Search in directories is selected.

2. Set your desired search parameters, and then click Find. The Search
Results tab of the Results pane displays the results of the search. Each
instance of the string results in a line in the Results pane that lists the file,
line number, and line text where the string was found. Double-click a line in
the Results pane to open the specified file and go to the specified line.

Using Bookmarks
You can flag lines of code in you source and text files using bookmarks. You
can use bookmarks to easily return to important sections of your source or
text files. You can set bookmarks manually or as a result of a search (see
Searching Source Files, earlier in this chapter).

To manually set or remove a bookmark, follow these steps:

1. Open the file that you want to search in the NodeBuilder Project Manager.
2. Place the cursor on the line you want to bookmark, or on the line containing

the bookmark you want to remove.
3. Open the Edit menu, point to Bookmarks, and then click Toggle

Bookmark. If the line does not contain a bookmark, a bookmark symbol ()
appears to the left of the line. If the line already contains a bookmark, it is
removed.

Once you have set any bookmarks in a file, you can go to the next bookmark
in the file. To go to the next or previous bookmark, open the Edit menu,
point to Bookmarks, and then click Next Bookmark or Previous
Bookmark.

To remove all bookmarks from the current source file, open the Edit menu,
point to Bookmarks, and then click Clear All Bookmarks.

8-8 NodeBuilder User’s Guide

Setting Editor Options
You can set editor options that control syntax highlighting, tab settings, auto
indent, font settings, and automatic loading. To set editor options for the
current NodeBuilder project, open the Tools menu and then click Options.
The NodeBuilder Project Properties dialog opens with the Editor tab
selected. This tab appears as shown in the following figure:

You can also open this dialog by selecting Settings from the Project menu
or by clicking the project settings button () on the toolbar.

This tab contains the following fields:

Tab Width Determines the tab size. By default, the tab size
is 4.

Auto Indent Automatically indents code inside a function or
conditional statement.

Syntax Coloring Enables syntax highlighting. You can specify
colors in Code Colors.

Font Sets the font and font size used to display text in
the editor. Click Change Font to choose a new
font or font size. You may only choose from fixed
width fonts.

Code Colors Sets the colors used by the editor when Syntax
Coloring is set. You can choose different colors
for keywords, comments, strings, numbers,
operators, code wizard maintained code, and

Editing Neuron C Source Code 8-9

preprocessor statements, as well as the default
color for code that doesn’t fit into any of these
categories. Select one of these categories and then
choose a color using the color picker. You can also
make the specified text bold or italic by setting
Bold or Italic.

Reload previously open
documents when opening
the project

Opens all documents that were open the last time
you closed the project when you open a project.

Reset All Resets all options on this tab to their defaults.

8-10 NodeBuilder User’s Guide

Compiling, Building, and Loading Applications 9-1

9

Compiling, Building, and
Loading Applications

This chapter describes how to use the NodeBuilder tool to
compile Neuron C source code, build an application image, and
load that image into a device.

9-2 NodeBuilder User’s Guide

Building an Application Image
You can build an application image for a target, each target in a device
template, or for all targets with qualifying device templates in a NodeBuilder
project. When you build an application image, the NodeBuilder tool compiles
the source code specified by the device template, links the compiled code with
the standard libraries and any libraries that you specify in the device
template, optionally creates a loadable application image, optionally creates a
ROM image, and also creates device interface files required by network tools
such as the LonMaker tool. The next section describes the files that are
produced when you build a device template. These files are placed in the
Development or Release folder in the device template’s Output folder (see the
New Device Template window of the Device Template Wizard).

To build to all targets in a NodeBuilder project, follow these steps:

1. Close the LonMaker browser if it is open.

2. Close any other LNS applications that are monitoring the device, if any.
3. Open the project in the NodeBuilder Project Manager.

4. Open the Project menu and then click Build All. This builds all non-
excluded targets in the project (see Excluding Targets from a Build, later
in this chapter, for information on excluding targets). Or, click Build All
Unconditionally to automatically clean each target before it is built (see
Cleaning Build Output Files, later in this chapter, for more information).

To build an individual device template, follow these steps:

1. Close the LonMaker browser if it is open.
2. Open the project in the NodeBuilder Project Manager.

3. Right-click a device, device template, Development folder, or Release
folder in the Project pane and then select Build from the shortcut menu.

The NodeBuilder tool automatically saves all unsaved project files when you
start a build. If Prompt before saving files is set in the Options tab of the
NodeBuilder Project properties, you will be asked if you want to save changes
or cancel the build when there are unsaved changes.

When a device is being built, the results of the build are displayed in the
Messages tab of the Results pane. This pane displays Neuron C errors,
linker errors, warnings, and build status. You can double-click an error or
warning to be taken to the line of code that generated the message. The
information displayed during a build is also saved in a log file (.log extension)
in the Development or Release target subfolder of the device template’s
output directory. To stop a build in progress, open the Project menu and
then select Stop Build.

If Load After Build () is set in the NodeBuilder toolbar or if Load after
Build in the Build tab of NodeBuilder Project Properties is set, all
commissioned devices that use one of the applications produced by the build
will be automatically loaded. If there are uncommissioned devices associated
with the NodeBuilder project, the devices will be commissioned with the
LonMaker tool when the build is complete (see the LonMaker documentation

Compiling, Building, and Loading Applications 9-3

for more information). The status of this operation will be shown in the
NodeBuilder Results pane.

When a device is loaded, it will be assigned the LNS Device Template
specified by LNS device template name in the device template’s Program
ID settings. If you change a device’s program ID, the device template name
must also be changed. This is handled automatically if you enable program
ID management for the NodeBuilder device template. If you are unable to
load a device due to a program ID conflict, you can set the device
applicationless by right-clicking the device in the Project pane and selecting
Force Applicationless from the shortcut menu.

Files Created When You Build An Application Image
The following files are generated by the NodeBuilder tool when you build a
NodeBuilder device template:

Downloadable
Application Image Files
(.nxe and .apb)

These files contain an application image that is
used by a network tool such as the LonMaker tool
to download the compiled application image to a
device. There are two types of downloadable
application image files. They are the text
application image file (.nxe extension) and the
binary application image file (.apb extension).

Programmable
Application Image Files
(.nri, .nei, and .nfi)

These files contain an application image that is
used by a programming tool such as a PROM
programmer, a Neuron 3120 programmer, or a FT
3120 programmer to program a PROM or 3120
chip prior to assembly into a LONWORKS device.
There are three types of programmable
application image files. They are the ROM
application image file (.nri extension), the
EEPROM application image file (.nei extension),
and the flash application image file (.nfi
extension).

 The ROM application image file contains a read-
only application image that is used for
programming a PROM or flash memory for use in
a device based on a Neuron 3150 Chip or FT 3150
Smart Transceiver. The first 16Kbytes of the
ROM application image file contains the Neuron
Chip firmware, and optionally contains a copy of
some or the entire on-chip EEPROM image, as
selected by the Exporter Reboot Options for the
device template target.

 The EEPROM application image file contains a
EEPROM application image that is used for
programming an external EEPROM, NVRAM, or
flash memory, or on-chip EEPROM. If the
application image was built for a Neuron 3150
Chip or an FT 3150 Smart Transceiver, the
EEPROM application image file contains the

9-4 NodeBuilder User’s Guide

application code and data that resides in off-chip
EEPROM, flash, or NVRAM (if any). For these
devices, this file is used with a PROM
programmer to program the external memory
chips. If the application image was built for a
Neuron 3120 Chip, this file contains some or all of
the on-chip EEPROM image in a special format
for use only with a Neuron 3120 programmer.

 The flash application image file contains an
EEPROM application image that is used for
programming the on-chip EEPROM of a Neuron
3120E4 Chip or an FT 3120 Smart Transceiver. It
contains the same information as the EEPROM
application image file for the Neuron 3120 Chip,
but uses a different format because of the
different programming requirements of the
3120E4 and FT 3120 chips.

Device Interface Files
(.xif, .xfb, and .xfo)

These files contain a definition of the device
interface that is used by network tools to learn
the interface to a device, without requiring the
device to be physically available. There are three
types of device interface files. They are the text
device interface file (.xif extension), the binary
device interface file (.xfb extension), and the
optimized device interface file (.xfo extension).
The optimized device interface file is optional and
will be generated automatically as needed.

 The text device interface file is a text description
of the device interface. The format of this file is
detailed in the LONMARK External Interface File
Reference Guide available in LNS Utilities and
LONMARK Reference Help in the Echelon LNS
Utilties program folder.

 The binary device interface file and optimized
device interface file are used by LNS tools such as
the LonMaker tool to create LNS device
templates, which define the device interface to
LNS tools.

Excluding Targets from a Build
You can exclude a target or a device template from project builds, and you
can exclude a target from a device template build. To exclude a target or
device template from a build, right-click the device template or the Release
or Development target folder and then click Build Exclude on the shortcut
menu. The selected device template or target folder will be grayed out. To
include the device template or target in the build after you have excluded it,
right-click it and select Build Exclude again.

You can also choose to build to only development or release targets in the
entire project. To do this, select Development Targets or Release Targets

Compiling, Building, and Loading Applications 9-5

in Build Type in the NodeBuilder toolbar. To build all targets, select All
Targets.

Cleaning Build Output Files
You can remove all files and folders produced by a build from the device
template’s output folder. To remove all build outputs in the project, right-
click the Device Templates folder and then select Clean from the shortcut
menu. To clean all build outputs from a specific device template or target,
right-click the device template or target folder and then select Clean from
the shortcut menu.

The Clean command only removes files and folders produced by the
NodeBuilder tool. It will not remove any files that you have produced.

Viewing Build Status
You can view the build status of all NodeBuilder device templates and
targets. The build status shows whether the latest version of the source files
have been compiled and built and whether all known devices have had the
latest version of the application loaded. You can see the build status for the
entire project, a specific device template, a specific device template target, or
a specific target. To see the build status for the entire project, right-click the
Device Templates folder and then click Status on the shortcut menu. To
see the build status for a specific device template, target, or device, right-click
it and then click Status on the shortcut menu. The status window appears
as shown in the following figure:

Each line in this window represents a device template target or a target.
Targets are listed beneath their associated device template target. The
status window has the following columns:

Template The NodeBuilder device template.

Target The target type (Release or Development).

Device If this row contains the status for a target, this
column displays the target name. If this column

9-6 NodeBuilder User’s Guide

contains status for a device template target, this
column is empty.

Status The target status. This is one of the following
values:

 Up-to-date – For device template targets, this
indicates that the application image is consistent
with the source code. For targets, this indicates
that the target has been loaded with the latest
application image.

 Compile required – Applies to device template
targets only. Indicates that the source code or a
property that would change the compiled version
of the application has been modified since the
application was last compiled.

 Assembly required – Applies to device template
targets only. Indicates that the assembly file has
been modified since it was last assembled or a
property that would modify the assembled version
of the application has changed. This status is
unlikely to occur.

 Link required – Applies to device template targets
only. Indicates that one of the libraries or the
system image has been modified since the
application image was last built or that a property
has been changed that requires the project be re-
linked.

 Export required – Applies to device template
targets only. Indicates that a property has been
changed that requires the device to be exported.

 Load required – Applies to targets only. Indicates
that the application image has been modified
since the target was last loaded. The NodeBuilder
tool will only be aware of loads performed by the
NodeBuilder or LonMaker tools. If you load the
application with another tool, the NodeBuilder
tool will not update the status until the
application is built and loaded using the
NodeBuilder or LonMaker tools.

Setting Build Options
You can set build properties that control the build process. To set build
properties, open the Project menu and then click Settings. The
NodeBuilder Project Properties dialog appears with the Build tab
selected. This tab appears as shown in the following figure:

Compiling, Building, and Loading Applications 9-7

Alternatively, open the Tools menu and then click Options, or click the

Project Settings button ().

This tab contains the following options:

Stop builds on Determines when a build is stopped. A build may
be stopped when an error is returned, when a
warning is returned, or upon completion. The
default is Errors. If Do not stop is selected and
an error occurs, the build process will move on to
the next target, rather than aborting the build.

Load after build Loads the application into a device immediately
after the application image is built. The devices
must be commissioned with the LonMaker tool
and the LonMaker drawing containing the device
must be open and attached to the network. The

 Load After Build button on the
NodeBuilder toolbar reflects changes to this
option and vice versa.

Load NodeBuilder
devices only

Limits loads to the targets listed in the Devices
folder in the Project pane.

Build Type Determines whether All Targets, Development
Targets, or Release Targets will be built when
you build a project or device template. The build
type is displayed on, and can be changed from, the
NodeBuilder toolbar.

9-8 NodeBuilder User’s Guide

Verbose make messages Displays more descriptive messages in the Results
pane when you build a device template.

Debug make messages Displays debugging messages in the Results pane
when you build a device template. This output
may be used by Echelon Support to help you
diagnose problems.

Generate Build Script Files Generates build script files when you build a
device template. Build scripts are described in
Appendix C.

Loading an Application Image
You can load an application image that you have built with the NodeBuilder
tool into a LONWORKS device. The device may be a development platform
such as an LTM-10A Platform or LonBuilder emulator, or it may be a custom
device that you have manufactured or purchased from a third-party. You will
typically do your initial debugging on a development platform before building
a custom device, but you can create and load a custom device at any time.

Development platforms such as the LTM-10A Platform and the LonBuilder
Emulator include Neuron firmware that is preloaded into the device (or
downloaded by the LonBuilder software for the LonBuilder Emulator). The
Neuron firmware allows these devices to be downloaded over a LONWORKS
network so that you do not have to use any special memory device
programming tools. If you are using a development platform, you will
automatically load the platform when you add a NodeBuilder target as
described in the next section, Adding Targets.

If you are using a custom device, you must load your application image into
device before using the device as a target. Once you have completed
development, you will also load your application image into the device as part
of your manufacturing process. The files containing the application image
are described in Files Created When You Build an Application Image earlier
in this chapter. The following table summarizes the processor/memory
combinations that you can use, and the files that you will use to program
each.

Processor Neuron
Firmware

Memory Type

Application
Memory Type

Application
Image File
Extension

Application
Image

Programming
Tool

.nei Neuron 3120
Programmer

Neuron 3120xx
Chip (except
Neuron 3120E4
Chip)

On-chip
EEPROM

On-chip
EEPROM

.nxe and .apb
(TP/XF-1250
devices only)

Network Tool

Neuron 3120E4
Chip and FT
3120 Smart

On-chip
EEPROM

On-chip
EEPROM

.nfi Compatible
PROM
Programmer

Compiling, Building, and Loading Applications 9-9

Transceiver .nxe and .apb
(TP/XF-1250
devices only)

Network tool

Neuron 3150
Chip or FT 3150
Smart
Transceiver

Off-chip ROM,
PROM, or flash

On-chip
EEPROM

.nri and .nei PROM
programmer
(.nri) and
network tool
(.nei)

Neuron 3150
Chip or FT 3150
Smart
Transceiver

Off-chip ROM or
PROM

Off-chip ROM or
PROM

.nri PROM
programmer

Neuron 3150
Chip or FT 3150
Smart
Transceiver

Off-chip ROM or
PROM

Off-chip flash,
EEPROM, or
NVRAM

.nri and .nei PROM
programmer

Neuron 3150
Chip or FT 3150
Smart
Transceiver

Off-chip flash Off-chip flash .nei PROM
programmer

The procedure that you will use to program the application image depends on
whether you are programming on-chip or off-chip memory for a Neuron 3150
Chip or FT 3150 Smart Transceiver, or if you are programming on-chip
memory for a Neuron 3120 Chip or FT 3120 Smart Transceiver. These three
procedures are described in the following sections. See the Smart
Transceiver databook for more information

Programming 3150 Off-chip Memory
A device based on a Neuron 3150 Chip or FT 3150 Smart Transceiver will
always have off-chip ROM or flash memory, and may also have off-chip
EEPROM or flash, and RAM. The Neuron firmware must reside in the ROM
or flash. The application code may reside in any combination of the off-chip
memory types, and the on-chip EEPROM. See Using Memory in The Neuron
C Programmer's Guide, for information on the placement of application code
in the various memory types.

You can program the Neuron firmware and your application image into a
PROM or flash memory device using a PROM programmer. You will use the
ROM application image file (.nri extension) if your device uses off-chip
PROM, or the EEPROM application image file (.nei extension) if your devices
uses off-chip flash, EEPROM, or NVRAM. You will use both types of image
files if your device uses both types of memory. These files are described in
Files Created Whey You Build an Application Image earlier in this chapter.
All off-chip memory devices containing Neuron firmware or an application
image must be programmed before loading them in the device. You can load
an initial blank application if you plan on downloading a new application
over the network to your device.

9-10 NodeBuilder User’s Guide

When using flash memory, always enable the flash programmer’s software
data protect, SDP, feature if possible. You must have at least 0x5600 bytes,
mapped for flash or else the SDP algorithm will not work.

You can define sections of application code that will reside in EEPROM, flash
memory, or NVRAM, coexisting with the Neuron firmware and other
application code in ROM. The portion of the code that will reside in
EEPROM, flash, or NVRAM is contained in the EEPROM image file (.nei
extension). You must program this memory before installation, just like the
ROM, since the application must be completely present when the device is
powered-up.

Programming 3150 On-chip Memory
The Neuron firmware automatically initializes the on-chip EEPROM for a
Neuron 3150 Chip or FT 3150 Smart Transceiver by copying a block of
memory from off-chip memory called the boot image. The boot image is
contained in the system area (the first 16Kbytes). It contains a copy of some
or all of the on-chip EEPROM memory. Its contents depend on which
firmware state you select when you build the application image. If you select
the unconfigured state (the default), the boot image contains application code
and data and a default network image with no network addressing
information. If you select the configured state, the boot image contains a
complete copy of on-chip EEPROM, including network configuration complete
with network addressing information. When a Neuron 3150 Chip or FT 3150
Smart Transceiver is powered up and the firmware determines that
EEPROM should be initialized (see below), the data from the boot image will
be copied to on-chip EEPROM, and the appropriate firmware state will be
set. If the firmware state is unconfigured, the remaining EEPROM data
must then be loaded over the network. If the firmware state is configured,
the chip will be fully programmed at this point, though no network
connections will be defined.

The boot image is used to initialize the on-chip EEPROM of a Neuron 3150
Chip or FT 3150 Smart Transceiver when the chip is powered up and the
firmware detects that EEPROM has not yet been initialized by the current
Neuron firmware or if the Neuron firmware detects an error and reboot
options are specified as described in Setting Reboot Options later in this
section. To accomplish this, there is a special value, or boot ID, placed in the
application image file when it is exported. This 16-bit value normally
changes each time you build the application image. On power-up, the Neuron
firmware compares the boot ID in the firmware image with the boot ID copy
in the on-chip EEPROM. If they don't match, the Neuron firmware
initializes the on-chip EEPROM from the boot image. It also copies the boot
ID to EEPROM, so the initialization will not happen again until a new
firmware image with a different boot ID is installed. Additional EEPROM
boot recovery options are available as described under Setting Reboot
Options.

Since the boot ID normally changes each time an application image file is
exported, exporting, programming, and inserting a new memory chip will
normally result in the EEPROM initialization taking place, even if no
changes have been made to the application or configuration. While a device
normally only does this initialization once for a given firmware image, it is

Compiling, Building, and Loading Applications 9-11

possible to force this process to occur again with the same firmware image by
resetting the Neuron 3150 Chip or FT 3150 Smart Transceiver to the blank
state (the initial state of EEPROM on a newly manufactured Neuron Chip or
Smart Transceiver) using a special application image. This image is shipped
with the NodeBuilder software in a file named EEBLANK.NRI, and is
located in the LONWORKS Images folder (c:\LonWorks\Images by default),
where x is 12 or higher. To reset a 3150 chip's state, program this image into
a memory chip and power up the device with this memory chip in place of the
normal firmware. For a short period, the service LED will flash, then it will
change to full on, indicating that the chip has been returned to the blank
state. The next time any memory created from an exported firmware file is
placed in the device, the on-chip EEPROM will again be initialized from the
special data area in the firmware.

In addition to the boot ID, external EEPROM, RAM, and flash memory areas
coexisting with ROM will each have a 16-bit signature value, or memory
signature, calculated over any application code or data (but not user
variables) that resides in the area. These values are kept in the respective
memory areas, as well as in on-chip EEPROM. Whenever the Neuron Chip
or Smart Transceiver is reset, the Neuron firmware compares the on-chip and
off-chip signatures, and if there is a mismatch, the Neuron firmware changes
the device state to applicationless. If the device copies the boot image to on-
chip EEPROM, this check will follow that process, and will override the
firmware state selection if the signatures do not match.

Setting Reboot Options
Some hardware designs, such as designs with inadequate power supply noise
decoupling for the Neuron Chip or Smart Transceiver, can cause corruption of
the contents of the Neuron on-chip EEPROM. The Neuron firmware can
detect this because it maintains several 8-bit checksums, one for the
configuration image, one for the application image, and one for the system
image. You can set reboot options that specify the action to be taken by the
Neuron firmware when it detects a checksum error. To set the reboot
options, follow these steps:

1. Right-click the development or release target in the device template
folder in the NodeBuilder Project Pane and then click Settings on the
shortcut menu. The NodeBuilder Device Template Target Properties
window appears.

2. Select Configuration in Category. A set of options appear that specify
when the Neuron firmware should copy the network configuration from
the off-chip boot image to on-chip EEPROM. The reboot options are only
available if the target hardware is a Neuron 3150 Chip, with version 6 or
later firmware, or a custom system image based on version 6 or later
firmware, such as the LTM-10A firmware. This includes the address
assignment and binding information in the device, but does not include
the communications parameters. Select from the following options:

Checksum Error Reboot the network configuration whenever there
is a configuration checksum error.

Fatal Application Error Reboot the network configuration whenever there
is a fatal application error such as an application
checksum error, illegal device state, memory

9-12 NodeBuilder User’s Guide

allocation failure, or application image
inconsistency.

Always Reboot the network configuration every time the
Neuron Chip or Smart Transceiver is reset.

3. Select Application in Category. A set of options appear that specify
when the Neuron firmware should copy the on-chip portion of the
application image from the off-chip boot image to on-chip EEPROM. All
applications have at least part of their image in on-chip EEPROM in the
Read-Only data structure. Corruption of any part of the application
image resident in off-chip memory cannot be recovered by this
mechanism. If off-chip memory gets corrupted, recovery will fail and the
device will go applicationless. If this happens, you must reprogram the
memory chip or re-download the application over the network. Select
from the following options:

Fatal Application Error Reboot the application image whenever there is a
fatal application error such as an application
checksum error, illegal device state, memory
allocation failure, or application image
inconsistency.

Always Reboot the application image every time the
Neuron Chip or Smart Transceiver is reset.

App’less is Fatal Specifies that detection of the applicationless
state is to be treated as a fatal application error.
If you specify this option, you should also specify
that the application be rebooted on occurrence of a
fatal application error, otherwise no recovery will
occur. DO NOT SELECT this option if you wish
to download an application over the network to
the device, since the device must be in the
applicationless state for a download to occur.

Reboot EE Vars Specifies that on-chip EEPROM variables,
including configuration network variables, will
also be rebooted any time the application image is
rebooted. This will undo any changes to the
initial state of the EEPROM variables located in
the on-chip EEPROM by a network tool, the
application, or another device.

4. Select Communication Parameters in Category. A set of options appear
that specify when the Neuron firmware should copy the communication
parameters from the off-chip boot image to on-chip EEPROM. Re-
initializing the communications parameters will cause the device to lose
its priority assignment if it previously had one. Select from the following
options:

Checksum Error Reboot the communication parameters whenever
there is a checksum error.

Compiling, Building, and Loading Applications 9-13

Type/rate Mismatch Reboot the communication parameters whenever
the transceiver type (differential, single-ended, or
special purpose mode) or the interface bit rate of
the on-chip communications parameters do not
match the values in the ROM copy. This usually
indicates corrupted communications parameters,
although this might not be the case if your
transceiver supports multiple bit rates.

Always Reboot the communication parameters every time
the Neuron Chip or Smart Transceiver is reset.

Programming 3120 On-chip Memory
Since a Neuron 3120xx Chip or FT 3120 Smart Transceiver does not support
external memory, the only memory to program is on-chip EEPROM, and this
must be programmed over the network or with a 3120 programmer.

A blank Neuron 3120xx Chip or FT 3120 Smart Transceiver comes up with
its communications interface initialized to 1.25Mbps differential mode with a
10MHz input clock (TP/XF-1250 twisted-pair compatible), and a Neuron
firmware state of applicationless. If your custom device has a compatible
transceiver and clock, you can load all of the application and network
configuration over the network, using the LonMaker tool.

To pre-program a Neuron 3120xx Chip or FT 3120 Smart Transceiver with
an application or network configuration other than the default, you must
program it in a Neuron 3120 Chip programmer. Refer to the documentation
supplied with the particular programmer for details.

Adding Targets
A target is a LONWORKS device whose application is built by the NodeBuilder
tool. There are two types of targets, development targets and release targets.
Development targets are used during development; release targets are used
when development is complete and the device will be released to production.
Each NodeBuilder device template specifies the definition for a development
target and a release target. Both target definitions use the same source code,
resource files, and must have identical device interfaces, but can use different
hardware templates and compiler, linker, and exporter options. The source
code may include code that is conditionally compiled based on the type of
target.

Each target is defined by a LonMaker Target shape and its corresponding
LNS device, a NodeBuilder device template and its corresponding LNS device
template, and a NodeBuilder hardware template. You can add a target to a
NodeBuilder project using the LonMaker tool or the NodeBuilder Project
Manager. Using the LonMaker tool is typically the fastest and easiest
method. See Adding a Target with the LonMaker Tool.

9-14 NodeBuilder User’s Guide

Adding a Target with the LonMaker Tool
You can add a target to a NodeBuilder project using the LonMaker tool. To
add a target with the LonMaker tool, follow these steps:

1. Build the application image for the target as described in Building an
Application Image earlier in this chapter.

2. Correct any build errors before proceeding.

3. Click the LonMaker button in the Windows taskbar to switch to the
LonMaker window.

You will use the LonMaker Integration Tool to install, bind, configure, and
test the targets in your project. The LonMaker tool displays a network
drawing that shows the devices, functional blocks, and connections in your
network.
The LonMaker tool also displays stencils that contain shapes that you can
drag to your LonMaker drawing. The LonMaker tool includes a NodeBuilder
Basic Shapes stencil with shapes that you will use to add new devices,
functional blocks, and connections to your network drawing. The
NodeBuilder Basic Shapes stencil contains shapes that can be used with any
device. You can also create custom stencils with shapes customized for your
devices and networks.
The NodeBuilder Basic Shapes stencil contains two shapes that you will use
to define your targets during development. They are the Development Target
Device shape and the Release Target Device shape. These special device
types help distinguish between other devices on the network and the target
devices used by the NodeBuilder tool. The NodeBuilder tool allows you to
create a mixed network of development hardware (such as LTM-10A
Platforms and LonBuilder Emulators), release hardware (your own
hardware), and other devices.

4. To create a development target, drag a Development Target Device
shape from the NodeBuilder Basic Shapes stencil to your network
drawing. To create a release target, drag a Release Target Device
shape from the NodeBuilder Basic Shapes stencil to your network
drawing. You can drop the shape anywhere. The New Device Wizard
starts, as shown in the following figure:

Compiling, Building, and Loading Applications 9-15

5. Enter a name for the target. This name must be unique for all the

devices and targets within the current page (subsystem). The default
name is the “Device” followed by an integer (e.g. Device 1). The target
name may be up to 85 characters, may include embedded spaces, and
may not include period, backslash, colon, forward slash, or double quote
characters.

6. If you have a development platform for the target, set Commission
Device, and then click Next. A window opens that allows you to select
the NodeBuilder device template to use for this target device, as shown in
the following figure:

9-16 NodeBuilder User’s Guide

7. Click the arrow, and then select a NodeBuilder device template from a

list of all NodeBuilder device templates that you have built for this
project.

8. Click Next. The Channel Selection window appears.

9. Specify the channel for the new device. If you select Auto-Detect, the
LonMaker tool will automatically determine what channel the device is
on. To use this option, you must ensure that the LonMaker tool is
attached to the network and all routers between the LonMaker network
interface and the device being defined have been installed and
commissioned and are online. Otherwise an error will be returned during
commissioning.

Do not use Auto-Detect if you are using routers configured as repeaters or
bridges or if the LonMaker tool is not attached to the network.
If Auto-Detect is not selected you must explicitly select the channel to
which the device is attached. Use Xcvr Type to list only the channels for a
specific transceiver type (some device shapes will limit the types of
transceivers you can select). Click Next. The following window appears:

Compiling, Building, and Loading Applications 9-17

10. Enter the following information:

Location Location information for this device. This
information may be entered as an ASCII
string (up to 6 characters) or a hex string (up
to 12 hex digits). It is used to document the
device’s location within the network. This
information is not used by the LonMaker tool,
but may be useful for network recovery if you
lose the LonMaker drawing and database.
For example, you can put an abbreviation of
the subsystem name or a subsystem number
in the Location field.

Ping Interval Ping interval for this device. The ping
interval determines how often a device is
pinged by the LNS Server to ensure it is still
operating and in communication with the
network. You can leave the default value of
Never for targets.

Description A description of the device. This description
has no effect on network operation so you can
use this field for any target-specific
documentation that you would like to save
with the LonMaker drawing.

11. Click Finish to create the Target shape and complete the target
definition. If a shape representing the target’s channel does not exist on
the page in which the target is being created, the appropriate channel
shape will be created automatically. If you cleared Commission Device,

9-18 NodeBuilder User’s Guide

the remaining steps are skipped, and you will have to commission the
target later. If you set Commission Device, the first commissioning
window, similar to the following figure, appears:

12. Set Load Application Image, and then click Next. The final window of

the New Device Wizard appears.

13. Select the Online device state option to start your target online, and then
click Finish. The Press Service Pin window appears:

14. Press the service pin on the target you wish to load and commission. The

LonMaker tool loads the application image for your application to the
target and makes it operational. You can now test and debug the
application as described in the Using the NodeBuilder Debugger and
Testing a NodeBuilder Device Using the LonMaker Tool chapters.

Compiling, Building, and Loading Applications 9-19

Adding a Target with the Project Manager
You can add a target to a NodeBuilder project using the NodeBuilder Project
Manager. To add a target with the project manager, follow these steps:

1. Right-click the Devices folder in the Project pane and click Insert on the
shortcut menu. The following dialog opens:

This dialog organizes the devices in currently open LonMaker networks by
LNS device template name. If the LNS device template is based on a
NodeBuilder device template, the Nodebuilder device template name will be
shown in the NB Dev Template column.

2. Browse to and select the device you want to add using the button next
to the appropriate device template name.

3. Click the arrow under the NB Dev Template column and then select a
NodeBuilder device template if the LNS device template does not already
have an associated NodeBuilder device template. When you click the
arrow, the list will contain all NodeBuilder device templates in the
current project. Select a NodeBuilder device template for this target.

4. Click the Target Type field, and then click the arrow that appears to
display the target types. Select either a development or release target
type.

5. Click OK to add the target to the Devices folder in the NodeBuilder
Project pane. If this device is commissioned, the NodeBuilder tool will
load the device the next time you build the application image for the
device.

Using Targets in the Project Manager
You can view, define, and build targets using the NodeBuilder Project
Manager. You can also define targets using the LonMaker tool as described
in Adding a Target with the LonMaker Tool, earlier in this chapter.

9-20 NodeBuilder User’s Guide

The Devices folder in the Project pane contains all the devices that you have
defined as release or development targets in the NodeBuilder project for the
current LonMaker network. Right-click the Devices folder and then select
Insert from the shortcut menu to browse all open LonMaker networks for
additional devices to add to the project. See Inserting a Device into a
NodeBuilder Project, later in this chapter, for more information.

Right-click a device to open a shortcut menu with the following commands:

Settings Displays device settings including the
NodeBuilder device template and target type.
These settings are described in Setting Build
Options, earlier in this chapter.

Remove Removes the device as a target for future builds.
The device will be removed from the project but
the device is not removed from the LonMaker
drawing or network, and none of the device files
are deleted. To change the LonMaker shape,
replace the Development or Release Target shape
with the LonMaker Device shape after removing
the target in the project manager. You can do this
by dragging the Device shape on top of the Target
shape.

Build Builds the application image for the device
template assigned to this device. See Building an
Application Image, earlier in this chapter, for
more information.

Debug Debugs the device. See the Using the
NodeBuilder Debugger chapter for more
information. This command will be dimmed if the
application image has not been built; it is not
shown if the device is already being debugged.

Stop Debugging Stops debugging the device. This command is not
shown if the device is not being debugged.

Force Applicationless Forces the selected device to the applicationless
state by clearing its program ID. You must then
reload the application, or load a new application,
to use the device.

Status Displays the build status for this device and its
device template.

Go to LonMaker Brings the LonMaker drawing containing the
device to the foreground with the device’s shape
selected.

Editing Target Device Settings
You can edit the device settings for a target. The device settings include the
NodeBuilder device template and NodeBuilder target type for the target. To
edit the target device settings, right-click the target in the Devices folder in

Compiling, Building, and Loading Applications 9-21

the Project pane and then click Settings on the shortcut menu. The
following dialog appears:

This dialog contains the following fields:

Device Name The name of the device as contained in the
LonMaker drawing.

Subsystem The LonMaker subsystem that contains the
device.

NodeBuilder device
template

The name of the NodeBuilder device template.
Click the arrow to display a list of all the
NodeBuilder device templates in the project. If
you change the template, the change does not
have any affect until the next time you build the
device template and load the target.

 When you load the target using a new device
template, the LonMaker tool will preserve any
functional blocks and connections that have
remained unchanged between the old device
template and the new device templates.
Functional blocks and connections that have been
modified will be deleted.

 The device shape in the LonMaker drawing will
not change when you change the NodeBuilder
device template. If there is a different device
shape associated with the new LNS device
template, drop the new shape on top of the old
shape to replace it.

9-22 NodeBuilder User’s Guide

NodeBuilder device
target type

The type of the device target. The target type
may be a development target or a release target.
Changing this value will not change the shape in
the LonMaker drawing. If you change the target
type, you can replace the shape by dropping the
appropriate device shape on top of the old one.

Current LNS device
template

The name of the LNS device template associated
with the target. This field is automatically
updated when you build the target with a new
NodeBuilder device template.

Using the NodeBuilder Debugger 10-1

10

Using the NodeBuilder
Debugger

This chapter describes how the use the NodeBuilder debugger
to troubleshoot your Neuron C application.

10-2 NodeBuilder User’s Guide

Using the Debugger
The NodeBuilder debugger allows you to control and observe your
application’s behavior to facilitate debugging. The debugger allows you to set
breakpoints, monitor variables, halt the application, step through the
application, view the call stack, and peek and poke memory. You can make
changes to the code as you debug and debug multiple devices simultaneously.

To start debugging, you must have built the application you want to debug
and loaded it into an attached device, and the device should be online (if the
device is not online, a dialog will open when debugging starts that allows you
to place the device online). Once this is done, start the debugger by right-
clicking the device to debug in the Project Pane and selecting Debug from
the shortcut menu. You can also start a debugging session from the
LonMaker drawing by right-clicking the device to be debugged and selecting
Debug from the shortcut menu. In debugging mode, the NodeBuilder Project
Manager is reconfigured to display a Debug menu, a Debugger toolbar, and
additional debugging windows as shown in the following figure:

Only targets that contain the debug kernel can be debugged; to ensure that
the debug kernel is included in a target, right-click the Development or
Release target folder and select Settings from the shortcut menu. Ensure
that the Use debug kernel option is set. By default, this option is set for
development targets but not for release targets.

When a debugging session is started, the following four new panes appear in
the NodeBuilder Project Manager: the Debug Device Manager pane, the
Breakpoint List pane, the Call Stack pane, and the Watch List pane.

Using the NodeBuilder Debugger 10-3

The Debug Device Manager pane shows which devices are currently being
debugged, and allows you to pause and resume the application on each
device. See Using the Debug Device Manager Pane, later in this chapter, for
more information.

The Breakpoint List pane contains all breakpoints you have set. See Setting
and Using Breakpoints, later in this chapter, for more information.

The Call Stack pane displays a list of active function calls when the debugger
is halted in application source code. You can use this information to trace
program execution logic. See Using the Call Stack, later in this chapter, for
more information.

The Watch List pane contains the names and values of monitored variables.
See Using the Watch List, later in this chapter, for more information.

By default, these panes, with the exception of the Debug Device Manager
pane, are docked into the NodeBuilder Project Manager main window. The
Debug Device Manager pane appears as a floating window by default, but you
can dock it into the NodeBuilder Project Manager. To enable independent
dragging and resizing for a pane, right-click the pane and clear Allow
docking on the shortcut menu.

If at least one debug session is in progress, the status bar indicates the device
currently being debugged and its current state (Running, Halted, Reset, etc).

If at least one debug session is in progress, the Results pane contains the
Debug Error Log tab, which lists device errors. You can use this pane to
display trace information while debugging.

The Debugger toolbar appears as shown in the following figure:

These buttons provide the following functions:

 View Breakpoint List Toggles the Breakpoint List pane. See Setting
and Using Breakpoints for more information.

 View Watch List Toggles the Watch List pane. See Using the
Watch List for more information.

 View Call Stack Toggles the Call Stack pane. See Using the Call
Stack for more information.

 Resume Resumes execution of a halted application. See
Starting and Stopping an Application Using the
Debugger for more information.

 Halt Halts the application running on the current
device. See Starting and Stopping an Application
Using the Debugger for more information.

 Reset Resets the current device.

 Stop Stops debugging the current device.

10-4 NodeBuilder User’s Guide

 Watch Variable Opens the Watch Variable dialog. See Using the
Watch List for more information.

 Toggle Breakpoint Toggles whether the current line of code has a
breakpoint. See Setting and Using Breakpoints
for more information.

 Step Over Executes the current line of the application. If the
current line contains a function, the function
executes in its entirety. See Stepping Through
Applications for more information.

 Step Into Executes the current line of the application. If the
current line contains a function, the application
halts at the first line of the function. See
Stepping Through Applications for more
information.

 Run to Cursor Sets an implicit breakpoint at the line containing
the cursor. The application resumes if it is
currently halted and continues to execute if it is
already running. The application halts when it
reaches this implicit breakpoint. The breakpoint
is cleared once it is encountered.

 Current Instruction
Source Code

Jumps to the line of code on which the application
has halted if the application has halted.

You can debug multiple devices simultaneously by repeating the procedure
described at the beginning of this section..

To stop debugging a single device, right-click the device and select Stop
Debugging from the shortcut menu. Alternatively, you can open the Debug
menu, point to Stop Debugging, and then select Current Device while the
appropriate device is displayed in the status bar. To stop debugging all
devices, open the Debug menu, point to Stop Debugging, and then select
All Devices. You can also stop debugging by right-clicking a device in the
Debug Device Manager pane and selecting Stop Debugging on the shortcut
menu.

Starting and Stopping an Application
There are three ways that you can stop an application while it is running in
debug mode. They are halting the application, running to the cursor, and
setting breakpoints. See Setting and Using Breakpoints for more information
on setting breakpoints.

To halt an application, click the halt button (). Alternatively you can open
the Debug menu, point to Halt, and then select Current Device or All
Devices. If the device halts in application code, the Edit pane shows the line
of code where the application was halted using an arrow () in the left
margin. If the device halts in system code, no arrow will appear and the Call
Stack pane displays the following message: Call stack not available.

Using the NodeBuilder Debugger 10-5

To run to the current cursor location, place the cursor in the line where you

want the application to halt and then click the Run to Cursor button ().
Alternatively, you can open the Debug menu and then select Run to Cursor
while the cursor is at the line where you want the application to halt. The
application automatically halts when it reaches the cursor.

Once you halt an application, you can observe the values of application
variables in the watch list (see Using the Watch List), observe the condition of
the call stack (see Using the Call Stack), and step through the application one
statement at a time (see Stepping Through Applications).

To resume execution of an application that has halted, click the Resume
button (), press <F5>, or select Go from the Debug menu. The
application continues running until it hits another breakpoint (or the same
one again). You can also click another statement and then click the Run to
Cursor button to have the application resume execution until it gets to the
line containing the cursor.

Setting and Using Breakpoints
Breakpoints allow you to set lines in your source code where the application
will stop so you can check variable values, device hardware status, etc. This
allows you to pinpoint the line of code that is causing an error or unexpected
behavior.

To set a breakpoint, place your cursor in the line of code in which you want to
set a breakpoint and then click the Toggle Breakpoint button ().
Alternatively you can right-click the line of code and select Toggle
Breakpoint from the shortcut menu, press <F9>, or open the Debug menu,
point to Breakpoints, and select Toggle Current Line. When you set a
breakpoint, the following icon appears to the left of the line of code: .

You can only set breakpoints onlines that contain underlying executable code.
Examples of such lines include function calls, variable assignments, if
statements, and macros. Examples of source lines that cannot contain
breakpoints include comments, when clauses, pre-processor directives, and
variable declarations.

You can cause breakpoints to get out of synch with the application when you
edit the source file. You can prevent this by not editing code while debugging.
If you suspect that breakpoints have gotten out of synch, stop debugging,
recompile and load, and then restart debugging.

When the application reaches a line with a breakpoint, the application halts,
as described in Starting and Stopping an Application Using the Debugger.
When an application halts on a breakpoint, the arrow icon appears on top of
the breakpoint icon, resulting in an icon that looks like this: .

If you place a breakpoint in a reset clause and perform a software reset, you
may have to force the application to continue using the resume () button
in order to hit your breakpoint.

10-6 NodeBuilder User’s Guide

Stepping Through Applications
You can step through the code in your application one source statement at a
time. You must first halt the application as described in Starting and
Stopping an Application. You can then use one of two methods to step
through your code; you can either step into or step over a source line. The two
methods are identical for all statements except for function calls. When you
step over a function call, the function executes and you step to the line of code
after the function call. When you step into a function, you step to the first
executable line of the function.

As described above, when you halt an application, an arrow () appears in
the left margin indicating the current line of code. When you step to the next
statement, the arrow moves to indicate the current line of source code at
which the application is stopped.

To step over the current statement, click the Step Over button (), press
F10, or select Step Over from the Debug menu.

To step into the current statement, click the Step Into button (), press
F11, or select Step Into from the Debug menu.

Using the Watch List
You can monitor a list of variables from your application using the watch list
displayed in the Watch List pane. The watch list displays a list of variable
names and their current values. You can watch Local variables when the
application is halted in a context where the variables are available. You can
watch Global variables and network variables at any time, either while the
application is running or if it is halted. You can also modify the values of
global variables and input network variables while the application is running
or halted. You can only modify output network variables when the
application is halted in the debugger. You cannot watch the msg_in,
msg_out, resp_in, and resp_out built-in variables from the debugger.

To add a variable to the watch list, right-click any statement within the
source code, and then select Watch Variable from the shortcut menu. The
following dialog opens:

Using the NodeBuilder Debugger 10-7

If you right-click a variable name, the selected variable name appears as the
variable to watch in Watch type. Otherwise, this field will be blank. Select
one of the following to choose which type of variable to watch:

Watch variable You can watch a network variable using its global
network variable name or using its functional
block member name (i.e. using the scope operator
“::”). Similarly, you can watch a configuration
network variable using its global network variable
name or using the corresponding configuration
property syntax. Please see the Neuron C
Programmer’s Guide and Neuron C Reference
Guide for more information on referencing
configuration network variables.

 To watch a configuration property that is
implemented within a configuration file (i.e. it is
not implemented as a configuration network
variable), specify the configuration property to be
watched as follows:

[<FB or NV name>][[<FBNVindex>]]::<CP name>[[<CPindex>]]

 If the configuration property applies to a
functional block or network variable, enter <FB
or NV name>; if the property applies to the entire
device start the name with the scope operator (for
example: ::cpValue). If the functional block or
network variable is part of an array, enter the
<FBNVindex> value to specify the array
member. <CP name> can be a configuration
property variable or array. If the configuration
property is part of an array, enter the <CP index>

10-8 NodeBuilder User’s Guide

to specify the member of the array to watch. In
addition, the following rules apply:

• You cannot watch an entire configuration
network variable array. You must specify a
single element to be watched using the
<CPindex> field.

• You can only watch an entire cp_family array.
In this case, do not specify a <CPindex>; the
entire array will be displayed in a tree
structure in the watch list.

 See the Neuron C Programmer’s Guide and the
Neuron C Reference Guide for more information on
the syntax used for accessing configuration
properties.

Configuration table symbol Watch a configuration table value . Click the
arrow to select from a list of all available
configuration table symbols.

Built-in symbol Watch a built-in symbol. Click the arrow to select
from a list of all available system symbols.

Click Recalculate to search for the currently selected watch variable. If the
selected variable is a structure type, the pane at the bottom of the dialog
allows you to browse the variable structure. If the variable does not exist, a
Symbol Not Found dialog is displayed.

Click Missing to list any header files not used in this application that
contain other system variables. If you want to watch one of these system
symbols, you will need to include the header file and rebuild.

Click Add Watch to add the selected variable to the watch list. If the
variable is a structure or union, you will be able to browse all fields of the
structure. For each variable or field in a structure, the watch list will display
the type, name, and value. Non-structure network variables will contain a
single field that contains their value. If the variable does not exist, a
Symbol Not Found dialog is displayed. If the variable is a valid symbol
that cannot be watched within the debugger, the message “This type of
symbol cannot be placed on the watch list. Only variables and
network variables may be watched.”, is displayed. For example, this
error is returned when an attempt is made to watch an entire network
variable array or a configuration property network variable array. Only
individual elements within such arrays can be watched.

To change the value of a variable in the watch list, right-click it and select
Edit Value from the shortcut menu. To edit a non-structure network
variable value, you must edit the field contained by the network variable.
See Editing a Watch List Value for more information.

To remove a variable from the watch list, right-click the variable in the watch
list and select Delete from the shortcut menu. To remove all variables from
the watch list, right-click anywhere in the Watch List pane and select Delete
all Watches from the shortcut menu.

Using the NodeBuilder Debugger 10-9

You can display the values in the watch list in either decimal or hexadecimal
format by default. Set the Default Display Radix option in the Debugger
Options to determine this behavior. To override this setting for individual
entries in the watch list, right-click the entry, click Display Format on the
shortcut menu, and then select the desired format. You can also display
individual entries within each of the variables using string, signed 32-bit,
and floating-point format where applicable.

Editing a Watch List Value
To edit the value of a variable or field within a structure on the watch list,
right-click the variable or field and then click Edit Value on the shortcut
menu. A dialog appears that allows you to edit the value. What dialog
appears is dependent on what sort of value is being edited. If you edit an
integer value, the following dialog appears:

Enter the new integer value for the variable and then click OK to set it.

If you edit an enumerated value, the following dialog appears:

To select from the possible enumerations for the variable, click Select From
list, click the arrow, and choose a value. You can also choose Enter in
decimal or Enter in hex to enter the value as a decimal or hexadecimal
number.

Using the Call Stack
The Call Stack pane shows what functions have been called when the
application is halted. If you are halted within a function, this allows you to
determine if that function was called from within another function, and if so,

10-10 NodeBuilder User’s Guide

which one. If you are within multiply nested functions, the most recently
called one will be on the top of the call stack list. Double-click any entry on
the call stack list to be taken to the function call for the selected call.

Using the Debug Device Manager Pane
You can see the status of all devices that are currently being debugged using
the Debug Device Manager pane. The following figure illustrates a typical
Debug Device Manager pane:

This pane contains a list of all devices that are currently being debugged, and
whether their applications are running, halted, or reset. The Reset status
will only be displayed if the device is reset while halted. Right-click a device
to see a shortcut menu with the following commands:

Make Current Makes the selected device the current device.
This affects operations that are performed on the
Current Device from the Debug menu.

Stop Stops debugging the selected device. The device is
removed from the list. To restart debugging this
device, right-click the device in the Project Pane
and select Debug from the shortcut menu as
described in Using the Debugger, earlier in this
chapter.

Halt Halts the application in the selected device. See
Starting and Stopping an Application Using the
Debugger, earlier in this chapter, for more
information about stopping and starting device
applications.

Resume Resumes running a halted application in the
current device.

Stop All Stops all debugging. All devices are removed from
the dialog and the debug panes are closed. You
can restart debugging as described in Using the
Debugger, earlier in this chapter.

Allow Docking Enables docking for the Debug Device Manager
pane. By default, docking is enabled. Select this
option to toggle docking for this window.

Hide Hides the Debug Device Manager pane. To view
it again, open the View menu, point to Debug

Using the NodeBuilder Debugger 10-11

Windows, and then select Debug Device
Manager.

Peeking and Poking Memory
You can view (peek) and modify (poke) the memory contents of a device that
you are debugging. You must be very careful when modifying memory
contents, since a device can be rendered inoperable by changing an
inappropriate memory location. To view and modify memory, open the
Debug menu and then select Peek/Poke Memory from the Debug menu.
The following dialog opens:

To peek memory, set Address and Count at the top of the dialog and then
click PEEK. A Peek window appears that displays Count bytes starting at
Address. The data is displayed in both hexadecimal and ASCII format. To
save the results, set a file name in Save file name, and then click Save; this
opens a dialog allowing you to choose the location of the file to be saved.

To poke memory, set Address and Data in the Poke frame and then click
POKE. Enter Hexadecimal values in Data. The Data values are written to
the device starting at Address. To write multiple bytes, separate each byte
with a space, comma, tab, newline, hyphen, or colon. To fill multiple bytes of
memory with the same value click Fill to open the following dialog:

10-12 NodeBuilder User’s Guide

Enter the starting address in Address. Enter the number of bytes to write
in Count. Enter a two digit hexadecimal value to write to all bytes in the
memory block in Byte. Click OK to write the Byte value a number of times
equal to Count starting at Address.

Executing Code in Development Targets Only
You can designate code for execution in development targets only. This
allows you to build simultaneously to development and release targets and
include debugging or test code that executes on the development targets only.
To have one or more lines of code execute on development targets only, put a
#ifdef _DEBUG directive before the code, and a #endif directive after the
code, as shown below:

#ifdef _DEBUG
 //Test code. Executes on development targets only
 <test code>
#endif

You must not define network variables or configuration properties or make
any changes to the device interface inside the #ifdef clause, since both
release and development targets have the same program ID.

The _DEBUG macro is predefined for the development target, but not for the
release target. To edit the predefined macros, right-click Development in
the NodeBuilder program manager, and select Settings from the shortcut
menu. Press F1 for help in this dialog.

Using the Debug Error Log Tab
When you are debugging, a Debug Error Log tab is added to the Results
pane (see Introduction to the NodeBuilder Project Manager in the Creating
and Opening NodeBuilder Projects chapter) This tab allows you to trace
program execution without stopping your application and helps you debug
timing-related problems. To display an event or error code in the Debug
Error Log tab, call the Neuron C error_log() function from your
application. See the Neuron C Programmer’s Guide and Neuron C Reference
Guide for more information about the error_log() function.

Using the NodeBuilder Debugger 10-13

Editing Source Code While Debugging
You can modify source code while debugging. However, doing this may cause
a mismatch between the modified copy of the source file and the source code
in the device. You can prevent this by not editing code while debugging. If
you suspect that breakpoints have gotten out of synch, stop debugging,
recompile and load, and then restart debugging.

Setting Debugger Options
To set debugger options, open the Project menu and select Settings. The
Settings dialog appears. Select the Debugger tab to display the following
dialog:

This tab allows you to set the following options:

Default Display Radix Displays watch list data in decimal or
hexadecimal format by default.

Tick Interval Controls the interval (in milliseconds) at which
incoming debug messages coming from the device
are processed by the debugger.

Do Not Display Device
Reset Dialogs

Suppresses warning messages that are displayed
when a device in the project encounters a
hardware, software, or watchdog timer reset. A
message confirming the reset will still appear in
the Results pane.

Do Not Display Flash Suppresses warning messages that are displayed

10-14 NodeBuilder User’s Guide

Warning Dialogs when you set a breakpoint in application code
that resides in flash memory.

Do Not Display Editing
While Debugging
Warning Dialogs

Suppresses warning messages that are displayed
when you edit code while in a debugging session.
Editing code in a debugging session can cause
unpredictable debugger behavior and is not
recommended.

Do Not Open The Device
Source File At Session
Startup

Prevents the source file (<template name>.nc)
automatically opening when you start the
debugger. This may prevent unnecessary
windows from being opened if you are debugging
other source files. If a breakpoint is hit in this
file (or any file), that file will be opened,
regardless of this option.

Fonts and Colors Select Breakpoint List, Call Stack, or Watch
List in the Font and Colors pane to see the
currently selected font, font size, and color. To
change the font, font size, and color, click Fonts
and Colors to open a font-editing dialog.

Testing a NodeBuilder Device Using the LonMaker Tool 11-1

11

Testing a NodeBuilder
Device Using the LonMaker

Tool

This chapter describes how to use the LonMaker tool to verify
that your device has all of its functional blocks, network
variables, and configuration properties, and to verify that all
these components are functioning correctly.

11-2 NodeBuilder User’s Guide

Testing a NodeBuilder Device
Once you have built your NodeBuilder project, you can use the LonMaker tool
to verify that it is functioning correctly. To test a NodeBuilder project, follow
these steps:

1. Open the LonMaker drawing that contains the NodeBuilder device. The
device must be built and it must be associated with the appropriate LNS
device template.

2. Open the LonMaker drawing that contains the device.
3. If the LonMaker drawing does not contain a device shape for the device, drag

a Development or Release Target shape from the NodeBuilder Basic Shapes
stencil to your drawing and assign it the LNS device template associated
with your device.

4. Drag a functional block shape from the NodeBuilder Basic Shapes stencil to
your drawing. The New Functional Block Wizard appears, as shown in the
following figure:

5. Select the NodeBuilder device in the Device Name field and one of the

functional blocks in the Functional Block Name field. Continue through
the New Functional Block Wizard as described in the LonMaker User’s
Guide. Set Create shapes for all network variables. A new functional
block shape appears in the LonMaker drawing.

6. Repeat steps 4 and 5 for each functional block in your device. If the device
contains any network variables or configuration properties that are not
associated with a specific functional block, the device will contain a functional
block named Virtual Functional Block. Create this functional block as
well. Verify that all functional blocks defined in the Code Wizard can be

Testing a NodeBuilder Device Using the LonMaker Tool 11-3

created by the LonMaker tool.
7. Enable and disable each functional block to verify that this feature works. To

enable and disable a functional block, right-click the functional block and
select Manage from the shortcut menu. The following dialog opens:

8. Click the Enable and Disable buttons and verify that each action has a

result of PASSED. See the LonMaker User’s Guide for more information.
9. Use the LonMaker browser to confirm that each functional block has the

correct network variables and configuration properties. Right-click each
functional block and select Browse from the shortcut menu. The LonMaker
browser opens, as shown in the following figure:

The LonMaker browser contains a list of all the network variables and
configuration properties in the selected functional block. Confirm that the
functional block has the correct network variables and configuration
properties, and that their values are correct.

11-4 NodeBuilder User’s Guide

10. Right-click each network variable and configuration property and select
Properties from the shortcut menu. The Network Variable Properties or
Configuration Property Properties dialog opens. Use this dialog to confirm
that the network variable or configuration property has the correct type and
size.

11. Change input network variable and configuration property values and
confirm that the device hardware and application work as expected.

12. Switch to the LonMaker drawing and connect the functional blocks to other
functional blocks on this device or other devices and test their functionality.
See Testing Your Device Interface in the NodeBuilder Quick-Start tutorial for
an example of this. The device must be attached to the network and in the
Online state to perform this step.

If any of these steps do not give the expected result, return to the
NodeBuilder tool and check your code. Use the NodeBuilder debugger to help
you pinpoint problems.

Creating Custom LonMaker Shapes 12-1

12

Creating Custom LonMaker
Shapes

This chapter describes how to create a LonMaker stencil
containing custom LonMaker shapes for your devices and
functional blocks. Custom LonMaker shapes make your
devices easier to install and configure. You can provide your
custom stencils to network integrators with to allow them to
quickly integrate your devices into their LONWORKS networks
using the LonMaker tool.

12-2 NodeBuilder User’s Guide

Creating a New LonMaker Stencil
You can create a LonMaker stencil containing custom LonMaker shapes for
your NodeBuilder device and functional blocks. Custom LonMaker shapes
allow you to create LonMaker shapes designed to be used with your devices
and their functional blocks. You can provide these custom shapes to network
integrators to allow them to quickly integrate your device into their
LONWORKS network using the LonMaker tool.

To create custom LonMaker shapes, you must first create a new LonMaker
stencil to contain those shapes. To create a new LonMaker stencil, follow
these steps:

1. Open the LonMaker drawing containing the NodeBuilder device for which
you want to make custom shapes.

2. Open the LonMaker tool’s File menu, point to Stencils, and select New
Stencil. A blank LonMaker stencil named Stencil1 appears.

3. Click the document icon () on the new stencil’s title bar and then click Save
As.

4. Select a folder for the new stencil. You can choose any folder, but if you save
the stencil in the LONWORKS LonMaker\Visio folder
(c:\LonWorks\LonMaker\Visio by default), it will appear with the built-in
LonMaker stencils when you click the Visio Open Stencil () button.

5. Enter a name for the stencil file.
6. Click Save. Visio creates the stencil file with a .vss extension.
See Creating a Custom Shape for a NodeBuilder Device, Creating Custom
Shapes for Functional Blocks for information on creating, and Creating
Complex Custom LonMaker Shapes for information on adding shapes to the
stencil.

Creating a Custom Shape for a Device
You can create a custom LonMaker shape for your device. When an
integrator drags this custom device shape to a LonMaker drawing, the
LonMaker New Device Wizard automatically selects the appropriate device
template and application for the new device. The new device will have the
same properties as the device used to create the template. To create a
custom LonMaker device shape for a device, follow these steps:

1. Create a new stencil as described in Creating a New LonMaker Stencil, or
open an existing stencil by clicking the Visio Open Stencil () button and
selecting an existing stencil.

2. Create a new device using the LonMaker Device shape as described in the
LonMaker User’s Guide. Assign the LNS device template that you created for
your device to this new device. Assign the name that you want to appear on
your custom LonMaker device shape to this device. Set Location and Ping
Interval to the values you want saved with the custom device shape in the
LonMaker stencil. Any changes made to Description will not be saved with
the custom shape.

3. Right-click the Development Target or Release Target Device shape in the

Creating Custom LonMaker Shapes 12-3

LonMaker drawing and select Properties from the shortcut menu. The
Device Properties dialog appears.

4. Select the Advanced Properties tab.
5. Set Non-group Receive Timer to the value you want saved with the

custom device shape.
6. Click OK to save the device properties.
7. Hold the CTRL key and drag the device shape to the stencil that you created

or opened in step 1. A new custom LonMaker shape appears in the stencil
with the same name as the NodeBuilder device.

8. Click the document icon () on the stencil’s title bar and then click Save.

Creating Custom Shapes for Functional Blocks
You can create custom functional block shapes for each functional block in
your device. The standard LonMaker Functional Block shape has no network
variable shapes; if it is used to create a functional block in a LonMaker
drawing, a network integrator must manually add network variable shapes
or choose to add all network variables to the new functional block. You can
create custom functional block shapes so that network integrators have quick
and easy access to the appropriate network variables for your functional
blocks.

You can set configuration property values on the custom functional block.
This means you can create several versions of the same functional block for
different configurations of the functional block. This can further reduce the
network design time for your devices.

To create a LonMaker custom functional block shape, follow these steps:

1. Create a new stencil as described in Creating a New LonMaker Stencil, or
open an existing stencil by clicking the Visio Open Stencil () button and
selecting an existing stencil.

2. Create a device as described in Creating a Custom Shape for a Device.
3. Create functional block shapes for the device as described in the LonMaker

User’s Guide. Assign the name that you want to appear on each of the
custom LonMaker functional block shapes to each of the functional blocks.
Click Create shapes for all network variables to add a network variable
shape for every network variable on a functional block.

4. If you did not create shapes for all network variables, add input and output
network variable shapes to the functional blocks as described in the
LonMaker User’s Guide.

5. You need not add all network variable shapes to the functional block shape.
For example, you can create multiple custom functional block shapes, each of
which exposes a different set of network variables, depending on the function.

6. Right-click each functional block and select Browse from the shortcut menu.
The LonMaker Browser opens. If you have already designed and registered
an LNS Device Plug-in to configure the functional block you can select
Configure instead to start your plug-in.

7. Use the LonMaker Browser or your plug-in to configure the functional block .
You can modify network variable and configuration property values. Once
you have finished, click OK.

12-4 NodeBuilder User’s Guide

8. Hold the CTRL key and drag the new functional block shape to the stencil
that you created or opened in step 1. A new custom LonMaker functional
block shape appears in the stencil and may be used in any LonMaker
drawing containing the appropriate device.

9. Repeat steps 3 through 7 for each functional block on the device.
10. Click the document icon () on the stencil’s title bar and then click Save.

Creating Complex Custom LonMaker Shapes
custom LonMaker shapes with multiple functional blocks, devices, and
connections. You can create custom LonMaker shapes for multiple connected
functional blocks, for a device and all of its configured functional blocks, or for
supernodes that consist of many devices, functional blocks, and connections.
To accomplish this, select multiple shapes or supernodes and drag them to a
custom stencil. See the LonMaker User’s Guide for more information
regarding complex custom LonMaker shapes.

Creating an LNS Device Plug-in for a NodeBuilder Device 13-1

13

Creating an LNS Device
Plug-in for a NodeBuilder

Device

This chapter describes how to start the LNS Device Plug-in
Wizard from the NodeBuilder tool. See the LNS Plug-in
Programmer’s Guide for more information on the LNS Device
Plug-in Wizard and creating plug-ins.

13-2 NodeBuilder User’s Guide

Introduction to LNS Device Plug-ins
An LNS device plug-in is an LNS application that provides a simple device-
specific configuration tool that is designed to be launched from another LNS
application such as the LonMaker tool. Plug-ins make your devices easier to
install and configure since you can use them to provide an application-specific
view of your devices and functional blocks.

You can use Microsoft Visual Basic or Visual C++ to create an LNS device
plug-in. If you are using Visual Basic, you use the LNS Device Plug-in
Wizard to greatly reduce the time required to develop a plug-in. Microsoft
Visual Basic 6.0 (with service pack 5 or better) must be installed on your PC
before installing the NodeBuilder tool in order to use the LNS Device Plug-in
Wizard. You can reinstall the NodeBuilder software if you install Visual
Basic after installing the NodeBuilder software.

Starting the LNS Device Plug-in Wizard
You can start the LNS Device Plug-in Wizard from the NodeBuilder Project
Manager. This provides the fastest way to start developing plug-ins. You
can also start the LNS Device Plug-in Wizard from Visual Basic as described
in the LNS Plug-in Programmer's Guide.To start the LNS Device Plug-in
Wizard from the NodeBuilder Project Manager, follow these steps:

1. Open the NodeBuilder project containing the device template for your plug-
in.

2. Right-click the device template and then select Plug-in Wizard from the
shortcut menu. The following dialog appears listing the selected device
template, device template properties, and the registered plug-ins for the
device template:

Creating an LNS Device Plug-in for a NodeBuilder Device 13-3

3. To create a new plug-in, click the New Project button. The Program ID,
Minimum Model Number, and Maximum Model Number will
automatically be added to the project configuration. To work on an existing
project, select the project and then click Open Project. The LNS Device
Plug-in Wizard appears. See Using the LNS Device Plug-in Wizard in the
LNS Plug-in Programmer’s Guide for details on running the plug-in wizard.
Note: If you start the LNS Device Plug-in Wizard from the NodeBuilder tool
and your Visual Basic project uses the Source Safe add on, the LNS Device
Plug-in Wizard starting process may time-out while you are dealing with
Source Safe dialogs. You can ignore (Windows 2000, ME) or close (Windows
98) the Source Safe dialog and allow the LNS Device Plug-in Wizard to
launch.

Registering and Running your LNS Device Plug-in
Once you have created an LNS device plug-in for your NodeBuilder device,
you must register the plug-in with Windows and with the LonMaker network
containing the device. To accomplish this, follow these steps:

1. In Visual Basic, open the File menu and select Make <Project Name>. A
dialog opens allowing you to choose the name and location for the executable
file (.exe extension). Choose a name and location and click OK. Wait for the
project to compile.

2. Once the project has compiled, use Windows Explorer to browse to the plug-in
executable (the .exe file created in the previous step). Run this file by double-
clicking it. The following dialog opens:

13-4 NodeBuilder User’s Guide

3. Click the Register Plug-in button to register the plug-in with Windows.
4. Click OK after the plug-in is registered, and then click Exit to exit the

registration window.
5. If the LonMaker network containing the device is not already open, open it.

When you get to the plug-in registration screen verify that the new plug-in
appears in the To Be Registered field. If the network is already open, open
the LonMaker menu, select Network Properties, and then select the
Plug-in Registration tab. Verify that the new plug-in appears in the To Be
Registered field.

6. If you are opening a LonMaker network, finish the start-up wizard. If the
network is already open, click OK in the Network Properties dialog. The
plug-in will be registered with LNS and you will be able to use your plug-in.
See the LNS Plug-in Programmer’s Guide for more information on plug-in
capabilities.

Deregistering your LNS Device Plug-in
You can deregister a plug-in to remove it from the Windows registry and the
LNS database. To accomplish this, follow these steps:

1. Run your plug-in as described in Registering and Running your LNS Device
Plug-in. The following dialog appears:

Creating an LNS Device Plug-in for a NodeBuilder Device 13-5

2. Click the arrow beneath the Deregister Plug-in button and select one of the

following:
Minimal Mode Removes the entries for this plug-in from the

Windows registry.

Complete Mode Does everything a Minimal Mode
deregistration does, plus removes plug-in
registration data from all LNS network
databases and the LNS global database.

Exhaustive Mode Does everything a Complete Mode
deregistration does, plus removes all device
templates that this plug-in uses from all
network databases unless they are in use (i.e.
a device of that type exists in the network).

To re-register a plug-in that you have de-registered, you must quit the plug-
in and restart it before invoking the register command.
Do not try to deregister a plug-in when you have started it stand-alone from
the Visual Basic debugger. This will cause the deregistration to fail.

3. Click Deregister Plug-in.

13-6 NodeBuilder User’s Guide

Creating a Human-Machine Interface 14-1

14

Creating a Human-Machine
Interface

This chapter describes how to create a human-machine
interface (HMI) for your NodeBuilder device.

14-2 NodeBuilder User’s Guide

Human-Machine Interfaces
A human-machine interface (HMI) is an application supplied to system
operators and end users that allows them to monitor and control devices in a
LONWORKS network using an intuitive graphical interface. It differs from an
LNS device plug-in in that while LNS device plug-ins are intended to be used
by network installers to configure devices in a network, an HMI is intended
to be used by operators and end-users on installed and active networks. For
example, in a network designed to control the heating and cooling in a
building, an HMI could be designed allowing the user to view temperatures of
each room using a floor plan of the building and set the temperature in each
room using graphical sliders or dials.

LonMaker Integration Tool
You can use the LonMaker Integration Tool to build a simple HMI. The
LonMaker tool’s HMI capability provides a low-cost platform for delivering
simple operator interfaces. It is not designed to replace high-end HMI tools
such as Wonderware InTouch or Intellution FIX. The LonMaker tool’s HMI
application is sufficient when you want to, for example, monitor and control
states of values or graphically represent interactions in the network. The
high-end HMI tools are best for representing more complex types of network
interactions. These tools are developed with a scripting language tuned to
specifically address HMI tasks. In addition, these tools offer components that
provide reporting and analysis, history, alarm logging, event handling, and
Internet-enabling.

The following figure is an example HMI developed with the LonMaker tool
and third-party ActiveX controls from National Instruments.

See Creating HMI Applications in the LonMaker User’s Guide for more
information about using the LonMaker Integration Tool to monitor and
control LONWORKS networks.

Creating a Human-Machine Interface 14-3

Third-Party HMIs and the LNS DDE Server
If your HMI requirements are more complex than can be provided by the
LonMaker Integration Tool, you can use a third-party HMI tool. If you use
the LonMaker tool to install your networks, it is important to use an HMI
tool that either includes an LNS 3 (or newer) driver, or is compatible with an
LNS 3 (or newer) driver such as the LNS DDE Server. You can find a list of
both types of tools at www.echelon.com/lns. Select LNS Tools from the
navigation box to display a list of LNS tools and LNS-compatible tools from
many manufacturers. Scroll down to LNS-Enabled HMI/SCADA Tools to
see a list of HMI tools.

If you are using an HMI tool that does not include an LNS driver, you will
need to use a stand-alone LNS I/O driver that is compatible with the tool.
HMI tools typically support open protocols for interfacing with I/O drivers.
The two most typical protocols used for I/O servers are OLE for Process
Control (OPC) and Dynamic Data Exchange (DDE). Many HMI tool vendors
also support proprietary interfaces for I/O drivers. For example, Wonderware
supports the SuiteLink protocol for many of their products including the
InTouch HMI tool. High-performance I/O drivers can be written for any of
these protocols as long as they are based on LNS 3 or newer. This is because
the bottleneck for I/O server performance tends to be the network interface
used to attach the HMI computer to the LONWORKS network. Network
interfaces that do not support the LNS 3 Fast Network Interface protocol are
limited to approximately 200 updates per second maximum for bound
connections and approximately 50 updates per second for polled values.
Network interfaces that support the LNS 3 Fast Network Interface protocol
offer substantially better performance. For example, an LNS 3 I/O driver
used on a LONWORKS/IP channel can achieve performance of over 1,000
updates per second for both bound and polled updates. This is possible using
either the OPC or DDE protocol, or a proprietary protocol such as SuiteLink.

A critical requirement for any LONWORKS I/O driver is that it must provide
access to all the points that will be required to create an HMI. Points may be
network variables, network variable fields, configuration properties,
configuration property fields, and functional block controls. Before selecting
a LONWORKS I/O driver, verify that it provides access to all of these types of
points.

The NodeBuilder Development Tool includes the LNS DDE Server. This is
an I/O driver based on LNS 3 that provides DDE and SuiteLink interfaces to
a LONWORKS network. It provides access to all type of points including
network variables, network variable fields, configuration properties,
configuration property fields, and functional block controls. With the LNS
DDE Server, any Windows application that can act as a DDE or SuiteLink
client can monitor and control one or more LONWORKS networks. The LNS
DDE Server uses the naming, addressing, and timing information stored in
an LNS Server by a network tool such as the LonMaker Integration Tool.

The LNS DDE Server is compatible with many popular HMI applications
such as Wonderware InTouch, Intellution FIX, and National Instruments
BridgeView and LabView. The following figure is a sample HMI developed
with Wonderware InTouch and the LNS DDE Server:

14-4 NodeBuilder User’s Guide

See the LNS DDE Server User’s Guide for more information about using the
LNS DDE Server to monitor and control LONWORKS networks with third-
party HMI tools.

Creating a Software Installation 15-1

15

Creating a Software
Installation

This chapter describes how to create a software installation for
your device.

15-2 NodeBuilder User’s Guide

Creating a Software Installation
You can create a software installation program that installs all the files
required by integrators to easily design and install your devices in
LONWORKS networks. These files include your plug-in, resource files, and
other support files. You will typically create the software installation
program using a third-party installation application such as the
InstallShield® product.

In order for customer to use your device, they must have already installed an
LNS tool such as the LonMaker tool, or they must have installed an LNS
developer’s kit. When an LNS tool or an LNS developer’s kit is installed on a
computer, a LONWORKS folder is created. By default, this folder is created in
C:\LonWorks, but the user can change the name and location of this folder
when it is first created. You can find the location of the LONWORKS folder in the
Windows registry at the following location:
HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonWorks Path

Your installation program should install the following files:

Application Image Files If your device supports field downloading of an
application image, you can supply application
image files to support this feature. Application
image files are used by a network tool such as the
LonMaker tool to download a compiled application
image to your device. During development, these
files are located in the Development or Release
target folder in the device template folder. See
Files Created When you Build an Application
Image for a description of these files. Be sure to
include the binary device interface file (.xfb
extension) and optimized device interface file (.xfo
extension) to reduce installation time with LNS
tools.

 Install these files in a folder with your company’s
name within the folder specified by the following
registry key, if present:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonMaker for Windows\NxeSearchPath

 If this registry key is not present, install these
files in a folder with your company’s name within
the LONWORKS Import folder
(c:\LonWorks\Import\<Company Name> by
default). If a folder with your company’s name is
not found in the specified directory, create one.

Device Interface Files These files contain a definition of the device
interface that is used by network tools to learn the
interface to a device, without requiring the device
to be physically available. During development,
these files are located in the Development or
Release target folder in the device template
folder. See Files Created When you Build an

Creating a Software Installation 15-3

Application Image for a description of these files.
Be sure to include the binary device interface file
(.xfb extension) and optimized device interface file
(.xfo extension) to reduce installation time with
LNS tools.

 Install these files in a folder with your company’s
name within the folder specified by the following
registry key, if present:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonMaker for Windows\XifSearchPath

 If this registry key is not present, install these
files in a folder with your company’s name within
the LONWORKS Import folder
(c:\LonWorks\Import\<Company Name> by
default). If a folder with your company’s name is
not found in the specified directory, create one.

Resource Files These files define the functional profiles, network
variable types, and configuration property types
for the functional blocks, network variables, and
configuration properties implemented by your
device. You do not have to install resource files
for standard resources, since these are installed
by both LNS tools and LNS developer’s kits, but
you do have to install all the user resource files
required by your device. You create user resource
files with the NodeBuilder Resource Editor as
described in Using the Resource Editor. During
development, these files are located in the folder
specified within the NodeBuilder Resource Editor
For each resource file set, you must install the
type file (.typ extension), the format file (.fmt
extension), the functional profile file (.fpt
extension), and any language resource files
(language resource file extensions vary by
language as described in Generating Resource
Files in the Using the Resource Editor chapter.
Do not remove any of these files when
uninstalling your device files since these may be
used by other devices developed by other parts of
your organization.

 Install these files in a folder with your company’s
name within the LONWORKS Types folder
(c:\LonWorks\Types\<Company Name> by
default).

 Use the MKCAT catalog utility to register your
resource folder with the resource catalog. You
must execute the MKCAT utility from the folder
that contains the resource catalog
(c:\LonWorks\Types by default).

15-4 NodeBuilder User’s Guide

LNS Device Plug-in If you created a plug-in for your device as
described in Creating an LNS Device Plug-in
install and register it. See Installing Your Plug-in
in the LNS Plug-in Programmer's Guide for more
information.

 Install your plug-in in a folder with your
company’s name within the LONWORKS Apps
folder (c:\LonWorks\Apps\<Company Name> by
default).

LonMaker Stencil If you created a LonMaker stencil containing
custom shapes for your device and its functional
blocks (see Creating a New LonMaker Stencil in
the Creating Custom Shapes chapter), copy it to a
folder with your company’s name within a Visio
folder within the folder specified by the following
registry key, if present:

HKEY_LOCAL_MACHINE\SOFTWARE\LonWorks\LonMaker for Windows

 This will be
c:\LonWorks\LonMaker\Visio\<Company
Name> by default.

HMI Application If you have created an HMI application for your
device as described in the Human-Machine
Interfaces chapter, install and register it. See the
documentation for your installation creation
software and your HMI development tool for more
information on what this entails.

NodeBuilder Example A-1

Appendix A

NodeBuilder Example

This Appendix gives a step-by-step description of how the
NodeBuilder example was created using the NodeBuilder and
LonMaker tools.

A-2 NodeBuilder User’s Guide

Introduction to the NodeBuilder Example
The NodeBuilder example provides an example of a device application
developed using the NodeBuilder tool. The example includes a LonMaker
backup file containing the example device and its functional blocks and an
LNS device plug-in designed to configure the application.

The example application is designed to run on a Gizmo 4 I/O board attached
to an LTM-10A Platform. These are included with the NodeBuilder 3 tool,
but are not included with the NodeBuilder 3 upgrade. If you do not have an
LTM-10A Platform or a Gizmo 4 I/O Board, you can still use the NodeBuilder
tool to create and compile the application, but you cannot see the effects of
the device application.

The NodeBuilder example is in the LONWORKS NodeBuilder\Examples folder
(C:\LonWorks\NodeBuilder\Examples by default). This folder contains
the following folders:

Database Contains a LonMaker backup file (NcExa.zip) for
a LonMaker network and NodeBuilder project for
the example device.

NcExample Contains a copy of the example NodeBuilder
project

PlugIn Contains the LNS device plug-in used to configure
the example device application.

Types Contains the resource files developed in the
course of this example.

You can either follow the procedure in the rest of this appendix to create the
LonMaker network and NodeBuilder project, or your can restore a completed
LonMaker network and NodeBuilder project from the LonMaker backup file.
To install the LonMaker network and NodeBuilder project from the
LonMaker backup file, follow these steps:

1. Open the Windows Start menu, point to Programs, and then click
LonMaker for Windows. The LonMaker Design Manager appears.

2. Click Restore. The Select Backup File dialog appears.
3. Select the NcExa.zip file in the NodeBuilder\Examples\Database folder and

then click Open. The Confirm Restore dialog appears.
4. Click OK to restore the network and project. The LonMaker network and

NodeBuilder project are copied to your computer. The NodeBuilder project is
copied to the c:\Lm\Source folder and the Restore Complete dialog appears.

5. Click Yes to complete the restore.
6. Open the Windows Start menu, point to Programs>Echelon NodeBuilder

Software, and then click NodeBuilder Resource Editor.
7. Right-click the LONWORKS NodeBuilder\Examples\Types folder and then

click Remove on the shortcut menu.
8. Right-click the resource catalog file at the top of the resource catlog and then

click Add Folder on the shortcut menu.
9. Select the Lm\Source\NcExa\Types folder and then click OK.

NodeBuilder Example A-3

10. Click the Echelon LonMaker button in the Windows taskbar to switch to the
LonMaker Design Manager.

11. Select the NcExa drawing directory and then click Open Network.
Complete the LonMaker start-up wizard as described in the LonMaker User’s
Guide.

12. Right-click the NcExa device and then click Replace on the shortcut menu.
Replace the device with your own device.

This appendix describes how each part of the example was developed using
the NodeBuilder tool and the LonMaker tool. The example is divided into
tasks. Each task introduces different parts of the device development
process, and assumes the previous task has been completed.

This appendix includes a number of code examples. Many of these examples
show code that is generated by the Code Wizard as well as the code to be
added. In these examples, code that is generated by the Code Wizard is
shown in italics and code which has been added is shown in bold. See the
Neuron C Programmer’s Guide and Neuron C Reference Guide for more
information on programming in Neuron C.

NodeBuilder Example Task 1: Setting Up The
Project

The purpose of this task is to create a LonMaker network that contains the
device to be developed and to create the NodeBuilder project. To accomplish
this, follow these steps:

1. Start the LonMaker tool and create a new LonMaker network named NcExa.
Ensure that the LonMaker tool is attached to the network and in the OnNet
management mode. See the LonMaker User’s Guide for more information on
creating and opening a LonMaker network.

2. Drag the Development Target Device shape from the NodeBuilder Basic
Shapes stencil to the LonMaker drawing. The LonMaker New Device Wizard
opens as described in Device Template Wizard New Device Template.

3. Choose a name for the new device, set Commission Device, and then click
Next. The second window of the New Device Wizard opens.

4. Click the Start NodeBuilder button. The NodeBuilder Project Manager
appears. When prompted, indicate that you want to create a new
NodeBuilder project. The New NodeBuilder Project Wizard opens as
described in Device Template Wizard New Device Template.

5. Name the new NodeBuilder project NcExa (this will be the default name if
you named the LonMaker network this) and click Next. The Project Default
Setting window opens.

6. In the Project Default Settings window, add the location of the Gizmo 4
utility files (i.e., Gizmo4.h) to Include Search Path (see Creating a
NodeBuilder Project: Creating a New Project for more information). By
default, the Gizmo 4 utility files are located in the LONWORKS
NodeBuilder\Gizmo4 folder (C:\LonWorks\NodeBulder\Gizmo 4 by
default). Set Run NodeBuilder device template wizard and click Next.
The Device Template Wizard opens (see Device Template Wizard New Device
Template for more information about the Device Template Wizard).

A-4 NodeBuilder User’s Guide

7. In the first window of the Device Template Wizard, name the new Device
Template NcExample. Click Next. The Program ID window opens.

8. Leave automatic Program ID management enabled and use the Standard
Program ID Calculator to generate a Program ID. The example provided
with the NodeBuilder project uses 9F:FF:FF:05:00:8A:04:00, but the Program
ID you use should use your company’s manufacturer ID. See Creating a
NodeBuilder Project: Creating a New Project for more information about the
Standard Program ID Calculator. If you are using a non-FT-10 channel
transceiver, when you build you will get a warning that you have a mismatch
between the Program ID and the transceiver type. For purposes of the
example, you can ignore this warning. If you want to change the Program ID
to the appropriate transceiver value, you must set the scope of the resource
file created in NodeBuilder Example Task 5 to 4, so the Program ID of the
resource file set will match the Program ID of the device. Click Next. The
Target Platforms window opens.

9. Set the development target hardware to LTM-10A RAM, and the release
target hardware to LTM-10A FLASH. See Setting Hardware Template
Properties: Hardware for more information about hardware templates. To
proceed immediately to Task 2, set Run NodeBuilder Code Wizard. Click
Finish.

NodeBuilder Example Task 2: Configuring the
Node Object

The purpose of this task is to create an empty but fully functioning
LONWORKS device with a Node Object functional block. The Node Object
functional block is used by network tools to manage all the functional blocks
on a device. This task uses the Code Wizard (described in Using the
NodeBuilder Code Wizard) to configure the device’s Node Object functional
block. This task also adds code to initialize the Gizmo 4 I/O Board.

1. Open the Code Wizard. If you have just used the Device Template Wizard
(e.g. in Task 1), you can set Run NodeBuilder Code Wizard before exiting
the Device Template Wizard. Otherwise, right-click the device template in
the Project pane (described in The Project Pane Device Templates Folder) and
select Code Wizard from the shortcut menu. The Code Wizard opens.

2. Click Generate and Close. The Code Wizard generates code and returns
you to the NodeBuilder Project Manager (see Overview of the NodeBuilder
Project Manager).

3. Double-click the common.h file contained in the NcExample device template
in the Project pane to open it. Add the following line at the top of the list of
include files:

#include "Gizmo4.h"

This statement makes the Gizmo 4 utility functions and I/O declarations
available to all components of the example application. You must have
included the folder containing the Gizmo 4 header files in Include Search
Path. If you did not, right-click the device template, select Settings from
the shortcut menu, open the Paths tab, and update Include Search Path.

4. In NxExample.nc, in the "when (reset)" task, add the following lines shown

NodeBuilder Example A-5

in bold:

when (reset)
{
 GizmoReset();
 GizmoBuzz(TRUE);
 GizmoDisplayString(2,0, "Echelon NEURON C");
 GizmoDisplayString(0,1, "Example Application");
 initAllFblockData();
 executeOnEachFblock(FBC_WHEN_RESET);
 GizmoBuzz(FALSE);
}

This code change initializes the Gizmo 4 I/O Board.
5. Save the file by selecting Save from the File menu.
6. Right-click the Development folder and then select Build from the shortcut

menu. This builds only the development target which is all that is necessary
for this example.

7. Once the build has completed, click the LonMaker icon in the Windows
taskbar to return to the LonMaker tool. The New Device Wizard opened in
Task 1 will still be open.

8. Click the NodeBuilder Device Template arrow and selectthe newly
created NcExample NodeBuilder device template.

9. Continue through the New Device Wizard in the LonMaker tool (see the
LonMaker User’s Guide for more information). Set Load Application
Image, and set State to Online.
When prompted, press the service pin on the LTM-10A Platform. The
application, including the Node Object functional block and the Gizmo
utilities, is loaded into the device. The application download takes up to 30
seconds.
Now that you have added the device to the LonMaker drawing and loaded the
device with its application, the NodeBuilder Project Manager and the
LonMaker tool will automatically load new builds of the application into the
device.

10. The Gizmo display shows an Echelon NEURON C Example Application
message after loading and commissioning has been completed.

11. Use the LonMaker tool to test the device as described in Testing a
NodeBuilder Device Using the LonMaker Tool. For example, you can add a
Node Object functional block and confirm that it has the appropriate network
variables and configuration properties.

NodeBuilder Example Task 3: Adding Digital I/O
The purpose of this task is to add digital input and output functionality to the
device. We add a pair of digital actuators and sensor functional blocks to the
device, and connect them using the LonMaker tool. Once this task is
completed the buttons on the Gizmo 4 can be used to turn on the LEDs.

After completing this task, you will have a fully functioning LONWORKS
device. This task and the functional blocks added in this task are kept simple
in order to focus on the essential steps. More sophisticated examples follow
in the upcoming tasks. To perform this task, follow these steps.

A-6 NodeBuilder User’s Guide

1. Click the NodeBuilder icon in the Windows taskbar to return to the
NodeBuilder Project Manager.

2. Right-click the NcExample device template and select Code Wizard from
the shortcut menu. The Code Wizard opens (see Using the NodeBuilder Code
Wizard for more information on using the Code Wizard).

3. Right-click the Functional Blocks folder and select Add Functional Block
from the shortcut menu. The Add Functional Block dialog opens.

4. Add an array of 2 SFPTopenLoopSensor functional blocks to the device (see
Adding Functional Blocks to the Device Template with the Code Wizard).
Name the functional blocks DigitalInput. These two functional blocks will
be used to control the two push-buttons on the Gizmo 4.

5. Open the DigitalInput functional block’s Mandatory NVs folder, right-click
the network variable contained in the folder, and select Properties from the
shortcut menu. The Network Variable Properties dialog opens.

6. Rename the network variables to nvoDigitalInput, and set the type to
SNVT_switch. The network variable is implemented as an array of size 2.
These network variables will be used to send the value of the digital input on
the network (i.e. whether the button is being pressed).

7. Repeat steps 3 and 4, but add an array of 2 SFPTopenLoopActuator
functional blocks, and name them DigitalOutput. These functional blocks
will be used to control the two LEDs on the Gizmo 4.

8. Repeat steps 5 and 6 but rename the DigitalOutput functional block’s
mandatory network variable to nviDigitalOutput, and change the type to
SNVT_switch. These two network variables will be used to receive values
from the network to drive the LEDs (i.e. turn them on and off).

9. Right-click the DigitalOutput functional block’s Optional CPs folder and
select Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog opens.

10. Select nciDefault from the FPT Member Name dialog to implement this
configuration property. Name the configuration property cpDigitalDefault..
A single configuration property will be created for each member of the
functional block array (the Static CP option is used to create a single
configuration property that applies to all functional blocks in the array; this
option is discussed in Task 4).
This configuration property will be used to control the initial state of the
physical output lines after power-up or reset. Since it is applied to an
actuator, the type of this configuration property is the same as the type of the
primary input network variable of the functional block (nviDigitalOutput).

11. Click Generate and Close.
12. Open the device template’s Source Files folder and open ncexample.h by

double clicking it. Add the following lines of code shown in bold:

#ifndef _NcExample_H_
#define _NcExample_H_

#define SWITCH_ON 0x01
#define SWITCH_OFF 0x00

This code defines enumerations to use for on and off values for the buttons
and LEDs.

NodeBuilder Example A-7

13. Open DigitalOutput.nc from the Source Files folder and add the
following lines of code shown in bold to DigitalOutputProcessNV():

void DigitalOutputprocessNV(void)
{
 // drive the LED as appropriate:
 GizmoSetLed(deviceState.nvArrayIndex,
nviDigitalOutput[deviceState.nvArrayIndex].state);
}

This code causes the LED to be updated whenever the input network variable
on the associated DigitalOutput functional block receives an update.

14. Open the DigitalInput.nc file from the Source Files folder and add the
following lines of code:

void setDOutValue(unsigned uIndex) {
 // set the nvo to reflect the input line state.
 if (fblockNormalNotLockedOut(DigitalInput[uIndex]::global_index)) {
 nvoDigitalInput[uIndex].state
 = input_value ? SWITCH_OFF : SWITCH_ON;
 }
}

when (io_changes(ioButton1)) {
 setDOutValue(0);
}

when (io_changes(ioButton2)) {
 setDOutValue(1);
}

This code causes the output network variables on the DigitalInput
functional blocks to be updated whenever the value from the hardware (i.e.
the push-buttons) changes.
The fblockNormalNotLockedOut() function ensures that the functional
block is enabled. Alternatively, the following clause can also be used for the
argument of the fblockNormalNotLockedOut() function to retrieve the
current functional block index:

fblock_index_map[nv_table_index(nvoDigitalInput[uIndex])]

The DigitalInput[uIndex]::global_index clause is used to
demonstrate the scope operator (‘::’), and because this clause is more
efficient.

15. Open DigitalOutput.nc from the Source Files folder. Add the following
code in bold to the FBC_WHEN_RESET else-if statement:

else if ((TFblock_command)iCommand == FBC_WHEN_RESET)
 {
 // initialize output lines:
 GizmoSetLed(0, DigitalOutput[0]::cpDigitalDefault.state);
 GizmoSetLed(1, DigitalOutput[1]::cpDigitalDefault.state);
 setLockedOutBit(uFblockIndex, FALSE);
 }
 else if ((TFblock_command)iCommand == FBC_DISABLED)

This code causes LEDs to be set to the value specified in the
cpDigitalDefault configuration property when the device is reset.

A-8 NodeBuilder User’s Guide

16. Build the development target as described in Building a NodeBuilder Project.
The LonMaker tool automatically reloads the application into the device.

17. Click the LonMaker button in the Windows taskbar to return to the
LonMaker tool.

18. Drag 4 functional block shapes to your drawing, one for each of the
DigitalOutput and DigitalInput functional blocks. Set Create shapes for
all network variables for each functional block.

19. Connect each input network variable to the corresponding output network
variable. See the LonMaker User’s Guide for more information on performing
these operations. When you are done, your LonMaker drawing should look
something like this:

20. Press the SW1 and SW2 buttons on the Gizmo 4 Board to verify that these

now control the LEDs.
21. Use the LonMaker tool to verify the functional blocks behave as expected.

NodeBuilder Example Task 4: Analog Input and
Output

The purpose of this task is to add a pair of analog input and output functional
blocks to the device. This task shows an implementation-specific
configuration property being added to a functional block. To accomplish this
task, follow these steps:

1. Click the NodeBuilder button in the Windows taskbar to return to the
NodeBuilder tool.

2. Right-click on the device template and select Code Wizard from the shortcut
menu. The Code Wizard opens.

3. Right-click the device template’s Functional Blocks folder and select Add
Functional Block from the shortcut menu. The Add Functional Block
dialog opens.

4. Add an array of 2 SFPTanalogInput functional blocks. Name the functional
block array AnalogInput.

5. Open the AnalogInput functional block’s Mandatory NVs folder, right-
click the nvoAnalog network variable in the folder, and select Properties
from the shortcut menu. The Network Variable Properties dialog opens.

6. Rename the network variable to nvoAnalogInput.
7. Repeat steps 2 and 3, but add an array of 2 SFPTanalogOutput functional

blocks, and name the array AnalogOutput.

NodeBuilder Example A-9

8. Repeat steps 3 and 4, but rename the nviAnalog network variable to
nviAnalogOutput.

9. Right-click the AnalogInput functional block’s Implementation-specific
CPs folder and select Add CP from the shortcut menu. The Add
Configuration Property dialog opens.

10. Add an implementation-specific SCPTupdateRate configuration property.
Name the new configuration property cpUpdateRate. Set Static CP for
this configuration property; this will cause a single configuration property to
be added that applies to all functional blocks in the AnalogInput functional
block array. Set Initial Value to 5. This configuration property will be used
to specify how often each AnalogInput functional block will read the analog-
to-digital converter (ADC) hardware inputs.
Setting the InitialValue field to 5 will cause the value of this configuration
property to be set to 5 when the application is loaded into the device. The
value of "5" is the unscaled value, representing 500ms or 0.5s.

11. Click OK. A dialog opens asking you to confirm code generation.
12. Click Generate and Close.
13. Open the AnalogOutput.nc file from the Source File folder and add the

following code in bold to the FBC_WHEN_RESET else-if statement in the
AnalogOutputDirector() function:

 else if ((TFblock_command)iCommand == FBC_WHEN_RESET)
 // init output signals to 0
 GizmoWriteAnalog(0, 0L);
 GizmoWriteAnalog(1, 0L);
 // get going:
 setLockedOutBit(uFblockIndex, FALSE);

This code causes the analog output signals to be set to 0 when the device is
reset. You could add a default value implementation specific configuration
property for a more flexible solution then a hard-coded 0V output after
power-up and reset. Since we've discussed and shown implementation of
such a configuration property in Task 3, this has not been implemented here.

14. Still in the AnalogOutput.nc file, add the following code in bold to the
AnalogOutputprocessNV() function:

void AnalogOutputprocessNV(void)
{
 signed long slOutputValue;

 slOutputValue = nviAnalogOutput[deviceState.nvArrayIndex];
 slOutputValue /= 20L;

 GizmoWriteAnalog(deviceState.nvArrayIndex, abs(slOutputValue));
}

This code computes the output value. The SNVT_lev_percent network
variable type has a valid range of -163.84% to 163.83% in steps of 0.005%.
The value expected by the GizmoWriteAnalog() function, however, has a
value range of 0.0 to 100.0% in steps of 0.1%.
The slOutputValue variable has the correct value but is still a signed
variable, and could have the correct absolute value but the incorrect sign.
This example uses the abs() function to ignore the sign.

A-10 NodeBuilder User’s Guide

15. Open the AnalogInput.nc file from the Source Files folder. Add the
following declarations in bold at the top of the file:

#ifndef _AnalogInput_NC_
#define _AnalogInput_NC_

#include "common.h"
#include "AnalogInput.h"

#define AI_FILTERSIZE 4
#define AI_CHANNELS AnalogInput_FBLOCK_COUNT

mtimer ai_timer;
// the buffer for the averaging filter:
unsigned long ai_rawdata[AI_CHANNELS][AI_FILTERSIZE];
// recent value (required to detect changes for minimum NV updates)
unsigned long ai_rawrecent[AI_CHANNELS];

//{{NodeBuilder Code Wizard Start

The Gizmo 4's PIC controller does not provide an interrupt upon the
availability of new analog data. Therefore, this example reads both channels
every cpUpdateRate interval, which defaults to 1 minute (the PIC converts
every 100ms). The minimum sample rate is 0.1s, which matches the PIC
controller's real sample rate. This example averages the last
AI_FILTERSIZE values obtained for an improved signal quality, where the
filter size defaults to 4 and should not be less than two. This implementation
will only update the output network variable if the value has been changed.

16. Still in AnalogInput.nc, add the following code in bold to the
FBC_WHEN_RESET else/if statement in the AnalogInputDirector()
function:

 else if ((TFblock_command)iCommand == FBC_WHEN_RESET)
 // reset filter and start sampling timer
 memset(ai_rawdata, 0, sizeof(ai_rawdata));
 memset(ai_rawrecent, 0, sizeof(ai_rawrecent));
 ai_timer = AnalogInput[0]::cpUpdateRate * 100L;
 // get going:
 setLockedOutBit(uFblockIndex, FALSE);

This code clears out the filter and starts sampling the hardware input when
the device is reset.

17. Still in AnalogInput.nc, add the following code in bold to the
FBC_WHEN_ONLINE else-if statement in the AnalogInputDirector()
function:

 else if ((TFblock_command)iCommand == FBC_WHEN_ONLINE)
 // start sampling timer:
 ai_timer = AnalogInput[0]::cpUpdateRate * 100L;

This code starts the sampling the hardware input when the device is set
online.

18. Still in AnalogInput.nc, add the following code in bold to the
FBC_WHEN_OFFLINE else/if statement in the AnalogInputDirector()
function:

 else if ((TFblock_command)iCommand == FBC_WHEN_OFFLINE)
 // stop sampling timer:
 ai_timer = 0L;

NodeBuilder Example A-11

This code stops sampling the hardware input when the device is set offline.
19. Still in AnalogInput.nc, add the following code in bold to process expiry of

the sampling timer:

#endif //_HAS_INPUT_NV_

when (timer_expires(ai_timer)) {
 int iIndex;
 int iChannel;
 unsigned long ulValue;

 // are we in business?
 if (fblockNormalNotLockedOut(AnalogInput[0]::global_index)) {
 // yes we are. Repeat for each channel:

 for (iChannel = 0; iChannel < AI_CHANNELS; ++iChannel) {
 // Move historic data:
 for (iIndex = 0; iIndex < AI_FILTERSIZE-1; ++iIndex) {
 ai_rawdata[iChannel][iIndex] =
 ai_rawdata[iChannel][iIndex + 1];
 }

 // fetch current value (store in filter history and also
 // use current value to initialize current result
 ulValue = ai_rawdata[iChannel][AI_FILTERSIZE-1] =
 GizmoReadAnalog(iChannel);

 // compute average over averaging window:
 for (iIndex = 0; iIndex < AI_FILTERSIZE-1; ++iIndex) {
 ulValue += ai_rawdata[iChannel][iIndex];
 }
 // now we've got the sum, let's divide in a reasonable
 // way. That is, we divide and round if appropriate:
 if ((ulValue % AI_FILTERSIZE) >= (AI_FILTERSIZE / 2)) {
 ulValue = ulValue / AI_FILTERSIZE + 1L;
 } else {
 ulValue /= AI_FILTERSIZE;
 }

 // has it changed?
 if (ulValue != ai_rawrecent[iChannel]) {
 // it has indeed. Update history and network variable
 ai_rawrecent[iChannel] = ulValue;
 nvoAnalogInput[iChannel] =
 ((SNVT_lev_percent)ulValue)* 20L;

 }
 } // next channel
 } // not in business

 // re-load timer. We do not use auto-reloading ("mtimer
 // repeating...") because we want the update frequency to be
 // adjustable through cpUpdateRate.
 ai_timer = AnalogInput[0]::cpUpdateRate * 100L;
}

20. Build the development target. The LonMaker tool automatically loads the
new application into the device hardware.

21. Drag 4 new functional blocks to your drawing, one for each AnalogInput
and AnalogOutput functional block. Set Create shapes for all network
variables for each functional block.

22. Connect AnalogInput[0] to AnalogOutput[1]. See the LonMaker User’s
Guide for more information. When you are done, your LonMaker drawing
should look something like this:

A-12 NodeBuilder User’s Guide

23. Insert jumpers between pins 1 and 2 of JP7 and JP8 in the lower right-hand

corner of the Gizmo 4 board. These jumpers connect the AOUT1 output to
the AIN1 input, and the AOUT2 output to the AIN2 input.

24. Browse the Analog Output 1 and Analog Input 2 functional blocks using
the LonMaker Browser. Verify that an update to the nviAnalogOutput
network variable on Analog Output 1 gets reflected in the
nvoAnalogInput network variable on Analog Input 2. Be sure to allow for
a generous conversion error - the Gizmo 4 has a 10 bit ADC and an 8 bit DAC
converter; being daisy-chained like this causes conversion errors to be
multiplied. Also verify correct operation by changing the cpUpdateRate
configuration property value, disabling one or more functional blocks in the
loop, etc.

NodeBuilder Example Task 5: Simple Translator
The purpose of this task is to create a simple user-defined functional profile,
UFPTtranslator, using the NodeBuilder Resource Editor. This functional
profile translates an input network variable of type SNVT_temp_p into an
output network variable of type SNVT_lev_percent, allowing a temperature
sensor functional block to be connected to the analog output functional blocks
on this example device. For more information about the resource editor, see
Editing Resource Files.

This task covers the basic implementation of a very simple user functional
profile. Task 6 implements a number of improvements in the design. To
accomplish this task, follow these steps:

1. Click the NodeBuilder button in the Windows taskbar to return to the
NodeBuilder tool. Right-click the device template and select Code Wizard
from the shortcut menu. The Code Wizard opens.

2. Right-click the LONWORKS NodeBuilder\Examples\Types folder
(c:\LonWorks\NodeBuilder\Examples\Types by default) and then click
Remove on the shortcut menu.

3. Right-click the resource catalog file at the top of the resource catalog (the file
with the .cat extension), and then select Add Directory from the shortcut
menu. Browse to an existing folder or create a new one.

4. Right-click the folder added in step 3 and select New Resource File Set
from the shortcut menu. The New Resource File Set dialog opens.

5. Set Scope to Scope 3 - Manufacturer Class and set Program ID to the
Program ID that you chose for the device in Task 1 (if the manufacturer ID

NodeBuilder Example A-13

does not match, you will not be able to access this resource file set for use
with your device). Name the new resource file set NcExample.

6. Right-click the Functional Profile Templates folder in the new resource
file set and then select New FPT from the shortcut menu. A new functional
profile will be created with the default name of UFPT1.

7. Rename the functional profile UFPTtranslator.
8. Right-click the resource catalog file and select Options from the shortcut

menu. The Resource Editor Options dialog appears.
9. Set Show obsolete resource items. The network variable to be added in

step 11 is of an obsolete type. Click OK.
10. Right-click the UFPTtranslator functional profile and select Open from the

shortcut menu. The Modify Functional Profile Template dialog opens.
11. In the left-hand pane of this dialog, open the C:\LONWORKS\Types\Standard

resource file set folder, and browse to the SNVT_lev_percent network
variable type. Drag this network variable type to the UFPTtranslator
functional profile’s Mandatory NVs folder in the right-hand pane. The
network variable will be added to the Mandatory NVs folder with the name
nviManNV1.

12. Repeat step 11 but add a SNVT_temp_p network variable to the
UFPTtranslator functional profile’s Mandatory NVs folder. The new
network variable will be named nviManNV2.

13. Click nviManNV1 (the SNVT_lev_percent type network variable added in
step 11). The right-hand portion of the dialog displays the network variable
properties. Change Name to nvoPercentage and set Output to indicate
that it is an output network variable.

14. Repeat step 13 for nviManNV2 (the SNVT_temp_p type network variable
added in step 12). Change Name to nviTempP, set Input to indicate that it
is an input network variable, and set Principal NV to make this the
functional profile’s principal network variable.

15. Click OK to close the Modify Functional Profile Template dialog.
16. In the Interface pane of the Code Wizard, right-click the device template’s

Functional Blocks folder and add a single UFPTtranslator functional block
to the device. SetUser-defined and set Scope to 3 in the Add Functional
Block dialog to access the new resource file set.

17. Click OK. Click Generate and Close to generate code and exit the Code
Wizard.

18. Build and load the application.
19. Add the Translator functional block to the LonMaker drawing.
20. Use the LonMaker Browser to browse the translator. Enable monitoring for

nvoPercentage, and force nviTempP to several values within and outside
the supported range of 0-+30°C.

21. Connect the nvoPercentage output network variable to the input network
variable of one of the analog output functional block blocks, connect a
multimeter to the relevant analog output.

22. Use the LonMaker Browser to change the nviTempP value, and observe the
results.

http://www.echelon.com/lns

A-14 NodeBuilder User’s Guide

NodeBuilder Example Task 6: Enhancing the
Translator

The purpose of this task is to refine and enhance the UFPTtranslator
functional profile defined in Task 5. The UFPTtranslator functional profile,
with hardcoded input and output limits, is very specialized for our task. This
task adds 2 configuration properties for the input range (replacing the hard-
coded minimum and maximum of 0 and 30 degrees Celsius) and two
configuration properties to define the minimum and the maximum output
signal values.

The configuration properties used to set the minimum and maximum output
will use the SCPTminRnge and SCPTmaxRnge types. The SNVT and SCPT
Master List states (quoted from SCPTminRnge): This configuration property is
used to limit the minimum value of the primary output network variable for
the object.

There are no existing configuration property types appropriate for limiting
the input signal range (SCPThighTemp looks like a promising candidate,
however The SNVT and SCPT Master List states “this configuration property
indicates the high alarm set point for the nvoAlarmAirTemp,” so this type is
not appropriate). Therefore, this task will create 2 UCPTs, one for the
minimum input and one for the maximum input.

To accomplish this task, follow these steps:

1. Click the NodeBuilder button in the Windows taskbar to return to the
NodeBuilder tool.

2. Right-click the device template and select Code Wizard from the shortcut
menu. The Code Wizard opens.

3. In the Resource pane, browse to the UFPTtranslator functional profile
created in Task 5. Right-click the functional profile and select Open from
the shortcut menu. The Modify Functional Profile Template dialog
opens.

4. Select the nviTempP network variable in the Mandatory NVs folder and
clear Principal NV.

5. Select the nvoPercentage network variable in the Mandatory NVs folder
and set Principal NV. This must be done because the SCPTminRange and
SCPTmaxRange standard configuration property types should apply to the
principal network variable, as stated in the SCPT description above.

6. In the left-hand pane of this dialog, expand the LONWORKS
Types\Standard (c:\LonWorks\Types\Standard by default) resource
file set folder, and browse to the SCPTminRnge configuration property type.
Drag the configuration property to the UFPTtranslator functional profile’s
Mandatory CPs folder in the right-hand pane. The configuration property
will be added to the Mandatory CPs folder with the name nciManCP1.

7. Repeat step 6 but add a SCPTmaxRnge configuration property to the
UFPTtranslator functional profile’s Mandatory CPs folder. The new
configuration property will be named nciManCP2.

8. Click nciManCP1 (the SCPTminRnge configuration property added in step6).
The right-hand portion of the dialog displays the configuration property

NodeBuilder Example A-15

properties. Change Name to cpTransOutMin.
9. Repeat step 8 for nviManCP2 (the SCPTmaxRnge network variable added in

step 7. Change Name to cpTransOutMax.
10. Click OK to close the Modify Functional Profile Template dialog.
11. Right-click NcExample resource file set’s Configuration Property Types

folder and select New CPT from the shortcut menu. The New
Configuration Property Type dialog opens.

12. Set CP Name to UCPTminTemp, set Inherited from a network
variable.

13. Repeat steps 11 and 12, but set CP Name to UCPTmaxTemp.
14. Right-click the UFPTtranslator functional profile and select Open. The

Modify Functional Profile Template dialog opens.
15. Add one configuration property of each of the new types to the Mandatory

CPs folder. Name them cpTransInMin and cpTransInMax, respectively.
Click OK to close the Modify Functional Profile Template dialog.

16. Change the “Applies To” setting so that the cpTransInMin/cpTransInMax
properties apply to the input network variable, and
cpTransOutMin/cpTransOutMax to the output network variable. Click
OK to close the Modify Functional Profile Template dialog.

17. In the right-hand pane of the Code Wizard, right-click the Translator
functional block and select Refresh from the shortcut menu. The functional
block will be refreshed to include the new configuration properties that you
added to the functional profile.

18. Assign default values to each new configuration property on the Translator
functional block. The following values will cause the functional block to
behave just as it did after Task 5.
cpTransInMin 0

cpTransInMax 3000

cpTransOutMin 0

cpTransOutMax 10000

This step sets defaults for the configuration properties on this device only.
This is different than setting the defaults in the functional profile, which will
set the defaults for all functional blocks created from that functional profile
unless they are otherwise specified.

19. Click Generate and Close.
20. Click Yes to generate resource files.
21. Open Translator.nc from the Source Files folder and add the following

code in bold to the TranslatorprocessNV() function:

void TranslatorprocessNV(void)
{
long lValue;

 // get scaled value:
 lValue = Translator::nviTempP;

 // limit temperature to supported range 0-30.00 Celcius
 lValue = max(Translator::nviTempP::cpTransInMin,

A-16 NodeBuilder User’s Guide

 min(lValue, Translator::nviTempP::cpTransInMax));
 Translator::nvoPercentage = (short)muldiv(2L*lValue,
 Translator::nvoPercentage::cpTransOutMax,
 Translator::nviTempP::cpTransInMax);

This code takes a SNVT_temp_p value, which has a range of -273.17 to 327.66
in steps of 0.01, and converts it into a SNVT_lev_percent value, which has
a range of 163.84% to +163.83% in steps of 0.005%. See the SNVT and SCPT
Master List for more information.
This particular application limits the output signal range to between 0 and
100%. It also limits the range of the valid input values from 0 to 30° Celsius
for room temperature values (i.e. 30° C or more results in a 100% output
signal; 0° C or less results in a 0% output signal.
In this task, all the above limits are hardcoded. Task 6 shows how to make
these limits changeable.
With hard-coded factors, and using unscaled network variable values, the
formula for conversion is:
percentage = (tempP * 2) * (100 / 30) = tempP * 20 / 3

The (tempP * 2) term transforms an unscaled SNVT_temp_p value into an
equivalent unscaled SNVT_lev_percent value, and the second 100/30 term
adjusts so that 30° C converts to 100% of the output signal range. Both terms
could be combined in a single factor, but this example uses both for double-
precision intermediate results

22. Build the development target. The NodeBuilder and LonMaker tools
automatically load the new application into the device hardware.

23. Add the Translator functional block to the LonMaker drawing.
24. Use the LonMaker Browser to browse the translator. Set the new

configuration properties to various values, enable monitoring for
nvoPercentage, and force nviTempP to several values within and outside
the set range of 0-+30°C. Connect nvoPercentage to the input network
variable of one of the analog output functional block blocks, connect a
voltmeter to the relevant analog output, use the LonMaker Browser to
change the nviTempP value, and observe the results.

25. Build and load the device.

NodeBuilder Example Task 7: Temperature
Sensor

The purpose of this task is to implement a standard temperature sensor
profile (SFPT #1040, see the LONMARK website for more information:
www.lonmark.org) to provide a temperature sensor implementation for the
Gizmo 4 Board’s temperature sensor hardware. This task demonstrates the
use of floating-point vs. fixed-point arithmetic in Neuron C. To perform this
task, follow these steps:

1. Click the NodeBuilder button in the Windows taskbar to return to the
NodeBuilder tool. Right-click on the device template and select Code
Wizard from the shortcut menu. The Code Wizard opens.

2. Right-click the device template’s Functional Blocks folder and select Add
Functional Block from the shortcut menu. The Add Functional Block

NodeBuilder Example A-17

dialog appears.
3. Add a single SFPThvacTempSensor functional block. Name the new

functional block TempSensor. Click OK.
4. Right-click the TempSensor functional block’s Optional NVs folder and

select Implement Optional NV from the shortcut menu. The Implement
Optional Network Variable dialog appears.

5. Implement the nvoFloatTemp network variable. This network variable has
the SNVT_temp_f type. Click OK.

6. Change the names of the three mandatory configuration properties to
cpMaxSendTime, cpMinDelta, and cpMinSendTime, respectively.

7. Click Generate and Close.
8. Open TempSensor.h from the Source Files folder and add the following

code in bold:

#include "common.h"

SNVT_temp_p HVACTempOld; // most recent value, used for heartbeats
#define HVAC_CORETICK 500UL // internal sampling rate
 //and minimum heartbeat interval
mtimer repeating hvac_coretick = HVAC_CORETICK;

unsigned long HvacMinSendTimer;
unsigned long HvacMaxSendTimer;
float_type f100 = {0, 0x42, 0x01, 0x48, 0 }; // 100.0 - see NXT.EXE
 //utility for initializer

//{{NodeBuilder Code Wizard Start

9. Open TempSensor.nc from the Source Files folder add the following code
in bold to the FBC_WHEN_RESET else-if statement in the
TempSensorDirector() function:

 else if ((TFblock_command)iCommand == FBC_WHEN_RESET)
 HVACTempOld = 0;
 UpdateTemperature();
 // get going:
 setLockedOutBit(uFblockIndex, FALSE);
 break;

10. Still in TempSensor.nc, add the following functions to the code:

#endif //_HAS_INPUT_NV_

int cmptime (const SNVT_elapsed_tm * const a, const unsigned long b) {
 unsigned long ulA;
 int iResult;

 // convert SNVT_elapsed_tm_a into a value of type(b).
 ulA = a->millisecond;
 ulA += (1000uL / HVAC_CORETICK)
 * (a->second + 60UL * (a->minute + 60ul
 * (a->hour + 24ul * a->day)));

 if (b > ulA) {
 iResult = -1;
 } else if (b < ulA) {
 iResult = +1;
 } else {
 iResult = 0;
 }
 return iResult;
}

A-18 NodeBuilder User’s Guide

void PropagateTemp(const SNVT_temp_p Value) {
 float_type fTemp, fResult;

 // set the temp_p type nvo:
 TempSensor::nvoHVACTemp = Value;

 // convert to float.

 // Get the float_type representation of the scaled
 //temp_p value:
 fl_from_slong(Value, &fTemp);
 // Get it right by correcting the fixed decimal point:
 fl_div(&fTemp, &f100, &fResult);
 // That's it!
 TempSensor::nvoFloatTemp = fResult;

 // restart the minsend/maxsend timers
 HvacMinSendTimer = HvacMaxSendTimer = 0L;
}

void UpdateTemperature(void) {
 // Get new value
 SNVT_temp_p NewValue;
 NewValue = GizmoReadTemperature(FALSE, TRUE);
 // Transmit if new value varies by more than nciMinDelta from
 // old value:
 if ((NewValue < (HVACTempOld - TempSensor::nvoHVACTemp::cpMinDelta))
 || (NewValue > (HVACTempOld
 + TempSensor::nvoHVACTemp::cpMinDelta))) {
 // Even so, only transmit if nciMinSendTimer allows:
 if (cmptime((const SNVT_elapsed_tm * const)
 &(TempSensor::cpMinSendTime), HvacMinSendTimer) <= 0) {
 // min send time has expired, really send data now:
 PropagateTemp(NewValue);
 }
 }
 // In either case, make sure to keep record of the latest value:
 HVACTempOld = NewValue;
}

when (timer_expires(hvac_coretick)) {
 // advance the timers:
 HvacMinSendTimer += HVAC_CORETICK;
 HvacMaxSendTimer += HVAC_CORETICK;

 // get new value and re-transmit if needed
 UpdateTemperature ();

 // transmit most recent value if needed due to heartbeat timer:
 if (cmptime((const SNVT_elapsed_tm * const)
 &(TempSensor::cpMaxSendTime), HvacMaxSendTimer) <= 0) {
 PropagateTemp(HVACTempOld);
 }
}

void TempSensorDirector(unsigned uFblockIndex, int iCommand)

The cmptime(a,b) function compares the a and b values. It returns
sign(a-b), i.e. - 1 if b > a, +1 if b < a, and 0 if b == a. The value of b
is assumed to tick at the rate defined by the HVAC_CORETICK value in
milliseconds.
The PropagateTemp() function is used to propagate the output network
variable. It includes code to perform the necessary conversion to maintain
the FLOAT type network variable, and to administrate the functional block’s
timers. This function mostly operates on fixed-point values and converts to
floating-point values when needed. This minimizes the number of floating-

NodeBuilder Example A-19

point operations and thus maximizes the performance of the LONWORKS
device.
The UpdateTemperature() function is used to obtain new temperature
readings from the Gizmo 4 temperature sensor hardware. It includes logic to
decide whether this new value should be made available to the network
immediately or at a later time, based on the minimum update interval
defined in the nciMinSendTime configuration property.
The when statement uses the HVAC_CORETICK value to maintain the
min/max send timers, looks after regular conversions, and assures that
updates are sent no further apart then the time specified by the
nciMaxSendTime configuration property (the heartbeat).

11. Build the development target. The NodeBuilder and LonMaker tools
automatically load the new application into the device hardware.

12. Add the new functional block and network variables to the LonMaker
drawing and use the LonMaker tool and LonMaker Browser to verify correct
operation.

NodeBuilder Example Task 8: Real Time Keeper
This task implements the standard real time keeper functional profile (SFP
#3300, see the LONMARK website for more information: www.lonmark.org).
Implementation-specific configuration properties and network variables are
added to this functional block, and we demonstrate processing of network
variable updates for a functional block with multiple input network variables.

1. Click the NodeBuilder button in the Windows taskbar to return to the
NodeBuilder tool.

2. Right-click the device template and select Code Wizard from the shortcut
menu. The Code Wizard opens.

3. Right-click the device template’s Functional Blocks folder and select Add
Functional Block from the shortcut menu. The Add Functional Block
dialog appears.

4. Add a single SFPTrealTimeKeeper functional block. Name the new
functional block RealTimeKeeper.

5. Right-click the RealTimeKeeper functional block’s Optional NVs folder
and select Implement Optional NV from the shortcut menu. The
Implement Optional Network Variable dialog appears.

6. Implement the nviTimeSet network variable.
7. Right-click the RealTimeKeeper functional block’s Optional CPs folder

and select Implement Optional CP from the shortcut menu. The
Implement Optional Configuration Property dialog appears.

8. Implement the nciUpdateRate configuration property. Name the new
configuration property cpRtcUpdRate. Set Initial Value to 3L.

9. Right-click the RealTimeKeeper functional block’s Implementation-
specific NVs folder and select Add NV from the shortcut menu. The Add
Implementation-specific Network Variable dialog appears.

10. Add a SNVT_time_stamp network variable. Set the direction to Input.
Name the new network variable nviAlarmTime.

A-20 NodeBuilder User’s Guide

11. Right-click the RealTimeKeeper functional block’s Implementation-
specific NVs folder and select Add Implementation-specific NV from the
shortcut menu. The Add NV dialog appears.

12. Add a SNVT_switch network variable. Set the direction to Output. Name
the new network variable nvoAlarmState.

13. Right-click the RealTimeKeeper functional block’s Implementation-
specific NVs folder and select Add NV from the shortcut menu. The Add
Implementation-specific Network Variable dialog appears.

14. Add a SNVT_switch network variable. Set the direction to Input. Name the
new network variable nviAlarmAck.

15. Click Generate and Close.
16. Open the RealTimeKeeper.nc file from the Source Files folder and add the

following code in bold:

#define RTC_CORETICK 250L
mtimer rtc_coretick;
enum {
 rtc_alarm_idle, rtc_alarm_armed, rtc_alarm_alarm
} eeprom rtc_alarmstate = rtc_alarm_idle;

//{{NodeBuilder Code Wizard Start

This code adds a core timer to the device, which is used to poll the Gizmo 4’s
real-time clock hardware on a regular interval. The RTC_CORETICK
enumeration is used to control the state engine within the alarm clock. The
states are: alarm disabled, waiting for alarm condition, and alarm currently
on (awaiting acknowledgement).
Sending a value to the nviAlarmTime network variable specifies the alarm
time. The second, minute and hour fields of the network variable are used
to input the alarm time. The date, month, and year fields can be set to 0 to
disable the alarm, or to any non-zero value to arm the alarm clock.

17. Still in RealTimeKeeper.nc, add the following code in bold:

#endif //_HAS_INPUT_NV_

when (timer_expires(rtc_coretick)) {
 SNVT_time_stamp current;
 if (fblockNormalNotLockedOut(RealTimeKeeper::global_index)) {
 GizmoGetTime(¤t);
 RealTimeKeeper::nvoTimeDate = current;

 switch(rtc_alarmstate) {
 case rtc_alarm_idle:
 // alarm is off
 break;
 case rtc_alarm_armed:
 // waiting for alarm condition to occur
 if ((current.second
 == RealTimeKeeper::nviAlarmTime.second)
 && (current.minute
 == RealTimeKeeper::nviAlarmTime.minute)
 && (current.hour
 == RealTimeKeeper::nviAlarmTime.hour)) {
 // raise alarm
 rtc_alarmstate = rtc_alarm_alarm;
 RealTimeKeeper::nviAlarmState.state
 = SWITCH_ON;
 }
 break;

NodeBuilder Example A-21

 case rtc_alarm_alarm:
 // alarm currently visible/audible,
 // awaiting acknowledgement
 break;
 }
 }
 rtc_coretick
 = RealTimeKeeper::nvoTimeDate::cpRtcUpdRate * 100UL;
}

void RealTimeKeeperDirector(unsigned uFblockIndex, int iCommand)

This code controls timer processing.

18. Still in RealTimeKeeper.nc, add the following code in bold:

void RealTimeKeeperprocessNV(void)
{
 if (deviceState.nvIndex
 == nv_table_index(RealTimeKeeper::nviAlarmAck)) {
 // alarm acknowledgement:
 if (rtc_alarmstate == rtc_alarm_alarm) {
 rtc_alarmstate = rtc_alarm_armed;
 RealTimeKeeper::nvoAlarmState.state = SWITCH_OFF;
 }
 } else if (deviceState.nvIndex
 == nv_table_index(RealTimeKeeper::nviAlarmTime)) {
 // alarm spec:
 if ((RealTimeKeeper::nviAlarmTime.year == 0)
 && (RealTimeKeeper::nviAlarmTime.month == 0)
 && (RealTimeKeeper::nviAlarmTime.day == 0)) {
 // stop the nonsense!
 rtc_alarmstate = rtc_alarm_idle;
 } else {
 // start/restart the nonsense
 rtc_alarmstate = rtc_alarm_armed;
 }
 } else if (deviceState.nvIndex
 == nv_table_index(RealTimeKeeper::nviTimeSet)) {
 // set time:
 GizmoSetTime(&RealTimeKeeper::nviTimeSet);
 }
}

#endif //_HAS_INPUT_NV_

This code processes input network variable updates to the network variable
handler function. This can be implemented in a number of ways. The
solution presented here minimizes the number of when statements and
thereby limits the scheduler latency. This is at the expense of extra
processing time when the event occurs, since the function has to find out
what network variable generated the event.
Other ways to approach the problem would be processing both input network
variables at all times (i.e., whenever either one of them has been updated, or
implementing one when (nv_update_occurs(....)) task for each input
network variable. To implement the latter solution, you would have to
remove or comment out the Code Wizard start/end tags around the existing
when statement. The following code shows how this would be implemented:

//--{{NodeBuilder Code Wizard Start
// disabled the above to prevent CodeWizard from re-generating
// the associated code
// the NodeBuilder Code Wizard will add and remove code here.
// DO NOT EDIT the NodeBuilder Code Wizard generated code in these blocks!

//<Input NV Define>
#ifdef _HAS_INP_NV_6

A-22 NodeBuilder User’s Guide

//
//<Fblock NV When>
when(nv_update_occurs(nviTimeSet)) {
if (fblockNormalNotLockedOut(fblock_index_map[nv_in_index]))
{
 updateDeviceState(nv_in_index, nv_array_index,
 fblock_index_map[nv_in_index]);
 // TODO: process nviTimeSet event here
 }
}

when(nv_update_occurs(nviAlarmAck))
//
//--}}NodeBuilder Code Wizard End
// disabled the above to prevent CodeWizard from re-generating
// associated code
{

 if (fblockNormalNotLockedOut(fblock_index_map[nv_in_index])) {
 updateDeviceState(nv_in_index, nv_array_index,
 fblock_index_map[nv_in_index]);
 // TODO: process nviAlarmAck event here
 }
}

19. Still in RealTimeKeeper.nc, add the following code in bold to the
FBC_WHEN_RESET else-if clause in the realtimekeeperdirector()
function:

else if ((TFblock_command)iCommand == FBC_WHEN_RESET)
 rtc_coretick = nvoTimeDate::cpRtcUpdRate * 100UL;
 if (rtc_alarmstate == rtc_alarm_alarm) {
 RealTimeKeeper::nviAlarmState.state
 = SWITCH_ON;
 }
 setLockedOutBit(uFblockIndex, FALSE);

20. Build the development target. The NodeBuilder and LonMaker tools
automatically load the new application into the device hardware.

21. Add the new functional block and network variables to the LonMaker
drawing and use the LonMaker tool and LonMaker Browser to verify correct
operation.

NodeBuilder Example Task 9: Wheel Input
The purpose of this task is to complete the device application by
implementing an open loop sensor where the principal network variable
reports the status of the quadrature hardware input. This task shows a more
comprehensive implementation of a functional profile by supporting more of
the functional profile’s optional features. To perform this task, follow these
steps:

1. Click the NodeBuilder button in the Windows taskbar to return to the
NodeBuilder tool. Right-click the device template and select Code Wizard
from the shortcut menu. The Code Wizard opens.

2. Right-click the device template’s Functional Blocks folder and select Add
Functional Block from the shortcut menu. The Add Functional Block
dialog appears.

3. Add a single SFPTopenLoopSensor functional block. Name the new
functional block Wheel. Click OK.

NodeBuilder Example A-23

4. When prompted, indicate that you do not want to create the new functional
block as part of an array.

5. Open the Wheel functional block’s Mandatory NVs folder. Right-click the
nvoValue network variable and select Properties from the shortcut menu.
The Network Variable Properties dialog opens.

6. Set NV Type to SNVT_lev_percent and Name to nvoWheel.
7. Right-click the Wheel functional block’s Optional CPs folder and select

Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog appears.

8. Implement the nciGain configuration property. Name the new configuration
property cpWhGain. Set Initializer to {1,1}. This configuration property
holds the gain value between the physical input and the nvoWheel network
variable.

9. Right-click the Wheel functional block’s Optional CPs folder and select
Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog appears.

10. Implement the nciLocation configuration property. Name the new
configuration property cpWhLocation. This configuration property holds
the location of the sensor device.

11. Right-click the Wheel functional block’s Optional CPs folder and select
Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog to appears.

12. Implement the nciOverBehave configuration property. Name the new
configuration property cpWhOvrBehave. Set the Initial Value field to
OV_RETAIN. This configuration property determines the override behavior
of the device. See the SCPTovrBehave configuration property in the
LONMARK SNVT and SCPT Master List for more information.

13. Right-click the Wheel functional block’s Optional CPs folder and select
Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog appears.

14. Implement the nciOvrValue configuration property. Name the new
configuration property cpWhOvrValue.. This configuration property
determines the override value of the device. See the SCPTovrValue
configuration property in the LONMARK SNVT and SCPT Master List for
more information.

15. Right-click the Wheel functional block’s Optional CPs folder and select
Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog appears

16. Implement the nciMaxSendT configuration property. Name the new
configuration property cpWhMaxSendT. Set Initializer to {0,0,0,0,0}.
This configuration property determines the maximum time between network
variable updates for the functional block (the heartbeat).

17. Right-click the Wheel functional block’s Optional CPs folder and select
Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog appears.

18. Implement the nciMinSendT configuration property. Name the new
configuration property cpWhMinSendT and set Initializer to
{0,0,0,0,0}. This configuration property determines the minimum time

A-24 NodeBuilder User’s Guide

between network variable updates for the functional block (the throttle).
19. Right-click the Wheel functional block’s Optional CPs folder and select

Implement Optional CP from the shortcut menu. The Implement
Optional Configuration Property dialog appears.

20. Implement the nciOverValue configuration property. Name the new
configuration property cpWhOvrValue. This configuration property
determines the override value for the nvoWheel network variable.

21. Click Generate and Close.
22. Open the Wheel.nc file from the Source Files folder. Add the Cp2Tick()

utility function and a when statement to handle I/O processing as shown
below:

unsigned long Cp2Tick (const SNVT_elapsed_tm *const pSnvt) {
 unsigned long ulResult;
 ulResult = ((pSnvt->minute * 60UL) + pSnvt->second)
 * (1000UL/WHEEL_HBCORE)
 + (pSnvt->millisecond / WHEEL_HBCORE);
 return ulResult;
}

priority when (io_changes(ioWheel)) {
 if (fblockNormalNotLockedOut(Wheel::global_index)) {
 if (Wheel::cpWhGain.divisor) {
 // No division by zero. Use gain factor and send new
 // incremental value to heartbeat/throttle handler
 WheelIncrValue(muldivs(input_value,
 Wheel::cpWhGain.multiplier,
 Wheel::cpWhGain.divisor));
 }
 }
}

The Cp2Tick() function converts a SNVT_elapsed_tm value into a tick
count (a tick occurs each WHEEL_HBCORE milliseconds). It uses the seconds,
milliseconds, and minutes fields of the SNVT_elapsed_tm value but
ignores the hours and days fields. The function is only used in conjunction
with heartbeat and throttle intervals, which typically do not have values as
large as an hour, and therefore this partial implementation is used for
performance reasons.
A priority when statement is used due to the nature of this physical input,
which is to provide an incremental reading. You should normally avoid the
use of priority statements except for critical processing. This when clause
is critical since this function must not miss any hardware events as they
occur.

23. Open the wheel.h file from the Source Files folder, and then add the
following declarations for heartbeat/throttle handling:

#ifndef USE_QUADRATURE
#error "You must enable the use of quadrature input in the gizmo4.h header
file!"
#endif

#define WHEEL_HBCORE 100L // heartbeat/throttle timer ticks
 //with 100ms period

mtimer repeating WheelTimer = WHEEL_HBCORE;

long lWheelValue = 0L; // last known real value,
 //see the .nc file for details on

NodeBuilder Example A-25

 // heartbeat/throttle implementation
long lWheelPhysical = 0L; // same as lWheelValue,
 // but limited to data coming from
 // physical sensor. See .nc file for
 // details on override and rmv_override
unsigned long ulMinSendT = 0L; // number of WHEEL_HBCORE ticks
 // expired on cpMinSendT
unsigned long ulMaxSendT = 0L; // number of WHEEL_HBCORE ticks
 // expired on cpMaxSendT

// forward declaration:
void WheelIncrValue (long Value);

24. Open the wheel.nc file from the Source Files folder and add the following
function to handle the network variable throttle:

void WheelIncrValue (long Value) {
 // maintain internal mirror of most recent value - remember the
 // quadrature input provides incremental data. We cannot lose
 // a single signal update.
 lWheelValue += Value;

 // also maintain a copy of the last known value coming from the
 // physical sensor (as opposed to override values). This data
 // is used when leaving override mode, see director function
 // for more details.
 lWheelPhysical = lWheelValue;

 // Manage the throttle preferences. Note the throttle tick
 // counter is maintained by the WheelTimer routine.
 if (ulMinSendT >= Cp2Tick(&Wheel::nvoValue::cpWhMinSendT)) {
 ulMinSendT = 0;
 ulMaxSendT = 0;
 nvoWheel = lWheelValue;
 }
}

25. Still in wheel.nc, add the following function to handle the network variable
heartbeat:

when (timer_expires(WheelTimer)) {
 // update throttle timer:
 if (ulMinSendT < Cp2Tick(&Wheel::nvoValue::cpWhMinSendT)) {
 ++ulMinSendT;
 }

 // manage heartbeats:
 if (ulMaxSendT < Cp2Tick(&Wheel::nvoValue::cpWhMaxSendT)) {
 ++ulMaxSendT;
 } else {
 // propagate the latest value. Note that we should not use
 // the propagate() function here, as propagate() would only
 // re-propagate the last NV value. There could have been
 // value updates internally since then, which have not made
 // it into the NV value due to the throttle. We do
 // therefore use an internal mirror of the truly most
 // recent value:
 Wheel::nvoValue = lWheelValue;
 ulMaxSendT = 0L;
 }
}

26. Still in wheel.nc, implement the override behavior by adding the following
code in bold to the wheelDirector() function's FBC_OVERRIDE else/if
statement:

else if ((TFblock_command)iCommand == FBC_OVERRIDE)

A-26 NodeBuilder User’s Guide

 setFblockOverride(uFblockIndex, TRUE);
 switch (Wheel::cpWhOvrBehave) {
 case OV_RETAIN: // do nothing, keep last value
 break;
 case OV_SPECIFIED:
 // override with specified override value. We
 // still must honor heartbeats, but we must
 // switch to override value immediately
 // (ignoring throttle preferences)
 nvoWheel = lWheelValue =
 Wheel::nvoValue::cpWhOvrValue;
 break;
 case OV_DEFAULT:
 // override with sensor-specific default value
 // (zero). We must continue to honour
 // heartbeats, but we must switch to override
 // value immediately (ignoring throttle
 // preferences)
 nvoWheel = lWheelValue = 0L;
 ulMinSendT = ulMaxSendT = 0L;
 break;
 }

27. Complete the implementation of the override behavior by adding the
following code in bold to the wheelDirector() function’s
FBC_RMV_OVERRIDE else-if statement:

else if ((TFblock_command)iCommand == FBC_RMV_OVERRIDE)
 setFblockOverride(uFblockIndex, FALSE);
 nvoWheel = lWheelValue = lWheelPhysical;
 // ignore throttle but re-start heartbeat:
 ulMinSendT = ulMaxSendT = 0L;

This code updates the output network variable with recent physical data to
wipe out the override value. This implementation ignores any value updates
received during the override period, but re-sets the output to the last known
value when the device entered the override state. This allows the device to be
set into override while the sensor unit is replaced or while diagnosing the
network. The interpretation of correct override behavior is device-dependent
and subject to the device implementation. Different, but equally acceptable
implementations would be to await new readings from the sensor, or to save
value changes during the override state.

28. Build the development target. The NodeBuilder and LonMaker tools
automatically load the new application into the device hardware.

29. Add the new functional block and network variables to the LonMaker
drawing and use the LonMaker tool and LonMaker Browser to verify correct
operation.

Continuing with the NodeBuilder Example
You have completed the implementation of the Neuron C portion of the
example development project. See Creating an LNS Device Plug-in and the
LNS Plug-in Programmer’s Guide for more information on creating a plug-in
for this example device.

For additional practice with the NodeBuilder tool, here are a few ideas how
you could improve the Neuron C application:
• Most functional profiles in these tasks are not fully implemented. Override

features, self-test features, and many of the traffic-control configuration

NodeBuilder Example A-27

properties (heartbeat, throttle, and heartbeat control on the input side) are
not implemented for simplicity.

• You could implement a UFPTdisplay functional profile. This functional
block would display data received from input network variables in a
configurable manner.

You could implement a more generic translator object, using network
variables of a changeable type for input or output. See the Neuron C
Prpgrammer’s Guide for more details.

Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project B-1

Appendix B

Converting a NodeBuilder
1.5 Project to a NodeBuilder

3.1 Project

This appendix describes how to convert a NodeBuilder 1.5
project into a NodeBuilder 3.1 project, including how to update
your Neuron C Version 1 source code for Neuron C Version
2.1.

B-2 NodeBuilder User’s Guide

Converting a NodeBuilder 1.5 Project to a
NodeBuilder 3.1 Project

NodeBuilder 1.5 hardware templates and device templates with the
NodeBuilder 3.1 Development Tool. You must use the NodeBuilder 3.1 tool
to convert the templates to the new NodeBuilder 3.1 format as described in
this section.

The NodeBuilder 1.5 and NodeBuilder 3.1 tools will run side-by-side. You
may continue to use the NodeBuilder 1.5 tool, but the device file sets that it
produces will not be identical to NodeBuilder 3.1 device file sets. The two
tools use different debug file formats. You cannot use the output files from
one tool to debug on the other. See Running NodeBuilder 1.5 and
NodeBuilder 3.1 Concurrently for more information.

In order to create a NodeBuilder 3.1 project with Neuron C code from a
NodeBuilder 1.5 project, follow these steps:

1. Create or open a LonMaker network to be used for development.
2. Create a NodeBuilder project as described in Creating a NodeBuilder Project:

Creating a New Project. Do not create a new device template.
3. Right-click the Device Templates folder and select Insert Copy from the

shortcut menu. The Open File dialog appears.
4. Open the NodeBuilder 1.5 device file (.dev extension). A new NodeBuider 3

device template (“.NbDt” extension) will be created, using information from
the old one.

5. Right-click the Hardware Templates folder and select Insert Copy from
the shortcut menu. The Open File dialog appears.

6. Browse to and select the NodeBuilder 1.5 device template file (.dtm
extension) to create a new NodeBuider 3 hardware template (.NbHwt
extension) based on the information in this file.

7. The NodeBuilder 3.1 tool expects UNVTs and UCPTs to be defined in user
resource files, and SNVT and SCPT types to be defined in standard resource
files. If your code uses typedefs or Neuron C declarations to declare them,
you need to modify them. The “SNVT,” “SCPT,” “UCPT,” and “UNVT”
prefixes are reserved; you will get compiler errors regarding this. You can
either replace the names with new names—for example by changing the
upper-case prefixes to lower case—or you can specify the new #pragma
names_compatible compiler directive, within your source code. See the
Neuron C Reference Guide for more information about this compiler directive.
The most maintainable solution is to move the definitions into resource files
and modify the code accordingly (see Converting a Neuron C Version 1
Application to a Neuron C Version 2.1 Application for more information). You
can use conditional compilation to isolate changes if you want to continue to
use both compilers.

8. While Neuron C Version 2.1 is designed to be backwards compatible, it
introduces a number of new reserved words not used by version 1 of the
language. Be sure your source code does not use any of the new Neuron C
reserved words as variable names. See the Neuron C Reference Guide for a
complete listing of reserved words.

Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project B-3

9. Remove the #pragma set_std_prog_id statement in the source code. This
statement is not necessary for NodeBuilder 3.1 projects and will cause a
compiler warning if it does not match the value in the NodeBuilder device
template.

10. Remove the #include <netdbg.h> statement from the source code. This
statement may collide with the debug kernel option settings made in the
NodeBuilder target settings.

11. Make sure your code contains a #pragma num_alias_table_entries <N>
statement, with <N> being an integer from 0 (zero) to 62. Neuron C Version
2.1 requires this pragma to be specified. If you do not wish to support any
network variable aliases, corresponding with the Neuron C Version 1 default,
set <N> to 0 (zero).

12. Build the development target. The development target requires
approximately 2Kb of additional code space, since it links in the debug
kernel.

13. You can simplify maintenance of your application by converting your
functional block and configuration property declarations to Neuron C Version
2.1 syntax. This enables the NodeBuilder tool to automatically generate self-
documentation strings required for your functional blocks and functional
block members, and to correctly document your functional blocks in device
interface files. See Converting a Neuron C Version 1 Application to a Neuron
C Version 2.1 Application for information on updating your application to use
Neuron C Version 2.1 features.

14. If you did not convert your application to Neuron C Version 2.1 as described
in the previous step, the NodeBuilder 3.1 tool will not automatically generate
your self-documentation strings, and it will not automatically include
functional block information in your device interface files. This is the same
behavior as the NodeBuilder 1.5 tool. If you previously manually updated the
device interface files to include configuration file information, you will have
to continue to do so. The NodeBuilder 3.1 tool simplifies this process by
automatically appending a device interface appendix file (.xf2 extension) to
your device interface file if you specify one. To specify a device interface
appendix file, create a file in your output folder with the same base name as
your device interface file (i.e., without the .xif extension), name it with a .xf2
extension, and then add it to your source files folder in the NodeBuilder
Project Manager. Include the configuration template and value files in your
device interface appendix file. The NodeBuilder 3.1 tool does not
automatically update your device interface appendix file—it only appends it
to your device interface file. You will have to manually update the device
interface appendix file if you make any changes to your configuration
properties implemented within configuration files. The device interface
appendix file is not required if you convert the functional block and
configuration property declarations in your application to Neuron C Version
2.1 syntax. See Converting a Neuron C Version 1 Application to a Neuron C
Version 2.1 Application for more information.

For more information about converting a NodeBuilder 1.5 project to
NodeBuilder 3.1, see NodeBuilder Project Conversion Tips.

B-4 NodeBuilder User’s Guide

Converting a Neuron C Version 1 Application to a
Neuron C Version 2.1 Application

The NodeBuilder 3.1 tool supports the Neuron C Version 2.1 language,
whereas the NodeBuilder 1.5 and LonBuilder 3.01 development tools use the
Neuron C Version 1 language. The Neuron C Version 2.1 language greatly
simplifies development of applications that use functional blocks and
configuration properties. If you have any applications that you originally
developed using version 1 syntax, you should convert them to version 2.1
syntax if you plan to do make any changes for future maintenance or
enhancements.

The NodeBuilder 3.1 tool continues to support Neuron C Version 1 (see
NodeBuilder Project Conversion Tips for more information about using
NodeBuilder 3.1 with legacy source code). However, the NodeBuilder 3.1 tool
does not permit functional block and functional block member declarations to
be made using a mixture of version 1 and version 2 syntax within the same
application.

The following describes procedure for converting version 1 applications to
version 2. This may be a complex process for a complex application, so be sure
to thoroughly test the result of your porting when you are done.For
simplicity, this section refers to the Neuron C Version 1 application as the
"old application" and refers to the Neuron C Version 2.1 application as the
"new application". It also assumes that the name of the new application's
NodeBuilder 3.1 device template is "NewApp" for reference to filenames in
use, but you can change this name to any name of your choice.

To convert a Neuron C application, follow these steps:

Step 1: Build the old application
Eliminate all possible incompatibilities with the Neuron C Version 2.1
language by applying all considerations and changes described in Converting
a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project. After completing
these changes, build and load the old application with the NodeBuilder 3.1
tool, and verify that it still works as desired.

Step 2: Create a new device template
Create a new NodeBuilder device template as described in Using the New
Device Template Wizard. This device template will be used to create the new
application. Make sure to use a program ID that is different from that used
by the old application; ideally, you would increase the model number field
using the Standard Program ID calculator when you create the device
template. Alternatively, you can use a range of model numbers with program
ID management (don’t select a range that includes the program ID of the old
application).

Specify a new name and a new base folder for this new application so that the
one you've created and converted in step 1 won't be affected by this step. For
the sake of this discussion, it is assumed the new NodeBuilder device
template is named NewApp, but you can choose any name.

Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project B-5

Adjust all other preferences in the device template and target settings
dialogs, and set the hardware templates as desired.

Step 3: Create Resource Files
Use the NodeBuilder Resource Editor to define resource files for your user
functional profiles, user network variable types, and user configuration
property types. You can skip this step if you only used standard functional
profiles and types. See Editing Resource Files for more information.

Step 4: Create code using the code wizard
Use the NodeBuilder Code Wizard to create source code that implements
your device interface. Add the functional profiles, network variables, and
configuration properties that comprise your device interface. See Using the
NodeBuilder Code Wizard for more information. Set related attributes such
as the external names for functional blocks or the configuration file access
method, as required. Generate code and exit the Code Wizard.

By the end of this step, your device should compile correctly, but will not yet
contain any of your data, private types and algorithms that were contained
within the original application.

Step 5: Move global declarations
Move global variables, type definitions and enumerations, constants,
preprocessor macros, I/O object declarations, global pragma directives and
timer declarations from the old application into NewApp.h.

Do not copy network variable declarations, or type definitions for UNVTs,
SNVTs, UCPTs, or SCPTs.

At the end of this step, make sure the new application builds correctly.

Step 6: Move global utility functions and system event
handlers

Move global utility functions from the old application into NewApp.nc file.
Move code that responds to system events (when reset, when offline,
when online, and when wink) from the old application into NewApp.nc.
The code wizard generated code framework already contains the bodies for
these when tasks. Also move any handlers for user-defined events (e.g. when
(bMyFlag)) in the same way.

Step 7: Move functional block-specific state
management

Move any functional block-specific state management code from the old
application into the new application. These are code sequences that deal

B-6 NodeBuilder User’s Guide

with managing the functional block and its state transitions (enable,
disable, override, etc).

The code wizard automatically produces code to implement the basic
operations for functional block state management. It also automatically
generates a default implementation of a director function for each functional
block and array of functional blocks, which can be found in the Neuron C file
for each functional block or functional block array. Use the functional block
management framework generated by code wizard and eliminate any code
from the old application that serves the same purpose.

Move functional block-specific housekeeping and management code from the
old application into the relevant sections of the new application's director
functions.

Step 8: Set resource scopes
The LonMaker tool automatically sets the resource scope for all configuration
properties; for all standard functional profiles and network variables; and for
all user functional profiles and network variables that are defined by scope 3
resource files. If you have any functional profiles or network variables that
are defined in scope 4, 5, or 6 resource files, you must explicitly set their
scope. The easiest way to do this is to implement a plug-in that
automatically sets the scope for you and for the users of your device. See the
LNS Plug-in Programmer’s Guide for details. You can also override the scope
settings using the LonMaker tool as described in Chapter 11, Creating and
Using Custom LonMaker Shapes and Stencils, of the LonMaker User’s Guide.

Step 9: Test #1
Disable all code in the system events that is specific to your hardware, or that
references functions or variables that you have not ported yet.

Build the new application, load the device and integrate the device into a
LonMaker network. Make sure you can browse the device (it should have all
functional blocks as desired including all network variables and configuration
properties). Test the device and the individual functional blocks using the
LonMaker device manager (the self-test, that is part of a comprehensive test,
will be shown as not supported). Make sure that you can enable and
disable the individual functional blocks, and that the device responds
correctly to system events (reset, online, offline, wink).

After completion of this testing, re-enable the code you have disabled at the
beginning of this step.

Step 10: Move input network variable handler
Move code that processes the arrival of input network variable data from the
old to the new application. You can find that code in qualified and
unqualified when (nv_update_occurs) tasks in the old application.

The code generated by the code wizard in the new application contains an
empty <FbName>ProcessNv() function (with <FbName> being the name of
the functional block). Move your code into this function.

Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project B-7

The code wizard always generates one when (nv_update_occurs) task per
functional block or functional block array (if there are input network
variables associated with the functional block). See step 11 of the
NodeBuilder Example Task 8: Real Time Keeper example for details about
splitting this single when-task into multiple event handlers. If you increase
the total number of when tasks, you might reduce the device's overall
responsiveness. This is because scheduler turnaround times grow with the
number of when tasks to be processed.

Step 11: Move declarations and handlers for timer
and I/O-related events

Move code that handles I/O events (e.g. when(io_changes(...))) from the
old to the new application, and repeat the same for code that handles timer
events, or user-defined but object-specific events. Place global when tasks
and functions in NewApp.nc, and functional block-specific tasks in the
functional block-specific Neuron C file.

For functional block-specific code, place the code just ahead of the director
function close to the bottom of the file.

Move declarations of functional block-specific timers, I/O objects, variables,
macros, type definitions and enumerations into the functional block-specific
header file (.h extension), where applicable.

Step 12: Move application messaging code
Move code for sending and receiving of application messages and for
responding to application message requests to the most suitable location into
the new application, where applicable. Add global code to the NewApp.nc
file, or include it from that file. Add functional block-code to the functional
block-specific Neuron C file, or include it from that file.

If you generated code with the option to access configuration files via the file
transfer protocol (FTP), see Code Generated by the Code Wizard for details
about the FTP server generated by the code wizard and its use of application
messaging-related constructs.

Step 13: Test #2
Build your new device, and test it using the LonMaker. Repeat the test
outlined in step 9 above. Also use the debugger to verify the correct
processing of events. In case your code contains an FTP server, verify both
installation scenarios - the ad-hoc scenario where you upload the interface
definition from the device, and the engineered system scenario where you by
specify the interface by importing the device interface file.

B-8 NodeBuilder User’s Guide

NodeBuilder Project Conversion Tips
This section contains a list of tips for converting a NodeBuilder 1.5 project to
a NodeBuilder 3.1 project. See Converting a NodeBuilder Project for step-by-
step instructions.
• In the NodeBuilder 1.5 tool, the Build tab of the device window allowed you

to turn on a number of different build reports, including the Output Link
Summary and Assembly Listing; these options can now be accessed by right-
clicking the Development or Release target folder and selecting Settings from
the shortcut menu. This opens the device template target properties dialog,
which contains four tabs: Compiler, Linker, Exporter, and Configuration. See
the NodeBuilder help file for details.

• The NodeBuilder 3.1 tool creates version 4 device interface files. These files
are more complete than the version 3 files generated by the NodeBuilder 1.5
and LonBuilder 3.01 tools. A version 4 device interface file contains
configuration file declarations consisting of FILE and NVVAL records, which
you had to manually construct with the NodeBuilder 1.5 and LonBuilder 3.01
tools.

• When the NodeBuilder 3.1 tool is installed on a computer that already has
the NodeBuilder 1.5 tool installed, the stdlibs.lst file in the LONWORKS
Images folder will be backed up to stdlibs.1 before being overwritten by
the stdlibs.lst file that the NodeBuilder 3.1 tool installation installs.
This file contains a list of standard libraries.

• For devices that use uninit application variables at fixed memory locations,
make sure to set the Compatible and Order Preserving linker options for
backwards compatibility of the allocation algorithm. To view linker
properties, right-click a target, select Settings from the shortcut menu, and
click the Linker tab.

• For legacy devices that have been ported to NodeBuilder 3.1 but that
continue to use the Neuron C Version 1 syntax for declaring functional blocks
and configuration properties, make sure not to use the Neuron C Version 2.1
language features that trigger the compiler to generate functional block self-
documentation information. If the compiler generates self-documentation
information, any pre-existing self-documentation strings will be moved into
the comment section (following the semicolon in a self-documentation string).
You must either convert these projects to using the new, enhanced, Neuron C
Version 2.1 syntax, or continue maintaining these devices only using the
legacy Neuron C Version 1 syntax. The following Neuron C Version 2.1
constructs trigger the generation of self-documentation information: cp
network variable modifier, cp_family keyword, device_properties,
fb_properties, nv_properties constructs, and the use of the fblock
keyword.

• Several standard network variable types (SNVTs) in the version 11 resource
files shipped with the NodeBuilder 3.1 tool use the s32_type structure to
contain signed, 32-bit integers. The s32_type structure has the following
format:

typedef struct s32_type {
 int bytes[4];
} s32_type;

Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project B-9

In previous versions of the resource files, a 4-byte array was used in place of
the s32_type structure. In most cases, this change does not affect how the
data is accessed. However, in the event that you want to access individual
bytes of the signed 32-bit value, you must now reference the bytes array
within the structure.
For example, the filexfer.nc example provided on the Echelon web site
contains the following line of code (used to convert 16-bit signed types to 32-
bit types):

memcpy(&xfer_offset, &nviFilePos.rw_ptr[2],
sizeof(xfer_offset))

rw_ptr is an s32_type value. The code shown above will not compile in the
NodeBuilder 3.1 tool because rw_ptr is a structure, not an array. This code
can be corrected as shown below:

memcpy(&xfer_offset, &nviFilePos.rw_ptr.bytes[2],
sizeof(xfer_offset))

The following SNVTs use the s32_type structure:

SNVT_file_status
SNVT_currency
SNVT_file_pos
SNVT_time_zone
SNVT_reg_val
SNVT_reg_val_ts
SNVT_elec_kwh_l
SNVT_alarm_2

• If you are not using an authentication key, change the authentication key
from FF:FF:FF:FF:FF:FF (48 bits, all set to 1) to 00:00:00:00:00:00 (48
bits, all bits cleared to zero). The old null key will continue to work, but the
new null key results in better performance when your device is installed.

• NodeBuilder 3.1 uses the PSG.lib library in place of the SLTA.lib library. If
you want to use the older SLTA.lib library, remove PSG.lib from the
Libraries folder under the Device Template in the Program Manager and
add the SLTA.lib library.

Running NodeBuilder 1.5 and NodeBuilder 3.1
Concurrently

When working with both old and new NodeBuilder projects, it may be
desirable to have both the NodeBuilder 1.5 and NodeBuilder 3.1 tools
installed on the same computer. In order to do this, you must install the two
applications in this order:

1. Install the NodeBuilder 1.5 tool. See the NodeBuilder 1.5 documentation for
more information.

2. Install NodeBuilder 1.5 service pack 6. This service pack is available from
the product updates page at www.echelon.com/toolbox. You must apply this
patch before installing the NodeBuilder 3.1 tool.

3. Install the NodeBuilder 3.1 tool as described in Installing the NodeBuilder

B-10 NodeBuilder User’s Guide

Software.
When you install the NodeBuilder 3.1 software, the NodeBuilder 1.5
default.ver file will be overwritten by the NodeBuilder 3.1 default.ver
file. This changes the default version number for all 3150 system images
from version 7 to version 12. If you attempt to load a device that has the
version 7 system image in its hardware using the NodeBuilder 1.5 tool after
the NodeBuilder 3.1 software has been installed, it will fail. You can prevent
this by editing your existing NodeBuilder 1.5 device templates so that the
system image version is 7 instead of the default system image.

Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project B-11

The Command Line Project Make Utility C-1

Appendix C

The Command Line Project
Make Utility

This appendix describes how to use the command line project
make utility with the project make command.

C-2 NodeBuilder User’s Guide

Using the Command Line Project Make Utility
You can invoke the NodeBuilder build tools from the Windows command line.
You can use this feature to generate automated build scripts for your devices.
To build a project from the command line, invoke the NodeBuilder Command
Line Project Make Utility by opening a Windows command prompt and
entering the following command:
pmk [–p<Project> <command line switches> -t<Target>

You must specify what kind of operation will take place: a build (see the –b
command switch), a query (see the –q command switch), or a clean (see the –x
command switch). All other command line switches are optional. The pmk
command performs one build, query, or clean operation.

The following command line switches are available:

--help <cmd> Displays usage help for the <cmd> command.
Providing no command at all also displays the list
of the available commands and a brief usage hint.
Alternative syntax: -? <cmd>

--file <file> Uses <file> as input to the project make. This
file can contain command line switches to be used
by the project make utility. You can set
Generate build script in the Build tab of the
NodeBuilder Project Properties dialog to have the
NodeBuilder tool automatically generate a
command file (.cmd extension) that will allow you
to reproduce the current build from the command
line. This command file will be placed in the
device template target folder, and will have the
name <device template name>.cmd. If
multiple targets are built, a separate command
file will be generated for each. Alternative syntax:
-@ <file>

--always Causes the NodeBuilder tool to perform an
unconditional build. See Building an Application
Image for more information. This causes a clean
command to be executed before the build.
Alternative syntax: -a

-–build <nbdt> Indicates that a build operation will be made on
the selected NodeBuilder device template (“.NbDt”
extension) for the target specified by the –t
command switch. The device template will be
compiled, linked, and exported. You can only
specify a single device template per make
command. Alternative syntax: -b <nbdt>

–-compile <nbdt> Specifies a NodeBuilder device template file
(“.NbDt” extension) to be compiled. You can only
specify a single device template per make
command. Alternative syntax: -c <nbdt>

The Command Line Project Make Utility C-3

--defloc [<dir>] Specifies a directory to search for the default
command file. The default command file for the
project make facility is named lonpmk32.def. If
this file does not exist in the specified directory,
the command will fail silently. If no directory is
specified, the current directory will be searched
for lonpmk32.def.

 The default command file can contain any number
of command switches for the pmk command.
These commands will be executed in addition to
any commands that are entered on the command
line, or passed along using the --file command
switch. For example, a default command file
consisting of the following line would generate a
log of the build script for every build in a
lonpmk.32.log file:

 --mkscript c:\temp\lonpmk32.log

--mkscript <file> Generates a file that contains all the command
switches and arguments that are used in this
invocation of the project make utility. You can
use this file as a log of the build or to recreate the
build on another computer.

--comfirm Reconfirms build status after build completion.
Alternative syntax: -n <cmd>

--nadep <nadep> Specifies the location of the assembler dependency
file. By default, this file is located in the IM sub-
folder of the target folder (i.e. Development or
Release).

--ncdep <ncdep> Specifies the location of the compiler dependency
file. By default, this file is located in the IM sub-
folder of the target folder (i.e. Development or
Release).

--nldep <nldep> Specifies the location of the linker dependency
file. By default, this file is located in the IM sub-
folder of the target folder (i.e. Development or
Release).

--nodefaults Disables processing of default command files (see
the description of the --defloc command switch
for more information).

--nxdep <nxdep> Specifies the location of the exporter dependency
file. By default, this file is located in the IM sub-
folder of the target folder (i.e. Development or
Release).

--project <proj file> Specifies the NodeBuilder project that contains
the NodeBuilder device template to be built.

C-4 NodeBuilder User’s Guide

NodeBuilder project files have the .NbPrj
extension. Alternative syntax: -p <proj file>

--query <nbdt> Indicates that a query operation will be performed
on the specified NodeBuilder device template for
the target specified by the –t command switch.
This command indicates whether the target needs
to be built. Alternative syntax: -q <nbdt>

--silent Prevents the copyright and version information
from being displayed.

--target
<Development/Release>

Specifies what target the build, clean, or query
operation will be invoked on. This swith is
required. Alternative syntax: -t
<Development/Release>

--verbose Causes the project make facility to be run in
verbose mode. The default is non-verbose mode.

--warning <message> Produces a warning with the message specified.
This command is useful in build scripts.

--clean <nbdt> Indicates that a clean operation will be performed
on the specified NodeBuilder device template for
the target specified by the –t command switch. A
clean operation removes all files and folders
produced by a build. Alternative syntax: -x
<nbdt>

Here's an example for a minimal command line invocation of the project
make facility:

PMK -pTest.nbprj -bMyDevice.nbdt -tDevelopment

This command performs a conditional build on the development target that is
contained within the MyDevice device template which is part of the Test
project.

For more information about the use of the NodeBuilder and Neuron C
command line tools, see the Neuron C Programmer’s Guide, Appendix A,
Neuron C Tools Stand-alone Use. Details provided there under Common
Standalone Tool Use also apply to the NodeBuilder Project Make Facility.

Using the LonBuilder Emulator D-1

Appendix D

Using the LonBuilder
Emulator

This appendix describes how to use a LonBuilder Emulator as
a development platform for the NodeBuilder 3.1 tool.

D-2 NodeBuilder User’s Guide

Using the LonBuilder Emulator
You can use a LonBuilder Emulator as a NodeBuilder 3.1 development and
testing platform. The NodeBuilder 3.1 debugger does not use the hardware
debugging support built into the LonBuilder Emulator, but the firmware
debug kernel used by the NodeBuilder 3.1 debugger will function correctly in
the LonBuilder Emulator. To use the LonBuilder Emulator with the
NodeBuilder 3.1 tool, follow these steps:

1. Ensure that the NodeBuilder 3.1 and LonBuilder 3.01 tools are installed on
your computer.

2. The NodeBuilder 3.1 software installation installs NBE3150.ib, NBE3150.nx,
NBE3150.nxb, and NBE3150.sym to the LONWORKS Images\Ver<X> folder
(where <X> is the latest firmare version) to support using the LonBuilder
Emulator as a NodeBuilder target platform. Copy these files to
\lb\images\Ver<X> so the LonBuilder software can find them.

3. Open the LonBuilder software.
4. Open a new set of LonBuilder hardware properties as described in the

LonBuilder User’s Guide.
5. Set the following properties in the LonBuilder HW Properties Modify

dialog:
HW Property Name Set to a descriptive name, such as

NodeBuilderEmu.

Neuron Chip Firmware Set to NBE3150.

Neuron Chip Set to 3150.

Firmware Version Set to 13.

Input Clock Rate Set to 10 MHz.

6. Click More. The Memory Properties dialog opens.
7. Set the properties as shown in the following figure:

The memory map should match the eventual target platform (so the

Using the LonBuilder Emulator D-3

LonBuilder Emulator will emulate it appropriately).
8. Re-install the emulator using the LonBuilder tool as described in the

LonBuilder User’s Guide.
9. Create a new NodeBuilder hardware template as described in Using

Hardware Templates in the Using Device Templates chapter. Set Platform
in the Hardware tab to LonBuilder Emulator 3150.

10. Create a new Develop Target Device Shape and associate it with the
NodeBuilder project.

11. Set the development target hardware template to the template that you
created in step 9.

Build and load the project. You will now be able to test your application using the LonBuilder
Emulator.

D-4 NodeBuilder User’s Guide

Using Source Control E-1

Appendix E

Using Source Control

This appendix describes how to manage a NodeBuilder project
using a source control application.

E-2 NodeBuilder User’s Guide

Using Source Control
When developing a large NodeBuilder project, you can put the project under
source control to allow multiple developers to work concurrently on different
parts of the project and maintain configuration control of their changes. This
appendix lists all the files associated with a NodeBuilder project that should
be kept under source control.

The following abbreviations for file locations are used throughout the table:

<LonWorks> Stands for the LONWORKS folder. This is
C:\LonWorks by default.

<NbDtFolder> Stands for the folder that contains the
NodeBuilder device template file. NodeBuilder
device template files use the “.NbDt” file
extension. By default <NbDtFolder> is a
subfolder of the NodeBuilder project folder.

<mnfr> Stands for your manufacturer name. For
example: ACME Corporation.

<lang> Stands for any valid device resource file language
identifier such as ENU, GER, FRA, and so on.

<project> The name of the NodeBuilder project.

Check the following files into a source code control system to allow several
developers to work on the same code base and to enable a LONWORKS device
file set to be completely recreated from source:

Project Files These files have the .NbPrj and NbOpt extensions.

 Check in the <project>.NbPrj file. It is the
NodeBuilder project file. It holds pointers to all
the NodeBuilder device templates and any user-
defined hardware templates required for a build.

 You do not need to check in the
<project>.NbOpt file. It is a NodeBuilder
options file. It holds information about which
devices have been inserted into the project,
breakpoint lists for the debugger and other user
settings. The options in this file are a matter of
personal preference, and do not effect device file
set.

 Although NodeBuilder project folders and all their
subfolders can be moved and re-opened from the
new location via the NodeBuilder Open Project
dialog, moving a project folder can cause
compilation errors due to absolute file references
in use, or due to resource files being moved. Try
to use relative references rather than absolute file
name paths whenever possible.

Using Source Control E-3

 Avoid using the Include Search Path option (see
the NodeBuilder Project options) in order to
improve project-to-project compatibility.

 The default location: for the project files is
C:\lm\source\<project>

NodeBuilder Device
Template Files

These files hold most of the data required to build
a device file set and NodeBuilder device template.
They have a “.NbDt” extension.

 The device template folder and all its contents can
be moved and re-inserted into an existing project.
Moving a device template folder can cause
compilation errors due to absolute file references
in use, or due to resource files being moved.

 The default location for the NodeBuilder device
template files is <NbDtFolder>.

Neuron C Source Files These files have .nc, .c, and .h extensions. The
main .nc file name is specified by right-clicking
the device template and selecting Set Source
File from the shortcut menu. You must check in
this file and any files brought in with include
directives.

 Standard headers are stored in the
<LonWorks>\NeuronC\Include directory.
These files should never be edited because future
updates to the NodeBuilder tool will overwrite
modified files and your changes would be lost.
Check these in to ensure that you can go back to
the version used to create your device, but be
cautious when restoring them so that you do not
overwrite newer versions.

 You can determine the set of dependent files from
the Project pane by performing a successful
unconditional build operation and inspecting the
files listed under the Dependencies folder.

Miscellaneous files These files may have any extension. These files
include user-defined libraries, build script files,
and other user-defined files. Check these in if
they are required to build or document your
application image.

Hardware Template files NodeBuilder hardware templates describe the
hardware that will be used to host the application.
This data includes Neuron Chip model, clock rate,
and memory map. They have a .NbHwt
extension.

 Standard hardware templates are stored in
<LonWorks>\NodeBuilder\Templates\Hardw
are\Standard. These files should never be

E-4 NodeBuilder User’s Guide

edited because future updates to the NodeBuilder
tool will overwrite modified files and your changes
would be lost. Check these in to ensure that you
can go back to the version used to create your
device, but be cautious when restoring them so
that you do not overwrite newer versions.

 You can place user hardware templates in any
folder. A cross-project collection of user hardware
templates may be found in the User hardware
templates folder, which by default is in
C:\LM\Source\Templates\Hardware\User.

Resource Files Resource files are produced by the Resource
Editor. The set of files is called a resource file set.
The resource file set holds definitions of functional
profiles, network variable types, and configuration
property types. These files have.typ, .fmt, .fpt,
and .<lang> extensions.

 You can move resource files by removing the
reference to the previous resource folder from the
resource file catalog using the NodeBuilder
Resource Editor, moving the resource folder and
all its content to a new location, and then adding
the new resource folder to the resource catalog
using the resource editor. You must also add all
required resource folders to the resource catalog
when moving or restoring a NodeBuilder project
to a new computer.

 To register a resource file from a build script,
change the current directory to the
<LonWorks>\Types folder and enter the following
command:

 mkcat –a<ResourceFolderPath>

 Do not check-in the resource catalog itself (LDRF.cat by default), since it might contain
references to resource files that are unique to each computer.

NodeBuilder Software License Agreement F-1

Appendix F

NodeBuilder Software
License Agreement

This appendix contains a copy of the NodeBuilder Software
License Agreement that you must accept to install or use the
NodeBuilder software:

F-2 NodeBuilder User’s Guide

NOTICE
This is a legal agreement between you and Echelon Corporation (“Echelon”).
YOU MUST READ AND AGREE TO THE TERMS OF THIS SOFTWARE
LICENSE AGREEMENT BEFORE ANY LICENSED SOFTWARE CAN BE
DOWNLOADED OR INSTALLED OR USED. BY CLICKING ON THE “I
AGREE” OR “ACCEPT” BUTTON OF THIS SOFTWARE LICENSE
AGREEMENT, OR DOWNLOADING LICENSED SOFTWARE, OR
INSTALLING LICENSED SOFTWARE, OR USING LICENSED
SOFTWARE, YOU ARE AGREEING TO BE BOUND BY THE TERMS AND
CONDITIONS OF THIS SOFTWARE LICENSE AGREEMENT. IF YOU DO
NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS
SOFTWARE LICENSE AGREEMENT, THEN YOU SHOULD EXIT THIS
PAGE AND DO NOT DOWNLOAD OR INSTALL OR USE ANY LICENSED
SOFTWARE. BY DOING SO YOU FOREGO ANY IMPLIED OR STATED
RIGHTS TO DOWNLOAD OR INSTALL OR USE LICENSED SOFTWARE.

SOFTWARE LICENSE AGREEMENT
In consideration of Your agreement to the terms of this Agreement, Echelon
grants You a limited, non-exclusive, non-transferable license to use up to two
(2) copies of the Licensed Software and any updates or upgrades thereto
provided by Echelon according to the terms set forth below. If the Licensed
Software is being provided to You as an update or upgrade to software which
You have previously licensed, then You agree the Licensed Software may be
used and transferred only as part of a single product package and may not be
separated for use on more than two (2) computers as expressly provided
below.

DEFINITIONS
For the purpose of this Agreement, the following terms shall have the
following meanings:
• “Documentation” means the documentation included with the Licensed

Software.
• “Licensed Software” means all computer software programs and associated

media, printed materials, and online or electronic documentation that
accompany the NodeBuilder Development Tool product; including, without
limitation, the NodeBuilder Example Applications. The Licensed Software
also includes any software updates, add-on components, stencils, templates,
shapes, SmartShapes symbols, web services and/or supplements that Echelon
may provide to You or make available to You, or that You obtain from the use
of features or functionality of the Licensed Software, after the date you obtain
your initial copy of the Licensed Software (whether by delivery of a CD,
permitting downloading from the Internet or a dedicated web site, or
otherwise) to the extent that such items are not accompanied by a separate
license agreement or terms of use. Licensed Software does not include the
LonMaker Integration tool, LNS™ DDE Server, Microsoft Visio, or any other
software product shipped with the NodeBuilder Development Tool product

NodeBuilder Software License Agreement F-3

and not contained in the NodeBuilder directories as identified in the
Documentation.

• “NodeBuilder Example Applications” means the Neuron C and Visual Basic
source code example applications included as part of the Licensed Software
which demonstrate the use of the Licensed Software, (i) as provided in the
“Examples” and “Gizmo4” directories and their subdirectories, (ii) as
generated by the NodeBuilder Code Wizard, (iii) as generated by the LNS
Plug-in Wizard, or (iv) otherwise containing wording in the source code
clearly identifying such source code as an “Example Application”.

• “LONWORKS® Device” means a product designed for use in a network based
upon Echelon’s LONWORKS platform, including without limitation
LONWORKS Application(s) as set forth in the LONWORKS OEM License
Agreement between You and Echelon.

• “Your Device” means a LONWORKS Application that you develop as set
forth in the LONWORKS OEM License Agreement between You and
Echelon.

• “Your Device Plug-in” means Your software product that makes calls to the
LNS server or LNS remote client (as both terms are described in the
Documentation) and which (i) operates only with Your Device, (ii) allows the
user to set or retrieve application configuration properties, to read or write
application data, or to perform diagnostics on only a single device at a time,
(iii) provides a user interface that is customized for Your Device, (iv) does not
recover, commission, or install any LONWORKS Device, including the
LONWORKS Device being operated on, (v) conforms to the device plug-in
specifications described in the Documentation, and (vi) does not include any
of the following: (a) code that increases or decreases the number of available
device credits or LonMaker credits, or (b) the Licensed Software with the
exception of derivative works of the NodeBuilder Example Applications.

• “You(r)” means Licensee, i.e. the company, entity or individual who has
rightfully acquired the NodeBuilder Development Tool.

LICENSE
You may:

a) use the Licensed Software solely to develop Your Devices and Your
Device Plug-ins and prepare your derivative works of the
NodeBuilder Example Applications to develop Your Devices and Your
Device Plug-ins;

b) install and use the Licensed Software for such purposes on one (1)
primary computer (the “Primary Computer”);

c) install and use a second copy of the Licensed Software for such
purposes on one (1) additional computer (the “Additional Computer”)
for the exclusive use of the individual who is the primary user of the
copy of the Licensed Software installed on the Primary Computer,
provided that the Licensed Software may only be used on one
computer at a time, and provided that such installation and use
otherwise comply with all the terms and conditions of this
Agreement;

F-4 NodeBuilder User’s Guide

d) keep the original media on which the Licensed Software was provided
by Echelon solely for backup or archival purposes;

e) make, use, and sell Your Devices that You developed pursuant to the
terms of the LONWORKS OEM License Agreement between You and
Echelon;

f) distribute Your Device Plug-ins; and

g) physically transfer any authorized copy of the Licensed Software from
one (1) computer to another, provided that such copy is removed from
the computer on which it was previously installed and the Licensed
Software is used on only one (1) computer at a time.

You may not, and shall not permit others to:

a) install the Licensed Software for development on more than one (1)
Primary Computer and one (1) Additional Computer, use the
Licensed Software on more than one (1) computer at a time, or allow
any individual other than the primary user to use the Licensed
Software on the Additional Computer;

b) copy the Licensed Software except as permitted above;

c) except for the limited rights granted above, modify, translate, reverse
engineer, decompile, disassemble or otherwise attempt (i) to defeat,
avoid, bypass, remove, deactivate or otherwise circumvent any
software protection mechanisms in the Licensed Software, including
without limitation any such mechanism used to restrict or control the
functionality of the Licensed Software, or (ii) to derive the source code
or the underlying ideas, algorithms, structure or organization from
any of the Licensed Software that has not been provided in source
code form (except to the extent that such activities may not be
prohibited under applicable law);

d) alter, adapt, prepare derivative works of, modify or translate the
Licensed Software in any way for any purpose, including without
limitation error correction, except for the limited rights expressly
granted above with respect to NodeBuilder Example Applications; or

e) except for the limited rights granted above, distribute, rent, loan,
lease, transfer or grant any rights in the Licensed Software or
modifications thereof in any form to any person without the prior
written consent of Echelon.

You hereby acknowledge and agree that Your Device is a LONWORKS
Application as such term is defined in the LONWORKS OEM License
Agreement between Echelon and Licensee and therefore, Your Device is
subject to the terms thereof and you shall have no rights to distribute Your
Devices or Your Plug-ins as set forth above unless You and Echelon shall
have entered into a LONWORKS OEM License Agreement prior any such
distribution.

This license is not a sale. Title, copyrights and all other rights to the
Licensed Software and any copy made by You remain with Echelon and its
suppliers. Unauthorized copying of the Licensed Software or the
Documentation, or failure to comply with the above restrictions, will result in

NodeBuilder Software License Agreement F-5

automatic termination of this license and will make available to Echelon
other legal remedies.

TERMINATION
This license will continue until terminated. Unauthorized copying of the
Licensed Software or failure to comply with the above restrictions will result
in automatic termination of this Agreement and will make available to
Echelon other legal remedies. This license will also automatically terminate
if you go into liquidation, suffer or make any winding up petition, make an
arrangement with Your creditors, or suffer or file any similar action in any
jurisdiction in consequence of debt. Upon termination of this license for any
reason you will destroy all copies of the Licensed Software. Any use of the
Licensed Software after termination is unlawful.

TRADEMARKS
You may make appropriate and truthful reference to Echelon and Echelon
products and technology in Your company and product literature; provided
that You properly attribute Echelon’s trademarks and do not use the name of
Echelon or any Echelon trademark in Your name or product name. No
license is granted, express or implied, under any Echelon trademarks, trade
names, trade dress, or service marks.

LIMITED WARRANTY AND DISCLAIMER
Echelon warrants to you that, for a period of ninety (90) days from the date of
delivery or transmission to You, the Licensed Software programs under
normal use will perform substantially in accordance with the Licensed
Software specifications contained in the Documentation. Echelon’s entire
liability and Your exclusive remedy under this warranty will be, at Echelon’s
option and expense, to use reasonable commercial efforts to attempt to
correct or work around errors, to replace the Licensed Software with
functionally equivalent Licensed Software, or to terminate this Agreement
and accept return of the NodeBuilder Development Tool and refund Your
purchase price less a reasonable amount for use. NOTWITHSTANDING
THE FOREGOING, ECHELON MAKES NO WARRANTIES WHATSOEVER
WITH RESPECT TO THE NODEBUILDER EXAMPLE APPLICATIONS.

EXCEPT FOR THE EXPRESS LIMITED WARRANTIES AND
CONDITIONS GIVEN BY ECHELON ABOVE, ECHELON AND ITS
SUPPLIERS MAKE AND YOU RECEIVE NO OTHER WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE OR
IN ANY COMMUNICATION WITH YOU, AND ECHELON AND ITS
SUPPLIERS SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTY OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
PARTICULAR PURPOSE OR NONINFRINGEMENT AND THEIR
EQUIVALENTS. Echelon does not warrant that the operation of the
Licensed Software will be uninterrupted or error free or that the Licensed
Software will meet Your specific requirements.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSIONS

F-6 NodeBuilder User’s Guide

MAY NOT APPLY TO YOU. YOU MAY ALSO HAVE OTHER RIGHTS
THAT VARY FROM STATE TO STATE AND JURISDICTION TO
JURISDICTION.

LIMITATION OF LIABILITY
IN NO EVENT WILL ECHELON OR ITS SUPPLIERS BE LIABLE FOR
LOSS OF OR CORRUPTION TO DATA, LOST PROFITS OR LOSS OF
CONTRACTS, COST OF PROCUREMENT OF SUBSTITUTE PRODUCTS
OR OTHER SPECIAL, INCIDENTAL, PUNITIVE, CONSEQUENTIAL OR
INDIRECT DAMAGES, LOSSES, COSTS OR EXPENSES OF ANY KIND
ARISING FROM THE SUPPLY OR USE OF THE LICENSED SOFTWARE,
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY
(INCLUDING WITHOUT LIMITATION NEGLIGENCE). THIS
LIMITATION WILL APPLY EVEN IF ECHELON OR AN AUTHORIZED
DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES AND NOTWITHSTANDING THE FAILURE OF ESSENTIAL
PURPOSE OF ANY LIMITED REMEDY. EXCEPT TO THE EXTENT THAT
LIABILITY MAY NOT BY LAW BE LIMITED OR EXCLUDED, IN NO
EVENT SHALL ECHELON’s OR ITS SUPPLIERS’ LIABILITY EXCEED
TEN THOUSAND DOLLARS ($10,000). YOU ACKNOWLEDGE THAT THE
AMOUNTS PAID BY YOU FOR THE LICENSED SOFTWARE REFLECT
THIS ALLOCATION OF RISK.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS AND
EXCLUSIONS MAY NOT APPLY TO YOU.

SAFE OPERATION
YOU ASSUME RESPONSIBILITY FOR, AND HEREBY AGREE TO USE
YOUR BEST EFFORTS IN, DESIGNING AND MANUFACTURING
PRODUCTS USING THE LICENSED SOFTWARE TO PROVIDE FOR
SAFE OPERATION THEREOF, INCLUDING, BUT NOT LIMITED TO,
COMPLIANCE OR QUALIFICATION WITH RESPECT TO ALL SAFETY
LAWS, REGULATIONS AND AGENCY APPROVALS, AS APPLICABLE.
THE LICENSED SOFTWARE, SMART TRANSCEIVERS, NEURON CHIPS,
YOUR DEVICE, YOUR DEVICE PLUG-IN AND OTHER ECHELON
PRODUCTS AND TECHNOLOGY ARE NOT DESIGNED OR INTENDED
FOR USE AS COMPONENTS IN EQUIPMENT INTENDED FOR
SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, FOR USE IN FLIGHT
CONTROL OR ENGINE CONTROL EQUIPMENT WITHIN AN AIRCRAFT,
OR FOR ANY OTHER APPLICATION IN WHICH THE FAILURE
THEREOF COULD CREATE A SITUATION IN WHICH PERSONAL
INJURY OR DEATH MAY OCCUR, AND YOU SHALL HAVE NO RIGHTS
HEREUNDER FOR ANY SUCH APPLICATIONS.

NodeBuilder Software License Agreement F-7

LANGUAGE
The parties hereto confirm that it is their wish that this Agreement, as well
as other documents relating hereto, have been and shall be written in the
English language only.

Les parties aux présentes confirment leur volonté que cette convention de
même que tous les documents y compris tout avis qui s’y rattache, soient
rédigés en langue anglaise.

SUPPORT
You acknowledge that You shall either (i) inform the end-user that You are
the primary support contact for Your Devices and Your Device Plug-ins, and
that Echelon Corporation will not support Your Devices and Your Device
Plug-ins, or (ii) inform the end-user that there will be no support for Your
Devices and Your Device Plug-ins.

GENERAL
This Agreement shall not be governed by the 1980 U.N. Convention on Contracts for the
International Sale of Goods; rather, this Agreement shall be governed by the laws of the State of
California, including its Uniform Commercial Code, without reference to conflicts of laws
principles. This Agreement is the entire agreement between You and Echelon and supersedes
any other communications, representations or advertising with respect to the Licensed Software.
If any provision of this Agreement is held invalid or unenforceable, such provision shall be revised
to the extent necessary to cure the invalidity or unenforceability, and the remainder of the
Agreement shall continue in full force and effect. If You are acquiring the Licensed Software on
behalf of any part of the U.S. Government, the following provisions apply. The Licensed Software
programs and Documentation are deemed to be “commercial computer software” and
“commercial computer software documentation”, respectively, pursuant to DFAR Section
227.7202 and FAR 12.212(b), as applicable. Any use, modification, reproduction, release,
performance, display or disclosure of the Licensed Software programs and/or Documentation by
the U.S. Government or any of its agencies shall be governed solely by the terms of this
Agreement and shall be prohibited except to the extent expressly permitted by the terms of this
Agreement. Any technical data provided that is not covered by the above provisions is deemed
to be “technical data-commercial items” pursuant to DFAR Section 227.7015(a). Any use,
modification, reproduction, release, performance, display or disclosure of such technical data
shall be governed by the terms of DFAR Section 227.7015(b).

F-8 NodeBuilder User’s Guide

Index i

Index

#LO modifiers

localized list separators, 7-49

localized time and date formats, 7-49

_DEBUG directives, 10-12

3120 chips, 9-14

3150 chips

programming 3150 on-chip memories,
9-11

programming off-chip memories,
9-10

32-bit values

initializers, 6-27

access methods. See configuration
properties

acknowldged service types, 6-17

active language, 7-6

setting, 7-6

active sets

defined, 7-52

ad-hoc systems, 2-6

agreements

software license, F-2

alarms

tutorial, 2-26

ANSI C, 1-8, 3-7

ANSI/EIA 709-1 protocol

defined, 1-2

application errors

fatal, 9-13

application image files, 3-7

installing, 15-2

tutorial, 2-32

application images

build files, 9-3

building, 3-7, 9-2, 9-21

building tutorial, 2-32

device interface files (.xif, .xfb, and .xfo),
9-4

downloadable application image files
(.nxe and .apb), 9-3

downloading tutorial, 2-32

EEPROM application image files (.nei),
9-4

flash application image files (.nfi),
9-4

loading, 9-9, 9-19

programmable application image files
(.nri, .nei, and .nfi), 9-3

programming, 9-11

ROM application image files (.nri), 9-4

viewing status, 9-6

application keys, 2-13

applicationless state

forcing, 9-21

reboot, 9-13

applications

browsing, 11-3

building, 3-7, 5-4

compiling, 3-7

configuration properties, 1-6

creating, 3-7

debugging, 3-8. See debugger

defined, 1-2, 1-3

designing, 3-2

developing, 3-2

device file sets, 3-7

downloading, 3-7

functional blocks, 1-7

host-based, 1-2

ii NodeBuilder User’s Guide

network variables, 1-5

testing, 11-2

arrays

code wizard, 6-35

as-built reports, 2-6

assember dependency files, C-3

attached, 3-5

auto indent, 8-8

auto-detect

channels, 9-17

automatic program ID management, 5-8,
5-11

tutorial, 2-24

backup files, 4-12

binary device interface files, 9-5

binding, 1-6

bitfield types, 7-18, 7-24

bookmarks, 8-7

boot ID, 9-11

boot image, 9-11

Breakpoint pane

defined, 10-3

breakpoints

defined, 10-5

reset, 10-6

resynchronization, 10-6, 10-13

setting, 10-4, 10-6

synchronization, 10-6, 10-13

toggling, 10-4

toolbar, 10-3

tutorial, 2-38

BridgeView, 14-4

browser

introduction, 3-8

build options, 9-7

build scripts

examples, C-4

generating, C-2

invoking, C-2

options, 9-9

build status

viewing, 9-6

build tools

examples, C-4

invoking, C-2

building, 3-7. See application images,
building

call stack, 10-9

Call Stack pane, 10-5, 10-9

defined, 10-3

catalog utility, E-4

certification, 3-10

changeable interfaces

program IDs, 5-16

changeable type network variables,
6-15

changeable types

program IDs, 5-16

setting, 6-28

channel types

defined, 1-2

program IDs, 1-4, 5-15

channels

auto-detect, 9-17

defined, 1-2

specifying, 9-17

checksum errors, 9-13

clock speeds, 5-24

code

generating, 6-27

code wizard, 2-7

code wizard

adding implementation-specific
configuration properties, 6-19

Index iii

adding implementation-specific network
variables, 6-13

arrays, 6-35

code sections, 6-31

commands, 6-32

comments, 6-32

common.h file, 6-29, 6-31

common.nc file, 6-29, 6-31

configuration properties, 6-35

configuration property access method,
6-3

cp_family reuse, 6-35

declaration order, 6-36

defined, 6-2

defining the device interface, 6-4

device template properties, 6-5

device templates, 6-3

director functions, 6-31, 6-37

editing properties, 6-27

event handling, 6-31

file directory structure, 6-30

files created, 6-29

filesys.h file, 6-30

filesys.nc file, 6-29

filexfer.h file, 6-30

filexfer.nc, 6-37

filexfer.nc file, 6-30

FTP server, 6-37

generating code, 6-3, 6-5, 6-27

global configuration properties, 6-35

implementing network variables, 6-7

Interface pane, 6-3

modifying code, 6-27, 6-31

network variable arrays, 6-35

Neuron C Version 2 features not
supported, 6-34

Node Objects, 6-31, 6-37

NodeObject.h file, 6-30

NodeObject.nc file, 6-30

overriding generated code, 6-32

polled network variables, 6-35

refreshing, 6-5

Resource pane, 6-3

shared configuration properties,
6-35, 6-36

source code features, 6-30

source files, 6-29

starting, 5-3, 5-12, 6-2

suggested changes to generated code,
6-33

Translator.h file, 6-32

tutorial, 2-25, 2-26, 2-30

validations, 6-28

when tasks, 6-31, 6-36

Code Wizard, 6-29, 6-32

colors

debugger, 10-14

editor, 8-2, 8-9

command lines

building projects, C-2

common.h file, 6-29, 6-31

common.nc file, 6-29, 6-31

communication parameters

reboot, 9-14

company information

resource file sets, 7-15

compiler dependency files, C-3

compilor, 3-7

tutorial, 2-32

complete mode, 13-5

computer requirements, 2-12

conditional formats, 7-47

configuration network variables, 6-12, 6-
23

configuration properties

optional, 6-9

iv NodeBuilder User’s Guide

configuration properties

access methods, 6-5

adding device configuration properties,
6-24

adding implementation-specific,
6-19

adding to functional profiles, 7-31

applies to, 7-34

applying, 6-23

array types, 7-18

browsing, 11-4

code wizard, 6-35

configuration network variables,
6-23

constant option, 7-33

creating bitfield types, 7-24

creating enumerated types, 7-23

creating reference types, 7-24

creating struture or union types, 7-22

creating types, 7-16

defaults, 7-34

defined, 1-6, 3-4

device interfaces, 1-8

editing types, 7-16

formats. See formats

global, 6-35

implementation options, 6-12

implementing as configuration network
variables, 6-12

implementing in code wizard, 6-9

implementing static configuration
properties, 6-12

inheriting types, 7-18

initial values, 6-24, 6-27

initializers, 6-13, 6-23

mandatory, 6-9

manufacturer option, 7-33

member names, 6-11

member numbers, 7-33

modifying bitfield types, 7-24

modifying enumerated types, 7-23

modifying reference types, 7-24

modifying struture or union types,
7-22

naming, 6-10, 6-20, 7-32

naming types, 7-17

object disabled option, 7-33

offline option, 7-34

overrides, 7-34

reset option, 7-33

resource file paths, 6-21

restriction flags, 6-11, 6-22

scopes, 6-21

settings, 7-33

shared, 6-35, 6-36

standard types

defined, 1-9

static, 6-23

string information, 7-34

types, 1-6, 6-11, 6-20, 7-2, 7-3, 7-9

viewing properties, 11-4

Configuration Properties, 6-11, 6-24

configuration property types

defined, 3-4

Configuration Property Types, 7-24

configured state

boot image, 9-11

connections

defined, 1-6

const_flg flags, 6-12, 6-22

constant options

configuration properties, 7-33

conversion specifications, 7-47

convert values, 6-26

cp_family

reuse, 6-35

Index v

custom devices. See devices

date

localized formats, 7-49

DDE server, 14-3

application keys, 2-13

defined, 2-5

human-machine interfaces (HMIs), 3-10

installing, 2-13

licensing, 2-13

DDE Server

CD, 2-5

debug directives, 10-12

Debug Error Log Tab, 10-12

Debug Log tab, 10-3

Debug Status pane, 10-10

defined, 10-3

debugger, 3-8

breakpoints. See breakpoints

call stack, 10-9

color options, 10-14

current device, 10-10

Debug Error Log tab, 10-12

defined, 10-2

editing source code, 10-13

executing in development targets only,
10-12

font options, 10-14

halting, 10-4, 10-5, 10-10

introduction, 3-8

jumping to current instruction, 10-4

message options, 10-13

peeking and poking memory, 10-11

radix option, 10-13

reseting, 10-4

resuming, 10-3, 10-5, 10-10

running to cursor, 10-4, 10-5

setting options, 10-13

starting, 10-2, 10-5

stepping. See stepping

stopping, 10-4, 10-5, 10-10

tick interval option, 10-13

toolbar, 10-3

tutorial, 2-37

viewing status, 10-10

watch list. See watches

watching. See watches

decimal

watches, 10-8

defaults

configuration properties, 7-34

dependencies, 5-17

dependency files

compiler, C-3

exporter, C-4

linker, C-3

descriptions

device, 9-18

development platforms

LonBuilder Emulators, 9-9

LTM-10A, 9-9

development process, 3-2

Development Target Device shapes, 4-9

development target folders, 5-17

development targets, 5-5, 5-12, 5-17 See
targets

defined, 1-9

Development Targets, 10-12

device classes

program IDs, 1-4, 5-14

device configuration properties

adding, 6-24

device file sets

defined, 3-7

tutorial, 2-32

vi NodeBuilder User’s Guide

device files

importing, 5-2

device interface files, 3-7, 9-4

defined, 1-8

installing, 15-2

tutorial, 2-32

device interfaces

adding device configuration properties,
6-24

adding device network variables,
6-24

adding functional blocks, 6-5

defined, 1-8

defining, 3-3, 3-4

defining with code wizard, 6-4

implementing, 6-2

testing, 3-8

testing tutorial, 2-36

device network variables

adding, 6-24

device settings

editing, 9-22

device template files, 4-14

defined, 4-14

device template folders, 5-7

Device Template Wizard, 4-8, 5-6,
5-7

New Device Template, 5-6

target platforms, 5-11

Device Template Wizard

Program ID, 5-7, 5-8, 5-10

device templates, 3-6, 5-2

building, 5-3, 9-2

cleaning, 5-3, 5-4

copying, 4-12, 4-13, 5-2

creating, 3-7, 3-8, 5-2, 5-6

creating tutorial, 2-21

defined, 1-8, 3-6

editing, 5-2

excluding, 5-4

importing from NodeBuilder 1.5, 5-2

inserting, 5-2

LNS device templates

defined, 1-8

moving, 4-12, 4-13

multiple, 2-21

naming, 5-6

output files, 5-7

program IDs, 2-22

removing, 5-4

selecting, 4-10

settings, 5-3

source files, 5-3, 5-4, 5-7

specifying targets, 9-15

tutorial, 2-21, 2-32

viewing, 5-2

viewing properties, 5-4

viewing status, 5-3, 5-4

Device Templates folders

defined, 4-4

device_specific_flg flags, 6-11, 6-22

devices, 1-2. See targets

browsing, 11-3

commissioning, 4-10

creating shapes. See shapes

debugging, 3-8, 9-21

developing, 3-2

editing target device settings, 9-22

forcing applicationless, 9-21

installing, 3-9

loading, 9-9

naming, 4-9

testing, 3-8, 11-2

viewing status, 9-22

Devices folders

Index vii

defined, 4-4, 9-21

direct memory read/write, 6-3

direction, 6-16

director functions

code wizard, 6-37

default, 6-31

tutorial, 2-31

directories

LonWorks directories, 2-16

discrete formats, 7-44

documentation

included with the NodeBuilder tool, 2-3

downloadable application image files, 9-3

drivers, 2-13

dynamic network variables

program IDs, 5-16

Edit pane

defined, 4-3

Editing pane

defined, 4-2

editor

auto indent, 8-8

bookmarks, 8-7

colors, 8-2, 8-9

cut, copy, and paste, 8-2

find in files, 8-4

font, 8-9

introduction, 8-2

pattern matching, 8-5

regular expression syntax, 8-5

reload option, 8-9

replacing, 8-3

reset option, 8-9

searching, 8-3

searching multiple files, 8-4

setting options, 8-8

syntax highlighting, 8-2

tab width, 8-8

tutorial, 2-31

using your own, 3-7

EEBLANK.NRI, 9-12

EEPROM. See memories. See memories

EEPROM application image files,
9-4, 9-11

EEPROM variables

reboot, 9-14

engineered systems, 2-6

enumerated types, 7-18, 7-23

enumeration types

creating and modifying, 7-34

enumerations

defined, 7-4

types, 7-9

Enumerations, 7-35

errors

fatal application erros, 9-13

event log

defined, 4-3

Example, A-2, A-4, A-15, A-16

examples

adding analog I/O, A-8

adding digital I/O, A-5

adding Node Objects, A-4

adding quadrature input, A-23

adding real-time keepers, A-19

adding shaft-encoder input, A-23

adding temperature sensors, A-16

adding translators, A-12

adding wheel input, A-23

contents, A-2

creating, A-2

enhancing, A-27

installing, 2-16

introduction, A-2

viii NodeBuilder User’s Guide

locations, A-2

manufacturer ID, 2-22

setting up, A-3

exhaustive mode, 13-5

exporter dependency files, C-4

extended arithmetic function library, 5-19

external interface files. See device
interface files

external names. See functional blocks

fatal application errors, 9-13

FbModes user cells, 7-3

file directory structure, 6-30

file extensions

language files, 7-4

file transfer protocol, 6-3

files

application image build files, 9-3

application image files, 3-7

cleaning, 9-5

defined, 4-14

device interface files, 3-7

device interface files (.xif, .xfb, and .xfo),
9-4

downloadable application image files
(.nxe and .apb), 9-3

EEBLANK.NRI, 9-12

EEPROM application image files (.nei),
9-4

flash application image files (.nfi),
9-4

inserting, 5-5

language file extensions, 7-4

printing, 4-14

programmable application image files
(.nri, .nei, and .nfi), 9-3

project files, 4-2

removing, 5-5

ROM application image files (.nri), 9-4

spidData.xml, 2-23

using source control, E-2

viewing, 4-14

filesys.h file, 6-30

filesys.nc file, 6-29

filexfer.h file, 6-30

filexfer.nc, 6-37

filexfer.nc file, 6-30

FIX, 14-4

flags. See restriction flags

flash application image files, 9-4

flash memories, 9-4. See memories. See
memories. See memories

float types, 7-18

floating point, 5-19

initializers, 6-27

font options

debugger, 10-14

fonts

editor, 8-9

format specifiers. See formats

format strings, 7-45

formats

conditional formats, 7-47

conversion specifications, 7-47

creating and modifying, 7-41, 7-42

defined, 7-5, 7-41

examples, 7-45

fields, 7-44

format specifiers, 7-44

format strings, 7-45

locale-specific, 7-42

localized date formats, 7-49

localized list separators, 7-49

localized time formats, 7-49

modifier

defined, 7-42

modifiers, 7-44

Index ix

naming, 7-42

program IDs, 1-3, 5-16

resource files, 7-9

scaling factors, 7-48

text formats, 7-45

Formats, 7-44

FPT keys. See functional profile numbers

Functional Block shapes

tutorial, 2-39

functional blocks

adding, 6-5, 6-6

adding implementation-specific
configuration properties, 6-19

adding implementation-specific network
variables, 6-13

browsing, 11-3

configuring, 12-4

creating, 11-2

creating arrays, 6-6

creating shapes. See shapes

defined, 1-7, 3-4, 6-5

device interfaces, 1-8

disabling, 11-3

enabling, 11-3

external names, 6-5

implementation-specific members, 1-7

implementing optional configuration
properties, 6-9

members, 1-7

naming, 6-6

functional profile keys. See functional
profile numbers

functional profile numbers, 3-4

inherited functional profiles, 7-26

functional profiles

adding, 6-5

adding configuration property members,
7-31

adding network variable members, 7-28

creating, 7-25

defined, 1-7, 3-4, 7-3

documentation, 3-4

functional profile index, 7-28

functional profile keys, 7-27

functional profile numbers, 7-27

inherited profiles, 7-31

inheriting, 7-25, 7-26

introduction, 7-2

manufacturer-defined, 1-9, 3-4

member numbers, 7-30

modifying, 7-25

naming, 7-25, 7-27

overriding members, 7-27

principal network variables, 7-28,
7-30

resource files, 1-8, 7-9

selecting, 3-4

standard

defined, 1-9

documentation, 1-9

generating code, 6-27

generating resource files, 7-52

Gizmo 4, 2-10

defined, 2-8

documentation, 2-3, 2-10

I/O devices, 2-10

I/O library, 2-10

installing, 2-17

LTM-10A Flash Control Modules, 2-9

testing, 3-3

Gizmo 4 User's Guide, 2-2

hardware

designing, 3-2

developing, 3-3

device requirements, 3-3

I/O, 3-3

x NodeBuilder User’s Guide

I/O connectors, 3-3

prototyping, 3-3

testing, 3-3

hardware installation, 2-16

hardware template files

defined, 4-14

Hardware Template Properties, 5-22, 5-
24, 5-25, 5-27

hardware templates

clock speed, 5-24

copying, 4-13, 5-21

creating, 5-21, 5-22

defined, 1-7, 5-12, 5-17, 5-20

description, 5-26

editing, 5-22

importing, 5-21

inserting, 5-21

model, 5-24

naming, 5-23

platform, 5-23

removing, 5-22

setting hardware properties, 5-22

setting properties, 5-23

system image name, 5-24

system image version, 5-24

target definitions, 1-9

transceiver type, 5-23

viewing, 5-20

Hardware Templates folders

defined, 4-4

headers

resource file sets, 7-15

hex values

calculating, 7-21

hexadecimal

watches, 10-8

high-performance network interfaces, 2-
11

HMIs. See human-machine interfaces
(HMIs)

host-based devices

defined, 1-2

human-machine interfaces (HMIs),
2-5, 3-9

DDE server, 14-3

defined, 14-2

installing, 15-4

LNS DDE Server, 14-3

third-party, 14-3

using the LonMaker tool as an HMI, 14-
2

i.LON 1000 Internet Servers, 2-11

installing, 2-13

I/O connectors, 3-3

I/O hardware

prototyping, 3-3

implementation-specific configuration
properties, 6-19

implementation-specific members, 1-7

adding, 6-6

implementation-specific network
variables, 6-13

include files

search path, 4-8

inheritance, 3-5

inherited functional profiles, 7-25,
7-26, 7-31

functional profile key, 7-26

overriding members, 7-27

initial values, 6-24

initializers, 6-13

configuration properties, 6-23

network variables, 6-19

installation, 2-12

Installation, 15-4

Creating, 15-4

installations. See software installations

Index xi

installing

tutorial, 2-39

InstallShield, 15-2

int formats, 7-44

Intellution FIX, 14-4

Interface pane

tutorial, 2-26

InTouch, 2-5, 3-10, 14-4

Introduction to LONWORKS document, 1-1

LabView, 14-4

language files, 7-9

active language, 7-6

adding language strings, 7-38

creating and editing language strings, 7-
37

defined, 7-4

exporting, 7-41

file extensions, 7-4

translating, 7-6, 7-40

viewing two side-by-side, 7-40

language strings

adding, 7-38

adding while defining a resource, 7-39

copying, 7-38

creating and modifying, 7-37

ldrf.cat files, 7-7

libraries

adding, 5-5, 5-18, 5-19

contents, 5-19

custom, 5-18

extended arithmetic, 5-19

floating point, 5-19

programmable serial gateway, 5-19

standard, 5-18, 5-19

license agreements, F-2

licenses

OEM, 3-2

limits, 7-19

setting, 7-20

linker dependency files, C-3

list separators

localized, 7-49

LNS

plug-ins tutorial, 2-42

LNS DDE Server. See DDE server. See
DDE Server

documentation, 2-3

LNS DDE Server User’s Guide, 2-13

LNS Device Plug-in Developer's Guide,
2-2

LNS Device Plug-in Wizard, 2-42. See
plug-in wizard

LNS device templates, 1-8. See device
templates

defined, 3-6

Load After Build, 9-3

localization. See translation

localized formats. See formats

localized list seperators, 7-49

localized time and date formats, 7-49

locations

device, 9-18

locked scope and program ID templates,
7-13

logical addresses, 1-6

LonBuilder Development Tool, 2-11

using for development, D-2

LonBuilder Emulator

using as a development platform,
D-2

LonBuilder Emulators, 3-3

LonMaker, 12-3

New Device Wizard, 4-9, 4-10

LonMaker browser. See browser

calculating raw values, 7-21

LonMaker Browser, 11-3

xii NodeBuilder User’s Guide

tutorial, 2-36

LonMaker credits, 2-13

LonMaker Integration Tool

backing up, 4-12

CD, 2-5

configuring devices, 1-6

creating a network, 3-5

creating a network tutorial, 2-19

defined, 2-5, 3-5

installing, 2-13

installing a device tutorial, 2-39

making connections, 1-5

New Device Wizard, 4-9

production devices, 3-5

starting, 3-5

starting the NodeBuilder tool, 4-9

tutorial, 2-33

LonMaker networks

multiple, 2-20, 3-6, 4-2

LonMaker tool

creating shapes, 12-2. See shapes

creating stencils, 12-2. See shapes

shapes, 3-9

stencils, 3-9

LonMaker User’s Guide, 2-7, 2-13

LONMARK Application Layer
Interoperability Guidelines, 1-5, 1-8

LONMARK Interoperability Association

certifying devices, 3-10

program IDs, 5-13

LONMARK Interoperability Association, 1-4

defined, 3-10

resource files, 1-9

LONMARK SNVT and SCPT Guide, 1-9

lonpmk32.def file, C-3

LonTalk protocol

defined, 1-2

LONWORKS directory, 2-16

LonWorks networks

introduction, 1-2

LonWorks platform

introduction, 1-2

LTM-10A Flash Control Modules,
2-11, 2-12

defined, 2-4

documentation, 2-3

LTM-10A Platforms

defined, 2-3

development platforms, 3-3

documentation, 2-3

Gizmo 4, 2-8

major versions, 7-53

mandatory configuration properties, 6-6

mandatory network variables, 6-6

manufacture options

configuration properties, 7-33

manufacturer IDs

entering, 2-15

getting, 2-12

program IDs, 1-3, 5-13

tutorial, 2-22

maximum model numbers, 5-9

maximum values, 7-31

maximums

setting, 7-20

member numbers, 7-30

defining, 7-33

members

functional blocks, 1-7

implementation-specific, 1-7

memories

EEPROM, 5-26

flash, 5-26

initialization, 9-12

Index xiii

NVRAM, 5-26

off-chip, 5-24

on-chip, 5-24

peeking and poking, 10-11

programming 3120 on-chip memory, 9-
14

programming flash memories, 9-11

programming off-chip memory, 9-10

programming on-chip memory, 9-11

sector size, 5-26

specifying, 5-24

write time, 5-26

memory signature, 9-12

message options

debugger, 10-13

Messages tab, 4-3, 9-2

mfg_flg flags, 6-11, 6-22

Microprocessor Interface Program (MIP)

LTM-10A modules, 2-4

Microsoft Visual Basic 6, 2-12

minimal mode, 13-5

minimum model numbers, 5-9

minimum values, 7-31

minimums

setting, 7-20

minor versions, 7-53

mkcat utility, E-4

model numbers, 5-8

program IDs, 1-5, 5-9, 5-15

models, 5-24

modifier. See formats

modifiers, 6-17

National Instruments BridgeView,
14-4

National Instruments LabView, 14-4

NbDt, 4-14. See device template files.
See device template files

nbHwt. See hardware templates

NbHwt. See hardware template files

NbOpt, 4-2, 4-7. See options files

NbPrj, 4-2, 4-7, 4-11, 4-12. See project
files

NbProj. See project files

network interfaces, 2-11, 2-13

program IDs, 1-3

Network Variable shapes

tutorial, 2-39

network variable types

defined, 3-4

Network Variable Types, 7-23

Creating, 7-20

Editing, 7-20

network variables

adding device network variables,
6-24

adding implementation-specific,
6-13

adding to functional profiles, 7-28

array types, 7-18

arrays, 6-14, 6-35

binding, 1-6

browsing, 11-4

changeable types, 6-15

configuration network variables,
6-12

connecting, 1-5

creating arrays, 6-8

creating bitfield types, 7-24

creating enumerated types, 7-23

creating reference types, 7-24

creating struture or union types, 7-22

creating types, 7-16

defined, 1-5, 3-3

device interfaces, 1-8

direction, 6-8, 6-16

editing types, 7-16

xiv NodeBuilder User’s Guide

formats. See formats

implementation-specific, 6-19

implementing in code wizard, 6-7

initial values, 6-24

initializers, 6-9, 6-19

member names, 6-8

member numbers, 6-8

modifiers, 6-17

modifying bitfield types, 7-24

modifying enumerated types, 7-23

modifying reference types, 7-24

modifying struture or union types,
7-22

naming, 6-8, 6-14

naming members, 7-29

naming types, 7-17

polled, 6-9, 6-18, 6-35, 7-31

principal, 7-28

renaming, 6-8

scopes, 6-15

self-documentation, 6-9, 6-18

service types, 6-8, 6-16

setting types, 6-6, 6-8

standard types

defined, 1-9

synchronous, 6-9, 6-18

types, 6-15, 7-2, 7-3, 7-9

viewing properties, 11-4

Network Variables, 6-9, 6-14

Implementation-specific, 6-14

networks

creating, 3-5

Neuron 3120 Chip programmer, 9-14

Neuron C, 6-36

converting version 1 to version 2,
B-4

defined, 1-8, 3-7

device templates, 1-8

documentation, 3-7

editing tutorial, 2-31

tutorial, 2-26, 2-30

Version 2 backward compatibility, B-2

writing, 3-7

Neuron C Errors Guide, 2-2

Neuron C Programmer's Guide, 2-3

Neuron C Reference Guide, 2-2, 2-3

Neuron Chip models, 5-24

Neuron Chip-hosted devices

defined, 1-2

New Device Template Wizard, 5-2

nlib library utility, 5-19

Node Object

defined, 6-4

examples, A-4

tutorial, 2-26

Node Objects

code wizard, 6-31, 6-37

NodeBuilder 1.5, 5-2, 5-22

converting projects, B-2, B-7

running, B-2, B-9

NodeBuilder 1.5 Development Tool, 2-10

NodeBuilder Code Wizard. See code
wizard

NodeBuilder debugger. See debugger.
See debugger

NodeBuilder Development Tool. See
NodeBuilder tool

NodeBuilder device templates. See
device templates

NodeBuilder Errors Guide, 2-3

NodeBuilder example. See examples

NodeBuilder Gizmo 4 I/O Board. See
Gizmo 4

NodeBuilder Project, 4-11

NodeBuilder Project Manager. See
project manager

Index xv

NodeBuilder projects. See projects. See
projects

NodeBuilder Quick-Start Tutorial, 2-7

NodeBuilder tool

CD, 2-7

components, 2-2, 2-7

contents, 2-2

defined, 2-2

documentation, 2-2

hardware requirements, 2-11

introduction, 2-2

requirements, 2-11

software requirements, 2-11

starting, 4-9

system requirements, 2-11

upgrades, 2-10, 2-12

NodeObject.h file, 6-30

NodeObject.nc file, 6-30

nodes. See devices

NVRAM, 9-4. See memories

obj_disabl_flg flags, 6-12, 6-22

object disabled options

configuration properties, 7-33

obsolete items, 7-6, 7-50

obsolete types, 7-19

off-chip memory. See memories. See
memories

offline options

configuration properties, 7-34

offline_flg flags, 6-12, 6-22

on-chip memory. See memories. See
memories

OnNet, 3-6

operator interfaces, 3-9. See human-
machine interfaces (HMIs)

optimized device interface files, 9-5

optional configuration properties, 6-9

optional network variables, 6-6

optional networkvVariables, 6-7

options files

defined, 4-14

output files

cleaning, 9-5

overrides, 7-19, 7-31

configuration properties, 7-34

PCC-10 Network Interfaces, 2-11

PCLTA-10 Network Interfaces, 2-11

PCLTA-20 Network Interfaces, 2-11

peeking memory, 10-11

ping interval, 9-18

platforms, 5-23

plug-in wizard, 2-8

plug-in wizard

introduction, 3-9

starting, 5-3, 13-2

starting tutorial, 2-42

testing a plug-in, 2-45

plug-ins

configuring devices, 1-6

creating, 3-9, 13-2

defined, 13-2

deregistering, 13-4

documentation, 2-3

installing, 15-4

installing the plug-in wizard, 2-12

project manager, 2-6

registering, 13-3

registration, 2-45, 5-9

testing tutorial, 2-45

tutorial, 2-42

pmk command

examples, C-4

invoking, C-2

poking memory, 10-11

polled, 6-18

xvi NodeBuilder User’s Guide

polled network variables, 7-31

power line couplers, 2-4

prefixes

maintaining backward compatibility, B-2

principal network variables, 7-28,
7-30

program ID calculator, 5-13

starting, 5-13

program ID templates, 7-2

locked, 7-13

setting, 7-13

program IDs

automatic program ID management, 2-
24

calculating, 5-12

changeable interfaces, 5-16

changing, 9-3

channel types, 1-4, 5-15

defined, 1-3, 3-6, 5-10

defining, 5-7

device classes, 1-4, 5-14

dynamic network variables, 5-16

format, 5-10

formats, 1-3, 5-16

guidelines, 1-5

managing, 5-8

manufacturer IDs, 1-3, 5-13

model numbers, 1-5, 5-8, 5-9, 5-15

setting, 5-10

target definitions, 1-9

tutorial, 2-21, 2-22

type, 5-10

updating, 5-15

usage, 1-4, 5-15

programmable application image files, 9-3

project files, 4-2, 4-12

default, 4-12

defined, 4-14

project folders, 4-7

copying, 4-13

defined, 4-4

project manager

opening projects, 4-10

project manager, 2-7

creating projects, 4-5

defined, 3-6, 4-2

editing. See editor

introduction, 4-2

panes, 4-3

Project pane, 4-4

starting, 3-6, 4-5, 4-10

tutorial, 2-20

Project pane

defined, 4-3, 4-4

Device Templates folder, 5-2

targets, 5-17

using, 4-4

project settings, 4-4

projects

creating, 4-5

opening, 4-10

selecting, 4-11

projects

adding targets, 9-20

build script options, 9-9

build type options, 9-8

building. See application images,
building

cleaning, 9-5

cleaning from the command line,
C-4

converting NodeBuilder 1.5 projects, B-
2, B-7

copying, 4-12

creating, 2-20, 3-6, 4-5

debug options, 9-9

Index xvii

default, 4-7

defined, 3-6, 4-2

directory, 4-7

excluding targets, 9-5

folder, 4-7

Load After Build, 9-3

load after build options, 9-8

load options, 9-8

making from the command line, C-2

moving, 4-12

naming, 4-6

setting build options, 9-7

settings, 4-4, 4-7

stop build options, 9-8

testing, 11-2

using source control, E-2

using targets, 9-21

verbose options, 9-9

viewing status, 9-6

protocols

defined, 1-2

PSG/3 programmable serial gateway, 5-
19

PSG-20 programmable serial gateway, 5-
19

Quick-Start tutorial. See tutorial

radix options

debugger, 10-13

range overrides, 7-19

range_mode_string, 6-36

raw values

calculating, 7-21

real formats, 7-44

reboot options, 9-11

setting, 9-12

recovery, 2-6

reference information, 7-24

reference types, 7-18, 7-19, 7-24, 7-30

refresh, 7-10

regional settings, 7-49

registration, 2-15

regular expressions

syntax, 8-5

Release Target Device shapes, 4-9

release target folders, 5-17

release targets, 5-5, 5-12, 5-17. See
targets

defined, 1-9

removed items, 7-6

removing resources, 7-50

repeated service types, 6-17

replacing, 8-3

requirements, 2-12

reset options

configuration properties, 7-33

reset_flg flags, 6-11, 6-22

resource catalog

resource catalog file, 7-5

resource catalogs

browsing, 7-8

defined, 7-7

refreshing, 7-10

viewing properties, 7-51

resource editor, 2-7

resource editor

defined, 7-5

options, 7-6

starting, 7-5

resource file sets

active sets, 7-52

company information, 7-15

creating, 7-12

editing, 7-12

headers, 7-15

locations, 7-14

xviii NodeBuilder User’s Guide

naming, 7-14

program ID template, 7-13

scopes, 7-13

selecting a scope, 7-12

versions, 7-15, 7-52

viewing properties, 7-52

resource files

default scopes, 7-3

defined, 1-8, 3-4

distribution, 1-9

generating, 7-52

installing, 15-3

introduction, 7-2

manufacturer-defined, 1-9

paths, 6-16

program ID templates, 7-2

resource file sets, 7-2

scopes, 7-2

standard

defined, 1-9

target definitions, 1-9

updates, 1-9

using source control, E-4

viewing file properties, 7-51

Resource Files, 7-14, 7-15

resource folders

adding, 7-9

defined, 7-7

moving, 7-10

removing, 7-9

Resource pane

tutorial, 2-26

resource strings. See language strings

resources

backward compatibility, 7-16

copying, 7-50

creating, 7-16

editing, 7-16

obsoleting, 7-51

removing, 7-50

searching, 7-10

restriction flags, 6-11, 6-22

const_flg flags, 6-12

device_specific_flg flags, 6-11

mfg_flg flags, 6-11

obj_disabl_flg flags, 6-12

offline_flg flags, 6-12

reset_flg flags, 6-11

Results pane

Debug Error Log tab, 10-12

Debug Log tab, 10-3

defined, 4-2, 4-3

Messages tab, 9-2

resume

tutorial, 2-38

ROM. See memories

ROM application image files, 9-4,
9-11

routers

defined, 1-3

RQ_DISABLED, 6-31

RQ_ENABLE, 6-31

RQ_REPORT_MASK, 6-31

RQ_UPDATE_STATUS, 6-31

SCADA. See human-machine interfaces
(HMIs)

scalar details, 6-26

scale factors

setting, 7-20

scaling factors

examples, 7-48

formats, 7-48

scheduler_reset directive, 6-37

scope 6, 5-9

scopes

Index xix

defaults, 7-3

defined, 7-2

locked, 7-13

network variables, 6-15

selecting, 7-12

setting, 7-13

SCPTs, 3-4

defined, 1-9

SCPTsndDelta

tutorial, 2-29

Script, C-3

seaching, 8-3

Search Results tab

defined, 4-3

sector size. See memories

self-documentation

network variables, 6-18

serial gateway library, 5-19

serial numbers, 2-15

service types, 6-16, 7-30

SFPTopenLoopActuator

tutorial, 2-30

SFPTopenLoopSensor

tutorial, 2-27

shapes

creating, 12-2

creating complex shapes, 12-4

creating device shapes, 12-2

creating functional block shapes,
12-3

installing, 15-4

tutorial, 2-33

ShortStack Developer’s Kit, 2-4

signature, 9-12

signed char types, 7-19

signed long types, 7-19

signed quad types, 7-19

signed short types, 7-19

single stepping. See stepping

Smart Transceiver models, 5-24

SNVTs, 3-4

defined, 1-9

software installation, 2-12

software installations

creating, 15-2

files, 15-2

software license agreements, F-2

sorting, 7-6

source code

editing while debugging, 10-13

generating, 6-27

generating tutorial, 2-25

source control, E-2

source files, 5-5

device templates, 1-8

inserting, 5-5

removing, 5-5

searching, 8-3

setting, 5-3

using source control, E-2

SPID. See program IDs

SPID Calculator, 5-12

spidData.xml, 2-23

Stanard Program ID Calcluator. See
program IDs

standard program ID calculator, 5-12

Standard Program ID Calculator, 5-7

standard resource file set

defined, 3-4

static configuration properties, 6-12, 6-23

status

viewing, 9-6

stencils

creating, 3-9, 12-2

xx NodeBuilder User’s Guide

installing, 15-4

tutorial, 2-33

using targets, 9-15

stepping

tutorial, 2-38

stepping

defined, 10-6

starting, 10-6

step into, 10-4, 10-6

step over, 10-4, 10-6

string information, 7-31

strings. See language strings

setting, 7-19

Strings, 7-6

structure fields, 6-25

structure types, 7-19

structures, 7-22

SuiteLink protocol, 2-5, 14-3

synchronous, 6-18

syntax coloring, 8-9

syntax highlighting, 8-2

system images

name, 5-24

version, 5-24

system requirements, 2-11

Système Internationale units. See formats

tab width, 8-8

Target Device shapes, 4-9

target folders, 5-17

target platforms, 5-11

tutorial, 2-24

targets, 5-5, 5-17

adding, 9-15, 9-20

browsing, 11-3

building, 5-17, 9-2, 9-5, 9-21

cleaning, 5-18

compiling, 5-18

debugging, 9-21. See debugger

debugging only development targets,
10-12

defined, 1-9, 5-12, 9-15

device template, 9-22

displaying status, 5-18

editing device settings, 9-22

excluding, 5-18, 9-5

forcing applicationless, 9-21

hardware templates, 5-22

inserting, 9-21

naming, 9-16

removing, 9-21

selecting target type, 9-20

setting options, 9-21

setting the hardware template, 5-17

settings, 5-17

specifying hardware templates, 5-12

target types, 9-23

testing, 11-2

viewing status, 9-22

template files

using source control, E-3

templates. See also hardware templates.
See device templates

device templates

defined, 1-8

hardware templates

defined, 1-7

tempoarary manufacturer IDs, 2-12

temporary manufacturer IDs, 1-4,
5-14

testing

tutorial, 2-39

text device interface files, 9-5

text formats, 7-44, 7-45

text program IDs. See program IDs

tick interval options

Index xxi

debugger, 10-13

time

localized formats, 7-49

Toolbar

Debugger, 10-4

toolbars

debugger, 10-3

TP/FT-10F Control Modules, 2-9

Gizmo 4, 2-9

transceiver type, 5-23

transceiver types

default, 4-8

transceivers

defined, 1-2

program IDs, 1-4

translation

exporting, 7-41

language files, 7-40

side-by-side, 7-40

Translator.h file, 6-32

turnaround connections

defined, 2-39

tutorials

creating a LonMaker network, 2-19

creating a NodeBuilder device template,
2-21

creating a Nodebuilder project, 2-20

goals, 2-17

introduction, 2-17

sections, 2-18

testing a NodeBuilder device, 2-39

unacknowledged service types, 6-17

union types, 7-19

unions, 7-22

United States units. See formats

unsigned char types, 7-19

unsigned long types, 7-19

unsigned short types, 7-19

unspecified service types, 6-17

usage

program IDs, 1-4, 5-15

versions

resource file sets, 7-52

Visio drawings, 2-6

Visual Basic

plug-ins, 2-42, 3-9

Visual C++

plug-ins, 2-42, 3-9

Watch List, 10-8

Watch List pane. See watches

defined, 10-3

toolbar, 10-3

watches

adding, 10-7

decimal, 10-8

defined, 10-7

deleting, 10-8

editing values, 10-8, 10-9

formatting, 10-8

hexadecimal, 10-8

radix, 10-8

removing, 10-8

selecting, 10-7

setting, 10-4, 10-5

tutorial, 2-38

Watch List pane, 10-3

Wonderware, 2-5

Wonderware InTouch, 3-10, 14-4

write times. See memories

XIF. See device interface files

XML, 4-2

XML, 4-14

XML files

printing, 4-14

xxii NodeBuilder User’s Guide

viewing, 4-14

	Introduction
	Introduction to LONWORKS Networks
	Channels
	Applications
	Program IDs
	Network Variables
	Configuration Properties
	Functional Blocks
	Functional Profiles
	Hardware Templates
	Neuron C
	Device Templates
	Device Interface Files
	Resource Files
	Targets

	Introduction to the NodeBuilder Tool
	Introduction to the NodeBuilder Tool
	New Features in Release 3.1
	PL Smart Transceiver Support
	Toshiba TMPN3150FR4F Neuron Chip Support
	Neuron Chip Operation at 6.5536MHz
	Configuration Property Arrays
	Enhanced Configuration Property Sharing
	Enhanced Changeable-Type Network Variable Support
	Resource Editor Enhancements
	Resource Report Generation
	Neuron C Enhancements
	Compacting the Template File
	CP Files Off-chip and On-chip
	IO11 Pin
	New I/O Models
	Other Neuron C Changes

	Enhanced Support for Clone Domain Configurations

	What's Included with the NodeBuilder Tool
	Documentation
	LTM-10A Platform
	LNS DDE Server CD
	LonMaker Integration Tool CD
	NodeBuilder Development Tool CD
	NodeBuilder Gizmo 4 I/O Board

	Using a LonBuilder Emulator
	What's Required to use the NodeBuilder Tool
	Installing the NodeBuilder Tool
	Installing the NodeBuilder Software
	Installing the NodeBuilder Hardware

	Getting More Information and Technical Support
	NodeBuilder Quick-Start Tutorial
	Goals
	NodeBuilder Quick-Start Tutorial: Introduction
	NodeBuilder Quick-Start Tutorial: Creating a LonMaker Network
	NodeBuilder Quick-Start Tutorial: Creating a NodeBuilder Project
	NodeBuilder Quick-Start Tutorial: Creating a NodeBuilder Device Template
	NodeBuilder Quick-Start Tutorial: Automatically Generating Neuron C Source Code
	NodeBuilder Quick-Start Tutorial: Editing Your Neuron C Source Code
	NodeBuilder Quick-Start Tutorial: Compiling, Building, and Downloading Your Application
	NodeBuilder Quick-Start Tutorial: Testing Your Device Interface
	NodeBuilder Quick-Start Tutorial: Debugging Your Device Application
	NodeBuilder Quick-Start Tutorial: Installing and Testing your Device in a Network
	NodeBuilder Quick-Start Tutorial: Generating Visual Basic Code for an LNS Device Plug-in
	NodeBuilder Quick-Start Tutorial: Testing Your LNS Device Plug-in

	Developing a LonWorks Device
	Introduction to Developing a LONWORKS Device
	Sign and Return the OEM License
	Design the Device Application and Hardware
	Develop the Device Hardware
	Define the Device Interface
	Create a LonMaker Network
	Create a NodeBuilder Project
	Create a NodeBuilder Device Template
	Create the Neuron C Application
	Compile, Build, and Download the Application
	Test the Device Interface
	Debug the Device Application
	Install and Test Your Device in a Network
	Create a LonMaker Stencil
	Create an LNS Device Plug-in
	Develop an Operator Interface
	Apply for LONMARK Certification
	Create an Installation Application for your Device

	Creating and Opening NodeBuilder Projects
	Introduction to NodeBuilder Projects
	Introduction to the NodeBuilder Project Manager
	Using the Project Pane
	Creating a NodeBuilder Project
	Creating a New Project
	Specifying New Project Name
	Specifying the Project Default Settings
	Starting the NodeBuilder Tool from the New Device Wizard

	Opening a NodeBuilder Project
	Selecting a NodeBuilder Project File

	Copying a NodeBuilder Project to Another Computer
	Copying a NodeBuilder Device Template to Another Computer
	Viewing and Printing NodeBuilder XML Files

	Creating and Using Device Templates
	Introduction to Device Templates
	Using Device Templates

	Using the New Device Template Wizard
	New Device Template Wizard: New Device Template
	New Device Template Wizard: Program ID
	New Device Template Wizard: Hardware Templates

	Using the Standard Program ID Calculator
	Using Device Template Targets
	Inserting a Library into a Device Template

	Using Hardware Templates
	Creating and Editing Hardware Templates
	Setting Hardware Properties
	Viewing and Setting Memory Properties
	Setting the Hardware Template Description

	Generating Neuron C Code Using the Code Wizard
	Introduction to the NodeBuilder Code Wizard
	Starting the Code Wizard
	Defining the Device Interface
	Adding a Functional Block to the Device Interface
	Implementing Optional Network Variables
	Implementing Optional Configuration Properties
	Adding Implementation-specific Network Variables
	Adding Implementation-specific Configuration Properties
	Adding Device Network Variables
	Adding Device Configuration Properties
	Editing the Initializer for Network Variables and Configuration Properties
	Sharing a Configuration Property
	Using a Changeable-Type Network Variable

	Editing Properties in the Code Wizard
	Generating Code with the Code Wizard
	Files Created by the Code Wizard
	Code Generated by the Code Wizard
	Modifying Code Generated by the Code Wizard
	Neuron C Version 2 Features Not Supported by the Code Wizard
	Message Tags
	I/O models
	Network Variables
	Configuration Properties
	when() clauses
	LonMark style
	Miscellaneous

	Editing Resource Files
	Introduction to Resource Files
	Starting the Resource Editor
	Setting Resource Editor Options
	Introduction to Resource Folders
	Browsing the Resource Catalog
	Adding a Resource Folder
	Removing a Resource Folder
	Moving a Resource Folder
	Refreshing the Resource Catalog
	Searching for a Resource
	Creating and Editing a Resource File Set
	Creating and Editing Resources
	Creating and Editing a Network Variable or Configuration Property Type
	Using the LonMaker Browser to Calculate Raw Values
	Creating and Modifying a Structure or Union NV or CP Type
	Creating and Modifying an Enumerated NV or CP Type
	Creating and Modifying a Bitfield
	Creating and Modifying a Reference NV or CP Type

	Creating and Modifying a Functional Profile
	Adding a Network Variable Member to a Functional Profile
	Adding a Configuration Property Member to a Functional Profile
	Using Cascading Resource File Sets

	Creating and Modifying an Enumeration Type
	Creating and Editing a Language String
	Adding a String to a Language File
	Adding a String While Defining a Resource
	Searching for a Language String
	Creating, Modifying, and Translating a Language File
	Creating and Modifying a Format
	Using the Text Format Specifier

	Copying Resources
	Removing and Obsoleting Resources
	Purging a Resource File Set

	Converting a Resource File Set
	Viewing Resource File Properties
	Generating Resource Files
	Resource Reports

	Editing Neuron C Source Code
	Introduction to Editing
	Using Syntax Highlighting
	Searching Source Files
	
	Searching a Single File for a String
	Replacing Text
	Searching Multiple Files for a String

	Using Bookmarks
	Setting Editor Options

	Compiling, Building, and Loading Applications
	Building an Application Image
	Files Created When You Build An Application Image
	Excluding Targets from a Build
	Cleaning Build Output Files
	Viewing Build Status
	Setting Build Options

	Loading an Application Image
	Programming 3150 Off-chip Memory
	Programming 3150 On-chip Memory
	Setting Reboot Options

	Programming 3120 On-chip Memory

	Adding Targets
	Adding a Target with the LonMaker Tool
	Adding a Target with the Project Manager

	Using Targets in the Project Manager
	Editing Target Device Settings

	Using the NodeBuilder Debugger
	Using the Debugger
	Starting and Stopping an Application
	Setting and Using Breakpoints
	Stepping Through Applications
	Using the Watch List
	Editing a Watch List Value

	Using the Call Stack
	Using the Debug Device Manager Pane
	Peeking and Poking Memory
	Executing Code in Development Targets Only
	Using the Debug Error Log Tab
	Editing Source Code While Debugging
	Setting Debugger Options

	Testing a NodeBuilder Device Using the LonMaker Tool
	Testing a NodeBuilder Device

	Creating Custom LonMaker Shapes
	Creating a New LonMaker Stencil
	Creating a Custom Shape for a Device
	Creating Custom Shapes for Functional Blocks
	Creating Complex Custom LonMaker Shapes

	Creating an LNS Device Plug-in for a NodeBuilder Device
	Introduction to LNS Device Plug-ins
	Starting the LNS Device Plug-in Wizard

	Registering and Running your LNS Device Plug-in
	Deregistering your LNS Device Plug-in

	Creating a Human-Machine Interface
	Human-Machine Interfaces
	LonMaker Integration Tool
	Third-Party HMIs and the LNS DDE Server

	Creating a Software Installation
	Creating a Software Installation

	NodeBuilder Example
	Introduction to the NodeBuilder Example
	NodeBuilder Example Task 1: Setting Up The Project
	NodeBuilder Example Task 2: Configuring the Node Object
	NodeBuilder Example Task 3: Adding Digital I/O
	NodeBuilder Example Task 4: Analog Input and Output
	NodeBuilder Example Task 5: Simple Translator
	NodeBuilder Example Task 6: Enhancing the Translator
	NodeBuilder Example Task 7: Temperature Sensor
	NodeBuilder Example Task 8: Real Time Keeper
	NodeBuilder Example Task 9: Wheel Input
	Continuing with the NodeBuilder Example

	Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project
	Converting a NodeBuilder 1.5 Project to a NodeBuilder 3.1 Project
	Converting a Neuron C Version 1 Application to a Neuron C Version 2.1 Application
	Step 1: Build the old application
	Step 2: Create a new device template
	Step 3: Create Resource Files
	Step 4: Create code using the code wizard
	Step 5: Move global declarations
	Step 6: Move global utility functions and system event handlers
	Step 7: Move functional block-specific state management
	Step 8: Set resource scopes
	Step 9: Test #1
	Step 10: Move input network variable handler
	Step 11: Move declarations and handlers for timer and I/O-related events
	Step 12: Move application messaging code
	Step 13: Test #2

	NodeBuilder Project Conversion Tips
	Running NodeBuilder 1.5 and NodeBuilder 3.1 Concurrently

	The Command Line Project Make Utility
	Using the Command Line Project Make Utility

	Using the LonBuilder Emulator
	Using the LonBuilder Emulator

	Using Source Control
	Using Source Control

	NodeBuilder Software License Agreement
	NOTICE
	SOFTWARE LICENSE AGREEMENT
	DEFINITIONS
	LICENSE
	TERMINATION
	TRADEMARKS
	LIMITED WARRANTY AND DISCLAIMER
	LIMITATION OF LIABILITY
	SAFE OPERATION
	LANGUAGE
	SUPPORT
	GENERAL

	Index

