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Preface 

This guide describes how to write programs using the 
Neuron® C Version 2.1 language.  Neuron C is a programming 
language based on ANSI C that is designed for Neuron Chips 
and Smart Transceivers.  It includes network communication, 
I/O, and event-handling extensions to ANSI C, which make it a 
powerful tool for the development of LONWORKS® applications.  
Key concepts in programming with Neuron C are explained 
through the use of specific code examples and diagrams.  A 
general methodology for designing and implementing a 
LONWORKS application is also presented. 



Audience 
The Neuron C Programmer’s Guide is intended for application programmers 
who are developing LONWORKS® applications.  Readers of this guide are 
assumed to have some C programming experience. 

For a complete description of ANSI C consult the following references: 

• American National Standard X3.159-1989, Programming Language C, D.F. 
Prosser, American National Standards Institute, 1989. 

• Standard C:  Programmer’s Quick Reference, P. J. Plauger and Jim Brodie, 
Microsoft Press, 1989. 

• C:  A Reference Manual, Samuel P. Harbison and Guy L. Steele, Jr., 4th 
edition, Prentice-Hall, Inc., 1994. 

• The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, 
2nd edition, Prentice-Hall, Inc., 1988. 

Content 
The Neuron C Programmer’s Guide 

• Outlines a recommended general approach to developing a LONWORKS 
application, and 

• Explains key concepts of programming in Neuron C through the use of code 
fragments and examples. 

Related Manuals 
The NodeBuilder® User’s Guide lists and describes all tasks related to 
LONWORKS application development using the NodeBuilder Development 
Tool.  Refer to that guide for detailed information on the user interface and 
features of the NodeBuilder tool. 

The LonBuilder®  User’s Guide lists and describes all tasks related to 
LONWORKS application development using the LonBuilder Development 
Tool.  Refer to that guide for detailed information on the user interface to the 
LonBuilder tool. 

The Neuron C Reference Guide provides the reference information for writing 
programs using the Neuron C language. 

The NodeBuilder Errors Guide lists and describes all warning and error 
messages related to the NodeBuilder software. 

The LonMaker® User’s Guide lists and describes all tasks related to 
LONWORKS network installation, operation, and maintenance using the 
LonMaker Integration Tool.  Refer to that guide for detailed information on 
the user interface and features of the LonMaker tool. 
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The Gizmo 4 User's Guide describes the Gizmo 4 hardware and software. 
Refer to that guide for detailed information on the hardware and software 
interface of the Gizmo 4. 

The FT 3120® and the FT 3150® Smart Transceivers Databook and PL 
3120/PL 3150 Power Line Smart Transceiver Databook describe the 
hardware and architecture for Echelon's Smart Transceivers.  These books 
are also called the Smart Transceiver databooks elsewhere in this manual.  
Other Neuron Chip information is available from the respective 
manufacturers of those devices. 

 

Typographic Conventions for Syntax 

Type Used For Example 

boldface type keywords network 
 literal characters { 
 
italic type  abstract elements identifier 
 
square brackets optional fields [bind-info] 
 
vertical bar a choice between input | output 
 two elements 

 

For example, the syntax for declaring a network variable is 

network input | output [netvar modifier] [class] type [bind-info] identifier 

 

Punctuation other than square brackets and vertical bars must be used 
where shown (quotes, parentheses, semicolons, etc.). 

 

Code examples appear in the Courier font: 

#include <mem.h> 
 
unsigned array1[40], array2[40]; 
 
// See if array1 matches array2 
if (memcmp(array1, array2, 40) != 0) { 
 // The contents of the two areas do not match 
} 
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1 
Overview 

This chapter introduces the Neuron C Version 2.1 
programming language.  It describes the basic aspects of the 
language and provides an overview to using the LONWORKS 
platform and the Neuron C programming language to construct 
interoperable devices and systems.  The chapter also 
introduces key concepts of Neuron C such as event-driven 
scheduling, network variables, configuration properties, and 
functional blocks (which are implementations of functional 
profiles). 
 
A secondary purpose of this chapter is to introduce 
fundamental material on Neuron C concerning Neuron C 
types, storage classes, data objects, and how the Neuron C 
language compares to the ANSI C language. 



What Is Neuron C? 
Neuron C Version 2 is a programming language based on ANSI C that is 
designed for Neuron Chips and Smart Transceivers.  It includes network 
communication, I/O, and event-handling extensions to ANSI C, which make 
it a powerful tool for the development of LONWORKS applications.  Following 
are a few of these new1 features: 

• A new network communication model, based on functional blocks and 
network variables, that simplifies and promotes data sharing between like or 
disparate devices. 

• A new network configuration model, based on functional blocks and 
configuration properties, that facilitates interoperable network configuration 
tools. 

• A new type model based on standard and user resource files that expands the 
market for interoperable devices by simplifying integration of devices from 
multiple manufacturers. 

• An extensive built-in set of I/O objects supporting the powerful I/O 
capabilities of Neuron Chips and Smart Transceivers. 

• Powerful event-driven programming extensions, based on new when 
statements, provide easy handling of network, I/O, and timer events. 

Neuron C provides a rich set of language extensions to ANSI C tailored to the 
unique requirements of distributed control applications.  Experienced C 
programmers will find Neuron C a natural extension to the familiar ANSI C 
paradigm.  Neuron C offers built-in type checking and allows the 
programmer to generate highly efficient code for distributed LONWORKS 
applications. 

Neuron C omits ANSI C features not required by the standard for free-
standing implementations.  For example, certain standard C libraries are not 
part of Neuron C.  Other differences between Neuron C and ANSI C are 
detailed later in this chapter. 

Unique Aspects of Neuron C 
Neuron C implements all the basic ANSI C types, and type conversions as 
necessary.  In addition to the ANSI C data constructs, Neuron C provides 
some unique data elements.  Network variables are fundamental to Neuron C 
and LONWORKS applications.  Network variables are data constructs that 
have language and system firmware support to provide something that looks 
like a variable in a C program, but has additional properties of propagating 
across a LONWORKS network to or from one or more other devices on that 
network.  The network variables make up part of the device interface for a 
LONWORKS device. 

Configuration properties are Neuron C data constructs that are another part 
of the device interface.  Configuration properties allow the device’s behavior 

                                                      
1 "New" means relative to the ANSI Standard C language. 
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to be customized using a network tool such as the LonMaker tool or a 
customized plug-in created for the device. 

Neuron C also provides a way to organize the network variables and 
configuration properties in the device into functional blocks, each of which 
provides a collection of network variables and configuration properties, that 
are used together to perform one task.  These network variables and 
configuration properties are called the functional block members. 

Each network variable, configuration property, and functional block is 
defined by a type definition contained in a resource file.  Network variables 
and configuration properties are defined by network variable types (NVTs) 
and configuration property types (CPTs).  Functional blocks are defined by 
functional profiles (which are also called functional profile templates). 

Network variables, configuration properties, and functional blocks in Neuron 
C can use standardized, interoperable types.  The use of standardized data 
types promotes the interconnection of disparate devices on a LONWORKS 
network.  For configuration properties, the standard types are called 
standard configuration property types (SCPTs; pronounced skip-its).  For 
network variables, the standard types are called standard network variable 
types (SNVTs; pronounced snivets).  For functional blocks, the standard types 
are called standard functional profiles.  If you cannot find standard types or 
profiles that meet your requirements, Neuron C also provides full support for 
user network variable types (UNVTs), user configuration property types 
(UCPTs), and user functional profiles. 

Neuron C is designed to execute in the environment provided by the Neuron 
system firmware.  This firmware provides an event-driven scheduling system 
as part of the Neuron C language’s run-time environment. 

Neuron C also provides a lower-level messaging service integrated into the 
language in addition to the network variable model, but the network variable 
model has the advantage of being a standardized method of information 
interchange, whereas the messaging service is not standardized with the 
exception of its usage by the LONWORKS file transfer protocol.  The use of 
network variables, both standard types and user types, promotes 
interoperability between multiple devices from multiple vendors.  The lower-
level messaging service allows for proprietary solutions in addition to the file 
transfer protocol. 

Another Neuron C data object is the timer.  Timers can be declared and 
manipulated like variables.  When a timer expires, the system firmware 
automatically manages the timer events and notifies the program of those 
events. 

Neuron C provides many built-in I/O objects.  These I/O objects are 
standardized I/O “device drivers” for the Neuron Chip or Smart Transceiver 
I/O hardware.  Each I/O object fits into the event-driven programming model.  
A function-call interface is provided to interact with each I/O object. 

The rest of this chapter will discuss these various aspects of Neuron C in a 
bit more detail, and the remaining chapters will cover these aspects in much 
greater detail accompanied by many examples. 
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Neuron C Integer Constants 
Negative constants are treated as a unary minus operation on a positive 
constant, e.g., -128 is a signed long, not a signed short.  Likewise, -32768 
is an unsigned long, not a signed long.  To construct a signed short value 
of –128, you must use a cast: 

 ((signed short)(-128)) 

To construct a signed long value of –32768, you must also use a cast: 

 ((signed long)(-32768)) 

Decimal integer constants have the following default types: 

 0 .. 127 signed short 
128 .. 32767 signed long 
32768 .. 65535 unsigned long 

The default type can be modified with the u, U, l, and L suffixes.  For 
example: 

0L  signed long 
127U unsigned short 
127UL unsigned long 
256U unsigned long 

Hexadecimal constants have the following default types, which can also be 
modified as described above with the u, U, l, and L suffixes: 

0x0 .. 0x7F signed short 
0x80 .. 0xFF unsigned short 
0x100 .. 0x7FFF signed long 
0x8000 .. 0xFFFF unsigned long 

Octal constants have the following default types, which can also be modified 
as described above with the u, U, l, and L suffixes: 

0 .. 0177 signed short 
0200 .. 0377 unsigned short 
0400 .. 077777 signed long 
0100000 .. 0177777 unsigned long 

Binary constants have the following default types, which can also be modified 
as described above with the u, U, l, and L suffixes: 

0b0 .. 0b01111111 signed short 
0b10000000 .. 0b11111111 unsigned short 
0b0000000100000000 .. 0b0111111111111111 signed long 
0b1000000000000000 .. 0b1111111111111111 unsigned long 
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Neuron C Variables 
The following sections briefly discuss various aspects of variable declarations.  
Data types affect what sort of data the variable represents.  Storage classes 
affect where the variable is stored, whether it can be modified (and if so, how 
often), and whether there are any device interface aspects to modifying the 
data. 

Neuron C Variable Types 
Neuron C supports the following C variable types.  The keywords shown in 
square brackets are optional; if omitted, they will be assumed by the Neuron 
C language, per the rules of the ANSI C standard. 

 [signed] long [int] 16-bit quantity 
unsigned long [int] 16-bit quantity 
signed char 8-bit quantity 
[unsigned] char 8-bit quantity 
[signed] [short] [int] 8-bit quantity 
unsigned [short] [int] 8-bit quantity 
enum 8-bit quantity (int type) 

 

Neuron C provides some predefined enum types.  One example is shown 
below: 

typedef enum {FALSE, TRUE} boolean; 

Neuron C also provides predefined objects that, in many ways, provide the 
look and feel of an ANSI C language variable.  These objects include Neuron 
C timer and I/O objects.  See Chapter 2 of this book for more details on I/O 
objects, and see the Timers chapter in the Neuron C Reference Guide for more 
details on timer objects. 

The extended arithmetic library also defines float_type and s32_type for 
IEEE 754 and signed 32-bit integer data respectively.  These types are 
discussed in great detail in the Functions chapter of the Neuron C Reference 
Guide. 

Neuron C Storage Classes 
If no class is specified and the declaration is at file scope, the data or function 
is global.  File scope is that part of a Neuron C program that is not contained 
within a function or a task.  Global data (including all data declared with the 
static keyword) is present throughout the entire execution of the program, 
starting from the point where the symbol was declared.  Declarations using 
extern references can be used to provide forward references to variables, and 
function prototypes must be declared to provide forward references to 
functions. 
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Upon power-up or reset of a Neuron Chip or Smart Transceiver, the global 
data in RAM is initialized to its initial-value expression, if present, otherwise 
to zero (variables declared with the eeprom or config class, as well as 
configuration properties declared with the config_prop or cp_family 
keywords, are only initialized when the application image is first loaded). 

Neuron C supports the following ANSI C storage classes and type qualifiers: 

auto Declares a variable of local scope.  Typically, this 
would be within a function body.  This is the default 
storage class within a local scope and the keyword is 
normally not specified.  Variables of auto scope that 
are not also static are not initialized upon entry to the 
local scope.  The value of the variable is not preserved 
once program execution leaves the scope. 

const Declares a value that cannot be modified by the 
application program.  Affects self-documentation (SD) 
data generated by the Neuron C compiler when used 
in conjunction with the declaration of CP families or 
configuration network variables. 

extern Declares a data item or function that is defined in 
another module, in a library, or in the system image. 

static Declares a data item or function which is not to be 
made available to other modules at link time.  
Furthermore, if the data item is local to a function or 
to a when task, the data value is to be preserved 
between invocations, and is not made available to 
other functions at compile time. 

In addition to the ANSI C storage classes, Neuron C provides the following 
classes and class modifiers: 

 
config Can be combined only with an input network variable 

declaration.  A config network variable is used for 
application configuration.  It is equivalent to const 
eeprom.  Such a network variable is initialized only 
when the application image is first loaded.  The 
config class is obsolete and is included only for legacy 
applications.  The Neuron C compiler will not 
generate self-documentation data for config-class 
network variables.  New applications should use the 
configuration network variable syntax described in 
the Configuration Properties chapter of this book. 

network Begins a network variable declaration.  See Chapter 
3, How Devices Communicate Using Network 
Variables, for more details. 

system Used in Neuron C solely to access the Neuron 
firmware function library.  Do not use this keyword 
for data or function declarations. 
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uninit When combined with the eeprom keyword (see 
below), specifies that the EEPROM variable is not 
initialized or altered on program load or reload over 
the network. 

The following Neuron C keywords allow you to direct portions of application 
code and data to specific memory sections. 

• eeprom 
• far 

• offchip  (only on Neuron Chips and Smart Transceivers 
  with external memory) 

• onchip 

• ram  (only on Neuron Chips and Smart Transceivers 
  with external memory) 

These keywords are particularly useful on the Neuron 3150 Chip and 3150 
Smart Transceivers, since a majority of the address space for these parts is 
mapped off chip.  See Using Neuron Chip Memory in Chapter 8, Memory 
Management, for a more detailed description of memory usage and the use of 
these keywords. 

Variable Initialization 
Initialization of variables occurs at different times for different classes.  The 
const variables, except for network variables, must be initialized.  
Initialization of const variables occurs when the application image is first 
loaded into the Neuron Chip or Smart Transceiver.  The const ram variables 
are placed in off-chip RAM that must be non-volatile.  Therefore, the eeprom 
and config variables are also initialized at load time, except when the 
uninit class modifier is included in these variable definitions. 

Automatic variables cannot be declared const because Neuron C does not 
implement initializers in declarations of automatic variables. 

Global RAM variables are initialized at reset (that is, when the device is 
reset or powered up).  By default, all global RAM variables (including static 
variables) are initialized to zero at this time.  Initialization to zero costs no 
extra code space, as it is a firmware feature. 

Initialization of I/O objects, input network variables (except for eeprom, 
config, config_prop, or const network variables), and timers also occurs at 
reset.  Zero is the default initial value for network variables and timers. 

Local variables (except static ones) are not automatically initialized, nor are 
their values preserved when the program execution leaves the local scope. 
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Neuron C Declarations 
Both ANSI C and Neuron C support declarations of the following: 

 Declaration Example 

• Simple data items int a, b, c; 

• Data types typedef unsigned long ULONG; 

• Enumerations enum hue {RED, GREEN, BLUE}; 

• Pointers char *p; 

• Functions int f(int a, int b); 

• Arrays int a[4]; 

• Structures struct s { 
and unions     int field1; 
     unsigned field2 : 3; 
     unsigned field3 : 4; 
 }; 
 

In addition, Neuron C Version 2 supports declarations of: 
 Declaration Example 

• I/O Objects IO_0 output oneshot relay_trigger; 
    (See Chapter 2) 

• Timers mtimer led_on_timer; 
    (See Chapter 2) 

• Network Variables network input SNVT_temp temperature; 
    (See Chapter 3) 

• Configuration Properties cp_family SCPTdefOutput defaultOut; 
    (See Chapter 4) 

• Functional Blocks fblock SFPTnodeObject { … } myNode; 
    (See Chapter 5) 

• Message Tags msg_tag command; 
    (See Chapter 6) 
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Network Variables, SNVTs, and UNVTs 
A network variable is an object on one device that can be connected to 
network variables on one or more additional devices.  A device’s network 
variables define its inputs and outputs from a network point of view and 
allow the sharing of data in a distributed application.  Whenever a program 
writes into one of its output network variables (with the exception of output 
network variables being declared with the polled modifier), the new value of 
the network variable is propagated across the network to all devices with 
input network variables connected to that output network variable.  In case 
the output network variable is not currently a member of any network 
variable connection, no transaction and no error occurs. Although the 
propagation of network variables occurs through LONWORKS messages, 
these messages are sent implicitly.  The application program does not require 
any explicit instructions for sending, receiving, managing, retrying, 
authenticating, or acknowledging network variable updates.  A Neuron C 
application provides the most recent value by writing into an output network 
variable, and it obtains the most recent data from the network by reading an 
input network variable. 

EXAMPLE: 

network input SNVT_temp nviTemperature; 
network output SNVT_temp nvoTemperature; 
 
void f(void) 
{ 
   nvoTemperature = 2 * nviTemperature; 
} 

Network variables greatly simplify the process of developing and installing 
distributed systems because devices can be defined individually, then 
connected and reconnected easily into many new LONWORKS applications.  
Network variables are discussed in detail in Chapter 3, How Devices 
Communicate Using Network Variables, and also in the Neuron C Reference 
Guide. 

Network variables promote interoperability between devices by providing a 
well-defined interface that devices use to communicate.  Interoperability 
simplifies installation of devices into different types of networks by keeping 
the network configuration independent of the device’s application.  A device 
may be installed in a network and logically connected to other devices in the 
network as long as the data types (for example, SNVT_switch or 
SNVT_temp_p) match.  To further promote interoperability, the 
LONWORKS platform provides standard functional profiles that define 
standard functional interfaces for devices, and standard network variable 
types (SNVTs) that define standard data encoding, scaling, and units, such 
as degrees C, volts, or meters.  There are standard functional profiles for a 
variety of functions and industries.  There are SNVT definitions for 
essentially every physical quantity, and other more abstract definitions 
tailored for certain industries and common applications. 
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You can also create your own user functional profiles and user network 
variable types (UNVTs).  You can define resource files for your custom types 
and profiles to enable your devices to be used with devices from other 
manufacturers.  The NodeBuilder Resource Editor included with the 
NodeBuilder tool provides a simple interface for viewing existing resources 
and defining your own resources. 

Configuration Properties 
A configuration property is a data item that, like a network variable, is part 
of the device interface for a device.  A configuration property can be modified 
by a network tool.  Configuration properties facilitate interoperable 
installation and configuration tools by providing a standardized network 
interface for device configuration data.  Like network variables, configuration 
properties also provide a well-defined interface.  Each configuration property 
type is defined in a resource file that specifies the data encoding, scaling, 
units, default value, invalid value, range, and behavior for configuration 
properties based on the type.  A rich variety of standard configuration 
property types (SCPTs) are available.  You can also create your own user 
configuration property types (UCPTs) that are defined in resource files that 
you create with the NodeBuilder Resource Editor. 

Functional Blocks and Functional Profiles 
The device interface for a LONWORKS device consists of its functional blocks, 
network variables, and configuration properties.  A functional block is a 
collection of network variables and configuration properties that are used 
together to perform one task.  These network variables and configuration 
properties are called the functional block members. 

Functional blocks are defined by functional profiles.  A functional profile is 
used to describe common units of functional behavior.  Each functional 
profile defines mandatory and optional network variables and mandatory 
and optional configuration properties.  Each functional block implements an 
instance of a functional profile.  A functional block must implement all the 
mandatory network variables and configuration properties defined by the 
functional profile, and may implement any of the optional network variables 
and configuration properties defined by the functional profile.  A functional 
block may also implement network variables and configuration properties not 
defined by the functional profile – these are called implementation-specific 
network variables and configuration properties. 

Functional profiles are defined in resource files.  You can use standard 
functional profiles or you can define your own functional profiles in your own 
resource files using the NodeBuilder Resource Editor.  A functional profile 
defined in a resource file is also called a functional profile template (FPT). 
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The LONMARK Interoperability Association provides a procedure for 
developers to certify devices.  LONMARK interoperable devices conform to all 
LonTalk® protocol layer 1 – 6 requirements as specified by the LONMARK 
Layer 1 – 6 Interoperability Guidelines, and conform to all aspects of 
application design, as discussed in the LONMARK Application Layer 
Interoperability Guidelines. 

Contact the LONMARK Interoperability Association at www.lonmark.org for 
more details about becoming a member and certifying your devices. 

You can automatically embed data within your device that identifies its 
device interface to network tools that are used to install the device.  This 
data is called self-identification (SI) data and self-documentation (SD) data.  
The Neuron C compiler generates this data based on the functional blocks, 
network variables, and configuration properties that you declare, as well as 
the resource files that you provide.  You can add your own documentation to 
the SD data to further document your device and its interface. 

You can include network variable names in the SD data using the #pragma 
enable_sd_nv_names directive.  You can also include a rate estimate in 
tenths-of-messages/second and a maximum rate estimate in tenths-of-
messages/second in the SD data for each network variable.  The rate estimate 
and maximum rate estimate values are provided through the bind_info 
feature.  (See the discussion of this feature in Chapter 3, How Devices 
Communicate Using Network Variables, and also in the Neuron C Reference 
Guide.) 

An application image for a device created by the Neuron C compiler will 
contain SD information unless the #pragma disable_snvt_si directive is 
used.  (See the Compiler Directives chapter of the Neuron C Reference Guide 
for more information.) 

Data-Driven vs. Command-Driven Protocols 
Network variables are used to communicate data and state information 
between devices.  This provides a different communication model than 
command-based systems.  In command-based messaging systems, designers 
are faced with having a large number of commands specific to each 
application that must be managed, updated, and maintained.  Each device 
has to have knowledge of every command.  This leads to ever-growing 
command tables and application code. 

With network variables, the command or action portion of a message is not in 
the message.  Instead, with network variables, this information is in the 
application program, and each application program only needs have the 
knowledge required to perform its function.  A network integrator can add 
new types of devices at any time, and connect them to existing devices in the 
network to perform new applications not envisioned by the original designers 
of the devices. 
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Event-Driven vs. Polled Scheduling 
Although the Neuron C language is principally designed to make event-
driven scheduling natural and easy, Neuron C also allows you to construct 
polled applications that implement a centralized control application.  
Chapter 3, How Devices Communicate Using Network Variables, provides 
further information on polling. 

Low-Level Messaging 
In addition to the functional block and network variable communication 
model, Neuron C also supports application messages.  You can use 
application messages – in place of or in conjunction with the network 
variables approach – to implement proprietary interfaces to your devices.  
They are also used for the LONWORKS file transfer protocol.  Application 
messages are described in Chapter 6, How Devices Communicate Using 
Application Messages. 

I/O Devices 
A Neuron Chip or Smart Transceiver may be connected to one or more 
physical I/O devices.  Examples of simple I/O devices include temperature 
and position sensors, valves, switches, and LED displays.  Neuron Chips and 
Smart Transceivers can also be connected to other microprocessors.  The 
Neuron firmware implements numerous I/O objects that manage the 
interface to these devices for a Neuron C application.  I/O objects are 
discussed in detail in Chapter 2, Focusing on a Single Device, and in the 
Neuron C Reference Guide. 
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Differences between Neuron C and ANSI C 
Neuron C adheres closely to the ANSI C language standard; however, 
Neuron C is not a "conforming implementation" of Standard C, as defined by 
the American National Standards Institute committee X3-J11. 

The following list outlines the differences between Neuron C and ANSI C. 

• Neuron C does not support floating-point computation with C syntax or 
operators.  However, a floating-point library is provided to allow use of 
floating-point data conforming to IEEE 754. 

• ANSI C defines a short int as 16 bits or more and a long int as 32 bits or 
more.  Neuron C defines a short int as 8 bits and a long int as 16 bits.  In 
Neuron C, int defaults to a short int.  A 32-bit signed integer library is 
available to allow use of 32-bit quantities. 

• Neuron C does not support the register or volatile classes. These storage 
classes can be specified but will be ignored. 

• Neuron C does not implement initializers in declarations of automatic 
variables. 

• Neuron C does not support structures or unions as procedure parameters or 
as function return values. 

• Neuron C does not support declaration of bitfields as members of unions.  
However, an equivalent declaration can be accomplished by defining a 
structure as a member of the union, where the structure contains the 
bitfields.  

• Network variable structures cannot contain pointers.  Configuration property 
structures also cannot contain pointers. 

• Pointers to timers, message tags, and I/O objects are not supported. 

• Pointers to network variables, configuration properties, and EEPROM 
variables are treated as pointers to constants (i.e. the contents of the variable 
referenced by the pointer can be read, but not modified).  Under special 
circumstances, and with certain restrictions, the pointers can be used to 
modify the memory.  See the discussion of the eeprom_memcpy( ) function 
in Chapter 8, Memory Management, and also in the Functions chapter of the 
Neuron C Reference Guide.  Also refer to the discussion of the #pragma 
relaxed_casting_on compiler directive in the Compiler Directives chapter in 
the Neuron C Reference Guide. 

• Macro arguments are not rescanned until after the macro is expanded, thus 
the macro operators # and ## may not yield results as defined in the ANSI C 
standard when they occur in nested macro expansions. 

• Names of network variables and message tags are limited to 16 characters.  
Names of functional blocks are limited to 16 characters unless they are 
declared using the external_name feature, in which case the external name 
is limited to 16 characters, and the internal name of the functional block is 
limited to 64 characters. 
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• A few ANSI C library functions are included in Neuron C such as memcpy( ) 
and memset( ).  A string and byte operation library is provided to allow use 
of a subset of the ANSI C functions defined in the <string.h> include file.  
Other ANSI C library functions such as file I/O and storage allocation 
functions are not included in Neuron C.  Consult the Neuron C Reference 
Guide for a complete and detailed list. 

• The Neuron C implementation includes three ANSI include files:  
<stddef.h>, <stdlib.h>, and <limits.h>. 

• Neuron C requires use of the function prototype feature whenever a call to 
the function precedes the function definition (see Chapter 2). 

• Neuron C does not support the use of the ellipse in function prototypes or 
definitions. 

• Neuron C contains additional reserved words and syntax not found in ANSI 
C.  See the Neuron C Reference Guide for the syntax summary and the list of 
reserved words. 

• Neuron C supports binary constants in addition to octal and hexadecimal.  
Binary constants are specified as 0b<binary_number>.  For example, 0b1101 
equals decimal 13. 

• Neuron C supports the // comment style from C++ in addition to the 
traditional /* */ style.  In the // style, two slashes (//) begin a comment.  The 
comment is terminated by the end of the line, without further punctuation. 

 C code /* An ANSI C and NEURON C comment */ 

 C code // A line-style NEURON C comment 

• The main( ) construct is not used.  Instead, a Neuron C program’s executable 
objects consist of when statements in addition to functions.  A thread of 
execution always begins with a when statement, as described in Chapter 2, 
Focusing on a Single Device. 

• Neuron C does not support multiple source files in separate compilation units 
(however, the #include directive is supported). 

• The ANSI C preprocessor directives #if, #elif, and #line are not supported.  
However, #ifdef, #ifndef, #else, and #endif are supported. 
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Neuron C Language 
Implementation Characteristics 

The American National Standard for the C programming language states (in 
Appendix F, Section 3) that each C implementation "shall document its 
behavior in each of the areas listed in this section.  The following [aspects of 
the language] are implementation-defined." 

The standard defines the term "implementation-defined" to be "behavior for a 
correct program construct and correct data, that depends on the 
characteristics of the implementation and that each implementation shall 
document."  Thus, all these items are language definition issues not specified 
in the ANSI standard, but instead left up to the individual implementer.  
They are also potential portability issues. 

Each heading below references the clause in Appendix F of the ANSI C 
language standard, and the appropriate section of that appendix.  Each 
answer applies to the latest implementation, as of the date of printing, of the 
Neuron C Version 2 compiler supplied by Echelon Corporation. 

Translation (F.3.2) 
Q:  How is a diagnostic identified?  (Sec. 2.1.1.3) 

A:  Each Neuron C diagnostic consists of at least two lines output to the 
standard output file.  One of these keywords introduces the diagnostic:  FYI 
(For Your Information), Warning, Error, or FATAL.  The remainder of the 
first line consists of the full path name of the source or include file to which 
the diagnostic applies, followed by a line number, and a column number in 
parentheses. 

The second (and possibly subsequent) lines contain the diagnostic.  Each of 
the diagnostic message lines is indented one tab stop. 

FYI and warning diagnostics do not prevent the compiler from successfully 
completing translation.  All warning diagnostics should be examined and 
corrected, however, as they are likely to indicate programming problems or 
poor programming practice. 

Error diagnostics do prevent the compiler from successfully completing 
translation.  They may also result in masking of other errors; thus the 
compiler may not be able to locate all errors in a single compilation pass. 

FATAL diagnostics prevent the compiler from performing any further 
translation.  These diagnostics result from resource problems (out of memory, 
disk full, and so on) or from internal checking on the compiler itself.  Any 
diagnostic of the form ***TRAP n***, where n is a decimal number, should be 
reported to Echelon Customer Support. 
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Environment (F.3.2) 
Q:  What are the semantics of the arguments to main?  (Sec. 2.1.2.2.1) 

A:  Neuron C places no special meaning on the procedure main.  The name 
main can be used as any other legal identifier. 

Q:  What constitutes an interactive device?  (Sec. 2.1.2.3) 

A:  Neuron C defines no interactive devices. 

Identifiers (F.3.3) 
Q:  What is the number of significant initial characters (beyond 31) in an 
identifier without external linkage?  (Sec. 3.1.2) 

A:  An identifier without external linkage can extend to 256 characters.  All 
characters are significant. 

Q:  What is the number of significant initial characters (beyond 6) in an 
identifier with external linkage?  (Sec. 3.1.2)  

A:  There are two forms of external linkage in Neuron C:  traditional external 
and network external.  Traditional external consists of the extern, static, 
and file scope variables and procedure names.  These names are used by the 
Neuron C linker when linking the program to construct a load image.  Names 
declared with the extern or static storage classes, or declared at file scope, 
cannot exceed 63 characters.  In some cases, the compiler may append 
characters to the name to make it unique, and in these cases, the external 
identifier may be further restricted in length, but in no case is the name 
required to be shorter than 50 characters.  The compiler produces a warning 
diagnostic when such names have excessive length, and it also truncates 
these names to the maximum allowable length.  Therefore, it is best to 
restrict traditional external names to 50 characters or less. 

The second form of external linkage, network external, consists of the names 
used by the network and by a network tool.  These names include names of 
network variables, names of message tags, and names of typedefs used in 
defining network variables of nonstandard types.  The compiler produces an 
error diagnostic for each network external name that exceeds 16 characters.  
Functional block names are considered network external names when there 
is no external_name or external_resource_name option in the fblock 
declaration.  If the option is supplied, an internal functional block name can 
be up to 64 characters. 

Q:  Are case distinctions significant in an identifier with external linkage?  
(Sec. 3.1.2) 

A:  Yes, case is significant in an identifier with external linkage, for both 
forms of external linkage described above. 
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Characters (F.3.4) 
Q:  What are the members of the source and execution character sets beyond 
what the standard explicitly defines?  (Sec. 2.2.1) 

A:  The Neuron C character set uses the basic ASCII character encoding for 
its source and execution character sets.  The Neuron C source character set is 
the character set as explicitly defined in the standard.  The ASCII carriage 
return character (hex 0D) and the ASCII backspace character (hex 08) are 
both accepted as white space.  The end-of-line character is the ASCII new-
line (hex 0A).  Additionally, the Neuron C compiler accepts the remaining 
basic ASCII printable characters @ (at-sign) and ` (accent-grave) in character 
constants and string literals. 

The Neuron C compiler interprets the ASCII EOT character (hex 04) as an 
end-of-file marker.  Likewise, the character Ctrl-Z (hex 1A), which is the MS-
DOS end-of-text-file character, is an end-of-file marker.  However, neither of 
these characters is required by the Neuron C compiler. 

The execution character set is intended to be basic ASCII (character values 
0 .. 127).  However, a program written in Neuron C is free to use any 
interpretation of character values outside the range 0 .. 127. 

Q:  What are the shift states used for the encoding of multibyte characters?  
(Sec. 2.2.1.2) 

A:  Neuron C does not support multibyte characters.  Character constants 
containing more than one character are errors. 

Q:  What are the number of bits in a character in the execution character set?  
What is the size of a wide character—that is, the type of wchar_t?  (Sec. 
2.2.4.2.1) 

A:  The execution character set uses an 8-bit representation.  The Neuron C 
compiler does not support wide characters, but the type of a wide character, 
wchar_t, is defined to be unsigned long.  (Note that Neuron C defines 
unsigned long as 16 bits.) 

Q:  What is the mapping of the members of the source character set (in 
character constants and string literals) to members of the execution character 
set?  (Sec. 3.1.3.4) 

A:  The mapping from the source character set to the execution character set 
is the identity relationship. 

Q:  What is the value of an integer character constant that contains a 
character or an escape sequence not represented in the basic execution 
character set or the extended character set for a wide character constant?  
(Sec. 3.1.3.4) 

A:  An integer character constant can only contain characters in the basic 
execution character set.  With escape sequences, character constants can be 
constructed ranging from 0 to 255, or if signed chars are used, ranging from 
-128 (\x80) through 127 (\x7F). 
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Q:  What is the value of an integer character constant that contains more than 
one multibyte character?  What is the current locale used to convert multibyte 
characters into corresponding wide characters (codes) for a wide character 
constant?  (Sec. 3.1.3.4) 

A:  The Neuron C compiler does not implement multibyte characters. 

Q:  Does a “plain” char have the same range of values as signed char or 
unsigned char?  (Sec. 3.2.1.1) 

A:  A “plain” char is identical to an unsigned char. 

Integers (F.3.5) 
Q:  What are the representations and sets of values of the various types of 
integers?  What is the order of bits in a multi-unit integer representation?  
What is the method of encoding an unsigned integer?  What is the method of 
encoding a signed integer?  (Sec. 3.1.2.5) 

A:  An int implies a short int by default, which is 8 bits in Neuron C.  The 8-
bit byte is the fundamental unit of storage on the Neuron Chip.  A long int is 
a 16-bit, or 2-byte, integer representation.  The <limits.h> include file 
contains definitions of the various integer-type ranges.  These values are: 

  -128 ..   127  signed short 
     0 ..   255  unsigned short 
-32768 .. 32767  signed long 
     0 .. 65535  unsigned long 

All unsigned integer values use binary representations.  Signed integers use 
two’s complement binary representations.  The long int, a multi-unit 
representation, is stored such that the most significant byte is at the lowest 
address. 

Q:  What is the result of converting an integer to a shorter signed integer?  
What is the result of converting an unsigned integer to a signed integer of 
equal length, if the signed integer cannot represent the unsigned integer’s 
value?  (Sec. 3.2.1.2) 

A:  Conversion from long to short may result in data loss, depending on the 
value being converted, since this conversion is performed by discarding the 
most significant byte of the long integer.  If, for example, a long integer 
containing the value 513 (hex 0201) was converted to a signed short, 
discarding the most significant byte of the long integer would result in the 
value 1. 

Conversion from an unsigned integer to a signed integer of equal length 
may result in a negative number.  For example, an unsigned short integer 
may have the value 255 (hex FF), but when converted to a signed short 
integer, it is then interpreted using two’s complement, and the value 
becomes -1. 
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The Neuron C compiler produces diagnostic messages when data might be 
lost as the result of an implicit conversion operation.  Explicit conversion, 
such as through a cast operation, will not produce a diagnostic message.  As 
an example, in the code fragment below, the assignment to x results in a 
diagnostic warning message, but the assignment to y does not. 

int x, y; 
x = 285;  // Data is lost, x is assigned 29. 
   // Warning is produced. 
 
y = (int)285; // Data is lost, y is assigned 29. 
   // No warning is produced.  

Q:  What are the results of bitwise operations on signed integers?  (Sec. 3.3) 

A:  Bitwise operations on signed integers are performed as if the values of the 
operands were unsigned. The result is interpreted as signed. Thus the 
result of (-2)|1 is -1. 

Q:  What is the sign of the remainder on integer division?  (Sec. 3.3.5) 

A:  The sign of the remainder of an integer division (that is, op1 % op2) is 
always the same as the sign of op1. 

Q:  What is the result of a right shift of a negative-valued signed integral type?  
(Sec. 3.3.7) 

A:  When a negative-valued signed integral type is right-shifted, binary ones 
are shifted in from the left.  Thus, for int x and long int x, (x>>1) is always 
equal to (x/2). 

Floating Point (F.3.6) 
Neuron C does not support floating-point operations with C syntax or 
operators.  A floating-point library is included with Neuron C that 
implements a limited set of floating point operations as function calls.  The 
floating-point library operates on data that conforms to IEEE 754. 
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Arrays and Pointers (F.3.7) 
Q:  What is the type of integer required to hold the maximum size of an 
array—that is, the type of the sizeof operator, size_t?  (Secs. 3.3.3.4, 4.1.1) 

A:  The maximum size of an array (32,767 elements) requires an unsigned 
long. 

Q:  What is the result of casting a pointer to an integer, or vice versa?  What is 
the result of casting a pointer to one type to a pointer to another type? (Sec. 
3.3.4) 

A:  The binary representations of pointers and unsigned long integers are 
the same.  Thus, the result of casting a pointer to an integer of a certain type 
is the same as casting an unsigned long to an integer of the same type.  
Integers cast to pointer undergo the same conversions as integers cast to 
unsigned long. 

All pointer representations are interchangeable.  Thus, no conversion results 
from casting a pointer to one type to a pointer to another type, and the use of 
such a pointer produces the expected results. 

Q:  What is the type of integer required to hold the difference between two 
pointers to elements of the same array, ptrdiff_t?  (Secs. 3.3.6, 4.1.1) 

A:  The result of subtraction between two pointers is a [signed] long. 

Registers (F.3.8) 
Q:  What is the extent to which objects are actually placed in registers by use 
of the register storage class specifier? (Sec. 3.5.1) 

A:  The Neuron Chip uses a stack-based architecture.  Since this architecture 
has no general-purpose registers, the compiler ignores the register storage 
class.  The compiler also produces a warning diagnostic whenever the 
register class is used. 
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Structures, Unions, Enumerations, and Bit-Fields 
(F.3.9) 

Q:  What are the consequences of accessing a member of a union object with a 
member of a different type?  (Sec. 3.3.2.3) 

A:  Union members of different types overlay each other at the same offsets 
within a union.  Thus, the consequences of accessing a pointer as a long or as 
an unsigned long, or vice versa, are the same as casting the member.  
Likewise, the consequences of accessing an int, or char, or short, as another 
typed member from the same list is the same as casting the member.  
Accessing a long data type or pointer data type as a short will result in the 
value of the most significant byte.  Accessing a short data type as a long will 
result in reading or changing an unused byte (the least significant byte of the 
long), and the most significant byte of the long mapping to the short. 

Q:  What is the padding and alignment of members of structures?  (Sec. 
3.5.2.1) 

A:  Because the architecture of the Neuron Chip is byte aligned, no padding 
is needed or performed between members of structures in Neuron C. 

Q:  Is a “plain” int bit-field treated as a signed int bit-field or as an 
unsigned int bit-field?  (Sec. 3.5.2.1) 

A:  A “plain” int bit-field is treated as a signed int bit-field. Use of 
unsigned bit-fields is recommended, unless a sign is needed, since 
unsigned bit-fields are more efficient in runtime and code space. 

Q:  What is the order of allocation of bit-fields within a unit?  (Sec. 3.5.2.1) 

A:  Bit-fields are allocated from high-order bit to low-order bit within a byte. 

Q:  Can a bit-field straddle a storage-unit boundary?  (Sec. 3.5.2.1) 

A:  No.  A bit-field cannot straddle a byte boundary.  Therefore, the largest 
bit-field is 8 bits. 

Q:  What is the integer type chosen to represent the values of an enumeration 
type?  (Sec. 3.5.2.2) 

A:  The integer type int is used to represent the values of an enumeration 
type.  Thus, the valid range of enumerator values is -128 ... 127. 

Qualifiers (F.3.10) 
Q:  What constitutes an access to an object that has volatile-qualified type?  
(Sec. 3.5.5.3) 

A:  Neuron C does not support volatile-qualified type.  The compiler also 
produces a warning diagnostic whenever the volatile qualifier is used. 
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Declarators (F.3.11) 
Q:  What is the maximum number of declarators that can modify an 
arithmetic, structure, or union type?  (Sec. 3.5.4) 

A:  There is no limit to the maximum number of declarators that modify any 
type.  The limit is determined at run-time by the amount of heap memory 
and stack space available to the compiler. 

 

Statements (F.3.12) 
Q:  What is the maximum number of case values in a switch statement?  
(Sec. 3.6.4.2) 

A:  The Neuron C switch statement will only accept an int expression for 
the switch value.  Since no two case labels in a switch statement can have 
the same value, there are only 256 choices permitted.  Neuron C will accept 
all 256 different case values for a single switch statement. 

Preprocessing Directives (F.3.13) 
Q:  Does the value of a single-character constant in a constant expression that 
controls conditional inclusion match the value of the same character constant 
in the execution character set?  Can such a character constant have a negative 
value?  (Sec. 3.8.1) 

A:  Yes, and yes. 

Q:  What is the method for locating includable source files?  (Sec. 3.8.2) 

A:  The normal include directive should use the quoted form.  To access the 
system include files, the directive should use the bracketed form. 

EXAMPLE: 

 #include <stddef.h> 

System include files are defined as the include files installed by the 
NodeBuilder Development Tool.  They are located in the LONWORKS 
Neuron C\Include directory (c:\LonWorks\NeuronC\Include by default).  
With the exception of the LonWorks directory, the location of the system 
include files cannot be changed. 

Use the following quoted form for all user include files: 

 #include "[drive:][pathname\]filename.ext" 
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The quoted form causes the compiler to use the filename as it stands if it is 
absolute or drive-relative.  Otherwise, the compiler will first search the 
working directory (using a relative pathname if one is supplied).  Next it 
searches each of the directories specified in Include Directories of the 
NodeBuilder Device Templates Properties dialog and Project Properties 
dialog. ] 

When working from within the NodeBuilder Project Manager, or from the 
command line but through the NodeBuilder Project Make Utility, the current 
working directory is the folder that contains the main Neuron C source file. 

The bracketed form shown below: 

 #include <filename.ext> 

searches the include subdirectory within the standard files directory for 
system include files (such as <limits.h> and <stddef.h>).  (The search for 
include files specified by the bracketed form is unaffected by the directories 
specified in Include Directories of the NodeBuilder's properties dialogs.) 

Q:  What is the support of quoted names for includable source files?  (Sec. 
3.8.2) 

A:  The quoted names in the #include directive can be any valid filename 
under the Windows operating system, with absolute, drive-relative, or 
relative pathname, if any.  Pathnames can be relative to the current working 
directory, or relative to any of the directories on the include file search path. 

When working from within the NodeBuilder Project Manager, or from the 
command line but through the NodeBuilder Project Make Utility, the current 
working directory is the folder that contains the main Neuron C source file. 

Q:  What is the mapping of source file character sequences in the #include 
directive?  (Sec. 3.8.2) 

A:  The source file character sequences can be upper or lower case.  Any valid 
filename character can be used.  Case is not significant. 

Q:  What is the behavior of each recognized #pragma directive? (Sec. 3.8.6) 

A:  The #pragma directives are documented in the Compiler Directives 
chapter of the Neuron C Reference Guide. 

Q:  What are the definitions for __DATE__ and __TIME__ when respectively, 
the date and time of the translation are not available?  (Sec. 3.8.8) 

A:  Neuron C does not support the __DATE__ and __TIME__ macros. 
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Library Functions (F.3.14) 
Q:  What is the NULL pointer constant to which the macro NULL expands?  
(Sec. 4.1.5) 

A:  The NULL pointer constant is defined to be 0 in the <stddef.h> file. 

Neuron C is, generally, a “freestanding implementation.”  This means that 
Neuron C does not include a full Standard C library as part of the 
implementation.  However, some Standard C functions are available.  There 
are some string functions, and memory functions, such as strcpy( ) and 
memcmp( ).  Consult the Functions chapter in the Neuron C Reference Guide 
for more information on the functions supported. 
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2 
Focusing on a Single Device 

This chapter describes the Neuron C event scheduler and I/O 
objects.  The concepts of predefined events and user-defined 
events are introduced.  Code examples in this chapter illustrate 
the use of events, I/O and timer objects, and I/O functions. 
 
Objects that can be defined for each Neuron C application 
include timers and input/output (I/O) objects, described here; 
network variables, described in Chapter 3; configuration 
properties, described in Chapter 4; functional blocks, described 
in Chapter 5; and application messages, described in 
Chapter 6. 



What Happens on a Single Device? 
In this chapter, you begin to learn about programming a Neuron Chip or 
Smart Transceiver by focusing first on a single device.  Each Neuron Chip 
and each Smart Transceiver has standard firmware, called the Neuron 
firmware, and hardware support that implement a scheduler, timers, and I/O 
device drivers and interfaces.  The Neuron C language includes predefined 
objects that provide access to these firmware features.  These objects are 
described briefly here, and in more detail later in this chapter. 

• The Neuron firmware's event scheduler handles task scheduling for the 
application program.  This chapter explains how to use the Neuron C 
language to define events and tasks, how the scheduler evaluates nonpriority 
events, and how you can define priority events. 

• The Neuron C language offers two types of timer objects:  millisecond and 
second timers.  These timers can be used to affect the scheduling of tasks, as 
described in the Timers section. 

• A number of I/O objects can be declared using Neuron C extensions to 
ANSI C.  These I/O objects, as well as related I/O functions and events, are 
described in the Input/Output section. 

 

The Scheduler 
The scheduling of application program tasks is event driven:  when a given 
condition becomes TRUE, a body of code (called a task) associated with that 
condition is executed.  The scheduler allows you to define tasks that run as 
the result of certain events, such as a change in the state of an input pin, 
receiving a new value for a network variable, or the expiration of a timer.  
You can also specify certain tasks as priority tasks, so that they receive 
preferential service.  (See Priority When Clauses later in this chapter.) 

 

When Clauses 
Events are defined through when clauses.  A when clause contains an 
expression that, if evaluated as TRUE, causes the body of code (the task) 
following the expression to be executed to completion.  Multiple when 
clauses can be associated with a single task.  A simple when clause and its 
associated task are shown below.  The when clause or clauses and the 
associated task are frequently referred to as one entity known as a when task 
or a when statement. 
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 when (timer_expires(led timer)) 
  
{ 
      // Turn off the LED 
      io_out(io_led, OFF); 
} 

when clause 

task 

 

In this example above, when the led_timer application timer (definition not 
shown in this example) expires, the body of code (the task) that follows the 
when clause is executed to turn off the specified I/O object, io_led (also 
defined elsewhere in the program).  After this task has been executed, the 
timer_expires event is automatically cleared.  Its task is then ignored until 
the LED timer expires again and the when clause again evaluates to TRUE. 

The following examples demonstrate various ways of using tasks and events.  
More information about tasks and events can be found in Chapter 7, 
Additional Features, and Figure 7.1. 

when (reset) 
when (io_changes(io_switch)) 
when (!timer_expires) 
when (flush_completes && (y == 5)) 
when (x == 3) 
{  
 // Turn on the LED and start the timer  
 . . . 
} 

The when clauses cannot be nested. For example, the following nested when 
clause is not valid: 

when (io_changes(io_switch)) 
{ 
 when (x == 3) { // Can't nest! 
 ... 
 } 
} 

An equivalent result may be achieved by testing the event with an if 
statement: 

when (io_changes(io_switch)) 
{ 
 if (x == 3) { 
 ... 
 } 
} 
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When Statement 
The syntax for a when statement  (the when clause or clauses plus the 
associated task) is: 

when-clause 
[when-clause ... ] 
task 

The syntax for when-clause is: 

[priority] [preempt_safe] when (event) 

priority Forces evaluation of the following when clause each 
time the scheduler runs.  See Priority When Clauses 
in this chapter. 

preempt_safe Allows the scheduler to execute the associated when 
task even if the application is in preemption mode.  
See the discussions on preemption mode in Chapter 6, 
How Devices Communicate Using Application 
Messages. 

event This expression is either a predefined event (see the 
following section) or any valid Neuron C expression 
(which may contain a predefined event).  Predefined 
events as well as expressions are enclosed in 
parentheses.  One or more when clauses can be 
associated with the same task. 

task A Neuron C compound statement, consisting of a 
series of Neuron C declarations and statements, 
enclosed in braces, which are identical to those found 
in a Neuron C function definition.  The task is 
identical to the body of a void function (that is, it 
cannot return a value).  A return statement can be 
used to terminate execution of the task but is not 
required. 

Types of Events Used in When Clauses 
The events defined in a when clause fall into two general categories:  
predefined events and user-defined events.  Predefined events use keywords 
built into the compiler.  Examples of predefined events include input pin 
state changes, network variable changes, timer expiration, and message 
reception.  User-defined events can be any valid Neuron C expression that 
evaluates or converts to a boolean. 

The distinction between user-defined events and predefined events is not 
critical.  Use predefined events whenever possible, since they require less 
code space. 
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There is one exception to the statement that a when clause can be any valid 
C expression.  The offline, online and wink predefined events must appear 
by themselves if used.  All other predefined events may be combined into any 
arbitrary expressions.  This restriction only applies to when clauses. 

EXAMPLES: 

when (msg_arrives) // O.K. 
when (msg_arrives && flag == TRUE) // O.K. 
when (online) // O.K. 
when (online && flag == TRUE) // Not permitted. 

Predefined Events 
The timer_expires event shown earlier is one type of predefined event.  
Other predefined events are represented by unique keywords, listed in the 
following table: 
 

Predefined Event Where Described in 
This Manual 

flush_completes Chapter 7 

io_changes this chapter 
io_in_ready this chapter 
io_out_ready this chapter 
io_update_occurs this chapter 
msg_arrives Chapter 6 
msg_completes Chapter 6 
msg_fails Chapter 6 
msg_succeeds Chapter 6 
nv_update_occurs Chapter 3 
nv_update_completes Chapter 3 
nv_update_fails Chapter 3 
nv_update_succeeds Chapter 3 
offline Chapter 7 
online Chapter 7 
reset this chapter 
resp_arrives Chapter 6 
timer_expires this chapter 
wink Chapter 7 
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A modifier that narrows the scope of the event may follow some predefined 
events, such as the I/O events and network variable events.  If the modifier is 
optional and not supplied, any event of that type qualifies. 

Predefined events can also be used as any sub-expression, including within 
the control expression of  if, while, and for statements.  This method is 
termed direct event processing.  An example of direct event processing is: 

mtimer t; 
when (event) 
{ 
   . . . 
   if (timer_expires(t)) { 
    io_out(io_led, OFF); 
   } 
   . . . 
} 

Any built-in event keyword or keyword expression (e.g. timer_expires(t)) 
will be treated the same as any other sub-expression and any combination 
allowed by standard C expression syntax is allowed when programming in 
Neuron C. 

The special case of the io_changes event expression must be treated 
carefully.  The to and by qualifier keywords are treated as general 
expression operators for purposes of precedence (although they are only 
permitted in combination with io_changes).  These operators are of equal 
precedence with each other, but they are mutually exclusive.  They are of 
higher precedence than relational operators (i.e. comparisons), but lower in 
precedence than shift and arithmetic operators. 

Following are examples of how the io_changes event expression is parsed: 

io_changes (device) by a + b 
 as: 
io_changes (device) by (a + b) 

and 

io_changes (device) by a < b 
 as: 
(io_changes (device) by a) < b 

As with any other C operators, the implied precedence can be explicitly 
changed by parenthesization.  Parentheses should always be used to improve 
clarity of the code if there is any doubt.  Use of extra parentheses will have 
no negative effect upon the compilation or the code generated. 
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The Neuron C compiler detects the use of predefined event keywords in 
when clauses and treats them specially for code optimization purposes.  
However, when event keywords are used as sub-expressions within when 
clauses, event table optimizations cannot be used.  In the examples below, 
the first case uses the event table optimization, the second and third do not: 

 when (timer_expires) { } 
 when (! timer_expires) { } 
 if (timer_expires) 

Although the io_changes expression (by and to varieties) does not require a 
constant value, only constant-valued io_changes expressions are optimized 
into the when clause event table. 

Event Processing 
Events related to network activity are processed using two separate queues.  
One queue serves the following events related to incoming network 
messages: 

 nv_update_occurs 
 msg_arrives 
 online 
 offline 
 wink 

The other queue serves the remaining network events pertaining to 
completion events and responses: 

 nv_update_completes 
 nv_update_succeeds 
 nv_update_fails 
 msg_completes 
 msg_succeeds 
 msg_fails 
 resp_arrives 

Most network events, except resp_arrives, are enqueued only if the 
Neuron C compiler has determined that the application checks for the event.  
The online, offline, and wink events are always enqueued but are 
discarded by the scheduler if no corresponding when clause is found. 

Once at the head of the queue, an event remains there until processed by the 
application.  Therefore, any network event that is checked for by an 
application must be checked for frequently, or the event may remain at the 
head of the queue, effectively blocking that queue.  A blocked queue prevents 
the application from continuing normal processing of events and can cause 
the device to fail to respond to any subsequent application or network 
management messages. 
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This is a particularly critical consideration for nv_update_occurs and 
msg_arrives events, which can arrive unsolicited at any time; in 
comparison, completion events and responses arrive only as the result of 
application-initiated outgoing network activity.  The Neuron C compiler will 
determine that an event is handled by the application by virtue of its 
presence in the program, even if it is never checked for in a when clause, or 
is only checked for in special circumstances. 

Reset Event 
The reset event is TRUE the first time this event is evaluated after the 
Neuron Chip or Smart Transceiver is reset for any reason.  (I/O object and 
global variable initializations will be performed before processing any 
events.)  The reset event task is the first task to be executed after reset of the 
Neuron Chip or Smart Transceiver. 

The reset event task executes only if the device is in the configured state (i.e. 
if the device is not applicationless, hard-offline, or unconfigured).  Also, the 
reset event task runs when the device is applicationless if the directive 
#pragma run_unconfigured is specified in the application program.  The 
task runs regardless of whether the device is soft-offline or not.  The soft-
offline state is not reset-retained so the only case where this is meaningful is 
when the device transitions from unconfigured or hard-offline to configured 
state after a reset, as would typically happen during initial commissioning.  
In this case, the node executes the reset task followed by the offline task. 

A reset occurs as a natural part of the process of commissioning a 
LONWORKS device, and the reset process includes the execution of the reset 
event task.  The device undergoes a state transition to complete the 
commissioning process, and that state transition can only be completed once 
the reset event task has been executed.  Consequently, you should keep the 
reset event task short so the device can be commissioned at maximum speed.  
You must keep the total reset event task processing time under 18 seconds to 
prevent commissioning failures.  Reset event task processing time includes 
Neuron firmware initialization time as described in the Smart Transceivers 
databooks. 
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User-defined Events 
A user-defined event can contain assignments and function calls.  Such 
events using complex expressions can affect the response time for all events 
within a program, so you must minimize calls to complex functions within 
user-defined events.  Assignments within user-defined events can only be 
done to global variables. 

Furthermore, the evaluation of an event keyword or an event expression, 
such as timer_expires(t), will clear any pending event, regardless of 
whether the entire expression is TRUE or FALSE, as below: 

when ((timer_expires(t)) && (flag = = TRUE)) 

As with ANSI C compilers, the Neuron C compiler evaluates logical 
expressions only as much as needed.  For example, in an if (a && b) 
expression, the b term will only be evaluated if a is TRUE, and in an 
if (a || b) expression, the b term will only be executed if a is FALSE.  This 
is called short-circuit evaluation, and is specified by the ANSI C language 
definition. 

When combining user-defined expressions with a predefined event using the 
logical operators discussed in the paragraph above, you must make sure that 
this does not prevent the predefined events from being evaluated as needed, 
in order to avoid blockage of the event queue as discussed earlier in this 
chapter. 

For example, the following user-defined event expression is okay: 

when ((timer_expires(t)) && (flag = = TRUE)) 

But, if the expression above is reversed, as shown below, it is likely to cause a 
blockage of the event queue if the flag variable is true for any significant 
time, because the short-circuit nature of the logical-and operator can prevent 
the timer expiration event from being checked at all.  Thus, the reversed 
expression shown below must be avoided: 

when ((flag = = TRUE) && (timer_expires(t))) 
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Scheduling of When Clauses 
The scheduler evaluates when clauses in round-robin fashion:  Each when 
clause is evaluated by the scheduler and, if TRUE, the task associated with it 
is executed.  If the when clause is FALSE, the scheduler moves on to 
examine the following when clause.  After the last when clause, the 
scheduler returns to the top and moves through the group of when clauses 
again.  For example, a group of when clauses might look like the following: 

when (nv_update_occurs) // Event A 
  //  {task to execute} 
 
when (nv_update_fails) // Event B 
  //  {task to execute} 
 
when (io_changes)  // Event C 
  //  {task to execute} 
 
when (timer_expires) // Event D 
  //  {task to execute} 

Letter names shown above are used for the clauses in Figure 2.1 and the 
following narration of events.  This shows how the order of execution of tasks 
differs from the order the when clauses appear in a program. 

At the start of this example, no event has occurred, thus no when clause event 
expression is TRUE. 

1 The scheduler begins with A.  Since A is FALSE, its task is not executed. 

2 Event C occurs and the expression C becomes TRUE. 

3 The scheduler moves to B.  Since B is FALSE, its task is not executed. 

4 The scheduler moves to C.  Since C is TRUE (item 2, above), its task is 
executed. 

5 A becomes TRUE. 

6 The scheduler moves to D.  Since D is FALSE, its task is ignored. 

7 The scheduler moves back to A.  Since A is TRUE (item 5, above), its task is 
executed. 
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Figure 2.1  Example Scheduler Timeline 

Priority When Clauses 
The priority keyword can be used to designate when clauses that should be 
evaluated more often than nonpriority when clauses.  Priority when clauses 
are evaluated in the order specified every time the scheduler runs.  If any 
priority when clause evaluates to TRUE, the corresponding task is executed 
and the scheduler starts over at the top of the priority when clauses. 

If none of the priority when clauses evaluate to TRUE, then a nonpriority 
when clause is evaluated, selected in the round-robin fashion described 
earlier.  If the selected nonpriority when clause evaluates to TRUE, its task 
is executed.  The scheduler then resumes with the first priority when clause.  
If the nonpriority when clause selected evaluates to FALSE, its task is 
ignored and the scheduler resumes with the first priority when clause.  See 
Figure 7.1. 

The scheduling algorithm described above can be modified through use of the 
scheduler_reset pragma, discussed in Chapter 7, Additional Features. 

 

WARNING:  Excessive use of priority when clauses might starve execution 
of nonpriority when clauses.  If a priority when clause is true the majority 
of the time, it monopolizes processor time.  Priority when clauses should be 
designed to be true only rarely, or the remaining tasks must be tolerant of 
not being executed frequently and responsively. 
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Function Prototypes 
Neuron C requires the use of function prototypes if a function is to be called 
before it is defined.  Examples of valid prototypes include the following: 

void f(void); 
int g(int a, int b); 

The following are not considered prototypes because they do not have 
argument lists.  They are merely forward declarations: 

void f(); 
g();  // defaults to 'int' return value  

If you define a function before you call it, Neuron C automatically creates an 
internal prototype for you.  Only one prototype is created for a given function.  
The following examples are technically not prototypes, but Neuron C creates 
function prototypes for them: 

void f()  
{ /* body */ } 
 
g (a,b)  
int a; 
int b; 
{ /* body */ } 

Although Neuron C can create prototypes, it does not employ the ANSI C 
Miranda prototype rule.  (According to the Miranda prototype rule, if a 
function call does not already have a prototype, a prototype will 
automatically be created for it.)  In Neuron C, a function prototype is 
automatically created only when the function is defined. 
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Timers 
Two types of software timer objects are available to a Neuron C application:  
millisecond and second timers.  The millisecond timers provide a timer 
duration of 1 to 64,000 milliseconds (or .001 to 64 seconds).  The second 
timers provide a timer duration of 1 to 65,535 seconds.  For more accurate 
timing of durations of 64 seconds or less, use the millisecond timer.  These 
are separate from the two hardware timer/counters in the Neuron core.  (See 
also Input Clock Frequency and Timer Accuracy later in this chapter.) 

 

Declaring Timers 
A maximum of 15 timer objects (total of both types) can be defined within a 
single program.  A timer object is declared using one of the following: 

mtimer [repeating] timer-name [=initial-value]; 
stimer [repeating] timer-name [=initial-value]; 

mtimer Indicates a millisecond timer. 

stimer Indicates a second timer. 

repeating An option for the timer to restart itself automatically 
upon expiration.  With this option, accurate timing 
intervals can be maintained even if the application 
cannot respond immediately to an expiration event. 

timer-name A user-supplied name for the timer.  Assigning a 
value to this name starts the timer for the specified 
length of time (the specified time is in seconds for an 
stimer and milliseconds for an mtimer).  A timer 
that is running or has expired can be started over by 
assigning a new value to this name.  The timer object 
can be evaluated while the timer is running, and it 
will indicate the time remaining.  Setting the timer to 
0 turns the timer off.  No timer expiration event 
occurs for a timer that has been turned off (see the 
description of the timer_expires event described in 
the Neuron C Reference Guide). 

initial-value An optional initial value to be loaded into the timer on 
power-up or reset.  Zero is loaded by the Neuron 
firmware (in other words, the timer is turned off) if no 
explicit initial-value is supplied. 
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Examples 
An example of declaring a timer object and assigning a value to it is shown 
below: 

// start timer with value of 5 sec 
stimer led_timer = 5; 

An example of turning a timer off is shown below: 

stimer led_timer; 
when (some-event) 
{ 
   led_timer = 0; 
} 

An example of evaluating the value of a running timer is shown below: 

stimer repeating led_timer; 
when (some-event) 
{ 
   time_remaining = led_timer; 
   . 
   . 
   . 
} 

 

NOTE:  When setting and examining timers in the LonBuilder or 
NodeBuilder debuggers, certain inaccuracies may occur.  When a timer is set 
during program execution and is examined while the program is halted 
(includes single stepping and breakpoints), the timer value can be as much as 
200 milliseconds larger than the actual time until expiration.  No such 
inaccuracy exists on a timer that is allowed to run without a debugger halt. 

 

The timer_expires Event 
The timer_expires event becomes TRUE when a timer expires.  The syntax 
of this event is the following: 

timer_expires [(timer-name)] 

timer-name Specifies a specific timer to check. 

If timer-name is not included, the event is an unqualified timer_expires 
event.  An unqualified event expression is one that omits the optional 
qualifier syntax that limits the objects to which the event applies. 
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A timer event is unique because it can be cleared only by checking for specific 
(qualified) timer expiration events.  (Other events can be cleared by checking 
for either the qualified or unqualified events.)  For example, the following 
when clause checks for the expiration of the led_timer, so the 
timer_expires event for that timer is cleared to FALSE. 

EXAMPLES: 

stimer led_timer; 
when (timer_expires(led_timer)) 
{ 
   io_out(io_led, OFF);  // Turn off the LED 
} 

If your program has multiple timers, you must include a specific check for 
each timer so that the expiration event is cleared, as shown below: 

mtimer x; 
mtimer y; 
mtimer z; 
when (timer_expires(x)) 
{ 
   // task  
} 
when (timer_expires(y)) 
{  
   // task  
} 
when (timer_expires(z)) 
{ 
   // task  
} 

An alternate style of checking for specific timers is shown below.  This 
example also demonstrates that an event expression is not restricted to use 
only in a when clause. 

when (timer_expires) 
{ 
   if (timer_expires(x)) 
     . 
     . 
     . 
   else if (timer_expires(y)) 
     . 
     . 
     . 
   else if (timer_expires(z)) 
     . 
     . 
     . 
} 

Neuron C Programmer's Guide 2-15 



NOTE:  Be sure to check for specific timer events while using the unqualified 
timer_expires event.  Unlike all other predefined events, which are TRUE 
only once per pending event, the unqualified timer_expires event remains 
TRUE as long as any timer has expired. 

 

Which style you choose to use for checking timer expiration depends on the 
circumstances in your application.  Use the first style of checking for specific 
timers if you’re concerned about code space.  Use the second style if you’re 
concerned about speed of execution, performance, or response time. 

For an example of a complete program that declares a timer and uses the 
timer_expires event, see the example Thermostat Interface in this chapter. 

 

Input/Output 
Each Neuron Chip and each Smart Transceiver has a variety of built-in 
electrical interface options for performing input and output (I/O) functions.  
Before performing I/O, you must first declare the I/O objects that monitor 
and control the eleven Neuron Chip or Smart Transceiver I/O pins, named 
IO_0, IO_1, ..., IO_10, and IO_11 on select Neuron Chips and Smart 
Transceivers including the PL Smart Transceivers.  Any undeclared pin is, 
by default, unused and thus deactivated.  In the deactivated state, the pin is 
in a high-impedance state.  The declaration syntax for I/O objects is described 
in detail in the Neuron C Reference Guide. 

 

NOTE:  Unused input pins must have pull-up resistors.  The 
enable_io_pullups pragma can be used for pins IO4 through IO7 (see the 
Compiler Directives chapter of the Neuron C Reference Guide for more 
information on this directive).  If the IO_11 pin is implemented, its pull-up is 
also enabled with this directive.  You may define unused pins as outputs to 
avoid using pull-ups. 

 

To perform I/O, you normally use the built-in I/O functions:  io_in( ), 
io_out( ), io_set_direction( ), io_select( ), io_change_init( ), and 
io_set_clock( ).  The io_out_request( ) function is used to perform I/O with 
the parallel I/O object.  Use of these I/O functions is described in this 
chapter. 

I/O objects can also be linked to Neuron C events, since changes in I/O often 
affect task scheduling.  See I/O Events in this chapter for a description of the 
io_changes and io_update_occurs events, which are the I/O-related events 
used in when clauses.  For more detailed information on, and additional 
examples of using I/O, see the following LONWORKS engineering bulletins: 

• Analog-to-Digital Conversion with the Neuron Chip engineering bulletin 
(part no. 005-0019-01) 
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• Driving a Seven Segment Display with the Neuron Chip engineering bulletin 
part no. 005-0014-01) 

• Neuron Chip Quadrature Input Function Interface engineering bulletin (part 
no. 005-0003-01) 

• Parallel I/O Interface to the Neuron Chip engineering bulletin (part no. 005-
0021-01) 

• EIA-232C Serial Interfacing with the Neuron Chip engineering bulletin (part 
no. 005-0008-01) 

 

I/O Object Types 
A variety of I/O object types are available: Direct, Timer/Counter, Serial, and 
Parallel.  Object types can be grouped as follows: 

• Direct I/O Objects  are based on a logic level at the I/O pins; none of the 
Neuron Chip or Smart Transceiver hardware's timer/counters are used in 
conjunction with these I/O objects.  These objects can be used in multiple, 
overlapping combinations within the same Neuron Chip or Smart 
Transceiver.  Direct I/O object types are the following: 

Input Object Types Output Object Types 
bit bit 
bitshift bitshift 
byte byte 
nibble nibble 
leveldetect touch 
touch  

 

• Timer/Counter I/O Objects use a timer/counter circuit in the Neuron Chip or 
Smart Transceiver.  As shown in Figure 2.2, each Neuron Chip and each 
Smart Transceiver has two timer/counter circuits, one whose input can be 
multiplexed and one with a dedicated input.  Timer/counter I/O object types 
are the following: 

Input Object Types Output Object Types 
dualslope edgedivide 
edgelog frequency 
ontime infrared_pattern 
period oneshot  
pulsecount pulsecount  
quadrature pulsewidth  
totalcount triac  
 triggeredcount 
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• Serial I/O Objects are used for transferring data serially over a pin or set of 
pins.  Only one type of serial I/O object can be defined within a single Neuron 
Chip or Smart Transceiver.  Both the input and output versions of the serial 
type can coexist within a single Neuron Chip or Smart Transceiver.  Serial 
I/O object types are the following: 

Serial Input Object Types Output Object Types 
infrared serial 
magcard  
magcard_bitstream 
magtrack1  
serial  
wiegand  

Serial Input/Output Object Types 
i2c 
neurowire 
sci 
spi 

• Parallel I/O Objects are used for high-speed bidirectional I/O.  I/O objects 
within this group use all the Neuron Chip or Smart Transceiver I/O pins.  
The parallel I/O object types are the following: 

Parallel Input/Output Object Types 
muxbus 
parallel 

Table 2.1 (continued on the next two pages) lists the object types, which pins 
they can use, and what additional options apply to them.  Also see the 
Neuron C Reference Guide. 

Table 2.1  I/O Object Types (Part 1 of 3) 

 
Object Type 

Max #  
Available 
Objects 

Pins Declarable 
as First Pin / Total # Pins 
per Object 

 
Other Options 

Bit input 12 any pin / 1 pin -- 

Bit output 12 any pin / 1 pin initial_output_level 

Bitshift input 5 IO_0 - IO_6, IO_8, or IO_9 / 2 
pins 

numbits, clockedge, kbaud 

Bitshift 
output 

5 IO_0 - IO_6, IO_8, or IO_9 / 2 
pins 

numbits, clockedge, kbaud, 
initial_output_level 

Byte input 1 IO_0 / 8 pins -- 

Byte output 1 IO_0 / 8 pins initial_output_level 
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Table 2.1  I/O Object Types (Part 2 of 3) 

 
Object Type 

Max #  
Available 
Objects 

Pins Declarable 
as First Pin / Total # Pins 
per Object 

 
Other Options 

Dualslope 
input 

2 IO_4-IO_7; IO_0 is used when 
input is IO_4 (mux) or IO_5-IO_7; 
IO_1 is used when input is IO_4 
(ded) / 2 pins 

invert, clock 

Edgedivide 
output 

2 IO_0 or IO_1; sync pin can be  
IO_4 - IO_7 when IO_0 is output 
pin; sync pin is IO_4 when IO_1 
is output pin / 2 pins 

invert, clock, 
sync pin 
initial_output_level 

Edgelog input 1 IO_4 / 1 pin clock, single_tc 

Frequency 
output 

2 IO_0 or IO_1 / 1 pin invert, clock, 
initial_output_level 

I2C 
input/output 

no limit IO_0 / 2 pins 
 or 
IO_8 / 2 pins 

use_stop_condition 

Infrared 
input 

4 IO_4-IO_7 / 1 pin invert, clock 

Infrared-pattern 
output 

2 IO_0 or IO_1 / 1 pin invert, clock, 
initial_output_level 

Leveldetect 
input 

8 IO_0 - IO_7 / 1 pin -- 

Magcard 
input 

1 IO_8, uses 2 pins; optional 
timeout pin is IO_0-IO_7, 1 pin 

invert, clockedge, 
timeout pin 

Magcard-
bitstream input 

1 IO_8, uses 2 pins; optional 
timeout pin is IO_0-IO_7, 1 pin 

invert, clockedge, 
timeout pin 

Magtrack1 
input 

1 IO_8, uses 2 pins; optional 
timeout pin is IO_0-IO_7, 1 pin 

invert, clockedge, 
timeout pin 

Muxbus 
input/output 

1 IO_0 / 11 pins -- 

Neurowire 
master 
input/output 

8 IO_8, uses 3 pins; select pin is  
IO_0 - IO_7, 1 pin / a total of 4 
pins 

select pin, kbaud 

Neurowire slave  
input/output 

1 IO_8, uses 3 pins; timeout pin is 
IO_0 - IO_7, 1 pin / a total of 4 
pins 

clockedge, 
timeout pin 
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Table 2.1  I/O Object Types (Part 3 of 3) 

 
Object Type 

Max #  
Available 
Objects 

Pins Declarable  
as First Pin / Total # Pins 
per Object 

 
Other Options 

Nibble input 2 IO_0 - IO_4  / 4 pins -- 

Nibble output 2 IO_0 - IO_4  / 4 pins initial_output_level 

Oneshot output 2 IO_0 or IO_1 / 1 pin invert, clock,  
initial_output_level 

Ontime input 5 IO_4 - IO_7 / 1 pin mux|ded, invert, clock 

Parallel 
input/output 

1 IO_0 / 11 pins slave|slave_b|master 

Period input 5 IO_4 - IO_7 / 1 pin mux|ded, invert, clock 

Pulsecount input 5 IO_4 - IO_7 / 1 pin mux|ded, invert 

Pulsecount 
output 

2 IO_0 or IO_1 / 1 pin invert, clock 

Pulsewidth 
output 

2 IO_0 or IO_1 / 1 pin invert, clock, short, 
long, initial_output_level 

Quadrature 
input 

2 IO_4 or IO_6 / 2 pins -- 

SCI (UART) 1 IO_8 / (2 pins with IO_10) baud, twostopbits 

Serial input 1 IO_8 / 1 pin baud 

Serial output 1 IO_10 / 1 pin baud 

SPI 1 IO_8 / 3 pins invert, clock, clockedge, 
master | slave, select pin, 
neurowire 

Totalcount input 5 IO_4 - IO_7 / 1 pin mux|ded, invert 

Touch 
input/output 

no limit IO_0 - IO_7 / 1 pin output pin, timing 

Triac output 2 IO_0 or IO_1; sync pin can be  
IO_4 - IO_7 when IO_0 is output 
pin; sync pin is IO_4 when IO_1 
is output pin / 2 pins 

sync pin, invert, clock, 
clockedge, pulse | level 

Triggeredcount 
output 

2 IO_0 or IO_1; sync pin can be  
IO_4 - IO_7 when IO_0 is output 
pin; sync pin is IO_4 when IO_1 
is output pin / 2 pins 

sync pin, invert 

Wiegand input 4 IO_0 - IO_6 / 2 pins; optional 
timeout pin is IO_0-IO_7, 1 pin 

timeout pin 
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Declaring I/O Objects 
Declaring an I/O object in the application accomplishes the following: 

1 The declaration tells the compiler what type of I/O operation will be 
performed and on which pin or pins.  The compiler creates instructions that 
configure the hardware within the Neuron core as a result of this declaration.  
The hardware configuration code is executed every time the device 
application is reset. 

2 The declaration associates the name of the I/O object with the hardware. 

This section describes the general syntax for declaring I/O objects in the 
Neuron C language.  A detailed explanation of the syntax for each I/O object 
type can be found in the Neuron C Reference Guide. 

pin  type  [options]  io-object-name; 

pin One of the Neuron C keywords that name the twelve 
I/O pins, IO_0 through IO_112.  In general, pins can 
appear in a single object declaration only.  However, a 
pin may appear in multiple declarations of the bit, 
nibble, and byte I/O object types.  Also, IO_8 can 
appear in multiple declarations of neurowire master 
specifying different select pins.  In this case, it is not 
required that all declarations have the same sense, 
that is, input versus output.  See Overlaying I/O 
Objects in this chapter. 

type Specifies the I/O object type. 

options Optional I/O parameters, dependent on the chosen 
type for the I/O object.  Each object type's available 
options are described in the Neuron C Reference 
Guide.  Except where noted, these options can be 
listed in any order.  All options have default values 
that are used when you do not include the option in 
the object declaration. 

io-object-name A user-supplied name for the I/O object, in the 
ANSI C format for variable identifiers. 

In the following example, a logic level needs to be measured at the IO3 input 
pin of the device, which is named IO_3 in Neuron C.  The pin is connected to 
a proximity detector, as its name indicates. 

IO_3 input bit ioProxDetector; 

Now, whenever your program refers to ioProxDetector, it is actually 
referring to the logical level on pin IO3. 

                                                      
2 IO_11 is only available on the PL 3150 and PL 3120 Smart Transcievers. 

Neuron C Programmer's Guide 2-21 



Use of I/O Resources 
The following list and Table 2.2 contain guidelines for declaring I/O object 
types: 

• Up to 16 I/O objects can be declared. 

• Timer/counter 1 can be multiplexed for up to four input objects. 

• The neurowire, i2c, magcard, magcard_bitstream, magtrack1, and 
serial I/O objects are exclusive of each other.  One or more of a single type of 
these I/O objects may be declared in one program. 

• Because the parallel and muxbus I/O objects require all I/O pins, no other 
object types can be declared when either of these objects is declared. 

• Direct I/O object types (bit, nibble, byte, etc. - see description of Direct I/O 
objects in I/O Object Types earlier in this chapter) can be declared in any 
combination.  See the following section, Overlaying I/O Objects. 
Timer/counter, serial, and neurowire I/O object declarations override the 
pin directions of any overlaying direct I/O object types. 

• The quadrature and dualslope input objects cannot be multiplexed with 
other input objects on timer/counter 1.  The edgelog input uses both 
timer/counters and is exclusive of any other timer/counter objects. 

• The bitshift I/O objects cannot be declared on the same I/O pins as 
timer/counter objects.  Direct I/O objects may be overlaid with bitshift I/O 
objects.  Two adjacent bitshift I/O objects may not share any I/O pins. 
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As an example, the following I/O object types can be combined on a Neuron 
Chip or Smart Transceiver: 

A1) 1 parallel I/O object type (on IO_0) 
or  

A2) 1 muxbus I/O object type (on IO_0) 
or  

A3) A combination of other I/O objects: 

 1) a) 1 to 4 timer/counter inputs (multiplexed on IO_4, IO_5, IO_6, IO_7), 
including quadrature input on IO_6 
 or 
 b) 1 timer/counter output (on IO_0) 

 and 
2) a) 1 timer/counter input (on IO_4), including quadrature input on IO_4 
 or 
 b) 1 timer/counter output (on IO_1) 

 and 
3) a) 1 neurowire I/O object (on IO_8, IO_9, IO_10) and 1 of IO_0 ... IO_7 
 or 
 b) 1 serial I/O object type (on IO_8, IO_10) 

 and 
4) any direct I/O object type on any pin (IO_0 through IO_10) 

and 

B) A bit I/O object on IO_11 
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Table 2.2  I/O Devices 
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Timer/Counter 1 Devices 
 
One of: 
 
IO_6 input quadrature 
IO_4 input edgelog [single_tc] 
IO_0 output [triac | triggeredcount | 
         edgedivide] sync(IO_4..7) 
IO_0 output [frequency | infra-   
         red_pattern | oneshot | pulse- 
          count | pulsewidth] 
 
Or up to four of: 
 
IO_4 input [ontime | period | pulse- 
          count | totalcount | dualslope | 
          infrared] mux 
IO_5..7 input [ontime | period | pulse- 
          count | totalcount | dualslope | 
           infrared] 
 
 
Timer/Counter 2 Devices 
 
One of: 
 
IO_4 input quadrature 
IO_4 input edgelog (without the 
          single_tc option) 
IO_1 output [triac | triggeredcount | 
         edgedivide] sync(IO_4) 
IO_1 output [frequency | infrared_pat-  
          tern | oneshot | pulsecount |  
          pulsewidth] 
IO_4 input [ontime | period | pulse- 
          count | totalcount | dualslope | 
          infrared] ded 
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Overlaying I/O Objects 
In some cases, you may choose to declare more than one I/O object type for 
the same pin.  For example, the following declarations allow a program to 
read four adjacent pins in one operation (with the nibble object type) or read 
each pin individually (with the bit object type): 

IO_4 input nibble io_all_points; 
IO_4 input bit io_point_1; 
IO_5 input bit io_point_2; 
IO_6 input bit io_point_3; 
IO_7 input bit io_point_4; 

The following declarations enable a program to monitor (read back) the level 
on its own oneshot output object: 

IO_1 output oneshot clock (3) io_break_high; 
IO_1 input bit io_break_high_level; 

I/O object types can be divided into the following two categories with respect 
to overlaying:  hard and soft pin direction I/O objects.  Soft pin direction I/O 
objects (the bit, nibble, and byte object types) are changed by subsequent 
pin declarations.  When multiple soft pin direction I/O objects are declared 
for the same pin, the last soft I/O object declared is the one that affects the 
initial direction of the pin at run-time.  A hard pin direction I/O object (all 
other I/O object types) is not affected by subsequent declarations.   

The io_set_direction( ) function allows the application to change the 
direction of any bit, nibble, or byte type I/O object at run time.  See the 
Neuron C Reference Guide for documentation of io_set_direction( ). 

In the previous example the oneshot is a hard pin direction I/O object, but 
bit is a soft pin direction I/O object.  The order of declarations is not 
important, and the oneshot object is the one that affects the direction of pin 
IO1 that is set during initialization after reset. 

If a program declares the following: 

IO_2 input bit io_point_1; 
IO_2 output bit io_point_2; 

The IO2 pin is an output bit I/O object (since the output is declared last).  A 
subsequent call to io_out( ) for io_point_2 sets the level of this pin.  An 
io_in( ) call to io_point_1 can then be used to read back the actual pin level 
of this output object.  The discussion here assumes that io_set_direction( ) 
is not called. 
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Performing I/O:  Functions and Events 
Input objects can be accessed in the following two ways:  by using the explicit 
io_in( ) function, or by referring to an event associated with the object in a 
when clause.  The following sections describe both methods. 

I/O Functions 
After you have declared the I/O objects for a Neuron C application, you can 
access the objects through the I/O functions provided in Neuron C.  These 
functions are built into the Neuron C compiler and do not need to be declared 
or linked in.  The compiler enforces type checking on the parameters of these 
functions. 

io_change_init( ) Initializes the value of an input object for the 
io_changes event 

io_edgelog_preload( ) Sets the timer/counter preload value for edgelog I/O 
object  

io_edgelog_single_preload( ) Sets the timer/counter preload value for 
edgelog single_tc I/O object  

io_in( ) Reads data from an I/O object 

io_in_ready( ) An event function which evaluates to TRUE when a 
block of data is available to be read from a parallel 
I/O object 

io_in_request( ) Starts an I/O input cycle for the dualslope I/O object 

io_out( ) Writes data to an I/O object 

io_out_request( ) Requests the write token for a parallel I/O object 

io_preserve_input( ) Causes the first value obtained from a timer/counter 
after reset or an io_select( ) to be considered valid 

io_select( ) Selects one of the multiplexed input objects (See I/O 
Multiplexing in this chapter.) 

io_set_baud( ) Changes the bit rate setting for the specified object 

io_set_clock( ) Changes the clock setting for the specified object 

io_set_direction( ) Changes the direction of any bit, nibble, or byte type 
I/O pin(s) 

Refer to the Neuron C Reference Guide for more information. 
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io_in( ) Function 
The syntax for io_in( ) is: 

return-value = io_in ( io-object-name [, args] ) 

io-object-name The name for the I/O object, which corresponds to the 
io-object-name in the I/O declaration. 

args Arguments that depend on the type of the I/O object.  
Some of these arguments may also appear in the I/O 
object declaration.  If specified in both places, the 
value of the function argument overrides the declared 
value for that call only.  If the value is not specified in 
either the function argument or the declaration, the 
default value is used. 

In this example, the io_in( ) function returns the value of io_part_detector: 

part_detected = io_in(io_part_detector); 

See the Neuron C Reference Guide for object-specific rules pertaining to the 
io_in( ) function. 

io_out( ) Function 
When signals need to be sent to a device, an output object is declared and the 
built-in io_out( ) function is used. 

The syntax for io_out( ) is shown below: 

io_out ( io-object-name, output-value  [, args] ) 

For example, a lamp device could use io_out( ) to turn a lamp on and off.  In 
this discussion, the nv_lamp_state is an input network variable whose 
value comes from elsewhere in the LonWorks network: 

io_out(io_lamp_out,  
  (nv_lamp_state != ST_OFF) ? 1 : 0); 

In the following example, a display LED is attached to the IO0 pin.  The 
declaration syntax is the following: 

#define ON 1 
#define OFF 0 
IO_0 output bit io_display_LED; 
// or  
IO_0 output bit io_display_LED = ON; 

The second declaration in the example above uses an initializer, which tells 
the system that following a reset, the io_display_LED object output value 
should initially be set to 1.  The default initial value is 0. 
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Now you can control the state of io_display_LED by using the io_out( ) 
function: 

if (flow_total > 500) 
   io_out(io_display_LED, ON); 

input_is_new Variable 
For all timer/counter input objects, the built-in input_is_new variable is set 
to TRUE whenever the io_in( ) call returns an updated value.  This is true 
for implicit calls as well.  See I/O Events below for a discussion of implicit 
io_in( ) calls.  The data type of the input_is_new variable is an unsigned 
short.  The frequency with which updates occur depends on the I/O object 
type. 

The following example uses one of the timer/counter I/O devices.  Assume the 
IO7 pin is attached to an optical flow meter that presents a number of pulses 
proportional to the volume of a fluid.  The total volume in gallons needs to be 
determined.  For this example, assume the Neuron Chip or Smart 
Transceiver is clocked at 10MHz. 

The pulsecount input object counts input edges and latches the count 
approximately every 0.8388608 (specifically (223/107) seconds).  If you were 
to use the io_in( ) function for this I/O object, you would always read the 
currently latched value.  If you are summing the total flow, you will need to 
qualify this operation.  Use input_is_new, which is set to TRUE following 
an io_in( ) function only if a new measurement is made, or in this case, every 
0.8388608 seconds. 

IO_7 input pulsecount io_flow_sensor;    
 // 451 pulses/gallon  
long volume_total, volume_temp; 
 
. 
. 
. 
{ 
   volume_temp = io_in(io_volume_sensor); 
   if (input_is_new) 
      volume_total += volume_temp; 
} 
. 
. 
. 
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I/O Events 
An alternative to using the explicit io_in( ) function is to associate an input 
object with a predefined event.  The two I/O-related predefined events are 
io_changes and io_update_occurs.  When either event is used, an implied 
io_in( ) function occurs.  These events are used only with input objects and 
can take a variety of forms.  When evaluated, both the io_update_occurs 
and io_changes events perform an implicit io_in( ) function that obtains an 
input value for the object.  A task can access this input value by using the 
input_value keyword.  Both events, and the keyword, are further explained 
in the following sections. 

io_changes Event 
This event is TRUE when the value read from the input object specified 
changes state.  The change can be one of three types: 

• Any change (an unqualified change) 

• A change (in absolute value) by a specified amount (or greater) 

• A change to a specified value 

The Neuron C syntax for this event is shown below: 

io_changes(io-object-name) [by expr | to expr] 

The use of this event results in a comparison of the current value read from 
the input object with a reference value (except with the to option).  The 
reference value is the value read the last time the change event evaluated to 
TRUE (and saved, at that time, by the firmware).  For the io_changes event 
that does not use either the by option or the to option, a state change occurs 
when the current value is different from the reference value.  For the 
optional forms, the comparison is described above.  When using the optional 
forms of the io_changes event, the expr expression does not need to be a 
constant.  However, a constant expression will be more efficient. 

For example, a program could use the io_changes event to detect changes in 
an io_switch_in input bit object: 

when (io_changes(io_switch_in)) 

If you were interested only in when the io_part_detector detected a part (a 
value of TRUE, or 1), you could use the following when clause: 

when (io_changes(io_part_detector) to TRUE) 
{ 
   . 
   . 
   . 
} 
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io_update_occurs Event 
The syntax for this event is shown below: 

 io_update_occurs (io-object-name) 

The io_update_occurs event is TRUE when the value read from the input 
object specified by io_object_name has an updated value.  The 
io_update_occurs event applies only to certain timer/counter input objects.  
Timing for the event depends on the input object type: 

dualslope Event occurs when the conversion is complete, and the 
value has changed. 

ontime, period Event occurs at the end of the time being measured. 

pulsecount Event occurs every 0.8388608 seconds, when a new 
pulsecount value is available. 

quadrature Event occurs as soon as at least one count is 
accumulated. 

The io_changes event for a timer/counter input device occurs only if the 
device has a new value, different from the previous value. For the 
timer/counter devices, the io_changes event happens as follows, depending 
on the input object type: 

dualslope Event occurs when the conversion is complete. 

ontime, period Event occurs if the measured time has changed from 
the last time. 

pulsecount Event occurs if the number of counts measured has 
changed from the last count. 

quadrature Event occurs if the number of counts measured has 
changed from the last count. 

input_value Variable 
The input_value built-in variable is a signed long (input_value can be 
cast in the same manner as any other C variable).  For example: 

when (io_update_occurs(io_dev)) 
{ 
   if (input_value > 2) { 
      // code  
   } 
} 
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A lamp device could set the value of the nvoSwitch network variable based 
on the value of input_value (the switch value): 

when (io_changes(io_switch_in)) 
{ 
   nvoSwitch.state  
 = (input_value == SWITCH_ON) ? ST_ON : ST_OFF; 
} 

The value of the input_value variable depends on the context in which it is 
used.  The following combination of when clauses is valid.  Since both events 
refer to the same I/O object, there is no ambiguity about which object is 
providing the input. 

when (io_changes(io_dev) to 4) 
when (io_changes(io_dev) to 3) 
{ 
   x = input_value; 
} 

However, the following combination of when clauses is not a valid context for 
use of input_value, since there is no way of knowing which object is 
providing the input value.  If the first when clause evaluated to TRUE, 
input_value would refer to io_dev2, but if the second when clause 
evaluated to TRUE, input_value would refer to io_dev1. 

when (io_update_occurs(io_dev2)) 
when (io_update_occurs(io_dev1)) 
{ 
   x = input_value; 
} 

In addition, input_value is valid only after an io_update_occurs or 
io_changes event.  In the following example, using multiple when clauses 
produces an ambiguous value for input_value because the timer_expires 
event does not perform I/O.  In such cases, use io_in( ) to retrieve the value. 

when (timer_expires(t)) 
when (io_update_occurs(io_dev)) 
{ 
   x = input_value; 
   // use  x=io_in(io_dev) instead of input_value 
} 
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Two Methods: Which Should You Use? 
You have now read about two different ways to determine whether an input 
value is new:  you can use the io_update_occurs event with the 
input_value variable, or you can use the io_in( ) function with the 
input_is_new variable.  The following two examples show different ways to 
accomplish the same goal: 

Listing 2.1  io_update_occurs/input_value 

IO_5 input pulsecount io_dev; 

when (io_update_occurs(io_dev)) 
{ 
   if (input_value > 2) { 
      // code  
   } 
} 

Listing 2.2  io_in( )/input_is_new 

stimer tDelay; 
IO_5 input pulsecount io_dev; 
when (timer_expires(tDelay)) 
{ 
   // code  
   if ((io_in(io_dev) > 2) && input_is_new) { 
      // code 
   } 
} 

Which method you choose depends on the individual case.  The I/O event 
mechanism (that is, use of when clauses, shown in Listing 2.1) is the simpler 
method, where the scheduler decides when to perform the I/O functions.  Use 
this construct if possible.  When you are combining multiple events in a 
single block of logic, you may need to perform an explicit io_in( ) combined 
with the input_is_new variable, as shown in Listing 2.2. 

A Word of Warning 
If you combine explicit calls to io_in( ) with when clauses containing I/O 
events, synchronization problems may result.  For example, if a when clause 
evaluates to TRUE near the end of an I/O sampling period, the io_in( ) call 
might not be executed until the following period, and the value obtained 
could be misleading. 

when (io_update_occurs(dev)) 
{ 
 // code  
 io_in(dev); // Use input_value instead  
  // of io_in() to retrieve  
  // the value obtained when  
  // the io_update_occurs  
  // event was TRUE  
} 
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Relationship between I/O Measurements, Outputs, 
and Functions 

Direct, Serial, and Parallel I/O Objects 
For direct I/O objects, input levels are sampled at the point in time when an 
io_in( ) function is executed, or at the point in time that a when clause 
referencing the object is evaluated. 

For serial and parallel I/O objects, input levels are sampled at the point of 
the io_in( ) function.  With a 40MHz input clock, output levels are set 
approximately 12.5 to 25 microseconds after invocation of the io_out( ) 
function.  (This value scales with slower clock speeds.)  See the Smart 
Transceivers databooks for detailed timing diagrams. 

Timer/Counter I/O Objects 
Values for timer/counter input objects are latched periodically depending on 
the object type or the object clock.  The relationship between when an io_in( ) 
function or I/O when clause is used and when the data has been latched is 
usually application dependent.  Once a value is latched, that value continues 
to be returned even by subsequent calls to io_in( ) until a new value is 
latched based on the timing in the hardware. 

The period input and ontime input object types latch a new value on the 
falling edge of the input signal.  (If the invert keyword is used, these object 
types latch the new value on the rising edge of the input signal.)  The 
pulsecount input object latches a new value every 0.8388608 seconds.  (See 
Input Clock Frequency and Timer Accuracy sections later in this chapter.) 

As a general rule, new values written to timer/counter output objects are 
acted on at the end of the current output signal period.  Exceptions to this 
rule are oneshot output and I/O objects that have been disabled (that is, 
have a zero control value), all of which take effect upon return from the 
io_out( ) function. 

Also see the Smart Transceivers databooks for more information. 

Output Objects 
The following timer/counter output object types reflect the new output value 
at the end of the current output signal period: 

 edgedivide output 
frequency output 
pulsewidth output 
triac output 
triggeredcount output 
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The following timer/counter output object types reflect the new output value 
upon return from the io_out( ) function: 

 oneshot output 
pulsecount output 
 

All timer/counter output objects respond to a zero output value upon return 
from the io_out( ) function. 

I/O Multiplexing 
Input to one of the timer/counter circuits can be multiplexed among pins 
IO_4 to IO_7 or provide output to IO_0.  This timer/counter is referred to as 
the multiplexed timer/counter.  A second timer/counter circuit derives input 
only from IO_4 or provides output to IO_1.  This second timer/counter circuit 
is called the dedicated timer/counter.  Figure 2.2 shows a signal flow diagram 
for both the multiplexed and dedicated timer/counter circuits. 
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Figure 2.2  Flow Diagram for Timer/Counter Circuits 

I/O Functions for Timer/Counter Objects 
For multiplexed I/O objects, the last timer/counter I/O object declared in the 
program is the first to take effect after a reset.  To change the selected I/O 
object, use the io_select( ) function to specify which of the multiplexed pins 
is the owner of the timer/counter circuit.  The syntax for io_select( ) is: 

io_select ( io-object-name [, clock] ) 

io-object-name The name for the I/O object, which corresponds to the 
io-object-name in the I/O declaration. 

clock Specifies a clock selector, which can be different from 
or the same as the clock selector specified in the 
object’s declaration, in the range of 0 to 7.  If the user 
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 does not specify a clock value in the call to 
io_select( ), the clock is set to the value in the object’s 
declaration. 

Any timer/counter I/O object that has a clock argument in its declaration 
syntax can also be reprogrammed to an alternate clock value by use of the 
io_set_clock( ) function.  The syntax for this function is: 

io_set_clock ( io-object-name, clock ) 

io-object-name The name for the I/O object, which corresponds to the 
io-object-name in the I/O declaration. 

clock Required clock selector value in the range of 0 to 7, 
regardless of the clock selector specified in the object’s 
declaration.  Some I/O objects may not function 
properly with all clock values.  See the detailed 
description for each particular I/O object in the 
Neuron C Reference Guide. 

When io_set_clock( ) is used on multiplexed objects, the clock is changed 
regardless of whether the object itself is currently selected. 

The following fragment shows several examples of the use of io_select( ) and 
io_set_clock( ): 

IO_1 output pulsecount clock(3) out_pc; 
IO_5 input period clock(2) in_period; 
IO_6 input ontime clock(3) in_ontime; 
 
when (reset) 
{ 
   io_set_clock(out_pc, 5); 
   io_select(in_ontime); 
} 
 
when (io_update_occurs(in_ontime)) 
{ 
   io_select(in_period, 3); 
} 
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When a new clock is set for an I/O object using io_select( ), this clock 
remains in effect until a new value is explicitly set again.  The next 
io_select( ) call for the same I/O object will reset the clock to the value 
specified in the declaration if there is no clock argument in the io_select( ) 
call. 

If an input measurement is attempted using io_in( ) or a when clause on an 
I/O object that has not been selected with the io_select( ) function, a data 
value of overrange (65,535) is returned, and the input_is_new variable and 
io_update_occurs event remain FALSE. 

Following a call to io_select( ) and after a Neuron reset, the first 
measurement taken for the newly selected I/O object is discarded to clear out 
any incomplete measurements unless the function io_preserve_input( ) is 
called before the io_in( ) call.  The io_update_occurs event actually 
happens when the second measurement is read.  Rely on either an 
io_update_occurs event or use the input_is_new variable to verify that an 
actual measurement has been made following a call to io_select( ). 

The following example shows the use of io_select( ) with the multiplexed 
timer/counter circuit.  For multiplexed I/O objects, the last I/O object declared 
in the program is the first to take effect after a reset. 

EXAMPLE: 

// I/O Definitions 
IO_5 input period mux clock (2) io_pcount_2; 
IO_4 input period mux clock (2) io_pcount_1; 
 
static long variable1, variable2; 
 
// The following occurs only when the 
// io_pcount_1 is selected 
when (io_update_occurs(io_pcount_1)) 
{ 
   variable1 = input_value; 
   io_select(io_pcount_2); 
   // select next I/O object 
} 
 
// The following occurs only when the 
// io_pcount_2 is selected 
when (io_update_occurs(io_pcount_2)) 
{ 
   variable2 = input_value; 
   io_select(io_pcount_1); 
   // select next I/O object 
} 
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In the following example, the timer/counter is multiplexed between an 
ontime measurement on pin IO5 and a period measurement on pin IO6.  
Because the ontime input may cover a large range of values, this example 
uses a form of “auto-ranging.”  The clock value switches between 4 and 2 if 
the input measurement value extends beyond certain values.  A variable is 
used when reselecting the ontime object since its clock may be one of the two 
values. 

EXAMPLE: 

unsigned long slope1Raw, cycleAValue; 
int slope1Clock = 2; 
IO_5 input ontime clock (2) ioSlope1; 
IO_6 input period clock (1) ioCycleA; 
// Following reset, the ioCycleA object is selected 
// because it is the last object declared using the mux 
 
 when (io_update_occurs(ioSlope1)) { 
   if (input_value > 0x4000 && slope1Clock == 2) { 
 // Range down (slower) 
      slope1Clock = 4; 
      io_set_clock(ioSlope1, 4); 
   } else if (input_value < 0x4000 && slope1Clock == 4) { 
      // Range up (faster) 
 slope1Clock = 2; 
      io_set_clock(ioSlope1, 2); 
   } else { 
      // Save the measured value, select the other object 
      slope1Raw = input_value; 
      io_select(ioCycleA); 
   } 
   // If auto-ranging has occurred, another measurement 
   // will be made.  Otherwise, the ioCycleA object 
   // will be measured next. 
} 
 
when (io_update_occurs(ioCycleA)) { 
   cycleAValue = input_value; 
   // Now select the ioSlope1 object, 
   // using the current clock range computed above 
   io_select(ioSlope1, slope1Clock); 
} 
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Device Self-Documentation 
You can include a text string that describes your device in your application.  
This text string can be accessed by any network tool, and can be used by a 
network integrator to verify that they have the correct device when designing 
in or installing your device.  This text string is appended to the device self-
documentation (SD) string.  The Neuron C compiler automatically generates 
a portion of the SD string that documents the functional profiles that are 
implemented by the functional blocks in your application.  You can add 
additional text for the SD string using the following compiler directive as 
described in the Compiler Directives chapter of the Neuron C Reference 
Guide: 

#pragma set_node_sd_string C-string-const 

 

Examples 
This section presents three complete programs that illustrate Neuron C 
capabilities and good coding style.  The examples are: 

1 Thermostat interface 

2 Simple light dimmer interface 

3 Seven-segment LED display interface 

Example 1:  Thermostat Interface 
This thermostat measures the resistance of a thermistor by measuring the 
pulse-width of a waveform that is input to pin IO4.  The I/O object 
declaration is set up to measure the on-time of the waveform.  A simple 
T=mx+b scaling of the on-time yields the temperature. 

 

ontime
 

The example also uses a shaft encoder generating a quadrature input as a 
dial to select a new temperature setting (see Figure 2.3).  The quadrature 
input object type is used with the io_update_occurs event.  The input value 
of the input object represents the change in rotational offset since the last 
input.  Shaft encoders typically generate offsets of 16 to 256 counts per 360 
degrees rotation.  The io_update_occurs event evaluates to TRUE only 
when a nonzero offset has been measured.  In the following application, the 
task associated with the when (io_update_occurs...) clause is executed 
only when the quadrature input dial has moved from the previously 
measured position. 

2-38 Focusing on a Single Device 



Shaft
Encoder

Thermostat Device

Chip
Neuron

IO_5

IO_4

555
Timer

Cooler
Control

Heater
Control

Cooler

Heater

Thermistor

IO_6

IO_3

IO_2

 

Figure 2.3  Sample Thermostat Device 

The io_changes event would rarely be used with the quadrature I/O object, 
since the event would evaluate to TRUE only when a change in the measured 
count occurred.  The io_changes event would not evaluate to TRUE as long 
as the input object were moving at a constant rate because the nonzero 
measurements would be the same.  (This example is intended to illustrate 
use of typical I/O objects.  Network variable information has been omitted; it 
is covered in detail in Chapter 3, How Devices Communicate Using Network 
Variables.) 

 

// THERMOS.NC -- LONWORKS thermostat device 
 
// Uses a thermistor to measure temperature, and a 
// quadrature encoder to enter setpoint.  Activates either 
// heating or cooling equipment via bit outputs. 

 
//////////////// Compiler Pragmas ///////////////// 
#pragma enable_io_pullups 
   // for quadrature input on IO_4 and IO_5 

 
///////////////// Include Files ////////////////// 
#include <stdlib.h> 
   // for muldiv() 
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////////////////////// Timers ///////////////// 
stimer repeating tmCheckHeatOrCool; 
   // Automatically repeating timer 

 
////////////////// Constants /////////////////////// 
#define TEMP_DEG_F(t)  (((long)t - 32L) * 50 / 9 + 2740) 
  // macro to convert degrees F to SNVT_temp 

const SNVT_temp DESIRED_TEMP_MAX = TEMP_DEG_F(84); 
const SNVT_temp DESIRED_TEMP_MIN = TEMP_DEG_F(56); 
const SNVT_temp BAND_SIZE = 10; 
// Guardband of +/- 1 deg C around desired temperature 

 
//////////////// I/O Objects ////////////////////// 
IO_6 input ontime clock (1) invert ioTempRaw; 
IO_4 input quadrature ioShaftIn; 
IO_2 output bit ioHeatingOn = FALSE; 
IO_3 output bit ioCoolingOn = FALSE; 

 
//////////////// Global Variables //////////////////// 
SNVT_temp newTemp     = TEMP_DEG_F(70);// init to 70 deg F 
SNVT_temp desiredTemp = TEMP_DEG_F(70); 

 
enum { 
    OFF, HEATING, COOLING 
} equip = OFF;    // current state of HVAC equipment 

 
/////////////////// Tasks ////////////////////// 
// I/O update task -- 
// read thermistor voltage-to-frequency converter 

when (io_update_occurs(ioTempRaw)) { 
    // An update occurs periodically as the ontime is 
    // sampled. The new sample is placed in 'input_value.' 
    // Calculation is performed using 32-bit intermediate 
    // math, then the result stored as a SNVT_temp. The 
    // input is scaled based on the temperature coefficient 
    // of the thermistor. 
    newTemp = muldiv(input_value, 25000, 9216) + 2562; 
} 

 
///////////////////////////////////////////////////// 
//  I/O update task -- read quadrature encoder 
// A quadrature input is used as a dial to select a new 
// temperature setting. 
 
when (io_update_occurs(ioShaftIn)) { 
// An update occurs for a quadrature I/O object when the 
// accumulated offset is nonzero. The value is placed in 
// 'input_value' by the io_update_occurs event. 
    desiredTemp += input_value;     // Assumes no overflow 
    desiredTemp = min(DESIRED_TEMP_MAX, desiredTemp); 
    desiredTemp = max(DESIRED_TEMP_MIN, desiredTemp); 
} 
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//////////////////////////////////////////////////////// 
//  Timer task -- execute control algorithm 
// A timer is used to decide periodically whether to 
// activate heating or cooling. The temperature comparison 
// is done only every five minutes to prevent cycling the 
// equipment too frequently. There are two digital outputs: 
// one for activating the heating equipment, and one for 
// activating the cooling equipment. 
when (timer_expires(tmCheckHeatOrCool)) { 
    switch (equip) { 
    case HEATING: 
        if (newTemp > desiredTemp) {   // if too hot 
            equip = OFF;               // turn off heater 
            io_out(ioHeatingOn, FALSE); 
        } 
        break; 

 
    case OFF: 
        if (newTemp < desiredTemp - BAND_SIZE) { 
            equip = HEATING;  // if too cold, then 
            io_out(ioHeatingOn, TRUE);  // turn on heater 

        } else if (newTemp > desiredTemp + BAND_SIZE) { 
            equip = COOLING;  // if too hot, then 
            io_out(ioCoolingOn, TRUE);  // turn on cooler 
        } 
        break; 

 
    case COOLING: 
        if (newTemp < desiredTemp) {   // if too cold 
            equip = OFF;               // turn off cooler 
            io_out(ioCoolingOn, FALSE); 
        } 
        break; 
    } 
} 

 
/////////////////////////////////////////////////////// 
//  Reset task -- Set the repeating timer to 300 seconds 
 
when (reset) { 
    tmCheckHeatOrCool = 300;  // 5 minutes, repeating 
} 
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Example 2:  Simple Light Dimmer Interface 
The following example shows Neuron C code for a simple light dimmer.  The 
example uses two I/O objects, a triac control circuit to control the lamp 
brightness and a quadrature input to select the light level (see Figure 2.4).  
For the triac output object, a value of 1 is maximum brightness, and a value 
of 320 is minimum brightness (OFF) when the line frequency is 60Hz.  The 
initial value on power-up is full OFF (65535). 

The io_update_occurs event is used in a when clause.  An implicit call to 
io_in( ) occurs when this event is called.  The program can then access the 
measured value through the built-in variable input_value. 
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Figure 2.4  Simple Dimmer Device 

 

// DIMMER.NC -- LONWORKS triac dimmer control 
 
// Uses a triac output to control an incandescent lamp 
// Uses a shaft encoder input to set desired lighting level 

 
///////////////////// Compiler Pragmas ///////////////// 
#pragma enable_io_pullups 
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/////////////////////// I/O Objects //////////////////// 
IO_0 output triac pulse sync (IO_6) clock (6) ioLampTriac; 
IO_4 input quadrature ioShaftIn; 

 
//////////////////////// Constants ///////////////////// 
// These constants are appropriate for 60Hz line frequency 
const unsigned long MIN_BRIGHTNESS = 320; 
const unsigned long MAX_BRIGHTNESS = 1; 

 
///////////////////// Global Variables ///////////////// 
signed long currentBrightness; 

 
/////////////////////////// Tasks ////////////////////// 

 
//  Reset task -- turn the lamp off 
when (reset) { 
    io_out(ioLampTriac, MIN_BRIGHTNESS); 
    currentBrightness = MIN_BRIGHTNESS; 
} 

 
//  I/O update task -- read quadrature input dial 
//                     to select the light level 
when (io_update_occurs(ioShaftIn)) { 
    // An update occurs for a quadrature input 
    // object when the accumulated offset is 
    // nonzero.  The sample value is in 
    // 'input_value'.  The value is subtracted 
    // since a lower value means more light. 
 
    currentBrightness -= input_value; 
 
    // Look for underflow or overflow 
    if (currentBrightness < MAX_BRIGHTNESS) 
       currentBrightness = MAX_BRIGHTNESS; 
    else if (currentBrightness > MIN_BRIGHTNESS) 
       currentBrightness = MIN_BRIGHTNESS; 

    // Change the triac setting to the 
    // desired brightness level 
    io_out(ioLampTriac, currentBrightness); 
} 
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Example 3:  Seven-Segment LED Display Interface 
The following example shows how to connect multi-character displays to the 
neurowire port.  The display has an 8-bit configuration register and a 24-bit 
display register.  This configuration can be defined as follows: 

 
IO_2 output bit ioEnable = 1;  
IO_8 neurowire master select(IO_2) ioDisplay; 
unsigned char displayReg[3]; 
unsigned char configReg; 
 . 
 . 
 . 
io_out(ioDisplay, &configReg, 8); 
io_out(ioDisplay, displayReg, 24); 
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Figure 2.5  Neurowire Connection to a Display 

Input Clock Frequency and Timer Accuracy 
Depending on the manufacturer and version, the Neuron Chip and Smart 
Transceiver input clock frequencies are 40MHz, 20MHz, 10MHz, 6.5536MHz, 
5MHz, 2.5MHz, 1.25MHz, and 625 kHz.  Certain timers listed below are fixed 
timers; that is, they have the same absolute duration regardless of the input 
clock selected.  However, the slower the input clock, the less accurate the 
timer.  Scaled timers, also listed below, scale in proportion to the input clock. 
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Fixed Timers 
In general, timers discussed in this manual are of fixed duration unless noted 
otherwise.  The following timers are implemented in hardware and have 
periods that are independent of the Neuron Chip or Smart Transceiver input 
clock frequency.  However, the accuracy of these timers is determined by the 
accuracy and frequency of the input clock for the Neuron Chip or Smart 
Transceiver. 

• Preemption mode timeout timer. 

• Pulsecount input timer.  Timer used to determine the counting interval for 
the pulsecount input object.  The interval is (223)/107 (approximately 
.8388608) seconds. 

• Triac pulse timer.  Timer used to generate pulses for the triac output object.  

The following timers are implemented in software and have periods that are 
independent of the Neuron Chip or Smart Transceiver input clock.  The 
accuracy of these timers is discussed in the next section. 

• Application second timer (that is, an stimer declared in a Neuron C 
program). 

• Application millisecond timer (that is, an mtimer declared in a Neuron C 
program). 

 

Scaled Timers and I/O Objects 
Timers and I/O objects that scale with the input clock are directly 
proportional to the input clock.  For example, a serial object configured at 
2400bps would actually run at 600bps given a 2.5MHz (1/4 speed) input 
clock.  The following timers scale with the input clock: 

• bitshift clock 

• neurowire master clock 

• serial clock 

• watchdog timer 

 

NOTE:  The configurable EEPROM write timer accuracy is affected by the 
input clock.  See EEPROM Write Timer later in this chapter for more 
information. 
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Calculating Accuracy for Software Timers 

Accuracy of Millisecond Timers 
The following formulas define the range of accuracy for a millisecond timer.  
Accuracy is expressed as a low and high duration.  The low duration (L) is 
the minimum time from when a timer is set to when the system posts an 
event for the application.  The high duration (H) is the maximum time from 
when a timer is set to when an event is posted.  L and H are expressed below 
as a function of E, the expected duration. 

The added delay to detect the expiration event, i.e. the latency, is a function 
of the application and is not included in these formulas.  For example, an 
event posted while the application is executing a task associated with a 
when clause will not be detected until the executing task completes and 
returns control of the application to the scheduler. 

 

NOTE:  When an event is posted by the Neuron firmware, it becomes visible 
to the scheduler and to other events (for example, io_changes, 
nv_update_occurs). 

With a 10 MHz Clock 
In the following formula, the floor( ) function returns the largest integer not 
greater than the argument, e.g., floor(3.3) = 3 or floor(3.0) = 3.  With a 
10MHz clock, the expected duration of a millisecond timer is: 

 E = .8192 * floor((D/.82) + 1) 

where D is the specified duration for the timer.  For example, for a timeout of 
100ms, E equals 99.94ms. 

With a 10MHz clock, the low duration is: 

 L = E - 12ms 

and the high duration is: 

 H = E + 12ms 

With Other Clock Speeds 
The following formulas allow you to calculate accuracy for millisecond timers 
when other input clock rates are selected.  In these formulas, S depends on 
input clock speed as follows: 
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 S=Input Clock Rate 
 
 0.25 40 MHz 
 0.5 20 MHz 
 1 10 MHz 
 1.5259 6.5536 MHz 
 2 5 MHz 
 4 2.5 MHz 
 8 1.25 MHz 
 16 625 kHz 

 E = .8192 * floor ( (floor(D/S)*S)/.82) +1 ) 

Two factors determine E.  The first is that the slower the input clock speed, 
the less granular the input clock.  For example, at 1/16 speed, the millisecond 
granularity is 16 milliseconds (one clock tick every 16 milliseconds).  The 
second factor is that the hardware generates 819.2 microsecond ticks that the 
software treats as 820 microsecond ticks.  This means that a timer duration 
is actually .999 times the specified duration. 

For example, with a 2.5MHz clock, a specified timeout of 99ms would result 
in an expected duration of 96.67ms. 

The complete formulas for calculating the low and high durations are: 

 L = E - (11*S + 1) 

 H = E + (11*S + 1) 

The high duration with a 2.5MHz clock and a specified timeout of 99ms 
would thus equal 141.67ms; the low duration is 51.67. 

 

NOTE:  The number "11" in the formulas above is based on a typical worst 
case scenario.  In the absolute worst case, i.e., the maximum number of 
timers, network variables, addresses, etc., this number can be as high as 32. 

 

In addition, the high duration may be increased by network management 
delay (NMD), an additional skew introduced by network management 
message processing.  Normally, this term is 0.  But, if a device were to 
process a network management message, the upper range for any given 
timeout could be significantly increased.  For example, adding a domain to a 
device would result in an NMD of anywhere from 300ms to (300 + 838*S)ms.  
In general, network management operations of this type occur infrequently.  
It is always good practice to take a device offline, if possible, before sending 
further network management messages. 
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To measure an event's duration a timer can be polled before and after the 
event, and the difference can be calculated.  To measure the duration of 
events less than 50 milliseconds, use the get_tick_count( ) function instead 
of the software timers (see the Neuron C Reference Guide). 

Repeating Timers 
For repeating timers, there is no cumulative drift other than that produced 
by the difference in D and E.  The Nth timeout for repeating timers occurs in 
the range of LR to HR, where: 

 ER  = E * N 

and 

 LR  = ER - (11*S + 1) 

 HR  = ER + (11*S + 1) 

For repeating timers, intermediate timeout events will be lost if the following 
is true: 

 abs(AR  - ER )  ≥ E 

 ER  - AR  > E 

where AR  is the actual duration of the repeating timer. 
 

H1

E1

L1

H2

E2

L2

E1

Time started here.
Timer expires in this range.

Second iteration of timer expires in this range.  
Figure 2.6  Expected, Low, and High Duration of Timeout Events 
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Accuracy of Second Timers 
The second timers rely on the one-second timer, which is based on the 
millisecond timer mechanism described earlier.  A one-second timer of 
duration D will time out in the range of D-1 to D seconds, where “second” is 
defined as 1001 milliseconds using the millisecond timer duration formulas 
for L and H. 

For example, at 625 kHz, each “second” is 991.23 milliseconds.  Thus a 10-
second timer would time out in the range of 8.74 to 10.09 seconds. 

For repeating one-second timers, the first timeout occurs in the range of D-1 
to D seconds.  Subsequent timeouts occur every D seconds.  The fifth timeout 
of a repeating 10-second timer would occur in the range of 48.39 to 49.74 
seconds.  

Delay Functions 
Three functions allow an application to perform timing directly by 
suspending execution for a given time.  These functions provide a concise way 
to perform timing in-line: 

delay( ) 

msec_delay( ) 

scaled_delay( ) 

The delay( ) function produces a delay of fixed duration that is independent 
of input clock speed.  This function can be used with the wink feature and for 
I/O debouncing.  Its prototype is the following: 

void delay (unsigned long count); 

count A value between 1 and 33,333.  See the Neuron C 
Reference Guide for the formula used in determining 
the duration of the delay.  Values in the range 
33,334..65,535 can be specified, but will cause a 
watchdog timer reset. 

EXAMPLE: 

when (io_changes(io_switch)) 
{ 
   delay(400);  // wait 10msec for debounce 
 . 
 . 
 . 
} 

 

The msec_delay( ) function produces a delay of a fixed number of 
milliseconds independent of the input clock speed.  This function can be used 
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with to delay for a more precise, and shorter, period of time than the delay( ) 
and scaled_delay( ) functions.  Its prototype is shown below:  

void msec_delay (unsigned short milliseconds); 

milliseconds A number of milliseconds to delay (max of 255 ms) 

 

The scaled_delay( ) function produces a delay with a duration that scales 
with input clock speed.  Its syntax is: 

void scaled_delay (unsigned long count); 

count A value between 1 and 33,333.  See the Neuron C 
Reference Guide for the formula used in determining 
the duration of the delay. 

 

EEPROM Write Timer 
The accuracy of the configurable EEPROM write timer degrades with the 
speed of the input clock.  To determine the accuracy of an n millisecond 
timeout, use the formula: 

 duration = n * delay(43) 

For example, at 625 kHz, a 20 millisecond EEPROM write actually takes 
55.2 milliseconds.
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3 
How Devices 

Communicate Using 
Network Variables 

This chapter discusses how LONWORKS devices communicate 
with each other using network variables.  It includes a detailed 
discussion of how to declare network variables and how 
network variables on different devices are connected to each 
other.  The use of synchronous network variables, the process 
of polling network variables, authenticated network variables, 
and network variables that implement a changeable type are 
also described. 



Major Topics 
LONWORKS devices communicate with other LONWORKS devices through 
network variables or application messages.  This chapter focuses on network 
variables, which provide an open interoperable interface, simplify 
programming and installation, and also reduce program memory 
requirements.  Most Neuron C programs use network variables.  Application 
messages may be used if required as described in Chapter 6, How Devices 
Communicate Using Application Messages.  Although this manual discusses 
the two methods separately, a single Neuron C program can use both 
network variables and application messages. 

This chapter is divided into the following parts: 

• Overview summarizes the behavior of devices that are readers and writers of 
a network variable, as well as how network variables are declared.  It also 
describes how network variables on different devices are connected to each 
other. 

• Declaring Network Variables describes the syntax for declaring network 
variables, along with related concepts. 

• Connecting Network Variables describes how network variable readers are 
connected to network variable writers.  (This process was described in 
general terms in Chapter 1, Overview.) 

• Network Variable Events describes the following four scheduling events that 
are related to network variables:  nv_update_completes, nv_update_fails, 
nv_update_occurs, and nv_update_succeeds. 

• Synchronous Network Variables describes the behavior of synchronous 
network variables. 

• Processing Completion Events for Network Variables describes the two modes 
of checking for completion events, and the guidelines for use of these 
different techniques within an application program. 

• Polling Network Variables describes how a reader device can poll the writer 
device for the latest value of a network variable. 

• Explicit Propagation of Network Variables describes how an application 
program may exercise explicit control over network variable propagation, 
instead of permitting the Neuron firmware scheduler to propagate network 
variable updates automatically. 

• Monitoring Network Variables describes special considerations for 
implementation of a monitoring device. 

• Authentication describes how to use authenticated network variables to 
increase network security.  Authentication allows a reader to verify the 
identity of a writer that attempts to update the reader’s value of the network 
variable.  Authentication can also prevent unauthorized configuration of a 
device. 

• Changeable-Type Network Variables describes how to implement network 
variables that allow their type to be changed at installation time. 
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Overview 
As described in Chapter 1, Overview, a network variable is an object that 
represents a data value and may be connected to multiple devices on a 
network.  A Neuron C application program running on a Neuron Chip or 
Smart Transceiver can declare a maximum of 62 network variables.  Host 
applications can declare more network variables as described later in this 
section. 

Network variables are first defined within the program that runs on an 
individual Neuron Chip or Smart Transceiver.  As an example, consider a 
lamp program with one network variable, named nv_lamp_state (see 
Figure 3.1).  Also, consider a switch program with one network variable, 
named nv_switch_state.  The same lamp program is installed on each of the 
three lamp devices, and the same switch program is installed on each of the 
two switch devices in the figure below. 
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Figure 3.1  Sample Development Network with Five Devices 
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The declarations for these two network variables, which appear in different 
programs, are the following: 

network output SNVT_switch nv_switch_state; 
 
and 
 
network input SNVT_switch nv_lamp_state; 

Behavior of Writer and Reader Devices 
A writer device can change the value of a network variable.  The connected 
network variables in all reader devices are then updated to reflect this 
change.  In general, a reader device only reads from its copy of the network 
variable.  One exception is that a reader device can provide an initial value to 
the network variable when the variable is declared.  Another exception is 
that a reader device can modify its local copy of a network variable in its 
program.  However, in neither case is the new value propagated to any other 
devices. 

A writer device can also read from its last copy of the network variable, but it 
will only see the value it wrote last.  In other words, two writers of the same 
network variable cannot change each other’s value. 

When a writer device writes a value to an output network variable, the 
Neuron firmware causes a LONWORKS message to be sent to all readers of 
the variable, informing them of the new value.  By default, the message is 
sent using the acknowledged (ACKD) service.  Not all readers may receive 
updates simultaneously.  The network application must be designed to 
handle update failures and delays. 

 

NOTE:  This discussion uses the terms writer device and reader device.  A 
writer device is a device that writes to a particular network variable (an 
output network variable).  A reader device is a device that reads a particular 
network variable (an input network variable).  In many cases, a device has 
both input and output network variables declared in its program, and 
therefore acts both as a “writer device” and a “reader device,” depending on 
the network variable. 
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When Updates Occur 
The new value of a network variable received by a reader device does not 
take effect immediately upon reception and processing of the message.  
Similarly, assignment of a new value to an output network variable does not 
cause a message to be sent immediately.  Rather, updates occur at the end of 
a critical section in the application program.  A critical section is defined as a 
set of application program statements during which network variable 
updates are not propagated. 

A task is an example of a critical section:  once begun, each task runs to 
completion.  When network variable updates are received or requested, they 
are posted by the scheduler at the end of each critical section.  An application 
can use the post_events( ) function to divide a single task into two or more 
critical sections.  The post_events( ) function can be used to increase 
throughput and improve response time since it forms a boundary at which 
outgoing network variable updates are sent and incoming network variable 
updates are processed.  See Chapter 7, Additional Features, for further 
discussion of post_events( ). 

Declaring Network Variables 
The syntax for declaring a network variable is shown below.  The first form of 
the declaration is for a simple network variable, and the second form is for a 
network variable array. 

 

network input | output  [netvar-modifier] [class] type 
  [connection-info] identifier 
  [ = initial-value] [nv-property-list] ; 

network input | output  [netvar-modifier] [class] type 
  [connection-info] identifier [array-bound] 
  [ = initializer-list] [nv-property-list] ; 

 

NOTE:  The brackets around the term array-bound do not, in this case, 
indicate an optional field.  They are required and must be part of the 
program. 

 

Up to 62 network variables (including array elements) may be declared on a 
device in a Neuron C program, or in an application using the ShortStack™ 
Micro Server.  Up to 4,096 network variables can be declared when using a 
LONWORKS network interface and an attached host processor.  See the LNS® 
Programmer’s Guide and the Host Application Programmer's Guide for more 
information. 
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You can declare an array of network variables using the second form of the 
syntax shown above.  The array can only be single dimension.  The array-
bound must be a constant.  Each element of the array is treated as a separate 
network variable for purposes of events, transmissions on the network, etc.  
Therefore, each element counts individually towards the maximum number 
of network variables on a given device.  Each element of the array is then a 
separately bindable network variable. 

After the device design is complete, you specify connections between network 
variable outputs and inputs on different devices.  This is discussed in the 
Connecting Network Variables section later in this chapter.  The specification 
of the desired connections is used by a network tool to generate the 
appropriate network addresses.  When these addresses are downloaded into 
the devices, they ensure that updates sent by writers reach all of the 
intended readers. 

In the lamp and switch example above, the output network variables in 
column 1 are connected to the input network variables in column 2. 
 

Output 
(device/variable_name) 

Input 
(device/variable_name) 

switch1/nv_switch_state lamp1/nv_lamp_state 
lamp2/nv_lamp_state 

switch2/nv_switch_state lamp3/nv_lamp_state 

 

Network Variable Modifiers 
The following optional modifiers can be included in the declaration of each 
network variable: 

sync|synchronized Specifies that all values assigned to this network 
variable must be propagated, and in their original 
order.  However, if a synchronous network variable is 
updated multiple times within a single critical section, 
only the last value is sent out. 

 If this keyword is omitted from the declaration, the 
scheduler does not ensure that all assigned values will 
be propagated.  For example, if the network variable 
is being modified more rapidly than its values can be 
propagated or more rapidly than its update events can 
be processed, the scheduler may discard some 
intermediate data values.  However, the most recent 
value for a network variable will never be discarded as 
long as the device is not reset.  See Synchronous 
Network Variables later in this chapter. 
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polled Specifies that the value of the output network 
variable is to be sent only in response to a poll request 
from a device that reads this network variable.  When 
this keyword is omitted, the value is propagated over 
the network every time the variable is assigned a 
value.  (However, any reader device can always poll 
the outputs of writer devices to which it is connected, 
whether or not the output is declared as polled.) 
Also, the propagate( ) function (see the Functions 
chapter of Neuron C Reference Guide) can be used to 
cause the value of an output network variable 
declared as polled to be sent over the network. 

 The polled keyword is used only for output network 
variables, except in a program that is used as a 
Neuron C model file during ShortStack application 
development.  See the ShortStack User's Guide for 
more details. 

 

changeable_type Declares that the network variable may have its type 
changed by a network tool.  See Changeable-Type 
Network Variables in this chapter for a discussion of the 
use of this feature.  The changeable_type modifier can 
only appear once per network variable declaration, and 
must appear after the sync or polled modifier, if either 
of them is used. 

sd_string ( C-string-const ) 
Sets a network variable's self-documentation string (up to 
1023 bytes including self-documentation text that is 
automatically generated by the Neuron C compiler).  The 
ANSI C feature of concatenated string constants is 
permitted.  This modifier can only appear once per 
network variable declaration.  The sd_string modifier 
should appear after the sync, polled, and 
changeable_type modifier(s), if any of them are used. 

Network Variable Classes 
Network variables constitute one of the storage classes in Neuron C.  They 
can also be combined with the following storage classes: 

const Specifies a network variable that cannot be changed 
by the application program.  Output network 
variables declared with const are placed in ROM or 
EEPROM.  Input network variables declared with 
const are placed in RAM. 
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 When const is used with output network variables, 
since the application program will not be assigning to 
the network variable, it will not automatically be 
propagated.  Therefore, the polled modifier (see 
above) should also be considered for this network 
variable. 

eeprom Allows the application program to indicate network 
variables whose values are stored in EEPROM or 
flash memory and therefore are preserved across 
power outages.  Since EEPROM and flash memory 
devices support a limited number of writes per 
location, eeprom network variables have a limited 
capability to accept changes.  The initializer for 
eeprom class network variables takes effect when a 
program is loaded.  These variables are not 
reinitialized after a reset, but are reinitialized when 
the application image is reloaded. 

 Depending on the model and manufacturer, the 
Neuron core EEPROM supports at least 10,000 
erase/write cycles with no data loss.  This may vary by 
Neuron Chip or Smart Transceiver model, so consult 
the appropriate data book for exact specifications.  
External flash memory may support fewer writes—see 
the Atmel data sheet for flash memory specifications. 

config Specifies a const network variable in EEPROM that 
can be changed only by another device.  This class of 
network variable is used for application configuration 
by a network tool or a network controller.  Use of the 
config modifier is intended only for support of legacy 
applications, since it is not a fully managed 
configuration property.  Neuron C Version 2.1 uses 
the config_prop keyword (see below) to declare a 
fully managed configuration property.  Declaration 
and use of configuration properties are discussed in 
Chapter 4, Using Configuration Properties to 
Configure Device Behavior. 

 The config keyword is used only for input network 
variables. 

config_prop | cp Declares the network variable to be a fully managed 
configuration property in Neuron C Version 2.1.  
Declaration and use of configuration properties are 
discussed in Chapter 4. 

 The config_prop keyword is used only for input 
network variables. 

If no class is specified for a network variable, the network variable is a global 
variable.  Global variables are stored in the Neuron core’s RAM and are not 
preserved across power outages. 
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Network Variable Connection Information 
connection-info An optional field that is used to specify optional 

attributes of network variable connections containing 
this network variable.  The following optional 
keywords can be included in the declaration of each 
network variable: 

bind_info (  
 [offline] 
 [unackd | unackd_rpt | ackd  [(config | nonconfig)]] 
 [authenticated | nonauthenticated  [(config | nonconfig)]] 
 [priority | nonpriority  [(config | nonconfig)]] 
 [rate_est (const-expr)] 
 [max_rate_est (const-expr)] 
 ) 

Each of these keywords is described in the Neuron C Reference Guide.  The 
keywords can be specified in any order.  The connection information 
assignments can be overridden by a network tool after a device is installed, 
unless otherwise specified using the nonconfig keyword. 

Network Variable Initializer 
initial-value 

or 

initializer-list 

Specifies an initial value (or values) for the network 
variable.  The initial value is loaded as part of the 
application image for eeprom and config class 
network variables.  The initial value is loaded on power-
up or reset unless the variable is const, eeprom, 
config, or config_prop.  All network variables, 
especially input network variables, should be initialized 
to a reasonable default value. 

EXAMPLE: 

network input SNVT_temp nviTemp = 2960; // 22 C, 72 F 

The initial value should be chosen such that if a device is reset, the initial 
value can be used for subsequent calculations prior to the variable being 
updated from the network, and these calculations will not cause the device to 
create a hazardous condition or to create an error condition.  The default 
initialization value is 0, and advantageous use of the fact that initialization 
to zero at time of reset is "free" can save on code space and startup execution 
time in the device.  Initializers are not propagated over the network, 
regardless of whether the network variables are declared input or output. 
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Network Variable Types 
Network variable types serve two purposes.  First, typing ensures proper use 
of the variable in the device's application.  Second, typing ensures proper 
connection of network variables when the device is installed in a network.  A 
network variable can be any of the variable types specified in Chapter 1, 
Overview, except for pointers.  The types are the following: 

• A standard network variable type (SNVT).   SNVTs are standard types that 
define data encoding, scaling, and units for standard quantities such as 
degrees C, volts, or meters.  Each SNVT has a unique identifier called the 
SNVT index.  You can view all the SNVT definitions using the NodeBuilder 
Resource Editor as described in the NodeBuilder User’s Guide, or you can 
view the definitions online at types.lonmark.org. 

• A user network variable type (UNVT).  UNVTs are types that you define 
using the NodeBuilder Resource Editor as described in the NodeBuilder 
User’s Guide. 

• A typedef.  Neuron C provides some predefined type definitions, for 
example: 

 typedef enum {FALSE, TRUE} boolean; 

 You can also define other type definitions and use these for network variable 
types. 

 SNVTs and UNVTs defined in resource files should be used instead of 
typedefs. 

• Any of the variable types specified in Chapter 1, except for pointers.  The 
types are the following: 

  [signed] long [int] 
 unsigned long [int] 
 signed char 
 [unsigned] char 
 [signed] [short] [int] 
 unsigned [short] [int] 
 enum 

 Structures and unions of the above types. 

 SNVTs and UNVTs defined in resource files should be used instead of these 
base types. 

• Single-dimension arrays of the above types, up to 62 elements. 

When a network variable that is a structure is modified by a network 
variable writer, the entire structure is updated at the next critical section 
boundary for all network variable readers, regardless of whether the 
structure was wholly or partially modified. 

Network variables may be declared with a single dimension array bound.  
Each element of the array is then a separately bindable network variable.  
See the descriptions of the poll( ) function, the built-in nv_array_index 
variable, and the nv_update_completes, nv_update_fails, 
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nv_update_occurs, and nv_update_succeeds events in the Neuron C 
Reference Guide for more information. 

When an element of a network variable that is an array is modified by a 
network variable writer, only the modified element is updated at the next 
critical section. 

The maximum size of a network variable is 31 bytes.  In the case of a 
network variable array, each element is limited to a size of 31 bytes. 

The Neuron C compiler includes the SNVT indices in the application image 
for all network variables declared as SNVTs, and optionally also includes the 
network variable names for all network variables.  Network variable names 
are always included in the device interface file for a device, but integrators 
may find them useful when they lose the device interface file and need to 
install your device.  You can control these options using the following 
compiler directives as described in the Compiler Directives chapter of the 
Neuron C Reference Guide: 

#pragma disable_snvt_si 

#pragma enable_sd_nv_names 

Examples of Network Variable Declarations 
Some sample network variable declarations are the following: 

network input SNVT_temp nviTemp; 
network output SNVT_switch nvoHeater; 
network output int nvoCurrentTemp; 

Examples of priority network variable declarations are shown below: 

network output SNVT_alarm bind_info(priority)  
  nvoFireAlarm; 
network input boolean bind_info (priority(nonconfig)) 
  nviFireAlarm; 

An example of declaring a network variable using the unacknowledged 
service is the following: 

network output SNVT_lev_cont bind_info(unackd) 
  nvoFillLevel; 

The unacknowledged service can be used for this network variable because 
we can assume that the control dial generates numerous messages as it is 
being turned, and you probably don’t need or want to receive an 
acknowledgment for each one.  In addition, it is probably not critical to this 
application if a single message out of several is not received. 
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Connecting Network Variables 
Network variable connections are independent of the Neuron C application 
on a device.  Network variable connections are created by a portion of a 
network tool called the binder.  The binder may be part of the LonMaker 
Integration Tool or another network tool. 

The binder assigns addresses to all appropriate devices to ensure that 
information flows to and from the right places. 

Use of the is_bound( ) Function 
A Neuron C application can determine if a network variable has been 
connected by a network tool by calling the is_bound( ) function.  This can be 
used to prevent unnecessary processing for unconnected network variables.  
Whenever an unconnected output network variable is updated, an 
nv_update_succeeds event becomes TRUE even though no update actually 
occurred (see also the section on Processing Completion Events for Network 
Variables in Chapter 6, How Devices Communicate Using Application 
Messages).  Use this function to avoid executing code that depends on the 
output network variable being connected. 

EXAMPLE: 

network output SNVT_switch nvoHeater; 
 
void turn_on_heater_2(void) { 
 // turn on secondary heater if one is connected 
 if (is_bound(nvoHeater)) 
  nvoHeater.state = ST_ON; 
} 

 

You can also use the is_bound( ) function to check whether an input network 
variable is connected (and thus has a valid value) before you use it. 

EXAMPLE: 

network input SNVT_temp_f nviTemp; 
 
void process_heater(void) { 
 // runs heater only if connected: 
 if (is_bound(nviTemp)) { 
  … 
 } 
} 

 

The is_bound( ) function only indicates whether the network variable is 
bound or unbound.  Another device, such as a network tool for monitoring 
and control, may still attempt to obtain the current value of an unbound 
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output network variable by polling, or may still update an unbound input 
network variable by setting its value without a bound connection.  Thus, 
reducing the application’s processing requirements by conditional processing 
based on the is_bound( ) function should be limited to those devices that 
cannot operate without a bound connection, such as devices implementing a 
closed-loop system. 

 

Network Variable Events 
Chapter 2, Focusing on a Single Device, introduced the event scheduling 
mechanism and discussed a number of predefined events.  Four predefined 
events are specifically related to network variables: 

 nv_update_completes [(network-var-reference)] 
nv_update_fails [(network-var-reference)] 
nv_update_occurs [(network-var-reference)] 
nv_update_succeeds [(network-var-reference)] 

The nv_update_occurs event applies only to input network variables.  The 
other three events (nv_update_completes, nv_update_fails, 
nv_update_succeeds) apply to output network variables when they are 
updated, and to input network variables when they are polled. 

The event expression may be qualified with a network-var-reference, which 
can be a network variable name, a network variable array element (as in 
network-var[index]), a network variable array name, or a range of network 
variables.  If the event is qualified by an array name, the event occurs once 
for each element for which the event is applicable. 

The form of the event that permits a range of network variables has the 
syntax shown below.  The range consists of two network variable or network 
variable element references, separated by two consecutive dot characters ".." 
indicating the range.  This syntax applies to all four event-names shown 
above.  Each network variable is assigned a global index by the compiler.  An 
array of network variables is assigned consecutive indices, one for each 
element.  The range event applies to all network variables whose global 
indices are between the global index for network-var-1 and network-var-2, 
inclusive.  The global index of network-var-1 must be less than the global 
index of network-var-2. 

 event-name [(network-var-1 .. network-var-2)] 

This section provides an introduction to these events.  For convenience, we 
refer to them as network variable completion events, since they all pertain to 
whether or not a network variable update or poll has completed.  See also 
Chapter 6, How Devices Communicate Using Application Messages, which 
includes more detailed information on using these completion events. 
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The nv_update_occurs Event 
When a new value has been received for an input network variable, the 
nv_update_occurs event evaluates to TRUE.  If a specific network variable 
is not used to qualify the event, it evaluates to TRUE for any network 
variable update on that device. 

 

NOTE:  See description of the nv_in_addr built-in variable in the Neuron C 
Reference Guide. 

 

The nv_update_occurs event is used in many situations.  For example, a 
lamp program could use this event as follows: 

// Use the network variable’s value 
// as the new state for the lamp 
 
network input SNVT_switch nviLampState; 
 
when (nv_update_occurs(nviLampState)) { 
 io_out(ioLED, nviLampState.state); 
} 

In the following example, when a thermostat device receives a new 
temperature setpoint, it checks the current temperature and turns the heater 
on or off if necessary: 

network input SNVT_temp nviSetpoint; 
network output SNVT_switch nvoHeater; 
network output SNVT_temp nvoCurrentTemp; 

when (nv_update_occurs(nviSetpoint)) { 
   nvoHeater.state = nvoCurrentTemp < nviSetpoint; 
} 

The nv_update_succeeds and nv_update_fails Events 
When a network variable update or poll fails, the nv_update_fails event 
evaluates to TRUE.  If no network variable is specified for the event, it 
evaluates to TRUE for any network variable update or poll that failed on that 
device.  If multiple network variables are specified, the event can be TRUE 
once for each network variable update or poll that failed. 

Similarly, the nv_update_succeeds event evaluates to TRUE whenever an 
output network variable update has been successfully sent or polled values 
have been received from all the writers. 
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You can use the nv_update_fails event for any output network variables.  
The following example illustrates using the nv_update_fails event with a 
single output network variable: 

network output SNVT_switch nvoSwitch; 
 
when (nv_update_fails(nvoSwitch)) 
{ 
   // take some corrective action  
} 

Here is an example of testing for network update failure and success: 

boolean heater_failed; 
network output SNVT_switch nvoHeater; 

when (nv_update_fails(nvoHeater)) 
{ 
   heater_failed = TRUE;  
        // remember update failure  
} 
 
when (nv_update_succeeds(nvoHeater)) 
{ 
   heater_failed = FALSE;  
        // heater device received update  
} 

The nv_update_completes Event 
The nv_update_completes event evaluates to TRUE whenever an output 
network variable update or poll either succeeds or fails.  An example of 
testing for network variable update completion is shown below: 

#include <io_types.h> 
#define C_TO_K 2740 
IO_7 input ontime invert clock(2) io_temperature_sensor; 
network output SNVT_temp nvoCurrentTemp; 

when (nv_update_completes(nvoCurrentTemp)) 
{ // latest temperature has been sent out 
 ontime_t sensor_value; 
 
 // send another update 
 sensor_value = io_in(io_temperature_sensor); 
 nvoCurrentTemp = (sensor_value * 221) / 642 
      + 211 + C_TO_K;  
  // tenths of a degree,C 
} 

If a program checks for nv_update_completes or nv_update_succeeds for 
any network variable, the program is said to use comprehensive completion 
event testing.  See Comprehensive Completion Event Testing later in this 
chapter for the rules you should follow. 
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Sample Program 
The following program shows the use of network variable declarations and 
event processing.  Excerpts of this program appear in the preceding 
paragraphs. 

// therm.nc:  Sample program for a thermostat device 
// that is connected to two heater devices and a 
// temperature setpoint device. 

#include <io_types.h> 
#define C_TO_K 2740 

// temperature sensor I/O object declaration  
IO_7 input ontime invert clock(2) io_temperature_sensor; 
IO_2 output bit io_failure_light; 
   // LED for heater failure  

 
// Example declarations of network variables using SNVTs 
network input SNVT_temp nviSetpoint; 
   // tenths of a degree C+2740, 
   // received from setpoint device 
 
network output SNVT_switch nvoHeater1; 
   // control heaters (on/off) 
 
network output SNVT_switch nvoHeater2; 
 
network output SNVT_temp nvoTemp;  
   // exported to other devices 

 
// Function prototype declaration 
void heaters_on(boolean state); 

 
// Example of receiving a network variable update event 
when (nv_update_occurs(nviSetpoint)) 
{ 
   heaters_on(nvoTemp < nviSetpoint); 
} 

 
// Example of testing network variable update completion 
when (nv_update_completes(nvoTemp)) 
{ 
   ontime_t sensor_value; 
 
   //  latest temperature has been sent out on the network 
   //  send another update  
   sensor_value = io_in(io_temperature_sensor); 
   nvoTemp = (sensor_value * 221) / 642 
     + 211 + C_TO_K;  
         // tenths of a degree,C 
} 
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// Example of testing NV update failure and success 
boolean heater_device_failed;  
        // true if we cannot communicate with heater 
 
when (nv_update_fails(nvoHeater1)) 
when (nv_update_fails(nvoHeater2)) 
{ 
   heater_device_failed = TRUE; // remember device failure 
   io_out(io_failure_light, 0); // turn on error indicator 
} 

 
when (nv_update_succeeds(nvoHeater1)) 
when (nv_update_succeeds(nvoHeater2)) 
{ 
   heater_device_failed = FALSE;  
               // heater device received update  
   io_out(io_failure_light, 1);  
               // turn off error indicator  
} 

 
// Example of polling a network variable. 
//(See section on Polling, later in this chapter) 
// when this device starts running, get latest value of 
// setpoint 
 
when (reset) 
{ 
   poll(nviSetpoint); 
   io_out(io_failure_light, 1);    // clear error light 
   heater_device_failed = FALSE; 
} 

 
// Example of using is_bound() function 
// control heaters 

 
void heaters_on (boolean state) 
{ 

   // update primary heater NV 
   nvoHeater1.state = state; 

   if (is_bound(nvoHeater2)) 
      // update secondary heater NV only if it is bound 
      nvoHeater2.state = state; 
} 
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Synchronous Network Variables 

When an output network variable is updated, the Neuron firmware ensures 
that the most recent value assigned to an output is propagated and received 
as an event by any connected input network variables.  Thus, if multiple 
updates are made to an output network variable in a short period of time, 
only the last value assigned is ensured to be propagated and received as an 
event at the input network variables.  You can specify that all updates to an 
output network variable must be propagated and received as events by using 
the synchronous subclass of network variables. 

Declaring Synchronous Network Variables 
To declare a synchronous network variable, include a synchronized or sync 
keyword in its declaration.  An example declaration is shown below: 

network output sync SNVT_temp nvoRelativeTemp; 

In the following example, the network variable is declared as synchronous so 
that all the updates are sent.  (If more than one alarm goes off, we want to 
receive notice of all alarms, not just the most recent one.) 

// ensure multiple alarms are handled serially 
network output sync SNVT_alarm nvoAlarm; 

Synchronous output network variables do not have to be connected to 
synchronous input network variables.   All input network variables operate 
synchronously regardless of whether the synchronous attribute was assigned. 

Synchronous vs. Nonsynchronous Network Variables 
For most applications, nonsynchronous network variables are adequate and 
should be used when possible.  Many applications need the most recent value, 
not all of the values, for a given network variable.  Widespread use of 
synchronous network variables that are frequently updated could delay 
processing if the program frequently runs out of buffers (see Preemption 
Mode in this chapter).  Depending on the device buffering, channel speed, 
and congestion of the network, application performance could be adversely 
affected by extensive use of synchronous network variables. 

If a program is required to use relative (or delta) data values, synchronous 
network variables may be necessary to preserve the intermediate data 
values.  For programs using absolute data values, nonsynchronous network 
variables are usually sufficient. 
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A nonsynchronous output network variable goes out on the network when the 
next output buffer is available.  If the program updates the variable again 
before that time, only the most recent value goes out.  A synchronous output 
network variable causes the application to wait for an output buffer if none is 
available.  In this case, the scheduler enters preemption mode (see 
Preemption Mode in the next section). 

For input network variables, an incoming network variable update always 
results in an event for the application.  All input network variables operate 
synchronously regardless of whether the synchronous attribute was assigned. 

Updating Synchronous Network Variables 
Synchronous network variables are always updated at the end of each critical 
section.  If a buffer is not available, the scheduler waits for one.  
Nonsynchronous network variables, on the other hand, are updated at the 
end of critical sections when the scheduler has application buffers available 
to do so.  Unlike synchronous network variables, they will not always be 
updated at the end of the next critical section.  As already pointed out, where 
multiple updates occur, the intermediate values may never be propagated 
across the network. 

Preemption Mode 
The scheduler enters preemption mode when a synchronous output network 
variable update occurs and there is no application output buffer available.  
Since the system must send out the synchronous output network variable 
update, it processes completion events, incoming msg_arrives or 
nv_update_occurs events, and response events until an application output 
buffer becomes available. 

Other events are not processed, unless the when clause for the event is 
preceded by the keyword preempt_safe.  (See Chapter 2, Focusing on a 
Single Device, for syntax of a when clause.)  See Chapter 6, How Devices 
Communicate Using Application Messages, for a further discussion of 
preemption mode, and when to use the preempt_safe keyword. 

A delay in application processing thus occurs when the system enters 
preemption mode.  The length of the delay depends on how long it takes for 
an application output buffer to become free.  This delay depends on network 
traffic, channel bit rate, and other factors. 

Processing Completion Events for Network 
Variables 

For network variables, there are two modes of checking for completion 
events:  partial completion event testing, and comprehensive completion 
event testing.  For message tags (see Chapter 6, How Devices Communicate 
Using Application Messages), only comprehensive completion event testing is 
available. 
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Partial Completion Event Testing 
If you choose to use partial completion event testing in your program, you 
then have two choices of how to process completion events for each network 
variable: 

1 Do not check for any completion events. 

2 Check for only the failure event (nv_update_fails). 

For example, within a program containing two network variables: 

• Network Variable 1: Program checks for no completion events. 

• Network Variable 2: Program checks for failure only. 

Comprehensive Completion Event Testing 
Comprehensive completion event testing offers the same set of choices for 
network variable completion events that is available for processing message 
tag completion events (see Chapter 6, How Devices Communicate Using 
Application Messages).  If you choose to use comprehensive completion event 
testing in your program, you then have three choices of how to process 
completion events for each network variable: 

1 Do not check for any completion events. 

2 Check for the failure and the success events  
 (nv_update_fails, nv_update_succeeds). 

3 Check for the update completion event (nv_update_completes). 

For example, the following is an acceptable strategy within a program 
containing three network variables: 

• Network Variable 1: Program checks for no completion events. 

• Network Variable 2: Program checks for failure and success. 

• Network Variable 3: Program checks for update completion only. 

 

NOTE:  If you choose to use comprehensive completion event testing features 
(with network variables), all completion code processing for network 
variables must be comprehensive completion event testing.  (This does not 
mean that events must be checked for all network variables.  It only means 
that a single program can use either partial or comprehensive completion 
event testing, but may not intermix both techniques.)  The Neuron C 
compiler detects use of the comprehensive event feature on a per-program 
basis. 
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Tradeoffs 
Using comprehensive completion event testing for processing network 
variable completion events within a program requires more code space and is 
less efficient than using partial completion event testing.  If you choose a 
comprehensive completion event testing feature, such as checking 
nv_update_completes, you are limited to comprehensive completion event 
testing features for whichever network variable's events in which you are 
interested.  For example, within a program using comprehensive completion 
event testing, you cannot simply check for nv_update_fails, because that 
feature applies only to partial completion event testing. 

Polling Network Variables 
As described earlier in this chapter, a network variable update is initiated 
when a writer device assigns a value to a network variable.  In this usual 
case, the network variable update is initiated by a writer device. 

A reader device can also request that the writer device send its latest value 
for a network variable.  The term polling refers to this process in which a 
network variable update is requested by a reader device. 

A device’s program may poll any input network variables at any time, 
including initial power-up and when transitioning from offline to online.  
Polling on initial power-up can cause network congestion if many devices are 
powered-up at the same time, and they all do power-up polling. 

Polling an input network variable from your program requires the network 
binder to apply a different scheme when connecting output network variables 
between writer and reader devices, requiring additional address table entries 
to be used on the reader device.  If you add polling to an existing application 
that did not previously use polling, you must create a new device interface 
(XIF) file for the device, and import the new device interface file into any 
network tools that used the previous version. 

Neuron C Programmer's Guide 3-21 



The reader device makes its request through the poll( ) function.  The syntax 
is shown below: 

poll ([network-var]); 

network-var is an input network variable identifier. 

If no network variable is specified, all input network variables for the device 
are polled.  An explicit polled declaration is not allowed on an input network 
variable. 

The network-var identifier may also be a network variable array identifier, or 
an element of a network variable array, as in network_var[index].  If a 
network variable array name is used without an index, all elements of the 
array are polled. 

The new value resulting from the poll is not immediately available after the 
poll( ) function call.  Use a qualified nv_update_occurs event in a when 
clause or some other conditional statement to obtain the new, polled value. 

EXAMPLE: 

mtimer tDelayedPolling; 
 
network input SNVT_switch nviCooling; 
 

when (reset) { 
   // set up timer for delayed power-up polling: 
   tDelayedPolling = random(); 
   ... // other reset processing 
} 
 
 
when (timer_expires(tDelayedPolling)) { 
   poll(nviCooling); 
   ... 
} 
 
when (nv_update_occurs(nviCooling)) { 
   ... 
} 
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Here is a lamp program that includes a poll of the input network variable 
nviLampState after a reset event.  The device obtains the most recent value 
of nviLampState, and then uses that value after reset. 

// LAMP.NC -- Sample lamp actuator program, 
// polls the switch on reset 
 
///////////////// Network Variables //////////////////// 
network input SNVT_switch nviLampState = {0,0}; 

 
//////////////////////// Constants ///////////////////// 
#define LED_ON      1 
#define LED_OFF     0 

 
/////////////////////// I/O Objects //////////////////// 
IO_0 output bit ioLED = LED_OFF; 

 
/////////////////////////// Tasks ////////////////////// 
// NV update task -- handle update to lamp state 
// Use the network variable’s value as the new state 
// for the lamp 
when (nv_update_occurs(nviLampState)) { 
 io_out(ioLED,  
  nviLampState.value && nviLampState.state 
   ? LED_ON : LED_OFF); 
} 

 
//////////////////////////////////////////////////////// 
// Reset task -- request last value from any switch attached 
when (reset) {  
 poll(nviLampState); 
} 
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Declaring a Network Variable as Polled 
Poll requests are initiated by reader devices.  A writer device may assign 
values to its network variables frequently, but the reader device may want to 
receive these updates only at specified times.  The output network variable in 
this case should be declared as polled: 

network output polled type netvar; 

In this special case, the output network variable’s value is never propagated 
as a result of its value changing.  Instead, the output network variable’s 
value is sent only in response to a poll request from a reader device, or if the 
propagate( ) function is called for that network variable. 

EXAMPLE: 

A lamp and switch example could also be written to use explicit polling of 
the switch network variable.  Complete programs illustrating polling are 
shown below. 

 

Listing 3.1  Lamp Program Using Polling 

// LAMP.NC -- Sample lamp actuator program, 
// polls the switch periodically 

 
///////////////////// Network Variables //////////////// 
network input SNVT_switch nviLampState = {0,0}; 

 
//////////////////////// Constants ///////////////////// 
#define LED_ON      1 
#define LED_OFF     0 

 
/////////////////////// I/O Objects //////////////////// 
IO_0 output bit ioLED = LED_OFF; 

 
//////////////////////// Timers //////////////////////// 
mtimer tmPoll; 

 
/////////////////////////// Tasks ////////////////////// 
//   NV update task -- handle update to lamp state 
//   Use the network variable’s value as the new 
// state for the lamp 
when (nv_update_occurs(nviLampState)) { 
 io_out(ioLED,  
  nviLampState.value && nviLampState.state 
   ? LED_ON : LED_OFF); 
 tmPoll = 500;  // Wait 500 msec before polling again 
} 
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//////////////////////////////////////////////////////// 
// Reset and timer task 
// request last value from any switch attached 
when (reset) 
when (timer_expires(tmPoll) ) {  
 poll(nviLampState); 
} 

Listing 3.2  Switch Program Using Polling 

// SWITCH.NC -- Sample switch sensor program 
// Only transmits switch state when polled by the lamp 

 
///////////////////// Compiler Pragmas ///////////////// 
#pragma enable_io_pullups 

 
//////////////////// Network Variables  //////////////// 
network output polled SNVT_switch nvoSwitchState = {0,0}; 

 
//////////////////////// Constants 
////////////////////////// 
#define BUTTON_DOWN 1 
#define BUTTON_UP   0 

 
/////////////////////// I/O Objects //////////////////// 
IO_4 input bit ioButton = BUTTON_UP; 

 
/////////////////////////// Tasks ////////////////////// 
// I/O task -- handle pushbutton down event 
// Just toggle the network variable (nvoSwitchState). 
// In this case, no message is sent until a poll request 
// is received from a reader device 
when (io_changes(ioButton) to BUTTON_DOWN) 
{     // button pressed 
 nvoSwitchState.state = !(nvoSwitchState.state); 
 nvoSwitchState.value = nvoSwitchState.state ? 100 : 0; 
}     // toggle state 
 
when (reset) { 
 io_change_init(ioButton); 
 ... // other reset processing 
} 
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Explicit Propagation of Network Variables 
As described earlier in this chapter, a network variable update is initiated 
when a writer device assigns a value to a network variable.  In this usual 
case, the network variable update is initiated implicitly by code generated by 
the compiler as a result of the variable's modification. 

An application can also explicitly request that an output network variable be 
sent over the network.  This is commonly used in the implementation of 
“heartbeats,” regularly scheduled repeated propagation of the most recent 
value, as supported by many interoperable devices.  This technique may also 
be useful in situations where the variable is not directly modifiable, or it may 
also result from using pointers to network variables.  The term propagation 
refers to this process in which a network variable update is explicitly 
initiated by the output device. 

A device’s program may propagate any output network variables at any time, 
including initial power up and when transitioning from offline to online.  
Network variable propagation on initial power-up can cause network 
congestion if many devices are powered-up at the same time, and they all do 
power-up propagation. 

The application makes its request through the propagate( ) function.  The 
syntax is shown below: 

propagate ([network-var]); 

network-var Specifies an output network variable identifier. 

If no network variable is specified, all output network variables for the device 
are propagated.  The network-var identifier may also be a network variable 
array identifier, or an element of a network variable array, as in 
nv_array[index].  If a network variable array name is used without an index, 
all elements of the array are propagated. 

The propagate( ) function can be used to send the value of an output 
network variable that is declared const, and thus cannot be assigned to.  
Since assignment triggers the compiler to implicitly cause network variable 
propagation, but a const variable cannot be assigned to, an explicit 
mechanism for propagation is required.  See the documentation of the 
propagate( ) function in the Neuron C Reference Guide for more information. 

EXAMPLE: 

// The variable below is a special node ID 
network output const unsigned long nodeID = 24221; 
 
when (some-special-event) 
{ 
   propagate(nodeID); 
} 
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The propagate( ) function may also be useful in certain situations where 
pointers to network variables are used.  For example, assume that some 
function, f( ), calculates a complicated set of values and places them in a 
network variable structure.  Assume the function is designed to operate on 
several similar such variables within a device, thus the function is passed a 
pointer to each variable. 

For efficiency, it is best to code this function to operate on the variables via a 
pointer reference.  However, the Neuron C compiler cannot distinguish 
between a pointer to a regular, internal variable, and a pointer to a network 
variable.  Thus, updates to a network variable via a pointer do not trigger an 
implicit propagation, and an explicit propagation is required. 

Furthermore, because of the inability to distinguish pointers to network 
variables, Neuron C treats pointers to network variables as pointers to const 
data, thus avoiding the problem of a modification to the variable via the 
pointer.  In Neuron C, removal of the const attribute is not normally 
permitted.  However, the #pragma relaxed_casting_on directive directs 
the compiler to permit this cast.  Casting can either be explicit, or implicit by 
variable assignment or function parameter passing. 

EXAMPLE: 

typedef struct complex_struct { 
 .... // struct definition here 
} complex_type; 
 
network output complex_type nv1, nv2, nv3; 
 
void f(complex_type *p) { 
 .... // calculations & modification of (*p). 
 .... // Neuron C cannot distinguish between pointers 
 .... // to network variables and pointers to 
 .... // non-network variables. 
 .... // Thus, any modifications here do not cause any 
 .... // propagation of an NV. 
} 

 
when (some-event) 
{ 
#pragma relaxed_casting_on 
 // Without pragma above, this would result in 
 // an error, because the address of a network 
 // variable is treated as 'const <type> *'. 
 // Passing such a type as the function parameter 
 // results in an implicit cast, since the function 
 // prototype defines the variable as '<type> *'. 
 f(&nv1); 
 propagate(nv1); // Explicit propagation needed 
   // since f() modified nv1 via pointer. 
 f(&nv2); 
 propagate(nv2); 
 f(&nv3); 
 propagate(nv3); 
} 
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Monitoring Network Variables 
A monitoring device is a LONWORKS device that receives data from many 
other devices.  The devices being monitored are typically identical.  For 
example, an alarm display device may monitor many alarm sensor devices.  
The sensor devices may all have a network variable output declared as a 
SNVT_switch output, and the monitor device may have a network variable 
input, declared as a SNVT_switch input. 

Typically, the monitor device waits for a change to its input network 
variable.  When a change occurs, it must identify which device originated the 
change.  The method of determining the source of a change depends on the 
method used to connect the sensor outputs to the monitor input. 

Following are a few options for the network monitor device; in the examples, 
the sensor devices all have a single SNVT_switch output network variable 
that must be monitored by the network monitor device: 

• Declare the network variable input as an array, and connect each element of 
the array to a different sensor.  Wait for an nv_update_occurs event for the 
entire array, and then use the nv_array_index built-in variable to 
determine which device originated the change. 

EXAMPLE: 

network input SNVT_switch nviAlarmArray[50]; 
SNVT_switch alarm_value; 
unsigned int  alarm_device; 

when (nv_update_occurs(nviAlarmArray)) 
{ 
 alarm_device =  nv_array_index; 
 alarm_value = nviAlarmArray[alarm_device]; 

 // Process alarm_device and alarm_value 
} 

This method is appropriate when the number of devices to be monitored does 
not exceed the network variable limits of the monitoring device – 62 for a 
Neuron hosted device; 4,096 for a host-based device. 

• Declare the network variable input as a single input on the monitor device, 
and declare the network variable outputs as polled outputs on the sensor 
devices.  Create a single connection with all the sensor outputs and the 
monitor input.  Explicitly poll each of the sensors using explicit addressing 
and explicit messages as described in the next chapter.  Since the devices are 
explicitly polled, the monitor device always knows the source of a network 
variable update. 

 This method is appropriate for any number of devices, as long as the delays 
introduced by the polling loop are acceptable for the application. 
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• Declare the network variable input as a single input and create a single 
connection with all the sensor outputs and the monitor input.  Wait for an 
nv_update_occurs event for the network variable input, and then use the 
nv_in_addr built-in variable to determine the source address of the device 
that originated the change.  Implement a configuration property array that is 
set by the device plug-in to identify the fanned-in devices.  Following is an 
example for the code on a network monitor device: 

EXAMPLE: 

network input SNVT_switch nviAlarm; 
SNVT_switch alarm_value; 
nv_in_addr_t alarm_device_addr; 

when (nv_update_occurs(nviAlarm)) { 
    alarm_device_addr = nv_in_addr; 
    alarm_value = nviAlarm; 
 // Process alarm_device_addr and alarm_value 
 // Look up alarm_device_addr in a configuration 
 // property set by a plug-in at installation time 
} 

This method is appropriate for any number of devices. 

The Neuron C Reference Guide describes the contents of the nv_in_addr 
built-in variable. 

Authentication 
Authentication is a special form of an acknowledged service between one 
writer device and from 1 to 63 reader devices.  Authentication is used by the 
reader devices to verify the identity of the writer device.  This type of service 
is useful, for example, if a device containing an electronic lock receives a 
message to open the lock.  By using authentication, the electronic lock device 
can verify that the “open” message comes from the owner, not from someone 
attempting to break into the system. 

Authentication doubles the number of messages per transaction.  
Authentication may be used with acknowledged updates or network variable 
polls.  It may not be used with unacknowledged or repeated updates.  An 
acknowledged message normally requires two messages, an update and an 
acknowledgment.  An authenticated message requires four messages, as 
shown in Figure 3.7.  This may affect system response time and capacity. 

The following sections describe how to set up devices to use authentication 
and how authentication works. 
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Setting Up Devices to Use Authentication 
To set up a device to use authenticated network variables or send 
authenticated messages, follow these steps: 

1 Declare the network variable as authenticated.  For application messages to 
be authenticated, specify TRUE in the authenticated field of the msg_out 
object. 

2 Specify the authentication key to be used for this device using a network tool.  
The LonMaker tool can be used to install a key during development. 

These steps are described in more detail in the following sections. 

Declaring Authenticated Variables and Messages 
For network variables, include the authenticated (or auth) keyword as part 
of the connection information.  The partial syntax is shown below.  For 
complete syntax of the bind-info clause, see the Neuron C Reference Guide. 

bind_info ( authenticated [(config | nonconfig)] ) 

 

NOTE:  The authenticated keyword can be abbreviated as auth.  Likewise, 
the nonauthenticated keyword can be abbreviated as nonauth. 

 

If you also include the config keyword in the declaration, network tools will 
be able to change the authentication status of this network variable after the 
device has been installed.  Include the nonconfig keyword to prevent the 
authentication status from being changed for this network variable. 

EXAMPLE: 

network output UNVT_boolean 
   bind_info(auth(nonconfig)) nvoSafeLock; 

With this declaration, authentication can never be turned off for updates of 
the nvoSafeLock network variable, because the declaration includes the 
nonconfig keyword. 

Specifying the Authentication Key 
All devices that read or write a given authenticated network variable 
connection must have the same authentication key.  This 48-bit 
authentication key is used in a special way for authentication, as described 
below. 

The key itself is transmitted to the device only during the initial 
configuration.  All subsequent changes to the key do not involve sending it 
over the network.  The network tool can modify a device’s key over the 
network, in a secure fashion, with a network management message. 
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How Authentication Works 
The following sequence describes an example of authentication.  Figure 3.7 
illustrates the process. 

1 Device A sends an update to a network variable declared as authenticated on 
Device B using the acknowledged service.  If Device A does not receive the 
challenge, it sends a retry of the initial update. 

2 Device B generates a 64-bit random number and returns, to Device A, a 
challenge packet that includes the 64-bit random number.  Device B then 
uses the encryption algorithm (built into the Neuron firmware) to compute a 
transformation on that random number using its 48-bit authentication key 
and the message data.  The transformation is stored in Device B.  

3 Device A then also uses the encryption algorithm (built in to the Neuron 
firmware) to compute a transformation on the random number (returned to it 
by Device B) using its 48-bit authentication key and the message data.  
Device A then sends this computed transformation to Device B. 

4 Device B compares its computed transformation with the number it receives 
from Device A.  If the two numbers match, the identity of the sender is 
verified, and Device B can perform the requested action and send its 
acknowledgment to Device A.  If the two numbers do not match, Device B 
does not perform the requested action and an error is logged in the error 
table. 

If the acknowledgment is lost and Device A tries to send the same message 
again, Device B remembers that the authentication was successfully 
completed, and acknowledges it again. 

Device B
(reader)

1

2

3

4

ACKD Message or

Request

Challenge

Reply to challenge

ACK or Response

Device A
(Writer)

 

Figure 3.7  Authentication Process 

If Device A attempts to update an output network variable connected to 
multiple readers, each receiver device generates a different 64-bit random 
number and sends it in a challenge packet to Device A.  Device A must then 
transform each of these numbers and send a reply to each receiver device. 
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The principal strength of authentication is that it cannot be defeated by 
simple record and playback of commands that implement the desired 
functions (for example, unlocking the lock).  Authentication does not require 
that the specific messages and commands be secret, since they are sent 
unencrypted over the network, and anyone who is determined can read those 
messages. 

It is good practice to connect a device directly to a network tool with no other 
devices on the same network when installing its authentication key the first 
time.  This prevents the key from being sent over a large network where an 
intruder might detect it.  Once a device has its authentication key, a network 
tool can modify the key, over the network, by sending an increment to be 
added to the existing key. 

 

Changeable-Type Network Variables 
You can create network variables that support their type and size being 
changed at installation time.  This is called a changeable-type network 
variable. 

You can use a changeable-type network variable to implement a generic 
functional block that works with different types of inputs and outputs.  For 
example, you can create a general-purpose device that can be used with a 
variety of sensors or actuators, and then create a functional block that allows 
the integrator to select the network variable type depending on the physical 
sensor or actuator attached to the device at installation time. 

You can support type changing to any network variable type defined in a 
resource file (i.e., any SNVT or UNVT in a resource file).  You can only create 
a changeable-type network variable if the network variable is a member of a 
functional block.  An integrator will typically use a plug-in that you create to 
change network variable types.  A network variable cannot be connected to 
other network variables when its type is changed (since the change would 
make the connection invalid). 

The NodeBuilder Code Wizard generates code that contains a framework for 
supporting changeable-type network variables, see Using a Changeable-Type 
Network Variable in the NodeBuilder User’s Guide for details. 

The following details all that is required to create a changeable-type network 
variable without the use of the NodeBuilder Code Wizard, followed by a 
detailed discussion of the requirements that the application must meet to 
support the changeable-type network variables.  The chapter completes with 
a commented source code example. 
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To create a changeable-type network variable, follow these steps: 

1 Declare the network variable with the changeable_type keyword.  This 
keyword results in information being provided in the device interface 
description.  This information specifies that the variable's implementation 
permits the type of the network variable to be changed by a network tool.  
You must declare an initial type for the network variable, and the size of the 
initial type must be equal to the largest network variable size that your 
application supports. 

 For example, the following declaration declares a changeable-type output 
network variable, with an initial type of SNVT_volt_f.  This type is a 4-byte 
floating-point value, so this network variable can support changes to any 
network variable type of 4 or less bytes. 

network output changeable_type SNVT_volt_f  nvoValue; 

2 Set the changeable-interface bit in the program ID for the device template.  
You can set this bit by setting Has Changeable Interface in the standard 
program ID calculator when you create the device template as described in 
the NodeBuilder User’s Guide. 

3 Declare a SCPTnvType configuration property that applies to the 
changeable-type network variable.  See Chapter 4, Using Configuration 
Properties to Configure Device Behavior, for more information about 
configuration properties.  This configuration property is used by network 
tools to notify your application of changes to the network variable type. 

 Your application will require notification of changes to this configuration 
property.  You can provide this notification by declaring the configuration 
property with the reset_required or object_disabled modifier and 
checking the SCPTnvType value in the director function, or you can 
implement configuration property access via FTP and check in the 
stop_transfer( ) function whether the SCPTnvType value has been 
modified.  Alternatively, you can implement the SCPTnvType configuration 
property as a configuration network variable and check the current type in 
the task for the nv_update_occurs(cpnv-name) event. 

 For example, the following code declares a changeable-type output network 
variable with its SCPTnvType configuration property. 

EXAMPLE: 

SCPTnvType cp_family cp_info(reset_required) nvType; 
 
network output changeable_type SNVT_volt_f nvo1 
 nv_properties { nvType }; 
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4 You can optionally declare a SCPTmaxNVLength configuration property 
that applies to the changeable-type network variable.  This configuration 
property can be used to inform network tools of the maximum type length 
supported by the changeable-type network variable.  This value is a constant, 
so declare this configuration property with the const modifier.  For example, 
the following code adds a SCPTmaxNVLength configuration property to the 
example in the previous step. 

EXAMPLE: 

SCPTnvType cp_family cp_info(reset_required) nvType; 
const SCPTmaxNVLength cp_family nvMaxLength; 
 
network output changeable_type SNVT_volt_f nvo1 
 nv_properties { nvType, 
       nvMaxLength=sizeof(SNVT_volt_f) }; 

5 Implement code in your Neuron C application to process changes to the 
SCPTnvType value.  The required code is described in the following section. 

6 Implement code to provide information about the current length of the 
network variable to the Neuron firmware.  This is detailed under Processing 
a Size Change, later in this chapter. 

7 Implement your application’s algorithm such that it can process all possible 
types the changeable-type network variable might use at runtime.  An 
example and fragment for such code is shown in the Changeable Type 
Example at the end of this chapter. 

6 The LonMaker browser provides your integrators with a user interface to 
change network variable types.  You will typically want a custom interface 
for integrators to change network variable types on your device.  For 
example, the custom interface may restrict the available types to the types 
supported by your application, thus preventing configuration errors.  To 
provide a custom interface, implement code in your plug-in to provide an 
interface for users to change the network variable type.  The required plug-in 
code is discussed in the LNS Plug-in Programmer’s Guide. 

 

WARNING:  A side effect of declaring any network variables as changeable-
type network variables is that all of the network variable self-identification 
data in the device will be placed in writeable memory.  This may make it 
difficult to fit such an application into the memory of a device based on a 
Neuron 3150 Chip or a 3150 Smart Transceiver if the device has no writeable 
external EEPROM or flash memory for the application. 
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Processing Changes to a SCPTnvType CP 
When a plug-in or the LonMaker browser changes the type of a network 
variable, it informs your application of the change by writing a new value to 
the SCPTnvType configuration property associated with the network 
variable.  The definition of the SCPTnvType type is provided below: 

typedef struct { 
 unsigned short  type_program_ID[8]; 
 unsigned short  type_scope; 
 unsigned long  type_index; 
 nv_type_category_t type_category; 
 unsigned short  type_length; 
 signed long   scaling_factor_a; 
 signed long   scaling_factor_b; 
 signed long   scaling_factor_c; 
} SCPTnvType; 

When your application detects a change to the SCPTnvType value, it must 
determine if the change is valid as described in Validating a Type Change 
below.  If it is, it must process the change as described in Processing a Type 
Change below.  On the other hand, if the application determines that the 
change is not valid or supported, it must report an error as described in 
Rejecting a Type Change.  If the change is valid and supported by your 
application, and the change also changes the size of the network variable, 
your application must implement the size change as described in Processing a 
Size Change below. 

Validating a Type Change 
There are several ways that your application can determine if it supports a 
particular SCPTnvType value.  It can look for specific types as specified by 
the type_program_ID, type_scope, and type_index fields.  Alternatively, 
it can look for specific type categories as defined by the type_category and 
type_length fields. 

The type_program_ID and type_scope values specify a program ID 
template and a resource scope that together uniquely identify a resource file 
set.  The type_index value identifies the network variable type within that 
resource file set.  If the type_scope value is 0, the type_index value is a 
SNVT index.  The type_program_ID, type_scope, and type_index values 
uniquely identify a type to your application as well as to any network tools 
that wish to determine the current type, or modify the type, of the network 
variable to which the property applies.  Your application can ignore these 
values if the remaining fields in the SCPTnvType structure provide 
sufficient information for the application. 
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The type_category enumeration is defined in the <snvt_nvt.h> include file 
as follows: 

typedef enum nv_type_category_t { 

 /*  0 */   NVT_CAT_INITIAL = 0, // Initial (default) type 
 /*  1 */ NVT_CAT_SIGNED_CHAR, // Signed Char 
 /*  2 */ NVT_CAT_UNSIGNED_CHAR, // Unsigned Char 
 /*  3 */ NVT_CAT_SIGNED_SHORT, // 8-bit Signed Short 
 /*  4 */ NVT_CAT_UNSIGNED_SHORT, // 8-bit Unsigned Short 
 /*  5 */ NVT_CAT_SIGNED_LONG, // 16-bit Signed Long 
 /*  6 */ NVT_CAT_UNSIGNED_LONG, // 16-bit Unsigned Long 
 /*  7 */ NVT_CAT_ENUM, // Enumeration 
 /*  8 */ NVT_CAT_ARRAY, // Array 
 /*  9 */ NVT_CAT_STRUCT, // Structure 
 /* 10 */ NVT_CAT_UNION, // Union 
 /* 11 */ NVT_CAT_BITFIELD, // Bitfield 
 /* 12 */ NVT_CAT_FLOAT, // 32-bit Floating Point 
 /* 13 */ NVT_CAT_SIGNED_QUAD, // 32-bit Signed Quad 
 /* 14 */ NVT_CAT_REFERENCE, // Reference 
 /* -1 */ NVT_CAT_NUL = -1 // Invalid Value 
} nv_type_category_t; 

This enumeration describes the type, stating whether it is a signed short, or 
floating-point, or structure, for example, but not providing information about 
structure or union fields or other similar details.  The type_length field is 
necessary to provide the number of bytes of a structure or union type, though 
it is set for all types.  To support all scalar types, test for a type_category 
value between NVT_CAT_SIGNED_CHAR and NVT_UNSIGNED_LONG, 
plus NVT_CAT_SIGNED_QUAD.  To also support floating point types, also 
test for a type_category value of NVT_FLOAT. 

The SCPTnvType configuration property may be shared between multiple 
changeable-type network variables.  In this case, the application must make 
sure to process all network variables from the property’s application set — as 
SCTPnvType applies to all these network variables, so does the type change 
request. The type change may only be accepted if all related network 
variables can perform the required change. 

Thus, an application that shares a SCPTnvType property among multiple 
network variables must also reject the type change request if any of the 
related network variables is currently bound.  Use is_bound( ), discussed 
earlier in this chapter, to confirm that none of the affected network variables 
is bound, prior to accepting the type change. 

Processing a Type Change 
When the application detects a type change request and recognizes the type 
detailed in the related SCPTnvType property as a supported type, and also 
confirms all affected network variables can perform the change, the 
application performs the type change. 
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To perform a type change that does not change the size of the network 
variable, your application must do nothing but memorize the current type 
details.  A different part of the application, the type-independent 
implementation of your application’s algorithm, will query these details as 
and when required, and process the network variable data accordingly.  The 
processing required in the type-independent implementation of the 
application depends on the range of types supported by your application.  For 
example, if your application only supports changing between different 
floating-point types, no additional processing may be required.  If your 
application supports changing between different scalar types, it may require 
the use of scaling factors and network variable type length to convert the raw 
network variable value to a scaled value.  For example, the SNVT_lev_cont 
type is an unsigned short value that represents percentages from 0 to 100 
percent, with a resolution of 0.5%.  The actual data values (also called raw 
values) are in the variable range from 0 to 200.  The scaling factors for 
SNVT_lev_cont are defined as a=5, b= -1, c=0.  To convert from raw data to 
scaled fixed-point data, the following formula may be used: 

scaled = (a * (10 ** b) * (raw + c)) 

Your application can convert the raw data of a changeable type input 
network variable, internally, to an actual scaled value for use as a floating-
point data item, for example, using the above formula.  To convert the data 
back to a raw value for an output network variable, use the following 
inverted scaling formula: 

raw = (scaled / (a * (10 ** b))) - c 

You can use cast operations and pointer manipulations to handle type 
changes.  See Changeable Type Example below for an example. 

If a network variable type or size is changed and that network variable is a 
member of an inheriting configuration property’s application set, and that 
property is implemented as a configuration network variable, then the 
application must process the same type and/or length changes that were 
performed on the network variable for the configuration network variable. 

However, if the configuration property is implemented within a configuration 
file, no change to the configuration file is required.  The configuration file 
states the configuration property’s initial and maximum size (in the CP 
documentation-string length field), and LNS will derive the current and 
actual type for type-inheriting CPs from the associated network variable. 

Your application must always support the NVT_CAT_INITIAL type 
category.  If the requested type is of that category, your application must 
ignore all other content of the SCPTnvType configuration property and 
change the related network variable’s type back to its initial type.  The 
network variable’s initial type is the type the network variable was declared 
with in Neuron C, SNVT_volt_f in the earlier example. 
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Processing a Size Change 
If a supported change to the SCPTnvType configuration property results in 
a change in the size of a network variable type, your application must 
provide code to memorize the current length of the network variable.  It must 
further provide code to inform the Neuron firmware about the current length 
of the changeable-type network variable.  The current length information 
must be kept in non-volatile storage, but details of the required 
implementation depend on the chosen mechanism for supporting the Neuron 
firmware. 

Two such mechanisms are supported, a legacy one called the nv_len method, 
and a more robust NV length override system image extension method.  

You can explicitly set and maintain the new length of the network variable 
using the built-in nv_len property of the network variable.  You can access 
and modify the built-in nv_len property as shown below: 

EXAMPLE OF LEGACY NV_LEN PROPERTY: 

size_t oldNVLen, newNVLen; 
oldNVLen = nv-name::nv_len; 
nv-name::nv_len = newNVLen; 
 

WARNING:  When the Neuron C compiler detects use of the nv_len 
property to modify a network variable's length, it requests the linker to place 
the network variable fixed configuration table in writeable memory.  This 
may make it difficult to fit such an application into the memory of a device 
based on a Neuron 3150 Chip or an FT 3150 Smart Transceiver if the device 
has no writeable external memory for the application, such as EEPROM or 
flash memory. 

 

Starting with version 14, the Neuron firmware implements an NV length 
override system image extension that is managed by the application.  
Whenever the firmware needs the length of a network variable, it calls the 
get_nv_length_override( ) system image extension to get it.  Compared to 
writing to the nv_len property, this new method provides more reliable 
updates to network variable sizes, since the old method could cause a device 
to go applicationless if a power failure occurred in the middle of a network 
variable size update. 

You can enable the NV length override system image extension with the 
following compiler directive: 

#pragma system_image_extensions nv_length_override 

Using this compiler directive together with a version of the Neuron firmware 
that does not support system extensions causes an NLD#477linker error.  
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To implement a NV length override system image extension, provide a 
function with the following prototype: 

unsigned get_nv_length_override(unsigned uNvIndex); 

The get_nv_length_override( ) function returns the current length of the 
network variable with the index specified in the argument, or 0xFF to 
indicate that the type has not been changed and the network variable’s 
initial length is still valid. 

The system image extension method only works with version 14 firmware, or 
newer.  To support development of applications that will use the best possible 
method depending on the target hardware, you can use conditional 
compilation to support both methods.  This is, for example, used by the 
NodeBuilder Code Wizard to allow for the LTM-10A device, which is typically 
used during development, to exercise and implement support for changeable-
type network variables.  The changeable-type example, later in this chapter, 
implements such a strategy. 

Whenever possible, the system image extension technique should be used 
owing to its more robust implementation.  However, a compiler directive is 
provided to permit the use of the system_image_extensions 
nv_length_override directive with targets that do not support system 
extensions.  You can turn the NLD#477linker error , which would normally 
occur in such a condition, into a linker warning by using the following 
directive: 

#pragma unknown_system_image_extension_isa_warning 

Rejecting a Type Change 
If a network tool attempts to change the type of a changeable-type network 
variable to a type that is not supported by the application, your application 
must do the following: 

• Report the error within a maximum of 30 seconds from the receipt of the type 
change request.  To report the error, the application should signal an 
invalid_request via the Node Object functional block and optionally disable 
the related functional block.  If the application does not include a Node 
Object functional block, the application may set an application-specific error 
code using the error_log( ) function and take the device offline (use 
go_offline( )) . 

By setting the functional block status, the rest of the functional blocks on 
your device can continue to function normally.  You can use both methods to 
provide a more precise indication of the error to a network integrator.  See 
Chapter 5, Using Functional Blocks to Implement a Device Interface, for more 
information on using functional blocks. 

• Reset the SCPTnvType value to the last known good value. 

• Reset all other housekeeping data, if any, so that the last known good type is 
re-established. 

In the interest of future-proof implementations, the application should be 
sure to reject all change requests to unknown types, as shown in the 
changeable-type example below. 
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Changeable-Type Example 
The following code sample shows a typical implementation of a changeable-
type network variable.  It implements nvo1 as a changeable-type output 
network variable.  This example uses utility functions, such as 
getObjStatus( ), updateNode_Status( ), and setFblockDisable( ).  These 
utility functions are part of the framework provided by NodeBuilder Code 
Wizard.  Your application may not contain those functions, and you should 
consider providing equivalent functionality in that case. 

 

Parts of the example below are shown in boldface type.  This indicates the 
most important parts of the example.  The rest of the code (non-boldface type) 
can be considered more detail-oriented on first read-through. 

 

#include <control.h> 
#include <float.h> 
#include <mem.h> 
#include <snvt_nvt.h> 
 
#pragma relaxed_casting_on 
#define TYPE_ERROR 1 
#define NV_LENGTH_MISMATCH 2 
 
 
// Forward-declaration of the fblock’s director function: 
void fbSensorDirector(unsigned uFbIndex, int iCommand); 
 
 
// Declare the SCPTnvType family.  Note the use of the 
// cp_info modifier; the application must have some 
// mechanism to become aware of a type change request 
// so that it can validate and honor or reject that 
// request.  Other possibilities for such a notification 
// include the object_disable or offline CP flags, or 
// the implementation of this CP as a configuration 
// network variable. 
SCPTnvType cp_family cp_info(reset_required) nvType; 
 
// SCPTmaxNVLength is optional, but allows for a 
// network tool to filter out those types that will 
// not be acceptable due to excessive length.  The 
// type change routine, below, still must verify that 
// the requested type is within supported limits. 
const SCPTmaxNVLength cp_family nvMaxLength; 
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// Declare the changeable-type network variable. 
// The network variable's initial type also determines 
// its maximum length, hence the initialization of the 
// nvMaxLength property using the sizeof() operator 
// applies to the NV's inital type. 
network output changeable_type SNVT_volt_f nvo1 
 nv_properties { 
  nvType, 
  nvMaxLength=sizeof(SNVT_volt_f) 
}; 
 
// A functional block that contains 
// the changeable-type network variable: 
fblock SFPTopenLoopSensor { 
 nvo1 implements nvoValue; 
 director fbSensorDirector; 
} fbSensor external_name("Sensor"); 
 
// nvTypeLastGood memorizes the last known good type of the 
// changeable-type network variable.  This is not a configuration 
// property, but a simple (EEPROM) variable using the same type. 
// Note this variable must be initialized correctly, to allow the 
// device to come out of the initial reset cycle without an 
// accidental type change, and to allow the changeable-type NV 
// to function correctly even without an explicit type change: 
eeprom SCPTnvType nvTypeLastGood =  
 {{0, 0, 0, 0, 0, 0, 0, 0}, 0, 1, NVT_CAT_INITIAL, 1, 0, 0, 0}; 
  
// The following two compiler directives enable the system extension, 
// and allow for its use even if the target device doesn't support 
// system extensions.  See text for details, and see the Neuron C 
// Reference Guide, Compiler Directives, for details about these  
// directives. 
#pragma system_image_extensions nv_length_override 
#pragma unknown_system_image_extension_isa_warning // see text! 
 
// changeLength() performs or rejects the type change request. 
// It is called from the director function in response to a 
// device reset because the SCPTnvType has been declared with 
// "cp_info(reset_required)."  Other CP flags, such as 
// object_disabled, require a different invocation.  SCPTnvType 
// may also be implemented as a configuration network variable, 
// allowing for invocation of the changeLength() function from 
// a "when(nv_update_occurs(...))" task. 
 
void changeLength(void) { 
 
 // First, check to see if there is anything to do at all: 
 // is there a real type change request pending?  The 
 // changeLength() function could have been invoked as a 
 // result of a regular device reset (or whichever other 
 // update notification event is associated with the nvType CP). 
 
 if ((nvo1::nvType.type_category != NVT_CAT_NUL)  
   && (memcmp((void*)&nvTypeLastGood,(void*)&nvo1::nvType,  
      sizeof(SCPTnvType)) != 0)) { 
 
  // In case multiple network variables share the same 
  // SCPTnvType configuration property, make sure all 
  // affected network variables are unbound.  Use is_bound() 
  // for all these network variables and reject the type change 
  // if any reports being bound. 
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  // Check if requested type is within acceptable size 
  // limits.  The sizeof(nvo1) function always returns the  
  // initial size of the network variable, which equals 
  // its maximum size. 
 
  if (nvo1::nvType.type_length > sizeof(nvo1)) { 
 
   // Reject: set the nvType CP back to the last known 
   // good value, log the error, and notify the  
   // network tool.  In addition to the minimum 
   // requirements, this example implementation 
   // also automatically disables the fblock 
 
   nvo1::nvType = nvTypeLastGood; 
   error_log(TYPE_ERROR); 
   getObjStatus(fbSensor::global_index)->invalid_request  
     = TRUE; 
   updateNode_Status(); 
   setFblockDisable(fbSensor::global_index, TRUE); 
 
  } else switch (nvo1::nvType.type_category) { 
    
   case NVT_CAT_SIGNED_LONG: 
   case NVT_CAT_UNSIGNED_LONG: 
   case NVT_CAT_FLOAT: 
 
    // Accept long and float.  
    // Store the current type information and, for 
    // debugging purpose only, also change the length of 
    // the network variable via its nv_len property.  See 
    // further below for an example implementation of the 
    // recommended get_nv_length_override technique for 
    // this network variable.   
 
    nvTypeLastGood = nvo1::nvType; 
 
#ifdef _DEBUG // see text! 
    nvo1::nv_len = nvo1::nvType.type_length; 
#endif 
 
    // For all inheriting configuration properties that  
    // apply to this network variable and that are 
    // implemented as configuration network variables, 
    // repeat this type change. 
 
    break; 
 
   case NVT_CAT_INITIAL: 
 
    // This is a request to change the type back to its 
    // initial type (whichever is the initial type). 
    // For cardinal types with significant scaling 
    // factors A, B, or C, the application may need to 
    // restore those scaling factors or to preserve 
    // that knowledge otherwise; see GetCurrent() or 
    // SetCurrent() functions, below, for details. 
    // The sizeof() function always returns the size of 
    // the initial type. 
 
    nvo1::nvType.type_length = sizeof(nvo1); 
    nvTypeLastGood = nvo1::nvType; 
 
#ifdef _DEBUG // see text! 
    nvo1::nv_len = nvo1::nvType.type_length; 
#endif 
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    // For all inheriting configuration properties that 
    // apply to this network variable and that are 
    // implemented as configuration network variables, 
    // repeat this type change. 
 
    break; 
 
   // Reject all other types.  This example implementation 
   // just refuses the change request and continues to 
   // operate on the last known good type: 
     
   default: 
    nvo1::nvType = nvTypeLastGood; 
    error_log(TYPE_ERROR); 
    getObjStatus(fbSensor::global_index)->invalid_request  
      = TRUE; 
    updateNode_Status(); 
  } // end of switch 
 } // any change at all 
} // function changeLength() 
 
// The fbSensorDirector() function manages this functional block. 
// Because the nvType CP has been declared with the reset_required 
// flag, the director must call the changeLength() function as part 
// of the reset processing to allow for the type change request to 
// be executed. 
// The director function is not called automatically, but 
// requires a framework that explicitly calls the director. 
// The director implementation shown here is incomplete, as it 
// ignores all other commands and duties.  See the director 
// implementation generated by the NodeBuilder Code Wizard 
// for a more comprehensive example of a director function, and 
// for a complete framework that issues director invocations. 
 
void fbSensorDirector(unsigned uFbIndex, int iCommand) { 
 if ((TFblock_command)iCommand == FBC_WHEN_RESET) { 
  changeLength(); 
  setLockedOutBit(uFbIndex, FALSE); 
 } // FBC_WHEN_RESET 
} // fbSensorDirector() 
 
// Whenever the current length of the changeable network-type variable is 
// required by the Neuron firmware, the firmware calls the 
// get_nv_length_override() system image extension.  This function 
// returns the current length of the given NV (in bytes) or 0xFF to 
// indicate that the initial type is still unchanged. 
 
unsigned get_nv_length_override(unsigned uNvIndex) { 
 unsigned uResult; 
 uResult = 0xFF; 
  
 if (uNvIndex == fbSensor::nvoValue::global_index) { 
  // Return current length for our example NV, or return 
  // 0xFF to indicate the NV has the initial length: 
   
  if (nvTypeLastGood.type_category != NVT_CAT_INITIAL  
   && nvTypeLastGood.type_category != NVT_CAT_NUL) { 
    // this is a distinct current length: 
   uResult = nvTypeLastGood.type_length; 
  } 
 } 
  
 return uResult; 
} 
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// Triggered by some appropriate I/O event, timer, or network event, 
// the application will need to process data for the changeable-type 
// network variable.  This example does not include an algorithm that 
// performs numeric operations using the changeable-type data, but two 
// conversion routines are shown that convert the current type of 
// the changeable network variable into a float_type variable for 
// internal use in such numeric operations, and vice versa. 
 
void GetCurrent(float_type* const pFloat) { 
 // One union to hold all possible current types, plus the initial 
 // type of the changeable type NV 
 union { 
  unsigned long uLong; 
  signed long   sLong; 
  SNVT_volt_f   xInitial; 
 } nvLocal; 
 
 // bProcessABC: a flag to indicate whether the scaling factors 
 // A,B,C must be honored and used 
 boolean bProcessABC; 
 bProcessABC = FALSE; 
 
 nvLocal.xInitial = nvo1; 
 
 switch (nvo1::nvType.type_category) { 
  case NVT_CAT_SIGNED_LONG: 
   // Current type is signed long. Convert to float. 
   fl_from_slong(nvLocal.sLong,pFloat); 
   bProcessABC = TRUE; 
   break; 
  case NVT_CAT_UNSIGNED_LONG: 
   // Current type is unsigned long. Convert to float. 
   fl_from_ulong(nvLocal.uLong,pFloat); 
   bProcessABC = TRUE; 
   break; 
  case NVT_CAT_INITIAL: 
   // Fall through to float. 
  case NVT_CAT_FLOAT: 
   // Float is current. No conversion is required, just 
   // copy data into local variable. 
   *pFloat = nvLocal.xInitial; 
   break; 
  default: 
   // Unsupported type.  The changeLength() handler should 
   // have recognized this and rejected the type earlier. 
   // Log this application error and set the device offline: 
   error_log(TYPE_ERROR); 
   go_offline(); 
 } // switch 
 
 if (bProcessABC) { 
  // TODO: If needed by the application algorithm, transform 
  // the raw *pFloat NV value into the scaled float equivalent 
  // using the following formula: 
  //  scaled = A * 10**B * (*pFloat + C) 
  // Scaling factors are accessible via the scaling_factor_X 
  // members of the SCPTnvType CP, e.g.  
  // nvo1::nvType.scaling_factor_a.  This transformation is a 
  // costly operation and it is recommended to design 
  // the application algorithm such that this conversion 
  // is not required at all, if possible. 
 } 
} // GetCurrent() 
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void SetCurrent(float_type* pFloat) { 
 // One union to hold all possible current types, plus the initial 
 // type of the changeable NV. 
 union { 
  unsigned long uLong; 
  signed long   sLong; 
  SNVT_volt_f   xInitial; 
 } nvLocal; 
 
 boolean bConversionOK; 
 boolean bProcessABC; 
 
 bConversionOK = TRUE; 
 bProcessABC = nvo1::nvType.type_category == NVT_CAT_SIGNED_LONG 
    || nvo1::nvType.type_category == NVT_CAT_UNSIGNED_LONG; 
 
 if (bProcessABC) { 
  // TODO: if needed by the application algorithm, revert the 
  // conversion done in GetCurrent() by using the following 
  // formula: 
  // raw = (*pFloat / (A * 10**B)) - C 
  // See GetCurrent(), above, for more details. 
 } 
 
 switch (nvo1::nvType.type_category) { 
  case NVT_CAT_SIGNED_LONG: 
   // Current type is signed long. Convert from float. 
   nvLocal.sLong = fl_to_slong(pFloat); 
   break; 
  case NVT_CAT_UNSIGNED_LONG: 
   // Current type is unsigned long. Convert from float. 
   nvLocal.uLong = fl_to_ulong(pFloat); 
   break; 
  case NVT_CAT_INITIAL: 
   // Fall through to float.  
  case NVT_CAT_FLOAT: 
   // Float is current. No conversion is required, just 
   // copy data into local variable. 
   nvLocal.xInitial = *pFloat; 
   break; 
  default: 
   // Unsupported type.  The changeLength() handler should 
   // have recognized this and rejected the type earlier. 
   // Log this application error and set the device offline: 
   error_log(TYPE_ERROR); 
   go_offline(); 
   bConversionOK = FALSE; 
 } // switch 
 
 if (bConversionOK) { 
  // Update the actual network variable in case the conversion 
  // was OK (current type is in fact supported).  
  // A more generic implementation of these conversion functions 
  // is likely to use a pointer to the changeable type network 
  // variable's initial type as a second argument, thus allowing 
  // the SetCurrent() and GetCurrent() functions to be used for 
  // all changeable type NVs of the same initial type. 
  // This approach is likely to require explicit calls to the 
  // propagate() function; see the Neuron C Reference Guide 
  // for details. 
 
  nvo1 = nvLocal.xInitial; 
 } // bConversionOK 
} // SetCurrent() 
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4 
Using Configuration 

Properties to Configure 
Device Behavior 

This chapter discusses the declaration and use of configuration 
properties.  Configuration properties are part of the device 
interface, and are used by network tools to configure device 
behavior during and after network installation. 



Overview 
A configuration property is a data item that, like a network variable, is part 
of the device interface for a device.  A configuration property can be modified 
by a network tool.  Configuration properties facilitate interoperable 
installation and configuration tools by providing a standardized network 
interface for device configuration data.  Like network variables, configuration 
properties also provide a well-defined interface. 

Each configuration property type is defined in a resource file that specifies 
the data encoding, scaling, units, default value, invalid value, range, and 
behavior for configuration properties based on the type.  A rich variety of 
standard configuration property types (SCPTs) are defined in the standard 
resource file set.  You may view all currently defined SCPTs online at 
types.lonmark.org.  You can also create your own user configuration property 
types (UCPTs) that are defined in resource files that you create with the 
NodeBuilder Resource Editor. 

Declaring Configuration Properties 
You can implement a configuration property using one of two different 
techniques.  The first, called a configuration network variable, uses a 
network variable to implement the configuration property.  This has the 
advantage of enabling the configuration property to be modified by another 
LONWORKS device, just like any other network variable.  It also has the 
advantage of having the Neuron C event mechanism available to provide 
notification of updates to the configuration property. 

The disadvantages of configuration network variables are that they are 
limited to a maximum of 31 bytes each, and a Neuron Chip or Smart 
Transceiver hosted device is limited to a maximum of 62 network variables. 

To implement a configuration property as a configuration network variable, 
declare it using the network … config_prop syntax described in the next 
section on Declaring Configuration Network Variables. 

The second method of implementing configuration properties uses 
configuration files to implement the configuration properties for a device.  
Rather than being separate externally-exposed data items, all configuration 
properties implemented within configuration files are combined into one or 
two blocks of data called value files.  A value file consists of configuration 
property records of varying length concatenated together.  Each value file 
must fit as contiguous bytes into the memory space in the device that is 
accessible by the application.  When there are two value files, one contains 
writeable configuration properties and the second contains read-only data.  
To permit a network tool to access the data items in the value file, there is 
also a template file, an array of text characters that describes the elements in 
the value files. 

The advantages of implementing configuration properties as configuration 
files is that there are no limits on configuration property size or the number 
of configuration properties, except as constrained by the available memory 
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space on the device.  The disadvantages are that other devices cannot connect 
to or poll a configuration property implemented as a configuration file,  

requiring a network tool to modify a configuration property implemented 
within a configuration file, and no events are automatically generated when 
a configuration property implemented within a configuration file is updated.  
The application can force notification of updates by requiring network tools 
to reset the device, disable the functional block, or take the device offline 
when a configuration property is updated (though the reset or online 
notification is the only type of notification that occurs after the configuration 
property has been modified).  Alternatively, the application can also force 
notification by implementing configuration file access via the LONWORKS file 
transfer protocol (FTP) and monitoring the stop_transfer( ) function.  This 
option requires additional code space for the FTP server code. 

To implement a configuration property as a part of a configuration file, 
declare it with the cp_family syntax described in Declaring Configuration 
Properties Within Files. 

Declaring Configuration Properties Within Files 
You can declare a configuration property that is to be implemented within a 
configuration file using a CP family declaration.  A CP family declaration can 
be thought of as a meta-declaration, defining a type construct for later use in 
the program.  It may be used to declare a collection of many configuration 
properties, identical in type and certain other settings, but individually 
applying to one or more different network variables, functional blocks (as 
described in the Using Functional Blocks chapter), or the device itself.  A CP 
family can have zero members, one member, or many members.  No code or 
data is generated until you declare members of the CP family as described 
later.  In this regard, the CP family is similar to a C language typedef. 

The syntax for declaring a CP family is shown below: 

[const] type cp_family [cp-modifiers] family-ident [= initial-value] ; 
 
family-ident : identifier [ array-bound ] 
  identifier 

EXAMPLE: 

SCPTgain cp_family cpGain = { 2, 3 }; 

The type for a CP family cannot be just a standard C type such as int or 
char.  Instead, the declaration must use a configuration property type (CPT) 
from a resource file.  The configuration property type may either be a 
standard configuration property type (SCPT) or a user configuration property 
type (UCPT).  There are over 200 SCPT definitions available today, and you 
can create your own manufacturer-specific types using UCPTs.  The SCPT 
definitions are stored in the standard.typ file, which is part of the standard 
resource file set included with the NodeBuilder tool.  There may be many 
similar resource files containing UCPT definitions, and these are managed 
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on the computer by the NodeBuilder Resource Editor as described in the 
NodeBuilder User’s Guide. 

A configuration property type is similar to an ANSI C typedef, but it is also 
much more.  The configuration property type also defines a standardized 
semantic meaning for the type.  The configuration property definition in a 
resource file contains information about the default value, minimum and 
maximum valid values, a designated (optional) invalid value, and language 
string references that permit localized descriptive information, additional 
comments, and units strings to be associated with the configuration property 
type. 

The cp-modifiers begin with the cp_info keyword followed by a 
parenthesized list of option keywords.  The keywords and their meanings are 
discussed in the Configuration Property and Network Variable Declarations 
chapter of the Neuron C Reference Guide. 

If the declaration of the CP family contains an array-bound expression 
following the family identifier name, each member of the CP family is 
declared to be a separate array.  For example, a family may consist of three 
members: an array property for some network variable nv1, another array 
property for another network variable nv2, and a third array property for a 
functional block fb1. 

EXAMPLE: 

SCPTgain cp_family cpGain[3] = { { 2, 3 }, 
      { 1, 5 }, 
      { 2, 1 } 
      }; 

The initial-value in the declaration of a CP family is optional.  If initial-value 
is not provided in the declaration, the default value specified by the resource 
file is used.  The initial-value given is an initial value for a single member of 
the family, but the compiler will replicate the initial value for each 
instantiated family member. 

The initialization rules for a CP family member are shown below.  The 
initialization rules are used to set the initial value that will be loaded in the 
value file from the linked image, as well as the value file stored in the device 
interface file.  A network tool can use the initial value as a default value, and 
may at times reset the configuration properties (or a subset of them) back to 
the default values.  Consult the documentation of the particular network tool, 
for example, the LonMaker User's Guide, for more information on the tool's 
use of configuration property default values. 
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In the initialization rules that follow, the compiler uses the first rule in this 
ordered list that applies to the configuration property. 

1 If the configuration property is initialized explicitly in its instantiation, then 
this is the initial value that is used. 

2 If the configuration property is initialized explicitly in the CP family 
declaration, then the family initializer is used. 

3 If the configuration property applies to a functional block, and the functional 
profile that defines the functional block specifies a default value for the 
associated configuration property member, then the functional profile default 
is used. 

4 If the configuration property type for the configuration property defines a 
default value, then that default value is used as the initial value.  This rule 
does not apply for a configuration property type that is type-inheriting; see 
Type-Inheriting Configuration Properties in this chapter. 

5 If no initial value is available from any of the preceding rules, a value of all 
zeros is used. 

The cp_family declaration is repeatable.  The declaration may be repeated 
two or more times, and, as long as the duplicated declarations match in every 
regard, the compiler will treat these as a single declaration. 

The following example shows a valid repetition, two invalid repetitions, and a 
non-repeating case. 

EXAMPLE: 

// initial declaration of family: 
SCPTgain cp_family cpGain = { 2, 3 }; 

// valid repetition: families are identical 
SCPTgain cp_family cpGain = { 2, 3 }; 

// invalid repetition: different initializer! 
SCPTgain cp_family cpGain = { 1, 10 }; // INVALID 

// invalid repetition: different cp_info 
SCPTgain cp_family cp_info(offline) cpGain = { 2, 3 }; 

// no repetition, but creation of a valid second family: 
SCPTgain cp_family cp_info(offline) cpLowGain = { 1, 8 }; 

 

Declaration of Configuration Network Variables 
The configuration network variable declaration syntax is similar to the 
declaration syntax of a non-configuration network variable as already 
discussed in the previous chapter, How Devices Communicate Using Network 
Variables. 
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The complete syntax for declaring a configuration network variable is shown 
below.  The declaration is made distinct from other network variable 
declarations by the inclusion of the config_prop keyword following the type 
of the network variable declaration.  The config_prop keyword can be 
abbreviated as cp. 

network input  [netvar-modifier] [class] type config_prop [cp-modifiers] 
  [connection-info] identifier [ = initial-value] ; 

network input  [netvar-modifier] [class] type config_prop [cp-modifiers] 
  [connection-info] identifier [array-bound] [ = initializer-list] ; 

EXAMPLES: 

network input SCPTupdateRate config_prop nciUpdateRate; 
 
network input SCPTbypassTime cp nciBypassTime = ... 

The netvar-modifier and class portions of this syntax were discussed in depth 
in the previous chapter, and they apply equally to a configuration network 
variable as they do to any other network variable, except the class cannot be 
config.  (A config network variable is not a fully managed configuration 
property, it is a manually managed one.  The config keyword is obsolete and 
not recommended for use in new development, but is provided to allow legacy 
applications to be used with the Neuron C Version 2 compiler.) 

Similar to the configuration CP family members, configuration network 
variables must be declared with a type that is defined by a configuration 
property type within a resource file.  The type may be a standard (SCPT) or 
user (UCPT) type.  The cp-modifiers clause that may optionally follow the 
config_prop keyword is also identical with the CP family declaration 
discussed earlier in this chapter (see the Neuron C Reference Guide for a 
discussion of the cp-modifiers syntax and semantics). 

The connection-info for a configuration network variable is no different than 
the connection info for any other input network variable, as discussed in the 
previous chapter.  Like any other network variable, a configuration network 
variable can be an array, with each element of the array being a separately 
handled configuration property, or with the entire configuration network 
variable array being handled as a single configuration property.  See 
Instantiation of Configuration Properties, later in this chapter, for details. 

A configuration network variable's declaration may contain an initial-value 
or an initializer-list, like any other network variable declaration, as discussed 
in the previous chapter.  Unlike any other network variable, a configuration 
network variable may not, itself, also have a network variable property list.  
That is, you cannot define configuration properties that apply to other 
configuration properties. 
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When using a network variable array as a configuration property or 
properties, particular care should be given to the compiler's rules of 
initialization for that network variable array.  The array elements can be 
initialized in the declaration, as is the case with any variable or array 
variable declaration.  If some or all of the array elements are not initialized, 
the uninitialized elements default to a zero initialization.  However, each 
array element may be initialized when it appears as a property in a 
properties clause, and this declaration will override the initialization in the 
declaration, but only for the element that appears in that property clause.  
Similarly, if the entire network variable array is used as a single 
configuration property, the entire array may be initialized when it appears as 
a property in a properties clause. 

Instantiation of Configuration Properties 
Configuration properties may apply to a device, one or more functional 
blocks, or one or more network variables.  In each case, a configuration 
property is made to apply to its respective objects through a property list.  
Property lists for the device and network variables are explained in the 
following sections; property lists for functional blocks are explained in 
Chapter 5, Using Functional Blocks to Implement a Device Interface.  You 
cannot have more than one configuration property of any given SCPT or 
UCPT type that applies to an object, where that object is a network variable, 
a functional block, or the entire device. 

As discussed above, the cp_family declaration is similar to a C language 
typedef because no actual variables are created as a result of the 
declaration.  In the case of a type definition, variables are instantiated when 
the type definition is used in a later declaration that is not, itself, another 
typedef.  At that time, variables are instantiated, which means that 
variables are declared and memory is allocated for and assigned to the 
variables.  The variables can then be used in later expressions in the 
executable code of the program. 

The instantiation of a CP family member occurs each time the CP family 
declaration’s identifier is used in a property list.  For exceptions to this rule, 
see Sharing of Configuration Properties, later in this chapter. 

However, a configuration network variable is already instantiated at the 
time it is declared.  For a configuration network variable, the property list 
serves only to identify the association between the configuration property 
and the object or objects to which it applies. 
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Device Property Lists 
A device property list declares instances of configuration properties defined 
by CP family declarations and configuration network variable declarations 
that apply to a device.  The complete syntax for a device property list is as 
follows: 

 device_properties { property-reference-list } ; 

 property-reference-list : 
   property-reference-list , property-reference 
   property-reference 

 property-reference : 
   property-identifier  [= initializer] [range-mod] 
   property-identifier  [range-mod] [= initializer] 

 range-mod :  range_mod_string ( concatenated-string-constant ) 

 property-identifier : cpnv-prop-ident 
   cp-family-prop-ident 

 cpnv-prop-ident : identifier  [ constant-array-index-expr ] 
   identifier 

 cp-family-prop-ident : identifier 

 

EXAMPLE: 

SCPTlocation cp_family cpLocation; 
 
device_properties { 
 cpLocation = { "Unknown" } 
}; 

 

The device property list appears at file scope.  This is the same level as a 
function declaration, a task declaration, or a global data declaration.  The 
device property list begins with the device_properties keyword.  It then 
contains a list of property references, separated by commas.  Each property 
reference must be the name of a previously declared CP family or the name of 
a previously declared configuration network variable.  If the network 
variable is an array, a single array element may be chosen as the device 
property, so an array index must be given as part of the property reference in 
that case to identify the element.  Alternatively, the entire network variable 
array may be chosen as the device property, so no array index is given in the 
property reference in that case. 
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EXAMPLE OF A CP NETWORK VARIABLE ARRAY ELEMENT: 

network input SCPTlocation cp cpLocation[5]; 
 
device_properties { 
 cpLocation[0] = { "Unknown" } 
}; 

The example above implements a single device property of type 
SCPTlocation, which is implemented by the first element of the 
configuration property network variable array.  The remaining four elements 
of that array are unused in the above example. 

In contrast, the following example illustrates the use of a configuration 
network variable array as a single device property.  The device property with 
internal name cpOemType is a single-dimensional array of three elements, 
each of type SCPToemType. 

EXAMPLE OF ENTIRE CP NETWORK VARIABLE ARRAY AS A SINGLE 
PROPERTY: 

network input SCPToemType cp cpOemType[3]; 
 
device_properties { 
 cpOemType = { "Label 1", "Label 2", "Label 3" } 
}; 

 

Following the property-identifier, there may be an optional initializer, and an 
optional range-mod.  These elements are discussed in detail in the Neuron C 
Reference Guide chapter on Configuration Properties and Network Variables. 

A Neuron C program may have multiple device property lists.  These lists are 
merged together by the Neuron C compiler to create one combined device 
property list.  However, you cannot have more than one configuration 
property of any given SCPT or UCPT type that applies to the device. 

If two separate modules specify a particular configuration property of the 
same type in the device property lists, this situation will cause a compile-
time error. 

EXAMPLE OF INCORRECT CP CONFLICT: 

UCPTsomeDeviceCp cp_family cpSomeDeviceCp; 
SCPTlocation cp_family cpLocation; 
SCPTlocation cp_family cpPlacement; 
 
device_properties { 
 cpSomeDeviceCp, 
 cpLocation, 
 cpPlacement // Conflicts with cpLocation 
}; 
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Network Variable Property Lists 
A network variable property list declares instances of configuration 
properties defined by CP family declarations and configuration network 
variable declarations that apply to a network variable.  The complete syntax 
for a configuration network variable’s property list is as follows: 

 nv_properties { property-reference-list } 

 property-reference-list : 
   property-reference-list , property-reference 
   property-reference 

 property-reference : 
   property-identifier  [= initializer] [range-mod] 
   property-identifier  [range-mod] [= initializer] 

 range-mod :  range_mod_string ( concatenated-string-constant ) 

 property-identifier : [property-modifier] cpnv-prop-ident 
   [property-modifier] cp-family-prop-ident 

 cpnv-prop-ident : identifier  [ constant-array-index-expr ] 
   identifier 

 cp-family-prop-ident : identifier 

 property-modifier : static | global 

 

EXAMPLE: 

// CP for heartbeat and throttle (default 1 min each) 
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 }; 
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 }; 
 
// NV with heartbeat and throttle: 
network output SNVT_lev_percent nvoValue 
 nv_properties { 
  cpMaxSendT, 
  // override default for minSendT to 30 seconds: 
  cpMinSendT = { 0, 0, 0, 30, 0 } 
}; 

The network variable property list begins with the nv_properties keyword.  
It then contains a list of property references, separated by commas, exactly 
like the device property list.  Each property reference must be the name of a 
previously declared CP family or the name of a previously declared 
configuration network variable.  The rest of the syntax is very similar to the 
device property list syntax discussed above. 
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Following the property-identifier, there may be an optional initializer, and an 
optional range-mod.  These optional elements are discussed in more detail in 
the Neuron C Reference Guide. 

You cannot have more than one configuration property of any given SCPT or 
UCPT type that applies to the same network variable.  A compile-time error 
will occur when a particular configuration property type is used for more 
than one property in the network variable’s property list. 

Unlike device properties, network variable properties may be shared between 
two or more network variables.  The use of the global keyword creates a CP 
family member that is shared between two or more network variables.  The 
use of the static keyword creates a CP family member that is shared 
between all the members of a network variable array, but not with any other 
network variables outside the array.  See Sharing of Configuration Properties 
below for more information on this topic. 

 

Accessing Property Values from a Program 
You can access configuration properties from a program just as you can 
access any other variable.  For example, you can use configuration properties 
as function parameters and you can use addresses of configuration 
properties. 

However, to use a CP family member in an expression, you must specify 
which family member to access, because there may be more than one member 
of the same CP family with the same name applying to different network 
variables.  The syntax for accessing a configuration property from a network 
variable’s property list uses the Neuron C context operator, a double colon, as 
shown below: 

 nv-context :: property-reference 

 nv-context :  identifier [ index-expr ] 
   identifier 

 property-reference : property-identifier [ index-expr ] 
   property-identifier 
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EXAMPLE: 

// CP for heartbeat and throttle (default 1 min each) 
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 }; 
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 }; 
 
// NV with heartbeat and throttle: 
network output SNVT_lev_percent nvoValue 
 nv_properties { 
  cpMaxSendT, 
  cpMinSendT = { 0, 0, 0, 30, 0 } 
}; 
 
void f(void) 
{ 
 ... 
 if (nvoValue::cpMaxSendT.seconds > 0) { 
  ... 
 } 
} 

The particular CP family member is identified by a qualifier that precedes it.  
This qualifier is called the context.  The context is followed by two consecutive 
colon characters, called the context operator, and then the name of the 
property.  Since there cannot be two or more properties with the same 
configuration property type that apply to the same network variable, this 
means that each property is unique within a particular context.  The context 
therefore uniquely identifies the property.  For example, a network variable 
array, nvoArray, with 10 elements, could be declared with a property list 
referencing a CP family named cpXyz.  There would then be 10 different 
members of the cpXyz CP family, all with the same name.  However, adding 
the context, such as nvoArray[4]::cpXyz, or nvoArray[j]::cpXyz, uniquely 
identifies the CP family member. 
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Since the same CP family could also be used as a device property, there is a 
special context defined for the device.  The device’s context is a context 
operator (two consecutive colon characters) without a preceding context 
identifier. 

EXAMPLE, ACCESSING A DEVICE PROPERTY: 

network input SCPToemType cp cpOemType[3]; 
 
device_properties { 
 cpOemType = { "Label 1", "Label 2", "Label 3" } 
}; 
 
void f(void) 
{ 
 if (strcmp(::cpOemType[0].ascii, "Demo") == 0) { 
  ... // special demo mode 
 } else { 
  ... // normal operation 
 } 
} 

Even though a configuration network variable can be uniquely accessed via 
its variable identifier, it can also be accessed equally well through the context 
expression, just like the CP family members. 

 

Advanced Configuration Property Features 
Configuration properties support a few advanced features that are described 
in this section.  The first of these features is the use of configuration 
properties with network variable arrays.  Second is the initialization of 
configuration properties at time of instantiation. 

Another advanced feature is sharing of configuration properties, where a 
single configuration property can apply to two or more network variables, or 
two or more functional blocks (see Chapter 5, Using Functional Blocks to 
Implement a Device Interface, for information on functional blocks).  
However, no single configuration property (or configuration property family 
member) can apply to both network variables and functional blocks. 

The last advanced feature discussed in this section is configuration 
properties with type-inheritance.  Some configuration property types (CPTs) 
indicate that the type of the configuration property is actually defined by the 
network variable to which it applies.  Type-inheriting configuration 
properties are discussed further at the end of this chapter. 
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Configuration Properties Applying to Arrays 
When configuration properties apply to network variable arrays, the compiler 
provides replication of the configuration properties for each member of the 
array (this is true unless the property is shared, as discussed below in 
Sharing of Configuration Properties).  Consider a network variable array 
with four elements (each corresponds to some sensor, perhaps): 

network output SNVT_volt nvoVoltage[4]; 

Now, suppose that we want to provide a SCPTmaxSendTime configuration 
property for each sensor output that will be used to configure the maximum 
amount of time (in seconds) between consecutive updates of the output 
network variable.  If we use a configuration property family, this can be 
accomplished with the following declarations.  When using a configuration 
property in this manner, the Neuron C compiler automatically creates a 
distinct family member for each element of the network variable array. 

EXAMPLE WITH A CP FAMILY PROPERTY: 

SCPTmaxSendTime cp_family cpMaxSendTime; 
network output SNVT_volt nvoVoltage[4] 
 nv_properties { cpMaxSendTime }; 

Another approach is to use a separate network variable array for the 
SCPTmaxSendTime configuration properties.  For example, the network 
variable array declaration shown below provides four elements in the 
cpMaxSendTime array, each of them a configuration property 
corresponding to the respective element in the nvoVoltage array. 

EXAMPLE WITH A NETWORK VARIABLE PROPERTY: 

network input cp SCPTmaxSendTime cpMaxSendTime[4]; 
network output SNVT_volt nvoVoltage[4] 
 nv_properties { cpMaxSendTime[0] }; 

When using a distributed array of network variables for the configuration 
properties as shown in the example above, the configuration property 
reference in the nv_properties clause must contain an index.  This index is 
used by the compiler as a starting index; the compiler automatically assigns 
the subsequent elements of the configuration property network variable 
array to the elements of the underlying network variable array to which the 
property applies.   
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The compiler also checks for existence of a sufficient number of elements.  
The following would be an error: 

EXAMPLE OF INSUFFICIENT ARRAY SIZE: 

network input cp SCPTmaxSendTime cpMaxSendTime[3]; 
    // Insufficient # of elements 
network output SNVT_volt nvoVoltage[4] 
 nv_properties { cpMaxSendTime[0] }; 

EXAMPLE OF INSUFFICIENT ARRAY ELEMENTS IN REFERENCE: 

network input cp SCPTmaxSendTime cpMaxSendTime[4]; 
network output SNVT_volt nvoVoltage[4] 
 nv_properties {  
         cpMaxSendTime[1]   // insufficient members left 
}; 

The index of the configuration property reference in the nv_properties 
clause is a starting index.  This index need not be zero.  For example if there 
were two network variable arrays named nvoVolt1 and nvoVolt2, and each 
were to have a SCPTmaxSendTime property, the following declarations 
could accomplish this scenario, where part of the configuration property 
network variable array is used for one array of output network variables, and 
the other is used for another array of output network variables.  (Although 
this case shows all members of the cpMaxSendTime array being used, that 
is not a requirement.) 

EXAMPLE OF AN ARRAY SPLIT BETWEEN DIFFERENT PROPERTY 
CLAUSES: 

network input cp SCPTmaxSendTime cpMaxSendTime[7]; 
network output SNVT_volt nvoVolt1[4] 
 nv_properties { cpMaxSendTime[3] }; 
network output SNVT_vold nvoVolt2[3] 
 nv_properties { cpMaxSendTime[0] }; 

Examples above focused on applying single configuration properties to arrays 
of network variables.  However, a second case exists where the configuration 
property itself is an entire array, rather than an element, as shown below. 

EXAMPLE OF CP FAMILY ARRAY APPLYING TO NETWORK VARIABLE 
ARRAY: 

UCPTeventData cp_family cpEventData[100]; 
network output SNVT_volt nvoVolt[4] 
 nv_properties { cpEventData }; 

This example implements four output network variables 
nvoVolt[0]..nvoVolt[3]. Each of these four network variables implements a 
cpEventData configuration property, which itself is an array of 100 
elements.  Each array element is of the hypothetical type UCPTeventData. 
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A similar construct cannot be achieved with configuration network variables, 
however.  Not only is this because configuration network variable arrays are 
limited to no more than a total of 62 network variables on a single Neuron-
hosted device, there is also a crucial difference in the two configuration 
property implementation techniques.  That difference is, as discussed earlier, 
that the declaration of a cp_family alone does not create any configuration 
properties, whereas configuration network variable declaration actually 
creates the (configuration) network variable.  Consider the following, 
incorrect, example for illustration: 

EXAMPLE OF CP-NV ARRAY APPLYING TO NETWORK VARIABLE 
ARRAY: 

network input UCPTeventData cp cpEventData[10]; 
network output SNVT_volt nvoVolt[4] 
 nv_properties {  
         // causes compilation error: 
         cpEventData  
}; 

This last example will not compile.  Because a configuration network variable 
declaration actually creates the (configuration) network variable, the 
compiler cannot multiply the number of configuration network variables by 
four as required to implement one configuration property array for each of 
the network variable elements in the array nvoVolt. 

Consequently, a configuration property network variable array that applies 
to an array of network variables (or functional blocks) must be shared using 
either the static keyword or the global keyword.  See Sharing of 
Configuration Properties, later in this chapter, for more information on these 
keywords. 

Initialization of Configuration Properties at 
Instantiation 

You can initialize a configuration property of fixed type in its declaration.  
When a network variable array is used as an array of configuration 
properties, the following example could occur.  Each of the four configuration 
properties shown below is initialized to the value '10' (a power-up delay value 
is a number of seconds). 

network input cp SCPTpwrUpDelay nvcp[4] = {10, 10, 10, 10}; 

It is not required to initialize the configuration property at instantiation, but 
this may be useful, as explained in the following example.  Assume that we 
want to declare two network variables nvoA and nvoB, and we want to 
associate the nvcp[0] configuration property with nvoA, and nvcp[1] with 
nvoB.  Furthermore, in these two instances, we want the power-up delay 
properties to be 5 seconds, and 10 seconds, respectively.   
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We can then override the initial value in the declaration with a new initial 
value in the instantiation of the property for nvoA, but take advantage of the 
previous initialization of nvcp[1] to 10. 

EXAMPLE OF NETWORK VARIABLE CP INITIALIZATION 

network input cp SCPTpwrUpDelay nvcp[4] = {10, 10, 10, 10}; 

network output SNVT_volt nvoA = 0 
 nv_properties { nvcp[0] = 5 }; 
network output SNVT_amp nvoB = 0 
 nv_properties { nvcp[1] }; 

Extending the above example, consider another network variable array nvoC 
of two members, where we will use nvcp[2] and nvcp[3] as configuration 
properties of nvoC [0] and nvoC [1], respectively.  Also, we want these 
configuration properties each initialized to 60 seconds.  This can be 
accomplished with the following declaration: 

network output SNVT_count nvc[2] = {100, 100} 
 nv_properties { nvcp[2] = 60 }; 

The nvoC network variable is an array, so the nvcp[2] property reference is 
treated as a starting point for the compiler to perform the automatic 
assignment of properties, as discussed above in Configuration Properties 
Applying to Arrays.  The compiler automatically replicates the reference to 
nvcp[2], which applies to nvoC [0], and the replication occurs for each 
subsequent element of the nvoC array (nvcp[3] to nvoC [1], etc).  In this 
replication, the compiler also replicates the initialization (in this case, 
nvcp[3] is therefore also initialized to 60).  It is therefore not possible to have 
different initial values for each element's configuration property, unless these 
initial values are provided with the declaration of the configuration network 
variable array as shown here. 

EXAMPLE OF NETWORK VARIABLE CP INITIALIZATION 

network input cp SCPTpwrUpDelay nvcp[4] = {10, 20, 30, 40}; 

network output SNVT_volt nvoA = 0 
 nv_properties { nciPwrUpDly[0] }; 
network output SNVT_amp nvoB = 0 
 nv_properties { nciPwrUpDly[1] }; 
network output SNVT_count nvoC[2] = {100, 100} 
 nv_properties { nciPwrUpDly[2] }; 

Some configuration property types (for example, SCPTdefOutput) are type-
inheriting.  This means that the SCPT definition does not, itself, specify the 
data type for the configuration property.  Instead, the configuration 
property's data type is inherited from the network variable to which it 
applies.  In this case, the only explicit initialization that is permitted is in the 
instantiation in the property list, not in the declaration.  This situation is 
explained further in Type-Inheriting Configuration Properties later in this 
chapter. 
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Sharing of Configuration Properties 
The typical instantiation of a configuration property will be unique to a 
single device, functional block, or network variable.  For example, a CP 
family whose name appears in the property list of five separate network 
variables will have five instantiations, and each instantiation will be specific 
to a single network variable.  Similarly, a network variable array of five 
elements that includes the same CP family name in its property list will 
instantiate five members of the CP family, each applying to one of the 
network variable array elements. 

You can change the instantiation behavior using the static and global 
keywords.  The global keyword causes a single CP family member to be 
shared among all network variables whose property list contains that CP 
family name.  (There can only be one such global member in a CP family, and 
that member is shared among all network variables that instantiate it in 
their property lists) 

The same sharing considerations apply to configuration properties that apply 
to functional blocks; see Using Functional Blocks to Implement a Device 
Interface, later in this book, for more about functional blocks and 
configuration properties applying to those. 

The static keyword causes a single CP family member to be shared among 
all elements of a network variable array, but the sharing of the static 
member does not extend outside of the array. 

EXAMPLE: 

// CP for throttle (default 1 minute) 
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 }; 
 // This family will have a total of 2 members 
 
// NVs with shared throttle: 
network output SNVT_lev_percent nvoValue1 
 nv_properties { 
  global cpMaxSendT 
 }; 

network output SNVT_lev_percent nvoValue2 
 nv_properties { 
  global cpMaxSendT // The same as the one above 
 }; 

network output SNVT_lev_percent nvoValueArray[10] 
 nv_properties { 
  static cpMaxSendT // Shared among the array 
     // elements only 
 }; 

Although the discussion above concerns instantiation and shared CP family 
members, configuration network variables can also be shared using a similar 
method.  Use the static keyword in the array's property list to share a 
configuration network variable among members of a network variable array.  
Use the global keyword in the configuration network variable’s property list 
to share the property among two or more network variables. 
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The only difference between the configuration network variable and the CP 
family member, in this regard, is that the configuration network variable 
cannot appear in two or more property lists without the global keyword 
because there is only one instance of the network variable (whereas CP 
families may have multiple instances). 

A configuration property that applies to a device cannot be shared because 
there is only one device per application. 

Configuration Property Sharing Rules 
The following rules apply to configuration property sharing.  This list 
summarizes the rules described elsewhere in this chapter. 

1 A configuration property can only be shared between multiple network 
variables, or between multiple functional blocks, but not between a 
combination of network variables and functional blocks at the same time. 

2 All configuration property types can be shared. 

3 A configuration property that applies to the entire device cannot be shared. 

4 Multiple functional blocks or network variables can share a configuration 
property.  A shared configuration property can apply to multiple singular 
functional blocks or network variables, a functional block or network variable 
array, a number of functional block or network variable arrays, or any 
combination thereof. 

5 A configuration property that is shared among the members of a functional 
block or network variable array must always be shared among all members 
of that array. 

6 A configuration property can be shared between network variables on 
different functional blocks. 

7 A configuration property that inherits its type from a network variable can 
only be shared between network variables that are all of the same type.  
Therefore, all changeable type network variables that share an inheriting 
configuration property must also share an instantiation of SCPTnvType, so 
that the set of changeable network variables will always have the same, 
single, type and so that type changes occur at the same time. 

8 Two (or more) mandatory functional profile template configuration properties 
can be implemented using a single, shared, configuration property provided 
the shared configuration property meets the requirements of all individually 
listed FPT members (e.g. same type, same array size, etc.). 

9 A single configuration property that inherits its type from a network variable 
cannot be shared simultaneously by both changeable and non-changeable 
network variables. 
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Type-Inheriting Configuration Properties 
You can define a configuration property type that does not include a complete 
type definition, but instead uses the type definition of the network variable to 
which it applies.  A configuration property type that uses another variable's 
type is called a type-inheriting configuration property.  When the CP family 
member for a type-inheriting configuration property appears in a property 
list, the instantiation of the CP family member uses the type of the network 
variable.  Likewise, a configuration network variable can be type-inheriting.  
There is a restriction on configuration network variable arrays: each element 
of the array must inherit the same type. 

Since the type of a type-inheriting configuration property is not known until 
the instantiation, the configuration property initializer option can only be 
provided in the property list rather than in the declaration.  Likewise, 
different range-mod strings may apply to different instantiations of the 
property, and therefore, for a type-inheriting configuration property, the 
range-mod option can only be provided in the property list, rather than in the 
declaration. 

Shared configuration network variables (see the preceding section on that 
topic) that are also type-inheriting can only be shared among network 
variables of identical type. 

A type-inheriting configuration property cannot be used as a device property, 
because the device has no type from which to inherit. 

A typical example of a type-inheriting configuration property is the 
SCPTdefOutput configuration property type.  The SFPTopenLoopSensor 
functional profile is an example of a functional profile that lists the 
SCPTdefOutput configuration property as an optional configuration 
property, and it is used to define the default value for the sensor's principal 
network variable.  The SFPTopenLoopSensor functional profile itself, 
however, does not define the type for the principal network variable. 
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The following example implements a SFPTopenLoopSensor functional 
block with an optional SCPTdefOutput configuration property.  The 
configuration property inherits the type, SNVT_amp in this case, from the 
network variable it applies to as shown below. 

EXAMPLE: 

SCPTdefOutput cp_family cpDefaultOutput; 
 
network output SNVT_amp nvoAmpere nv_properties { 
 cpDefaultOutput = 123 
}; 
 
fblock SFPTopenLoopSensor { 
 nvoAmpere implements nvoValue; 
} fbAmpereMeter; 

The initial value (123 in the preceding example) may only be provided in the 
instantiation of the configuration property as discussed above, and not in the 
declaration, since the type for cpDefaultOutput is not known until it is 
instantiated because it is a type-inheriting configuration property. 

It should be noted that type-inheriting configuration properties may apply to 
network variables or to functional blocks, but not to the device.  In the case 
that a type-inheriting configuration property applies to a network variable 
explicitly, it derives its type from the network variable.  In the event that the 
type-inheriting configuration property applies to the entire functional block, 
the property derives its type from the functional block’s principal member 
network variable. 

Each functional profile should have one member network variable designated 
as the principal member network variable.  The profile must define a 
principal network variable if type-inheriting configuration property members 
exist that apply to the entire profile. 
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Type-Inheriting Configuration Properties for Network Variables of 
Changeable Type 

Type-inheriting configuration properties can also be combined with 
changeable-type network variables, see Changeable Type Network Variables 
in the chapter How Devices Communicate Using Network Variables.  The 
type of such a network variable can be changed dynamically by a network 
integrator when the device is installed in a network. 

EXAMPLE: 

SCPTdefOutput cp_family cpDefaultOutput; 
SCPTnvType cp_family    cpNvType; 

network output changeable_type SNVT_amp nvoValue 
 nv_properties { 
  cpDefaultOutput = 123, 
  cpNvType 
 }; 

fblock SFPTopenLoopSensor { 
 nvoValue implements nvoValue; 
} fbGenericMeter; 

The nvoValue principal network variable, although it is of changeable type, 
must still implement a default type (SNVT_amp in the example above).  
Since the SCPTdefOutput type-inheriting configuration property inherits 
the type information from this initial type, the initializer for 
cpDefaultOutput must therefore be specific to this instantiation.  
Furthermore, the initializer must be valid for this initial type. 

Should the network integrator decide to change the type of the underlying 
network variable at runtime to, for example, SNVT_volt, then it is the 
responsibility of the network tool to apply the formatting rules that apply to 
the new type when reading or writing this configuration property.  The 
network tool must also set any type-inheriting configuration properties to 
reasonable initial values that correspond to the new type of the network 
variable (and thus, the newly inherited type of the configuration property). 
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5 
Using Functional Blocks to 

Implement a Device Interface 

This chapter discusses the use of functional blocks to provide a 
task-oriented interface for a device.  You can use functional 
blocks to group network variables and configuration properties 
that perform a task together. 



Overview 
The device interface for a LONWORKS device consists of its functional blocks, 
network variables, and configuration properties.  A functional block is a 
collection of network variables and configuration properties, used together to 
perform one task. The network variables and configuration properties 
contained within a functional block are called the functional block members.  
Using functional blocks promotes modular device design, and focuses the 
integrators on the control algorithm. 

Functional blocks simplify the installation of your devices by network 
integrators.  Integrators are able to view your devices as collections of task-
oriented functional blocks rather than monolithic device applications.  When 
network integrators combine your functional blocks with other functional 
blocks within a network, they will be able to easily see the relation of the 
different functional blocks within the network.  For example, the following 
figure illustrates the integrator view of a temperature controller 
implemented with functional blocks.  The example illustrates seven 
functional blocks and their network connections.  These functional blocks are 
actually implemented on two devices, but the functional view clearly shows 
how the input sensors provide data to a temperature controller that in turn 
provides outputs to actuators and a process monitor. 

 

Figure 5.1  Network Design with Functional Blocks 

Functional blocks are defined by functional profiles.  A functional profile is 
used to describe common units of functional behavior.  All four member 
categories are optional, e.g. there may be no mandatory member network 
variables defined in a profile, or there may not be any optional configuration 
property members defined. 
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Each functional profile defines mandatory and optional network variables 
and configuration properties.  Each functional block implements an instance 
of a functional profile.  A functional block must implement all the mandatory 
network variables and mandatory configuration properties defined by the 
functional profile, and may implement any of the optional network variables 
and optional configuration properties defined by the functional profile.  A 
functional block may also implement network variables and configuration 
properties not defined by the functional profile – these are called 
implementation-specific network variables and configuration properties. 

For example, the following figure illustrates standard functional profile 
number 3050, the Constant Light Controller profile.  This profile defines two 
mandatory inputs, one mandatory output, and one optional input.  It also 
defines one mandatory configuration property and eight optional 
configuration properties. 

 

Figure 5.2  Constant Light Controller Functional Profile 

Functional profiles are defined in resource files.  You can use standard 
functional profiles defined in the standard resource file set, or you can define 
your own functional profiles in your own resource file sets.  A functional 
profile defined in a resource file is also called a functional profile template. 
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Standard functional profiles (also called standard functional profile 
templates, or SFPTs) are defined by the LonMark Interoperability 
Association.  You may view all currently defined standard functional profiles 
online at types.lonmark.org.  Additional documentation for the standard 
functional profiles is available under Design Guidelines at www.lonmark.org.  
You can create your own user-defined functional profiles (also called user 
functional profile templates, or UFPTs) using the NodeBuilder Resource 
Editor.  You declare functional blocks in your Neuron C applications using 
fblock declarations.  These declarations are described in this chapter. 

A functional block declaration does not cause the compiler to generate any 
executable code, though the compiler does create some data structures that 
are used to accomplish various functional block features.  Principally, the 
functional block creates associations among network variables and 
configuration properties.  The compiler then uses these associations to create 
the self-documentation (SD) and self-identification (SI) data in the device and 
in its associated device interface file (.xif extension). 

The functional block information in the device interface file or the SD and SI 
data communicates the presence and names of the functional blocks 
contained in the device to a network tool.  The information also 
communicates which network variables and configuration properties in the 
device are members of each functional block. 

Functional Block Declarations 
The complete syntax for declaring a functional block is the following: 

 fblock FPT-identifier { fblock-body } identifier [array-bounds] 
   [ext-name] [fb-property-list] ; 

 ext-name :  external_name ( C-string-const ) 
   external_resource_name ( C-string-const ) 
   external_resource_name ( const-expr : const-expr ) 

 array-bounds :  [ const-expr ] 

 fblock-body :  [fblock-member-list] [; director-function] 

 fblock-member-list : fblock-member-list ; fblock-member 
   fblock-member 

 fblock-member : nv-reference implements member-name 
   nv-reference impl-specific 

 impl-specific :  implementation_specific ( const-expr ) member-name 

 nv-reference :  nv-identifier array-index 
   nv-identifier 

 array-index :  [ const-expr ] 

 director-function : director identifier ; 
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The functional block declaration begins with the fblock keyword, followed by 
the name of a functional profile from a resource file.  The functional block is 
an implementation of the functional profile (i.e. it instantiates the profile).  
The functional profile defines the abstract network variable and 
configuration property members, a unique key called the functional profile 
number or functional profile key, and other information.  The network 
variable and configuration property members are divided into mandatory 
members and optional members.  Mandatory members must be implemented, 
and optional members may or may not be implemented. 

The functional block declaration then proceeds with a member list.  In this 
member list, you associate network variables that you declared previously in 
the application with the network variable members of the profile.  The 
implements keyword associates your application network variables with the 
profile network variable members.  The member list may be omitted if the 
functional block is used only as a collection of related configuration 
properties. 

At a minimum, every mandatory network variable member of the profile 
must be implemented by an actual network variable in the Neuron C 
program.  Each network variable (or, in the case of a network variable array, 
each array element) can implement no more than one profile member, and 
can be associated with at most one functional block. 

EXAMPLE: 

network output SNVT_amp nvoAmpere; 
 
fblock SFPTopenLoopSensor { 
 nvoAmpere implements nvoValue; 
} fbAmpereMeter; 

 

A Neuron C program may also implement additional network variables in 
the functional block that are not in the lists of mandatory or optional 
members of the profile.  Such additional network variable members beyond 
the profile are called implementation-specific members.  Declare these extra 
members in the member list using the implementation_specific keyword, 
followed by a unique index number, and a unique name.   

Each network variable in a functional profile assigns an index number and a 
member name to each profile network variable member, and the 
implementation-specific member cannot use any of the index numbers or 
member names that the profile has already used. 

Neuron C Programmer's Guide 5-5 



EXAMPLE: 

network output SNVT_amp nvoAmpere; 
network output polled SNVT_time_stamp nvoInstallDate; 
 
fblock SFPTopenLoopSensor { 
 nvoAmpere implements nvoValue; 
 nvoInstallDate implementation_specific(128)  
   nvoInstall; 
} fbAmpereMeter; 

The above example implements the nvoValue mandatory network variable 
of the SFPTopenLoopSensor functional profile, and adds an 
implementation-specific SNVT_time_stamp network variable with a 
member name of nvoInstall.  The member name, nvoInstall in this 
example, is typically used to refer to the member network variable, as 
discussed in Accessing Members and Properties of a Functional Block from a 
Program, later in this chapter. 

The name of the network variable, nvoInstallDate, however, is the name 
that is exposed to the network integrator by means of network variable self-
documentation (SD) data and device interface files.  In a network tool, the 
name nvoInstall will appear as the member of the functional block, 
wherever the network tool uses the profile definition. 

The implementation-specific NV member feature can also be used repeatedly 
to add each element of an entire NV array to the functional block.  One 
element is added per line.  In this way, a functional block can contain an NV 
array with the elements declared as consecutive NV members. 

At the end of the member list there is an optional item that permits the 
specification of a director function.  The director function specification begins 
with the director keyword, followed by the identifier that is the name of the 
function, and ends with a semicolon. 

EXAMPLE: 

network output SNVT_amp nvoAmpere; 
 
extern void MeterDirector(unsigned fbIdx, unsigned cmd); 
 
fblock SFPTopenLoopSensor { 
 nvoAmpere implements nvoValue; 
 director MeterDirector; 
} fbAmpereMeter; 

See The Director Function in this chapter, for more details about directors. 

After the member list, the functional block declaration continues with the 
name of the functional block itself.  A functional block can be a single 
declaration, or it can be a singly dimensioned array. 
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If the functional block is implemented as an array as shown in the example 
below, then each network variable that implements a member of that 
functional block must be declared as an array of at least the same size.  
When implementing the fblock array's member with an array network 
variable element, the starting index of the first network variable array 
element in the range of array elements must be provided in the implements 
statement.  The Neuron C compiler automatically adds the following network 
variable array elements to the fblock array elements, distributing the 
elements consecutively. 

EXAMPLE: 

network output SNVT_lev_percent nvoValue[6]; 
 
// The following declares an array of four fblocks, 
// with "nvoAnalog" members implemented by the 
// network variables nvoValue[2] .. nvoValue[5], 
// respectively. 
fblock SFPTanalogInput { 
 nvoValue[2] implements nvoAnalog; 
} myFb[4]; 

You can provide an optional external name for each functional block.  To 
specify an external name, use the external_name keyword, followed by a 
string of up to 16 characters in parentheses.  The string becomes part of the 
device interface which is exposed to network tools. 

Alternatively, you can provide an optional external name that is specified by 
a language string in a resource file using the external_resource_name 
keyword.  In this case, the device interface information contains a scope and 
index pair (the first number is a scope, then a colon character, then the 
second number is an index).  The scope and index pair identifies a language 
string in a resource file, which a network tool can access for a language-
dependent name of the functional block.  You can use the scope and index 
pair to reduce memory requirements and to provide language-dependent 
names for your functional blocks.  The external name is discussed in more 
detail in the Neuron C Reference Guide. 

EXAMPLE: 

#define NUM_AMMETERS 4 
 
network output SNVT_amp nvoAmpere[NUM_AMMETERS]; 

 
fblock SFPTopenLoopSensor { 
 nvoAmpere[0] implements nvoValue; 
} fbAmpereMeter[NUM_AMMETERS] external_name("AmpereMeter"); 

 

Neuron C Programmer's Guide 5-7 



Functional Block Property Lists 
At the end of the functional block declaration is a property list, similar to the 
device property lists and the network variable property lists discussed in the 
previous chapter.  The functional block’s property list, at a minimum, must 
include all of the mandatory properties defined by the functional profile that 
apply to the functional block.  You may add implementation-specific 
properties to the list without any special keywords.  You cannot implement 
more than one property of any particular SCPT or UCPT type for the same 
functional block. 

The functional block’s property list must only contain the mandatory and 
optional properties that apply to the functional block as a whole.  Properties 
that apply specifically to an individual abstract network variable member of 
the profile must appear in the nv-property-list of the network variable that 
implements the member, rather than in the fb-property-list. 

The complete syntax for a functional block’s property list is as follows: 

 fb_properties { property-reference-list } 

 property-reference-list : 
   property-reference-list , property-reference 
   property-reference 

 property-reference : 
   property-identifier  [= initializer] [range-mod] 
   property-identifier  [range-mod] [= initializer] 

 range-mod :  range_mod_string ( C-string-constant ) 

 property-identifier : 
   [property-modifier] cpnv-prop-ident 
   [property-modifier] cp-family-prop-ident 

 cpnv-prop-ident : identifier [ constant-expression ] 
   identifier 

 cp-family-prop-ident : identifier 

 property-modifier : static | global 

The functional block property list begins with the fb_properties keyword.  
It then contains a list of property references, separated by commas, exactly 
like the device property list and the network variable property list.  Each 
property reference must be the name of a previously declared CP family or 
the name of a previously declared configuration network variable.  The rest 
of the syntax is very similar to the network variable property list syntax 
discussed in the previous chapter. 
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Following the property-identifier, there may be an optional initializer.  If 
present, the instantiation initializer for a CP family member overrides any 
initializer provided at the time of declaration of the family; thus, using this 
mechanism, some CP family members can be initialized specially, with the 
remaining family members having a more generic initial value.  If a network 
variable is initialized in multiple places (in other words, in its declaration as 
well as in its use in a property list), the initializations must match. 

A more detailed discussion of the functional block property list syntax may be 
found in the Neuron C Reference Guide. 

EXAMPLE: 

SCPTdefOutput cp_family cpDefaultOutput; 
SCPTbrightness cp_family cpDisplayBrightness; 

 
network output SNVT_amp nvoAmpere; 
network output polled SNVT_time_stamp nvoInstallDate; 

 
fblock SFPTopenLoopSensor { 
 nvoAmpere implements nvoValue; 
 nvoInstallDate implementation_specific(128) 
   nvoInstall; 
} fbAmpereMeter external_name("AmpereMeter") 
 fb_properties { 
  cpDefaultOutput,  // optional CP 
  cpDisplayBrightness // implementation-spec. 
}; 

The example implements an open-loop sensor as an ampere meter.  The 
nvoValue mandatory network variable is implemented, but no optional 
network variables are.  The nvoInstall implementation-specific member is 
implemented as discussed earlier in this chapter.  The SCPTdefOutput 
optional configuration property is implemented, and a second, 
implementation-specific, SCPTbrightness configuration property is also 
implemented.  

The names in the above example for the CP families (cpDefaultOutput and 
cpDisplayBrightness) have no external relevance; these names are only 
used within the device's source code to reference the configuration property.  
See Accessing Members and Properties of a Functional Block from a Program, 
and Accessing Members and Properties of a Functional Block from a Network 
Tool, later in this chapter, for more details. 
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Shared Functional Block Properties 
Just as network variable properties may be shared, functional block 
properties may be shared between two or more functional blocks.  The global 
keyword creates a configuration property member that is shared among two 
or more functional blocks.  This global member is a different member than a 
global member shared among network variables.  The static keyword creates 
a configuration property member that is shared among all the members of a 
functional block array, but not with any other functional blocks or network 
variables outside the array. 

For example, consider a three-phase ampere meter, implemented with an 
array of three SFPTopenLoopSensor functional blocks.  Assume the 
hardware contains a separate amplifier for each phase, but a common analog-
to-digital converter for all three phases.  Each phase will thus have 
individual gains factors, but might have to share one property to specify the 
sample rate for all three phases: 

EXAMPLE: 

#define NUM_AMMETERS 3 
 
SCPTgain cp_family cpGain; 
SCPTupdateRate cp_family cpUpdateRate; 

 
network output SNVT_amp nvoAmpere[NUM_AMMETERS]; 

 
fblock SFPTopenLoopSensor { 
 nvoAmpere[0] implements nvoValue; 
} fbAmpereMeter[NUM_AMMETERS]  external_name("AmpereMeter") 
 fb_properties { 
  cpGain, 
  static cpUpdateRate 
}; 

Assume, furthermore, that the same device also contains a three-phase 
voltage meter with an implementation that mirrors the one from the ampere 
meter.  And, assume there is a SCPTbypassTime configuration property 
that limits the duration of a locally initiated bypass mode for all six meters.   
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The following example implements all six meters, implementing a global 
SCPTbypassTime configuration property that is shared between all 
fblocks that refer to it, and implementing two static SCPTupdateRate 
configuration properties, shared among the members of the respective fblock 
array: 

EXAMPLE: 

#define NUM_PHASES 3 
 
SCPTgain    cp_family cpGain; 
SCPTupdateRate cp_family cpUpdateRate; 
SCPTbypassTime cp_family cpBypassTime; 

 
network output SNVT_amp nvoAmpere[NUM_PHASES]; 
network output SNVT_volt nvoVolt[NUM_PHASES]; 

 
fblock SFPTopenLoopSensor { 
 nvoAmpere[0] implements nvoValue; 
} fbAmpereMeter[NUM_PHASES]  external_name("AmpereMeter") 
 fb_properties { 
  cpGain, 
  static cpUpdateRate, 
  global cpBypassTime 
}; 

 
fblock SFPTopenLoopSensor { 
 nvoVolt[0] implements nvoValue; 
} fbVoltMeter[NUM_PHASES]  external_name("AmpereMeter") 
 fb_properties { 
  cpGain, 
  static cpUpdateRate, 
  global cpBypassTime 
}; 
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Scope Rules 
When adding implementation-specific network variables or configuration 
properties to a standard or user functional profile, you must ensure the scope 
of the resource definition for the additional item is numerically less than or 
equal to the scope of the functional profile. 

For example, if you add an implementation-specific network variable or 
configuration property to a standard functional block (SFPT, scope 0), you 
must define that configuration property with a standard type (SCPT), and 
use a standard network variable type (SNVT) for the implementation-specific 
network variable. 

A second example: if you implement a functional block based on a 
manufacturer scope (scope 3) resource file, you can add an implementation-
specific network variable or configuration property that is defined in the 
same scope 3 resource file, and you can also add an implementation-specific 
network variable or configuration property defined by a SNVT or SCPT. 

You can add implementation-specific members to standard functional profiles 
using inheritance.  To do this, follow these steps: 

1 Use the NodeBuilder Resource Editor to create a user functional profile with 
the same functional profile key as the standard functional profile you wish to 
inherit from. 

2 Set Inherit Members from Scope 0 in the functional profile definition.  
This makes all members of the standard functional profile part of your user 
functional profile. 

3 Declare a functional block based on the new user functional profile. 

4 Add implementation-specific members to the functional block.  These 
members may be implemented using user-defined UNVT or UCPT types, 
themselves defined at the same scope as the inheriting functional profile. 

Alternatively, you can create a functional profile that inherits members from 
a standard functional profile, and add your own profile-specific members to 
the functional profile.  This provides better documentation and easier 
reusability than using implementation-specific members.  To do this, follow 
these steps: 

1 Use the NodeBuilder Resource Editor to create a user functional profile with 
the same functional profile key as the standard functional profile you wish to 
inherit from. 

2 Set Inherit Members from Scope 0 in the functional profile definition.  
This makes all members of the standard functional profile part of your user 
functional profile. 

3 Add your additional members to the new user functional profile. 

4 Declare a functional block based on the new user functional profile. 
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Accessing Members and Properties of a 
Functional Block from a Program 

You can access the network variable and configuration property members of 
a functional block from a program just as you can access any other variable.  
For example, members can be used in expressions, as function parameters, or 
as operands of the address operator or the increment operator.  To access a 
network variable member of a functional block, or to access a network 
variable configuration property of a functional block, the network variable 
reference can be used in the program just as any other variable would be. 

However, to use a CP family member, you must specify which family member 
is being accessed, because more than one functional block could have a 
member from the same CP family.  The syntax for accessing a configuration 
property from a functional block’s property list uses the Neuron C context 
operator, a double colon, as follows: 

fb-context :: property-identifier [ [ index-expr ] ] 

fb-context : identifier [ index-expr ] 
  identifier 

The particular CP family member is identified by a qualifier that precedes it.  
This qualifier is called the context.  The context is followed by two consecutive 
colon characters, and then the name of the property.  The context uniquely 
identifies the property.  For example, a functional block array, fba, with 10 
elements, could be declared with a property list referencing a CP family 
named cpXyz.  There would then be 10 different members of the CP family 
cpXyz, all with the same name.  However, adding the context, such as 
fba[4]:: cpXyz, or fba[j]:: cpXyz, would uniquely identify the CP family 
member. 

Just like for network variable properties, even though a configuration 
network variable can be uniquely accessed via its variable identifier, it can 
also be accessed equally well through the context expression, just like the CP 
family members. 

Also, the network variable members of the functional block can be accessed 
through a similar syntax.  The syntax for accessing a functional block 
member is shown below (the fb-context syntactical element is defined above): 

fb-context :: member-identifier  

This expression uses the network variable’s member identifier, not the 
network variable’s unique name.  Using the context expression to identify a 
member network variable therefore promotes modular device design and 
reuse of code – multiple functional blocks implementing the same functional 
profile may all implement the same network variable members, although 
each block's members will be mapped to a different network variable. 
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Finally, the properties of the functional block’s network variable members 
can also be accessed through an extension of this syntax.  The syntax for 
accessing a functional block’s member’s property is shown below (the fb-
context syntactical element is defined above): 

fb-context :: member-identifier :: property-identifier [ [ index-expr ] ] 

EXAMPLE: 

#define NUM_AMMETERS 3 
 
SCPTmaxSndT cp_family cpMaxSendTime; 
SCPTminSndT cp_family cpMinSendTime; 
SCPTgain cp_family cpGain[4]; 
SCPTupdateRate cp_family cpUpdateRate; 

network output SNVT_amp nvoAmpere[NUM_AMMETERS] 
 nv_properties { 
  cpMaxSendTime, 
  cpMinSendTime 
 }; 

fblock SFPTopenLoopSensor { 
 nvoAmpere[0] implements nvoValue; 
} fbAmpereMeter[NUM_AMMETERS]  external_name("AmpereMeter") 
 fb_properties { 
  cpGain, // Each property is an array [4] 
  static cpUpdateRate 
 }; 

All the following constructs are examples for valid code: 

nvoAmpere[2] = 123; 

fbAmpereMeter[2]::nvoValue = 123; 

fbAmpereMeter[0]::cpGain[i].multiplier = 2L; 

nvoAmpere[2]::cpMaxSendTime.seconds = 30; 

fbAmpereMeter[2]::nvoValue::cpMaxSendTime.hour = 0; 

z = ((SCPTmaxSndT *)&nvoAmpere[2]::cpMaxSendTime)->day; 

Pointers can be used with CP family members as shown; however, the 
configuration properties will be stored in EEPROM.  This causes the 
compiler to apply special rules as described for the #pragma 
relaxed_casting_on directive in the Neuron C Reference Guide. 

Since cpGain is a static configuration property, the following expression is 
always true: 

fbAmpereMeter[0]::cpGain[i].multiplier == 
   fbAmpereMeter[1]::cpGain[i].multiplier 
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The following expressions are incorrect and will cause a compiler error: 

// '.' instead of '::' 
fbAmpereMeter[0].cpGain[i].multiplier = 123; 

// reference of CP family, not CP family member 
cpGain.multiplier = 123; 

//  '::' instead of '.' 
fbAmpereMeter[0]::cpGain[i]::multiplier = 123; 

Neuron C also provides some built-in properties for a functional block.  The 
built-in properties are shown below (the fb-context syntactical element is 
defined above): 

fb-context :: global_index 

fb-context :: director ( expr ) 

The global_index property is an unsigned short value that corresponds to 
the global index assigned by the compiler.  The global index is a read-only 
value.  The global index ranges from 0 (zero) to 62, with each fblock and 
element of an fblock array having a unique index.  The order of the fblock 
index follows the order in which the fblock declarations are compiled. 

Use of the director property as shown calls the director function that 
appears in the declaration of the functional block.  The compiler provides the 
first parameter to the actual director function automatically (the first 
argument is the global index of the functional block), and the expr shown in 
the syntax above becomes the director function’s second parameter.  This 
second parameter is usually referred to as unsigned uCommand, however, 
the compiler passes any value of type unsigned without imposing any 
special interpretation. 

The director property can be used in any case, no matter whether a director 
function is defined for this individual fblock, shared among various fblocks, 
or not defined at all.  In case no actual director function is defined, use of the 
director property does not cause a compile-time or run-time error.  The 
firmware support for the director property handles the case of an undefined 
director function by taking no action other than just returning to the calling 
program. 

For more about the director property, the global_index property, and for 
examples showing their use, see The Director Function below. 
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Accessing Members and Properties of a 
Functional Block from a Network Tool  

Network tools are free to implement whatever representation suits the tool’s 
user interface and purpose best.  The LonMaker Integration Tool, for 
example, focuses on a graphical representation of functional blocks and 
member network variables.  Configuration properties are typically 
represented by custom controls in specialized configuration software, such as 
a LNS device plug-in. 

For example, the cpGain property from the example above might be 
presented as a slider for graphical adjustment of the gain factor with the 
mouse or cursor keys. 

However, most tools also supply some textual reference to configuration 
properties.  When listing configuration property members, those members 
are typically listed using or including their type name, e.g. 
“SCPTupdateRate”, or “UCPTboosterControl”. 

Since a functional block can only implement one configuration property of a 
given type, this naming scheme provides unique names.  To avoid confusion 
between the internal and external names of configuration properties, you 
should preserve some degree of similarity between the internal and external 
names. 

EXAMPLE: 

SCPTbrightness cp_family cpBrightness; 

This example above implements a configuration property family with the 
internal name cpBrightness of type name SCPTbrightness.  The type name is 
likely to appear as an external, textual, reference to that property, depending 
on the implementation of the network tool. 

The Director Function 
You can create a director function for each functional block.  A director 
function is a function that can provide actions associated with the functional 
block such as enable, disable, reset, or test.  The association with the 
functional block enables easy implementation of the standard request 
functions defined by Node Object functional block.  These request functions 
allow a network tool to send a request to a device to enable, disable, reset, or 
test any functional block on the device.  The Node Object implementation can 
vector these requests to the appropriate functional block function through 
the use of the director function.  The Node Object implementation generated 
by the NodeBuilder Code Wizard includes code to call the functional block 
director functions based on inputs from the Node Object Request input. 
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A director function must match the function prototype shown below.  The 
first parameter is the global index of the functional block for which the 
director is being called, and the second parameter is a command code upon 
which the director is to act. 

void director-name (unsigned fbIndex, unsigned command); 

You attach a director function to a functional block with an optional 
declaration statement at the end of the member list of the functional block. 

EXAMPLE: 

void myDirector (unsigned fbIndex, unsigned command); 
 
fblock . . . { 
 /* Member NVs, “implements” . . . */ 
 
 director myDirector; 
} myFB; 
 
void myDirector (unsigned fbIndex, unsigned command) { 
    . . . /* whatever */ 
} 

The director function simplifies implementation of functional block 
commands received via the Node Object functional block.  Each functional 
block is a functional unit, a collection of network variables and properties.  A 
network tool may send a request to a device's Node Object to enable, disable, 
reset, or test any functional block on the device.  The Node Object 
implementation must then direct this request to code specific to the 
requested functional block.  The director function provides an easy way for 
the device to manage its functional blocks and make sure that events and 
commands are directed to the proper functional block. 

EXAMPLE: 

An implementation of the SFPTnodeObject functional block receives 
requests via the nviRequest mandatory member network variable input.  
Examples for these requests are the RQ_DISABLED and RQ_ENABLED 
requests, which requests one or more objects to enter the disabled or enabled 
state, respectively.  These requests may apply to the Node Object functional 
block, to an individual functional block other than the Node Object functional 
block, or to all functional blocks implemented on the device.  A 
SFPTnodeObject implementation can inspect the scope of the command 
received, and route the command to the right director function as follows: 
when (nv_update_occurs(nviRequest)) 
{ 
 if (nviRequest.object_id == MyNodeObj::global_index) { 
  // NodeObject must handle this: 
  MyNodeObj::director(nviRequest.object_request); 
 } else { 
  // route the command to the best director: 
  ... (see below) 
 } 
}  
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When a network variable update is received, you can determine the 
functional block containing the network variable using the built-in 
fblock_index_map variable.  This mapping array has an element for each 
network variable, and each corresponding element contains the global index 
of the functional block of which the network variable is a member.  If the 
network variable is not a member of a functional block, the corresponding 
element contains 0xFF, meaning "no functional block". 

You can also directly call the director for a functional block by specifying the 
functional block index.  To do this, call the built-in fblock_director( ) virtual 
function.  This function has the same prototype as an individual director, but 
it is a virtual function.  The fblock_director( ) function automatically 
selects which of the actual director functions to call.  If the functional block 
does not have a director, the fblock_director( ) function will return and do 
nothing. 

Using this structure, the above example can be completed with code that 
routes the command received to the most appropriate director: 

EXAMPLE: 

when (nv_update_occurs(nviRequest)) 
{ 
 if (nviRequest.object_id == MyNodeObj::global_index) { 
  // NodeObject must handle this: 
  MyNodeObj::director(nviRequest.object_request); 
 } else { 
  // route the command to the best director: 
  fblock_director(nviRequest.object_id, 
      nviRequest.object_request); 
 } 
} 

Likewise, a single task can handle all network variable updates by notifying 
the director function that is in charge of the functional block to which the 
network variable update applies: 

#define CMD_NV_UPDATE 17 
 
when (nv_update_occurs)  
{ 
 fblock_director(fblock_index_map[nv_in_index], 
    CMD_NV_UPDATE); 
} 

There are no limitations on how you use a director function or how you 
interpret the second parameter to the director function.  The director 
function is a useful means to create Node Object implementations, but you 
are free to extend its usage as well. 
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Sharing of Configuration Properties 
Elements of a functional block array or multiple distinct functional blocks 
can share configuration properties using the static and global modifiers.  
The following example implements two configuration properties, one being 
shared among all members of the functional block array and one being 
shared by the other two functional blocks. 

EXAMPLE: 

cp_family SCPTgain cpGain = { 1, 0 }; 
 // This family will have a total of 2 members 
 
// FBs with shared gain factor: 

fblock ... { 
   ... 
} fbA fb_properties { 
   global cpGain   // shared by fbA and fbB 
}; 

 

fblock ... { 
   ... 
} fbB fb_properties { 
   global cpGain   // shared by fbA and fbB 
}; 
 
fblock ... { 
   ... 
} fbC[5] fb_properties { 
   static cpGain   // shared among fbC[0]..fbC[4] 
}; 
 

The rules and considerations for shared configuration properties outlined in 
Chapter 4, Using Configuration Properties to Configure Device Behavior, 
apply to functional blocks as well as network variables.  See Sharing of 
Configuration Properties in that chapter for more details. 

 

Neuron C Programmer's Guide 5-19 





6 
How Devices Communicate 

Using Application Messages 

This chapter describes the use of application messages, which 
can be used in place of or in addition to network variables.  The 
request/response mechanism, a special use of application 
messages, is also described.  Other topics covered here include 
preemption mode, asynchronous and direct event processing, 
the use of completion events with messages and with network 
variables, and authentication for messages. 
Application messages are used for creating a proprietary 
interface (i.e. non-interoperable) to a device.  The same 
mechanism used for application messaging may also be used to 
create foreign-frame messages (for proprietary gateways) and 
explicitly-addressed network variable messages. 



Introduction to Application Messages 
Application messages are used for creating a proprietary interface (i.e. non-
interoperable) to a device.  The same mechanism used for application 
messaging may also be used to create foreign-frame messages (for 
proprietary gateways) and explicitly-addressed network variable messages. 

There is one interoperable use for application messages, and that is the 
LONWORKS file transfer protocol.  This protocol is used to exchange large 
blocks of data between devices or between devices and tools, and may also be 
used to implement configuration files. 

As described in previous chapters, functional blocks, network variables, and 
configuration properties are used for creating an open interoperable interface 
to a device.  A device interface may include an interoperable portion and a 
proprietary portion.  For example, a device may implement a proprietary 
interface for use solely during manufacturing, and an interoperable interface 
for use in the field. 

The content of an application message is defined by a proprietary message 
code that is sent as part of the message.  This code is followed by a variable-
sized data field.  The same message code can have one byte of data in one 
instance and 25 bytes of data in another instance. 

You can use a request/response service with application messages to enable 
an application on one device to cause an application on another device to 
respond to it.  The request/response mechanism is similar to a network 
variable poll.  When a network variable is polled, the application scheduler 
on the polled device provides the most recent value for that network variable, 
without intervention of (or knowledge by) the application program.  When an 
application message is sent with the request service, the application program 
on the remote device takes some action as a result of receiving the request 
message, and then provides a new value for its response.  The 
request/response service can also be used to implement remote procedure 
calls, since it provides a way for an application on one device to invoke an 
action on another device. 

Application messages use less EEPROM table space than network variables, 
but performing the equivalent tasks using application messages always 
consumes more code space than using network variables because of the 
amount of support code built-in to the Neuron firmware for network 
variables.  In addition, using application messages is a more complicated way 
of accomplishing such a task.  You must explicitly build, send, and receive 
application messages.  Message attributes such as service type, 
authentication, and priority are defined at compile time or run-time, and are 
not configurable by a network tool after device installation (however, these 
attributes can be set on a message-by-message basis). 
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Application messages do allow for transfer of data that would not fit into a 
network variable.  A network variable can accommodate up to 31 bytes of 
data.  Application messages allow for up to 228 bytes of data to be 
transmitted within one message.  However, large messages will not pass 
through most LONWORKS routers, because routers are typically configured 
for messages with smaller amounts of data. 

Layers of Neuron Software 
When you use network variables in a program, the actual building and 
sending of messages takes place behind the scenes.  This is called implicit 
messaging.  As shown in Figure 6.1, three layers of software are involved:  
the application layer, which includes the scheduler, the network layer and 
the Media Access Control (MAC) layer.  Each of these layers of software 
corresponds to one or more layers of the LonTalk protocol and is handled by a 
separate processor on a Neuron Chip or Smart Transceiver. 

Only one of these layers, the application layer, can be programmed.  Your 
program also has access to some of the information provided by the network 
layer through the services of the scheduler, as described later in this chapter. 

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

= data

 

Figure 6.1  Sending a Message 
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Implicit Messages:  Network Variables 
Figure 6.1 illustrates what happens when a device assigns a value to an 
output network variable.  First, the application program assigns a value to 
the network variable.  The scheduler then builds a network variable message 
and passes the message to the network layer.  The network layer adds 
addressing information to the network variable message and then passes the 
message to the MAC layer.  The MAC layer adds more information to the 
network variable message, and then sends the message over the 
communications channel. 

When a device receives the network variable message, the message is 
unpackaged, as follows.  First, the MAC layer validates the message.  The 
network layer then checks the addressing information contained in the 
message to see if it is intended for this device.  If it is, it passes the network 
variable information to the scheduler.  The scheduler then makes the new 
value available to the appropriate task within the application program. 

These messages are referred to as implicit messages because they are sent 
and received automatically.  Application messages are also referred to as 
explicit messages. 

 

Application Messages 
You can explicitly create a message using Neuron C.  Rather than using the 
implicit messaging capability provided by network variables, you can 
manually construct and send a message.  This type of message is called an 
explicit message.  You must identify the type of this explicit message using a 
message code.  The message code identifies the message as an application 
message, foreign-frame message, or network variable message.  The following 
sections describe how to use the objects, functions, and events used with 
application messages.  The request/response mechanism, a special use of 
application messages, is described following the generalized description of 
application messages.  The same mechanisms used for application messaging 
may also be used to create and send foreign-frame messages (for proprietary 
gateways) and explicitly-addressed network variable messages. 
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You must construct an application message using a predefined message 
object, and then process it using function calls and predefined events.  
Following is a brief list of the steps described in the following sections.  
Objects, functions, and events are itemized for each section. 

Functional Step Neuron C Feature 

1 Constructing a message msg_out object 
2 msg_send( ) function 

msg_cancel( ) function 
Sending a message 

3 Receiving a message msg_arrives event 
msg_receive( ) function 
msg_in object 

4 After sending a 
message with the 
acknowledged service  

msg_completes event 
msg_succeeds event 
msg_fails event 

5 Sending a response to a 
message with the 
request/response 
service  

resp_out object 
resp_send( ) function 
resp_cancel( ) function 
resp_arrives event 
resp_receive( ) function 
resp_in object 

6 msg_alloc( ) function 
msg_alloc_priority( ) function 
msg_free( ) function 
resp_alloc( ) function 
resp_free( ) function 

Allocating buffers 
explicitly 

 

Constructing a Message 
You can construct an application message using the msg_out outgoing 
message object.  This definition is built into Neuron C.  Use the msg_send( ) 
function to send the message.  You can only construct one outgoing message 
(or response) and one incoming message (or response) at any one time.  For 
example, you cannot build up two messages in parallel and send them both.  
Nor can you parse two input messages at the same time. 
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The msg_out Object Definition 
An outgoing message is predefined as shown below: 

typedef enum {FALSE, TRUE} boolean; 
typedef enum {ACKD, UNACKD_RPT, 
    UNACKD, REQUEST}  service_type; 
 
struct { 
 boolean priority_on; // TRUE if a priority message 
     // (default:FALSE) 
 msg_tag tag;  // message tag (required) 
 int    code;  // message code (required) 
 int    data[MAXDATA] // message data (default:none) 
 boolean authenticated;  // TRUE if to be authenticated 
     // (default:FALSE) 
 service_type service; // service type (default:ACKD) 
 msg_out_addr dest_addr; // see include file msg_addr.h 
     // (optional field) 
} msg_out; 

priority_on When set to TRUE, sends the message as a priority 
message.  Specify FALSE, or do not assign to this 
field, if the message is not a priority message.  If used, 
this field must be the first field set in the message 
object, even before the tag.  The default is FALSE 
(that is, nonpriority). 

tag A message tag identifier for the message.  This field is 
required.  See Message Tags in this chapter. 

code A numeric message code.  This field is required.  See 
Message Codes in this chapter. 

data The application's data.  This field is optional; a 
message can consist of only a message tag and 
message code.  Because of network buffer overhead, 
MAXDATA must never exceed 228.  MAXDATA is a 
function of the app_buf_out_size pragma (see 
Chapter 8): 

MAXDATA = app_buf_out_size – 6 

 or 

MAXDATA = app_buf_out_size - 17 
(if explicit addressing is used 
for messages or network 
variables in this program) 

 

NOTE:  The Neuron firmware observes which locations in the data array 
have assignments and automatically sets the length of the outgoing message 
accordingly. 

6-6 How Devices Communicate Using Application Messages 



authenticated A TRUE value specifies that the message is to be 
authenticated.  You may specify FALSE, or not assign 
to this field, if the message does not need to be 
authenticated.  The default is FALSE (that is, not 
authenticated). 

service Specifies one of the following: 

ACKD (the default) - acknowledged service with 
retries 

REQUEST – request/response protocol 

UNACKD - unacknowledged service 

UNACKD_RPT - repeated service (message sent 
multiple times) 

 

NOTE:  Do not use UNACKD or UNACKD_RPT in combination with 
authenticated messages.  Use only the ACKD or REQUEST service type. 

 

dest_addr An optional field in msg_out that explicitly specifies 
a destination address.  If dest_addr is not set, then 
the message is sent to the implicit address associated 
with the tag, if the tag is bound.  See Explicit 
Addressing later in this chapter for more information. 
 
NOTE:  To use this field, you must include the 
<addrdefs.h> and <msg_addr.h> files. 

Message Tags 
A message tag is a connection point for application messages.  Incoming 
application messages are always received on a common message tag called 
msg_in, but you must declare one or more message tags if outgoing explicit 
messages are used.  The incoming tag and each outgoing tag or tags may be 
assigned a unique network address by a network tool. 

A message tag declaration can optionally include connection information.  
The syntax for declaring a message tag is as follows: 

msg_tag [connection-info] tag-identifier [, tag-identifier ...]; 

The connection-info field is an optional specification for connection options, in 
the following form: 

bind_info (options) 
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The following connection options apply to message tags: 

nonbind Denotes a message tag that carries no implicit 
addressing information and does not consume an 
address table entry.  It is used as a destination tag 
when creating explicitly addressed messages. 

rate_est (const-expr) The estimated sustained message rate, in tenths of 
messages per second, that the associated message tag 
is expected to transmit.  The allowable value range is 
from 0 to 18780 (0 to 1878.0 messages/second). 

max_rate_est (const-expr) 
The estimated maximum message rate, in tenths of 
messages per second, that the associated message tag 
is expected to transmit.  The allowable value range is 
from 0 to 18780 (0 to 1878.0 messages/second). 

tag-identifier A Neuron C identifier for the message tag. 

It may not always be possible to determine rate_est and max_rate_est.  For 
example, message output rates are often a function of the particular network 
where the device is installed.  These optional values may be used by a 
network tool to perform network device analysis.  Although any value in the 
range 0-18780 may be specified, not all values are used.  The values are 
mapped into encoded values n in the range 0-127.  Only the encoded values 
are stored in the device's self-identification (SI) data.  The actual value can 
be reconstructed from the encoded value.  If the encoded value is zero, the 
actual value is undefined.  If the encoded value is in the range 1-127, the 
actual value is a=2(n/8)-5, rounded to the nearest tenth.  The actual value, a, 
produced by the formula, is in units of messages per second. 

You must assign a message tag to the msg_out.tag field for each outgoing 
message.  This specifies which connection point (corresponds to an address 
table entry) to use for the outgoing message.  Once the tag field has been 
assigned, the message must be either sent or cancelled.  

Besides addressing, message tags are also used for correlating completion 
events and responses with outgoing messages.  For example, the following 
when clause correlates a message completion event with a message sent via 
the tag1 message tag: 

when (msg_completes(tag1)) 

By qualifying an event with a message tag, the event becomes TRUE only 
when an event corresponding to that particular outgoing message occurs. 
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Message Codes 
A message code is a numeric identifier for a message.  Each application 
message must include a message code that the receiving applications can use 
to interpret the contents of the message. 

Message codes are used by all LonTalk messages, not just application 
messages.  They fall into the ranges shown in Table 6.1.  Codes 0-62 and 64-
78 are for use by applications.  The lower range is used for proprietary 
application-specific messages, and the upper range is used for proprietary 
application-level gateways to other networks. 

Table 6.1  Ranges for Message Codes 

Type of Message Message Code Description 

User Application 
Messages 

0 to 47 
(0x00..0x2F) 

Generic application messages.  
The interpretation of the message 
code is left up to your application. 

Standard Application 
Messages 

48 to 62 
(0x30..0x3E) 

Standard application messages 
defined by the LONMARK 
Interoperability Association. 

Responder Offline 63 
(0x3F) 

Used by application message 
responses.  Indicates that the 
sender of the response was in an 
offline state and could not process 
the request. 

Foreign Frames 64 to 78 
(0x40..0x4E) 

Used by application-level 
gateways to other networks.  The 
interpretation of the message 
code is left up to the application. 

Foreign Responder 
Offline 

79 
(0x4F) 

Used by foreign frame responses.  
Indicates that the sender of the 
response was in an offline state 
and could not process the request. 

Network Diagnostic 
Messages 

80 to 95 
(0x50..0x5F) 

Used by network tools for 
network diagnostics. 

Network 
Management 
Messages 

96 to 127 
(0x60..0x7F) 

Used by network tools for 
network installation and 
maintenance. 

Network Variables 128 to 255 
(0x80..0xFF) 

The lower six bits of the message 
code contain the upper six bits of 
the (14-bit) network variable 
selector.  The first data byte 
contains the lower eight bits of 
the selector. 
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EXAMPLE OF BUILDING AN APPLICATION MESSAGE: 

msg_tag motor; 
 
#define MOTOR_ON 0 
#define ON_FULL 100 
 
msg_out.tag = motor; 
msg_out.code = MOTOR_ON; 
msg_out.data[0] = ON_FULL; 

Block Transfers of Data 
You can use the memcpy( ) function to transfer blocks of message data into 
the msg_out or resp_out objects (see Using the Request/Response 
Mechanism later in this chapter).  This is the only case where you can take 
the address of the msg_out or resp_out objects. 

To copy a block of data into the msg_out object, use the following syntax: 

void memcpy (msg_out.data, &s, sizeof(s)); 

The syntax is similar for the resp_out object. 

msg_out.data The destination of the copy.  This destination can also 
be a specific field of the message object (for example, 
&msg_out.data[3]). 

&s A pointer to a structure containing the data to be 
copied.  This field can be a pointer, an array, or a 
pointer to an element of an array (&a[5]). 

sizeof(s) The size of the source structure. 

You can also use memcpy( ) to copy a block of data from the msg_in or 
resp_in objects.  These are the only cases where you can take the address of 
the msg_in or resp_in objects. 

void memcpy (&s, msg_in.data, sizeof (s)); 

&s A pointer to the destination structure.  This field can 
be a pointer, an array, or a pointer to an element of an 
array (&a[5]). 

msg_in.data The source of the copy.  This destination can also be a 
specific field of the message object (for example, 
&msg_in.data[3]). 

sizeof(s) The size of the destination structure. 

For messages of an unknown or variable length, use msg_in.len or 
resp_in.len, limited by the sizeof(s) to prevent writing past the end of s. 
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EXAMPLE BLOCK TRANSFER OF DATA: 

msg_tag motor; 
#define MOTOR_ON 0 
 
typedef enum { 
   MOTOR_FWD, 
   MOTOR_REV 
} motor_dir; 

 
struct { 
   long      motor_speed; 
   motor_dir motor_direction; 
   int       motor_ramp_up_rate; 
}  motor_on_message; 
 
when(some_event) { 
 msg_out.tag = motor; 
 msg_out.code = MOTOR_ON; 
 motor_on_message.motor_direction = MOTOR_FWD; 
 motor_on_message.motor_speed = 500; 
 motor_on_message.motor_ramp_up_rate = 100; 
 memcpy(msg_out.data, &motor_on_message, 
  sizeof (motor_on_message)); 
 msg_send(); 
} 

Sending a Message 
You can send and cancel sending a message using the following functions: 

msg_send( ) 

msg_cancel( ) 

The msg_send( ) function has the following syntax: 

void msg_send(void); 

This function sends a message using the msg_out object (which must have 
already been constructed prior to the call to the msg_send( ) function).  It 
has no parameters, and has no return value. 
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The following code fragment illustrates sending a message: 

msg_tag motor; 
#define MOTOR_ON 0 
#define ON_FULL 100 // (100 percent) 
 
when (io_changes(switch1) to ON) 
{ 
 // Send a message to the motor  
 msg_out.tag = motor; 
 msg_out.code = MOTOR_ON; 
 msg_out.data[0] = ON_FULL; 
 msg_send(); 
} 

The msg_cancel( ) function cancels an outgoing message.  It has the 
following syntax: 

void msg_cancel(void); 

This function cancels the message being built for the msg_out object and 
frees the associated buffer, allowing another message to be constructed.  It 
has no parameters, and has no return value. 

If a message is constructed but not sent before the task is exited, the message 
is automatically canceled. 

Receiving a Message 
You will typically receive a message using the msg_arrives predefined 
event.  You can also use the msg_receive( ) function to receive a message. 

The msg_arrives Event 
The predefined event for receiving a message is msg_arrives.  Its syntax is: 

msg_arrives [(message-code)] 

If a message arrives, this event evaluates to TRUE.  You can optionally 
qualify the event using a message code.  In this case, the event is TRUE only 
when a message arrives containing the specified code. 

When mixing unqualified msg_arrives events with qualified msg_arrives 
events, the #pragma scheduler_reset directive must be specified so that 
the unqualified event when clause is processed after all the qualified event 
when clauses. 

It is essential that your program contain a default case as shown in the 
example below, to prevent an event queue lockup.  This issue is explained in 
detail in the section Importance of a Default When Clause later in this 
chapter. 
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A sample use of this event is shown in Listing 6.1 below. 

Listing 6.1  Use of msg_arrives Event 

#pragma scheduler_reset 
when (msg_arrives(1)) 
{ 
 io_out(sprinkler, ON); 
} 
 
when (msg_arrives(2)) 
{ 
 io_out(sprinkler, OFF); 
} 
 
when (msg_arrives) // default case for  
  // handling unexpected message codes 
{ 
 // Do nothing, just discard it  
} 

To prevent the incoming message queue from becoming blocked, a program 
that receives application messages, such as that shown in Listing 6.1, should 
contain a default when clause with an unqualified msg_arrives event as 
shown in the example.  This is explained further in Importance of a Default 
When Clause later in this chapter. 

The msg_receive( ) Function 
The msg_receive( ) function has the following syntax: 

 boolean msg_receive(void); 

This function receives a message into the msg_in object.  The function 
returns TRUE if a new message is received, otherwise it returns FALSE. 

If no message is received, this function does not wait for one.  You may need 
to use this function to receive more than one message in a single task, as in 
bypass mode (bypass mode is also called direct event processing).  If there 
already is a received message, it is discarded (that is, its buffer space is 
freed). 

Calling msg_receive( ) or resp_receive( ) has the side-effect of calling 
post_events( ).  Thus, a call to msg_receive( ) or resp_receive( ) defines a 
critical section boundary (see Receiving a Response in this chapter). 

When you use the msg_receive( ) function, all messages are received in 
"raw" form, and special events such as online, offline, and wink can be 
used, but you must check for these events explicitly via message code checks.  
For these reasons, you cannot use msg_receive( ) if the application program 
handles any special events (i.e. wink, online, and offline). 
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Format of an Incoming Message 
The name for the incoming message object is msg_in.  This definition is built 
into Neuron C.  A message is read by examining the appropriate fields in the 
object. 

The fields of the msg_in object are read-only, you cannot assign values to 
them.  An incoming message is predefined as follows: 

typedef enum {FALSE, TRUE} boolean; 
typedef enum {ACKD, UNACKD_RPT, 
    UNACKD, REQUEST}   service_type; 
 
struct  { 
 int code;  // message code  
 int len;  // length of message data  
 int data[MAXDATA]; // message data  
 boolean authenticated; // TRUE if message was 
     // authenticated  
 service_type service; // service type used by sender 
 msg_in_addr addr; // see <msg_addr.h> include file 
 boolean duplicate; // the message is a duplicate 
 unsigned rcvtx; // the message's receive tx ID 
} msg_in; 

 

WARNING:  Assigning values to the msg_out object may invalidate fields in 
the msg_in object.  After receiving a message, you must examine or save any 
necessary fields in the msg_in object before starting to send a message. 

 

code A numeric message code.  See Message Codes earlier 
in this chapter. 

len The length of the message data. 

data The application data.  This field is valid only if len is 
greater than 0.  MAXDATA is a function of the 
#pragma app_buf_in_size directive (see Chapter 8): 

MAXDATA = app_buf_in_size – 6 

 or, 

MAXDATA = app_buf_in_size - 17 
(if explicit addressing is used 
by any message or network 
variable in the program) 
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authenticated This field has the value TRUE if the message was 
authenticated, and FALSE if the message was not 
authenticated. 

service The message service type; one of the following values: 

ACKD - acknowledged service with retries 

UNACKD - unacknowledged service 

UNACKD_RPT- repeated service (message sent 
multiple times) 

REQUEST- request/response service.  When a 
message is sent using this 
service, the receiver device 
returns a response to the 
sender device, and the sender 
processes the response.  The 
request/response mechanism is 
described later in this chapter. 

addr An optional field in the incoming message that an 
application program may look at to determine the 
source and destination of the message.  You can find 
the definition of the msg_in_addr type in the 
<msg_addr.h> include file. 

 To use this field, you must include the <msg_addr.h> 
file. 

duplicate When this boolean flag is TRUE, it indicates the 
message is a duplicate request message passed to the 
application.  Duplicate request messages are passed to 
the application if the application response contains 
data beyond the one-byte message code. 

rcvtx The receive-transaction ID that the message used in 
the device's transaction database. 

Importance of a Default When Clause 
Listing 6.1 (shown earlier in this chapter) illustrates an important technique 
to be used with messages:  Any program that receives application messages 
must be prepared to receive unwanted messages and discard them.  Discards 
can take the form shown in Listing 6.1, or can be a default case in a switch 
statement. 

If a message were to arrive and the application fail to process it, that 
message would remain at the head of the queue forever, blocking the arrival 
of any other messages or network variable events and locking up the device 
forever until it is reset.  One example of a message that would be sent to all 
devices, most of which are not interested in the message, is the service pin 
message.  Probably only a network tool would want to process the service pin 
message; all other devices need to discard the message. 
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If a program does not process messages (either implicitly through the use of 
when(msg_arrives) or explicitly through the use of msg_receive( )), the 
scheduler will automatically discard all incoming messages. 

A device that uses only network variables need not be concerned with this 
phenomenon, since the scheduler then handles all incoming messages. 

 

Example 
The following example shows how lamp and switch devices could be written 
using application messages instead of network variables. 

 

Lamp Program 
First, here is the program for the lamp devices: 

// lamp.nc - Generic program for a lamp  
// The lamp’s state is governed by an incoming  
// application message  
 
#define LAMP_ON 1 
#define LAMP_OFF 2 
#define OFF 0 
#define ON 1 
 

// I/O declaration 
IO_0 output bit io_lamp_control; 

 
when (msg_arrives) { 
    switch (msg_in.code) { 
    case LAMP_ON: 
        io_out(io_lamp_control, ON); 
      break; 
    case LAMP_OFF: 
        io_out(io_lamp_control, OFF); 
      break; 
    } //end switch 
} //end when 
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Switch Program 
Here is the program for the switch devices: 

// switch.nc - Generic program for a switch  
// Send a message when the switch changes state  
 
#define LAMP_ON  1 
#define LAMP_OFF 2 
#define OFF 0 
#define ON 1 
 
// I/O Declaration  
IO_4 input bit io_switch_in; 
 
// Message tag declaration  
msg_tag TAG_OUT; 

 
// Event-driven code  
when (reset) { 
   io_change_init(io_switch_in); 
} 
 
when (io_changes(io_switch_in)) { 
   // Set up message code based on the switch state  
   msg_out.code = (input_value == ON) ? LAMP_ON : LAMP_OFF; 
 
   // Set up message tag and send message  
   msg_out.tag = TAG_OUT; 
   msg_send(); 
} 
 

Connecting Message Tags 
Every device has a default msg_in input message tag.  Network integrators 
use a network tool to connect message tags for outgoing messages to the 
msg_in input message tag.  For example, message tags on the two example 
devices are connected as follows: 

 TAG_OUT    connects to    msg_in 

on the switch    on the lamp 
     device        device 
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Explicit Addressing 
You can explicitly specify a destination address for application messages and 
network variables using the data structures in the <msg_addr.h> and 
<addrdefs.h> include files.  To use explicit addressing for outgoing 
messages, you must assign appropriate values to all applicable fields of one of 
the elements of the dest_addr union in the msg_out object, prior to calling 
msg_send( ).  The message still needs a message tag, although no addressing 
information will be derived from the message tag.  Thus, no matter how the 
message tag is bound, explicit addressing will override the address specified 
by the tag. 

When you assign an explicit destination address, the message tag is only 
relevant for correlation with response and completion event processing.  
However, if you use a standard message tag, you will still consume an 
address table entry, even if you only use the message tag for explicitly-
addressed messages.  To permit a more optimal use of Neuron resources, use 
non-bindable message tags that carry no addressing information and do not 
consume an address table entry.  Use the following syntax to declare a non-
bindable message tag: 

msg_tag bind_info(nonbind [, other-info]) tag-name; 

See Message Tags in this chapter for a more detailed discussion of the 
nonbind option. 

The use of explicit addressing has an effect on the buffer sizes needed by the 
Neuron firmware.  See Table 8.1, Values for Buffer Sizes and Counts, in 
Memory Management for more detailed information. 

You can send network variable updates using explicit addressing by creating 
an explicit message that corresponds to a network variable update and 
explicitly setting the destination address.  See the Smart Transceivers 
databooks for a description of the explicit message format of a network 
variable update and Section A.3, The Address Table, in the same documents 
for more information on addressing. 
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Sending a Message with the Acknowledged 
Service 

When a device sends a message using the acknowledged service (the default), 
all receiver devices must acknowledge receipt of the message to the sender 
device.  As shown in Figure 6.2, the network processor is responsible for 
sending back the acknowledgment.  This acknowledgment message contains 
no data and is sent to the network processor on the device where the message 
originated. 

The application layer plays no part in the acknowledgment of a message.  
How then does a program ever learn whether a message has succeeded or 
failed?  The following section answers this question. 

 

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

Figure 6.2  Acknowledging a Message 

Message Completion Events 
The following events can be used by the sender device to check message 
completion status: 

msg_completes [(msg-tag-name)] 

msg_succeeds [(msg-tag-name)] 

msg_fails [(msg-tag-name)] 

All three events can be qualified by a message tag name.  If unqualified, the 
event applies to any message. 

When using an unqualified message completion event, the built-in variable 
msg_tag_index may be used to determine which message tag was 
responsible for the event.  See the Predefined Events chapter in the Neuron C 
Reference Guide for more information. 

The msg_completes event is the most general event.  When an outgoing 
message completes (that is, succeeds or fails), this event evaluates to TRUE. 
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The msg_succeeds event evaluates to TRUE when a message is successfully 
sent.  The msg_fails event evaluates to TRUE when a message fails to be 
sent (after all retry attempts).  (See Table 6.2 for a more precise breakdown 
of what “success” and “failure” mean for each service type.)  For a given 
message, only one of these events evaluates to TRUE.  The order of 
processing is thus important.  If a msg_completes event is processed before 
the msg_succeeds and msg_fails events, the msg_succeeds and 
msg_fails events will never evaluate to TRUE. 

 
NOTE: See also Comparison of resp_arrives and msg_succeeds later in this 
chapter. 
 

These events are primarily of interest when you send a message with either 
the acknowledged service or the request/response service (see Using the 
Request/Response Mechanism later in this chapter).  If you send a message 
with the unacknowledged or repeated service, the msg_succeeds and 
msg_completes events are always TRUE as soon as the message is 
transferred from the network processor to the Media Access Control (MAC) 
processor on the sender device. 
 

Table 6.2  Success/Failure Completion Events 

Service Used SUCCESS = FAIL= 
Unacknowledged Message is transmitted  

to MAC processor. 
* 

Repeated N messages are  
transmitted to MAC 
processor.  (N is the  
number of repeats.) 

* 

Acknowledged All acknowledgments  
have been received by the  
network processor on the  
sender device. 

One or more  
acknowledgments are  
not received.  This applies  
to both messages and  
network variables. 

Request/Response All responses have been  
received by the  
application processor  
on the sender device. 

For a message:  One or  
more of the responses  
did not arrive. 
For a network variable  
poll:  (a)  One or more  
of the responses did not  
arrive.  (b)  None of the  
responses had valid data. 

*In all cases, if the Neuron firmware encounters an addressing error,  
a failure event occurs (see the Neuron C Reference Guide).  If a network 
variable or message is unbound, a success event occurs. 
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Processing Completion Events for Messages 
When you send a message, you can optionally check the completion event.  
Several restrictions apply, however, if you do check the completion event. 

First, if you check for either msg_succeeds or msg_fails, you must check for 
both events.  The alternative is simply to check for msg_completes. 

Second, if you qualify a completion event with a particular message tag, then 
you must always process completion events for that message tag.  A program 
can thus process completion events for some of its message tags, and ignore 
completion events for other message tags.  In the following example, 
completion events for TAG1 are processed, and completion events for TAG2 
are not processed: 

when (io_changes(dev1)) 
{ 
   . 
   . 
   . 
   msg_out.tag = TAG1; 
   . 
   . 
   . 
   msg_send(); 
} 

 
when (msg_completes(TAG1)) 
{ 
   . 
   . 
   . 
} 

 
when (io_changes(dev2)) 
{ 
   . 
   . 
   . 
   msg_out.tag = TAG2; 
   . 
   . 
   . 
   msg_send(); 
} 

A third restriction applies to use of the unqualified completion event, which 
implicitly refers to all messages.  When you use the unqualified completion 
event, you must process all acknowledged messages, either explicitly for each 
message tag, or implicitly through use of an unqualified event each time a 
message is sent. 
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The following code shows correct processing of completion events by message 
tag: 

int failures[2], success; 
msg_tag TAG1, TAG2; 
 
when (io_changes(toggle)) 
{ 
   msg_out.tag = TAG1; 
   msg_out.code = TOGGLE_STATE; 
   msg_out.data[0] = input_value; 
   msg_send(); 
 
   msg_out.tag = TAG2; 
   msg_out.code = TOGGLE_STATE; 
   msg_out.data[0] = input_value; 
   msg_send(); 
} 

 
when (msg_fails(TAG1)) 
{ 
   failures[0]++; 
} 
 
when (msg_fails(TAG2)) 
{ 
   failures[1]++; 
} 
 
when (msg_succeeds) // any message qualifies  
{ 
   success++; 
} 

Preemption Mode and Messages 
The Neuron firmware enters preemption mode when there is no application 
buffer available for an outgoing message.  If the system needs a free 
application buffer, it causes the application program to wait and processes 
only completion events, responses, and incoming network variables and 
messages to facilitate application buffers becoming free. 

No other predefined or user-defined events are processed unless the 
preempt_safe keyword is used in conjunction with a when clause 
containing an event expression.  The syntax for the when clause is explained 
in Chapter 2, Focusing on a Single Device. 

The watchdog timer is automatically updated during this wait.  If the 
program waits for more than a configurable number of seconds, the device is 
reset.  This configurable timer is called the Max Free Buffer Wait timer.  A 
buffer wait timeout (also known as preemption mode timeout) should only 
occur if a device is totally blocked from transmitting.  This could occur under 
extreme network congestion or with certain network failures. 
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A buffer wait timeout could also occur if a program is not properly freeing 
completion events.  The most common error is to check for completion events 
in bypass mode (e.g., if (nv_update_completes) ) and not to have a 
corresponding completion event check in a when clause. 

With network variables, the system can only enter preemption mode if: 

• synchronous output network variables are updated, or 

• flush_wait( ) is called. 

Once the system is in preemption mode, further attempts to send a message 
from a task associated with a message completion event when clause will 
cause a device reset if no buffer is available for the new message.   

The following sequence is therefore not recommended: 

when (TOGGLE_ON) 
{ 
   // build a message  
   // send the message  
} 
 
when (msg_completes) 
{ 
   msg_out.tag = t; // This sequence is not  
 // recommended.  
   msg_out.code = 1; // Causes a device reset  
 // if the system is  
 // already in preemption  
 // mode 
} 

Instead of using this sequence, build messages and call msg_send( ) in a 
task with a when clause that does not use the msg_completes event.  When 
you update synchronous output network variables, preemption mode is 
entered at the critical section boundary if there are insufficient application 
output buffers to accommodate the updates.  For example, if you update 
three synchronous output network variables in a critical section and only two 
application output buffers are available, preemption mode is entered upon 
leaving the critical section.  The application will leave preemption mode and 
return to normal operation once all the outstanding network variable 
updates are buffered. 

When implicit buffer allocation is used (i.e., building an explicit message 
without calling msg_alloc( ) first), then preemption mode is entered upon 
the first assignment to msg_out if no application output buffer is available.  
Preemption mode ends as soon as a buffer becomes available (i.e., when a 
completion event is processed).  While a device is in preemption mode, 
outgoing network variable updates occur, priority or otherwise.  Thus, a 
program that expects priority updates to occur within a bounded amount of 
time should  use nonpriority synchronous network variables or messages 
with implicit buffer allocation. 

no 

not

To allocate and free buffers explicitly, use the functions described in 
Allocating Buffers Explicitly later in this chapter. 
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You can detect whether or not a program is already in preemption mode with 
use of the function shown below:  

boolean preemption_mode (void); 

This function returns TRUE if the device is in preemption mode. 

 

Asynchronous and Direct Event Processing 
You can check events using when clauses and events such as when 
(msg_completes), when (msg_fails), and when (msg_succeeds).  This 
type of event processing is referred to as asynchronous processing, since the 
scheduler handles the exact order of execution.  An alternate technique is 
direct event processing, in which you check completion events inside tasks, 
with if and while statements. 

The following example indicates one way asynchronous and direct processing 
cannot be combined.  Do not include message completion events in a task 
associated with a message completion event clause: 

when (msg_completes) 
{ 
   post_events(); 
   if (msg_completes) // not recommended 
      x = 4; 
} 

You can use asynchronous event processing in programs that also do direct 
event processing.  Asynchronous event processing is the typical method for 
processing events.  This method results in smaller application programs.  
You should call the flush_wait( ) function before the transition from 
asynchronous to direct event processing.  The flush_wait( ) function ensures 
that all outstanding completion events and response events are processed 
before switching to direct event processing.  
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Here is an example of sending a message and processing the completion 
event directly (that is, checking the event inside a task rather than inside a 
when clause): 

msg_tag motor; 
#define MOTOR_ON 0 
 
when (x==3) 
{ 
   // send a message  
   flush_wait(); 
   msg_out.tag = motor; 
   msg_out.code = MOTOR_ON; 
   msg_send(); 
 
   // check completion status  
   while (!msg_succeeds(motor)) { 
      post_events(); 
      if (msg_fails(motor)) 
         node_reset(); 
   } 
} 

Using the Request/Response Mechanism 
Request/response messages provide a mechanism for an application running 
on one device to request data from an application running on another device.  
The request/response mechanism is used automatically by the Neuron 
firmware to poll input network variables and can also be used by application 
programs that use application messaging. 

A request is a message that uses the request service.  Sending a request 
message is similar to polling a network variable.  A poll receives the most 
recent value from the scheduler for a particular network variable.  A request, 
in contrast, can force the application on the responding device to evaluate the 
request at the time of the request and then send back a response. 

The functions, events, and objects for constructing, sending, and receiving 
responses are analogous to those for constructing, sending, and receiving 
messages, described in the previous section.  They are also summarized in 
the following paragraphs. 

An example of sending a request is the following: 

msg_tag motor; 
#define MOTOR_STATE 1 
 
when (io_changes(switch1) to 0) 
{ 
   //send a request to the motor  
   msg_out.tag = motor; 
   msg_out.service = REQUEST; 
   msg_out.code = MOTOR_STATE; 
   msg_send(); 
} 
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The request is packaged as shown in Figure 6.1 (earlier).  The application 
program on the receiver device receives the request through a when clause 
(or msg_receive( ) function) and must then formulate a response to this 
request, as shown below in Figure 6.3. 

 

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

= data

Figure 6.3  Sending a Response 

Constructing a Response 
You can construct a response to a request message.  As shown in Figure 6.3, 
the response contains a data portion that is sent to the application processor 
of the sender device.  A response is different from an acknowledgment 
(Figure 6.2), which does not contain a data portion and is sent only to the 
network processor on the sender device.  

The name of the outgoing response object is resp_out.  The response inherits 
its priority and authentication designation from the request to which it is 
replying.  Because the response is returned to the origin of the request, no 
message tag is necessary.  For the same reason, you cannot explicitly address 
a response. 

The built-in outgoing response object is defined as shown below: 

struct { 
 int code;  // message code  
 int data[MAXDATA];// message data  
} resp_out; 

code A numeric message code in the range 0 to 79.  This 
field is required.  See Message Codes in this chapter 
for a detailed description of numeric ranges used in 
the code field. 
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data The data contained in the message.  This field is 
optional.  MAXDATA is a function of the #pragma 
app_buf_in_size directive (see Chapter 8, Memory 
Management): 
 
MAXDATA = app_buf_in_size – 6 
 
 or 
 
MAXDATA = app_buf_in_size - 17 
 (if explicit addressing is used) 

 

NOTE: The Neuron firmware observes which locations in the data array 
have assignments and automatically sets the length of the outgoing message 
accordingly. 

Sending a Response 
You can send a response with the resp_send( ) function.  You must send 
responses from the same critical section that processed the incoming request.  
The response is constructed in the application input buffer in which the 
request arrived.  Therefore, once you have started response construction, you 
can no longer examine the incoming request.  Also, no other intervening 
messages can be sent or received.  This is the only case in which an outgoing 
message uses an input application buffer. 

The syntax for the resp_send( ) function is the following: 

void resp_send (void); 

This function sends a response using the resp_out object. 

 

NOTE:  While the response is constructed in the application input buffer by 
the application, the network processor uses a network output buffer to 
construct the response packet.  So, the network output buffer must be sized 
to accommodate outgoing responses in addition to other outgoing messages. 
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Receiving a Response 
A program usually receives a response through the predefined event 
when(resp_arrives).  The resp_receive( ) function can also be used to 
receive a response. 

The resp_arrives Event 
The predefined event for receiving a response is resp_arrives. 

Its syntax is the following: 

resp_arrives [(msg-tag-name)] 

If a response arrives, this event evaluates to TRUE.  The event can optionally 
be qualified by a message tag name; and, this qualification will limit the 
event to a response message that corresponds to a previously-sent request 
that used the named message tag.  When there is no message tag name 
qualifying the event, the event evaluates to TRUE for each response message 
that arrives. 

The resp_receive( ) Function 
The resp_receive( ) function has the following syntax: 

boolean resp_receive(void); 

This function receives a response into the resp_in object.  The function 
returns TRUE if a response is received, otherwise it returns FALSE.  The 
response is automatically discarded at the end of the task that receives it. 

Calling resp_receive( ) has the side-effect of calling post_events( ), so a call 
to resp_receive( ) defines a critical section boundary. 

Format of a Response 
The name of the incoming response object is resp_in. 

The incoming response structure is predefined in the Neuron C Compiler as 
follows: 

struct { 
 int code; // message code  
 int len; // length of message data  
 int data[MAXDATA]; // message data  
 resp_in_addr addr; // explicit address - see the 
     // <msg_addr.h> include file 
} resp_in; 

code A numeric message code in the range 0 to 79.  See 
Message Codes in this chapter. 
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len The length of the message data. 

data The data contained in the message.  This field is valid 
only if len is greater than 0.  MAXDATA is a function 
of the #pragma app_buf_in_size (see Chapter 8): 

MAXDATA = app_buf_in_size - 6 

 or 

MAXDATA = app_buf_in_size - 17 
(if explicit addressing is used 
by any message or network 
variable in this program) 

addr An optional field in the incoming message that an 
application program may look at to determine the 
source and destination of the message.  You can find 
the definition of the type resp_in_addr in the 
<msg_addr.h> include file. 

 To use this field, you must include the <addrdefs.h> 
and <msg_addr.h> files. 

 

Examples 
This example shows sending a request and asynchronously receiving the 
responses.  (The code for receiving this request and responding to it follows in 
the next example.) 

msg_tag  tag1; 
#define DATA_REQUEST 0 

 
when (io_changes(toggle)) 
{ 
   msg_out.tag = TAG1; 
   msg_out.code = DATA_REQUEST; 
   msg_out.service = REQUEST; 
   msg_send(); 
} 

 
when (resp_arrives(TAG1)) 
{ 
   if (resp_in.code == OK) 
      process_response(resp_in.data[0]); 

} 
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Here is the code for the responder to this request: 

#define DATA_REQUEST 0 
#define OK 1 

 
when (msg_arrives(DATA_REQUEST)) 
{ 
 int x, y; 
 x = msg_in.data[0]; 
 y = get_response(x); 
 
 resp_out.code = OK; 
     // msg_in no longer available 
 
 resp_out.data[0] = y; 
 resp_send(); 
} 

The following example shows sending a request and receiving the responses 
directly: 

int x; 
msg_tag motor; 
#define MOTOR_ON 0 
#define DO_MOTOR_ON 3 
 
when (command == DO_MOTOR_ON) 
{ 
   // send a request  
   msg_out.tag = motor; // construct the message 
   msg_out.code = MOTOR_ON; 
   msg_out.service = REQUEST; 
   msg_send(); // send the message 

 
   // wait for completion 
   while (!msg_succeeds(motor)) { 
      post_events(); 
      if (msg_fails(motor)) 
         node_reset(); 
      else if (resp_arrives(motor)) { 
         x = x + resp_in.data[0]; 
         resp_free();          // optional  
      } 
   } 
} 

6-30 How Devices Communicate Using Application Messages 



Comparison of resp_arrives and msg_succeeds 
You may use both resp_arrives and the completion events (msg_succeeds, 
msg_fails, and msg_completes) for the same request transaction because 
these events give you different information.  The following example 
illustrates this difference. 

Suppose you send one request to six devices using multicast (group) 
addressing.  Three of the responses are received and three are not received.  
In this case, the resp_arrives event will be TRUE three times, once each 
time a response arrives.  The msg_succeeds event will never become TRUE, 
because some of the responses did not arrive.  The msg_fails event will 
become TRUE when the allotted time for all responses to arrive is exceeded.  
(In other words, for msg_succeeds to be TRUE, all of the responses must be 
received.) 

Response arrival events always occur before the message completion events 
(msg_completes, msg_fails, or msg_succeeds). 

 

Idempotent Versus Non-Idempotent Requests 
An idempotent transaction is one that can be safely repeated.  For example, 
the command “turn on the light” can be sent repeatedly without changing the 
end effect (the light goes on). 

A non-idempotent transaction cannot be safely repeated without changing the 
meaning.  The command “turn up the volume by 10%” is an example of a non-
idempotent message.  Responding to it ten times is not the same thing as 
responding to it once. 

LonTalk messages do not include an “idempotent” attribute.  Instead the 
receiving device infers the attribute through the lack or existence of 
application data in the response to the request. 

If a response does not contain application data, the Neuron firmware 
assumes its request is non-idempotent and cannot be safely repeated to the 
application.  In this case the firmware sends the original response to any 
repeated requests, and does not forward the repeated request to the 
application.  This firmware feature simplifies application processing for 
responses without data since the application does not have to test for 
duplicate messages. 
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If a response does contain application data, the Neuron firmware assumes its 
request is idempotent and can be safely repeated.  In this case the 
application sends any repeated requests to the application and the 
application must regenerate the response.  This provides the opportunity for 
the application to update the response to a repeated request.  If the 
application wishes to treat these repeated request messages as non-
idempotent, it can do so by buffering responses by receive transaction index 
and re-issuing those responses when duplicate requests arrive.  An example 
is shown below. 

EXAMPLE: 

#define OK 1 
#define MAXRESP 10 

 
struct RespBuffer { 
 int code; 
 unsigned int len; 
 int data[MAXRESP]; 
} resp_buffer[16]; 

 
when (msg_arrives) { 
 struct RespBuffer *buf_p; 
 
 if (msg_in.service == REQUEST) { 
  buf_p = &resp_buffer[msg_in.rcvtx]; 
  if (!msg_in.duplicate) { 
   int i; 
 
   // Process initial request 
   // . . . 
 
   // Now save response 
   buf_p->code = OK; 
   buf_p->len = MAXRESP; 
   for (i=0; i<MAXRESP; i++) { 
    buf_p->data[i] = get_resp_data(); 
   } 
  } 

 
  // Generate the response.   
  resp_out.code = buf_p->code; 
  memcpy(resp_out.data, buf_p->data, buf_p->len); 
  resp_send(); 
 } 
} 

The above example also shows that the rcvtx field of the msg_in object 
specifies the receive transaction index to which the request belongs. 
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Application Buffers 
You can set the number of incoming and outgoing buffers available for use by 
a Neuron C application at compile time.  The default is two priority 
application output buffers, two nonpriority application output buffers, and 
two application input buffers for all models of the Neuron Chip and the 
Smart Transceivers except the Neuron 3120® Chip and the Neuron 3120E1 
Chip.  See the Memory Management chapter, for a discussion of buffer 
allocation.  For most efficient response, set the number of application input 
buffers to equal the expected number of responses.  If a disproportionately 
large number of responses (for example, more than 10) are expected for the 
same request, some responses may never be received if only a limited number 
of application input buffers are available. 

 

NOTE:  Because of limited memory on the Neuron 3120 Chip and the 
Neuron 3120E1 Chip, if your program is linked for these chips, the linker will 
adjust the output buffer defaults to one priority and one nonpriority buffer.  
The number of input buffers will still default to 2. 

 

NOTE:  The same pool of buffers is used for processing both incoming 
messages and responses.  If you are processing events directly (that is, 
bypassing the services of the scheduler), be sure to check for messages as 
well as responses so that messages are processed and application buffers are 
freed up regularly. 

 

Allocating Application Buffers 
Normally, when an application builds a message, an application output 
buffer is allocated automatically by the Neuron firmware, and when the 
application leaves the critical section, any outstanding application output 
buffer is freed by the firmware automatically. 

The following functions allow you to allocate and free application buffers 
explicitly: 

boolean msg_alloc (void);  

boolean msg_alloc_priority (void);  

void msg_free (void); 

A message travels along one of two paths:  the priority path or the 
nonpriority path.  As its name suggests, the priority path has precedence 
over the nonpriority path.  Thus, if you allocate an application output buffer 
out of the priority buffer pool, the message is more likely to succeed on a 
congested network. 
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The msg_alloc( ) and msg_alloc_priority( ) functions return TRUE if a 
msg_out object can be allocated.  Otherwise, these functions return FALSE.  
A program needs to call one of these functions if it does not want to wait for 
an application output buffer.  If the function returns FALSE, the program 
can choose to go off and do something else, then try again later. 

The msg_alloc_priority( ) function allocates a priority application output 
buffer.  The msg_alloc( ) function allocates a nonpriority application output 
buffer.  If you are using the system default, up to two buffers of each type can 
be in use at the same time.  (You can allocate up to the maximum number of 
buffers set by the #pragma app_buf_out_count  and #pragma 
app_buf_out_priority_count directives.  See Chapter 8, Memory 
Management, and also the Neuron C Reference Guide for more information on 
these directives.) 

The msg_free( ) function frees the msg_in object.  You do not normally need 
to free an application input buffer, since this is done for you when you exit a 
task.  However, you might want to free an application input buffer explicitly 
if you are finished with it in a task, but you have more work to do before 
exiting the task. 

Normally you allocate an application output buffer by assigning a value to 
one of the fields of the msg_out object.  In the event that an application 
buffer is not available, application processing will be suspended (preemption 
mode) until one is available.  If you want to avoid possibly suspending 
processing, use the msg_alloc( ) function.  If no application output buffer is 
available, a FALSE value will be returned, and processing continues.  This 
allows the application to do something else in the event that there are no 
outgoing application buffers available, rather than stopping to wait for an 
application buffer. 

An application input buffer is normally freed at the end of the critical section 
in which the msg_receive( ) call is made.  The application may choose to free 
the application buffer earlier than this by calling msg_free( ).  After this call, 
the msg_in object no longer contains the received message, but the network 
processor is able to use the freed application input buffer for another 
incoming message.  The msg_alloc( ) and msg_free( ) functions are unlike 
standard memory allocation functions.  An application output buffer 
allocated by the msg_alloc( ) function is not freed by a matching call to the 
msg_free( ) function.  Instead, a msg_send( ) or msg_cancel( ) call 
automatically frees an output buffer allocated by msg_alloc( ), and a 
msg_free( ) call automatically frees an input buffer allocated by 
msg_receive( ). 
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The analogous functions for allocating and freeing responses are: 

boolean resp_alloc (void); 

void resp_free (void); 

 

The following example shows a task that creates two messages.  Before 
creating and sending each message, the code checks buffer availability with 
msg_alloc( ). 

msg_tag motor1; 
msg_tag motor2; 
#define MOTOR_ON 0 
 
when (x == 2) 
{ 
   if(msg_alloc() == FALSE) 
      return; 
 
   msg_out.tag = motor1; 
   msg_out.code = MOTOR_ON; 
   msg_send(); 
 
   if(msg_alloc() == FALSE) 
      return; 
 
   msg_out.tag = motor2; 
   msg_out.code = MOTOR_ON; 
   msg_send(); 
}
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7 
Additional Features 

This chapter describes additional features in Neuron C.  It 
describes the scheduler reset mechanism in more detail.  In 
special cases requiring a scheduling algorithm different from 
that of the Neuron firmware scheduler, you may want a 
program to run in bypass mode and use the post_events( ) 
function, also described here.  Other topics discussed in this 
chapter include sleep mode, error handling, and status 
reporting. 



The Scheduler 
Chapter 2, Focusing on a Single Device, introduced the basic functioning of 
the Neuron firmware scheduler,  shown in Figure 7.1.  Priority when clauses 
are executed in the order specified every time the scheduler runs.  If any 
priority when clause evaluates to TRUE, its task is run and the scheduler 
starts over.  If none of the priority when clauses evaluates to TRUE, then a 
nonpriority when clause is evaluated, selected in a round-robin fashion.  If 
the when clause is TRUE, its task is executed.  If the nonpriority when 
clause is FALSE, its task is ignored.  In either case, the scheduler returns to 
the top of the loop. 

Scheduler Reset Mechanism 
The scheduler reset mechanism is normally disabled.  When the reset 
mechanism is enabled, the round-robin part of the scheduler is reset to the 
first regular when clause whenever one of the following conditions is 
detected: 

• A new network variable update is at the head of the queue. 

• A new timer has expired. 

• A new message is at the head of the queue. 

Although these events can occur at any time, the scheduler recognizes them 
only when it is at the beginning of the scheduling loop (labeled “Top of loop” 
in Figure 7.1). 

If you leave the reset mechanism off, nonpriority when clauses are evaluated 
in the order in which they appear.  When the last nonpriority when clause is 
reached, the scheduling loop returns to the first nonpriority when clause. 

If ordering of when clauses is desired, you can turn on the reset mechanism 
with the following compiler directive: 

#pragma scheduler_reset 

 

WARNING:  If the scheduler reset mechanism is enabled, then there is a 
risk that when clauses later in the program may never execute if the 
scheduler is reset too frequently.  This can lead to application buffer 
starvation, because network variable and message processing tasks can only 
process buffers in the order in which they arrive.  Thus, if the scheduler reset 
mechanism is enabled, you must insure that the when clauses and tasks of 
your program are ordered such that the most frequently executed ones are 
last, or the rare ones are declared using the priority keyword. 
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Figure 7.1  Neuron Firmware Scheduling of Nonpriority 
and Priority When Clauses 
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Incoming messages and network variable updates use application input 
buffers, which are processed by when(msg_arrives) and 
when(nv_update_occurs) tasks respectively. 

Outgoing messages, network variable updates, and network variable polls 
use application output buffers.  If you check for completion events with any of 
the following tasks, then the application output buffers are automatically 
processed and freed by the scheduler in correspondence with these 
completion event tasks: 

 when (nv_update_completes) 
 when (nv_update_succeeds) 
 when (nv_update_fails) 
 when (msg_completes) 
 when (msg_succeeds) 
 when (msg_fails) 

If there is no corresponding completion event task, then the output buffer is 
freed automatically by the scheduler when its corresponding event is 
discarded. 

In either case, failure to reach the when clause that processes the 
application buffer at the head of the incoming or completion event queues 
(because of too frequent reset of the scheduler) will lead to that queue 
becoming blocked (or stuck) because the application buffer will never be 
processed and freed. 

Therefore, when using the scheduler reset mechanism, it is important to 
order the when clauses in a program such that events that occur frequently 
(such as I/O events that occur constantly, or short-interval timer events that 
expire continually) not lock out processing of messaging events. 

7-4 Additional Features 



Example 
Turning on the reset mechanism ensures that events are processed in the 
order intended.  For example, you may want to be sure that specific events 
are checked for first, followed by a catch-all event, as illustrated in this 
fragment: 

#pragma scheduler_reset 
network input int NV1, NV2, NV3, NV4; 
 
when (nv_update_occurs(NV1)) 
{ 
   . . . 
} 
 
when (nv_update_occurs(NV2)) 
{ 
   . . . 
} 

when (nv_update_occurs)   
{   // provides a generic check 
   . . .  // for all network variable 
      // updates 
} 

Updates received for NV1 cause both the first and third events to become 
TRUE.  Similarly, updates for NV2 cause the second and third events to 
become TRUE.  It is thus important that these when clauses be evaluated in 
their given order after a network variable update.  Using scheduler_reset, 
the nv_update_occurs event for NV1 is always checked first whenever a 
new network variable update is at the head of the queue. 

Bypass Mode 
All scheduling of Neuron C programs, as described above, is event-driven and 
handled by the scheduler.  Within a program, however, you can choose when 
to return control to the scheduler.  The term bypass mode refers to a method 
of programming in which one when clause always evaluates to TRUE and 
never returns.  In this case, a single task must handle all event processing. 

You will use bypass mode rarely, and only in cases where you need a 
different scheduling algorithm than that provided by the Neuron firmware 
scheduler.  While in bypass mode, your program is responsible for all event 
processing.  You define critical sections through the post_events( ) function 
(see the following section), and then check for predefined events in if, while, 
and for expressions. 
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The post_events( ) Function 
Use the post_events( ) function to define a boundary of a critical section at 
which network variable updates are sent and incoming network variable 
updates are processed. 

 
NOTE:  The post_events( ) function is automatically called at the top of the 
scheduling loop. 
 

When the post_events( ) function is called, a number of things happen: 

• Any outgoing network variable updates are sent.  In the case of synchronous 
network variables, all the updates are sent.  For nonsynchronous network 
variables, as many updates are sent as application output buffers are 
available.  Any unsent updates will be sent the next time post_events( ) is 
called. 

• Incoming network variable update events are received. 

• New incoming messages are examined. 

• Timers are examined to see if they have expired. 

• The watchdog timer is reset (to keep it from timing out).  See the following 
section on the watchdog timer. 

You can use the post_events( ) function to improve network performance by 
calling it immediately after modifying network variables.  Call the 
post_events( ) function to signal the network processor to start execution of 
the formatting of the outgoing packet before the when task completes, thus 
increasing parallel processing and utilizing the Neuron Chip and Smart 
Transceiver multi-processor architecture to its fullest. 
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Watchdog Timer 
The watchdog timer times out within a range of 0.21 seconds to 0.42 seconds 
with a 40 MHz input clock.  (This value scales inversely with the input clock.)  
The hardware timer has a period of 0.21 seconds, but a timeout occurs at the 
end of the current period only if the watchdog timer has not been retriggered 
since the beginning of the current period.  Since the timer retrigger in 
software is asynchronous with the timeout period in hardware, from a 
software perspective the minimum time from retriggering to timeout is a 
single period, or 0.21 seconds, and the maximum time from retriggering to 
timeout is two periods, or 0.42 seconds. 

The intention of the watchdog timer is to reset the device within a nominal 
value of one second should it experience a software failure, such as an 
unterminated loop or other fault, that prevents the software from 
retriggering the timer.  Normally, the scheduler ensures that the watchdog 
timer is reset periodically, and the application program need not be 
concerned about the watchdog timer.  If a program enters a very long task, 
however, the watchdog timer may expire, which causes a device reset. 

To ensure that the watchdog timer does not expire, you may call the 
watchdog_update( ) function periodically within long tasks (or when in 
bypass mode).  The post_events( ), msg_receive( ), and resp_receive( ) 
functions also update the watchdog timer, as well as use of the io_out( ) 
function with the pulsecount output object,  and the io_in( ) function with 
the magcard, magtrack1, neurowire slave, and wiegand input objects. 

 

NOTE:  Use the watchdog_update( ) function with care, and, if possible, 
not within any loops.  A software or hardware malfunction that prevents the 
loop from being terminated could cause a device not to respond; and, it would 
be unable to recover from this symptom by means of a watchdog timer reset, 
because the loop body would continuously re-trigger the watchdog timer. 

NOTE:  Firmware functions that write to EEPROM do not automatically 
update the watchdog timer. 
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An example of using the watchdog_update( ) function is shown below: 

when (TRUE) 
{ 
   post_events(); 
   if (nv_update_occurs(NV1)){ 
      . 
      . 
      . 
   } else if (nv_update_occurs(NV3)){ 
      . // long task 
      . 
      . 
      watchdog_update(); 
      . // more long task 
      . 
      . 
   } 
} 

 

Additional Predefined Events 
The following three predefined special events result from network 
management messages: 

offline 

online 

wink 

The offline event occurs when an offline network management command is 
received from a network tool.  This event is always handled as the first 
priority when clause.  The online event occurs when an online message is 
received from a network tool.  The wink event occurs when a wink command 
is received from a network tool. 

The offline event can be used to place a device offline in case of an 
emergency, for maintenance, or in response to some other system-wide 
condition.  Once offline, a device will respond only to network management 
messages until reset or brought back online.  (Reset can occur by physically 
resetting the device by activating the Neuron Chip or Smart Transceiver 
reset line, or through a reset network management message.)  After execution 
of the task associated with an offline when clause, the application program 
does not run until the device is either reset or brought back online. 
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A simple use of these two events is shown below: 

when (offline) 
{ 
   x(); // Clean up before going offline. 
}  // Device goes offline here; application 
  // program stops running. 
 
when (online) 
{ 
   y(); // Start up again (poll inputs, 
  // and so on) 
} 
 

The application has no means to refuse a change into the offline or online 
states, respectively.  The respective state becomes effective once the relevant 
task has been completed, allowing the application to prepare for that state by 
disabling peripheral hardware, stopping timers, etc. 

The device can change into the online state without the online when clause 
evaluating to TRUE:  If the device is being taken offline into the soft-offline 
state, resetting the device loses, or discards, the soft-offline state and returns 
the device to normal, online, operation.  The technique shown below may be 
used to handle this situation: 

void HandleOnline (void) 
{ 
   ... 
} 

 
when (reset) 
{ 
 // regular reset code here: 
 .. . 
 // handle case of device going online 
 if (online) { 
  HandleOnline(); 
 } 
} 

 
when (online) 
{ 
 HandleOnline(); 
} 
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Going Offline in Bypass Mode  
Use the offline_confirm( ) function if the offline event is checked outside of 
a when clause, as in bypass mode.  The offline_confirm( ) function sets the 
state of the device to offline and returns immediately.  Use this function to 
confirm that the device has finished its cleanup and is now going offline. 

As shown below, in bypass mode, the program continues to run even though 
the device is offline.  In bypass mode, it is up to you to determine which 
events are not processed when the device is offline. 

Here is an example of using offline_confirm( ) in bypass mode: 

when (TRUE) 
{ 
 while (TRUE) { 
  post_events(); 
  if (online) 
   continue; 
  if (nv_update_occurs) { 
   ... 
  } else if (offline) { 
   x(); 
   offline_confirm(); 
   // Wait for online 
   while (!online) { 
    post_events(); 
   } 
  } else { 
   ... 
  } 
 } 
} 

Wink Event 
You can use the wink event to perform an action in response to a wink 
network management message from a network tool.  A network tool may 
send a wink message to a device to help a network integrator physically 
identify a particular device.  The wink event becomes TRUE any time a wink 
message is received by a device, whether configured or unconfigured. 

In an unconfigured device, I/O and variable initialization occur before the 
wink event is evaluated.  However, none of the initialization in the when 
(reset) task has occurred.  In addition, the scheduler is not running on an 
unconfigured device, so events can be processed only through direct event 
processing.  Neither network variable updates, nor messages, are sent 
because the device is unconfigured.  Timer objects may be set and read 
within the wink task.  You also may explicitly check the timer_expires( ) 
event as long as you first call post_events( ). 
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Sleep Mode 
You can use sleep mode to place a Neuron Chip or Smart Transceiver in a 
low-power state.  To instruct a Neuron Chip or Smart Transceiver to enter 
sleep mode, follow these steps: 

1 Flushing all pending network variable updates as well as all outstanding 
outgoing and incoming messages. 

2 Put the Neuron Chip or Smart Transceiver into sleep mode when the flush 
completes.  The Neuron Chip or Smart Transceiver always wakes up when 
the service pin is activated, or when there is activity on an I/O pin (the pin 
selected is configurable) or on the communications channel, or both. 

EXAMPLE: 

mtimer m_30; 
network output SNVT_switch nvoValue; 
static SNVT_switch temp; 
 
when (timer_exp(m_30)) 
{ 
   nvoValue = temp; 
   flush(TRUE); 
} 

 
when (flush_completes) 
{ 
   sleep(COMM_IGNORE); 
} 

Flushing the Neuron Chip or Smart Transceiver 
You can use the flush( ) function to instruct the Neuron firmware to finish 
processing all outgoing and incoming messages.  When the flush is complete, 
the flush_completes event becomes TRUE.  

The flush( ) and flush_cancel( ) Functions 
The flush( ) function causes the Neuron firmware to monitor the status of all 
outgoing and incoming messages.  Its syntax is as follows: 

flush (boolean comm-ignore); 

comm-ignore Specify TRUE if the Neuron firmware is to ignore 
communications channel activity while it is flushing.  
Specify FALSE if the Neuron firmware is to accept 
incoming messages.  This parameter should be the 
same as the comm_ignore parameter used with the 
sleep( ) function that follows the flush. 
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While the flush is occurring, the program continues to run.  The origination 
of new messages by the program while the flush is in progress delays the 
flush completion. 

If the comm_ignore option is set to TRUE, new packets that arrive during 
the flush are discarded unless they are acknowledgments, responses, 
challenges, or replies. 

You can cancel a flush operation that is in progress by calling the 
flush_cancel( ) function. 

flush_completes Event 
The following predefined event becomes TRUE when the flush completes: 

flush_completes 

This event becomes TRUE when all outgoing network buffers and application 
buffers are free, no more incoming messages are outstanding, and no network 
variable updates are outstanding. 

 
NOTE:  The flush_wait( ) function should not be used in preparation for 
putting the device to sleep.  The flush_wait( ) function does not check for 
outstanding network variable updates or incoming messages. 
 

Putting the Device to Sleep 
You can use the sleep( ) function to put a Neuron Chip or Smart Transceiver 
to sleep when the flush_completes event becomes TRUE.  Its syntax is 
shown below: 

sleep (flags) 

sleep (flags, io-object-name) 

sleep (flags, io-pin) 

flags One or more of the following three flags, or 0 if no flag 
is to be specified.  If two or more flags are used, they 
are or'd together.  You can specify any of the following 
flags: 

COMM_IGNORE Causes incoming messages to 
be ignored. 

PULLUPS_ON Enables all internal pullup 
resistors (the default action is 
to disable the pullups - this 
lowers power consumption). 

TIMERS_OFF Turns off all timer objects 
(declared with mtimer and 
stimer) in the program. 
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io-object-name An input object declared for any one of pins IO_4 
through IO_7.  When any I/O transition occurs on the 
specified pin, the device wakes up.  If this parameter 
is omitted, I/O is ignored once the device is in sleep 
mode.  This I/O object can be defined for wakeup 
purposes only, or could be used for other I/O purposes 
as well. 

io-pin Specifies one of pins IO_4 through IO_7.  When any 
I/O transition occurs on the specified pin, the Neuron 
Chip or Smart Transceiver wakes up.  If this 
parameter is omitted, I/O is ignored once the device is 
in sleep mode. 

For example, to sleep and turn off timers and enable pullups, the call to 
sleep( ) is as follows: 

sleep(TIMERS_OFF | PULLUPS_ON); 

EXAMPLE: 

 IO_4 input bit wakeup_pin1; 
 
 when timer_expires(timer_2) 
 { 
     sleep(COMM_IGNORE, wakeup_pin1); 
  //or, sleep (COMM_IGNORE, IO_4); 
 } 

You can force sleep mode even though the flush has not completed, as 
described in the following section, Forced Sleep. 

When an event occurs that wakes the Neuron Chip or Smart Transceiver, the 
program resumes at the first statement after the sleep function call.  If the 
sleep( ) call is the last statement in a task, the program returns to the 
scheduler after it wakes up. 

A device wakes up whenever a packet is received by the transceiver (unless 
you specified COMM_IGNORE).  This is true even if the packet is not 
addressed to the device.  You are responsible for putting the device back to 
sleep when this occurs. 

If a device sleeps for less than the receive timer duration and uses the 
COMM_IGNORE option, it may receive duplicate messages or network 
variable update events.  The default receive timer is set by a network tool 
during device installation.  This is a hard-coded value of 768ms.  This is a 
minimum value that can be increased by a network tool depending on the 
network connections to the device. 
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Forced Sleep 
You can force a device to sleep even though a flush operation is not complete.  
Under certain network conditions, such as extreme network congestion, the 
flush could take a long time to complete.  To avoid consuming too much 
power, the application can stop waiting for the flush to complete and sleep 
anyway. 

To force a device to sleep, call the sleep( ) function without waiting for the 
flush_completes event.  An example of forcing a device to sleep is shown 
below: 

... 
   flush(TRUE);   // start flush; ignore 
     // incoming packets 
   flush_timeout = 300; // start flush timeout 
         // timer (300 msec) 
} 

 
when (timer_expires(flush_timeout)) 
when (flush_completes) 
{ // Ready to go to sleep since the flush 
  // either completed or timed out 
 flush_timeout = 0; // First, turn off timer 
     // if not expired 
 sleep(COMM_IGNORE); 
} 

When you force sleep mode, the following occurs: 

1 All pending network variable updates, outstanding application output 
buffers, and outstanding network output buffers are not sent and freed. 

2 If you specify the COMM_IGNORE option, any incoming network buffers 
are freed. 

3 If any outstanding incoming application buffers remain, the device will fail to 
sleep (regardless of whether the COMM_IGNORE option was specified).  
This feature prevents the device from receiving stale messages when it wakes 
up.  In the example above, the application would have 300 milliseconds to 
process any incoming messages already in the queue.  In addition, since the 
COMM_IGNORE parameter was set to TRUE in the call to flush( ), no new 
incoming messages would arrive.  Thus, it is likely that the device will sleep, 
assuming it processes, in the 300 msec prior to the timeout, any incoming 
messages that were outstanding prior to the call to flush( ). 
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Error Handling 
You can take one of the following actions to recover from or report an 
application error:  reset the device, restart the application, take the 
application offline, disable a functional block, change functional block status, 
and log an error.  The Neuron firmware also logs system errors for errors 
detected by the firmware.  These actions may be combined.  For example, you 
may log an error and then take the application offline.  Alternatively, you 
may disable a functional block and change functional block status. 

Resetting the Device 
You can reset a device by calling the node_reset( ) function.  This function 
immediately resets all processors (application, network, and MAC) on the 
Neuron Chip or Smart Transceiver.  The Neuron reset pin is driven low, and 
this can be used to reset external transceivers and logic.  You will typically 
take this action for catastrophic errors that require a hardware reset.  A 
device may also be reset by expiry of the watchdog timer, or by a reset 
command received via the network. 

When a device is reset, it executes the entire initialization sequence.  The 
amount of time required for initialization is a function of the amount of off-
chip memory as well as the size of the application program, but must be less 
than 18 seconds before the application is online.  See the Smart Transceivers 
databooks for a detailed formula to calculate reset time. 

There are a number of disadvantages to resetting a device.  First, when you 
reset a device, all state information not kept in EEPROM is lost.  All pending 
incoming and outgoing messages and network variable updates are lost.  The 
network processor may receive duplicate packets.  In addition, any packets 
that have been acknowledged by the network processor but not processed by 
the application are lost. 

Restarting the Application 
You can reset the application processor, but not the network or MAC 
processors, using the application_restart( ) function.  You will typically 
take this action for application errors that can be recovered by restarting the 
application, but that do not require an external hardware reset. 

When you call this function, the Neuron firmware clears all timer objects and 
initializes I/O objects, non-configuration network variables, and static 
variables and then executes the reset clause.  Some synchronization cleanup 
is done before restarting the application.  Any outgoing messages in progress 
are terminated.  Incoming messages are unaffected.  Outstanding completion 
events and responses are discarded.  An application restart does not lose 
network state information.  Since only the application processor is reset, the 
network and MAC processors continue to process network traffic. 
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Taking an Application Offline 
You can take a device offline using the go_offline( ) function.   You will 
typically take this action if the error will not be corrected by a device reset or 
application restart, and if the error is not localized to specific functional 
blocks on the device.  The device may also be taken offline (and back online 
again) via a command received over the network.  Network tools frequently 
set devices offline when configuring. 

The go_offline( ) function terminates all outstanding transactions and stops 
all application processing.  You can call the flush_wait( ) function in the 
when(offline) task to ensure that any outstanding transactions complete 
normally. 

The Neuron firmware continues to run when a device is offline so that a 
network integrator using a network tool can test the device status, take any 
required corrective actions, and then put the application back online.  You 
can log an application error, as described below under Logging Application 
Errors, to alert a network integrator as to the reason for going offline. 

Disabling a Functional Block 
You can disable an individual functional block for an error that will not be 
corrected by a device reset or application restart, but is localized to a 
particular functional block or set of functional blocks on the device. 

Functional block status is not built into the Neuron C language, but code to 
manage functional block status is automatically generated by the 
NodeBuilder Code Wizard.  The code wizard creates an fblockData[ ] array 
that contains the functional block status for each functional block in an 
application.  The members of this array are declared with the 
SNVT_obj_status type. 

To disable a functional block, use the following code: 

fblockData[fblockIndex].objectStatus.disabled = TRUE; 

The fblockIndex parameter is the functional block index of the functional 
block to be disabled.  A network tool may also disable or enable functional 
blocks via the network.  This usually occurs when a single functional block is 
being configured. 
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You must include code in your application to test the functional block status.  
The code wizard generates a fblockNormalNotLockedOut( ) function that 
you can use to test functional block status.  The syntax for this function is as 
follows: 

boolean fblockNormalNotLockedOut(TFblockIndex fblockIndex); 

The fblockIndex parameter is the functional block index of the functional 
block to be tested. 

For example, the following call from the NodeBuilder example tests the 
functional block status for the functional block associated with a network 
variable input: 

if (fblockNormalNotLockedOut(fblock_index_map[nv_in_index])) 
{  
 . . . 
} 

See the NodeBuilder Example appendix of the NodeBuilder User’s Guide for 
more examples of using the fblockNormalNotLockedOut( ) function. 

You can change the functional block status, as described below under 
Changing Functional Block Status, to alert a network integrator as to the 
reason for disabling a functional block. 

Changing Functional Block Status 
You can report a functional block error condition using the nvoStatus output 
of the Node Object functional block.  Each functional block on a device has an 
independent status condition, so network tools use the nviRequest input to 
the Node Object functional block to request the status of an individual 
functional block, and this status is reported via the nvoStatus output. 

Functional block status is not built into the Neuron C language, but as 
described in Disabling a Functional Block, code to manage functional block 
status is automatically generated by the NodeBuilder Code Wizard.  You can 
update the functional block status by setting the appropriate fields within 
the fblockData[ ] array.  See the definition of the SNVT_obj_status type in 
the LONMARK SNVT and SCPT Guide, or in the NodeBuilder Resource 
Editor, for a description of the fields. 

For example, the following statement changes the functional block status for 
the functional block identified by fblockIndex to report a mechanical fault: 

fblockData[fblockIndex].objectStatus.mechanical_fault = TRUE; 
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Logging Application Errors 
You can report a device error condition using the error_log( ) function, 
which is passed an error number between 1 and 127.  This function writes 
the last number into a dedicated location in EEPROM.  A network tool can 
use the query status network diagnostic command to read the last error.  The 
syntax for the error_log( ) function is as follows: 

void error_log (unsigned int error_num); 

The error number values between 1 and 127 are application-defined.  You 
can assign numbers in this range to your device error conditions, and 
document these assignments as part of your device documentation. 

The LonBuilder Neuron C debugger maintains a log of the last 25 error 
messages.  On a Neuron emulator, the Neuron firmware adds a delay of up to 
70ms between writes to the error log to give the PC time to retrieve the last 
value. 

System Errors 
The Neuron firmware reports system errors using the same error log used to 
report application errors.  System errors include programming errors and 
network errors and inconsistencies.  As with application errors, network tools 
can retrieve the last value from the error log using the query status network 
diagnostic command. 

System error numbers are in the range of 128 to 255; see the NodeBuilder 
Errors Guide for an annotated list of system error messages. 

 

Access to Device Error Status  
From your application program, you can access the same diagnostic status 
information that is available to a network tool.  The status information is 
stored in the status structure.  To retrieve the status information, use the 
retrieve_status( ) function.  Its syntax is as follows: 

void retrieve_status (status_struct *status-p); 

The fields of the status structure are described in detail in the Neuron C 
Reference Guide.  Use the clear_status( ) function to clear certain status 
structure fields (the statistics information, the reset cause register, and the 
error log). 
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EXAMPLE: 

#define unconfigured  0x02 
#define config_on_line  0x04 
#define config_off_line  0x0C 
#define power_up_reset  0b1 
#define power_up_reset_mask 0b1 
#define external_reset  0b10 
#define external_reset_mask 0b11 
#define WDT_reset   0b1100 
#define WDT_reset_mask  0b1111 
#define SI_reset   0b10100 
#define SI_reset_mask  0b11111 

#include <status.h> 
status_struct status; // structure type defined  
    // in <status.h> 

unsigned long transmission_errors; 
unsigned long transaction_timeouts; 
unsigned long receive_transaction_full; 
unsigned long lost_messages; 
unsigned long missed_messages; 
unsigned long reset_cause; 
unsigned short node_state; 
unsigned short version; 
unsigned short error_log; 
unsigned short model_number; 

 
retrieve_status(&status); 
 // obtain device status structure 
transmission_errors = status.status_xmit_errors; 
 // number of received packets with CRC errors 
transaction_timeouts =  
 status.status_transaction_timeouts; 
 // number of timeouts using Ackd or Req/Resp  
 // transactions 

receive_transaction_full =  
 status.status_rcv_transaction_full; 
 // number of times incoming message (other than  
 // Unackd) was lost due to receive transaction  
 // database overflow 

lost_messages = status.status_lost_msgs; 
 // number of times incoming message was lost  
 // because there was no application buffer 
missed_messages = status.status_missed_msgs; 
 // number of times incoming message was lost  
 // because there was no network buffer 
reset_cause = status.status_reset_cause; 
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if ((reset_cause & power_up_reset_mask) ==  
 power_up_reset) { 
 // last reset was a power_up  
} 

 
if ((reset_cause & external_reset_mask) ==  
 external_reset) { 
 // last reset was from the NEURON RESET pin  
} 

 
if ((reset_cause & WDT_reset_mask) ==  
 WDT_reset ) { 
 // last reset was from the watchdog timer  
 // timing out  
} 

 
if ((reset_cause & SI_reset_mask) == SI_reset ) {  
 // last reset was software initiated by a  
 // call to node_reset() 
} 

 
node_state = status.status_node_state; 
if (node_state == unconfigured) { 
 // this device has not been configured  
} 
if (node_state == configured_online) { 
 // this device is running its application  
} 
if (node_state == configured_offline) { 
 // this device is not running its application 
} 

 
version = status.status_version_number; 
 // version number of Neuron firmware 
error_log = status.status_error_log; 
 // most recent error logged by system 
model_number = status.status_model_number; 
 // model number of Neuron Chip or Smart Transceiver 
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8 
Memory Management 

This chapter describes system memory resources, such as on-
chip EEPROM, application buffers, and network buffers that 
can be tailored to the needs of a specific application.  The 
following sections discuss how these resources can be 
reallocated and when you might need to do so. 



Reallocating On-Chip EEPROM 
The Neuron C compiler generates four tables in on-chip EEPROM that are 
used by the Neuron firmware and network tools to define the network 
configuration for a device.  Two of these tables are the domain table and 
address table.  By default, these are generated at the maximum size for each, 
which are two entries for the domain table and up to fifteen for the address 
table.  You can specify a smaller size using the #pragma 
num_domain_entries and #pragma num_addr_table_entries directives.  
A third table, the alias table, has no default size, but you must specify a size 
using the #pragma num_alias_table_entries directive.  See the Compiler 
Directives chapter in the Neuron C Reference Guide, and the discussions 
below, for more information. 

A fourth table, the network variable configuration table, is generated 
automatically with one entry for each network variable declared in the 
program.  Each element of a network variable array counts separately, and 
the maximum size of the network variable configuration table is 62 entries.  
Each entry uses three bytes of EEPROM.  You cannot change the size of this 
table, except by adding or deleting network variables. 

If a program doesn’t fit into the default memory areas, another alternative 
when using the Neuron 3150 Chip or the FT 3150 Smart Transceiver is to 
move parts of the program to other locations in memory.  However, the 
domain table, address table, alias table, and network variable configuration 
table must be located in on-chip EEPROM.  See Off-Chip Memory in this 
chapter. 

Address Table 
The address table contains the list of network addresses to which the device 
sends network variable updates or polls, or sends implicitly-addressed 
application messages.  The address table may be configured through network 
management messages from a network tool. 

 

NOTE:  See the Smart Transceivers databooks for a description of the 
address table. 

 

By default, the address table contains 15 entries.  Each address table entry 
uses five bytes of on-chip EEPROM.  The compiler directive shown below can 
be used to decrease the number of address table entries:  

 #pragma num_addr_table_entries nn 
 (nn may be any value from 0 to 15) 
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The maximum number of address table entries that a device could require is 
bounded by the maximum expected number of different destination entries 
required by connections (network variables and message tags) for that device.  
A destination entry is required for a output network variable or message tag 
in a connection, if the output is not declared as a polled output, and also for 
the input if the input is polled or a member of a group connection.  Two 
destination entries differ if they use a different service type, a different 
destination address, or different transport attributes such as the repeat 
timer.  Multiple network variables that use the same destination entry share 
a common address table entry.  Fewer address table entries are consumed 
when address table entries can be shared by multiple connections.  This 
capability can only be used if the network tool used to install the device 
generates shared entries (all LNS tools, including the LonMaker Integration 
Tool, provide this capability). 

As a general rule, the address table should be sized to the maximum of 15 
entries, if possible. 

Alias Table 
The alias table is generated according to the alias table size specified with 
the #pragma num_alias_table_entries compiler directive, shown below.  
This compiler directive can be used to set the alias table size to any size 
between zero and 62 entries.  Each alias entry uses 4 bytes of on-chip 
EEPROM.  An alias is an abstraction for a network variable that is managed 
by network tools and the Neuron firmware.  Network tools use aliases to 
create connections that cannot be created solely with the address and 
network variable tables, providing network integrators with more flexibility 
in how devices are installed into networks.  This feature requires Neuron 
firmware version 6 or later. 

 #pragma num_alias_table_entries nn 
 (nn may be any value from 0 to 62) 

 

NOTE:  See the Smart Transceivers databooks for a description of the alias 
table. 

 

As a general rule, the alias table should be sized to the maximum size 
possible based on the available on-chip EEPROM.  This will typically be less 
than the maximum size of 62 entries.  You can determine the maximum 
possible size by examining the link map and looking at the onchip EEPROM 
area.  If you see any amount of memory displayed as available memory in the 
onchip EEPROM pool, this memory could be used by aliases.  Take the 
number of bytes in the pool, divide by 4, and round down to the nearest 
integer.  Then add this value to the number of aliases already being used to 
determine the total number of aliases you could have, but limit this to no 
more than 62 total aliases. 
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If your program is being linked for a Neuron chip that has additional memory 
available for program code in an offchip area (such as offchip EEPROM, 
ROM, or Flash), you can increase the alias table size further.  To determine 
the additional entries available (beyond the number from the previous 
paragraph), assuming you have program code in onchip EEPROM, and 
assuming that program code can move offchip, look at the byte size of the 
onchip program area and divide that by 4, again rounding down.  The result 
represents the additional number of aliases that can be added to the number 
already determined above.  Again, the total number of aliases is limited to no 
more than 62. 

The following rule-of-thumb allows calculation of a starting point for alias 
table size, nn: 

 nn = 0; for nv_count = 0 

 nn = 10 + ( nv_count / 3 ); for nv_count > 0 

Starting with this initial size, the alias table size may be refined using the 
guidelines provided above. 

Domain Table 
By default, the domain table is configured for two domains.  Each domain 
uses 15 bytes of on-chip EEPROM.  The number of domain table entries is a 
function of the network where the device is installed, it is not a function of 
the application.  You can reduce the size of the domain table using the 
following compiler directive:  

 #pragma num_domain_entries 1 

 

NOTE:  See the Smart Transceivers databooks for a description of the 
domain table. 

 

NOTE:  As a general rule, the domain table should be sized to the maximum 
of 2 entries, if possible.  The LONMARK Interoperability Association requires 
all interoperable LONWORKS devices to have two domain table entries.  
Reducing the size of the domain table to one entry will prevent certification. 
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Allocating Buffers 
You can use compiler directives to set certain Neuron firmware memory 
resources such as buffer counts and sizes and receive transaction counts.  
These values can be set only at compile time.  They cannot be configured at 
run-time.  Figure 8.1 illustrates where application and network buffers are 
used.  Application buffers are used between the application and network 
processors.  Network buffers are used between the network and media access 
control (MAC) processors. 

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

= data

 

Figure 8.1  Application and Network Buffers 

This section outlines a few guidelines for allocating buffers, depending on the 
needs of an individual application. 
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Buffer Size 
If you use application messaging, you must set the appropriate buffer sizes to 
accommodate the largest message that the application or Neuron firmware 
could generate or receive for processing.  In some cases, this may require an 
increase in buffer size.  If you only use network variables, the compiler 
chooses buffer sizes based on the size of the largest network variable that you 
declare and the minimum sizes required by the Neuron firmware. 

Figure 8.2 shows the basic components of an application buffer and a 
network buffer.  An application buffer contains application message data and 
system overhead.  A network buffer contains application message data, 
protocol layer 2 through layer 5 overhead, and system overhead. 
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Figure 8.2  System and Protocol Overhead in Application 
and Network Buffers 
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Application Buffer Size 
The size of an application buffer is equal to the following: 

 message_size + 5 bytes of system overhead 

If explicit addressing is used, add an additional 11 bytes of system overhead. 

For application messages, message_size equals 1 byte for the message code 
plus the number of bytes of data.  For network variables, message_size equals 
2 bytes plus the number of bytes in the network variable. 

Table 8.1 lists the valid sizes for application buffers.  For example, if 
message_size is 40, then you need an application buffer of at least 45 bytes.  
The next largest valid size for an application buffer is 50 bytes. 

Application buffers are also used to receive network management messages 
used by network tools for device configuration.  A minimum input application 
buffer size of 22 bytes (34 bytes if explicit addressing is used) is required to 
be able to accommodate the largest possible network management messages. 

Network Buffer Size 
The size of a network buffer is less than or equal to the following: 

 message_size + 6 bytes of system overhead + 20 bytes of protocol overhead 

Protocol overhead ranges from 5 to 20 bytes per message, and this formula 
uses the maximum.  A 40-byte message would thus need a network buffer of 
at least 66 bytes (see Table 8.1). 

Network buffers are also used to receive and respond to network 
management messages used by network tools for device configuration.  A 
minimum input network buffer size of 42 bytes and output network buffer 
size of 50 bytes is required to be able to accommodate the largest possible 
network management messages. 

Errors 
If an input message fits into a network input buffer but does not fit into an 
application input buffer, the message is discarded.  An 
APP_BUF_TOO_SMALL error code is logged by the firmware.  If the 
message was sent with the acknowledged service, no acknowledgment is 
sent.  If the message was a request, no response is sent. 

If an output message fits into an application output buffer but does not fit 
into a network output buffer, a NET_BUF_TOO_SMALL error is logged and 
the device resets. 
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Buffer Counts 
In most cases, the default number of output application buffers is sufficient.  
Increasing the number of application buffers on the output side decreases the 
likelihood of entering preemption mode if you are using synchronous network 
variable outputs (see Preemption Mode in Chapter 3, How Devices 
Communicate Using Network Variables). 

The number of input network buffers needed is a function of the types of 
service used and the types of connections between devices.  If you are using 
authentication, you may need to increase the number of network buffers 
because authentication doubles the number of messages.  If your device is 
installed with unicast connections (that is, one device sends a network 
variable or message to one other device), the default number of network 
buffers is probably sufficient.  If your device is installed with multicast 
acknowledged or multicast request connections (that is, one device sends a 
message to a group of devices and expects a response from each), the number 
of network input buffers should be at least equal to the size of the largest 
group.  If, for example, a device sends a message with the acknowledged or 
request service to 63 different devices, the sender device may receive 63 
almost simultaneous acknowledgments or responses.  In general, large 
acknowledged connections should not be used since the same message 
delivery reliability can be achieved using repeated messaging, with far less 
network traffic.  Network variable updates using the repeated delivery 
service do not generate any acknowledgements, and therefore do not require 
any input buffers. 

The exact number of network input buffers required is a function of both bit 
rate and the input clock, so some experimentation may be necessary to 
determine the minimal number of buffers. 

Compiler Directives for Buffer Allocation 
The following sections describe the compiler directives used for setting the 
size and number of different types of buffers. 

The compiler issues warnings when any of the buffer size compiler directives 
are used and the resulting settings are too small to accommodate all possible 
network management messages from being properly received or responded 
to. 

Outgoing Application Buffers 
These compiler directives set the size and number of nonpriority and priority 
buffers between the application and network processors for outgoing 
messages and network variables.  See Table 8.1 for a list of default and 
allowable non-default values. 
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#pragma app_buf_out_size n 

 Sets the application buffer size (in bytes) for outgoing priority and 
nonpriority application messages and network variables. 

#pragma app_buf_out_count n 

 Sets the number of application buffers available for outgoing nonpriority 
application messages and network variables. 

#pragma app_buf_out_priority_count n 

 Sets the number of application buffers available for outgoing priority 
application messages and network variables. 

Outgoing Network Buffers 
These compiler directives set the size and number of nonpriority and priority 
buffers between the network and MAC processors for outgoing application 
messages and network variables.  See Table 8.1 for a list of default and 
allowable non-default values. 

#pragma net_buf_out_size n 

 Sets the network buffer size (in bytes) for outgoing priority and nonpriority 
application messages and network variables.  A minimum size of 42 bytes is 
required to respond correctly to network management messages from 
network tools. 

#pragma net_buf_out_count n 

 Sets the number of network buffers available for outgoing nonpriority 
messages and network variables. 

#pragma net_buf_out_priority_count n 

 Sets the number of network buffers available for outgoing priority messages 
and network variables. 

Incoming Network Buffers 
These compiler directives set the size and number of buffers between the 
MAC and network processors for incoming explicit messages and network 
variables.  See Table 8.1 for a list of default and allowable non-default 
values. 

#pragma net_buf_in_size n 

 Sets the network buffer size (in bytes) for incoming application messages and 
network variables.  A minimum size of 50 bytes is required to receive 
network management messages from network tools. 

#pragma net_buf_in_count n 

 Sets the number of network buffers available for incoming application 
messages and network variables. 
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Incoming Application Buffers 
These compiler directives set the size and number of buffers between the 
network and application processors for incoming application messages and 
network variables.  See Table 8.1 for a list of default and allowable non-
default values. 

#pragma app_buf_in_size n  

 Sets the application buffer size (in bytes) for incoming application messages 
and network variables.  A minimum size of 22 bytes (34 bytes if explicit 
addressing is used) is required to receive network management messages 
from network tools. 

#pragma app_buf_in_count n  

 Sets the number of application buffers available for incoming application 
messages and network variables. 

Number of Receive Transactions 
The number of incoming transactions that can be handled concurrently by 
the network processor is determined by the receive transaction array.  The 
following compiler directive sets the number of entries in the array.  The size 
of a receive transaction entry is 13 bytes.  See Table 8.1 for a list of default 
and allowable nondefault values. 

#pragma receive_trans_count n 

 Sets the number of entries in the receive transaction array. The size of a 
receive transaction block is 13 bytes. 

A receive transaction entry is required for any incoming message which uses 
either unacknowledged repeat, acknowledged, or request service.  No receive 
transaction entries are required for unacknowledged service.  A receive 
transaction entry is required for each unique source address/destination 
address/priority attribute.  Each receive transaction entry contains a current 
transaction number.  A message is considered to be a duplicate if its source 
address, destination address, and priority attribute vector into an existing 
receive transaction and the message's transaction number matches the 
entry's transaction number. 

Receive transaction entries are freed after the receive timer expires.  The 
receive timer duration is determined by the destination device and varies as 
a function of the message addressing mode.  For group addressed messages, 
the receive timer is determined by the address table.  For Neuron ID 
addressed messages, the receive timer is fixed at eight seconds.  For other 
addressing modes, the non-group receive timer in the configuration data 
structure is used. 
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Table 8.1  Values for Buffer Sizes and Counts (Part 1 of 3) 

Pragma Values Allowed Default 
app_buf_out_size 20, 21, 22, 24, 26, 30, 34, 42, 50, 66, 82, 

114, 146,  210, or 255 bytes 
A 

app_buf_out_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47,  
63, 95, 127, 191 

E 

app_buf_out_priority_count 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 
95, 127, or 191 

E 

net_buf_out_size (20, 21, 22, 24, 26, 30, 34), 42, 50, 66, 82, 
114, 146,  210, or 255 bytes 

(A minimum value of 42 bytes is 
recommended) 

B 

net_buf_out_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63,  
95, 127, 191 

E 

net_buf_out_priority_count 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 
95, 127, or 191 

E 

net_buf_in_size (20, 21, 22, 24, 26, 30, 34, 42), 50, 66, 82, 
114, 146,  210, or 255 bytes 

(A mimimum value of 50 bytes is 
recommended) 

66 

net_buf_in_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 
95, 127, 191 

2 

app_buf_in_size (20, 21, 22, 24, 26, 30), 34, 42, 50, 66, 82, 
114, 146,  210, or 255 bytes 

(A minimum value of 34 bytes is 
recommended if explicit addressing is 
used, otherwise a minimum value of 22 
bytes is recommended) 

C 

app_buf_in_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 
191 

2 

receive_trans_count 1 .. 16  D 
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Table 8.1  Values for Buffer Sizes and Counts (Part 2 of 3) 

A . app_buf_out_size default 

 If outgoing messages are sent with msg_send( ): 

  If explicit addressing is used: 
   A = 66 

  If explicit addressing is not used: 
   A = 50 

 If no outgoing explicit messages are sent (msg_send( )  
 is not used), and: 

  If explicit addressing is used for network variables: 
   A = max(34, 19 + sizeof(largest output NV)) 

  If explicit addressing is not used: 
   A = max(20, 8 + sizeof(largest output NV)) 
 
B. net_buf_out_size default 

  If outgoing explicit messages are sent with msg_send( ) or resp_send( ): 
   B = 66 

  else: 
   B = max(42, 22 + sizeof(largest NV))  

NOTE:  While the response is constructed in the application input 
buffer by the application, the network processor uses a network 
output buffer to construct the response packet.  So, the network 
output buffer must be sized to accommodate outgoing responses in 
addition to other outgoing messages. 

 
C. app_buf_in_size default 

 If any explicit message functions or events are used (incoming or outgoing): 

  If explicit addressing is used: 
   C = 66 

  If explicit addressing is not used: 
   C = 50 

 If no explicit message functions or events are used, and: 

  If explicit addressing is used for network variables: 
   C = max(34, 19 + sizeof(largest NV)) 

  If explicit addressing is not used: 
   C = max(22, 8 + sizeof(largest NV)) 
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Table 8.1  Values for Buffer Sizes and Counts (Part 3 of 3) 
D. receive_trans_count default 

  If explicit messages are received by the application program: 
   D = max(8, min (16, # of non-config input NVs + 2)) 

  If explicit messages are not received by the application program: 
   D = min(16, # of non-config input NVs + 2) 

 

E. app_buf_out_count, app_buf_out_priority_count, 
net_buf_out_count, and net_buf_out_priority_count defaults 

  If the application is linked for a Neuron 3120 Chip or a Neuron 3120E1 
Chip: 

   E = 1 

  If the application is linked for any other Neuron Chip or Smart 
Transceiver: 

   E = 2 

NOTE:  When priority buffer counts are set to zero, all network 
variables are marked as non-priority nonconfig.  If 
app_buf_out_priority_count or net_buf_out_priority_count is 
non-zero, then both must be non-zero, and two transmit transaction 
buffers are automatically allocated in RAM.  If there are no priority 
output buffers, then only one transmit transaction buffer is 
allocated.  The size of a transmit transaction buffer is 28 bytes (in 
versions 4, 6, and later) of the Neuron firmware, and 18 bytes in 
earlier versions. 

 
 

NOTE:  The Neuron C compiler determines that a program uses explicit 
addressing if it references any of the following: 

 msg_in.addr 
 resp_in.addr 
 msg_out.dest_addr 
 nv_in_addr 
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Using Neuron Chip Memory 
The following section describes two different situations, using Neuron Chips 
or Smart Transceivers with off-chip memory, and using Neuron Chips or 
Smart Transceivers without off-chip memory. 

Chips with Off-Chip Memory 
On-chip memory on the Neuron 3150 Chip and FT 3150 Smart Transceiver 
consists of RAM and EEPROM. 

Off-chip memory on these chips consists of one or more of ROM, RAM, 
EEPROM, NVRAM, or flash memory regions.  You specify the starting page 
number for each region and the number of pages (a page is 256 bytes) when 
the device is defined.  If ROM is used, its starting address must be 0000.  If 
ROM is not used, then flash or NVRAM memory must take its place, starting 
at address 0000.  The regions of memory must be in the order shown in 
Figure 8.3.  They need not be contiguous, but they cannot overlap. 

Memory mapped I/O devices can be connected to the Neuron 3150 Chip and 
FT 3150 Smart Transceiver.  The devices should respond only to memory 
addresses that correspond to any of the shaded areas in Figure 8.3, below. 
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Figure 8.3  Off-Chip Memory on the Neuron 3150 Chip and on the  
FT 3150 Smart Transceiver 
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Chips without Off-Chip Memory 
On-chip memory on the Neuron 3120 Chips and on the FT 3120 Smart 
Transceiver consists of ROM, RAM, and EEPROM.  None of these devices 
support off-chip memory.  Figure 8.4 summarizes the memory maps. 

Neuron 3120 Chip  
On-Chip Memory����������������������������������������������������������������

����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������

EC00

EFFF

F200
F1FF

F000

FFFF

����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������0000

27FF
ROM 

(Neuron Chip Firmware)

����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������

EEFAR

EENEAR

Reserved

EECODE

RAMFAR
E800

EFFF

F800
F7FF

F000

FFFF

RAMNEAR

����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������

0000

27FF
ROM 

(Neuron Chip Firmware)

Neuron 3120E2 Chip  
On-Chip Memory

����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������
����������������������������������������������������������������

EEFAR

EENEAR

Reserved

EECODE

RAMFAR
EC00

EFFF

F400
F3FF

F000

FFFF

RAMNEAR

��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������0000

27FF
ROM 

(Neuron Chip Firmware)

Neuron 3120E1 Chip  
On-Chip Memory

�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

E800

EFFF

F200
F1FF

F000

FFFF

���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������
���������������������������������������������������������������

EEFAR

EENEAR

Reserved

EECODE

RAMFAR

RAMNEAR

EEFAR

EENEAR

Reserved

EECODE

RAMFAR

ROM 
(Neuron Chip Firmware)

ROM 
(Application Code)

EECODE

EEFAR

RAMCODE

RAMFAR

RAMNEAR

0000

         E7FF 
(maximum)

3FFF
4000

Neuron 3150 Chip  
Off-Chip Memory

Off-chip 
memory 
areas must 
be  
in the order 
shown but 
need not be 
contiguous.

If there is 
off-chip 
RAM, the 
linker may 
place 
RAMNEAR 
off-chip.

Neuron 3150 Chip  
On-Chip Memory

Figure 8.4  Memory Maps for the Various Chips, 
Showing Areas Defined by the Linker 

Neuron C Programmer's Guide 8-15 



Memory Regions 
The definitions of the three memory regions are as follows: 

• ROM:  Non-volatile memory initialized before program execution on a device.  
ROM cannot be changed by the program.  It is used for the Neuron firmware 
and can optionally (only on a Neuron 3150 Chip or FT 3150 Smart 
Transceiver) contain application code and constants. 

 Off-chip ROM (only on a Neuron 3150 Chip or FT 3150 Smart Transceiver) 
may be implemented with any non-volatile memory technology, including 
ROM, PROM, EPROM, EEPROM, flash memory, or non-volatile RAM.  
Offchip ROM or any memory technology used in its place must have a write-
time delay of 0 (zero) ms if the memory is used to include the Neuron 
firmware and start at address 0x0000.  This requirement prevents EEPROM 
from being used for storage of the Neuron firmware.  Offchip EEPROM can 
be used for application code and data storage. 

• EEPROM:  Non-volatile memory that can be changed during program 
execution.  Memory writes typically require 20ms per byte for on-chip 
EEPROM.  EEPROM can contain application code, constants, and EEPROM 
variables. 

 Off-chip EEPROM can be implemented with EEPROM, flash memory, or 
non-volatile RAM.  If you use flash memory you must configure the 
LonBuilder tool memory map or NodeBuilder tool hardware device template 
to indicate flash memory.  Memory writes to this area can cause the Neuron 
firmware to delay.  This delay allows the memory to complete the write.  
When implemented with EEPROM, the delay for off-chip EEPROM writes is 
configurable from 0 to 255 milliseconds using the LonBuilder Hardware 
Properties window or the NodeBuilder Hardware Template Properties dialog.  
The delay for off-chip flash memory writes is fixed at 10ms per 64- or 128-
byte sector. 

 If flash is used for the EEPROM region, it may also take the place of the 
ROM region.  In this case, you cannot write to the system area of the flash 
(see Memory Areas in this chapter), but you can write to the user area.  For 
more information, including the particular flash parts supported, see Use of 
Flash Memory in this chapter. 

 EEPROM is not zeroed when the Neuron Chip or Smart Transceiver is reset. 

• RAM:  Volatile memory that can be changed during program execution.  
RAM can contain application code, constants, or variables. 

 The Neuron hardware does not implement wait states for slow devices.  The 
memory must be readable and writable in one machine cycle at the selected 
input clock rate. 

 The off-chip RAM region may be used for code.  Any portion of the off-chip 
RAM used for code is retained over resets.  The remainder of RAM, the area 
not used for code, is zeroed each time the chip is reset. 
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Memory Areas 
The Neuron firmware and the Neuron linker divide the memory regions into 
memory areas as follows: 

• The ROM region has a system area and a user area (Neuron 3150 Chip and 
FT 3150 Smart Transceiver only).  The system area is 16 Kbytes (or larger) 
on a Neuron 3150 Chip.  The user area is also named ROM.  The Neuron C 
compiler and linker place executable code and constant data in the user area, 
unless flash memory is used.  When flash memory is used for ROM, user code 
is placed in the EECODE area. 

• The EEPROM region consists of the following three areas: 

 EECODE 
EEFAR 
EENEAR 

 If there is both on-chip and off-chip EEPROM, each region of EEPROM will 
have its own section of EECODE and EEFAR.  There is only one section of 
EENEAR, and it is always located on-chip.  All of these are user areas. 

 EECODE contains executable code and constant data.  The eeprom keyword 
in Neuron C forces the compiler to place a specific object in this area. 

 The EEFAR area contains variables declared with the far keyword combined 
with either the config or eeprom keywords.  This area also contains 
configuration property network variables declared with the config_prop (or 
cp) keyword and the modifiable configuration property file for configuration 
properties declared with the cp_family keyword. 

 You can use the offchip and onchip keywords in Neuron C to force the 
compiler and linker to place specific objects in the offchip and onchip EEFAR 
areas. 

 The EENEAR area contains variables declared with either the config or 
eeprom keywords.  It is the default, but is limited to a total size of 255 bytes. 

• The RAM region consists of three areas: 

 RAMCODE 

 RAMFAR 

 RAMNEAR  

 RAMCODE can only be located off-chip (Neuron 3150 Chip or 3150 Smart 
Transceiver only).  It contains executable code and constant data.  By using 
the ram keyword in a declaration, you can explicitly place executable code 
and constant data in this area.  This area can only be implemented in a RAM 
that is based on a non-volatile memory technology, such as battery-backed 
RAM. 
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RAMFAR may be located both on-chip and off-chip.  There may be one or two 
sections of RAMFAR in the on-chip RAM.  If there is off-chip RAM, it may 
contain only one RAMFAR area.  The RAMFAR area contains variables. 

 You can use the offchip and onchip keywords in Neuron C to force the 
compiler and linker to place specific objects in the offchip and onchip 
RAMFAR areas, respectively. 

 There may be only one RAMNEAR area.  It may be located on-chip (all chips) 
or off-chip (Neuron 3150 Chip and FT 3150 Smart Transceiver only).  The 
linker automatically determines the location of the RAMNEAR area.  The 
RAMNEAR area is the default memory area for all Neuron C variables.  This 
area is limited to a total size of 256 bytes.  However, the maximum allowable 
size may be smaller under certain circumstances depending on the amount of 
memory the user has allocated for buffers.  See Compiler Directives for Buffer 
Allocation in this chapter and also see Special Keywords for Non-Default 
Memory Usage in this chapter. 

Default Memory Usage 
If no special keywords are included in the declarations of variables or 
functions or other pieces of a Neuron C program, the pieces of the program 
are located in memory by the linker using the following rules. 

All executable code objects (functions, when clauses, tasks) as well as string 
constants and data declared as const are placed in the ROM or EECODE 
areas.  The linker places these objects wherever they fit.  For the Neuron 
3150 Chip or FT 3150 Smart Transceiver, the linker first tries to put an 
object in the user area of off-chip ROM.  If the object doesn't fit in ROM, the 
linker attempts to put it in the off-chip EECODE area of memory.  Finally, 
the linker will attempt to put the object in the on-chip EECODE area of 
memory. 

Data objects declared with any of the config, config_prop, cp, or eeprom 
keywords are normally placed in the on-chip EENEAR area of memory.  The 
linker normally places all data objects without these keywords in the 
RAMNEAR area of memory. 

Data objects declared with the cp_family keyword (configuration property 
families) create multiple items stored in memory.  Each configuration 
property family member instance creates a descriptor entry in the template 
file, and a data value entry in either the writeable value file or the read-only 
value file.  The configuration template file is placed in either the ROM or 
EECODE area.  The writeable value file is placed in the EEFAR area of 
memory.  The read-only value file is placed in either the ROM or EECODE 
area of memory. 

You can modify the linker's placement of variables and functions using the 
special keywords described in the next section. 
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Controlling Non-Default Memory Usage 
If you receive an error message at link time that part of your program doesn’t 
fit into the available default memory, you can change the declarations of 
variables or functions using special Neuron C keywords and using certain 
compiler directives.  These keywords and directives enable you to move the 
variables or functions to other locations in memory.  The eeprom, far, 
offchip, onchip, ram, and uninit special keywords are described below. 

Direct memory reads and writes (by the application program) to data in the 
EENEAR and RAMNEAR areas take advantage of special addressing modes 
in the Neuron Chip and Smart Transceiver that generate more efficient code 
(fewer bytes per instruction and fewer cycles per read or write).  However, 
indirect memory access (via a pointer) is the same for near and far memory 
areas. 

eeprom Keyword (for functions and data declarations) 
On the Neuron 3150 Chip and the FT 3150 Smart Transceiver, functions and 
const data are located in ROM by default.  When ROM is full, or when no 
ROM is available, the remaining functions and const data are placed in the 
EECODE areas, first in the offchip EECODE area, then in the onchip 
EECODE area.  However, functions and const data can be explicitly 
redirected from the ROM area to the EECODE area of memory by including 
the eeprom keyword in the function definition or data declaration.  For 
example: 

eeprom int fn() { ... statements ... } 

eeprom const type varname = {inits}; 

The eeprom keyword is useful for functions that may be occasionally but 
rarely changed after installation by a network tool.  Likewise, a network tool 
would be able to modify a const data structure stored in EEPROM that 
might be used for calibration, or other configuration. 

This keyword also allows the program to indicate variables whose values are 
preserved across power outages by locating the variables in EENEAR rather 
than in RAMNEAR.  However, EEPROM memory has a limited capability to 
accept changes.  Consult the Smart Transceivers databooks for a discussion 
of the limit to the number of writes that a particular EEPROM can support. 

You can redirect variables from the RAMNEAR area to the EENEAR area of 
memory by including the eeprom keyword in the declaration, as described 
earlier.  For example, the following declaration moves varname to the 
EENEAR area: 

eeprom int varname; 

You can direct network variables to the EENEAR area with either the 
eeprom or config keyword.  You can also use the far keyword with network 
variables similar to the example above. 
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The EENEAR area is limited in size to a maximum of 255 bytes (but other 
factors may limit this area further).  Any additional on-chip EEPROM, and 
all off-chip EEPROM are considered EEFAR areas.  To move a particular 
variable to an EEFAR area, see the discussions of the far, offchip, and 
onchip keywords below. 

Initializers for eeprom class variables take effect when the application 
image is loaded from an external system, such as the LonMaker Integration 
Tool or another network tool.  Reloading a program has the effect of 
reinitializing all eeprom variables.  Restarting a device or powering it up 
does not re-initialize the eeprom variables – they retain their existing 
values from before the restart or power outage.  For an exception to these 
initialization rules, see the description of the uninit keyword, below. 

Writing a value in on-chip EEPROM typically takes approximately 20ms 
before the value takes effect (though this time may vary depending on the 
particular chip).  If this write time is cut short, the value may not have been 
written or, if written, the value may not be non-volatile.  (Examples of cases 
when the write time might be cut short are when the device powers down due 
to a power outage, when the device is externally reset, or when a watchdog 
timeout occurs and the device is reset.) 

far Keyword (for data declarations) 
When data objects do not fit into the RAMNEAR area of memory, the 
following linker error messages appear: 

Error:  No more memory in RAMNEAR area 
Error:  Could not relocate segment in file ‘<program>.no’ 

You can direct the linker to put the objects into the RAMFAR area of memory 
by including the far keyword in the Neuron C data declaration.  For 
example, the following declaration moves varname to the RAMFAR area: 

 far int varname; 

Similarly, when config or eeprom objects do not fit into the EENEAR area 
of memory, the following messages appear: 

Error:  No more memory in EENEAR area 
Error:  Could not relocate segment in file ‘<program>.no’ 

You can direct the linker to put the objects into the EEFAR area of memory 
by also including the far keyword in the Neuron C data declaration.  For 
example, the following declaration moves varname to the EEFAR area: 

far eeprom int varname; 

You could, for example, move a data table that is too large to fit into the 
EENEAR area to the EEFAR area of memory using this type of declaration. 
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As a general guideline, leave data that is more frequently used in the NEAR 
areas of memory if possible.  Use of the NEAR areas generates relatively 
smaller instructions (which additionally execute in fewer cycles) than use of 
the FAR areas.  Arrays that are referenced only with non-constant indices or 
pointers may be placed in FAR memory with no loss of efficiency. 

offchip Keyword (for functions and data declarations) 
The Neuron linker typically places code, const data, and far variables in 
off-chip areas, if it can, and in on-chip areas when it must.  However, the 
linker's default behavior is different when linking for flash memory.  See Use 
of Flash Memory in this chapter for more information.  To explicitly control 
the placement of these objects, any data or function declaration can include 
the offchip keyword. 

If the appropriate off-chip memory area is available, the object will be placed 
in the area.  If the memory area is not available, the linker will terminate 
with an error message to that effect.  Examples of using the offchip keyword 
are shown below: 

far offchip int a;  // offchip RAMFAR 

far eeprom offchip int b; // offchip EEFAR 

const eeprom offchip int c = init; 
 // offchip EECODE (no need for far kwd) 
eeprom offchip void fn () {...} 
 // offchip EECODE 

onchip Keyword (for functions and data declarations) 
The Neuron linker typically places code, const data, and far variables in off-
chip areas, if it can, and in on-chip areas when it must.  To explicitly control 
the placement of these objects, any data or function declaration can include 
the onchip keyword.  If the appropriate on-chip memory area is available, 
the object will be placed in the area.  If the memory area is not available, the 
linker will terminate with an error message to that effect.  See Use of Flash 
Memory in this chapter for more information.  Examples of using the onchip 
keyword are shown below: 

far onchip int a;   // onchip RAMFAR 
far eeprom onchip int b; // onchip EEFAR 
const eeprom onchip int c = init; 
 // onchip EECODE (no need for far kwd) 
eeprom onchip void fn () {...} 
 // onchip EECODE – would be in EEPROM 
 // even without the eeprom keyword 

The onchip keyword is useful for moving data to on-chip EEPROM when off-
chip flash memory is used.  The on-chip EEPROM supports more write cycles 
than off-chip flash memory.  Frequently updated EEPROM variables should 
be located on-chip when off-chip flash memory is used.  See Atmel data books 
and the Smart Transceivers databooks for maximum write specifications. 
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ram Keyword (for functions) 
By default, functions and other executable code, as well as const data, are all 
placed in ROM, if available (on the Neuron 3150 Chip or FT 3150 Smart 
Transceiver), and then in off-chip or on-chip EECODE. You can redirect 
functions to the off-chip RAMCODE area of memory by including the ram 
keyword in the Neuron C function definition.  The RAMCODE area is only 
available in off-chip RAM memory attached to a Neuron 3150 Chip or FT 
3150 Smart Transceiver.  The RAM must be non-volatile (for example, 
battery-backed), if the device is to be protected against a power cycle.  See 
the Neuron 3150 Chip External Memory Interface engineering bulletin for 
special considerations on protecting code RAM against Neuron Chip resets. 

The ram keyword can go anywhere before the function name.  For example: 

 ram int fn() { ... statements ... } 

The ram keyword is useful for functions that a network tool may change 
frequently after installation. 

uninit Keyword (for data declarations) 
You can combine the uninit keyword with eeprom variable declarations to 
declare data in EENEAR or EEFAR memory areas which is not affected by 
program load or chip reset.  This can provide two benefits.  You may need a 
large area of allocated memory for database or calibration or other use, and 
may want the data to remain unaffected in these situations.  Furthermore, 
uninit areas of EEPROM are not loaded, thus speeding up loading time.  An 
example of using the uninit keyword to set aside 500 bytes of such memory 
is shown below: 

 uninit eeprom int datablock[500]; 

Compiler Directives 
Configuration property value files and the configuration property template 
files, which hold values and self-documentation data for configuration 
properties declared with the cp_family keyword, may be allocated in on-chip 
EEPROM or off-chip EEPROM using the linker's default relocation 
algorithm.  You can use the #pragma codegen 
put_cp_template_file_offchip and #pragma codegen 
put_cp_value_files_offchip compiler directives to force the template file or 
the value files into off-chip memory, if off-chip memory is available.  (If 
insufficient off-chip memory is available, this will cause the link to fail.)  See 
Compiler Directives in the Neuron C Reference Guide for more details about 
these directives. 
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When the Program Is Relinked 
The compiler directs the application code to the proper areas of memory.  The 
linker assigns data memory locations and resolves references to global 
symbolic addresses.  These assignments to addresses occur in the order of 
declaration in the compilation.  Therefore, to retain the same addresses from 
link to link, maintain the same order of declaration. 

Use of Flash Memory 
Neuron firmware version 6 and later for the Neuron 3150 Chip and the FT 
3150 Smart Transceiver, supports the use of flash memory.  The firmware 
supports only the Atmel AT29C256, and AT29C257 (32Kx8, 64 byte sector 
size), the AT29C512 (64Kx8, 128 byte sector size), and the AT29C010 (128K x 
8, 128 byte sector size) flash memories.  Use of flash memory is specified via 
the LonBuilder tool's memory map or via the NodeBuilder tool's hardware 
template.  See the LonBuilder User's Guide and the NodeBuilder User's 
Guide for more information on these features, and how to select use of flash 
memory.  Neuron 3150 Chips and FT 3150 Smart Transceivers that use these 
flash memory parts must run at 1.25MHz clock speed, or faster. 

You can use flash memory for just the EEPROM memory region, or for both 
the ROM and EEPROM memory regions.  When you use flash memory for 
the EEPROM memory region, it can contain all memory areas normally 
associated with EEPROM, that is, EECODE and EEFAR.  Flash memory can 
only be modified reliably a limited number of times (typically, 1000 times, 
but varies depending on the chip – consult the chip manufacturer's data 
books for specific limitations).  Thus, even though the compiler, linker, and 
firmware support placing eeprom class variables in flash memory, you must 
take care that these variables are modified only very infrequently, within the 
specified lifetime of the flash memory parts. 

When you also use flash memory for the Neuron firmware ROM, the 
ROMCODE area's size is fixed at the size of the system image (16Kbytes or 
more) and therefore cannot contain application code or data.  The remainder 
of the flash address space is divided between EECODE and EEFAR.  
However, the flash memory should not contain both the system image and 
application read/write data.  This is because when the flash is being written 
to, the system image cannot be read during the chip's programming interval 
(<10 msec).  The Neuron firmware automatically locks itself out of the flash 
during the programming interval, but this lockout causes all system 
functions to be delayed, thus network messages will be lost during the 
lockout interval.  If you must place data in flash memory, you can use the 
offchip keyword to direct the variables that are the least likely to be 
modified into flash. 
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Because flash is written on a sector basis (either 64 or 128 bytes depending 
on the part), the number of writes possible for an eeprom variable located in 
flash is a function of the number of writes to the sector where it resides.  As a 
comparison, consider a one-byte eeprom variable located in an off-chip 
EEPROM supporting 1,000 writes.  This variable can be safely updated 1,000 
times.  If that same variable resided in an off-chip flash with 64 byte sectors 
and a similar write limit, then the number of writes must be stated as a 
function of all the data in that sector.  Specifically, up to 1,000 writes could 
be done for all the variables in the sector.  Given 64 one-byte variables with 
equal frequency of modification, each could be written 1,000/64 or about 15 
times. 

Since modification of data in flash requires a flash programming cycle, the 
Neuron C linker uses an alternate linking algorithm, placing all data objects 
in on-chip memory if it can.  You can control which objects are placed off-
chip, if some must be, by use of the offchip keyword in the data object's 
declaration.  If the linker places any data in flash, a warning will be given to 
this effect. 

Any direct write by the application to the flash memory will cause a 
programming cycle, even if the flash memory is write protected.  This is an 
error condition that occurs when the application bypasses the Neuron 
firmware for accessing the flash memory.  The Neuron firmware uses the 
software write protection feature of the flash memory, so the invalid write 
will not change the contents of the flash memory, but a programming cycle 
will be initiated.  The flash memory will provide invalid data during the 
programming cycle, causing a watchdog reset.  It is possible for the reset to 
occur during a write cycle, which may, in the worst case, cause resets ad 
infinitum.  Therefore, having the system image in flash requires that there 
be a hardware mechanism to extend the Neuron's reset state for at least the 
duration of the write cycle (typically 10 msec).  The LVI circuitry described in 
the Smart Transceivers databooks can accomplish this.  See also the Neuron 
3150 Chip External Memory Interface engineering bulletin for more 
information. 

When writing to EEPROM, if a power cycle, or other reset occurs, the data 
corruption is localized to the area being written.  However, with flash, since 
an entire sector is always programmed at once, all data in the sector which 
was being written at the time of the failure may be suspect.  It is up to the 
application program to protect any critical non-checksummed read/write data 
via duplication, voting, journaling, or whatever technique is appropriate. 

Since loading of flash occurs a sector at a time, it is important that the load 
image data be contiguous.  Thus, uninit eeprom data and initialized 
eeprom data should not be interleaved.  The linker processes declarations in 
the order they appear in the program, thus you can reduce loading time by 
grouping uninit eeprom declarations together. 
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The eeprom_memcpy( ) Function 
You can write EEPROM memory, as well as flash memory, by direct 
assignment, including structure-to-structure assignment.  In these cases, the 
compiler recognizes that the target variable is in EEPROM memory, and 
uses the appropriate firmware function to write the memory properly, with 
the correct delays, hardware interface sequences, etc. 

However, when writing to EEPROM via a pointer, the compiler cannot track 
what type of memory the pointer points to.  Thus, addresses of EEPROM 
variables are automatically typed by the compiler as 'const *', to prohibit use 
of the pointer for writing: 

 eeprom int x; 
 
 .... &x ... // '&x' is 'const int *' 

The compiler normally prevents removing the const attribute from any 
pointer so typed.  This is prevented for both implicit  and explicit cast 
operations.  An implicit cast occurs when there is an assignment of a value to 
a variable of different type, or when there is an actual parameter passed to a 
function whose formal parameter is a different type, as illustrated in the 
following example: 

 eeprom int x; 
 int *p; 
 void f (int *p); 
 p = &x; // implicit cast, compiler error 
 f(&x); // another erroneous implicit cast 
 p = (int *)&x; // explicit cast, also error 

This behavior of the Neuron C compiler is stricter than the behavior specified 
by ANSI C.  However, if you specify the #pragma relaxed_casting_on 
directive, the compiler only generates a warning message for each such 
implicit or explicit cast.  You can use the #pragma warnings_off directive 
to further suppress the warning message, if desired.  You can use the 
corresponding warnings_on and relaxed_casting_off directives later in 
the program to restore the default behavior of the compiler for the remainder 
of the program. 

Use of this feature is dangerous, since you can circumvent the compiler's 
checking and attempt a spurious write (i.e. a write without knowledge of the 
firmware) to EEPROM or flash memory.  The eeprom_memcpy( ) function 
is provided to write via pointers which may (but are not required to) refer to 
EEPROM or flash memory.  The parameters of this function are the same as 
that of memcpy( ), but this function supports the destination address being 
in EEPROM or flash memory, where the normal memcpy( ) function does 
not.  The eeprom_memcpy( ) function limits the length parameter to 255 
bytes. 
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NOTE:  The use of this function in older versions of firmware with an 
excessive length can cause the watchdog timer to time out, causing the device 
to reset.  For a device running at 10 MHz, the safe length is 32 bytes. 

For Neuron 3120xx Chips and FT 3120 Smart Transceivers running version 
7 firmware or later, and Neuron 3150 Chips and FT 3150 Smart Transceivers 
running version 12 firmware or later, the firmware prevents a watchdog 
timer timeout during use of eeprom_memcpy( ) and the length is not 
limited to less than 255 bytes. 

 

Memory Use 
This section outlines the amount of memory used by certain elements in your 
program.  For a description of the actual memory used by your program, see 
the link summary. 

 

RAM Use 
RAM is used as follows: 

• code  Size of code (for functions declared with ram keyword) 

• config_prop 0 

• cp_family 0 

• fblock  0 

• io_changes 3 bytes each (any type) 

• I/O object 0 

• msg_tag 0 

• mtimer 4 bytes each 

• The following sizes pertain to global and static data as declared in the 
program (except for eeprom and config variables).  These amounts also 
apply to network variables. 

 char  1 byte 

 int  1 byte 

 enum  1 byte 

 long  2 bytes 

structures Sum of the size of the elements.  Each 8 bits (or fraction of 8 
bits) of consecutive bitfields uses up a byte.  No bitfield can 
span a byte boundary.  No padding is performed.  The 
float_type and s32_type extended arithmetic structures 
each take 4 bytes. 

 unions  Size of the largest element 
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EEPROM Use 
Approximately 65 bytes of EEPROM is used for constant system overhead, 
though this may vary depending on the firmware version.  In addition, 
EEPROM or flash memory is used as follows: 

• Each domain table entry requires 15 bytes for configurable information, to 
define the domain address, subnet number, device number, and 
authentication key.  A system can have a maximum of two domain table 
entries and must have at least one domain table entry.  The default is two 
domain table entries.  See Domain Table in this chapter. 

• Each address table entry requires 5 bytes.  A maximum of 15 address table 
entries are allowed.  The minimum is 0.  The default is 15 entries.  See 
Address Table in this chapter. 

• Each network variable declared (input or output) uses 3 bytes for its 
configuration information.  In addition, it uses 3 bytes of read-only memory 
for its fixed information.  If you use the SNVT self-identification (SI) feature, 
there is an additional 7-byte fixed overhead plus 2 additional bytes per 
network variable (minimum).   

• Each network variable alias table entry uses 4 bytes.  There is no default for 
the size of this table.  See Alias Table in this chapter. 

• Variables declared as eeprom and config in your program use an amount of 
EEPROM corresponding to its C data type.  This includes network variables 
of the config_prop (or cp) class and modifiable configuration parameters 
declared using the cp_family keyword.  (The latter are stored together in a 
writable value file.)  See Default Memory Usage in this chapter. 

• The when clause table is placed in the CODE memory area (ROM, if 
available, or EEPROM).  Each when clause uses a table entry from 3 to 6 
bytes (most are 3 bytes).  This code space is usually slightly smaller than the 
equivalent code generated by an if statement.  Additional code space may 
result from when clauses containing user-defined events. 

• The read-only value file will normally be placed in the CODE memory area 
(this may be ROM, if available, or EEPROM).  The configuration value files 
use only the number of data bytes required by the data types of the 
configuration properties contained within.  The #pragma codegen 
put_read_only_cps_in_data_memory directive will instruct the linker to 
place the read-only value file in a modifiable memory area instead of the 
CODE memory area.  See the Compiler Directives chapter in the Neuron C 
Reference Guide for more information about this directive.  There is no 
additional overhead.  The configuration template file is also placed in the 
CODE memory area.  The template file uses a number of bytes to describe 
each configuration property in the value files.  This number varies based on 
the type and characteristics of the configuration property, but it is typically 
12 or more bytes per configuration property instance.  See the Compiler 
Directives chapter in the Neuron C Reference Guide for more information 
about the #pragma codegen cp_family_space_optimization compiler 
directive.  Use of this directive can substantially reduce the size of the 
configuration property template file. 
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Usage Tip for Memory-Mapped I/O 
You can attach memory-mapped I/O devices to a Neuron 3150 Chip or FT 
3150 Smart Transceiver.  These devices should respond only to memory 
addresses that are outside the configured memory map areas for ROM, 
EEPROM, and RAM. 

A convenient method of access to memory-mapped I/O from a Neuron C 
program is to declare a constant pointer to the block of control addresses for 
the device.  In the following example, a hypothetical memory-mapped I/O 
device has two control registers and a 16-bit data register, at addresses x, 
x+1, x+2, and x+3, respectively.  The device is connected to respond to the 
addresses of 0x8800 to 0x8803.  The fragment of Neuron C code below 
accesses the device. 

typedef struct { 
 unsigned short int controlReg1; 
 unsigned short int controlReg2; 
 unsigned long int dataReg; 
}  *PMemMapDev; 

const PMemMapDev pDevice = (PMemMapDev) 0x8800; 

// Read from device ... 
unsigned int x, y; 
unsigned long z; 

x = pDevice->controlReg1; 
y = pDevice->controlReg2; 
z = pDevice->dataReg; 

// Write to device ... 
unsigned int x, y; 
unsigned long z; 

pDevice->controlReg1 = x; 
pDevice->controlReg2 = y; 
pDevice->dataReg = z; 
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What to Try When a Program Doesn't Fit on a 
Neuron Chip 

The following discussion contains tips and techniques for reducing the 
EEPROM requirements of a program for purposes of getting it to fit or 
having it use less code space.  Some of the techniques are tailored to a 
Neuron 3120 Chip or FT 3120 Smart Transceiver, but most are applicable to 
any Neuron C language program.  Most of these manual optimization 
techniques improve both aspects of code size and code performance.  The 
techniques below should be attempted roughly in the order presented. 

The link summary contains information on a program's current memory 
usage.  The summary information includes an estimate of the additional 
memory required.  The link summary is optionally output to the BUILD.LOG 
file, and is also included in the optionally-produced link map file. 

Reduce the Size of the Configuration Property 
Template File 

Consider using the #pragma codegen cp_family_space_optimization 
directive. This will result in an aggressive re-ordering of configuration 
property template and value file contents, aiming at reducing the total size of 
the template file. Subject to the specific application, this directive can have 
little effect or make a huge difference. 

Note optimizing the configuration property files for size might result in 
reduced performance when commissioning or configuring devices, especially 
when being used on or via low-bandwidth channels. See the Compiler 
Directives chapter in the Neuron C Reference Guide for more information and 
important considerations about these directives. 

Reduce the Number of Address Table Entries 
A good rule of thumb is to assume that the minimum number of address table 
entries that a fully connected Neuron C application program can use is the 
sum of the number of non-polled output network variables, polled input 
network variables, and bindable message tags.  (A bindable message tag is 
one that does not include bind_info (nonbind) in its declaration.)  For 
example, an application with one message tag and two output network 
variables (one of which is an array of four elements), would need a maximum 
of six address table entries. 

However, additional address table entries may be needed for input network 
variables which are in one or more groups, one entry being used for each 
group, or for any alias network variable that is associated with any of the 
input or output network variables on the device.  Finally, each group 
connection to a device's msg_in tag will use an address table entry. 
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If your program does not explicitly receive messages (and therefore will have 
no connections to the msg_in tag), and it has only a few network variables 
that will each be connected only in a point-to-point manner (i.e. no group 
connections), you could easily reduce the number of address table entries.  
Other situations could require further analysis to determine if the number of 
address table entries could be reduced. 

The default number of address table entries is 15.  The value can be reduced 
with the #pragma num_addr_table_entries directive (see the Compiler 
Directives chapter in the Neuron C Reference Guide).  Reducing the number 
of address table entries will save 5 bytes of EEPROM per entry eliminated. 

Remove Self-Identification Data if Not Needed 
The Neuron C compiler places self-identification data in the device's program 
space.  On the Neuron 3120 Chip or FT 3120 Smart Transceiver, this 
consumes EEPROM.  If your program is not using SNVTs, you can consider 
removing the self-identification data.  You can do this by specifying the 
following compiler directive: 

#pragma disable_snvt_si 

Remove Network Variable Names if Not Needed 
The Neuron C compiler places information about the names of the network 
variables in the device's program space when the compiler directive 
#pragma enable_sd_nv_names appears in the program.  On the Neuron 
3120 Chip and the FT 3120 Smart Transceiver, this consumes EEPROM. 

You may remove the directive to regain one byte of EEPROM space for each 
character in a network variable's name, plus one byte for each network 
variable.  When the device is installed, if there is no further information 
available about the network variable names, the network tool will 
automatically assign generic names such as "NVI1", "NVO7", etc. 

In order to assist the network integrator and allow the use of intuitive, self-
explanatory names of the network variables as opposed to the generic, 
automatically-generated ones, make sure to provide the external interface 
files along with your device.  The network management software will extract 
the names for the network variables from the files (.XIF and/or .XFB 
extensions), without the names consuming code space in your device. 
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Declare Constant Data Properly 
Use of the const or eeprom keyword in a declaration of constant data is very 
important, because, without either of these keywords, the compiler will 
assume the data is placed in RAM and thus the data will need to be 
initialized at runtime each time the application program is reset.  This can be 
very expensive in terms of code space, it will unnecessarily consume RAM 
memory, and it will also unnecessarily lengthen the time it takes the 
application to complete its reset processing. 

Consider the following example.  This example shows a poorly declared data 
table of four bytes in length.  Unfortunately, because this declaration does 
not use the const keyword, the compiler places it in RAM, and it must 
therefore be initialized each time the application processor resets.  The 
executable code fragment to initialize the array is an additional 9 bytes, and 
another four bytes are placed in code space containing the initial values for 
the table! 

Furthermore, use of RAM for the data table means that there is a chance it 
could accidentally get modified by an unintentional programming error. 

EXAMPLE OF POOR DECLARATION: 

int lookup_table[4] = {1, 4, 7, 13}; 

The proper declaration of the data table only consumes four bytes of read-
only memory (code space) for the data values themselves. 

EXAMPLE OF PROPER DECLARATION: 

const int lookup_table[4] = {1, 4, 7, 13}; 
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Use Efficient Constant Values 
In the Neuron Chip and Smart Transceiver CPU architecture, constants in 
the range of 0 to 7 can be used more efficiently than larger 8-bit constants.  
Instructions that use these constant values are smaller and faster.  
Therefore, when choosing a sequence of constant values, normalize the 
sequence to begin with 0.  An enumerated type (an enum) will, by default, be 
normalized with zero in this manner. 

Also, because the Neuron firmware initializes RAM to zero automatically 
when the application is reset, a constant sequence should be designed with 
zero as its initial value.  The following section, Take Advantage of Neuron 
Firmware Default Initialization Actions, describes how you can use this fact 
to your advantage. 

Another consideration is a comparison, especially when used in a loop control 
expression, such as in a while statement.  The most efficient comparison of 
an expression with a constant is when the constant is zero.  If you cannot 
arrange to have your loop test compare with zero, then try to arrange to have 
your loop test compare with one.  Equality comparisons with one are not as 
efficient as comparisons with zero, but they are more efficient than 
comparisons with other constants. 

Take Advantage of Neuron Firmware Default 
Initialization Actions 

The Neuron firmware automatically sets all RAM variables to zero each time 
the chip resets, and also when the Neuron C application_restart( ) function 
is called.  After this action, the Neuron C application program is started.  The 
first action of a Neuron C application program is to execute code to initialize 
any RAM variables to non-zero values.  Then, if a task associated with the 
when(reset) clause exists, it is called. 

Therefore, use of compile-time initializers to set RAM variables to zero is 
free.  Eliminate any code in the when(reset) clause's task which is used to 
set RAM variables to zero, as it is unnecessary. 

Also, compile-time initializers of I/O output objects are free.  This is true 
regardless of initializer value.  The use of compile-time initializers for I/O 
will use less code space than corresponding calls to io_out( ) in the 
when(reset) clause's task. 

Finally, at reset time, the Neuron C application timers are all turned off 
automatically.  Eliminate any code in the when(reset) clause's task which 
explicitly turns off application timers. 
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Use Neuron C Utility Functions Effectively 
There are several Neuron C utility functions that can be used to reduce code 
requirements.  For example, there are min( ), max( ), and abs( ) functions, as 
well as other utility functions which may be used for common operations.  
Use of these functions will generally be more code-space efficient than coding 
the operations in-line using C operators. 

The Neuron C utility functions include byte-manipulation functions, such as 
high_byte( ), low_byte( ), make_long( ), and swap_bytes( ).  There are bit-
manipulation functions such as clr_bit( ), reverse( ), rotate_long_left( ), 
rotate_long_right( ), rotate_short_left( ), rotate_short_right( ), 
set_bit( ), and tst_bit( ). 

For extended precision arithmetic, Neuron C provides the muldiv( ), 
muldivs( ), muldiv24( ), and muldiv24s( ) functions.  These functions 
permit a multiply operation, followed by a divide operation, with the 
intermediate result and the operations using either 32-bit or 24-bit precision. 

The Neuron C functions also include such utilities as the timers_off( ) 
function.  This function turns off all application timers with a single function 
call.  This function call takes less space than the corresponding assignment of 
zero to a single timer, although it takes longer to execute.  Thus, if your 
program contains a single application timer, and you turn it off by assigning 
zero to it, consider using this function instead in order to save code space. 

Other miscellaneous functions include bcd2bin( ) and bin2bcd( ), delay( ) 
and scaled_delay( ), and random( ). 

All of the Neuron C functions are described in detail, with examples, in the 
Neuron C Reference Guide. 

Be Aware of Library Usage 
Be aware of the system functions which are placed in application memory 
(see the table in the Neuron C Reference Guide for a complete list of the 
functions placed in memory for each chip and each version of firmware).  If 
possible, avoid use of such things as signed bitfields in structures that cause 
use of library functions. 
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Use More Efficient Data Types 
The Neuron C compiler will generate more compact code when the data items 
and operations on them more closely match the underlying machine 
architecture and instruction set.  If possible, change variables to be locals 
rather than globals, to be short rather than long, and to be unsigned 
rather than signed. 

For example, consider the following function which finds an occurrence of 
value in the array a and returns the index where value was located: 

<type> find(int a[], int value, <type> count)  { 
 <type>   i; 
 for (i=0; i<count; ++i) { 
  if (a[i] == value) break; 
 } 
 return i; 
} 

When this function is compiled (using the LonBuilder 3.0 Neuron C 
compiler), the following code sizes are obtained corresponding to the data 
types shown: 

<type> is signed short: 25 bytes 
<type> is unsigned short: 24 bytes 
<type> is signed long: 34 bytes 
<type> is unsigned long: 34 bytes 

In addition to the code size numbers, all sequences above, except the one for 
unsigned short, make use of multiple calls to firmware helper functions.  
This implies that the runtime of the code sequence for unsigned short is 
even more efficient than it seems at first.  Thus, the data type which permits 
the generation of the most efficient code is unsigned short.  This is because 
the Neuron Chip and Smart Transceiver instruction set is inherently most 
efficient when dealing with 8-bit unsigned integers. 

Also, an awareness of the stack architecture employed in the CPUs of the 
Neuron Chip and of the Smart Transceiver will help in understanding how to 
write code that can be compiled efficiently.  As a general guideline, you 
should keep the total size of active locals plus parameters under eight bytes.  
This permits all locals and parameters to be accessed and stored using the 
smallest possible instructions.  The following section, Observe Declaration 
Order, explains how the first local variable is accessed more efficiently, and 
how you can use this fact. 

The Neuron C language permits aggregates, such as arrays, structures, and 
unions, to be declared on the local data stack.  To the extent that such local 
variable aggregates are declared, the compiler uses larger and slower 
instructions to access these data items.  Therefore, it is best to declare such 
variables as static items, rather than locals.  If you are limited in data 
memory, and must declare these aggregates as locals, then declare them 
after the non-aggregate locals; this permits the compiler to use the shorter 
instructions for the non-aggregates. 
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Observe Declaration Order 
The order of declaration of the automatic variables within a function can 
have an effect on code size.  This is because the compiler places the first 
variable declared on the top of the runtime stack, the second variable next, 
etc.  The Neuron C compiler generates more efficient code to access the 
topmost variable on the stack, especially when that variable is a short.  The 
least efficient accesses (loads and stores) are to variables deep in the stack.  
Thus, best results are generally obtained when the variable used most often 
is declared first. 

For example, consider the following code fragment: 

void arrayinit(int a[], int initval, 
     unsigned count) { 
 int j; 
 unsigned i; 
 j = initval; 
 for (i=0; i<count; ++i) { 
  a[i] = j; 
 } 
} 

This function generates 23 bytes.  However, if the variable i (which appears 
in more expressions than j and is thus used more often) were declared first, 
then the code generated would only be 21 bytes. 

 

Use The Optional Fastaccess Feature 
Array accesses (both loads and stores) in Neuron C normally use the rules of 
ANSI Standard C.  These rules permit the array index to be interpreted as a 
signed quantity, and furthermore permit the array index to exceed the 
bounds of the declared array.  These characteristics of array indexing 
increase the code size for array references. 

It is possible, given the Neuron machine instruction set, to generate better 
code for accessing small arrays if the following additional rules are observed. 

1 The array index can be promoted to unsigned by the compiler if it is a 
signed short. 

2 The program never attempts to access outside the bounds of the array, and 
never computes the address of an array element outside the bounds of the 
array.  Computation of such an address is permitted in ANSI C for the 
purpose of terminating a loop using a pointer, but using this technique with 
fastaccess arrays yields undefined results. 
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To inform the compiler that these additional rules can be assumed for array 
access, include the fastaccess keyword in the definition of such an array.  
Also, the total size of the array must be no larger than 254 bytes.  The 
fastaccess keyword may appear anywhere in the declaration and applies to 
all arrays in the declaration.  For example, the following declares the arrays 
a1 and a2 to both be fastaccess style arrays: 

fastaccess int a1[4], a2[12]; 

You may combine the fastaccess keyword with other declaration syntax, 
including network, far, eeprom, and const.  Fastaccess arrays may appear 
on the local procedure or function stack, as well as in global memory.  The 
fastaccess feature does not apply to the indexing operator used with a 
pointer. 

One potential drawback to using fastaccess arrays in global memory is that 
the linker will locate these data items such that they will not span page 
boundaries.  (A memory page consists of 256 bytes.)  Thus, declaration of 
many global arrays as fastaccess may cause increased memory use due to 
possible fragmentation. 

Eliminate Common Sub-Expressions 
The Neuron C compiler does not automatically eliminate common sub-
expressions.  Performing this optimization by hand would, in most cases, 
reduce code size.  Consider the following Before-and-After example, which 
saves 4 bytes of code.  The temp variable, in the After example, is declared 
such that it becomes the top variable on the stack. 

BEFORE (COMPILES TO 28 BYTES OF CODE): 

int a, b, c, d, e; 
void f(void) { 
    d = (a * 2) +  (b * c * 4); 
    e = a - (b * c * 4); 
} 
 
 

AFTER (COMPILES TO 24 BYTES OF CODE): 

int a, b, c, d, e; 
void f(void) { 
    int temp; 
    temp = b * c * 4; 
    d = (a * 2) + temp; 
    e = a - temp; 
} 
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Another form of common sub-expressions that may not be as obvious occurs 
with array indexing.  Consider the following Before-and-After example that 
demonstrates the value in avoiding repeated indexing into an array element.  
Not only is there an obvious code savings by using a temporary pointer 
variable, there is a simplification of the code as well (the Before example 
contains three multiplies, one for each access to the array, whereas the After 
example only contains one multiply operation). 

BEFORE (COMPILES TO 46 BYTES OF CODE): 

struct s { 
 int x, y, z; 
} a[5]; 
 
void f(int i) { 
 a[i+2].x = 3; 
 a[i+2].y = 5; 
 a[i+2].z = 7; 
} 

AFTER (COMPILES TO 33 BYTES OF CODE): 

struct s { 
 int x, y, z; 
} a[5]; 
 
void f(int i) { 
 struct s *p; 
 p = &(a[i+2]); 
 p->x = 3; 
 p->y = 5; 
 p->z = 7; 
} 

Use Function Calls Liberally 
Since function calls are relatively cheap in terms of the code space and 
execution time overhead, replacing even a single line of complex code with an 
equivalent function may reduce code space if that line of code is used two or 
more times in a program.  Some lines of code involving network variables 
may not look complex, but the underlying operations may be. 

For example, consider the increment of an element in a structure which was 
part of an array of network variables; this operation generates a considerable 
amount of code.  Replacing two such occurrences with a single function call 
saves code space at the expense of a minor performance penalty. 

Also, consider passing expressions and values as function actual parameters, 
rather than using global variables.  Accesses to parameters are generally 
more efficient than (or are no worse than) accesses to globals. 
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Use the Alternate Initialization Sequence 
Use of the #pragma disable_mult_module_init directive will save 2 or 3 
bytes of EEPROM code space.  This directive specifies to the compiler that it 
should generate any required initialization code directly in the special init 
and event block, rather than as a separate procedure callable from the 
special init and event block. 

The in-line method, which is selected as a result of use of this directive, is 
more efficient in memory usage (it typically saves 3 bytes if initialization 
code is present, and saves 2 bytes if no initialization code is present).  
However, the drawbacks of using the directive are the following:  (1) the in-
line initialization area is limited in length, and (2) there can be no linkage 
from the program's initialization code to application library or custom image 
initialization code (this is typically not a problem for any Neuron 3120 Chip 
or 3120 Smart Transceiver). 

Reduce the Number of Domains 
If you know that the application device will always be a member of only one 
domain, then you can use the #pragma num_domain_entries 1 directive to 
save 15 bytes of EEPROM.  The default number of domain entries is 2, and 
each domain entry uses 15 bytes. 

 

NOTE:  The LONMARK Interoperability Association requires each 
interoperable device to be a member of two domains.  Reducing the number 
of domains to one will save 15 bytes EEPROM space, but it will prevent your 
device from being compliant with the LONMARK interoperability guidelines. 

Use C Operators Effectively 
The ANSI C language has a rich set of operators.  Using them effectively can 
produce very efficient code. 

For example, use of the C  ? :  operator rather than use of an if - else 
statement for alternative assignments to the same left-hand-side may reduce 
code space, especially if the left-hand side expression is complex. 

Also, the use of multiple if-else clauses can be slightly more efficient in code 
space than a switch clause.  Consider the following Before-and-After 
example, which saves 2 bytes of code: 
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BEFORE (COMPILES TO 40 BYTES OF CODE): 

void f (unsigned c) { 
 switch (c) { 
 case '1': 
  f1(); 
 break; 
 case '2': 
  f2(); 
 break; 
 case '3': 
  f3(); 
 break; 
 case '4': 
  f4(); 
 break; 
 default: 
  f5(); 
 break; 
 } 
} 

AFTER (COMPILES TO 38 BYTES OF CODE): 

void f (unsigned c) { 
 if (c == '1') { 
  f1(); 
 } else if (c == '2') { 
  f2(); 
 } else if (c == '3') { 
  f3(); 
 } else if (c == '4') { 
  f4(); 
 } else { 
  f5(); 
 } 
} 

Another C language operator that can improve code efficiency is the chained 
assignment.  A chained assignment uses the fact that the value being 
assigned can continue to be used after the assignment.  The chained 
assignment saves reloading or recomputing the value being assigned.  This is 
shown in the following Before-and-After example. 

BEFORE (COMPILES TO 14 BYTES OF CODE): 

mtimer t1; 
unsigned long int l; 
 
void f(void) { 
 t1 = 5000; 
 l = 5000; 
} 
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AFTER (COMPILES TO 13 BYTES OF CODE): 

mtimer t1; 
unsigned long int l; 
 
void f(void) { 
 t1 = l = 5000; 
} 

Use of the logical operators && and || for complex conditions will typically 
perform faster than similar expressions that use the bit operators & and |.  
In addition, use of the logical operators may make the code smaller, 
especially when tests for equality or inequality with zero are part of the 
conditional expression.  The following Before-and-After example 
demonstrates this efficiency: 

BEFORE (COMPILES TO 15 BYTES OF CODE): 

void f (int a, int b, int c) { 
 if ((a < 0) | (b == 0) | (c > 0)) { 
  // take some action 
 } 
} 

AFTER (COMPILES TO 12 BYTES OF CODE): 

void f (int a, int b, int c) { 
 if ((a < 0) || (b == 0) || (c > 0)) { 
  // take some action 
 } 
} 

Use Neuron C Extensions Effectively 
The Neuron C language contains features that exist primarily to help write 
efficient code. 

For example, if a program had two input network variables, and had a single 
task executed when either variable was updated, it is more efficient to code it 
as shown in the After example, below.  Likewise, use of a single when clause 
with the nv_update_occurs event referencing just an array name is more 
efficient than using multiple when clauses, one for each element of an array. 
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BEFORE (COMPILES TO 6 BYTES OF CODE): 

when (nv_update_occurs(var1)) 
when (nv_update_occurs(var2)) 
{ 
    // task ... 
} 

AFTER (COMPILES TO 3 BYTES OF CODE): 

when (nv_update_occurs) 
    // Use "unqualified" event to cover all variables 
{ 
    // task ... 
} 

However, if you need to use specific nv_update_occurs events without the 
use of the unqualified event shown above, the following guidelines can be 
used: 

Consider a program that declares two network variables nviA and nviB: 

network input SNVT_switch nviA, nviB; 

The following code fragments are all functionally equivalent, because they all 
respond to incoming network variable updates for either of these two 
network variables.  The first of these implementations is the least efficient of 
the three, and the last one (equivalent to the Before example above) is the 
most efficient of the three: 

VARIANT 1 (COMPILES TO 15 BYTES OF CODE): 

when (nv_update_occurs(nviA) || nv_update_occurs(nviB)) 
{ 
 // body of task 
} 

VARIANT 2 (COMPILES TO 9 BYTES OF CODE): 

when (nv_update_occurs(nviA..nviB)) 
{ 
 // body of task 
} 

VARIANT 3 (COMPILES TO 6 BYTES OF CODE): 

when (nv_update_occurs(nviA)) 
when (nv_update_occurs(nviB)) 
{ 
 // body of task 
} 
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System Library on a Neuron 3120 Chip 
On the different versions of Neuron 3120 Chips and 3120 Smart 
Transceivers, all application code is placed in on-chip EEPROM.  In addition, 
there are several I/O functions and many library functions which are brought 
into on-chip EEPROM by the linker if the functions are used.  For a complete 
description of which functions are library functions, see the Neuron C 
Reference Guide. 

An application linked for versions of chip and firmware that require use of 
any of the library functions may require more on-chip EEPROM than the 
same application linked for a Neuron 3150 Chip or 3150 Smart Transceiver.  
This is because, depending on the chip and firmware, these functions may be 
located in a system library instead of in the Neuron firmware.  Examination 
of the link map can provide a measure of the EEPROM memory used by 
these functions.  To obtain an estimate of the Neuron 3120 Chip or 3120 
Smart Transceiver EEPROM required for these functions, follow these steps: 

1 Select the necessary LonBuilder or NodeBuilder options to generate a link 
map. 

2 Select the Neuron chip model of interest for a device. 

3 Select the Build command. 

After the build is completed, the link summary portion of the link map for the 
device contains the Neuron 3120 Chip or 3120 Smart Transceiver EEPROM 
requirements for the system library functions.  See the Neuron C Reference 
Guide for more information on the link map. 
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Appendix A 
Neuron C Tools 

Stand-alone Use 

This appendix provides information on how to use the Neuron 
C tools as stand-alone programs from the command line. 
 
A listing of the options supported by each tool can be 
obtained by typing the tool name at the command prompt.  
For example, typing ncc lists the Neuron C compiler 
command line options. 



Stand-alone Tools 
The Neuron C tools shown below can be used stand-alone, meaning outside 
the integrated development environment, using the command prompt or 
command window only: 

 

Description Tool Name 

Neuron Assembler (NodeBuilder 3.0 and later) NAS 

Neuron C Compiler (NodeBuilder 3.0 and later) NCC 

Neuron Exporter (NodeBuilder 3.0 and later) NEX 

Neuron Librarian (NodeBuilder tool) NLIB 

Neuron Linker (NodeBuilder 3.0 and later) NLD 

Project Make (NodeBuilder 3.0 and later) PMK 

 

All the NodeBuilder stand-alone tools share a common command-line 
technology, and thus have several aspects of use in common.  These common 
aspects are described in the following section, Common Stand-alone Tool Use.  
The sections following later in this document briefly introduce each of the 
tools listed above. 

 

NOTE: Users of the NodeBuilder Development Tool should not use the 
command line tools, with the exception of the Neuron Librarian and the 
Project Make Utility.  The reason is that the build tools should be controlled 
by the Project Make Utility, pmk.exe.  Not only does this utility manage the 
build process (it minimizes the number of build steps required), it also takes 
care of program ID management tasks and automatic boot ID processing.  
You must otherwise take care of these two important duties manually.  See 
the NodeBuilder User's Guide for more details about the Project Make Utility. 
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Common Stand-alone Tool Use 

Common Aspects  
All tools have the following aspects in common: 

• If no command switches or arguments follow the name of the tool, the tool 
responds with usage hints. 

EXAMPLE: 

C:\>NAS 

TOOL RESPONDS: 

Neuron (R) Assembler, version 3.10.13, build 49 
Copyright (C) Echelon Corporation 1989-2001 
 
Usage:  [optional command(s)] argument 
         
... (Remaining output not listed here) 
 

• Most command switches come in two forms, a short form and a long form.  
The short form must be prefixed with a single slash '/' or dash '-' and consists 
of a single, case-sensitive, character that identifies the command. 

EXAMPLE OF SHORT FORM: 

C:\>NCC -DMYMACRO ... 

Short command switches may be separated from their respective values 
with a single space or an equal sign.  Short command switches do not 
require a separator; the value can follow the command identifier 
immediately, as shown above. 

 

The long form of the command must be prefixed with a double dash '- -', 
followed by the verbose, case-sensitive, name of the command. 

EXAMPLE OF LONG FORM: 

C:\>NCC - -define=MYMACRO ... 

Long command switches do require a separator, which can consist of a 
single space, or an equal sign. 
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• Multiple command switches may be separated by a single space. 

EXAMPLE: 

C:\>NCC - -define=MYMACRO1 - -define=MYMACRO2 ... 

 

• Commands of a boolean type need not be followed by a value, in which case 
yes is assumed. Possible values for boolean commands are yes, on, 1, +, no, 
off, 0, - (a minus character). 

EXAMPLE: 

C:\>NCC - -kerneldbg=yes ... 

This is equivalent to the line shown below (because the boolean type 
commands default to yes): 

C:\>NCC - -kerneldbg ... 

 

• Commands can be read from the command line as shown in the examples 
above, and they can also be read from a command file (script), which contains 
empty lines, lines starting with a semicolon (comment lines), or lines 
containing one command switch on each line (with value as applicable). 
 
For brevity, the short command syntax is most commonly used on the 
interactive command line, whereas the long command line syntax is 
preferred for command files due to its more self-explanatory nature. 

EXAMPLE COMMAND FILE: 

; Example command file, containing 
; some of the Exporter's commands 
; Created Wednesday, November 21, 2001, 20:42:20 
 
--bootflags=1024 
--infolder=d:\lm\Source\EPR\23305\Development\IM 
--outfolder=d:\lm\Source\EPR\23305\Development 
--basename=23305 

 

• Most tools require additional arguments to be given; these arguments can 
appear at any location within the command line or in a separate line within a 
script. 

EXAMPLE OF ARGUMENT AT END OF COMMAND LINE: 

C:\>NCC - -define=MYMACRO mycode.nc 
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Common Set of Basic Commands 
In addition to the shared syntactical aspects introduced in the above 
discussion, the stand-alone tools also share a common set of basic commands.  
Some of these common commands are listed below.  To obtain a complete list 
of all available commands, you may type in the name of any of the stand-
alone tools without specifying any command. 

-@ file-pathname  (Include a command file) 

The -@ (or: - -file) command specifies a command file (script).  The commands 
are read from this script and used as if they were given at the command line 
and in the location of the @ command.  Scripts themselves can refer to other 
scripts. 

- -defloc dir (Location of an optional default command file) 

The command line tools also search for a default script; a file that is read in 
addition to and after all other commands from the command line have been 
processed.  These default script files need not be specified with the -@ 
command, as they have a predefined name shown in the following table.  The 
command line tool assumes the default script to be located in the current 
working directory (and it is no error if there is none); the - -defloc command 
can be used to specify the location (not name) of the default script.  The 
NodeBuilder Development Tool uses the location of the NodeBuilder device 
template file (.nbdt extension) as the location of the default script. 

 

Build Tool Command 
Name 

Default Script 
Name 

Neuron C Compiler NCC LonNCC32.def 

Neuron Assembler NAS LonNAS32.def 

Neuron Linker NLD LonNLD32.def 

Neuron Exporter NEX LonNEX32.def 

Neuron Librarian NLIB LonLIB32.def 

 

- -mkscript scriptfile  (Generate command script in scriptfile) 

The - -mkscript command produces a trace file that contains all commands 
the build tool received, no matter where these commands came from.  When 
used within a default script, this feature can be used to capture the command 
sequence used by the project manager; a simple way to obtain machine-
generated build scripts. 
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NOTE:  Make sure to specify the scriptfile script file in such a way that it 
does not overwrite the default script file, or any other script file you may 
wish to preserve.  The - -mkscript command allows for constant command 
flow tracking, and thus overwrites existing files without warning. 

- -warning text  (Display text as a warning) 

This command is only useful in script files.  It displays the message text, and 
indicates the message as a warning.  The - -mkscript command, introduced 
above, automatically inserts a - -warning command into the generated script 
if the tool that executed the monitored command stream failed to complete 
without error. 

When using the machine-generated script file thereafter, a warning will state 
that this script was machine-generated, and based on a possible erroneous 
command stream. 

 

Command Switches for Stand-alone Tools 
The most useful and common command switches are documented in this 
section for each of the stand-alone tools. 

Neuron C Compiler 
The Neuron C compiler is named ncc.exe.  You may run the stand-alone 
compiler from the command prompt to produce a Neuron assembly source 
file.  The compiler command line contains the name of the executable file, 
then zero or more optional command switches, and finally the file name to 
compile. 

EXAMPLE: 

C:\>NCC mycode.nc 

The most interesting switches are the -D (- -define) and -I (- -include) 
switches.  You can use the -D switch to define a symbol from the command 
line, which can then be tested from the program using the #ifdef and 
#ifndef directives. 

You can use the -I (- -include) switch to specify a directory containing 
include files.  You can specify additional include directories with additional -I 
switches.  The search order corresponds to the order of the switches, if you 
specify more than one -I switch. 

EXAMPLE: 

C:\>ncc -DVERSION5 -I..\include -Id:\include mycode.nc 
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When invoked for a filename with a .nc extension, the Neuron C compiler 
uses Neuron C rules for code generation.  Libraries and custom system 
images cannot contain Neuron C code.  To compile a pure C file, and use pure 
C rules for code generation, the filename must end with a .c extension as 
shown in the command line example below: 

EXAMPLE: 

C:\>ncc -I..\include mycode.c 

As a final, complete example, to compile myfile.nc with a myinc.h include file 
in a subdirectory named myincs, and to define the OPTION1 symbol for 
conditional compilation purposes, run the command shown below: 

EXAMPLE: 

C:\>ncc –Imyincs -DOPTION1 myfile.nc 

This command (assuming the compilation does not find errors) will create 
several output files, all sharing the basename that was used for the Neuron 
C source file.  For the pure C example above, all generated files will have a 
myfile base name, but different extensions. 

For a pure C compilation, all generated files except the assembly source file, 
.ns extension, can be discarded.  These files are required by other tools in 
case of a Neuron C compilation, and cannot be discarded in such case. 

Neuron Assembler 
The Neuron assembler is named nas.exe.  The Neuron assembler is only 
provided for supporting the Neuron C compiler.  It cannot be used to 
generate Neuron Assembly Language applications. 

You may run the Neuron assembler from the command prompt to produce a 
Neuron object file.  The assembler command line contains the name of the 
executable file, then one or more optional switches, and finally the file name 
to assemble.  The most useful assembler switch is the -l switch (the long form 
is - -listing), which tells the assembler to produce a listing. 

Continuing the example from the compiler section above, the following 
command will assemble the myfile.ns file to produce a myfile.nl listing file 
and a myfile.no object file.  Once the object file is produced, you may delete 
the myfile.ns intermediate assembly file to conserve disk space. 

EXAMPLE: 

C:\>NAS -l myfile.ns 
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Neuron Linker 
The Neuron Linker is named nld.exe.  You may run the linker from the 
command prompt to produce a Neuron executable file.  The linker command 
line contains the name of the executable file, then one or more switches, and 
finally the object file name or names to link.  Several switches must be used 
in combination to produce a correct link. 

The -a (or - -appimage) switch should always be used when linking a Neuron 
application program. 

The -t (or - -neurontype) switch should be used to specify the name of the 
Neuron Chip or Smart Transceiver for which the application is being linked. 

EXAMPLE: 

C:\>NLD -a -t3120E2 .... 

When linking for a Neuron 3150 Chip or 3150 Smart Transceiver, the 
external memory map must be specified using a set of switches.  The switches 
specify the beginning or end of the external RAM, EEPROM, and ROM areas.  
Each of these switches is followed by a hex number corresponding to the first 
(last) page number of the area.  A page is 256 bytes, thus the page number is 
the upper two hex digits of the four-digit byte address. 

The -r and -R switches specify the first and last pages of external RAM, 
respectively.  The -e and -E switches specify the first and last pages of 
external EEPROM, respectively.  The -Z switch is used to specify the last 
page of ROM (there is no corresponding switch for the first page of ROM, as 
ROM must start at 0000).  Do not use the switches for any area that has no 
external memory.  Memory mapped I/O areas should not be specified, and 
should be outside the range of any external memory areas which are 
specified. 

For example, a link that has external ROM from 0000 to 7FFF, no external 
EEPROM, external memory-mapped I/O devices from 8000 to 97FF, and 
external RAM from 9800 to 9FFF, uses the switches shown below: 

C:\>nld –Z=7F –r=98 –R=9F .... 

The linker must input a symbol table corresponding to the system image for 
which the application is being linked.  This is done using the -p switch, 
followed by a space, then the pathname of the image's symbol file. 

For example, if linking for a 3150 custom device, the image name is SYS3150.  
Assume that the Neuron C software is installed in the C:\LonWorks 
directory.  This main directory contains a number of subdirectories.  The 
IMAGES subdirectory contains one or more further subdirectories named 
VERnnn, where nnn is a number from 2-255 (no leading zeros). 
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The standard image files are contained in the various VERnnn 
subdirectories.  For example, if the software is installed in C:\LonWorks (the 
default), then the switch that links to firmware version 7 would be the 
following: 

C:\>NLD -p C:\LONWORKS\IMAGES\VER7\SYS3150.SYM .... 

The above switches are the minimum set of required switches for the Neuron 
Linker. 

You can specify an output file different from the default with the -o switch.  
The default output file name is the name (without extension) of the first 
object file in the link command line. 

You can use the -A switch to specify that EEPROM is to be implemented 
using flash memory as an alternative to EEPROM.  The sector size (64 or 
128) of the flash memory device must follow the -A switch.  

You can include libraries in the link by specifying one or more instances of 
the -l switch, with a library name following.  You can link to multiple 
libraries by specifying an -l switch for each library. 

If you are using the NodeBuilder Development Tool, refer to the NodeBuilder 
User's Guide for details about the use of libraries within a NodeBuilder 
project.  The NodeBuilder tool does not support the construction of custom 
libraries except through the stand-alone tools as documented in Appendix B, 
but it does allow for their use.  

See Neuron Librarian, later in this document as well as Appendix B, for more 
about the construction of custom libraries. 

Neuron Exporter 
The Neuron exporter is named nex.exe.  The exporter takes input from the 
compiler and the linker and produces the device file set. The device file set 
contains the device interface files (.xif and .xfb extensions) as well as image 
files (.nri, .nfi, .nxe, .nei, and .apb extensions, as needed). 

The exporter command line contains a number of switches.  Several switches 
must be used in combination to produce a correctly exported set of files. 

Use the -t switch (- -bootid) to specify the boot ID.  It is followed by a decimal 
number 0..65535, that denotes the boot ID in the exported image.  You can 
use any value within this range, but each build should be built with a unique 
boot ID value.  See the Smart Transceivers databooks for more about the 
Neuron Chip and Smart Transceiver reset procedure and the significance of 
the boot ID.  (Note that the –t switch is not required for targets using a 
member of the 3120 Neuron Chip family, but using this switch is highly 
recommended for targets using a member of the 3150 Neuron Chip family.) 
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Use the -C (- -clock) command to specify the Neuron clock rate as an encoded 
value, using "5" for 10 MHz for example.  See the ClockSpeeds field in the 
LonWorksUI.xml file in the LonWorks Types directory (C:\LonWorks\Types 
by default) for a complete listing of clock speed values. 

Use the -c (- -xcvr) command to specify the transceiver type used via the 
transceiver's standard ID.  Use “7” for a TP/FT-10 free topology transceiver, 
for example.  See the std_id field in the StdXcvr.xml file in the LONWORKS 
Types directory (C:\LonWorks\Types by default) for a complete listing of 
standard transceiver IDs. 

Use the -I (- -infolder) and -O (- -outfolder) commands to specify the 
location of the input files (generated by compiler and linker), and the output 
files (as generated by the exporter), respectively.  

Use the -b (- -basename) command to specify the base name of the input and 
output files that are located in the input and output folders. 

Use the - -createXXX switch to enable the generation of a file type, where 
XXX is the file extension of the desired file type (in lower case).  You can 
specify multiple - -createXXX switches to generate multiple file types. 

Here's an example that exports a device file set with base name of MyDevice 
for a 10MHz based device that uses a TP/FT-10 free topology transceiver: 

C:\>NEX -@commands.nex - -bootid=12345 

The commands.nex script file referenced by the command line contains the 
following set of commands: 

; Sample Exporter command file 
--clock=5 
--xcvr=7 
--infolder=MyProject\MyDevice\Development\IM 
--outfolder=MyProject\MyDevice\Development 
--basename=MyDevice 
--createxif=yes 
--createxfb=yes 
--createnei=yes 
--createnxe=yes 
--createapb=yes 
--createnri=yes 

NOTE:  When using the Neuron Exporter stand-alone tool, be sure to use 
two different folders for the -I (--infolder) and -O (--outfolder) commands, 
respectively. 
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Neuron Librarian 
The Neuron librarian is named nlib.exe.  You can use the librarian to create 
and manage libraries, or to add and remove individual object files to and 
from an existing library.  A library consists of pure C functions; you cannot 
include Neuron C code in a library, with the exception of the pure C code 
subset of Neuron C.  The librarian is the only tool discussed in this section of 
the document that is not essential but purely optional; the librarian is not 
required to produce LONWORKS devices. 

You can use the libraries that are created or modified by the librarian within 
the LonBuilder or NodeBuilder project managers, or with the stand-alone 
nld.exe Neuron linker.  For using libraries with the stand-alone linker, see 
the -l and -L commands in the linker's command set.  For using libraries 
within the project manager, refer to the NodeBuilder User's Guide or the 
LonBuilder User's Guide. 

You can run the librarian from the command prompt by specifying the name 
of the command, an optional set of switches, the library name, and an 
optional list of object file names.  

To create a new library, enter the following command line: 

C:\>nlib -c -a library-name object-file [object-file ...] 

To add modules to an existing library, enter the following command line: 

C:\>nlib -a library-name object-file [object-file ...] 

To replace (or update) existing modules in an existing library, enter the 
following command line: 

C:\>nlib -u library-name object-file [object-file ...] 

To report on the contents of an existing library, enter the following command.  
The report will be output on the console, but can be redirected to a file. 

C:\>nlib -r library-name 

To create a summary report, enter the following command line: 

C:\>nlib -s library-name 

For example, the command shown below uses the long form switch and adds 
the zorro.no and garcia.no object files to the mylib.lib library: 

C:\>nlib  - -add mylib.lib zorro.no garcia.no 
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You can use script files to specify inputs to the librarian.  For example, to 
combine the ten object files named “f1.no” through “f10.no” into a mylib.lib 
library, enter the following command line and command file: 

C:\>nlib -c2 -a mylib.lib @mylib.lst 

The contents of the mylib.lst file are as follows: 

 f1.no 
f2.no 
f3.no 
f4.no 
f5.no 
f6.no 
f7.no 
f8.no 
f9.no 
f10.no 

The librarian command line can contain more than one script file, if desired.  
Alternately, the command line in the preceding example could just have 
contained the object file names, or it could have contained a mixture of the 
two. 

You can add a Neuron object file (with a .no extension) from a pure C 
compilation, to a custom library as shown in the above example.  See 
Appendix B, Neuron C Function Libraries, for more information on using 
libraries.  See Neuron C Compiler earlier in this chapter for instructions on 
compiling a pure C file.  See Neuron Assembler earlier in this chapter for 
instructions on assembling the compiled output to a Neuron object file. 
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Appendix B 
Neuron C Function Libraries 

This appendix discusses how to construct and use your own 
function and data libraries for use with the Neuron C tools.  
You can use both the LonBuilder Development Tool and the 
NodeBuilder Development Tool to construct and use function 
libraries. 



Definitions 
Application program A Neuron C source program that has been compiled, 

assembled, and linked with a system firmware image.  
The application program is not a stand-alone 
executable.  It contains external references to the 
system image, and must be loaded into the memory of 
a device that contains the corresponding system 
image. 

Library A file produced by the nlib.exe Neuron librarian, 
containing one or more pure C object files produced by 
the Neuron assembler.  The Neuron Linker may 
extract these object files from the library and combine 
them with a Neuron C application program. 

Pure C The Neuron C language is a set of extensions added to 
a subset of the ANSI Standard C language.  The term 
pure C in this document refers to use of the subset 
language without the Neuron C extensions. 

Stand-alone tool The term stand-alone means that a tool is available 
from the Windows command prompt, so that it can be 
used outside of the project manager.  All of the tools 
described in this appendix can be run in a stand-alone 
manner. 

LonBuilder Support for Libraries 
You can use the LonBuilder Neuron C compiler, assembler, and librarian to 
construct Neuron libraries from pure C source files as described in Appendix 
A, Neuron C Tools Stand-alone Use.  You can then use these libraries to 
construct application programs using the LonBuilder project manager. 

The LonBuilder project manager does not detect when a library needs to be 
rebuilt due to changes in the source files that make up the library.  When you 
construct libraries, you should use standard software engineering techniques 
to manage your software baseline and insure that current versions of your 
software are being used.  Use of a third-party make program can help in 
managing software dependencies. 

The LonBuilder project manager contains full support for linking an 
application program with one or more libraries containing Neuron object code 
and data written in pure C.  The project manager does full dependency 
checking on the use of libraries.  When a library is modified, the project 
manager automatically detects this condition and re-links the affected 
device's application programs. 

Library names are made known to the project manager via an ASCII file 
installed with the LonBuilder software. 
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The LonBuilder system directory contains a number of subdirectories.  One 
subdirectory, named IMAGES, contains the files used by the Neuron linker.  
The IMAGES subdirectory contains two files, DEFAULT.VER and 
STDLIBS.LST.  This directory also contains one or more further 
subdirectories named VERnnn, where nnn is a number from 2-255 (no 
leading zeros). 

The STDLIBS.LST file named above contains the names of libraries used by 
the LonBuilder project manager.  You can modify this file using the 
LonBuilder editor.  There should be one library name per line.  There should 
be no blank lines, and no spaces preceding library names. 

To add a library, modify the STDLIBS.LST file and place it in the 
appropriate VERnnn directory or directories.  You can create different 
versions of the same library for use with different system images.  The 
VERnnn directory corresponding to the system image file is also the place 
the project manager will search for a library when the device is linked.  
However, the library file is not required to exist at link time if none of the 
library code is needed in the application. 

Once you have added the library name to the list file as described above, any 
Neuron C program which references one or more symbols from the library 
will automatically include the appropriate modules from the library at link 
time, regardless of whether the program is being linked for a Neuron 3120xx 
or 3150 Chip or Smart Transceiver. 

The linker will only look for libraries when the object files being linked and 
combined with the system image file used have not already resolved all 
symbols.  Each library in the library list will be examined, in order, for each 
such unresolved symbol.  When a symbol is found in a library, the 
corresponding object file will be extracted from the library, and all objects 
contained in that object file will be added to the link. 

An object file in a library may, in turn, introduce other symbols that need to 
be resolved.  If these new symbols are not already defined, this will cause the 
linker to search all the libraries again for other object files that will resolve 
the new symbol references, and these object files will also be included in the 
link.  The process continues until all symbols included in the link are 
resolved, or until the list of libraries is exhausted. 

The library list consists of the library names in the STDLIBS.LST file.  Your 
custom libraries must not use the names of Echelon standard libraries that 
are already in the STDLIBS.LST file. 

An object file might contain more than one procedure or data item — all such 
components of the object file will be linked in, whether needed or not.  
Therefore, when constructing a library, it is best to place unrelated 
procedures or data items in separate C source files prior to combining them 
into a library. 
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NodeBuilder Support for Libraries 
You can use the NodeBuilder Neuron C compiler, assembler, and librarian to 
construct Neuron libraries from pure C source files as described in Appendix 
A, Neuron C Tools Stand-alone Use.  You can then use libraries within a 
NodeBuilder device template to construct application programs using the 
NodeBuilder project manager. 

The NodeBuilder project manager does not detect when a library needs to be 
rebuilt due to changes in the source files that make up the library.  When you 
construct libraries, you should use standard software engineering techniques 
to manage your software baseline and insure that current versions of your 
software are being used.  Use of a third-party make program can help in 
managing software dependencies. 

The NodeBuilder tool contains full support for linking an application 
program with one or more libraries containing Neuron object code and data 
written in pure C.  The NodeBuilder tool does full dependency checking on 
the use of libraries.  When a library is modified, the NodeBuilder tool 
automatically detects this condition and re-links the device's application 
program when you invoke the build function. 

To make a library known to a NodeBuilder project, add the library to the 
Libraries folder in the Project pane.  Refer to the NodeBuilder User's Guide 
for details about the use of libraries within a NodeBuilder project and device 
template. 

Any Neuron C program that references one or more symbols from the library 
will automatically include the appropriate modules from the library at link 
time. 

The linker only looks at libraries when the object files being linked and 
combined with the system image file used have not already defined all 
symbols needed by the application program.  Each library will be examined, 
in the order in which it has been specified in the linker command line.  The 
NodeBuilder Project Make Utility places the user-defined libraries in order 
ahead of the standard libraries, thereby allowing for symbols from the 
standard libraries to be superseded by symbols defined and exported in the 
user-defined library.  Use this feature with caution since standard symbols 
might be accidentally overwritten.  When a symbol is found in a library, the 
corresponding object file will be extracted from the library, and all objects 
contained in that object file will be added to the link. 

An object file in a library may, in turn, introduce other symbols that are 
undefined.  This will cause the linker to search all the libraries again for 
other object files which will resolve these previously undefined symbol 
references, and these object files will also be included in the link.  The 
process continues until all symbols included in the link are resolved, or until 
the list of libraries is exhausted. 
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Tradeoffs, Advantages, and Disadvantages 
The use of libraries provides you with certain advantages and disadvantages 
as described in the following sections. 

Advantages of a Library 
Use of a library to contain utility routines and constant data tables can 
provide the following advantages: 

1 Use of a library can speed up compilation, since utility routines are not 
recompiled each time. 

2 A library can provide modularity, encapsulation, and reuse — software 
engineering techniques which can be used to increase quality and decrease 
development costs. 

3 The library can contain several related constant tables and procedures.  
When organized properly, only the pieces used by a given application will be 
linked into the application.  Unused pieces will not consume any code space 
in the device's application. 

4 A library can contain data declarations for objects in any part of a Neuron 
Chip's or Smart Transceiver's memory space, including near RAM and 
EEPROM areas.  Libraries also can contain initialized RAM variables.  The 
initialization rules are identical to Neuron C application programs. 

Disadvantages of a Library 
Use of a library has the following disadvantages: 

1 The LonBuilder and NodeBuilder tools offer no way to debug the contents of 
a library.  (However, the contents of data objects in a library can be examined 
from the Neuron C debugger, provided the data is declared as extern in the 
application program.)  Procedures should be fully debugged prior to placing 
them in a library. 

2 The LonBuilder and NodeBuilder project managers cannot be used to 
manage the dependencies of a library or its component files.  Keeping the 
library up-to-date is left entirely up to the user. 

3 A library can only contain pure C functions and data objects.  It may not 
contain or reference Neuron C extensions, such as network variables, I/O 
objects, timers, or when statements.  The functions documented in the 
Neuron C Reference Guide can all be used from a library module as pure C 
functions except the functions pertaining to network variables, messages, or 
input/output.  Similar use restrictions apply to the Neuron C built-in 
variables.  See Performing Neuron C Functions from Libraries later in this 
chapter for techniques that you can use to workaround this disadvantage. 

Neuron C Programmer's Guide B-5 



4 Any objects from a library that are linked into an application become part of 
the application.  When the application changes, the library objects are linked 
into it again, and their locations may change as a result.  In particular, this 
means that the objects from a library must be re-loaded into the device's 
memory each time the application is re-linked.  This may be done over the 
network or by programming some non-volatile memory device, as 
appropriate.  This disadvantage is presented as a contrast to Neuron C 
Custom system images, see Appendix C, Neuron C Custom System Images for 
more information on this topic. 

 

Library Construction Using the Librarian 
You can construct libraries using the stand-alone versions of the Neuron C 
tools, as documented in Appendix A, Neuron C Tools Stand-alone Use.  Use 
the stand-alone compiler and assembler to compile and assemble the pure C 
source files that make up the library.  This compilation and assembly process 
produces a Neuron object file (.no extension) corresponding to each C source 
file.  Then, use the nlib.exe Neuron librarian to combine the Neuron object 
files into a library that can be used by the Neuron linker. 

Following are additional guidelines for constructing libraries: 

1 If any symbol in a library module (corresponding to a pure C file) is 
referenced, all of that module will be included in a link.  Therefore, you 
should separate unrelated functions to minimize program space use when an 
application program uses components of the library. 

 For example, if you were building a string library containing strcpy( ), 
strcat( ), and strlen( ) functions, you could minimize code space by placing 
each function in a separate file, since any given application program might 
only want a subset of the functions to be linked in.  If all three functions were 
placed in a single file, all of them would be linked in any time any one of 
them was used. 

2 Use the static keyword to declare functions or data items within a library 
module that are not to be exposed to the application program or other library 
modules.  This will effectively hide that symbol. 

3 Construct include files containing extern function prototypes and extern 
data declarations for the users of the library to include in their programs.  
You must use the extern keyword for each declaration to allow the compiler 
to establish the correct calling sequence and use the appropriate assembler 
commands to permit linking to the data object or function contained in the 
library. 

 Use these include files in the library source files which define these functions 
and data objects as well.  This permits the Neuron C compiler to insure that 
your extern declarations and prototypes match your actual declarations and 
function definitions.  (You can have a given extern declaration followed by 
the actual declaration, as long as the declarations match.)   
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 This technique can help prevent calling a function with incorrect parameters 
(due to an incorrect extern prototype, for example), which may result in an 
overwritten data stack and thus may result in a device which repeatedly 
experiences a watchdog timer reset, overwritten variables, or similar 
software failures. 

4 The LonBuilder project manager always instructs the linker to use all the 
libraries in the STDLIBS.LST file.  The NodeBuilder Project Make Utility 
also advises the linker on all libraries listed in the STDLIBS.LST file, but 
precedes this list by the list of user-defined libraries that are specified 
through the NodeBuilder device template.  Therefore, to reduce the chances 
of a symbol conflict between two or more libraries, use a naming convention 
to establish unique names for library objects.  Use the nlib -r command 
option (as documented in Appendix A) to generate a report listing the 
symbols that are defined in each existing library. 

 

Performing Neuron C Functions from Libraries 
The pure C code which is placed in a library cannot contain references to 
network variables, messages, I/O, timers, or other Neuron C objects.  
However, the library may be designed mainly for the purpose of doing 
Neuron C related features such as standard I/O device management, or 
message construction, or timer manipulation. 

You can access Neuron C objects from a library function by making it the 
responsibility of the application program to actually perform the Neuron C 
operation in an application function.  The library can then call the 
application function in the Neuron C application program, and effectively 
perform Neuron C operations. 

For example, consider a library that contains routines for management of a 
standard LCD display device.  This library would contain various routines for 
formatting information and for managing the display in response to various 
commands from the application program.  It is desirable to have the library 
code automatically perform the I/O operations to update the device.  
However, due to the pure C restriction the required Neuron C code cannot be 
implemented as part of the library. 

For the I/O operations on the display, assume that the display has a 
Neurowire device interface.  The library could be accompanied with an 
include file for the benefit of whatever Neuron C application program uses it.  
The include file can contain the Neurowire I/O declarations and the function 
definitions necessary to support the display's I/O.  Then, the library can 
access the functions as necessary without further intervention from the 
application program, and without the application program being responsible 
for passing some special parameters each time it wants to interact with the 
library display management software. 
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As this discussion shows, it is possible to create utility functions that depend 
on Neuron C features.  By dividing the Neuron C code from the pure C code, 
and then placing the Neuron C code in the include file for the utility, the 
utility can effectively function as if it were an encapsulated utility. 
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Appendix C 
Neuron C 

Custom System Images 

This appendix discusses how to build and use your own custom 
system images for use with the Neuron C tools.  You can use 
both the LonBuilder Development Tool and the NodeBuilder 
Development Tool to construct and use custom system images. 



Definitions 
Application program A Neuron C source program that has been compiled, 

assembled, and linked with a system image.  The 
application program is not a stand-alone executable.  
It contains external references to the system image, 
and must be loaded into the memory of a device that 
contains the corresponding firmware image. 

Custom system image A set of files produced by combining a standard 
system image (or another custom system image) with 
one or more pure C object files produced by the 
Neuron assembler.  The extra code and data objects in 
the custom system image are additional objects that 
can be referenced by any application program that is 
linked with the custom system image.  You can use 
the Neuron linker to construct a custom system 
image. 

Library A file containing one or more pure C object files 
produced by the Neuron assembler.  The Neuron 
linker may extract these object files from the library 
and combine them with a Neuron C application 
program. 

Pure C The Neuron C language is a set of extensions added to 
a subset of the ANSI Standard C language.  The term 
pure C in this document refers to the subset language 
without the Neuron C extensions. 

Stand-alone tool The term stand-alone means that a tool is available 
from the Windows command prompt, so that it can be 
used outside of the project manager.  All of the tools 
described in this appendix can be run in a stand-alone 
manner as explained in Appendix A. 

Standard system image  
 A standard system image is a set of Neuron firmware 

files included in the LonBuilder and NodeBuilder 
software.  The currently defined standard system 
images are listed below: 

BIN3120 - Firmware incorporated into a Neuron 3120 Chip. 
B3120E1 - Firmware incorporated into a Neuron 3120E1 Chip. 
B3120E2 - Firmware incorporated into a Neuron 3120E2 Chip. 
B3120E3 - Firmware incorporated into a Neuron 3120E3 Chip. 
B3120E4 - Firmware incorporated into a Neuron 3120E4 Chip  
   or a FT 3120 Smart Transceiver. 
B3120E4X - Firmware incorporated into a PL 3120 Smart Transceiver. 
B3120E5 - Firmware incorporated into a Neuron 3120E5 Chip. 
B3120A20 - Firmware incorporated into a Neuron 3120A20 Chip. 
E3120E1 - For emulator only - emulates a Neuron 3120E1 Chip. 
E3120E2 - For emulator only - emulates a Neuron 3120E2 Chip. 
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E3120E3 - For emulator only - emulates a Neuron 3120E3 Chip. 
 

E3120E4 - For emulator only - emulates a Neuron 3120E4 Chip 
   or a FT 3120 Smart Transceiver. 
E3120E5 - For emulator only - emulates a Neuron 3120E5 Chip. 
E3120A20 - For emulator only - emulates a Neuron 3120A20 Chip. 
EMU3120 - For emulator only - emulates a Neuron 3120 Chip. 
EMU3150 - For emulator only - emulates a Neuron 3150 Chip  
   and FT 3150 Smart Transceiver. 
EMU3150A - For emulator only – emulates a PL 3150 Smart Transceiver. 
SYS3150 - For all devices using a Neuron 3150 Chip or FT 3150  
   Smart Transceiver. 
SYS3150A - For all devices using a PL 3150 Smart Transceiver. 

System image A system image is a set of files that contain the 
Neuron firmware needed to operate a Neuron Chip or 
Smart Transceiver and implement the LonTalk 
protocol.  The software in the image is a pre-linked 
executable.  It must not contain any external 
references. 

LonBuilder Use of Custom System Images 
You can use the LonBuilder Neuron C compiler, assembler, and linker to 
construct a custom system image as described in Constructing a Custom 
System Image later in this chapter.  You can then use this custom system 
image to construct application programs using the LonBuilder project 
manager. 

The LonBuilder project manager does not detect when a custom system 
image needs to be rebuilt due to changes in the source files that make up the 
custom system image.  When you construct custom system images, you 
should use standard software engineering techniques to manage your 
software baseline and insure that current versions of your software are being 
used.  Use of a third-party make program can help in managing software 
dependencies. 

The LonBuilder project manager handles a custom system image in much the 
same way as it handles the standard system images.  The project manager 
does full dependency checking on the use of system images.  When you 
modify a system image, the project manager automatically detects this 
condition and re-links the affected devices. 

When the project manager builds a device, it examines the associated 
hardware properties specification for information on the system image used 
in a device.  The Target HW entry gives the name of the hardware 
specification for a device.  The hardware window, in turn, contains a HW 
Prop. Name entry that gives the name of the hardware properties 
specification used by this (and perhaps other) hardware specifications. 

The hardware properties window contains two entries used by the project 
manager in determining which system image the device uses.  These are 
labeled NEURON Chip Firmware and Firmware Version. 
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If NEURON Chip Firmware contains a string, that string is used as the 
name of the system image (without an extension).  Thus you can specify a 
custom system image file.  If the field is blank, the project manager 
calculates the appropriate standard system image name as described in 
Definitions above. 

The Firmware Version entry permits the specification of a version number 
for the system image.  You may specify a version number whether or not a 
system image name is specified.  If Firmware Version contains a zero, the 
project manager calculates the version number using the default values in 
the Default.ver file in the Images directory.  Otherwise, the version number 
specified in Firmware Version will be used. 

The Default.ver file contains pairs of firmware image file names and 
numbers.  The project manager uses this list to choose the default number 
corresponding to the image name.  If an image name does not have a 
corresponding record in the file, the line with the '*' instead of an image 
name specifies the default version number.  See Using Multiple Firmware 
Versions in Chapter 7 of the LonBuilder User's Guide for more information. 

The project manager directs the Neuron linker to use the system image name 
and version as determined by the rules above.  The image files must exist in 
the Vernnn subdirectory of the Images subdirectory, where nnn corresponds 
to the image version number. 

Following are guidelines for using custom system images with the 
LonBuilder tool: 

1 The LonBuilder hardware-management software does not use dependency 
checking logic for the firmware images.  Thus, the Install status will not be 
set in To-Do on the Navigator Target HW window when the system image 
files are modified.  Likewise, the project manager does not check whether the 
system image installed on the hardware is correct.  After modifying any 
firmware image files, you must install the appropriate devices manually — an 
Automatic Install will not suffice (unless you cycle the power on your 
LonBuilder devices).  It is safest to do an Install All, or to manually install all 
affected devices.  Failure to perform an Install for emulators (or to re-
program custom device ROMs) will potentially result in inconsistencies 
which will cause the device's program to fail in odd ways—often with 
“Attempt to write to protected memory” or “Watchdog Timer timeout” or 
other diagnostic failures.  However, the project manager status will show 
Build in To-Do on the Target HW window when the corresponding system 
image files are modified. 

2 You must keep the set of files that comprise a system image together.  When 
updating system image files, insure that all files in the set are updated 
together.  Failure to do so will result in errors similar to those previously 
mentioned.  The set of files contains the following: 
 
image.nx Loadable image in Intel hex format 
image.nxb Binary version of image.nx 
image.sym Symbol table file 
image.ib Emulator image bitmap (LonBuilder emulators only) 
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3 The LonBuilder Neuron Emulator hardware uses a different set of system 
image files than custom devices.  If you want to use custom system images, it 
is best to have two concurrent sets - one for emulators, and one for custom 
devices. 

 

NodeBuilder Use of Custom System Images 
You can use the NodeBuilder Neuron C compiler, assembler, and librarian to 
construct a custom system image as described in Constructing a Custom 
System Image later in this chapter.  You can then use this custom system 
image within a NodeBuilder device template to construct application 
programs using the NodeBuilder project manager. 

The NodeBuilder project manager does not detect when a custom system 
image needs to be rebuilt due to changes in the source files that make up the 
custom system image.  When you construct custom system images, you 
should use standard software engineering techniques to manage your 
software baseline and insure that current versions of your software are being 
used.  Use of a third-party make program can help in managing software 
dependencies. 

The NodeBuilder project manager can use a custom system image in much 
the same way as it handles the standard system images.  The NodeBuilder 
project manager does full dependency checking on the use of custom system 
images.  When you modify a custom system image, the NodeBuilder project 
manager automatically detects this condition and re-links the program for 
the device when you invoke the build function. 

See the NodeBuilder User's Guide and the NodeBuilder Help file for details 
about choosing the firmware image to be used for a device target, and for 
details about using custom firmware images. 

Following are guidelines for using custom system images with the 
NodeBuilder tool: 

1 Re-program any custom device PROMs using a custom system image when 
you generate a new version of the custom system image.  If you do not re-
program the PROMs, inconsistencies between the PROM version of the 
system image and the NodeBuilder version may cause the device's program 
to fail in odd ways—often with a watchdog timer timeout or other diagnostic 
failure. 

2 You must keep the set of files that comprise a system image together.  For 
example, keep all the system image files together when you copy them to the 
appropriate Vernnn directory.  When updating system image files, insure 
that all files in the set are updated together.  Failure to do so will result in 
errors similar to those mentioned above.  The set of files consists of the 
following: 
 
image.nx Loadable image in Intel hex format 
image.nxb Binary version of image.nx 
image.sym Symbol table file 
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Tradeoffs, Advantages, and Disadvantages 
The use of custom system images provides you with certain advantages in 
exchange for some other disadvantages.  Sometimes, it is more appropriate to 
use a library, and at other times it is more appropriate to use a custom 
system image.  These issues are discussed in this section, and also in 
Appendix B, Neuron C Function Libraries. 

Advantages of a Custom System Image 
Use of a custom system image to contain utility routines and constant data 
tables can provide the following advantages: 

1 Use of a custom system image can speed up compilation, since utility 
routines are not recompiled each time. 

2 A custom system image can provide encapsulation and reuse—software 
engineering techniques which can be used to increase quality and decrease 
development time. 

3 The custom system image can be constructed once and can be used across 
many application programs.  This can be particularly helpful in the scenario 
where the custom system image is programmed into a ROM or flash memory 
for a Neuron 3150 Chip or a 3150 Smart Transceiver, and one of several 
different application programs which use the custom system image are then 
directed into EEPROM or flash memory via network load at a later date.  
This scenario can be used by Neuron C field compiler users who want to 
deliver devices with a custom system image that includes support for the 
application I/O hardware.  This support can be provided as standard 
functions that can be called by end-user application code. 

Disadvantages of a Custom System Image 
Use of a custom system image has the following disadvantages: 

1 The LonBuilder and NodeBuilder tools offer no way to debug the contents of 
a system image.  (However, the contents of data objects in a system image 
can be examined from the Neuron C debugger, provided the data is declared 
as extern in the application program.)  Procedures should be fully debugged 
prior to placing them in a custom system image.  Debugger function is not 
affected for application programs that use custom system images. 

2 The LonBuilder and NodeBuilder project managers cannot be used to 
manage the dependencies of a custom system image on its component files.  
Keeping the custom system image up-to-date is left entirely up to the user. 

3 A custom system image can only contain pure C functions and data objects.  
It may not contain Neuron C extensions, such as network variables, I/O 
objects, timers, when statements, etc.  The functions documented in the 
Neuron C Reference Guide can all be used as pure C functions except the 
functions pertaining to network variables, messages, or input/output.  
Similar use restrictions apply to the Neuron C built-in variables. 
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4 A custom system image cannot be used for a Neuron 3120xx Chip or 3120 
Smart Transceiver. 

5 A custom system image may contain many utility routines and data tables, 
not all of which are useful for a given application program, thus this may 
waste memory space. 

6 A custom system image may not contain references to any unresolved 
symbols.  All procedures and data objects in the custom system image must 
refer to other procedures and objects in that same image, or to procedures 
and objects that make up the underlying base image.  (The base image is 
typically one of the standard system images, although it may be another 
custom system image that is based on a standard system image.  Custom 
system images can be built in layers upon other custom system images.) 

7 A custom system image can make only limited use of a Neuron Chip's RAM 
memory, and it cannot use EEPROM memory.  Functions and constant data 
objects can only be placed in ROM or flash memory.  Only a limited amount 
of far RAM is available - a total of 64 bytes (for all layers of a custom system 
image).  No near RAM or EEPROM, nor any far EEPROM can be declared 
or used directly.  A custom system image can contain initialized RAM 
variables.  The initialization rules are identical to those of Neuron C 
application programs. 

8 The process of constructing a system image is complex.  There are several 
details to keep straight, including keeping all the files up to date, and 
keeping the image in the devices in sync with the image version files.  
Because the LonBuilder and NodeBuilder project managers do not assist in 
this, the probability of making a mistake in the process is increased, and a 
mistake in the custom system image process is not always self-evident. 

Constructing a Custom System Image  
You can construct a custom system image using the stand-alone versions of 
the Neuron C compiler, Neuron assembler, and Neuron linker tools, as 
documented in Appendix A, Neuron C Tools Stand-alone Use.  Use the stand-
alone compiler and assembler to compile and assemble the pure C source files 
that make up the custom portion of the system image.  This compilation and 
assembly process produces a Neuron Object file corresponding to each pure C 
source file.  Use the nld.exe Neuron linker to combine the Neuron object files 
into a custom system image that can be used as described above. 

You can use a standard system image as the base for a new custom system 
image, or you can use another custom system image that was constructed 
previously. 

To construct a custom system image, follow these steps. 

1 Run the stand-alone Neuron linker as described in Appendix A.  In addition 
to the linker switches described in Appendix A, several other switches, 
specific to custom system image creation, are required as follows. 

• Specify the -c switch.  This must be the first switch that you specify 
to the linker.  There are no arguments associated with the -c switch. 
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• Specify the base system image via the -b switch.  The -b switch must 
be followed by the filename or pathname of the base image (without a 
filename extension).  If you are building a custom system image for a 
LonBuilder emulator, start with the Emu3150 standard system 
image, or a custom system image based on the Emu3150 image.  If 
you are not building a custom system image for a LonBuilder 
emulator, start with the Sys3150 system image or a custom system 
image based on the Sys3150 system image.  For example, to use the 
standard version 13 system image for Neuron 3150 Chip-based 
custom devices, the switch would be as follows: 

-b \LonWorks\Images\Ver13\SYS3150 

• A custom system image can only use ROM and a limited amount of 
far onchip RAM.  Thus, the only memory map switch that is needed 
for custom system image construction is the -Z switch.  When the 
linker is constructing a custom system image, the -Z switch specifies 
the end of the reserved ROM for the custom system image.  The base 
image already reserves some amount of ROM from address 0x0000 to 
some value x (for a standard system image, x is 0x3FFF). 

The -Z switch followed by some value yp reserves the ROM area from 
x+1 to y for the custom system image being created.  Thus, yp is the 
page number corresponding to the address y.  For example, to reserve 
from 0x4000 to 0x4FFF for the custom system image being 
constructed, the value for the -Z switch would be "4F."  The reserved 
area must at least be large enough to contain the object files being 
included.  The minimum value for the -Z switch is "40," which would 
be just one page (256 bytes) additional ROM space beyond the 
standard system image.  This custom system image would end at 
0x40FF. 

Any additional unused space in the new reserved area will be kept for 
later use by future versions of this particular custom system image.  
The new reserved amount of ROM will automatically be made known 
to the linker when it uses the custom system image in linking a 
Neuron C application program at some later time, and the 
application program will be permitted to use only any remaining 
unreserved ROM. 

• Specify the  -V switch to assign a version number to the custom 
system image, within the range 128..255.  Follow the -V switch with 
the desired version number, in decimal.  Move custom system image 
files to the VERnnn subdirectory in the IMAGES directory that 
corresponds to the version number chosen.  If the appropriate 
VERnnn directory does not exist, create one. 
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• If you are constructing a custom system image for an emulator, 
specify the -i switch.  This tells the linker to look for an additional file 
(with a .ib extension) in the input base image, and to output an 
additional file (again, with a .ib extension) in the output custom 
system image.  This additional file is used by the emulator to assist 
in breakpoint management, error traps, etc. 

 

The following example creates a custom system image from the SYS3150 
standard system image and the object files named in the Objs.lst script file.  
The output files are directed (with the "-o" switch) to files named 
"myimage.*." 

nld –c –b c:\LonWorks\Images\Ver13\sys3150 –t 3150 –Z 4F –V 128 –o myimage -@objs.lst 

After using the linker as described above, the following custom system image 
files will be created: 

• The myimage.sym file contains a list of the image's exported symbols 
for use when linking an application program to the image. 

• The myimage.nx file is an Intel-hex-format file containing the binary 
linked system image. 

• The myimage.map file (if requested) is a link map and report for the 
image. 

2 Convert the text system image file to a binary image.  To do this, download 
the nxcvt.exe Image Conversion Utility from the Echelon developer's toolbox 
at www.echelon.com/toolbox and use the utility to convert the file.  For 
example, to convert the myimage.nx file from the example above into a 
binary myimage.nxb format file, use the following command line shown 
below, supplying the name of the image (without a filename extension). 

nxcvt myimage 

3 Move the system image files into the appropriate Vernnn directory 
corresponding to the version number you supplied in step 1. 

Following are additional guidelines for constructing custom system images: 

1 You can use libraries when constructing custom system images, but only to 
the extent that they are referenced.  The complete library contents are not 
automatically transferred into the custom system image.  Any global 
variables defined in the library must be declared as far (RAM) variables in 
order to be used in constructing a custom system image. 

2 You cannot program PROMs directly with a custom system image.  To 
program a PROM, you must build a ROM image file that is based on the 
custom system image using the LonBuilder or NodeBuilder tool.  You can use 
an empty application to build the image if you just want to load the custom 
system image into PROM. 

3 Use the static keyword to declare functions or data items that are not to be 
exposed to the application program.  This will effectively hide that symbol. 
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4 Construct include files containing extern function prototypes and extern 
data declarations for the users of the custom system image to include in their 
programs.  You must use the extern keyword for each declaration to allow 
the compiler to establish the correct calling sequence and use the appropriate 
assembler commands to permit linking to the data object or function 
contained in the custom system image. 

 Then, include these include files in the custom system image source files 
which define these functions and data objects as well.  This permits the 
Neuron C compiler to insure that your extern declarations and prototypes 
match your actual declarations and function definitions.  (You can have a 
given extern declaration followed by the actual declaration, as long as the 
declarations match.)  This technique can help prevent calling a function with 
incorrect parameters (due to an incorrect extern prototype, for example), 
which may result in an overwritten data stack and thus a device which 
repeatedly experiences a watchdog timer reset, overwritten variables, or 
similar software failures. 

5 You can use a maximum of 64 bytes of RAM within a custom system image.  
If one custom system image is used as a base for another, this limit is 
cumulative, in other words, the two (or more) images cannot use more than 
64 bytes in total.  Any unused RAM from this 64-byte area will be made 
available to the application program when it is linked.  Custom system 
images can only use far RAM variables.  Include the far keyword in any 
extern declarations of these variables (see point # 4, above). 

6 You cannot access EEPROM variables from a custom system image. 

 

Providing a Large RAM Space 
The total amount of RAM space available to a custom system image at link 
time is 64 bytes.  However, if a custom system image needs a larger amount 
of RAM for certain functions, a large RAM block can be declared by an 
application program that uses the custom system image, and the application 
program can make this known to the custom system image at reset time.  
This functionality can be placed inside a reset routine provided in an include 
file associated with the custom image.  An application using the custom 
image would then be expected to include the include file, and call the reset 
routine from the when(reset) task. 

A pointer to this RAM block can be passed as a parameter to the appropriate 
custom system image functions each time they are called.  For a more 
efficient implementation, the custom system image can use 2 bytes of its 
RAM space to declare a global pointer to such a block of memory, and 
initialize the pointer to NULL.  When the application program resets, it has 
the responsibility of correctly setting this global pointer variable to point to 
the block of memory, or at least the responsibility of calling an initialization 
function (providing this pointer). 
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Performing Neuron C Functions 
The pure C code that is placed in a custom system image cannot contain 
references to network variables, messages, I/O objects, timers, or other 
Neuron C objects.  However, the custom system image may be designed 
mainly for the purpose of doing Neuron C related features such as standard 
I/O device management, message construction, or timer manipulation. 

You can access Neuron C objects from a custom system image function by 
making it the responsibility of the application program to actually perform 
the Neuron C operation in a function.  The custom system image can declare 
a RAM variable that the application sets to a pointer to the application 
function.  The custom system image can then call the function in the Neuron 
C application program, and effectively perform Neuron C operations. 

For example, consider a custom system image that contains routines for 
management of a standard LCD display device.  This custom system image 
would contain various routines for formatting information and for managing 
the display in response to various commands from the application program.  
It is desirable to have the custom system image code automatically perform 
the I/O operations to update the device.  It may also be necessary for such a 
custom system image to have access to a large buffer in RAM.  However, due 
to the pure C restriction and the custom system image RAM memory 
restriction, neither of these requirements can be implemented solely within 
the custom system image.  The RAM buffer can be provided by the 
application as discussed above. 

As for the I/O operations on the display, assume that the display has a 
Neurowire device interface.  The custom system image could be accompanied 
with an include file for the benefit of whatever Neuron C application program 
uses it.  The include file can contain the Neurowire I/O declarations and the 
function definitions necessary to support the display's I/O.  It can even 
contain a routine to be called from the application's when(reset) task that 
will initialize the appropriate function pointers and memory buffer pointers.  
Then, the custom system image can access the functions and memory buffers 
as necessary without further intervention from the application program, and 
without the application program being responsible for passing some special 
parameters each time it wants to interact with the custom system image 
display management software. 

This indirection via function pointers is necessary for a custom system image, 
since a custom system image cannot contain any unresolved external symbols 
when the linker creates it.  However, a library of display management 
software could just access such I/O functions as discussed above directly by 
name, without having to resort to function pointers.
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application buffers. See buffers 
application errors 

logging, 7-18 
on a Neuron emulator, 7-18 

application messages, 1-12, 6-4 
response, 6-9 

application program, B-2 
definition, C-2 

application_restart( ) function, 8-32 
effects of, 7-15 

I-2 Index 



 

A 
arrays 

maximum size, 1-20 
assembler, B-2 

command line switches, A-7 
definition, C-2 

asynchronous event processing, 6-24 
auth keyword, 3-30 
authenticated keyword, 3-30, 6-7 
authentication, 3-29 

and buffer use, 8-8 
and system response time, 3-29 
how it works, 3-31 
key, 3-30 
using, 3-30 

auto storage class, 1-6 

B 
backspace character, 1-17 
baud setting for I/O object, 2-26 
binary constants, 1-14 
bind_info keyword, 1-11, 3-9, 3-30, 6-7, 6-18, 8-29 
binder 

network addressing, 3-12 
bit I/O object, 2-26 

used for chip select, 2-44 
bit order, 1-21 
bit rate setting for I/O object, 2-26 
bitfields, 8-33 

allocation, 1-21 
in unions, 1-13 
signed, 1-21, 8-33 

bitshift I/O object, 2-22, 2-45 
bitwise operations, 1-19 
block transfers of data, 6-10 
blocked queue. See events, blocking queue 
boolean, 3-10 
boot ID, A-2 
buffers, 8-5 

allocation, 6-33 
compiler directives for, 8-8 
explicit, 6-33 
guidelines, 8-5 
incoming application, 8-10 
incoming network, 8-9 
outgoing application, 8-8 
outgoing network, 8-9 
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B 
buffers (cont) 

application 
components of, 8-6 
size, 8-7 

application output buffers freed by completion events, 7-4 
components of, 8-6 
counts, 8-8 
effect of insufficient application output buffers, 6-23 
freed before sleep, 7-14 
freeing of, 6-13 
network 

components of, 8-6 
determining the number of, 8-8 
size, 8-7 

not available, 6-23 
number of, 8-8 
sizes 

choosing appropriate, 8-6 
effect of explicit addressing, 6-18 
errors, 8-7 
table of, 8-11 

timeout while waiting for a buffer, 6-22 
transmit transaction, 8-13 

built-in type, 3-10 
bypass mode, 6-13, 6-23, 7-5 

going offline, 7-10 
byte I/O object, 2-26 
byte operation functions, 1-14 
byte order, 1-18 

C 
C language 

macros, 1-13 
pure. See pure C 
short-circuit evaluation of expressions, 2-9 

carriage return character, 1-17 
case labels 

maximum number of, 1-22 
case of identifier 

significance, 1-16 
cast operation, 1-19, 1-20, 3-27, 3-37, 8-25 
changeable_type keyword, 3-7, 3-33 
char default data type, 1-18 
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C 
character 

accent-grave, 1-17 
at-sign, 1-17 
backspace, 1-17 
carriage return, 1-17 
ctrl-Z, 1-17 
end-of-line, 1-17 
EOT, 1-17 
escape sequences, 1-17 
multibyte, 1-17 

character set, 1-16 
clear_status( ) function, 7-18 
clock setting for I/O object, 2-26 
code keyword, 6-6, 6-14 
codegen cp_family_space_optimization pragma, 8-29 
codegen put_cp_template_file_offchip pragma, 8-22 
codegen put_cp_value_files pragma, 8-22 
comm_ignore option, 7-12, 7-13 
command files, A-4, A-5 
command switches, A-3 
command-based messaging systems, 1-11 
comment style, 1-14 
compiler behavior 

implementation-defined, 1-15 
completion events, 7-4 

comprehensive testing, 3-20 
partial testing, 3-20 
processing of 

asynchronous, 6-24 
direct, 6-24 
examples, 6-22 
for messages, 6-21 
for network variables, 3-19 

tradeoffs, 3-21 
unqualified, 6-21 

comprehensive completion event testing. See completion events 
concatenated string constant, 3-7 
conditional compilation, A-7 
config 

keyword, 4-6, 8-17, 8-18, 8-19 
network variable, 3-8 
storage class, 1-6 

config keyword used with authentication, 3-30 
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C 
config_prop 

keyword, 1-6, 3-8, 4-6, 8-17, 8-18, 8-27 
network variable, 3-8 

configuration properties, 1-10, 4-2 
accessing, 4-11, 5-13 
applying to arrays, 4-14 
declaration syntax, 4-3 
definition, 1-2 
families, 4-3 
files, 8-17 

placement in memory, 8-18 
in files, 4-2 
initialization of, 4-16 
initialization rules, 4-4 
instantiation of, 4-7, 5-9 
pointers to, 1-13 
sharing of, 4-18, 5-10 
structures, 1-13 
template file, 4-2, 8-27 
type-inheriting, 4-17, 4-20 
value files, 4-2, 8-27 

connecting network variables, 3-12 
const 

keyword, 3-26 
network variable, 3-7 
storage class, 1-6 
variables, 1-7 

constants 
binary, 1-4 
hexadecimal, 1-4 
integer, 1-4 
octal, 1-4 
pointers to, 1-13 

constructing a message, 6-5 
context expression, 4-11, 5-13 

for device, 4-13 
conversion 

cast, 1-20 
integer, 1-18 
pointer, 1-20 

cp keyword. See config_prop keyword 
cp_family keyword, 1-6, 4-3, 8-17, 8-18, 8-22, 8-27 
cp_info keyword, 4-4 
CPT, definition, 1-3 
create a new library, A-11 
critical sections, 6-27, 6-33, 6-34 

boundary, 3-10, 6-13, 6-23, 6-28, 7-6 
definition of, 3-5 
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C 
ctrl-Z character, 1-17 
custom functional profiles, 1-10 
custom system images 

advantages of, C-6 
construction of, C-7 
definition, C-2 
disadvantages of, C-6 
providing a large RAM space, C-10 

D 
data keyword, 6-6, 6-14 
declarations, 1-8 

order of, 8-35 
declarators 

limits on, 1-22 
declaring I/O objects, 2-21 

guidelines, 2-22 
DEFAULT.VER, B-3 
delay( ) function, 2-49 
dest_addr keyword, 6-7 
device 

bringing online, 7-8 
commissioning, 2-8 
context for properties. See context expression, for device 
forced sleep, 7-14 
initialization 

and the wink event, 7-10 
interface, 1-2, 1-10, 5-2, 5-6 
power down, 8-20 
reset, 1-7, 6-23, 7-8, 7-15, 8-20 

causes of, 7-7 
disadvantages of, 7-15 
effect of, 2-8 
time required, 7-15 

device_properties keyword, 4-8 
direct event processing, 2-6, 6-13, 6-24, 7-10 
direct I/O objects, 2-17, 2-23 
direction setting for I/O object, 2-26 
director keyword, 5-4, 5-6, 5-15 
disable_mult_module_init pragma, 8-38 
disable_snvt_si pragma, 1-11, 3-11, 8-30 
disadvantages of a library, B-5 
distributed systems, 1-9 
domain table, 8-2, 8-4 

memory use, 8-27 
dualslope I/O object, 2-22, 2-26, 2-30 
duplicate keyword, 6-15 
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E 
edgedivide I/O object, 2-33 
edgelog I/O object, 2-22 
EECODE memory area, 8-17 
EEFAR memory area, 8-17 
EENEAR memory area, 8-17 
EEPROM, 3-7, 8-16 

erase/write cycle, 3-8 
on-chip, address table, 8-2 
on-chip, alias table, 8-3 
on-chip, domain table, 8-4 
on-chip, reallocating, 8-2 
pointers to, 8-25 
use of, 8-27 
variables 

pointers to, 1-13 
write timer, 2-45, 2-50 

eeprom keyword, 1-6, 1-7, 3-8, 8-17, 8-18, 8-19 
eeprom_memcpy( ) function, 1-13, 8-25 
efficiency of code, 8-34 
enable_io_pullups pragma, 2-16 
enable_sd_nv_names pragma, 1-11, 3-11, 8-30 
end-of-file marker, 1-17 
end-of-line character, 1-17 
enum variable type, 8-32 

predefined, 1-5 
enumeration type, 1-21 
EOT character, 1-17 
error diagnostic from compiler, 1-15 
error handling, 7-15 
error log, size, 7-18 
error status, access, 7-18 
error_log( ) function, 3-39, 7-18 
event-driven scheduling, 1-3 
events, 2-4, 2-7 

blocking queue, 2-7, 2-9, 6-13, 6-15, 7-4 
expression, 2-9 
latency, 2-46 
posting of, 2-46 
predefined, 2-4 
processing of, 2-7 

completion events, 2-7 
network events, 2-7 
queue, 2-7 
responses, 2-7 
when clause, 2-7 
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E 
events (cont) 

scheduler, 2-2 
unqualified, 2-14, 6-19 
unsolicited, 2-8 
user-defined, 2-4, 2-9 

expired timers. See timers 
explicit addresses, 8-12 

for network variable updates, 6-18 
explicit addressing, 8-7, 8-13 
explicit messages, 6-4, 8-6 

events, 8-12 
functions, 8-12 
receiving 

implementation caveat, 6-13 
exporter 

command line switches, A-9 
exporter command line switches, A-9 
extended arithmetic, 1-5 
extern keyword, 1-5, 1-6, 1-16, C-10 
external_name keyword, 1-13, 1-16, 5-4, 5-7 
external_resource_name keyword, 1-16, 5-4, 5-7 

F 
far keyword, 1-7, 8-19, 8-20 
fastaccess keyword, 8-35 
fatal error diagnostic from compiler, 1-15 
fb_properties keyword, 5-8 
fblock keyword, 1-16, 5-4 
fblock_director( ) function, 5-18 
fblock_index_map variable, 5-18 
file transfer protocol, 6-2 
firmware, 2-2 

error handling, 7-15 
helper functions, 8-34 
I/O objects, 1-12 
initialization actions, 8-32 
initialization time, 2-8 
offline processing, 7-16 
preemption mode, 6-22 
scheduler, 7-2 
version, A-9, C-3 

fixed timers, 2-44 
flash memory, 3-8, 8-14, 8-16, 8-17, 8-23, 8-25 

effects of writing, 8-23 
sectors, 8-24 
use of, 8-16, 8-27 
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F 
floating-point, 1-5, 1-19 

syntax and operators, 1-13 
flush 

pending updates, 7-11 
flush( ) function, 7-11, 7-14 
flush_cancel( ) function, 7-12 
flush_completes event, 7-11, 7-12, 7-14 
flush_wait( ) function, 6-23, 6-24, 7-12, 7-16 
foreign-frame messages, 6-9 
forward declarations, 2-12 
frequency I/O object, 2-33 
function calls, 8-37 
function prototypes, 1-14, 2-12 
functional blocks, 1-10, 5-2 

accessing members, 5-13 
accessing properties, 5-13 
director function, 5-6, 5-16 

examples, 5-18 
implementation-specific members, 1-10, 5-3, 5-5 
limitations on name length, 1-13 
member list, 5-5 
members, 1-10 
members, definition of, 1-3 

functional profile templates. See functional profiles 
functional profiles, 1-3, 1-10, 5-2, 5-6 

custom, 1-10 
standard, 1-9 
using inheritance, 5-12 

functions, I/O. See I/O functions 
FYI diagnostic from compiler, 1-15 

G 
gateway, 6-4, 6-9 
get_nv_length_override( ) function, 3-38, 3-39 
get_tick_count( ) function, 2-48 
global data, 1-5 
global keyword, 4-10, 4-18, 5-8, 5-10, 5-19 
global_index keyword, 5-15 
go_offline( ) function, 3-39 
going offline in bypass mode, 7-10 
group, 8-8 
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H 
hard pin direction I/O object, 2-25 

I,J,K 
I/O devices, 1-12 
I/O events, 2-29 
I/O functions, 2-16 

for timer/counter objects, 2-34 
performing, 2-26 

I/O objects, 1-12, 1-13, 2-16 
declaring, 2-21 
definition, 1-3 
determining when an input value is new, 2-32 
direct, 2-17, 2-33 
initialization of, 1-7, 2-27 
multiplexed, 2-36 
overlaying of, 2-25 
overrange value, 2-36 
parallel, 2-18, 2-33 
references to additional examples, 2-16 
serial, 2-18, 2-33 
table of types, 2-18 
timer/counter, 2-17, 2-33 

I/O pins, 2-16, 2-21 
i2c I/O object, 2-22 
idempotent transaction, 6-31 
identifiers, 1-16 
IMAGES directory, B-3, C-4 
implementation_specific keyword, 5-4, 5-5 
implements keyword, 5-4 
include directive, 1-23 
include files, 1-22 
incoming message queue 

blocked. See events, blocking queue 
initialization 

Neuron Chip, 7-15 
time required, 7-15 

input clock frequency, 2-44 
input_is_new variable, 2-28, 2-36 
input_value variable, 2-30 

examples, 2-42 
int, 1-18, 1-21 
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I,J,K 
integer character constant, 1-17 
integer constants, 1-4 

types for various values, 1-18 
integer conversion 

unsigned to signed, 1-18 
integer division 

sign of result, 1-19 
interoperability, 1-3, 1-9, 3-2, 4-2 

proprietary interface, 6-2 
requirements for certification, 1-11, 8-4, 8-38 

interoperable devices, 1-2 
invert keyword, 2-33 
io_change_init( ) function, 2-26 
io_changes event, 2-6, 2-26, 2-29 

memory use, 8-26 
io_edgelog_preload( ) function, 2-26 
io_edgelog_single_preload( ) function, 2-26 
io_in( ) function, 2-25, 2-26, 2-27, 2-28 

use with when clauses, 2-32 
io_in_ready event, 2-26 
io_in_request( ) function, 2-26 
io_out( ) function, 2-25, 2-26, 2-27, 2-34 
io_out_request( ) function, 2-26 
io_preserve_input( ) function, 2-26, 2-36 
io_select( ) function, 2-26, 2-34 

examples, 2-36 
io_set_baud( ) function, 2-26 
io_set_clock( ) function, 2-26, 2-35 
io_set_direction( ) function, 2-25, 2-26 
io_update_occurs event, 2-29, 2-30, 2-36 

examples, 2-38, 2-42 
is_bound( ) function, 3-12, 3-36 

L 
len keyword, 6-14 
librarian, A-12, B-2 

command line switches, A-11 
libraries 

advantages of, B-5 
disadvantages of, B-5 
including in link, A-9 
report of library contents, A-11 

library, B-2 
definition, C-2 
functions, 1-14, 8-42 
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L 
limits.h, 1-18 
link summary, 8-29 
linker, B-2, B-3, B-4 

command line switches, A-8 
linking a program, 8-23 
logging system errors, 7-18 
LonBuilder ®User’s Guide, iv 
LonBuilder project manager, B-2, C-3 
long int, 1-13, 1-18 
long to short integer conversion, 1-18 
LONMARK Interoperability Association 

website, 1-11 
LonTalk protocol, 6-3 
LONWORKS messages, 1-9 
lowering power consumption, 7-12 

M 
magcard I/O object, 2-22, 7-7 
magtrack1 I/O object, 2-22, 7-7 
main( ), 1-14, 1-16 
max( ) function, 8-33 
max_rate_est option, 6-8 
Media Access Control (MAC) layer, 6-3 
memcpy( ) function, 6-10, 8-25 
memory 

page, definition of, 8-36 
usage 

default, 8-18 
non-default, 8-19 

use by program elements, 8-26 
wait states, 8-16 

memory-mapped I/O 
usage tip, 8-28 

message codes, 6-4, 6-9 
application-specific, 6-9 
ranges, 6-9 

message data 
block transfer, 6-10 

message tags, 1-13, 6-8, 8-29 
and explicit addressing, 6-18 
connecting, 6-17 
declaration, 6-7 
default msg_in tag, 6-17 
limitations on name length, 1-13 
non-bindable, 6-18 
syntax, 6-7 
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M 
messages, 1-9 

cancelling, 6-12 
code, 6-2 
completion status, 6-19 
data field, 6-2 
events, 7-10 
explicit, 1-12 
explicit addressing of, 6-18, 8-12 
foreign-frame, 6-4, 6-9 
implicit, 6-4 
incoming, 6-7 

format of, 6-14 
list of steps, 6-5 
priority, 6-33 
processing completion events, 6-21 
protocol overhead, 8-7 
receiving, 6-12 
sending, 6-11 
unwanted, 6-15 

messaging service, 1-3 
millisecond timers, 2-13 
min( ) function, 8-33 
Miranda prototype rule, 2-12 
monitoring device, 3-28 
msec_delay( ) function, 2-49 
msg_alloc( ) function, 6-23, 6-33 
msg_alloc_priority( ) function, 6-33 
msg_arrives event, 2-7, 6-12, 6-13 
msg_cancel( ) function, 6-11, 6-12, 6-34 
msg_completes event, 2-7, 6-8, 6-19, 7-4 
msg_fails event, 2-7, 6-19, 6-31, 7-4 
msg_free( ) function, 6-33 
msg_in message tag, 6-7 
msg_in object, 6-14, 6-32, 6-34 

addr field, 6-15, 8-13 
fields invalidated, 6-14 

msg_out object, 6-5, 6-10, 6-18, 6-34 
defined, 6-6 
dest_addr field, 8-13 
tag field, 6-8 

msg_receive( ) function, 6-12, 6-13, 6-26, 6-34, 7-7 
msg_send( ) function, 6-5, 6-11, 6-18, 6-34, 8-12 
msg_succeeds event, 2-7, 6-19, 6-31, 7-4 

comparison with resp_arrives event, 6-31 
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M 
msg_tag keyword, 6-7, 6-18 
msg_tag_index variable, 6-19 
mtimer, 2-45 

accuracy of, 2-46 
and clock speed, 2-46 
keyword, 2-13 

multibyte characters, 1-17 
multicast connections 

and buffer use, 8-8 
multi-character displays, 2-44 
multiplexing of I/O objects, 2-22 
multi-processor architecture, 7-6 
muxbus I/O object, 2-22, 2-23 

N 
net_buf_in_count pragma, 8-9, 8-11 
net_buf_in_size pragma, 8-9, 8-11 
net_buf_out_count pragma, 8-9, 8-11, 8-13 
net_buf_out_priority_count pragma, 8-9, 8-11, 8-13 
net_buf_out_size pragma, 8-9, 8-11, 8-12 
network buffers, 8-5. See buffers 
network congestion, effects of, 7-14 
network tool, 7-8 

initialization of configuration properties, 4-4 
network variables, 3-2 

advantages of, 1-9 
alias, 8-3 
arrays of, 3-6, 3-10 
changeable type, 4-22 
changeable-type, 3-32 
classes, 3-7 
communication model, 1-11 
configuration properties, 4-2 
configuration table, 8-2 
connecting, 3-3, 3-12 
declaring, 3-4, 3-5 

as config, 3-8 
as config_prop, 3-8 
as const, 3-7 
as cp, 3-8 
as polled, 3-24 

definition, 1-2 
events, 3-13 
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N 
network variables (cont) 

example of declarations, 3-11 
examples, 3-16 
explicitly addressed, 6-4 
how they work, 6-4 
initialization of, 1-7, 3-9 
limitations on name length, 1-13 
maximum number of, 3-5 
memory use, 8-27 
outgoing updates, 7-6 
pointers to, 1-13 
polling of, 3-7, 3-21, 3-28, 6-25, 7-4 

examples, 3-23, 3-24 
priority 

examples, 3-11 
processing completion events, 3-19 
propagation of, 1-9, 3-18, 3-26 
sharing a common address table entry, 8-3 
size, 3-11 
structures, 1-13 
synchronous, 3-18, 6-23, 7-6 

effects on performance, 3-18 
updating, 3-19 

synchronous vs. nonsynchronous, 3-18 
syntax of, 3-5 
types for, 3-10 
updates, 3-5, 3-18, 7-10 

scheduling of, 3-5 
using explicit addressing to send an update, 6-18 

network, storage class, 1-6 
Neuron 3120 Chip 

system library, 8-42 
Neuron C 

and ANSI C, differences, 1-13 
character set, 1-17 
compared to ANSI C, 1-13 
declarations, 1-8 
definition of, 1-2 
portability issues, 1-15 
storage classes. See storage classes 
thread of execution, 1-14 

Neuron C compiler 
command line switches, A-6 

Neuron C tools, A-1 
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N 
Neuron Chip 

definition of memory page, 8-36 
effect of power failure on RAM, 3-8 
flushing messages, 7-11 
initialization, 7-15 
sleep mode, 7-12 
wake up, 7-11 

Neuron emulator and application errors, 7-18 
neurowire I/O object, 2-22, 2-23, 2-45, 7-7 

examples, 2-44 
nibble I/O object, 2-26 
node_reset( ) function, 7-15 
NodeBuilder project manager, B-4, C-5 
nonauth keyword, 3-30 
nonauthenticated keyword, 3-30 
nonbind keyword, 6-8, 6-18 
non-bindable message tags, 6-18 
nonconfig keyword used with authentication, 3-30 
non-idempotent transaction, 6-31 
NULL, definition of, 1-24 
num_addr_table_entries pragma, 8-2, 8-30 
num_alias_table_entries pragma, 8-3 
num_domain_entries pragma, 8-4, 8-38 
nv_in_addr variable, 3-29, 8-13 
nv_len property, 3-38 
nv_properties keyword, 4-10, 4-14 
nv_update_completes event, 2-7, 3-13, 3-15, 7-4 

examples, 3-15 
nv_update_fails event, 2-7, 3-13, 3-14, 7-4 

examples, 3-15 
nv_update_occurs event, 2-7, 3-13, 3-14, 3-22 

examples, 3-14 
nv_update_succeeds event, 2-7, 3-12, 3-13, 3-14, 7-4 

examples, 3-15 
NVT 

definition, 1-3 
nxcvt.exe utility 

obtaining, C-9 
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O 
object files, B-2, B-3, B-4 
offchip keyword, 1-7, 8-17, 8-18, 8-20, 8-21, 8-23, 8-24 
off-chip memory 

use of, 8-14 
offline event, 2-5, 2-7, 6-13, 7-8, 7-10 
offline_confirm( ) function, 7-10 
onchip keyword, 1-7, 8-17, 8-18, 8-20, 8-21 
oneshot I/O object, 2-25, 2-33, 2-34 
online event, 2-5, 2-7, 6-13, 7-8 
ontime I/O object, 2-30, 2-33 

examples, 2-37 
optimization 

common sub-expressions, 8-36 
outgoing network variable updates, 7-6 
overrange value from I/O objects, 2-36 

P,Q 
padding of structures, 1-21 
parallel I/O object, 2-18, 2-22, 2-23, 2-26 
parallel processing, 7-6 
partial completion event testing. See completion events 
pending updates 

flushing, 7-11 
period I/O object, 2-30, 2-33 
pointers, 1-13, 1-20 

subtraction of, 1-20 
poll( ) function, 3-22 
polled applications, 1-12 
polled keyword, 3-7, 3-8, 3-22, 3-24 
polled network variables. See network variables, polling of 
polling 

definition of, 3-21 
post_events( ) function, 3-5, 6-13, 6-28, 7-6, 7-7, 7-10 
power consumption 

limiting, 7-14 
lowering, 7-12 

power failure 
effects of, 3-8, 8-20 
effects on flash memory, 8-24 

pragmas, 1-23 
predefined events, 2-4, 2-5 

I/O-related, 2-29 
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P,Q 
preempt_safe keyword, 2-4, 3-19, 6-22 
preemption mode, 2-4, 3-19, 6-22, 6-23, 6-34, 8-8 
preemption_mode( ) function, 6-24 
preprocessor directives, 1-22 
priority keyword, 2-4, 7-2 
priority when clauses, 2-11 

starving execution of nonpriority, 2-11 
priority_on keyword, 6-6 
processor execution 

lockout when writing flash or EEPROM memory, 8-23 
project manager, B-7, C-3 
propagate( ) function, 3-7, 3-26 
propagation 

definition of, 3-26 
of network variables. See network variables, propagation of 

property lists, 4-7 
for device, 4-8 
for functional blocks, 5-8 
for network variables, 4-10 

protocol 
overhead, 8-7 

ptrdiff_t, 1-20 
pullup resistors, internal, 2-16, 7-12 
pulsecount I/O object, 2-30, 2-33, 2-34, 2-45, 7-7 

examples, 2-28 
pulsewidth I/O object, 2-33 
pure C, B-2, B-7, C-2, C-11 

definition, C-2 
quadrature I/O object, 2-22, 2-23, 2-30 

examples, 2-38, 2-42 
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R 
RAM, 3-7, 8-16 

custom image needs, C-11 
use, 8-26 

ram keyword, 1-7, 8-17 
for functions, 8-22 

RAMCODE memory area, 8-17 
RAMFAR memory area, 8-17 
RAMNEAR memory area, 8-17 
range_mod_string keyword, 4-8, 4-10, 5-8 
rate_est option, 6-8 
raw data value, 3-37 
rcvtx keyword, 6-15 
reader devices, 3-29 

behavior of, 3-4 
receive transactions 

number of, 8-10 
requirements, 8-10 
size, 8-10 

receive_trans_count pragma, 8-10, 8-11, 8-13 
receiving a message, 6-12 
register keyword, 1-13, 1-20 
registers, 1-20 
relaxed_casting_on pragma, 1-13, 3-27, 5-14, 8-25 
relinking a program, 8-23 
remainder operation 

sign of result, 1-19 
repeating keyword, 2-13 
repeating timers, 2-48 
request message. See request/response message service 
REQUEST service type, 6-7, 6-15 
request/response message service, 6-26 

examples, 6-29 
for messages, 6-25 
using, 6-25 
with explicit messages, 6-2 

reserved words, 1-14 
reset cause register, 7-18 
reset event, 2-8, 8-32 
reset pin, 7-15 
reset time, 2-8 
resetting a device. See device, reset 
resource files, 1-3, 1-10, 4-2, 4-3, 5-3 

Resource Editor, 1-10, 4-2, 5-4 
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R 
resp_alloc( ) function, 6-35 
resp_arrives event, 2-7, 6-28, 6-31 

comparison with msg_succeeds event, 6-31 
resp_free( ) function, 6-35 
resp_in object, 6-28 

addr field, 8-13 
definition, 6-28 

resp_out object, 6-10, 6-26, 6-27 
resp_receive( ) function, 6-13, 6-28, 7-7 
resp_send( ) function, 6-27, 8-12 
responses, 6-26 

application message, 6-9 
constructing, 6-26 
format, 6-28 
order of arrival vs completion events, 6-31 
receiving, 6-28 
sending, 6-27 
without application data, 6-31 

restarting the application, 7-15 
retrieve_status( ) function, 7-18 
return statement, 2-4 
ROM, 3-7, 8-16 
round-robin scheduling, 2-10, 2-11, 7-2 

S 
scaled data value, 3-37 
scaled timers, 2-44, 2-45 
scaled_delay( ) function, 2-49 
scheduler, 2-2, 2-10, 7-2 

bypass mode, 7-5 
reset mechanism, 7-2 
reset off, 7-2 
scheduler reset example, 7-5 

scheduler_reset pragma, 2-11, 6-12, 7-2 
scheduling of network variable updates, 3-5 
scheduling, event-driven vs. polled, 1-12 
SCPT 

definition, 1-3 
use of, 4-3 

SCPTmaxNVLength, 3-34 
SCPTnvType, 3-33 
script files. See command files 
sd_string keyword, 3-7 
second timers, 2-13 
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S 
self-documentation data, 1-11, 5-6 
self-identification data, 1-11, 8-30 
sending a message, 6-11 

using the ACKD service, 6-19 
serial I/O objects, 2-18, 2-22, 2-23, 2-45 
service keyword, 6-7 
service pin message, 6-15 
set_node_sd_string pragma, 2-38 
SFPT, 5-4 
shift operator 

signed, 1-19 
short int, 1-13, 1-18 
signed 32-bit integers, 1-5 
signed arithmetic 

integer division, 1-19 
remainder operation, 1-19 
shift operation, 1-19 

signed bitfield, 1-21 
significant characters, 1-16 
size_t, 1-20 
sizeof operator, 1-20, 6-10 
sleep, 7-11 

failure to enter sleep mode, 7-14 
forced, 7-13, 7-14 
resuming program execution, 7-13 
turning off timers, 7-12 
wake up due to I/O, 7-13 

sleep( ) function, 7-11, 7-12, 7-14 
examples, 7-13 

Smart Transceiver RAM 
effect of power failure, 3-8 

Smart Transceivers databooks, v 
SNVT, 3-10 

definition, 1-3 
soft pin direction I/O object, 2-25 
software timers 

accuracy of, 2-46 
source files, includable, 1-23 
stand-alone tool, B-2 

definition, C-2 
standard functional profiles, 1-9 
standard image files, A-9 
standard network variable types, 1-9 
standard system image 

definition, C-2 
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S 
static keyword, 1-6, 1-7, 1-16, 4-10, 4-18, 5-8, 5-10, 5-19, C-9 
status structure, 7-18 
STDLIBS.LST, B-3 
stimer, 2-45 

accuracy, 2-49 
keyword, 2-13 

storage classes, 1-5, 1-6 
string functions, 1-14 
structures, 1-13, 8-33 

padding and alignment, 1-21 
stuck queue. See events, blocking queue 
subtraction of pointers, 1-20 
switch statement, 1-22 
sync 

examples, 3-18 
keyword, 3-6, 3-18 
network variable. See network variables 

synchronized keyword. See sync keyword 
synchronous network variables. See network variables 
syntax summary, 1-14 
syntax, typographic conventions for, v 
system errors 

logging, 7-18 
system images 

definition, C-3 
system include files, 1-22 
system keyword, 1-6 
system library, 8-42 
system overhead, 8-27 
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T 
table 

address. See address table 
alias. See alias table 
domain. See domain table 
network variable configuration, 8-2 

tag keyword, 6-6 
tasks, 2-2, 2-4, 3-5 

order of execution, 2-10 
priority, 2-11 
returning from, 2-4 

template file. See configuration properties, template file 
timeout 

waiting on buffer, 6-22 
timer 

millisecond, 2-13, 2-45 
preemption mode timeout, 2-45 
pulsecount input, 2-45 
second, 2-13, 2-45 
triac pulse, 2-45 
write, EEPROM. See EEPROM, write timer 

timer objects. See timers 
timer/counter 

dedicated, 2-34 
multiplexed, 2-34 

timer/counter I/O objects, 2-17, 2-22, 2-26, 2-30 
I/O functions, 2-34 

timer_expires event, 2-14, 7-10 
examples, 2-3 

timers, 1-3, 1-13, 2-2 
accuracy of, 2-44, 2-45, 2-46 
checking for specific, 2-15 
duration, formula for, 2-46 
examples, 2-14 
expiration of, 7-6 
expired, 2-13 
fixed duration, 2-45 
in the wink task, 7-10 
initialization of, 1-7 
maximum number of, 2-13 
measuring very short durations of time, 2-48 
memory use, 8-26 
repeating, 2-13, 2-48 
starting over, 2-13 
time remaining, 2-13 
turning off, 2-13 
turning off before sleep, 7-12 
unqualified event expressions, 2-15 
use in the debugger, 2-14 
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T 
timers_off( ) function, 8-33 
transaction, idempotent, 6-31 
transmit transaction buffers, 8-13 
TRAP n diagnostic from compiler, 1-15 
triac I/O object, 2-33, 2-45 

examples, 2-42 
triggeredcount I/O object, 2-33 
type qualifiers, 1-6 
typedef keyword, 3-10, 4-3 
types, for network variables. See network variables 

U 
UCPT 

definition, 1-3 
use of, 4-3 

UFPT, 5-4 
UFPT, definition, 1-3 
UNACKD service type, 6-7, 6-15 
UNACKD_RPT service type, 6-7, 6-15 
unacknowledged service, 3-11 
unicast connections 

and buffer use, 8-8 
uninit keyword, 1-7, 8-20, 8-22 
unions, 1-13, 1-21 
unqualified events. See events, unqualified 
unsigned long, 1-17 
unsigned to signed integer conversion, 1-18 
UNVT, 3-10 

definition, 1-3 
user network variable type, 3-10 
user-defined events, 2-4, 2-9 
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V 
value files. See configuration properties, value files 
variables 

declaration order, 8-35 
initialization, 1-7 

volatile keyword, 1-13, 1-21 

W,X,Y,Z 
wait states 

Neuron Chip, 8-16 
wake up Neuron Chip, 7-11 
warning diagnostic from compiler, 1-15 
warnings_off pragma, 8-25 
watchdog timer, 2-45, 2-49, 6-22, 7-6, 7-7, 8-24, 8-26 

effects of timeout, 8-20 
watchdog_update( ) function, 7-7 

examples, 7-8 
wchar_t, 1-17 
when clauses, 2-2 

default, 6-13 
memory use, 8-27 
priority, 2-11, 7-2 
scheduling, 2-10 

when statement, 1-14 
wiegand I/O object, 7-7 
wink command, 7-8 
wink event, 2-7, 6-13, 7-8, 7-10 
working directory, 1-23 
writer device, 3-29 

behavior of, 3-4 
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