

Neuron® C
Programmer's

Guide
Revision 7

C o r p o r a t i o n

078-0002-02G

Echelon, LNS, LonBuilder, LonManager, LonMaker, LonTalk, LONWORKS, Neuron, NodeBuilder,
3120, 3150, and the Echelon logo are trademarks of Echelon Corporation registered in the United
States and other countries. LONMARK and ShortStack are trademarks of Echelon Corporation.

Touch Memory is a trademark of the Dallas Semiconductor Corp.

Other brand and product names are trademarks or registered trademarks of their respective
holders.

Smart Transceivers, Neuron Chips, Serial LonTalk® Adapters, and other OEM Products were not
designed for use in equipment or systems which involve danger to human health or safety or a
risk of property damage and Echelon assumes no responsibility or liability for use of these
products in such applications.

Parts manufactured by vendors other than Echelon and referenced in this document have been
described for illustrative purposes only, and may not have been tested by Echelon. It is the
responsibility of the customer to determine the suitability of these parts for each application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR CONDITION OF ANY KIND,
EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE OR IN ANY COMMUNICATION WITH
YOU, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR ANY PARTICULAR
PURPOSE, NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of Echelon Corporation.

Document No. 29300

Printed in the United States of America.
Copyright ©1990-2003 by Echelon Corporation

Echelon Corporation
550 Meridian Avenue
San Jose, CA. USA
95126

www.echelon.com

http://www.echelon.com/

Preface

This guide describes how to write programs using the
Neuron® C Version 2.1 language. Neuron C is a programming
language based on ANSI C that is designed for Neuron Chips
and Smart Transceivers. It includes network communication,
I/O, and event-handling extensions to ANSI C, which make it a
powerful tool for the development of LONWORKS® applications.
Key concepts in programming with Neuron C are explained
through the use of specific code examples and diagrams. A
general methodology for designing and implementing a
LONWORKS application is also presented.

Audience
The Neuron C Programmer’s Guide is intended for application programmers
who are developing LONWORKS® applications. Readers of this guide are
assumed to have some C programming experience.

For a complete description of ANSI C consult the following references:

• American National Standard X3.159-1989, Programming Language C, D.F.
Prosser, American National Standards Institute, 1989.

• Standard C: Programmer’s Quick Reference, P. J. Plauger and Jim Brodie,
Microsoft Press, 1989.

• C: A Reference Manual, Samuel P. Harbison and Guy L. Steele, Jr., 4th
edition, Prentice-Hall, Inc., 1994.

• The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie,
2nd edition, Prentice-Hall, Inc., 1988.

Content
The Neuron C Programmer’s Guide

• Outlines a recommended general approach to developing a LONWORKS
application, and

• Explains key concepts of programming in Neuron C through the use of code
fragments and examples.

Related Manuals
The NodeBuilder® User’s Guide lists and describes all tasks related to
LONWORKS application development using the NodeBuilder Development
Tool. Refer to that guide for detailed information on the user interface and
features of the NodeBuilder tool.

The LonBuilder® User’s Guide lists and describes all tasks related to
LONWORKS application development using the LonBuilder Development
Tool. Refer to that guide for detailed information on the user interface to the
LonBuilder tool.

The Neuron C Reference Guide provides the reference information for writing
programs using the Neuron C language.

The NodeBuilder Errors Guide lists and describes all warning and error
messages related to the NodeBuilder software.

The LonMaker® User’s Guide lists and describes all tasks related to
LONWORKS network installation, operation, and maintenance using the
LonMaker Integration Tool. Refer to that guide for detailed information on
the user interface and features of the LonMaker tool.

iv Preface

The Gizmo 4 User's Guide describes the Gizmo 4 hardware and software.
Refer to that guide for detailed information on the hardware and software
interface of the Gizmo 4.

The FT 3120® and the FT 3150® Smart Transceivers Databook and PL
3120/PL 3150 Power Line Smart Transceiver Databook describe the
hardware and architecture for Echelon's Smart Transceivers. These books
are also called the Smart Transceiver databooks elsewhere in this manual.
Other Neuron Chip information is available from the respective
manufacturers of those devices.

Typographic Conventions for Syntax

Type Used For Example

boldface type keywords network
 literal characters {

italic type abstract elements identifier

square brackets optional fields [bind-info]

vertical bar a choice between input | output
 two elements

For example, the syntax for declaring a network variable is

network input | output [netvar modifier] [class] type [bind-info] identifier

Punctuation other than square brackets and vertical bars must be used
where shown (quotes, parentheses, semicolons, etc.).

Code examples appear in the Courier font:

#include <mem.h>

unsigned array1[40], array2[40];

// See if array1 matches array2
if (memcmp(array1, array2, 40) != 0) {
 // The contents of the two areas do not match
}

Neuron C Programmer’s Guide v

Contents
Preface iii

Audience iv
Content iv
Related Manuals iv
Typographic Conventions for Syntax v
Contents vi

Chapter 1 Overview 1-1
What Is Neuron C? 1-2
Unique Aspects of Neuron C 1-2

Neuron C Integer Constants 1-4
Neuron C Variables 1-5
Network Variables, SNVTs, and UNVTs 1-9
Configuration Properties 1-10
Functional Blocks and Functional Profiles 1-10
Event-Driven vs. Polled Scheduling 1-12
Low-Level Messaging 1-12
I/O Devices 1-12

Differences between Neuron C and ANSI C 1-13
Neuron C Language Implementation Characteristics 1-15

Translation (F.3.2) 1-15
Environment (F.3.2) 1-16
Identifiers (F.3.3) 1-16
Characters (F.3.4) 1-17
Integers (F.3.5) 1-18
Floating Point (F.3.6) 1-19
Arrays and Pointers (F.3.7) 1-20
Registers (F.3.8) 1-20
Structures, Unions, Enumerations, and Bit-Fields (F.3.9) 1-21
Qualifiers (F.3.10) 1-21
Declarators (F.3.11) 1-22
Statements (F.3.12) 1-22
Preprocessing Directives (F.3.13) 1-22
Library Functions (F.3.14) 1-24

Chapter 2 Focusing on a Single Device 2-1
What Happens on a Single Device? 2-2
The Scheduler 2-2

When Clauses 2-2
When Statement 2-4
Types of Events Used in When Clauses 2-4
Predefined Events 2-5
User-defined Events 2-9
Scheduling of When Clauses 2-10
Priority When Clauses 2-11
Function Prototypes 2-12

Timers 2-13
Declaring Timers 2-13
The timer_expires Event 2-14

Input/Output 2-16
I/O Object Types 2-17

vi Preface

Declaring I/O Objects 2-21
Overlaying I/O Objects 2-25
Performing I/O: Functions and Events 2-26
Relationship between I/O Measurements, Outputs, and Functions 2-33
I/O Multiplexing 2-34
Device Self-Documentation 2-38

Examples 2-38
Example 1: Thermostat Interface 2-38
Example 2: Simple Light Dimmer Interface 2-42
Example 3: Seven-Segment LED Display Interface 2-44

Input Clock Frequency and Timer Accuracy 2-44
Fixed Timers 2-45
Scaled Timers and I/O Objects 2-45
Calculating Accuracy for Software Timers 2-46
Delay Functions 2-49
EEPROM Write Timer 2-50

Chapter 3 How Devices Communicate Using Network Variables 3-1
Major Topics 3-2
Overview 3-3

Behavior of Writer and Reader Devices 3-4
When Updates Occur 3-5

Declaring Network Variables 3-5
Network Variable Modifiers 3-6
Network Variable Classes 3-7
Network Variable Connection Information 3-9
Network Variable Initializer 3-9
Network Variable Types 3-10
Examples of Network Variable Declarations 3-11

Connecting Network Variables 3-12
Use of the is_bound() Function 3-12

Network Variable Events 3-13
The nv_update_occurs Event 3-14
The nv_update_succeeds and nv_update_fails Events 3-14
The nv_update_completes Event 3-15
Sample Program 3-16

Synchronous Network Variables 3-18
Declaring Synchronous Network Variables 3-18
Synchronous vs. Nonsynchronous Network Variables 3-18
Updating Synchronous Network Variables 3-19

Processing Completion Events for Network Variables 3-19
Partial Completion Event Testing 3-20
Comprehensive Completion Event Testing 3-20
Tradeoffs 3-21

Polling Network Variables 3-21
Declaring a Network Variable as Polled 3-24

Explicit Propagation of Network Variables 3-26
Monitoring Network Variables 3-28
Authentication 3-29

Setting Up Devices to Use Authentication 3-30
How Authentication Works 3-31

Changeable-Type Network Variables 3-32
Processing Changes to a SCPTnvType CP 3-35
Changeable-Type Example 3-40

Neuron C Programmer’s Guide vii

Chapter 4 Using Configuration Properties to Configure Device Behavior 4-1
Overview 4-2
Declaring Configuration Properties 4-2

Declaring Configuration Properties Within Files 4-3
Declaration of Configuration Network Variables 4-5

Instantiation of Configuration Properties 4-7
Device Property Lists 4-8
Network Variable Property Lists 4-10

Accessing Property Values from a Program 4-11
Advanced Configuration Property Features 4-13

Configuration Properties Applying to Arrays 4-14
Initialization of Configuration Properties at Instantiation 4-16
Sharing of Configuration Properties 4-18
Configuration Property Sharing Rules 4-19
Type-Inheriting Configuration Properties 4-20

Chapter 5 Using Functional Blocks to Implement a Device Interface 5-1
Overview 5-2
Functional Block Declarations 5-4

Functional Block Property Lists 5-8
Shared Functional Block Properties 5-10

Scope Rules 5-12
Accessing Members and Properties of a Functional Block from a Program 5-13
Accessing Members and Properties of a Functional Block from a Network Tool 5-16
The Director Function 5-16
Sharing of Configuration Properties 5-19

Chapter 6 How Devices Communicate Using Application Messages 6-1
Introduction to Application Messages 6-2
Layers of Neuron Software 6-3
Implicit Messages: Network Variables 6-4
Application Messages 6-4
Constructing a Message 6-5

The msg_out Object Definition 6-6
Block Transfers of Data 6-10

Sending a Message 6-11
Receiving a Message 6-12

The msg_arrives Event 6-12
The msg_receive() Function 6-13
Format of an Incoming Message 6-14
Importance of a Default When Clause 6-15

Example 6-16
Lamp Program 6-16
Switch Program 6-17
Connecting Message Tags 6-17

Explicit Addressing 6-18
Sending a Message with the Acknowledged Service 6-19

Message Completion Events 6-19
Preemption Mode and Messages 6-22
Asynchronous and Direct Event Processing 6-24
Using the Request/Response Mechanism 6-25

Constructing a Response 6-26
Sending a Response 6-27
Receiving a Response 6-28
Examples 6-29

viii Preface

Comparison of resp_arrives and msg_succeeds 6-31
Idempotent Versus Non-Idempotent Requests 6-31

Application Buffers 6-33
Allocating Application Buffers 6-33

Chapter 7 Additional Features 7-1
The Scheduler 7-2
Scheduler Reset Mechanism 7-2

Example 7-5
Bypass Mode 7-5

The post_events() Function 7-6
Watchdog Timer 7-7
Additional Predefined Events 7-8

Going Offline in Bypass Mode 7-10
Wink Event 7-10

Sleep Mode 7-11
Flushing the Neuron Chip or Smart Transceiver 7-11
Putting the Device to Sleep 7-12
Forced Sleep 7-14

Error Handling 7-15
Resetting the Device 7-15
Restarting the Application 7-15
Taking an Application Offline 7-16
Disabling a Functional Block 7-16
Changing Functional Block Status 7-17
Logging Application Errors 7-18
System Errors 7-18

Access to Device Error Status 7-18
Chapter 8 Memory Management 8-1

Reallocating On-Chip EEPROM 8-2
Address Table 8-2
Alias Table 8-3
Domain Table 8-4

Allocating Buffers 8-5
Buffer Size 8-6
Buffer Counts 8-8
Compiler Directives for Buffer Allocation 8-8

Using Neuron Chip Memory 8-14
Chips with Off-Chip Memory 8-14
Chips without Off-Chip Memory 8-15
Memory Regions 8-16
Memory Areas 8-17
Default Memory Usage 8-18
Controlling Non-Default Memory Usage 8-19
Compiler Directives 8-22
When the Program Is Relinked 8-23
Use of Flash Memory 8-23
The eeprom_memcpy() Function 8-25

Memory Use 8-26
RAM Use 8-26
EEPROM Use 8-27

Usage Tip for Memory-Mapped I/O 8-28
What to Try When a Program Doesn't Fit on a Neuron Chip 8-29

Reduce the Size of the Configuration Property Template File 8-29

Neuron C Programmer’s Guide ix

Reduce the Number of Address Table Entries 8-29
Remove Self-Identification Data if Not Needed 8-30
Remove Network Variable Names if Not Needed 8-30
Declare Constant Data Properly 8-31
Use Efficient Constant Values 8-32
Take Advantage of Neuron Firmware Default Initialization Actions 8-32
Use Neuron C Utility Functions Effectively 8-33
Be Aware of Library Usage 8-33
Use More Efficient Data Types 8-34
Observe Declaration Order 8-35
Use The Optional Fastaccess Feature 8-35
Eliminate Common Sub-Expressions 8-36
Use Function Calls Liberally 8-37
Use the Alternate Initialization Sequence 8-38
Reduce the Number of Domains 8-38
Use C Operators Effectively 8-38
Use Neuron C Extensions Effectively 8-40

System Library on a Neuron 3120 Chip 8-42
Appendix A Neuron C Tools Stand-alone Use A-1

Stand-alone Tools A-2
Common Stand-alone Tool Use A-3

Command Switches for Stand-alone Tools A-6
Neuron C Compiler A-6
Neuron Assembler A-7
Neuron Linker A-8
Neuron Exporter A-9
Neuron Librarian A-11

Appendix B Neuron C Function Libraries B-1
Definitions B-2
LonBuilder Support for Libraries B-2
NodeBuilder Support for Libraries B-4
Tradeoffs, Advantages, and Disadvantages B-5

Advantages of a Library B-5
Disadvantages of a Library B-5

Library Construction Using the Librarian B-6
 B-7 Performing Neuron C Functions from Libraries

Appendix C Neuron C Custom System Images C-1
Definitions C-2
LonBuilder Use of Custom System Images C-3
NodeBuilder Use of Custom System Images C-5
Tradeoffs, Advantages, and Disadvantages C-6

Advantages of a Custom System Image C-6
Disadvantages of a Custom System Image C-6

Constructing a Custom System Image C-7
Providing a Large RAM Space C-10

 C-11 Performing Neuron C Functions
Index I-1

x Preface

1
Overview

This chapter introduces the Neuron C Version 2.1
programming language. It describes the basic aspects of the
language and provides an overview to using the LONWORKS
platform and the Neuron C programming language to construct
interoperable devices and systems. The chapter also
introduces key concepts of Neuron C such as event-driven
scheduling, network variables, configuration properties, and
functional blocks (which are implementations of functional
profiles).

A secondary purpose of this chapter is to introduce
fundamental material on Neuron C concerning Neuron C
types, storage classes, data objects, and how the Neuron C
language compares to the ANSI C language.

What Is Neuron C?
Neuron C Version 2 is a programming language based on ANSI C that is
designed for Neuron Chips and Smart Transceivers. It includes network
communication, I/O, and event-handling extensions to ANSI C, which make
it a powerful tool for the development of LONWORKS applications. Following
are a few of these new1 features:

• A new network communication model, based on functional blocks and
network variables, that simplifies and promotes data sharing between like or
disparate devices.

• A new network configuration model, based on functional blocks and
configuration properties, that facilitates interoperable network configuration
tools.

• A new type model based on standard and user resource files that expands the
market for interoperable devices by simplifying integration of devices from
multiple manufacturers.

• An extensive built-in set of I/O objects supporting the powerful I/O
capabilities of Neuron Chips and Smart Transceivers.

• Powerful event-driven programming extensions, based on new when
statements, provide easy handling of network, I/O, and timer events.

Neuron C provides a rich set of language extensions to ANSI C tailored to the
unique requirements of distributed control applications. Experienced C
programmers will find Neuron C a natural extension to the familiar ANSI C
paradigm. Neuron C offers built-in type checking and allows the
programmer to generate highly efficient code for distributed LONWORKS
applications.

Neuron C omits ANSI C features not required by the standard for free-
standing implementations. For example, certain standard C libraries are not
part of Neuron C. Other differences between Neuron C and ANSI C are
detailed later in this chapter.

Unique Aspects of Neuron C
Neuron C implements all the basic ANSI C types, and type conversions as
necessary. In addition to the ANSI C data constructs, Neuron C provides
some unique data elements. Network variables are fundamental to Neuron C
and LONWORKS applications. Network variables are data constructs that
have language and system firmware support to provide something that looks
like a variable in a C program, but has additional properties of propagating
across a LONWORKS network to or from one or more other devices on that
network. The network variables make up part of the device interface for a
LONWORKS device.

Configuration properties are Neuron C data constructs that are another part
of the device interface. Configuration properties allow the device’s behavior

1 "New" means relative to the ANSI Standard C language.

1-2 Overview

to be customized using a network tool such as the LonMaker tool or a
customized plug-in created for the device.

Neuron C also provides a way to organize the network variables and
configuration properties in the device into functional blocks, each of which
provides a collection of network variables and configuration properties, that
are used together to perform one task. These network variables and
configuration properties are called the functional block members.

Each network variable, configuration property, and functional block is
defined by a type definition contained in a resource file. Network variables
and configuration properties are defined by network variable types (NVTs)
and configuration property types (CPTs). Functional blocks are defined by
functional profiles (which are also called functional profile templates).

Network variables, configuration properties, and functional blocks in Neuron
C can use standardized, interoperable types. The use of standardized data
types promotes the interconnection of disparate devices on a LONWORKS
network. For configuration properties, the standard types are called
standard configuration property types (SCPTs; pronounced skip-its). For
network variables, the standard types are called standard network variable
types (SNVTs; pronounced snivets). For functional blocks, the standard types
are called standard functional profiles. If you cannot find standard types or
profiles that meet your requirements, Neuron C also provides full support for
user network variable types (UNVTs), user configuration property types
(UCPTs), and user functional profiles.

Neuron C is designed to execute in the environment provided by the Neuron
system firmware. This firmware provides an event-driven scheduling system
as part of the Neuron C language’s run-time environment.

Neuron C also provides a lower-level messaging service integrated into the
language in addition to the network variable model, but the network variable
model has the advantage of being a standardized method of information
interchange, whereas the messaging service is not standardized with the
exception of its usage by the LONWORKS file transfer protocol. The use of
network variables, both standard types and user types, promotes
interoperability between multiple devices from multiple vendors. The lower-
level messaging service allows for proprietary solutions in addition to the file
transfer protocol.

Another Neuron C data object is the timer. Timers can be declared and
manipulated like variables. When a timer expires, the system firmware
automatically manages the timer events and notifies the program of those
events.

Neuron C provides many built-in I/O objects. These I/O objects are
standardized I/O “device drivers” for the Neuron Chip or Smart Transceiver
I/O hardware. Each I/O object fits into the event-driven programming model.
A function-call interface is provided to interact with each I/O object.

The rest of this chapter will discuss these various aspects of Neuron C in a
bit more detail, and the remaining chapters will cover these aspects in much
greater detail accompanied by many examples.

Neuron C Programmer's Guide 1-3

Neuron C Integer Constants
Negative constants are treated as a unary minus operation on a positive
constant, e.g., -128 is a signed long, not a signed short. Likewise, -32768
is an unsigned long, not a signed long. To construct a signed short value
of –128, you must use a cast:

 ((signed short)(-128))

To construct a signed long value of –32768, you must also use a cast:

 ((signed long)(-32768))

Decimal integer constants have the following default types:

 0 .. 127 signed short
128 .. 32767 signed long
32768 .. 65535 unsigned long

The default type can be modified with the u, U, l, and L suffixes. For
example:

0L signed long
127U unsigned short
127UL unsigned long
256U unsigned long

Hexadecimal constants have the following default types, which can also be
modified as described above with the u, U, l, and L suffixes:

0x0 .. 0x7F signed short
0x80 .. 0xFF unsigned short
0x100 .. 0x7FFF signed long
0x8000 .. 0xFFFF unsigned long

Octal constants have the following default types, which can also be modified
as described above with the u, U, l, and L suffixes:

0 .. 0177 signed short
0200 .. 0377 unsigned short
0400 .. 077777 signed long
0100000 .. 0177777 unsigned long

Binary constants have the following default types, which can also be modified
as described above with the u, U, l, and L suffixes:

0b0 .. 0b01111111 signed short
0b10000000 .. 0b11111111 unsigned short
0b0000000100000000 .. 0b0111111111111111 signed long
0b1000000000000000 .. 0b1111111111111111 unsigned long

1-4 Overview

Neuron C Variables
The following sections briefly discuss various aspects of variable declarations.
Data types affect what sort of data the variable represents. Storage classes
affect where the variable is stored, whether it can be modified (and if so, how
often), and whether there are any device interface aspects to modifying the
data.

Neuron C Variable Types
Neuron C supports the following C variable types. The keywords shown in
square brackets are optional; if omitted, they will be assumed by the Neuron
C language, per the rules of the ANSI C standard.

 [signed] long [int] 16-bit quantity
unsigned long [int] 16-bit quantity
signed char 8-bit quantity
[unsigned] char 8-bit quantity
[signed] [short] [int] 8-bit quantity
unsigned [short] [int] 8-bit quantity
enum 8-bit quantity (int type)

Neuron C provides some predefined enum types. One example is shown
below:

typedef enum {FALSE, TRUE} boolean;

Neuron C also provides predefined objects that, in many ways, provide the
look and feel of an ANSI C language variable. These objects include Neuron
C timer and I/O objects. See Chapter 2 of this book for more details on I/O
objects, and see the Timers chapter in the Neuron C Reference Guide for more
details on timer objects.

The extended arithmetic library also defines float_type and s32_type for
IEEE 754 and signed 32-bit integer data respectively. These types are
discussed in great detail in the Functions chapter of the Neuron C Reference
Guide.

Neuron C Storage Classes
If no class is specified and the declaration is at file scope, the data or function
is global. File scope is that part of a Neuron C program that is not contained
within a function or a task. Global data (including all data declared with the
static keyword) is present throughout the entire execution of the program,
starting from the point where the symbol was declared. Declarations using
extern references can be used to provide forward references to variables, and
function prototypes must be declared to provide forward references to
functions.

Neuron C Programmer's Guide 1-5

Upon power-up or reset of a Neuron Chip or Smart Transceiver, the global
data in RAM is initialized to its initial-value expression, if present, otherwise
to zero (variables declared with the eeprom or config class, as well as
configuration properties declared with the config_prop or cp_family
keywords, are only initialized when the application image is first loaded).

Neuron C supports the following ANSI C storage classes and type qualifiers:

auto Declares a variable of local scope. Typically, this
would be within a function body. This is the default
storage class within a local scope and the keyword is
normally not specified. Variables of auto scope that
are not also static are not initialized upon entry to the
local scope. The value of the variable is not preserved
once program execution leaves the scope.

const Declares a value that cannot be modified by the
application program. Affects self-documentation (SD)
data generated by the Neuron C compiler when used
in conjunction with the declaration of CP families or
configuration network variables.

extern Declares a data item or function that is defined in
another module, in a library, or in the system image.

static Declares a data item or function which is not to be
made available to other modules at link time.
Furthermore, if the data item is local to a function or
to a when task, the data value is to be preserved
between invocations, and is not made available to
other functions at compile time.

In addition to the ANSI C storage classes, Neuron C provides the following
classes and class modifiers:

config Can be combined only with an input network variable

declaration. A config network variable is used for
application configuration. It is equivalent to const
eeprom. Such a network variable is initialized only
when the application image is first loaded. The
config class is obsolete and is included only for legacy
applications. The Neuron C compiler will not
generate self-documentation data for config-class
network variables. New applications should use the
configuration network variable syntax described in
the Configuration Properties chapter of this book.

network Begins a network variable declaration. See Chapter
3, How Devices Communicate Using Network
Variables, for more details.

system Used in Neuron C solely to access the Neuron
firmware function library. Do not use this keyword
for data or function declarations.

1-6 Overview

uninit When combined with the eeprom keyword (see
below), specifies that the EEPROM variable is not
initialized or altered on program load or reload over
the network.

The following Neuron C keywords allow you to direct portions of application
code and data to specific memory sections.

• eeprom
• far

• offchip (only on Neuron Chips and Smart Transceivers
 with external memory)

• onchip

• ram (only on Neuron Chips and Smart Transceivers
 with external memory)

These keywords are particularly useful on the Neuron 3150 Chip and 3150
Smart Transceivers, since a majority of the address space for these parts is
mapped off chip. See Using Neuron Chip Memory in Chapter 8, Memory
Management, for a more detailed description of memory usage and the use of
these keywords.

Variable Initialization
Initialization of variables occurs at different times for different classes. The
const variables, except for network variables, must be initialized.
Initialization of const variables occurs when the application image is first
loaded into the Neuron Chip or Smart Transceiver. The const ram variables
are placed in off-chip RAM that must be non-volatile. Therefore, the eeprom
and config variables are also initialized at load time, except when the
uninit class modifier is included in these variable definitions.

Automatic variables cannot be declared const because Neuron C does not
implement initializers in declarations of automatic variables.

Global RAM variables are initialized at reset (that is, when the device is
reset or powered up). By default, all global RAM variables (including static
variables) are initialized to zero at this time. Initialization to zero costs no
extra code space, as it is a firmware feature.

Initialization of I/O objects, input network variables (except for eeprom,
config, config_prop, or const network variables), and timers also occurs at
reset. Zero is the default initial value for network variables and timers.

Local variables (except static ones) are not automatically initialized, nor are
their values preserved when the program execution leaves the local scope.

Neuron C Programmer's Guide 1-7

Neuron C Declarations
Both ANSI C and Neuron C support declarations of the following:

 Declaration Example

• Simple data items int a, b, c;

• Data types typedef unsigned long ULONG;

• Enumerations enum hue {RED, GREEN, BLUE};

• Pointers char *p;

• Functions int f(int a, int b);

• Arrays int a[4];

• Structures struct s {
and unions int field1;
 unsigned field2 : 3;
 unsigned field3 : 4;
 };

In addition, Neuron C Version 2 supports declarations of:
 Declaration Example

• I/O Objects IO_0 output oneshot relay_trigger;
 (See Chapter 2)

• Timers mtimer led_on_timer;
 (See Chapter 2)

• Network Variables network input SNVT_temp temperature;
 (See Chapter 3)

• Configuration Properties cp_family SCPTdefOutput defaultOut;
 (See Chapter 4)

• Functional Blocks fblock SFPTnodeObject { … } myNode;
 (See Chapter 5)

• Message Tags msg_tag command;
 (See Chapter 6)

1-8 Overview

Network Variables, SNVTs, and UNVTs
A network variable is an object on one device that can be connected to
network variables on one or more additional devices. A device’s network
variables define its inputs and outputs from a network point of view and
allow the sharing of data in a distributed application. Whenever a program
writes into one of its output network variables (with the exception of output
network variables being declared with the polled modifier), the new value of
the network variable is propagated across the network to all devices with
input network variables connected to that output network variable. In case
the output network variable is not currently a member of any network
variable connection, no transaction and no error occurs. Although the
propagation of network variables occurs through LONWORKS messages,
these messages are sent implicitly. The application program does not require
any explicit instructions for sending, receiving, managing, retrying,
authenticating, or acknowledging network variable updates. A Neuron C
application provides the most recent value by writing into an output network
variable, and it obtains the most recent data from the network by reading an
input network variable.

EXAMPLE:

network input SNVT_temp nviTemperature;
network output SNVT_temp nvoTemperature;

void f(void)
{
 nvoTemperature = 2 * nviTemperature;
}

Network variables greatly simplify the process of developing and installing
distributed systems because devices can be defined individually, then
connected and reconnected easily into many new LONWORKS applications.
Network variables are discussed in detail in Chapter 3, How Devices
Communicate Using Network Variables, and also in the Neuron C Reference
Guide.

Network variables promote interoperability between devices by providing a
well-defined interface that devices use to communicate. Interoperability
simplifies installation of devices into different types of networks by keeping
the network configuration independent of the device’s application. A device
may be installed in a network and logically connected to other devices in the
network as long as the data types (for example, SNVT_switch or
SNVT_temp_p) match. To further promote interoperability, the
LONWORKS platform provides standard functional profiles that define
standard functional interfaces for devices, and standard network variable
types (SNVTs) that define standard data encoding, scaling, and units, such
as degrees C, volts, or meters. There are standard functional profiles for a
variety of functions and industries. There are SNVT definitions for
essentially every physical quantity, and other more abstract definitions
tailored for certain industries and common applications.

Neuron C Programmer's Guide 1-9

You can also create your own user functional profiles and user network
variable types (UNVTs). You can define resource files for your custom types
and profiles to enable your devices to be used with devices from other
manufacturers. The NodeBuilder Resource Editor included with the
NodeBuilder tool provides a simple interface for viewing existing resources
and defining your own resources.

Configuration Properties
A configuration property is a data item that, like a network variable, is part
of the device interface for a device. A configuration property can be modified
by a network tool. Configuration properties facilitate interoperable
installation and configuration tools by providing a standardized network
interface for device configuration data. Like network variables, configuration
properties also provide a well-defined interface. Each configuration property
type is defined in a resource file that specifies the data encoding, scaling,
units, default value, invalid value, range, and behavior for configuration
properties based on the type. A rich variety of standard configuration
property types (SCPTs) are available. You can also create your own user
configuration property types (UCPTs) that are defined in resource files that
you create with the NodeBuilder Resource Editor.

Functional Blocks and Functional Profiles
The device interface for a LONWORKS device consists of its functional blocks,
network variables, and configuration properties. A functional block is a
collection of network variables and configuration properties that are used
together to perform one task. These network variables and configuration
properties are called the functional block members.

Functional blocks are defined by functional profiles. A functional profile is
used to describe common units of functional behavior. Each functional
profile defines mandatory and optional network variables and mandatory
and optional configuration properties. Each functional block implements an
instance of a functional profile. A functional block must implement all the
mandatory network variables and configuration properties defined by the
functional profile, and may implement any of the optional network variables
and configuration properties defined by the functional profile. A functional
block may also implement network variables and configuration properties not
defined by the functional profile – these are called implementation-specific
network variables and configuration properties.

Functional profiles are defined in resource files. You can use standard
functional profiles or you can define your own functional profiles in your own
resource files using the NodeBuilder Resource Editor. A functional profile
defined in a resource file is also called a functional profile template (FPT).

1-10 Overview

The LONMARK Interoperability Association provides a procedure for
developers to certify devices. LONMARK interoperable devices conform to all
LonTalk® protocol layer 1 – 6 requirements as specified by the LONMARK
Layer 1 – 6 Interoperability Guidelines, and conform to all aspects of
application design, as discussed in the LONMARK Application Layer
Interoperability Guidelines.

Contact the LONMARK Interoperability Association at www.lonmark.org for
more details about becoming a member and certifying your devices.

You can automatically embed data within your device that identifies its
device interface to network tools that are used to install the device. This
data is called self-identification (SI) data and self-documentation (SD) data.
The Neuron C compiler generates this data based on the functional blocks,
network variables, and configuration properties that you declare, as well as
the resource files that you provide. You can add your own documentation to
the SD data to further document your device and its interface.

You can include network variable names in the SD data using the #pragma
enable_sd_nv_names directive. You can also include a rate estimate in
tenths-of-messages/second and a maximum rate estimate in tenths-of-
messages/second in the SD data for each network variable. The rate estimate
and maximum rate estimate values are provided through the bind_info
feature. (See the discussion of this feature in Chapter 3, How Devices
Communicate Using Network Variables, and also in the Neuron C Reference
Guide.)

An application image for a device created by the Neuron C compiler will
contain SD information unless the #pragma disable_snvt_si directive is
used. (See the Compiler Directives chapter of the Neuron C Reference Guide
for more information.)

Data-Driven vs. Command-Driven Protocols
Network variables are used to communicate data and state information
between devices. This provides a different communication model than
command-based systems. In command-based messaging systems, designers
are faced with having a large number of commands specific to each
application that must be managed, updated, and maintained. Each device
has to have knowledge of every command. This leads to ever-growing
command tables and application code.

With network variables, the command or action portion of a message is not in
the message. Instead, with network variables, this information is in the
application program, and each application program only needs have the
knowledge required to perform its function. A network integrator can add
new types of devices at any time, and connect them to existing devices in the
network to perform new applications not envisioned by the original designers
of the devices.

Neuron C Programmer's Guide 1-11

Event-Driven vs. Polled Scheduling
Although the Neuron C language is principally designed to make event-
driven scheduling natural and easy, Neuron C also allows you to construct
polled applications that implement a centralized control application.
Chapter 3, How Devices Communicate Using Network Variables, provides
further information on polling.

Low-Level Messaging
In addition to the functional block and network variable communication
model, Neuron C also supports application messages. You can use
application messages – in place of or in conjunction with the network
variables approach – to implement proprietary interfaces to your devices.
They are also used for the LONWORKS file transfer protocol. Application
messages are described in Chapter 6, How Devices Communicate Using
Application Messages.

I/O Devices
A Neuron Chip or Smart Transceiver may be connected to one or more
physical I/O devices. Examples of simple I/O devices include temperature
and position sensors, valves, switches, and LED displays. Neuron Chips and
Smart Transceivers can also be connected to other microprocessors. The
Neuron firmware implements numerous I/O objects that manage the
interface to these devices for a Neuron C application. I/O objects are
discussed in detail in Chapter 2, Focusing on a Single Device, and in the
Neuron C Reference Guide.

1-12 Overview

Differences between Neuron C and ANSI C
Neuron C adheres closely to the ANSI C language standard; however,
Neuron C is not a "conforming implementation" of Standard C, as defined by
the American National Standards Institute committee X3-J11.

The following list outlines the differences between Neuron C and ANSI C.

• Neuron C does not support floating-point computation with C syntax or
operators. However, a floating-point library is provided to allow use of
floating-point data conforming to IEEE 754.

• ANSI C defines a short int as 16 bits or more and a long int as 32 bits or
more. Neuron C defines a short int as 8 bits and a long int as 16 bits. In
Neuron C, int defaults to a short int. A 32-bit signed integer library is
available to allow use of 32-bit quantities.

• Neuron C does not support the register or volatile classes. These storage
classes can be specified but will be ignored.

• Neuron C does not implement initializers in declarations of automatic
variables.

• Neuron C does not support structures or unions as procedure parameters or
as function return values.

• Neuron C does not support declaration of bitfields as members of unions.
However, an equivalent declaration can be accomplished by defining a
structure as a member of the union, where the structure contains the
bitfields.

• Network variable structures cannot contain pointers. Configuration property
structures also cannot contain pointers.

• Pointers to timers, message tags, and I/O objects are not supported.

• Pointers to network variables, configuration properties, and EEPROM
variables are treated as pointers to constants (i.e. the contents of the variable
referenced by the pointer can be read, but not modified). Under special
circumstances, and with certain restrictions, the pointers can be used to
modify the memory. See the discussion of the eeprom_memcpy() function
in Chapter 8, Memory Management, and also in the Functions chapter of the
Neuron C Reference Guide. Also refer to the discussion of the #pragma
relaxed_casting_on compiler directive in the Compiler Directives chapter in
the Neuron C Reference Guide.

• Macro arguments are not rescanned until after the macro is expanded, thus
the macro operators # and ## may not yield results as defined in the ANSI C
standard when they occur in nested macro expansions.

• Names of network variables and message tags are limited to 16 characters.
Names of functional blocks are limited to 16 characters unless they are
declared using the external_name feature, in which case the external name
is limited to 16 characters, and the internal name of the functional block is
limited to 64 characters.

Neuron C Programmer's Guide 1-13

• A few ANSI C library functions are included in Neuron C such as memcpy()
and memset(). A string and byte operation library is provided to allow use
of a subset of the ANSI C functions defined in the <string.h> include file.
Other ANSI C library functions such as file I/O and storage allocation
functions are not included in Neuron C. Consult the Neuron C Reference
Guide for a complete and detailed list.

• The Neuron C implementation includes three ANSI include files:
<stddef.h>, <stdlib.h>, and <limits.h>.

• Neuron C requires use of the function prototype feature whenever a call to
the function precedes the function definition (see Chapter 2).

• Neuron C does not support the use of the ellipse in function prototypes or
definitions.

• Neuron C contains additional reserved words and syntax not found in ANSI
C. See the Neuron C Reference Guide for the syntax summary and the list of
reserved words.

• Neuron C supports binary constants in addition to octal and hexadecimal.
Binary constants are specified as 0b<binary_number>. For example, 0b1101
equals decimal 13.

• Neuron C supports the // comment style from C++ in addition to the
traditional /* */ style. In the // style, two slashes (//) begin a comment. The
comment is terminated by the end of the line, without further punctuation.

 C code /* An ANSI C and NEURON C comment */

 C code // A line-style NEURON C comment

• The main() construct is not used. Instead, a Neuron C program’s executable
objects consist of when statements in addition to functions. A thread of
execution always begins with a when statement, as described in Chapter 2,
Focusing on a Single Device.

• Neuron C does not support multiple source files in separate compilation units
(however, the #include directive is supported).

• The ANSI C preprocessor directives #if, #elif, and #line are not supported.
However, #ifdef, #ifndef, #else, and #endif are supported.

1-14 Overview

Neuron C Language
Implementation Characteristics

The American National Standard for the C programming language states (in
Appendix F, Section 3) that each C implementation "shall document its
behavior in each of the areas listed in this section. The following [aspects of
the language] are implementation-defined."

The standard defines the term "implementation-defined" to be "behavior for a
correct program construct and correct data, that depends on the
characteristics of the implementation and that each implementation shall
document." Thus, all these items are language definition issues not specified
in the ANSI standard, but instead left up to the individual implementer.
They are also potential portability issues.

Each heading below references the clause in Appendix F of the ANSI C
language standard, and the appropriate section of that appendix. Each
answer applies to the latest implementation, as of the date of printing, of the
Neuron C Version 2 compiler supplied by Echelon Corporation.

Translation (F.3.2)
Q: How is a diagnostic identified? (Sec. 2.1.1.3)

A: Each Neuron C diagnostic consists of at least two lines output to the
standard output file. One of these keywords introduces the diagnostic: FYI
(For Your Information), Warning, Error, or FATAL. The remainder of the
first line consists of the full path name of the source or include file to which
the diagnostic applies, followed by a line number, and a column number in
parentheses.

The second (and possibly subsequent) lines contain the diagnostic. Each of
the diagnostic message lines is indented one tab stop.

FYI and warning diagnostics do not prevent the compiler from successfully
completing translation. All warning diagnostics should be examined and
corrected, however, as they are likely to indicate programming problems or
poor programming practice.

Error diagnostics do prevent the compiler from successfully completing
translation. They may also result in masking of other errors; thus the
compiler may not be able to locate all errors in a single compilation pass.

FATAL diagnostics prevent the compiler from performing any further
translation. These diagnostics result from resource problems (out of memory,
disk full, and so on) or from internal checking on the compiler itself. Any
diagnostic of the form ***TRAP n***, where n is a decimal number, should be
reported to Echelon Customer Support.

Neuron C Programmer's Guide 1-15

Environment (F.3.2)
Q: What are the semantics of the arguments to main? (Sec. 2.1.2.2.1)

A: Neuron C places no special meaning on the procedure main. The name
main can be used as any other legal identifier.

Q: What constitutes an interactive device? (Sec. 2.1.2.3)

A: Neuron C defines no interactive devices.

Identifiers (F.3.3)
Q: What is the number of significant initial characters (beyond 31) in an
identifier without external linkage? (Sec. 3.1.2)

A: An identifier without external linkage can extend to 256 characters. All
characters are significant.

Q: What is the number of significant initial characters (beyond 6) in an
identifier with external linkage? (Sec. 3.1.2)

A: There are two forms of external linkage in Neuron C: traditional external
and network external. Traditional external consists of the extern, static,
and file scope variables and procedure names. These names are used by the
Neuron C linker when linking the program to construct a load image. Names
declared with the extern or static storage classes, or declared at file scope,
cannot exceed 63 characters. In some cases, the compiler may append
characters to the name to make it unique, and in these cases, the external
identifier may be further restricted in length, but in no case is the name
required to be shorter than 50 characters. The compiler produces a warning
diagnostic when such names have excessive length, and it also truncates
these names to the maximum allowable length. Therefore, it is best to
restrict traditional external names to 50 characters or less.

The second form of external linkage, network external, consists of the names
used by the network and by a network tool. These names include names of
network variables, names of message tags, and names of typedefs used in
defining network variables of nonstandard types. The compiler produces an
error diagnostic for each network external name that exceeds 16 characters.
Functional block names are considered network external names when there
is no external_name or external_resource_name option in the fblock
declaration. If the option is supplied, an internal functional block name can
be up to 64 characters.

Q: Are case distinctions significant in an identifier with external linkage?
(Sec. 3.1.2)

A: Yes, case is significant in an identifier with external linkage, for both
forms of external linkage described above.

1-16 Overview

Characters (F.3.4)
Q: What are the members of the source and execution character sets beyond
what the standard explicitly defines? (Sec. 2.2.1)

A: The Neuron C character set uses the basic ASCII character encoding for
its source and execution character sets. The Neuron C source character set is
the character set as explicitly defined in the standard. The ASCII carriage
return character (hex 0D) and the ASCII backspace character (hex 08) are
both accepted as white space. The end-of-line character is the ASCII new-
line (hex 0A). Additionally, the Neuron C compiler accepts the remaining
basic ASCII printable characters @ (at-sign) and ` (accent-grave) in character
constants and string literals.

The Neuron C compiler interprets the ASCII EOT character (hex 04) as an
end-of-file marker. Likewise, the character Ctrl-Z (hex 1A), which is the MS-
DOS end-of-text-file character, is an end-of-file marker. However, neither of
these characters is required by the Neuron C compiler.

The execution character set is intended to be basic ASCII (character values
0 .. 127). However, a program written in Neuron C is free to use any
interpretation of character values outside the range 0 .. 127.

Q: What are the shift states used for the encoding of multibyte characters?
(Sec. 2.2.1.2)

A: Neuron C does not support multibyte characters. Character constants
containing more than one character are errors.

Q: What are the number of bits in a character in the execution character set?
What is the size of a wide character—that is, the type of wchar_t? (Sec.
2.2.4.2.1)

A: The execution character set uses an 8-bit representation. The Neuron C
compiler does not support wide characters, but the type of a wide character,
wchar_t, is defined to be unsigned long. (Note that Neuron C defines
unsigned long as 16 bits.)

Q: What is the mapping of the members of the source character set (in
character constants and string literals) to members of the execution character
set? (Sec. 3.1.3.4)

A: The mapping from the source character set to the execution character set
is the identity relationship.

Q: What is the value of an integer character constant that contains a
character or an escape sequence not represented in the basic execution
character set or the extended character set for a wide character constant?
(Sec. 3.1.3.4)

A: An integer character constant can only contain characters in the basic
execution character set. With escape sequences, character constants can be
constructed ranging from 0 to 255, or if signed chars are used, ranging from
-128 (\x80) through 127 (\x7F).

Neuron C Programmer's Guide 1-17

Q: What is the value of an integer character constant that contains more than
one multibyte character? What is the current locale used to convert multibyte
characters into corresponding wide characters (codes) for a wide character
constant? (Sec. 3.1.3.4)

A: The Neuron C compiler does not implement multibyte characters.

Q: Does a “plain” char have the same range of values as signed char or
unsigned char? (Sec. 3.2.1.1)

A: A “plain” char is identical to an unsigned char.

Integers (F.3.5)
Q: What are the representations and sets of values of the various types of
integers? What is the order of bits in a multi-unit integer representation?
What is the method of encoding an unsigned integer? What is the method of
encoding a signed integer? (Sec. 3.1.2.5)

A: An int implies a short int by default, which is 8 bits in Neuron C. The 8-
bit byte is the fundamental unit of storage on the Neuron Chip. A long int is
a 16-bit, or 2-byte, integer representation. The <limits.h> include file
contains definitions of the various integer-type ranges. These values are:

 -128 .. 127 signed short
 0 .. 255 unsigned short
-32768 .. 32767 signed long
 0 .. 65535 unsigned long

All unsigned integer values use binary representations. Signed integers use
two’s complement binary representations. The long int, a multi-unit
representation, is stored such that the most significant byte is at the lowest
address.

Q: What is the result of converting an integer to a shorter signed integer?
What is the result of converting an unsigned integer to a signed integer of
equal length, if the signed integer cannot represent the unsigned integer’s
value? (Sec. 3.2.1.2)

A: Conversion from long to short may result in data loss, depending on the
value being converted, since this conversion is performed by discarding the
most significant byte of the long integer. If, for example, a long integer
containing the value 513 (hex 0201) was converted to a signed short,
discarding the most significant byte of the long integer would result in the
value 1.

Conversion from an unsigned integer to a signed integer of equal length
may result in a negative number. For example, an unsigned short integer
may have the value 255 (hex FF), but when converted to a signed short
integer, it is then interpreted using two’s complement, and the value
becomes -1.

1-18 Overview

The Neuron C compiler produces diagnostic messages when data might be
lost as the result of an implicit conversion operation. Explicit conversion,
such as through a cast operation, will not produce a diagnostic message. As
an example, in the code fragment below, the assignment to x results in a
diagnostic warning message, but the assignment to y does not.

int x, y;
x = 285; // Data is lost, x is assigned 29.
 // Warning is produced.

y = (int)285; // Data is lost, y is assigned 29.
 // No warning is produced.

Q: What are the results of bitwise operations on signed integers? (Sec. 3.3)

A: Bitwise operations on signed integers are performed as if the values of the
operands were unsigned. The result is interpreted as signed. Thus the
result of (-2)|1 is -1.

Q: What is the sign of the remainder on integer division? (Sec. 3.3.5)

A: The sign of the remainder of an integer division (that is, op1 % op2) is
always the same as the sign of op1.

Q: What is the result of a right shift of a negative-valued signed integral type?
(Sec. 3.3.7)

A: When a negative-valued signed integral type is right-shifted, binary ones
are shifted in from the left. Thus, for int x and long int x, (x>>1) is always
equal to (x/2).

Floating Point (F.3.6)
Neuron C does not support floating-point operations with C syntax or
operators. A floating-point library is included with Neuron C that
implements a limited set of floating point operations as function calls. The
floating-point library operates on data that conforms to IEEE 754.

Neuron C Programmer's Guide 1-19

Arrays and Pointers (F.3.7)
Q: What is the type of integer required to hold the maximum size of an
array—that is, the type of the sizeof operator, size_t? (Secs. 3.3.3.4, 4.1.1)

A: The maximum size of an array (32,767 elements) requires an unsigned
long.

Q: What is the result of casting a pointer to an integer, or vice versa? What is
the result of casting a pointer to one type to a pointer to another type? (Sec.
3.3.4)

A: The binary representations of pointers and unsigned long integers are
the same. Thus, the result of casting a pointer to an integer of a certain type
is the same as casting an unsigned long to an integer of the same type.
Integers cast to pointer undergo the same conversions as integers cast to
unsigned long.

All pointer representations are interchangeable. Thus, no conversion results
from casting a pointer to one type to a pointer to another type, and the use of
such a pointer produces the expected results.

Q: What is the type of integer required to hold the difference between two
pointers to elements of the same array, ptrdiff_t? (Secs. 3.3.6, 4.1.1)

A: The result of subtraction between two pointers is a [signed] long.

Registers (F.3.8)
Q: What is the extent to which objects are actually placed in registers by use
of the register storage class specifier? (Sec. 3.5.1)

A: The Neuron Chip uses a stack-based architecture. Since this architecture
has no general-purpose registers, the compiler ignores the register storage
class. The compiler also produces a warning diagnostic whenever the
register class is used.

1-20 Overview

Structures, Unions, Enumerations, and Bit-Fields
(F.3.9)

Q: What are the consequences of accessing a member of a union object with a
member of a different type? (Sec. 3.3.2.3)

A: Union members of different types overlay each other at the same offsets
within a union. Thus, the consequences of accessing a pointer as a long or as
an unsigned long, or vice versa, are the same as casting the member.
Likewise, the consequences of accessing an int, or char, or short, as another
typed member from the same list is the same as casting the member.
Accessing a long data type or pointer data type as a short will result in the
value of the most significant byte. Accessing a short data type as a long will
result in reading or changing an unused byte (the least significant byte of the
long), and the most significant byte of the long mapping to the short.

Q: What is the padding and alignment of members of structures? (Sec.
3.5.2.1)

A: Because the architecture of the Neuron Chip is byte aligned, no padding
is needed or performed between members of structures in Neuron C.

Q: Is a “plain” int bit-field treated as a signed int bit-field or as an
unsigned int bit-field? (Sec. 3.5.2.1)

A: A “plain” int bit-field is treated as a signed int bit-field. Use of
unsigned bit-fields is recommended, unless a sign is needed, since
unsigned bit-fields are more efficient in runtime and code space.

Q: What is the order of allocation of bit-fields within a unit? (Sec. 3.5.2.1)

A: Bit-fields are allocated from high-order bit to low-order bit within a byte.

Q: Can a bit-field straddle a storage-unit boundary? (Sec. 3.5.2.1)

A: No. A bit-field cannot straddle a byte boundary. Therefore, the largest
bit-field is 8 bits.

Q: What is the integer type chosen to represent the values of an enumeration
type? (Sec. 3.5.2.2)

A: The integer type int is used to represent the values of an enumeration
type. Thus, the valid range of enumerator values is -128 ... 127.

Qualifiers (F.3.10)
Q: What constitutes an access to an object that has volatile-qualified type?
(Sec. 3.5.5.3)

A: Neuron C does not support volatile-qualified type. The compiler also
produces a warning diagnostic whenever the volatile qualifier is used.

Neuron C Programmer's Guide 1-21

Declarators (F.3.11)
Q: What is the maximum number of declarators that can modify an
arithmetic, structure, or union type? (Sec. 3.5.4)

A: There is no limit to the maximum number of declarators that modify any
type. The limit is determined at run-time by the amount of heap memory
and stack space available to the compiler.

Statements (F.3.12)
Q: What is the maximum number of case values in a switch statement?
(Sec. 3.6.4.2)

A: The Neuron C switch statement will only accept an int expression for
the switch value. Since no two case labels in a switch statement can have
the same value, there are only 256 choices permitted. Neuron C will accept
all 256 different case values for a single switch statement.

Preprocessing Directives (F.3.13)
Q: Does the value of a single-character constant in a constant expression that
controls conditional inclusion match the value of the same character constant
in the execution character set? Can such a character constant have a negative
value? (Sec. 3.8.1)

A: Yes, and yes.

Q: What is the method for locating includable source files? (Sec. 3.8.2)

A: The normal include directive should use the quoted form. To access the
system include files, the directive should use the bracketed form.

EXAMPLE:

 #include <stddef.h>

System include files are defined as the include files installed by the
NodeBuilder Development Tool. They are located in the LONWORKS
Neuron C\Include directory (c:\LonWorks\NeuronC\Include by default).
With the exception of the LonWorks directory, the location of the system
include files cannot be changed.

Use the following quoted form for all user include files:

 #include "[drive:][pathname\]filename.ext"

1-22 Overview

The quoted form causes the compiler to use the filename as it stands if it is
absolute or drive-relative. Otherwise, the compiler will first search the
working directory (using a relative pathname if one is supplied). Next it
searches each of the directories specified in Include Directories of the
NodeBuilder Device Templates Properties dialog and Project Properties
dialog.]

When working from within the NodeBuilder Project Manager, or from the
command line but through the NodeBuilder Project Make Utility, the current
working directory is the folder that contains the main Neuron C source file.

The bracketed form shown below:

 #include <filename.ext>

searches the include subdirectory within the standard files directory for
system include files (such as <limits.h> and <stddef.h>). (The search for
include files specified by the bracketed form is unaffected by the directories
specified in Include Directories of the NodeBuilder's properties dialogs.)

Q: What is the support of quoted names for includable source files? (Sec.
3.8.2)

A: The quoted names in the #include directive can be any valid filename
under the Windows operating system, with absolute, drive-relative, or
relative pathname, if any. Pathnames can be relative to the current working
directory, or relative to any of the directories on the include file search path.

When working from within the NodeBuilder Project Manager, or from the
command line but through the NodeBuilder Project Make Utility, the current
working directory is the folder that contains the main Neuron C source file.

Q: What is the mapping of source file character sequences in the #include
directive? (Sec. 3.8.2)

A: The source file character sequences can be upper or lower case. Any valid
filename character can be used. Case is not significant.

Q: What is the behavior of each recognized #pragma directive? (Sec. 3.8.6)

A: The #pragma directives are documented in the Compiler Directives
chapter of the Neuron C Reference Guide.

Q: What are the definitions for __DATE__ and __TIME__ when respectively,
the date and time of the translation are not available? (Sec. 3.8.8)

A: Neuron C does not support the __DATE__ and __TIME__ macros.

Neuron C Programmer's Guide 1-23

Library Functions (F.3.14)
Q: What is the NULL pointer constant to which the macro NULL expands?
(Sec. 4.1.5)

A: The NULL pointer constant is defined to be 0 in the <stddef.h> file.

Neuron C is, generally, a “freestanding implementation.” This means that
Neuron C does not include a full Standard C library as part of the
implementation. However, some Standard C functions are available. There
are some string functions, and memory functions, such as strcpy() and
memcmp(). Consult the Functions chapter in the Neuron C Reference Guide
for more information on the functions supported.

1-24 Overview

2
Focusing on a Single Device

This chapter describes the Neuron C event scheduler and I/O
objects. The concepts of predefined events and user-defined
events are introduced. Code examples in this chapter illustrate
the use of events, I/O and timer objects, and I/O functions.

Objects that can be defined for each Neuron C application
include timers and input/output (I/O) objects, described here;
network variables, described in Chapter 3; configuration
properties, described in Chapter 4; functional blocks, described
in Chapter 5; and application messages, described in
Chapter 6.

What Happens on a Single Device?
In this chapter, you begin to learn about programming a Neuron Chip or
Smart Transceiver by focusing first on a single device. Each Neuron Chip
and each Smart Transceiver has standard firmware, called the Neuron
firmware, and hardware support that implement a scheduler, timers, and I/O
device drivers and interfaces. The Neuron C language includes predefined
objects that provide access to these firmware features. These objects are
described briefly here, and in more detail later in this chapter.

• The Neuron firmware's event scheduler handles task scheduling for the
application program. This chapter explains how to use the Neuron C
language to define events and tasks, how the scheduler evaluates nonpriority
events, and how you can define priority events.

• The Neuron C language offers two types of timer objects: millisecond and
second timers. These timers can be used to affect the scheduling of tasks, as
described in the Timers section.

• A number of I/O objects can be declared using Neuron C extensions to
ANSI C. These I/O objects, as well as related I/O functions and events, are
described in the Input/Output section.

The Scheduler
The scheduling of application program tasks is event driven: when a given
condition becomes TRUE, a body of code (called a task) associated with that
condition is executed. The scheduler allows you to define tasks that run as
the result of certain events, such as a change in the state of an input pin,
receiving a new value for a network variable, or the expiration of a timer.
You can also specify certain tasks as priority tasks, so that they receive
preferential service. (See Priority When Clauses later in this chapter.)

When Clauses
Events are defined through when clauses. A when clause contains an
expression that, if evaluated as TRUE, causes the body of code (the task)
following the expression to be executed to completion. Multiple when
clauses can be associated with a single task. A simple when clause and its
associated task are shown below. The when clause or clauses and the
associated task are frequently referred to as one entity known as a when task
or a when statement.

2-2 Focusing on a Single Device

 when (timer_expires(led timer))

{
 // Turn off the LED
 io_out(io_led, OFF);
}

when clause

task

In this example above, when the led_timer application timer (definition not
shown in this example) expires, the body of code (the task) that follows the
when clause is executed to turn off the specified I/O object, io_led (also
defined elsewhere in the program). After this task has been executed, the
timer_expires event is automatically cleared. Its task is then ignored until
the LED timer expires again and the when clause again evaluates to TRUE.

The following examples demonstrate various ways of using tasks and events.
More information about tasks and events can be found in Chapter 7,
Additional Features, and Figure 7.1.

when (reset)
when (io_changes(io_switch))
when (!timer_expires)
when (flush_completes && (y == 5))
when (x == 3)
{
 // Turn on the LED and start the timer
 . . .
}

The when clauses cannot be nested. For example, the following nested when
clause is not valid:

when (io_changes(io_switch))
{
 when (x == 3) { // Can't nest!
 ...
 }
}

An equivalent result may be achieved by testing the event with an if
statement:

when (io_changes(io_switch))
{
 if (x == 3) {
 ...
 }
}

Neuron C Programmer's Guide 2-3

When Statement
The syntax for a when statement (the when clause or clauses plus the
associated task) is:

when-clause
[when-clause ...]
task

The syntax for when-clause is:

[priority] [preempt_safe] when (event)

priority Forces evaluation of the following when clause each
time the scheduler runs. See Priority When Clauses
in this chapter.

preempt_safe Allows the scheduler to execute the associated when
task even if the application is in preemption mode.
See the discussions on preemption mode in Chapter 6,
How Devices Communicate Using Application
Messages.

event This expression is either a predefined event (see the
following section) or any valid Neuron C expression
(which may contain a predefined event). Predefined
events as well as expressions are enclosed in
parentheses. One or more when clauses can be
associated with the same task.

task A Neuron C compound statement, consisting of a
series of Neuron C declarations and statements,
enclosed in braces, which are identical to those found
in a Neuron C function definition. The task is
identical to the body of a void function (that is, it
cannot return a value). A return statement can be
used to terminate execution of the task but is not
required.

Types of Events Used in When Clauses
The events defined in a when clause fall into two general categories:
predefined events and user-defined events. Predefined events use keywords
built into the compiler. Examples of predefined events include input pin
state changes, network variable changes, timer expiration, and message
reception. User-defined events can be any valid Neuron C expression that
evaluates or converts to a boolean.

The distinction between user-defined events and predefined events is not
critical. Use predefined events whenever possible, since they require less
code space.

2-4 Focusing on a Single Device

There is one exception to the statement that a when clause can be any valid
C expression. The offline, online and wink predefined events must appear
by themselves if used. All other predefined events may be combined into any
arbitrary expressions. This restriction only applies to when clauses.

EXAMPLES:

when (msg_arrives) // O.K.
when (msg_arrives && flag == TRUE) // O.K.
when (online) // O.K.
when (online && flag == TRUE) // Not permitted.

Predefined Events
The timer_expires event shown earlier is one type of predefined event.
Other predefined events are represented by unique keywords, listed in the
following table:

Predefined Event Where Described in
This Manual

flush_completes Chapter 7

io_changes this chapter
io_in_ready this chapter
io_out_ready this chapter
io_update_occurs this chapter
msg_arrives Chapter 6
msg_completes Chapter 6
msg_fails Chapter 6
msg_succeeds Chapter 6
nv_update_occurs Chapter 3
nv_update_completes Chapter 3
nv_update_fails Chapter 3
nv_update_succeeds Chapter 3
offline Chapter 7
online Chapter 7
reset this chapter
resp_arrives Chapter 6
timer_expires this chapter
wink Chapter 7

Neuron C Programmer's Guide 2-5

A modifier that narrows the scope of the event may follow some predefined
events, such as the I/O events and network variable events. If the modifier is
optional and not supplied, any event of that type qualifies.

Predefined events can also be used as any sub-expression, including within
the control expression of if, while, and for statements. This method is
termed direct event processing. An example of direct event processing is:

mtimer t;
when (event)
{
 . . .
 if (timer_expires(t)) {
 io_out(io_led, OFF);
 }
 . . .
}

Any built-in event keyword or keyword expression (e.g. timer_expires(t))
will be treated the same as any other sub-expression and any combination
allowed by standard C expression syntax is allowed when programming in
Neuron C.

The special case of the io_changes event expression must be treated
carefully. The to and by qualifier keywords are treated as general
expression operators for purposes of precedence (although they are only
permitted in combination with io_changes). These operators are of equal
precedence with each other, but they are mutually exclusive. They are of
higher precedence than relational operators (i.e. comparisons), but lower in
precedence than shift and arithmetic operators.

Following are examples of how the io_changes event expression is parsed:

io_changes (device) by a + b
 as:
io_changes (device) by (a + b)

and

io_changes (device) by a < b
 as:
(io_changes (device) by a) < b

As with any other C operators, the implied precedence can be explicitly
changed by parenthesization. Parentheses should always be used to improve
clarity of the code if there is any doubt. Use of extra parentheses will have
no negative effect upon the compilation or the code generated.

2-6 Focusing on a Single Device

The Neuron C compiler detects the use of predefined event keywords in
when clauses and treats them specially for code optimization purposes.
However, when event keywords are used as sub-expressions within when
clauses, event table optimizations cannot be used. In the examples below,
the first case uses the event table optimization, the second and third do not:

 when (timer_expires) { }
 when (! timer_expires) { }
 if (timer_expires)

Although the io_changes expression (by and to varieties) does not require a
constant value, only constant-valued io_changes expressions are optimized
into the when clause event table.

Event Processing
Events related to network activity are processed using two separate queues.
One queue serves the following events related to incoming network
messages:

 nv_update_occurs
 msg_arrives
 online
 offline
 wink

The other queue serves the remaining network events pertaining to
completion events and responses:

 nv_update_completes
 nv_update_succeeds
 nv_update_fails
 msg_completes
 msg_succeeds
 msg_fails
 resp_arrives

Most network events, except resp_arrives, are enqueued only if the
Neuron C compiler has determined that the application checks for the event.
The online, offline, and wink events are always enqueued but are
discarded by the scheduler if no corresponding when clause is found.

Once at the head of the queue, an event remains there until processed by the
application. Therefore, any network event that is checked for by an
application must be checked for frequently, or the event may remain at the
head of the queue, effectively blocking that queue. A blocked queue prevents
the application from continuing normal processing of events and can cause
the device to fail to respond to any subsequent application or network
management messages.

Neuron C Programmer's Guide 2-7

This is a particularly critical consideration for nv_update_occurs and
msg_arrives events, which can arrive unsolicited at any time; in
comparison, completion events and responses arrive only as the result of
application-initiated outgoing network activity. The Neuron C compiler will
determine that an event is handled by the application by virtue of its
presence in the program, even if it is never checked for in a when clause, or
is only checked for in special circumstances.

Reset Event
The reset event is TRUE the first time this event is evaluated after the
Neuron Chip or Smart Transceiver is reset for any reason. (I/O object and
global variable initializations will be performed before processing any
events.) The reset event task is the first task to be executed after reset of the
Neuron Chip or Smart Transceiver.

The reset event task executes only if the device is in the configured state (i.e.
if the device is not applicationless, hard-offline, or unconfigured). Also, the
reset event task runs when the device is applicationless if the directive
#pragma run_unconfigured is specified in the application program. The
task runs regardless of whether the device is soft-offline or not. The soft-
offline state is not reset-retained so the only case where this is meaningful is
when the device transitions from unconfigured or hard-offline to configured
state after a reset, as would typically happen during initial commissioning.
In this case, the node executes the reset task followed by the offline task.

A reset occurs as a natural part of the process of commissioning a
LONWORKS device, and the reset process includes the execution of the reset
event task. The device undergoes a state transition to complete the
commissioning process, and that state transition can only be completed once
the reset event task has been executed. Consequently, you should keep the
reset event task short so the device can be commissioned at maximum speed.
You must keep the total reset event task processing time under 18 seconds to
prevent commissioning failures. Reset event task processing time includes
Neuron firmware initialization time as described in the Smart Transceivers
databooks.

2-8 Focusing on a Single Device

User-defined Events
A user-defined event can contain assignments and function calls. Such
events using complex expressions can affect the response time for all events
within a program, so you must minimize calls to complex functions within
user-defined events. Assignments within user-defined events can only be
done to global variables.

Furthermore, the evaluation of an event keyword or an event expression,
such as timer_expires(t), will clear any pending event, regardless of
whether the entire expression is TRUE or FALSE, as below:

when ((timer_expires(t)) && (flag = = TRUE))

As with ANSI C compilers, the Neuron C compiler evaluates logical
expressions only as much as needed. For example, in an if (a && b)
expression, the b term will only be evaluated if a is TRUE, and in an
if (a || b) expression, the b term will only be executed if a is FALSE. This
is called short-circuit evaluation, and is specified by the ANSI C language
definition.

When combining user-defined expressions with a predefined event using the
logical operators discussed in the paragraph above, you must make sure that
this does not prevent the predefined events from being evaluated as needed,
in order to avoid blockage of the event queue as discussed earlier in this
chapter.

For example, the following user-defined event expression is okay:

when ((timer_expires(t)) && (flag = = TRUE))

But, if the expression above is reversed, as shown below, it is likely to cause a
blockage of the event queue if the flag variable is true for any significant
time, because the short-circuit nature of the logical-and operator can prevent
the timer expiration event from being checked at all. Thus, the reversed
expression shown below must be avoided:

when ((flag = = TRUE) && (timer_expires(t)))

Neuron C Programmer's Guide 2-9

Scheduling of When Clauses
The scheduler evaluates when clauses in round-robin fashion: Each when
clause is evaluated by the scheduler and, if TRUE, the task associated with it
is executed. If the when clause is FALSE, the scheduler moves on to
examine the following when clause. After the last when clause, the
scheduler returns to the top and moves through the group of when clauses
again. For example, a group of when clauses might look like the following:

when (nv_update_occurs) // Event A
 // {task to execute}

when (nv_update_fails) // Event B
 // {task to execute}

when (io_changes) // Event C
 // {task to execute}

when (timer_expires) // Event D
 // {task to execute}

Letter names shown above are used for the clauses in Figure 2.1 and the
following narration of events. This shows how the order of execution of tasks
differs from the order the when clauses appear in a program.

At the start of this example, no event has occurred, thus no when clause event
expression is TRUE.

1 The scheduler begins with A. Since A is FALSE, its task is not executed.

2 Event C occurs and the expression C becomes TRUE.

3 The scheduler moves to B. Since B is FALSE, its task is not executed.

4 The scheduler moves to C. Since C is TRUE (item 2, above), its task is
executed.

5 A becomes TRUE.

6 The scheduler moves to D. Since D is FALSE, its task is ignored.

7 The scheduler moves back to A. Since A is TRUE (item 5, above), its task is
executed.

2-10 Focusing on a Single Device

Task A

Task B

Test A

Test B

Test A
(FALSE)

(FALSE)

(TRUE)

Task C

Task D

Test C

Test D

Execute
Task C

Execute
Task A

(TRUE)

(FALSE)

3
7

Event C
Occurs here

Event A
Occurs here

1

4

6

2 5

Figure 2.1 Example Scheduler Timeline

Priority When Clauses
The priority keyword can be used to designate when clauses that should be
evaluated more often than nonpriority when clauses. Priority when clauses
are evaluated in the order specified every time the scheduler runs. If any
priority when clause evaluates to TRUE, the corresponding task is executed
and the scheduler starts over at the top of the priority when clauses.

If none of the priority when clauses evaluate to TRUE, then a nonpriority
when clause is evaluated, selected in the round-robin fashion described
earlier. If the selected nonpriority when clause evaluates to TRUE, its task
is executed. The scheduler then resumes with the first priority when clause.
If the nonpriority when clause selected evaluates to FALSE, its task is
ignored and the scheduler resumes with the first priority when clause. See
Figure 7.1.

The scheduling algorithm described above can be modified through use of the
scheduler_reset pragma, discussed in Chapter 7, Additional Features.

WARNING: Excessive use of priority when clauses might starve execution
of nonpriority when clauses. If a priority when clause is true the majority
of the time, it monopolizes processor time. Priority when clauses should be
designed to be true only rarely, or the remaining tasks must be tolerant of
not being executed frequently and responsively.

Neuron C Programmer's Guide 2-11

Function Prototypes
Neuron C requires the use of function prototypes if a function is to be called
before it is defined. Examples of valid prototypes include the following:

void f(void);
int g(int a, int b);

The following are not considered prototypes because they do not have
argument lists. They are merely forward declarations:

void f();
g(); // defaults to 'int' return value

If you define a function before you call it, Neuron C automatically creates an
internal prototype for you. Only one prototype is created for a given function.
The following examples are technically not prototypes, but Neuron C creates
function prototypes for them:

void f()
{ /* body */ }

g (a,b)
int a;
int b;
{ /* body */ }

Although Neuron C can create prototypes, it does not employ the ANSI C
Miranda prototype rule. (According to the Miranda prototype rule, if a
function call does not already have a prototype, a prototype will
automatically be created for it.) In Neuron C, a function prototype is
automatically created only when the function is defined.

2-12 Focusing on a Single Device

Timers
Two types of software timer objects are available to a Neuron C application:
millisecond and second timers. The millisecond timers provide a timer
duration of 1 to 64,000 milliseconds (or .001 to 64 seconds). The second
timers provide a timer duration of 1 to 65,535 seconds. For more accurate
timing of durations of 64 seconds or less, use the millisecond timer. These
are separate from the two hardware timer/counters in the Neuron core. (See
also Input Clock Frequency and Timer Accuracy later in this chapter.)

Declaring Timers
A maximum of 15 timer objects (total of both types) can be defined within a
single program. A timer object is declared using one of the following:

mtimer [repeating] timer-name [=initial-value];
stimer [repeating] timer-name [=initial-value];

mtimer Indicates a millisecond timer.

stimer Indicates a second timer.

repeating An option for the timer to restart itself automatically
upon expiration. With this option, accurate timing
intervals can be maintained even if the application
cannot respond immediately to an expiration event.

timer-name A user-supplied name for the timer. Assigning a
value to this name starts the timer for the specified
length of time (the specified time is in seconds for an
stimer and milliseconds for an mtimer). A timer
that is running or has expired can be started over by
assigning a new value to this name. The timer object
can be evaluated while the timer is running, and it
will indicate the time remaining. Setting the timer to
0 turns the timer off. No timer expiration event
occurs for a timer that has been turned off (see the
description of the timer_expires event described in
the Neuron C Reference Guide).

initial-value An optional initial value to be loaded into the timer on
power-up or reset. Zero is loaded by the Neuron
firmware (in other words, the timer is turned off) if no
explicit initial-value is supplied.

Neuron C Programmer's Guide 2-13

Examples
An example of declaring a timer object and assigning a value to it is shown
below:

// start timer with value of 5 sec
stimer led_timer = 5;

An example of turning a timer off is shown below:

stimer led_timer;
when (some-event)
{
 led_timer = 0;
}

An example of evaluating the value of a running timer is shown below:

stimer repeating led_timer;
when (some-event)
{
 time_remaining = led_timer;
 .
 .
 .
}

NOTE: When setting and examining timers in the LonBuilder or
NodeBuilder debuggers, certain inaccuracies may occur. When a timer is set
during program execution and is examined while the program is halted
(includes single stepping and breakpoints), the timer value can be as much as
200 milliseconds larger than the actual time until expiration. No such
inaccuracy exists on a timer that is allowed to run without a debugger halt.

The timer_expires Event
The timer_expires event becomes TRUE when a timer expires. The syntax
of this event is the following:

timer_expires [(timer-name)]

timer-name Specifies a specific timer to check.

If timer-name is not included, the event is an unqualified timer_expires
event. An unqualified event expression is one that omits the optional
qualifier syntax that limits the objects to which the event applies.

2-14 Focusing on a Single Device

A timer event is unique because it can be cleared only by checking for specific
(qualified) timer expiration events. (Other events can be cleared by checking
for either the qualified or unqualified events.) For example, the following
when clause checks for the expiration of the led_timer, so the
timer_expires event for that timer is cleared to FALSE.

EXAMPLES:

stimer led_timer;
when (timer_expires(led_timer))
{
 io_out(io_led, OFF); // Turn off the LED
}

If your program has multiple timers, you must include a specific check for
each timer so that the expiration event is cleared, as shown below:

mtimer x;
mtimer y;
mtimer z;
when (timer_expires(x))
{
 // task
}
when (timer_expires(y))
{
 // task
}
when (timer_expires(z))
{
 // task
}

An alternate style of checking for specific timers is shown below. This
example also demonstrates that an event expression is not restricted to use
only in a when clause.

when (timer_expires)
{
 if (timer_expires(x))
 .
 .
 .
 else if (timer_expires(y))
 .
 .
 .
 else if (timer_expires(z))
 .
 .
 .
}

Neuron C Programmer's Guide 2-15

NOTE: Be sure to check for specific timer events while using the unqualified
timer_expires event. Unlike all other predefined events, which are TRUE
only once per pending event, the unqualified timer_expires event remains
TRUE as long as any timer has expired.

Which style you choose to use for checking timer expiration depends on the
circumstances in your application. Use the first style of checking for specific
timers if you’re concerned about code space. Use the second style if you’re
concerned about speed of execution, performance, or response time.

For an example of a complete program that declares a timer and uses the
timer_expires event, see the example Thermostat Interface in this chapter.

Input/Output
Each Neuron Chip and each Smart Transceiver has a variety of built-in
electrical interface options for performing input and output (I/O) functions.
Before performing I/O, you must first declare the I/O objects that monitor
and control the eleven Neuron Chip or Smart Transceiver I/O pins, named
IO_0, IO_1, ..., IO_10, and IO_11 on select Neuron Chips and Smart
Transceivers including the PL Smart Transceivers. Any undeclared pin is,
by default, unused and thus deactivated. In the deactivated state, the pin is
in a high-impedance state. The declaration syntax for I/O objects is described
in detail in the Neuron C Reference Guide.

NOTE: Unused input pins must have pull-up resistors. The
enable_io_pullups pragma can be used for pins IO4 through IO7 (see the
Compiler Directives chapter of the Neuron C Reference Guide for more
information on this directive). If the IO_11 pin is implemented, its pull-up is
also enabled with this directive. You may define unused pins as outputs to
avoid using pull-ups.

To perform I/O, you normally use the built-in I/O functions: io_in(),
io_out(), io_set_direction(), io_select(), io_change_init(), and
io_set_clock(). The io_out_request() function is used to perform I/O with
the parallel I/O object. Use of these I/O functions is described in this
chapter.

I/O objects can also be linked to Neuron C events, since changes in I/O often
affect task scheduling. See I/O Events in this chapter for a description of the
io_changes and io_update_occurs events, which are the I/O-related events
used in when clauses. For more detailed information on, and additional
examples of using I/O, see the following LONWORKS engineering bulletins:

• Analog-to-Digital Conversion with the Neuron Chip engineering bulletin
(part no. 005-0019-01)

2-16 Focusing on a Single Device

• Driving a Seven Segment Display with the Neuron Chip engineering bulletin
part no. 005-0014-01)

• Neuron Chip Quadrature Input Function Interface engineering bulletin (part
no. 005-0003-01)

• Parallel I/O Interface to the Neuron Chip engineering bulletin (part no. 005-
0021-01)

• EIA-232C Serial Interfacing with the Neuron Chip engineering bulletin (part
no. 005-0008-01)

I/O Object Types
A variety of I/O object types are available: Direct, Timer/Counter, Serial, and
Parallel. Object types can be grouped as follows:

• Direct I/O Objects are based on a logic level at the I/O pins; none of the
Neuron Chip or Smart Transceiver hardware's timer/counters are used in
conjunction with these I/O objects. These objects can be used in multiple,
overlapping combinations within the same Neuron Chip or Smart
Transceiver. Direct I/O object types are the following:

Input Object Types Output Object Types
bit bit
bitshift bitshift
byte byte
nibble nibble
leveldetect touch
touch

• Timer/Counter I/O Objects use a timer/counter circuit in the Neuron Chip or
Smart Transceiver. As shown in Figure 2.2, each Neuron Chip and each
Smart Transceiver has two timer/counter circuits, one whose input can be
multiplexed and one with a dedicated input. Timer/counter I/O object types
are the following:

Input Object Types Output Object Types
dualslope edgedivide
edgelog frequency
ontime infrared_pattern
period oneshot
pulsecount pulsecount
quadrature pulsewidth
totalcount triac
 triggeredcount

Neuron C Programmer's Guide 2-17

• Serial I/O Objects are used for transferring data serially over a pin or set of
pins. Only one type of serial I/O object can be defined within a single Neuron
Chip or Smart Transceiver. Both the input and output versions of the serial
type can coexist within a single Neuron Chip or Smart Transceiver. Serial
I/O object types are the following:

Serial Input Object Types Output Object Types
infrared serial
magcard
magcard_bitstream
magtrack1
serial
wiegand

Serial Input/Output Object Types
i2c
neurowire
sci
spi

• Parallel I/O Objects are used for high-speed bidirectional I/O. I/O objects
within this group use all the Neuron Chip or Smart Transceiver I/O pins.
The parallel I/O object types are the following:

Parallel Input/Output Object Types
muxbus
parallel

Table 2.1 (continued on the next two pages) lists the object types, which pins
they can use, and what additional options apply to them. Also see the
Neuron C Reference Guide.

Table 2.1 I/O Object Types (Part 1 of 3)

Object Type

Max #
Available
Objects

Pins Declarable
as First Pin / Total # Pins
per Object

Other Options

Bit input 12 any pin / 1 pin --

Bit output 12 any pin / 1 pin initial_output_level

Bitshift input 5 IO_0 - IO_6, IO_8, or IO_9 / 2
pins

numbits, clockedge, kbaud

Bitshift
output

5 IO_0 - IO_6, IO_8, or IO_9 / 2
pins

numbits, clockedge, kbaud,
initial_output_level

Byte input 1 IO_0 / 8 pins --

Byte output 1 IO_0 / 8 pins initial_output_level

2-18 Focusing on a Single Device

Table 2.1 I/O Object Types (Part 2 of 3)

Object Type

Max #
Available
Objects

Pins Declarable
as First Pin / Total # Pins
per Object

Other Options

Dualslope
input

2 IO_4-IO_7; IO_0 is used when
input is IO_4 (mux) or IO_5-IO_7;
IO_1 is used when input is IO_4
(ded) / 2 pins

invert, clock

Edgedivide
output

2 IO_0 or IO_1; sync pin can be
IO_4 - IO_7 when IO_0 is output
pin; sync pin is IO_4 when IO_1
is output pin / 2 pins

invert, clock,
sync pin
initial_output_level

Edgelog input 1 IO_4 / 1 pin clock, single_tc

Frequency
output

2 IO_0 or IO_1 / 1 pin invert, clock,
initial_output_level

I2C
input/output

no limit IO_0 / 2 pins
 or
IO_8 / 2 pins

use_stop_condition

Infrared
input

4 IO_4-IO_7 / 1 pin invert, clock

Infrared-pattern
output

2 IO_0 or IO_1 / 1 pin invert, clock,
initial_output_level

Leveldetect
input

8 IO_0 - IO_7 / 1 pin --

Magcard
input

1 IO_8, uses 2 pins; optional
timeout pin is IO_0-IO_7, 1 pin

invert, clockedge,
timeout pin

Magcard-
bitstream input

1 IO_8, uses 2 pins; optional
timeout pin is IO_0-IO_7, 1 pin

invert, clockedge,
timeout pin

Magtrack1
input

1 IO_8, uses 2 pins; optional
timeout pin is IO_0-IO_7, 1 pin

invert, clockedge,
timeout pin

Muxbus
input/output

1 IO_0 / 11 pins --

Neurowire
master
input/output

8 IO_8, uses 3 pins; select pin is
IO_0 - IO_7, 1 pin / a total of 4
pins

select pin, kbaud

Neurowire slave
input/output

1 IO_8, uses 3 pins; timeout pin is
IO_0 - IO_7, 1 pin / a total of 4
pins

clockedge,
timeout pin

Neuron C Programmer's Guide 2-19

Table 2.1 I/O Object Types (Part 3 of 3)

Object Type

Max #
Available
Objects

Pins Declarable
as First Pin / Total # Pins
per Object

Other Options

Nibble input 2 IO_0 - IO_4 / 4 pins --

Nibble output 2 IO_0 - IO_4 / 4 pins initial_output_level

Oneshot output 2 IO_0 or IO_1 / 1 pin invert, clock,
initial_output_level

Ontime input 5 IO_4 - IO_7 / 1 pin mux|ded, invert, clock

Parallel
input/output

1 IO_0 / 11 pins slave|slave_b|master

Period input 5 IO_4 - IO_7 / 1 pin mux|ded, invert, clock

Pulsecount input 5 IO_4 - IO_7 / 1 pin mux|ded, invert

Pulsecount
output

2 IO_0 or IO_1 / 1 pin invert, clock

Pulsewidth
output

2 IO_0 or IO_1 / 1 pin invert, clock, short,
long, initial_output_level

Quadrature
input

2 IO_4 or IO_6 / 2 pins --

SCI (UART) 1 IO_8 / (2 pins with IO_10) baud, twostopbits

Serial input 1 IO_8 / 1 pin baud

Serial output 1 IO_10 / 1 pin baud

SPI 1 IO_8 / 3 pins invert, clock, clockedge,
master | slave, select pin,
neurowire

Totalcount input 5 IO_4 - IO_7 / 1 pin mux|ded, invert

Touch
input/output

no limit IO_0 - IO_7 / 1 pin output pin, timing

Triac output 2 IO_0 or IO_1; sync pin can be
IO_4 - IO_7 when IO_0 is output
pin; sync pin is IO_4 when IO_1
is output pin / 2 pins

sync pin, invert, clock,
clockedge, pulse | level

Triggeredcount
output

2 IO_0 or IO_1; sync pin can be
IO_4 - IO_7 when IO_0 is output
pin; sync pin is IO_4 when IO_1
is output pin / 2 pins

sync pin, invert

Wiegand input 4 IO_0 - IO_6 / 2 pins; optional
timeout pin is IO_0-IO_7, 1 pin

timeout pin

2-20 Focusing on a Single Device

Declaring I/O Objects
Declaring an I/O object in the application accomplishes the following:

1 The declaration tells the compiler what type of I/O operation will be
performed and on which pin or pins. The compiler creates instructions that
configure the hardware within the Neuron core as a result of this declaration.
The hardware configuration code is executed every time the device
application is reset.

2 The declaration associates the name of the I/O object with the hardware.

This section describes the general syntax for declaring I/O objects in the
Neuron C language. A detailed explanation of the syntax for each I/O object
type can be found in the Neuron C Reference Guide.

pin type [options] io-object-name;

pin One of the Neuron C keywords that name the twelve
I/O pins, IO_0 through IO_112. In general, pins can
appear in a single object declaration only. However, a
pin may appear in multiple declarations of the bit,
nibble, and byte I/O object types. Also, IO_8 can
appear in multiple declarations of neurowire master
specifying different select pins. In this case, it is not
required that all declarations have the same sense,
that is, input versus output. See Overlaying I/O
Objects in this chapter.

type Specifies the I/O object type.

options Optional I/O parameters, dependent on the chosen
type for the I/O object. Each object type's available
options are described in the Neuron C Reference
Guide. Except where noted, these options can be
listed in any order. All options have default values
that are used when you do not include the option in
the object declaration.

io-object-name A user-supplied name for the I/O object, in the
ANSI C format for variable identifiers.

In the following example, a logic level needs to be measured at the IO3 input
pin of the device, which is named IO_3 in Neuron C. The pin is connected to
a proximity detector, as its name indicates.

IO_3 input bit ioProxDetector;

Now, whenever your program refers to ioProxDetector, it is actually
referring to the logical level on pin IO3.

2 IO_11 is only available on the PL 3150 and PL 3120 Smart Transcievers.

Neuron C Programmer's Guide 2-21

Use of I/O Resources
The following list and Table 2.2 contain guidelines for declaring I/O object
types:

• Up to 16 I/O objects can be declared.

• Timer/counter 1 can be multiplexed for up to four input objects.

• The neurowire, i2c, magcard, magcard_bitstream, magtrack1, and
serial I/O objects are exclusive of each other. One or more of a single type of
these I/O objects may be declared in one program.

• Because the parallel and muxbus I/O objects require all I/O pins, no other
object types can be declared when either of these objects is declared.

• Direct I/O object types (bit, nibble, byte, etc. - see description of Direct I/O
objects in I/O Object Types earlier in this chapter) can be declared in any
combination. See the following section, Overlaying I/O Objects.
Timer/counter, serial, and neurowire I/O object declarations override the
pin directions of any overlaying direct I/O object types.

• The quadrature and dualslope input objects cannot be multiplexed with
other input objects on timer/counter 1. The edgelog input uses both
timer/counters and is exclusive of any other timer/counter objects.

• The bitshift I/O objects cannot be declared on the same I/O pins as
timer/counter objects. Direct I/O objects may be overlaid with bitshift I/O
objects. Two adjacent bitshift I/O objects may not share any I/O pins.

2-22 Focusing on a Single Device

As an example, the following I/O object types can be combined on a Neuron
Chip or Smart Transceiver:

A1) 1 parallel I/O object type (on IO_0)
or

A2) 1 muxbus I/O object type (on IO_0)
or

A3) A combination of other I/O objects:

 1) a) 1 to 4 timer/counter inputs (multiplexed on IO_4, IO_5, IO_6, IO_7),
including quadrature input on IO_6
 or
 b) 1 timer/counter output (on IO_0)

 and
2) a) 1 timer/counter input (on IO_4), including quadrature input on IO_4
 or
 b) 1 timer/counter output (on IO_1)

 and
3) a) 1 neurowire I/O object (on IO_8, IO_9, IO_10) and 1 of IO_0 ... IO_7
 or
 b) 1 serial I/O object type (on IO_8, IO_10)

 and
4) any direct I/O object type on any pin (IO_0 through IO_10)

and

B) A bit I/O object on IO_11

Neuron C Programmer's Guide 2-23

Table 2.2 I/O Devices

0 1 2 3 4 5 6 7 8 9 10
��
��
��
��
��
��
��
��
��
��

All Pins 0-7

Any Four Adjacent PinsD
IR

EC
T

I/O
M

O
DE

S

Data Pins 0-7 ALS WS RS

Data Pins 0-7 R/WCS HS

Data Pins 0-7 R/WCS A0

Byte Input, Byte Output
Leveldetect Input

Nibble Input, Nibble Output

Muxbus I/O

Bit Input, Bit Output

Master/Slave A
Slave B {Parallel I/OPA

R
AL

-
LE

L
I/O

M
O

D
ES

SE
RI

AL
I/O

M
O

DE
S

Touch I/O

��
��
��
��
��
��
��
��
��
��
��
��
��

Magcard Input C DOptional Timeout

Magcard Bitstream

11

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

control

Edgelog Input
Dualslope Input

TI
M

ER
 /

CO
U

NT
ER

IN
PU

T
M

O
DE

S

C DOptional Timeout

Wiegand

Magtrack1 Input C DOptional Timeout

C D C D C D C D C D C D C D C D C DBitshift Input, Bitshift Output
Master C DOptional Chip Select D

C DDOptional Timeout{ Slave
Neurowire I/O

SPI I/O

SCI I/O

Serial Input
Serial Output

Input 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Optional Timeout{ Optional Timeout

I2C I/O C DC D

TI
M

ER
 /

CO
U

NT
ER

O
UT

PU
T

M
O

D
ES

OutputEdgedivide Output

Edgelog Single - T/C Input

Ontime Input
Period Input

Pulsecount Input

Totalcount Input

Infrared Input

4+5 6+7Quadrature Input

Frequency Output
Infrared-Pattern Output

0 1 2 3 4 5 6 7 8 9 10

StandardPull UpsHigh Sink

Sync Inputcontrol

control

Oneshot Output
Pulsecount Output
Pulsewidth Output

Triac Output
Triggeredcount Output

11

Pu
ll

Up

Sync Input

Sync Input

Notes:

C = Clock, D= Data
Bitshift, I

2

C, Magcard, Neurowire

Timer/Counter 1 Devices

One of:

IO_6 input quadrature
IO_4 input edgelog [single_tc]
IO_0 output [triac | triggeredcount |
 edgedivide] sync(IO_4..7)
IO_0 output [frequency | infra-
 red_pattern | oneshot | pulse-
 count | pulsewidth]

Or up to four of:

IO_4 input [ontime | period | pulse-
 count | totalcount | dualslope |
 infrared] mux
IO_5..7 input [ontime | period | pulse-
 count | totalcount | dualslope |
 infrared]

Timer/Counter 2 Devices

One of:

IO_4 input quadrature
IO_4 input edgelog (without the
 single_tc option)
IO_1 output [triac | triggeredcount |
 edgedivide] sync(IO_4)
IO_1 output [frequency | infrared_pat-
 tern | oneshot | pulsecount |
 pulsewidth]
IO_4 input [ontime | period | pulse-
 count | totalcount | dualslope |
 infrared] ded

2-24 Focusing on a Single Device

Overlaying I/O Objects
In some cases, you may choose to declare more than one I/O object type for
the same pin. For example, the following declarations allow a program to
read four adjacent pins in one operation (with the nibble object type) or read
each pin individually (with the bit object type):

IO_4 input nibble io_all_points;
IO_4 input bit io_point_1;
IO_5 input bit io_point_2;
IO_6 input bit io_point_3;
IO_7 input bit io_point_4;

The following declarations enable a program to monitor (read back) the level
on its own oneshot output object:

IO_1 output oneshot clock (3) io_break_high;
IO_1 input bit io_break_high_level;

I/O object types can be divided into the following two categories with respect
to overlaying: hard and soft pin direction I/O objects. Soft pin direction I/O
objects (the bit, nibble, and byte object types) are changed by subsequent
pin declarations. When multiple soft pin direction I/O objects are declared
for the same pin, the last soft I/O object declared is the one that affects the
initial direction of the pin at run-time. A hard pin direction I/O object (all
other I/O object types) is not affected by subsequent declarations.

The io_set_direction() function allows the application to change the
direction of any bit, nibble, or byte type I/O object at run time. See the
Neuron C Reference Guide for documentation of io_set_direction().

In the previous example the oneshot is a hard pin direction I/O object, but
bit is a soft pin direction I/O object. The order of declarations is not
important, and the oneshot object is the one that affects the direction of pin
IO1 that is set during initialization after reset.

If a program declares the following:

IO_2 input bit io_point_1;
IO_2 output bit io_point_2;

The IO2 pin is an output bit I/O object (since the output is declared last). A
subsequent call to io_out() for io_point_2 sets the level of this pin. An
io_in() call to io_point_1 can then be used to read back the actual pin level
of this output object. The discussion here assumes that io_set_direction()
is not called.

Neuron C Programmer's Guide 2-25

Performing I/O: Functions and Events
Input objects can be accessed in the following two ways: by using the explicit
io_in() function, or by referring to an event associated with the object in a
when clause. The following sections describe both methods.

I/O Functions
After you have declared the I/O objects for a Neuron C application, you can
access the objects through the I/O functions provided in Neuron C. These
functions are built into the Neuron C compiler and do not need to be declared
or linked in. The compiler enforces type checking on the parameters of these
functions.

io_change_init() Initializes the value of an input object for the
io_changes event

io_edgelog_preload() Sets the timer/counter preload value for edgelog I/O
object

io_edgelog_single_preload() Sets the timer/counter preload value for
edgelog single_tc I/O object

io_in() Reads data from an I/O object

io_in_ready() An event function which evaluates to TRUE when a
block of data is available to be read from a parallel
I/O object

io_in_request() Starts an I/O input cycle for the dualslope I/O object

io_out() Writes data to an I/O object

io_out_request() Requests the write token for a parallel I/O object

io_preserve_input() Causes the first value obtained from a timer/counter
after reset or an io_select() to be considered valid

io_select() Selects one of the multiplexed input objects (See I/O
Multiplexing in this chapter.)

io_set_baud() Changes the bit rate setting for the specified object

io_set_clock() Changes the clock setting for the specified object

io_set_direction() Changes the direction of any bit, nibble, or byte type
I/O pin(s)

Refer to the Neuron C Reference Guide for more information.

2-26 Focusing on a Single Device

io_in() Function
The syntax for io_in() is:

return-value = io_in (io-object-name [, args])

io-object-name The name for the I/O object, which corresponds to the
io-object-name in the I/O declaration.

args Arguments that depend on the type of the I/O object.
Some of these arguments may also appear in the I/O
object declaration. If specified in both places, the
value of the function argument overrides the declared
value for that call only. If the value is not specified in
either the function argument or the declaration, the
default value is used.

In this example, the io_in() function returns the value of io_part_detector:

part_detected = io_in(io_part_detector);

See the Neuron C Reference Guide for object-specific rules pertaining to the
io_in() function.

io_out() Function
When signals need to be sent to a device, an output object is declared and the
built-in io_out() function is used.

The syntax for io_out() is shown below:

io_out (io-object-name, output-value [, args])

For example, a lamp device could use io_out() to turn a lamp on and off. In
this discussion, the nv_lamp_state is an input network variable whose
value comes from elsewhere in the LonWorks network:

io_out(io_lamp_out,
 (nv_lamp_state != ST_OFF) ? 1 : 0);

In the following example, a display LED is attached to the IO0 pin. The
declaration syntax is the following:

#define ON 1
#define OFF 0
IO_0 output bit io_display_LED;
// or
IO_0 output bit io_display_LED = ON;

The second declaration in the example above uses an initializer, which tells
the system that following a reset, the io_display_LED object output value
should initially be set to 1. The default initial value is 0.

Neuron C Programmer's Guide 2-27

Now you can control the state of io_display_LED by using the io_out()
function:

if (flow_total > 500)
 io_out(io_display_LED, ON);

input_is_new Variable
For all timer/counter input objects, the built-in input_is_new variable is set
to TRUE whenever the io_in() call returns an updated value. This is true
for implicit calls as well. See I/O Events below for a discussion of implicit
io_in() calls. The data type of the input_is_new variable is an unsigned
short. The frequency with which updates occur depends on the I/O object
type.

The following example uses one of the timer/counter I/O devices. Assume the
IO7 pin is attached to an optical flow meter that presents a number of pulses
proportional to the volume of a fluid. The total volume in gallons needs to be
determined. For this example, assume the Neuron Chip or Smart
Transceiver is clocked at 10MHz.

The pulsecount input object counts input edges and latches the count
approximately every 0.8388608 (specifically (223/107) seconds). If you were
to use the io_in() function for this I/O object, you would always read the
currently latched value. If you are summing the total flow, you will need to
qualify this operation. Use input_is_new, which is set to TRUE following
an io_in() function only if a new measurement is made, or in this case, every
0.8388608 seconds.

IO_7 input pulsecount io_flow_sensor;
 // 451 pulses/gallon
long volume_total, volume_temp;

.
.
.
{
 volume_temp = io_in(io_volume_sensor);
 if (input_is_new)
 volume_total += volume_temp;
}
.
.
.

2-28 Focusing on a Single Device

I/O Events
An alternative to using the explicit io_in() function is to associate an input
object with a predefined event. The two I/O-related predefined events are
io_changes and io_update_occurs. When either event is used, an implied
io_in() function occurs. These events are used only with input objects and
can take a variety of forms. When evaluated, both the io_update_occurs
and io_changes events perform an implicit io_in() function that obtains an
input value for the object. A task can access this input value by using the
input_value keyword. Both events, and the keyword, are further explained
in the following sections.

io_changes Event
This event is TRUE when the value read from the input object specified
changes state. The change can be one of three types:

• Any change (an unqualified change)

• A change (in absolute value) by a specified amount (or greater)

• A change to a specified value

The Neuron C syntax for this event is shown below:

io_changes(io-object-name) [by expr | to expr]

The use of this event results in a comparison of the current value read from
the input object with a reference value (except with the to option). The
reference value is the value read the last time the change event evaluated to
TRUE (and saved, at that time, by the firmware). For the io_changes event
that does not use either the by option or the to option, a state change occurs
when the current value is different from the reference value. For the
optional forms, the comparison is described above. When using the optional
forms of the io_changes event, the expr expression does not need to be a
constant. However, a constant expression will be more efficient.

For example, a program could use the io_changes event to detect changes in
an io_switch_in input bit object:

when (io_changes(io_switch_in))

If you were interested only in when the io_part_detector detected a part (a
value of TRUE, or 1), you could use the following when clause:

when (io_changes(io_part_detector) to TRUE)
{
 .
 .
 .
}

Neuron C Programmer's Guide 2-29

io_update_occurs Event
The syntax for this event is shown below:

 io_update_occurs (io-object-name)

The io_update_occurs event is TRUE when the value read from the input
object specified by io_object_name has an updated value. The
io_update_occurs event applies only to certain timer/counter input objects.
Timing for the event depends on the input object type:

dualslope Event occurs when the conversion is complete, and the
value has changed.

ontime, period Event occurs at the end of the time being measured.

pulsecount Event occurs every 0.8388608 seconds, when a new
pulsecount value is available.

quadrature Event occurs as soon as at least one count is
accumulated.

The io_changes event for a timer/counter input device occurs only if the
device has a new value, different from the previous value. For the
timer/counter devices, the io_changes event happens as follows, depending
on the input object type:

dualslope Event occurs when the conversion is complete.

ontime, period Event occurs if the measured time has changed from
the last time.

pulsecount Event occurs if the number of counts measured has
changed from the last count.

quadrature Event occurs if the number of counts measured has
changed from the last count.

input_value Variable
The input_value built-in variable is a signed long (input_value can be
cast in the same manner as any other C variable). For example:

when (io_update_occurs(io_dev))
{
 if (input_value > 2) {
 // code
 }
}

2-30 Focusing on a Single Device

A lamp device could set the value of the nvoSwitch network variable based
on the value of input_value (the switch value):

when (io_changes(io_switch_in))
{
 nvoSwitch.state
 = (input_value == SWITCH_ON) ? ST_ON : ST_OFF;
}

The value of the input_value variable depends on the context in which it is
used. The following combination of when clauses is valid. Since both events
refer to the same I/O object, there is no ambiguity about which object is
providing the input.

when (io_changes(io_dev) to 4)
when (io_changes(io_dev) to 3)
{
 x = input_value;
}

However, the following combination of when clauses is not a valid context for
use of input_value, since there is no way of knowing which object is
providing the input value. If the first when clause evaluated to TRUE,
input_value would refer to io_dev2, but if the second when clause
evaluated to TRUE, input_value would refer to io_dev1.

when (io_update_occurs(io_dev2))
when (io_update_occurs(io_dev1))
{
 x = input_value;
}

In addition, input_value is valid only after an io_update_occurs or
io_changes event. In the following example, using multiple when clauses
produces an ambiguous value for input_value because the timer_expires
event does not perform I/O. In such cases, use io_in() to retrieve the value.

when (timer_expires(t))
when (io_update_occurs(io_dev))
{
 x = input_value;
 // use x=io_in(io_dev) instead of input_value
}

Neuron C Programmer's Guide 2-31

Two Methods: Which Should You Use?
You have now read about two different ways to determine whether an input
value is new: you can use the io_update_occurs event with the
input_value variable, or you can use the io_in() function with the
input_is_new variable. The following two examples show different ways to
accomplish the same goal:

Listing 2.1 io_update_occurs/input_value

IO_5 input pulsecount io_dev;

when (io_update_occurs(io_dev))
{
 if (input_value > 2) {
 // code
 }
}

Listing 2.2 io_in()/input_is_new

stimer tDelay;
IO_5 input pulsecount io_dev;
when (timer_expires(tDelay))
{
 // code
 if ((io_in(io_dev) > 2) && input_is_new) {
 // code
 }
}

Which method you choose depends on the individual case. The I/O event
mechanism (that is, use of when clauses, shown in Listing 2.1) is the simpler
method, where the scheduler decides when to perform the I/O functions. Use
this construct if possible. When you are combining multiple events in a
single block of logic, you may need to perform an explicit io_in() combined
with the input_is_new variable, as shown in Listing 2.2.

A Word of Warning
If you combine explicit calls to io_in() with when clauses containing I/O
events, synchronization problems may result. For example, if a when clause
evaluates to TRUE near the end of an I/O sampling period, the io_in() call
might not be executed until the following period, and the value obtained
could be misleading.

when (io_update_occurs(dev))
{
 // code
 io_in(dev); // Use input_value instead
 // of io_in() to retrieve
 // the value obtained when
 // the io_update_occurs
 // event was TRUE
}

2-32 Focusing on a Single Device

Relationship between I/O Measurements, Outputs,
and Functions

Direct, Serial, and Parallel I/O Objects
For direct I/O objects, input levels are sampled at the point in time when an
io_in() function is executed, or at the point in time that a when clause
referencing the object is evaluated.

For serial and parallel I/O objects, input levels are sampled at the point of
the io_in() function. With a 40MHz input clock, output levels are set
approximately 12.5 to 25 microseconds after invocation of the io_out()
function. (This value scales with slower clock speeds.) See the Smart
Transceivers databooks for detailed timing diagrams.

Timer/Counter I/O Objects
Values for timer/counter input objects are latched periodically depending on
the object type or the object clock. The relationship between when an io_in()
function or I/O when clause is used and when the data has been latched is
usually application dependent. Once a value is latched, that value continues
to be returned even by subsequent calls to io_in() until a new value is
latched based on the timing in the hardware.

The period input and ontime input object types latch a new value on the
falling edge of the input signal. (If the invert keyword is used, these object
types latch the new value on the rising edge of the input signal.) The
pulsecount input object latches a new value every 0.8388608 seconds. (See
Input Clock Frequency and Timer Accuracy sections later in this chapter.)

As a general rule, new values written to timer/counter output objects are
acted on at the end of the current output signal period. Exceptions to this
rule are oneshot output and I/O objects that have been disabled (that is,
have a zero control value), all of which take effect upon return from the
io_out() function.

Also see the Smart Transceivers databooks for more information.

Output Objects
The following timer/counter output object types reflect the new output value
at the end of the current output signal period:

 edgedivide output
frequency output
pulsewidth output
triac output
triggeredcount output

Neuron C Programmer's Guide 2-33

The following timer/counter output object types reflect the new output value
upon return from the io_out() function:

 oneshot output
pulsecount output

All timer/counter output objects respond to a zero output value upon return
from the io_out() function.

I/O Multiplexing
Input to one of the timer/counter circuits can be multiplexed among pins
IO_4 to IO_7 or provide output to IO_0. This timer/counter is referred to as
the multiplexed timer/counter. A second timer/counter circuit derives input
only from IO_4 or provides output to IO_1. This second timer/counter circuit
is called the dedicated timer/counter. Figure 2.2 shows a signal flow diagram
for both the multiplexed and dedicated timer/counter circuits.

�������
�������
�������
�������
��������������
��������������
�������
�������
�������
��������������
�������

IO.7
IO.6
IO.5
IO.4
IO.3
IO.2
IO.1
IO.0

m
ux

System Clock
Divide Chain

Timer/Counter 1

Timer/Counter 2

Control
Logic

Control
Logic

Figure 2.2 Flow Diagram for Timer/Counter Circuits

I/O Functions for Timer/Counter Objects
For multiplexed I/O objects, the last timer/counter I/O object declared in the
program is the first to take effect after a reset. To change the selected I/O
object, use the io_select() function to specify which of the multiplexed pins
is the owner of the timer/counter circuit. The syntax for io_select() is:

io_select (io-object-name [, clock])

io-object-name The name for the I/O object, which corresponds to the
io-object-name in the I/O declaration.

clock Specifies a clock selector, which can be different from
or the same as the clock selector specified in the
object’s declaration, in the range of 0 to 7. If the user

2-34 Focusing on a Single Device

 does not specify a clock value in the call to
io_select(), the clock is set to the value in the object’s
declaration.

Any timer/counter I/O object that has a clock argument in its declaration
syntax can also be reprogrammed to an alternate clock value by use of the
io_set_clock() function. The syntax for this function is:

io_set_clock (io-object-name, clock)

io-object-name The name for the I/O object, which corresponds to the
io-object-name in the I/O declaration.

clock Required clock selector value in the range of 0 to 7,
regardless of the clock selector specified in the object’s
declaration. Some I/O objects may not function
properly with all clock values. See the detailed
description for each particular I/O object in the
Neuron C Reference Guide.

When io_set_clock() is used on multiplexed objects, the clock is changed
regardless of whether the object itself is currently selected.

The following fragment shows several examples of the use of io_select() and
io_set_clock():

IO_1 output pulsecount clock(3) out_pc;
IO_5 input period clock(2) in_period;
IO_6 input ontime clock(3) in_ontime;

when (reset)
{
 io_set_clock(out_pc, 5);
 io_select(in_ontime);
}

when (io_update_occurs(in_ontime))
{
 io_select(in_period, 3);
}

Neuron C Programmer's Guide 2-35

When a new clock is set for an I/O object using io_select(), this clock
remains in effect until a new value is explicitly set again. The next
io_select() call for the same I/O object will reset the clock to the value
specified in the declaration if there is no clock argument in the io_select()
call.

If an input measurement is attempted using io_in() or a when clause on an
I/O object that has not been selected with the io_select() function, a data
value of overrange (65,535) is returned, and the input_is_new variable and
io_update_occurs event remain FALSE.

Following a call to io_select() and after a Neuron reset, the first
measurement taken for the newly selected I/O object is discarded to clear out
any incomplete measurements unless the function io_preserve_input() is
called before the io_in() call. The io_update_occurs event actually
happens when the second measurement is read. Rely on either an
io_update_occurs event or use the input_is_new variable to verify that an
actual measurement has been made following a call to io_select().

The following example shows the use of io_select() with the multiplexed
timer/counter circuit. For multiplexed I/O objects, the last I/O object declared
in the program is the first to take effect after a reset.

EXAMPLE:

// I/O Definitions
IO_5 input period mux clock (2) io_pcount_2;
IO_4 input period mux clock (2) io_pcount_1;

static long variable1, variable2;

// The following occurs only when the
// io_pcount_1 is selected
when (io_update_occurs(io_pcount_1))
{
 variable1 = input_value;
 io_select(io_pcount_2);
 // select next I/O object
}

// The following occurs only when the
// io_pcount_2 is selected
when (io_update_occurs(io_pcount_2))
{
 variable2 = input_value;
 io_select(io_pcount_1);
 // select next I/O object
}

2-36 Focusing on a Single Device

In the following example, the timer/counter is multiplexed between an
ontime measurement on pin IO5 and a period measurement on pin IO6.
Because the ontime input may cover a large range of values, this example
uses a form of “auto-ranging.” The clock value switches between 4 and 2 if
the input measurement value extends beyond certain values. A variable is
used when reselecting the ontime object since its clock may be one of the two
values.

EXAMPLE:

unsigned long slope1Raw, cycleAValue;
int slope1Clock = 2;
IO_5 input ontime clock (2) ioSlope1;
IO_6 input period clock (1) ioCycleA;
// Following reset, the ioCycleA object is selected
// because it is the last object declared using the mux

 when (io_update_occurs(ioSlope1)) {
 if (input_value > 0x4000 && slope1Clock == 2) {
 // Range down (slower)
 slope1Clock = 4;
 io_set_clock(ioSlope1, 4);
 } else if (input_value < 0x4000 && slope1Clock == 4) {
 // Range up (faster)
 slope1Clock = 2;
 io_set_clock(ioSlope1, 2);
 } else {
 // Save the measured value, select the other object
 slope1Raw = input_value;
 io_select(ioCycleA);
 }
 // If auto-ranging has occurred, another measurement
 // will be made. Otherwise, the ioCycleA object
 // will be measured next.
}

when (io_update_occurs(ioCycleA)) {
 cycleAValue = input_value;
 // Now select the ioSlope1 object,
 // using the current clock range computed above
 io_select(ioSlope1, slope1Clock);
}

Neuron C Programmer's Guide 2-37

Device Self-Documentation
You can include a text string that describes your device in your application.
This text string can be accessed by any network tool, and can be used by a
network integrator to verify that they have the correct device when designing
in or installing your device. This text string is appended to the device self-
documentation (SD) string. The Neuron C compiler automatically generates
a portion of the SD string that documents the functional profiles that are
implemented by the functional blocks in your application. You can add
additional text for the SD string using the following compiler directive as
described in the Compiler Directives chapter of the Neuron C Reference
Guide:

#pragma set_node_sd_string C-string-const

Examples
This section presents three complete programs that illustrate Neuron C
capabilities and good coding style. The examples are:

1 Thermostat interface

2 Simple light dimmer interface

3 Seven-segment LED display interface

Example 1: Thermostat Interface
This thermostat measures the resistance of a thermistor by measuring the
pulse-width of a waveform that is input to pin IO4. The I/O object
declaration is set up to measure the on-time of the waveform. A simple
T=mx+b scaling of the on-time yields the temperature.

ontime

The example also uses a shaft encoder generating a quadrature input as a
dial to select a new temperature setting (see Figure 2.3). The quadrature
input object type is used with the io_update_occurs event. The input value
of the input object represents the change in rotational offset since the last
input. Shaft encoders typically generate offsets of 16 to 256 counts per 360
degrees rotation. The io_update_occurs event evaluates to TRUE only
when a nonzero offset has been measured. In the following application, the
task associated with the when (io_update_occurs...) clause is executed
only when the quadrature input dial has moved from the previously
measured position.

2-38 Focusing on a Single Device

Shaft
Encoder

Thermostat Device

Chip
Neuron

IO_5

IO_4

555
Timer

Cooler
Control

Heater
Control

Cooler

Heater

Thermistor

IO_6

IO_3

IO_2

Figure 2.3 Sample Thermostat Device

The io_changes event would rarely be used with the quadrature I/O object,
since the event would evaluate to TRUE only when a change in the measured
count occurred. The io_changes event would not evaluate to TRUE as long
as the input object were moving at a constant rate because the nonzero
measurements would be the same. (This example is intended to illustrate
use of typical I/O objects. Network variable information has been omitted; it
is covered in detail in Chapter 3, How Devices Communicate Using Network
Variables.)

// THERMOS.NC -- LONWORKS thermostat device

// Uses a thermistor to measure temperature, and a
// quadrature encoder to enter setpoint. Activates either
// heating or cooling equipment via bit outputs.

//////////////// Compiler Pragmas /////////////////
#pragma enable_io_pullups
 // for quadrature input on IO_4 and IO_5

///////////////// Include Files //////////////////
#include <stdlib.h>
 // for muldiv()

Neuron C Programmer's Guide 2-39

////////////////////// Timers /////////////////
stimer repeating tmCheckHeatOrCool;
 // Automatically repeating timer

////////////////// Constants ///////////////////////
#define TEMP_DEG_F(t) (((long)t - 32L) * 50 / 9 + 2740)
 // macro to convert degrees F to SNVT_temp

const SNVT_temp DESIRED_TEMP_MAX = TEMP_DEG_F(84);
const SNVT_temp DESIRED_TEMP_MIN = TEMP_DEG_F(56);
const SNVT_temp BAND_SIZE = 10;
// Guardband of +/- 1 deg C around desired temperature

//////////////// I/O Objects //////////////////////
IO_6 input ontime clock (1) invert ioTempRaw;
IO_4 input quadrature ioShaftIn;
IO_2 output bit ioHeatingOn = FALSE;
IO_3 output bit ioCoolingOn = FALSE;

//////////////// Global Variables ////////////////////
SNVT_temp newTemp = TEMP_DEG_F(70);// init to 70 deg F
SNVT_temp desiredTemp = TEMP_DEG_F(70);

enum {
 OFF, HEATING, COOLING
} equip = OFF; // current state of HVAC equipment

/////////////////// Tasks //////////////////////
// I/O update task --
// read thermistor voltage-to-frequency converter

when (io_update_occurs(ioTempRaw)) {
 // An update occurs periodically as the ontime is
 // sampled. The new sample is placed in 'input_value.'
 // Calculation is performed using 32-bit intermediate
 // math, then the result stored as a SNVT_temp. The
 // input is scaled based on the temperature coefficient
 // of the thermistor.
 newTemp = muldiv(input_value, 25000, 9216) + 2562;
}

///
// I/O update task -- read quadrature encoder
// A quadrature input is used as a dial to select a new
// temperature setting.

when (io_update_occurs(ioShaftIn)) {
// An update occurs for a quadrature I/O object when the
// accumulated offset is nonzero. The value is placed in
// 'input_value' by the io_update_occurs event.
 desiredTemp += input_value; // Assumes no overflow
 desiredTemp = min(DESIRED_TEMP_MAX, desiredTemp);
 desiredTemp = max(DESIRED_TEMP_MIN, desiredTemp);
}

2-40 Focusing on a Single Device

//
// Timer task -- execute control algorithm
// A timer is used to decide periodically whether to
// activate heating or cooling. The temperature comparison
// is done only every five minutes to prevent cycling the
// equipment too frequently. There are two digital outputs:
// one for activating the heating equipment, and one for
// activating the cooling equipment.
when (timer_expires(tmCheckHeatOrCool)) {
 switch (equip) {
 case HEATING:
 if (newTemp > desiredTemp) { // if too hot
 equip = OFF; // turn off heater
 io_out(ioHeatingOn, FALSE);
 }
 break;

 case OFF:
 if (newTemp < desiredTemp - BAND_SIZE) {
 equip = HEATING; // if too cold, then
 io_out(ioHeatingOn, TRUE); // turn on heater

 } else if (newTemp > desiredTemp + BAND_SIZE) {
 equip = COOLING; // if too hot, then
 io_out(ioCoolingOn, TRUE); // turn on cooler
 }
 break;

 case COOLING:
 if (newTemp < desiredTemp) { // if too cold
 equip = OFF; // turn off cooler
 io_out(ioCoolingOn, FALSE);
 }
 break;
 }
}

///
// Reset task -- Set the repeating timer to 300 seconds

when (reset) {
 tmCheckHeatOrCool = 300; // 5 minutes, repeating
}

Neuron C Programmer's Guide 2-41

Example 2: Simple Light Dimmer Interface
The following example shows Neuron C code for a simple light dimmer. The
example uses two I/O objects, a triac control circuit to control the lamp
brightness and a quadrature input to select the light level (see Figure 2.4).
For the triac output object, a value of 1 is maximum brightness, and a value
of 320 is minimum brightness (OFF) when the line frequency is 60Hz. The
initial value on power-up is full OFF (65535).

The io_update_occurs event is used in a when clause. An implicit call to
io_in() occurs when this event is called. The program can then access the
measured value through the built-in variable input_value.

Dimmer Switch

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Zero-Crossing
Detector

110VAC

Triac
Trigger

Shaft
Encoder

Neuron
Chip

IO_6

IO_0

IO_4

IO_5

Figure 2.4 Simple Dimmer Device

// DIMMER.NC -- LONWORKS triac dimmer control

// Uses a triac output to control an incandescent lamp
// Uses a shaft encoder input to set desired lighting level

///////////////////// Compiler Pragmas /////////////////
#pragma enable_io_pullups

2-42 Focusing on a Single Device

/////////////////////// I/O Objects ////////////////////
IO_0 output triac pulse sync (IO_6) clock (6) ioLampTriac;
IO_4 input quadrature ioShaftIn;

//////////////////////// Constants /////////////////////
// These constants are appropriate for 60Hz line frequency
const unsigned long MIN_BRIGHTNESS = 320;
const unsigned long MAX_BRIGHTNESS = 1;

///////////////////// Global Variables /////////////////
signed long currentBrightness;

/////////////////////////// Tasks //////////////////////

// Reset task -- turn the lamp off
when (reset) {
 io_out(ioLampTriac, MIN_BRIGHTNESS);
 currentBrightness = MIN_BRIGHTNESS;
}

// I/O update task -- read quadrature input dial
// to select the light level
when (io_update_occurs(ioShaftIn)) {
 // An update occurs for a quadrature input
 // object when the accumulated offset is
 // nonzero. The sample value is in
 // 'input_value'. The value is subtracted
 // since a lower value means more light.

 currentBrightness -= input_value;

 // Look for underflow or overflow
 if (currentBrightness < MAX_BRIGHTNESS)
 currentBrightness = MAX_BRIGHTNESS;
 else if (currentBrightness > MIN_BRIGHTNESS)
 currentBrightness = MIN_BRIGHTNESS;

 // Change the triac setting to the
 // desired brightness level
 io_out(ioLampTriac, currentBrightness);
}

Neuron C Programmer's Guide 2-43

Example 3: Seven-Segment LED Display Interface
The following example shows how to connect multi-character displays to the
neurowire port. The display has an 8-bit configuration register and a 24-bit
display register. This configuration can be defined as follows:

IO_2 output bit ioEnable = 1;
IO_8 neurowire master select(IO_2) ioDisplay;
unsigned char displayReg[3];
unsigned char configReg;
 .
 .
 .
io_out(ioDisplay, &configReg, 8);
io_out(ioDisplay, displayReg, 24);

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

Neuron Chip

IO_8
IO_9

IO_2

+5V
C4

.01 F

470

R10

3 Digit LED Display

Multi-Character
LED Display Driver

Vdd
CLOCK
DATA IN
DATA OUT
~ENABLE

RX
Vss

3
11
12
18
10
8

14

7
6

5

4
2
1
20
19
 9
13
15
16
17

A
B

C

D
E
F
G
H

BANK 1
BANK 2
BANK 3
BANK 4
BANK 5

U3

MC14489

Figure 2.5 Neurowire Connection to a Display

Input Clock Frequency and Timer Accuracy
Depending on the manufacturer and version, the Neuron Chip and Smart
Transceiver input clock frequencies are 40MHz, 20MHz, 10MHz, 6.5536MHz,
5MHz, 2.5MHz, 1.25MHz, and 625 kHz. Certain timers listed below are fixed
timers; that is, they have the same absolute duration regardless of the input
clock selected. However, the slower the input clock, the less accurate the
timer. Scaled timers, also listed below, scale in proportion to the input clock.

2-44 Focusing on a Single Device

Fixed Timers
In general, timers discussed in this manual are of fixed duration unless noted
otherwise. The following timers are implemented in hardware and have
periods that are independent of the Neuron Chip or Smart Transceiver input
clock frequency. However, the accuracy of these timers is determined by the
accuracy and frequency of the input clock for the Neuron Chip or Smart
Transceiver.

• Preemption mode timeout timer.

• Pulsecount input timer. Timer used to determine the counting interval for
the pulsecount input object. The interval is (223)/107 (approximately
.8388608) seconds.

• Triac pulse timer. Timer used to generate pulses for the triac output object.

The following timers are implemented in software and have periods that are
independent of the Neuron Chip or Smart Transceiver input clock. The
accuracy of these timers is discussed in the next section.

• Application second timer (that is, an stimer declared in a Neuron C
program).

• Application millisecond timer (that is, an mtimer declared in a Neuron C
program).

Scaled Timers and I/O Objects
Timers and I/O objects that scale with the input clock are directly
proportional to the input clock. For example, a serial object configured at
2400bps would actually run at 600bps given a 2.5MHz (1/4 speed) input
clock. The following timers scale with the input clock:

• bitshift clock

• neurowire master clock

• serial clock

• watchdog timer

NOTE: The configurable EEPROM write timer accuracy is affected by the
input clock. See EEPROM Write Timer later in this chapter for more
information.

Neuron C Programmer's Guide 2-45

Calculating Accuracy for Software Timers

Accuracy of Millisecond Timers
The following formulas define the range of accuracy for a millisecond timer.
Accuracy is expressed as a low and high duration. The low duration (L) is
the minimum time from when a timer is set to when the system posts an
event for the application. The high duration (H) is the maximum time from
when a timer is set to when an event is posted. L and H are expressed below
as a function of E, the expected duration.

The added delay to detect the expiration event, i.e. the latency, is a function
of the application and is not included in these formulas. For example, an
event posted while the application is executing a task associated with a
when clause will not be detected until the executing task completes and
returns control of the application to the scheduler.

NOTE: When an event is posted by the Neuron firmware, it becomes visible
to the scheduler and to other events (for example, io_changes,
nv_update_occurs).

With a 10 MHz Clock
In the following formula, the floor() function returns the largest integer not
greater than the argument, e.g., floor(3.3) = 3 or floor(3.0) = 3. With a
10MHz clock, the expected duration of a millisecond timer is:

 E = .8192 * floor((D/.82) + 1)

where D is the specified duration for the timer. For example, for a timeout of
100ms, E equals 99.94ms.

With a 10MHz clock, the low duration is:

 L = E - 12ms

and the high duration is:

 H = E + 12ms

With Other Clock Speeds
The following formulas allow you to calculate accuracy for millisecond timers
when other input clock rates are selected. In these formulas, S depends on
input clock speed as follows:

2-46 Focusing on a Single Device

 S=Input Clock Rate

 0.25 40 MHz
 0.5 20 MHz
 1 10 MHz
 1.5259 6.5536 MHz
 2 5 MHz
 4 2.5 MHz
 8 1.25 MHz
 16 625 kHz

 E = .8192 * floor ((floor(D/S)*S)/.82) +1)

Two factors determine E. The first is that the slower the input clock speed,
the less granular the input clock. For example, at 1/16 speed, the millisecond
granularity is 16 milliseconds (one clock tick every 16 milliseconds). The
second factor is that the hardware generates 819.2 microsecond ticks that the
software treats as 820 microsecond ticks. This means that a timer duration
is actually .999 times the specified duration.

For example, with a 2.5MHz clock, a specified timeout of 99ms would result
in an expected duration of 96.67ms.

The complete formulas for calculating the low and high durations are:

 L = E - (11*S + 1)

 H = E + (11*S + 1)

The high duration with a 2.5MHz clock and a specified timeout of 99ms
would thus equal 141.67ms; the low duration is 51.67.

NOTE: The number "11" in the formulas above is based on a typical worst
case scenario. In the absolute worst case, i.e., the maximum number of
timers, network variables, addresses, etc., this number can be as high as 32.

In addition, the high duration may be increased by network management
delay (NMD), an additional skew introduced by network management
message processing. Normally, this term is 0. But, if a device were to
process a network management message, the upper range for any given
timeout could be significantly increased. For example, adding a domain to a
device would result in an NMD of anywhere from 300ms to (300 + 838*S)ms.
In general, network management operations of this type occur infrequently.
It is always good practice to take a device offline, if possible, before sending
further network management messages.

Neuron C Programmer's Guide 2-47

To measure an event's duration a timer can be polled before and after the
event, and the difference can be calculated. To measure the duration of
events less than 50 milliseconds, use the get_tick_count() function instead
of the software timers (see the Neuron C Reference Guide).

Repeating Timers
For repeating timers, there is no cumulative drift other than that produced
by the difference in D and E. The Nth timeout for repeating timers occurs in
the range of LR to HR, where:

 ER = E * N

and

 LR = ER - (11*S + 1)

 HR = ER + (11*S + 1)

For repeating timers, intermediate timeout events will be lost if the following
is true:

 abs(AR - ER) ≥ E

 ER - AR > E

where AR is the actual duration of the repeating timer.

H1

E1

L1

H2

E2

L2

E1

Time started here.
Timer expires in this range.

Second iteration of timer expires in this range.
Figure 2.6 Expected, Low, and High Duration of Timeout Events

2-48 Focusing on a Single Device

Accuracy of Second Timers
The second timers rely on the one-second timer, which is based on the
millisecond timer mechanism described earlier. A one-second timer of
duration D will time out in the range of D-1 to D seconds, where “second” is
defined as 1001 milliseconds using the millisecond timer duration formulas
for L and H.

For example, at 625 kHz, each “second” is 991.23 milliseconds. Thus a 10-
second timer would time out in the range of 8.74 to 10.09 seconds.

For repeating one-second timers, the first timeout occurs in the range of D-1
to D seconds. Subsequent timeouts occur every D seconds. The fifth timeout
of a repeating 10-second timer would occur in the range of 48.39 to 49.74
seconds.

Delay Functions
Three functions allow an application to perform timing directly by
suspending execution for a given time. These functions provide a concise way
to perform timing in-line:

delay()

msec_delay()

scaled_delay()

The delay() function produces a delay of fixed duration that is independent
of input clock speed. This function can be used with the wink feature and for
I/O debouncing. Its prototype is the following:

void delay (unsigned long count);

count A value between 1 and 33,333. See the Neuron C
Reference Guide for the formula used in determining
the duration of the delay. Values in the range
33,334..65,535 can be specified, but will cause a
watchdog timer reset.

EXAMPLE:

when (io_changes(io_switch))
{
 delay(400); // wait 10msec for debounce
 .
 .
 .
}

The msec_delay() function produces a delay of a fixed number of
milliseconds independent of the input clock speed. This function can be used

Neuron C Programmer's Guide 2-49

with to delay for a more precise, and shorter, period of time than the delay()
and scaled_delay() functions. Its prototype is shown below:

void msec_delay (unsigned short milliseconds);

milliseconds A number of milliseconds to delay (max of 255 ms)

The scaled_delay() function produces a delay with a duration that scales
with input clock speed. Its syntax is:

void scaled_delay (unsigned long count);

count A value between 1 and 33,333. See the Neuron C
Reference Guide for the formula used in determining
the duration of the delay.

EEPROM Write Timer
The accuracy of the configurable EEPROM write timer degrades with the
speed of the input clock. To determine the accuracy of an n millisecond
timeout, use the formula:

 duration = n * delay(43)

For example, at 625 kHz, a 20 millisecond EEPROM write actually takes
55.2 milliseconds.

2-50 Focusing on a Single Device

3
How Devices

Communicate Using
Network Variables

This chapter discusses how LONWORKS devices communicate
with each other using network variables. It includes a detailed
discussion of how to declare network variables and how
network variables on different devices are connected to each
other. The use of synchronous network variables, the process
of polling network variables, authenticated network variables,
and network variables that implement a changeable type are
also described.

Major Topics
LONWORKS devices communicate with other LONWORKS devices through
network variables or application messages. This chapter focuses on network
variables, which provide an open interoperable interface, simplify
programming and installation, and also reduce program memory
requirements. Most Neuron C programs use network variables. Application
messages may be used if required as described in Chapter 6, How Devices
Communicate Using Application Messages. Although this manual discusses
the two methods separately, a single Neuron C program can use both
network variables and application messages.

This chapter is divided into the following parts:

• Overview summarizes the behavior of devices that are readers and writers of
a network variable, as well as how network variables are declared. It also
describes how network variables on different devices are connected to each
other.

• Declaring Network Variables describes the syntax for declaring network
variables, along with related concepts.

• Connecting Network Variables describes how network variable readers are
connected to network variable writers. (This process was described in
general terms in Chapter 1, Overview.)

• Network Variable Events describes the following four scheduling events that
are related to network variables: nv_update_completes, nv_update_fails,
nv_update_occurs, and nv_update_succeeds.

• Synchronous Network Variables describes the behavior of synchronous
network variables.

• Processing Completion Events for Network Variables describes the two modes
of checking for completion events, and the guidelines for use of these
different techniques within an application program.

• Polling Network Variables describes how a reader device can poll the writer
device for the latest value of a network variable.

• Explicit Propagation of Network Variables describes how an application
program may exercise explicit control over network variable propagation,
instead of permitting the Neuron firmware scheduler to propagate network
variable updates automatically.

• Monitoring Network Variables describes special considerations for
implementation of a monitoring device.

• Authentication describes how to use authenticated network variables to
increase network security. Authentication allows a reader to verify the
identity of a writer that attempts to update the reader’s value of the network
variable. Authentication can also prevent unauthorized configuration of a
device.

• Changeable-Type Network Variables describes how to implement network
variables that allow their type to be changed at installation time.

3-2 How Devices Communicate Using Network Variables

Overview
As described in Chapter 1, Overview, a network variable is an object that
represents a data value and may be connected to multiple devices on a
network. A Neuron C application program running on a Neuron Chip or
Smart Transceiver can declare a maximum of 62 network variables. Host
applications can declare more network variables as described later in this
section.

Network variables are first defined within the program that runs on an
individual Neuron Chip or Smart Transceiver. As an example, consider a
lamp program with one network variable, named nv_lamp_state (see
Figure 3.1). Also, consider a switch program with one network variable,
named nv_switch_state. The same lamp program is installed on each of the
three lamp devices, and the same switch program is installed on each of the
two switch devices in the figure below.

��������������������
��������������������
��������������������
��������������������

Neuron
Chip

�������������������
�������������������
�������������������
�������������������
�������������������

Neuron
Chip

�������������������
�������������������
�������������������
�������������������

Neuron
Chip

��������������������
��������������������
��������������������
��������������������

Neuron
Chip

�������������������
�������������������
�������������������
�������������������
Neuron

Chip

nv_lamp_state

nv_lamp_state

nv_lamp_state

nv_switch_state

nv_switch_state

Lamp 1 Device

Lamp 2 Device

Lamp 3 DeviceSwitch Device

Switch Device

Figure 3.1 Sample Development Network with Five Devices

Neuron C Programmer's Guide 3-3

The declarations for these two network variables, which appear in different
programs, are the following:

network output SNVT_switch nv_switch_state;

and

network input SNVT_switch nv_lamp_state;

Behavior of Writer and Reader Devices
A writer device can change the value of a network variable. The connected
network variables in all reader devices are then updated to reflect this
change. In general, a reader device only reads from its copy of the network
variable. One exception is that a reader device can provide an initial value to
the network variable when the variable is declared. Another exception is
that a reader device can modify its local copy of a network variable in its
program. However, in neither case is the new value propagated to any other
devices.

A writer device can also read from its last copy of the network variable, but it
will only see the value it wrote last. In other words, two writers of the same
network variable cannot change each other’s value.

When a writer device writes a value to an output network variable, the
Neuron firmware causes a LONWORKS message to be sent to all readers of
the variable, informing them of the new value. By default, the message is
sent using the acknowledged (ACKD) service. Not all readers may receive
updates simultaneously. The network application must be designed to
handle update failures and delays.

NOTE: This discussion uses the terms writer device and reader device. A
writer device is a device that writes to a particular network variable (an
output network variable). A reader device is a device that reads a particular
network variable (an input network variable). In many cases, a device has
both input and output network variables declared in its program, and
therefore acts both as a “writer device” and a “reader device,” depending on
the network variable.

3-4 How Devices Communicate Using Network Variables

When Updates Occur
The new value of a network variable received by a reader device does not
take effect immediately upon reception and processing of the message.
Similarly, assignment of a new value to an output network variable does not
cause a message to be sent immediately. Rather, updates occur at the end of
a critical section in the application program. A critical section is defined as a
set of application program statements during which network variable
updates are not propagated.

A task is an example of a critical section: once begun, each task runs to
completion. When network variable updates are received or requested, they
are posted by the scheduler at the end of each critical section. An application
can use the post_events() function to divide a single task into two or more
critical sections. The post_events() function can be used to increase
throughput and improve response time since it forms a boundary at which
outgoing network variable updates are sent and incoming network variable
updates are processed. See Chapter 7, Additional Features, for further
discussion of post_events().

Declaring Network Variables
The syntax for declaring a network variable is shown below. The first form of
the declaration is for a simple network variable, and the second form is for a
network variable array.

network input | output [netvar-modifier] [class] type
 [connection-info] identifier
 [= initial-value] [nv-property-list] ;

network input | output [netvar-modifier] [class] type
 [connection-info] identifier [array-bound]
 [= initializer-list] [nv-property-list] ;

NOTE: The brackets around the term array-bound do not, in this case,
indicate an optional field. They are required and must be part of the
program.

Up to 62 network variables (including array elements) may be declared on a
device in a Neuron C program, or in an application using the ShortStack™
Micro Server. Up to 4,096 network variables can be declared when using a
LONWORKS network interface and an attached host processor. See the LNS®
Programmer’s Guide and the Host Application Programmer's Guide for more
information.

Neuron C Programmer's Guide 3-5

You can declare an array of network variables using the second form of the
syntax shown above. The array can only be single dimension. The array-
bound must be a constant. Each element of the array is treated as a separate
network variable for purposes of events, transmissions on the network, etc.
Therefore, each element counts individually towards the maximum number
of network variables on a given device. Each element of the array is then a
separately bindable network variable.

After the device design is complete, you specify connections between network
variable outputs and inputs on different devices. This is discussed in the
Connecting Network Variables section later in this chapter. The specification
of the desired connections is used by a network tool to generate the
appropriate network addresses. When these addresses are downloaded into
the devices, they ensure that updates sent by writers reach all of the
intended readers.

In the lamp and switch example above, the output network variables in
column 1 are connected to the input network variables in column 2.

Output
(device/variable_name)

Input
(device/variable_name)

switch1/nv_switch_state lamp1/nv_lamp_state
lamp2/nv_lamp_state

switch2/nv_switch_state lamp3/nv_lamp_state

Network Variable Modifiers
The following optional modifiers can be included in the declaration of each
network variable:

sync|synchronized Specifies that all values assigned to this network
variable must be propagated, and in their original
order. However, if a synchronous network variable is
updated multiple times within a single critical section,
only the last value is sent out.

 If this keyword is omitted from the declaration, the
scheduler does not ensure that all assigned values will
be propagated. For example, if the network variable
is being modified more rapidly than its values can be
propagated or more rapidly than its update events can
be processed, the scheduler may discard some
intermediate data values. However, the most recent
value for a network variable will never be discarded as
long as the device is not reset. See Synchronous
Network Variables later in this chapter.

3-6 How Devices Communicate Using Network Variables

polled Specifies that the value of the output network
variable is to be sent only in response to a poll request
from a device that reads this network variable. When
this keyword is omitted, the value is propagated over
the network every time the variable is assigned a
value. (However, any reader device can always poll
the outputs of writer devices to which it is connected,
whether or not the output is declared as polled.)
Also, the propagate() function (see the Functions
chapter of Neuron C Reference Guide) can be used to
cause the value of an output network variable
declared as polled to be sent over the network.

 The polled keyword is used only for output network
variables, except in a program that is used as a
Neuron C model file during ShortStack application
development. See the ShortStack User's Guide for
more details.

changeable_type Declares that the network variable may have its type
changed by a network tool. See Changeable-Type
Network Variables in this chapter for a discussion of the
use of this feature. The changeable_type modifier can
only appear once per network variable declaration, and
must appear after the sync or polled modifier, if either
of them is used.

sd_string (C-string-const)
Sets a network variable's self-documentation string (up to
1023 bytes including self-documentation text that is
automatically generated by the Neuron C compiler). The
ANSI C feature of concatenated string constants is
permitted. This modifier can only appear once per
network variable declaration. The sd_string modifier
should appear after the sync, polled, and
changeable_type modifier(s), if any of them are used.

Network Variable Classes
Network variables constitute one of the storage classes in Neuron C. They
can also be combined with the following storage classes:

const Specifies a network variable that cannot be changed
by the application program. Output network
variables declared with const are placed in ROM or
EEPROM. Input network variables declared with
const are placed in RAM.

Neuron C Programmer's Guide 3-7

 When const is used with output network variables,
since the application program will not be assigning to
the network variable, it will not automatically be
propagated. Therefore, the polled modifier (see
above) should also be considered for this network
variable.

eeprom Allows the application program to indicate network
variables whose values are stored in EEPROM or
flash memory and therefore are preserved across
power outages. Since EEPROM and flash memory
devices support a limited number of writes per
location, eeprom network variables have a limited
capability to accept changes. The initializer for
eeprom class network variables takes effect when a
program is loaded. These variables are not
reinitialized after a reset, but are reinitialized when
the application image is reloaded.

 Depending on the model and manufacturer, the
Neuron core EEPROM supports at least 10,000
erase/write cycles with no data loss. This may vary by
Neuron Chip or Smart Transceiver model, so consult
the appropriate data book for exact specifications.
External flash memory may support fewer writes—see
the Atmel data sheet for flash memory specifications.

config Specifies a const network variable in EEPROM that
can be changed only by another device. This class of
network variable is used for application configuration
by a network tool or a network controller. Use of the
config modifier is intended only for support of legacy
applications, since it is not a fully managed
configuration property. Neuron C Version 2.1 uses
the config_prop keyword (see below) to declare a
fully managed configuration property. Declaration
and use of configuration properties are discussed in
Chapter 4, Using Configuration Properties to
Configure Device Behavior.

 The config keyword is used only for input network
variables.

config_prop | cp Declares the network variable to be a fully managed
configuration property in Neuron C Version 2.1.
Declaration and use of configuration properties are
discussed in Chapter 4.

 The config_prop keyword is used only for input
network variables.

If no class is specified for a network variable, the network variable is a global
variable. Global variables are stored in the Neuron core’s RAM and are not
preserved across power outages.

3-8 How Devices Communicate Using Network Variables

Network Variable Connection Information
connection-info An optional field that is used to specify optional

attributes of network variable connections containing
this network variable. The following optional
keywords can be included in the declaration of each
network variable:

bind_info (
 [offline]
 [unackd | unackd_rpt | ackd [(config | nonconfig)]]
 [authenticated | nonauthenticated [(config | nonconfig)]]
 [priority | nonpriority [(config | nonconfig)]]
 [rate_est (const-expr)]
 [max_rate_est (const-expr)]
)

Each of these keywords is described in the Neuron C Reference Guide. The
keywords can be specified in any order. The connection information
assignments can be overridden by a network tool after a device is installed,
unless otherwise specified using the nonconfig keyword.

Network Variable Initializer
initial-value

or

initializer-list

Specifies an initial value (or values) for the network
variable. The initial value is loaded as part of the
application image for eeprom and config class
network variables. The initial value is loaded on power-
up or reset unless the variable is const, eeprom,
config, or config_prop. All network variables,
especially input network variables, should be initialized
to a reasonable default value.

EXAMPLE:

network input SNVT_temp nviTemp = 2960; // 22 C, 72 F

The initial value should be chosen such that if a device is reset, the initial
value can be used for subsequent calculations prior to the variable being
updated from the network, and these calculations will not cause the device to
create a hazardous condition or to create an error condition. The default
initialization value is 0, and advantageous use of the fact that initialization
to zero at time of reset is "free" can save on code space and startup execution
time in the device. Initializers are not propagated over the network,
regardless of whether the network variables are declared input or output.

Neuron C Programmer's Guide 3-9

Network Variable Types
Network variable types serve two purposes. First, typing ensures proper use
of the variable in the device's application. Second, typing ensures proper
connection of network variables when the device is installed in a network. A
network variable can be any of the variable types specified in Chapter 1,
Overview, except for pointers. The types are the following:

• A standard network variable type (SNVT). SNVTs are standard types that
define data encoding, scaling, and units for standard quantities such as
degrees C, volts, or meters. Each SNVT has a unique identifier called the
SNVT index. You can view all the SNVT definitions using the NodeBuilder
Resource Editor as described in the NodeBuilder User’s Guide, or you can
view the definitions online at types.lonmark.org.

• A user network variable type (UNVT). UNVTs are types that you define
using the NodeBuilder Resource Editor as described in the NodeBuilder
User’s Guide.

• A typedef. Neuron C provides some predefined type definitions, for
example:

 typedef enum {FALSE, TRUE} boolean;

 You can also define other type definitions and use these for network variable
types.

 SNVTs and UNVTs defined in resource files should be used instead of
typedefs.

• Any of the variable types specified in Chapter 1, except for pointers. The
types are the following:

 [signed] long [int]
 unsigned long [int]
 signed char
 [unsigned] char
 [signed] [short] [int]
 unsigned [short] [int]
 enum

 Structures and unions of the above types.

 SNVTs and UNVTs defined in resource files should be used instead of these
base types.

• Single-dimension arrays of the above types, up to 62 elements.

When a network variable that is a structure is modified by a network
variable writer, the entire structure is updated at the next critical section
boundary for all network variable readers, regardless of whether the
structure was wholly or partially modified.

Network variables may be declared with a single dimension array bound.
Each element of the array is then a separately bindable network variable.
See the descriptions of the poll() function, the built-in nv_array_index
variable, and the nv_update_completes, nv_update_fails,

3-10 How Devices Communicate Using Network Variables

http://types.lonmark.org/

nv_update_occurs, and nv_update_succeeds events in the Neuron C
Reference Guide for more information.

When an element of a network variable that is an array is modified by a
network variable writer, only the modified element is updated at the next
critical section.

The maximum size of a network variable is 31 bytes. In the case of a
network variable array, each element is limited to a size of 31 bytes.

The Neuron C compiler includes the SNVT indices in the application image
for all network variables declared as SNVTs, and optionally also includes the
network variable names for all network variables. Network variable names
are always included in the device interface file for a device, but integrators
may find them useful when they lose the device interface file and need to
install your device. You can control these options using the following
compiler directives as described in the Compiler Directives chapter of the
Neuron C Reference Guide:

#pragma disable_snvt_si

#pragma enable_sd_nv_names

Examples of Network Variable Declarations
Some sample network variable declarations are the following:

network input SNVT_temp nviTemp;
network output SNVT_switch nvoHeater;
network output int nvoCurrentTemp;

Examples of priority network variable declarations are shown below:

network output SNVT_alarm bind_info(priority)
 nvoFireAlarm;
network input boolean bind_info (priority(nonconfig))
 nviFireAlarm;

An example of declaring a network variable using the unacknowledged
service is the following:

network output SNVT_lev_cont bind_info(unackd)
 nvoFillLevel;

The unacknowledged service can be used for this network variable because
we can assume that the control dial generates numerous messages as it is
being turned, and you probably don’t need or want to receive an
acknowledgment for each one. In addition, it is probably not critical to this
application if a single message out of several is not received.

Neuron C Programmer's Guide 3-11

Connecting Network Variables
Network variable connections are independent of the Neuron C application
on a device. Network variable connections are created by a portion of a
network tool called the binder. The binder may be part of the LonMaker
Integration Tool or another network tool.

The binder assigns addresses to all appropriate devices to ensure that
information flows to and from the right places.

Use of the is_bound() Function
A Neuron C application can determine if a network variable has been
connected by a network tool by calling the is_bound() function. This can be
used to prevent unnecessary processing for unconnected network variables.
Whenever an unconnected output network variable is updated, an
nv_update_succeeds event becomes TRUE even though no update actually
occurred (see also the section on Processing Completion Events for Network
Variables in Chapter 6, How Devices Communicate Using Application
Messages). Use this function to avoid executing code that depends on the
output network variable being connected.

EXAMPLE:

network output SNVT_switch nvoHeater;

void turn_on_heater_2(void) {
 // turn on secondary heater if one is connected
 if (is_bound(nvoHeater))
 nvoHeater.state = ST_ON;
}

You can also use the is_bound() function to check whether an input network
variable is connected (and thus has a valid value) before you use it.

EXAMPLE:

network input SNVT_temp_f nviTemp;

void process_heater(void) {
 // runs heater only if connected:
 if (is_bound(nviTemp)) {
 …
 }
}

The is_bound() function only indicates whether the network variable is
bound or unbound. Another device, such as a network tool for monitoring
and control, may still attempt to obtain the current value of an unbound

3-12 How Devices Communicate Using Network Variables

output network variable by polling, or may still update an unbound input
network variable by setting its value without a bound connection. Thus,
reducing the application’s processing requirements by conditional processing
based on the is_bound() function should be limited to those devices that
cannot operate without a bound connection, such as devices implementing a
closed-loop system.

Network Variable Events
Chapter 2, Focusing on a Single Device, introduced the event scheduling
mechanism and discussed a number of predefined events. Four predefined
events are specifically related to network variables:

 nv_update_completes [(network-var-reference)]
nv_update_fails [(network-var-reference)]
nv_update_occurs [(network-var-reference)]
nv_update_succeeds [(network-var-reference)]

The nv_update_occurs event applies only to input network variables. The
other three events (nv_update_completes, nv_update_fails,
nv_update_succeeds) apply to output network variables when they are
updated, and to input network variables when they are polled.

The event expression may be qualified with a network-var-reference, which
can be a network variable name, a network variable array element (as in
network-var[index]), a network variable array name, or a range of network
variables. If the event is qualified by an array name, the event occurs once
for each element for which the event is applicable.

The form of the event that permits a range of network variables has the
syntax shown below. The range consists of two network variable or network
variable element references, separated by two consecutive dot characters ".."
indicating the range. This syntax applies to all four event-names shown
above. Each network variable is assigned a global index by the compiler. An
array of network variables is assigned consecutive indices, one for each
element. The range event applies to all network variables whose global
indices are between the global index for network-var-1 and network-var-2,
inclusive. The global index of network-var-1 must be less than the global
index of network-var-2.

 event-name [(network-var-1 .. network-var-2)]

This section provides an introduction to these events. For convenience, we
refer to them as network variable completion events, since they all pertain to
whether or not a network variable update or poll has completed. See also
Chapter 6, How Devices Communicate Using Application Messages, which
includes more detailed information on using these completion events.

Neuron C Programmer's Guide 3-13

The nv_update_occurs Event
When a new value has been received for an input network variable, the
nv_update_occurs event evaluates to TRUE. If a specific network variable
is not used to qualify the event, it evaluates to TRUE for any network
variable update on that device.

NOTE: See description of the nv_in_addr built-in variable in the Neuron C
Reference Guide.

The nv_update_occurs event is used in many situations. For example, a
lamp program could use this event as follows:

// Use the network variable’s value
// as the new state for the lamp

network input SNVT_switch nviLampState;

when (nv_update_occurs(nviLampState)) {
 io_out(ioLED, nviLampState.state);
}

In the following example, when a thermostat device receives a new
temperature setpoint, it checks the current temperature and turns the heater
on or off if necessary:

network input SNVT_temp nviSetpoint;
network output SNVT_switch nvoHeater;
network output SNVT_temp nvoCurrentTemp;

when (nv_update_occurs(nviSetpoint)) {
 nvoHeater.state = nvoCurrentTemp < nviSetpoint;
}

The nv_update_succeeds and nv_update_fails Events
When a network variable update or poll fails, the nv_update_fails event
evaluates to TRUE. If no network variable is specified for the event, it
evaluates to TRUE for any network variable update or poll that failed on that
device. If multiple network variables are specified, the event can be TRUE
once for each network variable update or poll that failed.

Similarly, the nv_update_succeeds event evaluates to TRUE whenever an
output network variable update has been successfully sent or polled values
have been received from all the writers.

3-14 How Devices Communicate Using Network Variables

You can use the nv_update_fails event for any output network variables.
The following example illustrates using the nv_update_fails event with a
single output network variable:

network output SNVT_switch nvoSwitch;

when (nv_update_fails(nvoSwitch))
{
 // take some corrective action
}

Here is an example of testing for network update failure and success:

boolean heater_failed;
network output SNVT_switch nvoHeater;

when (nv_update_fails(nvoHeater))
{
 heater_failed = TRUE;
 // remember update failure
}

when (nv_update_succeeds(nvoHeater))
{
 heater_failed = FALSE;
 // heater device received update
}

The nv_update_completes Event
The nv_update_completes event evaluates to TRUE whenever an output
network variable update or poll either succeeds or fails. An example of
testing for network variable update completion is shown below:

#include <io_types.h>
#define C_TO_K 2740
IO_7 input ontime invert clock(2) io_temperature_sensor;
network output SNVT_temp nvoCurrentTemp;

when (nv_update_completes(nvoCurrentTemp))
{ // latest temperature has been sent out
 ontime_t sensor_value;

 // send another update
 sensor_value = io_in(io_temperature_sensor);
 nvoCurrentTemp = (sensor_value * 221) / 642
 + 211 + C_TO_K;
 // tenths of a degree,C
}

If a program checks for nv_update_completes or nv_update_succeeds for
any network variable, the program is said to use comprehensive completion
event testing. See Comprehensive Completion Event Testing later in this
chapter for the rules you should follow.

Neuron C Programmer's Guide 3-15

Sample Program
The following program shows the use of network variable declarations and
event processing. Excerpts of this program appear in the preceding
paragraphs.

// therm.nc: Sample program for a thermostat device
// that is connected to two heater devices and a
// temperature setpoint device.

#include <io_types.h>
#define C_TO_K 2740

// temperature sensor I/O object declaration
IO_7 input ontime invert clock(2) io_temperature_sensor;
IO_2 output bit io_failure_light;
 // LED for heater failure

// Example declarations of network variables using SNVTs
network input SNVT_temp nviSetpoint;
 // tenths of a degree C+2740,
 // received from setpoint device

network output SNVT_switch nvoHeater1;
 // control heaters (on/off)

network output SNVT_switch nvoHeater2;

network output SNVT_temp nvoTemp;
 // exported to other devices

// Function prototype declaration
void heaters_on(boolean state);

// Example of receiving a network variable update event
when (nv_update_occurs(nviSetpoint))
{
 heaters_on(nvoTemp < nviSetpoint);
}

// Example of testing network variable update completion
when (nv_update_completes(nvoTemp))
{
 ontime_t sensor_value;

 // latest temperature has been sent out on the network
 // send another update
 sensor_value = io_in(io_temperature_sensor);
 nvoTemp = (sensor_value * 221) / 642
 + 211 + C_TO_K;
 // tenths of a degree,C
}

3-16 How Devices Communicate Using Network Variables

// Example of testing NV update failure and success
boolean heater_device_failed;
 // true if we cannot communicate with heater

when (nv_update_fails(nvoHeater1))
when (nv_update_fails(nvoHeater2))
{
 heater_device_failed = TRUE; // remember device failure
 io_out(io_failure_light, 0); // turn on error indicator
}

when (nv_update_succeeds(nvoHeater1))
when (nv_update_succeeds(nvoHeater2))
{
 heater_device_failed = FALSE;
 // heater device received update
 io_out(io_failure_light, 1);
 // turn off error indicator
}

// Example of polling a network variable.
//(See section on Polling, later in this chapter)
// when this device starts running, get latest value of
// setpoint

when (reset)
{
 poll(nviSetpoint);
 io_out(io_failure_light, 1); // clear error light
 heater_device_failed = FALSE;
}

// Example of using is_bound() function
// control heaters

void heaters_on (boolean state)
{

 // update primary heater NV
 nvoHeater1.state = state;

 if (is_bound(nvoHeater2))
 // update secondary heater NV only if it is bound
 nvoHeater2.state = state;
}

Neuron C Programmer's Guide 3-17

Synchronous Network Variables

When an output network variable is updated, the Neuron firmware ensures
that the most recent value assigned to an output is propagated and received
as an event by any connected input network variables. Thus, if multiple
updates are made to an output network variable in a short period of time,
only the last value assigned is ensured to be propagated and received as an
event at the input network variables. You can specify that all updates to an
output network variable must be propagated and received as events by using
the synchronous subclass of network variables.

Declaring Synchronous Network Variables
To declare a synchronous network variable, include a synchronized or sync
keyword in its declaration. An example declaration is shown below:

network output sync SNVT_temp nvoRelativeTemp;

In the following example, the network variable is declared as synchronous so
that all the updates are sent. (If more than one alarm goes off, we want to
receive notice of all alarms, not just the most recent one.)

// ensure multiple alarms are handled serially
network output sync SNVT_alarm nvoAlarm;

Synchronous output network variables do not have to be connected to
synchronous input network variables. All input network variables operate
synchronously regardless of whether the synchronous attribute was assigned.

Synchronous vs. Nonsynchronous Network Variables
For most applications, nonsynchronous network variables are adequate and
should be used when possible. Many applications need the most recent value,
not all of the values, for a given network variable. Widespread use of
synchronous network variables that are frequently updated could delay
processing if the program frequently runs out of buffers (see Preemption
Mode in this chapter). Depending on the device buffering, channel speed,
and congestion of the network, application performance could be adversely
affected by extensive use of synchronous network variables.

If a program is required to use relative (or delta) data values, synchronous
network variables may be necessary to preserve the intermediate data
values. For programs using absolute data values, nonsynchronous network
variables are usually sufficient.

3-18 How Devices Communicate Using Network Variables

A nonsynchronous output network variable goes out on the network when the
next output buffer is available. If the program updates the variable again
before that time, only the most recent value goes out. A synchronous output
network variable causes the application to wait for an output buffer if none is
available. In this case, the scheduler enters preemption mode (see
Preemption Mode in the next section).

For input network variables, an incoming network variable update always
results in an event for the application. All input network variables operate
synchronously regardless of whether the synchronous attribute was assigned.

Updating Synchronous Network Variables
Synchronous network variables are always updated at the end of each critical
section. If a buffer is not available, the scheduler waits for one.
Nonsynchronous network variables, on the other hand, are updated at the
end of critical sections when the scheduler has application buffers available
to do so. Unlike synchronous network variables, they will not always be
updated at the end of the next critical section. As already pointed out, where
multiple updates occur, the intermediate values may never be propagated
across the network.

Preemption Mode
The scheduler enters preemption mode when a synchronous output network
variable update occurs and there is no application output buffer available.
Since the system must send out the synchronous output network variable
update, it processes completion events, incoming msg_arrives or
nv_update_occurs events, and response events until an application output
buffer becomes available.

Other events are not processed, unless the when clause for the event is
preceded by the keyword preempt_safe. (See Chapter 2, Focusing on a
Single Device, for syntax of a when clause.) See Chapter 6, How Devices
Communicate Using Application Messages, for a further discussion of
preemption mode, and when to use the preempt_safe keyword.

A delay in application processing thus occurs when the system enters
preemption mode. The length of the delay depends on how long it takes for
an application output buffer to become free. This delay depends on network
traffic, channel bit rate, and other factors.

Processing Completion Events for Network
Variables

For network variables, there are two modes of checking for completion
events: partial completion event testing, and comprehensive completion
event testing. For message tags (see Chapter 6, How Devices Communicate
Using Application Messages), only comprehensive completion event testing is
available.

Neuron C Programmer's Guide 3-19

Partial Completion Event Testing
If you choose to use partial completion event testing in your program, you
then have two choices of how to process completion events for each network
variable:

1 Do not check for any completion events.

2 Check for only the failure event (nv_update_fails).

For example, within a program containing two network variables:

• Network Variable 1: Program checks for no completion events.

• Network Variable 2: Program checks for failure only.

Comprehensive Completion Event Testing
Comprehensive completion event testing offers the same set of choices for
network variable completion events that is available for processing message
tag completion events (see Chapter 6, How Devices Communicate Using
Application Messages). If you choose to use comprehensive completion event
testing in your program, you then have three choices of how to process
completion events for each network variable:

1 Do not check for any completion events.

2 Check for the failure and the success events
 (nv_update_fails, nv_update_succeeds).

3 Check for the update completion event (nv_update_completes).

For example, the following is an acceptable strategy within a program
containing three network variables:

• Network Variable 1: Program checks for no completion events.

• Network Variable 2: Program checks for failure and success.

• Network Variable 3: Program checks for update completion only.

NOTE: If you choose to use comprehensive completion event testing features
(with network variables), all completion code processing for network
variables must be comprehensive completion event testing. (This does not
mean that events must be checked for all network variables. It only means
that a single program can use either partial or comprehensive completion
event testing, but may not intermix both techniques.) The Neuron C
compiler detects use of the comprehensive event feature on a per-program
basis.

3-20 How Devices Communicate Using Network Variables

Tradeoffs
Using comprehensive completion event testing for processing network
variable completion events within a program requires more code space and is
less efficient than using partial completion event testing. If you choose a
comprehensive completion event testing feature, such as checking
nv_update_completes, you are limited to comprehensive completion event
testing features for whichever network variable's events in which you are
interested. For example, within a program using comprehensive completion
event testing, you cannot simply check for nv_update_fails, because that
feature applies only to partial completion event testing.

Polling Network Variables
As described earlier in this chapter, a network variable update is initiated
when a writer device assigns a value to a network variable. In this usual
case, the network variable update is initiated by a writer device.

A reader device can also request that the writer device send its latest value
for a network variable. The term polling refers to this process in which a
network variable update is requested by a reader device.

A device’s program may poll any input network variables at any time,
including initial power-up and when transitioning from offline to online.
Polling on initial power-up can cause network congestion if many devices are
powered-up at the same time, and they all do power-up polling.

Polling an input network variable from your program requires the network
binder to apply a different scheme when connecting output network variables
between writer and reader devices, requiring additional address table entries
to be used on the reader device. If you add polling to an existing application
that did not previously use polling, you must create a new device interface
(XIF) file for the device, and import the new device interface file into any
network tools that used the previous version.

Neuron C Programmer's Guide 3-21

The reader device makes its request through the poll() function. The syntax
is shown below:

poll ([network-var]);

network-var is an input network variable identifier.

If no network variable is specified, all input network variables for the device
are polled. An explicit polled declaration is not allowed on an input network
variable.

The network-var identifier may also be a network variable array identifier, or
an element of a network variable array, as in network_var[index]. If a
network variable array name is used without an index, all elements of the
array are polled.

The new value resulting from the poll is not immediately available after the
poll() function call. Use a qualified nv_update_occurs event in a when
clause or some other conditional statement to obtain the new, polled value.

EXAMPLE:

mtimer tDelayedPolling;

network input SNVT_switch nviCooling;

when (reset) {
 // set up timer for delayed power-up polling:
 tDelayedPolling = random();
 ... // other reset processing
}

when (timer_expires(tDelayedPolling)) {
 poll(nviCooling);
 ...
}

when (nv_update_occurs(nviCooling)) {
 ...
}

3-22 How Devices Communicate Using Network Variables

Here is a lamp program that includes a poll of the input network variable
nviLampState after a reset event. The device obtains the most recent value
of nviLampState, and then uses that value after reset.

// LAMP.NC -- Sample lamp actuator program,
// polls the switch on reset

///////////////// Network Variables ////////////////////
network input SNVT_switch nviLampState = {0,0};

//////////////////////// Constants /////////////////////
#define LED_ON 1
#define LED_OFF 0

/////////////////////// I/O Objects ////////////////////
IO_0 output bit ioLED = LED_OFF;

/////////////////////////// Tasks //////////////////////
// NV update task -- handle update to lamp state
// Use the network variable’s value as the new state
// for the lamp
when (nv_update_occurs(nviLampState)) {
 io_out(ioLED,
 nviLampState.value && nviLampState.state
 ? LED_ON : LED_OFF);
}

//
// Reset task -- request last value from any switch attached
when (reset) {
 poll(nviLampState);
}

Neuron C Programmer's Guide 3-23

Declaring a Network Variable as Polled
Poll requests are initiated by reader devices. A writer device may assign
values to its network variables frequently, but the reader device may want to
receive these updates only at specified times. The output network variable in
this case should be declared as polled:

network output polled type netvar;

In this special case, the output network variable’s value is never propagated
as a result of its value changing. Instead, the output network variable’s
value is sent only in response to a poll request from a reader device, or if the
propagate() function is called for that network variable.

EXAMPLE:

A lamp and switch example could also be written to use explicit polling of
the switch network variable. Complete programs illustrating polling are
shown below.

Listing 3.1 Lamp Program Using Polling

// LAMP.NC -- Sample lamp actuator program,
// polls the switch periodically

///////////////////// Network Variables ////////////////
network input SNVT_switch nviLampState = {0,0};

//////////////////////// Constants /////////////////////
#define LED_ON 1
#define LED_OFF 0

/////////////////////// I/O Objects ////////////////////
IO_0 output bit ioLED = LED_OFF;

//////////////////////// Timers ////////////////////////
mtimer tmPoll;

/////////////////////////// Tasks //////////////////////
// NV update task -- handle update to lamp state
// Use the network variable’s value as the new
// state for the lamp
when (nv_update_occurs(nviLampState)) {
 io_out(ioLED,
 nviLampState.value && nviLampState.state
 ? LED_ON : LED_OFF);
 tmPoll = 500; // Wait 500 msec before polling again
}

3-24 How Devices Communicate Using Network Variables

//
// Reset and timer task
// request last value from any switch attached
when (reset)
when (timer_expires(tmPoll)) {
 poll(nviLampState);
}

Listing 3.2 Switch Program Using Polling

// SWITCH.NC -- Sample switch sensor program
// Only transmits switch state when polled by the lamp

///////////////////// Compiler Pragmas /////////////////
#pragma enable_io_pullups

//////////////////// Network Variables ////////////////
network output polled SNVT_switch nvoSwitchState = {0,0};

//////////////////////// Constants
//////////////////////////
#define BUTTON_DOWN 1
#define BUTTON_UP 0

/////////////////////// I/O Objects ////////////////////
IO_4 input bit ioButton = BUTTON_UP;

/////////////////////////// Tasks //////////////////////
// I/O task -- handle pushbutton down event
// Just toggle the network variable (nvoSwitchState).
// In this case, no message is sent until a poll request
// is received from a reader device
when (io_changes(ioButton) to BUTTON_DOWN)
{ // button pressed
 nvoSwitchState.state = !(nvoSwitchState.state);
 nvoSwitchState.value = nvoSwitchState.state ? 100 : 0;
} // toggle state

when (reset) {
 io_change_init(ioButton);
 ... // other reset processing
}

Neuron C Programmer's Guide 3-25

Explicit Propagation of Network Variables
As described earlier in this chapter, a network variable update is initiated
when a writer device assigns a value to a network variable. In this usual
case, the network variable update is initiated implicitly by code generated by
the compiler as a result of the variable's modification.

An application can also explicitly request that an output network variable be
sent over the network. This is commonly used in the implementation of
“heartbeats,” regularly scheduled repeated propagation of the most recent
value, as supported by many interoperable devices. This technique may also
be useful in situations where the variable is not directly modifiable, or it may
also result from using pointers to network variables. The term propagation
refers to this process in which a network variable update is explicitly
initiated by the output device.

A device’s program may propagate any output network variables at any time,
including initial power up and when transitioning from offline to online.
Network variable propagation on initial power-up can cause network
congestion if many devices are powered-up at the same time, and they all do
power-up propagation.

The application makes its request through the propagate() function. The
syntax is shown below:

propagate ([network-var]);

network-var Specifies an output network variable identifier.

If no network variable is specified, all output network variables for the device
are propagated. The network-var identifier may also be a network variable
array identifier, or an element of a network variable array, as in
nv_array[index]. If a network variable array name is used without an index,
all elements of the array are propagated.

The propagate() function can be used to send the value of an output
network variable that is declared const, and thus cannot be assigned to.
Since assignment triggers the compiler to implicitly cause network variable
propagation, but a const variable cannot be assigned to, an explicit
mechanism for propagation is required. See the documentation of the
propagate() function in the Neuron C Reference Guide for more information.

EXAMPLE:

// The variable below is a special node ID
network output const unsigned long nodeID = 24221;

when (some-special-event)
{
 propagate(nodeID);
}

3-26 How Devices Communicate Using Network Variables

The propagate() function may also be useful in certain situations where
pointers to network variables are used. For example, assume that some
function, f(), calculates a complicated set of values and places them in a
network variable structure. Assume the function is designed to operate on
several similar such variables within a device, thus the function is passed a
pointer to each variable.

For efficiency, it is best to code this function to operate on the variables via a
pointer reference. However, the Neuron C compiler cannot distinguish
between a pointer to a regular, internal variable, and a pointer to a network
variable. Thus, updates to a network variable via a pointer do not trigger an
implicit propagation, and an explicit propagation is required.

Furthermore, because of the inability to distinguish pointers to network
variables, Neuron C treats pointers to network variables as pointers to const
data, thus avoiding the problem of a modification to the variable via the
pointer. In Neuron C, removal of the const attribute is not normally
permitted. However, the #pragma relaxed_casting_on directive directs
the compiler to permit this cast. Casting can either be explicit, or implicit by
variable assignment or function parameter passing.

EXAMPLE:

typedef struct complex_struct {
 // struct definition here
} complex_type;

network output complex_type nv1, nv2, nv3;

void f(complex_type *p) {
 // calculations & modification of (*p).
 // Neuron C cannot distinguish between pointers
 // to network variables and pointers to
 // non-network variables.
 // Thus, any modifications here do not cause any
 // propagation of an NV.
}

when (some-event)
{
#pragma relaxed_casting_on
 // Without pragma above, this would result in
 // an error, because the address of a network
 // variable is treated as 'const <type> *'.
 // Passing such a type as the function parameter
 // results in an implicit cast, since the function
 // prototype defines the variable as '<type> *'.
 f(&nv1);
 propagate(nv1); // Explicit propagation needed
 // since f() modified nv1 via pointer.
 f(&nv2);
 propagate(nv2);
 f(&nv3);
 propagate(nv3);
}

Neuron C Programmer's Guide 3-27

Monitoring Network Variables
A monitoring device is a LONWORKS device that receives data from many
other devices. The devices being monitored are typically identical. For
example, an alarm display device may monitor many alarm sensor devices.
The sensor devices may all have a network variable output declared as a
SNVT_switch output, and the monitor device may have a network variable
input, declared as a SNVT_switch input.

Typically, the monitor device waits for a change to its input network
variable. When a change occurs, it must identify which device originated the
change. The method of determining the source of a change depends on the
method used to connect the sensor outputs to the monitor input.

Following are a few options for the network monitor device; in the examples,
the sensor devices all have a single SNVT_switch output network variable
that must be monitored by the network monitor device:

• Declare the network variable input as an array, and connect each element of
the array to a different sensor. Wait for an nv_update_occurs event for the
entire array, and then use the nv_array_index built-in variable to
determine which device originated the change.

EXAMPLE:

network input SNVT_switch nviAlarmArray[50];
SNVT_switch alarm_value;
unsigned int alarm_device;

when (nv_update_occurs(nviAlarmArray))
{
 alarm_device = nv_array_index;
 alarm_value = nviAlarmArray[alarm_device];

 // Process alarm_device and alarm_value
}

This method is appropriate when the number of devices to be monitored does
not exceed the network variable limits of the monitoring device – 62 for a
Neuron hosted device; 4,096 for a host-based device.

• Declare the network variable input as a single input on the monitor device,
and declare the network variable outputs as polled outputs on the sensor
devices. Create a single connection with all the sensor outputs and the
monitor input. Explicitly poll each of the sensors using explicit addressing
and explicit messages as described in the next chapter. Since the devices are
explicitly polled, the monitor device always knows the source of a network
variable update.

 This method is appropriate for any number of devices, as long as the delays
introduced by the polling loop are acceptable for the application.

3-28 How Devices Communicate Using Network Variables

• Declare the network variable input as a single input and create a single
connection with all the sensor outputs and the monitor input. Wait for an
nv_update_occurs event for the network variable input, and then use the
nv_in_addr built-in variable to determine the source address of the device
that originated the change. Implement a configuration property array that is
set by the device plug-in to identify the fanned-in devices. Following is an
example for the code on a network monitor device:

EXAMPLE:

network input SNVT_switch nviAlarm;
SNVT_switch alarm_value;
nv_in_addr_t alarm_device_addr;

when (nv_update_occurs(nviAlarm)) {
 alarm_device_addr = nv_in_addr;
 alarm_value = nviAlarm;
 // Process alarm_device_addr and alarm_value
 // Look up alarm_device_addr in a configuration
 // property set by a plug-in at installation time
}

This method is appropriate for any number of devices.

The Neuron C Reference Guide describes the contents of the nv_in_addr
built-in variable.

Authentication
Authentication is a special form of an acknowledged service between one
writer device and from 1 to 63 reader devices. Authentication is used by the
reader devices to verify the identity of the writer device. This type of service
is useful, for example, if a device containing an electronic lock receives a
message to open the lock. By using authentication, the electronic lock device
can verify that the “open” message comes from the owner, not from someone
attempting to break into the system.

Authentication doubles the number of messages per transaction.
Authentication may be used with acknowledged updates or network variable
polls. It may not be used with unacknowledged or repeated updates. An
acknowledged message normally requires two messages, an update and an
acknowledgment. An authenticated message requires four messages, as
shown in Figure 3.7. This may affect system response time and capacity.

The following sections describe how to set up devices to use authentication
and how authentication works.

Neuron C Programmer's Guide 3-29

Setting Up Devices to Use Authentication
To set up a device to use authenticated network variables or send
authenticated messages, follow these steps:

1 Declare the network variable as authenticated. For application messages to
be authenticated, specify TRUE in the authenticated field of the msg_out
object.

2 Specify the authentication key to be used for this device using a network tool.
The LonMaker tool can be used to install a key during development.

These steps are described in more detail in the following sections.

Declaring Authenticated Variables and Messages
For network variables, include the authenticated (or auth) keyword as part
of the connection information. The partial syntax is shown below. For
complete syntax of the bind-info clause, see the Neuron C Reference Guide.

bind_info (authenticated [(config | nonconfig)])

NOTE: The authenticated keyword can be abbreviated as auth. Likewise,
the nonauthenticated keyword can be abbreviated as nonauth.

If you also include the config keyword in the declaration, network tools will
be able to change the authentication status of this network variable after the
device has been installed. Include the nonconfig keyword to prevent the
authentication status from being changed for this network variable.

EXAMPLE:

network output UNVT_boolean
 bind_info(auth(nonconfig)) nvoSafeLock;

With this declaration, authentication can never be turned off for updates of
the nvoSafeLock network variable, because the declaration includes the
nonconfig keyword.

Specifying the Authentication Key
All devices that read or write a given authenticated network variable
connection must have the same authentication key. This 48-bit
authentication key is used in a special way for authentication, as described
below.

The key itself is transmitted to the device only during the initial
configuration. All subsequent changes to the key do not involve sending it
over the network. The network tool can modify a device’s key over the
network, in a secure fashion, with a network management message.

3-30 How Devices Communicate Using Network Variables

How Authentication Works
The following sequence describes an example of authentication. Figure 3.7
illustrates the process.

1 Device A sends an update to a network variable declared as authenticated on
Device B using the acknowledged service. If Device A does not receive the
challenge, it sends a retry of the initial update.

2 Device B generates a 64-bit random number and returns, to Device A, a
challenge packet that includes the 64-bit random number. Device B then
uses the encryption algorithm (built into the Neuron firmware) to compute a
transformation on that random number using its 48-bit authentication key
and the message data. The transformation is stored in Device B.

3 Device A then also uses the encryption algorithm (built in to the Neuron
firmware) to compute a transformation on the random number (returned to it
by Device B) using its 48-bit authentication key and the message data.
Device A then sends this computed transformation to Device B.

4 Device B compares its computed transformation with the number it receives
from Device A. If the two numbers match, the identity of the sender is
verified, and Device B can perform the requested action and send its
acknowledgment to Device A. If the two numbers do not match, Device B
does not perform the requested action and an error is logged in the error
table.

If the acknowledgment is lost and Device A tries to send the same message
again, Device B remembers that the authentication was successfully
completed, and acknowledges it again.

Device B
(reader)

1

2

3

4

ACKD Message or

Request

Challenge

Reply to challenge

ACK or Response

Device A
(Writer)

Figure 3.7 Authentication Process

If Device A attempts to update an output network variable connected to
multiple readers, each receiver device generates a different 64-bit random
number and sends it in a challenge packet to Device A. Device A must then
transform each of these numbers and send a reply to each receiver device.

Neuron C Programmer's Guide 3-31

The principal strength of authentication is that it cannot be defeated by
simple record and playback of commands that implement the desired
functions (for example, unlocking the lock). Authentication does not require
that the specific messages and commands be secret, since they are sent
unencrypted over the network, and anyone who is determined can read those
messages.

It is good practice to connect a device directly to a network tool with no other
devices on the same network when installing its authentication key the first
time. This prevents the key from being sent over a large network where an
intruder might detect it. Once a device has its authentication key, a network
tool can modify the key, over the network, by sending an increment to be
added to the existing key.

Changeable-Type Network Variables
You can create network variables that support their type and size being
changed at installation time. This is called a changeable-type network
variable.

You can use a changeable-type network variable to implement a generic
functional block that works with different types of inputs and outputs. For
example, you can create a general-purpose device that can be used with a
variety of sensors or actuators, and then create a functional block that allows
the integrator to select the network variable type depending on the physical
sensor or actuator attached to the device at installation time.

You can support type changing to any network variable type defined in a
resource file (i.e., any SNVT or UNVT in a resource file). You can only create
a changeable-type network variable if the network variable is a member of a
functional block. An integrator will typically use a plug-in that you create to
change network variable types. A network variable cannot be connected to
other network variables when its type is changed (since the change would
make the connection invalid).

The NodeBuilder Code Wizard generates code that contains a framework for
supporting changeable-type network variables, see Using a Changeable-Type
Network Variable in the NodeBuilder User’s Guide for details.

The following details all that is required to create a changeable-type network
variable without the use of the NodeBuilder Code Wizard, followed by a
detailed discussion of the requirements that the application must meet to
support the changeable-type network variables. The chapter completes with
a commented source code example.

3-32 How Devices Communicate Using Network Variables

To create a changeable-type network variable, follow these steps:

1 Declare the network variable with the changeable_type keyword. This
keyword results in information being provided in the device interface
description. This information specifies that the variable's implementation
permits the type of the network variable to be changed by a network tool.
You must declare an initial type for the network variable, and the size of the
initial type must be equal to the largest network variable size that your
application supports.

 For example, the following declaration declares a changeable-type output
network variable, with an initial type of SNVT_volt_f. This type is a 4-byte
floating-point value, so this network variable can support changes to any
network variable type of 4 or less bytes.

network output changeable_type SNVT_volt_f nvoValue;

2 Set the changeable-interface bit in the program ID for the device template.
You can set this bit by setting Has Changeable Interface in the standard
program ID calculator when you create the device template as described in
the NodeBuilder User’s Guide.

3 Declare a SCPTnvType configuration property that applies to the
changeable-type network variable. See Chapter 4, Using Configuration
Properties to Configure Device Behavior, for more information about
configuration properties. This configuration property is used by network
tools to notify your application of changes to the network variable type.

 Your application will require notification of changes to this configuration
property. You can provide this notification by declaring the configuration
property with the reset_required or object_disabled modifier and
checking the SCPTnvType value in the director function, or you can
implement configuration property access via FTP and check in the
stop_transfer() function whether the SCPTnvType value has been
modified. Alternatively, you can implement the SCPTnvType configuration
property as a configuration network variable and check the current type in
the task for the nv_update_occurs(cpnv-name) event.

 For example, the following code declares a changeable-type output network
variable with its SCPTnvType configuration property.

EXAMPLE:

SCPTnvType cp_family cp_info(reset_required) nvType;

network output changeable_type SNVT_volt_f nvo1
 nv_properties { nvType };

Neuron C Programmer's Guide 3-33

4 You can optionally declare a SCPTmaxNVLength configuration property
that applies to the changeable-type network variable. This configuration
property can be used to inform network tools of the maximum type length
supported by the changeable-type network variable. This value is a constant,
so declare this configuration property with the const modifier. For example,
the following code adds a SCPTmaxNVLength configuration property to the
example in the previous step.

EXAMPLE:

SCPTnvType cp_family cp_info(reset_required) nvType;
const SCPTmaxNVLength cp_family nvMaxLength;

network output changeable_type SNVT_volt_f nvo1
 nv_properties { nvType,
 nvMaxLength=sizeof(SNVT_volt_f) };

5 Implement code in your Neuron C application to process changes to the
SCPTnvType value. The required code is described in the following section.

6 Implement code to provide information about the current length of the
network variable to the Neuron firmware. This is detailed under Processing
a Size Change, later in this chapter.

7 Implement your application’s algorithm such that it can process all possible
types the changeable-type network variable might use at runtime. An
example and fragment for such code is shown in the Changeable Type
Example at the end of this chapter.

6 The LonMaker browser provides your integrators with a user interface to
change network variable types. You will typically want a custom interface
for integrators to change network variable types on your device. For
example, the custom interface may restrict the available types to the types
supported by your application, thus preventing configuration errors. To
provide a custom interface, implement code in your plug-in to provide an
interface for users to change the network variable type. The required plug-in
code is discussed in the LNS Plug-in Programmer’s Guide.

WARNING: A side effect of declaring any network variables as changeable-
type network variables is that all of the network variable self-identification
data in the device will be placed in writeable memory. This may make it
difficult to fit such an application into the memory of a device based on a
Neuron 3150 Chip or a 3150 Smart Transceiver if the device has no writeable
external EEPROM or flash memory for the application.

3-34 How Devices Communicate Using Network Variables

Processing Changes to a SCPTnvType CP
When a plug-in or the LonMaker browser changes the type of a network
variable, it informs your application of the change by writing a new value to
the SCPTnvType configuration property associated with the network
variable. The definition of the SCPTnvType type is provided below:

typedef struct {
 unsigned short type_program_ID[8];
 unsigned short type_scope;
 unsigned long type_index;
 nv_type_category_t type_category;
 unsigned short type_length;
 signed long scaling_factor_a;
 signed long scaling_factor_b;
 signed long scaling_factor_c;
} SCPTnvType;

When your application detects a change to the SCPTnvType value, it must
determine if the change is valid as described in Validating a Type Change
below. If it is, it must process the change as described in Processing a Type
Change below. On the other hand, if the application determines that the
change is not valid or supported, it must report an error as described in
Rejecting a Type Change. If the change is valid and supported by your
application, and the change also changes the size of the network variable,
your application must implement the size change as described in Processing a
Size Change below.

Validating a Type Change
There are several ways that your application can determine if it supports a
particular SCPTnvType value. It can look for specific types as specified by
the type_program_ID, type_scope, and type_index fields. Alternatively,
it can look for specific type categories as defined by the type_category and
type_length fields.

The type_program_ID and type_scope values specify a program ID
template and a resource scope that together uniquely identify a resource file
set. The type_index value identifies the network variable type within that
resource file set. If the type_scope value is 0, the type_index value is a
SNVT index. The type_program_ID, type_scope, and type_index values
uniquely identify a type to your application as well as to any network tools
that wish to determine the current type, or modify the type, of the network
variable to which the property applies. Your application can ignore these
values if the remaining fields in the SCPTnvType structure provide
sufficient information for the application.

Neuron C Programmer's Guide 3-35

The type_category enumeration is defined in the <snvt_nvt.h> include file
as follows:

typedef enum nv_type_category_t {

 /* 0 */ NVT_CAT_INITIAL = 0, // Initial (default) type
 /* 1 */ NVT_CAT_SIGNED_CHAR, // Signed Char
 /* 2 */ NVT_CAT_UNSIGNED_CHAR, // Unsigned Char
 /* 3 */ NVT_CAT_SIGNED_SHORT, // 8-bit Signed Short
 /* 4 */ NVT_CAT_UNSIGNED_SHORT, // 8-bit Unsigned Short
 /* 5 */ NVT_CAT_SIGNED_LONG, // 16-bit Signed Long
 /* 6 */ NVT_CAT_UNSIGNED_LONG, // 16-bit Unsigned Long
 /* 7 */ NVT_CAT_ENUM, // Enumeration
 /* 8 */ NVT_CAT_ARRAY, // Array
 /* 9 */ NVT_CAT_STRUCT, // Structure
 /* 10 */ NVT_CAT_UNION, // Union
 /* 11 */ NVT_CAT_BITFIELD, // Bitfield
 /* 12 */ NVT_CAT_FLOAT, // 32-bit Floating Point
 /* 13 */ NVT_CAT_SIGNED_QUAD, // 32-bit Signed Quad
 /* 14 */ NVT_CAT_REFERENCE, // Reference
 /* -1 */ NVT_CAT_NUL = -1 // Invalid Value
} nv_type_category_t;

This enumeration describes the type, stating whether it is a signed short, or
floating-point, or structure, for example, but not providing information about
structure or union fields or other similar details. The type_length field is
necessary to provide the number of bytes of a structure or union type, though
it is set for all types. To support all scalar types, test for a type_category
value between NVT_CAT_SIGNED_CHAR and NVT_UNSIGNED_LONG,
plus NVT_CAT_SIGNED_QUAD. To also support floating point types, also
test for a type_category value of NVT_FLOAT.

The SCPTnvType configuration property may be shared between multiple
changeable-type network variables. In this case, the application must make
sure to process all network variables from the property’s application set — as
SCTPnvType applies to all these network variables, so does the type change
request. The type change may only be accepted if all related network
variables can perform the required change.

Thus, an application that shares a SCPTnvType property among multiple
network variables must also reject the type change request if any of the
related network variables is currently bound. Use is_bound(), discussed
earlier in this chapter, to confirm that none of the affected network variables
is bound, prior to accepting the type change.

Processing a Type Change
When the application detects a type change request and recognizes the type
detailed in the related SCPTnvType property as a supported type, and also
confirms all affected network variables can perform the change, the
application performs the type change.

3-36 How Devices Communicate Using Network Variables

To perform a type change that does not change the size of the network
variable, your application must do nothing but memorize the current type
details. A different part of the application, the type-independent
implementation of your application’s algorithm, will query these details as
and when required, and process the network variable data accordingly. The
processing required in the type-independent implementation of the
application depends on the range of types supported by your application. For
example, if your application only supports changing between different
floating-point types, no additional processing may be required. If your
application supports changing between different scalar types, it may require
the use of scaling factors and network variable type length to convert the raw
network variable value to a scaled value. For example, the SNVT_lev_cont
type is an unsigned short value that represents percentages from 0 to 100
percent, with a resolution of 0.5%. The actual data values (also called raw
values) are in the variable range from 0 to 200. The scaling factors for
SNVT_lev_cont are defined as a=5, b= -1, c=0. To convert from raw data to
scaled fixed-point data, the following formula may be used:

scaled = (a * (10 ** b) * (raw + c))

Your application can convert the raw data of a changeable type input
network variable, internally, to an actual scaled value for use as a floating-
point data item, for example, using the above formula. To convert the data
back to a raw value for an output network variable, use the following
inverted scaling formula:

raw = (scaled / (a * (10 ** b))) - c

You can use cast operations and pointer manipulations to handle type
changes. See Changeable Type Example below for an example.

If a network variable type or size is changed and that network variable is a
member of an inheriting configuration property’s application set, and that
property is implemented as a configuration network variable, then the
application must process the same type and/or length changes that were
performed on the network variable for the configuration network variable.

However, if the configuration property is implemented within a configuration
file, no change to the configuration file is required. The configuration file
states the configuration property’s initial and maximum size (in the CP
documentation-string length field), and LNS will derive the current and
actual type for type-inheriting CPs from the associated network variable.

Your application must always support the NVT_CAT_INITIAL type
category. If the requested type is of that category, your application must
ignore all other content of the SCPTnvType configuration property and
change the related network variable’s type back to its initial type. The
network variable’s initial type is the type the network variable was declared
with in Neuron C, SNVT_volt_f in the earlier example.

Neuron C Programmer's Guide 3-37

Processing a Size Change
If a supported change to the SCPTnvType configuration property results in
a change in the size of a network variable type, your application must
provide code to memorize the current length of the network variable. It must
further provide code to inform the Neuron firmware about the current length
of the changeable-type network variable. The current length information
must be kept in non-volatile storage, but details of the required
implementation depend on the chosen mechanism for supporting the Neuron
firmware.

Two such mechanisms are supported, a legacy one called the nv_len method,
and a more robust NV length override system image extension method.

You can explicitly set and maintain the new length of the network variable
using the built-in nv_len property of the network variable. You can access
and modify the built-in nv_len property as shown below:

EXAMPLE OF LEGACY NV_LEN PROPERTY:

size_t oldNVLen, newNVLen;
oldNVLen = nv-name::nv_len;
nv-name::nv_len = newNVLen;

WARNING: When the Neuron C compiler detects use of the nv_len
property to modify a network variable's length, it requests the linker to place
the network variable fixed configuration table in writeable memory. This
may make it difficult to fit such an application into the memory of a device
based on a Neuron 3150 Chip or an FT 3150 Smart Transceiver if the device
has no writeable external memory for the application, such as EEPROM or
flash memory.

Starting with version 14, the Neuron firmware implements an NV length
override system image extension that is managed by the application.
Whenever the firmware needs the length of a network variable, it calls the
get_nv_length_override() system image extension to get it. Compared to
writing to the nv_len property, this new method provides more reliable
updates to network variable sizes, since the old method could cause a device
to go applicationless if a power failure occurred in the middle of a network
variable size update.

You can enable the NV length override system image extension with the
following compiler directive:

#pragma system_image_extensions nv_length_override

Using this compiler directive together with a version of the Neuron firmware
that does not support system extensions causes an NLD#477linker error.

3-38 How Devices Communicate Using Network Variables

To implement a NV length override system image extension, provide a
function with the following prototype:

unsigned get_nv_length_override(unsigned uNvIndex);

The get_nv_length_override() function returns the current length of the
network variable with the index specified in the argument, or 0xFF to
indicate that the type has not been changed and the network variable’s
initial length is still valid.

The system image extension method only works with version 14 firmware, or
newer. To support development of applications that will use the best possible
method depending on the target hardware, you can use conditional
compilation to support both methods. This is, for example, used by the
NodeBuilder Code Wizard to allow for the LTM-10A device, which is typically
used during development, to exercise and implement support for changeable-
type network variables. The changeable-type example, later in this chapter,
implements such a strategy.

Whenever possible, the system image extension technique should be used
owing to its more robust implementation. However, a compiler directive is
provided to permit the use of the system_image_extensions
nv_length_override directive with targets that do not support system
extensions. You can turn the NLD#477linker error , which would normally
occur in such a condition, into a linker warning by using the following
directive:

#pragma unknown_system_image_extension_isa_warning

Rejecting a Type Change
If a network tool attempts to change the type of a changeable-type network
variable to a type that is not supported by the application, your application
must do the following:

• Report the error within a maximum of 30 seconds from the receipt of the type
change request. To report the error, the application should signal an
invalid_request via the Node Object functional block and optionally disable
the related functional block. If the application does not include a Node
Object functional block, the application may set an application-specific error
code using the error_log() function and take the device offline (use
go_offline()) .

By setting the functional block status, the rest of the functional blocks on
your device can continue to function normally. You can use both methods to
provide a more precise indication of the error to a network integrator. See
Chapter 5, Using Functional Blocks to Implement a Device Interface, for more
information on using functional blocks.

• Reset the SCPTnvType value to the last known good value.

• Reset all other housekeeping data, if any, so that the last known good type is
re-established.

In the interest of future-proof implementations, the application should be
sure to reject all change requests to unknown types, as shown in the
changeable-type example below.

Neuron C Programmer's Guide 3-39

Changeable-Type Example
The following code sample shows a typical implementation of a changeable-
type network variable. It implements nvo1 as a changeable-type output
network variable. This example uses utility functions, such as
getObjStatus(), updateNode_Status(), and setFblockDisable(). These
utility functions are part of the framework provided by NodeBuilder Code
Wizard. Your application may not contain those functions, and you should
consider providing equivalent functionality in that case.

Parts of the example below are shown in boldface type. This indicates the
most important parts of the example. The rest of the code (non-boldface type)
can be considered more detail-oriented on first read-through.

#include <control.h>
#include <float.h>
#include <mem.h>
#include <snvt_nvt.h>

#pragma relaxed_casting_on
#define TYPE_ERROR 1
#define NV_LENGTH_MISMATCH 2

// Forward-declaration of the fblock’s director function:
void fbSensorDirector(unsigned uFbIndex, int iCommand);

// Declare the SCPTnvType family. Note the use of the
// cp_info modifier; the application must have some
// mechanism to become aware of a type change request
// so that it can validate and honor or reject that
// request. Other possibilities for such a notification
// include the object_disable or offline CP flags, or
// the implementation of this CP as a configuration
// network variable.
SCPTnvType cp_family cp_info(reset_required) nvType;

// SCPTmaxNVLength is optional, but allows for a
// network tool to filter out those types that will
// not be acceptable due to excessive length. The
// type change routine, below, still must verify that
// the requested type is within supported limits.
const SCPTmaxNVLength cp_family nvMaxLength;

3-40 How Devices Communicate Using Network Variables

// Declare the changeable-type network variable.
// The network variable's initial type also determines
// its maximum length, hence the initialization of the
// nvMaxLength property using the sizeof() operator
// applies to the NV's inital type.
network output changeable_type SNVT_volt_f nvo1
 nv_properties {
 nvType,
 nvMaxLength=sizeof(SNVT_volt_f)
};

// A functional block that contains
// the changeable-type network variable:
fblock SFPTopenLoopSensor {
 nvo1 implements nvoValue;
 director fbSensorDirector;
} fbSensor external_name("Sensor");

// nvTypeLastGood memorizes the last known good type of the
// changeable-type network variable. This is not a configuration
// property, but a simple (EEPROM) variable using the same type.
// Note this variable must be initialized correctly, to allow the
// device to come out of the initial reset cycle without an
// accidental type change, and to allow the changeable-type NV
// to function correctly even without an explicit type change:
eeprom SCPTnvType nvTypeLastGood =
 {{0, 0, 0, 0, 0, 0, 0, 0}, 0, 1, NVT_CAT_INITIAL, 1, 0, 0, 0};

// The following two compiler directives enable the system extension,
// and allow for its use even if the target device doesn't support
// system extensions. See text for details, and see the Neuron C
// Reference Guide, Compiler Directives, for details about these
// directives.
#pragma system_image_extensions nv_length_override
#pragma unknown_system_image_extension_isa_warning // see text!

// changeLength() performs or rejects the type change request.
// It is called from the director function in response to a
// device reset because the SCPTnvType has been declared with
// "cp_info(reset_required)." Other CP flags, such as
// object_disabled, require a different invocation. SCPTnvType
// may also be implemented as a configuration network variable,
// allowing for invocation of the changeLength() function from
// a "when(nv_update_occurs(...))" task.

void changeLength(void) {

 // First, check to see if there is anything to do at all:
 // is there a real type change request pending? The
 // changeLength() function could have been invoked as a
 // result of a regular device reset (or whichever other
 // update notification event is associated with the nvType CP).

 if ((nvo1::nvType.type_category != NVT_CAT_NUL)
 && (memcmp((void*)&nvTypeLastGood,(void*)&nvo1::nvType,
 sizeof(SCPTnvType)) != 0)) {

 // In case multiple network variables share the same
 // SCPTnvType configuration property, make sure all
 // affected network variables are unbound. Use is_bound()
 // for all these network variables and reject the type change
 // if any reports being bound.

Neuron C Programmer's Guide 3-41

 // Check if requested type is within acceptable size
 // limits. The sizeof(nvo1) function always returns the
 // initial size of the network variable, which equals
 // its maximum size.

 if (nvo1::nvType.type_length > sizeof(nvo1)) {

 // Reject: set the nvType CP back to the last known
 // good value, log the error, and notify the
 // network tool. In addition to the minimum
 // requirements, this example implementation
 // also automatically disables the fblock

 nvo1::nvType = nvTypeLastGood;
 error_log(TYPE_ERROR);
 getObjStatus(fbSensor::global_index)->invalid_request
 = TRUE;
 updateNode_Status();
 setFblockDisable(fbSensor::global_index, TRUE);

 } else switch (nvo1::nvType.type_category) {

 case NVT_CAT_SIGNED_LONG:
 case NVT_CAT_UNSIGNED_LONG:
 case NVT_CAT_FLOAT:

 // Accept long and float.
 // Store the current type information and, for
 // debugging purpose only, also change the length of
 // the network variable via its nv_len property. See
 // further below for an example implementation of the
 // recommended get_nv_length_override technique for
 // this network variable.

 nvTypeLastGood = nvo1::nvType;

#ifdef _DEBUG // see text!
 nvo1::nv_len = nvo1::nvType.type_length;
#endif

 // For all inheriting configuration properties that
 // apply to this network variable and that are
 // implemented as configuration network variables,
 // repeat this type change.

 break;

 case NVT_CAT_INITIAL:

 // This is a request to change the type back to its
 // initial type (whichever is the initial type).
 // For cardinal types with significant scaling
 // factors A, B, or C, the application may need to
 // restore those scaling factors or to preserve
 // that knowledge otherwise; see GetCurrent() or
 // SetCurrent() functions, below, for details.
 // The sizeof() function always returns the size of
 // the initial type.

 nvo1::nvType.type_length = sizeof(nvo1);
 nvTypeLastGood = nvo1::nvType;

#ifdef _DEBUG // see text!
 nvo1::nv_len = nvo1::nvType.type_length;
#endif

3-42 How Devices Communicate Using Network Variables

 // For all inheriting configuration properties that
 // apply to this network variable and that are
 // implemented as configuration network variables,
 // repeat this type change.

 break;

 // Reject all other types. This example implementation
 // just refuses the change request and continues to
 // operate on the last known good type:

 default:
 nvo1::nvType = nvTypeLastGood;
 error_log(TYPE_ERROR);
 getObjStatus(fbSensor::global_index)->invalid_request
 = TRUE;
 updateNode_Status();
 } // end of switch
 } // any change at all
} // function changeLength()

// The fbSensorDirector() function manages this functional block.
// Because the nvType CP has been declared with the reset_required
// flag, the director must call the changeLength() function as part
// of the reset processing to allow for the type change request to
// be executed.
// The director function is not called automatically, but
// requires a framework that explicitly calls the director.
// The director implementation shown here is incomplete, as it
// ignores all other commands and duties. See the director
// implementation generated by the NodeBuilder Code Wizard
// for a more comprehensive example of a director function, and
// for a complete framework that issues director invocations.

void fbSensorDirector(unsigned uFbIndex, int iCommand) {
 if ((TFblock_command)iCommand == FBC_WHEN_RESET) {
 changeLength();
 setLockedOutBit(uFbIndex, FALSE);
 } // FBC_WHEN_RESET
} // fbSensorDirector()

// Whenever the current length of the changeable network-type variable is
// required by the Neuron firmware, the firmware calls the
// get_nv_length_override() system image extension. This function
// returns the current length of the given NV (in bytes) or 0xFF to
// indicate that the initial type is still unchanged.

unsigned get_nv_length_override(unsigned uNvIndex) {
 unsigned uResult;
 uResult = 0xFF;

 if (uNvIndex == fbSensor::nvoValue::global_index) {
 // Return current length for our example NV, or return
 // 0xFF to indicate the NV has the initial length:

 if (nvTypeLastGood.type_category != NVT_CAT_INITIAL
 && nvTypeLastGood.type_category != NVT_CAT_NUL) {
 // this is a distinct current length:
 uResult = nvTypeLastGood.type_length;
 }
 }

 return uResult;
}

Neuron C Programmer's Guide 3-43

// Triggered by some appropriate I/O event, timer, or network event,
// the application will need to process data for the changeable-type
// network variable. This example does not include an algorithm that
// performs numeric operations using the changeable-type data, but two
// conversion routines are shown that convert the current type of
// the changeable network variable into a float_type variable for
// internal use in such numeric operations, and vice versa.

void GetCurrent(float_type* const pFloat) {
 // One union to hold all possible current types, plus the initial
 // type of the changeable type NV
 union {
 unsigned long uLong;
 signed long sLong;
 SNVT_volt_f xInitial;
 } nvLocal;

 // bProcessABC: a flag to indicate whether the scaling factors
 // A,B,C must be honored and used
 boolean bProcessABC;
 bProcessABC = FALSE;

 nvLocal.xInitial = nvo1;

 switch (nvo1::nvType.type_category) {
 case NVT_CAT_SIGNED_LONG:
 // Current type is signed long. Convert to float.
 fl_from_slong(nvLocal.sLong,pFloat);
 bProcessABC = TRUE;
 break;
 case NVT_CAT_UNSIGNED_LONG:
 // Current type is unsigned long. Convert to float.
 fl_from_ulong(nvLocal.uLong,pFloat);
 bProcessABC = TRUE;
 break;
 case NVT_CAT_INITIAL:
 // Fall through to float.
 case NVT_CAT_FLOAT:
 // Float is current. No conversion is required, just
 // copy data into local variable.
 *pFloat = nvLocal.xInitial;
 break;
 default:
 // Unsupported type. The changeLength() handler should
 // have recognized this and rejected the type earlier.
 // Log this application error and set the device offline:
 error_log(TYPE_ERROR);
 go_offline();
 } // switch

 if (bProcessABC) {
 // TODO: If needed by the application algorithm, transform
 // the raw *pFloat NV value into the scaled float equivalent
 // using the following formula:
 // scaled = A * 10**B * (*pFloat + C)
 // Scaling factors are accessible via the scaling_factor_X
 // members of the SCPTnvType CP, e.g.
 // nvo1::nvType.scaling_factor_a. This transformation is a
 // costly operation and it is recommended to design
 // the application algorithm such that this conversion
 // is not required at all, if possible.
 }
} // GetCurrent()

3-44 How Devices Communicate Using Network Variables

void SetCurrent(float_type* pFloat) {
 // One union to hold all possible current types, plus the initial
 // type of the changeable NV.
 union {
 unsigned long uLong;
 signed long sLong;
 SNVT_volt_f xInitial;
 } nvLocal;

 boolean bConversionOK;
 boolean bProcessABC;

 bConversionOK = TRUE;
 bProcessABC = nvo1::nvType.type_category == NVT_CAT_SIGNED_LONG
 || nvo1::nvType.type_category == NVT_CAT_UNSIGNED_LONG;

 if (bProcessABC) {
 // TODO: if needed by the application algorithm, revert the
 // conversion done in GetCurrent() by using the following
 // formula:
 // raw = (*pFloat / (A * 10**B)) - C
 // See GetCurrent(), above, for more details.
 }

 switch (nvo1::nvType.type_category) {
 case NVT_CAT_SIGNED_LONG:
 // Current type is signed long. Convert from float.
 nvLocal.sLong = fl_to_slong(pFloat);
 break;
 case NVT_CAT_UNSIGNED_LONG:
 // Current type is unsigned long. Convert from float.
 nvLocal.uLong = fl_to_ulong(pFloat);
 break;
 case NVT_CAT_INITIAL:
 // Fall through to float.
 case NVT_CAT_FLOAT:
 // Float is current. No conversion is required, just
 // copy data into local variable.
 nvLocal.xInitial = *pFloat;
 break;
 default:
 // Unsupported type. The changeLength() handler should
 // have recognized this and rejected the type earlier.
 // Log this application error and set the device offline:
 error_log(TYPE_ERROR);
 go_offline();
 bConversionOK = FALSE;
 } // switch

 if (bConversionOK) {
 // Update the actual network variable in case the conversion
 // was OK (current type is in fact supported).
 // A more generic implementation of these conversion functions
 // is likely to use a pointer to the changeable type network
 // variable's initial type as a second argument, thus allowing
 // the SetCurrent() and GetCurrent() functions to be used for
 // all changeable type NVs of the same initial type.
 // This approach is likely to require explicit calls to the
 // propagate() function; see the Neuron C Reference Guide
 // for details.

 nvo1 = nvLocal.xInitial;
 } // bConversionOK
} // SetCurrent()

Neuron C Programmer's Guide 3-45

4
Using Configuration

Properties to Configure
Device Behavior

This chapter discusses the declaration and use of configuration
properties. Configuration properties are part of the device
interface, and are used by network tools to configure device
behavior during and after network installation.

Overview
A configuration property is a data item that, like a network variable, is part
of the device interface for a device. A configuration property can be modified
by a network tool. Configuration properties facilitate interoperable
installation and configuration tools by providing a standardized network
interface for device configuration data. Like network variables, configuration
properties also provide a well-defined interface.

Each configuration property type is defined in a resource file that specifies
the data encoding, scaling, units, default value, invalid value, range, and
behavior for configuration properties based on the type. A rich variety of
standard configuration property types (SCPTs) are defined in the standard
resource file set. You may view all currently defined SCPTs online at
types.lonmark.org. You can also create your own user configuration property
types (UCPTs) that are defined in resource files that you create with the
NodeBuilder Resource Editor.

Declaring Configuration Properties
You can implement a configuration property using one of two different
techniques. The first, called a configuration network variable, uses a
network variable to implement the configuration property. This has the
advantage of enabling the configuration property to be modified by another
LONWORKS device, just like any other network variable. It also has the
advantage of having the Neuron C event mechanism available to provide
notification of updates to the configuration property.

The disadvantages of configuration network variables are that they are
limited to a maximum of 31 bytes each, and a Neuron Chip or Smart
Transceiver hosted device is limited to a maximum of 62 network variables.

To implement a configuration property as a configuration network variable,
declare it using the network … config_prop syntax described in the next
section on Declaring Configuration Network Variables.

The second method of implementing configuration properties uses
configuration files to implement the configuration properties for a device.
Rather than being separate externally-exposed data items, all configuration
properties implemented within configuration files are combined into one or
two blocks of data called value files. A value file consists of configuration
property records of varying length concatenated together. Each value file
must fit as contiguous bytes into the memory space in the device that is
accessible by the application. When there are two value files, one contains
writeable configuration properties and the second contains read-only data.
To permit a network tool to access the data items in the value file, there is
also a template file, an array of text characters that describes the elements in
the value files.

The advantages of implementing configuration properties as configuration
files is that there are no limits on configuration property size or the number
of configuration properties, except as constrained by the available memory

4-2 Using Configuration Properties to Configure Device Behavior

http://types.lonmark.org/

space on the device. The disadvantages are that other devices cannot connect
to or poll a configuration property implemented as a configuration file,

requiring a network tool to modify a configuration property implemented
within a configuration file, and no events are automatically generated when
a configuration property implemented within a configuration file is updated.
The application can force notification of updates by requiring network tools
to reset the device, disable the functional block, or take the device offline
when a configuration property is updated (though the reset or online
notification is the only type of notification that occurs after the configuration
property has been modified). Alternatively, the application can also force
notification by implementing configuration file access via the LONWORKS file
transfer protocol (FTP) and monitoring the stop_transfer() function. This
option requires additional code space for the FTP server code.

To implement a configuration property as a part of a configuration file,
declare it with the cp_family syntax described in Declaring Configuration
Properties Within Files.

Declaring Configuration Properties Within Files
You can declare a configuration property that is to be implemented within a
configuration file using a CP family declaration. A CP family declaration can
be thought of as a meta-declaration, defining a type construct for later use in
the program. It may be used to declare a collection of many configuration
properties, identical in type and certain other settings, but individually
applying to one or more different network variables, functional blocks (as
described in the Using Functional Blocks chapter), or the device itself. A CP
family can have zero members, one member, or many members. No code or
data is generated until you declare members of the CP family as described
later. In this regard, the CP family is similar to a C language typedef.

The syntax for declaring a CP family is shown below:

[const] type cp_family [cp-modifiers] family-ident [= initial-value] ;

family-ident : identifier [array-bound]
 identifier

EXAMPLE:

SCPTgain cp_family cpGain = { 2, 3 };

The type for a CP family cannot be just a standard C type such as int or
char. Instead, the declaration must use a configuration property type (CPT)
from a resource file. The configuration property type may either be a
standard configuration property type (SCPT) or a user configuration property
type (UCPT). There are over 200 SCPT definitions available today, and you
can create your own manufacturer-specific types using UCPTs. The SCPT
definitions are stored in the standard.typ file, which is part of the standard
resource file set included with the NodeBuilder tool. There may be many
similar resource files containing UCPT definitions, and these are managed

Neuron C Programmer's Guide 4-3

on the computer by the NodeBuilder Resource Editor as described in the
NodeBuilder User’s Guide.

A configuration property type is similar to an ANSI C typedef, but it is also
much more. The configuration property type also defines a standardized
semantic meaning for the type. The configuration property definition in a
resource file contains information about the default value, minimum and
maximum valid values, a designated (optional) invalid value, and language
string references that permit localized descriptive information, additional
comments, and units strings to be associated with the configuration property
type.

The cp-modifiers begin with the cp_info keyword followed by a
parenthesized list of option keywords. The keywords and their meanings are
discussed in the Configuration Property and Network Variable Declarations
chapter of the Neuron C Reference Guide.

If the declaration of the CP family contains an array-bound expression
following the family identifier name, each member of the CP family is
declared to be a separate array. For example, a family may consist of three
members: an array property for some network variable nv1, another array
property for another network variable nv2, and a third array property for a
functional block fb1.

EXAMPLE:

SCPTgain cp_family cpGain[3] = { { 2, 3 },
 { 1, 5 },
 { 2, 1 }
 };

The initial-value in the declaration of a CP family is optional. If initial-value
is not provided in the declaration, the default value specified by the resource
file is used. The initial-value given is an initial value for a single member of
the family, but the compiler will replicate the initial value for each
instantiated family member.

The initialization rules for a CP family member are shown below. The
initialization rules are used to set the initial value that will be loaded in the
value file from the linked image, as well as the value file stored in the device
interface file. A network tool can use the initial value as a default value, and
may at times reset the configuration properties (or a subset of them) back to
the default values. Consult the documentation of the particular network tool,
for example, the LonMaker User's Guide, for more information on the tool's
use of configuration property default values.

4-4 Using Configuration Properties to Configure Device Behavior

In the initialization rules that follow, the compiler uses the first rule in this
ordered list that applies to the configuration property.

1 If the configuration property is initialized explicitly in its instantiation, then
this is the initial value that is used.

2 If the configuration property is initialized explicitly in the CP family
declaration, then the family initializer is used.

3 If the configuration property applies to a functional block, and the functional
profile that defines the functional block specifies a default value for the
associated configuration property member, then the functional profile default
is used.

4 If the configuration property type for the configuration property defines a
default value, then that default value is used as the initial value. This rule
does not apply for a configuration property type that is type-inheriting; see
Type-Inheriting Configuration Properties in this chapter.

5 If no initial value is available from any of the preceding rules, a value of all
zeros is used.

The cp_family declaration is repeatable. The declaration may be repeated
two or more times, and, as long as the duplicated declarations match in every
regard, the compiler will treat these as a single declaration.

The following example shows a valid repetition, two invalid repetitions, and a
non-repeating case.

EXAMPLE:

// initial declaration of family:
SCPTgain cp_family cpGain = { 2, 3 };

// valid repetition: families are identical
SCPTgain cp_family cpGain = { 2, 3 };

// invalid repetition: different initializer!
SCPTgain cp_family cpGain = { 1, 10 }; // INVALID

// invalid repetition: different cp_info
SCPTgain cp_family cp_info(offline) cpGain = { 2, 3 };

// no repetition, but creation of a valid second family:
SCPTgain cp_family cp_info(offline) cpLowGain = { 1, 8 };

Declaration of Configuration Network Variables
The configuration network variable declaration syntax is similar to the
declaration syntax of a non-configuration network variable as already
discussed in the previous chapter, How Devices Communicate Using Network
Variables.

Neuron C Programmer's Guide 4-5

The complete syntax for declaring a configuration network variable is shown
below. The declaration is made distinct from other network variable
declarations by the inclusion of the config_prop keyword following the type
of the network variable declaration. The config_prop keyword can be
abbreviated as cp.

network input [netvar-modifier] [class] type config_prop [cp-modifiers]
 [connection-info] identifier [= initial-value] ;

network input [netvar-modifier] [class] type config_prop [cp-modifiers]
 [connection-info] identifier [array-bound] [= initializer-list] ;

EXAMPLES:

network input SCPTupdateRate config_prop nciUpdateRate;

network input SCPTbypassTime cp nciBypassTime = ...

The netvar-modifier and class portions of this syntax were discussed in depth
in the previous chapter, and they apply equally to a configuration network
variable as they do to any other network variable, except the class cannot be
config. (A config network variable is not a fully managed configuration
property, it is a manually managed one. The config keyword is obsolete and
not recommended for use in new development, but is provided to allow legacy
applications to be used with the Neuron C Version 2 compiler.)

Similar to the configuration CP family members, configuration network
variables must be declared with a type that is defined by a configuration
property type within a resource file. The type may be a standard (SCPT) or
user (UCPT) type. The cp-modifiers clause that may optionally follow the
config_prop keyword is also identical with the CP family declaration
discussed earlier in this chapter (see the Neuron C Reference Guide for a
discussion of the cp-modifiers syntax and semantics).

The connection-info for a configuration network variable is no different than
the connection info for any other input network variable, as discussed in the
previous chapter. Like any other network variable, a configuration network
variable can be an array, with each element of the array being a separately
handled configuration property, or with the entire configuration network
variable array being handled as a single configuration property. See
Instantiation of Configuration Properties, later in this chapter, for details.

A configuration network variable's declaration may contain an initial-value
or an initializer-list, like any other network variable declaration, as discussed
in the previous chapter. Unlike any other network variable, a configuration
network variable may not, itself, also have a network variable property list.
That is, you cannot define configuration properties that apply to other
configuration properties.

4-6 Using Configuration Properties to Configure Device Behavior

When using a network variable array as a configuration property or
properties, particular care should be given to the compiler's rules of
initialization for that network variable array. The array elements can be
initialized in the declaration, as is the case with any variable or array
variable declaration. If some or all of the array elements are not initialized,
the uninitialized elements default to a zero initialization. However, each
array element may be initialized when it appears as a property in a
properties clause, and this declaration will override the initialization in the
declaration, but only for the element that appears in that property clause.
Similarly, if the entire network variable array is used as a single
configuration property, the entire array may be initialized when it appears as
a property in a properties clause.

Instantiation of Configuration Properties
Configuration properties may apply to a device, one or more functional
blocks, or one or more network variables. In each case, a configuration
property is made to apply to its respective objects through a property list.
Property lists for the device and network variables are explained in the
following sections; property lists for functional blocks are explained in
Chapter 5, Using Functional Blocks to Implement a Device Interface. You
cannot have more than one configuration property of any given SCPT or
UCPT type that applies to an object, where that object is a network variable,
a functional block, or the entire device.

As discussed above, the cp_family declaration is similar to a C language
typedef because no actual variables are created as a result of the
declaration. In the case of a type definition, variables are instantiated when
the type definition is used in a later declaration that is not, itself, another
typedef. At that time, variables are instantiated, which means that
variables are declared and memory is allocated for and assigned to the
variables. The variables can then be used in later expressions in the
executable code of the program.

The instantiation of a CP family member occurs each time the CP family
declaration’s identifier is used in a property list. For exceptions to this rule,
see Sharing of Configuration Properties, later in this chapter.

However, a configuration network variable is already instantiated at the
time it is declared. For a configuration network variable, the property list
serves only to identify the association between the configuration property
and the object or objects to which it applies.

Neuron C Programmer's Guide 4-7

Device Property Lists
A device property list declares instances of configuration properties defined
by CP family declarations and configuration network variable declarations
that apply to a device. The complete syntax for a device property list is as
follows:

 device_properties { property-reference-list } ;

 property-reference-list :
 property-reference-list , property-reference
 property-reference

 property-reference :
 property-identifier [= initializer] [range-mod]
 property-identifier [range-mod] [= initializer]

 range-mod : range_mod_string (concatenated-string-constant)

 property-identifier : cpnv-prop-ident
 cp-family-prop-ident

 cpnv-prop-ident : identifier [constant-array-index-expr]
 identifier

 cp-family-prop-ident : identifier

EXAMPLE:

SCPTlocation cp_family cpLocation;

device_properties {
 cpLocation = { "Unknown" }
};

The device property list appears at file scope. This is the same level as a
function declaration, a task declaration, or a global data declaration. The
device property list begins with the device_properties keyword. It then
contains a list of property references, separated by commas. Each property
reference must be the name of a previously declared CP family or the name of
a previously declared configuration network variable. If the network
variable is an array, a single array element may be chosen as the device
property, so an array index must be given as part of the property reference in
that case to identify the element. Alternatively, the entire network variable
array may be chosen as the device property, so no array index is given in the
property reference in that case.

4-8 Using Configuration Properties to Configure Device Behavior

EXAMPLE OF A CP NETWORK VARIABLE ARRAY ELEMENT:

network input SCPTlocation cp cpLocation[5];

device_properties {
 cpLocation[0] = { "Unknown" }
};

The example above implements a single device property of type
SCPTlocation, which is implemented by the first element of the
configuration property network variable array. The remaining four elements
of that array are unused in the above example.

In contrast, the following example illustrates the use of a configuration
network variable array as a single device property. The device property with
internal name cpOemType is a single-dimensional array of three elements,
each of type SCPToemType.

EXAMPLE OF ENTIRE CP NETWORK VARIABLE ARRAY AS A SINGLE
PROPERTY:

network input SCPToemType cp cpOemType[3];

device_properties {
 cpOemType = { "Label 1", "Label 2", "Label 3" }
};

Following the property-identifier, there may be an optional initializer, and an
optional range-mod. These elements are discussed in detail in the Neuron C
Reference Guide chapter on Configuration Properties and Network Variables.

A Neuron C program may have multiple device property lists. These lists are
merged together by the Neuron C compiler to create one combined device
property list. However, you cannot have more than one configuration
property of any given SCPT or UCPT type that applies to the device.

If two separate modules specify a particular configuration property of the
same type in the device property lists, this situation will cause a compile-
time error.

EXAMPLE OF INCORRECT CP CONFLICT:

UCPTsomeDeviceCp cp_family cpSomeDeviceCp;
SCPTlocation cp_family cpLocation;
SCPTlocation cp_family cpPlacement;

device_properties {
 cpSomeDeviceCp,
 cpLocation,
 cpPlacement // Conflicts with cpLocation
};

Neuron C Programmer's Guide 4-9

Network Variable Property Lists
A network variable property list declares instances of configuration
properties defined by CP family declarations and configuration network
variable declarations that apply to a network variable. The complete syntax
for a configuration network variable’s property list is as follows:

 nv_properties { property-reference-list }

 property-reference-list :
 property-reference-list , property-reference
 property-reference

 property-reference :
 property-identifier [= initializer] [range-mod]
 property-identifier [range-mod] [= initializer]

 range-mod : range_mod_string (concatenated-string-constant)

 property-identifier : [property-modifier] cpnv-prop-ident
 [property-modifier] cp-family-prop-ident

 cpnv-prop-ident : identifier [constant-array-index-expr]
 identifier

 cp-family-prop-ident : identifier

 property-modifier : static | global

EXAMPLE:

// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:
network output SNVT_lev_percent nvoValue
 nv_properties {
 cpMaxSendT,
 // override default for minSendT to 30 seconds:
 cpMinSendT = { 0, 0, 0, 30, 0 }
};

The network variable property list begins with the nv_properties keyword.
It then contains a list of property references, separated by commas, exactly
like the device property list. Each property reference must be the name of a
previously declared CP family or the name of a previously declared
configuration network variable. The rest of the syntax is very similar to the
device property list syntax discussed above.

4-10 Using Configuration Properties to Configure Device Behavior

Following the property-identifier, there may be an optional initializer, and an
optional range-mod. These optional elements are discussed in more detail in
the Neuron C Reference Guide.

You cannot have more than one configuration property of any given SCPT or
UCPT type that applies to the same network variable. A compile-time error
will occur when a particular configuration property type is used for more
than one property in the network variable’s property list.

Unlike device properties, network variable properties may be shared between
two or more network variables. The use of the global keyword creates a CP
family member that is shared between two or more network variables. The
use of the static keyword creates a CP family member that is shared
between all the members of a network variable array, but not with any other
network variables outside the array. See Sharing of Configuration Properties
below for more information on this topic.

Accessing Property Values from a Program
You can access configuration properties from a program just as you can
access any other variable. For example, you can use configuration properties
as function parameters and you can use addresses of configuration
properties.

However, to use a CP family member in an expression, you must specify
which family member to access, because there may be more than one member
of the same CP family with the same name applying to different network
variables. The syntax for accessing a configuration property from a network
variable’s property list uses the Neuron C context operator, a double colon, as
shown below:

 nv-context :: property-reference

 nv-context : identifier [index-expr]
 identifier

 property-reference : property-identifier [index-expr]
 property-identifier

Neuron C Programmer's Guide 4-11

EXAMPLE:

// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:
network output SNVT_lev_percent nvoValue
 nv_properties {
 cpMaxSendT,
 cpMinSendT = { 0, 0, 0, 30, 0 }
};

void f(void)
{
 ...
 if (nvoValue::cpMaxSendT.seconds > 0) {
 ...
 }
}

The particular CP family member is identified by a qualifier that precedes it.
This qualifier is called the context. The context is followed by two consecutive
colon characters, called the context operator, and then the name of the
property. Since there cannot be two or more properties with the same
configuration property type that apply to the same network variable, this
means that each property is unique within a particular context. The context
therefore uniquely identifies the property. For example, a network variable
array, nvoArray, with 10 elements, could be declared with a property list
referencing a CP family named cpXyz. There would then be 10 different
members of the cpXyz CP family, all with the same name. However, adding
the context, such as nvoArray[4]::cpXyz, or nvoArray[j]::cpXyz, uniquely
identifies the CP family member.

4-12 Using Configuration Properties to Configure Device Behavior

Since the same CP family could also be used as a device property, there is a
special context defined for the device. The device’s context is a context
operator (two consecutive colon characters) without a preceding context
identifier.

EXAMPLE, ACCESSING A DEVICE PROPERTY:

network input SCPToemType cp cpOemType[3];

device_properties {
 cpOemType = { "Label 1", "Label 2", "Label 3" }
};

void f(void)
{
 if (strcmp(::cpOemType[0].ascii, "Demo") == 0) {
 ... // special demo mode
 } else {
 ... // normal operation
 }
}

Even though a configuration network variable can be uniquely accessed via
its variable identifier, it can also be accessed equally well through the context
expression, just like the CP family members.

Advanced Configuration Property Features
Configuration properties support a few advanced features that are described
in this section. The first of these features is the use of configuration
properties with network variable arrays. Second is the initialization of
configuration properties at time of instantiation.

Another advanced feature is sharing of configuration properties, where a
single configuration property can apply to two or more network variables, or
two or more functional blocks (see Chapter 5, Using Functional Blocks to
Implement a Device Interface, for information on functional blocks).
However, no single configuration property (or configuration property family
member) can apply to both network variables and functional blocks.

The last advanced feature discussed in this section is configuration
properties with type-inheritance. Some configuration property types (CPTs)
indicate that the type of the configuration property is actually defined by the
network variable to which it applies. Type-inheriting configuration
properties are discussed further at the end of this chapter.

Neuron C Programmer's Guide 4-13

Configuration Properties Applying to Arrays
When configuration properties apply to network variable arrays, the compiler
provides replication of the configuration properties for each member of the
array (this is true unless the property is shared, as discussed below in
Sharing of Configuration Properties). Consider a network variable array
with four elements (each corresponds to some sensor, perhaps):

network output SNVT_volt nvoVoltage[4];

Now, suppose that we want to provide a SCPTmaxSendTime configuration
property for each sensor output that will be used to configure the maximum
amount of time (in seconds) between consecutive updates of the output
network variable. If we use a configuration property family, this can be
accomplished with the following declarations. When using a configuration
property in this manner, the Neuron C compiler automatically creates a
distinct family member for each element of the network variable array.

EXAMPLE WITH A CP FAMILY PROPERTY:

SCPTmaxSendTime cp_family cpMaxSendTime;
network output SNVT_volt nvoVoltage[4]
 nv_properties { cpMaxSendTime };

Another approach is to use a separate network variable array for the
SCPTmaxSendTime configuration properties. For example, the network
variable array declaration shown below provides four elements in the
cpMaxSendTime array, each of them a configuration property
corresponding to the respective element in the nvoVoltage array.

EXAMPLE WITH A NETWORK VARIABLE PROPERTY:

network input cp SCPTmaxSendTime cpMaxSendTime[4];
network output SNVT_volt nvoVoltage[4]
 nv_properties { cpMaxSendTime[0] };

When using a distributed array of network variables for the configuration
properties as shown in the example above, the configuration property
reference in the nv_properties clause must contain an index. This index is
used by the compiler as a starting index; the compiler automatically assigns
the subsequent elements of the configuration property network variable
array to the elements of the underlying network variable array to which the
property applies.

4-14 Using Configuration Properties to Configure Device Behavior

The compiler also checks for existence of a sufficient number of elements.
The following would be an error:

EXAMPLE OF INSUFFICIENT ARRAY SIZE:

network input cp SCPTmaxSendTime cpMaxSendTime[3];
 // Insufficient # of elements
network output SNVT_volt nvoVoltage[4]
 nv_properties { cpMaxSendTime[0] };

EXAMPLE OF INSUFFICIENT ARRAY ELEMENTS IN REFERENCE:

network input cp SCPTmaxSendTime cpMaxSendTime[4];
network output SNVT_volt nvoVoltage[4]
 nv_properties {
 cpMaxSendTime[1] // insufficient members left
};

The index of the configuration property reference in the nv_properties
clause is a starting index. This index need not be zero. For example if there
were two network variable arrays named nvoVolt1 and nvoVolt2, and each
were to have a SCPTmaxSendTime property, the following declarations
could accomplish this scenario, where part of the configuration property
network variable array is used for one array of output network variables, and
the other is used for another array of output network variables. (Although
this case shows all members of the cpMaxSendTime array being used, that
is not a requirement.)

EXAMPLE OF AN ARRAY SPLIT BETWEEN DIFFERENT PROPERTY
CLAUSES:

network input cp SCPTmaxSendTime cpMaxSendTime[7];
network output SNVT_volt nvoVolt1[4]
 nv_properties { cpMaxSendTime[3] };
network output SNVT_vold nvoVolt2[3]
 nv_properties { cpMaxSendTime[0] };

Examples above focused on applying single configuration properties to arrays
of network variables. However, a second case exists where the configuration
property itself is an entire array, rather than an element, as shown below.

EXAMPLE OF CP FAMILY ARRAY APPLYING TO NETWORK VARIABLE
ARRAY:

UCPTeventData cp_family cpEventData[100];
network output SNVT_volt nvoVolt[4]
 nv_properties { cpEventData };

This example implements four output network variables
nvoVolt[0]..nvoVolt[3]. Each of these four network variables implements a
cpEventData configuration property, which itself is an array of 100
elements. Each array element is of the hypothetical type UCPTeventData.

Neuron C Programmer's Guide 4-15

A similar construct cannot be achieved with configuration network variables,
however. Not only is this because configuration network variable arrays are
limited to no more than a total of 62 network variables on a single Neuron-
hosted device, there is also a crucial difference in the two configuration
property implementation techniques. That difference is, as discussed earlier,
that the declaration of a cp_family alone does not create any configuration
properties, whereas configuration network variable declaration actually
creates the (configuration) network variable. Consider the following,
incorrect, example for illustration:

EXAMPLE OF CP-NV ARRAY APPLYING TO NETWORK VARIABLE
ARRAY:

network input UCPTeventData cp cpEventData[10];
network output SNVT_volt nvoVolt[4]
 nv_properties {
 // causes compilation error:
 cpEventData
};

This last example will not compile. Because a configuration network variable
declaration actually creates the (configuration) network variable, the
compiler cannot multiply the number of configuration network variables by
four as required to implement one configuration property array for each of
the network variable elements in the array nvoVolt.

Consequently, a configuration property network variable array that applies
to an array of network variables (or functional blocks) must be shared using
either the static keyword or the global keyword. See Sharing of
Configuration Properties, later in this chapter, for more information on these
keywords.

Initialization of Configuration Properties at
Instantiation

You can initialize a configuration property of fixed type in its declaration.
When a network variable array is used as an array of configuration
properties, the following example could occur. Each of the four configuration
properties shown below is initialized to the value '10' (a power-up delay value
is a number of seconds).

network input cp SCPTpwrUpDelay nvcp[4] = {10, 10, 10, 10};

It is not required to initialize the configuration property at instantiation, but
this may be useful, as explained in the following example. Assume that we
want to declare two network variables nvoA and nvoB, and we want to
associate the nvcp[0] configuration property with nvoA, and nvcp[1] with
nvoB. Furthermore, in these two instances, we want the power-up delay
properties to be 5 seconds, and 10 seconds, respectively.

4-16 Using Configuration Properties to Configure Device Behavior

We can then override the initial value in the declaration with a new initial
value in the instantiation of the property for nvoA, but take advantage of the
previous initialization of nvcp[1] to 10.

EXAMPLE OF NETWORK VARIABLE CP INITIALIZATION

network input cp SCPTpwrUpDelay nvcp[4] = {10, 10, 10, 10};

network output SNVT_volt nvoA = 0
 nv_properties { nvcp[0] = 5 };
network output SNVT_amp nvoB = 0
 nv_properties { nvcp[1] };

Extending the above example, consider another network variable array nvoC
of two members, where we will use nvcp[2] and nvcp[3] as configuration
properties of nvoC [0] and nvoC [1], respectively. Also, we want these
configuration properties each initialized to 60 seconds. This can be
accomplished with the following declaration:

network output SNVT_count nvc[2] = {100, 100}
 nv_properties { nvcp[2] = 60 };

The nvoC network variable is an array, so the nvcp[2] property reference is
treated as a starting point for the compiler to perform the automatic
assignment of properties, as discussed above in Configuration Properties
Applying to Arrays. The compiler automatically replicates the reference to
nvcp[2], which applies to nvoC [0], and the replication occurs for each
subsequent element of the nvoC array (nvcp[3] to nvoC [1], etc). In this
replication, the compiler also replicates the initialization (in this case,
nvcp[3] is therefore also initialized to 60). It is therefore not possible to have
different initial values for each element's configuration property, unless these
initial values are provided with the declaration of the configuration network
variable array as shown here.

EXAMPLE OF NETWORK VARIABLE CP INITIALIZATION

network input cp SCPTpwrUpDelay nvcp[4] = {10, 20, 30, 40};

network output SNVT_volt nvoA = 0
 nv_properties { nciPwrUpDly[0] };
network output SNVT_amp nvoB = 0
 nv_properties { nciPwrUpDly[1] };
network output SNVT_count nvoC[2] = {100, 100}
 nv_properties { nciPwrUpDly[2] };

Some configuration property types (for example, SCPTdefOutput) are type-
inheriting. This means that the SCPT definition does not, itself, specify the
data type for the configuration property. Instead, the configuration
property's data type is inherited from the network variable to which it
applies. In this case, the only explicit initialization that is permitted is in the
instantiation in the property list, not in the declaration. This situation is
explained further in Type-Inheriting Configuration Properties later in this
chapter.

Neuron C Programmer's Guide 4-17

Sharing of Configuration Properties
The typical instantiation of a configuration property will be unique to a
single device, functional block, or network variable. For example, a CP
family whose name appears in the property list of five separate network
variables will have five instantiations, and each instantiation will be specific
to a single network variable. Similarly, a network variable array of five
elements that includes the same CP family name in its property list will
instantiate five members of the CP family, each applying to one of the
network variable array elements.

You can change the instantiation behavior using the static and global
keywords. The global keyword causes a single CP family member to be
shared among all network variables whose property list contains that CP
family name. (There can only be one such global member in a CP family, and
that member is shared among all network variables that instantiate it in
their property lists)

The same sharing considerations apply to configuration properties that apply
to functional blocks; see Using Functional Blocks to Implement a Device
Interface, later in this book, for more about functional blocks and
configuration properties applying to those.

The static keyword causes a single CP family member to be shared among
all elements of a network variable array, but the sharing of the static
member does not extend outside of the array.

EXAMPLE:

// CP for throttle (default 1 minute)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
 // This family will have a total of 2 members

// NVs with shared throttle:
network output SNVT_lev_percent nvoValue1
 nv_properties {
 global cpMaxSendT
 };

network output SNVT_lev_percent nvoValue2
 nv_properties {
 global cpMaxSendT // The same as the one above
 };

network output SNVT_lev_percent nvoValueArray[10]
 nv_properties {
 static cpMaxSendT // Shared among the array
 // elements only
 };

Although the discussion above concerns instantiation and shared CP family
members, configuration network variables can also be shared using a similar
method. Use the static keyword in the array's property list to share a
configuration network variable among members of a network variable array.
Use the global keyword in the configuration network variable’s property list
to share the property among two or more network variables.

4-18 Using Configuration Properties to Configure Device Behavior

The only difference between the configuration network variable and the CP
family member, in this regard, is that the configuration network variable
cannot appear in two or more property lists without the global keyword
because there is only one instance of the network variable (whereas CP
families may have multiple instances).

A configuration property that applies to a device cannot be shared because
there is only one device per application.

Configuration Property Sharing Rules
The following rules apply to configuration property sharing. This list
summarizes the rules described elsewhere in this chapter.

1 A configuration property can only be shared between multiple network
variables, or between multiple functional blocks, but not between a
combination of network variables and functional blocks at the same time.

2 All configuration property types can be shared.

3 A configuration property that applies to the entire device cannot be shared.

4 Multiple functional blocks or network variables can share a configuration
property. A shared configuration property can apply to multiple singular
functional blocks or network variables, a functional block or network variable
array, a number of functional block or network variable arrays, or any
combination thereof.

5 A configuration property that is shared among the members of a functional
block or network variable array must always be shared among all members
of that array.

6 A configuration property can be shared between network variables on
different functional blocks.

7 A configuration property that inherits its type from a network variable can
only be shared between network variables that are all of the same type.
Therefore, all changeable type network variables that share an inheriting
configuration property must also share an instantiation of SCPTnvType, so
that the set of changeable network variables will always have the same,
single, type and so that type changes occur at the same time.

8 Two (or more) mandatory functional profile template configuration properties
can be implemented using a single, shared, configuration property provided
the shared configuration property meets the requirements of all individually
listed FPT members (e.g. same type, same array size, etc.).

9 A single configuration property that inherits its type from a network variable
cannot be shared simultaneously by both changeable and non-changeable
network variables.

Neuron C Programmer's Guide 4-19

Type-Inheriting Configuration Properties
You can define a configuration property type that does not include a complete
type definition, but instead uses the type definition of the network variable to
which it applies. A configuration property type that uses another variable's
type is called a type-inheriting configuration property. When the CP family
member for a type-inheriting configuration property appears in a property
list, the instantiation of the CP family member uses the type of the network
variable. Likewise, a configuration network variable can be type-inheriting.
There is a restriction on configuration network variable arrays: each element
of the array must inherit the same type.

Since the type of a type-inheriting configuration property is not known until
the instantiation, the configuration property initializer option can only be
provided in the property list rather than in the declaration. Likewise,
different range-mod strings may apply to different instantiations of the
property, and therefore, for a type-inheriting configuration property, the
range-mod option can only be provided in the property list, rather than in the
declaration.

Shared configuration network variables (see the preceding section on that
topic) that are also type-inheriting can only be shared among network
variables of identical type.

A type-inheriting configuration property cannot be used as a device property,
because the device has no type from which to inherit.

A typical example of a type-inheriting configuration property is the
SCPTdefOutput configuration property type. The SFPTopenLoopSensor
functional profile is an example of a functional profile that lists the
SCPTdefOutput configuration property as an optional configuration
property, and it is used to define the default value for the sensor's principal
network variable. The SFPTopenLoopSensor functional profile itself,
however, does not define the type for the principal network variable.

4-20 Using Configuration Properties to Configure Device Behavior

The following example implements a SFPTopenLoopSensor functional
block with an optional SCPTdefOutput configuration property. The
configuration property inherits the type, SNVT_amp in this case, from the
network variable it applies to as shown below.

EXAMPLE:

SCPTdefOutput cp_family cpDefaultOutput;

network output SNVT_amp nvoAmpere nv_properties {
 cpDefaultOutput = 123
};

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpereMeter;

The initial value (123 in the preceding example) may only be provided in the
instantiation of the configuration property as discussed above, and not in the
declaration, since the type for cpDefaultOutput is not known until it is
instantiated because it is a type-inheriting configuration property.

It should be noted that type-inheriting configuration properties may apply to
network variables or to functional blocks, but not to the device. In the case
that a type-inheriting configuration property applies to a network variable
explicitly, it derives its type from the network variable. In the event that the
type-inheriting configuration property applies to the entire functional block,
the property derives its type from the functional block’s principal member
network variable.

Each functional profile should have one member network variable designated
as the principal member network variable. The profile must define a
principal network variable if type-inheriting configuration property members
exist that apply to the entire profile.

Neuron C Programmer's Guide 4-21

Type-Inheriting Configuration Properties for Network Variables of
Changeable Type

Type-inheriting configuration properties can also be combined with
changeable-type network variables, see Changeable Type Network Variables
in the chapter How Devices Communicate Using Network Variables. The
type of such a network variable can be changed dynamically by a network
integrator when the device is installed in a network.

EXAMPLE:

SCPTdefOutput cp_family cpDefaultOutput;
SCPTnvType cp_family cpNvType;

network output changeable_type SNVT_amp nvoValue
 nv_properties {
 cpDefaultOutput = 123,
 cpNvType
 };

fblock SFPTopenLoopSensor {
 nvoValue implements nvoValue;
} fbGenericMeter;

The nvoValue principal network variable, although it is of changeable type,
must still implement a default type (SNVT_amp in the example above).
Since the SCPTdefOutput type-inheriting configuration property inherits
the type information from this initial type, the initializer for
cpDefaultOutput must therefore be specific to this instantiation.
Furthermore, the initializer must be valid for this initial type.

Should the network integrator decide to change the type of the underlying
network variable at runtime to, for example, SNVT_volt, then it is the
responsibility of the network tool to apply the formatting rules that apply to
the new type when reading or writing this configuration property. The
network tool must also set any type-inheriting configuration properties to
reasonable initial values that correspond to the new type of the network
variable (and thus, the newly inherited type of the configuration property).

4-22 Using Configuration Properties to Configure Device Behavior

5
Using Functional Blocks to

Implement a Device Interface

This chapter discusses the use of functional blocks to provide a
task-oriented interface for a device. You can use functional
blocks to group network variables and configuration properties
that perform a task together.

Overview
The device interface for a LONWORKS device consists of its functional blocks,
network variables, and configuration properties. A functional block is a
collection of network variables and configuration properties, used together to
perform one task. The network variables and configuration properties
contained within a functional block are called the functional block members.
Using functional blocks promotes modular device design, and focuses the
integrators on the control algorithm.

Functional blocks simplify the installation of your devices by network
integrators. Integrators are able to view your devices as collections of task-
oriented functional blocks rather than monolithic device applications. When
network integrators combine your functional blocks with other functional
blocks within a network, they will be able to easily see the relation of the
different functional blocks within the network. For example, the following
figure illustrates the integrator view of a temperature controller
implemented with functional blocks. The example illustrates seven
functional blocks and their network connections. These functional blocks are
actually implemented on two devices, but the functional view clearly shows
how the input sensors provide data to a temperature controller that in turn
provides outputs to actuators and a process monitor.

Figure 5.1 Network Design with Functional Blocks

Functional blocks are defined by functional profiles. A functional profile is
used to describe common units of functional behavior. All four member
categories are optional, e.g. there may be no mandatory member network
variables defined in a profile, or there may not be any optional configuration
property members defined.

5-2 Using Functional Blocks to Implement a Device Interface

Each functional profile defines mandatory and optional network variables
and configuration properties. Each functional block implements an instance
of a functional profile. A functional block must implement all the mandatory
network variables and mandatory configuration properties defined by the
functional profile, and may implement any of the optional network variables
and optional configuration properties defined by the functional profile. A
functional block may also implement network variables and configuration
properties not defined by the functional profile – these are called
implementation-specific network variables and configuration properties.

For example, the following figure illustrates standard functional profile
number 3050, the Constant Light Controller profile. This profile defines two
mandatory inputs, one mandatory output, and one optional input. It also
defines one mandatory configuration property and eight optional
configuration properties.

Figure 5.2 Constant Light Controller Functional Profile

Functional profiles are defined in resource files. You can use standard
functional profiles defined in the standard resource file set, or you can define
your own functional profiles in your own resource file sets. A functional
profile defined in a resource file is also called a functional profile template.

Neuron C Programmer's Guide 5-3

Standard functional profiles (also called standard functional profile
templates, or SFPTs) are defined by the LonMark Interoperability
Association. You may view all currently defined standard functional profiles
online at types.lonmark.org. Additional documentation for the standard
functional profiles is available under Design Guidelines at www.lonmark.org.
You can create your own user-defined functional profiles (also called user
functional profile templates, or UFPTs) using the NodeBuilder Resource
Editor. You declare functional blocks in your Neuron C applications using
fblock declarations. These declarations are described in this chapter.

A functional block declaration does not cause the compiler to generate any
executable code, though the compiler does create some data structures that
are used to accomplish various functional block features. Principally, the
functional block creates associations among network variables and
configuration properties. The compiler then uses these associations to create
the self-documentation (SD) and self-identification (SI) data in the device and
in its associated device interface file (.xif extension).

The functional block information in the device interface file or the SD and SI
data communicates the presence and names of the functional blocks
contained in the device to a network tool. The information also
communicates which network variables and configuration properties in the
device are members of each functional block.

Functional Block Declarations
The complete syntax for declaring a functional block is the following:

 fblock FPT-identifier { fblock-body } identifier [array-bounds]
 [ext-name] [fb-property-list] ;

 ext-name : external_name (C-string-const)
 external_resource_name (C-string-const)
 external_resource_name (const-expr : const-expr)

 array-bounds : [const-expr]

 fblock-body : [fblock-member-list] [; director-function]

 fblock-member-list : fblock-member-list ; fblock-member
 fblock-member

 fblock-member : nv-reference implements member-name
 nv-reference impl-specific

 impl-specific : implementation_specific (const-expr) member-name

 nv-reference : nv-identifier array-index
 nv-identifier

 array-index : [const-expr]

 director-function : director identifier ;

5-4 Using Functional Blocks to Implement a Device Interface

http://types.lonmark.org/
http://www.lonmark.org/

The functional block declaration begins with the fblock keyword, followed by
the name of a functional profile from a resource file. The functional block is
an implementation of the functional profile (i.e. it instantiates the profile).
The functional profile defines the abstract network variable and
configuration property members, a unique key called the functional profile
number or functional profile key, and other information. The network
variable and configuration property members are divided into mandatory
members and optional members. Mandatory members must be implemented,
and optional members may or may not be implemented.

The functional block declaration then proceeds with a member list. In this
member list, you associate network variables that you declared previously in
the application with the network variable members of the profile. The
implements keyword associates your application network variables with the
profile network variable members. The member list may be omitted if the
functional block is used only as a collection of related configuration
properties.

At a minimum, every mandatory network variable member of the profile
must be implemented by an actual network variable in the Neuron C
program. Each network variable (or, in the case of a network variable array,
each array element) can implement no more than one profile member, and
can be associated with at most one functional block.

EXAMPLE:

network output SNVT_amp nvoAmpere;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpereMeter;

A Neuron C program may also implement additional network variables in
the functional block that are not in the lists of mandatory or optional
members of the profile. Such additional network variable members beyond
the profile are called implementation-specific members. Declare these extra
members in the member list using the implementation_specific keyword,
followed by a unique index number, and a unique name.

Each network variable in a functional profile assigns an index number and a
member name to each profile network variable member, and the
implementation-specific member cannot use any of the index numbers or
member names that the profile has already used.

Neuron C Programmer's Guide 5-5

EXAMPLE:

network output SNVT_amp nvoAmpere;
network output polled SNVT_time_stamp nvoInstallDate;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
 nvoInstallDate implementation_specific(128)
 nvoInstall;
} fbAmpereMeter;

The above example implements the nvoValue mandatory network variable
of the SFPTopenLoopSensor functional profile, and adds an
implementation-specific SNVT_time_stamp network variable with a
member name of nvoInstall. The member name, nvoInstall in this
example, is typically used to refer to the member network variable, as
discussed in Accessing Members and Properties of a Functional Block from a
Program, later in this chapter.

The name of the network variable, nvoInstallDate, however, is the name
that is exposed to the network integrator by means of network variable self-
documentation (SD) data and device interface files. In a network tool, the
name nvoInstall will appear as the member of the functional block,
wherever the network tool uses the profile definition.

The implementation-specific NV member feature can also be used repeatedly
to add each element of an entire NV array to the functional block. One
element is added per line. In this way, a functional block can contain an NV
array with the elements declared as consecutive NV members.

At the end of the member list there is an optional item that permits the
specification of a director function. The director function specification begins
with the director keyword, followed by the identifier that is the name of the
function, and ends with a semicolon.

EXAMPLE:

network output SNVT_amp nvoAmpere;

extern void MeterDirector(unsigned fbIdx, unsigned cmd);

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
 director MeterDirector;
} fbAmpereMeter;

See The Director Function in this chapter, for more details about directors.

After the member list, the functional block declaration continues with the
name of the functional block itself. A functional block can be a single
declaration, or it can be a singly dimensioned array.

5-6 Using Functional Blocks to Implement a Device Interface

If the functional block is implemented as an array as shown in the example
below, then each network variable that implements a member of that
functional block must be declared as an array of at least the same size.
When implementing the fblock array's member with an array network
variable element, the starting index of the first network variable array
element in the range of array elements must be provided in the implements
statement. The Neuron C compiler automatically adds the following network
variable array elements to the fblock array elements, distributing the
elements consecutively.

EXAMPLE:

network output SNVT_lev_percent nvoValue[6];

// The following declares an array of four fblocks,
// with "nvoAnalog" members implemented by the
// network variables nvoValue[2] .. nvoValue[5],
// respectively.
fblock SFPTanalogInput {
 nvoValue[2] implements nvoAnalog;
} myFb[4];

You can provide an optional external name for each functional block. To
specify an external name, use the external_name keyword, followed by a
string of up to 16 characters in parentheses. The string becomes part of the
device interface which is exposed to network tools.

Alternatively, you can provide an optional external name that is specified by
a language string in a resource file using the external_resource_name
keyword. In this case, the device interface information contains a scope and
index pair (the first number is a scope, then a colon character, then the
second number is an index). The scope and index pair identifies a language
string in a resource file, which a network tool can access for a language-
dependent name of the functional block. You can use the scope and index
pair to reduce memory requirements and to provide language-dependent
names for your functional blocks. The external name is discussed in more
detail in the Neuron C Reference Guide.

EXAMPLE:

#define NUM_AMMETERS 4

network output SNVT_amp nvoAmpere[NUM_AMMETERS];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_AMMETERS] external_name("AmpereMeter");

Neuron C Programmer's Guide 5-7

Functional Block Property Lists
At the end of the functional block declaration is a property list, similar to the
device property lists and the network variable property lists discussed in the
previous chapter. The functional block’s property list, at a minimum, must
include all of the mandatory properties defined by the functional profile that
apply to the functional block. You may add implementation-specific
properties to the list without any special keywords. You cannot implement
more than one property of any particular SCPT or UCPT type for the same
functional block.

The functional block’s property list must only contain the mandatory and
optional properties that apply to the functional block as a whole. Properties
that apply specifically to an individual abstract network variable member of
the profile must appear in the nv-property-list of the network variable that
implements the member, rather than in the fb-property-list.

The complete syntax for a functional block’s property list is as follows:

 fb_properties { property-reference-list }

 property-reference-list :
 property-reference-list , property-reference
 property-reference

 property-reference :
 property-identifier [= initializer] [range-mod]
 property-identifier [range-mod] [= initializer]

 range-mod : range_mod_string (C-string-constant)

 property-identifier :
 [property-modifier] cpnv-prop-ident
 [property-modifier] cp-family-prop-ident

 cpnv-prop-ident : identifier [constant-expression]
 identifier

 cp-family-prop-ident : identifier

 property-modifier : static | global

The functional block property list begins with the fb_properties keyword.
It then contains a list of property references, separated by commas, exactly
like the device property list and the network variable property list. Each
property reference must be the name of a previously declared CP family or
the name of a previously declared configuration network variable. The rest
of the syntax is very similar to the network variable property list syntax
discussed in the previous chapter.

5-8 Using Functional Blocks to Implement a Device Interface

Following the property-identifier, there may be an optional initializer. If
present, the instantiation initializer for a CP family member overrides any
initializer provided at the time of declaration of the family; thus, using this
mechanism, some CP family members can be initialized specially, with the
remaining family members having a more generic initial value. If a network
variable is initialized in multiple places (in other words, in its declaration as
well as in its use in a property list), the initializations must match.

A more detailed discussion of the functional block property list syntax may be
found in the Neuron C Reference Guide.

EXAMPLE:

SCPTdefOutput cp_family cpDefaultOutput;
SCPTbrightness cp_family cpDisplayBrightness;

network output SNVT_amp nvoAmpere;
network output polled SNVT_time_stamp nvoInstallDate;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
 nvoInstallDate implementation_specific(128)
 nvoInstall;
} fbAmpereMeter external_name("AmpereMeter")
 fb_properties {
 cpDefaultOutput, // optional CP
 cpDisplayBrightness // implementation-spec.
};

The example implements an open-loop sensor as an ampere meter. The
nvoValue mandatory network variable is implemented, but no optional
network variables are. The nvoInstall implementation-specific member is
implemented as discussed earlier in this chapter. The SCPTdefOutput
optional configuration property is implemented, and a second,
implementation-specific, SCPTbrightness configuration property is also
implemented.

The names in the above example for the CP families (cpDefaultOutput and
cpDisplayBrightness) have no external relevance; these names are only
used within the device's source code to reference the configuration property.
See Accessing Members and Properties of a Functional Block from a Program,
and Accessing Members and Properties of a Functional Block from a Network
Tool, later in this chapter, for more details.

Neuron C Programmer's Guide 5-9

Shared Functional Block Properties
Just as network variable properties may be shared, functional block
properties may be shared between two or more functional blocks. The global
keyword creates a configuration property member that is shared among two
or more functional blocks. This global member is a different member than a
global member shared among network variables. The static keyword creates
a configuration property member that is shared among all the members of a
functional block array, but not with any other functional blocks or network
variables outside the array.

For example, consider a three-phase ampere meter, implemented with an
array of three SFPTopenLoopSensor functional blocks. Assume the
hardware contains a separate amplifier for each phase, but a common analog-
to-digital converter for all three phases. Each phase will thus have
individual gains factors, but might have to share one property to specify the
sample rate for all three phases:

EXAMPLE:

#define NUM_AMMETERS 3

SCPTgain cp_family cpGain;
SCPTupdateRate cp_family cpUpdateRate;

network output SNVT_amp nvoAmpere[NUM_AMMETERS];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_AMMETERS] external_name("AmpereMeter")
 fb_properties {
 cpGain,
 static cpUpdateRate
};

Assume, furthermore, that the same device also contains a three-phase
voltage meter with an implementation that mirrors the one from the ampere
meter. And, assume there is a SCPTbypassTime configuration property
that limits the duration of a locally initiated bypass mode for all six meters.

5-10 Using Functional Blocks to Implement a Device Interface

The following example implements all six meters, implementing a global
SCPTbypassTime configuration property that is shared between all
fblocks that refer to it, and implementing two static SCPTupdateRate
configuration properties, shared among the members of the respective fblock
array:

EXAMPLE:

#define NUM_PHASES 3

SCPTgain cp_family cpGain;
SCPTupdateRate cp_family cpUpdateRate;
SCPTbypassTime cp_family cpBypassTime;

network output SNVT_amp nvoAmpere[NUM_PHASES];
network output SNVT_volt nvoVolt[NUM_PHASES];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_PHASES] external_name("AmpereMeter")
 fb_properties {
 cpGain,
 static cpUpdateRate,
 global cpBypassTime
};

fblock SFPTopenLoopSensor {
 nvoVolt[0] implements nvoValue;
} fbVoltMeter[NUM_PHASES] external_name("AmpereMeter")
 fb_properties {
 cpGain,
 static cpUpdateRate,
 global cpBypassTime
};

Neuron C Programmer's Guide 5-11

Scope Rules
When adding implementation-specific network variables or configuration
properties to a standard or user functional profile, you must ensure the scope
of the resource definition for the additional item is numerically less than or
equal to the scope of the functional profile.

For example, if you add an implementation-specific network variable or
configuration property to a standard functional block (SFPT, scope 0), you
must define that configuration property with a standard type (SCPT), and
use a standard network variable type (SNVT) for the implementation-specific
network variable.

A second example: if you implement a functional block based on a
manufacturer scope (scope 3) resource file, you can add an implementation-
specific network variable or configuration property that is defined in the
same scope 3 resource file, and you can also add an implementation-specific
network variable or configuration property defined by a SNVT or SCPT.

You can add implementation-specific members to standard functional profiles
using inheritance. To do this, follow these steps:

1 Use the NodeBuilder Resource Editor to create a user functional profile with
the same functional profile key as the standard functional profile you wish to
inherit from.

2 Set Inherit Members from Scope 0 in the functional profile definition.
This makes all members of the standard functional profile part of your user
functional profile.

3 Declare a functional block based on the new user functional profile.

4 Add implementation-specific members to the functional block. These
members may be implemented using user-defined UNVT or UCPT types,
themselves defined at the same scope as the inheriting functional profile.

Alternatively, you can create a functional profile that inherits members from
a standard functional profile, and add your own profile-specific members to
the functional profile. This provides better documentation and easier
reusability than using implementation-specific members. To do this, follow
these steps:

1 Use the NodeBuilder Resource Editor to create a user functional profile with
the same functional profile key as the standard functional profile you wish to
inherit from.

2 Set Inherit Members from Scope 0 in the functional profile definition.
This makes all members of the standard functional profile part of your user
functional profile.

3 Add your additional members to the new user functional profile.

4 Declare a functional block based on the new user functional profile.

5-12 Using Functional Blocks to Implement a Device Interface

Accessing Members and Properties of a
Functional Block from a Program

You can access the network variable and configuration property members of
a functional block from a program just as you can access any other variable.
For example, members can be used in expressions, as function parameters, or
as operands of the address operator or the increment operator. To access a
network variable member of a functional block, or to access a network
variable configuration property of a functional block, the network variable
reference can be used in the program just as any other variable would be.

However, to use a CP family member, you must specify which family member
is being accessed, because more than one functional block could have a
member from the same CP family. The syntax for accessing a configuration
property from a functional block’s property list uses the Neuron C context
operator, a double colon, as follows:

fb-context :: property-identifier [[index-expr]]

fb-context : identifier [index-expr]
 identifier

The particular CP family member is identified by a qualifier that precedes it.
This qualifier is called the context. The context is followed by two consecutive
colon characters, and then the name of the property. The context uniquely
identifies the property. For example, a functional block array, fba, with 10
elements, could be declared with a property list referencing a CP family
named cpXyz. There would then be 10 different members of the CP family
cpXyz, all with the same name. However, adding the context, such as
fba[4]:: cpXyz, or fba[j]:: cpXyz, would uniquely identify the CP family
member.

Just like for network variable properties, even though a configuration
network variable can be uniquely accessed via its variable identifier, it can
also be accessed equally well through the context expression, just like the CP
family members.

Also, the network variable members of the functional block can be accessed
through a similar syntax. The syntax for accessing a functional block
member is shown below (the fb-context syntactical element is defined above):

fb-context :: member-identifier

This expression uses the network variable’s member identifier, not the
network variable’s unique name. Using the context expression to identify a
member network variable therefore promotes modular device design and
reuse of code – multiple functional blocks implementing the same functional
profile may all implement the same network variable members, although
each block's members will be mapped to a different network variable.

Neuron C Programmer's Guide 5-13

Finally, the properties of the functional block’s network variable members
can also be accessed through an extension of this syntax. The syntax for
accessing a functional block’s member’s property is shown below (the fb-
context syntactical element is defined above):

fb-context :: member-identifier :: property-identifier [[index-expr]]

EXAMPLE:

#define NUM_AMMETERS 3

SCPTmaxSndT cp_family cpMaxSendTime;
SCPTminSndT cp_family cpMinSendTime;
SCPTgain cp_family cpGain[4];
SCPTupdateRate cp_family cpUpdateRate;

network output SNVT_amp nvoAmpere[NUM_AMMETERS]
 nv_properties {
 cpMaxSendTime,
 cpMinSendTime
 };

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_AMMETERS] external_name("AmpereMeter")
 fb_properties {
 cpGain, // Each property is an array [4]
 static cpUpdateRate
 };

All the following constructs are examples for valid code:

nvoAmpere[2] = 123;

fbAmpereMeter[2]::nvoValue = 123;

fbAmpereMeter[0]::cpGain[i].multiplier = 2L;

nvoAmpere[2]::cpMaxSendTime.seconds = 30;

fbAmpereMeter[2]::nvoValue::cpMaxSendTime.hour = 0;

z = ((SCPTmaxSndT *)&nvoAmpere[2]::cpMaxSendTime)->day;

Pointers can be used with CP family members as shown; however, the
configuration properties will be stored in EEPROM. This causes the
compiler to apply special rules as described for the #pragma
relaxed_casting_on directive in the Neuron C Reference Guide.

Since cpGain is a static configuration property, the following expression is
always true:

fbAmpereMeter[0]::cpGain[i].multiplier ==
 fbAmpereMeter[1]::cpGain[i].multiplier

5-14 Using Functional Blocks to Implement a Device Interface

The following expressions are incorrect and will cause a compiler error:

// '.' instead of '::'
fbAmpereMeter[0].cpGain[i].multiplier = 123;

// reference of CP family, not CP family member
cpGain.multiplier = 123;

// '::' instead of '.'
fbAmpereMeter[0]::cpGain[i]::multiplier = 123;

Neuron C also provides some built-in properties for a functional block. The
built-in properties are shown below (the fb-context syntactical element is
defined above):

fb-context :: global_index

fb-context :: director (expr)

The global_index property is an unsigned short value that corresponds to
the global index assigned by the compiler. The global index is a read-only
value. The global index ranges from 0 (zero) to 62, with each fblock and
element of an fblock array having a unique index. The order of the fblock
index follows the order in which the fblock declarations are compiled.

Use of the director property as shown calls the director function that
appears in the declaration of the functional block. The compiler provides the
first parameter to the actual director function automatically (the first
argument is the global index of the functional block), and the expr shown in
the syntax above becomes the director function’s second parameter. This
second parameter is usually referred to as unsigned uCommand, however,
the compiler passes any value of type unsigned without imposing any
special interpretation.

The director property can be used in any case, no matter whether a director
function is defined for this individual fblock, shared among various fblocks,
or not defined at all. In case no actual director function is defined, use of the
director property does not cause a compile-time or run-time error. The
firmware support for the director property handles the case of an undefined
director function by taking no action other than just returning to the calling
program.

For more about the director property, the global_index property, and for
examples showing their use, see The Director Function below.

Neuron C Programmer's Guide 5-15

Accessing Members and Properties of a
Functional Block from a Network Tool

Network tools are free to implement whatever representation suits the tool’s
user interface and purpose best. The LonMaker Integration Tool, for
example, focuses on a graphical representation of functional blocks and
member network variables. Configuration properties are typically
represented by custom controls in specialized configuration software, such as
a LNS device plug-in.

For example, the cpGain property from the example above might be
presented as a slider for graphical adjustment of the gain factor with the
mouse or cursor keys.

However, most tools also supply some textual reference to configuration
properties. When listing configuration property members, those members
are typically listed using or including their type name, e.g.
“SCPTupdateRate”, or “UCPTboosterControl”.

Since a functional block can only implement one configuration property of a
given type, this naming scheme provides unique names. To avoid confusion
between the internal and external names of configuration properties, you
should preserve some degree of similarity between the internal and external
names.

EXAMPLE:

SCPTbrightness cp_family cpBrightness;

This example above implements a configuration property family with the
internal name cpBrightness of type name SCPTbrightness. The type name is
likely to appear as an external, textual, reference to that property, depending
on the implementation of the network tool.

The Director Function
You can create a director function for each functional block. A director
function is a function that can provide actions associated with the functional
block such as enable, disable, reset, or test. The association with the
functional block enables easy implementation of the standard request
functions defined by Node Object functional block. These request functions
allow a network tool to send a request to a device to enable, disable, reset, or
test any functional block on the device. The Node Object implementation can
vector these requests to the appropriate functional block function through
the use of the director function. The Node Object implementation generated
by the NodeBuilder Code Wizard includes code to call the functional block
director functions based on inputs from the Node Object Request input.

5-16 Using Functional Blocks to Implement a Device Interface

A director function must match the function prototype shown below. The
first parameter is the global index of the functional block for which the
director is being called, and the second parameter is a command code upon
which the director is to act.

void director-name (unsigned fbIndex, unsigned command);

You attach a director function to a functional block with an optional
declaration statement at the end of the member list of the functional block.

EXAMPLE:

void myDirector (unsigned fbIndex, unsigned command);

fblock . . . {
 /* Member NVs, “implements” . . . */

 director myDirector;
} myFB;

void myDirector (unsigned fbIndex, unsigned command) {
 . . . /* whatever */
}

The director function simplifies implementation of functional block
commands received via the Node Object functional block. Each functional
block is a functional unit, a collection of network variables and properties. A
network tool may send a request to a device's Node Object to enable, disable,
reset, or test any functional block on the device. The Node Object
implementation must then direct this request to code specific to the
requested functional block. The director function provides an easy way for
the device to manage its functional blocks and make sure that events and
commands are directed to the proper functional block.

EXAMPLE:

An implementation of the SFPTnodeObject functional block receives
requests via the nviRequest mandatory member network variable input.
Examples for these requests are the RQ_DISABLED and RQ_ENABLED
requests, which requests one or more objects to enter the disabled or enabled
state, respectively. These requests may apply to the Node Object functional
block, to an individual functional block other than the Node Object functional
block, or to all functional blocks implemented on the device. A
SFPTnodeObject implementation can inspect the scope of the command
received, and route the command to the right director function as follows:
when (nv_update_occurs(nviRequest))
{
 if (nviRequest.object_id == MyNodeObj::global_index) {
 // NodeObject must handle this:
 MyNodeObj::director(nviRequest.object_request);
 } else {
 // route the command to the best director:
 ... (see below)
 }
}

Neuron C Programmer's Guide 5-17

When a network variable update is received, you can determine the
functional block containing the network variable using the built-in
fblock_index_map variable. This mapping array has an element for each
network variable, and each corresponding element contains the global index
of the functional block of which the network variable is a member. If the
network variable is not a member of a functional block, the corresponding
element contains 0xFF, meaning "no functional block".

You can also directly call the director for a functional block by specifying the
functional block index. To do this, call the built-in fblock_director() virtual
function. This function has the same prototype as an individual director, but
it is a virtual function. The fblock_director() function automatically
selects which of the actual director functions to call. If the functional block
does not have a director, the fblock_director() function will return and do
nothing.

Using this structure, the above example can be completed with code that
routes the command received to the most appropriate director:

EXAMPLE:

when (nv_update_occurs(nviRequest))
{
 if (nviRequest.object_id == MyNodeObj::global_index) {
 // NodeObject must handle this:
 MyNodeObj::director(nviRequest.object_request);
 } else {
 // route the command to the best director:
 fblock_director(nviRequest.object_id,
 nviRequest.object_request);
 }
}

Likewise, a single task can handle all network variable updates by notifying
the director function that is in charge of the functional block to which the
network variable update applies:

#define CMD_NV_UPDATE 17

when (nv_update_occurs)
{
 fblock_director(fblock_index_map[nv_in_index],
 CMD_NV_UPDATE);
}

There are no limitations on how you use a director function or how you
interpret the second parameter to the director function. The director
function is a useful means to create Node Object implementations, but you
are free to extend its usage as well.

5-18 Using Functional Blocks to Implement a Device Interface

Sharing of Configuration Properties
Elements of a functional block array or multiple distinct functional blocks
can share configuration properties using the static and global modifiers.
The following example implements two configuration properties, one being
shared among all members of the functional block array and one being
shared by the other two functional blocks.

EXAMPLE:

cp_family SCPTgain cpGain = { 1, 0 };
 // This family will have a total of 2 members

// FBs with shared gain factor:

fblock ... {
 ...
} fbA fb_properties {
 global cpGain // shared by fbA and fbB
};

fblock ... {
 ...
} fbB fb_properties {
 global cpGain // shared by fbA and fbB
};

fblock ... {
 ...
} fbC[5] fb_properties {
 static cpGain // shared among fbC[0]..fbC[4]
};

The rules and considerations for shared configuration properties outlined in
Chapter 4, Using Configuration Properties to Configure Device Behavior,
apply to functional blocks as well as network variables. See Sharing of
Configuration Properties in that chapter for more details.

Neuron C Programmer's Guide 5-19

6
How Devices Communicate

Using Application Messages

This chapter describes the use of application messages, which
can be used in place of or in addition to network variables. The
request/response mechanism, a special use of application
messages, is also described. Other topics covered here include
preemption mode, asynchronous and direct event processing,
the use of completion events with messages and with network
variables, and authentication for messages.
Application messages are used for creating a proprietary
interface (i.e. non-interoperable) to a device. The same
mechanism used for application messaging may also be used to
create foreign-frame messages (for proprietary gateways) and
explicitly-addressed network variable messages.

Introduction to Application Messages
Application messages are used for creating a proprietary interface (i.e. non-
interoperable) to a device. The same mechanism used for application
messaging may also be used to create foreign-frame messages (for
proprietary gateways) and explicitly-addressed network variable messages.

There is one interoperable use for application messages, and that is the
LONWORKS file transfer protocol. This protocol is used to exchange large
blocks of data between devices or between devices and tools, and may also be
used to implement configuration files.

As described in previous chapters, functional blocks, network variables, and
configuration properties are used for creating an open interoperable interface
to a device. A device interface may include an interoperable portion and a
proprietary portion. For example, a device may implement a proprietary
interface for use solely during manufacturing, and an interoperable interface
for use in the field.

The content of an application message is defined by a proprietary message
code that is sent as part of the message. This code is followed by a variable-
sized data field. The same message code can have one byte of data in one
instance and 25 bytes of data in another instance.

You can use a request/response service with application messages to enable
an application on one device to cause an application on another device to
respond to it. The request/response mechanism is similar to a network
variable poll. When a network variable is polled, the application scheduler
on the polled device provides the most recent value for that network variable,
without intervention of (or knowledge by) the application program. When an
application message is sent with the request service, the application program
on the remote device takes some action as a result of receiving the request
message, and then provides a new value for its response. The
request/response service can also be used to implement remote procedure
calls, since it provides a way for an application on one device to invoke an
action on another device.

Application messages use less EEPROM table space than network variables,
but performing the equivalent tasks using application messages always
consumes more code space than using network variables because of the
amount of support code built-in to the Neuron firmware for network
variables. In addition, using application messages is a more complicated way
of accomplishing such a task. You must explicitly build, send, and receive
application messages. Message attributes such as service type,
authentication, and priority are defined at compile time or run-time, and are
not configurable by a network tool after device installation (however, these
attributes can be set on a message-by-message basis).

6-2 How Devices Communicate Using Application Messages

Application messages do allow for transfer of data that would not fit into a
network variable. A network variable can accommodate up to 31 bytes of
data. Application messages allow for up to 228 bytes of data to be
transmitted within one message. However, large messages will not pass
through most LONWORKS routers, because routers are typically configured
for messages with smaller amounts of data.

Layers of Neuron Software
When you use network variables in a program, the actual building and
sending of messages takes place behind the scenes. This is called implicit
messaging. As shown in Figure 6.1, three layers of software are involved:
the application layer, which includes the scheduler, the network layer and
the Media Access Control (MAC) layer. Each of these layers of software
corresponds to one or more layers of the LonTalk protocol and is handled by a
separate processor on a Neuron Chip or Smart Transceiver.

Only one of these layers, the application layer, can be programmed. Your
program also has access to some of the information provided by the network
layer through the services of the scheduler, as described later in this chapter.

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

= data

Figure 6.1 Sending a Message

Neuron C Programmer’s Guide 6-3

Implicit Messages: Network Variables
Figure 6.1 illustrates what happens when a device assigns a value to an
output network variable. First, the application program assigns a value to
the network variable. The scheduler then builds a network variable message
and passes the message to the network layer. The network layer adds
addressing information to the network variable message and then passes the
message to the MAC layer. The MAC layer adds more information to the
network variable message, and then sends the message over the
communications channel.

When a device receives the network variable message, the message is
unpackaged, as follows. First, the MAC layer validates the message. The
network layer then checks the addressing information contained in the
message to see if it is intended for this device. If it is, it passes the network
variable information to the scheduler. The scheduler then makes the new
value available to the appropriate task within the application program.

These messages are referred to as implicit messages because they are sent
and received automatically. Application messages are also referred to as
explicit messages.

Application Messages
You can explicitly create a message using Neuron C. Rather than using the
implicit messaging capability provided by network variables, you can
manually construct and send a message. This type of message is called an
explicit message. You must identify the type of this explicit message using a
message code. The message code identifies the message as an application
message, foreign-frame message, or network variable message. The following
sections describe how to use the objects, functions, and events used with
application messages. The request/response mechanism, a special use of
application messages, is described following the generalized description of
application messages. The same mechanisms used for application messaging
may also be used to create and send foreign-frame messages (for proprietary
gateways) and explicitly-addressed network variable messages.

6-4 How Devices Communicate Using Application Messages

You must construct an application message using a predefined message
object, and then process it using function calls and predefined events.
Following is a brief list of the steps described in the following sections.
Objects, functions, and events are itemized for each section.

Functional Step Neuron C Feature

1 Constructing a message msg_out object
2 msg_send() function

msg_cancel() function
Sending a message

3 Receiving a message msg_arrives event
msg_receive() function
msg_in object

4 After sending a
message with the
acknowledged service

msg_completes event
msg_succeeds event
msg_fails event

5 Sending a response to a
message with the
request/response
service

resp_out object
resp_send() function
resp_cancel() function
resp_arrives event
resp_receive() function
resp_in object

6 msg_alloc() function
msg_alloc_priority() function
msg_free() function
resp_alloc() function
resp_free() function

Allocating buffers
explicitly

Constructing a Message
You can construct an application message using the msg_out outgoing
message object. This definition is built into Neuron C. Use the msg_send()
function to send the message. You can only construct one outgoing message
(or response) and one incoming message (or response) at any one time. For
example, you cannot build up two messages in parallel and send them both.
Nor can you parse two input messages at the same time.

Neuron C Programmer’s Guide 6-5

http://www.echelon.com/

The msg_out Object Definition
An outgoing message is predefined as shown below:

typedef enum {FALSE, TRUE} boolean;
typedef enum {ACKD, UNACKD_RPT,
 UNACKD, REQUEST} service_type;

struct {
 boolean priority_on; // TRUE if a priority message
 // (default:FALSE)
 msg_tag tag; // message tag (required)
 int code; // message code (required)
 int data[MAXDATA] // message data (default:none)
 boolean authenticated; // TRUE if to be authenticated
 // (default:FALSE)
 service_type service; // service type (default:ACKD)
 msg_out_addr dest_addr; // see include file msg_addr.h
 // (optional field)
} msg_out;

priority_on When set to TRUE, sends the message as a priority
message. Specify FALSE, or do not assign to this
field, if the message is not a priority message. If used,
this field must be the first field set in the message
object, even before the tag. The default is FALSE
(that is, nonpriority).

tag A message tag identifier for the message. This field is
required. See Message Tags in this chapter.

code A numeric message code. This field is required. See
Message Codes in this chapter.

data The application's data. This field is optional; a
message can consist of only a message tag and
message code. Because of network buffer overhead,
MAXDATA must never exceed 228. MAXDATA is a
function of the app_buf_out_size pragma (see
Chapter 8):

MAXDATA = app_buf_out_size – 6

 or

MAXDATA = app_buf_out_size - 17
(if explicit addressing is used
for messages or network
variables in this program)

NOTE: The Neuron firmware observes which locations in the data array
have assignments and automatically sets the length of the outgoing message
accordingly.

6-6 How Devices Communicate Using Application Messages

authenticated A TRUE value specifies that the message is to be
authenticated. You may specify FALSE, or not assign
to this field, if the message does not need to be
authenticated. The default is FALSE (that is, not
authenticated).

service Specifies one of the following:

ACKD (the default) - acknowledged service with
retries

REQUEST – request/response protocol

UNACKD - unacknowledged service

UNACKD_RPT - repeated service (message sent
multiple times)

NOTE: Do not use UNACKD or UNACKD_RPT in combination with
authenticated messages. Use only the ACKD or REQUEST service type.

dest_addr An optional field in msg_out that explicitly specifies
a destination address. If dest_addr is not set, then
the message is sent to the implicit address associated
with the tag, if the tag is bound. See Explicit
Addressing later in this chapter for more information.

NOTE: To use this field, you must include the
<addrdefs.h> and <msg_addr.h> files.

Message Tags
A message tag is a connection point for application messages. Incoming
application messages are always received on a common message tag called
msg_in, but you must declare one or more message tags if outgoing explicit
messages are used. The incoming tag and each outgoing tag or tags may be
assigned a unique network address by a network tool.

A message tag declaration can optionally include connection information.
The syntax for declaring a message tag is as follows:

msg_tag [connection-info] tag-identifier [, tag-identifier ...];

The connection-info field is an optional specification for connection options, in
the following form:

bind_info (options)

Neuron C Programmer’s Guide 6-7

The following connection options apply to message tags:

nonbind Denotes a message tag that carries no implicit
addressing information and does not consume an
address table entry. It is used as a destination tag
when creating explicitly addressed messages.

rate_est (const-expr) The estimated sustained message rate, in tenths of
messages per second, that the associated message tag
is expected to transmit. The allowable value range is
from 0 to 18780 (0 to 1878.0 messages/second).

max_rate_est (const-expr)
The estimated maximum message rate, in tenths of
messages per second, that the associated message tag
is expected to transmit. The allowable value range is
from 0 to 18780 (0 to 1878.0 messages/second).

tag-identifier A Neuron C identifier for the message tag.

It may not always be possible to determine rate_est and max_rate_est. For
example, message output rates are often a function of the particular network
where the device is installed. These optional values may be used by a
network tool to perform network device analysis. Although any value in the
range 0-18780 may be specified, not all values are used. The values are
mapped into encoded values n in the range 0-127. Only the encoded values
are stored in the device's self-identification (SI) data. The actual value can
be reconstructed from the encoded value. If the encoded value is zero, the
actual value is undefined. If the encoded value is in the range 1-127, the
actual value is a=2(n/8)-5, rounded to the nearest tenth. The actual value, a,
produced by the formula, is in units of messages per second.

You must assign a message tag to the msg_out.tag field for each outgoing
message. This specifies which connection point (corresponds to an address
table entry) to use for the outgoing message. Once the tag field has been
assigned, the message must be either sent or cancelled.

Besides addressing, message tags are also used for correlating completion
events and responses with outgoing messages. For example, the following
when clause correlates a message completion event with a message sent via
the tag1 message tag:

when (msg_completes(tag1))

By qualifying an event with a message tag, the event becomes TRUE only
when an event corresponding to that particular outgoing message occurs.

6-8 How Devices Communicate Using Application Messages

Message Codes
A message code is a numeric identifier for a message. Each application
message must include a message code that the receiving applications can use
to interpret the contents of the message.

Message codes are used by all LonTalk messages, not just application
messages. They fall into the ranges shown in Table 6.1. Codes 0-62 and 64-
78 are for use by applications. The lower range is used for proprietary
application-specific messages, and the upper range is used for proprietary
application-level gateways to other networks.

Table 6.1 Ranges for Message Codes

Type of Message Message Code Description

User Application
Messages

0 to 47
(0x00..0x2F)

Generic application messages.
The interpretation of the message
code is left up to your application.

Standard Application
Messages

48 to 62
(0x30..0x3E)

Standard application messages
defined by the LONMARK
Interoperability Association.

Responder Offline 63
(0x3F)

Used by application message
responses. Indicates that the
sender of the response was in an
offline state and could not process
the request.

Foreign Frames 64 to 78
(0x40..0x4E)

Used by application-level
gateways to other networks. The
interpretation of the message
code is left up to the application.

Foreign Responder
Offline

79
(0x4F)

Used by foreign frame responses.
Indicates that the sender of the
response was in an offline state
and could not process the request.

Network Diagnostic
Messages

80 to 95
(0x50..0x5F)

Used by network tools for
network diagnostics.

Network
Management
Messages

96 to 127
(0x60..0x7F)

Used by network tools for
network installation and
maintenance.

Network Variables 128 to 255
(0x80..0xFF)

The lower six bits of the message
code contain the upper six bits of
the (14-bit) network variable
selector. The first data byte
contains the lower eight bits of
the selector.

Neuron C Programmer’s Guide 6-9

EXAMPLE OF BUILDING AN APPLICATION MESSAGE:

msg_tag motor;

#define MOTOR_ON 0
#define ON_FULL 100

msg_out.tag = motor;
msg_out.code = MOTOR_ON;
msg_out.data[0] = ON_FULL;

Block Transfers of Data
You can use the memcpy() function to transfer blocks of message data into
the msg_out or resp_out objects (see Using the Request/Response
Mechanism later in this chapter). This is the only case where you can take
the address of the msg_out or resp_out objects.

To copy a block of data into the msg_out object, use the following syntax:

void memcpy (msg_out.data, &s, sizeof(s));

The syntax is similar for the resp_out object.

msg_out.data The destination of the copy. This destination can also
be a specific field of the message object (for example,
&msg_out.data[3]).

&s A pointer to a structure containing the data to be
copied. This field can be a pointer, an array, or a
pointer to an element of an array (&a[5]).

sizeof(s) The size of the source structure.

You can also use memcpy() to copy a block of data from the msg_in or
resp_in objects. These are the only cases where you can take the address of
the msg_in or resp_in objects.

void memcpy (&s, msg_in.data, sizeof (s));

&s A pointer to the destination structure. This field can
be a pointer, an array, or a pointer to an element of an
array (&a[5]).

msg_in.data The source of the copy. This destination can also be a
specific field of the message object (for example,
&msg_in.data[3]).

sizeof(s) The size of the destination structure.

For messages of an unknown or variable length, use msg_in.len or
resp_in.len, limited by the sizeof(s) to prevent writing past the end of s.

6-10 How Devices Communicate Using Application Messages

EXAMPLE BLOCK TRANSFER OF DATA:

msg_tag motor;
#define MOTOR_ON 0

typedef enum {
 MOTOR_FWD,
 MOTOR_REV
} motor_dir;

struct {
 long motor_speed;
 motor_dir motor_direction;
 int motor_ramp_up_rate;
} motor_on_message;

when(some_event) {
 msg_out.tag = motor;
 msg_out.code = MOTOR_ON;
 motor_on_message.motor_direction = MOTOR_FWD;
 motor_on_message.motor_speed = 500;
 motor_on_message.motor_ramp_up_rate = 100;
 memcpy(msg_out.data, &motor_on_message,
 sizeof (motor_on_message));
 msg_send();
}

Sending a Message
You can send and cancel sending a message using the following functions:

msg_send()

msg_cancel()

The msg_send() function has the following syntax:

void msg_send(void);

This function sends a message using the msg_out object (which must have
already been constructed prior to the call to the msg_send() function). It
has no parameters, and has no return value.

Neuron C Programmer’s Guide 6-11

The following code fragment illustrates sending a message:

msg_tag motor;
#define MOTOR_ON 0
#define ON_FULL 100 // (100 percent)

when (io_changes(switch1) to ON)
{
 // Send a message to the motor
 msg_out.tag = motor;
 msg_out.code = MOTOR_ON;
 msg_out.data[0] = ON_FULL;
 msg_send();
}

The msg_cancel() function cancels an outgoing message. It has the
following syntax:

void msg_cancel(void);

This function cancels the message being built for the msg_out object and
frees the associated buffer, allowing another message to be constructed. It
has no parameters, and has no return value.

If a message is constructed but not sent before the task is exited, the message
is automatically canceled.

Receiving a Message
You will typically receive a message using the msg_arrives predefined
event. You can also use the msg_receive() function to receive a message.

The msg_arrives Event
The predefined event for receiving a message is msg_arrives. Its syntax is:

msg_arrives [(message-code)]

If a message arrives, this event evaluates to TRUE. You can optionally
qualify the event using a message code. In this case, the event is TRUE only
when a message arrives containing the specified code.

When mixing unqualified msg_arrives events with qualified msg_arrives
events, the #pragma scheduler_reset directive must be specified so that
the unqualified event when clause is processed after all the qualified event
when clauses.

It is essential that your program contain a default case as shown in the
example below, to prevent an event queue lockup. This issue is explained in
detail in the section Importance of a Default When Clause later in this
chapter.

6-12 How Devices Communicate Using Application Messages

A sample use of this event is shown in Listing 6.1 below.

Listing 6.1 Use of msg_arrives Event

#pragma scheduler_reset
when (msg_arrives(1))
{
 io_out(sprinkler, ON);
}

when (msg_arrives(2))
{
 io_out(sprinkler, OFF);
}

when (msg_arrives) // default case for
 // handling unexpected message codes
{
 // Do nothing, just discard it
}

To prevent the incoming message queue from becoming blocked, a program
that receives application messages, such as that shown in Listing 6.1, should
contain a default when clause with an unqualified msg_arrives event as
shown in the example. This is explained further in Importance of a Default
When Clause later in this chapter.

The msg_receive() Function
The msg_receive() function has the following syntax:

 boolean msg_receive(void);

This function receives a message into the msg_in object. The function
returns TRUE if a new message is received, otherwise it returns FALSE.

If no message is received, this function does not wait for one. You may need
to use this function to receive more than one message in a single task, as in
bypass mode (bypass mode is also called direct event processing). If there
already is a received message, it is discarded (that is, its buffer space is
freed).

Calling msg_receive() or resp_receive() has the side-effect of calling
post_events(). Thus, a call to msg_receive() or resp_receive() defines a
critical section boundary (see Receiving a Response in this chapter).

When you use the msg_receive() function, all messages are received in
"raw" form, and special events such as online, offline, and wink can be
used, but you must check for these events explicitly via message code checks.
For these reasons, you cannot use msg_receive() if the application program
handles any special events (i.e. wink, online, and offline).

Neuron C Programmer’s Guide 6-13

Format of an Incoming Message
The name for the incoming message object is msg_in. This definition is built
into Neuron C. A message is read by examining the appropriate fields in the
object.

The fields of the msg_in object are read-only, you cannot assign values to
them. An incoming message is predefined as follows:

typedef enum {FALSE, TRUE} boolean;
typedef enum {ACKD, UNACKD_RPT,
 UNACKD, REQUEST} service_type;

struct {
 int code; // message code
 int len; // length of message data
 int data[MAXDATA]; // message data
 boolean authenticated; // TRUE if message was
 // authenticated
 service_type service; // service type used by sender
 msg_in_addr addr; // see <msg_addr.h> include file
 boolean duplicate; // the message is a duplicate
 unsigned rcvtx; // the message's receive tx ID
} msg_in;

WARNING: Assigning values to the msg_out object may invalidate fields in
the msg_in object. After receiving a message, you must examine or save any
necessary fields in the msg_in object before starting to send a message.

code A numeric message code. See Message Codes earlier
in this chapter.

len The length of the message data.

data The application data. This field is valid only if len is
greater than 0. MAXDATA is a function of the
#pragma app_buf_in_size directive (see Chapter 8):

MAXDATA = app_buf_in_size – 6

 or,

MAXDATA = app_buf_in_size - 17
(if explicit addressing is used
by any message or network
variable in the program)

6-14 How Devices Communicate Using Application Messages

authenticated This field has the value TRUE if the message was
authenticated, and FALSE if the message was not
authenticated.

service The message service type; one of the following values:

ACKD - acknowledged service with retries

UNACKD - unacknowledged service

UNACKD_RPT- repeated service (message sent
multiple times)

REQUEST- request/response service. When a
message is sent using this
service, the receiver device
returns a response to the
sender device, and the sender
processes the response. The
request/response mechanism is
described later in this chapter.

addr An optional field in the incoming message that an
application program may look at to determine the
source and destination of the message. You can find
the definition of the msg_in_addr type in the
<msg_addr.h> include file.

 To use this field, you must include the <msg_addr.h>
file.

duplicate When this boolean flag is TRUE, it indicates the
message is a duplicate request message passed to the
application. Duplicate request messages are passed to
the application if the application response contains
data beyond the one-byte message code.

rcvtx The receive-transaction ID that the message used in
the device's transaction database.

Importance of a Default When Clause
Listing 6.1 (shown earlier in this chapter) illustrates an important technique
to be used with messages: Any program that receives application messages
must be prepared to receive unwanted messages and discard them. Discards
can take the form shown in Listing 6.1, or can be a default case in a switch
statement.

If a message were to arrive and the application fail to process it, that
message would remain at the head of the queue forever, blocking the arrival
of any other messages or network variable events and locking up the device
forever until it is reset. One example of a message that would be sent to all
devices, most of which are not interested in the message, is the service pin
message. Probably only a network tool would want to process the service pin
message; all other devices need to discard the message.

Neuron C Programmer’s Guide 6-15

If a program does not process messages (either implicitly through the use of
when(msg_arrives) or explicitly through the use of msg_receive()), the
scheduler will automatically discard all incoming messages.

A device that uses only network variables need not be concerned with this
phenomenon, since the scheduler then handles all incoming messages.

Example
The following example shows how lamp and switch devices could be written
using application messages instead of network variables.

Lamp Program
First, here is the program for the lamp devices:

// lamp.nc - Generic program for a lamp
// The lamp’s state is governed by an incoming
// application message

#define LAMP_ON 1
#define LAMP_OFF 2
#define OFF 0
#define ON 1

// I/O declaration
IO_0 output bit io_lamp_control;

when (msg_arrives) {
 switch (msg_in.code) {
 case LAMP_ON:
 io_out(io_lamp_control, ON);
 break;
 case LAMP_OFF:
 io_out(io_lamp_control, OFF);
 break;
 } //end switch
} //end when

6-16 How Devices Communicate Using Application Messages

Switch Program
Here is the program for the switch devices:

// switch.nc - Generic program for a switch
// Send a message when the switch changes state

#define LAMP_ON 1
#define LAMP_OFF 2
#define OFF 0
#define ON 1

// I/O Declaration
IO_4 input bit io_switch_in;

// Message tag declaration
msg_tag TAG_OUT;

// Event-driven code
when (reset) {
 io_change_init(io_switch_in);
}

when (io_changes(io_switch_in)) {
 // Set up message code based on the switch state
 msg_out.code = (input_value == ON) ? LAMP_ON : LAMP_OFF;

 // Set up message tag and send message
 msg_out.tag = TAG_OUT;
 msg_send();
}

Connecting Message Tags
Every device has a default msg_in input message tag. Network integrators
use a network tool to connect message tags for outgoing messages to the
msg_in input message tag. For example, message tags on the two example
devices are connected as follows:

 TAG_OUT connects to msg_in

on the switch on the lamp
 device device

Neuron C Programmer’s Guide 6-17

Explicit Addressing
You can explicitly specify a destination address for application messages and
network variables using the data structures in the <msg_addr.h> and
<addrdefs.h> include files. To use explicit addressing for outgoing
messages, you must assign appropriate values to all applicable fields of one of
the elements of the dest_addr union in the msg_out object, prior to calling
msg_send(). The message still needs a message tag, although no addressing
information will be derived from the message tag. Thus, no matter how the
message tag is bound, explicit addressing will override the address specified
by the tag.

When you assign an explicit destination address, the message tag is only
relevant for correlation with response and completion event processing.
However, if you use a standard message tag, you will still consume an
address table entry, even if you only use the message tag for explicitly-
addressed messages. To permit a more optimal use of Neuron resources, use
non-bindable message tags that carry no addressing information and do not
consume an address table entry. Use the following syntax to declare a non-
bindable message tag:

msg_tag bind_info(nonbind [, other-info]) tag-name;

See Message Tags in this chapter for a more detailed discussion of the
nonbind option.

The use of explicit addressing has an effect on the buffer sizes needed by the
Neuron firmware. See Table 8.1, Values for Buffer Sizes and Counts, in
Memory Management for more detailed information.

You can send network variable updates using explicit addressing by creating
an explicit message that corresponds to a network variable update and
explicitly setting the destination address. See the Smart Transceivers
databooks for a description of the explicit message format of a network
variable update and Section A.3, The Address Table, in the same documents
for more information on addressing.

6-18 How Devices Communicate Using Application Messages

Sending a Message with the Acknowledged
Service

When a device sends a message using the acknowledged service (the default),
all receiver devices must acknowledge receipt of the message to the sender
device. As shown in Figure 6.2, the network processor is responsible for
sending back the acknowledgment. This acknowledgment message contains
no data and is sent to the network processor on the device where the message
originated.

The application layer plays no part in the acknowledgment of a message.
How then does a program ever learn whether a message has succeeded or
failed? The following section answers this question.

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

Figure 6.2 Acknowledging a Message

Message Completion Events
The following events can be used by the sender device to check message
completion status:

msg_completes [(msg-tag-name)]

msg_succeeds [(msg-tag-name)]

msg_fails [(msg-tag-name)]

All three events can be qualified by a message tag name. If unqualified, the
event applies to any message.

When using an unqualified message completion event, the built-in variable
msg_tag_index may be used to determine which message tag was
responsible for the event. See the Predefined Events chapter in the Neuron C
Reference Guide for more information.

The msg_completes event is the most general event. When an outgoing
message completes (that is, succeeds or fails), this event evaluates to TRUE.

Neuron C Programmer’s Guide 6-19

The msg_succeeds event evaluates to TRUE when a message is successfully
sent. The msg_fails event evaluates to TRUE when a message fails to be
sent (after all retry attempts). (See Table 6.2 for a more precise breakdown
of what “success” and “failure” mean for each service type.) For a given
message, only one of these events evaluates to TRUE. The order of
processing is thus important. If a msg_completes event is processed before
the msg_succeeds and msg_fails events, the msg_succeeds and
msg_fails events will never evaluate to TRUE.

NOTE: See also Comparison of resp_arrives and msg_succeeds later in this
chapter.

These events are primarily of interest when you send a message with either
the acknowledged service or the request/response service (see Using the
Request/Response Mechanism later in this chapter). If you send a message
with the unacknowledged or repeated service, the msg_succeeds and
msg_completes events are always TRUE as soon as the message is
transferred from the network processor to the Media Access Control (MAC)
processor on the sender device.

Table 6.2 Success/Failure Completion Events

Service Used SUCCESS = FAIL=
Unacknowledged Message is transmitted

to MAC processor.
*

Repeated N messages are
transmitted to MAC
processor. (N is the
number of repeats.)

*

Acknowledged All acknowledgments
have been received by the
network processor on the
sender device.

One or more
acknowledgments are
not received. This applies
to both messages and
network variables.

Request/Response All responses have been
received by the
application processor
on the sender device.

For a message: One or
more of the responses
did not arrive.
For a network variable
poll: (a) One or more
of the responses did not
arrive. (b) None of the
responses had valid data.

*In all cases, if the Neuron firmware encounters an addressing error,
a failure event occurs (see the Neuron C Reference Guide). If a network
variable or message is unbound, a success event occurs.

6-20 How Devices Communicate Using Application Messages

Processing Completion Events for Messages
When you send a message, you can optionally check the completion event.
Several restrictions apply, however, if you do check the completion event.

First, if you check for either msg_succeeds or msg_fails, you must check for
both events. The alternative is simply to check for msg_completes.

Second, if you qualify a completion event with a particular message tag, then
you must always process completion events for that message tag. A program
can thus process completion events for some of its message tags, and ignore
completion events for other message tags. In the following example,
completion events for TAG1 are processed, and completion events for TAG2
are not processed:

when (io_changes(dev1))
{
 .
 .
 .
 msg_out.tag = TAG1;
 .
 .
 .
 msg_send();
}

when (msg_completes(TAG1))
{
 .
 .
 .
}

when (io_changes(dev2))
{
 .
 .
 .
 msg_out.tag = TAG2;
 .
 .
 .
 msg_send();
}

A third restriction applies to use of the unqualified completion event, which
implicitly refers to all messages. When you use the unqualified completion
event, you must process all acknowledged messages, either explicitly for each
message tag, or implicitly through use of an unqualified event each time a
message is sent.

Neuron C Programmer’s Guide 6-21

The following code shows correct processing of completion events by message
tag:

int failures[2], success;
msg_tag TAG1, TAG2;

when (io_changes(toggle))
{
 msg_out.tag = TAG1;
 msg_out.code = TOGGLE_STATE;
 msg_out.data[0] = input_value;
 msg_send();

 msg_out.tag = TAG2;
 msg_out.code = TOGGLE_STATE;
 msg_out.data[0] = input_value;
 msg_send();
}

when (msg_fails(TAG1))
{
 failures[0]++;
}

when (msg_fails(TAG2))
{
 failures[1]++;
}

when (msg_succeeds) // any message qualifies
{
 success++;
}

Preemption Mode and Messages
The Neuron firmware enters preemption mode when there is no application
buffer available for an outgoing message. If the system needs a free
application buffer, it causes the application program to wait and processes
only completion events, responses, and incoming network variables and
messages to facilitate application buffers becoming free.

No other predefined or user-defined events are processed unless the
preempt_safe keyword is used in conjunction with a when clause
containing an event expression. The syntax for the when clause is explained
in Chapter 2, Focusing on a Single Device.

The watchdog timer is automatically updated during this wait. If the
program waits for more than a configurable number of seconds, the device is
reset. This configurable timer is called the Max Free Buffer Wait timer. A
buffer wait timeout (also known as preemption mode timeout) should only
occur if a device is totally blocked from transmitting. This could occur under
extreme network congestion or with certain network failures.

6-22 How Devices Communicate Using Application Messages

A buffer wait timeout could also occur if a program is not properly freeing
completion events. The most common error is to check for completion events
in bypass mode (e.g., if (nv_update_completes)) and not to have a
corresponding completion event check in a when clause.

With network variables, the system can only enter preemption mode if:

• synchronous output network variables are updated, or

• flush_wait() is called.

Once the system is in preemption mode, further attempts to send a message
from a task associated with a message completion event when clause will
cause a device reset if no buffer is available for the new message.

The following sequence is therefore not recommended:

when (TOGGLE_ON)
{
 // build a message
 // send the message
}

when (msg_completes)
{
 msg_out.tag = t; // This sequence is not
 // recommended.
 msg_out.code = 1; // Causes a device reset
 // if the system is
 // already in preemption
 // mode
}

Instead of using this sequence, build messages and call msg_send() in a
task with a when clause that does not use the msg_completes event. When
you update synchronous output network variables, preemption mode is
entered at the critical section boundary if there are insufficient application
output buffers to accommodate the updates. For example, if you update
three synchronous output network variables in a critical section and only two
application output buffers are available, preemption mode is entered upon
leaving the critical section. The application will leave preemption mode and
return to normal operation once all the outstanding network variable
updates are buffered.

When implicit buffer allocation is used (i.e., building an explicit message
without calling msg_alloc() first), then preemption mode is entered upon
the first assignment to msg_out if no application output buffer is available.
Preemption mode ends as soon as a buffer becomes available (i.e., when a
completion event is processed). While a device is in preemption mode,
outgoing network variable updates occur, priority or otherwise. Thus, a
program that expects priority updates to occur within a bounded amount of
time should use nonpriority synchronous network variables or messages
with implicit buffer allocation.

no

not

To allocate and free buffers explicitly, use the functions described in
Allocating Buffers Explicitly later in this chapter.

Neuron C Programmer’s Guide 6-23

You can detect whether or not a program is already in preemption mode with
use of the function shown below:

boolean preemption_mode (void);

This function returns TRUE if the device is in preemption mode.

Asynchronous and Direct Event Processing
You can check events using when clauses and events such as when
(msg_completes), when (msg_fails), and when (msg_succeeds). This
type of event processing is referred to as asynchronous processing, since the
scheduler handles the exact order of execution. An alternate technique is
direct event processing, in which you check completion events inside tasks,
with if and while statements.

The following example indicates one way asynchronous and direct processing
cannot be combined. Do not include message completion events in a task
associated with a message completion event clause:

when (msg_completes)
{
 post_events();
 if (msg_completes) // not recommended
 x = 4;
}

You can use asynchronous event processing in programs that also do direct
event processing. Asynchronous event processing is the typical method for
processing events. This method results in smaller application programs.
You should call the flush_wait() function before the transition from
asynchronous to direct event processing. The flush_wait() function ensures
that all outstanding completion events and response events are processed
before switching to direct event processing.

6-24 How Devices Communicate Using Application Messages

Here is an example of sending a message and processing the completion
event directly (that is, checking the event inside a task rather than inside a
when clause):

msg_tag motor;
#define MOTOR_ON 0

when (x==3)
{
 // send a message
 flush_wait();
 msg_out.tag = motor;
 msg_out.code = MOTOR_ON;
 msg_send();

 // check completion status
 while (!msg_succeeds(motor)) {
 post_events();
 if (msg_fails(motor))
 node_reset();
 }
}

Using the Request/Response Mechanism
Request/response messages provide a mechanism for an application running
on one device to request data from an application running on another device.
The request/response mechanism is used automatically by the Neuron
firmware to poll input network variables and can also be used by application
programs that use application messaging.

A request is a message that uses the request service. Sending a request
message is similar to polling a network variable. A poll receives the most
recent value from the scheduler for a particular network variable. A request,
in contrast, can force the application on the responding device to evaluate the
request at the time of the request and then send back a response.

The functions, events, and objects for constructing, sending, and receiving
responses are analogous to those for constructing, sending, and receiving
messages, described in the previous section. They are also summarized in
the following paragraphs.

An example of sending a request is the following:

msg_tag motor;
#define MOTOR_STATE 1

when (io_changes(switch1) to 0)
{
 //send a request to the motor
 msg_out.tag = motor;
 msg_out.service = REQUEST;
 msg_out.code = MOTOR_STATE;
 msg_send();
}

Neuron C Programmer’s Guide 6-25

The request is packaged as shown in Figure 6.1 (earlier). The application
program on the receiver device receives the request through a when clause
(or msg_receive() function) and must then formulate a response to this
request, as shown below in Figure 6.3.

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

= data

Figure 6.3 Sending a Response

Constructing a Response
You can construct a response to a request message. As shown in Figure 6.3,
the response contains a data portion that is sent to the application processor
of the sender device. A response is different from an acknowledgment
(Figure 6.2), which does not contain a data portion and is sent only to the
network processor on the sender device.

The name of the outgoing response object is resp_out. The response inherits
its priority and authentication designation from the request to which it is
replying. Because the response is returned to the origin of the request, no
message tag is necessary. For the same reason, you cannot explicitly address
a response.

The built-in outgoing response object is defined as shown below:

struct {
 int code; // message code
 int data[MAXDATA];// message data
} resp_out;

code A numeric message code in the range 0 to 79. This
field is required. See Message Codes in this chapter
for a detailed description of numeric ranges used in
the code field.

6-26 How Devices Communicate Using Application Messages

data The data contained in the message. This field is
optional. MAXDATA is a function of the #pragma
app_buf_in_size directive (see Chapter 8, Memory
Management):

MAXDATA = app_buf_in_size – 6

 or

MAXDATA = app_buf_in_size - 17
 (if explicit addressing is used)

NOTE: The Neuron firmware observes which locations in the data array
have assignments and automatically sets the length of the outgoing message
accordingly.

Sending a Response
You can send a response with the resp_send() function. You must send
responses from the same critical section that processed the incoming request.
The response is constructed in the application input buffer in which the
request arrived. Therefore, once you have started response construction, you
can no longer examine the incoming request. Also, no other intervening
messages can be sent or received. This is the only case in which an outgoing
message uses an input application buffer.

The syntax for the resp_send() function is the following:

void resp_send (void);

This function sends a response using the resp_out object.

NOTE: While the response is constructed in the application input buffer by
the application, the network processor uses a network output buffer to
construct the response packet. So, the network output buffer must be sized
to accommodate outgoing responses in addition to other outgoing messages.

Neuron C Programmer’s Guide 6-27

Receiving a Response
A program usually receives a response through the predefined event
when(resp_arrives). The resp_receive() function can also be used to
receive a response.

The resp_arrives Event
The predefined event for receiving a response is resp_arrives.

Its syntax is the following:

resp_arrives [(msg-tag-name)]

If a response arrives, this event evaluates to TRUE. The event can optionally
be qualified by a message tag name; and, this qualification will limit the
event to a response message that corresponds to a previously-sent request
that used the named message tag. When there is no message tag name
qualifying the event, the event evaluates to TRUE for each response message
that arrives.

The resp_receive() Function
The resp_receive() function has the following syntax:

boolean resp_receive(void);

This function receives a response into the resp_in object. The function
returns TRUE if a response is received, otherwise it returns FALSE. The
response is automatically discarded at the end of the task that receives it.

Calling resp_receive() has the side-effect of calling post_events(), so a call
to resp_receive() defines a critical section boundary.

Format of a Response
The name of the incoming response object is resp_in.

The incoming response structure is predefined in the Neuron C Compiler as
follows:

struct {
 int code; // message code
 int len; // length of message data
 int data[MAXDATA]; // message data
 resp_in_addr addr; // explicit address - see the
 // <msg_addr.h> include file
} resp_in;

code A numeric message code in the range 0 to 79. See
Message Codes in this chapter.

6-28 How Devices Communicate Using Application Messages

len The length of the message data.

data The data contained in the message. This field is valid
only if len is greater than 0. MAXDATA is a function
of the #pragma app_buf_in_size (see Chapter 8):

MAXDATA = app_buf_in_size - 6

 or

MAXDATA = app_buf_in_size - 17
(if explicit addressing is used
by any message or network
variable in this program)

addr An optional field in the incoming message that an
application program may look at to determine the
source and destination of the message. You can find
the definition of the type resp_in_addr in the
<msg_addr.h> include file.

 To use this field, you must include the <addrdefs.h>
and <msg_addr.h> files.

Examples
This example shows sending a request and asynchronously receiving the
responses. (The code for receiving this request and responding to it follows in
the next example.)

msg_tag tag1;
#define DATA_REQUEST 0

when (io_changes(toggle))
{
 msg_out.tag = TAG1;
 msg_out.code = DATA_REQUEST;
 msg_out.service = REQUEST;
 msg_send();
}

when (resp_arrives(TAG1))
{
 if (resp_in.code == OK)
 process_response(resp_in.data[0]);

}

Neuron C Programmer’s Guide 6-29

Here is the code for the responder to this request:

#define DATA_REQUEST 0
#define OK 1

when (msg_arrives(DATA_REQUEST))
{
 int x, y;
 x = msg_in.data[0];
 y = get_response(x);

 resp_out.code = OK;
 // msg_in no longer available

 resp_out.data[0] = y;
 resp_send();
}

The following example shows sending a request and receiving the responses
directly:

int x;
msg_tag motor;
#define MOTOR_ON 0
#define DO_MOTOR_ON 3

when (command == DO_MOTOR_ON)
{
 // send a request
 msg_out.tag = motor; // construct the message
 msg_out.code = MOTOR_ON;
 msg_out.service = REQUEST;
 msg_send(); // send the message

 // wait for completion
 while (!msg_succeeds(motor)) {
 post_events();
 if (msg_fails(motor))
 node_reset();
 else if (resp_arrives(motor)) {
 x = x + resp_in.data[0];
 resp_free(); // optional
 }
 }
}

6-30 How Devices Communicate Using Application Messages

Comparison of resp_arrives and msg_succeeds
You may use both resp_arrives and the completion events (msg_succeeds,
msg_fails, and msg_completes) for the same request transaction because
these events give you different information. The following example
illustrates this difference.

Suppose you send one request to six devices using multicast (group)
addressing. Three of the responses are received and three are not received.
In this case, the resp_arrives event will be TRUE three times, once each
time a response arrives. The msg_succeeds event will never become TRUE,
because some of the responses did not arrive. The msg_fails event will
become TRUE when the allotted time for all responses to arrive is exceeded.
(In other words, for msg_succeeds to be TRUE, all of the responses must be
received.)

Response arrival events always occur before the message completion events
(msg_completes, msg_fails, or msg_succeeds).

Idempotent Versus Non-Idempotent Requests
An idempotent transaction is one that can be safely repeated. For example,
the command “turn on the light” can be sent repeatedly without changing the
end effect (the light goes on).

A non-idempotent transaction cannot be safely repeated without changing the
meaning. The command “turn up the volume by 10%” is an example of a non-
idempotent message. Responding to it ten times is not the same thing as
responding to it once.

LonTalk messages do not include an “idempotent” attribute. Instead the
receiving device infers the attribute through the lack or existence of
application data in the response to the request.

If a response does not contain application data, the Neuron firmware
assumes its request is non-idempotent and cannot be safely repeated to the
application. In this case the firmware sends the original response to any
repeated requests, and does not forward the repeated request to the
application. This firmware feature simplifies application processing for
responses without data since the application does not have to test for
duplicate messages.

Neuron C Programmer’s Guide 6-31

If a response does contain application data, the Neuron firmware assumes its
request is idempotent and can be safely repeated. In this case the
application sends any repeated requests to the application and the
application must regenerate the response. This provides the opportunity for
the application to update the response to a repeated request. If the
application wishes to treat these repeated request messages as non-
idempotent, it can do so by buffering responses by receive transaction index
and re-issuing those responses when duplicate requests arrive. An example
is shown below.

EXAMPLE:

#define OK 1
#define MAXRESP 10

struct RespBuffer {
 int code;
 unsigned int len;
 int data[MAXRESP];
} resp_buffer[16];

when (msg_arrives) {
 struct RespBuffer *buf_p;

 if (msg_in.service == REQUEST) {
 buf_p = &resp_buffer[msg_in.rcvtx];
 if (!msg_in.duplicate) {
 int i;

 // Process initial request
 // . . .

 // Now save response
 buf_p->code = OK;
 buf_p->len = MAXRESP;
 for (i=0; i<MAXRESP; i++) {
 buf_p->data[i] = get_resp_data();
 }
 }

 // Generate the response.
 resp_out.code = buf_p->code;
 memcpy(resp_out.data, buf_p->data, buf_p->len);
 resp_send();
 }
}

The above example also shows that the rcvtx field of the msg_in object
specifies the receive transaction index to which the request belongs.

6-32 How Devices Communicate Using Application Messages

Application Buffers
You can set the number of incoming and outgoing buffers available for use by
a Neuron C application at compile time. The default is two priority
application output buffers, two nonpriority application output buffers, and
two application input buffers for all models of the Neuron Chip and the
Smart Transceivers except the Neuron 3120® Chip and the Neuron 3120E1
Chip. See the Memory Management chapter, for a discussion of buffer
allocation. For most efficient response, set the number of application input
buffers to equal the expected number of responses. If a disproportionately
large number of responses (for example, more than 10) are expected for the
same request, some responses may never be received if only a limited number
of application input buffers are available.

NOTE: Because of limited memory on the Neuron 3120 Chip and the
Neuron 3120E1 Chip, if your program is linked for these chips, the linker will
adjust the output buffer defaults to one priority and one nonpriority buffer.
The number of input buffers will still default to 2.

NOTE: The same pool of buffers is used for processing both incoming
messages and responses. If you are processing events directly (that is,
bypassing the services of the scheduler), be sure to check for messages as
well as responses so that messages are processed and application buffers are
freed up regularly.

Allocating Application Buffers
Normally, when an application builds a message, an application output
buffer is allocated automatically by the Neuron firmware, and when the
application leaves the critical section, any outstanding application output
buffer is freed by the firmware automatically.

The following functions allow you to allocate and free application buffers
explicitly:

boolean msg_alloc (void);

boolean msg_alloc_priority (void);

void msg_free (void);

A message travels along one of two paths: the priority path or the
nonpriority path. As its name suggests, the priority path has precedence
over the nonpriority path. Thus, if you allocate an application output buffer
out of the priority buffer pool, the message is more likely to succeed on a
congested network.

Neuron C Programmer’s Guide 6-33

The msg_alloc() and msg_alloc_priority() functions return TRUE if a
msg_out object can be allocated. Otherwise, these functions return FALSE.
A program needs to call one of these functions if it does not want to wait for
an application output buffer. If the function returns FALSE, the program
can choose to go off and do something else, then try again later.

The msg_alloc_priority() function allocates a priority application output
buffer. The msg_alloc() function allocates a nonpriority application output
buffer. If you are using the system default, up to two buffers of each type can
be in use at the same time. (You can allocate up to the maximum number of
buffers set by the #pragma app_buf_out_count and #pragma
app_buf_out_priority_count directives. See Chapter 8, Memory
Management, and also the Neuron C Reference Guide for more information on
these directives.)

The msg_free() function frees the msg_in object. You do not normally need
to free an application input buffer, since this is done for you when you exit a
task. However, you might want to free an application input buffer explicitly
if you are finished with it in a task, but you have more work to do before
exiting the task.

Normally you allocate an application output buffer by assigning a value to
one of the fields of the msg_out object. In the event that an application
buffer is not available, application processing will be suspended (preemption
mode) until one is available. If you want to avoid possibly suspending
processing, use the msg_alloc() function. If no application output buffer is
available, a FALSE value will be returned, and processing continues. This
allows the application to do something else in the event that there are no
outgoing application buffers available, rather than stopping to wait for an
application buffer.

An application input buffer is normally freed at the end of the critical section
in which the msg_receive() call is made. The application may choose to free
the application buffer earlier than this by calling msg_free(). After this call,
the msg_in object no longer contains the received message, but the network
processor is able to use the freed application input buffer for another
incoming message. The msg_alloc() and msg_free() functions are unlike
standard memory allocation functions. An application output buffer
allocated by the msg_alloc() function is not freed by a matching call to the
msg_free() function. Instead, a msg_send() or msg_cancel() call
automatically frees an output buffer allocated by msg_alloc(), and a
msg_free() call automatically frees an input buffer allocated by
msg_receive().

6-34 How Devices Communicate Using Application Messages

The analogous functions for allocating and freeing responses are:

boolean resp_alloc (void);

void resp_free (void);

The following example shows a task that creates two messages. Before
creating and sending each message, the code checks buffer availability with
msg_alloc().

msg_tag motor1;
msg_tag motor2;
#define MOTOR_ON 0

when (x == 2)
{
 if(msg_alloc() == FALSE)
 return;

 msg_out.tag = motor1;
 msg_out.code = MOTOR_ON;
 msg_send();

 if(msg_alloc() == FALSE)
 return;

 msg_out.tag = motor2;
 msg_out.code = MOTOR_ON;
 msg_send();
}

Neuron C Programmer’s Guide 6-35

7
Additional Features

This chapter describes additional features in Neuron C. It
describes the scheduler reset mechanism in more detail. In
special cases requiring a scheduling algorithm different from
that of the Neuron firmware scheduler, you may want a
program to run in bypass mode and use the post_events()
function, also described here. Other topics discussed in this
chapter include sleep mode, error handling, and status
reporting.

The Scheduler
Chapter 2, Focusing on a Single Device, introduced the basic functioning of
the Neuron firmware scheduler, shown in Figure 7.1. Priority when clauses
are executed in the order specified every time the scheduler runs. If any
priority when clause evaluates to TRUE, its task is run and the scheduler
starts over. If none of the priority when clauses evaluates to TRUE, then a
nonpriority when clause is evaluated, selected in a round-robin fashion. If
the when clause is TRUE, its task is executed. If the nonpriority when
clause is FALSE, its task is ignored. In either case, the scheduler returns to
the top of the loop.

Scheduler Reset Mechanism
The scheduler reset mechanism is normally disabled. When the reset
mechanism is enabled, the round-robin part of the scheduler is reset to the
first regular when clause whenever one of the following conditions is
detected:

• A new network variable update is at the head of the queue.

• A new timer has expired.

• A new message is at the head of the queue.

Although these events can occur at any time, the scheduler recognizes them
only when it is at the beginning of the scheduling loop (labeled “Top of loop”
in Figure 7.1).

If you leave the reset mechanism off, nonpriority when clauses are evaluated
in the order in which they appear. When the last nonpriority when clause is
reached, the scheduling loop returns to the first nonpriority when clause.

If ordering of when clauses is desired, you can turn on the reset mechanism
with the following compiler directive:

#pragma scheduler_reset

WARNING: If the scheduler reset mechanism is enabled, then there is a
risk that when clauses later in the program may never execute if the
scheduler is reset too frequently. This can lead to application buffer
starvation, because network variable and message processing tasks can only
process buffers in the order in which they arrive. Thus, if the scheduler reset
mechanism is enabled, you must insure that the when clauses and tasks of
your program are ordered such that the most frequently executed ones are
last, or the rare ones are declared using the priority keyword.

7-2 Additional Features

Restart/
Power up

Initialization

Reset Task

Top of Loop

Task

Task

Task

Task Task Task Task

When

When

When

Priority
When

Priority
When

When
(wink)

When
(offline)

Figure 7.1 Neuron Firmware Scheduling of Nonpriority
and Priority When Clauses

Neuron C Programmer's Guide 7-3

Incoming messages and network variable updates use application input
buffers, which are processed by when(msg_arrives) and
when(nv_update_occurs) tasks respectively.

Outgoing messages, network variable updates, and network variable polls
use application output buffers. If you check for completion events with any of
the following tasks, then the application output buffers are automatically
processed and freed by the scheduler in correspondence with these
completion event tasks:

 when (nv_update_completes)
 when (nv_update_succeeds)
 when (nv_update_fails)
 when (msg_completes)
 when (msg_succeeds)
 when (msg_fails)

If there is no corresponding completion event task, then the output buffer is
freed automatically by the scheduler when its corresponding event is
discarded.

In either case, failure to reach the when clause that processes the
application buffer at the head of the incoming or completion event queues
(because of too frequent reset of the scheduler) will lead to that queue
becoming blocked (or stuck) because the application buffer will never be
processed and freed.

Therefore, when using the scheduler reset mechanism, it is important to
order the when clauses in a program such that events that occur frequently
(such as I/O events that occur constantly, or short-interval timer events that
expire continually) not lock out processing of messaging events.

7-4 Additional Features

Example
Turning on the reset mechanism ensures that events are processed in the
order intended. For example, you may want to be sure that specific events
are checked for first, followed by a catch-all event, as illustrated in this
fragment:

#pragma scheduler_reset
network input int NV1, NV2, NV3, NV4;

when (nv_update_occurs(NV1))
{
 . . .
}

when (nv_update_occurs(NV2))
{
 . . .
}

when (nv_update_occurs)
{ // provides a generic check
 . . . // for all network variable
 // updates
}

Updates received for NV1 cause both the first and third events to become
TRUE. Similarly, updates for NV2 cause the second and third events to
become TRUE. It is thus important that these when clauses be evaluated in
their given order after a network variable update. Using scheduler_reset,
the nv_update_occurs event for NV1 is always checked first whenever a
new network variable update is at the head of the queue.

Bypass Mode
All scheduling of Neuron C programs, as described above, is event-driven and
handled by the scheduler. Within a program, however, you can choose when
to return control to the scheduler. The term bypass mode refers to a method
of programming in which one when clause always evaluates to TRUE and
never returns. In this case, a single task must handle all event processing.

You will use bypass mode rarely, and only in cases where you need a
different scheduling algorithm than that provided by the Neuron firmware
scheduler. While in bypass mode, your program is responsible for all event
processing. You define critical sections through the post_events() function
(see the following section), and then check for predefined events in if, while,
and for expressions.

Neuron C Programmer's Guide 7-5

The post_events() Function
Use the post_events() function to define a boundary of a critical section at
which network variable updates are sent and incoming network variable
updates are processed.

NOTE: The post_events() function is automatically called at the top of the
scheduling loop.

When the post_events() function is called, a number of things happen:

• Any outgoing network variable updates are sent. In the case of synchronous
network variables, all the updates are sent. For nonsynchronous network
variables, as many updates are sent as application output buffers are
available. Any unsent updates will be sent the next time post_events() is
called.

• Incoming network variable update events are received.

• New incoming messages are examined.

• Timers are examined to see if they have expired.

• The watchdog timer is reset (to keep it from timing out). See the following
section on the watchdog timer.

You can use the post_events() function to improve network performance by
calling it immediately after modifying network variables. Call the
post_events() function to signal the network processor to start execution of
the formatting of the outgoing packet before the when task completes, thus
increasing parallel processing and utilizing the Neuron Chip and Smart
Transceiver multi-processor architecture to its fullest.

7-6 Additional Features

Watchdog Timer
The watchdog timer times out within a range of 0.21 seconds to 0.42 seconds
with a 40 MHz input clock. (This value scales inversely with the input clock.)
The hardware timer has a period of 0.21 seconds, but a timeout occurs at the
end of the current period only if the watchdog timer has not been retriggered
since the beginning of the current period. Since the timer retrigger in
software is asynchronous with the timeout period in hardware, from a
software perspective the minimum time from retriggering to timeout is a
single period, or 0.21 seconds, and the maximum time from retriggering to
timeout is two periods, or 0.42 seconds.

The intention of the watchdog timer is to reset the device within a nominal
value of one second should it experience a software failure, such as an
unterminated loop or other fault, that prevents the software from
retriggering the timer. Normally, the scheduler ensures that the watchdog
timer is reset periodically, and the application program need not be
concerned about the watchdog timer. If a program enters a very long task,
however, the watchdog timer may expire, which causes a device reset.

To ensure that the watchdog timer does not expire, you may call the
watchdog_update() function periodically within long tasks (or when in
bypass mode). The post_events(), msg_receive(), and resp_receive()
functions also update the watchdog timer, as well as use of the io_out()
function with the pulsecount output object, and the io_in() function with
the magcard, magtrack1, neurowire slave, and wiegand input objects.

NOTE: Use the watchdog_update() function with care, and, if possible,
not within any loops. A software or hardware malfunction that prevents the
loop from being terminated could cause a device not to respond; and, it would
be unable to recover from this symptom by means of a watchdog timer reset,
because the loop body would continuously re-trigger the watchdog timer.

NOTE: Firmware functions that write to EEPROM do not automatically
update the watchdog timer.

Neuron C Programmer's Guide 7-7

An example of using the watchdog_update() function is shown below:

when (TRUE)
{
 post_events();
 if (nv_update_occurs(NV1)){
 .
 .
 .
 } else if (nv_update_occurs(NV3)){
 . // long task
 .
 .
 watchdog_update();
 . // more long task
 .
 .
 }
}

Additional Predefined Events
The following three predefined special events result from network
management messages:

offline

online

wink

The offline event occurs when an offline network management command is
received from a network tool. This event is always handled as the first
priority when clause. The online event occurs when an online message is
received from a network tool. The wink event occurs when a wink command
is received from a network tool.

The offline event can be used to place a device offline in case of an
emergency, for maintenance, or in response to some other system-wide
condition. Once offline, a device will respond only to network management
messages until reset or brought back online. (Reset can occur by physically
resetting the device by activating the Neuron Chip or Smart Transceiver
reset line, or through a reset network management message.) After execution
of the task associated with an offline when clause, the application program
does not run until the device is either reset or brought back online.

7-8 Additional Features

A simple use of these two events is shown below:

when (offline)
{
 x(); // Clean up before going offline.
} // Device goes offline here; application
 // program stops running.

when (online)
{
 y(); // Start up again (poll inputs,
 // and so on)
}

The application has no means to refuse a change into the offline or online
states, respectively. The respective state becomes effective once the relevant
task has been completed, allowing the application to prepare for that state by
disabling peripheral hardware, stopping timers, etc.

The device can change into the online state without the online when clause
evaluating to TRUE: If the device is being taken offline into the soft-offline
state, resetting the device loses, or discards, the soft-offline state and returns
the device to normal, online, operation. The technique shown below may be
used to handle this situation:

void HandleOnline (void)
{
 ...
}

when (reset)
{
 // regular reset code here:
 .. .
 // handle case of device going online
 if (online) {
 HandleOnline();
 }
}

when (online)
{
 HandleOnline();
}

Neuron C Programmer's Guide 7-9

Going Offline in Bypass Mode
Use the offline_confirm() function if the offline event is checked outside of
a when clause, as in bypass mode. The offline_confirm() function sets the
state of the device to offline and returns immediately. Use this function to
confirm that the device has finished its cleanup and is now going offline.

As shown below, in bypass mode, the program continues to run even though
the device is offline. In bypass mode, it is up to you to determine which
events are not processed when the device is offline.

Here is an example of using offline_confirm() in bypass mode:

when (TRUE)
{
 while (TRUE) {
 post_events();
 if (online)
 continue;
 if (nv_update_occurs) {
 ...
 } else if (offline) {
 x();
 offline_confirm();
 // Wait for online
 while (!online) {
 post_events();
 }
 } else {
 ...
 }
 }
}

Wink Event
You can use the wink event to perform an action in response to a wink
network management message from a network tool. A network tool may
send a wink message to a device to help a network integrator physically
identify a particular device. The wink event becomes TRUE any time a wink
message is received by a device, whether configured or unconfigured.

In an unconfigured device, I/O and variable initialization occur before the
wink event is evaluated. However, none of the initialization in the when
(reset) task has occurred. In addition, the scheduler is not running on an
unconfigured device, so events can be processed only through direct event
processing. Neither network variable updates, nor messages, are sent
because the device is unconfigured. Timer objects may be set and read
within the wink task. You also may explicitly check the timer_expires()
event as long as you first call post_events().

7-10 Additional Features

Sleep Mode
You can use sleep mode to place a Neuron Chip or Smart Transceiver in a
low-power state. To instruct a Neuron Chip or Smart Transceiver to enter
sleep mode, follow these steps:

1 Flushing all pending network variable updates as well as all outstanding
outgoing and incoming messages.

2 Put the Neuron Chip or Smart Transceiver into sleep mode when the flush
completes. The Neuron Chip or Smart Transceiver always wakes up when
the service pin is activated, or when there is activity on an I/O pin (the pin
selected is configurable) or on the communications channel, or both.

EXAMPLE:

mtimer m_30;
network output SNVT_switch nvoValue;
static SNVT_switch temp;

when (timer_exp(m_30))
{
 nvoValue = temp;
 flush(TRUE);
}

when (flush_completes)
{
 sleep(COMM_IGNORE);
}

Flushing the Neuron Chip or Smart Transceiver
You can use the flush() function to instruct the Neuron firmware to finish
processing all outgoing and incoming messages. When the flush is complete,
the flush_completes event becomes TRUE.

The flush() and flush_cancel() Functions
The flush() function causes the Neuron firmware to monitor the status of all
outgoing and incoming messages. Its syntax is as follows:

flush (boolean comm-ignore);

comm-ignore Specify TRUE if the Neuron firmware is to ignore
communications channel activity while it is flushing.
Specify FALSE if the Neuron firmware is to accept
incoming messages. This parameter should be the
same as the comm_ignore parameter used with the
sleep() function that follows the flush.

Neuron C Programmer's Guide 7-11

While the flush is occurring, the program continues to run. The origination
of new messages by the program while the flush is in progress delays the
flush completion.

If the comm_ignore option is set to TRUE, new packets that arrive during
the flush are discarded unless they are acknowledgments, responses,
challenges, or replies.

You can cancel a flush operation that is in progress by calling the
flush_cancel() function.

flush_completes Event
The following predefined event becomes TRUE when the flush completes:

flush_completes

This event becomes TRUE when all outgoing network buffers and application
buffers are free, no more incoming messages are outstanding, and no network
variable updates are outstanding.

NOTE: The flush_wait() function should not be used in preparation for
putting the device to sleep. The flush_wait() function does not check for
outstanding network variable updates or incoming messages.

Putting the Device to Sleep
You can use the sleep() function to put a Neuron Chip or Smart Transceiver
to sleep when the flush_completes event becomes TRUE. Its syntax is
shown below:

sleep (flags)

sleep (flags, io-object-name)

sleep (flags, io-pin)

flags One or more of the following three flags, or 0 if no flag
is to be specified. If two or more flags are used, they
are or'd together. You can specify any of the following
flags:

COMM_IGNORE Causes incoming messages to
be ignored.

PULLUPS_ON Enables all internal pullup
resistors (the default action is
to disable the pullups - this
lowers power consumption).

TIMERS_OFF Turns off all timer objects
(declared with mtimer and
stimer) in the program.

7-12 Additional Features

io-object-name An input object declared for any one of pins IO_4
through IO_7. When any I/O transition occurs on the
specified pin, the device wakes up. If this parameter
is omitted, I/O is ignored once the device is in sleep
mode. This I/O object can be defined for wakeup
purposes only, or could be used for other I/O purposes
as well.

io-pin Specifies one of pins IO_4 through IO_7. When any
I/O transition occurs on the specified pin, the Neuron
Chip or Smart Transceiver wakes up. If this
parameter is omitted, I/O is ignored once the device is
in sleep mode.

For example, to sleep and turn off timers and enable pullups, the call to
sleep() is as follows:

sleep(TIMERS_OFF | PULLUPS_ON);

EXAMPLE:

 IO_4 input bit wakeup_pin1;

 when timer_expires(timer_2)
 {
 sleep(COMM_IGNORE, wakeup_pin1);
 //or, sleep (COMM_IGNORE, IO_4);
 }

You can force sleep mode even though the flush has not completed, as
described in the following section, Forced Sleep.

When an event occurs that wakes the Neuron Chip or Smart Transceiver, the
program resumes at the first statement after the sleep function call. If the
sleep() call is the last statement in a task, the program returns to the
scheduler after it wakes up.

A device wakes up whenever a packet is received by the transceiver (unless
you specified COMM_IGNORE). This is true even if the packet is not
addressed to the device. You are responsible for putting the device back to
sleep when this occurs.

If a device sleeps for less than the receive timer duration and uses the
COMM_IGNORE option, it may receive duplicate messages or network
variable update events. The default receive timer is set by a network tool
during device installation. This is a hard-coded value of 768ms. This is a
minimum value that can be increased by a network tool depending on the
network connections to the device.

Neuron C Programmer's Guide 7-13

Forced Sleep
You can force a device to sleep even though a flush operation is not complete.
Under certain network conditions, such as extreme network congestion, the
flush could take a long time to complete. To avoid consuming too much
power, the application can stop waiting for the flush to complete and sleep
anyway.

To force a device to sleep, call the sleep() function without waiting for the
flush_completes event. An example of forcing a device to sleep is shown
below:

...
 flush(TRUE); // start flush; ignore
 // incoming packets
 flush_timeout = 300; // start flush timeout
 // timer (300 msec)
}

when (timer_expires(flush_timeout))
when (flush_completes)
{ // Ready to go to sleep since the flush
 // either completed or timed out
 flush_timeout = 0; // First, turn off timer
 // if not expired
 sleep(COMM_IGNORE);
}

When you force sleep mode, the following occurs:

1 All pending network variable updates, outstanding application output
buffers, and outstanding network output buffers are not sent and freed.

2 If you specify the COMM_IGNORE option, any incoming network buffers
are freed.

3 If any outstanding incoming application buffers remain, the device will fail to
sleep (regardless of whether the COMM_IGNORE option was specified).
This feature prevents the device from receiving stale messages when it wakes
up. In the example above, the application would have 300 milliseconds to
process any incoming messages already in the queue. In addition, since the
COMM_IGNORE parameter was set to TRUE in the call to flush(), no new
incoming messages would arrive. Thus, it is likely that the device will sleep,
assuming it processes, in the 300 msec prior to the timeout, any incoming
messages that were outstanding prior to the call to flush().

7-14 Additional Features

Error Handling
You can take one of the following actions to recover from or report an
application error: reset the device, restart the application, take the
application offline, disable a functional block, change functional block status,
and log an error. The Neuron firmware also logs system errors for errors
detected by the firmware. These actions may be combined. For example, you
may log an error and then take the application offline. Alternatively, you
may disable a functional block and change functional block status.

Resetting the Device
You can reset a device by calling the node_reset() function. This function
immediately resets all processors (application, network, and MAC) on the
Neuron Chip or Smart Transceiver. The Neuron reset pin is driven low, and
this can be used to reset external transceivers and logic. You will typically
take this action for catastrophic errors that require a hardware reset. A
device may also be reset by expiry of the watchdog timer, or by a reset
command received via the network.

When a device is reset, it executes the entire initialization sequence. The
amount of time required for initialization is a function of the amount of off-
chip memory as well as the size of the application program, but must be less
than 18 seconds before the application is online. See the Smart Transceivers
databooks for a detailed formula to calculate reset time.

There are a number of disadvantages to resetting a device. First, when you
reset a device, all state information not kept in EEPROM is lost. All pending
incoming and outgoing messages and network variable updates are lost. The
network processor may receive duplicate packets. In addition, any packets
that have been acknowledged by the network processor but not processed by
the application are lost.

Restarting the Application
You can reset the application processor, but not the network or MAC
processors, using the application_restart() function. You will typically
take this action for application errors that can be recovered by restarting the
application, but that do not require an external hardware reset.

When you call this function, the Neuron firmware clears all timer objects and
initializes I/O objects, non-configuration network variables, and static
variables and then executes the reset clause. Some synchronization cleanup
is done before restarting the application. Any outgoing messages in progress
are terminated. Incoming messages are unaffected. Outstanding completion
events and responses are discarded. An application restart does not lose
network state information. Since only the application processor is reset, the
network and MAC processors continue to process network traffic.

Neuron C Programmer's Guide 7-15

Taking an Application Offline
You can take a device offline using the go_offline() function. You will
typically take this action if the error will not be corrected by a device reset or
application restart, and if the error is not localized to specific functional
blocks on the device. The device may also be taken offline (and back online
again) via a command received over the network. Network tools frequently
set devices offline when configuring.

The go_offline() function terminates all outstanding transactions and stops
all application processing. You can call the flush_wait() function in the
when(offline) task to ensure that any outstanding transactions complete
normally.

The Neuron firmware continues to run when a device is offline so that a
network integrator using a network tool can test the device status, take any
required corrective actions, and then put the application back online. You
can log an application error, as described below under Logging Application
Errors, to alert a network integrator as to the reason for going offline.

Disabling a Functional Block
You can disable an individual functional block for an error that will not be
corrected by a device reset or application restart, but is localized to a
particular functional block or set of functional blocks on the device.

Functional block status is not built into the Neuron C language, but code to
manage functional block status is automatically generated by the
NodeBuilder Code Wizard. The code wizard creates an fblockData[] array
that contains the functional block status for each functional block in an
application. The members of this array are declared with the
SNVT_obj_status type.

To disable a functional block, use the following code:

fblockData[fblockIndex].objectStatus.disabled = TRUE;

The fblockIndex parameter is the functional block index of the functional
block to be disabled. A network tool may also disable or enable functional
blocks via the network. This usually occurs when a single functional block is
being configured.

7-16 Additional Features

You must include code in your application to test the functional block status.
The code wizard generates a fblockNormalNotLockedOut() function that
you can use to test functional block status. The syntax for this function is as
follows:

boolean fblockNormalNotLockedOut(TFblockIndex fblockIndex);

The fblockIndex parameter is the functional block index of the functional
block to be tested.

For example, the following call from the NodeBuilder example tests the
functional block status for the functional block associated with a network
variable input:

if (fblockNormalNotLockedOut(fblock_index_map[nv_in_index]))
{
 . . .
}

See the NodeBuilder Example appendix of the NodeBuilder User’s Guide for
more examples of using the fblockNormalNotLockedOut() function.

You can change the functional block status, as described below under
Changing Functional Block Status, to alert a network integrator as to the
reason for disabling a functional block.

Changing Functional Block Status
You can report a functional block error condition using the nvoStatus output
of the Node Object functional block. Each functional block on a device has an
independent status condition, so network tools use the nviRequest input to
the Node Object functional block to request the status of an individual
functional block, and this status is reported via the nvoStatus output.

Functional block status is not built into the Neuron C language, but as
described in Disabling a Functional Block, code to manage functional block
status is automatically generated by the NodeBuilder Code Wizard. You can
update the functional block status by setting the appropriate fields within
the fblockData[] array. See the definition of the SNVT_obj_status type in
the LONMARK SNVT and SCPT Guide, or in the NodeBuilder Resource
Editor, for a description of the fields.

For example, the following statement changes the functional block status for
the functional block identified by fblockIndex to report a mechanical fault:

fblockData[fblockIndex].objectStatus.mechanical_fault = TRUE;

Neuron C Programmer's Guide 7-17

Logging Application Errors
You can report a device error condition using the error_log() function,
which is passed an error number between 1 and 127. This function writes
the last number into a dedicated location in EEPROM. A network tool can
use the query status network diagnostic command to read the last error. The
syntax for the error_log() function is as follows:

void error_log (unsigned int error_num);

The error number values between 1 and 127 are application-defined. You
can assign numbers in this range to your device error conditions, and
document these assignments as part of your device documentation.

The LonBuilder Neuron C debugger maintains a log of the last 25 error
messages. On a Neuron emulator, the Neuron firmware adds a delay of up to
70ms between writes to the error log to give the PC time to retrieve the last
value.

System Errors
The Neuron firmware reports system errors using the same error log used to
report application errors. System errors include programming errors and
network errors and inconsistencies. As with application errors, network tools
can retrieve the last value from the error log using the query status network
diagnostic command.

System error numbers are in the range of 128 to 255; see the NodeBuilder
Errors Guide for an annotated list of system error messages.

Access to Device Error Status
From your application program, you can access the same diagnostic status
information that is available to a network tool. The status information is
stored in the status structure. To retrieve the status information, use the
retrieve_status() function. Its syntax is as follows:

void retrieve_status (status_struct *status-p);

The fields of the status structure are described in detail in the Neuron C
Reference Guide. Use the clear_status() function to clear certain status
structure fields (the statistics information, the reset cause register, and the
error log).

7-18 Additional Features

EXAMPLE:

#define unconfigured 0x02
#define config_on_line 0x04
#define config_off_line 0x0C
#define power_up_reset 0b1
#define power_up_reset_mask 0b1
#define external_reset 0b10
#define external_reset_mask 0b11
#define WDT_reset 0b1100
#define WDT_reset_mask 0b1111
#define SI_reset 0b10100
#define SI_reset_mask 0b11111

#include <status.h>
status_struct status; // structure type defined
 // in <status.h>

unsigned long transmission_errors;
unsigned long transaction_timeouts;
unsigned long receive_transaction_full;
unsigned long lost_messages;
unsigned long missed_messages;
unsigned long reset_cause;
unsigned short node_state;
unsigned short version;
unsigned short error_log;
unsigned short model_number;

retrieve_status(&status);
 // obtain device status structure
transmission_errors = status.status_xmit_errors;
 // number of received packets with CRC errors
transaction_timeouts =
 status.status_transaction_timeouts;
 // number of timeouts using Ackd or Req/Resp
 // transactions

receive_transaction_full =
 status.status_rcv_transaction_full;
 // number of times incoming message (other than
 // Unackd) was lost due to receive transaction
 // database overflow

lost_messages = status.status_lost_msgs;
 // number of times incoming message was lost
 // because there was no application buffer
missed_messages = status.status_missed_msgs;
 // number of times incoming message was lost
 // because there was no network buffer
reset_cause = status.status_reset_cause;

Neuron C Programmer's Guide 7-19

if ((reset_cause & power_up_reset_mask) ==
 power_up_reset) {
 // last reset was a power_up
}

if ((reset_cause & external_reset_mask) ==
 external_reset) {
 // last reset was from the NEURON RESET pin
}

if ((reset_cause & WDT_reset_mask) ==
 WDT_reset) {
 // last reset was from the watchdog timer
 // timing out
}

if ((reset_cause & SI_reset_mask) == SI_reset) {
 // last reset was software initiated by a
 // call to node_reset()
}

node_state = status.status_node_state;
if (node_state == unconfigured) {
 // this device has not been configured
}
if (node_state == configured_online) {
 // this device is running its application
}
if (node_state == configured_offline) {
 // this device is not running its application
}

version = status.status_version_number;
 // version number of Neuron firmware
error_log = status.status_error_log;
 // most recent error logged by system
model_number = status.status_model_number;
 // model number of Neuron Chip or Smart Transceiver

7-20 Additional Features

8
Memory Management

This chapter describes system memory resources, such as on-
chip EEPROM, application buffers, and network buffers that
can be tailored to the needs of a specific application. The
following sections discuss how these resources can be
reallocated and when you might need to do so.

Reallocating On-Chip EEPROM
The Neuron C compiler generates four tables in on-chip EEPROM that are
used by the Neuron firmware and network tools to define the network
configuration for a device. Two of these tables are the domain table and
address table. By default, these are generated at the maximum size for each,
which are two entries for the domain table and up to fifteen for the address
table. You can specify a smaller size using the #pragma
num_domain_entries and #pragma num_addr_table_entries directives.
A third table, the alias table, has no default size, but you must specify a size
using the #pragma num_alias_table_entries directive. See the Compiler
Directives chapter in the Neuron C Reference Guide, and the discussions
below, for more information.

A fourth table, the network variable configuration table, is generated
automatically with one entry for each network variable declared in the
program. Each element of a network variable array counts separately, and
the maximum size of the network variable configuration table is 62 entries.
Each entry uses three bytes of EEPROM. You cannot change the size of this
table, except by adding or deleting network variables.

If a program doesn’t fit into the default memory areas, another alternative
when using the Neuron 3150 Chip or the FT 3150 Smart Transceiver is to
move parts of the program to other locations in memory. However, the
domain table, address table, alias table, and network variable configuration
table must be located in on-chip EEPROM. See Off-Chip Memory in this
chapter.

Address Table
The address table contains the list of network addresses to which the device
sends network variable updates or polls, or sends implicitly-addressed
application messages. The address table may be configured through network
management messages from a network tool.

NOTE: See the Smart Transceivers databooks for a description of the
address table.

By default, the address table contains 15 entries. Each address table entry
uses five bytes of on-chip EEPROM. The compiler directive shown below can
be used to decrease the number of address table entries:

 #pragma num_addr_table_entries nn
 (nn may be any value from 0 to 15)

8-2 Memory Management

The maximum number of address table entries that a device could require is
bounded by the maximum expected number of different destination entries
required by connections (network variables and message tags) for that device.
A destination entry is required for a output network variable or message tag
in a connection, if the output is not declared as a polled output, and also for
the input if the input is polled or a member of a group connection. Two
destination entries differ if they use a different service type, a different
destination address, or different transport attributes such as the repeat
timer. Multiple network variables that use the same destination entry share
a common address table entry. Fewer address table entries are consumed
when address table entries can be shared by multiple connections. This
capability can only be used if the network tool used to install the device
generates shared entries (all LNS tools, including the LonMaker Integration
Tool, provide this capability).

As a general rule, the address table should be sized to the maximum of 15
entries, if possible.

Alias Table
The alias table is generated according to the alias table size specified with
the #pragma num_alias_table_entries compiler directive, shown below.
This compiler directive can be used to set the alias table size to any size
between zero and 62 entries. Each alias entry uses 4 bytes of on-chip
EEPROM. An alias is an abstraction for a network variable that is managed
by network tools and the Neuron firmware. Network tools use aliases to
create connections that cannot be created solely with the address and
network variable tables, providing network integrators with more flexibility
in how devices are installed into networks. This feature requires Neuron
firmware version 6 or later.

 #pragma num_alias_table_entries nn
 (nn may be any value from 0 to 62)

NOTE: See the Smart Transceivers databooks for a description of the alias
table.

As a general rule, the alias table should be sized to the maximum size
possible based on the available on-chip EEPROM. This will typically be less
than the maximum size of 62 entries. You can determine the maximum
possible size by examining the link map and looking at the onchip EEPROM
area. If you see any amount of memory displayed as available memory in the
onchip EEPROM pool, this memory could be used by aliases. Take the
number of bytes in the pool, divide by 4, and round down to the nearest
integer. Then add this value to the number of aliases already being used to
determine the total number of aliases you could have, but limit this to no
more than 62 total aliases.

Neuron C Programmer's Guide 8-3

If your program is being linked for a Neuron chip that has additional memory
available for program code in an offchip area (such as offchip EEPROM,
ROM, or Flash), you can increase the alias table size further. To determine
the additional entries available (beyond the number from the previous
paragraph), assuming you have program code in onchip EEPROM, and
assuming that program code can move offchip, look at the byte size of the
onchip program area and divide that by 4, again rounding down. The result
represents the additional number of aliases that can be added to the number
already determined above. Again, the total number of aliases is limited to no
more than 62.

The following rule-of-thumb allows calculation of a starting point for alias
table size, nn:

 nn = 0; for nv_count = 0

 nn = 10 + (nv_count / 3); for nv_count > 0

Starting with this initial size, the alias table size may be refined using the
guidelines provided above.

Domain Table
By default, the domain table is configured for two domains. Each domain
uses 15 bytes of on-chip EEPROM. The number of domain table entries is a
function of the network where the device is installed, it is not a function of
the application. You can reduce the size of the domain table using the
following compiler directive:

 #pragma num_domain_entries 1

NOTE: See the Smart Transceivers databooks for a description of the
domain table.

NOTE: As a general rule, the domain table should be sized to the maximum
of 2 entries, if possible. The LONMARK Interoperability Association requires
all interoperable LONWORKS devices to have two domain table entries.
Reducing the size of the domain table to one entry will prevent certification.

8-4 Memory Management

Allocating Buffers
You can use compiler directives to set certain Neuron firmware memory
resources such as buffer counts and sizes and receive transaction counts.
These values can be set only at compile time. They cannot be configured at
run-time. Figure 8.1 illustrates where application and network buffers are
used. Application buffers are used between the application and network
processors. Network buffers are used between the network and media access
control (MAC) processors.

Application

Scheduler
Network

MAC
Hardware

Sender Device (writer)

Application

Scheduler
Network

MAC
Hardware

Receiver Device (reader)

= data

Figure 8.1 Application and Network Buffers

This section outlines a few guidelines for allocating buffers, depending on the
needs of an individual application.

Neuron C Programmer's Guide 8-5

Buffer Size
If you use application messaging, you must set the appropriate buffer sizes to
accommodate the largest message that the application or Neuron firmware
could generate or receive for processing. In some cases, this may require an
increase in buffer size. If you only use network variables, the compiler
chooses buffer sizes based on the size of the largest network variable that you
declare and the minimum sizes required by the Neuron firmware.

Figure 8.2 shows the basic components of an application buffer and a
network buffer. An application buffer contains application message data and
system overhead. A network buffer contains application message data,
protocol layer 2 through layer 5 overhead, and system overhead.

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

Application
Message

Application
MessageProtocol L2 - L5

System Overhead

Network Buffer
Application Buffer

System Overhead

Figure 8.2 System and Protocol Overhead in Application
and Network Buffers

8-6 Memory Management

Application Buffer Size
The size of an application buffer is equal to the following:

 message_size + 5 bytes of system overhead

If explicit addressing is used, add an additional 11 bytes of system overhead.

For application messages, message_size equals 1 byte for the message code
plus the number of bytes of data. For network variables, message_size equals
2 bytes plus the number of bytes in the network variable.

Table 8.1 lists the valid sizes for application buffers. For example, if
message_size is 40, then you need an application buffer of at least 45 bytes.
The next largest valid size for an application buffer is 50 bytes.

Application buffers are also used to receive network management messages
used by network tools for device configuration. A minimum input application
buffer size of 22 bytes (34 bytes if explicit addressing is used) is required to
be able to accommodate the largest possible network management messages.

Network Buffer Size
The size of a network buffer is less than or equal to the following:

 message_size + 6 bytes of system overhead + 20 bytes of protocol overhead

Protocol overhead ranges from 5 to 20 bytes per message, and this formula
uses the maximum. A 40-byte message would thus need a network buffer of
at least 66 bytes (see Table 8.1).

Network buffers are also used to receive and respond to network
management messages used by network tools for device configuration. A
minimum input network buffer size of 42 bytes and output network buffer
size of 50 bytes is required to be able to accommodate the largest possible
network management messages.

Errors
If an input message fits into a network input buffer but does not fit into an
application input buffer, the message is discarded. An
APP_BUF_TOO_SMALL error code is logged by the firmware. If the
message was sent with the acknowledged service, no acknowledgment is
sent. If the message was a request, no response is sent.

If an output message fits into an application output buffer but does not fit
into a network output buffer, a NET_BUF_TOO_SMALL error is logged and
the device resets.

Neuron C Programmer's Guide 8-7

Buffer Counts
In most cases, the default number of output application buffers is sufficient.
Increasing the number of application buffers on the output side decreases the
likelihood of entering preemption mode if you are using synchronous network
variable outputs (see Preemption Mode in Chapter 3, How Devices
Communicate Using Network Variables).

The number of input network buffers needed is a function of the types of
service used and the types of connections between devices. If you are using
authentication, you may need to increase the number of network buffers
because authentication doubles the number of messages. If your device is
installed with unicast connections (that is, one device sends a network
variable or message to one other device), the default number of network
buffers is probably sufficient. If your device is installed with multicast
acknowledged or multicast request connections (that is, one device sends a
message to a group of devices and expects a response from each), the number
of network input buffers should be at least equal to the size of the largest
group. If, for example, a device sends a message with the acknowledged or
request service to 63 different devices, the sender device may receive 63
almost simultaneous acknowledgments or responses. In general, large
acknowledged connections should not be used since the same message
delivery reliability can be achieved using repeated messaging, with far less
network traffic. Network variable updates using the repeated delivery
service do not generate any acknowledgements, and therefore do not require
any input buffers.

The exact number of network input buffers required is a function of both bit
rate and the input clock, so some experimentation may be necessary to
determine the minimal number of buffers.

Compiler Directives for Buffer Allocation
The following sections describe the compiler directives used for setting the
size and number of different types of buffers.

The compiler issues warnings when any of the buffer size compiler directives
are used and the resulting settings are too small to accommodate all possible
network management messages from being properly received or responded
to.

Outgoing Application Buffers
These compiler directives set the size and number of nonpriority and priority
buffers between the application and network processors for outgoing
messages and network variables. See Table 8.1 for a list of default and
allowable non-default values.

8-8 Memory Management

#pragma app_buf_out_size n

 Sets the application buffer size (in bytes) for outgoing priority and
nonpriority application messages and network variables.

#pragma app_buf_out_count n

 Sets the number of application buffers available for outgoing nonpriority
application messages and network variables.

#pragma app_buf_out_priority_count n

 Sets the number of application buffers available for outgoing priority
application messages and network variables.

Outgoing Network Buffers
These compiler directives set the size and number of nonpriority and priority
buffers between the network and MAC processors for outgoing application
messages and network variables. See Table 8.1 for a list of default and
allowable non-default values.

#pragma net_buf_out_size n

 Sets the network buffer size (in bytes) for outgoing priority and nonpriority
application messages and network variables. A minimum size of 42 bytes is
required to respond correctly to network management messages from
network tools.

#pragma net_buf_out_count n

 Sets the number of network buffers available for outgoing nonpriority
messages and network variables.

#pragma net_buf_out_priority_count n

 Sets the number of network buffers available for outgoing priority messages
and network variables.

Incoming Network Buffers
These compiler directives set the size and number of buffers between the
MAC and network processors for incoming explicit messages and network
variables. See Table 8.1 for a list of default and allowable non-default
values.

#pragma net_buf_in_size n

 Sets the network buffer size (in bytes) for incoming application messages and
network variables. A minimum size of 50 bytes is required to receive
network management messages from network tools.

#pragma net_buf_in_count n

 Sets the number of network buffers available for incoming application
messages and network variables.

Neuron C Programmer's Guide 8-9

Incoming Application Buffers
These compiler directives set the size and number of buffers between the
network and application processors for incoming application messages and
network variables. See Table 8.1 for a list of default and allowable non-
default values.

#pragma app_buf_in_size n

 Sets the application buffer size (in bytes) for incoming application messages
and network variables. A minimum size of 22 bytes (34 bytes if explicit
addressing is used) is required to receive network management messages
from network tools.

#pragma app_buf_in_count n

 Sets the number of application buffers available for incoming application
messages and network variables.

Number of Receive Transactions
The number of incoming transactions that can be handled concurrently by
the network processor is determined by the receive transaction array. The
following compiler directive sets the number of entries in the array. The size
of a receive transaction entry is 13 bytes. See Table 8.1 for a list of default
and allowable nondefault values.

#pragma receive_trans_count n

 Sets the number of entries in the receive transaction array. The size of a
receive transaction block is 13 bytes.

A receive transaction entry is required for any incoming message which uses
either unacknowledged repeat, acknowledged, or request service. No receive
transaction entries are required for unacknowledged service. A receive
transaction entry is required for each unique source address/destination
address/priority attribute. Each receive transaction entry contains a current
transaction number. A message is considered to be a duplicate if its source
address, destination address, and priority attribute vector into an existing
receive transaction and the message's transaction number matches the
entry's transaction number.

Receive transaction entries are freed after the receive timer expires. The
receive timer duration is determined by the destination device and varies as
a function of the message addressing mode. For group addressed messages,
the receive timer is determined by the address table. For Neuron ID
addressed messages, the receive timer is fixed at eight seconds. For other
addressing modes, the non-group receive timer in the configuration data
structure is used.

8-10 Memory Management

Table 8.1 Values for Buffer Sizes and Counts (Part 1 of 3)

Pragma Values Allowed Default
app_buf_out_size 20, 21, 22, 24, 26, 30, 34, 42, 50, 66, 82,

114, 146, 210, or 255 bytes
A

app_buf_out_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47,
63, 95, 127, 191

E

app_buf_out_priority_count 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63,
95, 127, or 191

E

net_buf_out_size (20, 21, 22, 24, 26, 30, 34), 42, 50, 66, 82,
114, 146, 210, or 255 bytes

(A minimum value of 42 bytes is
recommended)

B

net_buf_out_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63,
95, 127, 191

E

net_buf_out_priority_count 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63,
95, 127, or 191

E

net_buf_in_size (20, 21, 22, 24, 26, 30, 34, 42), 50, 66, 82,
114, 146, 210, or 255 bytes

(A mimimum value of 50 bytes is
recommended)

66

net_buf_in_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63,
95, 127, 191

2

app_buf_in_size (20, 21, 22, 24, 26, 30), 34, 42, 50, 66, 82,
114, 146, 210, or 255 bytes

(A minimum value of 34 bytes is
recommended if explicit addressing is
used, otherwise a minimum value of 22
bytes is recommended)

C

app_buf_in_count 1, 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127,
191

2

receive_trans_count 1 .. 16 D

Neuron C Programmer's Guide 8-11

Table 8.1 Values for Buffer Sizes and Counts (Part 2 of 3)

A . app_buf_out_size default

 If outgoing messages are sent with msg_send():

 If explicit addressing is used:
 A = 66

 If explicit addressing is not used:
 A = 50

 If no outgoing explicit messages are sent (msg_send()
 is not used), and:

 If explicit addressing is used for network variables:
 A = max(34, 19 + sizeof(largest output NV))

 If explicit addressing is not used:
 A = max(20, 8 + sizeof(largest output NV))

B. net_buf_out_size default

 If outgoing explicit messages are sent with msg_send() or resp_send():
 B = 66

 else:
 B = max(42, 22 + sizeof(largest NV))

NOTE: While the response is constructed in the application input
buffer by the application, the network processor uses a network
output buffer to construct the response packet. So, the network
output buffer must be sized to accommodate outgoing responses in
addition to other outgoing messages.

C. app_buf_in_size default

 If any explicit message functions or events are used (incoming or outgoing):

 If explicit addressing is used:
 C = 66

 If explicit addressing is not used:
 C = 50

 If no explicit message functions or events are used, and:

 If explicit addressing is used for network variables:
 C = max(34, 19 + sizeof(largest NV))

 If explicit addressing is not used:
 C = max(22, 8 + sizeof(largest NV))

8-12 Memory Management

Table 8.1 Values for Buffer Sizes and Counts (Part 3 of 3)
D. receive_trans_count default

 If explicit messages are received by the application program:
 D = max(8, min (16, # of non-config input NVs + 2))

 If explicit messages are not received by the application program:
 D = min(16, # of non-config input NVs + 2)

E. app_buf_out_count, app_buf_out_priority_count,
net_buf_out_count, and net_buf_out_priority_count defaults

 If the application is linked for a Neuron 3120 Chip or a Neuron 3120E1
Chip:

 E = 1

 If the application is linked for any other Neuron Chip or Smart
Transceiver:

 E = 2

NOTE: When priority buffer counts are set to zero, all network
variables are marked as non-priority nonconfig. If
app_buf_out_priority_count or net_buf_out_priority_count is
non-zero, then both must be non-zero, and two transmit transaction
buffers are automatically allocated in RAM. If there are no priority
output buffers, then only one transmit transaction buffer is
allocated. The size of a transmit transaction buffer is 28 bytes (in
versions 4, 6, and later) of the Neuron firmware, and 18 bytes in
earlier versions.

NOTE: The Neuron C compiler determines that a program uses explicit
addressing if it references any of the following:

 msg_in.addr
 resp_in.addr
 msg_out.dest_addr
 nv_in_addr

Neuron C Programmer's Guide 8-13

Using Neuron Chip Memory
The following section describes two different situations, using Neuron Chips
or Smart Transceivers with off-chip memory, and using Neuron Chips or
Smart Transceivers without off-chip memory.

Chips with Off-Chip Memory
On-chip memory on the Neuron 3150 Chip and FT 3150 Smart Transceiver
consists of RAM and EEPROM.

Off-chip memory on these chips consists of one or more of ROM, RAM,
EEPROM, NVRAM, or flash memory regions. You specify the starting page
number for each region and the number of pages (a page is 256 bytes) when
the device is defined. If ROM is used, its starting address must be 0000. If
ROM is not used, then flash or NVRAM memory must take its place, starting
at address 0000. The regions of memory must be in the order shown in
Figure 8.3. They need not be contiguous, but they cannot overlap.

Memory mapped I/O devices can be connected to the Neuron 3150 Chip and
FT 3150 Smart Transceiver. The devices should respond only to memory
addresses that correspond to any of the shaded areas in Figure 8.3, below.

��
��

��
��

��
��

E7FF

0000
(Required)

ROM

(Optional)
EEPROM or Flash

(Optional
RAM)

Off-Chip Memory in a System
with ROM (Neuron 3150 Chip)

��
��
��
��

��
��
��
��

Off-Chip Memory in a System
without ROM

(Neuron 3150 Chip)

0000

E7FF

(Optional)
RAM

(Required)
Flash

Figure 8.3 Off-Chip Memory on the Neuron 3150 Chip and on the
FT 3150 Smart Transceiver

8-14 Memory Management

Chips without Off-Chip Memory
On-chip memory on the Neuron 3120 Chips and on the FT 3120 Smart
Transceiver consists of ROM, RAM, and EEPROM. None of these devices
support off-chip memory. Figure 8.4 summarizes the memory maps.

Neuron 3120 Chip
On-Chip Memory��

��
��
��
��
��
��
��
��
��

EC00

EFFF

F200
F1FF

F000

FFFF

��
��
��
��0000

27FF
ROM

(Neuron Chip Firmware)

��
��
��
��
��
��
��
��
��
��

EEFAR

EENEAR

Reserved

EECODE

RAMFAR
E800

EFFF

F800
F7FF

F000

FFFF

RAMNEAR

��
��
��

0000

27FF
ROM

(Neuron Chip Firmware)

Neuron 3120E2 Chip
On-Chip Memory

��
��
��
��
��
��
��
��
��
��

EEFAR

EENEAR

Reserved

EECODE

RAMFAR
EC00

EFFF

F400
F3FF

F000

FFFF

RAMNEAR

��
��
��
��0000

27FF
ROM

(Neuron Chip Firmware)

Neuron 3120E1 Chip
On-Chip Memory

���
���
���
���
���
���
���
���

E800

EFFF

F200
F1FF

F000

FFFF

���
���
���
���
���
���
���
���
���
���
���
���
���

EEFAR

EENEAR

Reserved

EECODE

RAMFAR

RAMNEAR

EEFAR

EENEAR

Reserved

EECODE

RAMFAR

ROM
(Neuron Chip Firmware)

ROM
(Application Code)

EECODE

EEFAR

RAMCODE

RAMFAR

RAMNEAR

0000

 E7FF
(maximum)

3FFF
4000

Neuron 3150 Chip
Off-Chip Memory

Off-chip
memory
areas must
be
in the order
shown but
need not be
contiguous.

If there is
off-chip
RAM, the
linker may
place
RAMNEAR
off-chip.

Neuron 3150 Chip
On-Chip Memory

Figure 8.4 Memory Maps for the Various Chips,
Showing Areas Defined by the Linker

Neuron C Programmer's Guide 8-15

Memory Regions
The definitions of the three memory regions are as follows:

• ROM: Non-volatile memory initialized before program execution on a device.
ROM cannot be changed by the program. It is used for the Neuron firmware
and can optionally (only on a Neuron 3150 Chip or FT 3150 Smart
Transceiver) contain application code and constants.

 Off-chip ROM (only on a Neuron 3150 Chip or FT 3150 Smart Transceiver)
may be implemented with any non-volatile memory technology, including
ROM, PROM, EPROM, EEPROM, flash memory, or non-volatile RAM.
Offchip ROM or any memory technology used in its place must have a write-
time delay of 0 (zero) ms if the memory is used to include the Neuron
firmware and start at address 0x0000. This requirement prevents EEPROM
from being used for storage of the Neuron firmware. Offchip EEPROM can
be used for application code and data storage.

• EEPROM: Non-volatile memory that can be changed during program
execution. Memory writes typically require 20ms per byte for on-chip
EEPROM. EEPROM can contain application code, constants, and EEPROM
variables.

 Off-chip EEPROM can be implemented with EEPROM, flash memory, or
non-volatile RAM. If you use flash memory you must configure the
LonBuilder tool memory map or NodeBuilder tool hardware device template
to indicate flash memory. Memory writes to this area can cause the Neuron
firmware to delay. This delay allows the memory to complete the write.
When implemented with EEPROM, the delay for off-chip EEPROM writes is
configurable from 0 to 255 milliseconds using the LonBuilder Hardware
Properties window or the NodeBuilder Hardware Template Properties dialog.
The delay for off-chip flash memory writes is fixed at 10ms per 64- or 128-
byte sector.

 If flash is used for the EEPROM region, it may also take the place of the
ROM region. In this case, you cannot write to the system area of the flash
(see Memory Areas in this chapter), but you can write to the user area. For
more information, including the particular flash parts supported, see Use of
Flash Memory in this chapter.

 EEPROM is not zeroed when the Neuron Chip or Smart Transceiver is reset.

• RAM: Volatile memory that can be changed during program execution.
RAM can contain application code, constants, or variables.

 The Neuron hardware does not implement wait states for slow devices. The
memory must be readable and writable in one machine cycle at the selected
input clock rate.

 The off-chip RAM region may be used for code. Any portion of the off-chip
RAM used for code is retained over resets. The remainder of RAM, the area
not used for code, is zeroed each time the chip is reset.

8-16 Memory Management

Memory Areas
The Neuron firmware and the Neuron linker divide the memory regions into
memory areas as follows:

• The ROM region has a system area and a user area (Neuron 3150 Chip and
FT 3150 Smart Transceiver only). The system area is 16 Kbytes (or larger)
on a Neuron 3150 Chip. The user area is also named ROM. The Neuron C
compiler and linker place executable code and constant data in the user area,
unless flash memory is used. When flash memory is used for ROM, user code
is placed in the EECODE area.

• The EEPROM region consists of the following three areas:

 EECODE
EEFAR
EENEAR

 If there is both on-chip and off-chip EEPROM, each region of EEPROM will
have its own section of EECODE and EEFAR. There is only one section of
EENEAR, and it is always located on-chip. All of these are user areas.

 EECODE contains executable code and constant data. The eeprom keyword
in Neuron C forces the compiler to place a specific object in this area.

 The EEFAR area contains variables declared with the far keyword combined
with either the config or eeprom keywords. This area also contains
configuration property network variables declared with the config_prop (or
cp) keyword and the modifiable configuration property file for configuration
properties declared with the cp_family keyword.

 You can use the offchip and onchip keywords in Neuron C to force the
compiler and linker to place specific objects in the offchip and onchip EEFAR
areas.

 The EENEAR area contains variables declared with either the config or
eeprom keywords. It is the default, but is limited to a total size of 255 bytes.

• The RAM region consists of three areas:

 RAMCODE

 RAMFAR

 RAMNEAR

 RAMCODE can only be located off-chip (Neuron 3150 Chip or 3150 Smart
Transceiver only). It contains executable code and constant data. By using
the ram keyword in a declaration, you can explicitly place executable code
and constant data in this area. This area can only be implemented in a RAM
that is based on a non-volatile memory technology, such as battery-backed
RAM.

Neuron C Programmer's Guide 8-17

RAMFAR may be located both on-chip and off-chip. There may be one or two
sections of RAMFAR in the on-chip RAM. If there is off-chip RAM, it may
contain only one RAMFAR area. The RAMFAR area contains variables.

 You can use the offchip and onchip keywords in Neuron C to force the
compiler and linker to place specific objects in the offchip and onchip
RAMFAR areas, respectively.

 There may be only one RAMNEAR area. It may be located on-chip (all chips)
or off-chip (Neuron 3150 Chip and FT 3150 Smart Transceiver only). The
linker automatically determines the location of the RAMNEAR area. The
RAMNEAR area is the default memory area for all Neuron C variables. This
area is limited to a total size of 256 bytes. However, the maximum allowable
size may be smaller under certain circumstances depending on the amount of
memory the user has allocated for buffers. See Compiler Directives for Buffer
Allocation in this chapter and also see Special Keywords for Non-Default
Memory Usage in this chapter.

Default Memory Usage
If no special keywords are included in the declarations of variables or
functions or other pieces of a Neuron C program, the pieces of the program
are located in memory by the linker using the following rules.

All executable code objects (functions, when clauses, tasks) as well as string
constants and data declared as const are placed in the ROM or EECODE
areas. The linker places these objects wherever they fit. For the Neuron
3150 Chip or FT 3150 Smart Transceiver, the linker first tries to put an
object in the user area of off-chip ROM. If the object doesn't fit in ROM, the
linker attempts to put it in the off-chip EECODE area of memory. Finally,
the linker will attempt to put the object in the on-chip EECODE area of
memory.

Data objects declared with any of the config, config_prop, cp, or eeprom
keywords are normally placed in the on-chip EENEAR area of memory. The
linker normally places all data objects without these keywords in the
RAMNEAR area of memory.

Data objects declared with the cp_family keyword (configuration property
families) create multiple items stored in memory. Each configuration
property family member instance creates a descriptor entry in the template
file, and a data value entry in either the writeable value file or the read-only
value file. The configuration template file is placed in either the ROM or
EECODE area. The writeable value file is placed in the EEFAR area of
memory. The read-only value file is placed in either the ROM or EECODE
area of memory.

You can modify the linker's placement of variables and functions using the
special keywords described in the next section.

8-18 Memory Management

Controlling Non-Default Memory Usage
If you receive an error message at link time that part of your program doesn’t
fit into the available default memory, you can change the declarations of
variables or functions using special Neuron C keywords and using certain
compiler directives. These keywords and directives enable you to move the
variables or functions to other locations in memory. The eeprom, far,
offchip, onchip, ram, and uninit special keywords are described below.

Direct memory reads and writes (by the application program) to data in the
EENEAR and RAMNEAR areas take advantage of special addressing modes
in the Neuron Chip and Smart Transceiver that generate more efficient code
(fewer bytes per instruction and fewer cycles per read or write). However,
indirect memory access (via a pointer) is the same for near and far memory
areas.

eeprom Keyword (for functions and data declarations)
On the Neuron 3150 Chip and the FT 3150 Smart Transceiver, functions and
const data are located in ROM by default. When ROM is full, or when no
ROM is available, the remaining functions and const data are placed in the
EECODE areas, first in the offchip EECODE area, then in the onchip
EECODE area. However, functions and const data can be explicitly
redirected from the ROM area to the EECODE area of memory by including
the eeprom keyword in the function definition or data declaration. For
example:

eeprom int fn() { ... statements ... }

eeprom const type varname = {inits};

The eeprom keyword is useful for functions that may be occasionally but
rarely changed after installation by a network tool. Likewise, a network tool
would be able to modify a const data structure stored in EEPROM that
might be used for calibration, or other configuration.

This keyword also allows the program to indicate variables whose values are
preserved across power outages by locating the variables in EENEAR rather
than in RAMNEAR. However, EEPROM memory has a limited capability to
accept changes. Consult the Smart Transceivers databooks for a discussion
of the limit to the number of writes that a particular EEPROM can support.

You can redirect variables from the RAMNEAR area to the EENEAR area of
memory by including the eeprom keyword in the declaration, as described
earlier. For example, the following declaration moves varname to the
EENEAR area:

eeprom int varname;

You can direct network variables to the EENEAR area with either the
eeprom or config keyword. You can also use the far keyword with network
variables similar to the example above.

Neuron C Programmer's Guide 8-19

The EENEAR area is limited in size to a maximum of 255 bytes (but other
factors may limit this area further). Any additional on-chip EEPROM, and
all off-chip EEPROM are considered EEFAR areas. To move a particular
variable to an EEFAR area, see the discussions of the far, offchip, and
onchip keywords below.

Initializers for eeprom class variables take effect when the application
image is loaded from an external system, such as the LonMaker Integration
Tool or another network tool. Reloading a program has the effect of
reinitializing all eeprom variables. Restarting a device or powering it up
does not re-initialize the eeprom variables – they retain their existing
values from before the restart or power outage. For an exception to these
initialization rules, see the description of the uninit keyword, below.

Writing a value in on-chip EEPROM typically takes approximately 20ms
before the value takes effect (though this time may vary depending on the
particular chip). If this write time is cut short, the value may not have been
written or, if written, the value may not be non-volatile. (Examples of cases
when the write time might be cut short are when the device powers down due
to a power outage, when the device is externally reset, or when a watchdog
timeout occurs and the device is reset.)

far Keyword (for data declarations)
When data objects do not fit into the RAMNEAR area of memory, the
following linker error messages appear:

Error: No more memory in RAMNEAR area
Error: Could not relocate segment in file ‘<program>.no’

You can direct the linker to put the objects into the RAMFAR area of memory
by including the far keyword in the Neuron C data declaration. For
example, the following declaration moves varname to the RAMFAR area:

 far int varname;

Similarly, when config or eeprom objects do not fit into the EENEAR area
of memory, the following messages appear:

Error: No more memory in EENEAR area
Error: Could not relocate segment in file ‘<program>.no’

You can direct the linker to put the objects into the EEFAR area of memory
by also including the far keyword in the Neuron C data declaration. For
example, the following declaration moves varname to the EEFAR area:

far eeprom int varname;

You could, for example, move a data table that is too large to fit into the
EENEAR area to the EEFAR area of memory using this type of declaration.

8-20 Memory Management

As a general guideline, leave data that is more frequently used in the NEAR
areas of memory if possible. Use of the NEAR areas generates relatively
smaller instructions (which additionally execute in fewer cycles) than use of
the FAR areas. Arrays that are referenced only with non-constant indices or
pointers may be placed in FAR memory with no loss of efficiency.

offchip Keyword (for functions and data declarations)
The Neuron linker typically places code, const data, and far variables in
off-chip areas, if it can, and in on-chip areas when it must. However, the
linker's default behavior is different when linking for flash memory. See Use
of Flash Memory in this chapter for more information. To explicitly control
the placement of these objects, any data or function declaration can include
the offchip keyword.

If the appropriate off-chip memory area is available, the object will be placed
in the area. If the memory area is not available, the linker will terminate
with an error message to that effect. Examples of using the offchip keyword
are shown below:

far offchip int a; // offchip RAMFAR

far eeprom offchip int b; // offchip EEFAR

const eeprom offchip int c = init;
 // offchip EECODE (no need for far kwd)
eeprom offchip void fn () {...}
 // offchip EECODE

onchip Keyword (for functions and data declarations)
The Neuron linker typically places code, const data, and far variables in off-
chip areas, if it can, and in on-chip areas when it must. To explicitly control
the placement of these objects, any data or function declaration can include
the onchip keyword. If the appropriate on-chip memory area is available,
the object will be placed in the area. If the memory area is not available, the
linker will terminate with an error message to that effect. See Use of Flash
Memory in this chapter for more information. Examples of using the onchip
keyword are shown below:

far onchip int a; // onchip RAMFAR
far eeprom onchip int b; // onchip EEFAR
const eeprom onchip int c = init;
 // onchip EECODE (no need for far kwd)
eeprom onchip void fn () {...}
 // onchip EECODE – would be in EEPROM
 // even without the eeprom keyword

The onchip keyword is useful for moving data to on-chip EEPROM when off-
chip flash memory is used. The on-chip EEPROM supports more write cycles
than off-chip flash memory. Frequently updated EEPROM variables should
be located on-chip when off-chip flash memory is used. See Atmel data books
and the Smart Transceivers databooks for maximum write specifications.

Neuron C Programmer's Guide 8-21

ram Keyword (for functions)
By default, functions and other executable code, as well as const data, are all
placed in ROM, if available (on the Neuron 3150 Chip or FT 3150 Smart
Transceiver), and then in off-chip or on-chip EECODE. You can redirect
functions to the off-chip RAMCODE area of memory by including the ram
keyword in the Neuron C function definition. The RAMCODE area is only
available in off-chip RAM memory attached to a Neuron 3150 Chip or FT
3150 Smart Transceiver. The RAM must be non-volatile (for example,
battery-backed), if the device is to be protected against a power cycle. See
the Neuron 3150 Chip External Memory Interface engineering bulletin for
special considerations on protecting code RAM against Neuron Chip resets.

The ram keyword can go anywhere before the function name. For example:

 ram int fn() { ... statements ... }

The ram keyword is useful for functions that a network tool may change
frequently after installation.

uninit Keyword (for data declarations)
You can combine the uninit keyword with eeprom variable declarations to
declare data in EENEAR or EEFAR memory areas which is not affected by
program load or chip reset. This can provide two benefits. You may need a
large area of allocated memory for database or calibration or other use, and
may want the data to remain unaffected in these situations. Furthermore,
uninit areas of EEPROM are not loaded, thus speeding up loading time. An
example of using the uninit keyword to set aside 500 bytes of such memory
is shown below:

 uninit eeprom int datablock[500];

Compiler Directives
Configuration property value files and the configuration property template
files, which hold values and self-documentation data for configuration
properties declared with the cp_family keyword, may be allocated in on-chip
EEPROM or off-chip EEPROM using the linker's default relocation
algorithm. You can use the #pragma codegen
put_cp_template_file_offchip and #pragma codegen
put_cp_value_files_offchip compiler directives to force the template file or
the value files into off-chip memory, if off-chip memory is available. (If
insufficient off-chip memory is available, this will cause the link to fail.) See
Compiler Directives in the Neuron C Reference Guide for more details about
these directives.

8-22 Memory Management

When the Program Is Relinked
The compiler directs the application code to the proper areas of memory. The
linker assigns data memory locations and resolves references to global
symbolic addresses. These assignments to addresses occur in the order of
declaration in the compilation. Therefore, to retain the same addresses from
link to link, maintain the same order of declaration.

Use of Flash Memory
Neuron firmware version 6 and later for the Neuron 3150 Chip and the FT
3150 Smart Transceiver, supports the use of flash memory. The firmware
supports only the Atmel AT29C256, and AT29C257 (32Kx8, 64 byte sector
size), the AT29C512 (64Kx8, 128 byte sector size), and the AT29C010 (128K x
8, 128 byte sector size) flash memories. Use of flash memory is specified via
the LonBuilder tool's memory map or via the NodeBuilder tool's hardware
template. See the LonBuilder User's Guide and the NodeBuilder User's
Guide for more information on these features, and how to select use of flash
memory. Neuron 3150 Chips and FT 3150 Smart Transceivers that use these
flash memory parts must run at 1.25MHz clock speed, or faster.

You can use flash memory for just the EEPROM memory region, or for both
the ROM and EEPROM memory regions. When you use flash memory for
the EEPROM memory region, it can contain all memory areas normally
associated with EEPROM, that is, EECODE and EEFAR. Flash memory can
only be modified reliably a limited number of times (typically, 1000 times,
but varies depending on the chip – consult the chip manufacturer's data
books for specific limitations). Thus, even though the compiler, linker, and
firmware support placing eeprom class variables in flash memory, you must
take care that these variables are modified only very infrequently, within the
specified lifetime of the flash memory parts.

When you also use flash memory for the Neuron firmware ROM, the
ROMCODE area's size is fixed at the size of the system image (16Kbytes or
more) and therefore cannot contain application code or data. The remainder
of the flash address space is divided between EECODE and EEFAR.
However, the flash memory should not contain both the system image and
application read/write data. This is because when the flash is being written
to, the system image cannot be read during the chip's programming interval
(<10 msec). The Neuron firmware automatically locks itself out of the flash
during the programming interval, but this lockout causes all system
functions to be delayed, thus network messages will be lost during the
lockout interval. If you must place data in flash memory, you can use the
offchip keyword to direct the variables that are the least likely to be
modified into flash.

Neuron C Programmer's Guide 8-23

Because flash is written on a sector basis (either 64 or 128 bytes depending
on the part), the number of writes possible for an eeprom variable located in
flash is a function of the number of writes to the sector where it resides. As a
comparison, consider a one-byte eeprom variable located in an off-chip
EEPROM supporting 1,000 writes. This variable can be safely updated 1,000
times. If that same variable resided in an off-chip flash with 64 byte sectors
and a similar write limit, then the number of writes must be stated as a
function of all the data in that sector. Specifically, up to 1,000 writes could
be done for all the variables in the sector. Given 64 one-byte variables with
equal frequency of modification, each could be written 1,000/64 or about 15
times.

Since modification of data in flash requires a flash programming cycle, the
Neuron C linker uses an alternate linking algorithm, placing all data objects
in on-chip memory if it can. You can control which objects are placed off-
chip, if some must be, by use of the offchip keyword in the data object's
declaration. If the linker places any data in flash, a warning will be given to
this effect.

Any direct write by the application to the flash memory will cause a
programming cycle, even if the flash memory is write protected. This is an
error condition that occurs when the application bypasses the Neuron
firmware for accessing the flash memory. The Neuron firmware uses the
software write protection feature of the flash memory, so the invalid write
will not change the contents of the flash memory, but a programming cycle
will be initiated. The flash memory will provide invalid data during the
programming cycle, causing a watchdog reset. It is possible for the reset to
occur during a write cycle, which may, in the worst case, cause resets ad
infinitum. Therefore, having the system image in flash requires that there
be a hardware mechanism to extend the Neuron's reset state for at least the
duration of the write cycle (typically 10 msec). The LVI circuitry described in
the Smart Transceivers databooks can accomplish this. See also the Neuron
3150 Chip External Memory Interface engineering bulletin for more
information.

When writing to EEPROM, if a power cycle, or other reset occurs, the data
corruption is localized to the area being written. However, with flash, since
an entire sector is always programmed at once, all data in the sector which
was being written at the time of the failure may be suspect. It is up to the
application program to protect any critical non-checksummed read/write data
via duplication, voting, journaling, or whatever technique is appropriate.

Since loading of flash occurs a sector at a time, it is important that the load
image data be contiguous. Thus, uninit eeprom data and initialized
eeprom data should not be interleaved. The linker processes declarations in
the order they appear in the program, thus you can reduce loading time by
grouping uninit eeprom declarations together.

8-24 Memory Management

The eeprom_memcpy() Function
You can write EEPROM memory, as well as flash memory, by direct
assignment, including structure-to-structure assignment. In these cases, the
compiler recognizes that the target variable is in EEPROM memory, and
uses the appropriate firmware function to write the memory properly, with
the correct delays, hardware interface sequences, etc.

However, when writing to EEPROM via a pointer, the compiler cannot track
what type of memory the pointer points to. Thus, addresses of EEPROM
variables are automatically typed by the compiler as 'const *', to prohibit use
of the pointer for writing:

 eeprom int x;

 &x ... // '&x' is 'const int *'

The compiler normally prevents removing the const attribute from any
pointer so typed. This is prevented for both implicit and explicit cast
operations. An implicit cast occurs when there is an assignment of a value to
a variable of different type, or when there is an actual parameter passed to a
function whose formal parameter is a different type, as illustrated in the
following example:

 eeprom int x;
 int *p;
 void f (int *p);
 p = &x; // implicit cast, compiler error
 f(&x); // another erroneous implicit cast
 p = (int *)&x; // explicit cast, also error

This behavior of the Neuron C compiler is stricter than the behavior specified
by ANSI C. However, if you specify the #pragma relaxed_casting_on
directive, the compiler only generates a warning message for each such
implicit or explicit cast. You can use the #pragma warnings_off directive
to further suppress the warning message, if desired. You can use the
corresponding warnings_on and relaxed_casting_off directives later in
the program to restore the default behavior of the compiler for the remainder
of the program.

Use of this feature is dangerous, since you can circumvent the compiler's
checking and attempt a spurious write (i.e. a write without knowledge of the
firmware) to EEPROM or flash memory. The eeprom_memcpy() function
is provided to write via pointers which may (but are not required to) refer to
EEPROM or flash memory. The parameters of this function are the same as
that of memcpy(), but this function supports the destination address being
in EEPROM or flash memory, where the normal memcpy() function does
not. The eeprom_memcpy() function limits the length parameter to 255
bytes.

Neuron C Programmer's Guide 8-25

NOTE: The use of this function in older versions of firmware with an
excessive length can cause the watchdog timer to time out, causing the device
to reset. For a device running at 10 MHz, the safe length is 32 bytes.

For Neuron 3120xx Chips and FT 3120 Smart Transceivers running version
7 firmware or later, and Neuron 3150 Chips and FT 3150 Smart Transceivers
running version 12 firmware or later, the firmware prevents a watchdog
timer timeout during use of eeprom_memcpy() and the length is not
limited to less than 255 bytes.

Memory Use
This section outlines the amount of memory used by certain elements in your
program. For a description of the actual memory used by your program, see
the link summary.

RAM Use
RAM is used as follows:

• code Size of code (for functions declared with ram keyword)

• config_prop 0

• cp_family 0

• fblock 0

• io_changes 3 bytes each (any type)

• I/O object 0

• msg_tag 0

• mtimer 4 bytes each

• The following sizes pertain to global and static data as declared in the
program (except for eeprom and config variables). These amounts also
apply to network variables.

 char 1 byte

 int 1 byte

 enum 1 byte

 long 2 bytes

structures Sum of the size of the elements. Each 8 bits (or fraction of 8
bits) of consecutive bitfields uses up a byte. No bitfield can
span a byte boundary. No padding is performed. The
float_type and s32_type extended arithmetic structures
each take 4 bytes.

 unions Size of the largest element

8-26 Memory Management

EEPROM Use
Approximately 65 bytes of EEPROM is used for constant system overhead,
though this may vary depending on the firmware version. In addition,
EEPROM or flash memory is used as follows:

• Each domain table entry requires 15 bytes for configurable information, to
define the domain address, subnet number, device number, and
authentication key. A system can have a maximum of two domain table
entries and must have at least one domain table entry. The default is two
domain table entries. See Domain Table in this chapter.

• Each address table entry requires 5 bytes. A maximum of 15 address table
entries are allowed. The minimum is 0. The default is 15 entries. See
Address Table in this chapter.

• Each network variable declared (input or output) uses 3 bytes for its
configuration information. In addition, it uses 3 bytes of read-only memory
for its fixed information. If you use the SNVT self-identification (SI) feature,
there is an additional 7-byte fixed overhead plus 2 additional bytes per
network variable (minimum).

• Each network variable alias table entry uses 4 bytes. There is no default for
the size of this table. See Alias Table in this chapter.

• Variables declared as eeprom and config in your program use an amount of
EEPROM corresponding to its C data type. This includes network variables
of the config_prop (or cp) class and modifiable configuration parameters
declared using the cp_family keyword. (The latter are stored together in a
writable value file.) See Default Memory Usage in this chapter.

• The when clause table is placed in the CODE memory area (ROM, if
available, or EEPROM). Each when clause uses a table entry from 3 to 6
bytes (most are 3 bytes). This code space is usually slightly smaller than the
equivalent code generated by an if statement. Additional code space may
result from when clauses containing user-defined events.

• The read-only value file will normally be placed in the CODE memory area
(this may be ROM, if available, or EEPROM). The configuration value files
use only the number of data bytes required by the data types of the
configuration properties contained within. The #pragma codegen
put_read_only_cps_in_data_memory directive will instruct the linker to
place the read-only value file in a modifiable memory area instead of the
CODE memory area. See the Compiler Directives chapter in the Neuron C
Reference Guide for more information about this directive. There is no
additional overhead. The configuration template file is also placed in the
CODE memory area. The template file uses a number of bytes to describe
each configuration property in the value files. This number varies based on
the type and characteristics of the configuration property, but it is typically
12 or more bytes per configuration property instance. See the Compiler
Directives chapter in the Neuron C Reference Guide for more information
about the #pragma codegen cp_family_space_optimization compiler
directive. Use of this directive can substantially reduce the size of the
configuration property template file.

Neuron C Programmer's Guide 8-27

Usage Tip for Memory-Mapped I/O
You can attach memory-mapped I/O devices to a Neuron 3150 Chip or FT
3150 Smart Transceiver. These devices should respond only to memory
addresses that are outside the configured memory map areas for ROM,
EEPROM, and RAM.

A convenient method of access to memory-mapped I/O from a Neuron C
program is to declare a constant pointer to the block of control addresses for
the device. In the following example, a hypothetical memory-mapped I/O
device has two control registers and a 16-bit data register, at addresses x,
x+1, x+2, and x+3, respectively. The device is connected to respond to the
addresses of 0x8800 to 0x8803. The fragment of Neuron C code below
accesses the device.

typedef struct {
 unsigned short int controlReg1;
 unsigned short int controlReg2;
 unsigned long int dataReg;
} *PMemMapDev;

const PMemMapDev pDevice = (PMemMapDev) 0x8800;

// Read from device ...
unsigned int x, y;
unsigned long z;

x = pDevice->controlReg1;
y = pDevice->controlReg2;
z = pDevice->dataReg;

// Write to device ...
unsigned int x, y;
unsigned long z;

pDevice->controlReg1 = x;
pDevice->controlReg2 = y;
pDevice->dataReg = z;

8-28 Memory Management

What to Try When a Program Doesn't Fit on a
Neuron Chip

The following discussion contains tips and techniques for reducing the
EEPROM requirements of a program for purposes of getting it to fit or
having it use less code space. Some of the techniques are tailored to a
Neuron 3120 Chip or FT 3120 Smart Transceiver, but most are applicable to
any Neuron C language program. Most of these manual optimization
techniques improve both aspects of code size and code performance. The
techniques below should be attempted roughly in the order presented.

The link summary contains information on a program's current memory
usage. The summary information includes an estimate of the additional
memory required. The link summary is optionally output to the BUILD.LOG
file, and is also included in the optionally-produced link map file.

Reduce the Size of the Configuration Property
Template File

Consider using the #pragma codegen cp_family_space_optimization
directive. This will result in an aggressive re-ordering of configuration
property template and value file contents, aiming at reducing the total size of
the template file. Subject to the specific application, this directive can have
little effect or make a huge difference.

Note optimizing the configuration property files for size might result in
reduced performance when commissioning or configuring devices, especially
when being used on or via low-bandwidth channels. See the Compiler
Directives chapter in the Neuron C Reference Guide for more information and
important considerations about these directives.

Reduce the Number of Address Table Entries
A good rule of thumb is to assume that the minimum number of address table
entries that a fully connected Neuron C application program can use is the
sum of the number of non-polled output network variables, polled input
network variables, and bindable message tags. (A bindable message tag is
one that does not include bind_info (nonbind) in its declaration.) For
example, an application with one message tag and two output network
variables (one of which is an array of four elements), would need a maximum
of six address table entries.

However, additional address table entries may be needed for input network
variables which are in one or more groups, one entry being used for each
group, or for any alias network variable that is associated with any of the
input or output network variables on the device. Finally, each group
connection to a device's msg_in tag will use an address table entry.

Neuron C Programmer's Guide 8-29

If your program does not explicitly receive messages (and therefore will have
no connections to the msg_in tag), and it has only a few network variables
that will each be connected only in a point-to-point manner (i.e. no group
connections), you could easily reduce the number of address table entries.
Other situations could require further analysis to determine if the number of
address table entries could be reduced.

The default number of address table entries is 15. The value can be reduced
with the #pragma num_addr_table_entries directive (see the Compiler
Directives chapter in the Neuron C Reference Guide). Reducing the number
of address table entries will save 5 bytes of EEPROM per entry eliminated.

Remove Self-Identification Data if Not Needed
The Neuron C compiler places self-identification data in the device's program
space. On the Neuron 3120 Chip or FT 3120 Smart Transceiver, this
consumes EEPROM. If your program is not using SNVTs, you can consider
removing the self-identification data. You can do this by specifying the
following compiler directive:

#pragma disable_snvt_si

Remove Network Variable Names if Not Needed
The Neuron C compiler places information about the names of the network
variables in the device's program space when the compiler directive
#pragma enable_sd_nv_names appears in the program. On the Neuron
3120 Chip and the FT 3120 Smart Transceiver, this consumes EEPROM.

You may remove the directive to regain one byte of EEPROM space for each
character in a network variable's name, plus one byte for each network
variable. When the device is installed, if there is no further information
available about the network variable names, the network tool will
automatically assign generic names such as "NVI1", "NVO7", etc.

In order to assist the network integrator and allow the use of intuitive, self-
explanatory names of the network variables as opposed to the generic,
automatically-generated ones, make sure to provide the external interface
files along with your device. The network management software will extract
the names for the network variables from the files (.XIF and/or .XFB
extensions), without the names consuming code space in your device.

8-30 Memory Management

Declare Constant Data Properly
Use of the const or eeprom keyword in a declaration of constant data is very
important, because, without either of these keywords, the compiler will
assume the data is placed in RAM and thus the data will need to be
initialized at runtime each time the application program is reset. This can be
very expensive in terms of code space, it will unnecessarily consume RAM
memory, and it will also unnecessarily lengthen the time it takes the
application to complete its reset processing.

Consider the following example. This example shows a poorly declared data
table of four bytes in length. Unfortunately, because this declaration does
not use the const keyword, the compiler places it in RAM, and it must
therefore be initialized each time the application processor resets. The
executable code fragment to initialize the array is an additional 9 bytes, and
another four bytes are placed in code space containing the initial values for
the table!

Furthermore, use of RAM for the data table means that there is a chance it
could accidentally get modified by an unintentional programming error.

EXAMPLE OF POOR DECLARATION:

int lookup_table[4] = {1, 4, 7, 13};

The proper declaration of the data table only consumes four bytes of read-
only memory (code space) for the data values themselves.

EXAMPLE OF PROPER DECLARATION:

const int lookup_table[4] = {1, 4, 7, 13};

Neuron C Programmer's Guide 8-31

Use Efficient Constant Values
In the Neuron Chip and Smart Transceiver CPU architecture, constants in
the range of 0 to 7 can be used more efficiently than larger 8-bit constants.
Instructions that use these constant values are smaller and faster.
Therefore, when choosing a sequence of constant values, normalize the
sequence to begin with 0. An enumerated type (an enum) will, by default, be
normalized with zero in this manner.

Also, because the Neuron firmware initializes RAM to zero automatically
when the application is reset, a constant sequence should be designed with
zero as its initial value. The following section, Take Advantage of Neuron
Firmware Default Initialization Actions, describes how you can use this fact
to your advantage.

Another consideration is a comparison, especially when used in a loop control
expression, such as in a while statement. The most efficient comparison of
an expression with a constant is when the constant is zero. If you cannot
arrange to have your loop test compare with zero, then try to arrange to have
your loop test compare with one. Equality comparisons with one are not as
efficient as comparisons with zero, but they are more efficient than
comparisons with other constants.

Take Advantage of Neuron Firmware Default
Initialization Actions

The Neuron firmware automatically sets all RAM variables to zero each time
the chip resets, and also when the Neuron C application_restart() function
is called. After this action, the Neuron C application program is started. The
first action of a Neuron C application program is to execute code to initialize
any RAM variables to non-zero values. Then, if a task associated with the
when(reset) clause exists, it is called.

Therefore, use of compile-time initializers to set RAM variables to zero is
free. Eliminate any code in the when(reset) clause's task which is used to
set RAM variables to zero, as it is unnecessary.

Also, compile-time initializers of I/O output objects are free. This is true
regardless of initializer value. The use of compile-time initializers for I/O
will use less code space than corresponding calls to io_out() in the
when(reset) clause's task.

Finally, at reset time, the Neuron C application timers are all turned off
automatically. Eliminate any code in the when(reset) clause's task which
explicitly turns off application timers.

8-32 Memory Management

Use Neuron C Utility Functions Effectively
There are several Neuron C utility functions that can be used to reduce code
requirements. For example, there are min(), max(), and abs() functions, as
well as other utility functions which may be used for common operations.
Use of these functions will generally be more code-space efficient than coding
the operations in-line using C operators.

The Neuron C utility functions include byte-manipulation functions, such as
high_byte(), low_byte(), make_long(), and swap_bytes(). There are bit-
manipulation functions such as clr_bit(), reverse(), rotate_long_left(),
rotate_long_right(), rotate_short_left(), rotate_short_right(),
set_bit(), and tst_bit().

For extended precision arithmetic, Neuron C provides the muldiv(),
muldivs(), muldiv24(), and muldiv24s() functions. These functions
permit a multiply operation, followed by a divide operation, with the
intermediate result and the operations using either 32-bit or 24-bit precision.

The Neuron C functions also include such utilities as the timers_off()
function. This function turns off all application timers with a single function
call. This function call takes less space than the corresponding assignment of
zero to a single timer, although it takes longer to execute. Thus, if your
program contains a single application timer, and you turn it off by assigning
zero to it, consider using this function instead in order to save code space.

Other miscellaneous functions include bcd2bin() and bin2bcd(), delay()
and scaled_delay(), and random().

All of the Neuron C functions are described in detail, with examples, in the
Neuron C Reference Guide.

Be Aware of Library Usage
Be aware of the system functions which are placed in application memory
(see the table in the Neuron C Reference Guide for a complete list of the
functions placed in memory for each chip and each version of firmware). If
possible, avoid use of such things as signed bitfields in structures that cause
use of library functions.

Neuron C Programmer's Guide 8-33

Use More Efficient Data Types
The Neuron C compiler will generate more compact code when the data items
and operations on them more closely match the underlying machine
architecture and instruction set. If possible, change variables to be locals
rather than globals, to be short rather than long, and to be unsigned
rather than signed.

For example, consider the following function which finds an occurrence of
value in the array a and returns the index where value was located:

<type> find(int a[], int value, <type> count) {
 <type> i;
 for (i=0; i<count; ++i) {
 if (a[i] == value) break;
 }
 return i;
}

When this function is compiled (using the LonBuilder 3.0 Neuron C
compiler), the following code sizes are obtained corresponding to the data
types shown:

<type> is signed short: 25 bytes
<type> is unsigned short: 24 bytes
<type> is signed long: 34 bytes
<type> is unsigned long: 34 bytes

In addition to the code size numbers, all sequences above, except the one for
unsigned short, make use of multiple calls to firmware helper functions.
This implies that the runtime of the code sequence for unsigned short is
even more efficient than it seems at first. Thus, the data type which permits
the generation of the most efficient code is unsigned short. This is because
the Neuron Chip and Smart Transceiver instruction set is inherently most
efficient when dealing with 8-bit unsigned integers.

Also, an awareness of the stack architecture employed in the CPUs of the
Neuron Chip and of the Smart Transceiver will help in understanding how to
write code that can be compiled efficiently. As a general guideline, you
should keep the total size of active locals plus parameters under eight bytes.
This permits all locals and parameters to be accessed and stored using the
smallest possible instructions. The following section, Observe Declaration
Order, explains how the first local variable is accessed more efficiently, and
how you can use this fact.

The Neuron C language permits aggregates, such as arrays, structures, and
unions, to be declared on the local data stack. To the extent that such local
variable aggregates are declared, the compiler uses larger and slower
instructions to access these data items. Therefore, it is best to declare such
variables as static items, rather than locals. If you are limited in data
memory, and must declare these aggregates as locals, then declare them
after the non-aggregate locals; this permits the compiler to use the shorter
instructions for the non-aggregates.

8-34 Memory Management

Observe Declaration Order
The order of declaration of the automatic variables within a function can
have an effect on code size. This is because the compiler places the first
variable declared on the top of the runtime stack, the second variable next,
etc. The Neuron C compiler generates more efficient code to access the
topmost variable on the stack, especially when that variable is a short. The
least efficient accesses (loads and stores) are to variables deep in the stack.
Thus, best results are generally obtained when the variable used most often
is declared first.

For example, consider the following code fragment:

void arrayinit(int a[], int initval,
 unsigned count) {
 int j;
 unsigned i;
 j = initval;
 for (i=0; i<count; ++i) {
 a[i] = j;
 }
}

This function generates 23 bytes. However, if the variable i (which appears
in more expressions than j and is thus used more often) were declared first,
then the code generated would only be 21 bytes.

Use The Optional Fastaccess Feature
Array accesses (both loads and stores) in Neuron C normally use the rules of
ANSI Standard C. These rules permit the array index to be interpreted as a
signed quantity, and furthermore permit the array index to exceed the
bounds of the declared array. These characteristics of array indexing
increase the code size for array references.

It is possible, given the Neuron machine instruction set, to generate better
code for accessing small arrays if the following additional rules are observed.

1 The array index can be promoted to unsigned by the compiler if it is a
signed short.

2 The program never attempts to access outside the bounds of the array, and
never computes the address of an array element outside the bounds of the
array. Computation of such an address is permitted in ANSI C for the
purpose of terminating a loop using a pointer, but using this technique with
fastaccess arrays yields undefined results.

Neuron C Programmer's Guide 8-35

To inform the compiler that these additional rules can be assumed for array
access, include the fastaccess keyword in the definition of such an array.
Also, the total size of the array must be no larger than 254 bytes. The
fastaccess keyword may appear anywhere in the declaration and applies to
all arrays in the declaration. For example, the following declares the arrays
a1 and a2 to both be fastaccess style arrays:

fastaccess int a1[4], a2[12];

You may combine the fastaccess keyword with other declaration syntax,
including network, far, eeprom, and const. Fastaccess arrays may appear
on the local procedure or function stack, as well as in global memory. The
fastaccess feature does not apply to the indexing operator used with a
pointer.

One potential drawback to using fastaccess arrays in global memory is that
the linker will locate these data items such that they will not span page
boundaries. (A memory page consists of 256 bytes.) Thus, declaration of
many global arrays as fastaccess may cause increased memory use due to
possible fragmentation.

Eliminate Common Sub-Expressions
The Neuron C compiler does not automatically eliminate common sub-
expressions. Performing this optimization by hand would, in most cases,
reduce code size. Consider the following Before-and-After example, which
saves 4 bytes of code. The temp variable, in the After example, is declared
such that it becomes the top variable on the stack.

BEFORE (COMPILES TO 28 BYTES OF CODE):

int a, b, c, d, e;
void f(void) {
 d = (a * 2) + (b * c * 4);
 e = a - (b * c * 4);
}

AFTER (COMPILES TO 24 BYTES OF CODE):

int a, b, c, d, e;
void f(void) {
 int temp;
 temp = b * c * 4;
 d = (a * 2) + temp;
 e = a - temp;
}

8-36 Memory Management

Another form of common sub-expressions that may not be as obvious occurs
with array indexing. Consider the following Before-and-After example that
demonstrates the value in avoiding repeated indexing into an array element.
Not only is there an obvious code savings by using a temporary pointer
variable, there is a simplification of the code as well (the Before example
contains three multiplies, one for each access to the array, whereas the After
example only contains one multiply operation).

BEFORE (COMPILES TO 46 BYTES OF CODE):

struct s {
 int x, y, z;
} a[5];

void f(int i) {
 a[i+2].x = 3;
 a[i+2].y = 5;
 a[i+2].z = 7;
}

AFTER (COMPILES TO 33 BYTES OF CODE):

struct s {
 int x, y, z;
} a[5];

void f(int i) {
 struct s *p;
 p = &(a[i+2]);
 p->x = 3;
 p->y = 5;
 p->z = 7;
}

Use Function Calls Liberally
Since function calls are relatively cheap in terms of the code space and
execution time overhead, replacing even a single line of complex code with an
equivalent function may reduce code space if that line of code is used two or
more times in a program. Some lines of code involving network variables
may not look complex, but the underlying operations may be.

For example, consider the increment of an element in a structure which was
part of an array of network variables; this operation generates a considerable
amount of code. Replacing two such occurrences with a single function call
saves code space at the expense of a minor performance penalty.

Also, consider passing expressions and values as function actual parameters,
rather than using global variables. Accesses to parameters are generally
more efficient than (or are no worse than) accesses to globals.

Neuron C Programmer's Guide 8-37

Use the Alternate Initialization Sequence
Use of the #pragma disable_mult_module_init directive will save 2 or 3
bytes of EEPROM code space. This directive specifies to the compiler that it
should generate any required initialization code directly in the special init
and event block, rather than as a separate procedure callable from the
special init and event block.

The in-line method, which is selected as a result of use of this directive, is
more efficient in memory usage (it typically saves 3 bytes if initialization
code is present, and saves 2 bytes if no initialization code is present).
However, the drawbacks of using the directive are the following: (1) the in-
line initialization area is limited in length, and (2) there can be no linkage
from the program's initialization code to application library or custom image
initialization code (this is typically not a problem for any Neuron 3120 Chip
or 3120 Smart Transceiver).

Reduce the Number of Domains
If you know that the application device will always be a member of only one
domain, then you can use the #pragma num_domain_entries 1 directive to
save 15 bytes of EEPROM. The default number of domain entries is 2, and
each domain entry uses 15 bytes.

NOTE: The LONMARK Interoperability Association requires each
interoperable device to be a member of two domains. Reducing the number
of domains to one will save 15 bytes EEPROM space, but it will prevent your
device from being compliant with the LONMARK interoperability guidelines.

Use C Operators Effectively
The ANSI C language has a rich set of operators. Using them effectively can
produce very efficient code.

For example, use of the C ? : operator rather than use of an if - else
statement for alternative assignments to the same left-hand-side may reduce
code space, especially if the left-hand side expression is complex.

Also, the use of multiple if-else clauses can be slightly more efficient in code
space than a switch clause. Consider the following Before-and-After
example, which saves 2 bytes of code:

8-38 Memory Management

BEFORE (COMPILES TO 40 BYTES OF CODE):

void f (unsigned c) {
 switch (c) {
 case '1':
 f1();
 break;
 case '2':
 f2();
 break;
 case '3':
 f3();
 break;
 case '4':
 f4();
 break;
 default:
 f5();
 break;
 }
}

AFTER (COMPILES TO 38 BYTES OF CODE):

void f (unsigned c) {
 if (c == '1') {
 f1();
 } else if (c == '2') {
 f2();
 } else if (c == '3') {
 f3();
 } else if (c == '4') {
 f4();
 } else {
 f5();
 }
}

Another C language operator that can improve code efficiency is the chained
assignment. A chained assignment uses the fact that the value being
assigned can continue to be used after the assignment. The chained
assignment saves reloading or recomputing the value being assigned. This is
shown in the following Before-and-After example.

BEFORE (COMPILES TO 14 BYTES OF CODE):

mtimer t1;
unsigned long int l;

void f(void) {
 t1 = 5000;
 l = 5000;
}

Neuron C Programmer's Guide 8-39

AFTER (COMPILES TO 13 BYTES OF CODE):

mtimer t1;
unsigned long int l;

void f(void) {
 t1 = l = 5000;
}

Use of the logical operators && and || for complex conditions will typically
perform faster than similar expressions that use the bit operators & and |.
In addition, use of the logical operators may make the code smaller,
especially when tests for equality or inequality with zero are part of the
conditional expression. The following Before-and-After example
demonstrates this efficiency:

BEFORE (COMPILES TO 15 BYTES OF CODE):

void f (int a, int b, int c) {
 if ((a < 0) | (b == 0) | (c > 0)) {
 // take some action
 }
}

AFTER (COMPILES TO 12 BYTES OF CODE):

void f (int a, int b, int c) {
 if ((a < 0) || (b == 0) || (c > 0)) {
 // take some action
 }
}

Use Neuron C Extensions Effectively
The Neuron C language contains features that exist primarily to help write
efficient code.

For example, if a program had two input network variables, and had a single
task executed when either variable was updated, it is more efficient to code it
as shown in the After example, below. Likewise, use of a single when clause
with the nv_update_occurs event referencing just an array name is more
efficient than using multiple when clauses, one for each element of an array.

8-40 Memory Management

BEFORE (COMPILES TO 6 BYTES OF CODE):

when (nv_update_occurs(var1))
when (nv_update_occurs(var2))
{
 // task ...
}

AFTER (COMPILES TO 3 BYTES OF CODE):

when (nv_update_occurs)
 // Use "unqualified" event to cover all variables
{
 // task ...
}

However, if you need to use specific nv_update_occurs events without the
use of the unqualified event shown above, the following guidelines can be
used:

Consider a program that declares two network variables nviA and nviB:

network input SNVT_switch nviA, nviB;

The following code fragments are all functionally equivalent, because they all
respond to incoming network variable updates for either of these two
network variables. The first of these implementations is the least efficient of
the three, and the last one (equivalent to the Before example above) is the
most efficient of the three:

VARIANT 1 (COMPILES TO 15 BYTES OF CODE):

when (nv_update_occurs(nviA) || nv_update_occurs(nviB))
{
 // body of task
}

VARIANT 2 (COMPILES TO 9 BYTES OF CODE):

when (nv_update_occurs(nviA..nviB))
{
 // body of task
}

VARIANT 3 (COMPILES TO 6 BYTES OF CODE):

when (nv_update_occurs(nviA))
when (nv_update_occurs(nviB))
{
 // body of task
}

Neuron C Programmer's Guide 8-41

System Library on a Neuron 3120 Chip
On the different versions of Neuron 3120 Chips and 3120 Smart
Transceivers, all application code is placed in on-chip EEPROM. In addition,
there are several I/O functions and many library functions which are brought
into on-chip EEPROM by the linker if the functions are used. For a complete
description of which functions are library functions, see the Neuron C
Reference Guide.

An application linked for versions of chip and firmware that require use of
any of the library functions may require more on-chip EEPROM than the
same application linked for a Neuron 3150 Chip or 3150 Smart Transceiver.
This is because, depending on the chip and firmware, these functions may be
located in a system library instead of in the Neuron firmware. Examination
of the link map can provide a measure of the EEPROM memory used by
these functions. To obtain an estimate of the Neuron 3120 Chip or 3120
Smart Transceiver EEPROM required for these functions, follow these steps:

1 Select the necessary LonBuilder or NodeBuilder options to generate a link
map.

2 Select the Neuron chip model of interest for a device.

3 Select the Build command.

After the build is completed, the link summary portion of the link map for the
device contains the Neuron 3120 Chip or 3120 Smart Transceiver EEPROM
requirements for the system library functions. See the Neuron C Reference
Guide for more information on the link map.

8-42 Memory Management

Appendix A
Neuron C Tools

Stand-alone Use

This appendix provides information on how to use the Neuron
C tools as stand-alone programs from the command line.

A listing of the options supported by each tool can be
obtained by typing the tool name at the command prompt.
For example, typing ncc lists the Neuron C compiler
command line options.

Stand-alone Tools
The Neuron C tools shown below can be used stand-alone, meaning outside
the integrated development environment, using the command prompt or
command window only:

Description Tool Name

Neuron Assembler (NodeBuilder 3.0 and later) NAS

Neuron C Compiler (NodeBuilder 3.0 and later) NCC

Neuron Exporter (NodeBuilder 3.0 and later) NEX

Neuron Librarian (NodeBuilder tool) NLIB

Neuron Linker (NodeBuilder 3.0 and later) NLD

Project Make (NodeBuilder 3.0 and later) PMK

All the NodeBuilder stand-alone tools share a common command-line
technology, and thus have several aspects of use in common. These common
aspects are described in the following section, Common Stand-alone Tool Use.
The sections following later in this document briefly introduce each of the
tools listed above.

NOTE: Users of the NodeBuilder Development Tool should not use the
command line tools, with the exception of the Neuron Librarian and the
Project Make Utility. The reason is that the build tools should be controlled
by the Project Make Utility, pmk.exe. Not only does this utility manage the
build process (it minimizes the number of build steps required), it also takes
care of program ID management tasks and automatic boot ID processing.
You must otherwise take care of these two important duties manually. See
the NodeBuilder User's Guide for more details about the Project Make Utility.

A-2 Neuron C Tools Stand-alone Use

Common Stand-alone Tool Use

Common Aspects
All tools have the following aspects in common:

• If no command switches or arguments follow the name of the tool, the tool
responds with usage hints.

EXAMPLE:

C:\>NAS

TOOL RESPONDS:

Neuron (R) Assembler, version 3.10.13, build 49
Copyright (C) Echelon Corporation 1989-2001

Usage: [optional command(s)] argument

... (Remaining output not listed here)

• Most command switches come in two forms, a short form and a long form.
The short form must be prefixed with a single slash '/' or dash '-' and consists
of a single, case-sensitive, character that identifies the command.

EXAMPLE OF SHORT FORM:

C:\>NCC -DMYMACRO ...

Short command switches may be separated from their respective values
with a single space or an equal sign. Short command switches do not
require a separator; the value can follow the command identifier
immediately, as shown above.

The long form of the command must be prefixed with a double dash '- -',
followed by the verbose, case-sensitive, name of the command.

EXAMPLE OF LONG FORM:

C:\>NCC - -define=MYMACRO ...

Long command switches do require a separator, which can consist of a
single space, or an equal sign.

Neuron C Programmer's Guide A-3

• Multiple command switches may be separated by a single space.

EXAMPLE:

C:\>NCC - -define=MYMACRO1 - -define=MYMACRO2 ...

• Commands of a boolean type need not be followed by a value, in which case
yes is assumed. Possible values for boolean commands are yes, on, 1, +, no,
off, 0, - (a minus character).

EXAMPLE:

C:\>NCC - -kerneldbg=yes ...

This is equivalent to the line shown below (because the boolean type
commands default to yes):

C:\>NCC - -kerneldbg ...

• Commands can be read from the command line as shown in the examples
above, and they can also be read from a command file (script), which contains
empty lines, lines starting with a semicolon (comment lines), or lines
containing one command switch on each line (with value as applicable).

For brevity, the short command syntax is most commonly used on the
interactive command line, whereas the long command line syntax is
preferred for command files due to its more self-explanatory nature.

EXAMPLE COMMAND FILE:

; Example command file, containing
; some of the Exporter's commands
; Created Wednesday, November 21, 2001, 20:42:20

--bootflags=1024
--infolder=d:\lm\Source\EPR\23305\Development\IM
--outfolder=d:\lm\Source\EPR\23305\Development
--basename=23305

• Most tools require additional arguments to be given; these arguments can
appear at any location within the command line or in a separate line within a
script.

EXAMPLE OF ARGUMENT AT END OF COMMAND LINE:

C:\>NCC - -define=MYMACRO mycode.nc

A-4 Neuron C Tools Stand-alone Use

Common Set of Basic Commands
In addition to the shared syntactical aspects introduced in the above
discussion, the stand-alone tools also share a common set of basic commands.
Some of these common commands are listed below. To obtain a complete list
of all available commands, you may type in the name of any of the stand-
alone tools without specifying any command.

-@ file-pathname (Include a command file)

The -@ (or: - -file) command specifies a command file (script). The commands
are read from this script and used as if they were given at the command line
and in the location of the @ command. Scripts themselves can refer to other
scripts.

- -defloc dir (Location of an optional default command file)

The command line tools also search for a default script; a file that is read in
addition to and after all other commands from the command line have been
processed. These default script files need not be specified with the -@
command, as they have a predefined name shown in the following table. The
command line tool assumes the default script to be located in the current
working directory (and it is no error if there is none); the - -defloc command
can be used to specify the location (not name) of the default script. The
NodeBuilder Development Tool uses the location of the NodeBuilder device
template file (.nbdt extension) as the location of the default script.

Build Tool Command
Name

Default Script
Name

Neuron C Compiler NCC LonNCC32.def

Neuron Assembler NAS LonNAS32.def

Neuron Linker NLD LonNLD32.def

Neuron Exporter NEX LonNEX32.def

Neuron Librarian NLIB LonLIB32.def

- -mkscript scriptfile (Generate command script in scriptfile)

The - -mkscript command produces a trace file that contains all commands
the build tool received, no matter where these commands came from. When
used within a default script, this feature can be used to capture the command
sequence used by the project manager; a simple way to obtain machine-
generated build scripts.

Neuron C Programmer's Guide A-5

NOTE: Make sure to specify the scriptfile script file in such a way that it
does not overwrite the default script file, or any other script file you may
wish to preserve. The - -mkscript command allows for constant command
flow tracking, and thus overwrites existing files without warning.

- -warning text (Display text as a warning)

This command is only useful in script files. It displays the message text, and
indicates the message as a warning. The - -mkscript command, introduced
above, automatically inserts a - -warning command into the generated script
if the tool that executed the monitored command stream failed to complete
without error.

When using the machine-generated script file thereafter, a warning will state
that this script was machine-generated, and based on a possible erroneous
command stream.

Command Switches for Stand-alone Tools
The most useful and common command switches are documented in this
section for each of the stand-alone tools.

Neuron C Compiler
The Neuron C compiler is named ncc.exe. You may run the stand-alone
compiler from the command prompt to produce a Neuron assembly source
file. The compiler command line contains the name of the executable file,
then zero or more optional command switches, and finally the file name to
compile.

EXAMPLE:

C:\>NCC mycode.nc

The most interesting switches are the -D (- -define) and -I (- -include)
switches. You can use the -D switch to define a symbol from the command
line, which can then be tested from the program using the #ifdef and
#ifndef directives.

You can use the -I (- -include) switch to specify a directory containing
include files. You can specify additional include directories with additional -I
switches. The search order corresponds to the order of the switches, if you
specify more than one -I switch.

EXAMPLE:

C:\>ncc -DVERSION5 -I..\include -Id:\include mycode.nc

A-6 Neuron C Tools Stand-alone Use

When invoked for a filename with a .nc extension, the Neuron C compiler
uses Neuron C rules for code generation. Libraries and custom system
images cannot contain Neuron C code. To compile a pure C file, and use pure
C rules for code generation, the filename must end with a .c extension as
shown in the command line example below:

EXAMPLE:

C:\>ncc -I..\include mycode.c

As a final, complete example, to compile myfile.nc with a myinc.h include file
in a subdirectory named myincs, and to define the OPTION1 symbol for
conditional compilation purposes, run the command shown below:

EXAMPLE:

C:\>ncc –Imyincs -DOPTION1 myfile.nc

This command (assuming the compilation does not find errors) will create
several output files, all sharing the basename that was used for the Neuron
C source file. For the pure C example above, all generated files will have a
myfile base name, but different extensions.

For a pure C compilation, all generated files except the assembly source file,
.ns extension, can be discarded. These files are required by other tools in
case of a Neuron C compilation, and cannot be discarded in such case.

Neuron Assembler
The Neuron assembler is named nas.exe. The Neuron assembler is only
provided for supporting the Neuron C compiler. It cannot be used to
generate Neuron Assembly Language applications.

You may run the Neuron assembler from the command prompt to produce a
Neuron object file. The assembler command line contains the name of the
executable file, then one or more optional switches, and finally the file name
to assemble. The most useful assembler switch is the -l switch (the long form
is - -listing), which tells the assembler to produce a listing.

Continuing the example from the compiler section above, the following
command will assemble the myfile.ns file to produce a myfile.nl listing file
and a myfile.no object file. Once the object file is produced, you may delete
the myfile.ns intermediate assembly file to conserve disk space.

EXAMPLE:

C:\>NAS -l myfile.ns

Neuron C Programmer's Guide A-7

Neuron Linker
The Neuron Linker is named nld.exe. You may run the linker from the
command prompt to produce a Neuron executable file. The linker command
line contains the name of the executable file, then one or more switches, and
finally the object file name or names to link. Several switches must be used
in combination to produce a correct link.

The -a (or - -appimage) switch should always be used when linking a Neuron
application program.

The -t (or - -neurontype) switch should be used to specify the name of the
Neuron Chip or Smart Transceiver for which the application is being linked.

EXAMPLE:

C:\>NLD -a -t3120E2

When linking for a Neuron 3150 Chip or 3150 Smart Transceiver, the
external memory map must be specified using a set of switches. The switches
specify the beginning or end of the external RAM, EEPROM, and ROM areas.
Each of these switches is followed by a hex number corresponding to the first
(last) page number of the area. A page is 256 bytes, thus the page number is
the upper two hex digits of the four-digit byte address.

The -r and -R switches specify the first and last pages of external RAM,
respectively. The -e and -E switches specify the first and last pages of
external EEPROM, respectively. The -Z switch is used to specify the last
page of ROM (there is no corresponding switch for the first page of ROM, as
ROM must start at 0000). Do not use the switches for any area that has no
external memory. Memory mapped I/O areas should not be specified, and
should be outside the range of any external memory areas which are
specified.

For example, a link that has external ROM from 0000 to 7FFF, no external
EEPROM, external memory-mapped I/O devices from 8000 to 97FF, and
external RAM from 9800 to 9FFF, uses the switches shown below:

C:\>nld –Z=7F –r=98 –R=9F

The linker must input a symbol table corresponding to the system image for
which the application is being linked. This is done using the -p switch,
followed by a space, then the pathname of the image's symbol file.

For example, if linking for a 3150 custom device, the image name is SYS3150.
Assume that the Neuron C software is installed in the C:\LonWorks
directory. This main directory contains a number of subdirectories. The
IMAGES subdirectory contains one or more further subdirectories named
VERnnn, where nnn is a number from 2-255 (no leading zeros).

A-8 Neuron C Tools Stand-alone Use

The standard image files are contained in the various VERnnn
subdirectories. For example, if the software is installed in C:\LonWorks (the
default), then the switch that links to firmware version 7 would be the
following:

C:\>NLD -p C:\LONWORKS\IMAGES\VER7\SYS3150.SYM

The above switches are the minimum set of required switches for the Neuron
Linker.

You can specify an output file different from the default with the -o switch.
The default output file name is the name (without extension) of the first
object file in the link command line.

You can use the -A switch to specify that EEPROM is to be implemented
using flash memory as an alternative to EEPROM. The sector size (64 or
128) of the flash memory device must follow the -A switch.

You can include libraries in the link by specifying one or more instances of
the -l switch, with a library name following. You can link to multiple
libraries by specifying an -l switch for each library.

If you are using the NodeBuilder Development Tool, refer to the NodeBuilder
User's Guide for details about the use of libraries within a NodeBuilder
project. The NodeBuilder tool does not support the construction of custom
libraries except through the stand-alone tools as documented in Appendix B,
but it does allow for their use.

See Neuron Librarian, later in this document as well as Appendix B, for more
about the construction of custom libraries.

Neuron Exporter
The Neuron exporter is named nex.exe. The exporter takes input from the
compiler and the linker and produces the device file set. The device file set
contains the device interface files (.xif and .xfb extensions) as well as image
files (.nri, .nfi, .nxe, .nei, and .apb extensions, as needed).

The exporter command line contains a number of switches. Several switches
must be used in combination to produce a correctly exported set of files.

Use the -t switch (- -bootid) to specify the boot ID. It is followed by a decimal
number 0..65535, that denotes the boot ID in the exported image. You can
use any value within this range, but each build should be built with a unique
boot ID value. See the Smart Transceivers databooks for more about the
Neuron Chip and Smart Transceiver reset procedure and the significance of
the boot ID. (Note that the –t switch is not required for targets using a
member of the 3120 Neuron Chip family, but using this switch is highly
recommended for targets using a member of the 3150 Neuron Chip family.)

Neuron C Programmer's Guide A-9

Use the -C (- -clock) command to specify the Neuron clock rate as an encoded
value, using "5" for 10 MHz for example. See the ClockSpeeds field in the
LonWorksUI.xml file in the LonWorks Types directory (C:\LonWorks\Types
by default) for a complete listing of clock speed values.

Use the -c (- -xcvr) command to specify the transceiver type used via the
transceiver's standard ID. Use “7” for a TP/FT-10 free topology transceiver,
for example. See the std_id field in the StdXcvr.xml file in the LONWORKS
Types directory (C:\LonWorks\Types by default) for a complete listing of
standard transceiver IDs.

Use the -I (- -infolder) and -O (- -outfolder) commands to specify the
location of the input files (generated by compiler and linker), and the output
files (as generated by the exporter), respectively.

Use the -b (- -basename) command to specify the base name of the input and
output files that are located in the input and output folders.

Use the - -createXXX switch to enable the generation of a file type, where
XXX is the file extension of the desired file type (in lower case). You can
specify multiple - -createXXX switches to generate multiple file types.

Here's an example that exports a device file set with base name of MyDevice
for a 10MHz based device that uses a TP/FT-10 free topology transceiver:

C:\>NEX -@commands.nex - -bootid=12345

The commands.nex script file referenced by the command line contains the
following set of commands:

; Sample Exporter command file
--clock=5
--xcvr=7
--infolder=MyProject\MyDevice\Development\IM
--outfolder=MyProject\MyDevice\Development
--basename=MyDevice
--createxif=yes
--createxfb=yes
--createnei=yes
--createnxe=yes
--createapb=yes
--createnri=yes

NOTE: When using the Neuron Exporter stand-alone tool, be sure to use
two different folders for the -I (--infolder) and -O (--outfolder) commands,
respectively.

A-10 Neuron C Tools Stand-alone Use

Neuron Librarian
The Neuron librarian is named nlib.exe. You can use the librarian to create
and manage libraries, or to add and remove individual object files to and
from an existing library. A library consists of pure C functions; you cannot
include Neuron C code in a library, with the exception of the pure C code
subset of Neuron C. The librarian is the only tool discussed in this section of
the document that is not essential but purely optional; the librarian is not
required to produce LONWORKS devices.

You can use the libraries that are created or modified by the librarian within
the LonBuilder or NodeBuilder project managers, or with the stand-alone
nld.exe Neuron linker. For using libraries with the stand-alone linker, see
the -l and -L commands in the linker's command set. For using libraries
within the project manager, refer to the NodeBuilder User's Guide or the
LonBuilder User's Guide.

You can run the librarian from the command prompt by specifying the name
of the command, an optional set of switches, the library name, and an
optional list of object file names.

To create a new library, enter the following command line:

C:\>nlib -c -a library-name object-file [object-file ...]

To add modules to an existing library, enter the following command line:

C:\>nlib -a library-name object-file [object-file ...]

To replace (or update) existing modules in an existing library, enter the
following command line:

C:\>nlib -u library-name object-file [object-file ...]

To report on the contents of an existing library, enter the following command.
The report will be output on the console, but can be redirected to a file.

C:\>nlib -r library-name

To create a summary report, enter the following command line:

C:\>nlib -s library-name

For example, the command shown below uses the long form switch and adds
the zorro.no and garcia.no object files to the mylib.lib library:

C:\>nlib - -add mylib.lib zorro.no garcia.no

Neuron C Programmer's Guide A-11

You can use script files to specify inputs to the librarian. For example, to
combine the ten object files named “f1.no” through “f10.no” into a mylib.lib
library, enter the following command line and command file:

C:\>nlib -c2 -a mylib.lib @mylib.lst

The contents of the mylib.lst file are as follows:

 f1.no
f2.no
f3.no
f4.no
f5.no
f6.no
f7.no
f8.no
f9.no
f10.no

The librarian command line can contain more than one script file, if desired.
Alternately, the command line in the preceding example could just have
contained the object file names, or it could have contained a mixture of the
two.

You can add a Neuron object file (with a .no extension) from a pure C
compilation, to a custom library as shown in the above example. See
Appendix B, Neuron C Function Libraries, for more information on using
libraries. See Neuron C Compiler earlier in this chapter for instructions on
compiling a pure C file. See Neuron Assembler earlier in this chapter for
instructions on assembling the compiled output to a Neuron object file.

A-12 Neuron C Tools Stand-alone Use

Appendix B
Neuron C Function Libraries

This appendix discusses how to construct and use your own
function and data libraries for use with the Neuron C tools.
You can use both the LonBuilder Development Tool and the
NodeBuilder Development Tool to construct and use function
libraries.

Definitions
Application program A Neuron C source program that has been compiled,

assembled, and linked with a system firmware image.
The application program is not a stand-alone
executable. It contains external references to the
system image, and must be loaded into the memory of
a device that contains the corresponding system
image.

Library A file produced by the nlib.exe Neuron librarian,
containing one or more pure C object files produced by
the Neuron assembler. The Neuron Linker may
extract these object files from the library and combine
them with a Neuron C application program.

Pure C The Neuron C language is a set of extensions added to
a subset of the ANSI Standard C language. The term
pure C in this document refers to use of the subset
language without the Neuron C extensions.

Stand-alone tool The term stand-alone means that a tool is available
from the Windows command prompt, so that it can be
used outside of the project manager. All of the tools
described in this appendix can be run in a stand-alone
manner.

LonBuilder Support for Libraries
You can use the LonBuilder Neuron C compiler, assembler, and librarian to
construct Neuron libraries from pure C source files as described in Appendix
A, Neuron C Tools Stand-alone Use. You can then use these libraries to
construct application programs using the LonBuilder project manager.

The LonBuilder project manager does not detect when a library needs to be
rebuilt due to changes in the source files that make up the library. When you
construct libraries, you should use standard software engineering techniques
to manage your software baseline and insure that current versions of your
software are being used. Use of a third-party make program can help in
managing software dependencies.

The LonBuilder project manager contains full support for linking an
application program with one or more libraries containing Neuron object code
and data written in pure C. The project manager does full dependency
checking on the use of libraries. When a library is modified, the project
manager automatically detects this condition and re-links the affected
device's application programs.

Library names are made known to the project manager via an ASCII file
installed with the LonBuilder software.

B-2 Neuron C Function Libraries

The LonBuilder system directory contains a number of subdirectories. One
subdirectory, named IMAGES, contains the files used by the Neuron linker.
The IMAGES subdirectory contains two files, DEFAULT.VER and
STDLIBS.LST. This directory also contains one or more further
subdirectories named VERnnn, where nnn is a number from 2-255 (no
leading zeros).

The STDLIBS.LST file named above contains the names of libraries used by
the LonBuilder project manager. You can modify this file using the
LonBuilder editor. There should be one library name per line. There should
be no blank lines, and no spaces preceding library names.

To add a library, modify the STDLIBS.LST file and place it in the
appropriate VERnnn directory or directories. You can create different
versions of the same library for use with different system images. The
VERnnn directory corresponding to the system image file is also the place
the project manager will search for a library when the device is linked.
However, the library file is not required to exist at link time if none of the
library code is needed in the application.

Once you have added the library name to the list file as described above, any
Neuron C program which references one or more symbols from the library
will automatically include the appropriate modules from the library at link
time, regardless of whether the program is being linked for a Neuron 3120xx
or 3150 Chip or Smart Transceiver.

The linker will only look for libraries when the object files being linked and
combined with the system image file used have not already resolved all
symbols. Each library in the library list will be examined, in order, for each
such unresolved symbol. When a symbol is found in a library, the
corresponding object file will be extracted from the library, and all objects
contained in that object file will be added to the link.

An object file in a library may, in turn, introduce other symbols that need to
be resolved. If these new symbols are not already defined, this will cause the
linker to search all the libraries again for other object files that will resolve
the new symbol references, and these object files will also be included in the
link. The process continues until all symbols included in the link are
resolved, or until the list of libraries is exhausted.

The library list consists of the library names in the STDLIBS.LST file. Your
custom libraries must not use the names of Echelon standard libraries that
are already in the STDLIBS.LST file.

An object file might contain more than one procedure or data item — all such
components of the object file will be linked in, whether needed or not.
Therefore, when constructing a library, it is best to place unrelated
procedures or data items in separate C source files prior to combining them
into a library.

Neuron C Programmer's Guide B-3

NodeBuilder Support for Libraries
You can use the NodeBuilder Neuron C compiler, assembler, and librarian to
construct Neuron libraries from pure C source files as described in Appendix
A, Neuron C Tools Stand-alone Use. You can then use libraries within a
NodeBuilder device template to construct application programs using the
NodeBuilder project manager.

The NodeBuilder project manager does not detect when a library needs to be
rebuilt due to changes in the source files that make up the library. When you
construct libraries, you should use standard software engineering techniques
to manage your software baseline and insure that current versions of your
software are being used. Use of a third-party make program can help in
managing software dependencies.

The NodeBuilder tool contains full support for linking an application
program with one or more libraries containing Neuron object code and data
written in pure C. The NodeBuilder tool does full dependency checking on
the use of libraries. When a library is modified, the NodeBuilder tool
automatically detects this condition and re-links the device's application
program when you invoke the build function.

To make a library known to a NodeBuilder project, add the library to the
Libraries folder in the Project pane. Refer to the NodeBuilder User's Guide
for details about the use of libraries within a NodeBuilder project and device
template.

Any Neuron C program that references one or more symbols from the library
will automatically include the appropriate modules from the library at link
time.

The linker only looks at libraries when the object files being linked and
combined with the system image file used have not already defined all
symbols needed by the application program. Each library will be examined,
in the order in which it has been specified in the linker command line. The
NodeBuilder Project Make Utility places the user-defined libraries in order
ahead of the standard libraries, thereby allowing for symbols from the
standard libraries to be superseded by symbols defined and exported in the
user-defined library. Use this feature with caution since standard symbols
might be accidentally overwritten. When a symbol is found in a library, the
corresponding object file will be extracted from the library, and all objects
contained in that object file will be added to the link.

An object file in a library may, in turn, introduce other symbols that are
undefined. This will cause the linker to search all the libraries again for
other object files which will resolve these previously undefined symbol
references, and these object files will also be included in the link. The
process continues until all symbols included in the link are resolved, or until
the list of libraries is exhausted.

B-4 Neuron C Function Libraries

Tradeoffs, Advantages, and Disadvantages
The use of libraries provides you with certain advantages and disadvantages
as described in the following sections.

Advantages of a Library
Use of a library to contain utility routines and constant data tables can
provide the following advantages:

1 Use of a library can speed up compilation, since utility routines are not
recompiled each time.

2 A library can provide modularity, encapsulation, and reuse — software
engineering techniques which can be used to increase quality and decrease
development costs.

3 The library can contain several related constant tables and procedures.
When organized properly, only the pieces used by a given application will be
linked into the application. Unused pieces will not consume any code space
in the device's application.

4 A library can contain data declarations for objects in any part of a Neuron
Chip's or Smart Transceiver's memory space, including near RAM and
EEPROM areas. Libraries also can contain initialized RAM variables. The
initialization rules are identical to Neuron C application programs.

Disadvantages of a Library
Use of a library has the following disadvantages:

1 The LonBuilder and NodeBuilder tools offer no way to debug the contents of
a library. (However, the contents of data objects in a library can be examined
from the Neuron C debugger, provided the data is declared as extern in the
application program.) Procedures should be fully debugged prior to placing
them in a library.

2 The LonBuilder and NodeBuilder project managers cannot be used to
manage the dependencies of a library or its component files. Keeping the
library up-to-date is left entirely up to the user.

3 A library can only contain pure C functions and data objects. It may not
contain or reference Neuron C extensions, such as network variables, I/O
objects, timers, or when statements. The functions documented in the
Neuron C Reference Guide can all be used from a library module as pure C
functions except the functions pertaining to network variables, messages, or
input/output. Similar use restrictions apply to the Neuron C built-in
variables. See Performing Neuron C Functions from Libraries later in this
chapter for techniques that you can use to workaround this disadvantage.

Neuron C Programmer's Guide B-5

4 Any objects from a library that are linked into an application become part of
the application. When the application changes, the library objects are linked
into it again, and their locations may change as a result. In particular, this
means that the objects from a library must be re-loaded into the device's
memory each time the application is re-linked. This may be done over the
network or by programming some non-volatile memory device, as
appropriate. This disadvantage is presented as a contrast to Neuron C
Custom system images, see Appendix C, Neuron C Custom System Images for
more information on this topic.

Library Construction Using the Librarian
You can construct libraries using the stand-alone versions of the Neuron C
tools, as documented in Appendix A, Neuron C Tools Stand-alone Use. Use
the stand-alone compiler and assembler to compile and assemble the pure C
source files that make up the library. This compilation and assembly process
produces a Neuron object file (.no extension) corresponding to each C source
file. Then, use the nlib.exe Neuron librarian to combine the Neuron object
files into a library that can be used by the Neuron linker.

Following are additional guidelines for constructing libraries:

1 If any symbol in a library module (corresponding to a pure C file) is
referenced, all of that module will be included in a link. Therefore, you
should separate unrelated functions to minimize program space use when an
application program uses components of the library.

 For example, if you were building a string library containing strcpy(),
strcat(), and strlen() functions, you could minimize code space by placing
each function in a separate file, since any given application program might
only want a subset of the functions to be linked in. If all three functions were
placed in a single file, all of them would be linked in any time any one of
them was used.

2 Use the static keyword to declare functions or data items within a library
module that are not to be exposed to the application program or other library
modules. This will effectively hide that symbol.

3 Construct include files containing extern function prototypes and extern
data declarations for the users of the library to include in their programs.
You must use the extern keyword for each declaration to allow the compiler
to establish the correct calling sequence and use the appropriate assembler
commands to permit linking to the data object or function contained in the
library.

 Use these include files in the library source files which define these functions
and data objects as well. This permits the Neuron C compiler to insure that
your extern declarations and prototypes match your actual declarations and
function definitions. (You can have a given extern declaration followed by
the actual declaration, as long as the declarations match.)

B-6 Neuron C Function Libraries

 This technique can help prevent calling a function with incorrect parameters
(due to an incorrect extern prototype, for example), which may result in an
overwritten data stack and thus may result in a device which repeatedly
experiences a watchdog timer reset, overwritten variables, or similar
software failures.

4 The LonBuilder project manager always instructs the linker to use all the
libraries in the STDLIBS.LST file. The NodeBuilder Project Make Utility
also advises the linker on all libraries listed in the STDLIBS.LST file, but
precedes this list by the list of user-defined libraries that are specified
through the NodeBuilder device template. Therefore, to reduce the chances
of a symbol conflict between two or more libraries, use a naming convention
to establish unique names for library objects. Use the nlib -r command
option (as documented in Appendix A) to generate a report listing the
symbols that are defined in each existing library.

Performing Neuron C Functions from Libraries
The pure C code which is placed in a library cannot contain references to
network variables, messages, I/O, timers, or other Neuron C objects.
However, the library may be designed mainly for the purpose of doing
Neuron C related features such as standard I/O device management, or
message construction, or timer manipulation.

You can access Neuron C objects from a library function by making it the
responsibility of the application program to actually perform the Neuron C
operation in an application function. The library can then call the
application function in the Neuron C application program, and effectively
perform Neuron C operations.

For example, consider a library that contains routines for management of a
standard LCD display device. This library would contain various routines for
formatting information and for managing the display in response to various
commands from the application program. It is desirable to have the library
code automatically perform the I/O operations to update the device.
However, due to the pure C restriction the required Neuron C code cannot be
implemented as part of the library.

For the I/O operations on the display, assume that the display has a
Neurowire device interface. The library could be accompanied with an
include file for the benefit of whatever Neuron C application program uses it.
The include file can contain the Neurowire I/O declarations and the function
definitions necessary to support the display's I/O. Then, the library can
access the functions as necessary without further intervention from the
application program, and without the application program being responsible
for passing some special parameters each time it wants to interact with the
library display management software.

Neuron C Programmer's Guide B-7

As this discussion shows, it is possible to create utility functions that depend
on Neuron C features. By dividing the Neuron C code from the pure C code,
and then placing the Neuron C code in the include file for the utility, the
utility can effectively function as if it were an encapsulated utility.

B-8 Neuron C Function Libraries

Appendix C
Neuron C

Custom System Images

This appendix discusses how to build and use your own custom
system images for use with the Neuron C tools. You can use
both the LonBuilder Development Tool and the NodeBuilder
Development Tool to construct and use custom system images.

Definitions
Application program A Neuron C source program that has been compiled,

assembled, and linked with a system image. The
application program is not a stand-alone executable.
It contains external references to the system image,
and must be loaded into the memory of a device that
contains the corresponding firmware image.

Custom system image A set of files produced by combining a standard
system image (or another custom system image) with
one or more pure C object files produced by the
Neuron assembler. The extra code and data objects in
the custom system image are additional objects that
can be referenced by any application program that is
linked with the custom system image. You can use
the Neuron linker to construct a custom system
image.

Library A file containing one or more pure C object files
produced by the Neuron assembler. The Neuron
linker may extract these object files from the library
and combine them with a Neuron C application
program.

Pure C The Neuron C language is a set of extensions added to
a subset of the ANSI Standard C language. The term
pure C in this document refers to the subset language
without the Neuron C extensions.

Stand-alone tool The term stand-alone means that a tool is available
from the Windows command prompt, so that it can be
used outside of the project manager. All of the tools
described in this appendix can be run in a stand-alone
manner as explained in Appendix A.

Standard system image
 A standard system image is a set of Neuron firmware

files included in the LonBuilder and NodeBuilder
software. The currently defined standard system
images are listed below:

BIN3120 - Firmware incorporated into a Neuron 3120 Chip.
B3120E1 - Firmware incorporated into a Neuron 3120E1 Chip.
B3120E2 - Firmware incorporated into a Neuron 3120E2 Chip.
B3120E3 - Firmware incorporated into a Neuron 3120E3 Chip.
B3120E4 - Firmware incorporated into a Neuron 3120E4 Chip
 or a FT 3120 Smart Transceiver.
B3120E4X - Firmware incorporated into a PL 3120 Smart Transceiver.
B3120E5 - Firmware incorporated into a Neuron 3120E5 Chip.
B3120A20 - Firmware incorporated into a Neuron 3120A20 Chip.
E3120E1 - For emulator only - emulates a Neuron 3120E1 Chip.
E3120E2 - For emulator only - emulates a Neuron 3120E2 Chip.

C-2 Neuron C Custom System Images

E3120E3 - For emulator only - emulates a Neuron 3120E3 Chip.

E3120E4 - For emulator only - emulates a Neuron 3120E4 Chip
 or a FT 3120 Smart Transceiver.
E3120E5 - For emulator only - emulates a Neuron 3120E5 Chip.
E3120A20 - For emulator only - emulates a Neuron 3120A20 Chip.
EMU3120 - For emulator only - emulates a Neuron 3120 Chip.
EMU3150 - For emulator only - emulates a Neuron 3150 Chip
 and FT 3150 Smart Transceiver.
EMU3150A - For emulator only – emulates a PL 3150 Smart Transceiver.
SYS3150 - For all devices using a Neuron 3150 Chip or FT 3150
 Smart Transceiver.
SYS3150A - For all devices using a PL 3150 Smart Transceiver.

System image A system image is a set of files that contain the
Neuron firmware needed to operate a Neuron Chip or
Smart Transceiver and implement the LonTalk
protocol. The software in the image is a pre-linked
executable. It must not contain any external
references.

LonBuilder Use of Custom System Images
You can use the LonBuilder Neuron C compiler, assembler, and linker to
construct a custom system image as described in Constructing a Custom
System Image later in this chapter. You can then use this custom system
image to construct application programs using the LonBuilder project
manager.

The LonBuilder project manager does not detect when a custom system
image needs to be rebuilt due to changes in the source files that make up the
custom system image. When you construct custom system images, you
should use standard software engineering techniques to manage your
software baseline and insure that current versions of your software are being
used. Use of a third-party make program can help in managing software
dependencies.

The LonBuilder project manager handles a custom system image in much the
same way as it handles the standard system images. The project manager
does full dependency checking on the use of system images. When you
modify a system image, the project manager automatically detects this
condition and re-links the affected devices.

When the project manager builds a device, it examines the associated
hardware properties specification for information on the system image used
in a device. The Target HW entry gives the name of the hardware
specification for a device. The hardware window, in turn, contains a HW
Prop. Name entry that gives the name of the hardware properties
specification used by this (and perhaps other) hardware specifications.

The hardware properties window contains two entries used by the project
manager in determining which system image the device uses. These are
labeled NEURON Chip Firmware and Firmware Version.

Neuron C Programmer's Guide C-3

If NEURON Chip Firmware contains a string, that string is used as the
name of the system image (without an extension). Thus you can specify a
custom system image file. If the field is blank, the project manager
calculates the appropriate standard system image name as described in
Definitions above.

The Firmware Version entry permits the specification of a version number
for the system image. You may specify a version number whether or not a
system image name is specified. If Firmware Version contains a zero, the
project manager calculates the version number using the default values in
the Default.ver file in the Images directory. Otherwise, the version number
specified in Firmware Version will be used.

The Default.ver file contains pairs of firmware image file names and
numbers. The project manager uses this list to choose the default number
corresponding to the image name. If an image name does not have a
corresponding record in the file, the line with the '*' instead of an image
name specifies the default version number. See Using Multiple Firmware
Versions in Chapter 7 of the LonBuilder User's Guide for more information.

The project manager directs the Neuron linker to use the system image name
and version as determined by the rules above. The image files must exist in
the Vernnn subdirectory of the Images subdirectory, where nnn corresponds
to the image version number.

Following are guidelines for using custom system images with the
LonBuilder tool:

1 The LonBuilder hardware-management software does not use dependency
checking logic for the firmware images. Thus, the Install status will not be
set in To-Do on the Navigator Target HW window when the system image
files are modified. Likewise, the project manager does not check whether the
system image installed on the hardware is correct. After modifying any
firmware image files, you must install the appropriate devices manually — an
Automatic Install will not suffice (unless you cycle the power on your
LonBuilder devices). It is safest to do an Install All, or to manually install all
affected devices. Failure to perform an Install for emulators (or to re-
program custom device ROMs) will potentially result in inconsistencies
which will cause the device's program to fail in odd ways—often with
“Attempt to write to protected memory” or “Watchdog Timer timeout” or
other diagnostic failures. However, the project manager status will show
Build in To-Do on the Target HW window when the corresponding system
image files are modified.

2 You must keep the set of files that comprise a system image together. When
updating system image files, insure that all files in the set are updated
together. Failure to do so will result in errors similar to those previously
mentioned. The set of files contains the following:

image.nx Loadable image in Intel hex format
image.nxb Binary version of image.nx
image.sym Symbol table file
image.ib Emulator image bitmap (LonBuilder emulators only)

C-4 Neuron C Custom System Images

3 The LonBuilder Neuron Emulator hardware uses a different set of system
image files than custom devices. If you want to use custom system images, it
is best to have two concurrent sets - one for emulators, and one for custom
devices.

NodeBuilder Use of Custom System Images
You can use the NodeBuilder Neuron C compiler, assembler, and librarian to
construct a custom system image as described in Constructing a Custom
System Image later in this chapter. You can then use this custom system
image within a NodeBuilder device template to construct application
programs using the NodeBuilder project manager.

The NodeBuilder project manager does not detect when a custom system
image needs to be rebuilt due to changes in the source files that make up the
custom system image. When you construct custom system images, you
should use standard software engineering techniques to manage your
software baseline and insure that current versions of your software are being
used. Use of a third-party make program can help in managing software
dependencies.

The NodeBuilder project manager can use a custom system image in much
the same way as it handles the standard system images. The NodeBuilder
project manager does full dependency checking on the use of custom system
images. When you modify a custom system image, the NodeBuilder project
manager automatically detects this condition and re-links the program for
the device when you invoke the build function.

See the NodeBuilder User's Guide and the NodeBuilder Help file for details
about choosing the firmware image to be used for a device target, and for
details about using custom firmware images.

Following are guidelines for using custom system images with the
NodeBuilder tool:

1 Re-program any custom device PROMs using a custom system image when
you generate a new version of the custom system image. If you do not re-
program the PROMs, inconsistencies between the PROM version of the
system image and the NodeBuilder version may cause the device's program
to fail in odd ways—often with a watchdog timer timeout or other diagnostic
failure.

2 You must keep the set of files that comprise a system image together. For
example, keep all the system image files together when you copy them to the
appropriate Vernnn directory. When updating system image files, insure
that all files in the set are updated together. Failure to do so will result in
errors similar to those mentioned above. The set of files consists of the
following:

image.nx Loadable image in Intel hex format
image.nxb Binary version of image.nx
image.sym Symbol table file

Neuron C Programmer's Guide C-5

Tradeoffs, Advantages, and Disadvantages
The use of custom system images provides you with certain advantages in
exchange for some other disadvantages. Sometimes, it is more appropriate to
use a library, and at other times it is more appropriate to use a custom
system image. These issues are discussed in this section, and also in
Appendix B, Neuron C Function Libraries.

Advantages of a Custom System Image
Use of a custom system image to contain utility routines and constant data
tables can provide the following advantages:

1 Use of a custom system image can speed up compilation, since utility
routines are not recompiled each time.

2 A custom system image can provide encapsulation and reuse—software
engineering techniques which can be used to increase quality and decrease
development time.

3 The custom system image can be constructed once and can be used across
many application programs. This can be particularly helpful in the scenario
where the custom system image is programmed into a ROM or flash memory
for a Neuron 3150 Chip or a 3150 Smart Transceiver, and one of several
different application programs which use the custom system image are then
directed into EEPROM or flash memory via network load at a later date.
This scenario can be used by Neuron C field compiler users who want to
deliver devices with a custom system image that includes support for the
application I/O hardware. This support can be provided as standard
functions that can be called by end-user application code.

Disadvantages of a Custom System Image
Use of a custom system image has the following disadvantages:

1 The LonBuilder and NodeBuilder tools offer no way to debug the contents of
a system image. (However, the contents of data objects in a system image
can be examined from the Neuron C debugger, provided the data is declared
as extern in the application program.) Procedures should be fully debugged
prior to placing them in a custom system image. Debugger function is not
affected for application programs that use custom system images.

2 The LonBuilder and NodeBuilder project managers cannot be used to
manage the dependencies of a custom system image on its component files.
Keeping the custom system image up-to-date is left entirely up to the user.

3 A custom system image can only contain pure C functions and data objects.
It may not contain Neuron C extensions, such as network variables, I/O
objects, timers, when statements, etc. The functions documented in the
Neuron C Reference Guide can all be used as pure C functions except the
functions pertaining to network variables, messages, or input/output.
Similar use restrictions apply to the Neuron C built-in variables.

C-6 Neuron C Custom System Images

4 A custom system image cannot be used for a Neuron 3120xx Chip or 3120
Smart Transceiver.

5 A custom system image may contain many utility routines and data tables,
not all of which are useful for a given application program, thus this may
waste memory space.

6 A custom system image may not contain references to any unresolved
symbols. All procedures and data objects in the custom system image must
refer to other procedures and objects in that same image, or to procedures
and objects that make up the underlying base image. (The base image is
typically one of the standard system images, although it may be another
custom system image that is based on a standard system image. Custom
system images can be built in layers upon other custom system images.)

7 A custom system image can make only limited use of a Neuron Chip's RAM
memory, and it cannot use EEPROM memory. Functions and constant data
objects can only be placed in ROM or flash memory. Only a limited amount
of far RAM is available - a total of 64 bytes (for all layers of a custom system
image). No near RAM or EEPROM, nor any far EEPROM can be declared
or used directly. A custom system image can contain initialized RAM
variables. The initialization rules are identical to those of Neuron C
application programs.

8 The process of constructing a system image is complex. There are several
details to keep straight, including keeping all the files up to date, and
keeping the image in the devices in sync with the image version files.
Because the LonBuilder and NodeBuilder project managers do not assist in
this, the probability of making a mistake in the process is increased, and a
mistake in the custom system image process is not always self-evident.

Constructing a Custom System Image
You can construct a custom system image using the stand-alone versions of
the Neuron C compiler, Neuron assembler, and Neuron linker tools, as
documented in Appendix A, Neuron C Tools Stand-alone Use. Use the stand-
alone compiler and assembler to compile and assemble the pure C source files
that make up the custom portion of the system image. This compilation and
assembly process produces a Neuron Object file corresponding to each pure C
source file. Use the nld.exe Neuron linker to combine the Neuron object files
into a custom system image that can be used as described above.

You can use a standard system image as the base for a new custom system
image, or you can use another custom system image that was constructed
previously.

To construct a custom system image, follow these steps.

1 Run the stand-alone Neuron linker as described in Appendix A. In addition
to the linker switches described in Appendix A, several other switches,
specific to custom system image creation, are required as follows.

• Specify the -c switch. This must be the first switch that you specify
to the linker. There are no arguments associated with the -c switch.

Neuron C Programmer's Guide C-7

• Specify the base system image via the -b switch. The -b switch must
be followed by the filename or pathname of the base image (without a
filename extension). If you are building a custom system image for a
LonBuilder emulator, start with the Emu3150 standard system
image, or a custom system image based on the Emu3150 image. If
you are not building a custom system image for a LonBuilder
emulator, start with the Sys3150 system image or a custom system
image based on the Sys3150 system image. For example, to use the
standard version 13 system image for Neuron 3150 Chip-based
custom devices, the switch would be as follows:

-b \LonWorks\Images\Ver13\SYS3150

• A custom system image can only use ROM and a limited amount of
far onchip RAM. Thus, the only memory map switch that is needed
for custom system image construction is the -Z switch. When the
linker is constructing a custom system image, the -Z switch specifies
the end of the reserved ROM for the custom system image. The base
image already reserves some amount of ROM from address 0x0000 to
some value x (for a standard system image, x is 0x3FFF).

The -Z switch followed by some value yp reserves the ROM area from
x+1 to y for the custom system image being created. Thus, yp is the
page number corresponding to the address y. For example, to reserve
from 0x4000 to 0x4FFF for the custom system image being
constructed, the value for the -Z switch would be "4F." The reserved
area must at least be large enough to contain the object files being
included. The minimum value for the -Z switch is "40," which would
be just one page (256 bytes) additional ROM space beyond the
standard system image. This custom system image would end at
0x40FF.

Any additional unused space in the new reserved area will be kept for
later use by future versions of this particular custom system image.
The new reserved amount of ROM will automatically be made known
to the linker when it uses the custom system image in linking a
Neuron C application program at some later time, and the
application program will be permitted to use only any remaining
unreserved ROM.

• Specify the -V switch to assign a version number to the custom
system image, within the range 128..255. Follow the -V switch with
the desired version number, in decimal. Move custom system image
files to the VERnnn subdirectory in the IMAGES directory that
corresponds to the version number chosen. If the appropriate
VERnnn directory does not exist, create one.

C-8 Neuron C Custom System Images

• If you are constructing a custom system image for an emulator,
specify the -i switch. This tells the linker to look for an additional file
(with a .ib extension) in the input base image, and to output an
additional file (again, with a .ib extension) in the output custom
system image. This additional file is used by the emulator to assist
in breakpoint management, error traps, etc.

The following example creates a custom system image from the SYS3150
standard system image and the object files named in the Objs.lst script file.
The output files are directed (with the "-o" switch) to files named
"myimage.*."

nld –c –b c:\LonWorks\Images\Ver13\sys3150 –t 3150 –Z 4F –V 128 –o myimage -@objs.lst

After using the linker as described above, the following custom system image
files will be created:

• The myimage.sym file contains a list of the image's exported symbols
for use when linking an application program to the image.

• The myimage.nx file is an Intel-hex-format file containing the binary
linked system image.

• The myimage.map file (if requested) is a link map and report for the
image.

2 Convert the text system image file to a binary image. To do this, download
the nxcvt.exe Image Conversion Utility from the Echelon developer's toolbox
at www.echelon.com/toolbox and use the utility to convert the file. For
example, to convert the myimage.nx file from the example above into a
binary myimage.nxb format file, use the following command line shown
below, supplying the name of the image (without a filename extension).

nxcvt myimage

3 Move the system image files into the appropriate Vernnn directory
corresponding to the version number you supplied in step 1.

Following are additional guidelines for constructing custom system images:

1 You can use libraries when constructing custom system images, but only to
the extent that they are referenced. The complete library contents are not
automatically transferred into the custom system image. Any global
variables defined in the library must be declared as far (RAM) variables in
order to be used in constructing a custom system image.

2 You cannot program PROMs directly with a custom system image. To
program a PROM, you must build a ROM image file that is based on the
custom system image using the LonBuilder or NodeBuilder tool. You can use
an empty application to build the image if you just want to load the custom
system image into PROM.

3 Use the static keyword to declare functions or data items that are not to be
exposed to the application program. This will effectively hide that symbol.

Neuron C Programmer's Guide C-9

http://www.echelon.com/toolbox

4 Construct include files containing extern function prototypes and extern
data declarations for the users of the custom system image to include in their
programs. You must use the extern keyword for each declaration to allow
the compiler to establish the correct calling sequence and use the appropriate
assembler commands to permit linking to the data object or function
contained in the custom system image.

 Then, include these include files in the custom system image source files
which define these functions and data objects as well. This permits the
Neuron C compiler to insure that your extern declarations and prototypes
match your actual declarations and function definitions. (You can have a
given extern declaration followed by the actual declaration, as long as the
declarations match.) This technique can help prevent calling a function with
incorrect parameters (due to an incorrect extern prototype, for example),
which may result in an overwritten data stack and thus a device which
repeatedly experiences a watchdog timer reset, overwritten variables, or
similar software failures.

5 You can use a maximum of 64 bytes of RAM within a custom system image.
If one custom system image is used as a base for another, this limit is
cumulative, in other words, the two (or more) images cannot use more than
64 bytes in total. Any unused RAM from this 64-byte area will be made
available to the application program when it is linked. Custom system
images can only use far RAM variables. Include the far keyword in any
extern declarations of these variables (see point # 4, above).

6 You cannot access EEPROM variables from a custom system image.

Providing a Large RAM Space
The total amount of RAM space available to a custom system image at link
time is 64 bytes. However, if a custom system image needs a larger amount
of RAM for certain functions, a large RAM block can be declared by an
application program that uses the custom system image, and the application
program can make this known to the custom system image at reset time.
This functionality can be placed inside a reset routine provided in an include
file associated with the custom image. An application using the custom
image would then be expected to include the include file, and call the reset
routine from the when(reset) task.

A pointer to this RAM block can be passed as a parameter to the appropriate
custom system image functions each time they are called. For a more
efficient implementation, the custom system image can use 2 bytes of its
RAM space to declare a global pointer to such a block of memory, and
initialize the pointer to NULL. When the application program resets, it has
the responsibility of correctly setting this global pointer variable to point to
the block of memory, or at least the responsibility of calling an initialization
function (providing this pointer).

C-10 Neuron C Custom System Images

Performing Neuron C Functions
The pure C code that is placed in a custom system image cannot contain
references to network variables, messages, I/O objects, timers, or other
Neuron C objects. However, the custom system image may be designed
mainly for the purpose of doing Neuron C related features such as standard
I/O device management, message construction, or timer manipulation.

You can access Neuron C objects from a custom system image function by
making it the responsibility of the application program to actually perform
the Neuron C operation in a function. The custom system image can declare
a RAM variable that the application sets to a pointer to the application
function. The custom system image can then call the function in the Neuron
C application program, and effectively perform Neuron C operations.

For example, consider a custom system image that contains routines for
management of a standard LCD display device. This custom system image
would contain various routines for formatting information and for managing
the display in response to various commands from the application program.
It is desirable to have the custom system image code automatically perform
the I/O operations to update the device. It may also be necessary for such a
custom system image to have access to a large buffer in RAM. However, due
to the pure C restriction and the custom system image RAM memory
restriction, neither of these requirements can be implemented solely within
the custom system image. The RAM buffer can be provided by the
application as discussed above.

As for the I/O operations on the display, assume that the display has a
Neurowire device interface. The custom system image could be accompanied
with an include file for the benefit of whatever Neuron C application program
uses it. The include file can contain the Neurowire I/O declarations and the
function definitions necessary to support the display's I/O. It can even
contain a routine to be called from the application's when(reset) task that
will initialize the appropriate function pointers and memory buffer pointers.
Then, the custom system image can access the functions and memory buffers
as necessary without further intervention from the application program, and
without the application program being responsible for passing some special
parameters each time it wants to interact with the custom system image
display management software.

This indirection via function pointers is necessary for a custom system image,
since a custom system image cannot contain any unresolved external symbols
when the linker creates it. However, a library of display management
software could just access such I/O functions as discussed above directly by
name, without having to resort to function pointers.

Neuron C Programmer's Guide C-11

Index

#elif, 1-14
#if, 1-14
#line, 1-14
/* */ comment style, 1-14
// comment style, 1-14
@ (at-sign character), 1-17
__DATE__ and __TIME__ macros, 1-23
` (accent-grave character), 1-17

A
abs() function, 8-33
accuracy of timers, 2-46

repeating timers, 2-48
second timers, 2-49

ACKD service type, 6-7, 6-15
acknowledged messages, 3-4
acknowledged service, 3-11

receiving a number of responses, 8-8
sending messages, 6-19

address table, 8-2
memory use, 8-27
minimum number of entries, 8-29

advantages of a library, B-5
alias table, 8-2, 8-3

memory use, 8-27
allocating buffers. See buffers
ANSI C

compared to Neuron C, 1-13
references about, iv

app_buf_in_count pragma, 8-10, 8-11
app_buf_in_size pragma, 6-14, 6-27, 6-29, 8-10, 8-11, 8-12
app_buf_out_count pragma, 6-34, 8-9, 8-11, 8-13
app_buf_out_priority_count pragma, 6-34, 8-9, 8-11, 8-13
app_buf_out_size pragma, 8-9, 8-11, 8-12
application buffers. See buffers
application errors

logging, 7-18
on a Neuron emulator, 7-18

application messages, 1-12, 6-4
response, 6-9

application program, B-2
definition, C-2

application_restart() function, 8-32
effects of, 7-15

I-2 Index

A
arrays

maximum size, 1-20
assembler, B-2

command line switches, A-7
definition, C-2

asynchronous event processing, 6-24
auth keyword, 3-30
authenticated keyword, 3-30, 6-7
authentication, 3-29

and buffer use, 8-8
and system response time, 3-29
how it works, 3-31
key, 3-30
using, 3-30

auto storage class, 1-6

B
backspace character, 1-17
baud setting for I/O object, 2-26
binary constants, 1-14
bind_info keyword, 1-11, 3-9, 3-30, 6-7, 6-18, 8-29
binder

network addressing, 3-12
bit I/O object, 2-26

used for chip select, 2-44
bit order, 1-21
bit rate setting for I/O object, 2-26
bitfields, 8-33

allocation, 1-21
in unions, 1-13
signed, 1-21, 8-33

bitshift I/O object, 2-22, 2-45
bitwise operations, 1-19
block transfers of data, 6-10
blocked queue. See events, blocking queue
boolean, 3-10
boot ID, A-2
buffers, 8-5

allocation, 6-33
compiler directives for, 8-8
explicit, 6-33
guidelines, 8-5
incoming application, 8-10
incoming network, 8-9
outgoing application, 8-8
outgoing network, 8-9

Neuron C Programmer's Guide I-3

B
buffers (cont)

application
components of, 8-6
size, 8-7

application output buffers freed by completion events, 7-4
components of, 8-6
counts, 8-8
effect of insufficient application output buffers, 6-23
freed before sleep, 7-14
freeing of, 6-13
network

components of, 8-6
determining the number of, 8-8
size, 8-7

not available, 6-23
number of, 8-8
sizes

choosing appropriate, 8-6
effect of explicit addressing, 6-18
errors, 8-7
table of, 8-11

timeout while waiting for a buffer, 6-22
transmit transaction, 8-13

built-in type, 3-10
bypass mode, 6-13, 6-23, 7-5

going offline, 7-10
byte I/O object, 2-26
byte operation functions, 1-14
byte order, 1-18

C
C language

macros, 1-13
pure. See pure C
short-circuit evaluation of expressions, 2-9

carriage return character, 1-17
case labels

maximum number of, 1-22
case of identifier

significance, 1-16
cast operation, 1-19, 1-20, 3-27, 3-37, 8-25
changeable_type keyword, 3-7, 3-33
char default data type, 1-18

I-4 Index

C
character

accent-grave, 1-17
at-sign, 1-17
backspace, 1-17
carriage return, 1-17
ctrl-Z, 1-17
end-of-line, 1-17
EOT, 1-17
escape sequences, 1-17
multibyte, 1-17

character set, 1-16
clear_status() function, 7-18
clock setting for I/O object, 2-26
code keyword, 6-6, 6-14
codegen cp_family_space_optimization pragma, 8-29
codegen put_cp_template_file_offchip pragma, 8-22
codegen put_cp_value_files pragma, 8-22
comm_ignore option, 7-12, 7-13
command files, A-4, A-5
command switches, A-3
command-based messaging systems, 1-11
comment style, 1-14
compiler behavior

implementation-defined, 1-15
completion events, 7-4

comprehensive testing, 3-20
partial testing, 3-20
processing of

asynchronous, 6-24
direct, 6-24
examples, 6-22
for messages, 6-21
for network variables, 3-19

tradeoffs, 3-21
unqualified, 6-21

comprehensive completion event testing. See completion events
concatenated string constant, 3-7
conditional compilation, A-7
config

keyword, 4-6, 8-17, 8-18, 8-19
network variable, 3-8
storage class, 1-6

config keyword used with authentication, 3-30

Neuron C Programmer's Guide I-5

C
config_prop

keyword, 1-6, 3-8, 4-6, 8-17, 8-18, 8-27
network variable, 3-8

configuration properties, 1-10, 4-2
accessing, 4-11, 5-13
applying to arrays, 4-14
declaration syntax, 4-3
definition, 1-2
families, 4-3
files, 8-17

placement in memory, 8-18
in files, 4-2
initialization of, 4-16
initialization rules, 4-4
instantiation of, 4-7, 5-9
pointers to, 1-13
sharing of, 4-18, 5-10
structures, 1-13
template file, 4-2, 8-27
type-inheriting, 4-17, 4-20
value files, 4-2, 8-27

connecting network variables, 3-12
const

keyword, 3-26
network variable, 3-7
storage class, 1-6
variables, 1-7

constants
binary, 1-4
hexadecimal, 1-4
integer, 1-4
octal, 1-4
pointers to, 1-13

constructing a message, 6-5
context expression, 4-11, 5-13

for device, 4-13
conversion

cast, 1-20
integer, 1-18
pointer, 1-20

cp keyword. See config_prop keyword
cp_family keyword, 1-6, 4-3, 8-17, 8-18, 8-22, 8-27
cp_info keyword, 4-4
CPT, definition, 1-3
create a new library, A-11
critical sections, 6-27, 6-33, 6-34

boundary, 3-10, 6-13, 6-23, 6-28, 7-6
definition of, 3-5

I-6 Index

C
ctrl-Z character, 1-17
custom functional profiles, 1-10
custom system images

advantages of, C-6
construction of, C-7
definition, C-2
disadvantages of, C-6
providing a large RAM space, C-10

D
data keyword, 6-6, 6-14
declarations, 1-8

order of, 8-35
declarators

limits on, 1-22
declaring I/O objects, 2-21

guidelines, 2-22
DEFAULT.VER, B-3
delay() function, 2-49
dest_addr keyword, 6-7
device

bringing online, 7-8
commissioning, 2-8
context for properties. See context expression, for device
forced sleep, 7-14
initialization

and the wink event, 7-10
interface, 1-2, 1-10, 5-2, 5-6
power down, 8-20
reset, 1-7, 6-23, 7-8, 7-15, 8-20

causes of, 7-7
disadvantages of, 7-15
effect of, 2-8
time required, 7-15

device_properties keyword, 4-8
direct event processing, 2-6, 6-13, 6-24, 7-10
direct I/O objects, 2-17, 2-23
direction setting for I/O object, 2-26
director keyword, 5-4, 5-6, 5-15
disable_mult_module_init pragma, 8-38
disable_snvt_si pragma, 1-11, 3-11, 8-30
disadvantages of a library, B-5
distributed systems, 1-9
domain table, 8-2, 8-4

memory use, 8-27
dualslope I/O object, 2-22, 2-26, 2-30
duplicate keyword, 6-15

Neuron C Programmer's Guide I-7

E
edgedivide I/O object, 2-33
edgelog I/O object, 2-22
EECODE memory area, 8-17
EEFAR memory area, 8-17
EENEAR memory area, 8-17
EEPROM, 3-7, 8-16

erase/write cycle, 3-8
on-chip, address table, 8-2
on-chip, alias table, 8-3
on-chip, domain table, 8-4
on-chip, reallocating, 8-2
pointers to, 8-25
use of, 8-27
variables

pointers to, 1-13
write timer, 2-45, 2-50

eeprom keyword, 1-6, 1-7, 3-8, 8-17, 8-18, 8-19
eeprom_memcpy() function, 1-13, 8-25
efficiency of code, 8-34
enable_io_pullups pragma, 2-16
enable_sd_nv_names pragma, 1-11, 3-11, 8-30
end-of-file marker, 1-17
end-of-line character, 1-17
enum variable type, 8-32

predefined, 1-5
enumeration type, 1-21
EOT character, 1-17
error diagnostic from compiler, 1-15
error handling, 7-15
error log, size, 7-18
error status, access, 7-18
error_log() function, 3-39, 7-18
event-driven scheduling, 1-3
events, 2-4, 2-7

blocking queue, 2-7, 2-9, 6-13, 6-15, 7-4
expression, 2-9
latency, 2-46
posting of, 2-46
predefined, 2-4
processing of, 2-7

completion events, 2-7
network events, 2-7
queue, 2-7
responses, 2-7
when clause, 2-7

I-8 Index

E
events (cont)

scheduler, 2-2
unqualified, 2-14, 6-19
unsolicited, 2-8
user-defined, 2-4, 2-9

expired timers. See timers
explicit addresses, 8-12

for network variable updates, 6-18
explicit addressing, 8-7, 8-13
explicit messages, 6-4, 8-6

events, 8-12
functions, 8-12
receiving

implementation caveat, 6-13
exporter

command line switches, A-9
exporter command line switches, A-9
extended arithmetic, 1-5
extern keyword, 1-5, 1-6, 1-16, C-10
external_name keyword, 1-13, 1-16, 5-4, 5-7
external_resource_name keyword, 1-16, 5-4, 5-7

F
far keyword, 1-7, 8-19, 8-20
fastaccess keyword, 8-35
fatal error diagnostic from compiler, 1-15
fb_properties keyword, 5-8
fblock keyword, 1-16, 5-4
fblock_director() function, 5-18
fblock_index_map variable, 5-18
file transfer protocol, 6-2
firmware, 2-2

error handling, 7-15
helper functions, 8-34
I/O objects, 1-12
initialization actions, 8-32
initialization time, 2-8
offline processing, 7-16
preemption mode, 6-22
scheduler, 7-2
version, A-9, C-3

fixed timers, 2-44
flash memory, 3-8, 8-14, 8-16, 8-17, 8-23, 8-25

effects of writing, 8-23
sectors, 8-24
use of, 8-16, 8-27

Neuron C Programmer's Guide I-9

F
floating-point, 1-5, 1-19

syntax and operators, 1-13
flush

pending updates, 7-11
flush() function, 7-11, 7-14
flush_cancel() function, 7-12
flush_completes event, 7-11, 7-12, 7-14
flush_wait() function, 6-23, 6-24, 7-12, 7-16
foreign-frame messages, 6-9
forward declarations, 2-12
frequency I/O object, 2-33
function calls, 8-37
function prototypes, 1-14, 2-12
functional blocks, 1-10, 5-2

accessing members, 5-13
accessing properties, 5-13
director function, 5-6, 5-16

examples, 5-18
implementation-specific members, 1-10, 5-3, 5-5
limitations on name length, 1-13
member list, 5-5
members, 1-10
members, definition of, 1-3

functional profile templates. See functional profiles
functional profiles, 1-3, 1-10, 5-2, 5-6

custom, 1-10
standard, 1-9
using inheritance, 5-12

functions, I/O. See I/O functions
FYI diagnostic from compiler, 1-15

G
gateway, 6-4, 6-9
get_nv_length_override() function, 3-38, 3-39
get_tick_count() function, 2-48
global data, 1-5
global keyword, 4-10, 4-18, 5-8, 5-10, 5-19
global_index keyword, 5-15
go_offline() function, 3-39
going offline in bypass mode, 7-10
group, 8-8

I-10 Index

H
hard pin direction I/O object, 2-25

I,J,K
I/O devices, 1-12
I/O events, 2-29
I/O functions, 2-16

for timer/counter objects, 2-34
performing, 2-26

I/O objects, 1-12, 1-13, 2-16
declaring, 2-21
definition, 1-3
determining when an input value is new, 2-32
direct, 2-17, 2-33
initialization of, 1-7, 2-27
multiplexed, 2-36
overlaying of, 2-25
overrange value, 2-36
parallel, 2-18, 2-33
references to additional examples, 2-16
serial, 2-18, 2-33
table of types, 2-18
timer/counter, 2-17, 2-33

I/O pins, 2-16, 2-21
i2c I/O object, 2-22
idempotent transaction, 6-31
identifiers, 1-16
IMAGES directory, B-3, C-4
implementation_specific keyword, 5-4, 5-5
implements keyword, 5-4
include directive, 1-23
include files, 1-22
incoming message queue

blocked. See events, blocking queue
initialization

Neuron Chip, 7-15
time required, 7-15

input clock frequency, 2-44
input_is_new variable, 2-28, 2-36
input_value variable, 2-30

examples, 2-42
int, 1-18, 1-21

Neuron C Programmer's Guide I-11

I,J,K
integer character constant, 1-17
integer constants, 1-4

types for various values, 1-18
integer conversion

unsigned to signed, 1-18
integer division

sign of result, 1-19
interoperability, 1-3, 1-9, 3-2, 4-2

proprietary interface, 6-2
requirements for certification, 1-11, 8-4, 8-38

interoperable devices, 1-2
invert keyword, 2-33
io_change_init() function, 2-26
io_changes event, 2-6, 2-26, 2-29

memory use, 8-26
io_edgelog_preload() function, 2-26
io_edgelog_single_preload() function, 2-26
io_in() function, 2-25, 2-26, 2-27, 2-28

use with when clauses, 2-32
io_in_ready event, 2-26
io_in_request() function, 2-26
io_out() function, 2-25, 2-26, 2-27, 2-34
io_out_request() function, 2-26
io_preserve_input() function, 2-26, 2-36
io_select() function, 2-26, 2-34

examples, 2-36
io_set_baud() function, 2-26
io_set_clock() function, 2-26, 2-35
io_set_direction() function, 2-25, 2-26
io_update_occurs event, 2-29, 2-30, 2-36

examples, 2-38, 2-42
is_bound() function, 3-12, 3-36

L
len keyword, 6-14
librarian, A-12, B-2

command line switches, A-11
libraries

advantages of, B-5
disadvantages of, B-5
including in link, A-9
report of library contents, A-11

library, B-2
definition, C-2
functions, 1-14, 8-42

I-12 Index

L
limits.h, 1-18
link summary, 8-29
linker, B-2, B-3, B-4

command line switches, A-8
linking a program, 8-23
logging system errors, 7-18
LonBuilder ®User’s Guide, iv
LonBuilder project manager, B-2, C-3
long int, 1-13, 1-18
long to short integer conversion, 1-18
LONMARK Interoperability Association

website, 1-11
LonTalk protocol, 6-3
LONWORKS messages, 1-9
lowering power consumption, 7-12

M
magcard I/O object, 2-22, 7-7
magtrack1 I/O object, 2-22, 7-7
main(), 1-14, 1-16
max() function, 8-33
max_rate_est option, 6-8
Media Access Control (MAC) layer, 6-3
memcpy() function, 6-10, 8-25
memory

page, definition of, 8-36
usage

default, 8-18
non-default, 8-19

use by program elements, 8-26
wait states, 8-16

memory-mapped I/O
usage tip, 8-28

message codes, 6-4, 6-9
application-specific, 6-9
ranges, 6-9

message data
block transfer, 6-10

message tags, 1-13, 6-8, 8-29
and explicit addressing, 6-18
connecting, 6-17
declaration, 6-7
default msg_in tag, 6-17
limitations on name length, 1-13
non-bindable, 6-18
syntax, 6-7

Neuron C Programmer's Guide I-13

M
messages, 1-9

cancelling, 6-12
code, 6-2
completion status, 6-19
data field, 6-2
events, 7-10
explicit, 1-12
explicit addressing of, 6-18, 8-12
foreign-frame, 6-4, 6-9
implicit, 6-4
incoming, 6-7

format of, 6-14
list of steps, 6-5
priority, 6-33
processing completion events, 6-21
protocol overhead, 8-7
receiving, 6-12
sending, 6-11
unwanted, 6-15

messaging service, 1-3
millisecond timers, 2-13
min() function, 8-33
Miranda prototype rule, 2-12
monitoring device, 3-28
msec_delay() function, 2-49
msg_alloc() function, 6-23, 6-33
msg_alloc_priority() function, 6-33
msg_arrives event, 2-7, 6-12, 6-13
msg_cancel() function, 6-11, 6-12, 6-34
msg_completes event, 2-7, 6-8, 6-19, 7-4
msg_fails event, 2-7, 6-19, 6-31, 7-4
msg_free() function, 6-33
msg_in message tag, 6-7
msg_in object, 6-14, 6-32, 6-34

addr field, 6-15, 8-13
fields invalidated, 6-14

msg_out object, 6-5, 6-10, 6-18, 6-34
defined, 6-6
dest_addr field, 8-13
tag field, 6-8

msg_receive() function, 6-12, 6-13, 6-26, 6-34, 7-7
msg_send() function, 6-5, 6-11, 6-18, 6-34, 8-12
msg_succeeds event, 2-7, 6-19, 6-31, 7-4

comparison with resp_arrives event, 6-31

I-14 Index

M
msg_tag keyword, 6-7, 6-18
msg_tag_index variable, 6-19
mtimer, 2-45

accuracy of, 2-46
and clock speed, 2-46
keyword, 2-13

multibyte characters, 1-17
multicast connections

and buffer use, 8-8
multi-character displays, 2-44
multiplexing of I/O objects, 2-22
multi-processor architecture, 7-6
muxbus I/O object, 2-22, 2-23

N
net_buf_in_count pragma, 8-9, 8-11
net_buf_in_size pragma, 8-9, 8-11
net_buf_out_count pragma, 8-9, 8-11, 8-13
net_buf_out_priority_count pragma, 8-9, 8-11, 8-13
net_buf_out_size pragma, 8-9, 8-11, 8-12
network buffers, 8-5. See buffers
network congestion, effects of, 7-14
network tool, 7-8

initialization of configuration properties, 4-4
network variables, 3-2

advantages of, 1-9
alias, 8-3
arrays of, 3-6, 3-10
changeable type, 4-22
changeable-type, 3-32
classes, 3-7
communication model, 1-11
configuration properties, 4-2
configuration table, 8-2
connecting, 3-3, 3-12
declaring, 3-4, 3-5

as config, 3-8
as config_prop, 3-8
as const, 3-7
as cp, 3-8
as polled, 3-24

definition, 1-2
events, 3-13

Neuron C Programmer's Guide I-15

N
network variables (cont)

example of declarations, 3-11
examples, 3-16
explicitly addressed, 6-4
how they work, 6-4
initialization of, 1-7, 3-9
limitations on name length, 1-13
maximum number of, 3-5
memory use, 8-27
outgoing updates, 7-6
pointers to, 1-13
polling of, 3-7, 3-21, 3-28, 6-25, 7-4

examples, 3-23, 3-24
priority

examples, 3-11
processing completion events, 3-19
propagation of, 1-9, 3-18, 3-26
sharing a common address table entry, 8-3
size, 3-11
structures, 1-13
synchronous, 3-18, 6-23, 7-6

effects on performance, 3-18
updating, 3-19

synchronous vs. nonsynchronous, 3-18
syntax of, 3-5
types for, 3-10
updates, 3-5, 3-18, 7-10

scheduling of, 3-5
using explicit addressing to send an update, 6-18

network, storage class, 1-6
Neuron 3120 Chip

system library, 8-42
Neuron C

and ANSI C, differences, 1-13
character set, 1-17
compared to ANSI C, 1-13
declarations, 1-8
definition of, 1-2
portability issues, 1-15
storage classes. See storage classes
thread of execution, 1-14

Neuron C compiler
command line switches, A-6

Neuron C tools, A-1

I-16 Index

N
Neuron Chip

definition of memory page, 8-36
effect of power failure on RAM, 3-8
flushing messages, 7-11
initialization, 7-15
sleep mode, 7-12
wake up, 7-11

Neuron emulator and application errors, 7-18
neurowire I/O object, 2-22, 2-23, 2-45, 7-7

examples, 2-44
nibble I/O object, 2-26
node_reset() function, 7-15
NodeBuilder project manager, B-4, C-5
nonauth keyword, 3-30
nonauthenticated keyword, 3-30
nonbind keyword, 6-8, 6-18
non-bindable message tags, 6-18
nonconfig keyword used with authentication, 3-30
non-idempotent transaction, 6-31
NULL, definition of, 1-24
num_addr_table_entries pragma, 8-2, 8-30
num_alias_table_entries pragma, 8-3
num_domain_entries pragma, 8-4, 8-38
nv_in_addr variable, 3-29, 8-13
nv_len property, 3-38
nv_properties keyword, 4-10, 4-14
nv_update_completes event, 2-7, 3-13, 3-15, 7-4

examples, 3-15
nv_update_fails event, 2-7, 3-13, 3-14, 7-4

examples, 3-15
nv_update_occurs event, 2-7, 3-13, 3-14, 3-22

examples, 3-14
nv_update_succeeds event, 2-7, 3-12, 3-13, 3-14, 7-4

examples, 3-15
NVT

definition, 1-3
nxcvt.exe utility

obtaining, C-9

Neuron C Programmer's Guide I-17

O
object files, B-2, B-3, B-4
offchip keyword, 1-7, 8-17, 8-18, 8-20, 8-21, 8-23, 8-24
off-chip memory

use of, 8-14
offline event, 2-5, 2-7, 6-13, 7-8, 7-10
offline_confirm() function, 7-10
onchip keyword, 1-7, 8-17, 8-18, 8-20, 8-21
oneshot I/O object, 2-25, 2-33, 2-34
online event, 2-5, 2-7, 6-13, 7-8
ontime I/O object, 2-30, 2-33

examples, 2-37
optimization

common sub-expressions, 8-36
outgoing network variable updates, 7-6
overrange value from I/O objects, 2-36

P,Q
padding of structures, 1-21
parallel I/O object, 2-18, 2-22, 2-23, 2-26
parallel processing, 7-6
partial completion event testing. See completion events
pending updates

flushing, 7-11
period I/O object, 2-30, 2-33
pointers, 1-13, 1-20

subtraction of, 1-20
poll() function, 3-22
polled applications, 1-12
polled keyword, 3-7, 3-8, 3-22, 3-24
polled network variables. See network variables, polling of
polling

definition of, 3-21
post_events() function, 3-5, 6-13, 6-28, 7-6, 7-7, 7-10
power consumption

limiting, 7-14
lowering, 7-12

power failure
effects of, 3-8, 8-20
effects on flash memory, 8-24

pragmas, 1-23
predefined events, 2-4, 2-5

I/O-related, 2-29

I-18 Index

P,Q
preempt_safe keyword, 2-4, 3-19, 6-22
preemption mode, 2-4, 3-19, 6-22, 6-23, 6-34, 8-8
preemption_mode() function, 6-24
preprocessor directives, 1-22
priority keyword, 2-4, 7-2
priority when clauses, 2-11

starving execution of nonpriority, 2-11
priority_on keyword, 6-6
processor execution

lockout when writing flash or EEPROM memory, 8-23
project manager, B-7, C-3
propagate() function, 3-7, 3-26
propagation

definition of, 3-26
of network variables. See network variables, propagation of

property lists, 4-7
for device, 4-8
for functional blocks, 5-8
for network variables, 4-10

protocol
overhead, 8-7

ptrdiff_t, 1-20
pullup resistors, internal, 2-16, 7-12
pulsecount I/O object, 2-30, 2-33, 2-34, 2-45, 7-7

examples, 2-28
pulsewidth I/O object, 2-33
pure C, B-2, B-7, C-2, C-11

definition, C-2
quadrature I/O object, 2-22, 2-23, 2-30

examples, 2-38, 2-42

Neuron C Programmer's Guide I-19

R
RAM, 3-7, 8-16

custom image needs, C-11
use, 8-26

ram keyword, 1-7, 8-17
for functions, 8-22

RAMCODE memory area, 8-17
RAMFAR memory area, 8-17
RAMNEAR memory area, 8-17
range_mod_string keyword, 4-8, 4-10, 5-8
rate_est option, 6-8
raw data value, 3-37
rcvtx keyword, 6-15
reader devices, 3-29

behavior of, 3-4
receive transactions

number of, 8-10
requirements, 8-10
size, 8-10

receive_trans_count pragma, 8-10, 8-11, 8-13
receiving a message, 6-12
register keyword, 1-13, 1-20
registers, 1-20
relaxed_casting_on pragma, 1-13, 3-27, 5-14, 8-25
relinking a program, 8-23
remainder operation

sign of result, 1-19
repeating keyword, 2-13
repeating timers, 2-48
request message. See request/response message service
REQUEST service type, 6-7, 6-15
request/response message service, 6-26

examples, 6-29
for messages, 6-25
using, 6-25
with explicit messages, 6-2

reserved words, 1-14
reset cause register, 7-18
reset event, 2-8, 8-32
reset pin, 7-15
reset time, 2-8
resetting a device. See device, reset
resource files, 1-3, 1-10, 4-2, 4-3, 5-3

Resource Editor, 1-10, 4-2, 5-4

I-20 Index

R
resp_alloc() function, 6-35
resp_arrives event, 2-7, 6-28, 6-31

comparison with msg_succeeds event, 6-31
resp_free() function, 6-35
resp_in object, 6-28

addr field, 8-13
definition, 6-28

resp_out object, 6-10, 6-26, 6-27
resp_receive() function, 6-13, 6-28, 7-7
resp_send() function, 6-27, 8-12
responses, 6-26

application message, 6-9
constructing, 6-26
format, 6-28
order of arrival vs completion events, 6-31
receiving, 6-28
sending, 6-27
without application data, 6-31

restarting the application, 7-15
retrieve_status() function, 7-18
return statement, 2-4
ROM, 3-7, 8-16
round-robin scheduling, 2-10, 2-11, 7-2

S
scaled data value, 3-37
scaled timers, 2-44, 2-45
scaled_delay() function, 2-49
scheduler, 2-2, 2-10, 7-2

bypass mode, 7-5
reset mechanism, 7-2
reset off, 7-2
scheduler reset example, 7-5

scheduler_reset pragma, 2-11, 6-12, 7-2
scheduling of network variable updates, 3-5
scheduling, event-driven vs. polled, 1-12
SCPT

definition, 1-3
use of, 4-3

SCPTmaxNVLength, 3-34
SCPTnvType, 3-33
script files. See command files
sd_string keyword, 3-7
second timers, 2-13

Neuron C Programmer's Guide I-21

S
self-documentation data, 1-11, 5-6
self-identification data, 1-11, 8-30
sending a message, 6-11

using the ACKD service, 6-19
serial I/O objects, 2-18, 2-22, 2-23, 2-45
service keyword, 6-7
service pin message, 6-15
set_node_sd_string pragma, 2-38
SFPT, 5-4
shift operator

signed, 1-19
short int, 1-13, 1-18
signed 32-bit integers, 1-5
signed arithmetic

integer division, 1-19
remainder operation, 1-19
shift operation, 1-19

signed bitfield, 1-21
significant characters, 1-16
size_t, 1-20
sizeof operator, 1-20, 6-10
sleep, 7-11

failure to enter sleep mode, 7-14
forced, 7-13, 7-14
resuming program execution, 7-13
turning off timers, 7-12
wake up due to I/O, 7-13

sleep() function, 7-11, 7-12, 7-14
examples, 7-13

Smart Transceiver RAM
effect of power failure, 3-8

Smart Transceivers databooks, v
SNVT, 3-10

definition, 1-3
soft pin direction I/O object, 2-25
software timers

accuracy of, 2-46
source files, includable, 1-23
stand-alone tool, B-2

definition, C-2
standard functional profiles, 1-9
standard image files, A-9
standard network variable types, 1-9
standard system image

definition, C-2

I-22 Index

S
static keyword, 1-6, 1-7, 1-16, 4-10, 4-18, 5-8, 5-10, 5-19, C-9
status structure, 7-18
STDLIBS.LST, B-3
stimer, 2-45

accuracy, 2-49
keyword, 2-13

storage classes, 1-5, 1-6
string functions, 1-14
structures, 1-13, 8-33

padding and alignment, 1-21
stuck queue. See events, blocking queue
subtraction of pointers, 1-20
switch statement, 1-22
sync

examples, 3-18
keyword, 3-6, 3-18
network variable. See network variables

synchronized keyword. See sync keyword
synchronous network variables. See network variables
syntax summary, 1-14
syntax, typographic conventions for, v
system errors

logging, 7-18
system images

definition, C-3
system include files, 1-22
system keyword, 1-6
system library, 8-42
system overhead, 8-27

Neuron C Programmer's Guide I-23

T
table

address. See address table
alias. See alias table
domain. See domain table
network variable configuration, 8-2

tag keyword, 6-6
tasks, 2-2, 2-4, 3-5

order of execution, 2-10
priority, 2-11
returning from, 2-4

template file. See configuration properties, template file
timeout

waiting on buffer, 6-22
timer

millisecond, 2-13, 2-45
preemption mode timeout, 2-45
pulsecount input, 2-45
second, 2-13, 2-45
triac pulse, 2-45
write, EEPROM. See EEPROM, write timer

timer objects. See timers
timer/counter

dedicated, 2-34
multiplexed, 2-34

timer/counter I/O objects, 2-17, 2-22, 2-26, 2-30
I/O functions, 2-34

timer_expires event, 2-14, 7-10
examples, 2-3

timers, 1-3, 1-13, 2-2
accuracy of, 2-44, 2-45, 2-46
checking for specific, 2-15
duration, formula for, 2-46
examples, 2-14
expiration of, 7-6
expired, 2-13
fixed duration, 2-45
in the wink task, 7-10
initialization of, 1-7
maximum number of, 2-13
measuring very short durations of time, 2-48
memory use, 8-26
repeating, 2-13, 2-48
starting over, 2-13
time remaining, 2-13
turning off, 2-13
turning off before sleep, 7-12
unqualified event expressions, 2-15
use in the debugger, 2-14

I-24 Index

T
timers_off() function, 8-33
transaction, idempotent, 6-31
transmit transaction buffers, 8-13
TRAP n diagnostic from compiler, 1-15
triac I/O object, 2-33, 2-45

examples, 2-42
triggeredcount I/O object, 2-33
type qualifiers, 1-6
typedef keyword, 3-10, 4-3
types, for network variables. See network variables

U
UCPT

definition, 1-3
use of, 4-3

UFPT, 5-4
UFPT, definition, 1-3
UNACKD service type, 6-7, 6-15
UNACKD_RPT service type, 6-7, 6-15
unacknowledged service, 3-11
unicast connections

and buffer use, 8-8
uninit keyword, 1-7, 8-20, 8-22
unions, 1-13, 1-21
unqualified events. See events, unqualified
unsigned long, 1-17
unsigned to signed integer conversion, 1-18
UNVT, 3-10

definition, 1-3
user network variable type, 3-10
user-defined events, 2-4, 2-9

Neuron C Programmer's Guide I-25

V
value files. See configuration properties, value files
variables

declaration order, 8-35
initialization, 1-7

volatile keyword, 1-13, 1-21

W,X,Y,Z
wait states

Neuron Chip, 8-16
wake up Neuron Chip, 7-11
warning diagnostic from compiler, 1-15
warnings_off pragma, 8-25
watchdog timer, 2-45, 2-49, 6-22, 7-6, 7-7, 8-24, 8-26

effects of timeout, 8-20
watchdog_update() function, 7-7

examples, 7-8
wchar_t, 1-17
when clauses, 2-2

default, 6-13
memory use, 8-27
priority, 2-11, 7-2
scheduling, 2-10

when statement, 1-14
wiegand I/O object, 7-7
wink command, 7-8
wink event, 2-7, 6-13, 7-8, 7-10
working directory, 1-23
writer device, 3-29

behavior of, 3-4

I-26 Index

	Audience
	Content
	Related Manuals
	Typographic Conventions for Syntax
	Contents
	Overview
	What Is Neuron C?
	Unique Aspects of Neuron C
	Neuron C Integer Constants
	Neuron C Variables
	Neuron C Variable Types
	Neuron C Storage Classes
	Variable Initialization
	Neuron C Declarations

	Network Variables, SNVTs, and UNVTs
	Configuration Properties
	Functional Blocks and Functional Profiles
	Data-Driven vs. Command-Driven Protocols

	Event-Driven vs. Polled Scheduling
	Low-Level Messaging
	I/O Devices

	Differences between Neuron C and ANSI C
	Neuron C Language�Implementation Characteristics
	Translation (F.3.2)
	Environment (F.3.2)
	Identifiers (F.3.3)
	Characters (F.3.4)
	Integers (F.3.5)
	Floating Point (F.3.6)
	Arrays and Pointers (F.3.7)
	Registers (F.3.8)
	Structures, Unions, Enumerations, and Bit-Fields (F.3.9)
	Qualifiers (F.3.10)
	Declarators (F.3.11)
	Statements (F.3.12)
	Preprocessing Directives (F.3.13)
	Library Functions (F.3.14)

	Focusing on a Single Device
	What Happens on a Single Device?
	The Scheduler
	When Clauses
	When Statement
	Types of Events Used in When Clauses
	Predefined Events
	Event Processing
	Reset Event

	User-defined Events
	Scheduling of When Clauses
	Priority When Clauses
	Function Prototypes

	Timers
	Declaring Timers
	Examples

	The timer_expires Event

	Input/Output
	I/O Object Types
	Declaring I/O Objects
	Use of I/O Resources

	Overlaying I/O Objects
	Performing I/O: Functions and Events
	I/O Functions
	I/O Events
	Two Methods: Which Should You Use?
	A Word of Warning

	Relationship between I/O Measurements, Outputs, and Functions
	Direct, Serial, and Parallel I/O Objects
	Timer/Counter I/O Objects
	Output Objects

	I/O Multiplexing
	I/O Functions for Timer/Counter Objects

	Device Self-Documentation

	Examples
	Example 1: Thermostat Interface
	Example 2: Simple Light Dimmer Interface
	Example 3: Seven-Segment LED Display Interface

	Input Clock Frequency and Timer Accuracy
	Fixed Timers
	Scaled Timers and I/O Objects
	Calculating Accuracy for Software Timers
	Accuracy of Millisecond Timers
	Accuracy of Second Timers

	Delay Functions
	EEPROM Write Timer

	How Devices�Communicate Using�Network Variables
	Major Topics
	Overview
	Behavior of Writer and Reader Devices
	When Updates Occur

	Declaring Network Variables
	Network Variable Modifiers
	Network Variable Classes
	Network Variable Connection Information
	Network Variable Initializer
	Network Variable Types
	Examples of Network Variable Declarations

	Connecting Network Variables
	Use of the is_bound() Function

	Network Variable Events
	The nv_update_occurs Event
	The nv_update_succeeds and nv_update_fails Events
	The nv_update_completes Event
	Sample Program

	Synchronous Network Variables
	Declaring Synchronous Network Variables
	Synchronous vs. Nonsynchronous Network Variables
	Updating Synchronous Network Variables
	Preemption Mode

	Processing Completion Events for Network Variables
	Partial Completion Event Testing
	Comprehensive Completion Event Testing
	Tradeoffs

	Polling Network Variables
	Declaring a Network Variable as Polled

	Explicit Propagation of Network Variables
	Monitoring Network Variables
	Authentication
	Setting Up Devices to Use Authentication
	Declaring Authenticated Variables and Messages
	Specifying the Authentication Key

	How Authentication Works

	Changeable-Type Network Variables
	Processing Changes to a SCPTnvType CP
	Validating a Type Change
	Processing a Type Change
	Processing a Size Change
	Rejecting a Type Change

	Changeable-Type Example

	Using Configuration Properties to Configure�Device Behavior
	Overview
	Declaring Configuration Properties
	Declaring Configuration Properties Within Files
	Declaration of Configuration Network Variables

	Instantiation of Configuration Properties
	Device Property Lists
	Network Variable Property Lists

	Accessing Property Values from a Program
	Advanced Configuration Property Features
	Configuration Properties Applying to Arrays
	Initialization of Configuration Properties at Instantiation
	Sharing of Configuration Properties
	Configuration Property Sharing Rules
	Type-Inheriting Configuration Properties
	Type-Inheriting Configuration Properties for Network Variables of Changeable Type

	Using Functional Blocks to Implement a Device Interface
	Overview
	Functional Block Declarations
	Functional Block Property Lists
	Shared Functional Block Properties

	Scope Rules
	Accessing Members and Properties of a Functional Block from a Program
	Accessing Members and Properties of a Functional Block from a Network Tool
	The Director Function
	Sharing of Configuration Properties

	How Devices Communicate�Using Application Messages
	Introduction to Application Messages
	Layers of Neuron Software
	Implicit Messages: Network Variables
	Application Messages
	Constructing a Message
	The msg_out Object Definition
	Message Tags
	Message Codes

	Block Transfers of Data

	Sending a Message
	Receiving a Message
	The msg_arrives Event
	The msg_receive() Function
	Format of an Incoming Message
	Importance of a Default When Clause

	Example
	Lamp Program
	Switch Program
	Connecting Message Tags

	Explicit Addressing
	Sending a Message with the Acknowledged Service
	Message Completion Events
	Processing Completion Events for Messages

	Preemption Mode and Messages
	Asynchronous and Direct Event Processing
	Using the Request/Response Mechanism
	Constructing a Response
	Sending a Response
	Receiving a Response
	The resp_arrives Event
	The resp_receive() Function
	Format of a Response

	Examples
	Comparison of resp_arrives and msg_succeeds
	Idempotent Versus Non-Idempotent Requests

	Application Buffers
	Allocating Application Buffers

	Additional Features
	The Scheduler
	Scheduler Reset Mechanism
	Example

	Bypass Mode
	The post_events() Function

	Watchdog Timer
	Additional Predefined Events
	Going Offline in Bypass Mode
	Wink Event

	Sleep Mode
	Flushing the Neuron Chip or Smart Transceiver
	The flush() and flush_cancel() Functions
	flush_completes Event

	Putting the Device to Sleep
	Forced Sleep

	Error Handling
	Resetting the Device
	Restarting the Application
	Taking an Application Offline
	Disabling a Functional Block
	Changing Functional Block Status
	Logging Application Errors
	System Errors

	Access to Device Error Status

	Memory Management
	Reallocating On-Chip EEPROM
	Address Table
	Alias Table
	Domain Table

	Allocating Buffers
	Buffer Size
	Application Buffer Size
	Network Buffer Size
	Errors

	Buffer Counts
	Compiler Directives for Buffer Allocation
	Outgoing Application Buffers
	Outgoing Network Buffers
	Incoming Network Buffers
	Incoming Application Buffers
	Number of Receive Transactions

	Using Neuron Chip Memory
	Chips with Off-Chip Memory
	Chips without Off-Chip Memory
	Memory Regions
	Memory Areas
	Default Memory Usage
	Controlling Non-Default Memory Usage
	eeprom Keyword (for functions and data declarations)
	far Keyword (for data declarations)
	offchip Keyword (for functions and data declarations)
	onchip Keyword (for functions and data declarations)
	ram Keyword (for functions)
	uninit Keyword (for data declarations)

	Compiler Directives
	When the Program Is Relinked
	Use of Flash Memory
	The eeprom_memcpy() Function

	Memory Use
	RAM Use
	EEPROM Use

	Usage Tip for Memory-Mapped I/O
	What to Try When a Program Doesn't Fit on a Neuron Chip
	Reduce the Size of the Configuration Property Template File
	Reduce the Number of Address Table Entries
	Remove Self-Identification Data if Not Needed
	Remove Network Variable Names if Not Needed
	Declare Constant Data Properly
	Use Efficient Constant Values
	Take Advantage of Neuron Firmware Default Initialization Actions
	Use Neuron C Utility Functions Effectively
	Be Aware of Library Usage
	Use More Efficient Data Types
	Observe Declaration Order
	Use The Optional Fastaccess Feature
	Eliminate Common Sub-Expressions
	Use Function Calls Liberally
	Use the Alternate Initialization Sequence
	Reduce the Number of Domains
	Use C Operators Effectively
	Use Neuron C Extensions Effectively

	System Library on a Neuron 3120 Chip

	Neuron C Tools�Stand-alone Use
	Stand-alone Tools
	Common Stand-alone Tool Use
	Common Aspects
	Common Set of Basic Commands

	Command Switches for Stand-alone Tools
	Neuron C Compiler
	Neuron Assembler
	Neuron Linker
	Neuron Exporter
	Neuron Librarian

	Neuron C Function Libraries
	Definitions
	LonBuilder Support for Libraries
	NodeBuilder Support for Libraries
	Tradeoffs, Advantages, and Disadvantages
	Advantages of a Library
	Disadvantages of a Library

	Library Construction Using the Librarian
	Performing Neuron C Functions from Libraries

	Neuron C�Custom System Images
	Definitions
	LonBuilder Use of Custom System Images
	NodeBuilder Use of Custom System Images
	Tradeoffs, Advantages, and Disadvantages
	Advantages of a Custom System Image
	Disadvantages of a Custom System Image

	Constructing a Custom System Image
	Providing a Large RAM Space
	Performing Neuron C Functions

