
FTXL User’s Guide

0 7 8 - 0 3 6 3 - 0 1 A

®

Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron,
3120, 3150, LNS, i.LON, ShortStack, LonMaker, and the
Echelon logo are trademarks of Echelon Corporation
registered in the United States and other countries. 3190,
FTXL, OpenLDV, Pyxos, and LonScanner are trademarks of
Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed
for use in equipment or systems, which involve danger to
human health or safety, or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2001, 2008 Echelon Corporation.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

FTXL User’s Guide iii

Welcome
Echelon’s FTXL™ products enable any product that contains an Altera® Nios® II
processor to quickly and inexpensively become a networked smart device. An
FTXL device includes a complete ANSI/CEA 709.1-B (EN14908.1)
implementation that runs on the Nios II embedded processor. Thus, the FTXL
3190™ Free Topology Smart Transceiver Chip provides a simple way to add
LONWORKS® networking to smart devices. The FTXL Transceiver is easy to use
because it has a simple host application programming interface (API), a pre-built
link-layer driver, a simple hardware interface, and comprehensive tool support.

This document describes how to develop an application for a LONWORKS device
using Echelon’s FTXL Transceiver. It describes the architecture of an FTXL
device and how to develop the software for an FTXL device. Development of a
FTXL device includes creating a model file, running the LonTalk® Interface
Developer utility, and using the FTXL API functions to program your FTXL
application for the Nios II processor.

See the FTXL Hardware Guide for a description of the hardware interfaces for an
FTXL device, the development boards for which the FTXL Developer’s Kit
provides reference designs, and FPGA design requirements for an FTXL device.

Audience
This document assumes that the reader has a good understanding of the
LONWORKS platform and programming for the Altera Nios II processor.

Related Documentation
In addition to this manual and the FTXL Hardware Guide (078-0364-01A), the
FTXL Developer’s Kit includes the following manuals:

• Neuron C Programmer’s Guide (078-0002-02G). This manual describes
the key concepts of programming using the Neuron® C programming
language and describes how to develop a LONWORKS application.

• Neuron C Reference Guide (078-0140-02E). This manual provides
reference information for writing programs that use the Neuron C
language.

• NodeBuilder Errors Guide (078-0193-01B). This manual describes error
codes issued by the Neuron C compiler.

The FTXL Developer’s Kit also includes the reference documentation for the
FTXL LonTalk API, which is delivered as a set of HTML files.

After you install the FTXL software, you can view these documents from the
Windows Start menu: select Programs → Echelon FTXL Developer’s Kit →
Documentation, then select the document that you want to view.

The following manuals are available from the Echelon Web site
(www.echelon.com) and provide additional information that can help you develop
applications for an FTXL Transceiver:

http://www.echelon.com/

iv

• Introduction to the LONWORKS System (078-0183-01A). This manual
provides an introduction to the ANSI/CEA-709.1 (EN14908) Control
Networking Protocol, and provides a high-level introduction to
LONWORKS networks and the tools and components that are used for
developing, installing, operating, and maintaining them.

• LONMARK® Application Layer Interoperability Guidelines. This manual
describes design guidelines for developing applications for open
interoperable LONWORKS devices, and is available from the LONMARK
Web site, www.lonmark.org.

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D). This
manual provides detailed technical specifications on the electrical
interfaces, mechanical interfaces, and operating environment
characteristics for the FT 3120®, FT 3150®, and FTXL 3190 Smart
Transceivers.

• LonMaker User's Guide (078-0333-01A). This manual describes how to
use the Turbo edition of the LonMaker® Integration Tool to design,
commission, monitor and control, maintain, and manage a network.

All of the FTXL documentation, and related product documentation, is available
in Adobe® PDF format. To view the PDF files, you must have a current version of
the Adobe Reader®, which you can download from Adobe at:
www.adobe.com/products/acrobat/readstep2.html.

Related Altera Product Documentation
For information about the Altera Nios II family of embedded processors and
associated tools, see the Altera Nios II Literature page:
www.altera.com/literature/lit-nio2.jsp.

Table 1 lists Altera product documents that are particularly useful for the FTXL
Developer’s Kit.

Table 1. Related Altera Documentation

Product Category Documentation Titles

Quartus® II software Introduction to Quartus II Software

Quartus II Quick Start Guide

Quartus II Development Software Handbook v7.2

http://www.lonmark.org/
http://www.adobe.com/products/acrobat/readstep2.html
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/manual/intro_to_quartus2.pdf
http://www.altera.com/literature/manual/mnl_qts_quick_start.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf

FTXL User’s Guide v

Product Category Documentation Titles

Nios II processor Nios II Hardware Development Tutorial

Nios II Software Development Tutorial (included in the
online help for the Nios II EDS integrated development
environment)

Nios II Flash Programmer User Guide

Nios II Processor Reference Handbook

Nios II Software Developer's Handbook

Cyclone® II and Cyclone III
FPGA and device
configuration

Cyclone II Device Handbook

Cyclone III Device Handbook

Configuration Handbook

USB-Blaster™ download
cable

USB-Blaster Download Cable User Guide

Software licensing Quartus II Installation & Licensing for Windows

AN 340: Altera Software Licensing

Related devboards.de Product Documentation
The FTXL Developer’s Kit uses the devboards.de DBC2C20 Altera Cyclone II
Development Board for its examples and reference designs. For information
about the DBC2C20 Altera Cyclone II Development Board, including the most
current data sheet for the board, see the DBC2C20 page:
www.devboards.de/index.php?mode=products&kategorie=14.

The DBC2C20 development board is also available from EBV Elektronik; see
www.ebv.com/en/products/development_boards/dbc2c20.html.

http://www.altera.com/literature/tt/tt_nios2_hardware_tutorial.pdf
http://www.altera.com/literature/ug/ug_nios2_flash_programmer.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf
http://www.altera.com/literature/hb/cyc3/cyclone3_handbook.pdf
http://www.altera.com/literature/hb/cfg/config_handbook.pdf
http://www.altera.com/literature/ug/ug_usb_blstr.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/an/an340.pdf
http://www.devboards.de/index.php?mode=products&kategorie=14
http://www.ebv.com/en/products/development_boards/dbc2c20.html

vi

FTXL User’s Guide vii

Table of Contents
Welcome...iii
Audience ..iii
Related Documentation ..iii

Related Altera Product Documentation .. iv
Related devboards.de Product Documentation...................................... v

Introduction to FTXL... 1
Overview... 2

A LONWORKS Device with a Single Processor Chip 3
A LONWORKS Device with Two Processor Chips 4

LonTalk Platform for ShortStack Micro Servers 5
LonTalk Platform for FTXL Transceivers....................................... 6

Comparing Neuron-Hosted, ShortStack, and FTXL Devices 8
Requirements and Restrictions for FTXL .. 10
Development Tools for FTXL .. 11
FTXL Architecture ... 11
The FTXL Developer’s Kit ... 13
Overview of the FTXL Development Process ... 13

Getting Started with FTXL ... 17
FTXL Developer’s Kit Overview.. 18
Installing the FTXL Developer’s Kit... 18

Hardware Requirements... 19
Software Requirements... 19
DBC2C20 Software.. 20
Installing the FTXL Developer’s Kit .. 20

FTXL API Files ..20
LonTalk Interface Developer... 21
Example FTXL Applications ... 21

Creating a Model File .. 23
Model File Overview .. 24
Defining the Device Interface.. 25

Defining the Interface for an FTXL Application 25
Choosing the Data Type ... 26

Defining a Functional Block ... 27
Declaring a Functional Block... 28

Defining a Network Variable.. 28
Defining a Changeable-Type Network Variable 30

Defining a Configuration Property... 32
Declaring a Configuration Property .. 32
Responding to Configuration Property Value Changes................ 34
Defining a Configuration Property Array 34
Sharing a Configuration Property ... 37
Inheriting a Configuration Property Type 38

Declaring a Message Tag .. 40
Defining a Resource File ... 40

Implementation-Specific Scope Rules.. 42
Writing Acceptable Neuron C Code .. 43

Anonymous Top-Level Types .. 43
Legacy Neuron C Constructs ..44

Using Authentication for Network Variables .. 44

viii

Specifying the Authentication Key... 44
How Authentication Works... 45

Managing Memory ... 46
Address Table .. 47
Alias Table ...47
Domain Table...48
Network Variable Configuration Table.. 48

Example Model files...48
Simple Network Variable Declarations ... 48
Network Variables Using Standard Types .. 49
Functional Blocks without Configuration Properties 50
Functional Blocks with Configuration Network Variables................. 51
Functional Blocks with Configuration Properties Implemented in a Configuration
File.. 52

Using the LonTalk Interface Developer Utility .. 55
Running the LonTalk Interface Developer... 56

Specifying the Project File .. 56
Specifying the FTXL Transceiver Configuration................................. 57
Specifying Service Pin Held Events ... 57
Configuring the FTXL LonTalk Protocol Stack................................... 57
Configuring the Buffers .. 58
Configuring the Application.. 58
Configuring Support for Non-Volatile Data... 58
Specifying the Device Program ID ... 59
Specifying the Model File.. 60
Specifying Neuron C Compiler Preferences... 60
Specifying Code Generator Preferences... 61
Compiling and Generating the Files .. 61

Using the LonTalk Interface Developer Files .. 61
Copied Files.. 62
LonNvTypes.h and LonCpTypes.h ... 62
FtxlDev.h.. 63
FtxlDev.c .. 63
project.xif and project.xfb.. 63

Using Types ..64
Bit Field Members ... 65
Enumerations .. 66
Floating Point Variables ... 66

Network Variable and Configuration Property Declarations 68
Constant Configuration Properties... 70
The Network Variable Table ... 71

Network Variable Attributes .. 71
The Message Tag Table ... 72

Developing an FTXL Application .. 73
Overview of an FTXL Application... 74

Using the FTXL LonTalk API .. 74
Callbacks and Events ..76
Integrating the Application with an Operating System 76
Providing Persistent Storage for Non-Volatile Data........................... 77

Restoring Non-Volatile Data .. 78
Writing Non-Volatile Data ... 79

Tasks Performed by an FTXL Application ... 80

FTXL User’s Guide ix

Initializing the FTXL Device .. 81
Periodically Calling the Event Pump... 81
Sending a Network Variable Update ... 83
Receiving a Network Variable Update from the Network.................. 85
Handling a Network Variable Poll Request from the Network.......... 88
Handling Changes to Changeable-Type Network Variables 88

Validating a Type Change .. 89
Processing a Type Change.. 90
Processing a Size Change ... 91
Rejecting a Type Change .. 92

Handling Dynamic Network Variables .. 92
Communicating with Other Devices Using Application Messages 93

Sending an Application Message to the Network 94
Receiving an Application Message from the Network.................. 94

Handling Management Commands.. 94
Handling Local Network Management Tasks 95
Handling Reset Events..95
Querying the Error Log...95

Working with ECS Devices.. 95
Using Direct Memory Files.. 96

The DMF Memory Window... 97
File Directory ... 99

Shutting Down the FTXL Device .. 99
Working with the Nios II Development Environment...................................101

Development Tools...102
Using a Device Programmer for the FPGA Device 103
Setting up the Nios II IDE ..103

Creating a New FTXL Application Project .. 104
Running the LonTalk Interface Developer Utility 105
Customizing the FTXL System Library... 105
Specifying the Properties for the Application....................................106

Building the Application Image .. 107
Loading the Application Image into Persistent Memory 107
Running the Application..108
Debugging the Application ..109

LonTalk Interface Developer Command Line Usage.....................................111
Overview...112
Command Usage ..112
Command Switches..113

Specifying Buffers.. 115
Model File Compiler Directives ..119

Using Model File Compiler Directives.. 120
Acceptable Model File Compiler Directives.. 120

Neuron C Syntax for the Model File...125
Functional Block Syntax..126

Keywords..126
Examples..128

Functional Block Properties Syntax ... 129
Keywords..129
Examples..130

Network Variable Syntax ..132

x

Keywords..132
The Network Variable Modifier ... 132
The Network Variable Storage Class .. 134
The Network Variable Type ... 134
The Network Variable Connection Information 135
The Network Variable Initializer... 138
The Network Variable Property List ... 138

Configuration Property Syntax ... 139
Keywords..139

The Configuration Property Type .. 140
The Configuration Property Modifiers .. 140
The Configuration Property Initializer142

Declaring a Configuration Network Variable.................................... 143
Defining a Device Property List ... 143

Message Tag Syntax ..145
Keywords..145

FTXL LonTalk API ...147
Introduction.. 148
The FTXL LonTalk API, Event Handler Functions, and Callback Handler Functions
...148

FTXL LonTalk API Functions ..149
Commonly Used FTXL LonTalk API Functions 149
Other FTXL LonTalk API Functions... 149
Application Messaging API Functions .. 150
Non-Volatile Data API Functions .. 151
Extended API Functions... 151

FTXL Event Handler Functions...152
Commonly Used Event Handler Functions................................. 152
Dynamic Network Variable Event Handler Functions 154
Application Messaging Event Handler Functions 154
Non-Volatile Data Event Handler Functions.............................. 155

FTXL Callback Handler Functions .. 155
Commonly Used Callback Handler Functions 155
Direct Memory Files Callback Handler Functions 156
Non-Volatile Data Callback Handler Functions 156

The FTXL Operating System Abstraction Layer.....................................157
Managing Critical Sections... 158
Managing Binary Semaphores ... 158
Managing Operating System Events ...158
Managing System Timing ... 159
Managing Operating System Tasks ... 159
Debugging Operating System Functions ... 159
Configuring the Operating System ..160

Determining Resource Requirements..160
Specifying Task Priorities ..161

Configuring the Micrium μC/OS-II Operating System 165
Maximum Number of Tasks... 165
Lowest Assignable Task Priority ... 166
Maximum Number of Event Control Blocks 167
Other μC/OS-II Settings ...167

The FTXL Hardware Abstraction Layer .. 178
Managing the FTXL Transceiver ...178
Managing the Service Pin ...179

FTXL User’s Guide xi

Managing Interrupts...179
Determining Memory Usage for FTXL Applications181

Overview...182
Total Memory Use ... 182
Memory Use for Transactions...183
Memory Use for Buffers ..183
Memory for LONWORKS Resources ... 184
Memory for Non-Volatile Data ... 185
Memory Usage Examples.. 187

Downloading an FTXL Application Over the Network..................................191
Overview...192
Custom Application Download Protocol ... 192
Application Download Utility..193
Download Capability within the Application ... 193

Example FTXL Applications...195
Overview of the Example Applications... 196

Example Application Files .. 196
The Simple Example Application.. 197

Main Function..198
Application Task Function.. 198
Event Handler Function ... 199
Application-Specific Utility Functions ...200
Callback Handler Function... 201
Model File...201

The Dynamic Interface Example Application ..202
Main Function..203
Application Task Function.. 204
Event Handler Functions.. 205

myNvUpdateOccurred()..206
myNvAdded()... 211
myNvTypeChanged() .. 211
myNvDeleted() ..211
myReset() ... 212
myOnline() ... 212

Application-Specific Utility Functions ...213
Callback Handler Function... 213
Model File...214

Setting up the Nios II IDE for the Example Applications....................... 215
Creating a New FTXL Application Project .. 215
Running the LonTalk Interface Developer Utility 217

Building the Example Application Image ..218
Building the Reference Design Hardware Image.............................. 218
Building the Example Software Image .. 218

Loading the Example Application Image into Flash 219
Running the Example Applications ..220

Running the Simple Example... 222
Running the Dynamic Interface Example ... 222

Changing Network Variable Types..222
Adding Dynamic Network Variables ... 223

The Micrium Software License ... 227

xii

LonTalk Interface Developer Utility Error and Warning Messages.............229
Introduction.. 230
Error Messages...230
Warning codes ..237
Hint codes ...239

Glossary...241
Index..245

FTXL User’s Guide 1

1

Introduction to FTXL

This chapter introduces the LonTalk Platform for FTXL
Transceivers. It describes the architecture of an FTXL
device, including a comparison with other LONWORKS
devices. It also describes attributes of an FTXL device, the
requirements and restrictions of the FTXL LonTalk protocol
stack, and the FTXL products that are available from
Echelon.

2 Introduction to FTXL

Overview
Automation solutions for buildings, homes, and industrial applications include
sensors, actuators, and control systems. A LONWORKS network is a peer-to-peer
network that uses an industry-standard control network protocol for monitoring
sensors, controlling actuators, communicating with devices, and managing
network operation. In short, a LONWORKS network provides communications and
complete access to control network data from any device in the network.

The communications protocol used for LONWORKS networks is the ANSI/CEA
709.1-B (EN14908.1) Control Network Protocol. This protocol is an international
standard seven-layer protocol that has been optimized for control applications
and is based on the Open Systems Interconnection (OSI) Basic Reference Model
(the OSI Model, ISO standard 7498-1). The OSI Model describes computer
network communications through the seven abstract layers described in Table 2.
The implementation of these layers in a LONWORKS device provides standardized
interconnectivity for devices within a LONWORKS network.

Table 2. LONWORKS Network Protocol Layers

OSI Layer Purpose Services Provided

7 Application Application compatibility Network configuration, self-installation,
network diagnostics, file transfer,
application configuration, application
specification, alarms, data logging,
scheduling

6 Presentation Data interpretation Network variables, application messages,
foreign frame transmission

5 Session Control Request/response, authentication

4 Transport End-to-end
communication reliability

Acknowledged and unacknowledged
message delivery, common ordering,
duplicate detection

3 Network Destination addressing Unicast and multicast addressing,
routers

2 Data Link Media access and framing Framing, data encoding, CRC error
checking, predictive carrier sense
multiple access (CSMA), collision
avoidance, priority, collision detection

1 Physical Electrical interconnect Media-specific interfaces and modulation
schemes

Echelon’s implementation of the ANSI/CEA-709.1 Control Network Protocol is
called the LonTalk protocol. Echelon has implementations of the LonTalk
protocol in several product offerings, including the Neuron firmware (which is
included in a ShortStack® Micro Server), LNS® Server, LNS remote client,
i.LON® servers, and the FTXL LonTalk protocol stack. This document refers to

FTXL User’s Guide 3

the ANSI/CEA-709.1 (EN14908-1) Control Network Protocol as the “LonTalk
protocol”, although other interoperable implementations exist.

A LONWORKS Device with a Single Processor Chip
A basic LONWORKS device consists of four primary components:

1. An application processor that implements the application layer, or both
the application and presentation layers, of the LonTalk protocol

2. A protocol engine that implements layers 2 through 5 (or 2 through 7) of
the LonTalk protocol

3. A network transceiver that provides the physical interface for the
LONWORKS network communications media, and implements the physical
layer of the LonTalk protocol

4. Circuitry to implement the device I/O

These components can be combined in a physical device. For example, Echelon’s
Smart Transceiver product can be used as a single-chip solution that combines all
four components in a single chip. When used in this way, the Smart Transceiver
runs the device’s application, implements the LonTalk protocol, and interfaces
with the physical communications media through a transformer. Figure 1 on
page 4 shows the seven-layer LonTalk protocol on a single Neuron Chip or Smart
Transceiver.

A LONWORKS device that uses a single processor chip is called a Neuron-hosted
device, which means that the Neuron-based processor (the Smart Transceiver)
runs both the application and the LonTalk protocol.

4 Introduction to FTXL

N
eu

ro
n

Fi
rm

w
ar

e

Figure 1. A Single-Chip LONWORKS Device

For a Neuron-hosted device that uses a Neuron Chip or Smart Transceiver, the
physical layer (layer 1) is handled by the Neuron Chip or Smart Transceiver.
The middle layers (layers 2 through 6) are handled by the Neuron firmware. The
application layer (layer 7) is handled by your Neuron C application program. You
create the application program using the Neuron C programming language in
either the NodeBuilder® Development Tool or the Mini EVK Evaluation Kit.

A LONWORKS Device with Two Processor Chips
Some LONWORKS devices run applications that require more memory or
processing capabilities than a single Neuron Chip or Smart Transceiver can
provide. Other LONWORKS devices are implemented by adding a transceiver to
an existing processor and application. For these applications, the device uses two
processor chips working together:

• An Echelon Smart Transceiver

• A microprocessor, microcontroller, or embedded processor in a field-
programmable gate array (FPGA) device, typically called the host
processor

A LONWORKS device that uses two processor chips is called a host-based device,
which means that the device includes a Smart Transceiver plus a host processor.

FTXL User’s Guide 5

Compared to the single-chip device, the Smart Transceiver implements only a
subset of the LonTalk protocol layers. The host processor implements the
remaining layers and runs the device’s application program. The Smart
Transceiver and the host processor communicate with each other through a link-
layer interface.

For a single-chip, Neuron-hosted, device you write the application program in
Neuron C. For a host-based device, you write the application program in ANSI C,
C++, or other high-level language, using a common application framework and
application programming interface (API). This API is called the LonTalk API. In
addition, for a host-based device, you select a suitable host processor and use the
host processor’s application development environment, rather than the
NodeBuilder Development Tool or the Mini EVK application, to develop the
application.

Echelon provides the following solutions for creating host-based LONWORKS
devices:

• The LonTalk Platform for ShortStack Micro Servers

• The LonTalk Platform for FTXL Transceivers

LonTalk Platform for ShortStack Micro
Servers
The LonTalk Platform for ShortStack Micro Servers is a set of development tools,
APIs, and firmware for developing host-based LONWORKS devices that use the
LonTalk Compact API and a ShortStack Micro Server.

A ShortStack Micro Server is a Smart Transceiver with firmware, the ShortStack
firmware, that implements layers 2 to 5 (and part of layer 6) of the LonTalk
protocol, as shown in Figure 2 on page 6. The host processor implements the
application layer (layer 7) and part of the presentation layer (layer 6).

The ShortStack firmware allows you to use almost any host processor for your
device’s application and I/O. The Smart Transceiver implements layers 2 to 5
(and part of layer 6) of the LonTalk protocol and provides the physical interface
for the LONWORKS communications channel.

A simple serial communications interface provides communications between the
ShortStack Micro Server and the host processor. Because a ShortStack Micro
Server can work with any host processor, you must provide the serial driver
implementation, although Echelon does provide the serial driver API and an
example driver for some host processors. Currently, example drivers are
available for an Atmel® ARM7 microprocessor and an Altera Nios II embedded
processor.

For ShortStack device development, you use the C programming language1. You
use the Echelon LonTalk Interface Developer utility to create the application
framework. Your application uses an ANSI C API, the Echelon LonTalk
Compact API, to manage communications with the ShortStack Micro Server and
devices on the LONWORKS network.

1 For ShortStack device development, you could alternatively use any programming language
supported by the host processor if you port the LonTalk Compact API and the application framework
generated by the LonTalk Interface Developer utility to that language.

6 Introduction to FTXL

Using a ShortStack Micro Server makes it easy to add LONWORKS networks to
any existing smart device.

Transceiver and
wiring

Application in any
suitable language

ShortStack Device

SCI or SPI serial I/O
link layer and driver
software

Link layer

Host Processor

FT 3120, PL 3120,
FT 3150, or PL 3150
Smart Transceiver

Link layer

Figure 2. The ShortStack Solution for a Host-Based LONWORKS Device

LonTalk Platform for FTXL Transceivers
The LonTalk Platform for FTXL Transceivers is a set of development tools, APIs,
firmware, and chips for developing host-based LONWORKS devices that use the
LonTalk API and an FTXL Transceiver.

An FTXL Transceiver is an FT 3190 Smart Transceiver with firmware that
implements the data link layer (layer 2) of the LonTalk protocol, as shown in
Figure 3 on page 8. The host processor implements the remaining layers (layers
3 to 7). Included with the FTXL development tools is the FTXL LonTalk protocol
stack, which implements layers 3 to 6 of the LonTalk protocol and runs on the
host processor. Your application implements the application layer (layer 7).

FTXL User’s Guide 7

For an FTXL device, you use an Altera Nios II processor as the host processor for
your device’s application and I/O. The Nios II processor runs on an Altera
Cyclone II or Cyclone III FPGA device. The FTXL LonTalk protocol stack
implements layers 3 to 6 of the LonTalk protocol, and the FTXL Transceiver
implements layers 1 and 2, including the physical interface for the LONWORKS

communications channel.

The FTXL LonTalk protocol stack includes a communications interface driver for
the parallel link layer that manages communications between the FTXL LonTalk
protocol stack within the Nios II host processor and the FTXL Transceiver. You
need to include the physical implementation of the parallel link layer in your
FTXL device design. However, you do not need to provide the software
implementation of the parallel interface driver because it is included with the
FTXL LonTalk protocol stack, nor can you modify the Echelon-provided
implementation.

For FTXL device development, you use a C or C++ compiler that supports the
Nios II processor. As with ShortStack development, you use the Echelon
LonTalk Interface Developer utility to create the application framework. Your
application uses an ANSI C API, the Echelon LonTalk API, to manage
communications with the FTXL LonTalk protocol stack, FTXL Transceiver, and
devices on the LONWORKS network.

Using an FTXL Transceiver, it is easy to add LONWORKS networking to a high-
performance FPGA-based smart device.

8 Introduction to FTXL

Transceiver and
wiring

Application in C

FTXL Device

11-pin parallel I/O
link layer and driver
software

Link layer

FTXL 3190 Free
Topology Smart

Transceiver

Nios II
Host Processor

Link layer

Figure 3. An FTXL Device

Comparing Neuron-Hosted, ShortStack, and FTXL
Devices

Table 3 on page 9 compares some of the key characteristics of the Neuron-hosted
and host-based solutions for LONWORKS devices.

FTXL User’s Guide 9

Table 3. Comparing Neuron-Hosted and Host-Based Solutions for LONWORKS Devices

Characteristic

Neuron-
Hosted
Solution ShortStack Solution FTXL Solution

Maximum number of
network variables

62 254 [1] 4096

Maximum number of
aliases

62 127 [2] 8192

Maximum number of
addresses

15 15 4096

Maximum number of
dynamic network
variables

0 0 4096

Maximum number of
receive transaction
records

16 16 200

Maximum number of
transmit transaction
records

2 2 2500

Support for the
LonTalk Extended
Command Set

No No Yes [3]

File access methods
supported

FTP [4] ,
DMF

FTP [4], DMF FTP [4], DMF [5]

Link-layer type N/A 4- or 5-line SCI
or
6- or 7-line SPI

11-line parallel I/O [6]

Typical host API
runtime footprint

N/A 5-6 KB code with 1 KB RAM
(includes serial driver, but
does not include optional
API or ISI API)

540 KB (includes
LonTalk protocol stack,
but does not include the
application or operating
system)

Host processor type N/A Any 8-, 16-, 32-, or 64-bit
microprocessor or
microcontroller

Altera Nios II embedded
processor

Application
development
language

Neuron C Any (typically ANSI C) ANSI C or C++ for the
Nios II processor

10 Introduction to FTXL

Notes:

1. ShortStack Micro Servers running on FT 3150 or PL 3150 Smart Transceivers
support up to 254 network variables. ShortStack Micro Servers running on FT
3120 Smart Transceivers support up to 240 network variables, and ShortStack
Micro Servers running on PL 3120 Smart Transceivers support up to 62 network
variables. A custom Micro Server can support up to 254 network variables,
depending on available resources.

2. ShortStack Micro Servers running on FT 3150 or PL 3150 Smart Transceivers
support up to 127 aliases. ShortStack Micro Servers running on FT 3120 Smart
Transceivers support up to 120 aliases. ShortStack Micro Servers running on PL
3120 Smart Transceivers support up to 62 aliases. A custom Micro Server can
support up to 127 aliases, depending on available resources.

3. See the LonTalk Control Network Protocol Specification, EIA/CEA 709.1-B-2002, for
more information about the extended command set (ECS) network management
commands. This document is available from the IHS Standards Store:
global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=971131&rid=
CEA.

4. An implementation of the LONWORKS file transfer protocol (FTP) is not provided
with the product.

5. For more information about the direct memory files (DMF) feature, see Using Direct
Memory Files on page 96.

6. The FTXL parallel I/O link-layer driver is included with the FTXL LonTalk protocol
stack.

The FTXL solution provides the best performance and highest network capacity,
but is limited using to an Altera Nios II host processor and the TP/FT-10 channel.
The ShortStack solution provides support for any host processor (with available
examples for both an Atmel ARM7 host processor and an Altera Nios II host
processor), and supports both the TP/FT-10 and PL-20 channels. The ShortStack
solution supports fewer network variables and aliases that the FTXL solution,
but more network variables and aliases than the Neuron-hosted solution.

Because the ShortStack and FTXL solutions are both built on the LonTalk
platform, they share a very similar API (the FTXL LonTalk API and the
ShortStack LonTalk Compact API). Thus, migrating applications from one
solution to the other is fairly easy. In addition, you can create applications that
share a common code base for devices that use both solutions.

Requirements and Restrictions for FTXL
The FTXL Developer’s Kit supports only the FTXL 3190 Free Topology Smart
Transceiver. It does not support other transceiver types.

The FTXL LonTalk protocol stack requires that the FTXL application use an
embedded operating system. The FTXL Developer’s Kit includes an example
application that uses the Micrium μC/OS-II operating system, but you can use
any embedded operating system that meets your application’s requirements.
And although the μC/OS-II operating system is a real-time operating system, the
FTXL LonTalk protocol stack does not require the operating system to be a real-
time operating system.

http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=971131&rid=CEA
http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=971131&rid=CEA

FTXL User’s Guide 11

The FTXL LonTalk protocol stack and API require about 540 KB of program
memory on the Nios II host processor, not including the application program or
the operating system. In addition, you must provide sufficient additional non-
volatile memory for device configuration data and any non-volatile data that you
include in your application.

You can implement configuration properties as configuration network variables
or in configuration files. To access configuration files, you can implement the
LONWORKS file transfer protocol (FTP) or use the direct memory files (DMF)
feature. See Using Direct Memory Files on page 96 for more information about
when to use FTP or the DMF feature.

Development Tools for FTXL
To develop an application for a device that uses an FTXL Transceiver, you need a
development system for the Nios II processor. In addition, you need the FTXL
Developer’s Kit, which includes:

• The FTXL LonTalk API

• The LonTalk Interface Developer utility for defining the interface for
your FTXL device and generating the application framework

• Example FTXL applications

• A reference design for a Nios II processor and associated hardware for
the FPGA device

You also need a network management tool to install and test your FTXL device.
You can use the LonMaker Integration Tool, or any other tool that can install and
monitor LONWORKS devices. See the LonMaker User's Guide for more
information on the LonMaker tool.

You do not need the NodeBuilder Development Tool to use the FTXL Developer's
Kit; however, the NodeBuilder Code Wizard that is included with the
NodeBuilder tool, version 3 or later, can help you develop your Neuron C model
file. The model file is used to define the device’s interoperable interface.

FTXL Architecture
An FTXL device consists of the following components:

• The FTXL 3190 Free Topology Smart Transceiver running the FTXL
firmware

• A Nios II embedded processor running the following software:

• An FTXL host application that uses the FTXL LonTalk API

• The FTXL LonTalk protocol stack

• The FTXL hardware abstraction layer (HAL)

• The FTXL non-volatile data (NVD) driver

• The FTXL operating system abstraction layer (OSAL)

• An embedded operating system

• The Altera SOPC Builder hardware abstraction layer (HAL)

12 Introduction to FTXL

Figure 4 shows the basic architecture of an FTXL device.

Figure 4. FTXL Architecture

The FTXL Developer's Kit includes the FTXL LonTalk API and a precompiled
library that implements the FTXL LonTalk protocol stack. The kit also includes
source code for additional operating system and hardware APIs that you compile
and link with your application. The FTXL LonTalk API defines the functions
that your application calls to communicate with other devices on a LONWORKS
network. The API code provides ANSI C interfaces for the host application.

FTXL User’s Guide 13

The FTXL LonTalk API consists of the following types of functions:

• Functions to initialize the FTXL device after each reset.

• A function that the application must call periodically. This function
processes messages pending in any of the data queues.

• Various functions to initiate typical operations, such as the propagation
of network variable updates.

• Event handler functions to notify the application of events, such as the
arrival of network variable data or an error in the propagation of an
application message.

• Functions to interface with the operating system.

The FTXL Developer’s Kit
The FTXL Developer’s Kit consists of two components: a hardware component
and a software component. See the FTXL Hardware Guide for information about
the hardware component of the FTXL Developer’s Kit.

The software component contains the software required to develop FTXL
applications that use an FTXL Transceiver:

1. The FTXL LonTalk protocol stack library and FTXL LonTalk API

2. ANSI C source code for event handler functions.

3. Portable ANSI C source code for the reference implementations of the
APIs for the operating system and hardware.

4. The LonTalk Interface Developer utility that you use to generate device
interface data, device interface files, and a skeletal application
framework.

5. Example applications that run on the reference design hardware.

The software component of the FTXL Developer’s Kit is available as a free
download from the Echelon Web site: www.echelon.com/downloads. You also
must acquire a licence from Echelon to use the FTXL Developer’s Kit.

Overview of the FTXL Development Process
Figure 5 on page 14 shows a high-level overview of the development process for
an FTXL application. The basic process includes the following steps:

1. Use the Altera Quartus II software and SOPC Builder tool, with input
from FTXL hardware components and your FPGA design, to generate
compiled hardware description files.

2. Use the LonTalk Interface Developer utility, with input from a model file
that you create, to generate application framework files and interface
files.

3. Use the Altera Nios II EDS IDE to create the FTXL application, with
input from:

• The application framework files generated by the LonTalk Interface
Developer utility

http://www.echelon.com/downloads

14 Introduction to FTXL

• The FTXL hardware abstraction layer (HAL) files, which you might
need to modify

• The FTXL operating system abstraction layer (OSAL) files, which you
might need to modify

• The FTXL non-volatile data (NVD) driver files, which you might need
modify

• The FTXL LonTalk protocol stack

Because an FTXL device is comprised of both hardware and software
components, different people can be involved in the various steps, and these steps
can occur in parallel or sequentially. The figure does not imply a required order
of steps.

Compiled
FPGA

Hardware
Description

Files

Source
Model File

(*.nc)

Interface Files
(*.xif and *.xfb)

FTXL Application

LonTalk
Interface

Developer

Nios II EDS
IDE

Quartus II
Software and
SOPC Builder

FTXL LonTalk
Protocol Stack

Generated
Application
Framework

Files

FTXL HAL FTXL OSAL FTXL NVD
Driver

Source
FPGA

Hardware
Description

Files

FTXL Hardware
Components

Figure 5. Overview of the FTXL Development Process

For more information about hardware development for an FTXL device, see the
FTXL Hardware Guide.

This manual describes the software development process for creating an FTXL
device, which includes the general tasks listed in Table 4.

Table 4. Tasks for Developing Software for an FTXL Device

Task Additional Considerations Reference

Install the FTXL
Developer’s Kit and
become familiar with it

 Chapter 2, Getting
Started with
FTXL, on page 17

FTXL User’s Guide 15

Task Additional Considerations Reference

Select an FPGA device
and load it with Nios II
processor and related
hardware

The FTXL application runs on a Nios II
embedded processor, which is implemented
on an FPGA device. You must meet the
FTXL hardware and software requirements
to ensure that the FTXL device has
sufficient RAM and non-volatile memory.

The FTXL
Hardware Guide

Integrate the FTXL
application with your
device hardware

You integrate the FTXL Transceiver with
the device hardware. You can reuse many
parts of a hardware design for different
applications to create different FTXL
devices.

The FTXL
Hardware Guide

Chapter 6,
Working with the
Nios II
Development
Environment, on
page 101

Test and verify your
hardware design

You must ensure that the host processor
and the FTXL Transceiver can
communicate using the parallel interface.
The FTXL Developer’s Kit includes a Bring-
Up application to help test and verify the
communications interface.

The FTXL
Hardware Guide

Select and define the
functional profiles and
resource types for your
device using tools such as
the NodeBuilder
Resource Editor and the
SNVT and SCPT Master
List

You must select profiles and types for use in
the device’s interoperable interface for each
application that you plan to implement.
This selection can include the definition of
user-defined types for network variables,
configuration properties or functional
profiles. A large set of standard definitions
is also available and is sufficient for many
applications.

Chapter 3,
Creating a Model
File, on page 23

Structure the layout and
interoperable interface of
your FTXL device by
creating a model file

You must define the interoperable interface
for your device in a model file, using the
Neuron C (Version 2.1) language, for every
application that you implement. You can
write this code by hand, derive it from an
existing Neuron C or ShortStack
application, or use the NodeBuilder Code
Wizard included with the NodeBuilder
Development Tool to create the required
code using a graphical user interface.

Chapter 3,
Creating a Model
File, on page 23

Appendix C,
Neuron C Syntax
for the Model File,
on page 125

16 Introduction to FTXL

Task Additional Considerations Reference

Use the LonTalk
Interface Developer
utility to generate device
interface data, device
interface files, and a
skeleton application
framework

You must execute this utility, a simple
click-through wizard, whenever the model
file changes or other preferences change.
The utility generates the interface files
(including the XIF file) and source code that
you can compile and link with your
application. This source code includes data
that is required for initialization and for
complete implementations of some aspects
of your device.

Chapter 4, Using
the LonTalk
Interface
Developer Utility,
on page 55

Complete the FTXL
LonTalk API event
handler functions and
callback handler
functions to process
application-specific
LONWORKS events

You must complete the event handler
functions and callback handler functions for
every application that you implement,
because they provide input from network
events to your application, and because
they are part of your networked device’s
control algorithm.

Chapter 5,
Developing an
FTXL Application,
on page 73

Appendix D, FTXL
LonTalk API, on
page 147

Modify the FTXL
Operating System
Abstraction Layer
(OSAL) files for your
application’s operating
system

If you use the Micrium μC/OS-II operating
system, you can use the OSAL files that are
included with the FTXL Developer’s Kit.

The FTXL
Operating System
Abstraction Layer
on page 157

Modify the non-volatile
data (NVD) driver files

Depending on the type of non-volatile
memory that your device uses, you can use
one of the non-volatile data drivers
provided with the FTXL Developer’s Kit,
make minor modifications to one of these
drivers, or implement your own driver.

Providing
Persistent Storage
for Non-Volatile
Data on page 77

Modify your application
to interface with a
LONWORKS network by
using the FTXL LonTalk
API function calls

You must make these function calls for
every application that you implement.
These calls include, for example, calls to the
LonPropagateNv() function that propagates
an updated network variable value to the
network. Together with the completion of
the event and callback handler functions,
this task forms the core of your networked
device’s control algorithm.

Chapter 5,
Developing an
FTXL Application,
on page 73

Appendix D, FTXL
LonTalk API, on
page 147

Test, install, and
integrate your FTXL
device using a
LONWORKS network tool
such as the LonMaker
Integration Tool

 The LonMaker
User's Guide

FTXL User’s Guide 17

2

Getting Started with FTXL

This chapter describes the FTXL Developer’s Kit and how to install it.

18 Getting Started with FTXL

FTXL Developer’s Kit Overview
The FTXL Developer’s Kit is a development toolkit that contains the hardware
designs, software designs, and documentation needed for developing applications
that use an FTXL Transceiver. The kit includes the following components:

• Hardware and software design files for the FPGA design, including
Quartus II files, SOPC Builder files, and Nios IDE files

• Hardware component files for the FPGA development board

• The FTXL LonTalk protocol stack and FTXL LonTalk API, delivered as a
C object library

• Software source files for the FTXL LonTalk API

• A set of example programs that demonstrate how to use the FTXL
LonTalk API to communicate with a LONWORKS network

• The LonTalk Interface Developer utility, which defines parameters for
your FTXL host application program and generates required device
interface data for your device

• Documentation, including this FTXL User’s Guide, the FTXL Hardware
Guide, and HTML documentation for the FTXL API

The FTXL Developer’s Kit also refers to three hardware development boards that
are available from devboards GmbH, www.devboards.de. European customers
can also obtain these boards from EBV Elektronik GmbH, www.ebv.com. The
FTXL Developer’s Kit uses these boards for its examples and reference designs.
These boards are:

• The DBC2C20 Altera Cyclone II Development Board, which provides the
FPGA device and peripheral I/O

• The FTXL Adapter Board, which primarily provides voltage regulation
between the DBC2C20 development board and the FTXL Transceiver
Board

• The FTXL Transceiver Board, which includes the FTXL 3190 Smart
Transceiver Chip and a LONWORKS network connector

Contact your Altera representative for information about acquiring a Nios II
development license.

See the FTXL Hardware Guide for more information about the hardware
development boards and the reference designs for the FTXL Developer’s Kit.

The software for the FTXL Developer’s Kit is available as a free download from
www.echelon.com/ftxl.

Installing the FTXL Developer’s Kit
The FTXL Developer’s Kit requires the following software:

• Altera Quartus II software, Version 7.2 or later

• Altera Nios II EDS integrated development environment (IDE), Version
7.2 or later

http://www.devboards.de/
http://www.ebv.com/
http://www.echelon.com/ftxl

FTXL User’s Guide 19

• Driver software for the Altera USB-Blaster download cable

• FPGA configuration data and software for the DBC2C20 development
board (included with the FTXL Developer’ Kit)

For more information about the Altera software products, see see Chapter 6,
Working with the Nios II Development Environment, on page 101, and the Altera
Web site for the Nios II processor,
www.altera.com/products/ip/processors/nios2/ni2-index.html.

The following sections describe the hardware and software requirements, and
how to install the FTXL Developer’s Kit.

Hardware Requirements
For the FTXL Developer’s Kit plus the Altera design software, your computer
system must meet the following minimum requirements:

• Intel® Pentium® III 866 MHz processor

• 256 MB RAM

• 5 GB available hard disk space (includes the space required for the Altera
tools)

• CD-ROM drive

• 1 available Universal Serial Bus (USB) port

The recommended specifications for your computer system include:

• Intel Pentium 4 2.0 GHz processor

• 1 GB RAM

• 5 GB available hard disk space

• CD-ROM or DVD-ROM drive

• 2 available USB ports

In addition, you must have the following hardware for LONWORKS connectivity:

• LONWORKS compatible network interface, such as a U10 USB Network
Interface or an i.LON 100 Internet Server

• A LONWORKS TP/FT-10 network cable, with network terminator

Software Requirements
For the FTXL Developer’s Kit plus the Altera design software, your computer
system must meet one of the following minimum requirements:

• Microsoft® Windows® XP, plus Service Pack 2 or later

• Microsoft Windows Vista

The following software is optional, depending on your requirements:

• Adobe Reader 7.0.8 or later

http://www.altera.com/products/ip/processors/nios2/ni2-index.html

20 Getting Started with FTXL

DBC2C20 Software
Although the DBC2C20 Altera Cyclone II Development Board includes a set of
software for general FPGA development, you do not need to install any of the
DBC2C20 software to work with the FTXL Developer’s Kit. All of the necessary
FPGA components and other software for the DBC2C20 development board are
installed with the FTXL Developer’s Kit.

Installing the FTXL Developer’s Kit
To install the FTXL Developer’s Kit, perform the following steps:

1. Download the FTXL Developer’s Kit from www.echelon.com/ftxl.
Although the download is free, you must agree to the licence terms for the
FTXL Developer’s Kit when you download it.

2. Double click the FtxlDevKit100.exe file that you downloaded. The
Echelon FTXL Developer’s Kit main installer window opens.

3. Follow the installation dialogs to install the FTXL Developer’s Kit onto
your computer.

After you install the kit, you can integrate it into your Nios II application
development environment, as described in Chapter 6, Working with the Nios II
Development Environment, on page 101.

In addition to the FTXL Developer’s Kit, the installation program also installs:

• LONMARK® Resource Files

• LONMARK Standard Program ID Calculator

• NodeBuilder Resource Editor

FTXL API Files
The FTXL LonTalk protocol stack and FTXL LonTalk API are provided as a C
object library. In addition, the FTXL Developer’s Kit includes a set of portable
ANSI C files that accompany the API, which are listed in Table 5. These files are
contained in the [FTXL]\Core directory (where [FTXL] is the directory in which
you installed FTXL, usually C:\LonWorks\FTXL). In addition, there is a backup
of these files in a ZIP file in the [FTXL]\SourceArchive directory.

The LonTalk Interface Developer utility automatically copies these files into the
project folder, but does not overwrite existing files with the same names.

Table 5. FTXL LonTalk API Files

File Name Description

FtxlApi.h Function definitions for the FTXL LonTalk API

FtxlHal.h

FtxlHal.c

Functions for the FTXL hardware abstraction layer (HAL)

http://www.echelon.com/ftxl

FTXL User’s Guide 21

File Name Description

FtxlHandlers.c

Function definitions for the FTXL event handler functions and
callback handler functions

FtxlNvdFlashDirect.c

FtxlNvdFlashFs.c

FtxlNvdUserDefined.c

Functions for managing non-volatile data

FtxlOsal.h

FtxlOsal.c

Functions for the FTXL operating system abstraction layer (OSAL)

FtxlTypes.h C type definitions that are used by the FTXL LonTalk API

libFtxl100.a C library for the FTXL LonTalk protocol stack and FTXL LonTalk
API

LonPlatform.h Definitions for adjusting your compiler and development
environment to the requirements of the FTXL LonTalk API

LonTalk Interface Developer
The LonTalk Interface Developer utility generates the device interface data and
device interface files required to implement the device interface for your FTXL
device. It also creates a skeleton application framework that you can modify and
link with your application. This framework contains most of the code that is
needed for initialization and other required processing.

The executable for the LonTalk Interface Developer utility is named LID.exe, and
is installed in the LonTalk Interface Developer directory (usually,
C:\LonWorks\InterfaceDeveloper).

The LonTalk Interface Developer utility also includes a command-line interface
that allows make-file and script-driven use of the utility. For more information
about the command-line interface, see Appendix A, LonTalk Interface Developer
Command Line Usage, on page 111.

For more information about the LonTalk Interface Developer utility, see Chapter
4, Using the LonTalk Interface Developer Utility, on page 55.

Example FTXL Applications
The FTXL Developer’s Kit includes two example applications that run on the
reference designs for the development boards that are available from
devboards.de GmbH. The first example is a simple FTXL application that
simulates a voltage amplifier, whereas the second example demonstrates the use
of dynamic network variables and changeable-type network variables.

See Appendix G, Example FTXL Applications, on page 195, for more information
about these examples.

22 Getting Started with FTXL

FTXL User’s Guide 23

3

Creating a Model File

You use a model file to define your device’s interoperable
interface, including its network inputs and outputs. The
LonTalk Interface Developer utility converts the information
in the model file into device interface data and a device
interface file for your application. This chapter describes
how to create a model file using the Neuron C programming
language.

Syntax for the Neuron C statements in the model file is
described in Appendix C, Neuron C Syntax for the Model
File, on page 125.

24 Creating a Model File

 Model File Overview
The interoperable application interface of a LONWORKS device consists of its
functional blocks, network variables, configuration properties, and their
relationships. The network variables are the device’s means of sending and
receiving data using interoperable data types. The configuration properties are
the device’s means of providing externally exposed configuration data, again
using interoperable data types. The configuration data items can be read (and
typically also written) by a network tool. The device interface is organized into
functional blocks, each of which groups together a collection of network variables
and configuration properties that are used to perform one task. These network
variables and configuration properties are called the functional block members.

The model file describes the functional blocks, network variables, configuration
properties, and their relationships, that make up the interoperable interface for
an FTXL device, using the Neuron C programming language. Neuron C is based
on ANSI C, and is designed for creating a device’s interoperable interface and
implementing its algorithms to run on Neuron Chips and Smart Transceivers.
However, you do not need to be proficient in Neuron C to create a model file for
an FTXL application because the model file does not include executable code. All
tools required to process model files are included with FTXL; you do not need to
license another Neuron C development tool to work with an FTXL model file.
The model file uses Neuron C Version 2.1 declaration syntax.

The LonTalk Interface Developer utility uses the model file to generate device
interface data and device interface files. You can use any of the following
methods to create a model file:

• Manually create a model file
A model file is a text file that you can create with any text or
programming editor, including Windows Notepad. Model files have the
.nc file extension. This chapter describes the types of Neuron C
statements you can include in a model file. Appendix C describes the
syntax for the Neuron C statements.

• Reuse existing Neuron C code
You can reuse an existing Neuron C application that was originally
written for a Neuron Chip or a Smart Transceiver as a model file. The
LonTalk Interface Developer utility uses only the device interface
declarations from a Neuron C application program, and ignores all other
code. You might have to delete some code from an existing Neuron C
application program, or exclude this code using conditional compilation,
as described later in this chapter.

• Automatically generate a model file
You can use the NodeBuilder Code Wizard, included with Release 3 or
later of the NodeBuilder Development Tool, to automatically generate a
model file. Using the NodeBuilder Code Wizard, you can define your
device interface by dragging functional profiles and type definitions from
a graphical view of your resource catalog to a graphical view of your
device interface, and refine them using a convenient graphical user
interface. When you complete the device interface definition, click the
Generate Code and Exit button to automatically generate your model file.
Use the main file produced by the NodeBuilder Code Wizard as your
model file. NodeBuilder software is not included with the FTXL

FTXL User’s Guide 25

Developer’s Kit, and must be licensed separately. See the NodeBuilder
User’s Guide for details about using the NodeBuilder Code Wizard.

See Appendix C, Neuron C Syntax for the Model File, on page 125, for the
detailed Neuron C syntax for each type of statement that can be included in the
model file.

Defining the Device Interface
You use a model file to define the device interface for your device. The device
interface for a LONWORKS device consists of its:

• Functional blocks

• Network variables

• Configuration properties

A functional block is a collection of network variables and configuration
properties, which are used together to perform one task. These network
variables and configuration properties are called the functional block members.

Functional blocks are defined by functional profiles. A functional profile is used
to describe common units of functional behavior. Each functional profile defines
mandatory and optional network variables and configuration properties. Each
functional block implements an instance of a functional profile. A functional
block must implement all of the mandatory network variables and configuration
properties defined by the functional profile, and can also implement any of the
optional network variables and configuration properties defined by the functional
profile. In addition, a functional block can implement network variables and
configuration properties that are not defined by the functional profile – these are
called implementation-specific network variables and configuration properties.

The primary inputs and outputs to a functional block are provided by network
variables. A network variable is a data item that a device application expects to
get from other devices on a network (an input network variable) or expects to
make available to other devices on a network (an output network variable).
Network variables are used for operational data such as temperatures, pressures,
switch states, or actuator positions.

A configuration property is a data item that specifies the configurations for a
device (its network variables and functional blocks). Configuration properties are
used for configuration data such as set points, alarm thresholds, or calibration
factors. Configuration properties can be set by a network management tool (such
as the LonMaker Integration tool or a customized plug-in created for the device),
and allow a network integrator to customize a device’s behavior.

These interface components, and the resource files used to define them, are
described in the following sections.

Defining the Interface for an FTXL Application
Within the model file, you define a simple input network variable with the
following syntax:

network input type name;

26 Creating a Model File

Example: The following declaration defines an input network variable of type
“SNVT_type” with the name “nviAmpere”.

network input SNVT_amp nviAmpere;

You define a simple output network variable using the same syntax, but with the
output modifier:

network output type name;

Example: The following declaration defines an output network variable of type
“SNVT_type” with the name “nvoAmpere”.

network output SNVT_amp nvoAmpere;

By convention, input network variable names have an nvi prefix and output
network variables have an nvo prefix.

See Network Variable Syntax on page 132 for the full network variable
declaration syntax.

The LonTalk Interface Developer utility reads the network variable declarations
in the model file to generate device-specific code. For the example of the
nviAmpere and nvoAmpere pair of network variables above, the utility generates
a standard ANSI C type definition for the SNVT_amp network variable type and
implements two global C-language variables:

typedef ncsLong SNVT_amp;
…
volatile SNVT_amp nviAmpere;
SNVT_amp nvoAmpere;

The ncsLong data type defines the host equivalent of a Neuron C signed long
variable. This type is defined in the LonPlatform.h file.

Your FTXL application can simply read the nviAmpere global C variable to
retrieve the most recently received value from that input network variable.
Likewise, your application can write the result of a calculation to the nvoAmpere
global C variable, and call the appropriate FTXL LonTalk API function to
propagate the network variable to the LONWORKS network.

Choosing the Data Type
Many functional profiles define the exact type of each member network variable.
The SNVT_amp type used in the previous section is such a type. Using a
different network variable type within a functional profile that requires this
network variable type renders the implementation of the profile not valid.

Other profiles are generic profiles that allow various network variable types to
implement a member. The SFPTopenLoopSensor functional block (described in
the Defining a Functional Block on page 27) is an example for such a generic
functional profile. This profile defines the nvoValue member to be of type
SNVT_xxx, which means “any standard network variable type.”

Implementing a generic profile allows you to choose the standard network
variable type from a range of allowed types when you create the model file.

For added flexibility, if the specific functional profile allows it, your application
can implement changeable-type network variables. A changeable-type network
variable is network variable that is initially declared with a distinct default type

FTXL User’s Guide 27

(for example, SNVT_volt), but can be changed during device installation to a
different type (for example, SNVT_volt_mil).

Using changeable-type network variables allows you to design a generic device
(such as a generic proportional-integral-derivative (PID) controller) that supports
a wide range of numeric network variable types for set-point, control, and
process-value network variables.

See Defining a Changeable-Type Network Variable on page 30 for more
information about implementing changeable-type network variables for FTXL
applications.

You can also define your own nonstandard data types. The NodeBuilder
Resource Editor utility, which is included with the FTXL Development Kit,
allows you to define your own, nonstandard data types for network variables or
configuration properties, and allows definition of your own, nonstandard
functional profiles. These nonstandard types are called user-defined types and
user-defined profiles.

Defining a Functional Block
The first step for defining a device interface is to select the functional profile, or
profiles, that you want your device to implement. You can use the NodeBuilder
Resource Editor to look through the standard functional profiles, as described in
Defining a Resource File on page 40. You can find detailed documentation for
each of the standard functional profiles at types.lonmark.org2.

For example, if your device is a simple sensor or actuator, you can use one of the
following standard profiles:

• Open-loop sensor (SFPTopenLoopSensor)

• Closed-loop sensor (SFPTclosedLoopSensor)

• Open-loop actuator (SFPTopenLoopActuator)

• Closed-loop actuator (SFPTclosedLoopActuator).

If your device is more complex, look through the other functional profiles to see if
any suitable standard profiles have been defined. If you cannot find an existing
profile that meets your needs, you can define a user functional profile, as
described in Defining a Resource File on page 40.

Example: The following example shows a simple functional block declaration.

network output SNVT_amp nvoAmpere;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpMeter;

This functional block:

• Is named fbAmpMeter (network management tools use this name unless
you include the external_name keyword to define a more human-readable
name)

• Implements the standard profile SFPTopenLoopSensor

2 Use the Windows Internet Explorer browser to view this site.

http://types.lonmark.org/

28 Creating a Model File

• Includes a single network variable, named nvoAmpere, which
implements the nvoValue network variable member of the standard
profile

Declaring a Functional Block
A functional block declaration, by itself, does not cause the LonTalk Interface
Developer utility to generate any executable code, although it does create data
that implements various aspects of the functional block. Principally, the
functional block creates associations among network variables and configuration
properties. The LonTalk Interface Developer utility uses these associations to
create the self-documentation (SD) and self-identification (SI) data in the device
and in its associated device interface file (.xif or .xfb extension).

The functional block information in the device interface file, or the SD and SI
data, communicates the presence and names of the functional blocks contained in
the device to a network management tool.

Network-variable or configuration members of a functional block also have self-
documentation data, which is also automatically generated by the LonTalk
Interface Developer utility. This self-documentation data provides details about
the particular network variable or configuration property, including whether the
network variable or configuration property is a member of a functional block.

Functional blocks can be implemented as single blocks or as arrays of functional
blocks. In a functional block array, each member of the array implements the
same functional profile, but has different network variables and typically has
different configuration properties that implement its network variable and
configuration property members.

Example: The following example shows a simple array of 10 functional blocks.

network output SNVT_amp nvoAmpere[10];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpMeter[10];

This functional block array:

• Contains ten functional blocks, fbAmpMeter[0] to fbAmpMeter[9], each
implementing the SFPTopenLoopSensor profile.

• Distributes the ten nvoAmpere network variables among the ten
functional blocks, starting with the first network variable (at network
variable array index zero). Each member of the network variable array
applies to a different network variable member of the functional block
array.

Defining a Network Variable
Every network variable has a type, called a network variable type, that defines
the units, scaling, and structure of the data contained within the network
variable. To connect a network variable to another network variable, both must
have the same type. This type matching prevents common installation errors
from occurring, such as connecting a pressure output to a temperature input.

FTXL User’s Guide 29

Type translators are also available to convert network variables of one type to
another type. Some type translators can perform sophisticated transformations
between dissimilar network variable types. Type translators are special
functional blocks that require additional resources, for example, a dedicated type-
translating device in your network.

You can minimize the need for type translators by using standard network
variable types (SNVTs) for commonly used types, and by using changeable-type
network variables, where appropriate. You can also define your own user
network variable types (UNVTs).

You can use the NodeBuilder Resource Editor to look through the standard
network variable types, as described in Defining a Resource File on page 40, or
you can browse the standard profiles online at types.lonmark.org.

You can connect network variables on different devices that are of identical type,
but opposite direction, to allow the devices to share information. For example, an
application on a lighting device could have an input network variable of the
switch type, while an application on a dimmer-switch device could have an
output network variable of the same type. You can use a network tool, such as
the LonMaker Integration Tool, to connect these two devices, allowing the switch
to control the lighting device, as shown in Figure 6.

Figure 6. Simple Switch Controlling a Single Light

A single network variable can be connected to multiple network variables of the
same type but opposite direction. The example in Figure 7 shows the same
switch being used to control three lights.

Figure 7. Simple Switch Controlling Three Lights

http://types.lonmark.org/index.html

30 Creating a Model File

The FTXL application in a device does not need to know anything about where
input network variables come from or where output network variables go. After
the FTXL application updates a value for an output network variable, it uses a
simple API function call to have the FTXL LonTalk protocol stack propagate it.

Through a process called binding that takes place during network design and
installation, the FTXL stack is configured to know the logical address of the other
devices (or groups of devices) in the network that expect a specific network
variable, and the FTXL stack assembles and sends the appropriate packets to
these devices. Similarly, when the FTXL stack receives an updated value for an
input network variable required by its application program, it reads the data
from the network and passes the data to the application program.

The binding process creates logical connections between an output network
variable in one device and an input network variable in another device or group
of devices. You can think of these connections as “virtual wires.” For example,
the dimmer-switch device in the dimmer-switch-light example above could be
replaced with an occupancy sensor, without requiring any changes to the lighting
device.

Network variable processing is transparent, and typical networked applications
do not need to know whether a local network variable is bound (“connected”) to
one or more network variables on the same device, to one or more other devices,
or not bound at all. For those applications that do require such knowledge, API
functions (such as LonQueryNvConfig(), LonQueryAliasConfig(),
LonNvIsBound(), and LonMtIsBound()) are supplied to query the related
information.

Defining a Changeable-Type Network
Variable
A changeable-type network variable is a network variable that supports
installation-time changes to its type and its size.

You can use a changeable-type network variable to implement a generic
functional block that works with different types of inputs and outputs. Typically,
an integrator uses a network management tool plug-in that you create to change
network variable types.

For example, you can create a general-purpose device that can be used with a
variety of sensors or actuators, and then create a functional block that allows the
integrator to select the network variable type depending on the physical sensor or
actuator that is attached to the device during installation.

Restrictions:

• Each changeable-type network variable must be declared with an initial
type in the model file. This initial type defines the default type and the
maximum size of the network variable.

• A changeable-type network variable must be a member of a functional
block.

• Only network variables that are not bound can change their type. To
change the type of a bound network variable, you must first unbind
(disconnect) the network variable.

FTXL User’s Guide 31

• Only a network management tool, such as the LonMaker Integration tool,
can change the type of a changeable-type network variable. The FTXL
device does not initiate type changes.

To create a changeable-type network variable for an FTXL application, perform
the following tasks:

1. Declare the network variable with the changeable_type keyword. You
must declare an initial type for the network variable, and the size of the
initial type must be equal to the largest network variable size that your
application supports. The initial type must be one of the interoperable
standard or user network variable types.

2. Select Has changeable interface in the LONMARK Standard Program ID
Calculator (included with the LonTalk Interface Developer utility) to set
the changeable-interface bit in the program ID when you create the
device template.

3. Declare a SCPTnvType configuration property that applies to the
changeable-type network variable. This configuration property is used by
network management tools to notify your application of changes to the
network variable type.

4. You can optionally also declare a SCPTmaxNVLength configuration
property that applies to the changeable-type network variable. This
configuration property informs network management tools of the
maximum type length supported by the changeable-type network
variable. This value is a constant, so declare this configuration property
with the const modifier.

5. Implement code in your FTXL application to process changes to the
SCPTnvType value. This code can accept or reject a type change. Ensure
that your application can process all possible types that the changeable-
type network variable might use at runtime.

6. Implement code to provide information about the current length of the
network variable.

The LonMaker browser provides integrators with a user interface to change
network variable types. However, you might want to provide a custom interface
for integrators to change network variable types on your device. For example,
the custom interface could restrict the available types to those types supported by
your application, thus preventing configuration errors.

The LonMaker Integration tool, Turbo Edition, supports changeable-type
network variables. However, if you use LonMaker 3.0 or earlier to manage an
FTXL device with changeable-type network variables, you must explicitly set the
CP value in the LonMaker browser (or in a device plug-in) to inform the FTXL
device of the type changes in addition to using the “Change Network Variable
Type” facility that is provided with LonMaker 3.0 or earlier to change the type of
a network variable in the LNS database.

See Handling Changes to Changeable-Type Network Variables on page 88 for
information about how your application should handle changes to changeable-
type network variables.

32 Creating a Model File

Defining a Configuration Property
Like network variables, configuration properties have types, called configuration
property types, that determine the units, scaling, and structure of the data that
they contain. Unlike network variable types, configuration property types also
specify the meaning of the data. For example, standard network variable types
represent temperature values, whereas configuration property types represent
specific types of temperature settings, such as the air temperature weighting
used during daytime control, or the weighting of an air temperature sensor when
calculating an air temperature alarm.

Declaring a Configuration Property
You declare a configuration property in a model file. Similar to network variable
types, there are standard and user-defined configuration property types. You can
use the NodeBuilder Resource Editor to look through the standard configuration
property types, as described in Defining a Resource File on page 40, or you can
browse the standard profiles online at types.lonmark.org. You can also define
your own configuration property type, if needed.

You can implement a configuration property using either of the following
techniques:

• A configuration property network variable

• A configuration file

A configuration network variable (also known as a configuration property
network variable or CPNV) uses a network variable to implement the
configuration property. In this case, a LONWORKS device can modify the
configuration property, just like any other network variable. A CPNV can also
provide your application with detailed notification of updates to the configuration
property. However, a CPNV is limited to a maximum of 31 bytes, and an FTXL
application is limited to a maximum of 4096 network variables, including
CPNVs. Use the network … config_prop syntax described in Declaring a
Configuration Network Variable on page 143 to implement a configuration
property as a configuration network variable. By convention, CPNV names start
with an nci prefix, and configuration properties in files start with a cp prefix.

A configuration file implements the configuration properties for a device as one or
two blocks of data called value files, rather than as separate externally exposed
data items. A value file consists of configuration property records of varying
length concatenated together. Each value file must fit as contiguous bytes into
the memory space in the device. When there are two value files, one contains
writeable configuration properties, and the second contains read-only data. To
allow a network management tool to access the data items in the value file, you
specify a provided template file, which is an array of text characters that
describes the elements in the value files. When you use the Direct Memory Files
feature, the total size of the directory, template file, and value files cannot exceed
65 535 bytes (64 KB -1). When you use FTP, individual files cannot exceed 2 147
483 647 bytes (2 GB -1, or 231 -1 bytes).

Other devices cannot connect to or poll a configuration property implemented in a
configuration file. To modify a configuration property implemented in a
configuration file, a network management tool must modify the configuration file,
for which your application must provide an appropriate access method.

http://types.lonmark.org/index.html

FTXL User’s Guide 33

You must implement configuration properties within a configuration file if any of
the following apply to your application:

• The total number of network variables (including configuration network
variables and dynamic network variables) exceeds the total number of
available network variables (a maximum of 4096 for an FTXL device, but
potentially fewer than 4096 depending on the resources available).

• The size of a single configuration property exceeds the maximum size of a
configuration network variable (31 bytes).

• Your device cannot use a configuration network variable (CPNV). For
example, for a device that uses a configuration property array that
applies to several network variables or functional blocks with one
instance of the configuration property array each, the configuration
property array must be shared among all network variables or functional
blocks to which it applies. In this case, the device must implement the
configuration properties within a configuration file.

In addition, you might decide whether to implement configuration properties
within a configuration file for performance reasons. Using the direct memory
files (DMF) feature can be faster than using configuration network variables
(CPNVs) if you have more than a few configuration properties because multiple
configuration properties can be updated during a single write to memory
(especially during device commissioning). However, FTP can be faster than DMF
if there are many configuration properties to be updated.

Use the cp_family syntax described in The Configuration Property Type on page
140 to implement a configuration property as a part of a configuration file.

When implementing configuration property files, the LonTalk Interface
Developer utility combines all configuration properties declared using the
cp_family keyword, and creates the value files and a number of related data
structures.

However, you must provide one of two supported mechanisms to access these
files:

• An implementation of the LONWORKS file transfer protocol

• Support for the direct memory files feature

The LonTalk Interface Developer utility provides most of the required code to
support direct memory files. However, if you use FTP, you must also implement
the LONWORKS file transfer protocol within your application program. You would
typically implement the LONWORKS file transfer protocol only if the total amount
of related data exceeds (or is likely to exceed) the size of the direct memory file
window.

See the File Transfer engineering bulletin at www.echelon.com for more
information about the LONWORKS file transfer protocol; see Using Direct Memory
Files on page 96 for more information about the direct memory files feature.

To indicate which file access method the application should use, you must declare
the appropriate network variables in your model file:

• For direct memory files, declare an output network variable of type
SNVT_address. If your device implements the SFPTnodeObject
functional profile, you use this network variable to implement the
profile’s nvoFileDirectory member. If your device does not implement the

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf

34 Creating a Model File

SFPTnodeObject functional profile, simply add this network variable to
the model file. You do not need to initialize this network variable (any
initial value is ignored – the LonTalk Interface Developer utility
calculates the correct value).

• For FTP, declare at least two mandatory network variables, an input
network variable of type SNVT_file_req, and an output network variable
of type SNVT_file_status. You also need to define a message tag for the
transfer of the data. In addition, you need an input network variable of
type SNVT_file_pos to support random access to the various files. You
must also implement the LONWORKS file transfer protocol within your
application program.

The LONWORKS file transfer protocol and the direct memory files feature are
mutually exclusive; your device cannot implement both.

Responding to Configuration Property
Value Changes
Events are not automatically generated when a configuration property
implemented in a configuration file is updated, but you can declare your
configuration property so that a modification to its value causes the related
functional block to be disabled and re-enabled, or causes the device to be taken
offline and brought back online after the modification, or causes the entire device
to reset. These state changes help to synchronize your application with new
configuration property values.

Your application could monitor changes to the configuration file, and thus detect
changes to a particular configuration property. Such monitoring would be
implemented in the FTP server or direct memory files driver.

However, many applications do not need to know that a configuration property
value has changed. For example, an application that uses a configuration
property to parameterize an algorithm that uses some event as a trigger (such as
a network variable update or a change to an input signal) would not typically
need to know of the change to the configuration property value, but simply
consider the most recent value.

Defining a Configuration Property Array
You can define a configuration property as:

• A single configuration property

• An array of configuration properties

• A configuration property array

A single configuration property either applies to one or more network variables or
functional blocks within the model file for the device, or the configuration
property applies to the entire device.

When you define an array of configuration properties, each element of the array
can apply to one or more network variables or functional blocks within the model
file.

FTXL User’s Guide 35

When you define a configuration property array, the entire array (but not each
element) applies to one or more network variables or functional blocks within the
model file. That is, a configuration property array is atomic, and thus applies in
its entirety to a particular item.

Assuming that the device has sufficient resources, it is always possible to define
arrays of configuration properties. However, configuration property arrays are
subject to the functional profile definition. For each member configuration
property, the profile describes whether it can, cannot, or must be implemented as
a configuration property array. The profile also describes minimum and
maximum dimensions for the array. If you do not implement the configuration
property array as the profile requires, the profile’s implementation becomes
incorrect.

Example:

This example defines a four-channel analog-to-digital converter (ADC), with the
following properties:

• Four channels (implemented as an array of functional blocks)

• One gain setting per channel (implemented as an array of configuration
properties)

• A single offset setting for the ADC (implemented as a shared
configuration property)

• A linearization setting for all channels (implemented as a configuration
property array)

#include <s32.h>
#define CHANNELS 4

network output SNVT_volt nvoAnalogValue[CHANNELS];

network input cp SCPTgain nciGain[CHANNELS];
network input cp SCPToffset nciOffset;
network input cp SCPTsetpoint nciLinearization[5];

fblock SFPTopenLoopSensor {
 // the actual network variable that implements the
 // mandatory 'nvoValue' member of this profile:
 nvoAnalogValue[0] implements nvoValue;
} fbAdc[CHANNELS] external_name("Analog Input")
fb_properties {
 // one gain factor per channel:
 nciGain[0],
 // one offset, common to all channels:
 static nciOffset,
 // one linearization array for all channels:
 static nciLinearization = {
 {0, 0}, {2, 0}, {4, 0}, {6, 0}, {8, 0}
 };
};

This example implements a single output network variable, of type SNVT_volt,
per channel to represent the most recent ADC reading. This network variable
has a fixed type, defined at compile-time, but could be defined as a changeable-
type network variable if needed for the application.

36 Creating a Model File

There is one gain setting per channel, implemented as an array of configuration
network variables (CPNVs), of type SCPTgain, where the elements of the array
are distributed among the four functional blocks contained in the functional block
array. Because the SCPTgain configuration property has a default gain factor of
1.0, no explicit initialization is required for this configuration property network
variable.

There is a single offset setting, implemented as a configuration network variable
(CPNV), of type SCPToffset. This CPNV applies to all channels, and is shared
among the elements of the functional block array. The SCPToffset configuration
property has a default value of zero.

The SCPToffset configuration property is a type-inheriting configuration
property. The true data type of a type-inheriting property is the type of the
network variable to which the property applies. For an SFPTopenLoopSensor
standard functional profile, the SCPToffset configuration property applies to the
functional block, and thus implicitly applies to the profile's primary member
network variable. In this example, the effective data type of this property is
SNVT_volt (inherited from nvoAnalogValue).

The example also includes a five-point linearization factor, implemented as a
configuration property array of type SCPTsetpoint. The SCPTsetpoint
configuration property is also a type-inheriting configuration property, and its
effective data type is also SNVT_volt in this example.

Because the SCPTsetpoint linearization factor is a configuration property array,
it applies to the entire array of functional blocks, unlike the array of SCPTgain
configuration property network variables, whose elements are distributed among
the elements of the functional block array. In this example, the linearization
configuration property array is implemented with configuration property network
variables, and must be shared among the elements of the functional block array.

To implement the linearization array of configuration properties such that each
of the four functional blocks has its own linearization data array, you must
implement this configuration property array in files, and declare the
configuration property with the cp_family modifier.

Table 6 shows the relationships between the members of the functional-block
array. As the table shows, each channel has a unique gain value, but all
channels share the offset value and linearization factor.

Table 6. Functional-Block Members for the Four-Channel ADC

Channel Gain Offset Linearization

fbAdc[0] nciGain[0]

fbAdc[1] nciGain[1]

fbAdc[2] nciGain[2]

fbAdc[3] nciGain[3]

nciOffset nciLinearization[0..4]

FTXL User’s Guide 37

Sharing a Configuration Property
The typical instantiation of a configuration property is unique to a single device,
functional block, or network variable. For example, a configuration property
family whose name appears in the property list of five separate network variables
has five instantiations, and each instance is specific to a single network variable.
Similarly, a network variable array of five elements that includes the same
configuration property family name in its property list instantiates five members
of the configuration property family, and each one applies to one of the network
variable array elements.

Rather than creating extra configuration property instances, you can specify that
functional blocks or network variables share a configuration property by
including the static or global keywords in the configuration property declaration.

The global keyword causes a configuration property member to be shared among
all the functional blocks or network variables whose property list contains that
configuration property family name. The functional blocks or network variables
in the configuration property family can have only one such global member.
Thus, if you specify a global member for both the functional blocks and the
network variables in a configuration property family, the global member shared
by the functional blocks is a different member than the global member shared by
the network variables.

The static keyword causes a configuration property family member to be shared
among all elements of the array it is associated with (either network variable
array or functional block array). However, the sharing of the static member does
not extend to other network variables or functional blocks outside of the array.

Example 1:

// CP for throttle (default 1 minute)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };

// NVs with shared throttle:
network output SNVT_lev_percent nvoValue1
 nv_properties {
 global cpMaxSendT
 };
network output SNVT_lev_percent nvoValue2
 nv_properties {
 global cpMaxSendT // the same as the one above
 };
network output SNVT_lev_percent nvoValueArray[10]
 nv_properties {
 static cpMaxSendT // shared among the array
 // elements only
 };

In addition to sharing members of a configuration property family, you can use
the static or global keywords for a configuration network variable (CPNV) to
specify sharing. However, a shared configuration property network variable
cannot appear in two or more property lists without the global keyword because
there is only one instance of the network variable (configuration property
families can have multiple instances).

A configuration property that applies to a device cannot be shared because there
is only one device per application.

38 Creating a Model File

Example 2:

The following model file defines a three-phase ammeter, implemented with an
array of three SFPTopenLoopSensor functional blocks. The hardware for this
device contains a separate sensor for each phase, but a common analog-to-digital
converter for all three phases. Each phase has individual gain factors, but shares
one property to specify the sample rate for all three phases.

#define NUM_PHASES 3

SCPTgain cp_family cpGain;
SCPTupdateRate cp_family cpUpdateRate;

network output SNVT_amp nvoAmpere[NUM_PHASES];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_PHASES] external_name("AmpereMeter")
 fb_properties {
 cpGain,
 static cpUpdateRate
 };

Inheriting a Configuration Property Type
You can define a configuration property type that does not include a complete
type definition, but instead references the type definition of the network variable
to which it applies. A configuration property type that references another type is
called a type-inheriting configuration property. When the configuration property
family member for a type-inheriting configuration property appears in a property
list, the instantiation of the configuration property family member uses the type
of the network variable. Likewise, a configuration property network variable can
be type-inheriting; however, for configuration network variable arrays and arrays
of configuration network variables (CPNVs), each element of the array must
inherit the same type.

Type-inheriting configuration properties that are listed in an nv_properties
clause inherit the type from the network variable to which they apply. Type-
inheriting configuration properties that are listed in an fb_property clause
inherit their type from the functional profile’s principal network variable
member, an attribute that is assigned to exactly one network variable member.

Recommendation: Because the type of a type-inheriting configuration property is
not known until instantiation, you should specify the configuration property
initializer option in the property list rather than in the declaration. Likewise,
you should specify the range-mod string in the property list because different
range-mod strings can apply to different instantiations of the property.

Restrictions:

• Type-inheriting configuration network variables that are also shared can
only be shared among network variables of identical type.

• A type-inheriting configuration property cannot be used as a device
property, because the device has no type from which to inherit.

A typical example of a type-inheriting configuration property is the
SCPTdefOutput configuration property type. Several functional profiles list the

FTXL User’s Guide 39

SCPTdefOutput configuration property as an optional configuration property,
and use it to define the default value for the sensor's principal network variable.
The functional profile itself, however, might not define the type for the principal
network variable.

The following example implements a SFPTopenLoopSensor functional block with
an optional SCPTdefOutput configuration property. The configuration property
inherits the type from the network variable it applies to, SNVT_amp in this case.

Example 1:

SCPTdefOutput cp_family cpDefaultOutput;

network output SNVT_amp nvoAmpere nv_properties {
 cpDefaultOutput = 123
};

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpereMeter;

The initial value (123) must be provided in the instantiation of the configuration
property, because the type for cpDefaultOutput is not known until it is
instantiated.

You can also combine type-inheriting configuration properties with network
variables that are of changeable type. The type of such a network variable can be
changed dynamically by a network integrator when the device is installed in a
network.

Example 2:

SCPTdefOutput cp_family cpDefaultOutput;
SCPTnvType cp_family cpNvType;

network output changeable_type SNVT_amp nvoValue
 nv_properties {
 cpDefaultOutput = 123,
 cpNvType
 };

fblock SFPTopenLoopSensor {
 nvoValue implements nvoValue;
} fbGenericMeter;

The nvoValue principal network variable, although it is of changeable type, must
still implement a default type (SNVT_amp in the example). The SCPTdefOutput
type-inheriting configuration property inherits the type information from this
initial type. Therefore, the initializer for cpDefaultOutput must be specific to
this instantiation. Furthermore, the initializer must be valid for this initial type.

If the network integrator decides to change this type at runtime, for example, to
SNVT_volt, then it is in the responsibility of the network management tool to
apply the formatting rules that apply to the new type when reading or writing
this configuration property. However, your application has the responsibility to
propagate the new type to this network variable’s type-inheriting configuration
properties (if any).

40 Creating a Model File

Declaring a Message Tag
You can declare a message tag in a model file. A message tag is a connection
point for application messages. Application messages are used for the
LONWORKS file transfer protocol, and are also used to implement proprietary
interfaces to LONWORKS devices as described in Chapter 5, Developing an FTXL
Application, on page 73.

Message tag declarations do not generate code, but result in a simple
enumeration, whose members are used to identify individual tags. There are two
basic forms of message tags: bindable and nonbindable.

Example:

msg_tag myBindableMT;
msg_tag bind_info(nonbind) myNotBindableMT;

Similar to network variables, you can connect bindable message tags together,
thus allowing applications to communicate with each other through the message
tags (rather than having to know specific device addressing details). Each
bindable message tag requires one address-table space for its exclusive use.

Sending application messages through bindable message tags is also known as
sending application messages with implicit addressing.

Nonbindable message tags enable (and require) the use of explicit addresses,
which the sending application must provide. However, these addresses do not
require address-table space.

Defining a Resource File
Functional profiles, network variable types, and configuration property types are
defined in resource files. LONWORKS resource files use a standard format that is
recognized by all interoperable network management tools, such as the
LonMaker Integration Tool. This standard format enables device manufacturers
to create definitions for user functional profiles, user network variable types
(UNVTs), and user configuration property types (UCPTs) that can be used during
installation by a network integrator using any interoperable network
management tool.

A set of standard functional profiles, standard network variable types (SNVTs),
and standard configuration property types (SCPTs) is defined by a standard
resource file set distributed by LONMARK International (www.lonmark.org). A
functional profile defined in a resource file is also called a functional profile
template.

Resource files are grouped into resource file sets, where each set applies to a
specified range of program IDs. A complete resource file set consists of a type file
(.TYP extension), a functional profile definitions file (.FPT extension), a format
file (.FMT extension), and one or more language files (.ENG, .ENU, or other
extensions).

Each set defines functional profiles, network variable types, and configuration
properties for a particular type of device. The program ID range is determined by
a program ID template in the file, and a scope value for the resource file set. The
scope value specifies which fields of the program ID template are used to match

http://www.lonmark.org/

FTXL User’s Guide 41

the program ID template to the program ID of a device. That is, the range of
device types to which a resource file applies is the scope of the resource file.

The program ID template has an identical structure to the program ID of a
device, except that the applicable fields might be restricted by the scope. The
scope value is a kind of filter that indicates the relevant parts of the program ID.
For example, the scope can specify that the resource file applies to an individual
device type, or to all device types.

You can specify a resource file for any of the following scopes:

0 – Standard
Applies to all devices.

1 – Device Class
Applies to all devices with the specified device class.

2 – Device Class and Subclass
Applies to all devices with the specified device class and subclass.

3 – Manufacturer
Applies to all devices from the specified manufacturer.

4 – Manufacturer and Device Class
Applies to all devices from the specified manufacturer with the specified
device class.

5 – Manufacturer, Device Class, and Device Subclass
Applies to all devices from the specified manufacturer with the specified
device class and device subclass.

6 – Manufacturer, Device Class, Device Subclass, and Device Model
Applies to all devices of the specified type from the specified
manufacturer.

For scopes 1 through 6, the program ID template included in the resource file set
specifies the components. Network management tools match this template
against the program ID for a device when searching for an appropriate resource
file.

For a device to be able to use a resource file set, the program ID of the device
must match the program ID template of the resource file set to the degree
specified by the scope. Thus, each LONWORKS manufacturer can create resource
files that are unique to their devices.

Example: Consider a resource file set with a program ID template of
81:23:45:01:02:05:04:00, with manufacturer and device class scope (scope 4). Any
device with the manufacturer ID fields of the program ID set to 1:23:45 and the
device class ID fields set to 01:02 would be able to use types defined in this
resource file set. However, resources on devices of the same class, but from a
different manufacturer, could not access this resource file set.

A resource file set can also use information in any resource file set that has a
numerically lower scope, as long as the relevant fields of their program ID
templates match. For example, a scope 4 resource file set can use resources in a
scope 3 resource file set, assuming that the manufacturer ID components of the
resource file sets’ program ID templates match.

Scopes 0 through 2 are reserved for standard resource definitions published by
Echelon and distributed by LONMARK International. Scope 0 applies to all

42 Creating a Model File

devices, and scopes 1 and 2 are reserved for future use. Because scope 0 applies
to all devices, there is a single scope 0 resource file set called the standard
resource file set.

The FTXL Developer's Kit includes the scope 0 standard resource file set that
defines the standard functional profiles (SFPTs), SNVTs, and SCPTs (updates
are also available from LONMARK International at www.lonmark.org). The kit
also includes the NodeBuilder Resource Editor that you can use to view the
standard resource file set, or use to create your own user functional profiles
(UFPTs), UNVTs, and UCPTs.

You can define your own functional profiles, types, and formats in scope 3
through 6 resource files.

Most LNS tools, including the LonMaker tool assume a default scope of 3 for all
user resources. LNS automatically sets the scope to the highest (most specific)
applicable scope level. However, if you use LNS 3.0 or earlier with scope 4, 5, or
6 resource files, you must explicitly set the scope in LNS so that LNS uses the
appropriate scope. See the NodeBuilder User’s Guide for information about
developing a plug-in to set the scope, or see the LonMaker User's Guide (or online
help) for information about modifying a device shape to set the scope.

Implementation-Specific Scope Rules
When you add implementation-specific network variables or configuration
properties to a standard or user functional profile, you must ensure that the
scope of the resource definition for the additional item is numerically less than or
equal to the scope of the functional profile, and that the member number is set
appropriately. For example:

• If you add an implementation-specific network variable or configuration
property to a standard functional block (SFPT, scope 0), it must be
defined by a standard type (SNVT, or SCPT).

• If you implement a functional block that is based on a manufacturer
scope resource file (scope 3), you can add an implementation-specific
network variable or configuration property that is defined in the same
scope 3 resource file, and you can also add an implementation-specific
network variable or configuration property that is defined by a SNVT or
SCPT (scope 0).

You can add implementation-specific members to standard functional profiles
using inheritance by performing the following tasks:

1. Use the NodeBuilder Resource Editor to create a user functional profile
with the same functional profile key as the standard functional profile.

2. Set Inherit members from scope 0 in the functional profile definition.
This setting makes all members of the standard functional profile part of
your user functional profile.

3. Declare a functional block based on the new user functional profile.

Add implementation-specific members to the functional block.

http://www.lonmark.org/

FTXL User’s Guide 43

Writing Acceptable Neuron C Code
When processing the model file, the LonTalk Interface Developer utility
distinguishes between three categories of Neuron C statements:

• Acceptable

• Ignored – ignored statements produce a warning

• Unacceptable – unacceptable statements produce an error

Appendix B, Model File Compiler Directives, on page 119, lists the acceptable
and ignored compiler directives for model files. All other compiler directives are
not accepted by the LonTalk Interface Developer utility and cause an error if
included in a model file. A statement can be unacceptable because it controls
features that are meaningless in an FTXL device, or because it refers to
attributes that are determined by the FTXL protocol stack or by other means.

The LonTalk Interface Developer utility ignores all executable code and I/O
object declarations. These constructs cause the LonTalk Interface Developer
utility to issue a warning message. The LonTalk Interface Developer utility
predefines the _FTXL and _MODEL_FILE macros, so that you can use #ifdef or
#ifndef compiler directives to control conditional compilation of source code that
is used for standard Neuron C compilation and as an FTXL model file.

All constructs not specifically mentioned as unacceptable or ignored are
acceptable.

Anonymous Top-Level Types
Anonymous top-level types are not acceptable. The following Neuron C construct
is not acceptable:

network output struct {int a; int b;} nvoZorro;

This statement is not acceptable because the type of the nvoZorro network
variable does not have a name. The LonTalk Interface Developer utility issues
an error when it detects such a construct.

Using a named type solves the problem, for example:

typedef struct {
 int a;
 int b;
} Zorro;
network output Zorro nvoZorro;

The use of anonymous sub-types is permitted. For example, the LonTalk
Interface Developer utility allows the following type definition:

typedef struct {
 int a;
 int b;
 struct {
 long x;
 long y;
 long z;
 } c;
} Zorro;
network output Zorro nvoZorro;

44 Creating a Model File

Legacy Neuron C Constructs
You must use the Neuron C Version 2.1 syntax described in this manual. You
cannot use legacy Neuron C constructs for defining LONMARK-compliant
interfaces. That is, you cannot use the config modifier for network variables, and
you cannot use Neuron C legacy syntax for declaring functional blocks or
configuration properties. The legacy syntax used an sd_string() modifier
containing a string that starts with a ‘&’ or ‘@’ character.

Using Authentication for Network Variables
Authentication is a special acknowledged service between one source device and
one or more (up to 63) destination devices. Authentication is used by the
destination devices to verify the identity of the source device. This type of service
is useful, for example, if a device containing an electronic lock receives a message
to open the lock. By using authentication, the electronic lock device can verify
that the “open” message comes from the owner, not from someone attempting to
break into the system.

Authentication doubles the number of messages per transaction. An
acknowledged message normally requires two messages: an update and an
acknowledgment. An authenticated message requires four messages, as shown
in Figure 8 on page 46. These extra messages can affect system response time
and capacity.

A device can use authentication with acknowledged updates or network variable
polls. However, a device cannot use authentication with unacknowledged or
repeated updates.

For a program to use authenticated network variables or send authenticated
messages, you must perform the following steps:

1. Declare the network variable as authenticated, or allow the network
management tool to specify that the network variable is to be
authenticated.

2. Specify the authentication key to be used for this device using a network
management tool, and enable authentication. You can use the LonMaker
Integration Tool to install a key during network integration, or your
application can use the LonQueryDomainConfig() and
LonUpdateDomainConfig() API functions to install a key locally.

Specifying the Authentication Key
All devices that read or write a given authenticated network variable connection
must have the same authentication key. This 48-bit authentication key is used
in a special way for authentication, as described in How Authentication Works on
page 45. If a device belongs to more than one domain, you must specify a
separate key for each domain.

The key itself is transmitted to the device only during the initial configuration.
All subsequent changes to the key do not involve sending it over the network.
The network management tool can modify a device’s key over the network, in a
secure fashion, with a network management message.

FTXL User’s Guide 45

Alternatively, your application can use a combination of the
LonQueryDomainConfig() and LonUpdateDomainConfig() API calls to specify the
authentication keys during application start-up.

If you set the authentication key during device manufacturing, you must perform
the following tasks to ensure that the key is not exposed to the network during
device installation:

1. Specify that the device should use network-management authentication
(set the configuration data in the LonConfigData data structure, which is
defined in the FtxlTypes.h file).

2. Set the device’s state to configured. An unconfigured device does not
enforce authentication.

3. Recommended: Set the device’s domain to an invalid domain value to
avoid address conflicts during device installation.

If you do not set the authentication key during device manufacturing, the device
installer can specify authentication for the device using the network management
tool, but must specify an authentication key because the device has only a default
key.

How Authentication Works
Figure 8 on page 46 illustrates the process of authentication:

1. Device A uses the acknowledged service to send an update to a network
variable that is configured with the authentication attribute on Device B.
If Device A does not receive the challenge (described in step 2), it sends a
retry of the initial update.

2. Device B generates a 64-bit random number and returns a challenge
packet that includes the 64-bit random number to Device A. Device B
then uses an encryption algorithm (part of the FTXL LonTalk protocol
stack) to compute a transformation on that random number using its 48-
bit authentication key and the message data. The transformation is
stored in Device B.

3. Device A then also uses the same encryption algorithm to compute a
transformation on the random number (returned to it by Device B) using
its 48-bit authentication key and the message data. Device A then sends
this computed transformation to Device B.

4. Device B compares its computed transformation with the number that it
receives from Device A. If the two numbers match, the identity of the
sender is verified, and Device B can perform the requested action and
send its acknowledgment to Device A. If the two numbers do not match,
Device B does not perform the requested action, and an error is logged in
the error table.

If the acknowledgment is lost and Device A tries to send the same message again,
Device B remembers that the authentication was successfully completed and
acknowledges it again.

46 Creating a Model File

Device B
(reader)

1

2

3

4

ACKD Message or

Request

Challenge

Reply to challenge

ACK or Response

Device A
(Writer)

Figure 8. Authentication Process

If Device A attempts to update an output network variable that is connected to
multiple readers, each receiver device generates a different 64-bit random
number and sends it in a challenge packet to Device A. Device A must then
transform each of these numbers and send a reply to each receiver device.

The principal strength of authentication is that it cannot be defeated by simple
record and playback of commands that implement the desired functions (for
example, unlocking the lock). Authentication does not require that the specific
messages and commands be secret, because they are sent unencrypted over the
network, and anyone who is determined can read those messages.

It is good practice to connect a device directly to a network management tool
when initially installing its authentication key. This direct connection prevents
the key from being sent over the network, where it might be detected by an
intruder. After a device has its authentication key, a network management tool
can modify the key, over the network, by sending an increment to be added to the
existing key.

You can update the device’s address without having to update the key, and you
can perform authentication even if the devices’ domains do not match. Thus, an
FTXL device can set its key during device manufacturing, and you can then use a
network management tool to update the key securely over the network.

Managing Memory
The LonTalk Interface Developer Neuron C compiler generates four tables that
affect memory usage. The FTXL LonTalk protocol stack and network
management tools use these tables to define the network configuration for a
device. The LonTalk Interface Developer utility allocates space for the following
tables:

• The address table

• The alias table

• The domain table

• The network variable configuration table

See the LonTalk Control Network Protocol Specification, EIA/CEA 709.1-B-2002,
for more information about these tables. This document is available from the
IHS Standards Store:

FTXL User’s Guide 47

http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=9711
31&rid=CEA.

See Appendix E, Determining Memory Usage for FTXL Applications, on page
181, for information about how to calculate the memory requirements for you
FTXL application.

Address Table
The address table contains the list of network addresses to which the device
sends network variable updates or polls, or sends implicitly-addressed
application messages. You can configure the address table through network
management messages from a network management tool.

By default, the LonTalk Interface Developer utility calculates the size of the
address table. The utility calculates the required number of address table entries
based on parameters defined in the device’s interface, such as the number of
static polling input network variables, static non-constant output network
variables, bindable message tags, the number of aliases, and the number of
dynamic network variables. The utility always allocates at least 15 address table
entries. Within the LonTalk Interface Developer utility, you can override the
automatic calculation of the table size and specify any number of entries, from 0
to 4096.

Recommendation: Whenever possible, use the LonTalk Interface Developer
utility-generated size for the address table.

The maximum number of address table entries that a device could require is
determined by the expected maximum number of different destination entries
that the device requires for connections (network variables and bindable message
tags).

The size of the address table affects the amount of RAM and non-volatile memory
required for the device. When the LonTalk Interface Developer utility calculates
the size of the address table, it attempts to balance the need to limit the amount
of resources required (small address table) and the need for comprehensive
coverage (large address table). Although you generally do not need to, you can
override the automatically calculated value with one that reflects the use of the
device.

Alias Table
An alias is an abstraction for a network variable that is managed by network
management tools and the FTXL LonTalk protocol stack. Network management
tools use aliases to create connections that cannot be created solely with the
address and network variable tables. Aliases provide network integrators with
more flexibility for how devices are installed into networks.

The alias table has no default size, and can contain up to 8192 entries. The
LonTalk Interface Developer utility calculates the size of the alias table. The
utility calculates the required number of alias table entries based on parameters
defined in the device’s interface, such as the number of static network variables
and the number of supported dynamic network variables. The utility always
allocates at least 5 alias table entries, unless the device does not support any
network variables. Within the LonTalk Interface Developer utility, you can

http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=971131&rid=CEA
http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=971131&rid=CEA

48 Creating a Model File

override the automatic calculation of the table size and specify any number of
entries, from 0 to 8192.

Recommendation: Whenever possible, use the LonTalk Interface Developer
utility-generated size for the alias table.

The maximum number of aliases that a device could require depends on its
involvement in network variable connections and the characteristics of these
connections. The size of the alias table also affects the performance of the device,
because the alias table must be searched whenever network variable updates
arrive. When the LonTalk Interface Developer utility calculates the size of the
alias table, it attempts to balance the need for performance (small alias table)
and the need for comprehensive coverage (large alias table). Although you
generally do not need to, you can override the automatically calculated value
with one that reflects the use of the device.

Domain Table
The number of domain table entries is dependent on the network in which the
device is installed; it is not dependent on the application.

The LonTalk Interface Developer utility always allocates 2 domain table entries.
From the command-line interface for the LonTalk Interface Developer utility, you
can override the number of entries. However, LONMARK International requires
all interoperable LONWORKS devices to have two domain table entries. Reducing
the size of the domain table to one entry will prevent certification.

Recommendation: Whenever possible, use the LonTalk Interface Developer
utility-generated number of domain table entries.

Network Variable Configuration Table
This table contains one entry for each network variable that is declared in the
model file. Each element of a network variable array counts separately.

The maximum size of the network variable configuration table is 4096 entries.
You cannot change the size of this table, except by adding or deleting static
network variables or by increasing or decreasing the number of dynamic network
variables.

Example Model files
This section describes a few example model files, with increasing levels of
complexity.

See Network Variable and Configuration Property Declarations on page 68 for
information about mapping types and items declared in the model file to those
shown in the LonTalk Interface Developer utility-generated application
framework.

Simple Network Variable Declarations
This example declares one input network variable and one output network
variable. Both network variables are declared with the SNVT_count type. The
names of the network variables (nviCount and nvoCount) are arbitrary.

FTXL User’s Guide 49

However, it is a common practice to use the “nvi” prefix for input network
variables and the "nvo" prefix for output network variables.

network input SNVT_count nviCount;
network output SNVT_count nvoCount;

The LonTalk Interface Developer utility compiles this model file into an
application framework that contains, among other things, two global C variables
in the FtxlDev.c file:

volatile SNVT_count nviCount;
SNVT_count nvoCount;

When an update occurs for the input network variable (nviCount), the FTXL
LonTalk protocol stack stores the updated value in the global variable. The
application can use this variable like any other C variable. When the application
needs to update the output value, it updates the nvoCount variable, so that the
FTXL LonTalk protocol stack can read the updated value and send it to the
network.

For more information about how the LonTalk Interface Developer utility-
generated framework represents network variables, see Using Types on page 64.

Important: This example is not interoperable because it does not use functional
blocks to define the purpose of these network variables. However, this type of
declaration can define a functioning device for an initial test application.

Network Variables Using Standard Types
A more complete example includes the use of more complex standard network
variable types and declarations. This example provides the model for a simple
electricity meter, where all input data is retrieved from the network through the
nviAmpere, nviVolt, and nviCosPhi input network variables. The result is posted
to the nvoWattage output network variable. A second nvoUsage output network
variable is polled and uses non-volatile storage to count the meter's total lifetime.

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network input SNVT_angle nviCosPhi;
network output SNVT_power nvoWattage;
network output polled eeprom SNVT_elapsed_tm nvoUsage;

The LonTalk Interface Developer utility generates type definitions in the
LonNvTypes.h file for all of the above network variables. However, it does not
generate type definitions in the LonCpTypes.h file because there are no
configuration properties.

In addition to the type definitions and other data, the LonTalk Interface
Developer utility generates the following global C variables for this model file:

volatile SNVT_amp nviAmpere;
volatile SNVT_volt nviVolt;
volatile SNVT_angle nviCosPhi;
SNVT_power nvoWattage;
SNVT_elapsed_tm nvoUsage;

The declaration of the nvoUsage output network variable uses the network
variable modifiers polled and eeprom. The LonTalk Interface Developer utility
stores these attributes in the network-variable table (nvTable[]) in the FtxlDev.c

50 Creating a Model File

file. The API uses this table to access the network variables when the application
runs. In addition, the application can query the data in this table at runtime.

Important: This example is not interoperable because it does not use functional
blocks to define the purpose of these network variables. However, this type of
declaration can define a functioning device for an initial test application.

Functional Blocks without Configuration Properties
The following model file describes a similar meter application as in the previous
example, but implements it using functional blocks to provide an interoperable
interface:

• A node object based on the SFPTnodeObject functional profile to manage
the entire device

• An array of three meters, each based on the same user-defined
UFPTenergyMeter profile, implementing three identical meters.

Configuration properties are not used in this example.

// node object:
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
} NodeObject external_name("NodeObject");

// UFPTenergyMeter
// Implements the meter from the previous example.
network input SNVT_amp nviAmpere[3];
network input SNVT_volt nviVoltage[3];
network input SNVT_angle nviCosPhi[3];
network output SNVT_power nvoWattage[3];
network output polled eeprom SNVT_elapsed_tm nvoUsage[3];

fblock UFPTenergyMeter {
 nvoWattage[0] implements nvoWattage;
 nviAmpere[0] implements nviAmpere;
 nviVoltage[0] implements nviVoltage;
 nviCosPhi[0] implements nviCosPhi;
 nvoUsage[0] implements nvoUsage;
} Meter[3] external_name("Meter");

Because functional blocks only provide logical grouping of network variables and
configuration properties, and meaning to those groups, but do not themselves
contain executable code, the functional blocks appear only in the self-
documentation data generated by the LonTalk Interface Developer utility, but
not in any generated executable code.

FTXL User’s Guide 51

Functional Blocks with Configuration Network
Variables

The following example takes the above example and adds a few configuration
properties implemented as configuration network variables. A cp modifier in the
network variable declaration makes the network variable a configuration
network variable (CPNV). The nv_properties and fb_properties modifiers apply
the configuration properties to specific network variables or the functional block.

// Configuration properties for the node object
network input cp SCPTlocation nciLocation;

// network variables for the node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
} NodeObject external_name("NodeObject")
fb_properties {
 nciLocation
};

// config properties for the Meter
network input cp SCPTminSendTime nciMinSendTime[3];
network input cp SCPTmaxSendTime nciMaxSendTime[3];
network input cp UCPTcoupling nciCoupling;

// network variables for the meter
network input SNVT_amp nviAmpere[3];
network input SNVT_volt nviVoltage[3];
network input SNVT_angle nviCosPhi[3];
network output SNVT_power nvoWattage[3] nv_properties {
 nciMinSendTime[0],
 nciMaxSendTime[0]
};

network output polled eeprom SNVT_elapsed_tm nvoUsage;

fblock UFPTenergyMeter {
 nvoWattage[0] implements nvoWattage;
 nviAmpere[0] implements nviAmpere;
 nviVoltage[0] implements nviVoltage;
 nviCosPhi[0] implements nviCosPhi;
 nvoUsage[0] implements nvoUsage;
} Meter external_name("Meter") fb_properties {
 static nciCoupling
};

This example implements two arrays of configuration network variables,
nciMinSendTime and nciMaxSendTime. Each element of these two arrays
applies to one element of the nvoWattage array, starting with
nciMinSendTime[0] and nciMaxSentTime[0]. Each element of the nvoWattage
array of network variables in turn implements the nvoWattage member of one

52 Creating a Model File

element of the Meter array of functional blocks, again starting with
nvoWattage[0].

The user-defined UCPTcoupling configuration property nciCoupling is shared
among all three meters, configuring the meters as three single-phase meters or
as one three-phase meter in this example. There is only a single nciCoupling
configuration property, and it applies to every element of the array of three
UFPTenergyMeter functional blocks.

The LonTalk Interface Developer utility creates a network variable table for the
configuration network variables and the persistent nvoUsage network variable.

Functional Blocks with Configuration Properties
Implemented in a Configuration File

This example implements a device similar to the one in the previous example,
with these differences:

1. All configuration properties are implemented within a configuration file
instead of as a configuration network variable

2. A SNVT_address type network variable is declared to enable access to
these files through the direct memory files feature

3. An SFPTnodeObject node object has been added to support the SNVT
address network variable

// config properties for the node object:
SCPTlocation cp_family cpLocation;

// network variables for the node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;
const network output polled SNVT_address nvoFileDirectory;

// node object
fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
 nvoFileDirectory implements nvoFileDirectory;
} NodeObject external_name("NodeObject") fb_properties {
 cpLocation
};

// config properties for the Meter
SCPTminSendTime cp_family cpMinSendTime;
SCPTmaxSendTime cp_family cpMaxSendTime;
UCPTcoupling cp_family cpCoupling;

// network variables for the meter
network input SNVT_amp nviAmpere[3];
network input SNVT_volt nviVoltage[3];
network input SNVT_angle nviCosPhi[3];
network output SNVT_power nvoWattage[3] nv_properties {
 cpMinSendTime,
 cpMaxSendTime
};

FTXL User’s Guide 53

network output polled eeprom SNVT_elapsed_tm nvoUsage[3];

fblock UFPTenergyMeter {
 nvoWattage[0] implements nvoWattage;
 nviAmpere[0] implements nviAmpere;
 nviVoltage[0] implements nviVoltage;
 nviCosPhi[0] implements nviCosPhi;
 nvoUsage[0] implements nvoUsage;
} Meter[3] external_name("Meter") fb_properties {
 static cpCoupling
};

The addition of the SNVT_address typed network variable nvoFileDirectory is
important for enabling the direct memory files feature for access to the
configuration property files. The LonTalk Interface Developer initializes this
network variable’s value correctly, and creates all required structures and code
for direct memory file access; see Using Direct Memory Files on page 96 for more
information.

Alternatively, you can use the LONWORKS File Transfer Protocol (FTP) to access
the file directory and the files in the directory. In this case, you need to
implement the network variables and message tags as needed for the
implementation of a LONWORKS FTP server in the model file, and provide
application code in your host to implement the protocol. See the File Transfer
engineering bulletin at www.echelon.com for more information about the
LONWORKS file transfer protocol.

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf

FTXL User’s Guide 55

4

Using the LonTalk Interface
Developer Utility

You use the model file, described in Chapter 3, and the
LonTalk Interface Developer utility to define the network
inputs and outputs for your device, and to create your
application’s skeleton framework source code. You use this
skeleton application framework as the basis for your FTXL
application development.

The utility also generates device interface files that are used
by a network management tool when designing a network
that uses your device.

This chapter describes how to use the LonTalk Interface
Developer utility and its options, and describes the files that
it generates and how to use them.

56 Using the LonTalk Interface Developer Utility

Running the LonTalk Interface Developer
You use the LonTalk Interface Developer utility to create the application
framework files that are required for your FTXL application. The LonTalk
Interface Developer utility also generates the device interface files (*.xif and
*.xfb) that can be used by network management tools to design a network that
uses your device.

To create the device interface data and device interface files for your device,
perform the following tasks:

1. Create a model file as described in Chapter 3, Creating a Model File, on
page 23.

2. Start the LonTalk Interface Developer utility: from the Windows Start
menu, select Programs → Echelon FTXL Developer’s Kit → LonTalk
Interface Developer.

3. In the LonTalk Interface Developer utility, specify the program ID, the
model file for the device, and other preferences for the utility. The utility
uses this information to generate a number of files that your application
uses. See Using the LonTalk Interface Developer Files on page 61.

4. Add the FtxlDev.h ANSI C header file to your FTXL application with an
include statement:

#include "FtxlDev.h"

The LonTalk Interface Developer utility creates the application framework files
and copies other necessary files (such as the FTXL LonTalk API files and FTXL
LonTalk protocol stack library, libFtxl100.a) to your project directory.

In general, you should limit changes to the LonTalk Interface Developer utility-
generated files. Any changes that you make will be overwritten the next time
you run the utility. However, the LonTalk Interface Developer utility does not
overwrite or modify the FTXL LonTalk API files.

After you have created the LonTalk Interface Developer utility-generated files,
you need to modify and add code to your application, using the FTXL LonTalk
API, to implement desired LONWORKS functionality into your FXTL application.
See Chapter 5, Developing an FTXL Application, on page 73, for information
about how to use the FXTL LonTalk API calls to implement LONWORKS tasks.

Specifying the Project File
From the Welcome to LonTalk Interface Developer page of the utility, you can
enter the name and location of a new or existing FTXL project file (.lidprj
extension). The LonTalk Interface Developer utility uses this project file to
maintain your preferences for this project. The base name of the project file is
also used as the base name for the device interface files that the utility generates.

Recommendation: Include a project version number in the name of the project to
facilitate version control and project management for your LonTalk Interface
Developer projects.

The utility creates all of its output files in the same directory as the project file.
Your application’s model file does not need to be in this directory; from the

FTXL User’s Guide 57

utility’s Model File Selection page, you can specify the name and location of the
model file.

The location of the LonTalk Interface Developer project file can be the same as
your application’s project folder, but you can also generate and maintain the
LonTalk Interface Developer’s project in a separate folder, and manually link the
latest generated framework with your application by copying or referencing the
correct location.

Specifying the FTXL Transceiver Configuration
From the FTXL Transceiver Configuration page of the utility, you can specify the
clock speed for the FTXL Transceiver.

Specifying Service Pin Held Events
When you press the local service pin on the device, the FTXL LonTalk protocol
stack sends a service-pin message on the LONWORKS network and signals a
service-pin event to the application. However, when you press and hold the local
service pin on the device, whether the FTXL LonTalk protocol stack sends a
service-pin-held event depends on how you configure it.

From the System Preferences page of the utility, you can configure the following
behavior for how the FTXL LonTalk API handles a service-pin-held event:

• Whether the FTXL LonTalk API sends a notification of a service-pin-held
event to the application.

• How long the local service pin must be pressed and held before the FTXL
LonTalk API notifies the application of the event. You can specify from 1
to 30 seconds, or accept a default of 10 seconds.

Receiving service-pin-held events is optional, and how the application processes
the events depends on the requirements of the application. For example, many
devices support an emergency recovery feature that is triggered by pressing and
holding the service pin for a prolonged amount of time (typically 10 or 20s). Then
the device moves to the unconfigured state (that is, calls LonGoUnconfigured())
or uses another method to return to a factory state.

Configuring the FTXL LonTalk Protocol Stack
From the Stack Configuration page of the utility, you can specify override values
for the following system definitions:

• The size of the address table (the number of addresses)

• The size of the alias table (the number of aliases)

• The number of receive transaction records

• The number of transmit transaction records

• The maximum lifetime of a transmit transaction

If you do not specify an override value, the LonTalk Interface Developer utility
generates appropriate values based on other preferences that you specify for the
project.

58 Using the LonTalk Interface Developer Utility

Recommendation: Allow the LonTalk Interface Developer utility to calculate
appropriate values for the stack configuration.

See Managing Memory on page 46 for more information about these values.

Configuring the Buffers
From the Buffer Configuration page of the utility, you can specify the number for
each of the following application buffer types:

• Input buffers

• Non-priority output buffers

• Priority output buffers

You can also specify the number of link-layer buffers.

In addition, you can specify both the size and number for the transceiver buffers:

• Input buffers

• Non-priority output buffers

• Priority output buffers

Recommendation: Allow the LonTalk Interface Developer utility to calculate
appropriate values for the buffer configuration.

Configuring the Application
From the Application Configuration page of the utility, you can specify the
following parameters for the application:

• The number of dynamic network variables

• The average amount of memory to reserve for self-documentation data for
dynamic network variables

By default, the number of supported dynamic network variables is zero, but you
can specify up to 4096. During compilation, the utility verifies that the sum of
static and dynamic network variables does not exceed a total of 4096 for the
device.

The average amount of memory to reserve for dynamic network variable self-
documation strings is used, along with the number of dynamic network variables,
to calculate the maximum amount of non-volatile data that might be required for
the FTXL device. The actual size of a particular dynamic variable’s self-
documentation string can exceed the specified average, as long as the actual
average size is less than or equal to the specified average size.

The default size for the dynamic network variable self-documentation data is 16
bytes, but you can specify up to 128 bytes.

Configuring Support for Non-Volatile Data
From the Non-Volatile Data Support page of the utility, you can specify the
following parameters for the application:

• The non-volatile data driver model

FTXL User’s Guide 59

• The non-volatile data flush guard timeout value

• The name for the top-level root segment for the non-volatile data

The non-volatile data driver model can be one of the following types, depending
on your application’s requirements:

• Flash file system (such as the Micrium μC/FS embedded file system)

• Flash direct memory (with no file system) if you do not have, or do not
want to use, a flash file system for your non-volatile data

• User defined if you have another non-volatile data support model that
your application uses

You can only select one driver model for the specified application.

The non-volatile data flush timeout value determines how long the FTXL
LonTalk protocol stack waits to receive additional updates before writing them to
the non-volatile data.

The non-volatile root name is used to configure the non-volatile data support
driver. If you use the flash file system, the non-volatile root name is used as a
file system directory name in which to create non-volatile data files. If you use
the direct flash model, the name represents a Nios II flash device name. If you
use unstructured flash memory, leave the Root field blank.

Within the Nios development environment, the system.h file defines the root
name. For the examples that are included with the FTXL Developer’s Kit, the
root name is /dev/cfi_flash, which is the root directory for the flash file system.

The FTXL source files that handle non-volatile data (FtxlNvdFlashDirect.c,
FtxlNvdFlashFs.c, and FtxlNvdUserDefined.c) use conditional compilation based
on the selected model to include the appropriate code. If you select a user-defined
model, the related callback handler functions are not defined and cause a linker
error if they are not implemented.

Specifying the Device Program ID
From the Program ID Selection page of the utility, you specify the device
program ID or use the LONMARK Standard Program ID Calculator to specify the
device program ID. The program ID is a 16-digit hexadecimal number that
uniquely identifies the device interface for your device.

The program ID can be formatted as a standard or non-standard program ID.
When formatted as a standard program ID, the 16 hexadecimal digits are
organized into six fields that identify the manufacturer, classification, usage,
channel type, and model number of the device. The LONMARK Standard Program
ID Calculator simplifies the selection of the appropriate values for these fields by
allowing you to select from lists contained in a program ID definition file
distributed by LONMARK International. A current version of this list is included
with the FTXL Developer’s Kit.

Within the device’s program ID, you must include your manufacturer ID. If your
company is a member of LONMARK International, you have a permanent
Manufacturer ID assigned by LONMARK International. You can find those listed
within the Standard Program ID Calculator utility, or online at
www.lonmark.org/mid.

http://www.lonmark.org/mid

60 Using the LonTalk Interface Developer Utility

If your company is not a member of the LONMARK International, you can obtain a
temporary manufacturer ID from www.lonmark.org/mid. You do not have to join
LONMARK International to obtain a temporary manufacturer ID.

For prototypes and example applications, you can use the F:FF:FF manufacturer
ID, but you should not release a device that uses this non-unique identifier into
production.

If you want to specify a program ID that does not follow the standard program ID
format, you must use the command-line interface for the LonTalk Interface
Developer utility. LONMARK International requires all interoperable LONWORKS
devices to use a standard-format program ID. Using a non-standard format for
the program ID will prevent the use of functional blocks and configuration
properties, and will prevent certification.

Specifying the Model File
From the Model File Selection page of the utility, you specify the model file for
the device. You can also click Edit to open the model file in whatever editor is
associated with the .nc file type, for example, Notepad or the NodeBuilder
Development Tool.

The model file is a simple source file written using a subset of the Neuron C
Version 2.1 programming language. The model file contains declarations of
network variables, configuration properties, functional blocks, and their
relationships.

The LonTalk Interface Developer utility uses the information in the model file,
combined with other user preferences, to generate the application framework
files and the interface files. You must compile and link the application
framework files with the host application.

See Chapter 3, Creating a Model File, on page 23 for more information about the
model file.

Specifying Neuron C Compiler Preferences
From the Neuron C Compiler Preferences page of the utility, you can specify
macros for the Neuron C compiler preprocessor and extend the include search
path for the compiler.

For the preprocessor macros (#define statements), you can only specify macros
that do not require values. These macros are optional. Use separate lines to
specify multiple macros.

The _FTXL macro is always predefined by the LonTalk Interface Developer
utility, and does not need to be specified explicitly. You can use this macro to
control conditional compilation for FTXL applications. In addition, the utility
predefines the _MODEL_FILE macro for model file definitions and the _LID3
macro for LonTalk Interface Developer utility macros.

For the search path, you can specify additional directories in which the compiler
should search for user-defined include files (files specified within quotation
marks, for example, #include "my_header.h").

Specifying additional directories is optional. Use separate lines to specify
multiple directories.

http://www.lonmark.org/mid

FTXL User’s Guide 61

The LonTalk Interface Developer project directory is automatically included in
the compiler search path, and does not need to be specified explicitly. Similarly,
the Neuron C Compiler system directories (for header files specified with angled
brackets, for example, #include <string.h>) are also automatically included in the
compiler search path.

Specifying Code Generator Preferences
From the Interface Developer Code Generator Preferences page of the utility, you
can specify preferences for the LonTalk Interface Developer compiler, such as
whether to generate verbose source-code comments.

Compiling and Generating the Files
From the Summary and Confirmation page of the utility, you can view all of the
information that you specified for the project. When you click Next, the LonTalk
Interface Developer utility compiles the model file and generates a number of C
source files and header files, as described in Using the LonTalk Interface
Developer Files on page 61.

The Build Progress and Summary page shows the results of compilation and
generation of the FTXL project files.

Any warning or error messages have the following format:

Error-type: Model_file_name Line_number(Column_number): Message

Example: A model file named “tester.nc” includes the following single network
variable declaration:

network input SNVT_volt nviVolt

Note the missing semi-colon at the end of the line. When you use this file to build
a project from the LonTalk Interface Developer utility, the compiler issues the
following message:

Error: TESTER.NC 1(32):
 Unexpected END-OF-FILE in source file [NCC#21]

The message type is error, the line number is 1, the column number is 32 (which
corresponds to the position of the error, in this case, the missing semi-colon), and
the compiler message number is NCC#21. To fix this error, add a semi-colon to
the end of the line.

See the NodeBuilder Errors Guide for information about the compiler messages.

Using the LonTalk Interface Developer Files
The LonTalk Interface Developer utility takes all of the information that you
provide and automatically generates the following files that are needed for your
FTXL application:

• LonNvTypes.h

• LonCpTypes.h

• FtxlDev.h

• FtxlDev.c

62 Using the LonTalk Interface Developer Utility

• project.xif

• project.xfb

These files form the FTXL application framework, which defines the FTXL device
initialization data and self-identification data for use in initialization phase,
including communication parameters and everything you need to begin device
development. The framework includes ANSI C type definitions for network
variable and configuration property types used with the application, and
implements them as global application variables.

To include these files in your application, include the FtxlDev.h file in your FTXL
application using an ANSI C #include statement, and add the FtxlDev.c file to
your project so that it can be compiled and linked.

The following sections describe the copied and generated files.

Copied Files
The LonTalk Interface Developer utility copies the following files into your
project directory if no file with the same name already exists:

• FtxlApi.h

• FtxlHal.c

• FtxlHal.h

• FtxlHandlers.c

• FtxlNvdFlashDirect.c

• FtxlNvdFlashFs.c

• FtxlNvdUserDefined.c

• FtxlOsal.c

• FtxlOsal.h

• FtxlTypes.h

• libFtxl100.a

• LonPlatform.h

Existing files with the same name, even if they are not write-protected, are not
overwritten by the utility.

Other than FtxlDev.h, you do not normally have to explicitly include any of the
header files with your application source, because the FtxlDev.h file already
includes the required files.

You must ensure that the libFtxl100.a library and the various C files are
available to your project so that they can be compiled and linked with your
application.

LonNvTypes.h and LonCpTypes.h
The LonNvTypes.h file defines network variable types, and includes type
definitions for standard or user network variable types (SNVTs or UNVTs). See
Using Types on page 64 for more information on the generated types.

FTXL User’s Guide 63

The LonCpTypes.h file defines configuration property types, and includes
standard or user configuration property types (SCPTs or UCPTs) for
configuration properties implemented within configuration files.

Either of these files might be empty if your application does not use either
network variables or configuration properties.

FtxlDev.h
The FtxlDev.h file is the main header file that the LonTalk Interface Developer
utility produces. This file provides the definitions that are required for your
application code to interface with the application framework and the FTXL
LonTalk API, including C extern references to public functions, variables, and
constants generated by the LonTalk Interface Developer utility.

You should include this file with all source files that your application uses, but
you do not normally have to edit this file. Any manual changes to this file are not
retained when you rerun the LonTalk Interface Developer utility. The file
contains comments that describe how you can override some of the preferences
and assumptions made by the utility.

FtxlDev.c
The FtxlDev.c file is the main source file that the LonTalk Interface Developer
utility produces. This file includes the FtxlDev.h file header file, declares the
network variables, configuration properties, and configuration files (where
applicable).

It defines the device’s LonInit() function. It also defines variables and constants,
including the network variable table, the device’s initialization data block, and a
number of utility functions.

You must compile and link this file with your application, but you do not
normally have to edit this file. Any manual changes to this file are not retained
when you rerun the LonTalk Interface Developer utility, but the file contains
comments that describe how you can override some of the preferences and
assumptions made by the utility.

project.xif and project.xfb
The LonTalk Interface Developer utility generates the device interface file for
your project in two formats:

• project.xif (a text file)

• project.xfb (a binary file)

For both files, project is the name of the FTXL project that you specified in the
Welcome to LonTalk Interface Developer window of the LonTalk Interface
Developer utility. Thus, these files have the same name as the FTXL project file
(.lidprj extension).

These files comply with the LONMARK device interface revision 4.401 format.

Important: If your device is defined with a non-standard program ID, the device
interface file cannot contain interoperable LONMARK constructs.

64 Using the LonTalk Interface Developer Utility

Using Types
The LonTalk Interface Developer utility produces type definitions for the network
variables and configuration properties in your model file. For maximum
portability, all types defined by the utility are based on a small set of host-side
equivalents to the built-in Neuron C types. For example, the LonPlatform.h file
contains a type definition for a Neuron C signed integer equivalent type called
ncsInt. This type must be the equivalent of a Neuron C signed integer, a signed
8-bit scalar. For most target platforms, the ncsInt type is defined as signed char
type.

A network variable declared by a Neuron C built-in type does not require a host-
side type definition in the LonNvTypes.h file, but is instead declared with its
respective host-side Neuron C equivalent type as declared in LonPlatform.h.

Important: Network variables that use ordinary C types, such as int or long, are
not interoperable. For interoperability, network variables must use types defined
within the device resource files. These network variable types include standard
network variable types (SNVTs) and user-defined network variable types
(UNVTs). You can use the Resource Editor tool to define your own UNVT.

Example:

A model file contains the following declarations:

network input int nviInteger;
network output SNVT_count nvoCount;
network output SNVT_switch nvoSwitch;

• The nviInteger declaration uses a built-in Neuron-C type, so the LonTalk
Interface Developer utility uses the ncsInt type defined in LonPlatform.h.

• The nvoCount declaration uses a type that is not a built-in Neuron C
type. The utility produces the following type definition:

typedef ncuLong SNVT_count;

The ncuLong type represents the host-side equivalent of a Neuron C
unsigned long, a 16-bit unsigned scalar. It is defined in LonPlatform.h,
and typically maps to the LonWord type. LonWord is a platform-
independent definition of a 16-bit scalar in big-endian notation:

typedef struct {
 LonByte msb;
 LonByte lsb;
} LonWord;

To use this platform-independent type for numeric operations, you can
use the optional LON_GET_UNSIGNED_WORD or
LON_SET_UNSIGNED_WORD macros. Similar macros are provided for
signed words (16 bit), and for signed and unsigned 32-bit scalars
(DOUBLE).

Important: If a network variable or configuration property is defined
with an initializer in your device’s model file, and if you change the
default definition of multibyte scalars (such as the ncuLong type), you
must modify the initializer generated by the LonTalk Interface Developer
utility if the type is a multibyte scalar type.

FTXL User’s Guide 65

• The nvoSwitch declaration is based on a structure. The LonTalk
Interface Developer utility redefines this structure using built-in Neuron
C equivalent types:

typedef LON_STRUCT_BEGIN(SNVT_switch){
 ncuInt value;
 ncsInt state;
} LON_STRUCT_END(SNVT_switch);

Type definitions for structures assume a padding of 0 (zero) bytes and a packing
of 1 byte. The LON_STRUCT_BEGIN and LON_STRUCT_END macros enforce
platform-specific byte packing and padding. These macros are defined in the
LonPlatform.h file, which allows you to adjust them for your compiler.

Bit Field Members
For portability, none of the types that the LonTalk Interface Developer utility
generates use bit fields. Instead, the utility defines bit fields with their enclosing
bytes, and provides macros to extract or manipulate the bit field information.

By using macros to work directly with the bytes of the bit field, your code is
portable to both big-endian and little-endian platforms (that is, platforms that
represent the most-significant bit in the left-most position and platforms that
represent the most-significant bit in the right-most position). The macros also
reduce the need for anonymous bit fields to achieve the correct alignment and
padding.

Example: The following macros and structure define a simple bit field of two
flags, a 1-bit flag alpha and a 4-bit flag beta:

typedef LON_STRUCT_BEGIN(Example) {
 LonByte flags_1; // contains alpha, beta
} LON_STRUCT_END(Example);

#define LON_ALPHA_MASK 0x80
#define LON_ALPHA_SHIFT 7
#define LON_ALPHA_FIELD flags_1
#define LON_BETA_MASK 0x70
#define LON_BETA_SHIFT 4
#define LON_BETA_FIELD flags_1

When your program refers to the flags_1 structure member, it can use the bit
mask macros (LON_ALPHA_MASK and LON_BETA_MASK), along with the bit
shift values (LON_ALPHA_SHIFT and LON_BETA_SHIFT), to retrieve the two
flag values. These macros are defined in the LonNvTypes.h file. The
LON_STRUCT_* macros enforce platform-specific byte packing.

To read the alpha flag, use the following example assignment:

Example var;
alpha_flag = (var.LON_ALPHA_FIELD & var.LON_ALPHA_MASK) >>
 var.LON_ALPHA_SHIFT;

You can also use the LON_GET_ATTRIBUTE() and LON_SET_ATTRIBUTE()
macros to access flag values. For example, for a variable named var, you can use
these macros to get or set the attributes:

alpha_flag = LON_GET_ATTRIBUTE(var, LON_ALPHA);
…

66 Using the LonTalk Interface Developer Utility

LON_SET_ATTRIBUTE(var, LON_ALPHA, alpha_flag);

These macros are defined in the FtxlTypes.h file.

Enumerations
The LonTalk Interface Developer utility does not produce enumerations. FTXL
requires an enumeration to be of size byte. The ANSI C standard requires that
an enumeration be an int, which is larger than one byte for many platforms.

An FTXL enumeration uses the LON_ENUM_BEGIN and LON_ENUM_END
macros. For many compilers, these macros can be defined to generate native
enumerations:

#define LON_ENUM_BEGIN(name) enum
#define LON_ENUM_END(name) name

Some compilers support a colon notation to define the enumeration’s underlying
type:

#define LON_ENUM_BEGIN(name) enum : signed char
#define LON_ENUM_END(name)

When your program refers to an enumerated type in a structure or union, it
should not use the enumeration’s name, but should use the LON_ENUM_*
macros.

For those compilers that support byte-sized enumerations, it can be defined as:

#define LON_ENUM(name) name

For other compilers, it can be defined as:

#define LON_ENUM(name) signed char

Example: Table 7 shows an example enumeration using the FTXL
LON_ENUM_* macros, and the equivalent ANSI C enumeration.

Table 7. Enumerations in FTXL

FTXL Enumeration Equivalent ANSI C Enumeration

LON_ENUM_BEGIN(Color) {
red, green, blue

} LON_ENUM_END(Color);

typedef struct {

…
LON_ENUM(Color) color;

} Example;

enum {
red, green, blue

} Color;

typedef struct {

…
Color color;

} Example;

Floating Point Variables
Floating point variables receive special processing, because the Neuron C
compiler does not have built-in support for floating point types. Instead, it offers
an implementation for floating point arithmetic using a set of floating-point
support functions operating on a float_type type. The LonTalk Interface
Developer utility represents this type as a float_type structure, just like any
other structured type.

FTXL User’s Guide 67

This floating-point format can represent numbers with the following
characteristics:

• 103810*1± approximate maximum value

• 710*1 −± approximate relative resolution

The float_type structure declaration represents a floating-point number in IEEE
754 single-precision format. This format has one sign bit, eight exponent bits,
and 23 mantissa bits; the data is stored in big-endian order. The float_type type
is identical to the type used to represent floating-point network variables.

For example, the LonTalk Interface Developer utility generates the following
definitions for the floating point type SNVT_volt_f:

/*
 * Type: SNVT_volt_f
 */
typedef LON_STRUCT_BEGIN(SNVT_volt_f)
{
 LonByte Flags_1; /* Use bit field macros, defined
 below */
 LonByte Flags_2; /* Use bit field macros, defined
 below */
 ncuLong LS_mantissa;
} LON_STRUCT_END(SNVT_volt_f);

/*
 * Macros to access the sign bit field contained in
 * Flags_1
 */
#define LON_SIGN_MASK 0x80
#define LON_SIGN_SHIFT 7
#define LON_SIGN_FIELD Flags_1

/*
 * Macros to access the MS_exponent bit field contained in
 * Flags_1
 */
#define LON_MSEXPONENT_MASK 0x7F
#define LON_MSEXPONENT_SHIFT 0
#define LON_MSEXPONENT_FIELD Flags_1

/*
 * Macros to access the LS_exponent bit field contained in
 * Flags_2
 */
#define LON_LSEXPONENT_MASK 0x80
#define LON_LSEXPONENT_SHIFT 7
#define LON_LSEXPONENT_FIELD Flags_2

/*
 * Macros to access the MS_mantissa bit field contained in
 * Flags_2
 */
#define LON_MSMANTISSA_MASK 0x7F
#define LON_MSMANTISSA_SHIFT 0

68 Using the LonTalk Interface Developer Utility

#define LON_MSMANTISSA_FIELD Flags_2

See the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
754-1985) documentation for more information.

Network Variable and Configuration Property
Declarations

The LonTalk Interface Developer utility generates network variables and
configuration properties using the built-in types defined in LonPlatform.h along
with the types defined in LonNvTypes.h and LonCpTypes.h. Both network
variables and configuration properties are declared in the FtxlDev.c file, where
input network variables (including configuration network variables) appear as
volatile variables of the relevant type, and configuration properties that are not
implemented with network variables appear as members of configuration files.

Example:

A model file contains the following Neuron C declarations:

SCPTlocation cp_family cpLocation;

network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;
const network output polled SNVT_address nvoFileDir;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
 nvoFileDir implements nvoFileDirectory;
} NodeObject external_name("NodeObject") fb_properties {
 cpLocation
};

The LonTalk Interface Developer utility generates the following variables in the
FtxlDev.c file for the nviNodeRequest, nvoNodeStatus, and nvoFileDir network
variables:

volatile SNVT_obj_request nviNodeRequest;
SNVT_obj_status nvoNodeStatus;
SNVT_address nvoFileDir = {
 LON_DMF_WINDOW_START/256u, LON_DMF_WINDOW_START%256u
};

The FTXL LonTalk API, upon receipt of an incoming network variable update,
automatically moves data into the corresponding input network variable and
signals this event by calling an event handler function, which allows your
application to respond to the arrival of new network variable data. Your
application then reads the input variable to obtain the latest value.

To send an update to the nvoNodeStatus output network variable, your
application writes the new value to the nvoNodeStatus variable, and then calls
the LonPropagateNv() function to propagate the new value onto the network.

See Developing an FTXL Application on page 73 for information about the
development of a FTXL application using the LonTalk Interface Developer
utility-generated code.

FTXL User’s Guide 69

The utility generates a configuration file in FtxlDev.c for the cpLocation
configuration property:

/*
 *
 * Writable configuration parameter value file
 */
volatile LonWriteableValueFile lonWriteableValueFile = {
 {{'\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0'}}
};

/*
 * CP template file
 */
const char lonTemplateFile[] = \
 "1.1;" \
 "1,0,0\x80,17,31;";

#ifndef LON_FILEDIR_USER_DEFINED
/*
 * Variable: File Directory
 */

const LonFileDirectory lonFileDirectory =
{
 LON_FILE_DIRECTORY_VERSION,
 LON_FILE_COUNT,
 {
 LON_REGISTER_FILE("template",
 sizeof(lonTemplateFile), LonTemplateFileType,
 LON_DMF_WINDOW_START+sizeof(lonFileDirectory)),
 LON_REGISTER_FILE("rwValues",
 sizeof(lonWriteableValueFile), LonValueFileType,
 LON_DMF_WINDOW_START+sizeof(lonFileDirectory)
 +sizeof(lonTemplateFile)),
 LON_REGISTER_FILE("roValues", 0, LonValueFileType,
 0)
 }
};
#endif /* LON_FILEDIR_USER_DEFINED */

The LonWriteableValueFile data structure is defined in the FtxlDev.h header
file:

typedef LON_STRUCT_BEGIN(LonWriteableValueFile)
{
 SCPTlocation cpLocation_1;
 /* sd_string("1,0,0\x80,17,31;") */
} LON_STRUCT_END(LonWriteableValueFile);

extern volatile LonWriteableValueFile
 lonWriteableValueFile;

70 Using the LonTalk Interface Developer Utility

Similarly, a LonReadOnlyValueFile type is defined and used to declare a
lonReadOnlyValueFile variable if the model file declares read-only configuration
properties.

The LonTalk Interface Developer utility generates resource definitions for
configuration properties and network variables defined with the eeprom keyword.
Your application must provide sufficient persistent storage for these resources.
You can use any type of non-volatile memory, or any other media for persistent
data storage. The template file and the read-only value file would normally be
declared as const, and can be linked into a code segment, which might relate to
non-modifiable memory such as PROM or EPROM (these files must not be
changed at runtime). However, writable, non-volatile storage must be
implemented for the writable configuration property value file.

The details of such persistent storage are subject to the host platform
requirements and capabilities; persistent storage options include: flash memory,
EEPROM memory, non-volatile RAM, or storage in a file or database on a hard
drive.

You can specify initializers for network variables or configuration properties in
the model file. Alternatively, you can specify initializers for configuration
properties in the resource file that defines the configuration property type or
functional profile. For network variables without explicit initialization, the rules
imposed by your host development environment apply. These values might have
random content, or might automatically be preset to a well-defined value.

Constant Configuration Properties
In general, a configuration property can be modifiable, either from within the
FTXL application or from a network management tool. However, the LonTalk
Interface Developer utility declares constant configuration property files as
constants (using the C const keyword), so that they are allocated in non-
modifiable memory.

A special class of configuration properties is the device-specific configuration
property. A device-specific configuration property is considered variable to the
application (that is, your application can change it), but constant to the external
interface. These properties might, for example, be used to store calibration data
that is gathered during the device’s auto-tuning procedure.

However, a paradox arises because the network manager expects this
configuration property within the read-only value file, but the read-only value file
must be writable from the local application. This paradox is known as the
writeable read-only value file.

FTXL presents the following solution to resolve this paradox:

• Before the inclusion of the FtxlDev.h header file into the FtxlDev.c file,
you can define the LON_READONLY_FILE_IS_WRITEABLE macro to a
value of 1 (one). If you do not define this macro, or define it to equate to
zero, the read-only value file is constant. This is the default state. The
LON_READONLY_FILE_IS_WRITEABLE macro is used within the
FtxlDev.h header to define the read-only file’s storage type with the
LON_READONLY_FILE_STORAGE_TYPE macro, which in turn is used
in declaration and specification of the lonReadOnlyValueFile variable.

FTXL User’s Guide 71

• Defining the LON_READONLY_FILE_IS_WRITEABLE macro to 1
causes the read-only value file to be writeable by the local application.
Because it is now allocated in volatile memory, your driver for non-
volatile data must also be able to read and write the read-only value file.

For the network management tool, however, the read-only file remains non-
writeable. If your application uses the direct memory files feature to access the
files, the LonTalk Interface Developer utility generates code that declares this
direct memory files window segment as non-modifiable. If your application uses
LONWORKS FTP to access the files, your implementation of the LONWORKS file
transfer protocol and server must prevent write operations to the read-only value
file under all circumstances.

The Network Variable Table
The network variable table lists all the network variables that are defined by
your application. It contains a pointer to each network variable and the initial
(or declared) length of each network variable, in bytes. It also contains an
attribute byte that contains flags which define the characteristics of each
network variable.

The network variable table acts as a bridge between your application and the
FTXL LonTalk API. The LonTalk Interface Developer utility generates the
network variable table, along with the LonInit() function that reads the table and
register the network variables with the FTXL LonTalk API.

An FTXL application typically accesses a network variable value through the C
global variable that implements the network variable. However, the FTXL
LonTalk API also provides a function that returns the pointer to a network
variable’s value as a function of its index:

void* const LonGetNvValue(unsigned index);

You can use this function for any network variable, including static network
variables, dynamic network variables, and configuration property network
variables. The LonGetNvValue() function returns NULL for an invalid index, or
returns a pointer to the value.

For dynamic network variables, you must use the LonGetNvValue() function
because there is no global C variable or network variable table entry for a
dynamic network variable.

Network Variable Attributes
The network variable table (nvTable[])in the FtxlDev.c file includes a bitmask for
each network variable to define the network variable’s attributes, including, for
example, whether the network variable is:

• An output network variable

• Persistent

• Polled

• Synchronous

• Of changeable type

72 Using the LonTalk Interface Developer Utility

The FtxlTypes.h file defines the bitmasks for these attributes. For example,
LON_NV_IS_OUTPUT is the mask for an output network variable,
LON_NV_POLLED is the mask for a polled network variable, and so on.

The FTXL LonTalk API does not propagate a polled output network variable's
value to the network when your application calls the LonPropagateNv() function.
For input network variables, the polled attribute changes the behavior of the
network management tool’s binder, which determines how a network variable
connection is managed.

See Developing an FTXL Application on page 73 for more information about
propagation of network variable updates.

The Message Tag Table
Although the FTXL LonTalk protocol stack does not use the message tag table,
the LonTalk Interface Developer utility declares the message tag table in
FtxlDev.c if you declare one or more message tags in the model file.

The message tag table lists all the message tags that are defined by your
application. It contains a flag for each message tag which indicates that the
message tag is not associated with an address table entry and therefore can only
be used for sending explicitly addressed application messages. This flag is set for
all message tags declared with the bind_info(nonbind) modifier in the model file.

See Communicating with Other Devices Using Application Messages on page 93
for more information about using message tags.

FTXL User’s Guide 73

5

Developing an FTXL Application

This chapter describes how to develop an FTXL application.
It also describes the various tasks performed by the
application.

74 Developing an FTXL Application

Overview of an FTXL Application
This chapter describes how to use the FTXL LonTalk API and the application
framework produced by the LonTalk Interface Developer utility to perform the
following tasks:

• Use the FTXL LonTalk API and FTXL LonTalk protocol stack

• Integrate the application with an operating system

• Provide persistent storage for non-volatile data

• Initialize the FTXL device

• Periodically call the FTXL event pump

• Send information to other devices using network variables

• Receive information from other devices using network variables

• Handle network variable poll requests from other devices

• Handle updates to changeable-type network variables

• Handle dynamic network variables

• Communicate with other devices using application messages

• Handle management tasks and events

• Handle local network management commands

• Handle reset events

• Query the error log

• Use the direct memory files feature

• Shut down the FTXL device

Most FTXL applications need to perform only the tasks that relate to persistent
storage, initialization, calling the event pump, and sending and receiving
network variables.

This chapter shows you the basic control flow for each of the above tasks. It also
provides a simple code example to illustrate some of the basic tasks.

Using the FTXL LonTalk API
Within the seven-layer OSI Model protocol, the FTXL LonTalk API forms the
majority of the Presentation layer, and provides the interface between the FTXL
LonTalk protocol stack in the Session layer and the host application in the
Application layer, as shown in Figure 9 on page 75.

FTXL User’s Guide 75

Host Application

FTXL LonTalk API

Application Framework

Operating System Abstraction Layer
Hardware Abstraction Layer

ANSI/CEA-709.1 control network

FTXL
Transceiver

FtxlApi.h
FtxlDev.h

FTXL LonTalk Protocol Stack

Figure 9. The FTXL LonTalk API within the OSI Model

The [FTXL]\Core\libFtxl100.a file contains the FTXL LonTalk protocol stack,
the FTXL LonTalk API, and the parallel interface driver, which together allow
your FTXL application to handle network events, propagate network variables,
respond to network variable poll requests, and so on.

An FTXL application must include the FtxlDev.h file to be able to use the FTXL
LonTalk API. This file is generated by the LonTalk Interface Developer utility,
and is located in your application project directory. The FtxlDev.h file includes
the [FTXL]\Core\FtxlApi.h file, which contains definitions for accessing the
FTXL LonTalk API.

The [FTXL]\Core\FtxlHandlers.c source file contains stubs for the event handler
functions and callback handler functions that the FTXL LonTalk API calls. You
must add code to these stubs to respond to specific events. For example, the
LonNvUpdateOccurred() event handler function could inform the application of
the arrival of new data for a set-point value, and the related code could re-
calculate the device’s response, assign output values to peripheral I/O devices,
update the appropriate network variables, and propagate the changes to the
network.

The following recommendations can help you manage your FTXL application
project:

• Keep edits to LonTalk Interface Developer utility-generated files to a
minimum, that is, do not edit the LonNvTypes.h, LonCpTypes.h,
FtxlDev.h or FtxlDev.c files unless necessary

• Add #include “FtxlDev.h” to your application source files to provide access
to network variable types and instantiations and the FTXL LonTalk API

• Keep changes to the FtxlHandlers.c file to a minimum

o Add calls to your own functions in files that you create and
maintain

76 Developing an FTXL Application

o Future versions or fixes to the FTXL product might affect these
API files

Callbacks and Events
The FTXL LonTalk API uses two types of notifications for occurrences within the
system: callbacks and events.

The FTXL LonTalk API uses a callback when the API needs a return value from
the application immediately. A callback can occur in one of the FTXL LonTalk
protocol stack contexts (tasks or threads).

When you implement a callback handler function to process a callback, you must
ensure that the function completes its work as quickly as possible. Generally, a
callback handler function must not call FTXL LonTalk API functions or perform
time-intensive operations.

The FTXL LonTalk API uses an event to deliver a one-way notification to the
application. The protocol stack does not wait for the processing of the event to
complete before continuing.

The FTXL LonTalk protocol stack holds events in an internal queue for
processing. Thus, the application program must periodically call the
LonEventPump() function to process the event queue. This function also calls the
related event handler functions.

Because event processing in the event handler functions is not tied to the context
of the protocol stack, an event handler function can call FTXL LonTalk API
functions or perform time-intensive operations. An event handler function runs
within the same context (task or thread) as its caller (the LonEventPump()
function).

See Appendix D, FTXL LonTalk API, on page 147, for a list of the callback
handler functions and event handler functions.

Integrating the Application with an Operating System
The FTXL LonTalk protocol stack requires an FTXL application to use an
operating system. The FTXL Developer’s Kit includes example applications that
use the Micrium μC/OS-II operating system, but you can use any embedded
operating system that meets your application’s requirements. Although the
μC/OS-II operating system is a real-time operating system, the FTXL LonTalk
protocol stack does not require the operating system to be a real-time operating
system.

To allow the FTXL LonTalk protocol stack to use any operating system, the FTXL
LonTalk protocol stack library is linked with the FTXL Operating System
Abstraction Layer (OSAL) files, FtxlOsal.h and FtxlOsal.c. The FTXL OSAL files
provide macros and C functions for general operating system functions, such as
creating semaphores and waiting for events. The FTXL OSAL functions also
include error handling and basic debug tracing for the operating system
functions.

Your FTXL application can call the FTXL OSAL functions when it needs to call
operating system functions, or it can call the operating system functions directly.
By calling FTXL OSAL functions, your FTXL application can be more easily
ported to another operating system, if needed.

FTXL User’s Guide 77

The FTXL OSAL function prototypes are generic, and do not depend on the
operating system’s syntax. For example, to create a binary semaphore, your
application can call the OsalCreateBinarySemaphore() function, which in turn
calls the operating system’s function to create the semaphore. The FTXL OSAL
function assigns a pointer to the created semaphore and returns a status variable
that indicates whether the function was successful.

The FTXL Developer’s Kit includes source code for FTXL OSAL files that use the
syntax of the Micrium μC/OS-II operating system. To use a different operating
system, you must modify the OSAL files to implement the API for that operating
system.

For more information about the FTXL OSAL functions, see The FTXL Operating
System Abstraction Layer on page 156. For information about configuring the
operating system, see Configuring the Operating System on page 160 and see
Configuring the Micrium μC/OS-II Operating System on page 165.

Providing Persistent Storage for Non-Volatile Data
The FTXL LonTalk protocol stack provides an API for managing non-volatile
data (NVD). Because non-volatile data is stored and managed by the host
processor rather than the FTXL Transciever, the FTXL application must
implement the API’s functions so that both the FTXL LonTalk protocol stack and
the application can read and write NVD to non-volatile memory (typically, flash
memory). Two example implementations, one using a flash file system, and one
using raw flash access (through the HAL flash access routines) are provided in
the FtxlNvdFlashDirect.c and FtxlNvdFlashFs.c files.

The implementations of the NVD-management functions are contained in one of
the following files (all of which are copied to the project directory by the LonTalk
Interface Developer utility):

• FtxlNvdFlashDirect.c for direct-access flash memory management

• FtxlNvdFlashFs.c for file-system flash memory management

• FtxlNvdUserDefined.c for your own flash memory management

Typically, if you select either the direct flash model or the flash file system model,
you need only specify the appropriate value for the non-volatile root in the
LonTalk Interface Developer Utility. This section describes how the FTXL API
uses the non-volatile memory driver, in case you need to implement your own
user-defined non-volatile data driver or modify one of the provided drivers.

Non-volatile data is stored in segments. Two of the segments are used to store
data maintained by the FTXL LonTalk protocol stack, and the third segment is
used to store data maintained by the application. Examples of data maintained
by the FTXL LonTalk protocol stack include network variable configuration and
address tables. Examples of data maintained by the application include
configuration network variable values and persistent memory files (used for
configuration property value files and user files). Each data segment is identified
by an enumeration of type LonNvdSegmentType, defined in the FtxlTypes.h file.

The FTXL LonTalk protocol stack reads non-volatile data (loads it into RAM)
only during device initialization. Included with the data is a header that the
FTXL LonTalk protocol stack uses for validation. Within this header is an
application identifier, generated by the LonTalk Interface Developer utility, that
allows the FTXL LonTalk protocol stack to ensure that the data belongs to the

78 Developing an FTXL Application

current application. The header also includes a checksum to ensure that the data
is free of errors. If any of these validations fails, the FTXL LonTalk protocol
stack deletes all non-volatile data in the segment and sets the device to the
unconfigured state.

When data that must be stored persistently is updated in RAM, the FTXL
LonTalk protocol stack does not immediately update the corresponding persistent
memory. Instead, the FTXL LonTalk protocol stack defers writing the data to
persistent memory so that it can continue to respond to network management
commands in a timely fashion. The reasons for deferred writing of persistent
memory include:

• Flash sectors sizes tend to be large and can take a long time to write.

• Each network management update generally affects only a small amount
of data, and typically, a single logical operation consists of many
messages (commissioning of the device generally being the most common
and most extensive).

• The FTXL LonTalk protocol stack supports large configurations.

If the FTXL LonTalk protocol stack has not received any updates to a particular
segment for a short (configurable) time (for example, 1 second), it uses the
application callback handler functions to write the data to persistent memory. If
the FTXL LonTalk protocol stack is shut down by calling the LonExit() function,
the FTXL LonTalk protocol stack completes the write process before returning
from the function. However, a sudden power outage or an unexpected CPU reset
can prevent an orderly shutdown. The FTXL LonTalk protocol stack maintains a
set of flags (one for each segment) that survive an unorderly shutdown so that
the FTXL LonTalk protocol stack can detect the unorderly shutdown at the next
restart.

The FTXL LonTalk protocol stack checks the flag, by calling the
LonNvdIsInTransaction() callback handler function, during device startup before
it reads the non-volatile data. If the flag is set, integrity of the non-volatile data
has been compromised. Even if the configuration is internally consistent, the
FTXL device has likely lost updates from a network manager that it has already
acknowleged. If the FTXL device reverted to the last known configuration, this
inconsistency would likely be undetected and could result in errors that are
difficult to isolate. Instead, the FTXL LonTalk protocol stack deletes the
configuration data, logs a configuration checksum error, and goes unconfigured.
You can restore the configuration by recommissiong the device from network
management tool.

If you use either of the standard non-volatile drivers, you can enable tracing by
setting the global variable nvdTraceEnabled to a non-zero value. If create your
own custom non-volatile data driver, be sure to add some tracing capability to it.

Restoring Non-Volatile Data
During device startup, the FTXL LonTalk protocol stack reads the non-volatile
data for each segment and initializes the corresponding data structures stored in
RAM by performing the following steps:

1. Calling the LonNvdIsInTransaction() callback handler function. The
application returns whether an NVD transaction for this segment was in
progress when the FTXL LonTalk protocol stack was stopped. Typically,

FTXL User’s Guide 79

this function returns FALSE, but if the device was reset while a
transaction was in progress, this function returns TRUE and the non-
volatile data segment is considered corrupt, so the restore fails.

2. Calling the LonNvdOpenForRead() callback handler function to open the
segment that corresponds to the specified type.

3. Calling the LonNvdRead() callback handler function to read the header of
the NVD image. This function verifies the header and, if it is valid, uses
the size information in the header to allocate the appropriate buffers.

4. Calling the LonNvdRead() callback handler function again (perhaps
many times) to read the entire configuration and de-serialize the image.

5. Deserializing the image and updating the FTXL LonTalk protocol stack’s
control structures.

6. Calling the LonNvdClose() callback handler function to close the file.

If, at any time during this process any error occurs, the FTXL LonTalk protocol
stack sets the device to the unconfigured state, generates a configuration
checksum error, and calls the LonNvdDelete() callback handler function.

The FTXL LonTalk protocol stack handles the deserialization of the data for the
LonNvdSegNetworkImage and LonNvdSegNodeDefinition segments, but not for
the application-defined LonNvdSegApplicationData segment. Instead, the FTXL
LonTalk protocol stack calls the LonNvdDeserializeSegment() callback handler
function during step 5 above when it processes the LonNvdSegApplicationData
segment. The LonNvdDeserializeSegment() callback handler function is
generated by the LonTalk Interface Developer utility.

Writing Non-Volatile Data
When the FTXL LonTalk protocol stack processes a network management
message that affects any of its configuration data, the FTXL LonTalk protocol
stack checks whether there is an NVD transaction for the affected segment. If
not, FTXL LonTalk protocol stack starts a timer and calls the
LonNvdEnterTransaction() callback handler function for the segment. If there is
already a transaction pending, the FTXL LonTalk protocol stack simply resets
the timer.

When the timer expires, the FTXL LonTalk protocol stack writes the data to
persistent memory by performing the following steps:

1. Determining the size of the serialized image.

2. Allocating a buffer large enough to hold the serialized image.

3. Serializing the data.

4. Calling the LonNvdOpenForWrite() callback handler function to open the
segment with write access. If the segment does not already exist, this
function must create it. If the segment exists, but is the wrong size, the
application might need to delete it before writing to it.

5. Calling the LonNvdWrite() callback hanlder function one or more times to
write the image.

6. Calling the LonNvdClose() callback handler function to close the file.

80 Developing an FTXL Application

7. Calling the LonNvdExitTransaction() callback handler function to clear
the transaction.

8. Freeing the buffer that contains the serialized image.

The FTXL LonTalk protocol stack determines the size of the serialized image and
handles the serialization of the data for the LonNvdSegNetworkImage and
LonNvdSegNodeDefinition segments, but not for the application-defined
LonNvdSegApplicationData segment. Intstead, theFTXL LonTalk protocol stack
calls the LonNvdGetApplicationSegmentSize() callback handler function in step 1
above, and the LonNvdSerializeSegment() callback handler function during step
3 above when it processes the LonNvdSegApplicationData segment. Both of
these callback handler functions are generated by the LonTalk Interface
Developer utility.

The FTXL LonTalk protocol stack uses a low-priority operating system task or
thread (typically lower than the application task) to write NVD to persistent
memory. By using a low-priority task or thread, writing NVD should not block
the running of the application or the FTXL LonTalk protocol stack. In addition,
FTXL LonTalk protocol stack ensures that these NVD-management functions are
never called by more than one task or thread at a time.

The application can update configuration network variables (CPNVs) and user
files directly, without the FTXL LonTalk protocol stack’s knowledge. The
application must inform the FTXL LonTalk protocol stack when this occurs so
that the FTXL LonTalk protocol stack can manage the write transaction. Thus,
the application should call the LonNvdAppSegHasBeenUpdated() function to
initiate an NVD transaction for the application segment.

Tasks Performed by an FTXL Application
The main() function of an FTXL application typically performs only the following
actions:

1. Creates one or more operating system contexts (tasks or threads)

2. Starts the operating system (if it is not already started)

Within one of the newly created tasks, the application life cycle includes two
phases:

• Initialization

• Normal processing

The initialization phase of an FTXL application includes a call to the LonInit()
API function to initialize the FTXL LonTalk protocol stack and the FTXL
Transceiver. The initialization phase defines basic parameters for LONWORKS
network communication, such as the communication parameters for the physical
transceiver in use, and defines the application’s external interface: its network
variables, configuration properties, and self-documentation data. Successful
completion of the initialization phase causes the FTXL Transceiver to leave Quiet
mode, after which it can send and receive messages over the network. During the
initialization phase, the application also creates at least one operating system
event (or other protected shared resource).

During normal processing, which is often implemented within an infinite loop,
the application waits for an operating system event whenever it is not busy.
When the event occurs, the application calls the LonEventPump() API function to

FTXL User’s Guide 81

process FTXL events. This function then calls event handler functions (such as
LonNvUpdateOccurred() or LonNvUpdateCompleted()).

The following sections describe the tasks that an FTXL application performs
during its life cycle.

Initializing the FTXL Device
Before your application initializes the FTXL LonTalk protocol stack, it must
initialize the C runtime environment and the operating system.

Your application must call the LonInit() function once during device startup. The
implementation of this function is generated by the LonTalk Interface Developer
utility, and is included in the FtxlDev.c file. This function initializes the FTXL
LonTalk API, the FTXL LonTalk protocol stack, and the FTXL Transceiver. The
main application thread must call this function before it calls any other FTXL
LonTalk API functions.

The LonInit() registers the FTXL device interface data with the FTXL LonTalk
protocol stack. This data defines the network parameters and device interface. If
your application needs to change the network parameters or change the device
interface, it can call the LonExit() function to shut down the FTXL LonTalk
protocol stack, and then call the LonInit() function to restart the protocol stack
with the updated interface.

Add a call the LonInit() function to the beginning of the application’s main
thread. If this function is successful, your application can begin normal
operations, including calling the event pump, as described in Periodically Calling
the Event Pump.

Example:

void myMainThread(void) {
 LonApiError sts;
 sts = LonInit();
 if (sts == LonApiNoError) {
 // begin normal operations
 }
}

Periodically Calling the Event Pump
As described in Callbacks and Events on page 76, your FTXL application must
periodically call the LonEventPump() function to check if there are any
LONWORKS events to process. This function calls specific API functions based on
the type of event, then calls event handler functions to notify the application
layer of these network events. You can call this function from the idle loop
within the main application thread or from any point in your application that is
processed periodically. However, you must call this function from the same
application context (task or thread) that called the the LonInit() function.

The FTXL LonTalk API calls the LonEventReady() callback handler function
whenever an event has been posted. This function is typically called from an
FTXL LonTalk protocol stack task or thread, and you must not call the
LonEventPump() function directly from the callback. However, your application
could define an operating system event which is signaled by the
LonEventReady() callback handler function. From within your application’s

82 Developing an FTXL Application

main thread, the application should implement an infinite loop that waits on this
operating system event. Whenever the event is signaled, the application should
call the LonEventPump() API function to process FTXL events.

You can signal this same operating system event to schedule your main
application thread to perform other functions as well. For example, you could
signal the operating system event from within an interrupt handler to signal the
main application task to process application I/O. Calling the LonEventPump()
function when there are no FTXL events is acceptable.

The host application should be prepared to process the maximum rate of
LONWORKS traffic delivered to the device. Although events are enqueued within
the FTXL LonTalk protocol stack, your application should call the
LonEventPump() function frequently to process events. Use the following
formula to determine the minimum call rate for the LonEventPump() function:

1−
=

rCountInputBuffe
ateMaxPacketRrate

where MaxPacketRate is the maximum number of packets per second arriving
for this device, and InputBufferCount is the number of input buffers defined for
your application (that is, buffers that hold incoming data until your application is
ready to process it). The formula subtracts one from the number of available
buffers to allow new data to arrive while other data is being processed.
However, the formula also assumes that your application has more than one
input buffer; having only one input buffer is generally not recommended.

If the application expects periods of inactivity, it can simply wait for the FTXL
LonTalk protocol stack to post an event. If the application expects periods where
it is busy for several milliseconds at a time, it should call the LonEventPump()
function during the busy time to ensure that events are processed. Use the
formula above to determine a baseline for how often to call the LonEventPump()
function.

Recommendation: In the absence of measured data for the network, assume 90
packets per second arriving for the device. This packet rate meets the TP/FT-10
channel’s throughput figures, assuming that most traffic uses acknowledged or
request/response service. Use of other service types will increase the required
packet rate, but not every packet on the network is necessarily addressed to this
device.

Using the formula, devices that implement two input buffers and are attached to
a TP/FT-10 network that expect high throughput should call the
LonEventPump() function approximately once every 10 ms.

When an event occurs, the LonEventPump() function calls the appropriate event
function for your host application to handle the event. Your event handler
functions must be designed for this minimum call rate, and should defer time-
consuming operations (such as lengthy flash writes) whenever possible, or
manage them in separate contexts (tasks or threads).

See Appendix D, FTXL LonTalk API, on page 147, for a list of the available event
handler and callback handler functions.

FTXL User’s Guide 83

Example:

while (1) {
 // process application-specific data
 ...
 if (OsalWaitForEvent(readyHandle, OSAL_WAIT_FOREVER) ==
 OSALSTS_SUCCESS)
 LonEventPump();
}

...

void LonEventReady(void)
{
 OsalSetEvent(readyHandle);
}

In the example, the readyHandle variable is the handle to an OSAL event; this
handle is defined using the OsalCreateEvent() function during the application’s
initialization phase, and is signaled by the LonEventReady() callback handler
function whenever an event is ready to be processed.

Sending a Network Variable Update
Your FTXL device typically communicates with other LONWORKS devices by
sending and receiving network variables. Each static network variable is
represented by a global variable declared by the LonTalk Interface Developer
utility in the FtxlDev.c file, with extern declarations provided in the FtxlDev.h
file. To send an update for a static output network variable, first write the new
value to the network variable declared in FtxlDev.c, and then call the
LonPropagateNv() function to send the network variable update. The
LonPropagateNv() function uses the index of the network variable, which is
defined in the LonNvIndex enumeration in FtxlDev.h. The index names use the
following format:

LonNvIndexName

Example: A network variable that is named nviRequest has the index name
LonNvIndexNviRequest.

For dynamic network variables, the application must call the LonGetNvValue()
function to retrieve the address of the value of a dynamic network variable.

The LonPropagateNv() function forwards the update to the FTXL LonTalk
protocol stack, which in turn transmits the update to the network. This function
returns an error status that indicates whether the update was delivered to the
FTXL LonTalk protocol stack, but does not indicate successful completion of the
update itself.

The FTXL device must be configured and online to be able to propagate a
network variable value. If the LonPropagateNv() function is called when the
FTXL device is not configured or not online, the function returns LonApiOffline.

After the update is complete, the FTXL LonTalk protocol stack informs the
LonEventReady() callback handler function in the FTXL application. The
application then calls the LonEventPump() function, which in turn calls your
LonNvUpdateCompleted() callback handler function, to notify your application of
the success or failure of the update. You can use this function for any

84 Developing an FTXL Application

application-specific processing of update completion. Figure 10 shows the control
flow for processing a network variable update.

LonPropagateNv()

FTXL Application FTXL LonTalk Protocol
Stack and API

Send Network Variable
Update to Network

Add “Update Complete”
Event to Queue

LonEventPump()

LonNvUpdateCompleted()

LonEventReady()

Figure 10. Control Flow for Sending a Network Variable Update to the Network

In the case of an unacknowledged or repeated service type, the FTXL LonTalk
protocol stack considers the update complete when it has finished sending the
update to the network. In the case of an acknowledged service type, the FTXL
LonTalk protocol stack considers the update complete when it receives
acknowledgements from all receiving devices, or when the retry timer expires n
times (where n is the retry count for the network variable + 1).

To process an update failure, edit the LonNvUpdateCompleted() callback handler
function in the FtxlHandlers.c file. This function is passed the network variable
index (the same one that you passed to the LonPropagateNv() function), and is
also passed a success flag. The function is initially empty, but you can edit it to
add your application-specific processing. The function initially appears as:

void LonNvUpdateCompleted(const unsigned index, const
 LonBool success)
{
 /* TBD */
}

FTXL User’s Guide 85

Do not handle an update failure with a repeated propagation; the FTXL LonTalk
protocol stack automatically retries a number of times based on the network
variable’s retry count. A completion failure generally indicates a problem that
should be signaled to the user interface (if any), flagged by an error or alarm
output network variable (if any), or by signaled as a comm_failure error through
the nvoStatus network variable of the Node Object functional block (if there is
one).

Example: The following model file defines the device interface for a simple power
converter. This converter accepts current and voltage inputs on its nviAmpere
and nviVolt input network variables. It computes the power and sends the value
on its nvoWatt output network variable:

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network output SNVT_power nvoWatt;

fblock UFPTpowerConverter {
 nvoWatt implements nvoPower;
 nviAmpere implements nviCurrent;
 nviVolt implements nviVoltage;
} powerConverter;

The following code fragment, implemented in your application’s code, uses the
data most recently received by either of the two input network variables,
computes the product, and stores the result in the nvoWatt output network
variable. It then calls the LonPropagateNv() function to send the computed
value.

#include "FtxlDev.h"

void myController(void)
{
 nvoWatt = nviAmpere * nviVolt;
 if (LonPropagateNv(LonNvIndexNvoWatt)!= LonApiNoError) {
 // handle propagation error here
 // such as lack of buffers or validation
 ...
 }
}

Receiving a Network Variable Update from the
Network

When the FTXL LonTalk protocol stack receives a network variable update from
the network, it enqueues the event and signals the arrival of the event by calling
the LonEventReady() callback handler function. When the application calls the
LonEventPump() function, the FTXL LonTalk protocol stack writes the update to
your network variable (by using the variable’s address stored in the network
variable table), and then calls the LonNvUpdateOccurred() event handler
function to inform your application that the update occurred. The application can
read the current value of any input network variable by reading the value of the
variable declared in the FtxlDev.c file.

86 Developing an FTXL Application

If a network variable update is received while the FTXL device is offline, the
value of the network variable is updated, but the LonNvUpdateOccurred() event
handler function is not called.

To process notification of a network variable update, modify the
LonNvUpdateOccurred() event handler function (in the FtxlHandlers.c file) to
call the appropriate functions in your application. The API calls this function
with the index of the updated network variable. Figure 11 shows the control flow
for receiving a network variable update.

LonEventPump()

LonNvUpdateOccurred()

FTXL ApplicationFTXL LonTalk Protocol
Stack and API

Receive Network
Variable Update from

Network

Add “Update Received”
Event to Queue

nviCount
Update

Figure 11. Control Flow for Receiving a Network Variable Update

Configuration network variables are used much in the same way as input
network variables, with the exception that the values must be kept in persistent
storage, and the application does not always respond to changes immediately.
Example 1, below, shows the processing flow for regular network variable
updates, and example 2 shows the same flow but with the addition of a
configuration network variable.

Example 1:

This example uses the same power converter model file from the example in the
previous section, Sending a Network Variable Update, on page 83. That example
demonstrated how to read the network variable inputs asynchronously by
reading the latest values from the network variables declared in the FtxlDev.c
file.

FTXL User’s Guide 87

This example extends the previous example and shows how your application can
be notified of an update to either network variable. To receive notification of a
network variable update, modify the LonNvUpdateOccurred() callback function.

In FtxlHandlers.c:

extern void myController(void);

void LonNvUpdateCompleted(unsigned index, const LonBool
 success) {

 switch (index) {
 case LonNvIndexNviAmpere: /* fall through */
 case LonNvIndexNviVolt:
 myController();
 break;
 default:
 /* handle other NV updates (if any) */
 }
}

In your application source file:

#include "FtxlDev.h"

void myController(void) {
 // nvoWatt = nviAmpere * nviVolt;
 LON_SET_UNSIGNED_WORD(nvoWatt,
 LON_GET_UNSIGNED_WORD(nviAmpere)
 * LON_GET_UNSIGNED_WORD(nviVolt));
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError)
 {
 // handle propagation error here
 ...
 }
}

This modification calls the myController() function defined in the example in the
previous section, Sending a Network Variable Update, on page 83. Because
network variable types are defined as type LonWord, this example uses the
LON_GET_UNSIGNED_WORD macros to get the nviAmpere and nviVolt
network variable values, and LON_SET_UNSIGNED_WORD to set the value for
the nvoWatt network variable.

Example 2:

This example adds a configuration network variable to Example 1. A SCPTgain
configuration property is added to the device interface in the model file:

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network output SNVT_power nvoWatt;

network input cp SCPTgain nciGain;

fblock UFPTpowerConverter {
 nvoWatt implements nvoPower;
 nviAmpere implements nviCurrent;
 nviVolt implements nviVoltage;
} powerConverter fb_properties {

88 Developing an FTXL Application

 nciGain
};

You can enhance the myController() function to implement the new gain factor:

void myController(void)
{
 // nvoWatt = nviAmpere * nviVolt * nciGain.multiplier;
 LON_SET_UNSIGNED_WORD(nvoWatt,
 LON_GET_UNSIGNED_WORD(nviAmpere)
 * LON_GET_UNSIGNED_WORD(nviVolt)
 * LON_GET_UNSIGNED_WORD(nciGain.multiplier));
 // nvoWatt /= nciGain.divider;
 LON_SET_UNSIGNED_WORD(nvoWatt,
 LON_GET_UNSIGNED_WORD(nvoWatt)
 / LON_GET_UNSIGNED_WORD(nciGain. divider));
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError)
 {
 // handle propagation error here
 ...
 }
}

Configuration network variables must be persistent, that is, their values must
withstand a power outage.

Handling a Network Variable Poll Request from the
Network

Devices on the network can request the current value of a network variable on
your device by polling or fetching the network variable. The FTXL LonTalk
protocol stack responds to poll of fetch requests by sending the current value of
the requested network variable.

Handling Changes to Changeable-Type Network
Variables

When a network management tool plug-in or the LonMaker browser changes the
type of a changeable-type network variable, it informs your application of the
change by describing the new type in the SCPTnvType configuration property
that is associated with the network variable.

When your application detects a change to the SCPTnvType value:

• It determines if the change is valid.

• If the change is valid, it processes the change.

• If the change is not valid, it reports an error.

Valid type changes are those that the application can support. For example, an
implementation of a generic PID controller might accept any numerical floating-
point typed network variables (such as SNVT_temp_f, SNVT_rpm_f, or
SNVT_volt_f), but can reject other types of network variables. Or a data logger
device might support all types that are less than 16 bytes in size, and so on.

FTXL User’s Guide 89

See The Dynamic Interface Example Application on page 202 for an example
application that handles changeable-type network variables.

Validating a Type Change
The SCPTnvType configuration property is defined by the following structure:

typedef LON_STRUCT_BEGIN(SCPTnvType) {
 ncuInt type_program_ID[8];
 ncuInt type_scope;
 ncuLong type_index;
 ncsInt type_category;
 ncuInt type_length;
 ncsLong scaling_factor_a;
 ncsLong scaling_factor_b;
 ncsLong scaling_factor_c;
} LON_STRUCT_END(SCPTnvType);

When validating a change to a network variable, an application can check five of
the fields in the SCPTnvType configuration property:

• The program ID template of the resource file that contains the network
variable type definition (type_program_ID[8])

• The scope of the resource file that contains the network variable type
definition (type_scope)

• The index within the specified resource file of the network variable type
definition (type_index)

• The category of the network variable type (type_category)

• The length of the network variable type (type_length)

The type_program_ID and type_scope values specify a program ID template and
a resource scope that together uniquely identify a resource file set. The
type_index value identifies the network variable type within that resource file
set. If the type_scope value is 0, the type_index value is a SNVT index. For
example, checking the type_scope and type_program_ID fields lets you accept
only types that you created.

The type_category enumeration is defined in the <snvt_nvt.h> include file as:

typedef enum nv_type_category_t {
 NVT_CAT_INITIAL = 0, // Initial (default) type
 NVT_CAT_SIGNED_CHAR, // Signed Char
 NVT_CAT_UNSIGNED_CHAR, // Unsigned Char
 NVT_CAT_SIGNED_SHORT, // 8-bit Signed Short
 NVT_CAT_UNSIGNED_SHORT, // 8-bit Unsigned Short
 NVT_CAT_SIGNED_LONG, // 16-bit Signed Long
 NVT_CAT_UNSIGNED_LONG, // 16-bit Unsigned Long
 NVT_CAT_ENUM, // Enumeration
 NVT_CAT_ARRAY, // Array
 NVT_CAT_STRUCT, // Structure
 NVT_CAT_UNION, // Union
 NVT_CAT_BITFIELD, // Bitfield
 NVT_CAT_FLOAT, // 32-bit Floating Point
 NVT_CAT_SIGNED_QUAD, // 32-bit Signed Quad
 NVT_CAT_REFERENCE, // Reference
 NVT_CAT_NUL = -1 // Invalid Value

90 Developing an FTXL Application

} nv_type_category_t;

This enumeration describes the type (signed short or floating-point, for example),
but does not provide information about structure or union fields. To support all
scalar types, test for a type_category value between NVT_CAT_SIGNED_CHAR
and NVT_UNSIGNED_LONG, plus NVT_CAT_SIGNED_QUAD.

The type_length field provides the size of the type in bytes.

Multiple changeable-type network variables can share the SCPTnvType
configuration property. In this case, the application must process all network
variables from the property’s application set, because just as the SCTPnvType
configuration property applies to all of these network variables, so does the type
change request. The application should accept the type change only if all related
network variables can perform the required change.

If one or more type-inheriting configuration properties apply to changing
configuration network variables (CPNVs), these type-inheriting CPNVs also
change their type at the same time. If this type-inheriting CPNV is shared
among multiple network variables, all related network variables must change to
the new type. Sharing a type-inheriting configuration property among both
changeable and non-changeable network variables is not supported.

Processing a Type Change
After validating a type change request, the application performs the type change.
The type-dependent part of your application queries these details when required
and processes the network variable data accordingly.

Some type changes require additional processing, while others do not. For
example, if your application supports changing between different floating-point
types, perhaps no additional processing is required. But if your application
supports changing between different scalar types, it might require the use of
scaling factors to convert the raw network variable value to a scaled value. You
can use the three scaling factors defined in the SCPTnvType configuration
property (scaling_factor_a, scaling_factor_b, and scaling_factor_c) to convert from
raw data to scaled fixed-point data according to the following formula:

()()crawascaled b += *10*

where raw is the value before scaling is applied, and a, b, and c are the values for
scaling_factor_a, scaling_factor_b, and scaling_factor_c.

To convert the scaled data back to a raw value for an output network variable,
use the following inverted scaling formula:

c
a
scaledraw b −⎟

⎠
⎞

⎜
⎝
⎛=

10*

For example, the SNVT_lev_cont type is an unsigned short value that represents
a continuous level from 0 to 100 percent, with a resolution of 0.5%. The actual
data values (the raw values) are in the variable range from 0 to 200. The scaling
factors for SNVT_lev_cont are defined as a=5, b= -1, c=0.

If the network variable is a member of an inheriting configuration property’s
application set that implements the property as a configuration network variable,

FTXL User’s Guide 91

then the application must process the type changes for both the network variable
and the configuration network variable.

If the network variable is a member of a configuration property’s application set
where the configuration property is shared among multiple network variables,
the application must process the type and length changes for all network
variables involved.

However, if the configuration property is implemented within a configuration file,
no change to the configuration file is required. The configuration file states the
configuration property’s initial and maximum size (in the CP documentation-
string length field), and LNS derives the current and actual type for type-
inheriting CPs from the associated network variable.

Your application must always support the NVT_CAT_INITIAL type category. If
the requested type is of that category, your application must ignore all other
content of the SCPTnvType configuration property and change the related
network variable’s type back to its initial type. The network variable’s initial
type is the type declared in the model file.

Processing a Size Change
If a supported change to the SCPTnvType configuration property results in a
change in the size of a network variable type, your application must provide code
to inform the FTXL LonTalk protocol stack about the current length of the
changeable-type network variable. The current length information must be kept
in non-volatile memory.

The FTXL LonTalk API provides a callback handler function, LonGetNvSize(),
that allows you to inform the API of the network variable’s current size. The
following code shows an example implementation for the callback handler
function.

unsigned LonGetNvSize(const unsigned index) {
 const LidNvDefinition* const nvTable = LonGetNvTable();
 unsigned size = LonGetDeclaredNvSize(index);

 if (index < LonNvCount &&
 nvTable[index].Definition.Flags & LON_NV_CHANGEABLE)
 {
 const SCPTnvType* pNvType = myGetNvTypeCp(index);
 // if the NV uses the initial type, its size is
 // the declared size set above
 if (pNvType->type_category != NVT_CAT_INITIAL) {
 size = pNvType->type_length;
 }
 }
 return size;
}

The example uses a myGetNvTypeCp() function (that you provide) to determine
the type of a network variable, based on your knowledge of the relationships
between the network variables and configuration properties implemented.

If the changeable-type network variable is member of an inheriting configuration
property that is implemented as a configuration property network variable, the
type information must be propagated from the changeable-type network variable
to the type-inheriting configuration property, so that the LonGetNvSize()

92 Developing an FTXL Application

callback handler function can report the correct current size for any implemented
network variable. Your myGetNvTypeCp() function could handle that mapping.

For the convenience of network management tools, you can also declare a
SCPTmaxNVLength configuration property to inform the tools of the maximum
type length supported by the changeable-type network variable. For example:

network input cp SCPTnvType nciNvType;
const SCPTmaxNVLength cp_family nciNvMaxLength;

network output changeable_type SNVT_volt_f nvoVolt
 nv_properties {
 nciNvType,
 nciNvMaxLength=sizeof(SNVT_volt_f)
};

Rejecting a Type Change
If a network management tool attempts to change the type of a changeable-type
network variable to a type that is not supported by the application (or is an
unknown type), your application must do the following:

• Report the error within a maximum of 30 seconds from the receipt of the
type change request. The application should signal an invalid_request
through the Node Object functional block and optionally disable the
related functional block. If the application does not include a Node Object
functional block, the application can set an application-specific error code
and take the device offline (use the offline parameter with the
LonSetNodeMode() function).

• Reset the SCPTnvType value to the last known good value.

• Reset all other housekeeping data, if any, so that the last known good
type is re-established.

Handling Dynamic Network Variables
To define the maximum number of supported dynamic network variables for your
FTXL device, you use the LonTalk Interface Developer utility (the Application
Configuration page) to specify the total number of dynamic variables that the
application supports. This number represents the application’s capacity for
dynamic network variables; the actual dynamic network variables are created or
deleted when the application is running. The process of managing dynamic
network variables is handled by the FTXL LonTalk protocol stack and the API,
but to use the dynamically created network variables, your application must
respond to related events.

The application must be able to handle the addition, modification, or deletion of
dynamic network variables. Dynamic network variable requests can come from a
network management tool or from another LONWORKS device on the network.
You must add code to the following event handler functions to support dynamic
network variables:

• LonNvAdded()

The FTXL LonTalk protocol stack calls this function when a dynamic

FTXL User’s Guide 93

network variable is added. On device startup, it calls this function for
each dynamic network variable that had been previously defined.

• LonNvTypeChanged()

The FTXL LonTalk protocol stack calls this function when a dynamic
network variable definition is changed.

• LonNvDeleted()

The FTXL LonTalk protocol stack calls this function when a dynamic
network variable is deleted.

For the LonNvAdded() and LonNvTypeChanged() event handler functions, the
FTXL LonTalk protocol stack passes the index value for the dynamic network
variable, and a pointer to the network variable’s attributes, such as direction,
size, name, and self-documentation string.

When a dynamic network variable is first added, the name and the self-
documentation string for the network variable might be blank. A network
management tool can update the name or the self-documentation string in a
subsequent network management message, for which the FTXL LonTalk protocol
stack calls the LonNvTypeChanged() event handler.

Communicating with Other Devices Using Application
Messages

Application messages are used to create a proprietary (that is, non-interoperable)
interface for a device. You can use application messages if your device needs a
proprietary interface that does not need to interoperate with devices from other
manufacturers, for example, to implement a manufacturing-test interface that is
only used during manufacturing test of your device. You can also use the same
mechanism that is used for application messaging to create foreign-frame
messages (for proprietary gateways) and explicitly addressed network variable
messages.

One interoperable use for application messages is to implement the LONWORKS
file transfer protocol. This protocol is used to exchange large blocks of data
between devices or between devices and tools, and is also used to access
configuration files on some devices.

The content of an application message is defined by a message code that is sent
as part of the message. The message codes that are available for use by your
application are standard application messages and user-defined application
messages. User-defined application messages use message codes 0 to 47 (0x0 to
0x2F). Your application must define the meaning of each user-defined message
code. Standard application messages are defined by LONMARK International,
and use message codes 48 to 62 (0x30 to 0x3E).

The message code is followed by a variable-length data field, that is, a message
code could have one byte of data in one instance and 25 bytes of data in another
instance.

94 Developing an FTXL Application

Sending an Application Message to the
Network
Call the LonSendMsg() function to send an application message. This function
forwards the message to the FTXL LonTalk protocol stack, which in turn
transmits the message on the network. After the message is sent, the FTXL
LonTalk protocol stack calls the LonEventReady() callback handler function to
inform the application that an event has been enqueued. When the application
calls the LonEventPump() function, the FTXL LonTalk API calls your
LonMsgCompleted() event handler function. This function notifies your
application of the success or failure of the transmission. You can use this
function for any application-specific processing of message transmission
completion.

To be able to send an application message, the FTXL device must be configured
and online. If the application calls the LonSendMsg() function when the device is
either not configured or not online, the function returns the LonApiOffline error
code.

You can send an application message as a request message that causes the
generation of a response by the receiving device or devices. If you send a request
message, the receiving device (or devices) sends a response (or responses) to the
message. When the FTXL Transceiver receives a response, it enqueues the
response and calls the LonEventReady() callback handler function to inform that
application that an event has been enqueued. When the application calls the
LonEventPump() function, the FTXL LonTalk API calls your
LonResponseArrived() event handler function for each response it receives.

Receiving an Application Message from the
Network
When the FTXL LonTalk protocol stack receives an application message from the
network, it forwards the message to the LonEventPump() function in the FTXL
LonTalk API, which in turn calls your LonMsgArrived() callback handler
function. Your implementation of this function must process the application
message.

The FTXL LonTalk protocol stack does not call the LonMsgArrived() callback
handler function if an application message is received while the FTXL device is
either unconfigured or offline.

If the message is a request message, your implementation of the
LonMsgArrived() callback handler function must determine the appropriate
response and send it using the LonSendResponse() function.

Handling Management Commands
LONWORKS installation and maintenance tools use network management
commands to set and maintain the network configuration for a device. The FTXL
LonTalk protocol stack automatically handles most network management
commands that are received from these tools. A few network management
commands might require additional application-specific processing, so the FTXL
LonTalk API forwards the request to your application through the network

FTXL User’s Guide 95

management callbacks. These commands are requests for your application to
wink, go offline, go online, or reset, and are handled by your LonWink(),
LonOffline(), LonOnline(), and LonReset() callback handler functions.

Handling Local Network Management Tasks
There are various network management tasks that a device can choose to initiate
on its own. These are local network management tasks, which are initiated by
the FTXL application and implemented by the FTXL LonTalk protocol stack.
Local network management commands are never propagated to the network.
The FTXL Extended LonTalk APIs allow you to include handling of these local
network management commands if your FTXL application requires it.

Handling Reset Events
A network management tool can send a reset message to the FTXL device for a
variety of reasons. For example, to reset the device after changing the
communication parameters (including setting the priority), or following an
update to a configuration property that is declared with a restriction flag which
indicates that the network manager must reset the device after an update. The
FTXL LonTalk protocol stack processes reset messages and manages everything
that is required by the protocol. It also calls the LonReset() event handler
function to inform the application, so that the application can perform any
application specific processing.

The LonReset() callback handler function returns a pointer to the
LonResetNotification structure, but this pointer is always NULL. The pointer is
included for code compatibility with ShortStack applications. Whenever the
FTXL device is reset, the state of the device is set to configured, and the mode of
the device is changed to online, but no LonOnline() event is generated.

Resetting an FTXL device from the network affects only the FTXL stack, and
does not cause a processor or application software reset.

Querying the Error Log
The FTXL LonTalk protocol stack writes application errors to the system error
log. The LonStatus structure, which is returned by the LonQueryStatus()
function contains complete statistics information, such as the number of transmit
errors, transaction timeouts, missed and lost messages, and so on.

Working with ECS Devices
An FTXL device is an extended command set (ECS) device (that is, the
ver_nm_max field of the Capability Info Record in the device’s self-identification
string is greater than 0). An FTXL device supports both the extended command
set and legacy network management commands. However, after the device
receives any extended commands, it operates in the extended mode, and returns
a negative response to legacy commands.

Any LNS-based tool communicates with an FTXL device using ECS commands
(for example, during device commissioning), and thus places the device in
extended mode. Some tools that are not based on LNS, such as the NodeUtil

96 Developing an FTXL Application

utility, might not be able to communicate with a device that is in the extended
mode.

To return an FTXL device to the legacy mode, rather than the extended mode,
perform one of the following tasks:

• Re-run the LonTalk Interface Developer utility to generate a new
signature for the device, and rebuild and load the application image.

• Send the NM_NODE::NM_INITIALIZE extended network management
command to the device.

• Erase the non-volatile memory for the device.

• If the device is currently commissioned in an LNS database, de-
commission it.

You should not need to perform any of these tasks often because most network
management tools use LNS or are compatible with ECS.

For more information about the LonTalk extended command set (ECS) network
management commands, see the LonTalk Control Network Protocol Specification,
EIA/CEA 709.1-B-2002. This document is available from the IHS Standards
Store:
http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=9711
31&rid=CEA.

Using Direct Memory Files
To use configuration properties in files, your host application program must
implement a method that allows the network management tool to access those
files. You can support either one of the following:

• The LONWORKS FTP protocol

• The host direct memory files (DMF) feature

The FTP protocol is appropriate when large amounts of data need to be
transferred between the host processor and FTXL Transceiver. The host DMF
feature is appropriate for most other cases.

By supporting direct memory files, your application allows the network
management tool to use standard memory read and write network messages to
access configuration property files located on the host. Direct memory files
appear to the network management tool as if they were located within the FTXL
Transceiver’s native address space, but the FTXL LonTalk protocol stack routes
memory read and write requests within the DMF memory window to the
LonMemoryRead() and LonMemoryWrite() callback handler functions provided
in the FtxlHandlers.c file. These functions use the LonTranslateWindowArea()
support function, which is generated by the LonTalk Interface Developer utility
to translate between FTXL Transceiver addresses and host addresses.

If the model file contains a network variable of type SNVT_address, the LonTalk
Interface Developer utility automatically generates all necessary code and data
for the memory read and write requests, including code in the LonInit() function
to register the virtual memory window with the FTXL LonTalk protocol stack.

http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=971131&rid=CEA
http://global.ihs.com/doc_detail.cfm?item_s_key=00391891&item_key_date=971131&rid=CEA

FTXL User’s Guide 97

You do not generally need to modify the code that the LonTalk Interface
Developer utility generates (in FtxlDev.c) or the LonMemoryRead() and
LonMemoryWrite() callback handler functions (in FtxlHandlers.c).

The DMF Memory Window
To the network management tool, all content of the DMF memory window is
presented as a continuous area of RAM memory in the virtual DMF memory
space. The DMF memory space is virtual because it appears to the network
management tool to be located within the FTXL Transceiver’s native address
space, even though it is not. In the code that the LonTalk Interface Developer
utility generates, the content of the DMF memory window, which can be
physically located in different parts, or even types, of the host processor’s
memory, is presented as a continuous area of memory. Another part of the
generated code identifies the actual segment within the host memory that is
shown at a particular offset within the virtual address space of the DMF memory
window, and allows the DMF memory driver to correctly access the
corresponding data within the host processor’s address space.

Data that appears in the DMF memory window includes:

• The file directory

• The template file

• The writeable CP value files (if any)

• The read-only CP value files (if any)

Figure 12 on page 98 shows how the different memory address spaces relate to
each other.

98 Developing an FTXL Application

FTXL Transceiver

Registered Memory
Window

Maximum range:
0x0001 – 0xFFFF

File directory

Template file

Writable value file

Read-only value file

unused

SNVT_address
File directory

Template file

Writable value file

Read-only value file

FTXL network address space
(Neuron addresses in big-endian

notation)

Virtual address space: defined host-side,
using virtual Smart Transceiver
addresses in host’s byte order

Physical host address space

Address translation provided by the Interface Developer;
address translation static (by correct declaration of

SNVT_address and file directory)

Address translation provided by Interface Developer
in FtxlDev.c; translation dynamic.

LON_DMF_WINDOW_START

LO
N

_D
M

F_
W

IN
D

O
W

_U
SA

G
E

Figure 12. Relationship between Different Memory Spaces

The LonTalk Interface Developer utility defines three macros in the generated
FtxlDev.h file for working with the DMF window:

• LON_DMF_WINDOW_START

• LON_DMF_WINDOW_SIZE

• LON_DMF_WINDOW_USAGE

The LON_DMF_WINDOW_USAGE macro helps you keep track of the DMF
window fill level. The LonTalk Interface Developer utility uses this value when
it registers the actual window, whereas LON_DMF_WINDOW_SIZE defines only
the maximum window size.

You can modify the DMF framework that the LonTalk Interface Developer utility
generates to include support for user-defined files. However, all of the data must
fit within the DMF memory window.

When your data exceeds the size of the DMF memory window, you must perform
one of the following tasks:

• Reduce the amount of data

• Implement the LONWORKS File Transfer Protocol

FTXL User’s Guide 99

File Directory
The LonTalk Interface Developer utility produces a configurable file directory
structure, which supports:

• Using named or unnamed files (the DMF framework uses unnamed files
by default, whereas FTP uses named files)

• Up to 64 KB of data for each file

• For the DMF framework: Up to a total of 64 KB for all files plus the file
directory itself

• For FTP: unlimited size

The utility initializes the file directory depending on the chosen access method.
The directory can be used with an FTP server implementation or the file access
host memory window implementation. The initialization that the utility provides
works for both little-endian and big-endian host processors.

The FtxlDev.h header file allows you to customize the file directory structure, if
needed.

Shutting Down the FTXL Device
To perform an orderly shutdown of an FTXL device, your application can call the
LonExit() API function. The implementation of this function is generated by the
LonTalk Interface Developer utility, and is included in the FtxlDev.c file. This
function calls the LonLidDestroyStack() API function to stop the FTXL LonTalk
protocol stack and free its resources. In addition, the LonExit() function can
perform any clean-up for the application, such as deleting operating system
events and other resources.

After your application calls the LonExit() function, it can call the LonInit()
function again. However, if you want to change the FTXL LonTalk protocol
stack’s interface, you must reboot the device.

FTXL User’s Guide 101

6

Working with the Nios II
Development Environment

This chapter describes how to set up the Nios II IDE for
building and running your application for FTXL. It also
describes how to import or create the application, and how to
customize it.

See Appendix G, Example FTXL Applications, on page 195,
for information about working with the Nios II IDE for the
example applications.

102 Working with the Nios II Development Environment

Development Tools
To develop your FTXL application, you use version 7.2 or later of the Altera
Complete Design Suite, as listed in Table 8. You can obtain the Altera Complete
Design Suite on DVD-ROM from Altera Corporation, or you can download the
Web Edition of the tools from
https://www.altera.com/support/software/download/nios2/dnl-nios2.jsp.

Table 8. Altera Complete Design Suite

Quartus II Design Software for Windows

The Quartus II design software provides a suite of tools for system-level design,
embedded software programming, FPGA and CPLD design, synthesis, place-and-
route, verification, and device programming. Quartus II software supports all of
Altera's current device families.

The Quartus II Web Edition is a subset of the Quartus II design software that
provides support for selected Altera processors.

Both the Quartus II design software and the Quartus II Web Edition include the
SOPC Builder tool, which is an automated system development tool that
dramatically simplifies the task of creating high-performance system-on-a-
programmable-chip (SOPC) designs.

ModelSim®-Altera VHDL & Verilog HDL Simulation Tool

The ModelSim-Altera software is an Altera-specific version of the Model
Technology™ ModelSim simulation software, which supports behavioral
simulation and testbenches for VHDL or Verilog hardware description languages
(HDLs). The ModelSim-Altera software is included with Altera software
subscriptions.

MegaCore IP Library

The MegaCore IP library includes some of Altera’s most popular intellectual
property (IP) cores, including a finite impulse response (FIR) compiler, a
numerically controlled oscillator (NCO) compiler, a fast Fourier transform (FFT)
compiler, several DDR SDRAM controllers, a QDRII SDRAM controller, an
RLDRAM II controller, and a lightweight serial interconnect protocol. The
MegaCore IP library is included with Altera software subscriptions.

Nios II Embedded Design Suite

The Nios II integrated development environment (IDE) is a graphical user
interface (GUI) within which you can accomplish all Nios II embedded processor
software development tasks, including editing, building, managing, and
debugging embedded software programs. The Nios II IDE is included with Altera
software subscriptions.

For more information about installing the Altera Complete Design Suite, see
Quartus II Installation & Licensing for Windows, available from the Quartus II
Development Software Literature page at www.altera.com/literature/lit-qts.jsp.

https://www.altera.com/support/software/download/nios2/dnl-nios2.jsp
http://www.altera.com/literature/lit-qts.jsp

FTXL User’s Guide 103

Using a Device Programmer for the FPGA Device
To load your hardware design, software application, and the FTXL LonTalk
protocol stack, into the FPGA device, you can use a device programmer, such as
the Altera USB-Blaster download cable, as described in Table 9.

Table 9. Device Programmer for the Nios II Processor

Altera USB-Blaster Download Cable

The USB-Blaster download cable interfaces to a standard PC USB port. This
cable drives configuration or programming data from the PC to the device. For
more information about the USB-Blaster, see the USB-Blaster Download Cable
User Guide.

The Windows driver for the USB-Blaster is in the [Altera]\quartus\drivers\usb-
blaster directory, where [Altera] is the directory in which you installed the Altera
Complete Design Suite, usually C:\altera\72.

To set up the programming hardware in the Nios II IDE:

1. Start the Nios II IDE.

2. Select Tools → Quartus Programmer to open the Chain Description File
(*.cdf) for the project.

3. Click Hardware Setup to open the Hardware Setup window.

4. If you have already installed the Windows drivers for the USB-Blaster, it
should appear in the Available hardware items area of the Hardware
Setup window.

5. If the programming hardware that you want to use does not appear in the
Available hardware items area of the Hardware Setup window, click the
Add Hardware button to open the Add Hardware window.

a. Select the appropriate programming cable or programming
hardware from the Hardware Type dropdown list box.

b. Select the appropriate port, baud rate, and server information, if
necessary.

c. Click OK.

6. Select the programming hardware that you want to use from the
Currently selected hardware dropdown list box.

7. Click Close to close the Hardware Setup window.

8. Select JTAG from the Mode dropdown list box of the Chain Description
File view for the project.

9. Select File → Close to close the Chain Description File.

You can save the Chain Description File (*.cdf) for use with other projects.

Setting up the Nios II IDE
The development environment for FTXL applications is the Altera Nios II
Embedded Design Suite integrated development environment (IDE). An FTXL

104 Working with the Nios II Development Environment

application consists of the following components, all of which need to be added to
the Nios II IDE for FTXL application development:

• Your application code

• The application framework files generated by the LonTalk Interface
Developer utility

• The FTXL LonTalk protocol stack library, which includes the FTXL
LonTalk API

• The FTXL system library, which includes the system description for the
Nios II processor and associated hardware

To set up the Nios II IDE to use the example FTXL applications, perform the
following general steps:

1. Optional: Create a new workspace for each example application project.

2. Create a new application project (optionally based on one of the FTXL
project templates). This step creates both the application project and the
system library project for the application.

3. Run the LonTalk Interface Developer utility to generate and copy the
necessary files for the project.

4. Refresh the Nios II C/C++ Projects pane.

5. Build the project.

6. As necessary, customize the system library and operating system
settings.

7. Specify the properties for the application.

The following sections describe these steps. After you build the project, you can
load it into the Nios II processor and run it.

See Appendix G, Example FTXL Applications, on page 195, for information about
working with the Nios II IDE for the example applications.

Creating a New FTXL Application Project
You can create each example project in a new workspace or use an existing
workspace. To work in a new workspace, select File → Switch Workplace to open
the Workspace Launcher window, from which you can select a new or existing
workspace.

To create a new application project for the FTXL simple example application:

1. Select File → New → Nios II C/C++ Application to open the New Project
window.

2. From the New Project window’s Select Project Template selection box,
select the FTXL Simple project.

3. Optional: Enter a project name in the Name field.

4. Specify a location for this project by selecting the Specify Location
checkbox and specifying the location in the Location field. The directory
name must not contain spaces. If you use the default location, your
source files will be placed in the project workspace directory.

FTXL User’s Guide 105

5. Specify the target hardware. Click Browse in the Select Target
Hardware area to open the Select Target Hardware dialog.

a. In the Select Target Hardware dialog, browse to the directory
that contains your project’s hardware description files and select
the appropriate SOPC Builder system file (*.ptf).

b. Click Open to select the file and close the Select Target Hardware
dialog.

6. Do not modify the CPU field in the Select Target Hardware area; the
name of the CPU is contained in the project’s *.ptf file. However, if this
file specifies more than one Nios II processor, you need to select which
one the application project should use.

7. Click Finish to create the project and generate the project’s system
library.

Running the LonTalk Interface Developer Utility
Before you can compile the newly created project, you must run the LonTalk
Interface Developer utility to generate the application framework files and copy
other required files to the project directory.

To run the LonTalk Interface Developer utility for the project:

1. Start the LonTalk Interface Developer utility from the Windows Start
menu: Start → Programs → Echelon FTXL Developer’s Kit → LonTalk
Interface Developer.

2. From the Welcome to LonTalk Interface Developer page of the utility,
specify a name and directory for a new project file, or click Browse to
open an existing project file.

3. For each page of the LonTalk Interface Developer utility, specify the
required project settings. For many of the settings, you can accept the
utility’s default settings. See Chapter 4, Using the LonTalk Interface
Developer Utility, on page 55, or the utility’s online help, for more
information about using the LonTalk Interface Developer utility.

4. Click Finish on the Build Progress and Summary page of the utility to
close the LonTalk Interface Developer utility.

Within the Nios IDE, right-click within the Nios II C/C++ Projects pane and
select Refresh to see the newly generated and copied files for the project. You can
now compile and build the project.

After you have generated the application framework files, you can add to and
modify them to develop your own FTXL application. See Chapter 5, Developing
an FTXL Application, on page 73, for more information about developing an
FTXL application.

Customizing the FTXL System Library
After you create the project, you can customize the project’s system library, which
includes specifying the settings for the operating system. See Configuring the
Operating System on page 160 for information about determing the settings for
the operating system.

106 Working with the Nios II Development Environment

To customize the system library properties for the operating system:

1. Right-click the system library from the Nios II C/C++ Projects pane and
select Properties to open the Properties window.

2. In the Properties window, click RTOS Options to open the Options dialog
for your operating system.

3. Within the Options dialog, set the appropriate values. If you use the
Micrium μC/OS-II operating system, see Configuring the Micrium μC/OS-
II Operating System on page 165 for information about the settings that
are required for an FTXL application.

Specifying the Properties for the Application
After you create the application project, you must customize its properties:

1. Right-click the application project folder from the Nios II C/C++ Projects
pane and select Properties to open the Properties window.

2. In the Properties window, select Associated System Library in the left-
hand pane to display the Associated System Library page. Ensure that
the System Library field displays the correct system library for the
project.

3. In the Properties window, select C/C++ Build in the left-hand pane to
display the C/C++ Build page.

4. For all configurations (such as Debug and Release), set the following
values from the Tool Settings tab of the C/C++ Build page:

a. Expand Nios II Compiler in the left-hand pane and select
Preprocessor.

b. In the Defined Symbols box, click the Add button to add a new
symbol with a value of GCC_NIOS. This symbol is used in the
LonPlatform.h file to specify macros for the GNU Compiler
Collection (GCC) compiler.

c. Expand Linker in the left-hand pane and select General.

d. In the Libraries box, click the Add button to add a new library
with a value of Ftxl100. This is the name of the FTXL LonTalk
protocol library.

e. In the Library Paths box, click the Add button to add a new
library path to open the Add directory path dialog.

i. In the Library Path dialog, click Workspace to open the
Folder Selection dialog.

ii. In the Folder Selection dialog, select your FTXL
application project and click OK.

iii. In the Add directory path dialog, the Directory field
should display a relative path for the project similar to
${workspace_loc:/FTXL/MyApplication}.
Alternatively, you can specify the project’s parent
directory as “..”. Click OK.

FTXL User’s Guide 107

f. In the Properties window, click Apply to save these settings, then
click OK to close the dialog.

Other options and properties can be set to their default values.

Building the Application Image
After you first create your application project in the Nios II IDE, you should
perform a clean build to remove obsolete files and to fix any problems from a
previously built state.

To clean the FTXL software image:

1. Select Project → Clean to open the Clean window.

2. In the Clean window, ensure that the Clean all projects radio button is
selected and that the Start a build immediately checkbox is selected and
click OK.

For subsequent builds, you can perform automatic or manual builds.

To build the FTXL software image automatically:

1. Select Window → Preferences to open the Preferences window.

2. In the Preferences window, expand General and select Workspace to
display the Workspace page.

3. In the Workspace page, select Build automatically. For automatic
builds, you should also select Save automatically before build to ensure
that your most recent changes are included in the build.

4. In the Preferences window, click Apply to save these settings, then click
OK to close the dialog.

To build the FTXL software image manually, select Project → Build Project or
Project → Build All. You can also right-click the project folder from the Nios II
C/C++ Projects pane and select Build Project.

After you build the project, you can run it in RAM, as described in Running the
Application on page 108, or you can load the software image into persistent
memory, as described in Loading the Application Image into Persistent Memory.

Loading the Application Image into Persistent
Memory

To load the software image into persistent memory (such as flash memory):

1. Ensure that the FPGA device board is powered on and that a device
programmer (such as a USB-Blaster download cable) is connected to the
board’s JTAG header connector.

2. Start the Nios II IDE.

3. Select the FTXL application project from the Nios II C/C++ Projects pane.

4. Ensure that the FPGA device contains the hardware image in RAM:

a. Select Tools → Quartus II Programmer to open the open the
Chain Description File view for the project.

108 Working with the Nios II Development Environment

b. Load the hardware image for the Nios II processor into the FPGA
device, as described in the FTXL Hardware Guide. Leave
Quartus II Programmer window open.

5. Select Tools → Flash Programmer to open the Flash Programmer
window.

6. In the Flash Programmer window, right-click Flash Programmer in the
left-hand pane and select New to create a configuration for the selected
project.

7. Select Program software project into flash memory. Click Browse to open
the Project Selection dialog, select the FTXL application project, and click
OK.

8. Select Program FPGA configuration data into hardware-image region of
flash memory to load the hardware design into flash memory along with
the software design. You can skip this step if you have already loaded
the hardware design into flash memory.

a. Click Browse to open the Choose an FPGA Configuration file
dialog, select the SRAM object file (*.sof) for the hardware design,
and click Open.

b. Select the appropriate hardware image, memory (serial
configuration device controller), and memory offset from the
Hardware Image, Memory, and Offset dropdown list boxes.

9. Select Validate Nios II system ID before software download.

10. Click Program Flash to load the software image into the Nios II
processor.

11. If the Program Flash Now? dialog appears, click Yes.

12. After the software is loaded, perform a reset for the FPGA device.

13. Close the Quartus II Programmer window. You can also close the Nios II
IDE window.

The Nios II processor runs the loaded software as soon as the processor completes
restart processing.

Running the Application
If you loaded the application image into persistent memory (such as flash
memory), the application runs automatically as soon as the Nios II processor is
properly programmed and reset.

You can also run the application from the Nios II IDE:

1. Ensure that the FPGA device board is powered on and that a device
programmer (such as a USB-Blaster download cable) is connected to the
board’s JTAG header connector.

2. Start the Nios II IDE.

3. Right-click the FTXL application project from the Nios II C/C++ Projects
pane and select Run As → Nios II Hardware. The Nios II IDE recompiles
the project.

FTXL User’s Guide 109

4. If you have a valid Nios II development license, and have already loaded
the configuration data (the JTAG Indirect Configuration (*.jic) file or
SRAM object file (*.sof)) into the FPGA device, proceed to step 6.

5. If you do not have a valid Nios II development license, or have not loaded
the configuration data into the FPGA device:

a. The Nios II IDE displays the following text in the Console
window:

There are no Nios II CPUs with debug modules available which
match the values specified. Please check that your PLD is
correctly configured, downloading a new SOF file if necessary.

b. The Quartus II Programmer window opens.

c. In the Quartus II Programmer window, click Add File to open the
Select Programming File dialog.

d. In the Select Programming File dialog, select the appropriate
SRAM object file (*.sof) file for the project, and click Open.

e. Ensure that a device programmer (such as a USB-Blaster
download cable) is defined in the Chain Description File for the
project.

If you have not defined the USB-Blaster download cable in the
Chain Description File for the project, click Hardware Setup. See
Using a Device Programmer for the FPGA Device on page 103 for
more information about setting up the device programmer.

f. Select the Program/Configure checkbox for the *.sof file.

g. Click Start to load the selected *.sof file into the Nios II processor.

h. Do not close the Quartus II Programmer window. You must leave
this window open while you are running the application.

i. Return to the Nios II IDE, right-click the FTXL application
project from the Nios II C/C++ Projects pane, and select Run As
→ Nios II Hardware. The Nios II IDE recompiles the project.

6. Your application should run. It should include some visual indication
within the Nios II IDE that it is running, such as by displaying text in
the Console window or blinking an LED on the device board.

To verify that the application runs as expected, connect the FTXL device to a
LONWORKS network, and commission it using a network management tool, such
as the LonMaker Integration tool.

Recommendation: Use the generated *.xif file when you commission your FTXL
device, rather than performing ad-hoc network installation. Ad-hoc network
installation for a device can require much more time to commission the device
than when you use a *.xif file.

Debugging the Application
You debug an FTXL application in the same way as any other C application for
the Nios II processor. There are four main areas to consider while debugging an
FTXL application:

110 Working with the Nios II Development Environment

• The application itself, including implementations of the event handler
functions and callback handler functions of the FTXL LonTalk API.

• The FTXL non-volatile data driver. You can modify the driver from the
example applications.

• The FTXL operating system abstraction layer. You can modify the FTXL
OSAL from the example applications to provide support for an operating
system other than the Micrium μC/OS-II operating system or to change
the settings for the operating system.

• The FTXL hardware abstraction layer. If your FTXL device’s hardware
differs from the design recommendations in the FTXL Hardware Guide,
you might need to modify the FTXL HAL. To debug the FTXL HAL, you
should run the FTXL Bring-Up application, which is described in the
FTXL Hardware Guide.

To debug the application from the Nios II IDE:

1. Ensure that the FPGA device board is powered on and that a device
programmer (such as a USB-Blaster download cable) is connected to the
board’s JTAG header connector.

2. Start the Nios II IDE.

3. Right-click the FTXL application project from the Nios II C/C++ Projects
pane and select Debug As → Nios II Hardware. The Nios II IDE
recompiles the project, and opens the Debug perspective.

4. If you have a valid Nios II development license, and have already loaded
the configuration data (the JTAG Indirect Configuration (*.jic) file or
SRAM object file (*.sof)) into the FPGA device, proceed to step 6.

5. If you do not have a valid Nios II development license, or have not loaded
the configuration data into the FPGA device, follow the procedure listed
under step 5 on page 109, described in Running the Application on page
108.

6. The Nios II IDE halts the application at the first executable statement.
You can step into the code, step over functions, or run the application to a
breakpoint.

To verify that the application runs as expected, connect the FTXL device to a
LONWORKS network, and commission it using a network management tool, such
as the LonMaker Integration tool.

FTXL User’s Guide 111

A

LonTalk Interface Developer
Command Line Usage

This appendix describes the command-line interface for the
LonTalk Interface Developer utility. You can use this
interface for script-driven or other automation uses of the
LonTalk Interface Developer utility.

112 LonTalk Interface Developer Command Line Usage

Overview
The LonTalk Interface Developer utility consists of two main components:

• The LonTalk Interface Developer graphical user interface (GUI), which
collects your preferences and displays the results

• The LonTalk Interface Builder, which processes the data from the GUI
and generates the required output files

If you plan to run the LonTalk Interface Developer utility in an unattended
mode, for example as part of an automated build process, you can use the
command-line interface to the LonTalk Interface Builder part of the LonTalk
Interface Developer utility.

All commonly used project preferences are available through either the GUI or
the command line interface. However, a few less common preferences (such as
specifying the number of domain table entries, or setting the DMF window size or
starting address) are available only through the command line interface.

To run the LonTalk Interface Builder tool for FTXL, open a Windows command
prompt (Start → Programs → Accessories → Command Prompt), and enter the
following command from the [LonWorks]\InterfaceDeveloper directory:

libf

Command Usage
The following command usage notes apply to running the libf command:

• If no command switches or arguments follow the command name, the tool
responds with usage hints and a list of available command switches.

• Most command switches come in two forms: A short form and a long
form.

The short form consists of a single, case-sensitive, character that
identifies the command, and must be prefixed with a single forward slash
'/' or a single dash '-'. Short command switches can be separated from
their respective values with a single space or an equal sign. Short
command switches do not require a separator; the value can follow the
command identifier immediately.

The long form consists of the verbose, case-sensitive, name of the
command, and must be prefixed with a double dash '- -'. Long command
switches require a separator, which can consist of a single space or an
equal sign.

Examples:
Short form: libf –n …

Long form: libf --source …

• Multiple command switches can be separated by a single space.

• Commands of a Boolean type need not be followed by a value. In this
case, the value yes is assumed. Possible values for Boolean commands

FTXL User’s Guide 113

are yes, on, 1, +, no, off, 0, - (a minus sign or dash).

Examples:
libf -–verbosecomments=yes
libf --verbosecomments

• Commands can be read from the command line or from a command file
(script file). A command file contains empty lines, lines starting with a
semicolon (comment lines), or lines containing one command switch on
each line (with value as applicable). The file extension can be any
characters, but it is recommended that you use the “.libf” extension.

Example command file:

; LIBF command file for myProject
--source=myModelFile.nc
--basename=myProjectVer1
--clock=10
--pid=9F:FF:FF:00:00:00:04:00
--out=C:\myFolder\ProjectVer1

• Command switches can appear at any location within the command line
or in any order (on separate lines) within a script.

Command Switches
Table 10 lists the available command switches for the libf command. Only the
following switches are required for the command:

• --source (–n)

• --pid (-i)

• --basename (-b)

• --clock (-c)

Other command switches are optional.

Table 10. Command Switches for the libf Command

Command Switch

Long Form
Short
Form Description

--addresses -A Implement address table with the specified number of
entries

--aliases -L Implement alias table with specified number of entries

--avgdynsd -g Set the average dynamic network variable self-
documentation string size (0..128)

--basename -b Set the project's base name

114 LonTalk Interface Developer Command Line Usage

Command Switch

Long Form
Short
Form Description

--buffer -B Implement specified number of buffers of the specified
type

--clock -c Set the FTXL Transceiver clock rate (in MHz)

--define -D Define a specified preprocessor symbol (without value)

--defloc Location of an optional default command file

--dmfsize -z Override size of the direct memory file memory window

--dmfstart -a Override start address of the direct memory file
memory window

--domains -d Implement domain table with specified number of
entries

--dynamicnvs -y Provide support for specified number of dynamic
network variables

--file -@ Include a command file

--help -? Display usage hint for command

--include -I Add the specified folder to the include search path

--mkscript Generate command script in specified location

--nodefaults Disable processing of default command files

--nvdflush -N Flush non-volatile date after specified timeout period
(1, 5, 10, or 20 seconds)

--nvdmodel -M Use specified model for non-volatile data (flash, file, or
user)

--nvdroot -R Use the specified root for the non-volatile driver

--out -o Generate all output files in the specified location

--pid -i Use the specified program ID (in colon-separated
format)

--rxdb -r Manage specified number of receive transaction records

--silent Suppress banner message display

FTXL User’s Guide 115

Command Switch

Long Form
Short
Form Description

--source -n Use the specified model file

--spdelay -p Set the service pin notification delay (255=default,
0=off)

--txdb -t Manage specified number of transmit transaction
records

--txttl -T Let transmit transactions expire after specified number
of microseconds

--verbose -v Run with verbosity level 0 (normal), 1 (verbose), or 2
(trace)

--verbosecomments -V Generate verbose comments

--warning Display specified message type as a warning

Specifying Buffers
The --buffer (-B) command switch specifies a number of buffers of a specified
type. The supported types of buffers are:

• Application input buffers

• Application output buffers

• Application output priority buffers

• Link-layer buffers

• Network input buffers

• Network output buffers

• Network input buffer size

• Network output buffer size

• Network output priority buffers

For each of these buffer types, you can specify a number of buffers using the
following syntax:

--buffer=buffer_type.number

where buffer_type can be any of the specifications listed in Table 11 on page 116,
and number is the number of that type of buffer. Each of the specifications has
several allowable values; the table lists the primary specification and allowable
alternate specifications.

116 LonTalk Interface Developer Command Line Usage

Note that the type and number for the --buffer switch are separated by a period.
You can include several buffer specifications within a single --buffer switch,
separated by commas, or with multiple --buffer switches. For example:

--buffer=ai.5,ao.3
--buffer=ai.5 --buffer=ao.3

Table 11. Buffer-Type Specifications for the --buffer Command Switch

Buffer Type
Primary
Specification

Alternate
Specifications Valid Values

Application input
buffers

ai appinput

appin

application-input

1 to 100

Default: 5

Application output
buffers

ao appoutput

appout

application-output

1 to 100

Default: 3

Application output
priority buffers

aop appoutputprio

appoutprio

appprio

application-priority-
output

1 to 100

Default: 2

Link-layer buffers ll linklayer

link-layer

link

1 to 100

Default: 2

Network input
buffers

nis netinsize

network-input-size

1 to 100

Default: 11

Network output
buffers

nos netoutsize

network-output-size

1 to 100

Default: 3

Network input
buffer size

ni netinput

netin

network-input

1 to 100

Default: 11

Network output
buffer size

no netoutput

netout

network-output

1 to 100

Default: 3

FTXL User’s Guide 117

Buffer Type
Primary
Specification

Alternate
Specifications Valid Values

Network output
priority buffers

nop netoutputprio

netoutprio

netprio

network-priority-
output

1 to 100

Default: 3

The application buffers (ai, ao, and aop) all have a range of 1 to 100 for the
allowable number of buffers.

You can set priority buffers to a count of 0 (zero), but you must specify at least
one non-priority buffer in both directions (input and output). However,
LONMARK International requires all interoperable LONWORKS devices to have at
least one priority buffer. Eliminating priority buffers will prevent certification.

The LonTalk Interface Developer utility issues messages that relate to the buffer
configuration. For example, the utility issues messages for the following
situations:

• If the configuration exceeds the available buffer space, the utility issues
error LID#62 (Insufficient buffer space).

• If additional netin or netout buffers of the currently configured size could
be added to the configuration, the utility issues warning LID#4026
(Unused buffer space).

• If at least one 20-byte buffer could be added to the configuration, the
utility issues hint LID#8005 (Unused buffer space).

FTXL User’s Guide 119

B

Model File Compiler Directives

This Appendix lists the compiler directives that can be
included in a model file. Model files are described in
Chapter 3, Creating a Model File, on page 23.

120 Model File Compiler Directives

Using Model File Compiler Directives
ANSI C permits compiler extensions through the #pragma directive. These
directives are implementation-specific. The ANSI standard states that a
compiler can define any sort of language extensions through the use of these
directives. Unknown directives can be ignored or discarded. The Neuron C
compiler issues warning messages for unrecognized directives.

In the Neuron C compiler, pragmas can be used to set certain Neuron firmware
system resources and device parameters such as code generation options,
debugging options, error reporting options, and other miscellaneous features. In
general, these directives can appear anywhere in the model file.

Any compiler directive that is not described in this appendix is not accepted by
the LonTalk Interface Developer utility, and causes an error if included in a
model file. You can use conditional compilation to exclude unsupported
directives.

Acceptable Model File Compiler Directives
You can specify the following compiler directives in a model file. These directives
can appear anywhere in the model file, and control the output produced by the
LonTalk Interface Developer utility.

#pragma codegen option

This pragma allows control of certain features in the compiler's code
generator. Application timing and code size might be affected by use of these
directives. Valid values for option include:

• cp_family_space_optimization

• no_cp_template_compression

The Neuron C compiler can attempt to compact the configuration property
template file by merging adjacent family members that are scalars into
elements of an array. Any CP family members that are adjacent in the
template file and value file, and that have identical properties, except for the
item index to which they apply, are merged. Using optional configuration
property re-ordering and merging can achieve additional compaction beyond
what is normally provided by automatic merging of whatever CP family
members happen to be adjacent in the files. To enable this re-ordering
feature, specify #pragma codegen cp_family_space_optimization in your
model file. With this feature enabled, the Neuron C compiler optimizes the
layout of CP family members in the value and template files to make merging
more likely.

You can specify #pragma codegen no_cp_template_compression in your
program to disable the automatic merging and compaction of the
configuration property template file. Use of this directive can cause your
program to consume more of the device’s memory, and is intended only to
provide compatibility with the NodeBuilder 3.0 Neuron C compiler.

You cannot use both the no_cp_template_compression option and the
cp_family_space_optimization option in the same model file.

FTXL User’s Guide 121

Important: Configuration property re-ordering and merging can reduce the
memory required for the template file, but can also result in slower access to
the application’s configuration properties by network management tools.
This can potentially cause a significant increase in the time required to
commission your device, especially on low-bandwidth channel types. You
should typically only use configuration property re-ordering and merging if
you must conserve memory. If you use configuration property re-ordering
and merging, be sure to test the effect on the time required to commission
and configure your device.

#pragma enable_sd_nv_names

Causes the LonTalk Interface Developer utility to include the network
variable names in the self-documentation (SD) information when self-
identification (SI) data is generated. This pragma can only appear once in
the model file.

#pragma fyi_off
#pragma fyi_on

Controls the compiler's printing of informational messages. Informational
messages are less severe than warnings, yet can indicate a problem in the
model file. Informational messages are off by default at the start of
compilation. These pragmas can be intermixed multiple times throughout a
program to turn informational message printing on and off as needed.

#pragma hidden

This pragma is for use only in the <echelon.h> standard include file.

#pragma ignore_notused symbol

Requests that the compiler ignore the symbol-not-referenced flag for the
named symbol. The compiler normally prints warning messages for any
variables, functions, I/O objects, and so on, that are declared but are never
used in the model file. This pragma can be used one or more times to
suppress the warning on a symbol-by-symbol basis.

The pragma should appear after the variable declaration. A good coding
convention is to place this pragma on the line that immediately follows the
variable's declaration. For automatic scope variables, the pragma must
appear no later than the line preceding the close brace character '}', which
terminates the scope containing the variable. There is no terminating brace
for any variable declared at file scope.

#pragma no_hidden

This pragma is for use only in the <echelon.h> standard include file.

#pragma relaxed_casting_off
#pragma relaxed_casting_on

These pragmas control whether the compiler treats a cast that removes the
const attribute as an error or as a warning. The cast can be explicit or
implicit (for example, an automatic conversion due to assignment).
Normally, the compiler considers any conversion that removes the const
attribute to be an error. Turning on the relaxed casting feature causes the
compiler to treat this condition as a warning instead. These pragmas can be
intermixed throughout a program to enable and disable the relaxed casting
as needed.

122 Model File Compiler Directives

#pragma set_guidelines_version string

The Neuron C 2.1 compiler generates LONMARK information in the device’s
XIF file and in the device’s SIDATA (stored in device program memory). By
default, the compiler uses “3.3” as the string to identify the LONMARK
guidelines version to which the device conforms. To override this default,
specify the overriding value in a string constant following the pragma name,
as shown. For example, a program could specify #pragma
set_guidelines_version “3.2” to indicate that the device conforms to the 3.2
guidelines. This directive is useful for backward compatibility with older
versions of the Neuron C compiler.

Note that this directive can be used to state compatibility with a guidelines
version that is not actually supported by the compiler. Future versions of the
guidelines that require a different syntax for SI/SD data are likely to require
an update to the compiler. This directive has only the effect described above,
and does not change the syntax of SD strings generated.

#pragma set_id_string "ssssssss"

Provides a legacy mechanism for setting the device’s 8-byte program ID. This
directive is allowed for legacy application support, and should not be used in
a model file. Use the LonTalk Interface Developer utility to set the program
ID.

#pragma set_node_sd_string C-string-const

Specifies and controls the generation of a comment string in the self-
documentation (SD) data in a device's application image. Most devices have
an SD string. The first part of this string documents the functional blocks for
the device. This part is automatically generated by the LonTalk Interface
Developer utility. This first part is followed by a comment string that
documents the purpose of the device. This comment string defaults to a
NULL string and can have a maximum of 1023 bytes, minus the first part of
the SD string generated by the LonTalk Interface Developer utility, including
the zero termination character. This pragma explicitly sets the comment
string. Concatenated string constants are not allowed. This pragma can only
appear once in the model file.

#pragma set_std_prog_id hh:hh:hh:hh:hh:hh:hh:hh

Provides a legacy mechanism for setting the device’s 8-byte program ID. This
directive is allowed for legacy application support, and should not be used in
a model file. Use the LonTalk Interface Developer utility to set the program
ID.

#pragma warnings_off
#pragma warnings_on

Controls the compiler's printing of warning messages. Warning messages
generally indicate a problem in the model file, or a place where the code could
be improved. Warning messages are on by default. These pragmas can be
intermixed multiple times throughout a model file to turn informational
message printing on and off as needed.

FTXL User’s Guide 123

#pragma disable_warning number
#pragma enable_warning number

Controls the compiler's printing of individual warning messages. Warning
messages generally indicate a problem in the model file, or a place where the
code could be improved. Warning messages are on by default. These
pragmas can be intermixed multiple times throughout a model file to turn
informational message printing on and off as needed.

The number parameter refers to a specific warning number, for example
#pragma disable_warning 123. Alternatively, you can use an asterisk to
select all warnings, for example #pragma enable_warning *. This pragma is
ignored if you specify #pragma warnings_off or #pragma fyi_off.

FTXL User’s Guide 125

C

Neuron C Syntax for the Model File

This Appendix lists the Neuron C syntax for the allowable
statements of a model file.

126 Neuron C Syntax for the Model File

Functional Block Syntax
fblock FPT-identifier { fblock-member-list } identifier [array-bounds]

 [ext-name] [fb-property-list] ;

fblock-member-list : fblock-member-list ; fblock-member

 fblock-member

fblock-member : nv-reference implements member-name

 nv-reference impl-specific

impl-specific : implementation_specific (const-expr) member-name

nv-reference : nv-identifier array-index

 nv-identifier

array-index : [const-expr]

array-bounds : [const-expr]

ext-name : external_name (concatenated-string-const)

 external_resource_name (concatenated-string-const)

 external_resource_name (const-expr : const-expr)

fb-property-list : See Functional Block Properties Syntax on page 129.

Keywords
fblock

Declares the functional block for the FPT-identifier functional-profile-type
identifier and the identifier functional block identifier.

The functional block declaration begins with the fblock keyword, followed by
the name of a functional profile from a resource file. The functional block is
an implementation of the functional profile. The functional profile defines
the network variable and configuration property members, a unique key
called the functional profile key, and other information. The network
variable and configuration property members are divided into mandatory
members and optional members. Mandatory members must be implemented,
and optional members may or may not be implemented.

The functional block declaration then includes a member list. In this
member list, network variables are associated with the abstract member
network variables of the profile. These network variables must have been
previously declared in the model file. The association between the members
of the functional block declaration and the abstract members of the profile is
performed with the implements keyword.

After the member list, the functional block declaration continues with the
name of the functional block itself. A functional block can be a single
declaration, or it can be a singly-dimensioned array.

If you do not specify an external name for the functional block, the functional
block identifier is limited to 16 characters.

If the fblock is implemented as an array, each network variable that is to be

FTXL User’s Guide 127

referenced by the fblock must be declared as an array of at least the same
size. When implementing an fblock array's member with an array network
variable element, the starting index of the first network variable array
element in the range of array elements must be provided in the implements
statement. The Neuron C compiler automatically adds the following network
variable array elements to the fblock array elements, distributing the
elements consecutively.

external_name

Defines an optional external name for the functional block.

The external name is part of the device interface that is exposed to network
management tools. The external name is limited to 16 characters. You can
specify an external name using either the external_name or
external_resource_name keyword. If you do not specify either keyword, the
functional block identifier (supplied in the declaration) is used as the default
external name.

The external_name keyword is used to specify an external name as a string.
The string must follow the external_name keyword, and must be enclosed in
parentheses.

external_resource_name

Defines an optional external name for the functional block. This external
name is defined in a language file that is part of a resource file set.

The external_resource_name keyword is followed by a scope and index pair
(the first number is a scope, followed by a colon character, and the second
number is an index) enclosed in parentheses. The scope and index pair
identifies a language string in a resource file, which a network management
tool can access for a language-dependent name of the functional block. You
can use the scope and index pair to reduce memory requirements and to
provide language-dependent names for your functional blocks.

Alternatively, you can specify a string argument for the
external_resource_name keyword. The LonTalk Interface Developer utility
uses this string to look up the appropriate string in the resource files that
apply to the device. The string must exist in an accessible resource file.

Whether you specify a scope and index pair or a string name, the device
interface information uses the scope and index pair rather than the string.

implements

Defines the association between the members of the functional block
declaration and the abstract members of the profile.

At a minimum, every mandatory abstract member network variable of the
profile must be implemented by an actual network variable in the model file.
Each network variable (or, in the case of a network variable array, each array
element) can implement no more than one profile member, and can be
associated with at most one functional block.

implementation_specific

Defines additional network variables in the functional block that are not in
the list of optional members of the profile. Such additional network variable
members beyond the profile are called implementation-specific members.

These extra members are declared in the member list using the

128 Neuron C Syntax for the Model File

implementation_specific keyword, followed by a unique index number, and a
unique name. Each network variable in a functional profile assigns an index
number and a member name to each abstract network variable member of
the profile, and the implementation-specific member cannot use any of the
index numbers or member names that the profile has already used.

Examples
Example 1: The following example declares a functional block with a single
network variable.

network output SNVT_amp nvoAmpere;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
} fbAmpereMeter;

Example 2: The following example implements the nvoValue mandatory network
variable of the SFPTopenLoopSensor functional profile, and adds an
implementation-specific SNVT_time_stamp network variable with a member
name of nvoInstall.

If you include the compiler directive #pragma enable_sd_nv_names, the name of
the network variable, nvoInstallDate, is exposed to the network integrator by
means of network variable self-documentation (SD) data and device interface
files. In a network management tool, the name nvoInstall appears as the
member of the functional block, wherever the network tool uses the profile
definition.

network output SNVT_amp nvoAmpere;
network output polled SNVT_time_stamp nvoInstallDate;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
 nvoInstallDate implementation_specific(128)
 nvoInstall;
} fbAmpereMeter;

Example 3: The following example declares a functional block array, and defines
an external name for the functional block.

#define NUM_AMMETERS 4

network output SNVT_amp nvoAmpere[NUM_AMMETERS];

fblock SFPTopenLoopSensor {
 nvoAmpere[0] implements nvoValue;
} fbAmpereMeter[NUM_AMMETERS] external_name("AmpereMeter");

FTXL User’s Guide 129

Functional Block Properties Syntax
fb_properties { property-reference-list }

property-reference-list :

 property-reference-list , property-reference

 property-reference

property-reference : property-identifier [= initializer] [range-mod]

 property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier : [property-modifier] identifier [constant-expression]

 [property-modifier] identifier

property-modifier : static | global

Keywords
fb_properties

Declares a functional block property list.

The functional block property list begins with the fb_properties keyword. It
contains a list of property references, separated by commas, exactly like the
device property list and the network variable property list. Each property
reference must be the name of a previously declared CP family or the name of
a previously declared configuration network variable.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod. These optional elements can occur in either order if both
are given. If present, the instantiation initializer for a CP family member
overrides any initializer provided at the time of declaration of the family;
thus, using this mechanism, some CP family members can be initialized
specially, with the remaining family members having a more generic initial
value. If a network variable is initialized in multiple places (in other words,
in its declaration as well as in its use in a property list), the initializations
must match.

range_mod_string

Defines an optional range modification string following the property
identifier.

The range-mod modifier allows you to specify a range-modification string that
modifies the valid range for the configuration property defined by the
resource file. The range-modification string can only be used with fixed-point
and floating-point types, and consists of a pair of either fixed-point or
floating-point numbers delimited by a colon. The first number is the lower
limit while the second number is the high limit. If either the high limit or the
low limit is the maximum or minimum specified in the configuration property
type definition, then the field is empty to specify this.

In the case of a structure or an array, if one member of the structure or array

130 Neuron C Syntax for the Model File

has a range modification, then all members must have a range modification
specified. In this case, each range modification pair is delimited by the ASCII
vertical bar character '|'. To specify no range modification for a member of a
structure (that is, revert to the default for that member), encode the field as
'|'. Use the same encoding for structure members that cannot have their
ranges modified due to their data type. The '|' encoding is only allowed for
members of structures.

Whenever a member of a structure is not a fixed or floating-point number, its
range cannot be restricted. Instead, the default ranges must be used.

In the case of an array, the specified range modifications apply to all
elements of the array. For example, to specify a range modification for a 3-
member structure where the second member has the default ranges, and the
third member only has an upper limit modification, the range modification
string is encoded as: "n:m||:m;". Positive values for range modifications and
their exponents (if any) are implicit, while negative numbers and negative
exponents must be explicitly designated as such with a preceding negative
sign '-' character. Floating-point numbers use a decimal point '.' character for
the decimal point. Fixed-point numbers must be expressed as a signed 32-bit
integer. Floating-point numbers must be within the range of an IEEE 32-bit
floating-point number. To express an exponent, precede the exponent by an
'e' or an 'E' and then follow with an integer value.

A range modification string provided in the instantiation of a CP family
member overrides any range modification string provided in the declaration
of the CP family.

static | global

The elements of an fblock array all share the same set of configuration
properties as listed in the associated fb-property-list. Without special
keywords, each element of the fblock array obtains its own set of
configuration properties.

Special modifiers can be used to share individual properties among members
of the same fblock array (through use of the static keyword), or among all the
functional blocks on the device that have the particular property (through use
of the global keyword).

Like network variable properties, functional block properties can be shared
between two or more functional blocks. The use of the global keyword creates
a CP family member that is shared among two or more functional blocks.
(This global member is a different member than a global member that would
be shared among network variables, because no single configuration property
can apply to both network variables and functional blocks.)

The use of the static keyword creates a CP family member that is shared
among all the members of a functional block array, but not with any other
functional blocks outside the array. See the discussion of functional block
properties in the Neuron C Programmer’s Guide for more information on this
topic.

Examples
Example 1: The following example instantiates four heartbeat (SCPTminSndT)
and four throttle (SCPTmaxSndT) CP family members (one pair for each member

FTXL User’s Guide 131

of the nvoData network variable array), and four offset CP family members
(SCPToffset), one for each member of each fblock array.

It also instantiates a total of two gain control CP family members (SCPTgain),
one for MyFb1, and one for MyFb2. Finally, it instantiates a single location CP
family member (SCPTlocation) that is shared by MyFb1 and MyFb2.

// CP Family Declarations:
SCPTgain cp_family cpGain;
SCPTlocation cp_family cpLocation;
SCPToffset cp_family cpOffset;
SCPTmaxSndT cp_family cpMaxSendT;
SCPTminSndT cp_family cpMinSendT;

// NV Declarations:
network output SNVT_lev_percent nvoData[4]
 nv_properties {
 cpMaxSendT, // throttle interval
 cpMinSendT // heartbeat interval
};

// Four open loop sensors, implemented as two arrays of
// two sensors, each. This might be beneficial in that
// this software layout might meet the hardware design
// best, for example with regards to shared and individual
// properties.

fblock SFPTopenLoopSensor {
 nvoData[0] implements nvoValue;
} MyFb1[2]
 fb_properties {
 cpOffset, // offset for each fblock
 static cpGain, // gain shared in MyFb1
 global cpLocation // location shared in all 4
 };

fblock SFPTopenLoopSensor {
 nvoData[2] implements nvoValue;
} MyFb2[2]
 fb_properties {
 cpOffset, // offset for each fblock
 static cpGain, // gain shared in MyFb2
 global cpLocation // location shared in all 4
 };

Example 2: This example implements an open loop sensor as an ammeter. The
nvoValue mandatory network variable is implemented, but no optional network
variables are. The SCPTdefOutput optional configuration property is
implemented, and a second, implementation-specific, SCPTbrightness
configuration property is also implemented.

The names in the example for the CP families (cpDefaultOutput and
cpDisplayBrightness) have no external relevance; these names are only used
within the device's source code in order to reference the configuration property.

SCPTdefOutput cp_family cpDefaultOutput;
SCPTbrightness cp_family cpDisplayBrightness;

132 Neuron C Syntax for the Model File

network output SNVT_amp nvoAmpere;
network output polled SNVT_time_stamp nvoInstallDate;

fblock SFPTopenLoopSensor {
 nvoAmpere implements nvoValue;
 nvoInstallDate implementation_specific(128)
 nvoInstall;
} fbAmpereMeter external_name("AmpereMeter")
 fb_properties {
 cpDefaultOutput, // optional CP
 cpDisplayBrightness = {50.0, 1} // impl-specific
 };

Network Variable Syntax
The syntax for declaring a single network variable object is:

network input | output [netvar-modifier] [storage-class] type

 [connection-info] identifier

 [= initial-value] [nv-property-list] ;

The syntax for declaring an array of network variables is:

network input | output [netvar-modifier] [storage-class] type

 [connection-info] identifier [array-bound]

 [= initializer-list] [nv-property-list] ;

The brackets around array-bound are shown in bold type. The brackets do not, in
this case, indicate an optional field. They are a required part of the syntax for
declaring an array, and must be entered into the program code.

Network variable arrays can only be single dimension. The array-bound must be
a constant. Each element of the array is treated as a separate network variable
for purposes of events, transmissions on the network, and so on. Therefore, each
element counts individually towards the maximum number of network variables
on a given device. Each element of the array is a separately bindable network
variable.

Keywords
network

Declares a network variable of a specific type and with a specific identifier.

input | output

Defines the direction (input or output) for the network variable, from the
point of view of the FTXL Transceiver.

The Network Variable Modifier
The optional netvar-modifier specification for a network variable includes the
following keywords:

FTXL User’s Guide 133

sync | synchronized

Specifies that all values assigned to this network variable must be
propagated, and in their original order. This flag is passed on to your FTXL
application, and must be enforced by your application.

This keyword is mutually exclusive with the polled keyword.

polled

For an output network variable, specifies that the value of the network
variable is to be sent only in response to a poll request from a device that
reads this network variable. When this keyword is omitted for an output
network variable, its value is propagated over the network every time the
variable is assigned a value. However, any reader device can always poll the
outputs of writer devices to which it is connected, whether or not the output
is declared as polled.

Unlike for native Neuron C, the polled network modifier is permitted for
input network variables (as well as output network variables) in model files.

The polled modifier, when used with the declaration of an input network
variable, indicates that the application uses the LonPollNv() FTXL LonTalk
API function with this network variable.

If you use the NodeBuilder Code Wizard to generate your model file, the code
wizard does not insert the polled modifier for input network variables. You
can edit the code produced by the code wizard to add the polled modifier.

You can perform all normal network variable operations with a polled input
network variable; however, the LonPollNv() function requires the network
variable to be connected to one or more output network variables. If you call
LonPollNv() without having made such a connection, you will not receive any
data. If you call LonPollNv() for a network variable that is not an input
network variable and that has not been declared with the polled modifier, the
LonPollNv() function returns an error.

The polled modifier can cause an address table entry to be used to allow the
input to poll a group connection to the input.

This keyword is mutually exclusive with the sync keyword.

changeable_type

Declares that the network variable can have its type changed by a network
management tool. The changeable_type modifier can only appear once per
network variable declaration, and must appear after the sync or polled
modifiers, if either is used.

sd_string (C-string-const)

Sets a network variable's self-documentation (SD) string of up to 1023
characters. This modifier can only appear once per network variable
declaration. If any of the sync, polled, or changeable_type keywords is used,
then the sd_string must follow these other keywords. Concatenated string
constants are permitted. Each variable's SD string can have a maximum
length of 1023 bytes.

The use of any of the following Neuron C keywords causes the compiler to
take control over the generation of self-documentation strings: fblock,
config_prop, cp, device_properties, nv_properties, fblock_properties, or
cp_family.

134 Neuron C Syntax for the Model File

In an application that uses compiler-generated SD data, you can still specify
additional SD data with the sd_string() modifier. The compiler appends this
additional SD information to the compiler-generated SD data, but it will be
separated from the compiler-generated information with a semicolon. SD
data that appears after the semicolon is treated as a comment and is not
included in the device’s interoperable interface.

The Network Variable Storage Class
Network variables constitute one of the storage classes in Neuron C. The
optional storage-class specification for a network variable includes the following
keywords:

const

Specifies a network variable that cannot be changed by the application
program. Output network variables declared with const can be placed in
PROM or EPROM. Input network variables declared with const can be
updated over the network, and should therefore be placed in RAM.

When const is used with output network variables, the polled modifier should
also be considered.

Important: If specified, the const keyword must appear as the first keyword
for the network variable declaration in a model file. For example:

const network output polled SNVT_address nvoFileDir;

eeprom

Allows the application program to indicate network variables whose values
are stored in non-volatile memory and therefore are preserved across power
outages.

config

This modifier is obsolete and has been replaced by the config_prop keyword.

config_prop | cp

This keyword declares the network variable to be a configuration property.

If no class is specified for a network variable, the network variable is a global
variable. Global variables should be stored in RAM and need not be preserved
across power outages.

The Network Variable Type
Network variable types serve two purposes. First, typing ensures proper use of
the variable in the device's application. Second, typing ensures proper connection
of network variables so that a sending device and a receiving device can agree on
the representation of data within the network variable. A network variable can
be declared using any of the following types:

• A standard network variable type (SNVT) or standard configuration
property type (SCPT) defined in the standard resource file. You can use
the NodeBuilder Resource Editor to view all available SNVTs and SCPTs,
along with their definitions.

FTXL User’s Guide 135

Recommendation: Use a SNVT or SCPT if one is available that matches
your data because SNVTs and SCPTs can provide interoperability with
other devices.

• A user network variable type (UNVT) or user configuration property type
(UCPT) defined in a user resource file. You can use the NodeBuilder
Resource Editor to create custom UNVTs and UCPTs, and to view the
available UNVTs and UCPTs in your resource files. Use a UNVT or
UCPT if you cannot find an appropriate SNVT or SCPT for your data.

• Any of the following built-in types (including single-dimension arrays,
unions, structures, or named types of the following types):

[signed] long int
unsigned long int
signed char
[unsigned] char
[signed] [short] int
unsigned [short] int
enum (an enum is int type)

In general, built-in types should not be used because they cannot be
verified by network management tools when creating connections.
Network variables based on built-in types are not interoperable.

The Network Variable Connection
Information
The optional connection-info specification for a network variable defines options
in the network variable table and the SI and SD data for an FTXL application. If
the nonconfig keyword is not specified, these connection information assignments
can be overridden by a network management tool when a device is installed.

The syntax for the connection-info specification is:

bind_info (

[expand_array_info]
[offline]
[unackd | unackd_rpt | ackd [(config | nonconfig)]]
[authenticated | nonauthenticated [(config | nonconfig)]]
[priority | nonpriority [(config | nonconfig)]]
[rate_est (const-expr)]
[max_rate_est (const-expr)]

)

The following keywords can be specified in any order:

expand_array_info

Includes individual names for each element of an array in the device’s SI and
SD data, and in the device interface file. The names of the array elements
have unique identifying characters postfixed. These identifying characters
are typically the index of the array element. For example, an xyz[4] network
variable array becomes four separate xyz__0, xyz__1, xyz__2, and xyz__3

136 Neuron C Syntax for the Model File

network variables.

This keyword is not required for model files. Names of array elements are
automatically expanded by the LonTalk Interface Developer compiler.

offline

Specifies that a network management tool must take this device offline, or
ensure that the device is already offline, before updating the network
variable.

Do not use this feature in the bind_info for a configuration network variable
that is declared using the config_prop or cp keyword. Instead, use the offline
option in the cp_info.

unackd | unackd_rpt | ackd [(config | nonconfig)]

Selects the LonTalk protocol service to use for updating this network
variable. The allowed types are:

unackd — unacknowledged service; the update is sent once and no
acknowledgment is expected.

unackd_rpt — repeated service; the update is sent multiple times and no
acknowledgments are expected.

ackd (the default) — acknowledged service with retry; if acknowledgments
are not received from all receiving devices before the layer 4 retransmission
timer expires, the message is sent again, up to the retry count.

An unacknowledged (unackd) network variable uses minimal network
resources to propagate its values to other devices. As a result, propagation
failures are more likely to occur, and failures are not detected by the device.
This class might be used for variables that are updated on a frequent,
periodic basis, where loss of an update is not critical, or in cases where the
probability of a collision or transmission error is extremely low.

The repeated (unackd_rpt) service is typically used when a message is
propagated to many devices, and a reliable delivery is required. This service
reduces the network traffic caused by a large number of devices sending
acknowledgements simultaneously and can provide the same reliability as
the acknowledged service by using a repeat count equal to the retry count.

The config keyword indicates that this service type can be changed by a
network management tool. This option allows the tool to change the service
specification during installation. config is the default.

The nonconfig keyword indicates that this service cannot be changed by a
network management tool.

authenticated | nonauthenticated [(config | nonconfig)]

Specifies whether the network variable update requires authentication. With
authentication, the identity of the sending device is verified by all receiving
devices. Abbreviations for authenticated and nonauthenticated are auth and
nonauth.

The config keyword indicates that this service type can be changed by a
network management tool. This option allows the tool to change the service
specification during installation. config is the default

The nonconfig keyword indicates that this service cannot be changed by a
network management tool.

FTXL User’s Guide 137

A network variable connection is authenticated only if the readers and
writers have the authenticated keywords specified. However, if only the
originator of a network variable update or poll uses the keyword, the
connection is authenticated (although the update does take place). See Using
Authentication on page 44 for more information about authentication.

The default is nonauth (config).

Recommendation: Use the acknowledged service with authenticated updates.
Do not use the unacknowledged or repeated services.

priority | nonpriority [(config | nonconfig)]

Specifies whether the network variable update has priority access to the
communications channel. This field specifies the default value.

All priority network variables in a device use the same priority time slot
because each device is configured to have no more than one priority time slot.

The config keyword indicates that this service type can be changed by a
network management tool. This option allows the tool to change the service
specification during installation. config is the default

The nonconfig keyword indicates that this service cannot be changed by a
network management tool.

The default is nonpriority (config).

The priority keyword affects output or polled input network variables. When
a priority network variable is updated, its value is propagated on the network
within a bounded amount of time as long as the device is configured to have a
priority slot by a network management tool. The exact bound is a function of
the bit rate and priority. The delay before propagation for a nonpriority
network variable update is unbounded.

rate_est (const-expr)

The estimated sustained update rate, in tenths of updates per second, that
the associated network variable is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 updates per second).

max_rate_est (const-expr)

The estimated maximum update rate, in tenths of messages per second, that
the associated network variable is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 updates per second).

It might not always be possible to determine rate_est and max_rate_est. For
example, update rates are often a function of the particular network where the
device is installed. These values can be used by a network management tool to
perform network load analysis and are optional.

Although you can specify any value in the range 0 to 18780, not all values are
used. The values are mapped into encoded values in the range 0 to 127. Only the
encoded values are stored in the device's self-identification (SI) data. The actual
value can be reconstructed from the encoded value. If the encoded value is zero,
the actual value is undefined. If the encoded value is in the range 1 to 127, the

actual value is
5)8/(2 −= na , rounded to the nearest tenth. The value a, produced

by the formula, is in units of messages per second.

138 Neuron C Syntax for the Model File

The Network Variable Initializer
initial-value

or

initializer-list

Specifies an initial value (or values) for the network
variable. All network variables, especially input network
variables, should be initialized to a reasonable default
value.

The initial value should be chosen such that if a device is reset, the initial value
can be used for subsequent calculations prior to the variable’s being updated from
the network, and these calculations will not cause the device to create a
hazardous condition or to create an error condition. Initializers should not be
propagated over the network, regardless of whether the network variables are
declared input or output. See Network Variable and Configuration Property
Declarations on page 68 for more information about initializers.

Example:

network input SNVT_temp nv_temp = 2960; // 23 C, 73.4 F

The Network Variable Property List
A network variable property list declares instances of configuration properties
defined by CP family declarations and configuration network variable
declarations that apply to a network variable.

The syntax for the nv-property-list specification is:

nv_properties { property-reference-list }

property-reference-list :

 property-reference-list , property-reference

 property-reference

property-reference :

 property-identifier [= initializer] [range-mod]

 property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier : [property-modifier] identifier [constant-expression]

 [property-modifier] identifier

property-modifier : static | global

The network variable property list begins with the nv_properties keyword. It
then contains a list of property references, separated by commas, exactly like the
device property list and functional block property lists. Each property reference
must be the name of a previously declared CP family or the name of a previously
declared configuration network variable. The rest of the syntax is very similar to
the device property list and functional block property list syntax.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod.

You cannot have more than one configuration property of any given SCPT or
UCPT type that applies to the same network variable.

FTXL User’s Guide 139

Network variable properties can be shared between two or more network
variables. The use of the global keyword creates a CP family member that is
shared between two or more network variables. The use of the static keyword
creates a CP family member that is shared between all the members of a network
variable array, but not with any other network variables outside the array.

Example:

// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:
network output SNVT_lev_percent nvoValue
nv_properties {
 cpMaxSendT,
 // override default for minSendT to 30 seconds:
 cpMinSendT = { 0, 0, 0, 30, 0 }
};

Configuration Property Syntax
 [const] type cp_family [cp-modifiers] identifier

 [[array-bound]] [= initial-value] ;

The declaration for a configuration property is similar to a C language typedef
declaration because no actual variables are created as a result of the declaration.
In the case of a type definition, variables are instantiated when the type
definition is used in a later declaration that is not, itself, another typedef. At
that time, variables are instantiated, which means that variables are declared
and memory is allocated for and assigned to the variables. The variables can then
be used in later expressions in the executable code of the program.

The instantiation of CP family members occurs when the CP family declaration’s
identifier is used in a property list. However, a configuration network variable is
already instantiated at the time it is declared. For a configuration network
variable, the property list serves only to identify the association between the
configuration property and the object or objects to which it applies.

Configuration properties can apply to a device, one or more functional blocks, or
one or more network variables. In each case, a configuration property is made to
apply to its respective objects through a property list.

The brackets around array-bound are shown in bold type. The brackets do not, in
this case, indicate an optional field. They are a required part of the syntax for
declaring an array, and must be entered into the program code.

Keywords
const

Declares the configuration property as a constant, so that it is allocated in
non-modifiable memory.

In general, a configuration property can be modifiable, either from within the
FTXL application or from a network management tool, and thus is not
declared with this keyword.

140 Neuron C Syntax for the Model File

cp_family

Declares the configuration property as part of a configuration file.

The cp_family declaration is repeatable. The declaration can be repeated two
or more times, and, as long as the duplicated declarations match in every
regard, the compiler treats these as a single declaration.

The alternative to declaring a configuration property as part of a
configuration file is to declare a configuration network variable, as described
in Declaring a Configuration Network Variable on page 143.

The Configuration Property Type
The type for a CP family cannot be built-in Neuron C type such as int or char.
Instead, the declaration must use a standard configuration property type (SCPT)
or a user configuration property type (UCPT) defined in a resource file. There
are several hundred SCPT definitions available, and you can create your own
types using UCPTs. The SCPT definitions are stored in the standard.typ file,
which is part of the standard resource file. There can be many similar resource
files containing UCPT definitions, and these are managed by the NodeBuilder
Resource Editor.

In contrast to an ANSI C typedef, a configuration property type also defines a
standardized semantic meaning for the type. The configuration property
definition in a resource file contains information about the default value,
minimum and maximum valid values, a designated (optional) invalid value, and
language string references that permit localized descriptive information,
additional comments, and units strings to be associated with the configuration
property type.

The Configuration Property Modifiers
The configuration property modifiers are an optional part of the CP family and
configuration network variable declarations.

The syntax for the cp-modifiers specification is:

cp-modifiers : [cp_info (cp-option-list)] [range-mod]

cp-option-list : cp-option-list , cp-option

 cp-option

cp-option : device_specific | manufacturing_only | object_disabled

 | offline | reset_required

range-mod : range_mod_string (concatenated-string-constant)

The cp-option keywords can occur in any order. There must be at least one
keyword. For multiple keywords, a keyword must not appear more than once,
and keywords must be separated by commas.

The cp-modifiers begin with the cp_info keyword followed by a parenthesized list
of one or more of the following option keywords:

device_specific

Specifies a configuration property that is always read from the device instead
of relying upon the value in the device interface file or a value stored in a

FTXL User’s Guide 141

network database. This specification is used for configuration properties that
must be managed by the device, such as a setpoint that is updated by a local
operator interface on the device. This option requires the CP family or
configuration property network variable to be declared as const.

manufacturing_only

Specifies a factory setting that can be read or written when the device is
manufactured, but is not normally (or ever) modified in the field. In this way,
a standard network management tool can be used when a device is
manufactured to calibrate the device, whereas a field installation tool would
observe the flag in the field and prevent updates or require a password to
modify the value.

object_disabled

Specifies that a network management tool must disable the functional block
containing the configuration property, take the device offline, or ensure that
the functional block is already disabled or the device is already offline, before
modifying the configuration property.

After the network management tool modifies the configuration property, the
application might have to take some action based on the modified value. The
application should check the configuration property value in the
LonResetOccurred() and LonOnline() callback handler functions.

offline

Specifies that a network management tool must take this device offline before
modifying the configuration property.

After the network management tool modifies the configuration property, the
application might have to take some action based on the modified value. The
application should check the configuration property value in the
LonResetOccurred() and LonOnline() callback handler functions.

reset_required

Specifies that a network management tool must reset the device after
changing the value of the configuration property.

After the network management tool modifies the configuration property, the
application might have to take some action based on the modified value. The
application should check the configuration property value in the
LonResetOccurred() callback handler function.

range_mod_string

Defines an optional range modification string following the property
identifier.

The range-mod modifier allows you to specify a range-modification string that
modifies the valid range for the configuration property defined by the
resource file. The range-modification string can only be used with fixed-point
and floating-point types, and consists of a pair of either fixed-point or
floating-point numbers delimited by a colon. The first number is the lower
limit while the second number is the high limit. If either the high limit or the
low limit is the maximum or minimum specified in the configuration property
type definition, then the field is empty to specify this.

In the case of a structure or an array, if one member of the structure or array
has a range modification, then all members must have a range modification

142 Neuron C Syntax for the Model File

specified. In this case, each range modification pair is delimited by the ASCII
vertical bar character '|'. To specify no range modification for a member of a
structure (that is, revert to the default for that member), encode the field as
'|'. Use the same encoding for structure members that cannot have their
ranges modified due to their data type. The '|' encoding is only allowed for
members of structures.

Whenever a member of a structure is not a fixed or floating-point number, its
range cannot be restricted. Instead, the default ranges must be used.

In the case of an array, the specified range modifications apply to all
elements of the array. For example, to specify a range modification for a 3-
member structure where the second member has the default ranges, and the
third member only has an upper limit modification, the range modification
string is encoded as: "n:m||:m;". Positive values for range modifications and
their exponents (if any) are implicit, while negative numbers and negative
exponents must be explicitly designated as such with a preceding negative
sign '-' character. Floating-point numbers use a decimal point '.' character for
the decimal point. Fixed-point numbers must be expressed as a signed 32-bit
integer. Floating-point numbers must be within the range of an IEEE 32-bit
floating-point number. To express an exponent, precede the exponent by an
'e' or an 'E' and then follow with an integer value.

A range modification string provided in the instantiation of a CP family
member overrides any range modification string provided in the declaration
of the CP family.

The Configuration Property Initializer
The initial-value in the declaration of a CP family is optional. If initial-value is
not provided in the declaration, the default value specified by the resource file is
used. The initial-value given is an initial value for a single member of the family,
but the LonTalk Interface Developer utility replicates the initial value for each
instantiated family member. See Network Variable and Configuration Property
Declarations on page 68 for more information about initializers.

Initialization for a CP family member is performed according to the following
rules:

1. If the configuration property is initialized explicitly in the instantiation,
then this is the initial value that is used.

2. If the configuration property is initialized explicitly in the CP family
declaration, then the family initializer is used.

3. If the configuration property applies to a functional block, and the
functional profile that defines the functional block specifies a default
value for the associated configuration property member, then the
functional profile default is used.

4. If the configuration property type for the configuration property defines a
default value, then that default value is used as the initial value. This
rule does not apply for a configuration property type that is type-
inheriting; see Inheriting a Configuration Property Type on page 38 for
more information.

5. If no initial value is available from any of the preceding rules, a value of
all zeros is used.

FTXL User’s Guide 143

The compiler uses the first rule in this list that applies to the configuration
property.

These initialization rules are used to set the initial value that are loaded in the
value file from the linked image, as well as the value file stored in the device
interface file. A network management tool can use the initial value as a default
value, and might at times reset the configuration properties (or a subset of them)
back to the default values. Consult the documentation of the particular network
management tool, for example, the LonMaker User's Guide, for more information
on the use of configuration property default values.

Declaring a Configuration Network Variable
The configuration network variable declaration syntax is similar to the
declaration syntax of a non-configuration network variable.

The declaration of a configuration network variable is distinct from other
network variable declarations by the inclusion of the config_prop keyword
following the type of the network variable declaration. The config_prop keyword
can be abbreviated as cp.

The syntax for declaring a configuration network variable is:

network input [netvar-modifier] [storage-class] type

 config_prop [cp-modifiers]

 [connection-info] identifier [[array-bound]]

 [= initial-value] ;

The netvar-modifier, storage-class, connection-info, array-bound, and initial-
value portions of this syntax are described in Network Variable Syntax on page
132, and they apply equally to a configuration network variable as they do to any
other network variable.

Similar to the configuration CP family members, configuration network variables
must be declared with a type that is defined by a standard configuration property
type (SCPT) or a user configuration property type (UCPT) defined within a
resource file.

The cp-modifiers clause that can optionally follow the config_prop keyword is
described in The Configuration Property Modifiers on page 140.

Example:

network input SCPTupdateRate config_prop nciUpdateRate;
network input SCPTbypassTime cp nciBypassTime = ...

Defining a Device Property List
A device property list declares instances of configuration properties defined by
CP family declarations and configuration network variables declarations that
apply to a device.

144 Neuron C Syntax for the Model File

The syntax for declaring a device property list is:

device_properties { property-reference-list } ;

property-reference-list :

 property-reference-list , property-reference

 property-reference

property-reference :

 property-identifier [= initializer] [range-mod]

 property-identifier [range-mod] [= initializer]

range-mod : range_mod_string (concatenated-string-constant)

property-identifier : identifier [constant-expression]

 identifier

The device property list begins with the device_properties keyword. It then
contains a list of property references, separated by commas. Each property
reference must be the name of a previously declared CP family or the name of a
previously declared configuration network variable. If the network variable is an
array, only a single array element can be chosen as the device property, so an
array index must be given as part of the property reference in that case.

Following the property-identifier, there can be an optional initializer, and an
optional range-mod.

The device property list appears at file scope. This is the same level as a function
declaration, a task declaration, or a global data declaration. A model file can
have multiple device property lists. These lists are merged together by the
LonTalk Interface Developer utility to create one combined device property list.
However, you cannot have more than one configuration property of any given
SCPT or UCPT type that applies to the device.

Example 1:

SCPTlocation cp_family cpLocation;

device_properties {
 cpLocation = { "Unknown" }
};

Example 2:

network input SCPTlocation cp cpLocation[5];

device_properties {
 cpLocation[0] = { "Unknown" }
};

Example 3:

UCPTsomeDeviceCp cp_family cpSomeDeviceCp;
SCPTlocation cp_family cpLocation = {""};

device_properties {
 cpSomeDeviceCp,
 cpLocation = { "Unknown" }
 // This instantiation overrides the

FTXL User’s Guide 145

 // empty string initializer with its own
};

Message Tag Syntax
msg_tag [connection-info] tag-identifier [, tag-identifier ...] ;

Keywords
The connection-info field is an optional specification for connection options, and
includes the following keywords:

msg_tag

Declares a message tag with the specified tag-identifier.

bind_info (options)

The following connection options apply to message tags:

nonbind

Specifies a message tag that carries no addressing information and does not
consume an address table entry. It is used as a destination tag when
creating explicitly addressed messages.

rate_est (const-expr)

The estimated sustained message rate, in tenths of messages per second, that
the associated message tag is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 messages/second).

max_rate_est (const-expr)

The estimated maximum message rate, in tenths of messages per second,
that the associated message tag is expected to transmit. The allowable value
range is from 0 to 18780 (0 to 1878.0 messages/second).

It might not always be possible to determine rate_est and max_rate_est. For
example, update rates are often a function of the particular network where the
device is installed. These values can be used by a network management tool to
perform network load analysis and are optional.

Although you can specify any value in the range 0 to 18780, not all values are
used. The values are mapped into encoded values in the range 0 to 127. Only the
encoded values are stored in the device's self-identification (SI) data. The actual
value can be reconstructed from the encoded value. If the encoded value is zero,
the actual value is undefined. If the encoded value is in the range 1 to 127, the

actual value is
5)8/(2 −= na , rounded to the nearest tenth. The value a, produced

by the formula, is in units of messages per second.

FTXL User’s Guide 147

D

FTXL LonTalk API

This Appendix describes the API functions, event handler
functions, and callback handler functions that are included
with the FTXL LonTalk API. It also describes the FTXL
operating system abstraction layer (OSAL) and hardware
abstraction layer (HAL) functions.

148 FTXL LonTalk API

Introduction
The FTXL LonTalk API provides the functions that you call from your FTXL
application to send and receive information to and from a LONWORKS network.
The API also defines the event handler functions and callback handler functions
that your FTXL application must provide to handle LONWORKS events from the
network and FTXL LonTalk protocol stack. Because each FTXL application
handles these events and callbacks in its own specific way, you need to modify
the event and callback handler functions.

To provide operating system independence, the FTXL LonTalk API includes the
FTXL operating system abstraction layer (OSAL) API. To provide hardware
independence, the FTXL LonTalk API provides the FTXL hardware abstraction
layer (HAL) API. To provide non-volatile data independence, the FTXL LonTalk
API provides two complete (and one skeletal) non-volatile data driver (NVD)
APIs.

Typically, you use the FTXL LonTalk API functions with the event handler
functions for FTXL device initialization and for sending and receiving network
variable updates. See Chapter 5, Developing an FTXL Application, on page 73,
for more information about using these functions.

The implementations of the FTXL LonTalk API are contained in the following
files:

• libFtxl100.a, the FTXL library – implements the FTXL LonTalk protocol
stack, FTXL LonTalk API, and parallel interface driver

• FtxlHandlers.c, stub functions for the FTXL event handler functions and
callback handler functions

• FtxlOsal.c, the Micrium μC/OS-II implementation of the FTXL OSAL

• FtxlHal.c, the FTXL Developer’s Kit hardware implementation of the
FTXL HAL

• FtxlNvdFlashDirect.c, the direct-access model for working with flash
memory

• FtxlNvdFlashFs.c, the file-system model for working with flash memory

• FtxlNvdUserDefined.c, a skeletal implementation for a user-defined non-
volatile memory model

See FTXL API Files on page 20 for a list of the files that are included with the
FTXL Developer’s Kit.

The FTXL LonTalk API, Event Handler Functions,
and Callback Handler Functions

This section provides an overview of the FTXL LonTalk API functions, event
handler functions, and callback handler functions. For detailed information
about these functions, see the HTML API documentation and the API source
code:

• HTML API documentation: Start → Programs → Echelon FTXL
Developer’s Kit → Documentation → API Reference

FTXL User’s Guide 149

• API source code for the example applications: Start → Programs →
Echelon FTXL Developer’s Kit → Source Code

FTXL LonTalk API Functions
The FTXL LonTalk API includes functions for managing network data, the FTXL
device, and non-volatile data.

Commonly Used FTXL LonTalk API
Functions
Table 12 lists API functions that you will most likely use in your FTXL
application.

Table 12. Commonly Used FTXL LonTalk API Functions

Function Description

LonEventPump() Processes any messages received by the FTXL LonTalk protocol
stack. If messages are received, it calls the appropriate event
handler functions.

See Periodically Calling the Event Pump on page 81 for more
information about this function.

LonExit() Stops the FTXL LonTalk protocol stack for an orderly shutdown of
the FTXL device.

LonInit() Initializes the FTXL LonTalk API and the FTXL LonTalk protocol
stack. This function downloads FTXL device interface data from
the FTXL application to the FTXL Transceiver.

The FTXL application must call LonInit() once on startup.

LonPropagateNv() Propagates a network variable value to the network.

This function propagates a network variable if all of the following
conditions are met:

• The network variable is declared with the output modifier

• The network variable must be bound to the network

• The network variable must not be declared with the polled
modifier.

Other FTXL LonTalk API Functions
Table 13 on page 150 lists other FTXL LonTalk API functions that you can use in
your FTXL application. These functions are not typically used by most FTXL
applications, or are used only for specific application functionality (for example,
including support for changeable-type network variables).

150 FTXL LonTalk API

Table 13. Other FTXL LonTalk API Functions

Function Description

LonFreeNvTypeData() Frees internal buffers that were allocated by a call to the
LonQueryNvType() function.

LonGetDeclaredNvSize() Gets the declared size for a network variable.

LonGetNvValue() Gets a pointer to the value for a network variable. This function
is required for dynamic network variables, but could be used for
any network variable.

LonGetUniqueId() Gets the unique ID (Neuron ID) value of the FTXL Transceiver.

LonGetVersion() Gets the version number of the FTXL LonTalk API.

LonPollNv() Requests a network variable value from the network. An FTXL
application can call LonPollNv() to request that another
LONWORKS device (or devices) send the latest value (or values)
for network variables that are bound to the specified input
variable. To be able to poll a network variable, it must be
declared in the model file as an input network variable and
include the polled modifier.

LonQueryNvType() Queries the information about a network variable.

LonSendServicePin() Broadcasts a service-pin message to the network. The service-
pin message is used during configuration, installation, and
maintenance of a LONWORKS device. The FTXL LonTalk
protocol stack automatically broadcasts service-pin messages
when needed.

Application Messaging API Functions
Table 14 lists the FTXL LonTalk API functions that are used for implementing
application messaging and for responding to an application message. Application
messages can be used to implement a proprietary interface that does not need to
interface to devices from other manufacturers. Support for application
messaging is optional.

Table 14. Application Messaging FTXL LonTalk API Functions

Function Description

LonReleaseCorrelator() Releases a request correlator for an application message without
sending a response.

LonSendMsg() Sends an application message.

FTXL User’s Guide 151

Function Description

LonSendResponse() Sends an application message response to a request message.

The FTXL application calls LonSendResponse() in response to a
LonMsgArrived() event handler function.

Non-Volatile Data API Functions
Table 15 lists the FTXL LonTalk API functions that are used for implementing
support for non-volatile data.

Table 15. Non-Volatile Data FTXL LonTalk API Functions

Function Description

LonNvdAppSegmentHasBeenUpdated() Indicates that the application data segment in
non-volatile data memory has been updated.

LonNvdFlushData() Requests that the FTXL LonTalk protocol stack
flush all non-volatile data to persistent memory.

LonNvdGetMaxSize() Gets the number of bytes required to store
persistent data.

Extended API Functions
The FTXL LonTalk API includes an extended API that provides additional local
network management commands listed in Table 16.

Table 16. Extended API Functions

Function Description

LonClearStatus() Clears the status statistics on the FTXL device.

LonGoConfigured() Sets the state for the FTXL device as configured.

LonGoOffline() Sets the state for the FTXL device as offline.

lonGoOnline() Sets the state for the FTXL device as online.

LonGoUnconfigured() Sets the state for the FTXL device as unconfigured.

LonMtIsBound() Queries whether a message tag is bound.

LonNvIsBound() Queries whether a network variable is bound.

LonQueryAddressConfig() Queries configuration data for the FTXL device’s address
table.

LonQueryAliasConfig() Queries configuration data for the FTXL device’s alias table.

152 FTXL LonTalk API

Function Description

LonQueryConfigData() Queries local configuration data on the FTXL device.

LonQueryDomainConfig() Retrieves a copy of the local domain table record from the
FTXL device.

LonQueryNvConfig() Queries configuration data for theFTXL device’s network
variable table.

LonQueryStatus() Requests local status and statistics.

LonQueryTransceiverStatus() Requests the local status of the FTXL Transceiver.

LonSetNodeMode() Sets the operating mode for the FTXL device:

• Online: An online device executes its application
and responds to all network messages.

• Offline: An offline device does not execute its
application or respond to network messages. It will
respond to network management messages.

• Configured: The device is ready for network
operation.

• Unconfigured: The device is not ready for network
operation.

LonUpdateAddressConfig() Sets configuration data for the FTXL device’s address table.

LonUpdateAliasConfig() Sets configuration data for the FTXL device’s alias table.

LonUpdateConfigData() Sets configuration data on the FTXL device.

LonUpdateDomainConfig() Sets a domain table record on the FTXL device.

LonUpdateNvConfig() Sets configuration data for the FTXL device’s network
variable table.

FTXL Event Handler Functions
The FTXL LonTalk API provides event handler functions for managing network
and device events.

Commonly Used Event Handler Functions
Table 17 on page 153 lists the event handler functions that you will most likely
need to define so that your application can perform application specific processing
for certain LONWORKS events. You do not need to modify these callback
functions if you have no application-specific processing requirements.

FTXL User’s Guide 153

Table 17. Commonly Used FTXL Event Handler Functions

Function Description

LonNvUpdateCompleted() Indicates that either an update network variable or a poll
network variable call is completed.

LonNvUpdateOccurred() Indicates that a network variable update request from the
network has been processed by the FTXL LonTalk API. This
call indicates that the network variable value has already been
updated, and allows your host application to perform any
additional processing, if necessary.

LonOffline() A request from the network that the device go offline.

Installation tools use this message to disable application
processing in a device. An offline device continues to respond
to network management messages, but the interaction between
the application and the control network is suspended. When
this function is called, the FTXL Transceiver is already offline
and the FTXL application need only take application-specific
action.

LonOnline() A request from the network that the device go online.

Installation tools use this message to enable application
processing in a device. When this function is called, the FTXL
Transceiver is already online and the FTXL application need
only take application-specific action.

LonReset() A notification that the device has been reset.

LonServicePinHeld() An indication that the service pin on the device has been held
for some number of seconds (default is 10 seconds). Use it if
your application needs notification of the service pin’s being
held.

LonServicePinPressed() An indication that the service pin on the device has been
pressed. Use it if your application needs notification of the
service pin’s being pressed.

LonWink() A wink request from the network.

Installation tools use the Wink message to help installers
physically identify devices. When a device receives a Wink
message, it should provide some visual, audio, or other
indication for an installer to be able to physically identify this
device.

154 FTXL LonTalk API

Dynamic Network Variable Event Handler
Functions
Table 18 lists the event handler functions that are called by the FTXL LonTalk
API to process dynamic network variables. See Handling Dynamic Network
Variables on page 92 for more information about using these functions.

Table 18. Dynamic Network Variable Event Handler Functions

Function Description

LonNvAdded() Indicates that a dynamic network variable has been added.

LonNvDeleted() Indicates that a dynamic network variable has been deleted.

LonNvTypeChanged() Indicates that one or more attributes of a dynamic network
variable have changed.

Application Messaging Event Handler
Functions
Table 19 lists the event handler functions that are called by the FTXL LonTalk
API for application messaging transactions. Customize these functions if you use
application messaging in your FTXL device. Application messaging is optional
and only recommended for implementing the LONWORKS file transfer protocol
and for proprietary interfaces.

If you choose not to support application messaging, you do not need to customize
these functions.

Table 19. Application Messaging Event Handler Functions

Function Description

LonMsgArrived() Indicates that an application message has arrived from the
network to be processed. This function performs any application-
specific processing required for the message. If the message is a
request message, the function must deliver a response using the
LonSendMsgResponse() function.

Application messages are always delivered to the application,
regardless of whether the message passed authentication. The
application decides whether authentication is required for a
message.

LonMsgCompleted() Indicates that message delivery, initiated by a LonSendMsg() call,
was completed.

If a request message has been sent, this event handler is called
only after all responses have been reported by the
LonResponseArrived() event handler.

FTXL User’s Guide 155

Function Description

LonResponseArrived() Indicates that an application message response has arrived from
the network. This function performs any application-specific
processing required for the message.

Non-Volatile Data Event Handler Functions
The FTXL LonTalk API provides the event handler function listed in Table 20 to
support non-volatile data.

Table 20. FTXL Non-Volatile Data Event Handler Function

Function Description

LonNvdStarvation() Indicates that a write request to non-volatile data has taken more
than 60 seconds.

The application should call the LonNvdFlushData() API function to
ensure that non-volatile data is written.

FTXL Callback Handler Functions
In addition to providing event handler functions, the FTXL LonTalk API also
provides callback handler functions, mainly for managing memory on the FTXL
device.

Commonly Used Callback Handler
Functions
In addition to processing events, the FTXL LonTalk API provides the callback
handler functions listed in Table 21.

Table 21. FTXL Callback Handler Functions

Function Description

LonGetCurrentNvSize() Indicates a request for the network variable size.

The FTXL LonTalk protocol stack calls this callback handler
function to determine the current size of a changeable-type
network variable.

For non-changeable-type network variables, this function should
return the value of the LonGetDeclaredNvSize() function. For
changeable-type network variables, you must modify this
function in the FtxlHandlers.c file.

156 FTXL LonTalk API

Function Description

LonEventReady() Indicates that a network event is ready to be processed.

The FTXL LonTalk protocol stack calls this callback handler
function to indicate that a network event is ready to be
processed, and that the main application should call the
LonEventPump() function. However, the LonEventReady()
function should not call the LonEventPump() function directly.
Typically, the LonEventReady() callback signals an operating
system event that the main application task waits upon. When
the main application task wakes up, it should call the
LonEventPump() function.

Direct Memory Files Callback Handler
Functions
The FTXL LonTalk API provides the callback handler functions listed in Table 22
to support the direct memory files (DMF) feature. These functions rely on utility
functions generated by the LonTalk Interface Developer utility.

Table 22. FTXL DMF Callback Handler Functions

Function Description

LonMemoryRead() Indicates a request to read memory in the FTXL device’s memory
space.

LonMemoryWrite() Indicates a request to write memory in the FTXL device’s memory
space.

Non-Volatile Data Callback Handler
Functions
Table 23 lists the callback handler functions that support non-volatile data. For
the functions listed in the table, the LonTalk Interface Developer utility
generates the following callback handler functions (also listed in Table 23):

• LonNvdDeserializeSegment()

• LonNvdGetApplicationSegmentSize()

• LonNvdSerializeSegment()

The remaining non-volatile data callback handler functions are implemented in
the FtxlFlashDirect.c and FtxlFlashFs.c files.

Table 23. FTXL Non-Volatile Data Callback Handler Functions

Function Description

LonNvdClose() Indicates a request to close a non-volatile data
segment.

FTXL User’s Guide 157

Function Description

LonNvdDelete() Indicates a request to delete a non-volatile data
segment.

LonNvdDeserializeSegment() Indicates a request to update the FTXL device’s
control structures from the serialized application’s
data segment.

LonNvdEnterTransaction() Indicates a request to begin a transaction for the
non-volatile data segment.

LonNvdExitTransaction() Indicates a request to complete a transaction for the
non-volatile data segment.

LonNvdGetApplicationSegmentSize() Indicates a request to determine the number of
bytes required to store the application’s non-volatile
data segment.

LonNvdIsInTransaction() Indicates a request to determine if a transaction for
the non-volatile data segment was in progress
during the device’s previous shutdown.

LonNvdOpenForRead() Indicates a request to open a non-volatile data
segment for reading.

LonNvdOpenForWrite() Indicates a request to open a non-volatile data
segment for writing.

LonNvdRead() Indicates a request to read a section of a non-
volatile data segment.

LonNvdWrite() Indicates a request to write a section of a non-
volatile data segment.

LonNvdSerializeSegment() Indicates a request to create a serialized image of
the application’s non-volatile data segment.

The FTXL Operating System Abstraction Layer
The FTXL Developer’s Kit includes an operating system abstraction layer
(OSAL), which allows the FTXL LonTalk protocol stack and FTXL applications to
be ported to any operating system that is supported for the Nios II processor.

The example applications that are included with the FTXL Developer’s Kit
implement the FTXL OSAL for the Micrium μC/OS-II operating system. The
FTXL OSAL is provided as source code so that you can modify this
implementation to support other operating systems.

For detailed information about the FTXL OSAL, see the HTML API
documentation and the API source code:

158 FTXL LonTalk API

• HTML API documentation: Start → Programs → Echelon FTXL
Developer’s Kit → Documentation → API Reference

• API source code for the example applications: Start → Programs →
Echelon FTXL Developer’s Kit → Source Code

The following sections provide an overview of the functions that the FTXL OSAL
provides.

Managing Critical Sections
To manage critical sections, the FTXL OSAL provides the functions listed in
Table 24.

 Table 24. FTXL OSAL Critical Section Functions

Function Description

OsalCreateCriticalSection() Creates a critical section.

OsalDeleteCriticalSection() Deletes a critical section.

OsalEnterCriticalSection() Enters a critical section.

OsalLeaveCriticalSection() Leaves a critical section.

Managing Binary Semaphores
To manage binary semaphores, the FTXL OSAL provides the functions listed in
Table 25.

 Table 25. FTXL OSAL Binary Semaphore Functions

Function Description

OsalCreateBinarySemaphore() Creates a binary semaphore.

OsalDeleteBinarySemaphore() Deletes a binary semaphore.

OsalReleaseBinarySemaphore() Releases a binary semaphore.

OsalWaitForBinarySemaphore() Waits for binary semaphore.

Managing Operating System Events
To manage operating system events, the FTXL OSAL provides the functions
listed in Table 26.

 Table 26. FTXL OSAL Event Functions

Function Description

OsalCreateEvent() Creates an event.

FTXL User’s Guide 159

Function Description

OsalDeleteEvent() Deletes an event.

OsalSetEvent() Sets an event.

OsalWaitForEvent() Waits for an event.

Managing System Timing
To manage system timing, the FTXL OSAL provides the functions listed in Table
27.

 Table 27. FTXL OSAL Timing Functions

Function Description

OsalGetTickCount() Gets the current system tick count.

OsalGetTicksPerSecond() Gets the number of ticks in a second.

Managing Operating System Tasks
To manage operating system tasks or threads, the FTXL OSAL provides the
functions listed in Table 28.

An application should not use the FTXL OSAL functions for creating a task; if
the application needs to create tasks, it should call operating system functions
directly. The OSAL functions for creating a task are designed for creating FTXL
LonTalk protocol stack tasks only.

 Table 28. FTXL OSAL Task Functions

Function Description

OsalCreateTask() Creates a task.

OsalCloseTaskHandle() Closes the handle for a task.

OsalGetTaskId() Gets the task ID of the current task.

OsalGetTaskIndex() Gets the task index of the current task.

OsalSleep() Causes a task to sleep for a specified number of ticks.

OsalTaskEntryPoint() Sets the entry point for a task.

Debugging Operating System Functions
To provide debugging capability for the OSAL, including tracing and statistics,
the FTXL OSAL provides the functions listed in Table 29 on page 160.

160 FTXL LonTalk API

 Table 29. FTXL OSAL Debug Functions

Function Description

OsalClearStatistics() Clears the current operating system statistics.

OsalGetLastOsError() Gets the most recent error from the operating system.

OsalGetStatistics() Gets operating system statistics.

OsalGetTraceLevel() Gets the current OSAL tracing level.

OsalSetTraceLevel() Sets the OSAL tracing level.

Configuring the Operating System
The FTXL OSAL defines resources for an operating system. Most of the
resources for the FTXL OSAL have fixed definitions or allocations. However, you
can specify the relative priorities of system contexts (tasks or threads). In
addition, within your operating system, you can modify the allocations for the
following resource types:

• Crtitical sections

• Binary semaphores

• System events

For some operating systems, such as the Micrium μC/OS-II operating system, the
allocations for critical sections and binary semaphores are combined into a single
definition.

This section describes how to determine how many of each resource your FTXL
application requires. The following section, Configuring the Micrium μC/OS-II
Operating System, on page 165, describes how to allocate these resources for the
Micrium μC/OS-II operating system that is used by the example applications.

Determining Resource Requirements
Table 30 lists the basic resource requirements for an operating system running
with the FTXL OSAL.

Table 30. Operating System Resource Requirements

Resource Number Notes

Tasks (or
threads)

Up to 10 The number of tasks does not include application
tasks. An FTXL application must have at least
one application task.

Critical
sections

82 (default
number)

The number of critical sections depends on the
application buffer configuration.

Binary
semaphores

10 Modify the number of binary semaphores, if
needed, within the operating-system settings.

FTXL User’s Guide 161

Resource Number Notes

Events 10 Modify the number of events, if needed, within
the operating-system settings.

To calculate the maximum number of critical sections that are required for your
FTXL application, use the following formula:

[]))(*2())(*4(50 uffAppOutputBffAppInputBuCritSect ++=

where:

• CritSect is the number of critical sections required

• AppInputBuff is the number of application input buffers

• AppOutputBuff is the number of application output buffers, including
priority buffers and non-priority buffers

You specify the number of application buffers on the Buffer Configuration page of
the LonTalk Interface Developer utility.

Table 31 lists the default values for the number of application buffers and the
number of critical sections defined within the FTXL OSAL.

Table 31. Default Number of Buffers and Critical Sections

Buffer Type Number Critical Sections

Application input 5 20

Application output, non-
priority

5 10

Application output,
priority

1 2

Thus, using the formula, the default number of critical sections is 82:

50 + 20 + 10 + 2 = 82

You can modify the number of critical sections defined for the application within
the settings for the operating system, but the number should not be less than the
default number calculated according to the formula.

Specifying Task Priorities
An FTXL application program must include at least one application task (or
thread), but can include additional tasks (or threads). When assigning task
priorities, you must assign application task priorities so that they do not conflict
with the required priorties for the tasks defined for the FTXL LonTalk protocol
stack. In addition, some operating systems, such as the Micrium μC/OS-II
operating system, require that each task be assigned a unique priority.

The FTXL OSAL defines three abstract priorties: high, medium, and low, as
shown in Figure 13 on page 162.

162 FTXL LonTalk API

Figure 13. FTXL Abstract Priorities

Before you can instantiate a task within an application, you must map the FTXL
OSAL abstract priorities to the operating system’s priorities. The abstract
priorities are defined in the FtxlOsal.h file that is copied to your project directory
by the LonTalk Interface Developer utility.

To map the FTXL OSAL abstract priorities to the operating system’s priorities,
use the macros that are defined in the FtxlOsal.h file, as listed in Table 32. The
FTXL OSAL reserves room between the high and medium FTXL tasks for high
priority application tasks, and between the medium and low FTXL tasks for
medium priority tasks. The relationships between these macros are shown in
Figure 14 on page 163.

Table 32. Macros for Operating System Task Priorities

Macro Description

OS_HIGH_PRIORITY_BASE Defines the OS priority number of the
highest priority task used by the FTXL
OSAL.

OS_APPLICATION_HIGH_PRIORITY_BASE Defines the highest OS priority used for
high priority application tasks.

These tasks should have a higher priority
than the FTXL OSAL medium priority
tasks, but lower than the OSAL high
priority tasks.

OS_MEDIUM_PRIORITY_BASE Defines the highest OS priority used for
medium priority FTXL tasks.

These tasks should have a higher priority
than normal application tasks, but lower
than the application high priority tasks.

OS_APPLICATION_PRIORITY_BASE Defines the highest OS priority used for
normal application tasks.

These tasks should have a higher priority
than FTXL OSAL low priority tasks, but
lower than the FTXL OSAL medium priority
tasks.

OS_LOW_PRIORITY_BASE Defines the highest OS priority used for low
priority tasks.

FTXL User’s Guide 163

OS_LOW_APPLICATION_PRIORITY_BASE Defines the highest OS priority used for
application tasks running at a lower priority
than any FTXL LonTalk protocol stack
tasks.

Figure 14. Relationships among the Macros for Operating System Task Priorities

The number of reserved priorities is controlled by the following macros:

• NUM_RESERVED_HIGH_PRIORITY_APPLICATION_TASKS (defines
the number of high priority application tasks, and defaults to 0)

• NUM_RESERVED_APPLICATION_PRIORITIES (defines the number of
normal application tasks, and defaults to 1)

The number of application tasks that can run at lower priority than any of the
FTXL tasks is limited only by the number of priorities supported by the operating
system (or for some some operating systems, such as the Micrium μC/OS-II
operating system, the lowest assignable priority).

You must define at least one application task, typically with priority
OS_APPLICATION_PRIORITY_BASE. To support more than one application
task of medium priority, you must override the definition of
NUM_RESERVED_APPLICATION_PRIORITIES. Modify this definition by
performing either of the following tasks:

• Modify the definition of the
NUM_RESERVED_APPLICATION_PRIORITIES macro in the
FtxlOsal.h file

• Define the NUM_RESERVED_APPLICATION_PRIORITIES macro in
the defined symbols section of your application project’s preprocessor
definitions, as shown in Figure 15 on page 164.

164 FTXL LonTalk API

Figure 15. Defined Symbols in the Project Properties Dialog

Similarly, if you want to support any application tasks in the high priority class,
you must override the definition of the
NUM_RESERVED_HIGH_PRIORITY_APPLICATION_TASKS macro.

Example: Suppose your application requires the following task priority
configuration:

• One high-priority application task

• Two medium-priority application tasks

• Three low-priority application tasks

To support this configuration:

• Set NUM_RESERVED_HIGH_PRIORITY_APPLICATION_TASKS to 1

• Set NUM_RESERVED_APPLICATION_PRIORITIES to 2

• You do not need to specify the number of low-priority application tasks
because the FTXL OSAL does not reserve space for low-priority tasks

Figure 16 on page 165 shows this example configuration. The figure also shows
example start values for each type of priority task, with the value for the high-

FTXL User’s Guide 165

priority tasks (OS_HIGH_PRIORITY_BASE) set to 4. The figure assumes that
low numbers represent high priorities. The cross-hatch shaded numbers
represent the desired configuration of one high-priority application task (at
priority 7), two medium-priority application tasks (at priorities 13 and 14), and
three low-priority application tasks (at priorities 17, 18, and 19).

4 5 6 109 118 12 15 167 1713 1914

OS_APPLICATION_HIGH_PRIORITY_BASE

OS_APPLICATION_PRIORITY_BASE

OS_APPLICATION_LOW_PRIORITY_BASE

18

#define NUM_RESERVED_HIGH_PRIORITY_APPLICATION_TASKS 1
#define NUM_RESERVED_APPLICATION_PRIORITIES 2

OS_HIGH_PRIORITY_BASE OS_MEDIUM_PRIORITY_BASE OS_LOW_PRIORITY_BASE

#define OS_HIGH_PRIORITY_BASE 4

Figure 16. Example Priority Configuration

Configuring the Micrium µC/OS-II Operating System
The example applications that are included with the FTXL Developer’s Kit
provide a working configuration for the Micrium μC/OS-II operating system.
However, you can modify this configuration, for example, to increase the number
of application tasks or increase the number of event control blocks (for critical
sections and binary semaphores).

To configure the Micrium μC/OS-II operating system, you must calculate the
resources that are required for both the FTXL LonTalk protocol stack and for
your application program. The primary resources that you need to calculate are:

• The maximum number of tasks

• The lowest assignable task priority

• The maximum number of event control blocks

Maximum Number of Tasks
The μC/OS-II operating system uses at least two tasks of its own (the highest and
lowest priority tasks), and also uses a third task if you enable the statistics task.
In addition to these operating system tasks, you must add 10 tasks for the FTXL
LonTalk protocol stack tasks, and any additional application tasks that your
application requires. Be sure to set the
NUM_RESERVED_HIGH_PRIORITY_APPLICATION_TASKS and
NUM_RESERVED_APPLICATION_PRIORITIES macros appropriately; see
Specifying Task Priorities on page 161.

For the default configuration of a single application task and two operating
system tasks, you need a total of 13 tasks. If you enable the μC/OS-II statistics
task, you need a total of 14 tasks.

166 FTXL LonTalk API

Lowest Assignable Task Priority
The μC/OS-II operating system uses the lowest task priority for the idle task, and
it uses the second lowest task priority for the statistics task (if the statistics task
is enabled).

The documentation for the μC/OS-II operating system recommends that the
application not use the highest four priorities (0 through 3) or the lowest four
priorities (OS_LOWEST_PRIO-3 through OS_LOWEST_PRIO). By default, the
definitions in the FtxlOsal.h file reserve priorities 0 through 3 for high-priority
operating system tasks, and thus the file sets OS_HIGH_PRIORITY_BASE to 4.

To determine the values for the low-priority tasks, use the following formula:

AppTasksStackTasksOSTasksLowTask ++=

where:

• LowTask is the value for the lowest priority-task

• OSTasks is the number of tasks reserved for the operating system, which
by default is 8 tasks

• StackTasks is the number of tasks required for the FTXL LonTalk
protocol stack, which is 10 tasks

• AppTasks is the number of application tasks that your application
requires, which is always at least 1 task

Thus, the minimum value (counting from priority 0) for the lowest priority task is
18 (8+10+1, minus 1 to count from priority 0).

Figure 17 shows the default settings in the FtxlOsal.h file for the task-priority
macros described in Specifying Task Priorities on page 161. The figure shows the
four reserved high-priority tasks, the four reserved low-priority tasks, the 10
tasks reserved for the FTXL LonTalk protocol stack, and the one task reserved
for the application.

Figure 17. Default Task Priority Settings within the FTXL OSAL

If you have no application tasks running in the low priority class, make sure that
the lowest assignable task priority is greater than or equal to the value of the
OS_LOW_APPLICATION_PRIORITY_BASE macro. If your application runs
any tasks in the low priority class, you need to set the lowest assignable task
priority to the lowest priority that your application uses.

FTXL User’s Guide 167

Maximum Number of Event Control Blocks
The μC/OS-II operating system uses event control blocks for the FTXL OSAL
critical sections, binary semaphores, and events. You define the maximum
number of event control blocks as the sum of the number of critical sections,
binary semaphores, and events. See Determining Resource Requirements on
page 160 for information about how to calculate the number of each of these
resources.

The default number of event control blocks can be calculated based on the values
listed in Table 30 on page 160:

• Default number of critical sections: 82

• Default number of binary semaphores: 10

• Default number of events: 10

Thus, the default number of event control blocks that you need to define is 102.

Other µC/OS-II Settings
The example applications that are included with the FTXL Developer’s Kit
provide a working configuration for the Micrium μC/OS-II operating system. If
you use the μC/OS-II operating system for your FTXL application, you can accept
the default values for all of the options, except the following options:

• The maximum number of tasks (see Maximum Number of Tasks on page
165)

• The lowest assignable priority (see Lowest Assignable Task Priority on
page 166)

• The maximum number of event control blocks (see Maximum Number of
Event Control Blocks)

For your FTXL application, you might want to customize the operating-system
configuration to reduce its memory footprint or provide additional functionality.
The following sections describe the settings within the Nios IDE for a μC/OS-II
operating system that runs an FTXL application.

To configure the operating system:

1. Right-click the system library for your project and select Properties to
open the Properties window for the system library.

2. In the Properties window, click RTOS Options to open the MicroC/OS-II
RTOS Options window.

MicroC/OS-II General Options
Table 33 on page 168 describes the general options for the μC/OS-II operating
system.

168 FTXL LonTalk API

Table 33. MicroC/OS-II General Options

Option Setting for FTXL Applications

Maximum number of tasks 13 or higher

See Maximum Number of Tasks on
page 165.

Lowest assignable priority 18 or higher

See Lowest Assignable Task Priority
on page 166.

Thread Safe C Library Required

Enable code for Event Flags Not required for FTXL applications,
but required for debugging

Enable code for Mutex Semaphores Not required

Enable code for Mailboxes Not required

Enable code for Queues Not required

Enable code for Memory Management Not required

Enable code for Timers Not required

Figure 18 on page 169 shows the MicroC/OS-II General Options page of the
MicroC/OS-II RTOS Options window. The figure shows the options used by the
example applications.

FTXL User’s Guide 169

Figure 18. MicroC/OS-II General Options Page

Event Flags
Table 34 describes the event flag options for the μC/OS-II operating system.

Table 34. MicroC/OS-II Event Flag Options

Option Setting for FTXL Applications

Include code for Wait on Clear Event
Flags

Not required

Include code for OSFlagAccept() Not required

Include code for OSFlagDel() Not required

Include code for OSFlagQuery() Not required

Maximum number of Event Flag
groups

1 or more

170 FTXL LonTalk API

Option Setting for FTXL Applications

Size of name of Event Flag group 0 or larger

Event flag bits 8 or more

Figure 19 shows the MicroC/OS-II Event Flags page of the MicroC/OS-II RTOS
Options window. The figure shows the settings used by the example applications.

Figure 19. MicroC/OS-II Event Flags Page

Mutex
FTXL applications do not use mutex resources. Table 35 describes the mutex
options for the μC/OS-II operating system.

Table 35. MicroC/OS-II Mutex Options

Option Setting for FTXL Applications

Include code for OSMutexAccept() Not required

FTXL User’s Guide 171

Option Setting for FTXL Applications

Include code for OSMutexDel() Not required

Include code for OSMutexQuery() Not required

Semaphores
Table 36 describes the semaphore options for the μC/OS-II operating system.

Table 36. MicroC/OS-II Semaphore Options

Option Setting for FTXL Applications

Include code for OSSemAccept() Required

Include code for OSSemSet() Required

Include code for OSSemDel() Required

Include code for OSSemQuery() Required

Figure 20 on page 172 shows the MicroC/OS-II Semaphores page of the
MicroC/OS-II RTOS Options window.

172 FTXL LonTalk API

Figure 20. MicroC/OS-II Semaphores Page

Mailboxes
FTXL applications do not use mailbox resources. Table 37 describes the mailbox
options for the μC/OS-II operating system.

Table 37. MicroC/OS-II Mailbox Options

Option Setting for FTXL Applications

Include code for OSMboxAccept() Not required

Include code for OSMboxDel() Not required

Include code for OSMboxPost() Not required

Include code for OSMboxPostOpt() Not required

Include code for OSMboxQuery() Not required

FTXL User’s Guide 173

Queues
FTXL applications do not use queue resources. Table 38 describes the queue
options for the μC/OS-II operating system.

Table 38. MicroC/OS-II Queue Options

Option Setting for FTXL Applications

Include code for OSQAccept() Not required

Include code for OSQDel() Not required

Include code for OSQFlush() Not required

Include code for OSQPost() Not required

Include code for OSQPostFront() Not required

Include code for OSQPostOpt() Not required

Include code for OSQQuery() Not required

Maximum number of Queue Control
blocks

Not required

Memory Management
FTXL applications do not use memory-management resources. Table 39
describes the memory-management options for the μC/OS-II operating system.

Table 39. MicroC/OS-II Memory Management Options

Option Setting for FTXL Applications

Include code for OSMemQuery() Not required

Maximum number of memory
partitions

Not required

Size of memory partition name Not required

Miscellaneous
Table 40 describes the miscellaneous options for the μC/OS-II operating system.

Table 40. MicroC/OS-II Miscellaneous Options

Option Setting for FTXL Applications

Enable argument checking Not required

Enable uCOS-II hooks Required

174 FTXL LonTalk API

Option Setting for FTXL Applications

Enable debug variables Not required

Include code for OSSchedLock() and
OSSchedUnlock()

Not required

Enable tick stepping feature for uCOS-
View

Not required

Enable statistics task Not required

Check task stacks from statistics task Not required

Statistics task stack size Not required

Idle task stack size 512

Maximum number of Event Control
blocks

102 or more

See Maximum Number of Event
Control Blocks on page 167.

Size of Semaphore, Mutex, Mailbox or
Queue name

0 (unless you use one of these resource
types)

Figure 21 on page 175 shows the MicroC/OS-II Miscellaneous page of the
MicroC/OS-II RTOS Options window. The figure shows the settings used by the
example applications.

FTXL User’s Guide 175

Figure 21. MicroC/OS-II Miscellaneous Page

Task Management
Table 41 describes the task-management options for the μC/OS-II operating
system.

Table 41. MicroC/OS-II Task Management Options

Option Setting for FTXL Applications

Include code for OSTaskChangePrio() Not required

Include code for OSTaskCreate() Not required

Include code for OSTaskCreateExt() Required

Include code for OSTaskDel() Required

Include variables in OS_TCB for
profiling

Not required

176 FTXL LonTalk API

Option Setting for FTXL Applications

Include code for OSTaskQuery() Required

Include code for OSTaskSuspend() and
OSTaskResume()

Not required

Include code for OSTaskSwHook() Required

Size of task name 0 or larger

Figure 22 shows the MicroC/OS-II Task Management page of the MicroC/OS-II
RTOS Options window.

Figure 22. MicroC/OS-II Task Management Page

Time Management
Table 42 on page 177 describes the time-management options for the μC/OS-II
operating system.

FTXL User’s Guide 177

Table 42. MicroC/OS-II Time Management Options

Option Setting for FTXL Applications

Include code for OSTimeDlyHMSM() Not required

Include code for OSTimeDlyResume() Not required

Include code for OSTimeGet() and
OSTimeSet()

Required

Include code for OSTimeTickHook() Not required

Figure 23 shows the MicroC/OS-II Time Management page of the MicroC/OS-II
RTOS Options window.

Figure 23. MicroC/OS-II Time Management Page

Timer Management
FTXL applications do not use timer-management resources. Table 43 on page
178 describes the timer-management options for the μC/OS-II operating system.

178 FTXL LonTalk API

Table 43. MicroC/OS-II Timer Management Options

Option Setting for FTXL Applications

Maximum number of timers Not required

Determine the size of a timer name Not required

Size of timer wheel Not required

Rate at which timer management task
runs

Not required

Stack size for timer task Not required

Priority of timer task Not required

The FTXL Hardware Abstraction Layer
The FTXL Developer’s Kit includes a hardware abstraction layer (HAL) that
provides an abstract interface for the FTXL Transceiver. The FTXL HAL is
independent of the Altera HAL, which provides an abstract interface to the Nios
II processor and other hardware components for the FPGA device.

The example applications that are included with the FTXL Developer’s Kit
implement the FTXL HAL for the FTXL Transceiver Board and the DBC2C20
development board. The FTXL HAL is provided as source code so that you can
modify this implementation to support other hardware configurations. However,
if your design uses the same signal names and the same basic logic as are used in
the reference design that is included with the example applications, you can
likely use the functions in the FtxlHal.c with little or no change.

For detailed information about the FTXL HAL, see the HTML API
documentation and the API source code:

• HTML API documentation: Start → Programs → Echelon FTXL
Developer’s Kit → Documentation → API Reference

• API source code: Start → Programs → Echelon FTXL Developer’s Kit →
Source Code

The following sections provide an overview of the functions that the FTXL HAL
provides. See the FTXL Hardware Guide for a description of the FTXL
Transceiver hardware interface.

Managing the FTXL Transceiver
To manage the FTXL Transceiver, the FTXL HAL provides the functions listed in
Table 44 on page 179.

FTXL User’s Guide 179

 Table 44. FTXL HAL Transceiver Functions

Function Description

LonAssertTransceiverReset() Asserts the FTXL Transceiver’s RESET~ pin, which
causes the Transceiver to reset.

LonDeassertTransceiverReset() Deasserts the FTXL Transceiver’s RESET~ pin,
which causes the Transceiver to complete post-reset
processing.

LonReadTransceiverDataRegister() Reads the FTXL Transceiver’s data register.

LonReadTransceiverReset() Reads the state of the FTXL Transceiver’s RESET~
pin.

LonTransceiverIsBusy() Reads the FTXL Transceiver’s status register to
determine whether the Transceiver is busy.

LonWriteTransceiverDataRegister() Writes to the FTXL Transceiver’s data register.

Managing the Service Pin
To manage the service pin for an FTXL device, the FTXL HAL provides the
functions listed in Table 45.

 Table 45. FTXL HAL Service Functions

Function Description

LonGetServicePinStatus() Gets the status of the FTXL Transceiver’s SERVICE~ pin,
which represents the status of the Service button.

LonSetServiceLed() Sets the state of the FTXL device’s Service LED, which can
be on or off.

Managing Interrupts
To manage interrupts for the FTXL device, the FTXL HAL provides the functions
and interrupt service routines (ISRs) listed in Table 46.

 Table 46. FTXL HAL Interrupt Functions

Function Description

LonDisableInterrupt() Disables the FTXL ISRs.

LonDriverServicePinIrq() The main body of the ISR for processing input from the FTXL
Transceiver’s SERVICE~ pin. This function is implemented in
the FTXL library, and is called by an interrupt routine defined
in the FTXL HAL.

180 FTXL LonTalk API

Function Description

LonDriverTransceiverIrq() The main body of the ISR for processing input from the FTXL
Transceiver’s IRQ~ pin. This function is implemented in the
FTXL library, and is called by an interrupt routine defined in
the FTXL HAL.

LonEnableInterrupt() Enables the FTXL ISRs.

LonRegisterIsr() Registers the FTXL ISRs with the Altera HAL.

FTXL User’s Guide 181

E

Determining Memory Usage for
FTXL Applications

This Appendix describes how much volatile and non-volatile
memory an FTXL application requires, and how to
determine the application’s memory requirements.

182 Determining Memory Usage for FTXL Applications

Overview
The FTXL LonTalk protocol stack allocates memory dynamically, so a direct
measurement of the memory usage might lead to an underestimate for memory
usage, especially for peak usage conditions. This appendix provides both static
code analysis and runtime measurements so that you can calculate more reliable
memory usage estimates.

Total Memory Use
After you create your FTXL application and compile it, you can determine how
much flash memory and RAM the application requires.

When you compile a project, the Nios IDE displays the size of the executable file
(.elf) in the IDE’s Console view, for example:

Info: (FTXL_Simple_0.elf) 579 KBytes program size (code +
initialized data).
Info: 15804 KBytes free for stack + heap.

You can also run the nios2-elf-size utility from a Windows command line to shows
the size of sections (program and data) within the executable file, for example:

C:\>nios2-elf-size FTXL_Simple_0.elf
 text data bss dec hex filename
 540492 8704 44300 593496 90e58 FTXL_Simple_0.elf

The output from the utility shows the following information:

• Text size, which represents the size of the program code

• Data size, which represents the size of initialized data

• Bss size, which represents the size of uninitialized data

• Total size in decimal

• Total size in hexadecimal

• The file name

The nios2-elf-size utility is in the [Altera]\nios2eds\bin\nios2-gnutools\H-i686-
pc-cygwin\bin directory. You run the utility against your executable file, which
is in the \Debug (or \Release or other build configuration) directory for your
project.

You can determine the flash requirements for an application directly from the
text, data, and bss output of the nios2-elf-size utility (or the program size listed
in the Console view after a project build). For the FTXL_Simple_0.elf file shown
above, the flash requirement is 593 496 bytes (579 KB).

You can potentially reduce the code size by modifying some of the settings for the
project’s system library, which include the settings for the operating system.

To determine the RAM requirements for the application, you need to include the
heap and stack usage for the program. Because the heap and stack are allocated
at runtime, you need to gather heap and stack information while the application
program is running. One way to gather this information is to use the mallinfo()
function, and interpret the uordblocks field of the mallinfo structure as the heap
size. You should call the mallinfo() function after your program completes the

FTXL User’s Guide 183

call to the LonInit() function (you could also call it after the FTXL device is
commissioned or during peak activity). For the FTXL_Simple_0.elf file shown
above, the uordblocks field is 134 244 bytes (131 KB). Thus, the RAM
requirement for the application includes the 593 496 bytes from the flash
requirement plus the 134 244 bytes from the heap requirement, for a total RAM
requirement of 727 740 bytes (711 KB).

Remember that the flash and RAM requirements are estimates, because a
production application will likely not include the malloc.h file, nor call the
mallinfo() function and associated printf() functions. In addition, for some
applications, not all of the code and uninitialized data need to reside both in flash
and RAM.

Memory Use for Transactions
The FTXL LonTalk protocol stack allocates memory for transactions at runtime,
as they are needed. On the Stack Configuration page of the LonTalk Interface
Developer utility, you can specify a maximum allowed values for the number of
simultaneous receive transactions and for the number of simultaneous transmit
transactions. These values limit the amount of memory that the FTXL LonTalk
protocol stack allocates for transactions.

Table 47 lists the amount of memory required for each type of transaction. The
number of bytes required for each type of transaction is an estimate; you should
round these numbers upward when you use them in memory usage calculations.

Table 47. RAM Usage per Transaction Record

Transaction Type Bytes Required

Transmit transaction 196

Receive Transaction 400

Memory Use for Buffers
The Buffer Configuration page of the LonTalk Interface Developer utility allows
you to specify the number of input, output, and priority output application
buffers that your FTXL application should use. The values that you specify in
the utility are defined in the FtxlDev.h file that the utility generates.

The FTXL LonTalk protocol stack uses the number of application buffers that you
specify to allocate memory for both the application buffers and related internal
buffers. Some of the internal buffers are allocated in advance, and some are
allocated on an as-needed basis.

Table 48 on page 184 lists the amount of memory required for each type of
application buffer. The number of bytes required for each type of application
buffer is an estimate; you should round these numbers upward when you use
them in memory usage calculations.

184 Determining Memory Usage for FTXL Applications

Table 48. RAM Usage per Application Buffer

Application Buffer Type Bytes Required

Input buffer 1710

Output nonpriority buffer 1118

Output priority buffer 1118

The default numbers for each type of buffer are: 5 input buffers, 5 output
nonpriority buffers, and 1 output priority buffer. Thus, the RAM usage for the
default number of application buffers is approximately 15 KB.

Memory for LONWORKS Resources
Each FTXL device uses LONWORKS resources, such as network variables defined
for the device, address table entries, and aliases supported by the device.

The FTXL LonTalk protocol stack allocates memory only for resources that are in
use. For example, it allocates memory for address table entries only if the
address is bound. However, when you calculate memory requirements, you
should assume that all resources are in use.

Table 49 lists the amount of memory required for each type of LONWORKS
resource. The number of bytes required for each type of resource is an estimate;
you should round these numbers upward when you use them in memory usage
calculations. For example, as network variables can vary in their actual sizes, so
the table uses an average value.

Table 49. RAM Usage per LonWorks Resource

Resource Type Bytes Required

Static network variable 320 + SD_length + NV_length

Dynamic network variable 331 + SD_length + NV_length

Alias 220

Address table entry 67

Notes:

• SD_length is the length of the self-documentation string for the network
variable

• NV_length is the declared size of the network variable (for changeable-
type network variables, NV_length is the maximum size of the network
variable)

In addition to RAM, LONWORKS resources also require memory for constant data.
This constant data must be included in both the total RAM size and the total
flash memory size, because all of the constant data is typically loaded from flash
memory into RAM. Table 50 on page 185 lists the amount of flash memory

FTXL User’s Guide 185

required for each type of LONWORKS resource. The number of bytes required for
each type of resource is an estimate; you should round these numbers upward
when you use them in flash memory usage calculations.

Table 50. Flash Usage per LonWorks Resource

Resource Type Bytes Required

Static network variable 24 + SD_length + NV_name_length

Dynamic network variable Dyn_NV_count

Alias Alias_count

Address table entry Address_count

Notes:

• SD_length is the length of the self-documentation string for the network
variable

• NV_name_length is the length of the network variable’s name, as defined
in the device’s model file

• Dyn_NV_count is the number of dynamic network variables that are
defined for the application

• Alias_count is the number of aliases that are defined for the application

• Address_count is the number of address table entries that are defined for
the application

In addition to storing constant data, flash memory stores non-volatile data for the
application, as described in Memory for Non-Volatile Data.

Memory for Non-Volatile Data
An FTXL application typically has some non-volatile data that it must maintain
across device reset (see Providing Persistent Storage for Non-Volatile Data on
page 77). The FTXL LonTalk protocol stack stores only non-volatile data that is
in use. For example, it does not store address table and alias table entries that
are not used. Therefore, the actual amount of non-volatile memory used can be
smaller than the maximum amount required. However, you should define
enough free non-volatile storage to support the maximum use configuration. The
example direct flash implementation of the non-volatile data functions calculates
the maximum use configuration, and reserves flash memory space so that if one
segment grows, it does not interfere with other segments.

This section describes the amount of non-volatile data space required for the
following application elements:

• The network image (LonNvdSegNetworkImage)

• The node definition (LonNvdSegNodeDefinition)

• The application data (LonNvdSegApplicationData)

186 Determining Memory Usage for FTXL Applications

The flash memory implementation in the FtxlNvdFlashDirect.c file requires that
each data segment begin on a flash sector boundary. Depending on the flash
sector size, this requirement can increase the total flash memory needed for the
application.

Table 51 describes the amount of non-volatile memory required for the network
image.

Table 51. Non-Volatile Memory Required for the Network Image

Network Data Bytes Required

Header 16

Overhead 102

Domain 21 (for each domain)

Network variables and aliases 15 (for each network variable [static or
dynamic] and each alias)

Address table 11 (for each address table entry)

Table 52 describes the amount of non-volatile memory required for the node
definition.

Table 52. Non-Volatile Memory Required for the Node Definition

Node Data Bytes Required

Header 16

Overhead 100

Node self-documentation string length Node_SD_length

Static network variable self-
documentation string length

NV_SD_length

Network variables 37 (for each network variable [static or
dynamic])

Notes:

• Node_SD_length is the length of the self-documentation string for the
node

• NV_SD_length is the length of the self-documentation string for all
network variables (both static and dynamic)

Table 53 on page 187 describes the amount of non-volatile memory required for
the application data.

FTXL User’s Guide 187

Table 53. Non-Volatile Memory Required for the Application Data

Application Data Bytes Required

Header 16

CPNVs ()∑
j

jCPNVlen

File-based CPs File_length

Application-specific data Data_length

Notes:

• CPNVs are configuration property network variables

• File-based CPs are configuration properties that are defined in
configuration files

• CPNVlenj is the configuration network variable (CPNV) length of a
specific CPNV value – the application data includes the sum of the CPNV
lengths of all CPNV values

• File_length is the size of the writeable configuration file for the
configuration properties

• Data_length is the length of any addition application-specific data

Memory Usage Examples
Table 54 on page 188 shows the amount of RAM and flash that are required for
various example FTXL applications. Each row of the table represents a different
application by varying the number of network variables, transmit transactions,
receive transactions, aliases, and address table entries. The values for all
columns except the network variable column represent values calculated by the
LonTalk Interface Developer utility.

The table assumes that each network variable has a length of 2 bytes, and has a
5-byte self-documentation string associated with it. The table also assumes the
default number of application buffers (5 input buffers, 5 output nonpriority
buffers, and 1 output priority buffer). Varying the number of application buffers
does not siginificantly alter the amount of RAM that the application requires,
and does not alter the amount of flash memory required. Of course, the number
of buffers can affect the application’s performance.

188 Determining Memory Usage for FTXL Applications

Table 54. Example Memory Usage

Number of
Network
Variables

Number of
Transmit
Transactions

Number of
Receive
Transactions

Number
of
Aliases

Number
of
Address
Table
Entries

RAM
Required
(in KB)

Flash
Required
(in KB)

10 15 20 3 15 721 519

100 20 20 33 20 757 529

250 50 20 83 50 822 545

500 101 20 166 101 932 571

1000 203 25 333 203 1153 625

2000 407 50 666 407 1601 731

4000 814 100 1333 814 2497 945

Figure 24 on page 189 shows the relative RAM and flash memory requirements
for the data listed in Table 54. The figure shows that as the number of network
variables for the FTXL application grows, the RAM requirement grows
significantly, while the flash requirement grows modestly. These memory
requirements do not include the requirements for application-specific data.

FTXL User’s Guide 189

0

500

1000

1500

2000

2500

Memory (KB)

10 100 250 500 1000 2000 4000
Number of Network Variables

RAM
Flash

Figure 24. Example Memory Usage

FTXL User’s Guide 191

F

Downloading an FTXL Application
Over the Network

This Appendix describes considerations for designing an
FTXL application that allows application updates over the
network.

192 Downloading an FTXL Application Over the Network

Overview
For a Neuron-hosted device, you can update the application image over the
network using LNS or another network management tool. However, you cannot
use the same tools or technique to update an FTXL application image over the
network. Many FTXL devices do not require application updates over the
network, but for those that do, this appendix describes considerations for adding
this capability to the device.

If an FTXL device has sufficient non-volatile memory, it can hold two (or more)
application images: one image for the currently running application, and the
other image to control downloaded updates to the application. The device then
switches between these images as necessary. Because neither the FTXL LonTalk
API nor the FTXL LonTalk protocol stack directly supports updating the FTXL
application over the network, you must:

1. Define a custom application download protocol.

2. Implement an application download utility.

3. Implement application download capability within your FTXL
application.

For the application download process:

• The application must be running and configured for the duration of the
download.

• There must be sufficient volatile and non-volatile memory to store the
new image without affecting the current image.

• The application must be able to boot the new image at the end of the
download. During this critical period, the application must be able to
tolerate device resets and boot either the old application image or the new
one, as appropriate.

This appendix decribes some of the considerations for designing an FTXL
application download function. For additional considerations, see the Altera
application note AN 429: Remote Configuration Over Ethernet with the Nios II
Processor.

Important: This appendix does not describe how to download updates to the
firmware image into the FTXL 3190 Free Topology Smart Transceiver. It only
describes updates to the application image running on the host processor.

Custom Application Download Protocol
The custom FTXL application protocol that you define for downloading an FTXL
application over the network should support the following steps:

1. Prepare for application download.

When the application download utility informs the current FTXL
application that it needs to start an application download, the application
should respond by indicating whether it is ready for the utility to begin
the download. The utility must be able to wait until the application is
ready, or abort download preparation after a timeout period. The utility

http://www.altera.com/literature/an/an429.pdf
http://www.altera.com/literature/an/an429.pdf

FTXL User’s Guide 193

should also inform the user of its state.

During this stage, the FTXL device should verify that the application to
be downloaded can run on the device platform (using the FPGA ID or
similar mechanism), and verify that the application image is from a
trusted source (for example, by using an encrypted signature).

2. Download the application.

A reliable and efficient data transfer mechanism should be used. The
interoperable file transfer protocol (FTP) can be used, treating the entire
application image as a file.

The download utility and the application must support long flash write
times during this portion of the download process. The FTXL application
should update the flash in the background (see Download Capability
within the Application on page 193), however, it might be necessary for
the protocol to define additional flow control to allow the FTXL
application to complete flash writes before accepting new data.

3. Complete download.

The application download utility informs the current application that the
download is complete. The FTXL application should verify the integrity
of the image, and either:

a. Accept the image, and proceed to the final steps below.

b. Request retransmission of some sections of the image.

c. Reject the download.

4. Boot the new application.

To boot the new application, you must implement a custom boot loader
(or boot copier) so that the Nios II processor can load the new application
and restart the processor with the new image. See the Altera application
note AN 458: Alternative Nios II Boot Methods for information about
creating a custom boot loader.

Important: For the duration of the first three steps, the application must be
running, the FTXL LonTalk protocol stack must be started, and the FTXL device
must be configured.

Application Download Utility
This tool needs to read the application image to be loaded, and run the
application download protocol described in Custom Application Download
Protocol on page 192. You can write the utility as an LNS Plugin or as any type
of network-aware application.

Download Capability within the Application
Your application must implement the custom application protocol, and provide
sufficient non-volatile storage for the new application image. The application
also must tolerate time consuming writes to flash during the transfer. At a

http://www.altera.com/literature/an/an458.pdf

194 Downloading an FTXL Application Over the Network

minimum, the FTXL application should reserve enough RAM to buffer two flash
sectors. When one sector has been completely received, the application should
write it to flash in a background process. If the write is not complete when the
second buffer is filled, the FTXL application must tell the application download
utility to delay additional updates until the application is ready to receive the
data.

After the transfer is complete and all data has been written to non-volatile
memory, the application must prepare the image so that the boot loader can
reboot the Nios II processor from the new image. This preparation must be
defined so that a device or processor reset at any point will result in a functioning
FTXL device. For example, the reset could always cause a boot from the old
application image, or from the new application image, or from some temporary
boot application that can complete the transition (possibly with user
intervention).

The Altera tools provide a number of methods to control how memory is
organized and how the system is booted. For information about these methods,
see the Nios II Software Developer’s Handbook. In particular, refer to the section
on “Memory Usage” within the “Developing Programs using the HAL” chapter,
and the descriptions of the alt_load_section() function within the “HAL API
Reference” appendix.

By using the alt_load_section() function, your application can control how
program data is copied from flash to RAM. Thus, you can, at boot time, decide
whether to boot the old application image or the new one. In preparation for the
boot, your application must direct how the boot should be performed. For
example, your application could include a table at a fixed location that includes
boot parameters, such as the flash locations of the main() function and your reset
vectors. Switching to the new application is accomplished by patching these boot
parameters and then resetting the processor. However, there should be a
fallback if the boot parameters become corrupted, for example, because the device
reset while writing to the sector that contains the boot parameters. This can be
accomplished by maintaining two sets of boot parameters, a primary and backup,
in different flash sectors. The backup is only updated after successfully booting
from the primary.

Another issue to consider is whether the entire image will be loaded or only a
partial image. It is far simpler, and more flexible, if the entire image, including
the FTXL LonTalk protocol stack and the operating system can be replaced.
However, loading the entire image can take several minutes (for example, loading
an application such as the FTXL simple example application could require 10
minutes or longer). Loading only the application portion of the image is possible
if you structure your application very carefully. For example, you might need to
provide patchable linkage stubs that allow your loaded application image to
interact with the pre-loaded FTXL LonTalk protocol stack library and operating
system.

FTXL User’s Guide 195

G

Example FTXL Applications

This Appendix describes the example applications that are
included in the FTXL Developer’s Kit. This Appendix
describes each application’s design, main() and event
handler functions, and model file. It also describes how to
build and load the application images and run the example
applications.

196 Example FTXL Applications

Overview of the Example Applications
The FTXL Developer’s Kit includes two example applications: the simple
example and a dynamic interface example. The simple example application is a
very simple application that simulates a voltage amplifier device. This device
receives an input voltage value, multiplies the value by 2, and returns the new
output value. The dynamic interface example application includes the same
functionality as the simple example application, but adds the ability to change
the SNVT types for two of the network variables and the ability to add (and
modify and delete) dynamic network variables.

The following sections describe the two example applications, including their
design, how to build them in the Nios II IDE, how to load them into the Nios II
processor in the FPGA device on the DBC2C20 development board, and how to
run them.

Example Application Files
The two FTXL example applications are provided as project templates for the
Nios IDE: the FTXL Simple project and the FTXL Dynamic Interface project.
Each project template includes only a few files and cannot be compiled or run as
is; you must run the LonTalk Interface Developer utility to generate and copy the
required files for the project.

The FTXL Simple project includes the files listed in Table 55. They are installed
to the [Altera]\nios2eds\examples\software\FTXL_Simple directory.

Table 55. FTXL Simple Example Files

File Name Description

FtxlHandlers.c C file for the implementations of the callback handler
functions for the application

main.c Main application file

readme.txt Readme file for the project, including a brief
description of the project, and hardware and operating
system requirements

Simple Example.lidprj LonTalk Interface Developer project file

Simple Example.nc Model file for the application

template.xml Nios IDE project template file

The FTXL Dynamic Interface project includes the files listed in Table 56 on page
197. They are installed to the [Altera]\nios2eds\examples\software\
FTXL_DynamicInterface directory.

FTXL User’s Guide 197

Table 56. FTXL Dynamic Interface Example Files

File Name Description

Dynamic Interface Example.lidprj LonTalk Interface Developer project file

Dynamic Interface Example.nc Model file for the application

FtxlHandlers.c C file for the callback handler functions for
the application

main.c Main application file

readme.txt Readme file for the project, including a
brief description of the project, and
hardware and operating system
requirements

SNVT_RQ.H C header file for the enumeration used
with the SNVT_obj_request structure

template.xml Nios IDE project template file

See Using the LonTalk Interface Developer Files on page 61 for information
about the files that the LonTalk Interface Developer utility generates and copies
for an FTXL project.

The Simple Example Application
The simple voltage amplifier example application is a very simple application
that simulates a voltage actuator with a built-in gain of 2. This device receives
an input voltage value, multiplies the value by 2, and updates the simulated
output feedback value. For a real voltage actuator device, the input value would
be used to set a voltage level. After the device updated the voltage level, the
application would read the actual level and use that value to set the feedback
value.

The model file for this example includes a single SFPTclosedLoopActuator
functional block for the two network variables. It does not include a Node Object
functional block.

The design of the example application is very simple. It includes a single C
source file (main.c), along with the FTXL API files generated by the LonTalk
Interface Developer utility and a version of FtxlHandlers.c that has been
customized for this example application.

The following sections describe the application’s main() function, the application
task (appTask()) function, event handler functions, callback handler functions,
and model file.

198 Example FTXL Applications

Main Function
The main() function is in the main.c file. The main() function creates an
operating system task by calling the OSTaskCreateExt() μC/OS-II operating
system function with the following arguments:

• Task entry point, which is a pointer to the appTask() function

• A NULL pointer for the arguments to the task

• A pointer to the top of the application stack

• The base priority of the task

• The ID of the task

• A pointer to the bottom of the application stack

• The size of the stack, in OS_STK units

• A NULL pointer for the extended task control block pointer
(OSTCBExtPtr)

• A value of 0 for the options

The main() function then calls the OSStart() μC/OS-II operating system function
to start the operating system. An application should not use the FTXL OSAL
functions for creating a task; if the application needs extra tasks, it should call
operating system functions directly. The OSAL functions for creating a task are
designed for creating FTXL LonTalk protocol stack tasks only.

The main() function is shown below.

/* The main function simply creates the application task
 * and then starts multi-tasking
 */
int main(void) {
 /* Create an application task to implement the main
 control loop. */
 OSTaskCreateExt(appTask,
 NULL,
 (void *)&appStack[APP_STACKSIZE],
 OS_APPLICATION_PRIORITY_BASE,
 OS_APPLICATION_PRIORITY_BASE,
 appStack,
 APP_STACKSIZE,
 NULL,
 0);

 /* Start the operating system. The rest of the
 * application executes under appTask.
 */
 OSStart();
 return 0;
}

Application Task Function
The application task function, appTask(), is in the main.c file. The appTask()
function performs the following tasks:

FTXL User’s Guide 199

• Creates the “event ready” event using the FTXL OSAL
OsalCreateEvent() function. The LonEventReady() callback handler
function uses this event to wake up the application task to process FTXL
network events.

• Calls the LonInit() function to initialize the FTXL LonTalk protocol stack
and FTXL Transceiver. If this function fails, the appTask() function calls
the FTXL OSAL OsalDeleteEvent() function to delete the “event ready”
event.

• If the LonInit() function is successful, the appTask() function begins an
infinite loop to wait for FTXL network events. When an event occurs, it
calls the LonEventPump() function to process the event.

Although the main() and appTask() functions for this application are part of an
example, you can use the same basic algorithmic approach for a production-level
application.

The the appTask() function is shown below.

/* The application task initializes the FTXL LonTalk
 * protocol stack and implements the main control loop.
 * The bulk of the application processing is performed in
 * the myNvUpdateOccurred event handler.
 */
void appTask(void* pData) {
 /* Create the “event ready” event, which is signaled by
 * the myEventReady callback to wake this task up to
 * process FTXL events.
 */
 if (OsalCreateEvent(&eventReadyHandle) ==
 OSALSTS_SUCCESS) {
 /* Initialize the FTXL LonTalk API and FTXL Transceiver
 */
 if (LonInit() == LonApiNoError) {
 /* This is the main control loop, which runs
 * forever. */
 while (TRUE) {
 /* Whenever the ready event is fired, process
 * events by calling LonEventPump. The ready event
 * is fired by the myEventReady callback.
 */
 if (OsalWaitForEvent(eventReadyHandle,
 OSAL_WAIT_FOREVER) == OSALSTS_SUCCESS)
 LonEventPump();
 }
 }
 OsalDeleteEvent(&eventReadyHandle);
 }
}

Event Handler Function
To signal to the main application the occurrence of certain types of events, the
FTXL LonTalk API calls specific event handler functions. For the simple voltage
amplifier example application, only one of the API’s event handler functions has
been implemented to provide application-specific behavior.

200 Example FTXL Applications

The FtxlHandlers.c file contains the modified LonNvUpdateOccurred() function,
which is called when the host processor receives a network-variable update. This
function simply calls the myNvUpdateOccurred() function in the main.c file that
provides the application-specific behavior. This functional separation approach
keeps changes to the LonTalk Interface Developer utility-generated files to a
minimum. For a production-level application, you can place application-specific
code wherever your application design requires it.

The myNvUpdateOccurred() function contains a C switch statement, which
contains a single case statement because the VoltActuator functional block
includes only a single input network variable, nviVolt.

The case statement for the nviVolt network variable (specified by the
LonNvIndexNviVolt network variable index) calls the ProcessNviVoltUpdate()
utility function to perform the following tasks:

• Perform range checking for the network variable

• Set the output network variable to double the value of the input network
variable

• Propagate the output network variable to the network

The two network variables are defined in the model file, which is described in
Model File on page 201.

The myNvUpdateOccurred() function is shown below.

/*
 * This function is called by the FTXL LonNvUpdateOccurred
 * event handler, indicating that a network variable input
 * has arrived.
 */
void myNvUpdateOccurred(const unsigned nvIndex,
 const LonReceiveAddress* const pNvInAddr) {
 switch (nvIndex) {
 case LonNvIndexNviVolt:
 {
 /* process update to nviVolt. */
 ProcessNviVoltUpdate();
 break;
 }
 /* Add more input NVs here, if any */

 default:
 break;
 }
}

Application-Specific Utility Functions
The simple example application includes the following application-specific utility
functions:

• ProcessNviVoltUpdate(): Performs range checking for the network
variables, sets the output network variable to double the value of the
input network variable, and propagates the output network variable to
the network.

FTXL User’s Guide 201

• ProcessOnlineEvent(): Calls the ProcessNviVoltUpdate() function when
the device goes online.

These functions are defined in the main.c file.

Callback Handler Function
To signal to the main application the occurrence of certain types of events, the
FTXL LonTalk API calls specific callback handler functions. For the simple
voltage actuator example application, only one of the API’s callback handler
functions has been implemented to provide application-specific behavior.

The FtxlHandlers.c file contains the modified LonEventReady() function, which is
called when the FTXL LonTalk protocol stack receives a network event. This
function simply calls the myEventReady() function in the main.c file that
provides the application-specific behavior. This functional separation approach
keeps changes to the LonTalk Interface Developer utility-generated files to a
minimum. For a production-level application, you can place application-specific
code wherever your application design requires it.

The myEventReady() function calls the FTXL OSAL OsalSetEvent() function to
signal the application task so that it can process the network event.

The myEventReady() function is shown below.

/* This function is called by the FTXL LonEventReady
 * callback, signaling that an event is ready to be
 * processed.
 */
void myEventReady(void) {
 /* Signal application task so that it can process the
 * event. */
 OsalSetEvent(eventReadyHandle);
}

Model File
The model file, Simple Example.nc, defines the LONWORKS interface for the
example FTXL device.

The model file defines one functional block, VoltActuator. The VoltActuator
functional block includes two network variables, nviVolt and nvoVoltFb. The
functionality for these network variables is implemented in the
myNvUpdateOccurred() function described in Event Handler Function on page
199.

The model file is shown below.

#pragma enable_sd_nv_names

network input SNVT_volt nviVolt;
network output SNVT_volt bind_info(unackd) nvoVoltFb;

fblock SFPTclosedLoopActuator {
 nviVolt implements nviValue;
 nvoVoltFb implements nvoValueFb;
} VoltActuator
external_name("VoltActuator");

202 Example FTXL Applications

For more information about creating and using a model file, see Creating a Model
File on page 23.

To change the LONWORKS interface and functionality of the example application,
perform the following steps:

1. Define the interface in the Simple Example.nc model file.

2. Run the LonTalk Interface Developer utility to generate an updated
application framework.

3. Make appropriate changes to the callback handler functions in the
FtxlHandlers.c file or the main.c file.

4. Rebuild the project.

5. Optional: Load the generated XIF file into the FTXL Transceiver.

6. Load the new executable file into the Nios II processor.

The Dynamic Interface Example Application
The dynamic interface example application demonstrates the basics of using both
dynamic network variables and the LONMARK changeable-type protocol in an
FTXL application. The example is not a complete implementation of the protocol,
but is meant to serve as a starting point for writing your own application.

To demonstrate dynamic network variables, the example application allows you
to add, modify, or delete network variables of type SNVT_amp. Each output
dynamic network variable represents the aggregated current consumption of one
or more input dynamic network variables. For this example, the output dynamic
network variables represent logical circuits. You can define as many circuits as
needed, but the total number of dynamically added network variables can be no
more than 50.

The dynamic network variables must use the following naming convention:

• For output network variables, use the name nvoAmp plus a single-
character suffix that represents a particular logical circuit.

• For input network variables, use the name nviAmp, plus the suffix for the
corresponding output network variable, with an additional suffix that
identifies the particular input. The additional suffix can be one or more
characters.

Example: For logical circuit A, you could name the output network variable
nvoAmpA, and you could name three of its input network variables nviAmpA01,
nviAmpA02, and nviAmpA03. The value of the nvoAmpA network variable
would be the aggregrate sum of the values of the three input network variables.

The example application maintains an array for a map of the circuits defined for
the device. The application uses the functions described in Application-Specific
Utility Functions on page 213 to maintain the circuits of dynamic network
variables and to propagate them to the network.

To demonstrate changeable-type network variables, the example application has
a configuration network variable (CPNV) named nciNvType, which maintains the
current type and last-known good value of the two network variables, nviVolt and
nvoVoltFb. The application supports changing the network variable type for
these two network variable between the default type (SNVT_volt) and the

FTXL User’s Guide 203

SNVT_volt_mil type. Any attempt to change the NV to an unsupported type
causes the device to reject the change and to revert the nciNvType CPNV to its
last-known good value.

The design of the example application is relatively simple. It includes a single C
source file (main.c), along with the FTXL LonTalk API files generated by the
LonTalk Interface Developer utility and a version of FtxlHandlers.c that has
been customized for this example application.

The following sections describe the application’s main() function, the application
task (appTask()) function, event handler functions, callback handler functions,
application-specific utility functions, and model file.

Main Function
The main() function is in the main.c file. The main() function initializes the
status for the application’s functional blocks, and then initializes the circuit map
for the logical circuit defined for tracking the device’s aggregated current usage.

The main() function creates an operating system task by calling the
OSTaskCreateExt() μC/OS-II operating system function with the following
arguments:

• Task entry point, which is a pointer to the appTask() function

• A NULL pointer for the arguments to the task

• A pointer to the top of the application stack

• The base priority of the task

• The ID of the task

• A pointer to the bottom of the application stack

• The size of the stack, in OS_STK units

• A NULL pointer for the extended task control block pointer
(OSTCBExtPtr)

• A value of 0 for the options

The main() function then calls the OSStart() μC/OS-II operating system function
to start the operating system. An application should not use the FTXL OSAL
functions for creating a task; if the application needs extra tasks, it should call
operating system functions directly. The OSAL functions for creating a task are
designed for creating FTXL LonTalk protocol stack tasks only.

The main() function is shown below.

/* The main function initializes some global variables,
 * creates the application task, and then starts
 * multi-tasking.
 */
int main(void) {

 unsigned fbIndex;

 /* Initialize the FbStatus array. */
 memset(FbStatus, 0, sizeof(FbStatus));
 for (fbIndex = 0; fbIndex < FBIDX_count; fbIndex++) {

204 Example FTXL Applications

 LON_SET_UNSIGNED_WORD(FbStatus[fbIndex].object_id,
 fbIndex);
 }

 /* Initialize the circuitMap. Initially there are no
 * members. If any dynamic NVs have been defined, the
 * FTXL LonTalk API will call the LonNvAdded event
 * handler during LonInit, which will in turn call
 * myNvAdded. The myNvAdded function will add the NV to
 * circuitMap assuming that it follows the naming
 * convention and its type is SNVT_amp.
 */
 memset(circuitMap, 0, sizeof(circuitMap));

 /* Create an application task to implement the main
 * control loop. */
 OSTaskCreateExt(appTask,
 NULL,
 (void *)&appStack[APP_STACKSIZE],
 OS_APPLICATION_PRIORITY_BASE,
 OS_APPLICATION_PRIORITY_BASE,
 appStack,
 APP_STACKSIZE,
 NULL,
 0);

 /* Start the operating system. The rest of the
 * application executes under appTask.
 */
 OSStart();
 return 0;
}

Application Task Function
The application task function, appTask(), is in the main.c file. The appTask()
function performs the following tasks:

• Creates the “event ready” event using the FTXL OSAL
OsalCreateEvent() function. The LonEventReady() callback handler
function uses this event to wake up the application task to process FTXL
network events.

• Calls the LonInit() function to initialize the FTXL LonTalk protocol stack
and FTXL Transceiver. If this function fails, the appTask() function calls
the FTXL OSAL OsalDeleteEvent() function to delete the “event ready”
event.

• If the LonInit() function is successful, the appTask() function:

o Reads the nciNvType configuration property network variable in
non-volatile data to set its type to the last known good value.

o Begins an infinite loop to wait for FTXL network events. When
an event occurs, it calls the LonEventPump() function to process
the event.

FTXL User’s Guide 205

Although the main() and appTask() functions for this application are part of an
example, you can use the same basic algorithmic approach for a production-level
application.

The the appTask() function is shown below.

/* The application task initializes the FTXL LonTalk
 * protocol stack and implements the main control loop.
 * The bulk of the application processing is performed in
 * the myNvUpdateOccurred event handler.
 */
void appTask(void* pData) {
 /* Create the “event ready” event, which is signaled by
 * the myEventReady callback to wake this task up to
 * process FTXL events.
 */
 if (OsalCreateEvent(&eventReadyHandle) ==
 OSALSTS_SUCCESS) {
 /* Initialize the FTXL LonTalk API and FTXL Transceiver
 */
 if (LonInit() == LonApiNoError) {
 /* The CP may have been updated by reading
 * non-volatile data. If it looks good, update
 * nciNvTypeLastKnownGoodValue.
 */
 if (LON_GET_UNSIGNED_WORD(nciNvType.type_index)
 == INDEX_SNVT_VOLT ||

 LON_GET_UNSIGNED_WORD(nciNvType.type_index)
 == INDEX_SNVT_VOLT_MIL) {
 memcpy((void*)&nciNvTypeLastKnownGoodValue,
 (void*)&nciNvType, sizeof(SCPTnvType));
 }
 /* This is the main control loop, which runs
 forever. */
 while (TRUE) {
 /* Whenever the ready event is fired, process
 * events by calling LonEventPump. The ready event
 * is fired by the myEventReady callback.
 */
 if (OsalWaitForEvent(eventReadyHandle,
 OSAL_WAIT_FOREVER) == OSALSTS_SUCCESS)
 LonEventPump();
 }
 }
 OsalDeleteEvent(&eventReadyHandle);
 }
}

Event Handler Functions
To signal to the main application the occurrence of certain types of events, the
FTXL LonTalk API calls specific event handler functions. For the dynamic
interface example application, six of the API’s event handler functions have been
implemented to provide application-specific behavior.

The FtxlHandlers.c file contains the modified functions, each of which simply
calls a function in the main.c file that provides the application-specific behavior.

206 Example FTXL Applications

This functional separation approach keeps changes to the LonTalk Interface
Developer utility-generated files to a minimum. For a production-level
application, you can place application-specific code wherever your application
design requires it.

For the dynamic interface example application, the following API event handler
functions have been implemented to provide application-specific behavior:

• LonReset(): This function is called when the device is reset. This
function calls myReset() in main.c. The myReset() function calls the
ProcessTypeChange() utility function.

• LonOnline(): This function is called when the device comes online. This
function calls myOnline() in main.c. The myOnline() function calls the
ProcessTypeChange() utility function.

• LonNvUpdateOccurred(): This function is called when the host processor
receives a network-variable update. This function calls the
myNvUpdateOccurred() function in main.c.

• LonNvAdded(): This function is called when a dynamic network variable
is added to the FTXL device. It is also called during device startup to
retrieve dynamic network variables that were created prior to device
reset. This function calls the myNvAdded() function in main.c.

• LonNvTypeChanged(): This function is called when the any of the
attributes of a dynamic network variable change. This function calls the
myNvTypeChanged() function in main.c.

• LonNvDeleted(): This function is called when a dynamic network
variable is deleted. This function calls the myNvDeleted() function in
main.c.

myNvUpdateOccurred()
The myNvUpdateOccurred() function contains a C switch statement, which
contains three case statements and a default statement to process the following
types of updates:

• A change to the nciNvType configuration network variable (CPNV),
which controls the type of the nviVolt and nvoVoltFb network variables.

• A change to the node object’s nviRequest network variable, which controls
the status of the FTXL device’s functional blocks.

• A change to the voltage amplifier’s nviVolt network variable, which
controls the application’s behavior as a voltage amplifier.

• Any other change, which is processed as a dynamic network variable
update. The change is ignored if it does not affect the logical circuit
defined for tracking the device’s aggregated current usage (that is, the
dynamic network variable is not of type SNVT_amp and named according
the required naming convention).

The case statement for the nciNvType CPNV (specified by the
LonNvIndexNciNvType network variable index) calls the ProcessTypeChange()
utility function.

The case statement for the nviRequest CPNV (specified by the
LonNvIndexNviRequest network variable index) performs the following tasks:

FTXL User’s Guide 207

• Checks whether the object index represents a supported object:

o For non-supported objects, sets the object status to invalid.

o For supported objects:

 Checks whether the command applies to all objects or to a
specified functional block

 Performs the specified command (implemented in a
switch statement based on the nviRequest.object_request
variable)

 Checks whether it should report the status for the object

• Propagates the change to the network

The case statement for the nviVolt network variable (specified by the
LonNvIndexNviVolt network variable index) performs the following tasks:

• Checks whether the functional block is disabled. If it is disabled, it does
nothing. If is it not disabled:

o Performs range checking for the network variable

o Sets the output network variable to double the value of the input
network variable

o Propagates the output network variable to the network

The default statement checks whether the network variable index is within the
total allowed for the device and whether the change is for an input network
variable. In this case, it calls the UpdateCircuitOutput() utility function to
update the logical circuit defined for tracking the device’s aggregated current
usage. Otherwise, it ignores the change.

The functional blocks and network variables are defined in the model file, which
is described in Model File on page 214.

The myNvUpdateOccurred() function is shown below.

/*
 * This function is called by the FTXL LonNvUpdateOccurred
 * event handler, indicating that a network variable input
 * has arrived.
 */
void myNvUpdateOccurred(const unsigned nvIndex,
 const LonReceiveAddress* const pNvInAddr) {
 switch (nvIndex) {
 case LonNvIndexNciNvType:
 {
 /* The nciNvType has been updated, which controls the
 * type of nviVolt and nvoVoltFb. Validate the change
 * to determine whether to accept the update or not.
 */
 ProcessTypeChange();
 break;
 }

 case LonNvIndexNviRequest:
 {
 /* Node object request has been received. */

208 Example FTXL Applications

 LonBool processActuatorInputs = FALSE;
 unsigned index =
 LON_GET_UNSIGNED_WORD(nviRequest.object_id);
 memset((void *)&nvoStatus, 0, sizeof(nvoStatus));
 LON_SET_UNSIGNED_WORD(nvoStatus.object_id, index);

 if (index >= FBIDX_count) {
 /* We don't support this object - flag it as an
 * invalid ID. */
 LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDID, 1);
 }
 else {
 /* If reportStatus is TRUE, set the objectStatus to
 * the status of the specified functional block.
 */
 LonBool reportStatus = TRUE;
 int i;

 /* start and limit define which functional block or
 * blocks will be effected.
 */
 int start;
 int limit;
 if (index == FBIDX_NodeObject) {
 /* Command applies to all functional blocks. */
 start = 0;
 limit = FBIDX_count-1;
 }
 else {
 /* Command only applies to the specified
 * functional block. */
 start = index;
 limit = index;
 }

 switch (nviRequest.object_request) {
 case RQ_NORMAL:
 /* Set the object (or all objects) to normal by
 * clearing the disabled and in_override flags.
 */
 for (i = start; i <= limit; i++) {
 if (i == FBIDX_VoltActuator &&
 LON_GET_ATTRIBUTE(FbStatus[i], LON_DISABLED))
 {
 /* Actuator was disabled, but is now
 * enabled. Process current input values.
 */
 processActuatorInputs = TRUE;
 }
 LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED,
 0);
 LON_SET_ATTRIBUTE(FbStatus[i],
 LON_INOVERRIDE, 0);
 }
 break;

 case RQ_UPDATE_STATUS:

FTXL User’s Guide 209

 /* Update the status. If the object is not the
 * node object, just return the current status
 * of the object. Special processing below for
 * node object only.
 */
 if (index == FBIDX_NodeObject) {
 /* When requesting the status of the node
 * object, return a status that represents
 * the OR of the statuses of all functional
 * blocks.
 * Don't report the status of the node object
 * - use the summary below.
 */
 reportStatus = FALSE;

 for (i = start; i <= limit; i++) {
 nvoStatus.Flags_1 |= FbStatus[i].Flags_1;
 nvoStatus.Flags_2 |= FbStatus[i].Flags_2;
 nvoStatus.Flags_3 |= FbStatus[i].Flags_3;
 nvoStatus.Flags_4 |= FbStatus[i].Flags_4;
 }
 }
 break;

 case RQ_REPORT_MASK:
 /* All bits are zero unless set explicitly.
 * Don't report the status of the object. The
 * nvoStatus is filled in below. All fields
 * that are untouched are left as 0, indicating
 * that the function block does not support the
 * associated operation.
 */
 reportStatus = FALSE;

 /* Mark this as the result of a RQ_REPORT_MASK
 */
 LON_SET_ATTRIBUTE(nvoStatus, LON_REPORTMASK,
 1);

 /* All objects support disable */
 LON_SET_ATTRIBUTE(nvoStatus, LON_DISABLED, 1);

 break;

 case RQ_DISABLED:
 /* Disable the object or all objects */
 for (i = start; i <= limit; i++) {
 LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED,
 1);
 }
 break;

 case RQ_ENABLE:
 /* Enable the object or all objects */
 for (i = start; i <= limit; i++) {
 if (i == FBIDX_VoltActuator &&
 LON_GET_ATTRIBUTE(FbStatus[i], LON_DISABLED))

210 Example FTXL Applications

 {
 /* Actuator was disabled, but is now
 * enabled. Process current input values.
 */
 processActuatorInputs = TRUE;
 }
 LON_SET_ATTRIBUTE(FbStatus[i], LON_DISABLED,
 0);
 }
 break;

 default:
 /* Mark all other requests as invalid */
 LON_SET_ATTRIBUTE(nvoStatus,
 LON_INVALIDREQUEST, 0);
 reportStatus = FALSE;
 }
 if (reportStatus) {
 /* Report the current status of the functional
 * block */
 nvoStatus = FbStatus[index];
 }
 }

 /* Propagate the value of nvoStatus */
 if (LonPropagateNv(LonNvIndexNvoStatus) !=
 LonApiNoError) {
 /* Handle error here, if desired. */
 }

 /* The actuator was disabled, but has been enabled.
 * Process its input values.
 */
 if (processActuatorInputs) {
 ProcessNviVoltUpdate();
 }
 break;
 }

 case LonNvIndexNviVolt:
 {
 /* nviVolt has been updated. Process it unless the
 * FB is disabled.
 */
 ProcessNviVoltUpdate();
 break;
 }
 /* Add more input NVs here, if any */

 default:
 if (nvIndex >= LON_STATIC_NV_COUNT &&
 circuitMap[nvIndex].isInput) {
 /* This may be a circuit input. If so, update the
 * circuit output.
 */
 UpdateCircuitOutput(circuitMap[nvIndex].circuitId);
 }

FTXL User’s Guide 211

 break;
 }
}

myNvAdded()
The myNvAdded() function calls the UpdateCircuitMap() utility function to
update the logical circuit for the added network variable.

The myNvAdded() function is shown below.

/* This function is called by the FTXL LonNvAdded event
 * handler, indicating that a dynamic network variable has
 * been added. It is also called during LonInit for each
 * dynamic NV that is found in the FTXL persistent storage.
 */
void myNvAdded(const unsigned index,
 const LonNvDefinition* const pNvDef) {
 /* Based on the NV name and type, update the circuit
 * map. */
 UpdateCircuitMap(index, pNvDef);
}

myNvTypeChanged()
The myNvTypeChanged() function calls the UpdateCircuitMap() utility function
to update the logical circuit for the changed network variable.

The myNvTypeChanged() function is shown below.

/* This function is called by the FTXL LonNvTypeChanged
 * event handler, indicating that a dynamic network
 * variable LonNvDefinition has been updated. Since either
 * the SVNT_id or the name may have changed, the NV may
 * need to be added to a circuit, removed from a circuit,
 * or moved to a different circuit.
 */
void myNvTypeChanged(const unsigned index,
 const LonNvDefinition* const pNvDef) {
 /* Based on the NV name and type, update the circuit
 * map. */
 UpdateCircuitMap(index, pNvDef);
}

myNvDeleted()
The myNvDeleted() function checks to see if there are any dynamic network
variables defined. If there are, this function removes the specified network
variable from the logical circuit defined for the application, and calls the
UpdateCircuitOutput() utility function to update the logical circuit and propagate
the changes to the network.

The myNvDeleted() function is shown below.

/* This function is called by the FTXL LonNvDeleted event
 * handler, indicating that a dynamic network variable has
 * been deleted.
 */

212 Example FTXL Applications

void myNvDeleted(const unsigned index) {
 LonByte oldCircuitId = circuitMap[index].circuitId;
 if (oldCircuitId != NO_CIRCUIT) {
 /* Remove the NV from the circuit. */
 circuitMap[index].circuitId = NO_CIRCUIT;
 /* Update the output NV of the circuit to which this NV
 * used to belong.
 */
 UpdateCircuitOutput(oldCircuitId);
 }
}

myReset()
The myReset() function calls the ProcessOnlineEvent() utility function to process
changes to input network variables and configuration property values.

The myReset() function is shown below.

/*
 * This function is called by the FTXL LonReset event
 * handler, indicating that the FTXL LonTalk protocol stack
 * has been reset.
 */
void myReset(void) {
 LonStatus status;
 /* Check to see if the device is online. */
 if (LonQueryStatus(&status) == LonApiNoError &&
 status.NodeState == LonConfigOnLine)
 {
 /* Process inputs that may have changed while the
 * device was offline. */
 ProcessOnlineEvent();
 }
}

myOnline()
The myOnline() function calls the the ProcessOnlineEvent() utility function to
process changes to input network variables and configuration property values.

The myOnline() function is shown below.

/*
 * This function is called by the FTXL LonOnline event
 * handler, indicating that the FTXL LonTalk protocol stack
 * has been set online.
 */
void myOnline(void) {
 /* Process inputs that may have changed while the device
 * was offline. */
 ProcessOnlineEvent();
}

FTXL User’s Guide 213

Application-Specific Utility Functions
The dynamic interface example application includes the following application-
specific utility functions:

• ProcessNviVoltUpdate(): Performs range checking for the network
variables, sets the output network variable to double the value of the
input network variable, and propagates the output network variable to
the network.

• ProcessOnlineEvent(): Calls the ProcessNviVoltUpdate() function when
the device goes online.

• ProcessTypeChange(): For each type change to the nviVolt or nvoVoltFb
network variables, this function processes the type change. It checks
that the type change is valid (from SNVT_volt to SNVT_volt_mil or from
SNVT_volt_mil to SNVT_volt), converts the network variable’s value to
match the new type, stores the type and value in the nciNvType
configuration property network variable, and stores the value in non-
volatile memory.

• UpdateCircuitMap(): As dynamic network variables are added,
modified, or deleted from the logical circuits defined for the device, this
function updates the circuit map table. This function verifies that the
update is for a vaid circuit, that the network variables use the proscribed
naming convention, and calls the UpdateCircuitOutput() function.

• UpdateCircuitOutput(): This function reads the circuit map table to
calculate the sum of the input dynamic network variables for each
output dynamic network variable, and then propagates the output
dynamic network variable to the network.

These functions are defined in the main.c file.

Callback Handler Function
To signal to the main application the occurrence of certain types of events, the
FTXL LonTalk API calls specific callback handler functions. For the dynamic
interface example application, only one of the API’s callback handler functions
has been implemented to provide application-specific behavior.

The FtxlHandlers.c file contains the modified LonEventReady() function, which is
called when the FTXL LonTalk protocol stack receives a network event. This
function simply calls the myEventReady() function in the main.c file that
provides the application-specific behavior. This functional separation approach
keeps changes to the LonTalk Interface Developer utility-generated files to a
minimum. For a production-level application, you can place application-specific
code wherever your application design requires it.

The myEventReady() function calls the FTXL OSAL OsalSetEvent() function to
signal the application task so that it can process the network event.

The myEventReady() function is shown below.

/* This function is called by the FTXL LonEventReady
 * callback, signaling that an event is ready to be
 * processed.
 */

214 Example FTXL Applications

void myEventReady(void) {
 /* Signal application task so that it can process the
 * event. */
 OsalSetEvent(eventReadyHandle);
}

Model File
The model file, Dynamic Interface Example.nc, defines the LONWORKS interface
for the example FTXL device.

The model file defines two functional blocks: NodeObject and VoltActuator. The
NodeObject functional block allows a network management tool to enable or
disable the functional blocks for the FTXL device. The VoltActuator functional
block defines the interface for the application.

The VoltActuator functional block includes two network variables, nviVolt and
nvoVoltFb. The functionality for these network variables is implemented in the
myNvUpdateOccurred() function described in Callback Handler Function on page
213.

The two network variables for the VoltActuator functional block include
references to a configuration network variable (CPNV), nciNvType. This
reference allows the nviVolt and nvoVoltFb network variables to maintain type
changes in non-volatile memory, and thus be preserved across device resets.

The model file does not include definitions for any dynamic network variables.
However, the application supports the addition, modification, and deletion of
dynamic network variables. You use the LonTalk Interface Developer utility to
specify the number of dynamic network variables supported by the application.

The model file is shown below.

#pragma enable_sd_nv_names

network input cp SCPTnvType nciNvType;
network input SNVT_obj_request nviRequest;
network output sync SNVT_obj_status nvoStatus;

fblock SFPTnodeObject {
 nviRequest implements nviRequest;
 nvoStatus implements nvoStatus;
} NodeObject
external_name("NodeObject");

network input changeable_type SNVT_volt nviVolt
nv_properties
{
 global nciNvType
};

network output changeable_type SNVT_volt bind_info(unackd)
 nvoVoltFb
nv_properties
{
 global nciNvType
};

FTXL User’s Guide 215

fblock SFPTclosedLoopActuator {
 nviVolt implements nviValue;
 nvoVoltFb implements nvoValueFb;
} voltActuator
external_name("VoltActuator");

For more information about creating and using a model file, see Creating a Model
File on page 23.

To change the LONWORKS interface and functionality of the example application,
perform the following steps:

1. Define the interface in the Dynamic Interface Example.nc model file.

2. Run the LonTalk Interface Developer utility to generate an updated
application framework.

3. Make appropriate changes to the callback handler functions in the
FtxlHandlers.c file or the main.c file.

4. Rebuild the project.

5. Optional: Load the generated XIF file into the FTXL Transceiver.

6. Load the new executable file into the Nios II processor.

Setting up the Nios II IDE for the Example
Applications

To set up the Nios II IDE to use the example FTXL applications, perform the
following general steps:

1. Optional: Create a new workspace for each example application project.

2. Create a new application project based on one of the two FTXL project
templates.

3. Run the LonTalk Interface Developer utility to generate and copy the
necessary files for the project.

4. Build the project.

The following sections describe these steps. After you build the project, you can
load it into the Nios II processor and run it.

Creating a New FTXL Application Project
You can create each example project in a new workspace or use an existing
workspace. To work in a new workspace, select File → Switch Workplace to open
the Workspace Launcher window, from which you can select a new or existing
workspace.

To create a new application project for the FTXL simple example application:

1. Select File → New → Nios II C/C++ Application to open the New Project
window.

2. From the New Project window’s Select Project Template selection box,
select the FTXL Simple project.

216 Example FTXL Applications

3. Optional: Enter a project name in the Name field. The default name is
FTXL_Simple_0.

4. Specify a location for this project (such as C:\MyFtxl) by selecting the
Specify Location checkbox and specifying the location in the Location
field. The directory name must not contain spaces. If you use the default
location, your source files will be placed in the project workspace
directory.

5. Specify the target hardware. Click Browse in the Select Target
Hardware area to open the Select Target Hardware dialog.

a. In the Select Target Hardware dialog, browse to the
[Altera]\nios2eds\examples\vhdl\DBC2C20_FTXL\Standard
directory and select the SOPC Builder system file for the project
(nios_cpu.ptf).

b. Click Open to select the file and close the Select Target Hardware
dialog.

6. Do not modify the CPU field in the Select Target Hardware area; the
name of the CPU is contained in the nios_cpu.ptf file. However, if this
file specified more than one Nios II processor, you would need to select
which one the application project should use. The nios_cpu.ptf file
specifies only one Nios II processor.

7. Click Finish to create the project and generate the project’s system
library. The New Project window should look similar to Figure 25 on
page 217.

FTXL User’s Guide 217

Figure 25. New Project Window for the FTXL Simple Project

Perform the same steps to create a new project for the dynamic interface example
application, but in step 2, select the FTXL Dynamic Interface project. Both
example applications use the same target hardware.

Running the LonTalk Interface Developer Utility
Before you can compile the newly created project, you must run the LonTalk
Interface Developer utility to generate application-specific files and copy other
required files to the project directory.

To run the LonTalk Interface Developer utility for the project:

1. Start the LonTalk Interface Developer utility from the Windows Start
menu: Start → Programs → Echelon FTXL Developer’s Kit → LonTalk
Interface Developer.

218 Example FTXL Applications

2. From the Welcome to LonTalk Interface Developer page of the utility,
click Browse to open the appropriate project file:

• [MyFTXL]\FTXL_Simple_0\Simple Example.lidprj

• [MyFTXL]\FTXL_DynamicInterface_0\Dynamic Interface
Example.lidprj
where [MyFTXL] is the location that you specified for the project
when you created it within the Nios IDE. The subdirectory name is
the same as the project name that you specified when you created the
project.

3. Because you opened an existing project file, you can accept the predefined
values on all of the subsequent pages of the LonTalk Interface Developer
utility by clicking Next on each page.

4. Click Finish on the Build Progress and Summary page to close the
LonTalk Interface Developer utility.

Within the Nios IDE, right-click within the Nios II C/C++ Projects pane and
select Refresh to see the newly generated and copied files for the project. You can
now compile and build the project.

Building the Example Application Image
The examples that are included with the FTXL Developer’s Kit include the
hardware design for the Nios II processor, as well as the software for the FTXL
LonTalk API, and two example applications. You must separately build the
hardware image and the software image.

The example applications define a single configuration, Debug. If you want to
define other configurations (for example, Release) for the example applications,
define them within the Nios IDE as described in Specifying the Properties for the
Application on page 106.

For more information about the hardware image, see the FTXL Hardware Guide.

Building the Reference Design Hardware Image
The FTXL Developer’s Kit includes a pre-built hardware design image for the
Nios II processor running on the Cyclone II FPGA device on the devboards.de
DBC2C20 development board. To use the pre-built image, see Loading the
Example Application Image into Flash on page 219.

You might need to rebuild the hardware image, for example, if you want to
modify the design, run the Nios II processor on a different device than a Cyclone
II FPGA on the DBC2C20 development board, or if your Altera tools license
requires you to rebuild the image.

See the FTXL Hardware Guide for information about building the reference
design hardware image.

Building the Example Software Image
To build the software image for either of the example applications that are
included with the FTXL Developer’s Kit:

FTXL User’s Guide 219

1. Start the Nios II EDS IDE.

2. Ensure that the workspace includes the example application project that
you want to build.

3. Select Project → Build Project or Project → Build All. You can also right-
click the project folder from the Nios II C/C++ Projects pane and select
Build Project.

The first build for a new project can take a few minutes.

To build the application automatically, see Building the Application Image on
page 107.

After you build the project, you can run it, as described in Running the Example
Application on page 220, or you can load the software image into flash, as
described in Loading the Example Application Image into Flash.

Loading the Example Application Image into Flash
You can choose to load the hardware and software images into the FPGA device
at the same time, or you can choose to load them separately. To load the
hardware design separately into RAM for the FPGA device, see the FTXL
Hardware Guide for more information. To load both images at the same time,
use the Nios IDE, as described below.

You can load the example application software image into the FPGA’s flash
memory if you have a development license from Altera Corporation for the Nios II
processor. If you do not have a license, you can still run the example application,
but you must run it from the Nios II EDS IDE while the USB-Blaster download
cable remains connected to the DBC2C20 development board.

To load the software image into flash:

1. Ensure that the DBC2C20 development board is powered on and that the
USB-Blaster download cable is connected to the JTAG header connector
(P1).

2. Start the Nios II EDS IDE.

3. Ensure that the workspace includes the example application project that
you want to load.

4. Select the appropriate project (either FTXL_Simple_0 or
FTXL_Dynamic_Interface_0) from the Nios II C/C++ Projects pane.

5. Select Tools → Flash Programmer to open the Flash Programmer
window.

a. In the Flash Programmer window, right-click Flash Programmer
and select New to create a configuration for the selected project.

b. Provide a name for the configuration in the Name field.

c. Select Program software project into flash memory. Ensure that
the Project field displays the correct project name, or click Browse
to select the project.

d. Do not modify the information displayed in the Target Hardware
area.

220 Example FTXL Applications

e. Select Program FPGA configuration data into hardware-image
region of flash memory to load the hardware design into flash
along with the software design.

If necessary, specify the following information for the FPGA
configuration:

i. Click Browse next to the FPGA Configuration (SOF)
dropdown list box to select the DBC2C20_FTXL.sof
hardware design file from the
[Altera]\nios2eds\examples\vhdl\DBC2C20_FTXL\Stan
dard directory.

ii. Select Nios II EP2C35 epcs from the Hardware Image
dropdown list box.

iii. Select epcs_controller from the Memory dropdown list
box.

iv. Enter 0x0 in the Offset field.

f. Select Validate Nios II system ID before software download.

g. Click Apply to save the named configuration.

h. Click Program Flash to load the software image into the Nios II
processor. Loading the software image can take a few moments.

i. If the Program Flash Now? dialog appears, click Yes.

6. After the software is loaded, perform a reset by disconnecting power from
the DBC2C20 development board and reconnecting power to the board.

7. Close the Quartus II Programmer window. You can also close the Nios II
IDE window.

The Nios II processor runs the loaded software as soon as the processor completes
restart processing.

Running the Example Applications
If you loaded the application image into the Nios II processor, the application
runs automatically as soon as the Nios II processor is properly programmed and
reset.

You can also run the application from the Nios II EDS IDE:

1. Ensure that the DBC2C20 development board is powered on and that the
USB-Blaster download cable is connected to the JTAG header connector
(P1).

2. Start the Nios II EDS IDE.

3. Ensure that the workspace includes the example application project that
you want to run.

4. Right-click the appropriate project (either FTXL_Simple_0 or
FTXL_Dynamic_Interface_0) from the Nios II C/C++ Projects pane and
select Run As → Nios II Hardware. The Nios II EDS IDE recompiles the
project.

FTXL User’s Guide 221

5. If you have a valid Nios II development license, and have already loaded
the configuration data into the Cyclone II FPGA, proceed to step 7.

6. If you do not have a valid Nios II development license, or have not loaded
the configuration data into the Cyclone II FPGA:

a. The Nios II EDS IDE displays the following text in the Console
window:

There are no Nios II CPUs with debug modules
available which match the values specified. Please
check that your PLD is correctly configured,
downloading a new SOF file if necessary.

b. The Quartus II Programmer window opens.

c. In the Quartus II Programmer window, click Add File to open the
Select Programming File dialog.

d. In the Select Programming File dialog, select the
DBC2C20_FTXL.sof file and click Open.

e. Ensure that the USB-Blaster download cable is defined in the
Chain Description File for the project. See Using a Device
Programmer for the FPGA Device on page 103 for information
about configuring the Chain Description File.

f. Select the Program/Configure checkbox for the
DBC2C20_FTXL.sof file.

g. Click Start to load the selected SRAM Object File
(DBC2C20_FTXL.sof) into the Nios II processor.

h. Do not close the Quartus II Programmer window. You must leave
this window open while you are running the example application.

i. Return to the Nios II EDS IDE, right-click the Application project
from the Nios II C/C++ Projects pane, and select Run As → Nios
II Hardware. The Nios II EDS IDE recompiles the project.

7. You should see the Service Pin LED (LED 4) on the DBC2C20
development boad flash slowly, indicating that the FTXL device is not
configured. Use a network management tool, such as the LonMaker
Integration tool, to configure and commission the device (you do not need
to load the application into the FTXL Transceiver). The Service Pin LED
should be off when the device is properly configured.

When you commission the FTXL device, use one of the following XIF files,
depending on which example application you want to run:

• [MyFTXL]\FTXL_Simple_0\Simple Example.xif

• [MyFTXL]\FTXL_DynamicInterface_0\Dynamic Inteface
Example.xif
where [MyFTXL] is the location that you specified for the project when
you created it within the Nios IDE. The subdirectory name is the same
as the project name that you specified when you created the project.

To send a Service Pin message to the network management tool, press the
Service Pin Button (button 0, labeled P25) on the DBC2C20 development board.
Of the set of four pushbuttons, Button 0 is the closest to the center of the board.

222 Example FTXL Applications

Running the Simple Example
To verify that the application runs as expected, connect the FTXL Transceiver
Board to a network management tool, such as the LonMaker tool. From the tool,
modify the value for the nviVolt network variable and confirm that the value for
the nvoVoltFb network variable is double that value:

1. Open the LonMaker drawing for the FTXL device.

2. Ensure that the FTXL device is properly configured, commissioned, and
online.

3. Right-click the FTXL device on the LonMaker drawing and select Browse
to open the LonMaker Browser window.

4. Within the LonMaker Browser window, select the row for the nviVolt
network variable.

5. Enter a value for the network variable in the Value field at the top of the
window. Click the Set value button to set the network variable’s value.

6. Select the row for the nvoVoltFb network variable, and click the Get
value button to see its current value. That value should be twice the
nviVolt value.

Running the Dynamic Interface Example
To verify that the application runs as expected, connect the FTXL Transceiver
Board to a network management tool, such as the LonMaker Integration tool.
From the tool, modify the value for the nviVolt network variable and confirm that
the value for the nvoVoltFb network variable is double that value, as described
for the simple example.

You can also change the type for the nviVolt or nvoVoltFb network variables, or
add dynamic variables for the logical circuits described in The Dynamic Interface
Example Application on page 202.

Changing Network Variable Types
To change the type of the two network variables that are defined for the
VoltAmplifier functional block:

1. Open the LonMaker drawing for the FTXL device.

2. Ensure that the FTXL device is properly configured, commissioned, and
online.

3. Right-click the FTXL device on the LonMaker drawing and select Browse
to open the LonMaker Browser window.

4. Select the row for either the nviVolt or nvoVoltFb network variable. Be
sure not to select the row for the corresponding configuration property
(displayed in green, with the value SCPTnvType in the Config Prop
column).

5. Right-click the nviVolt or nvoVoltFb network variable and select Change
Type to open the Select Network Variable Type dialog.

FTXL User’s Guide 223

6. In the Select Network Variable Type dialog, expand
C:\LonWorks\Types\STANDARD.FMT and select either SNVT_volt or
SNVT_volt_mil. Click OK to change the type and close the Select
Network Variable Type dialog.

Important: You can only change the type for a network variable if it is
not bound to the network. LonMaker implicitly binds network variables
when you enable monitoring from the LonMaker drawing (from the
drawing itself or from any connections to the functional blocks) or the
LonMaker Browser window. Thus, you must disable monitoring for both
the nviVolt and nvoVoltFb network variables.

To verify that the type changed successfully:

1. Within the LonMaker Browser window, select the row for the nviVolt
network variable.

2. Right-click the nviVolt network variable and select Properties to open the
Network Variable Properties dialog.

3. On the Description page of the Network Variable Properties dialog, the
Type name field displays the current type for the network variable. The
current type should be either SNVT_volt or SNVT_volt_mil.

The valid range for the value of the nviVolt and nvoVoltFb network variables
depends on its current type:

• For nviVolt as SNVT_volt: ± 1.6 V

• For nvoVoltFb as SNVT_volt: ± 3.2 V

• For nviVolt as SNVT_volt_mil: -1638.4 mV to +1638.3 mV

• For nviVolt as SNVT_volt_mil: -3276.8 mV to +3276.6 mV

Important: Be sure to change the type to either SNVT_volt or SNVT_volt_mil,
not to SNVT_vol, SNVT_vol_mil, or any other type. If you change the type to an
invalid type, the dynamic interface example application rejects the change and
disables the NodeObject and VoltAmplifier functional blocks. In this case, you
must re-enable the functional blocks:

1. Change the type for either the nviVolt or nvoVoltFb network variable to a
valid type, SNVT_volt or SNVT_volt_mil.

2. Within the LonMaker drawing, right-click the NodeObject functional
block and select Manage to open the LonMaker Device Manager dialog.

3. From the Functional Blocks tab of the LonMaker Device Manager dialog,
click Enable to re-enable the functional block. Click Test to verify that
the output for the functional block displays “Diabled: 0”, which signifies
that the functional block is not disabled.

Adding Dynamic Network Variables
To add a set of dynamic network variables to the FTXL device to demonstrate a
logical circuit as described in The Dynamic Interface Example Application on
page 202:

1. Open the LonMaker drawing for the FTXL device.

2. Ensure that the FTXL device is properly configured and commissioned.

224 Example FTXL Applications

3. Drag a Functional Block shape from the NodeBuilder Basic Shapes 3.0
pane of the Shapes window to the drawing. The Functional Block Wizard
dialog opens.

4. In the Functional Block Wizard dialog:

a. Select the FTXL device from the Name dropdown list box in the
Device area.

b. Select Virtual Functional Block from the Name dropdown list box
in the Functional Block area.

c. Select Create all network variable shapes.

d. In the Number of FBs to create box, select 1.

e. Give the new functional block a name in the New FB name field,
or allow LonMaker to give a default name.

f. Click Finish to add the virtual functional block to the drawing
and close the Functional Block Wizard dialog.

5. Drag an Output Network Variable shape onto the virtual functional
block. The Choose a Network Variable dialog opens.

6. In the Choose a Network Variable dialog:

a. Click Create NV to open the Create Network Variable dialog.

b. In the Create Network Variable dialog:

i. Type nvoAmpA (you can specify any letter for the “A”, but
the name must include “nvoAmp”) in the New NV name
field.

ii. Type 1 in the How many? field.

iii. In the New NV Type area, select Specify.

iv. Click Select to open the Select Network Variable Type
dialog.

v. In the the Select Network Variable Type dialog, expand
C:\LonWorks\Types\STANDARD.FMT and select
SNVT_amp. Click OK to close the the Select Network
Variable Type dialog.

FTXL User’s Guide 225

vi. The Create Network Variable dialog should look similar
to Figure 26.

Figure 26. The LonMaker Create Network Variable Dialog for nvoAmpA

vii. Click OK to close the Create Network Variable dialog.

c. Click OK to add the nvoAmpA network variable to the virtual
functional block and close the Choose a Network Variable dialog.

7. Drag an Input Network Variable shape onto the virtual functional block.
The Choose a Network Variable dialog opens.

8. In the Choose a Network Variable dialog:

a. Click Create NV to open the Create Network Variable dialog.

b. In the Create Network Variable dialog:

i. Type nviAmpA01 (specify the same letter that you
specified for the corresponding nvoAmp network variable;
you can specify any characters for the “01”, but the name
must include “nviAmp”) in the New NV name field.

ii. Type 3 in the How many? field. You can specify any
number, but the dynamic interface example application
supports a maximum of 50 dynamic network variables.

iii. In the New NV Type area, select Specify.

iv. Click Select to open the Select Network Variable Type
dialog.

v. In the the Select Network Variable Type dialog, expand
C:\LonWorks\Types\STANDARD.FMT and select
SNVT_amp. Click OK to close the the Select Network
Variable Type dialog.

226 Example FTXL Applications

vi. The Create Network Variable dialog should look similar
to Figure 27.

Figure 27. The LonMaker Create Network Variable Dialog for nviAmpA01

vii. Click OK to close the Create Network Variable dialog.

c. Click OK to add the three input network variables (named
nviAmpA01, nviAmpA02, and nviAmpA03) to the virtual
functional block and close the Choose a Network Variable dialog.

After you add the four dynamic network variables to the virtual functional block,
it should look similar to Figure 28.

nciNvType nvoAmpA
nviAmpA01
nviAmpA02
nviAmpA03

Virtual Functional Block

Figure 28. The Virtual Functional Block for the Dynamic Interface Example

To demonstrate that the four dynamic network variables act as a logical circuit,
open the LonMaker Browser for the FTXL device and set the values for the three
input network variables and observe the value of the output network variable,
which should be the sum of the three inputs:

1. Right-click the FTXL device on the LonMaker drawing and select Browse
to open the LonMaker Browser window.

2. Select the row for the nviAmpA01 network variable.

3. Enter a value for the network variable in the Value field at the top of the
window. Click the Set value button to set the network variable’s value.

4. Select the row for the nvoAmpA network variable, and click the Get value
button to see its current value.

FTXL User’s Guide 227

5. Repeat steps 2 - 4 to set values for the nviAmpA02 and nviAmp03
network variables and observe the change to the nvoAmpA network
variable.

After you add update the values for the three input dynamic network variables,
the LonMaker Browser window should look similar to Figure 29.

Figure 29. The LonMaker Browser Window for the Dynamic Interface Example

If you enable monitoring for the LonMaker drawing, and add connector shapes to
the virtual functional block, it should look similar to Figure 30.

nciNvType nvoAmpA
nviAmpA01
nviAmpA02
nviAmpA03

Virtual Functional Block

12.0
8.0
5.0

Out:[25.0]

Figure 30. The Virtual Functional Block for the Dynamic Interface Example

You can add more dynamic network variables to the virtual functional block to
represent other logical circuits, as shown in Figure 31.

nciNvType nvoAmpA
nviAmpA01
nviAmpA02
nviAmpA03

nvoAmpB

nviAmpB01
nviAmpB02

Virtual Functional Block

12.0
5.0

Out:[25.0]
8.0
120.0
50.0

Out:[170.0]

Figure 31. The Virtual Functional Block for the Dynamic Interface Example

The Micrium Software License
Although the FTXL example applications use the Micrum μC/OS-II operating
system that is included with the Altera development environment for the
DBC2C20 development board, you must acquire a valid license for the operating
system if you plan to use it for a production FTXL device.

228 Example FTXL Applications

Each time you build either of the FTXL example applications, you see the
following reminder of the Micrium software license:

============== Software License Reminder ===============

uC/OS-II is provided in source form for FREE evaluation,
for educational use, or for peaceful research. If you
plan on using uC/OS-II in a commercial product you need
to contact Micrium to properly license its use in your
product. Micrium provides ALL the source code on the
Altera distribution for your convenience and to help you
experience uC/OS-II. The fact that the source is provided
does NOT mean that you can use it without paying a
licensing fee. Please help us continue to provide the
Embedded community with the finest software available.
Your honesty is greatly appreciated.

Please contact:

M I C R I U M
949 Crestview Circle
Weston, FL 33327-1848
U.S.A.

Phone : +1 954 217 2036
FAX : +1 954 217 2037
WEB : www.micrium.com
E-mail: Sales@Micrium.com

FTXL User’s Guide 229

G

LonTalk Interface Developer Utility
Error and Warning Messages

This Appendix lists the LonTalk Interface Developer utility
error and warning messages, and offers suggestions on how
to correct the indicated problems.

230 LonTalk Interface Developer Utility Error and Warning Messages

Introduction
All messages, errors and warnings, come with a standard Echelon message
identifier LID#zzz, where zzz is a unique decimal number.

All messages shown below are not actually given with the precise language
shown at runtime. Instead, a summary of the message meaning is given for each
message, followed by a brief discussion of possible reasons and remedies. In all
cases, make sure to consult the actual message as produced by the tool at
runtime, as the actual message is likely to contain more details (for example, the
name of the offending file, or more detailed language about the precise failure
reason).

See the NodeBuilder Errors Guide for information about errors issued by the
Neuron C compiler (warning and error messages with NCC#zzz identifiers).

Error Messages

LID# Description

1 An NV, CP, or MT item was expected but not present – internal error

Remove the device interface files (.xif and .xfb extension), and re-run
the LonTalk Interface Developer utility to see if the problem persists.
Use the Trace verbosity level to help track down the problem.

2 A file cannot be opened for read access

See the error message received for details of the offending file. Make
sure the file is available and readable and the path is accessible.

3 A file cannot be opened for write access

See the error message received for details of the offending file. Make
sure the file is available and writable and the path is accessible.

4 A property value is required but has not been obtained from any data
source

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure

FTXL User’s Guide 231

LID# Description

5 An error occurred when reading a device interface file

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

6 An error occurred when reading a device interface file

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

(This error is similar to LID#5, but refers to a different internal
component recognizing the error.)

7 A device interface file appears malformed

This is an internal error, probably a result of an earlier failure. A
non-fatal error during the creation of the device interface file might
lead to this error. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

8 An unrecognized escape character has been detected in a file or
NVVAL data record

This is an internal error, probably a result of an earlier failure
during the creation of an intermediate file with a .bif file extension.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure. After
the build, make sure the file with the .bif extension exists and can be
read.

9 A FILE or NVVAL value record cannot be read due to an
unsupported construct

This is an internal error, probably a result of an earlier failure
during the creation of an intermediate file with a .bif file extension.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure. After
the build, make sure the file with the .bif extension exists and can be
read.

232 LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

10 Failure to attach to LONUCL32 service DLL

The LonTalk Interface Developer utility or one of its components
failed to locate a file by name of “LONUCL32.DLL.” This file usually
resides in the same folder that contains the LID.exe application, but
can be in any folder in your current user search path. This file is
typically installed into the LonWorks Bin folder.

11 Error code not in use.

12 Error code not in use.

13 Error code not in use.

14 Error code not in use.

15 Error code not in use.

16 Error code not in use.

17 Error code not in use.

18 An error occurred when composing the application XIF file: the data
merge target is ill-chosen (must be the BIF file)

This is an internal error that should not normally occur. However, it
could be a result of an earlier failure. For example, a non-fatal error
during the creation of the device interface file might lead to this
error. Re-run the LonTalk Interface Developer utility in Trace
verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

19 File I/O error when writing XIF file

Refer to the error message for details about the failure cause. The
error message contains details such as “disk full,” or “file access
denied”.

20 Error (non-file I/O) when writing XIF file

Refer to the error message for details about the failure cause. The
error message contains details such as “disk full,” or “file access
denied”.

FTXL User’s Guide 233

LID# Description

21 The xif32bin.exe utility returned an error, indicating failure when
converting XIF to XFB

The binary device interface file (.xfb extension) could not be created.
Make sure a previously existing binary device interface file is not
write-protected. Also make sure the XIF32Bin.exe utility, which is
used to create the binary device interface file, is available in a folder
that is part of the system or current user search path. By default, the
utility can be found in your LONWORKS Bin folder.

22 An error occurred when reading a type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the ShortStack Wizard.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure.

23 An error occurred when reading a type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the ShortStack Wizard.
Re-run the LonTalk Interface Developer utility in Trace verbosity
mode and carefully examine the LonTalk Interface Developer utility
Summary window to determine the root cause of the failure. This
error is similar to LID#22, but refers to different internal software
components.

24 Type info (.NCT) file seems corrupted

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the LonTalk Interface
Developer utility. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

25 Unexpected end of type info file (.NCT)

This is an internal error, possibly resulting from an earlier failure.
The .nct file is an intermediate file used by the LonTalk Interface
Developer utility. Re-run the LonTalk Interface Developer utility in
Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

26 Error code not in use.

27 Unexpected file I/O error when reading a file

Refer to the error message for details of the failure cause.

234 LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

28 Unexpected error (not a file I/O error) when reading a file

Refer to the error message for details of the failure cause.

29 Unexpected file I/O error when writing a file

Refer to the error message for details of the failure cause.

30 Unexpected error (not a file I/O error) when writing a file

Refer to the error message for details of the failure cause. The error
message contains details such as “disk full” or “file access denied”.

31 A type definition cannot be generated: the type is referenced but not
defined

A type that you have referenced is missing from the NCT file, and
intermediate file used by the LonTalk Interface Developer utility.
This is an internal error. Delete all intermediate files. Re-run the
LonTalk Interface Developer utility in Trace verbosity mode and
carefully examine the LonTalk Interface Developer utility Summary
window to determine the root cause of the failure. If the problem
persists, contact Echelon technical support, submitting all files
produced by the LonTalk Interface Developer utility when running in
Trace verbosity level.

32 A type definition is provided but seems incomplete -- an element is
missing

This is an internal error. Delete all intermediate files. Re-run the
LonTalk Interface Developer utility in Trace verbosity mode and
carefully examine the LonTalk Interface Developer utility Summary
window to determine the root cause of the failure. If the problem
persists, contact Echelon technical support, submitting all files
produced by the LonTalk Interface Developer utility when running in
Trace verbosity level.

33 Anonymous types are not supported

Any type used for network variables or configuration properties must
have a name. The use of constructs such as, “network input struct {
int a, b; } nviZorro;” is not permitted.

34 A compiler feature cannot be selected

Refer to the error message for details of the failure cause. This error
might be the result of conflicting preferences in the default command
file, LonNCC32.def, located in the LonTalk Interface Developer
utility's project file. Refer to the Neuron C Programmer's Guide and
Neuron C Reference Guide for more details about the command line
tools and script files.

FTXL User’s Guide 235

LID# Description

35 Configuration parameters are in use, but no template file has been
found

This might be the result of an earlier error. Delete all intermediate
files. Re-run the LonTalk Interface Developer utility in Trace
verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure.

If the problem persists, contact Echelon technical support,
submitting all files produced by the LonTalk Interface Developer
utility when running in Trace verbosity level.

36 The program ID found in the XIF file seems malformed and cannot
be used to produce the niAppinit data

Use the LonTalk Interface Developer utility and the Standard
Program ID calculator to produce a good program ID record. Delete
all intermediate files. Re-run the LonTalk Interface Developer utility
in Trace verbosity mode and carefully examine the LonTalk Interface
Developer utility Summary window to determine the root cause of
the failure. If the problem persists, contact Echelon technical
support, submitting all files produced by the LonTalk Interface
Developer utility when running in Trace verbosity level.

37 Error code not in use.

38 Error code not in use.

39 Error code not in use.

40 Error code not in use.

41 Error code not in use.

42 A type definition cannot be generated -- the type definition has more
elements than expected

Delete all intermediate files. Re-run the LonTalk Interface Developer
utility in Trace verbosity mode and carefully examine the LonTalk
Interface Developer utility Summary window to determine the root
cause of the failure. If the problem persists, contact Echelon
technical support, submitting all files produced by the LonTalk
Interface Developer utility when running in Trace verbosity level.

43 Error code not in use.

44 Error code not in use.

45 Error code not in use.

236 LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

46 One or more configuration parameters implemented within a file are
present, FTP or DMF must be implemented

Alternatively, you can declare configuration properties as
configuration network variables.

47 The file transfer protocol (FTP) and direct memory files (DMF) access
mechanisms are mutually exclusive

48 Error code not in use.

49 The FTP server interface is partially implemented, missing the
specified member of the node object

50 Data files and file directory are too big for the available space.
Available: <n> bytes, required: <m> bytes (missing: <p> bytes)
[LID#50]

Possible remedies: reduce the size of files by removing extraneous
data files, or by sharing CP, or implement FTP.

51 Malformed XML data (cannot convert to expected type)

52 The specified application framework type is unknown

53 No target framework has been supplied, or the requested framework
is not registered with, or not known to, the Builder

54 No code generator found for the selected target framework

55 The specified framework is not yet supported

This is an internal error.

56 Error code not in use.

57 Required source file missing

58 Error code not in use.

59 Too many network variables. The sum of static and dynamic
variables cannot exceed 4096.

60 Insufficient number of addresses

This message includes how many addresses are require for the
application, and how many were specified.

61 The DMF window specification is invalid, as it exceeds the 64 KB
address range

FTXL User’s Guide 237

LID# Description

62 Insufficient buffer space

The message includes the total number of bytes available for
transceiver buffers and how many additional bytes your selected
configuration requires.

Warning codes
(warning codes start at 4000)

LID# Description

4001 An XIF file contains more fields than expected

Refer to the warning message for line # and filename. This might
result in an automatic downgrading of the device interface file to the
version supported by the FTXL or ShortStack tools. Check
www.echelon.com for available updates.

4002 An intermediate file cannot be removed in the sweep-phase. See
message for details

Refer to the warning message for details about the warning cause.
The sweep occurs when the utility’s operation is complete and the
utility did not run in the Trace verbosity level. The warning indicates
that an intermediate file cannot be removed.

4003 Warning code not in use.

4004 Warning code not in use.

4005 Warning code not in use.

4006 A file cannot be copied

This is possibly, but not necessarily, fatal. When the LonTalk
Interface Developer utility creates the host framework, it produces
several files based on input provided by the user. It also copies the
necessary files into the destination folder. The utility-generated files
refer to these files, which are required to build the host application.
Thus, this issue is non-fatal for the LonTalk Interface Developer
utility, but probably fatal when building the host application. See
also warning LID#4017.

4007 Warning code not in use.

4008 Warning code not in use.

http://www.echelon.com/

238 LonTalk Interface Developer Utility Error and Warning Messages

LID# Description

4009 Warning code not in use.

4010 Warning code not in use.

4011 The .NCT file references a built-in type with no host equivalent
known to LonTalk Interface Developer utility

This condition is unlikely to occur and does report an internal error.
Check www.echelon.com for available software updates that address
the problem, or contact LonSupport@Echelon.com. This message is a
warning rather than an error because the condition does not prevent
your application from working. Carefully check the type definitions
provided in LonNvTypes.h and LonCpTypes.h (both generated by
LonTalk Interface Developer utility) and correct the offending type.
Continue using these files and build your FTXL device.

4012 Warning code not in use.

4013 Warning code not in use.

4014 Explicit addressing specified but not required

This warning reminds you that you have requested support for
explicit addressing, although it does not seem to be required. Explicit
addressing requires larger buffers on the host, therefore support for
explicit addressing is advisable only when needed. Message tag
declarations that are intended for use with explicit addressing should
be marked with the bind_info(nobind) modifier to signal the use of
explicit messaging. See also the LID#4013 and LID#4015 warnings.

4015 Explicit addressing specified but neither supported nor required

Although support for explicit addressing has been requested, it does
not appear to be required. See also the LID#4013 and LID#4014
warnings.

4016 FTP implementation suspect -- no message tag but SNVT_file_*
implemented

The implementation of the file transfer protocol is suspect, as the
FTP-related network variables are present but no message tag has
been declared.

4017 Files cannot be made writable

When the LonTalk Interface Developer utility creates the host
framework, it produces several files based on input provided by the
user. It copies the necessary files into the destination folder. These
files are made writable after they are copied, unless this warning
indicates it is not possible. See also the LID#4006 warning.

4018 Warning code not in use.

http://www.echelon.com/
mailto:LonSupport@Echelon.com

FTXL User’s Guide 239

LID# Description

4019 Warning code not in use.

4020 Warning code not in use.

4021 Warning code not in use.

4022 Warning code not in use.

4023 Insufficient addresses are implemented for the specified number of
network variables

For more robust device behavior, increase the number of addresses.

4024 Warning code not in use.

4025 The program ID's channel identifier should be set to 0x04 (TP/FT-10)

4026 Your transceiver buffer configuration leaves a number of bytes
unused

Hint codes
(hint codes start at 8000)

LID# Description

8001 Your device supports the file transfer protocol, but no configuration
property files are available

8002 Hint code not in use.

8003 Hint code not in use.

8004 Hint code not in use.

8005 Your transceiver buffer configuration leaves a number of bytes
unused

FTXL User’s Guide 241

H

Glossary

This appendix defines many of the common terms used for
FTXL device development.

242 Glossary

D
downlink

Link-layer data transfer from the host to the FTXL Transceiver.

E
Eclipse

An open-source software framework written primarily in Java. In its default
form, it is an Integrated Development Environment (IDE) for Java
developers, consisting of the Java Development Tools (JDT) and the Eclipse
Compiler for Java (ECJ). The Nios II IDE is an Eclipse-based development
environment.

execution context

A general term for a thread of execution for an operating system. Depending
on the operating system and hardware, this could be a process, task, thread,
or fiber.

F
FTXL application

An application for a LONWORKS device based on the LonTalk API and FTXL
Transceiver.

FTXL Developer’s Kit

Software required to develop high-performance LonTalk applications for an
Altera Nios II host processor with an FTXL Transceiver. The kit includes
software tools, examples, documentation, plus the LonTalk API and the
FTXL LonTalk protocol stack.

FTXL device

A LONWORKS device based on the LonTalk API and an FTXL Transceiver.

FTXL Firmware

The firmware embedded within an FTXL Transceiver.

FTXL 3190 Free Topology Smart Transceiver

A chip that is used as a transceiver to attach an FTXL host processor to a
LONWORKS network; the FTXL Transceiver runs the FTXL Firmware and
implements layers 1 and 2 of the ANSI/CEA-709.1 (EN14908-1) Control
Network Protocol.

FTXL host processor

An Altera FPGA (or similar device) with a Nios II processor that is integrated
with the LonTalk API and an FTXL Transceiver to create a LONWORKS
device.

FTXL User’s Guide 243

FTXL link layer

The physical connection and protocol used to attach an FTXL host processor
to an FTXL Transceiver; the hardware interface is an 11-pin parallel
interface plus interrupt.

FTXL LonTalk protocol stack

A high-performance implementation of layers 3 through 6 of the ANSI/CEA-
709.1 (EN14908-1) Control Network Protocol that runs on an Altera Nios II
processor.

FTXL Transceiver

Short name for the FTXL 3190 Free Topology Smart Transceiver.

H
host processor

A microcontroller, microprocessor, or FPGA with an embedded processor that
is attached to an FTXL Transceiver or ShortStack Micro Server and runs a
LonTalk application.

L
link layer

A protocol and interface definition for communication between a host
processor and either an FTXL Transceiver or ShortStack Micro Server; see
FTXL link layer.

link layer protocol

The protocol that is used for data exchange across the link layer.

LonTalk API

A C language interface that can be used by a LonTalk application to send and
receive network variable updates and LonTalk messages. Two
implementations are available: a full version for FTXL devices and a
compact version for ShortStack devices.

LonTalk application

An application for a LONWORKS device that communicates with other devices
using the ANSI/CEA-709.1 (EN14908-1) Control Network Protocol and is
based on the LonTalk API or the LonTalk Compact API.

LonTalk application framework

Application code and device interface data structures created by the LonTalk
Interface Developer based on a model file.

LonTalk Compact API

A compact version of the LonTalk API for ShortStack devices with support for
up to 254 network variables.

LonTalk Interface Developer

A utility that generates an application framework for a LonTalk application;
the LonTalk Interface Developer is part of the LonTalk Platform and is

244 Glossary

included with both the FTXL Developer's Kit and the ShortStack Developer's
Kit.

LonTalk Platform

Development tools, APIs, firmware, and chips for developing LONWORKS
devices that use the LonTalk API or LonTalk Compact API. Two versions are
available: the LonTalk Platform for FTXL Transceivers, and the LonTalk
Platform for ShortStack Micro Servers.

LonTalk Platform for FTXL Transceivers

Development tools, APIs, firmware, and chips for developing LONWORKS
devices that use the LonTalk API and a FTXL Transceiver; included with the
FTXL Developer’s Kit.

M
model file

A Neuron C application that is used to define the network interface for an
FTXL or ShortStack application.

N
Neuron C

A programming language based on ANSI C with extensions for control
network communication, I/O, and event-driven programming; also used for
defining a network interface when used for a model file.

Nios II IDE

An integrated development environment based on the popular Eclipse IDE
framework and the Eclipse C/C++ development toolkit (CDT) plug-ins. The
Nios II IDE runs other tools behind the scenes, shields you from the details of
low-level tools, and presents a unified development environment.

P
perspective

An Eclipse term for a collection of windows together in the Eclipse
framework. Used within the Altera Nios II Embedded Design Suite
integrated development environment (IDE).

U
uplink

Link-layer data transfer from the FTXL Transceiver to the host.

FTXL User’s Guide 245

Index

A
address table, 47
alias table, 47
Altera Complete Design Suite, 102
ANSI/CEA 709.1-B, 2
application. See FTXL application
application messages, 93
array, configuration property, 34
authentication

key, 44
overview, 44
process, 45

B
binding, 30
bit-field members, 65
buffers, configuring, 58
buffers, specifying, 115
building application image, 107

C
callback handler functions, 155
callbacks, 76
changeable-type network variables

defining, 30
processing, 90
rejecting, 92
validating, 89

code generator preferences, 61
command line, LonTalk Interface Developer,

112
commands, management, 94
compiler directives, model file, 120
compiler preferences, 60
configuration file, 32
configuration network variable, 32
configuration property

array, 34
constant, 70
declaring, 32
defining, 32
inherting type, 38
initializer, 142
keywords, 139
modifier, 140
overview, 25
sharing, 37
syntax, 139
type, 140
value changes, 34

configuration property network variable, 143
constant configuration properties, 70
copied files, LonTalk Interface Developer, 62
CP. See configuration property
CPNV. See configuration network variable

D
DBC2C20 development board software, 20
debugging an FTXL application, 109
devboards.de GmbH, 18
development tools, 102
device interface, 25
device programmer, 103
device property list, 143
direct memory files

directory, 99
overview, 96
window, 97

directives, compiler, 120
DMF, 96
documentation

Altera, iv
devboards, v
Echelon, iii

domain table, 48
dynamic interface example application

appTask() function, 204
callback handlers, 213
event handlers, 205
main() function, 203
model file, 214
overview, 202
running, 222
utility functions, 200, 213

dynamic network variables, 92

E
EBV Elektronik GmbH, 18
ECS devices, 95
EN 14908.1, 2
enumerations, 66
error log, 95
event handler functions, 152
event pump, 81
events, 76
example applications

building, 218
compiling, 218
dynamic interface, 202
files, 196
loading, 219

246 Index

new project, 215
Nios II IDE, 215
overview, 196
running, 220
running LonTalk Interface Developer, 217
simple, 197
templates, 215

examples
applications, 196
functional block, 128
functional block properties, 130
model file, 48

extended command set, 95

F
FB. See functional block
file directory, 99
flash memory, 77
floating-point variables, 66
FPGA device, loading, 103
FTP, 33
FTXL 3190 Free Topology Smart Transceiver.

See FTXL Transceiver
FTXL application

application messages, 93
changeable-type network variables, 88
configuring, 58
data type, 26
debugging, 109
development tools, 102
direct memory files, 96
downloading over a network, 192
dynamic network variables, 92
ECS devices, 95
error log, 95
event pump, 81
initializing device, 81
interface, 25
management commands, 94
memory use, 182
network management, 95
network variable poll request, 88
Nios II IDE, 104
overview, 74
receiving network variables updates, 85
reset events, 95
running, 108
sending network variable updates, 83
shutdown, 99
tasks performed, 80

FTXL Developer’s Kit
DBC2C20 software, 20
hardware requirements, 19
installing, 18, 20
overview, 13, 18
software requirements, 19

FTXL device
architecture, 11

development process, 13
FTXL hardware abstraction layer, 178
FTXL LonTalk API

callback handler functions, 155
callbacks, 76
event handler functions, 152
events, 76
files, 20
functions, 149
operating system integration, 76
overview, 74, 148

FTXL LonTalk protocol stack, 6
FTXL LonTalk protocol stack, configuring, 57
FTXL operating system abstraction layer

API functions, 157
overview, 76

FTXL Transceiver
development tools, 11
overview, 6
requirements, 10
restrictions, 10
specifying configuration, 57

FtxlDev.c, 63
FtxlDev.h, 63
functional block

declaring, 28
defining, 27
examples, 128
keywords, 126
overview, 25
syntax, 126

functional block properties
examples, 130
keywords, 129
syntax, 129

functional profile, 25
functions, FTXL LonTalk API, 149

G
generating FTXL files, 61

H
HAL, 178
host processor, 4
host-based device, 4

I
IEEE 754, 67
inherting type, configuration property, 38
initialization, 81
Interface Developer. See LonTalk Interface

Developer
interface, device, 25
ISO 7498-1, 2

FTXL User’s Guide 247

K
keywords

configuration property, 139
functional block, 126
functional block properties, 129
message tag, 145
network variable, 132

L
libf command, 112
LID#zzz messages, 230
loading application to flash, 107
loading, FPGA device, 103
LonCpTypes.h, 62
LonEventPump() function, 81
LonInit() function, 81
LonNvTypes.h, 62
LonPropagateNv() function, 83
LonTalk API. See FTXL LonTalk API
LonTalk Interface Developer

code generator preferences, 61
command line interface, 112
compiler preferences, 60
compiling files, 61
configuring buffers, 58
configuring the application, 58
configuring the FTXL LonTalk protocol

stack, 57
constant configuration properties, 70
declarations, 68
files, 61
FTXL Transceiver configuration, 57
message tag table, 72
messages, 230
model file, 60
network variable attributes, 71
network variable table, 71
Nios II IDE, 105
non-volatile data, 58
overview, 21
program ID, 59
project file, 56
running, 56
service-pin-held events, 57

LonTalk Platform for FTXL Transceivers, 6
LonTalk Platform for ShortStack Micro

Servers, 5
LonTalk protocol, 2
LonWorks

device comparison, 8
file transfer protocol, 33
network, 2
network protocol, 2
single processor chip device, 3
two processor chip device, 4

M
management commands, 94
MegaCore IP Library, 102
memory use, FTXL application, 182
memory, managing, 46
message tag

declaring, 40
keywords, 145
syntax, 145

message tag table, 72
messages, LonTalk Interface Developer, 230
Micrium MicroC/OS-II operating system, 165
Micrium software license, 227
Micro Server, ShortStack, 5
model file

compiler directives, 120
example, 48
overview, 24
specifying, 60
syntax, 125

N
nc file, 24
network management, 95
network variable

attributes, 71
authentication, 44
binding, 30
changeable type, 30, 88
connection information, 135
defining, 28
dynamic, 92
initializer, 138
keywords, 132
modifier, 132
overview, 25
poll request, 88
property list, 138
receiving updates, 85
sending updates, 83
storage class, 134
syntax, 132
type, 134

network variable configuration table, 48
network variable table, 71
Neuron C

acceptable code, 43
anonymous top-level types, 43
legacy constructs, 44
programming language, 24
syntax, 125
types, 64

Neuron C model file. See model file
Neuron-hosted device, 3
Nios II Embedded Design Suite, 102
Nios II IDE

application properties, 106

248 Index

building application, 107
compiling, 107
creating new project, 104
debugging, 109
loading application, 107
running, 108
running LonTalk Interface Developer, 105
setup, 103
system library, 105

nios2-elf-size utility, 182
NodeBuilder Code Wizard, 24
non-volatile data

configuring, 58
providing storage, 77
restoring, 78
writing, 79

NV. See network variable
NVD, 77

O
operating system

configuring, 160
integrating with application, 76

OSAL, 76, 157
OSI Model, 2

P
persistent storage, 77
pragma statement, 120
program ID template, 40
program ID, specifying, 59
project file, 56
project, Nios II IDE, 104
project.xif, 63

Q
Quartus II software, 102

R
reset events, 95
resource file

defining, 40
scope rules, 42

running an FTXL application, 108

S
scope rules, resource file, 42
SCPT, 40
service-pin-held events, 57
sharing, configuration property, 37
ShortStack Micro Server, 5
shutting down the FTXL device, 99
simple example application

appTask() function, 198
callback handler, 201
event handler, 199
main() function, 198
model file, 201
overview, 197
running, 222

SNVT, 29
syntax

configuration property, 139
functional block, 126
functional block properties, 129
message tag, 145
network variable, 132

system library, 105

T
type definitions

bit-field members, 65
enumerations, 66
floating-point variables, 66
overview, 64

type inheritance, configuration property, 38

U
uCOS-II, 165
UCPT, 40
UNVT, 29
USB-Blaster download cable, 103

W
window, direct memory files, 97

X
xfb file, 63
xif file, 63

www.echelon.com

	Welcome
	Audience
	Related Documentation
	Related Altera Product Documentation
	Related devboards.de Product Documentation

	Introduction to FTXL
	Overview
	A LonWorks Device with a Single Processor Chip
	A LonWorks Device with Two Processor Chips
	Comparing Neuron-Hosted, ShortStack, and FTXL Devices

	Requirements and Restrictions for FTXL
	Development Tools for FTXL
	FTXL Architecture
	The FTXL Developer’s Kit
	Overview of the FTXL Development Process

	Getting Started with FTXL
	FTXL Developer’s Kit Overview
	Installing the FTXL Developer’s Kit
	Hardware Requirements
	Software Requirements
	DBC2C20 Software
	Installing the FTXL Developer’s Kit

	FTXL API Files
	LonTalk Interface Developer
	Example FTXL Applications

	Creating a Model File
	 Model File Overview
	Defining the Device Interface
	Defining the Interface for an FTXL Application
	Defining a Functional Block
	Defining a Network Variable
	Defining a Configuration Property
	Declaring a Message Tag
	Defining a Resource File

	Writing Acceptable Neuron C Code
	Anonymous Top-Level Types
	Legacy Neuron C Constructs

	Using Authentication for Network Variables
	Specifying the Authentication Key
	How Authentication Works

	Managing Memory
	Address Table
	Alias Table
	Domain Table
	Network Variable Configuration Table

	Example Model files
	Simple Network Variable Declarations
	Network Variables Using Standard Types
	Functional Blocks without Configuration Properties
	Functional Blocks with Configuration Network Variables
	Functional Blocks with Configuration Properties Implemented in a Configuration File

	Using the LonTalk Interface Developer Utility
	 Running the LonTalk Interface Developer
	Specifying the Project File
	Specifying the FTXL Transceiver Configuration
	Specifying Service Pin Held Events
	Configuring the FTXL LonTalk Protocol Stack
	Configuring the Buffers
	Configuring the Application
	Configuring Support for Non-Volatile Data
	Specifying the Device Program ID
	Specifying the Model File
	Specifying Neuron C Compiler Preferences
	Specifying Code Generator Preferences
	Compiling and Generating the Files

	Using the LonTalk Interface Developer Files
	Copied Files
	LonNvTypes.h and LonCpTypes.h
	FtxlDev.h
	FtxlDev.c
	project.xif and project.xfb

	Using Types
	Bit Field Members
	Enumerations
	Floating Point Variables

	Network Variable and Configuration Property Declarations
	Constant Configuration Properties
	The Network Variable Table
	Network Variable Attributes

	The Message Tag Table

	Developing an FTXL Application
	 Overview of an FTXL Application
	Using the FTXL LonTalk API
	Callbacks and Events
	Integrating the Application with an Operating System
	Providing Persistent Storage for Non-Volatile Data

	Tasks Performed by an FTXL Application
	Initializing the FTXL Device
	Periodically Calling the Event Pump
	Sending a Network Variable Update
	Receiving a Network Variable Update from the Network
	Handling a Network Variable Poll Request from the Network
	Handling Changes to Changeable-Type Network Variables
	Handling Dynamic Network Variables
	Communicating with Other Devices Using Application Messages
	Handling Management Commands
	Handling Local Network Management Tasks
	Handling Reset Events
	Querying the Error Log

	Working with ECS Devices
	Using Direct Memory Files
	The DMF Memory Window
	File Directory

	Shutting Down the FTXL Device

	Working with the Nios II Development Environment
	 Development Tools
	Using a Device Programmer for the FPGA Device
	Setting up the Nios II IDE
	Creating a New FTXL Application Project
	Running the LonTalk Interface Developer Utility
	Customizing the FTXL System Library
	Specifying the Properties for the Application

	Building the Application Image
	Loading the Application Image into Persistent Memory
	Running the Application
	Debugging the Application

	LonTalk Interface Developer Command Line Usage
	 Overview
	Command Usage
	Command Switches
	Specifying Buffers

	Model File Compiler Directives
	 Using Model File Compiler Directives
	Acceptable Model File Compiler Directives

	Neuron C Syntax for the Model File
	 Functional Block Syntax
	Keywords
	Examples

	Functional Block Properties Syntax
	Keywords
	Examples

	Network Variable Syntax
	Keywords

	Configuration Property Syntax
	Keywords
	Declaring a Configuration Network Variable
	Defining a Device Property List

	Message Tag Syntax
	Keywords

	FTXL LonTalk API
	 Introduction
	The FTXL LonTalk API, Event Handler Functions, and Callback Handler Functions
	FTXL LonTalk API Functions
	FTXL Event Handler Functions
	FTXL Callback Handler Functions

	The FTXL Operating System Abstraction Layer
	Managing Critical Sections
	Managing Binary Semaphores
	Managing Operating System Events
	Managing System Timing
	Managing Operating System Tasks
	Debugging Operating System Functions
	Configuring the Operating System
	Configuring the Micrium µC/OS-II Operating System
	MicroC/OS-II General Options
	Event Flags
	Mutex
	Semaphores
	Mailboxes
	Queues
	Memory Management
	Miscellaneous
	Task Management
	Time Management
	Timer Management

	The FTXL Hardware Abstraction Layer
	Managing the FTXL Transceiver
	Managing the Service Pin
	Managing Interrupts

	Determining Memory Usage for FTXL Applications
	 Overview
	Total Memory Use
	Memory Use for Transactions
	Memory Use for Buffers
	Memory for LonWorks Resources
	Memory for Non-Volatile Data
	Memory Usage Examples

	Downloading an FTXL Application Over the Network
	 Overview
	Custom Application Download Protocol
	Application Download Utility
	Download Capability within the Application

	Example FTXL Applications
	 Overview of the Example Applications
	Example Application Files

	The Simple Example Application
	Main Function
	Application Task Function
	Event Handler Function
	Application-Specific Utility Functions
	Callback Handler Function
	Model File

	The Dynamic Interface Example Application
	Main Function
	Application Task Function
	Event Handler Functions
	Application-Specific Utility Functions
	Callback Handler Function
	Model File

	Setting up the Nios II IDE for the Example Applications
	Creating a New FTXL Application Project
	Running the LonTalk Interface Developer Utility

	Building the Example Application Image
	Building the Reference Design Hardware Image
	Building the Example Software Image

	Loading the Example Application Image into Flash
	Running the Example Applications
	Running the Simple Example
	Running the Dynamic Interface Example

	The Micrium Software License

	LonTalk Interface Developer Utility Error and Warning Messages
	 Introduction
	Error Messages
	Warning codes
	Hint codes

	Glossary
	Index

