
Pyxos FT Programmer’s Guide

@®

0 7 8 - 0 3 3 9 - 0 1 A

@ECHELON
®

Echelon, LONWORKS, i.LON and the Echelon logo are
trademarks of Echelon Corporation registered in the United
States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

EACH USER OF THE PYXOS FT CHIP AND PROTOCOL
ASSUMES RESPONSIBILITY FOR, AND HEREBY AGREES
TO USE ITS BEST EFFORTS IN, DESIGNING AND
MANUFACTURING EQUIPMENT LICENSED HEREUNDER
TO PROVIDE FOR SAFE OPERATION THEREOF,
INCLUDING, BUT NOT LIMITED TO, COMPLIANCE OR
QUALIFICATION WITH RESPECT TO ALL SAFETY LAWS,
REGULATIONS AND AGENCY APPROVALS, AS
APPLICABLE. THE PYXOS FT CHIP AND PROTOCOL
ARE NOT DESIGNED OR INTENDED FOR USE AS
COMPONENTS IN EQUIPMENT INTENDED FOR
SURGICAL IMPLANT INTO THE BODY, OR OTHER
APPLICATIONS INTENDED TO SUPPORT OR SUSTAIN
LIFE, FOR USE IN FLIGHT CONTROL OR ENGINE
CONTROL EQUIPMENT WITHIN AN AIRCRAFT, OR FOR
ANY OTHER APPLICATION IN WHICH THE FAILURE OF
THE PYXOS FT CHIP OR PROTOCOL COULD CREATE A
SITUATION IN WHICH PERSONAL INJURY OR DEATH
MAY OCCUR, AND THE USER SHALL HAVE NO RIGHTS
HEREUNDER FOR ANY SUCH APPLICATIONS.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2007 Echelon Corporation.

Echelon Corporation
www.echelon.com

Pyxos FT Programmer’s Guide i

Welcome
The Pyxos FT platform is Echelon’s embedded control networking platform.
The Pyxos FT platform includes two portable ANSI C APIs that you can use in
conjunction with the Pyxos FT Interface Developer to create a Pyxos Pilot or a
Pyxos Point that uses the Pyxos FT protocol to connect a controller to sensors and
actuators in a variety of control networks. Each Pyxos FT network contains a
Pyxos Pilot, which is the controller that manages the sensors and actuators on
the network in a master-slave relationship. The sensors and actuators on the
network are called Pyxos Points. Each Pyxos FT network contains a Pyxos Pilot,
and up to 32 Pyxos Points.

The two APIs are used to implement the Pyxos Pilot application, and the hosted
Pyxos Point applications. This includes the following:

• The Pyxos FT Pilot API. You can use the Pilot API to create a Pilot
application to discover and configure Pyxos Points on the network, read
their program types, monitor the reliability of the Pyxos FT network, and
read or write Pyxos network variables (PNVs) of any type on up to 32 Pyxos
Points at once via the Pyxos FT protocol. A Pilot application can detect
Pyxos Point failures, and can also detect degraded communications due to
poor network connections.

• The Pyxos Point FT API. You can use the Point API to create a hosted
Pyxos Point, allowing you to send and receive updates to the Pyxos Pilot
using PNVs.

This document describes how to create applications that use the Pyxos Point and
Pilot APIs.

Related Documentation
The following manuals describe the Pyxos FT platform:

• Introduction to the Pyxos Platform. This manual introduces the concepts,
technology, and tools for the Pyxos platform.

• Pyxos FT Chip Data Book. This manual provides hardware specifications
for working with the Pyxos FT Chip.

• Pyxos FT EVK User’s Guide. This manual describes the Pyxos FT EVK
hardware, and how to use the hardware and software examples that are
included with the Pyxos FT EVK. It also describes how to develop devices
that incorporate Pyxos FT technology.

• Pyxos FT EVK Quick Start Guide. This guide helps you set up and
install the Pyxos FT EVK Evaluation Boards, and how to get started with
the Pyxos EVK examples and tools. A printed copy of this guide is
included with your Pyxos EVK.

The following manual provides additional information that can help you to
develop applications for the Pyxos FT platform:

• Introduction to the LONWORKS System. This manual provides an
introduction to the ANSI/CEA-709.1 (EN14908) Control Networking

ii Pyxos FT Programmer’s Guide

Protocol, and provides a high-level introduction to LONWORKS networks
and the tools and components that are used for developing, installing,
operating, and maintaining them.

After you install the Pyxos FT EVK software, you can view all of these documents
from the Windows Start menu: point to Programs → Echelon Pyxos FT EVK →
Documentation, and then click a document to view.

All of the Pyxos documentation, and related product documentation, is available
in Adobe PDF format. To view the PDF files, you must have a current version of
the Adobe Reader, which you can install from the Pyxos FT EVK CD or
download from www.adobe.com/products/acrobat/readstep2.html. The English
version of the Adobe Reader is included on the Pyxos EVK CD. Additional
language versions are distributed by Adobe, and you can use those with the PDF
files included with the Pyxos FT EVK.

System Requirements
Software and hardware requirements for computers running the Pyxos FT API
development environment, also known as the Pyxos FT EVK, are listed below:

• Intel® Pentium® III 500MHz processor or AMD™ Athlon® 750 MHz
processor

• Microsoft® Windows XP or Windows 2000, with all updates from
Windows Update

• 128MB RAM minimum (256MB RAM recommended)

• 65MB of available hard-disk space (100MB recommended)

• 1024x768 screen resolution

• CD-ROM drive

• One available USB port

Table of Contents

Welcome... i
Related Documentation .. i
System Requirements ..ii
Table of Contents ...ii

Introduction to Pyxos Programming 1
Introduction.. 2

How Pyxos Points Interact With the Pilot ... 3
How Pyxos Points Join a Network ... 4

Getting Started .. 6
Using the Pyxos FT Interface Developer 9

Installing the Pyxos Software ... 10
Using the Pyxos FT Interface Developer.. 10
Step One: Creating a Network Project ... 11
Step Two: Creating and Importing Pyxos Point Interface Definitions..... 13

Importing Point Interface Definitions.. 19
Using the Standard Program ID Calculator.. 19

http://www.adobe.com/products/acrobat/readstep2.html

Pyxos FT Programmer’s Guide iii

Step Three: Setting Advanced Options... 22
Setting the Pilot Application Options .. 22
Setting the Network Project Settings .. 26
Setting Project Options ... 28

Step Four: Generating Include Files .. 29
Generated XML Files .. 30
Generated Header Files .. 30
Generating Include Files... 31

Creating a Pyxos Point Application 33
Overview... 34
Initializing the Pyxos FT API.. 36

psInit() .. 36
PyxosPointInit() ... 36

Allocating Timeslots... 36
Timeslot Functions .. 37

PyxosPointAnnounceTimeslot() ... 37
PyxosPointGetTimeslot() .. 37
PyxosPointIsOnline() .. 38
PyxosPointSendUniqueId() .. 38

Handling Events .. 38
PyxosPointEventHandler() ... 38

Reading, Writing and Receiving PNV Updates ... 39
PyxosPointUpdatePnv() Function .. 39
PyxosPointPollPnv() Function .. 41
PyxosPointIsPnvUpdatePending() ... 42
PyxosPointPnvUpdateOccurred() Callback ... 42

Pyxos Point Example Application... 43
Example for Manual or Automatic Registration 44
Example for Hardwired Registration... 45

Creating a Pilot Application 47
Overview... 48
Initializing the Pyxos Pilot .. 50

psInit() .. 51
PyxosPilotInit() .. 51

Handling Events .. 51
PyxosPilotEventHandler() .. 51
pyxosPilotWriteFrameCount Global Variable..................................... 53

Registering Points.. 53
Functions for Registering Points .. 55

PyxosPilotAllocateTimeslot().. 55
PyxosPilotFreeTimeslot() ... 57
PyxosPilotGetTimeslot() ... 57
PyxosPilotGetUniqueId().. 57
PyxosPilotGetProgramId() ... 57
PyxosPilotSetPointInterface() .. 58
PyxosPilotGetPointInterface() ... 59
PyxosPilotGetNumberOfPoints() ... 59
PyxosPilotSetPointOnline().. 59

Callbacks for Registering Points .. 60
PyxosPilotRegistrationRequestReceived() 60
PyxosPilotPointConfigured() .. 61
PyxosPilotPointConfigurationFailed()... 61

iv Pyxos FT Programmer’s Guide

PyxosPilotFreeTimeslotCompleted() ... 62
PyxosPilotSetOnlineComplete() ... 62

Example Code for Event Handling, and Registering Pyxos Points.... 62
Example Code for Automatic and Manual Registration..................... 62

Main Program ... 63
Discovering Points and Allocating Timeslots................................ 64

Pyxos Pilot Example Code for Hardwired Registration...................... 67
Reading and Writing PNVs ... 67

PyxosPilotUpdatePnv() ... 68
PyxosPilotUpdateUnhostedPointIo() ... 69
PyxosPilotPollRegister().. 70
PyxosPilotGetPnvValue().. 71
PyxosPilotIsPnvUpdatePending() .. 71
Callbacks for Reading and Writing PNVs ... 72

PyxosPilotUpdatePnvCompleted()... 72
PyxosPilotPollRegisterCompleted() ... 72
PyxosPilotPnvUpdateOccurred() ... 73

Example Code for Sending and Receiving PNVs................................. 73
Example Code For Updating and Monitoring Unhosted Point I/O 74

Reading Network Statistics... 75
PyxosReadNetworkStats() .. 76
PyxosClearNetworkStats().. 76

Detecting, Reporting, and Correcting Communication Errors 77
Types of Errors .. 77

Hardware Errors... 77
Unconfigured Points ... 77
Transaction ID Mismatches ... 78
Hanging Applications ... 78
Invalid Configuration ... 78

Detecting and Correcting Errors .. 78
Functions for Resetting and Reconfiguring Pyxos Points................... 81

PyxosPilotResetPoint() ... 81
PyxosPilotReconfigurePoint()... 81
PyxosPilotReplacePoint().. 82

Callbacks for Resetting and Reconfiguring Pyxos Points 82
PyxosPilotResetPointCompleted() ... 83

Functions for Checking the Pyxos FT Chip Configurations 83
PyxosPilotCheckConfiguration() .. 83
PyxosPilotReInitPyxosInterface() .. 84

Error Correction Example... 84
Checking Pilot Configuration... 84
Point Status Declarations... 85
Checking Point Configuration.. 86
Reconfiguring a Point ... 89

Reconfiguring the Network After a Reset .. 90
Reset Example ... 90

Analyzing Pyxos FT Network Communication .. 92
PyxosPilotProtocolAnalyzerCallback() .. 92

System Diagnostics .. 94
Including the Pyxos FT API 95

Introduction.. 96
Common Components.. 96
Including the Point API in your Application 97

Pyxos FT Programmer’s Guide v

Including the Pilot API in your Application .. 98
ANSI C ... 98

Porting the Pyxos FT API 101
SPI Overview.. 102
SPI Slave Mode Port Connections... 102

SPI Modes, Transfer Framing, and Half-Duplex Operation 103
Microcontroller Connections... 103

Serial Driver Design .. 108
Detailed SPI Timing.. 110

Pyxos Serial API... 113
Pyxos Serial API Functions .. 113

psInit() ... 113
PS_PBUFFER ... 113
psWrite() .. 114
psRead() ... 114
psIsInterruptSet() ... 114

Modifying the Platform.h File ... 115
Using Types ... 115

Bitfield Members... 116
Enumerations.. 116

Pyxos FT Protocol 117
Introduction.. 118

Pyxos FT Protocol Overview ... 118
Memory and Registers... 119

Control Registers... 122
Frame Memory.. 124
PCV Memory ... 125

Physical Layer ... 125
Transactions... 127

Packet Flags—ACK, ACKD TID, and TID.................................. 127
SENT and RCVD Flags .. 128
Idle Transactions .. 131
TID Synchronization... 131
Write (Pilot-to-Point) Transactions.. 132
Read (Point-to-Pilot) Transactions... 135
Block Transfers ... 140
Polling .. 140

Configuration and Registration.. 141
UID and PID.. 142
Timeslot Map... 143
Pilot Configuration.. 143
Point Configuration and Registration ... 144

Protocol Statistics .. 150
Reset Handling and Error Recovery .. 151

Lost Communication Recovery... 152
Pilot Reset or Reconfiguration ... 152

Interrupts... 153
Handling Pilot Interrupts... 155
Handling Point Interrupts.. 157

Managing Unhosted Points... 157
DIO... 157

vi Pyxos FT Programmer’s Guide

Advanced Topics 161
Accessing Pyxos Registers ... 162

PyxosReadRegister ... 162
PyxosUpdateRegister.. 162
Register Definitions .. 162

Code and Data Space Considerations... 164
Pyxos Serial API Footprint... 164
Pilot API Footprint ... 164
Point API Footprint .. 165

Interrupt Driven Pyxos Programs .. 166
Defining Point Interfaces Dynamically .. 167
Supporting Multiple Pyxos Networks... 170

Supporting Multiple Pyxos Networks without a Heap 172
Designing Deterministic Systems... 173

Physical Network Reliability .. 173
Host Responsiveness ... 174
Application Data Rates ... 174
Polling... 175

Pyxos FT Network Gateways 177
Pyxos FT Network Gateways .. 178

Pyxos – LONWORKS Gateways .. 178
Device Interface... 178
Connections ... 180

Pyxos FT Programmer’s Guide 1

1

Introduction to Pyxos
Programming

This chapter introduces the Pyxos FT platform, and
describes the relationship between a Pyxos Pilot application
and a Pyxos Point application.

2 Pyxos FT Programmer’s Guide

Introduction
A Pyxos FT network uses the Pyxos FT protocol to connect a controller to sensors
and actuators in a control network. Each Pyxos FT network contains a Pyxos
Pilot, which is the controller that manages the sensors and actuators on the
network in a master-slave relationship. The sensors and actuators on the
network that are connected to the Pyxos FT network are called Pyxos Points.
Each network contains exactly one Pilot, and up to 32 Pyxos Points. A Pyxos
Point may have a single sensor or actuator, or may have multiple sensors and
actuators.

Figure 1 Pyxos FT Network Overview

The Pilot contains a host processor connected to a Pyxos FT Chip. The Pilot is
responsible for configuring, maintaining and communicating with the Pyxos
Points on the network. The Pilot is also responsible for receiving data from the
network, acting on that data, and distributing it to the appropriate Pyxos Points.
All communication on the network is either from a Pyxos Point to the Pilot, or
from the Pilot to a Pyxos Point. As necessary, the Pilot application will relay data
from one Pyxos Point to another. The data is relayed between the Pilot and the
Pyxos Points in the form of Pyxos network variables (PNVs), the smallest unit of
sensor and actuator data that is shared on the network.

The Pilot can also communicate with devices on other proprietary networks, or
with devices on LONWORKS networks. You can use the Pilot API to create a Pilot
application that will determine exactly how these tasks will be performed.

The Pilot manages the Pyxos Points on the network in a master-slave
relationship. There are two types of Pyxos Points: hosted Pyxos Points, and
unhosted Pyxos Points. A hosted Pyxos Point is a device containing a host
processor connected to a Pyxos FT Chip.

You can use the Point API to write an application that determines how a hosted
Pyxos Point will function on the network. These applications should be designed
to initialize and configure the Pyxos FT Chip on each device, as well as process

Pyxos FT Programmer’s Guide 3

any I/O attached to the host processor, read PNVs updated by the Pilot, and write
PNVs to send to the Pilot.

Unhosted Pyxos Points are slave devices containing Pyxos FT Chips that are not
connected to a host processor. Figure 2 shows the architectural difference
between an unhosted Pyxos Point and a hosted Pyxos Point.

Figure 2 Hosted and Unhosted Pyxos Points

How Pyxos Points Interact With the Pilot
Each Pyxos Point implements its own interface. The interface defines the set of
input and output PNVs that the Pyxos Point contains, as well as the location of
those PNV values in the Pyxos FT Chip. Hosted Pyxos Points use input PNVs to
receive information from the Pilot, and output PNVs to send information to the
Pilot. Typically, a Pyxos Point will contain a PNV for each distinct I/O point on
the device.

Unhosted Pyxos Points do not have their own set of input and output PNVs as
hosted Points do. However, each unhosted Pyxos Point includes four pins, each of
which can be used as either a digital input or a digital output. They also contain
an optional fifth pin that can be used as a digital input. The Pilot API contains
functions you can use to write directly to the digital outputs with your Pilot
application. Since an unhosted Pyxos Point has no host, it will be lower cost than
a hosted Point, and will consume less power. Therefore, an unhosted Point may
be the most efficient way to control a device containing digital I/O.

Generally, you should implement your Pyxos Point as a hosted Point if the Point
needs to support any analog data, the Point needs to support more than 4 digital
outputs, more than 5 digital inputs, more than five total digital inputs and
outputs, or the Point needs to perform any logic that is not performed by the
hardware. For example, a hosted Point may transform values, or perform some
local function based on inputs that may or may not be published on the Pyxos FT
network. Hosted Points support initialization and configuration methods that
require no user interaction, which may make using a hosted Point desirable even
when using only digital I/O. This is described in more detail in the next section,
How Pyxos Points Join a Network.

Figure 3 shows an example Pyxos FT network with two hosted Pyxos Points: one
embedded inside a switch, and one embedded inside a lamp. In this example
network, the Pyxos Point embedded inside a switch sends the Pilot application a
message every time the switch is turned on or off by updating an output PNV of
type SNVT_switch. The Pilot application then sends a message to the Pyxos

4 Pyxos FT Programmer’s Guide

Point embedded inside the lamp by updating one of its input PNVs (also a
SNVT_switch), so that the lamp is turned on or off, as appropriate.

Pilot Application

Point A Point B

SNVT_switch
Output

Network
Variable

SNVT_switch
Input

Network
Variable

Figure 3 Pyxos Lamp Switch Example

You will use the Pyxos FT Interface Developer, which is included as part of the
Pyxos FT EVK, to create Pyxos Point interfaces and define the set of PNVs each
hosted Pyxos Point should contain (or the set of digital inputs and outputs that
each unhosted Pyxos Point should contain). These tasks are described in Chapter
2 of this document. When you create an application for a Pyxos Point, you will
identify the interface it should use when it joins the network. This is described in
more detail in the following section.

How Pyxos Points Join a Network
Pyxos FT networks use time-division multiplexing to send and receive messages
between the Pilot and the Pyxos Points. TDM is a type of digital multiplexing in
which two or more simultaneous bit streams are encoded as sub-channels into a
single bit stream by interleaving bits from the different bit streams. The
combined bit stream is decoded at the receiving end. For a Pyxos FT network,
the different sub-channels are the bit streams from the different Points on the
Pyxos FT network, each communicating with the Pilot. Each of the sub-channels
has a fixed bit rate, providing deterministic response for each of the sub-
channels. The Pyxos FT Chips on the Pilot and the Points manage the
interleaving of the channels.

The Pyxos FT protocol divides the time domain into several recurrent timeslots of
fixed length, one for each sub-channel. A Pyxos frame consists of one window of
time containing all the timeslots for all the sub-channels. Every frame includes 8
bytes of data sent by the Pilot to each Point, and 8 bytes of data from each Point
to the Pilot.

Each Pyxos Point on a network is assigned a timeslot when it joins the network.
The timeslot identifies the segment during which data (i.e. PNV updates or

Pyxos FT Programmer’s Guide 5

segments of PNV updates) can be sent to that particular Point, and the Point can
send data to the Pilot.

Figure 4 shows a representation of a network frame that contains four timeslots
numbered 0 to 3. This network contains two Points labeled A and B, each of
which has been allocated a timeslot. The Pilot sends messages to Point A in
write timeslot 0, and receives messages from the Point in read timeslot 0. The
Pilot sends messages to Point B in timeslot 1, and receives messages in read
timeslot 1. There are two free timeslots in the frame (numbered 2 and 3) that are
available for the next two Pyxos FT Points that join the network. Although the
Pyxos FT Chip physically writes to a write timeslot and reads from a read
timeslot, the Pilot application sees the write and read timeslots as a single
timeslot that is assigned to the Point.

Write
Timeslot

0

Write
Timeslot

1

Write
Timeslot

2

Write
Timeslot

3

Read
Timeslot

0

Read
Timeslot

1

Read
Timeslot

2

Read
Timeslot

3

Frame

Write
Timeslot
for Pyxos
Point A

Write
Timeslot
for Pyxos
Point B

Read
Timeslot
for Pyxos
Point B

Read
Timeslot
for Pyxos
Point A

Free
Timeslots
For Points

Joining
the

Network

Free
Timeslots
For Points

Joining
the

Network
Figure 4 Timeslots

When a Point joins the network, the Pilot assigns the Point a timeslot. After
assigning the Point a timeslot, the Pilot must specify the interface the Point will
implement. The process of assigning a Pyxos Point a timeslot and specifying the
interface it should implement when it joins the network is referred to as
registration. After a Point has been successfully registered, the Pilot places the
Point online so the Point can send or receive data.

There are three methods you can use to register a Pyxos Point. Depending on the
level of user interaction your application will require, any of three registration
methods may be suitable.

• Automatic. In the automatic registration method, the Pyxos Point begins
requesting a timeslot as soon as it is initialized (i.e. as soon as the application
loaded into the Pyxos Point starts running). It will continue making requests
until the Pilot assigns it a timeslot.

The Pyxos Point application does not need to perform any additional steps to
receive a timeslot, as the Point API will begin requesting a timeslot
automatically as soon as it is initialized. The Pilot application will typically
read the Point’s program ID, and identify its interface after allocating a
timeslot. Therefore, no user interaction is required to complete an automatic
registration.

6 Pyxos FT Programmer’s Guide

• Hardwired. In the hardwired registration method, the timeslot and interface
the Pyxos Point should use are hardcoded into the Pyxos Point and Pilot
applications. After the Pyxos Point is initialized, its application selects a
timeslot using data that is hardcoded into the application, read from a wiring
harness or serial identification tag, or determined via some other application-
dependent means. The Pilot application receives a registration request when
this occurs, and then specifies the Pyxos Point’s interface using hardcoded
knowledge of what types of Pyxos Points use each timeslot.

• Manual. In the manual method, the user initiates the registration. This
begins with the Pilot, where a user informs the Pilot application that a new
Point will be registered. The way this step is performed will vary depending
on the Pilot user interface. For example, it could be done by selecting from a
menu on an LCD display or by pressing a sequence of buttons.
The Pyxos Point application then sends a registration request to the Pilot.
This is typically triggered by some user action on the Pyxos Point, such as
pressing a button on the device containing the Point.

The Pilot application then receives the registration request and allocates the
Pyxos Point a timeslot, using the data entered previously to determine the
timeslot to assign to the Pyxos Point and the interface implemented by the
Pyxos Point.

Unhosted Points must use the manual registration method.

Getting Started
You can use the Pyxos FT APIs to develop custom Pyxos Pilot or Pyxos Point
applications. To develop a Pyxos application, follow the steps below. The steps
are described in more detail later in the document:

1. Define the Pilot and Point interfaces using the Pyxos FT Interface
Developer. In this step, you will specify how your Pilot application should
interoperate with the Pyxos FT network. You will also create a Pyxos
Point interface definition for each type of Pyxos Point on your network,
and declare the PNVs that each type of Pyxos Point will contain.

This step is described in Chapter 2, Using the Pyxos FT Interface
Developer.

2. If you are developing any custom hosted Points, create applications for
the custom hosted Pyxos Points on your network. For descriptions of the
functions and callbacks included in the Point API, as well as guidelines
and recommendations on how you should use those functions, see
Chapter 3, Creating a Pyxos Point Application.

Chapter 5, Including the Pyxos FT API, describes how to include the
Point API in your application.

3. If you are developing a custom Pilot, create the Pilot application for your
network. For descriptions of the functions and callbacks included in the
Pilot API, as well as an overview of how you should use them with your
Pilot application, see Chapter 4, Creating a Pilot Application.

Chapter 5, Including the Pyxos FT API, also describes how to include the
Pilot API in your application.

Pyxos FT Programmer’s Guide 7

4. Load the custom Pyxos Pilot and Point applications into the host
processors attached to the Pyxos FT Chips on the network, and begin
operating the network.

Several additional chapters you may find useful follow Chapter 5. Table 1
describes these chapters.

Table 1 Pyxos Programmer’s Guide Supplemental Chapters

Title Description

Chapter 6, Porting the Pyxos FT
API

This chapter describes how to port the Pyxos FT API to a
new processor or compiler. This includes hardware
considerations and details on the Pyxos Serial API
(psAPI), and on modifications you can make to the
platform.h file to suit your microprocessor.

Chapter 7, Pyxos FT Protocol This chapter describes the Pyxos FT Protocol and how to
directly access the Pyxos FT Chip to use the protocol. The
simplest way to develop a Pyxos Point or Pyxos Pilot
application is to use the APIs provided with the Pyxos
software. These APIs implement most of the required host
code for the Pyxos FT Protocol.

Appendix A, Advanced Topics This chapter discusses advanced topics, including
descriptions of the functions you can use to read and write
registers that control the operation of a Pyxos FT Chip,
and discussion on the data space and code size consumed
by a Pyxos application.

Appendix B, Pyxos FT Network
Gateways

This appendix provides background information that you
can use when extending your Pyxos FT network to connect
to other Pyxos FT networks, or to a LONWORKS network.

8 Pyxos FT Programmer’s Guide

Pyxos FT Programmer’s Guide 9

2

Using the Pyxos FT
Interface Developer

This chapter describes how to install the Pyxos FT EVK
software, and how to use the Pyxos FT Interface Developer
to design your Pyxos FT network.

10 Pyxos FT Programmer’s Guide

Installing the Pyxos Software
Follow the steps below to install the Pyxos EVK software. Once you have
installed the software, you can use the Pyxos FT Interface Developer to design
your Pyxos FT network project, as described in the Using the Pyxos FT Interface
Developer section on page 10.

1. Log on to your Windows computer with a user ID that is a member of the
Administrators group or that has equivalent administrator privileges.

2. Insert the Pyxos FT EVK CD-ROM into a CD-ROM or DVD drive. The
setup application should start automatically. If it does not, use Windows
Explorer to open the CD-ROM drive, and double-click Setup. The Pyxos
EVK setup application’s main window opens.

3. From the Pyxos EVK setup application’s main window, click Install
Products. The Install Products window opens.

4. From the Install Products window, click Pyxos FT EVK 1.0. Follow the
installation dialogs to install the Pyxos FT EVK software onto your
computer.

5. If you do not already have the Microsoft .NET 2.0 (or later) runtime
components on your computer, return to the Pyxos EVK Install Products
window and click Microsoft .NET Framework 2.0 to install the Microsoft
.NET Framework. The .NET runtime components are required to run the
Pyxos Network Example HMI application.

6. If prompted to restart Windows, click OK to restart.

7. If you do not already have the Adobe Reader installed on your computer,
return to the Pyxos EVK setup application’s Install Products window and
click Adobe Reader 7.0.8 to install the Adobe Reader. The Adobe Reader
is required to view the Pyxos product documentation. You can also
download the latest reader from the Get Adobe Reader link at
www.adobe.com. The Adobe Reader included with the Pyxos EVK is the
English version. You can get other language versions from
www.adobe.com.

8. If you plan to connect the Pyxos FT network to a LONWORKS network,
you can install the LONMARK Resource Editor 3.13 and the OpenLDV
3.3 driver from the Pyxos EVK setup application’s Install Products
window. These products are optional. You can also download the latest
version of the OpenLDV 3.3 driver from www.echelon.com/downloads.

Using the Pyxos FT Interface Developer
You can use the Pyxos FT Interface Developer to configure the Pilot application
for your Pyxos FT network project, and to create Point interface definitions for
the Pyxos Points in your project. To do so, follow these steps:

1. Create a network project. For more information on this task, see Step
One: Creating a Network Project on page 11.

http://www.adobe.com/
www.adobe.com
www.echelon.com/downloads

Pyxos FT Programmer’s Guide 11

2. Create or import the Point interface definitions for the Pyxos Points in
your project. Create (or import) a separate Point interface definition for
each type of Pyxos Point that exists in your project.

When you create a Point interface definition for a hosted Point, you will
define the PNVs that the Points implementing that interface will contain.
When you create a Point interface definition for an unhosted Point, you
will define the I/O bitmasks (used to read and write the digital inputs and
digital outputs on the Pyxos FT Chip) that the Points implementing the
interface will contain. For hosted Points, you will also select the
registration method that Pyxos Points using the definition will use. For
more information on this task, see Step Two: Creating and Importing
Pyxos Point Interface on page 13. Unhosted Points always use the
manual registration method.

3. Set advanced options for the Pyxos FT network project, including the
network project settings and the Pilot options. For more information on
this task, see Step Three: Setting Advanced Options on page 22.

4. Generate the include files for the network project you have created.
These include files are used to customize the Pyxos Pilot and Point APIs.
You will include these files when you create your Pyxos Point and Pilot
applications.

For more information on this task, see Step Four: Generating Include
Files on page 29.

5. Begin developing the Pilot and Pyxos Point applications for your network
project, as described in Chapters 3 and 4 of this document.

Step One: Creating a Network Project
The first step to perform when using the Pyxos FT Interface Developer is to
create a network project. To do so, follow these steps:

1. Click the Start button, point to Programs → Echelon Pyxos FT EVK and
then click Pyxos FT Interface Developer. The Pyxos FT Interface
Developer – Startup Options dialog opens.

12 Pyxos FT Programmer’s Guide

Figure 5 Pyxos FT Interface Developer – Startup Options

2. Click Create New Project to start a new Pyxos FT network project, and
then enter a name for the project in Name. Specify the location where
the project files are to be stored in Location, and then click OK to create
the project. The window shown in Figure 6 opens.

Pyxos FT Programmer’s Guide 13

Figure 6 Pyxos FT Interface Developer Window

3. Create or import the Point interface definitions for your project, as
described in the next section.

Step Two: Creating and Importing Pyxos Point
Interface Definitions

After you have created a network project, you can begin creating or importing
the Point interface definitions for the project. Each Pyxos Point will use a
Point interface definition. The Point interface definition determines how the
Pyxos Point should be registered to join a network, and what PNVs the Pyxos
Point should contain.

To create a Point interface definition, follow the steps below. You can also
import Point interface definitions created for another Pyxos FT network
project into your project, as described in the Importing Point Interface
Definitions section on page 19.

1. From the File menu, point to New and then click Point Interface
Definition (or, click Add Point). You will be prompted to save the project
files you have created, and then you will return to the Pyxos FT Interface
Developer – Startup Options dialog shown in Figure 5.

Enter the name of the Point interface definition in Name and the location
of the project files for the Point interface definition in Location, and then
click OK. The name must be between 1 and 20 characters long. You can
use alphanumeric characters, as well as the underscore character (_), in
the name.

2. Select the Unhosted Point check box to implement the Points that use
this interface definition as unhosted Points. Otherwise, leave the check
box clear.

14 Pyxos FT Programmer’s Guide

If you are implementing the Point interface definition for unhosted
Points, proceed to step 4.

3. If you are implementing the Point interface definition for hosted Pyxos
Points, meaning that you left the Unhosted Point check box clear in step
2, click Point Application Options to open the Point Application Options
dialog.

Figure 7 Point Application Options Dialog

Set the properties on the Point Application Options dialog. Table 2 describes
these properties.

Table 2 Pyxos Point Application Options Dialog

Property Description

Registration Method Select Automatic Registration, Manual Registration, or
Hardwired Registration to specify how Pyxos Points that use
this interface definition should be registered to join a
network. Chapter 1 introduces these registration methods,
and Chapter 3 provides details on how your Point application
will perform the registration when using each method.

Include Statistics Functions Select this check box to enable the Pyxos Point application to
access functions used to read network statistics such as the
total number of frames received on the Pyxos Point’s timeslot,
and the number of CRC errors on the timeslot.

Enable Polling Select this check box to enable the Pyxos Point application to
request that the Pilot update one of the Point’s input
variables.

Pyxos FT Programmer’s Guide 15

Property Description

Disable Clock Out Pin Every Pyxos FT Chip has a clock out pin that the Point can
use to drive the host processor’s clock, or anything else that
might need a clock. If the Point’s hardware uses the clock,
the clock out pin must be enabled. If the Point’s hardware
does not use the clock, it can be disabled to conserve power.

On a hosted Point and on the Pilot, the clock out pin will be
disabled by the API based on the application options settings
set on the Point Application Options and Pilot Applications
Options dialogs, respectively. The Pilot disables/enables the
clock out pin on unhosted Points, based on the setting of the
Clock Out field on the unhosted Point’s interface.

Select the Disable Clock Out Pin check box to disable the
clock out pin on the Point.

Register Buffer Size Enter the size of the Pyxos Point’s register buffer, in bytes.
This buffer is used when performing any register operations
during a callback. If the application asks to read or write a
local register larger than this value during a callback, the
function will fail and an error will be returned. The default
value is 8.

4. Click Save and Close to save your settings and return to the main Point
Interface Developer window. You can return to the Point Application
Options window at any time to review and change your settings.

5. Configure the rest of the properties on the window. The properties you
need to configure will vary depending on whether the Point interface
definition is for an unhosted Point, or for a hosted Point.

Table 3 lists the properties required for unhosted Pyxos Points.

Table 3 Unhosted Pyxos Point Properties

Property Description

Clock Out Select Enabled to enable the clock out pin on the unhosted Point.

I/O Mode Select Polled to specify that the Pyxos Point only send updates for its digital
inputs onto the network when it is polled by the Pilot application. Select
Send Updates On Change to enable the Pyxos Point to both respond to polls,
and to send updates on the network whenever the values of the digital inputs
change.

16 Pyxos FT Programmer’s Guide

Table 4 lists the properties required for hosted Pyxos Points.

Table 4 Hosted Pyxos Point Properties

Property Description

Program ID Click Calculator to open the LonMark Standard Program ID Calculator. Use
the Program ID Calculator to set the program ID that will be assigned to
Pyxos Points using this interface definition.

You can set the program ID by manually entering it in the Program ID box
at the bottom of the dialog, or you can set the other fields on the dialog to
appropriate values for your application, and calculate a program ID based on
those values. For information on how you should set these fields, see Using
the Standard Program ID Calculator on page 19.

Table 5 lists the properties required for both unhosted Pyxos Points and
hosted Pyxos Points.

Table 5 Properties for Unhosted and Hosted Pyxos Points

Property Description

Manufacturer Name Optionally, enter the name of the manufacturer (or an abbreviation of the
name) of the device containing the Pyxos Points that use this interface
definition in the Manufacturer Name box. The name must be between 1 and
10 characters long. You can use alphanumeric characters, as well as the
underscore character (_), in the name.

This field may also be useful if you plan on taking advantage of the
interoperability provided by Pyxos FT networks. For example, multiple
manufacturers may produce interfaces for Pyxos Points for use on a single
network. In that case, you can use this field to identify the manufacturer of
the device containing each Pyxos Point and to avoid naming conflicts in the
generated header files.

Description Enter a description of the interface definition in the Description box.

6. Add PNVs to the interface definition for hosted Points, or I/O bitmasks
for unhosted Points. If you are creating a hosted Point interface
definition, click Add NV to open the Add Pyxos NV dialog. If you are
creating an unhosted Point interface definition, click Add Bitmask to
open the Add I/O Bitmask for Unhosted Point dialog.

Pyxos FT Programmer’s Guide 17

Figure 8 Add Pyxos NV and Add I/O Bitmask for Unhosted Point Dialogs

7. If you are adding an I/O bitmask to an unhosted Pyxos Point, configure
the fields on the Add I/O Bitmask for Unhosted Point dialog, and then
click OK to return to the main Pyxos FT Interface Developer window.

When you return to the main Pyxos FT Interface Developer window, the
I/O Bitmasks list will include the I/O bitmask you’ve just created. You
can edit its configuration later by selecting it in the list, and then clicking
Edit Bitmask (you will not be able to change its direction). You can
remove it by selecting it in the list and clicking Remove Bitmask. You
can add more I/O bitmasks by clicking Add Bitmask again. When you
have finished, proceed to step 11.

Table 6 describes the fields on the Add I/O Bitmask for Unhosted Point
dialog.

Table 6 Add I/O Bitmask for Unhosted Point Dialog

Property Description

Name Enter the name of the I/O bitmask.

Direction Specify whether the I/O pin will be used as an input or
output. An input pin should be connected to a digital input,
and an output pin should be connected to a digital output.

IO Pin Select the IO pin that this I/O bitmask applies to in IO Pin.
The bitmask selected for the DI (pin 3) I/O pin must be an
input.

The Pyxos FT Chip reserves 4 I/O pins for digital I/O. If one or more of
these pins is not connected to either an input or output, you do not have
to define an I/O bitmask for that pin. The interface generated by the
Pyxos FT Interface Developer will tell the Pilot to configure the pin as an
output. If the pin is tied high or low, you must configure the pin as an
input. To accomplish this, you can define dummy bitmasks for these
unused pins that are defined as inputs. Assign bitmask names and a
Point description that make it clear that these pins are not used by the
Point.

18 Pyxos FT Programmer’s Guide

8. If you are adding a PNV to a hosted Pyxos Point interface definition,
enter the name of the PNV in Network Variable Name.

Then, select the PNV’s type by setting NV Type. To assign a custom type
to the PNV, select Custom, enter the size of the PNV in Bytes, and then
click OK.

To select a type from the resource file catalogs on your computer, select
From Resource Files, and then click Select NV. The window shown in
Figure 9 opens.

Figure 9 Select NV Type From Resource Files Dialog

By default, the window will list the resource files available in the
standard LONWORKS Resource Files catalog on your computer. You can
enter the name of a type in the Find in List box, and then click Find to
scroll to that type’s entry in the list. You can click the button to the right
of Catalog File to choose a different resource file catalog.

If a suitable standard type is not available, you can choose a resource file
containing user-defined types. Using standard types simplifies
integration of Points and Pilots by different developers or manufacturers.

You can use the NodeBuilder Resource Editor to browse the resource files
and edit the types available on your computer. To start the NodeBuilder
Resource Editor, select NodeBuilder Resource Editor from the Tools
menu.

Select a resource file in Compatible Resource Files. Then, select the PNV
type in Available NV Types. Click OK to return to the Add NV dialog.

Pyxos FT Programmer’s Guide 19

9. Set Direction to specify whether the PNV is an Input or Output network
variable. An input PNV is used by the Pyxos Point to receive information
from the Pilot. An output PNV is used to send information to the Pilot.

9. Click OK to return to the main Pyxos FT Interface Developer window.
The newly created PNV will be listed in Network Variables at the bottom
of the dialog. You can edit the PNV’s configuration later by selecting it in
the list and clicking Edit NV (you will not be able to change the PNV’s
direction). Or, you can remove it by selecting it in the list and clicking
Remove NV.

10. Repeat steps 6-9 to create more PNVs, as your application design
requires.

11. From the File menu, click Save NewPoint.PxIntf, and then specify a file
name for the Point interface definition. You can use the default directory
selected by the Pyxos FT Interface Developer to store the file.

12. The Point interface definition will now be listed in Points on the Pyxos FT
Interface Developer window. You can modify its settings later. To do so,
re-open the network project by selecting Open > Network Project from the
File menu, and then select Open > Point Interface Definition to edit the
Point interface definition.

You can remove the Point interface definition by selecting it in the list,
and clicking Remove Point. If you create a new Point interface definition
and then try to remove it after making any changes to it, a dialog will
open asking if you want to save the changes to the Point. This behavior is
expected, as removing the Point interface definition does not cause its
underlying files to be deleted.

Importing Point Interface Definitions
You can import Point interface definitions created for another Pyxos FT network
project into your project. This may be useful if you plan to add devices created by
other manufacturers to your project. To do so, follow these steps:

1. Add the .PxIntf file for the Point interface to a local directory on the
computer running the Pyxos FT Interface Developer.

2. From the File menu, click Add Existing Point. The Add Point Interface
Definition File to Project window opens.

3. Browse to the .PxIntf file selected in step 1, and click Open.

4. The imported Point interface definition will be listed in Points on the
right side of the Pyxos FT Interface Developer window. Apply the
interface definition to the Pyxos Points in your project. The settings
selected on the Point Application Options dialog for the interface may no
longer be valid, as the settings are not imported.

Using the Standard Program ID Calculator
The program ID is a 64-bit (16-hex-digit) identifier that uniquely identifies the
application contained within a hosted Pyxos Point. A program ID is typically

20 Pyxos FT Programmer’s Guide

presented as eight pairs of hexadecimal encoded digits, separated by colons.
When formatted as a standard program ID, the 16 hexadecimal digits are
organized as 6 fields that identify the manufacturer, classification, usage,
channel type, and model number of the device. Every standard program ID uses
the following format:

FM:MM:MM:CC:CC:UU:TT:NN

You will use the Standard Program ID Calculator shown in Figure 10 to select a
program ID for each hosted Pyxos Point interface definition in your project. You
can set the program ID by manually entering it in the Program ID box at the
bottom of the dialog, or you can set the other boxes on the dialog to appropriate
values for your application, and calculate a program ID based on those values.
Table 7 lists and describes the program ID fields. When you have defined your
program ID, click OK to return to the main Pyxos FT Interface Developer
window.

Figure 10 LonMark Standard Program ID Calculator

Pyxos FT Programmer’s Guide 21

Table 7 Program ID Fields

Program ID
Segment

Field Description

F N/A A 4-bit format identifier. Must be set to 9.

M:MM:MM Manufacturer A 20-bit identifier for the device manufacturer. Click the arrow to
select from a list of all the device manufacturers who are members
of LONMARK International. If your company is a member of
LONMARK International but is not included in the list, download
the latest program ID data from www.lonmark.org/spid.

If your company is not a member of LONMARK International, get a
temporary manufacturer ID from www.lonmark.org/mid. If your
company is a LONMARK member, but not listed in the updated
program ID list, or if you have a temporary manufacturer ID,
select <Enter Number [Decimal]> in the Manufacturer list, then
enter your manufacturer ID in the field to the right of the
Manufacturer box. Enter the value in decimal, the calculator
converts it to hex for the program ID. You do not have to join
LONMARK International to get a temporary manufacturer ID, the
information required to get one is very minimal, and there is no
fee to get one. For more information about membership in
LONMARK International, see www.lonmark.org.

CC Category The general purpose or industry of the device. The Category
selected determines the device classes that will be available in
Device Class. Select ALL to have Device Class show all existing
device classes. Select Profiles By Name to have Device Class
show an alphabetical list of all device classes with a standard
functional profile. Select Profiles By Number to have Device
Class show a numerical list (sorted by device class number) of all
device classes with a standard functional profile.

CC Device Class A 16-bit identifier for the primary function of the device. The
primary function of the device is determined by the primary
function implemented by your device.

UU Usage Select the setting that most appropriately describes the usage of
your device. You can enter any value in this field if you set the
Usage Field Values Defined By Functional Profile check box.

TT Channel Type Must be set to Pyxos-Ft (0xFE)

http://www.lonmark.org/spid
http://www.lonmark.org/mid
http://www.lonmark.org/

22 Pyxos FT Programmer’s Guide

Program ID
Segment

Field Description

NN Model Number An 8-bit identifier that you assign to specify the product model for
your device. Assign a unique model number for the specified
manufacturer, device class, usage, and channel type. You can use
the same hardware for multiple model numbers, depending on the
program that is loaded into the hardware. The model number
within the program ID does not have to conform to your published
product model number.

N/A Standard
Development
Program ID

This check box must be selected—this chooses a format 9
standard program ID.

N/A Has Changeable
Interface

This check box must be cleared.

N/A Usage Field
Values Defined
By Functional
Profile

Select this check box to enter any value in the Usage field.

N/A Program ID This box is automatically updated when changes are made to the
other fields on the dialog. You can also manually enter or change
a program ID here.

Step Three: Setting Advanced Options
The default settings included with the Pyxos FT Interface Developer utility will
be suitable for most applications. This section describes additional options for
advanced developers.

Setting the Pilot Application Options
To set the Pilot Application Options, follow these steps:

1. Open the Pyxos FT network project as described previously in this
chapter, and then click Pilot Application Options. The Pilot Application
Options dialog opens.

Pyxos FT Programmer’s Guide 23

Figure 11 Pilot Application Options Dialog

2. Set the fields on the Pilot Application Options dialog, and then click Save
and Close to save your settings. Table 8 describes the fields on the Pilot
Application Options dialog.

24 Pyxos FT Programmer’s Guide

Table 8 Pilot Application Options

Field Description

Maximum Number
of Points

Enter the maximum number of Pyxos Points that can be added to the
network. Each network must contain at least one Pyxos Point, and
can contain a maximum of 32 Pyxos Points. This setting defines the
number of timeslots for the network, and therefore affects the
response time for the network. By default, the number of timeslots is
set to the minimum even number that is greater than or equal to this
value. For a network with two timeslots (two write plus two read
timeslots), that is, up to two Points, response time is less than 2 ms;
for a network with a full 32 timeslots (32 write plus 32 read timeslots
for 32 Points), response time is about 25 ms.

The default value is 32.

Reserved Timeslots Enter any timeslots that should be marked as reserved in a comma-
separated list. The Pilot application will not announce timeslots that
are marked as reserved, so that Pyxos Points that are registered with
the manual and automatic registration methods will not have access
to these timeslots. If you are using the hardwired registration for
any Pyxos Points on your network, you should reserve the timeslots
you plan to assign to those Pyxos Points.

For example, to mark the first five timeslots as reserved, enter
0,1,2,3,4

By default, no reserved timeslots are selected.

Include Statistics
Functions

Select this check box to enable the Pilot application to read and clear
network statistics for the Pyxos Points on the network with the
PyxosReadNetworkStats() and PyxosClearNetworkStats() functions.
See Chapter 4, Creating a Pilot Application, for more information on
these functions.

By default, this check box is selected.

Enable Unhosted
Point Support

Select this check box if you will be adding any unhosted Pyxos Points
to the network. By default, this check box is cleared.

Use On-Demand
TDM Mode

Select this check box to place the network in on-demand mode,
meaning that write frames used to update the PNVs on the network
will only be sent when the PyxosPilotEventHandler() function is
called. By default, the Pilot runs in continuous TDM mode, rather
than in on-demand TDM mode.

You can use on-demand mode to save power on very slow networks.
In on-demand mode, the Pilot application controls how frequently
frames are sent.

By default, this check box is cleared.

Pyxos FT Programmer’s Guide 25

Field Description

Support Only
Hardwired Points

Select this check box if all of the Pyxos Points on the network are to
join the network using the hardwired registration method. If this is
selected, all functions that can be used to allocate free timeslots and
send free timeslots to a Pyxos Point will be excluded from the Pilot
API.

By default, this check box is cleared.

Enable Support for
Protocol Analyzer
Callbacks

When debugging a Pyxos application, it may be useful to implement
a protocol analyzer that logs the packets sent on the Pyxos FT
network. You may use the PyxosPilotProtocolAnalyzerCallback() to
aid in this development. Select the Enable Support for Protocol
Analyzer Callbacks check box to enable the use of this feature.

For more information on the PyxosPilotProtocolAnalyzerCallback(),
see Analyzing Pyxos FT Network Communication on page 92.

By default, this check box is cleared.

Disable Clock Out
Pin

Every Pyxos chip has a clock out pin that the Point can use to drive
the host processor’s clock, or anything else that might need a clock.
If the Point’s hardware uses the clock, the clock pin must be enabled.
If the Point’s hardware does not use the clock, it can be disabled to
conserve power.

On a hosted Point and on the Pilot, the clock out pin will be disabled
by the API based on the application options settings set on the Point
Application Options and Pilot Applications Options dialogs,
respectively. The Pilot disables/enables the clock out pin on
unhosted Points, based on the setting of the Clock Out field on the
unhosted Point’s interface.

Select the Disable Clock Out Pin check box to disable the clock out
pin on the Pilot.

By default, this check box is selected.

Description Enter an optional description of the Pilot.

Manually Override
Number of Timeslots

If you want to specify how many timeslots can be allocated on the
network, select the Manually Override Number of Timeslots check
box and then enter the number of timeslots in the Number of
Timeslots field. This must be an even number between 2 and 32, and
must be greater or equal to than the Maximum Number of Points
value.

Use the default value for this property. By default, this check box is
not selected, and the Number of Timeslots value is set to the
minimum even number that is greater than or equal to the value of
the Maximum Number of Points property.

26 Pyxos FT Programmer’s Guide

Field Description

Number of Frames
Before Timeout

Enter the number of read frames that the Pilot application will wait
for an acknowledgment before timing out after sending an update or
poll request to a Point. The default value for this property is 16
frames.

You should only increase this value if you have some Pyxos Points on
the network that are very slow. You can decrease this value if you
have a large network and you want very fast failure responses. You
must keep the value of this property in the range of 2-254.

Register Buffer Size Enter the size of the register buffer, in bytes. This buffer is used
when performing any register operations during a callback. If the
application attempts to read or write a local register larger than this
value during a callback, the function will fail and an error will be
returned. Use the default value (8 bytes) for this property.

Memory
Management
Settings

Select the Use Heap For Memory Management check box to specify
that the Pyxos FT API will use the heap to allocate the data used to
control the Pyxos Points on the network. Depending on the flexibility
of the network, using the heap may or may not result in better use of
resources.

If you do not select the Use Heap For Memory Management check
box, then data must be declared to support each instance of each
Point and you must specify the maximum number of each type of
Point supported. You can do this by selecting a Pyxos Point
interface definition in Points, and then entering the maximum
number of Pyxos Points that will use that interface definition in Max
Number of Points of This Type.

Setting the Network Project Settings
To set the project settings for your Pyxos FT network project, follow these steps:

1. Create (or open) the project as described in the previous sections.

2. From the File menu, select Project Settings. The Network Project
Settings window opens.

Pyxos FT Programmer’s Guide 27

Figure 12 Network Project Settings

3. Fill in the fields on the Network Project Settings dialog. These fields
determine where the include files for your network project will be stored.
You will reference these include files when creating the Pyxos Point and
Pilot applications for your network.

Table 9 describes these settings.

Table 9 Network Project Settings

Property Description

Project Folder Select the folder that will contain all of the project files for your
Pyxos FT network project.

Path to Pilot Application
Options Files

Select the file path for the Pilot application options file for your
network project. This file defines the operating parameters
that affect how the Pilot will interoperate with and manage the
Pyxos FT network.

28 Pyxos FT Programmer’s Guide

Property Description

Path to
Point
Interface
Files

The name and path of the interface definition file for the Pyxos
Point type currently selected in Points. The interface
definition file contains definitions of the PNVs that Pyxos
Points using the interface definition file should include.

Paths for Point
Nodes

Path to
Point
Application
Options
Files

The name and path of the Point application options file for the
Pyxos Point type currently selected in Points. This file
references the Point interface definition file, and contains
information each hosted Pyxos Point application will need.

If a Point implementation does not use the API, no Point
Application Options file is required. While the Point
Application Options button in the Pyxos FT Interface
Developer will be enabled for such a Point, the settings
displayed in the corresponding Point Application Options
dialog may not be representative of the actual settings for the
Point.

4. Click OK to save your changes and return to the main Pyxos FT Interface

Developer window.

Setting Project Options
You can use the Options dialog to configure project settings for the Pyxos FT
Interface Developer. To use the Options dialog, follow these steps:

1. Create (or open) the Pyxos FT network project as described in the
previous section.

2. From the Tools menu, select Options. The Options dialog opens.

Pyxos FT Programmer’s Guide 29

Figure 13 Options Dialog

3. Configure the fields on the Options dialog, and then click OK to save your
changes. Table 10 describes the fields on the Options dialog.

Table 10 Options Dialog

Property Description

Default Location of
Network Projects

Sets the default location of the network projects. You can
change the location when you create a Pyxos FT network,
as described in the Step One: Creating a Network Project
section on page 11.

Save Options Determines whether or not you will be prompted to save
the interface definition you are editing when you choose to
create a new interface definition.

Naming Options Specifies the manufacturer name to be applied to your
Pyxos Points in the Manufacturer Name box. Select the
Show Manufacturer Name in NV Names List check box to
display the manufacturer name in the list of PNVs on the
main Pyxos FT Interface Developer window.

Step Four: Generating Include Files
When you have finished designing your network project, you can generate the
include files for the project and for each Pyxos Point, and then begin developing
your applications. The following sections provide an overview of the files you will
generate. This is followed by instructions you can use to generate the include
files.

30 Pyxos FT Programmer’s Guide

Generated XML Files
You will generate a Point interface definition file for each type of Pyxos Point in
your project. These files use the following naming convention:
<PointName>.PxIntf, where <PointName> represents the name of the Pyxos
Point. The Point interface file name depends on the name of the Point, so the
only way to change the name of the file is by changing the name of the
underlying Point. When you create a Pyxos Point application, you will reference
this file to identify the interface the Pyxos Point should implement.

You will also generate a MyPyxosApplication.PxOpts file for each Pyxos Point
and Pilot. This file stores implementation specific options for the Point or Pilot.

MyPyxosApplication.PxOpts

<pointName>.PxIntf

Point

Pilot

XML FilesPoint Interface Developer Used By

Figure 14 Generated XML Files

Generated Header Files
The Pyxos FT Interface Developer also generates a <PointName>PointInterface.h
header file from each Point interface definition file. This file defines constants
and macros for the Point interface definition, and will be included by both Pyxos
Point and Pilot APIs and applications.

A group of Resources.h files will also be generated, one for the Pilot and one for
each Point interface definition file. This file defines PNV types, and may require
customization for a particular host.

A MyPyxosApplication.h file will be generated from the
MyPyxosApplication.PxOpts files for each Pyxos Point and Pilot, so that there is
also one MyPyxosApplication.h file for each Pyxos Point and Pilot. The
MyPyxosApplication.h file contains macros used to control the compilation of the
Pyxos Point and Pilot APIs.

Pyxos FT Programmer’s Guide 31

Point

Pilot

Used By

MyPyxosApplication.PxOpts

<pointName>.PxIntf

XML Files

MyPyxosApplication.h

<pointName>PointInterface.h

Generated Header
Files

Respources.h

Figure 15 Generated XML Files

Generating Include Files
To generate the include files, follow these steps:

1. From the File menu, select Open and then select Network Project to open
a network project.

2. From the File menu, select Generate All Include Files to generate the
include files for the project.

3. Each Point or Pilot application needs to include the Pyxos.h file, which
will in turn include its respective include file (the MyPyxosApplication.h
file). For Pyxos Points, this file automatically includes the interface
header file for the Point interface definition selected for the Point. For
the Pilot application, this file includes the interface include file for each
Point included in the network.

32 Pyxos FT Programmer’s Guide

Pyxos FT Programmer’s Guide 33

3

Creating a Pyxos Point
Application

This chapter describes how to create a Pyxos Point
application using the Pyxos Point API.

34 Pyxos FT Programmer’s Guide

Overview
This chapter describes how to create a Pyxos Point application using the Pyxos
Point API. A Pyxos Point application using the Pyxos Point API performs the
following tasks:

1. Initialize the Pyxos FT Chip and the Pyxos FT API. For more
information on this task, see Initializing the Pyxos FT API on page 36.

2. If the Pyxos Point uses the hardwired registration method, announce its
timeslot after initializing the Pyxos Point. For more information on this
task, see Allocating Timeslots on page 36.

3. Periodically call PyxosPointEventHandler() to send PNV updates to the
Pilot and to receive PNV updates from the Pilot. For more information on
this task, see Handling Events on page 38.

4. Read and write to PNVs on the Pyxos Point, as your application requires.
For more information on this task, see Reading, Writing and Receiving
PNV Updates on page 39.

Table 11 lists the functions you will use to perform each of these tasks. These
functions are described in more detail later in the chapter. The Pyxos Point
Example Application section on page 43 includes sample code you may find useful
when following these steps to create your own Pyxos Point application.

Table 11 Point API Functions

Function Description For More Information,
See…..

psInit() Initializes the Pyxos Serial API. This
function must be called before
PyxosPointInit(). The implementation
of psInit()is processor-specific, and
generally must be called before I/O is
enabled on the processor.

PyxosPointInit() Initializes the Pyxos FT API and the
Pyxos FT Chip.

Initializing the Pyxos
FT API on page 36

Pyxos FT Programmer’s Guide 35

Function Description For More Information,
See…..

PyxosPointSendUniqueId() Registers a Pyxos Point with the Pilot
application. This function is typically
only used with manual registration
without using a Join button. It is not
required when using the automatic
and hardwired registration. It is also
not required for manual registration if
your Pyxos Point uses the Join button
to send registration requests—so in
many cases your application will not
need to use this function.

PyxosPointAnnounceTimeslot() Assigns a timeslot to a Pyxos Point
when using the hardwired registration
method.

PyxosPointGetTimeslot() Determines the timeslot that has been
assigned to a Pyxos Point.

PyxosPointIsOnline() Returns True if the Point is online,
False otherwise.

Allocating Timeslots on
page 36

PyxosPointEventHandler() Sends any pending updates to the
Pyxos Pilot and processes any updates
received by the Pyxos Point. Your
application must call this function
periodically to determine whether
there are any Pyxos events to process.

Handling Events on
page 38

PyxosPointPollPnv() Requests the Pilot to update one of the
Pyxos Point’s input PNVs.

PyxosPointUpdatePnv() Writes the value of a PNV on the
Pyxos Point, and sends the new value
to the Pyxos Pilot.

PyxosPointIsPnvUpdatePending() Determines if there are any updates
for a PNV cached in the memory of the
Pyxos FT Chip or in the API that have
not been sent to the Pilot.

Reading, Writing and
Receiving PNV Updates
on page 39

36 Pyxos FT Programmer’s Guide

Initializing the Pyxos FT API

The first step to take when creating a Pyxos Point application is to initialize the
Pyxos serial driver and the Point API. You can do so with the psInit() and
PyxosPointInit() functions.

psInit()
Initializes the Pyxos serial driver.

Syntax:

void psInit(void);

Remarks: The Pyxos Point application must call this function once when it starts
up, after every power-up or reset. The implementation of this function depends
on the host processor, and is often called before processor I/O has been enabled.
See Chapter 6, Porting the Pyxos FT API, for more information concerning
psInit(). After this function has been called and processor I/O has been enabled,
the application must call PyxosPointInit().

PyxosPointInit()
Initializes the Pyxos FT API and the Pyxos FT Chip.

Syntax:

PyxosSts PyxosPointInit(void);

Remarks: A Pyxos Point application must call the PyxosPointInit() function once
when the device starts up after a power-up or a reset, immediately after calling
the psInit() function and processor I/O has been enabled. This initializes the
Pyxos FT API and the Pyxos FT Chip, and writes the Point’s program ID to the
Pyxos FT Chip. You can specify the Point’s program ID with the Pyxos FT
Interface Developer, as described in Chapter 2, Using the Pyxos FT Interface
Developer.

Allocating Timeslots
If the Pyxos Point is using the hardwired registration method, then the
application must assign the Pyxos Point a timeslot after initializing the Pyxos
Point with the PyxosPointInit() function. This is accomplished by calling the
PyxosPointAnnounceTimeslot() function.

If the Pyxos Point is not using the hardwired registration method, then the Pilot
will assign the Pyxos Point a timeslot, and you can begin handling events and
reading and writing PNV values with your Pyxos Point application immediately
after initialization. These tasks are described in the Handling Events and
Reading, Writing and Receiving PNV Updates sections later in the chapter.

Pyxos FT Programmer’s Guide 37

Timeslot Functions
This section describes the functions that are used to allocate a Pyxos Point a
timeslot.

PyxosPointAnnounceTimeslot()
Assigns a Pyxos Point a timeslot when using the hardwire registration method.
The timeslot to use can be hardcoded into the Pyxos Point application, read from
a wiring harness or serial identification tag, or determined via some other
application-dependent means.

Syntax:

PyxosSts PyxosPointAnnounceTimeslot(PyxosTimeslot timeslot);

Remarks: Call this function only once after start-up, reset, or power up. It sets
the timeslot in the Pyxos Point, sets the Pyxos Point into configured mode, and
announces the timeslot to the Pilot application.

To use this function, the PYXOS_REGISTRATION_MODE macro must be
defined as PYXOS_REGISTRATION_MODE_HARDWIRED in the
MyPyxosApplication.h file. This will be the case if you selected Hardwired
Registration as the Registration Method on the Point Application Options dialog
when you created the Point Interface Definition file for this type of Point with the
Pyxos FT Interface Developer.

PyxosPointGetTimeslot()
Returns the timeslot currently assigned to the Pyxos Point. You can use this to
verify that the Pyxos Point has been assigned a timeslot.

Syntax:

PyxosTimeslot PyxosPointGetTimeslot(void);

Remarks: This function returns the Pyxos Point’s timeslot, if the Point is
currently configured. If it is not configured, it returns PYXOS_NO_TIMESLOT.

If the PYXOS_REGISTER_BUFFER_SIZE macro in the MyPyxosApplication.h
file is set to a value less than 4, calling this function from a callback will fail and
return PYXOS_NO_TIMESLOT, even if the Pyxos Point has been assigned a
timeslot. The value of the PYXOS_REGISTER_BUFFER_SIZE macro
corresponds to the value you selected for the Register Buffer Size field on the
Point Application Options dialog when you created the Point Interface Definition
file for this type of Point with the Pyxos FT Interface Developer.

This function does not depend on calling the PyxosPointEventHandler() function.
For example, the application can wait until the Point has been configured to
perform a task as shown in the following example:

 PyxosTimeslot timeslot = PYXOS_NO_TIMESLOT;

 while ((timeslot = PyxosPointGetTimeslot ()) == PYXOS_NO_TIMESLOT);

38 Pyxos FT Programmer’s Guide

However, it is not generally necessary for a Point to wait until it has been
configured to perform network tasks. The application can update PNVs and the
API will write the value into its cache. The value will be written to the Pyxos FT
Chip during a subsequent call to the PyxosPointEventHandler() function after
the Point has been configured and set online.

PyxosPointIsOnline()
Returns True if the Point has been set online,

Syntax:

Bool PyxosPointIsOnline(void);

Remarks: This function returns True if the Pilot has set the Point online, and
False otherwise.

The application can update PNVs before the Pilot has set the Point online, but
the API will not write them out to the Pyxos FT Chip until a subsequent call is
made to PyxosPointEventHandler(), after the Point has been configured and set
online.

PyxosPointSendUniqueId()
Sends the Pyxos Point’s unique ID to the Pilot application.

Syntax:

PyxosSts PyxosPointSendUniqueId(void);

Remarks: This function is used in the manual registration method to allow the
Pyxos Point to announce itself to the Pilot application. If the Pyxos Point has not
yet been allocated a timeslot, the message will be sent on a random free timeslot.
Typically, the Join button on the Pyxos Point is used to send registration
requests to the Pilot with the manual registration method, and your application
will not need to use this function.

If the PYXOS_REGISTER_BUFFER_SIZE macro in the MyPyxosApplication.h
file is set to a value less than 8, calling this function from a callback will fail and
return the PyxosSts_NotAllowed error. The value of the
PYXOS_REGISTER_BUFFER_SIZE macro corresponds to the value you selected
for the Register Buffer Size field on the Point Application Options dialog when
you configured the Point application with the Pyxos FT Interface Developer.

Handling Events
After you have initialized the Pyxos Point and (if necessary) allocated the Pyxos
Point a timeslot, you can begin calling the PyxosPointEventHandler() function to
read incoming data from the network, and call the appropriate callbacks.

PyxosPointEventHandler()
Reads incoming data from the network, and calls the appropriate callbacks. Your
Pyxos Point application must call this function periodically. If there are any

Pyxos FT Programmer’s Guide 39

pending updates to be sent on the network, they are written to the Pyxos FT Chip
when this function is called.

Syntax:

PyxosSts PyxosPointEventHandler(void);

Remarks: All Pyxos Point applications must call this function periodically.
Otherwise, the application will not be able to receive or send data to the network.
The application may call this in response to a Pyxos interrupt. For more
information on Pyxos interrupts, see Interrupt Driven Pyxos Programs on page
166.

The Point API includes one callback, PyxosPointPnvUpdateOccurred(). This
callback will be fired each time a PNV on the Pyxos FT network is updated. For
more information on this, see the next section, Reading, Writing and Receiving
PNV Updates.

Reading, Writing and Receiving PNV Updates
Your application can read and write the values of PNVs on the Pyxos Point with
the PyxosPointUpdatePnv() and PyxosPointPollPnv() functions. It can send
these PNV updates onto the network, and receive updates from the Pilot, with
the PyxosPointPnvUpdateOccurred() callback. These functions and callbacks are
described in this section.

PyxosPointUpdatePnv() Function
Writes the value of an output network variable and sends the value to the Pyxos
Pilot.

Syntax:

PyxosSts PyxosPointUpdatePnv(PyxosPci pci, Byte *pData);

Remarks: The PNV to be updated must be referenced by its Pyxos Chip index
(pci parameter) as defined in the Point interface definition file used by the Point,
and the PNV must be defined as an output PNV. You can specify the value to be
written to the PNV with the pData parameter.

The API buffers the output value and writes the value to the Pyxos FT Chip
when PyxosPointEventHandler() is called, unless an unacknowledged update for
this PNV has already been sent to the chip. In that case, the value will be
written to the Pyxos FT Chip on a subsequent call to PyxosPointEventHandler()
after the previous write requests have been acknowledged. Once the value has
been written to the Pyxos FT Chip, the Pyxos FT Chip will send the value to the
Pilot when it can. Updates for multiple PNVs are sent out on a round-robin
basis. If the PyxosPointUpdatePnv() function is called multiple times for the
same PNV while an update is in progress, all of the intermediate values for the
PNV will be lost, meaning that only the last updated value will be sent onto the
network.

The application may update PNVs before the Point is configured and set online.
The API will cache the value, but will not write the value to the Pyxos FT Chip

40 Pyxos FT Programmer’s Guide

until a subsequent call is made to PyxosPointEventHandler(), after the Point has
been configured and set online.

The order in which PNVs are sent on the network is not necessarily the same as
the order that your application uses to update them.

If you attempt to update an input PNV with this function the operation will fail.

All PNVs are sent in big endian format. If your host processor is a little endian
processor, your application may have to swap the bytes of multi-byte fields prior
to calling the PyxosPointUpdatePnv() function. Macros defined in the Platform.h
file are provided to aid in this transformation. See the Modifying the Platform.h
File section on page 115 for more information on this.

You cannot use this function if the PYXOS_NO_OUTPUTS macro is defined in
the MyPyxosApplication.h. This is only the case if the Pyxos Point does not have
any output PNVs.

The <PointName>PointInterface.h file includes a #define for each Pyxos FT PNV,
which includes the lowest PCI value for the PNV. You can use the #define as the
pci parameter. For example, refer to the excerpt from the
ACMESensorPointInterface.h file below. For more information on the
ACMESensorPointInterface.h file, see the Pyxos Point Example Application
section on page 43.

/* PNV definitions */

/* type name: SNVT_switch */

 #define ACME_SENSOR_SWITCH 0x8
/* type name: SNVT_switch */
#define ACME_SENSOR_SWITCH_FEEDBACK 0x0
#define PYXOS_ACME_SENSOR_NETWORK_VARIABLES \
 PYXOS_DEFINE_PNV(PYXOS_POINT_OUTPUT, \
 ACME_SENSOR_SWITCH, 2) \
 PYXOS_DEFINE_PNV(PYXOS_POINT_INPUT, \

 ACME_SENSOR_SWITCH_FEEDBACK, 2)

The Point can send the value of the switch as follows:

SNVT_switch switchValue;
if (ButtonPressed())
{

/* Button was pressed. Toggle the switch, update the
status led and send the update to the Pilot.

 */
switchValue.state = !switchValue.state;
switchValue.value = switchValue.state ? 200 : 0;
SetLed(switchValue.state);

 PyxosPointUpdatePnv(ACME_SENSOR_SWITCH,
 (Byte *)&switchValue);

 }

Pyxos FT Programmer’s Guide 41

PyxosPointPollPnv() Function
Sends a request to the Pilot to update the value of one of the Pyxos Point’s input
PNVs.

Syntax:

PyxosSts PyxosPointPollPnv(PyxosPci pci);

Remarks: The PNV to be polled must be referenced by its Pyxos Chip index (pci
parameter), as defined in the Point interface definition file used by the Point. The
poll request will be written to the Pyxos FT Chip when
PyxosPointEventHandler()is called, unless an unacknowledged poll request
already exists. In that case, the poll request will be written to the Pyxos FT Chip
on a subsequent call to PyxosPointEventHandler() after the previous poll request
has been acknowledged. Once the poll request has been written to the Pyxos FT
Chip, the Pyxos FT Chip sends a poll request to the Pilot as soon as possible.
Sending the poll request to the Pilot competes with sending updates to the Pilot
on a round-robin basis. The Pyxos FT protocol supports sending up to four poll
requests at a time. If more than four poll requests are pending, they will also be
processed in round-robin order.

The <PointName>PointInterface.h file includes a #define for each PNV, which
includes the lowest PCI value for the PNV. You can use the #define as the pci
parameter. For example, refer to the excerpt from the
ACMESensorPointInterface.h file below. For more information on the
ACMESensorPointInterface.h file, see Pyxos Point Example Application on page
43.

/* PNV definitions */

/* type name: SNVT_switch */
#define ACME_SENSOR_SWITCH 0x8

/* type name: SNVT_switch */
#define ACME_SENSOR_SWITCH_FEEDBACK 0x0

#define PYXOS_ACME_SENSOR_NETWORK_VARIABLES \
 PYXOS_DEFINE_PNV(PYXOS_POINT_OUTPUT, \
 ACME_SENSOR_SWITCH, 2) \
 PYXOS_DEFINE_PNV(PYXOS_POINT_INPUT, \

 ACME_SENSOR_SWITCH_FEEDBACK, 2)

The Point can poll the value of the switch feedback as follows:

PyxosPointPollPnv(ACME_SENSOR_SWITCH_FEEDBACK);

It is generally not necessary for a Point to poll any of its input PNVs. Instead, it
should process them when the Pilot decides to send them. However, if the Point
has some need to refresh the value, this function can be used to do so.

If you attempt to poll an output PNV with this function the operation will fail.

The application can poll PNV values before the Point is configured and set online.
The API will cache the request, but will not write the request to the Pyxos Chip

42 Pyxos FT Programmer’s Guide

until a subsequent call is made to PyxosPointEventHandler(), after the Point has
been configured and set online.

To use this function, the PYXOS_ENABLE_POLLING macro must be defined in
the MyPyxosApplication.h file. This means that you must select the Enable
Polling check box on the Point Application Options dialog when you configure the
Point Interface Definition file for the Pyxos Point with the Pyxos FT Interface
Developer.

PyxosPointIsPnvUpdatePending()
Determines if there are any updates for a PNV cached in the memory of the
Pyxos FT Chip, or in the API that have not yet been sent to the Pilot.

Syntax:

Bool PyxosPointIsPnvUpdatePending(PyxosPci pci);

Remarks: The PNV to be updated must be referenced by its Pyxos Chip index
(pci parameter) as defined in the Point interface definition file used by the Point.
The function will return True if the PNV has any updates pending, and False
otherwise. You cannot call this function on an input PNV.

This function cannot be used if the PYXOS_NO_OUTPUTS macro is defined in
the MyPyxosApplication.h file.

PyxosPointPnvUpdateOccurred() Callback
Handles a PNV update. Your application must implement this callback if it
defines any input PNVs. It will be called by PyxosPointEventHandler() for each
PNV update that is received by the Point.

Syntax:

void PyxosPointPnvUpdateOccurred(PyxosPci pci,
 const Byte *pPnvValue,
 Byte length);

Remarks: This function is called from PyxosPointEventHandler() whenever an
input variable is updated. You can use the Pyxos Chip index (pci parameter) to
identify the PNV that was updated. The update may have been initiated
independently by the Pilot or may be in response to calling PyxosPointPollPnv().

The function also provides the value currently assigned to the PNV (pPnvValue
parameter) and the PNV’s length (length parameter).

All PNVs are sent in big endian format. If your host processor is a little endian
processor, your application may have to swap the bytes of multi-byte fields prior
to calling PyxosPointUpdatePnv(). Macros defined in the Platform.h file are
provided to aid in this transformation. See the Modifying the Platform.h File
section on page 115 for more information on this.

This function will not be called if the PYXOS_NO_INPUTS macro is defined in
the MyPyxosApplication.h. This is only the case if the Pyxos Point does not have
any input PNVs.

Pyxos FT Programmer’s Guide 43

The <PointName>PointInterface.h file includes a #define for each PNV, which
includes the lowest PCI value for the PNV. You can use the #define as the pci
parameter. For example, refer to the excerpt from the
ACMESensorPointInterface.h file below. For more information on the
ACMESensorPointInterface.h file, see Pyxos Point Example Application on page
43.

/* PNV definitions */

/* type name: SNVT_switch */
#define ACME_SENSOR_SWITCH 0x8
/* type name: SNVT_switch */
#define ACME_SENSOR_SWITCH_FEEDBACK 0x0

#define PYXOS_ACME_SENSOR_NETWORK_VARIABLES \
 PYXOS_DEFINE_PNV(PYXOS_POINT_OUTPUT, \
 ACME_SENSOR_SWITCH, 2) \
 PYXOS_DEFINE_PNV(PYXOS_POINT_INPUT, \

 ACME_SENSOR_SWITCH_FEEDBACK, 2)

When the Pilot updates the sensor feedback, the Point can receive the update as
follows:

/* This function is called by the Point API whenever a new
value is received.

 */
void PyxosPointPnvUpdateOccurred(PyxosPci pci,

const Byte *pPnvValue,
Byte length)

{
if (pci == ACME_SENSOR_SWITCH_FEEDBACK) {

/* Update the switch state based on the feedback, and
then light the LED accordingly

 */
memcpy(&switchValue, pPnvValue, sizeof(switchValue));
SetLed(switchValue.state);

}
}

Pyxos Point Example Application
This section provides a simple example Pyxos Point application that has one
output PNV, ACME_SENSOR_SWITCH, and one input PNV,
ACME_SENSOR_SWITCH_FEEDBACK. The sensor has a single push-button
switch and an LED that is used to reflect the state of the switch.

Whenever the button is pushed, the switch’s state is toggled and the value is sent
to the Pilot. The Pilot can also update the state of the switch by updating the
ACME_SENSOR_SWITCH_FEEDBACK PNV. When the Pyxos Point receives
an update of the ACME_SENSOR_SWITCH_FEEDBACK PNV, it updates the
state of the switch and the LED accordingly.

This example (ACMESensorPointInterface.h) uses the following functions whose
implementations are not shown:

• HostIoInit(): Initializes the host I/O, including calling psInit().

44 Pyxos FT Programmer’s Guide

• ButtonPressed(): Returns a Boolean indicating that the switch has been
pressed.

• SetLed(Bool on): Turns the LED on or off, based on the value specified.

The current state of the switch is stored in a global variable of type SNVT_switch
called switchValue. The next section shows example code you can use for Pyxos
Points that use the automatic or manual registration methods. Following that is
example code for a Pyxos Point that is using hardwired registration. The
registration method that each Pyxos Point should use is specified in the Point’s
MyPyxosApplication.h file, and the Point API sets the mode in the Pyxos FT Chip
accordingly.

When you use the Point API, you must include the appropriate Pyxos files, as
described in Chapter 5, Including the Pyxos FT API.

Example for Manual or Automatic Registration
#include “Pyxos.h”
/* Current state of the switch. This is modified locally when the

user presses the sensor’s button, and is also updated based on
the feedback from the Pilot.

 */
SNVT_switch switchValue;

/* This is the application entry Point and main control loop. */
int main(void)
{

/* Initialize switch state to FALSE. */
memset(&switchValue, 0, sizeof(switchValue));

/* Initialize I/O including Pyxos Serial Driver */
HostIoInit();

/* Initialize the Point API. */
PyxosPointInit();

/* This is the main control loop, which runs forever. */
while (TRUE) {

/* Run the Pilot API event handler to process Pyxos Events.
 */
PyxosPointEventHandler();
if (ButtonPressed()) {

/* Button was pressed. Toggle the switch, update the
status led and send the update to the Pilot.

 */
switchValue.state = !switchValue.state;
switchValue.value = switchValue.state ? 200 : 0;
SetLed(switchValue.state);

PyxosPointUpdatePnv(ACME_SENSOR_SWITCH,

(Byte *)&switchValue);
}

}

return 0;

}

Pyxos FT Programmer’s Guide 45

/* This function is called by the Point API whenever a new value

is received.
 */
void PyxosPointPnvUpdateOccurred(PyxosPci pci,

const Byte *pPnvValue,
Byte length)

{
if (pci == ACME_SENSOR_SWITCH_FEEDBACK) {

/* Update the switch state based on the feedback, and then
light the LED accordingly

 */
memcpy(&switchValue, pPnvValue, sizeof(switchValue));
SetLed(switchValue.state);

}
}

Example for Hardwired Registration
This example is identical to the one in the previous section except for the first few
lines of initialization, during which the Point determines the timeslot it should
use and configures itself. This example uses the DetermineTimeslot() function
(not shown), which returns the timeslot that the Point should use. This function
may read a serial device, dip switches, or use some other external means of
customization to determine the timeslot that the Point should use.

The first several lines of the main program are shown below with the
modifications in bold. The rest of the example is the same as in the previous
section:

/* This is the application entry Point and main control loop. */

int main(void)
{

PyxosTimeslot timeslot;

/* Initialize switch state to FALSE. */
memset(&switchValue, 0, sizeof(switchValue));

/* Initialize I/O including Pyxos Serial Driver */
HostIoInit();

/* Initialize the Point API. */
PyxosPointInit();

/* Retrieve the timeslot from the user settings. */
timeslot = DetermineTimeslot();

/* Configure the Point in the desired timeslot, and announce

the Point to the Pilot.
 */
PyxosPointAnnounceTimeslot(timeslot);

/* This is the main control loop, which runs forever. */
while (TRUE) {

46 Pyxos FT Programmer’s Guide

.

.

.

Pyxos FT Programmer’s Guide 47

4

Creating a Pilot Application

This chapter describes how to create a Pilot application to
register, monitor, and control the Pyxos Points on a network.

48 Pyxos FT Programmer’s Guide

Overview
This chapter describes how to create a Pilot application using the Pyxos Pilot API
to register, monitor, and control the Pyxos Points on a network. A Pyxos Pilot
application performs the following tasks:

1. Initialize the Pyxos FT Chip and the Pyxos FT API. This task must be
performed before any of the others. For more information on this, see
Initializing the Pyxos Pilot on page 50.

2. Implement a control loop that periodically calls the Pyxos event handler
to handle Pyxos events, and to send PNV updates to the Pyxos Points on
the network. For more information on this, see Handling Events on page
51.

3. Register the Pyxos Points on the network. This involves receiving
registration requests from the Pyxos Points, allocating timeslots to them,
reading their program IDs, and identifying the interfaces they should
use. For more information on this, see Registering Points on page 55.

4. Receive updates for PNVs from the Pyxos Points on the network, and
send PNV updates to Pyxos Points. For more information on this task,
see Reading and Writing PNVs on page 67.

5. Monitor the health of the network, and recover from network errors by
resetting, reconfiguring, or replacing Pyxos Points when necessary. For
more information on this, see Detecting, Reporting, and Correcting
Communication Errors on page 77.

Table 12 lists and describes the functions you will use to perform each of these
tasks. These functions are described in more detail in the sections listed above.
This chapter also includes example code that will help you get started developing
your own Pilot application.

Pyxos FT Programmer’s Guide 49

Table 12 Pilot API Functions

Function Description For More Information,
See…..

psInit() Initializes the Pyxos Serial API. This
function must be called before
PyxosPilotInit(). The implementation of
psInit()is processor-specific, and
generally must be called before I/O is
enabled on the processor.

PyxosPilotInit() Initializes the Pyxos FT Chip and the
Pyxos FT API. The Pilot application
must call this function when it starts,
after calling psInit().

Initializing the Pyxos
Pilot on page 50

PyxosPilotEventHandler() Processes Pyxos events. The Pilot
application must call this function
periodically.

Handling Events on
page 51

PyxosPilotAllocateTimeslot() Allocates a timeslot to a Pyxos Point.

PyxosPilotFreeTimeslot() Frees a timeslot that has been
previously allocated to a Pyxos Point.

PyxosPilotGetTimeslot() Determines which timeslot a Pyxos
Point is currently using.

PyxosPilotGetUniqueId() Determines the unique ID of the Pyxos
Point associated with a particular
timeslot.

PyxosPilotGetProgramId() Gets the program ID of a Point.

PyxosPilotGetPointInterface() Obtains a pointer to the interface being
used by the Pyxos Point assigned to a
particular timeslot.

PyxosPilotSetPointInterface() Identifies the interface a Pyxos Point
should use.

PyxosPilotGetNumberOfPoints() Reads the number of Pyxos Points that
have been allocated timeslots, and the
number of Pyxos Points whose Point
interfaces have been specified.

PyxosPilotSetPointOnline() Sets a Pyxos Point online. Prior to
being set online, the Point will not send
any PNV values to the Pilot and the
Pilot will not send any PNV values to
the Point.

Registering Points on
page 53

50 Pyxos FT Programmer’s Guide

Function Description For More Information,
See…..

PyxosPilotUpdatePnv() Updates the value of an input PNV on a
Pyxos Point, and schedules the
propagation of the value onto the
network.

PyxosPilotIsPnvUpdatePending() Checks if any updates for a PNV are
cached in the API but have either not
yet been sent to or have not been
acknowledged by the Point.

PyxosPilotUpdateUnhostedPointIo() Updates digital output values on an
unhosted Point.

PyxosPilotPollRegister() Polls the value of a Register on a Pyxos
Point.

PyxosPilotGetPnvValue() Reads the cached value of an input PNV
on a Pyxos Point.

Reading and Writing
PNVs on page 67

PyxosPilotResetPoint() Resets a Pyxos Point. This resets the
Point’s Pyxos FT Chip and host
processor. If the Point uses manual or
automatic registration, this will
reconfigure the Point. If it uses
hardwired registration, this will verify
that the Point has configured itself.

PyxosPilotReplacePoint() Replaces a Pyxos Point with another of
the same type.

PyxosPilotReconfigurePoint() Reconfigures a Pyxos Point that may
have been reset.

PyxosPilotCheckConfiguration() Checks the configuration of the Pyxos
FT Chip used by the Pilot application.

PyxosPilotReInitPyxosInterface() Re-initializes the Pyxos FT Chip used
by the Pilot.

Detecting, Reporting,
and Correcting
Communication
Errors on page 75

Initializing the Pyxos Pilot
The first step to complete when creating a Pyxos Pilot application is to initialize
the Pyxos serial driver and the Pilot API. You can do so by calling the psInit()
and PyxosPilotInit() functions.

Pyxos FT Programmer’s Guide 51

psInit()
Initializes the Pyxos serial driver.

Syntax:

void psInit(void);

Remarks: The Pilot application must call this function once after every reset.
The implementation of this function depends on the host processor, and is often
called before processor I/O has been enabled. See Chapter 6, Porting the Pyxos
FT API, for more information concerning psInit(). After this function has been
called and processor I/O has been enabled the Pilot must call PyxosPilotInit().

PyxosPilotInit()
Initializes the Pyxos FT API and the Pyxos FT Chip.

Syntax:

PyxosSts PyxosPilotInit(void);

Remarks: The Pilot application must call PyxosPilotInit() once after every reset.
You must call this function after psInit() has been called and the processor I/O
has been enabled. This initializes the Pyxos FT Chip being used by the Pilot
application, and the Pyxos FT API.

Handling Events
The Pyxos Pilot application must periodically call PyxosPilotEventHandler() to
handle Pyxos events, and to send PNV updates to the Pyxos Points on the
network. Typically, this is done within a control loop that is always running.

Alternatively, you may invoke the event handler from an interrupt routine.
While this may be useful in some cases, it complicates the Pyxos Pilot
application. For more information on Pyxos interrupts, see Interrupt Driven
Pyxos Programs on page 166.

The Example Code for Event Handling, and Registering Pyxos Points section on
page 62 includes sample code you may find useful when creating your own event
handler.

PyxosPilotEventHandler()
Reads incoming data from the network, and calls the appropriate callbacks. Your
Pilot application must call this function periodically. If there are any pending
PNV updates or poll requests to be sent on the network, they are written to the
Pyxos FT Chip when this function is called.

Syntax:

PyxosSts PyxosPilotEventHandler(void);

52 Pyxos FT Programmer’s Guide

Remarks: The Pilot application can call this function in response to a Pyxos
interrupt. For more information on Pyxos interrupts, see Interrupt Driven Pyxos
Programs on page 166.

There are multiple callbacks that can be called by the event handler. Table 13
lists these callbacks. These callbacks are described in more detail in the sections
following Table 13.

Table 13 Pilot API Callbacks

Callback Description

PyxosPilotRegistrationRequestReceived() Handles a registration request to the Pilot from a Pyxos
Point. For more information on this callback, see
Registering Points on page 53.

PyxosPilotPointConfigured() Provides notification that a Point has been successfully
configured. This may be the result of a call to
PyxosPilotAllocateTimeslot(),
PyxosPilotReconfigurePoint(), or PyxosPilotReplacePoint().
Or, if the Point uses hardwired registration, this may occur
because the Point has reset and reconfigured itself. For
more information on this callback, see Registering Points
on page 53.

PyxosPilotPointConfigurationFailed() Provides notification that configuration of a Point initiated
via a call to PyxosPilotAllocateTimeslot(),
PyxosPilotReconfigurePoint() or
PyxosPilotReplacePoint()has failed. For more information
on this callback, see Registering Points on page 53.

PyxosPilotFreeTimeslotCompleted() Provides notification that a call to
PyxosPilotFreeTimeslot()has completed, meaning that the
Pilot application has successfully freed a timeslot. For
more information on this callback, see Registering Points
on page 53.

PyxosPilotSetPointOnlineCompleted() Provides notification that a request to set the Point online
has either successfully completed, or timed out. For more
information on this callback, see Callbacks for Registering
Points on page 60.

PyxosPilotUpdatePnvCompleted() Provides notification that a PNV update request has either
successfully completed, or timed out. For more information
on this callback, see Reading and Writing PNVs on page 67.

PyxosPilotPollRegisterCompleted() Provides notification that a register poll request has
successfully completed or timed out. For more information
on this callback, see Reading and Writing PNVs on page 67.

Pyxos FT Programmer’s Guide 53

Callback Description

PyxosPilotPnvUpdateOccurred() Provides notification that a PNV value has been updated.
This may be the response to a poll request, or it may be the
result of a Pyxos Point application updating the value. For
more information on this callback, see Reading and Writing
PNVs on page 67.

PyxosPilotResetPointCompleted() Provides notification that a call to PyxosPilotResetPoint()
has completed, meaning that a Pyxos Point has been
successfully reset or a reset operation has timed out. For
more information on this callback, see Detecting,
Reporting, and Correcting Communication Errors on page
77.

PyxosPilotProtocolAnalyzerCallback() Provides notification that a the Pilot API has read or
written a packet. For more information on this callback,
see Analyzing Pyxos FT Network Communication on page
92.

pyxosPilotWriteFrameCount Global Variable
The Pyxos FT API maintains a global variable (pyxosPilotWriteFrameCount)
that represents the number of write frames processed by the API. This value can
be used to efficiently keep track of the number of write frames to implement
network-based timers.

Syntax:

Dword pyxosPilotWriteFrameCount;

Remarks: The pyxosPilotWriteFrameCount variable is set to 0 by
PyxosPilotInit(), and is incremented by PyxosPilotEventHandler()each time it
processes a write frame. This value can be used to efficiently keep track of the
number of write frames to implement network-based timers. Use of this variable
is substantially more efficient than reading the network statistics, as no SPI
transaction is required.

This value may be less than the actual number of frames if
PyxosPilotEventHandler() is not called frequently enough. This value wraps at
0xFFFFFFFF. When using this value to implement frame relative timing, the
application must handle wrap-arounds.

The application must never modify this value, as it is used by the Pyxos FT API
to detect update failures.

Registering Points
The Pilot must allocate timeslots to all the Pyxos Points on the network, and
inform the Pilot API which interface each Pyxos Point is implementing. Once a
Point has been configured, the Pilot must set the Point online. This process is
called registration.

54 Pyxos FT Programmer’s Guide

Typically, the first time the Pilot starts, it does not have any pre-programmed
knowledge about any of the Pyxos Points on the network, although it does have
knowledge about the program IDs and interface types supported on the network
from the application’s include files. The Pilot allocates timeslots and identifies
interfaces as it receives the registration events that are called when each Pyxos
Point announces itself.

You can program your Pilot application to remember the unique IDs of the Pyxos
Points that it has discovered in the past by storing that information in non-
volatile memory. Such applications can allocate timeslots immediately upon
initialization, without waiting for those Pyxos Points to announce themselves.
This is particularly important in systems with Points using the manual
registration method.

After the Pilot has successfully configured a Point and set its interface, the Pilot
must set the Point online in order to start receiving PNV values from the Point,
and propagating PNV values to the Point.

The typical steps you will follow to allocate timeslots and identify interfaces are
listed below. Depending on how you chose to register a particular Pyxos Point
(i.e. which registration method you selected for the Point), some of these steps
may vary.

1. The PyxosPilotRegistrationRequestReceived() callback is triggered. This
occurs whenever a Pyxos Point announces itself to the Pilot. Pyxos Points
using the automatic registration method announce themselves on startup
after calling PyxosPointInit(), and continue until the Pilot has configured
them. Pyxos Points using the manual registration method typically
announce themselves when the Pyxos FT Chip’s Join button is pressed.
Alternatively, a Pyxos Point can announce itself by calling
PyxosPointSendUniqueId(). Pyxos Points using the hardwired registration
method announce themselves when they call PyxosPointAnnounceTimeslot().
In all of these situations, the PyxosPilotRegistrationRequestReceived()
callback is triggered.

From the callback, the Pilot application must call
PyxosPilotAllocateTimeslot() to assign the Pyxos Point a timeslot. It should
use the unique ID provided by the PyxosPilotRegistrationRequestReceived()
callback to identify the Pyxos Point that is being assigned a timeslot.

Depending on the registration method selected for the Pyxos Point, the
application may specify a specific timeslot for the Pyxos Point, or select the
first available timeslot. This is described later in the chapter, where
PyxosPilotAllocateTimeslot() is described in more detail.

Alternatively, if the Pilot knows about a Pyxos Point, it may allocate it a
timeslot during initialization without waiting for the Point to announce itself.
This is the case if the application has stored the Pyxos Point’s unique ID in
non-volatile memory, or if the Pyxos Point uses the hardwired registration
method and the Pilot does not need the Point’s unique ID. Regardless of
whether the timeslot is allocated in response to a registration request or
during initialization, the remaining steps required to allocate the timeslot
and identify the Point’s interface are the same.

Pyxos FT Programmer’s Guide 55

2. The PyxosPilotPointConfigured() callback is triggered when the Point has
been successfully configured. From this callback the application will
typically perform the following steps:

a. Get the Point’s program ID by calling PyxosPilotGetProgramId().

b. Use the program ID to identify the Pyxos Point’s interface with
PyxosPilotSetPointInterface(). This function informs the Pyxos FT
API which interface is implemented by the Pyxos Point, and allocates
a cache of PNVs for the Point based on that interface.

c. Set the Point online with PyxosPilotSetPointOnline().

Functions for Registering Points
This section describes the functions listed in the previous section in more detail.
It also describes additional functions you will find useful when allocating
timeslots and identifying interfaces, such as PyxosPilotFreeTimeslot(), which you
can use to free a timeslot that has been previously assigned to a Pyxos Point, and
PyxosPilotGetTimeslot(), which you can use to determine the timeslot that is
currently assigned to a Pyxos Point.

Some of the functions described in this section, such as
PyxosPilotSetPointOnline(), are used when reconfiguring or replacing a Point, as
well as during the initial registration process.

PyxosPilotAllocateTimeslot()
Assigns a timeslot to a Pyxos Point. The Pyxos Point to be assigned the timeslot
is referenced by its unique ID.

Syntax:

PyxosSts PyxosPilotAllocateTimeslot(PyxosUniqueId *pUniqueId,
 PyxosTimeslot timeslot,
 Word timeout,
 Bool hardwired);

Remarks: Use this function to assign a timeslot to a Pyxos Point. You will
typically call this function from the PyxosPilotRegistrationRequestReceived()
callback, or during your application initialization routine (if the Point uses
hardwired registration or the unique ID is already known). Most of the other
functions included in the Pilot API require a timeslot as input to identify the
Pyxos Point to be affected by the function. Therefore, you will need to call this
function before using many of the others.

Use the timeslot parameter to indicate which timeslot should be assigned to the
Pyxos Point. The valid range for timeslots is 0 to (PYXOS_MAX_POINTS – 1).
The value for PYXOS_MAX_POINTS is set to the maximum number of Points
you defined for the network with the Pyxos FT Interface Developer. You can set
the timeslot parameter to PYXOS_TIMESLOT_ANY (0xFF) to allow the API to
choose a free timeslot to assign to the Pyxos Point.

If the hardwired parameter is set to False, the Pilot will use the unique ID to
configure the Point’s Pyxos FT Chip with the allocated timeslot. If the hardwired

56 Pyxos FT Programmer’s Guide

parameter is set to True, the API will not send the timeslot to the device, since
this indicates that the Point is using the hardwired registration method and the
timeslot should have already been assigned by the Point application. In either
case, the API calls the PyxosPilotPointConfigured() callback after the Pilot has
confirmed that the Point has been successfully configured, and calls the
PyxosPilotPointConfigurationFailed() callback if the configuration process times
out.

The timeout parameter indicates the number of frames that the Pilot should wait
before timing out the configuration process. The time it takes for this process to
complete varies depending on the Point’s processor and application, especially if
the Point has just been reset. Be sure to specify a sufficient timeout. A value of 0
indicates that the Pilot should use the default time period you specified with the
Number of Frames Before Timeout property on the Pilot Application Options
dialog when you configured the Pilot with the Pyxos FT Interface Developer.
This value corresponds to the PYXOS_MAX_UNACKD_FRAME_COUNT macro
in the MyPyxosApplication.h file.

If you define the PYXOS_HARDWIRED_ONLY macro in the
MyPyxosApplication.h file, then you must use the hardwired registration method
for all of the Pyxos Points on the network. This means that the hardwired
parameter must be set to True, and the timeslot parameter cannot be
PYXOS_TIMESLOT_ANY. You can define the PYXOS_HARDWIRED_ONLY
macro in the MyPyxosApplication.h file by selecting the Support Only Hardwired
Points checkbox in the Pilot Application Options dialog of the Pyxos FT Interface
Developer, but only if you plan on using hardwired registration for every Pyxos
Point on the network. This reduces the code size of the Pilot API.

In systems with hardwired Points, the Pilot application may allocate the timeslot
before it receives the registration request from the Pyxos Point. However, in this
case, the Pilot may not know the Pyxos Point’s unique ID. For this reason, if the
hardwired parameter is True, the pUniqueId parameter may be NULL. If it is
NULL, the Pyxos FT API will record the unique ID as all zeros.

Neither the PyxosPilotPointConfigured() or the PyxosPilotConfigurationFailed()
callbacks will be called unless PyxosPilotAllocateTimeslot()returns
PyxosSts_Good. If this is the case, the timeslot has been successfully allocated
and the API will call either the PyxosPilotPointConfigured() callback or the
PyxosPilotConfigurationFailed() callback, depending on whether the Point
successfully configured.

The PyxosPilotAllocateTimeslot() function may return the following errors:

• PyxosSts_NoTimeslotsAvailable: Returned when the timeslot parameter
is set to PYXOS_TIMESLOT_ANY, but no timeslots are available.

• PyxosSts_TimeslotNotAvailable: Returned when the timeslot parameter
is not set to PYXOS_TIMESLOT_ANY, meaning that you requested a
specific timeslot, and that timeslot is already in use by another Point.

• PyxosSts_InvalidTimeslot: Returned when the timeslot parameter is not
set to PYXOS_TIMESLOT_ANY. This means that the specified timeslot
is greater than or equal to PYXOS_MAX_POINTS (the maximum number
of Points on the network).

Pyxos FT Programmer’s Guide 57

• PyxosSts_AlreadyAllocatedToPoint: Returned when the specified Point
already has a timeslot allocated to it.

• PyxosSts_UniqueIdIsRequired: Returned when the unique ID pointer is
NULL, and the hardwired flag is FALSE.

PyxosPilotFreeTimeslot()
Frees the timeslot assigned to a Pyxos Point.

Syntax:

PyxosSts PyxosPilotFreeTimeslot(PyxosTimeslot timeslot);

Remarks: This function frees the memory associated with the Pyxos Point using
the specified timeslot, and resets the Point. Upon completion, the
PyxosPilotFreeTimeslotCompleted() callback will be triggered, and the timeslot
will be available to other Pyxos Points. The timeslot will not be available for
reallocation until the Pilot API has called the
PyxosPilotFreeTimeslotCompleted() callback.

PyxosPilotGetTimeslot()
Determines the timeslot that is currently assigned to a Pyxos Point. The Pyxos
Point is referenced by its unique ID.

Syntax:

PyxosTimeslot PyxosPilotGetTimeslot(const PyxosUniqueId
 *pUniqueId);

Remarks: This function returns the timeslot assigned to a Pyxos Point. If the
Pyxos Point has not been assigned a timeslot, the function returns
PYXOS_NO_TIMESLOT. You can use this function if you want to check if a
Pyxos Point has been configured or not.

PyxosPilotGetUniqueId()
Determines the unique ID of the Pyxos Point that is using a particular timeslot.

Syntax:

const PyxosUniqueId *PyxosPilotGetUniqueId(PyxosTimeslot
 timeslot);

Remarks: If the timeslot passed in as the timeslot parameter has been assigned
to a Pyxos Point, the function returns a pointer to the Pyxos Point’s unique ID.
This pointer will be valid until the timeslot has been freed with the
PyxosPilotFreeTimeslot() function. If the timeslot is not associated with a Pyxos
Point, the function returns NULL.

PyxosPilotGetProgramId()
Determines the program ID of the Pyxos Point that is using a particular timeslot.

Syntax:

58 Pyxos FT Programmer’s Guide

PyxosSts PyxosPilotGetProgramId(PyxosTimeslot timeslot,
PyxosProgramId *pProgramId);

Remarks: If the timeslot passed in as the timeslot parameter has been assigned
to a Pyxos Point and the Point has been successfully configured, the function
returns the program ID that the Pilot API cached during the configuration
process. If the program ID is not available, the function returns
PyxosSts_ProgramIdNotAvailable.

PyxosPilotSetPointInterface()
Identifies the interface a Pyxos Point should use. The Pyxos Point is specified by
its timeslot.

Syntax:

PyxosSts PyxosPilotSetPointInterface(PyxosTimeslot timeslot,
 const PyxosPilotPointInterface *pPointInterface);

Remarks: The PyxosPilotSetPointInterface() function completes immediately,
and is most often called from the PyxosPilotPointConfigured() callback. The
function allocates and initializes memory to cache PNV values on a Point, and to
manage sending and receiving data from the PNVs. You must assign a timeslot
to the Pyxos Point with PyxosPilotAllocateTimeslot() function before calling
PyxosPilotSetPointInterface(), and wait for the configuration to complete
(indicated when the PyxosPilotPointConfigured() callback is called).

This function allocates the Pyxos cache data used for the Point, so any pending
operations on the Point are canceled when this function is called. Therefore you
should only call this function after all pending updates to the Point have
completed. For example, you should never call this function immediately after
calling the PyxosPilotAllocateTimeslot() function. Instead, you can call it from
the PyxosPilotPointConfigured() callback.

If the Point interface supplied to the function corresponds to an unhosted Point,
the Pilot API will initialize all of the I/O output values to 0. To set some of the
digital values on the Point to 1, call PyxosPilotUpdateUnhostedPointIo() to set
the values after calling PyxosPilotSetPointInterface() and before setting the
Point online using PyxosPilotSetPointOnline(). For more information on this
function, see Reading and Writing PNVs on page 67.

The Point interface record is typically defined as constant data. It must remain
allocated as long as any Points are defined to use it. You can set the
pPointInterface parameter to NULL to de-associate the Pyxos Point from the
interface.

The Point interfaces you can reference with the pPointInterface parameter are
defined in the Pilot application’s MyPyxosApplication.h file. For example, the
following interface definitions are declared in the example MyPyxosApplication.h
file:

extern const struct PyxosPilotPointInterface echelonEx_NanoPointInterface;
extern const struct PyxosPilotPointInterface echelonEx_SensorPointInterface;
extern const struct PyxosPilotPointInterface echelonEx_ActuatorPointInterface;

You could identify the third interface listed with the following call to the
PyxosPilotSetPointInterface() function:

Pyxos FT Programmer’s Guide 59

PyxosPilotSetPointInterface(timeslot, &echelonEx_ActuatorPointInterface);

PyxosPilotGetPointInterface()
Determines the interface being used by a particular Pyxos Point. The Pyxos
Point is specified by its timeslot.

Syntax:

const PyxosPilotPointInterface
 *PyxosPilotGetPointInterface(PyxosTimeslot timeslot);

Remarks: This function returns a pointer to the interface associated with the
Pyxos Point using the specified timeslot. If the designated timeslot has no
interface associated with it, the function will return NULL.

The Example Code for Sending and Receiving PNVs section on page 73 includes
example code that uses PyxosPilotGetPointInterface()to determine whether a
Pyxos Point is using a certain interface, and then update a PNV on the Pyxos
Point if it is using that particular interface.

PyxosPilotGetNumberOfPoints()
Determines the number of Pyxos Points on the network that have been allocated
timeslots, and the number of Pyxos Points on the network whose interfaces have
been specified.

Syntax:

void PyxosPilotGetNumberOfPoints(int *pNumberOfAssociatedPoint,
 int *pNumberOfPointsWithInterfaces);

Remarks: The *pNumberOfAssociatedPoint parameter returned by the function
indicates the number of Pyxos Points that have been allocated timeslots. The
*pNumberOfPointsWithInterfaces parameter indicates the number of Pyxos
Points with defined interfaces.

PyxosPilotSetPointOnline()
Sets the specified Pyxos Point online. The Pyxos Point is specified by its timeslot.

Syntax:

PyxosSts PyxosPilotSetPointOnline(PyxosTimeslot timeslot);

Remarks: This function must be called each time a Point has been configured or
reconfigured. The Pilot application can update PNV values on the Point prior to
setting it online with this function, but the updated values will not be propagated
until the Pilot sets the Point online. The Point will not send any of its PNVs
until the Point is set online. This function must be called after the Point
interface has been set.

If the Point is an unhosted Point, the Pilot will set the Point online by configuring
the Point’s I/O register. The output values are initialized to 0 by
PyxosPilotSetPointInterface(). To set the initial output values to 1, call
PyxosPilotUpdateUnhostedPointIo()to update the desired outputs after calling

60 Pyxos FT Programmer’s Guide

PyxosPilotSetPointInterface(), and before setting the Point online. When the
Point is set online, these output values will be sent to the Point at the same time
as the I/O configuration.

The PyxosPilotSetPointOnline() function may return the following errors:

• PyxosSts_PointNotFound: Returned when the timeslot parameter is
greater than or equal to PYXOS_MAX_POINTS.

• PyxosSts_PointNotReady: Returned when Point has not been
successfully configured (or reconfigured).

• PyxosSts_PointAlreadyOnline: The Point is already online.

• PyxosSts_PointInterfaceHasNotBeenSet: The Point’s interface has not
been set.

If PyxosPilotSetPointOnline()returns PyxosSts_Good the API will call
PyxosPilotSetPointOnlineCompleted() when the online status has been
acknowledged or timed out.

It is not possible to set a Point offline, other than to reset the Point and
reconfigure it.

Callbacks for Registering Points
This section describes the callbacks that you will use when registering the Pyxos
Points on a network. The following callbacks are also used during
reconfiguration and replacement: PyxosPilotPointConfigured(),
PyxosPilotPointConfigurationFailed(), and
PyxosPilotSetPointOnlineCompleted().

PyxosPilotRegistrationRequestReceived()
Handles a registration request received from a Pyxos Point.

Syntax: void PyxosPilotRegistrationRequestReceived
 (PyxosTimeslot timeslot,
 const PyxosUniqueId *pUniqueId);

Remarks: When a Pyxos Point application announces itself to the Pilot, this
callback is triggered. Pyxos Points using the automatic registration method
announce themselves on startup after calling PyxosPointInit(), and continue to do
so until the Pilot has configured them. Pyxos Points using the manual
registration method typically announce themselves when the Pyxos Point’s Join
button is depressed. Alternatively, a Pyxos Point may also announce itself by
calling PyxosPointSendUniqueId(). Pyxos Points using the hardwired
registration method announce themselves when they call
PyxosPointAnnounceTimeslot().

Typically, you should call PyxosPilotAllocateTimeslot() to assign the Pyxos Point
a timeslot from this callback. It is common for this function to be called multiple
times for a given Pyxos Point, because the Point will continue to announce itself
until it has been successfully configured. If the Pilot has already assigned a
timeslot for the Pyxos Point, the PyxosPilotAllocateTimeslot() function will do

Pyxos FT Programmer’s Guide 61

nothing except return PyxosSts_AlreadyAllocatedToPoint. This usually means
that the Pilot is still configuring the Point, and can be ignored. If the Pilot fails
to configure the Point, error recovery can be performed from the
PyxosPilotPointConfigurationFailed() callback.

The Pilot must call PyxosPilotAllocateTimeslot(), even when the Point uses the
hardwired registration method.

The following example allocates a timeslot from the
PyxosPilotRegistrationRequestReceived() callback:

 /* With 32 timeslots, 40 frames = 1 second */
#define CONFIGRUATION_TIMEOUT 40
void PyxosPilotRegistrationRequestReceived

(PyxosTimeslot timeslot,
 const PyxosUniqueId *pUid)
{

PyxosPilotAllocateTimeslot(pUid, PYXOS_TIMESLOT_ANY,
CONFIGRUATION_TIMEOUT,
False);

}

PyxosPilotPointConfigured()
Provides notification that a Point has been successfully configured.

Syntax:

void PyxosPilotPointConfigured
 (PyxosTimeslot timeslot, int reserved);

Remarks: This is called when a Point has been successfully configured. This
may be the result of the Pilot calling PyxosPilotAllocateTimeslot(),
PyxosPilotConfigurePoint() or PyxosPilotReplacePoint(). This is also called when
a Point using hardwired registration has been reset and reconfigured itself.

The second parameter, reserved, is reserved for future use and should be ignored.

Typically, the next registration steps to complete after a Pyxos Point has been
configured are to set the Point’s interface if it has not already been set, and then
to set the Point online. See the Example Code for Automatic and Manual
Registration section on page 62 for example code you can use to perform these
tasks.

PyxosPilotPointConfigurationFailed()
Provides notification the API failed to configure a Point.

Syntax:

void PyxosPilotPointConfigurationFailed
 (PyxosTimeslot timeslot, int reserved);

Remarks: This is called when the configuration process has timed out. The
timed out process may have been initiated by the PyxosPilotAllocateTimeslot(),
PyxosPilotConfigurePoint() or PyxosPilotReplacePoint() functions.

62 Pyxos FT Programmer’s Guide

Typically, the Pilot application retries the configuration by resetting the Point
and then reconfiguring it in the reset completion handler after a configuration
fails. See the Example Code for Automatic and Manual Registration section on
page 62 for an example of how you could use this callback.

PyxosPilotFreeTimeslotCompleted()
Provides notification that a timeslot has been freed.

Syntax:

void PyxosPilotFreeTimeslotCompleted (PyxosTimeslot timeslot,
 const PyxosUniqueId *pUniqueId,
 Bool success);

Remarks: The success parameter indicates whether or not the Point has been
successfully updated. The timeslot is available for reallocation once the API calls
this function.

PyxosPilotSetOnlineComplete()
Provides notification that the Pilot has successfully set a Point online, or provides
notification that an attempt to set a Pyxos Point online has timed out.

Syntax:

void PyxosPilotSetPointOnline(PyxosTimeslot timeslot,
 Bool success);

Remarks: If the success parameter is True, the Point has been successfully
configured and set online. If it is False, the Pilot was unable to set the Point
online, and the Pilot application should initiate error recovery as described in the
Detecting, Reporting, and Correcting Communication Errors on page 77.

Example Code for Event Handling, and Registering
Pyxos Points

This section provides example code that will help you get started when
programming your Pilot application to perform the tasks described previously in
the chapter. Your application will need to include the necessary Pyxos files to
reference the Pilot API, as described in Chapter 5, Including the Pyxos FT API.

Example Code for Automatic and Manual Registration
In this example, the main() function performs all of the initialization and
implements the main control loop. The bulk of the code to discover Points,
allocate timeslots, and identify Point interfaces is implemented in callbacks.

The implementations of some of the functions used in this example are shown in
other sections of this chapter, as noted. Some application-specific functions are
not provided.

Pyxos FT Programmer’s Guide 63

Main Program
This section provides the initialization and main control loop. The main control
loop calls the following application functions that are not described in this
section.

• HostIoInit(): Performs any necessary host I/O initialization, including calling
psInit(). The implementation of this function is not provided.

• RestorePointsFromNvData(). Reads the unique IDs of Points previously
registered from non-volatile data and allocates timeslots for these Points.
This function is described in the Reset Example section on page 90.

• CheckPoints(). Checks to make sure that Points that have previously been
discovered and configured are still connected. This function is described in
the Checking Point Configuration section on page 86.

• CheckPilotConfiguration(). Checks the Pilot’s configuration. This function is
described in the Checking Pilot Configuration section on page 84.

The pointStatus variable that is initialized in the main() function is described in
the Checking Point Configuration section on page 86.

int main(void)
{
 /* Initialize global data */

memset(pointStatus, 0, sizeof(pointStatus));

 /* Initialize I/O including Pyxos Serial Driver */

HostIoInit();

 /*Initialize Pilot API */

PyxosPilotInit();

 /* Read non-volatile data and reconfigure any Points that

were previously registered
 */

RestorePointsFromNvData();

 /* This is the main control loop, which runs forever. */

while (TRUE)
{
 /* Run the Pilot API event handler to process Pyxos

Events.
 */

PyxosPilotEventHandler();

 /* Periodically check to make sure that all Points are

properly configured.
 */

CheckPoints();

 /* Periodically check to make sure the Pilot is properly

configured
 */

CheckPilotConfiguration();
}

64 Pyxos FT Programmer’s Guide

}

Discovering Points and Allocating
Timeslots
The Pilot first discovers the presence of a Pyxos Point via the
PyxosPilotRegistrationRequestReceived() callback, which is called by the Pyxos
API whenever a Pyxos Point sends its unique ID to the Pilot. If the Pyxos Point
has not already had a timeslot allocated to it, the Pilot application allocates a
timeslot in this callback. The next step in the process is carried out by the
PyxosPilotPointConfigured() callback, which is called as soon as the Point has
been successfully configured.

 /* The configuration timeout depends on how long it takes the

Point to reset. This is very specific to the Point
application and host processor. This parameter is expressed
in terms of frames, and so it also depends on the value of
PYXOS_NUM_TIMESLOTS. In this example, allow 1 second for the
Point to reset and be ready to be reconfigured, and assume 32
timeslots, resulting in a frame every 25 Msec.
1000Msec/25Msec per frame equals 40 frames.

 */
 #define CONFIGURATION_TIMEOUT 40 // One second with 32

 // timeslots.

 /* A registration request has been received from a Point.

Allocate a timeslot if one has not already been allocated.
The interface is set and the Point is placed online in the
PyxosPilotPointConfigured() callback.

 */
 void PyxosPilotRegistrationRequestReceived(

PyxosTimeslot timeslot,
const PyxosUniqueId *pUniqueId)

 {
 /* Allocate a timeslot for the Point. If it already has a

timeslot, the API will simply return an error here, and
there is no need to do anything.

 */
 PyxosPilotAllocateTimeslot(pUniqueId, PYXOS_TIMESLOT_ANY,

 CONFIGURATION_TIMEOUT, FALSE);
 }

The PyxosPilotPointConfigured() callback is called after the Point has been
successfully configured with the PyxosPilotAllocateTimeslot() function. The next
step in the registration process is to associate a program interface with the Point.
During the configuration process, the Pilot can read the Point’s program ID with
PyxosPilotGetProgramId(). The Pilot application can use the Point’s program ID
to identify the Point’s interface. When using manual registration, the Pilot
typically requires user input as well as the program ID to determine the Pyxos
Point’s interface. For example, all unhosted Points have the same program ID
(0), but may support different interfaces. In the example below, the
GetPointInterfaceFromProgramId() function determines the Point’s interface
with the program ID. If any Points are defined to use manual registration, this
function needs to be updated to set the interface correctly based on user input.

Pyxos FT Programmer’s Guide 65

After the application has associated a program interface with the Point, the Pilot
must set the Point online.

If the configuration fails, the API calls the PyxosPilotPointConfigurationFailed()
callback and the Pilot application should retry the operation. See the Detecting,
Reporting, and Correcting Communication Errors section later in this chapter for
more information regarding correcting configuration errors.

The UpdateNvData() function is used to update non-volatile data to record the
unique IDs of Points with allocated timeslots. This function is described in the
Reset Example section on page 90. The UpdatePointStatus() function is used to
maintain connection information about a Point, and is described in the Checking
Point Configuration section on page 86.

/* This structure is used to define attributes for each Point.
 */
typedef struct PointTypeDefinition
{

/* The interface definition defined by the Pyxos FT
Interface Developer. These names can be found in the
Pilot’s “MyPyxosApplication.h” file.

 */
const PyxosPilotPointInterface *pInterface;

/* True if the Point has a host processor */
Bool isHosted;

/* True if the Point uses manual registration.*/
Bool usesManualRegistration;

} PointTypeDefinition;

 /* This array contains an entry for each type of Point

supported by the Pilot application.
 */

const PointTypeDefinition PointTypeDefinitions[] =
{

 {&ACME_ActuatorPointInterface, TRUE, FALSE},
 {&ACME_SensorPointInterface, TRUE, FALSE},
 .
 .
 .
 };

 #define NUM_PROGRAM_INTERFACES \

(sizeof(pointTypeDefinitions)/sizeof(PointTypeDefinition))

 const PyxosPilotPointInterface *

GetPointInterfaceFromProgramId(const PyxosProgramId
 *pProgramId)

 {
 int i;
 for (i = 0; i < NUM_PROGRAM_INTERFACES; i++)
 {

 if (memcmp(pProgramId,
pointTypeDefinitions[i].pInterface->pid,
sizeof(PyxosProgramId))== 0) {

66 Pyxos FT Programmer’s Guide

 if (pointTypeDefinitions[i].usesManualRegistration)
 {

 /* find the definition based on user input. */
 }
 return PointTypeDefinitions[i].pInterface;

 }
 }
 return NULL;

 }

 /* The Point has been successfully configured. This may be

the result of timeslot allocation, reconfiguration, or
replacement. The next step is to set the program interface
(if not set already) and then set the Point online.

 */

 void PyxosPilotPointConfigured(PyxosTimeslot timeslot,
 int reserved)

 {
 /* Update the NV data with the current Points. */
 UpdateNvData();
 const PyxosPilotPointInterface *pInterface =

 PyxosPilotGetPointInterface(timeslot);
 if (pInterface == NULL) {

 /* The Point’s interface has not yet been set. */
 PyxosProgramId pid;
 if (PyxosPilotGetProgramId(timeslot, &pid) ==

PyxosSts_Good) {
 pInterface = getPointInterfaceFromProgramId(pid);

 }
 if (pInterface == NULL) {

 /* Don't recognize this one - Free the timeslot. */
 UpdatePointStatus(timeslot, FALSE);
 PyxosPilotFreeTimeslot(timeslot);

 } else {
 PyxosPilotSetPointInterface(timeslot, pInterface);

 }
 }
 if (pInterface != NULL){

/* The Point has a known interface, must set it online
as the final stage of registration or reconfiguration.

 */
 PyxosPilotSetPointOnline(timeslot);

 }
}

/* The configuration of the Point has failed. */
void PyxosPilotPointConfigurationFailed(PyxosTimeslot timeslot,

int reserved)
{

UpdatePointStatus(timeslot, FALSE);
/* Reset the Point to try and recover it. */
PyxosPilotResetPoint(timeslot);

}

/* The Point has either been successfully put online, or it has

timed out.

Pyxos FT Programmer’s Guide 67

 */
void PyxosPilotSetPointOnlineCompleted(PyxosTimeslot timeslot,

Bool success)
{

UpdatePointStatus(timeslot, success);
if (!success) {

/* Reset the Point to try and recover it. */
PyxosPilotResetPoint(timeslot);

}
}

The PyxosPilotFreeTimeslotCompleted() callback is called by the API after the
timeslot is freed. This function updates the non-volatile data to reflect the
current allocation of timeslots.

/* Timeslot has been successfully freed. */
void PyxosPilotFreeTimeslotCompleted(PyxosTimeslot timeslot,

 const PyxosUniqueId
 *pUniqueId,

 Bool success)
{

UpdateNvData();
}

 Pyxos Pilot Example Code for Hardwired Registration
When configuring a network with hardwired Points, the Pilot application can
allocate the timeslots without talking to the Points beforehand. The function
below is used to allocate the hardwired timeslots. This function would be called
from the main program after the PyxosPilotInit() function is called, but before the
main control loop.

void InitHardwiredPoints(void)
{

PyxosTimeslot timeslot;
for (timeslot = 0; timeslot < NUM_HARDWIRED_POINTS;

timeslot++) {
if (hardwiredPoints[timeslot] != NULL) {

/* Unique ID not required when using hardwired Points.
 */
PyxosPilotAllocateTimeslot(NULL, timeslot,

CONFIGURATION_TIMEOUT, TRUE);
}

}
}

The PyxosPilotPointConfigured() callback will be called after the Pilot has
confirmed that the Point is ready. The implementation of
PyxosPilotPointConfigured() callback is the same as the one given in the previous
section.

Reading and Writing PNVs
Your Pilot application can read and write Pyxos Point PNVs with the functions
and callbacks described in this section.

68 Pyxos FT Programmer’s Guide

In some cases, an attempt to read or write a PNV on a Pyxos Point will fail even
after the Pyxos FT protocol automatically retries the operation for up to
PYXOS_MAX_UNACKD_FRAME_COUNT frames. If an operation fails
persistently, then you should try resetting and reconfiguring the Pyxos Point.
For more information on this, see Detecting, Reporting, and Correcting
Communication Errors on page 77.

PyxosPilotUpdatePnv()
Writes a value to an input PNV on a Pyxos Point.

Syntax:

PyxosSts PyxosPilotUpdatePnv(PyxosTimeslot timeslot,
 PyxosPci pci, const Byte *pData);

Remarks: Reference the Pyxos Point containing the PNV to be updated by its
timeslot (timeslot parameter). Reference the PNV to be updated by its Pyxos
Chip index (pci parameter).

To use this function, the timeslot must have already been allocated to the Pyxos
Point with PyxosPilotAllocateTimeslot(), and the interface for the Pyxos Point
must have already been specified with PyxosPilotSetPointInterface(). The PNV
being updated must be an input PNV. The PNV may be updated before the Point
is set online. However, the value will not be propagated to the Point until after
the Pilot has set the Point online.

Specify the new value to be written to the PNV with the pData parameter. If
pData is NULL, the function will resend the PNV’s current value.

When the Pilot application calls this function, the Pilot API will buffer the input
value and mark it to be sent. Values are sent at the end of each call to
PyxosPilotEventHandler()on a round-robin basis. If the application calls
PyxosPilotUpdatePnv()again before the value has been sent and before the
update has started, the old value will be overwritten and the new value will be
sent in its place. If the Pilot application is currently sending the previous value,
it will complete the update of the original value (which, depending on the size of
the PNV, may require multiple frames) and schedule the update of the new value
at a later time.

The order in which PNVs are sent out on the network is not necessarily the same
as the order that your application calls PyxosPilotUpdatePnv().

After the update for the last bytes of the PNV value has been acknowledged, the
Pilot API calls the PyxosPilotUpdatePnvCompleted() callback with the success
parameter set to True. If an update is sent and times out before being
acknowledged, the Pilot API calls the PyxosPilotUpdatePnvCompleted() callback
with the success parameter set to False. You can specify the timeout value with
the Number of Frames Before Timeout property on the Pilot Application Options
dialog when you configure the Pilot with the Pyxos FT Interface Developer. This
corresponds to the PYXOS_MAX_UNACKD_FRAME_COUNT macro in the
MyPyxosApplication.h file.

All PNVs are sent in big endian format. If your host processor is a little endian
processor, your application may have to swap the bytes of multi-byte fields prior

Pyxos FT Programmer’s Guide 69

to calling PyxosPointUpdatePnv(). Macros defined in the Platform.h file are
provided to aid in this transformation. See the Modifying the Platform.h File
section on page 115 for more information on this.

PyxosPilotUpdateUnhostedPointIo()
Updates the digital I/O values on an unhosted Point.

Syntax:

PyxosSts PyxosPilotUpdateUnhostedPointIo(PyxosTimeslot timeslot,
 Byte setMask,
 Byte clearMask);

Remarks: Use this function to update the digital outputs on an unhosted Point.
Each digital output is represented by a bit position using one of the bitmasks
described in Table 14. See the Pyxos FT EVK User’s Guide for more information
on the I/O pins listed in Table 14.

Table 14 PyxosPilotUpdateUnhostedPointIo() Bitmasks

Bitmask Description

PYXOS_IO_VALUE_MASK_DIO_0 The I/O value for the DIO-0 pin.

PYXOS_IO_VALUE_MASK_DIO_1 The I/O value for the DIO-1 pin.

PYXOS_IO_VALUE_MASK_DIO_2 The I/O value for the DIO-2 pin.

PYXOS_IO_VALUE_MASK_DIO_3 The I/O value for the DIO-3 pin.

Typically, the Point interface file defines aliases for the I/O value bitmasks. To
set a digital output, enter the corresponding bitmask as the setMask parameter.
To clear a digital output, enter the corresponding bitmask as the clearMask
parameter. Using these parameters, you can set one or more digital outputs and
clear one or more other digital outputs with a single call to the function. Any bits
that are 0 in both the setMask and clearMask parameters will receive the same
value that the Pilot sent the last time the I/O was updated. Initially, the value of
each digital output is 0.

After the update has been acknowledged, the PyxosPilotUpdatePnvCompleted()
callback will be called with the success parameter set to True, and with the pci
parameter set to PYXOS_REGI_UNHOSTED_IO. If an update times out before
it is acknowledged, the PyxosPilotUpdatePnvCompleted() callback will be called
with the success parameter set to False. You can specify the timeout value with
the Number of Frames Before Timeout property on the Pilot Application Options
when you configure the Pilot application with the Pyxos FT Interface Developer.
This corresponds to the PYXOS_MAX_UNACKD_FRAME_COUNT macro in the
MyPyxosApplication.h file.

70 Pyxos FT Programmer’s Guide

PyxosPilotPollRegister()
Polls the current value of a Pyxos Chip register on a Point.

Syntax:

PyxosSts PyxosPilotPollRegister(PyxosTimeslot timeslot,
 PyxosPci regIndex);

Remarks: You can reference the Pyxos Point containing the register to be polled
by its timeslot (timeslot parameter), and you can reference the register to be
polled by its Pyxos Chip index (regIndex parameter). To use this function, the
timeslot must have already been allocated to the Pyxos Point with
PyxosPilotAllocateTimeslot(), and the interface for the Pyxos Point must have
already been set with PyxosPilotSetPointInterface(). Only registers defined by
the PYXOS_STANDARD_REGISTERS macro may be polled, unless the Point is
unhosted, in which case the PYXOS_REGI_UNHOSTED_IO register may be
polled. See Accessing Pyxos Registers on page 162 for more information about
the register definitions, including the PYXOS_STANDARD_REGISTERS macro.

This function marks the register as needing to be polled. Poll requests are sent
at the end of each call to PyxosPilotEventHandler(), along with all other pending
network updates. Updates and poll requests compete on a round-robin basis.
However, if any poll has been requested and there are no updates in progress, the
Pyxos API will schedule a poll request (leaving only one data slot for updates). If
more than 4 Pyxos Chip values need to be polled, some will be deferred until the
next poll cycle.

If the application calls this function and a poll for the requested register is
outstanding, the value will be polled only once, the next time
PyxosPilotEventHandler() is called.

After the poll request has been acknowledged, the
PyxosPilotPollRegisterCompleted() callback will be called with the success
parameter set to True. This indicates that the Pyxos Point containing the
register has received the poll request. The value should be received some time
later, via the PyxosPilotPnvUpdateOccurred() callback.

If a poll request is sent and times out before it is acknowledged, the
PyxosPilotPollRegisterCompleted() callback will be called with the success
parameter set to False. You can specify the timeout value with the Number of
Frames Before Timeout property on the Pilot Application Options when you
configure the Pilot application with the Pyxos FT Interface Developer. This
corresponds to the PYXOS_MAX_UNACKD_FRAME_COUNT macro in the
MyPyxosApplication.h file. A successful completion event only means that the
Point has acknowledged the poll request, not that it has sent the requested data.

To poll the digital values on an unhosted Point, call PyxosPilotPollRegister() with
the pci parameter set to PYXOS_REGI_UNHOSTED_IO. The Point will send the
entire 4-byte I/O register, including the current input values. This data is
represented as a bitmask, which can be obtained using the
PYXOS_GET_UNHOSTED_IO_DATA macro. For example code demonstrating
this, see the Example Code For Updating and Monitoring Unhosted Point I/O
section on page 74.

Pyxos FT Programmer’s Guide 71

NOTE: Polling the PYXOS_REGI_UID register will cause the Point to send its
unique ID, which will cause the Pilot API to call the
PyxosPilotRegistrationRequest() callback instead of the
PyxosPilotPnvUpdateOccurred() callback. The Pilot should not poll the
PYXOS_REGI_UID register, as this may interfere with the configuration of the
Point.

PyxosPilotGetPnvValue()
Gets the cached value of an input PNV. The function returns a pointer to the
cache which contains the last value set with PyxosPilotUpdatePnv().

Syntax:

PyxosSts PyxosPilotGetPnvValue(PyxosTimeslot timeslot,
 PyxosPci pci,
 const Byte **ppPnvValue,
 PyxosPnvSize *pSize);

Remarks: You can reference the Pyxos Point containing the PNV by its timeslot
(timeslot parameter), and you can reference the PNV by its Pyxos Chip index (pci
parameter). To use this function, the timeslot must have already been allocated
to the Pyxos Point with PyxosPilotAllocateTimeslot(), and the interface for the
Pyxos Point must have already been set with PyxosPilotSetPointInterface().

This function returns a pointer to the value of the PNV that is cached by the Pilot
API as the **ppPnvValue parameter. The application can retrieve the value from
the cache, but it must not modify the value. The returned pointer may be
invalidated by any subsequent calls into the Pyxos FT API. This function returns
the size of the value, in bytes, using the *pSize parameter.

If the value is an output value, this function may return
PyxosSts_ValueNotAvailable. This indicates that either the Point has not sent
any updates for this value, or the cached value is currently inconsistent. A
cached value is considered to be inconsistent if the PNV is larger than 4 bytes
and the Point has updated some of those bytes, but not others. If the value is
inconsistent, the Point should send the remaining bytes within several frames.

The Pilot application must not poll the unique ID of a Point, as this may interfere
with the registration process. If the Pilot application does poll the unique ID
register, the Pilot API will call the PyxosPilotRegistrationRequestReceived()
callback when the UID arrives, rather than the PyxosPilotPnvUpdateOccurred()
callback.

PyxosPilotIsPnvUpdatePending()
Determines if there are any updates for a PNV that have been cached by the
Pyxos API but have either not yet been sent to the Point or have not yet been
acknowledged by the Point.

Syntax:

Bool PyxosPilotIsPnvUpdatePending(PyxosTimeslot timeslot,
 PyxosPci pci);

72 Pyxos FT Programmer’s Guide

Remarks: The Pyxos Point containing the PNV to be checked must be referenced
by its timeslot (timeslot parameter). The PNV must be referenced by its Pyxos
Chip index (pci parameter) as defined in the Point’s interface definition file. The
function will return True if the PNV has any updates pending, and False
otherwise. You cannot call this function on an output PNV.

Callbacks for Reading and Writing PNVs
This section describes the callbacks that are called in response to PNV updates
and polls in more detail.

PyxosPilotUpdatePnvCompleted()
Provides notification that a PNV update request has either successfully
completed, or timed out. This is called after PyxosPilotUpdatePnv() has been
called.

Syntax:

void PyxosPilotUpdatePnvCompleted(PyxosTimeslot timeslot,
 PyxosPci pci,
 Bool success);

Remarks: This callback is called when a PNV update initiated by
PyxosPilotUpdatePnv()has been acknowledged, or has timed out. You can use
the timeslot parameter to identify the Pyxos Point affected by the update, and
you can use the Pyxos Chip index (pci parameter) to identify the PNV that was
updated. The success parameter will be set to True if the update has been
acknowledged by the Pyxos Point, or False if the request has timed out.

The timeout is expressed as a function of the frame count since the update was
sent on the network. You can specify this value with the Number of Frames
Before Timeout property on the Pilot Application Options dialog when you
configure the Pilot application with the Pyxos FT Interface Developer. This
corresponds to the PYXOS_MAX_UNACKD_FRAME_COUNT macro in the
MyPyxosApplication.h file.

PyxosPilotPollRegisterCompleted()
Provides notification that a register poll request has successfully completed or
timed out. This is called after PyxosPilotPollRegister() has been called, and the
poll initiated by the function has been acknowledged or timed-out.

Syntax:

void PyxosPilotPollRegisterCompleted (PyxosTimeslot timeslot,
 PyxosPci regIndex,
 Bool success);

Remarks: This is called when a poll request initiated by PyxosPilotPollRegister()
has either been acknowledged or has timed out. You can use the timeslot
parameter to identify the Pyxos Point containing the register that was being
polled. You can use the Pyxos Chip index (regIndex parameter) to identify the
register.

Pyxos FT Programmer’s Guide 73

The success parameter will be True if the poll request has been acknowledged by
the Pyxos Point, or False if the request has timed out.

The timeout is expressed as a function of the frame count since the poll request
was sent on the network. You can specify this value with the Number of Frames
Before Timeout property on the Pilot Application Options dialog when you
configure the Pilot application with the Pyxos FT Interface Developer. This
corresponds to the PYXOS_MAX_UNACKD_FRAME_COUNT macro in the
MyPyxosApplication.h file. A successful completion event only means that the
Point has acknowledged the poll request, not that it has sent the requested data.

PyxosPilotPnvUpdateOccurred()
Provides notification that a PNV value has been updated.

Syntax:

void PyxosPilotPnvUpdateOccurred(PyxosTimeslot timeslot,
 PyxosPci pci, const Byte
 *pPnvValue, Byte length);

Remarks: You can use the timeslot parameter to identify the Pyxos Point
containing the PNV that has been updated. You can use the Pyxos Chip index
(pci parameter) to identify the PNV. The pPnvValue parameter is a pointer to
the updated PNV value.

The PNV updates that cause this callback to be triggered can be initiated by the
Pyxos Point, or by the Pilot application when it calls PyxosPilotPollRegister().

All PNVs are sent in big endian format. If your host processor is a little endian
processor, your application may have to swap the bytes of multi-byte fields prior
to calling PyxosPointUpdatePnv(). Macros defined in the Platform.h file are
provided to aid in this transformation. See the Modifying the Platform.h File
section on page 115 for more information.

When an unhosted Point sends an update containing the value of its digital
inputs, the Pyxos API calls this callback with the pci parameter set to
PYXOS_REGI_UNHOSTED_IO, and the data pointed to by the pPnvValue
parameter includes the entire I/O register. To retrieve only the data bits the
application can use, use the PYXOS_GET_UNHOSTED_IO_MASK macro when
you send the update. The PYXOS_GET_UNHOSTED_IO_MASK macro takes
pPnvValue as its single argument.

Example Code for Sending and Receiving PNVs
This section shows how the Pyxos Pilot sends and receives PNV updates. In this
example, the Pilot supports two Points, an actuator and a sensor. The sensor has
a single output PNV called ACME_SENSOR_SWITCH, and the actuator has a
single input PNV called ACME_ACTUATOR_LIGHT. Both are of type
SNVT_switch. Whenever the sensor updates the ACME_SENSOR_SWITCH, the
Pilot sends the update to the actuators’ ACME_ACTUATOR_LIGHT.

The UpdatePointStatus() and ValidatePointConfiguration() functions are used to
detect and correct communication errors, and are described in the Checking Point
Configuration section on page 86.

74 Pyxos FT Programmer’s Guide

The actuatorTimeslot global variable represents the timeslot of the actuator
Point. This example assumes that the actuatorTimeslot is a global variable set
by the Pilot application when it set the actuator’s Point interface.

Whenever a Point sends an update to the Pilot, the API calls the
PyxosPilotPnvUpdateOccurred() callback.

void PyxosPilotPnvUpdateOccurred(PyxosTimeslot timeslot,
PyxosPci pci,
const Byte *pPnvValue,
Byte length)

{
UpdatePointStatus(timeslot, TRUE);
if (pci == PYXOS_REGI_CONFIG) {

ValidatePointConfiguration(timeslot, pPnvValue);
} else {

/* Process PNV updates as necessary */
if (PyxosPilotGetPointInterface(timeslot) ==

&ACME_SensorPointInterface) {
switch(pci) {

case ACME_SENSOR_SWITCH:
/* Update the actuator’s light. */
PyxosPilotUpdatePnv(actuatorTimeslot,

ACME_ACTUATOR_LIGHT,
pPnvValue);

break;

}
 }
 }
 }

Example Code For Updating and Monitoring
Unhosted Point I/O

This section shows how the Pyxos Pilot updates and monitors I/O values on an
unhosted Point. In this example, the Pilot supports two unhosted Points, an
actuator and a sensor. The sensor supports two switches, called
ACME_SENSOR_SWITCH1_INPUT_MASK and
ACME_SENSOR_SWITCH2_INPUT_MASK. The actuator supports two LEDs,
which are called ACME_ACTUATOR_LED1_OUTPUT_MASK and
ACME_ACTUATOR_LED2_OUTPUT_MASK. Whenever the Pilot receives an
update from the sensor Point it updates LED 1 to the value of switch 1, and LED
2 to the value of switch 2.

The UpdatePointStatus() and ValidatePointConfiguration() functions are used to
detect and correct communication errors and are described in the Checking Point
Configuration section on page 86.

The sensorTimeslot and actuatorTimeslot global variables represent the
timeslots of the sensor and actuator Points respectively. This example assumes
that these global variables are set by the Pilot application when it registers the
Points.

Pyxos FT Programmer’s Guide 75

Whenever the sensor sends an update, the API calls the
PyxosPilotPnvUpdateOccurred() callback. The switch values are stored in the
I/O register, and therefore the Pyxos Chip index (pci) is
PYXOS_REGI_UNHOSTED_IO.

The setOutput() utility function is used to set an output on the specified Point.

PyxosTimeslot sensorTimeslot = PYXOS_NO_TIMESLOT;
PyxosTimeslot actuatorTimeslot = PYXOS_NO_TIMESLOT;

/* Set or clear the output indicated by the outputMask. */
void setOutput(PyxosTimeslot timeslot, Byte outputMask, Bool on)
{
 if (on) {
 /* Set output, don't clear anything */
 PyxosPilotUpdateUnhostedPointIo(timeslot, outputMask, 0);
 } else {
 /* Clear led, don't set anything */
 PyxosPilotUpdateUnhostedPointIo(timeslot, 0, outputMask);
 }
}

void PyxosPilotPnvUpdateOccurred(PyxosTimeslot timeslot,
 PyxosPci pci,
 const Byte *pPnvValue,
 Byte length)
{
 UpdatePointStatus(timeslot, TRUE);
 if (pci == PYXOS_REGI_CONFIG) {
 ValidatePointConfiguration(timeslot, pPnvValue);
 } else {
 if (timeslot == sensorTimeslot) {
 if (pci == PYXOS_REGI_UNHOSTED_IO) {
 /* Get the I/O values from the PNV */
 Byte ioValue = PYXOS_GET_UNHOSTED_IO_DATA(pPnvValue);

 /* Set or clear led 1 based on value of switch 1 */
 setOutput(
 actuatorTimeslot,
 ACME_ACTUATOR_LED1_OUTPUT_MASK,
 (ioValue & ACME_SENSOR_SWITCH1_INPUT_MASK) != 0);

 /* Set or clear led 2 based on value of switch 2 */
 setOutput(actuatorTimeslot,
 ACME_ACTUATOR_LED2_OUTPUT_MASK,
 (ioValue & ACME_SENSOR_SWITCH2_INPUT_MASK) != 0);
 }
 }
 }
}

Reading Network Statistics
The Pilot application connected to a Pyxos FT network will gather network
statistics about a Pyxos Point as soon as it is added to the network. This section
describes the functions you can use to read and clear these statistics. These

76 Pyxos FT Programmer’s Guide

functions are included in both the Point API and the Pilot API. Because the Pilot
is responsible for the health of the network, the Pilot application typically uses
these functions. However, it is possible to use them from a Pyxos Point
application, particularly to aid in debugging or for error isolation purposes in
noisy environments.

PyxosReadNetworkStats()
Returns the network statistics maintained by the Pyxos FT Chip for a particular
Pyxos Point.

Syntax:
PyxosSts PyxosReadNetworkStats(PyxosTimeslot timeslot,
 Dword *pTotalFrames,
 Word *pCrcCounter,
 Word *pMissedSlotCounter);

Remarks: The timeslot parameter identifies the Point whose network statistics
should be returned. The *pTotalFrames value is updated with the number of
frames started since the statistics have been cleared, the *pCrcCounter value is
updated with the number of CRC errors on the specified timeslot, and the
*pMissedSlotCounter value is updated with the number of missed slots for that
timeslot. The Pyxos FT Chip logs a CRC error whenever it receives a data (read
or write) packet with a CRC error. A missed slot error is logged if the Pyxos FT
Chip cannot recognize a valid preamble. This primarily occurs when there is no
Point configured in the timeslot. CRC errors and missed slot statistics peg at
0xFFFF. The total number of frames is stored as a 24-bit number that wraps
around. You can clear these statistics with PyxosClearNetworkStats(). For more
information about these statistics see the Protocol Statistics section of Chapter 7,
Pyxos FT Protocol.
If the PYXOS_REGISTER_BUFFER_SIZE macro in the MyPyxosApplication.h
file is set to a value less than 4, calling this function from a callback will fail and
return the PyxosSts_NotAllowed error.

NOTE: To use this function, the
PYXOS_INCLUDE_NETWORK_STATS_FUNCTIONS macro must be defined in
the MyPyxosApplication.h file. This means that you must select the Include
Statistics Functions check box when you configure the Pilot application with the
Pyxos FT Interface Developer.

PyxosClearNetworkStats()
Clears the network statistics collected by the Pyxos FT Chip.

Syntax:
PyxosSts PyxosClearNetworkStats(void);

Remarks: If the PYXOS_REGISTER_BUFFER_SIZE macro in the
MyPyxosApplication.h file is set to a value less than 4, calling this function from
a callback will fail and return the PyxosSts_NotAllowed error.

To use this function, the PYXOS_INCLUDE_NETWORK_STATS_FUNCTIONS
macro must be defined in the MyPyxosApplication.h file. This means that you

Pyxos FT Programmer’s Guide 77

must select the Include Statistics Functions check box when you configure the
Pilot application with the Pyxos FT Interface Developer.

Detecting, Reporting, and Correcting
Communication Errors

The Pilot application is responsible for detecting, reporting, and (if possible)
correcting communication errors. This section describes strategies that the Pilot
can use to perform these tasks.

Communication errors may occur for a number of reasons, such as hardware
problems, improper configuration, or application errors. Hardware problems
cannot be fixed by the Pilot application, but can be reported. In some cases, the
Pilot may be able to reset a Pyxos Point to work around an application error. The
most common type of problem results from misconfiguration. The most common
cause of misconfiguration is due to a Point or the Pilot being reset, for example as
a result of a power cycle.

The next section describes the types of problems that will result in
communication errors. Following that are sections describing simple strategies
you can use to detect and recover from the most commons sorts of errors, and
descriptions of the functions and callbacks you can use to do so. Example code is
included after these descriptions to demonstrate how you could use those
functions and callbacks.

Types of Errors
This section describes the types of communication errors that may be
encountered in a Pyxos network.

Hardware Errors
Hardware problems in the wiring or the Points may cause a number of errors.
Some of these may be hard errors, and others may be intermittent errors. There
is little the Pilot can do other than report the problem in these cases. If a
hardware error is suspected, the network statistics functions described
previously in this chapter may provide useful information.

Unconfigured Points
If a Pyxos Point becomes unexpectedly unconfigured, it will no longer be able to
communicate with the Pilot. The most likely reason for this is that the Pyxos
Point was reset. If the Pyxos Point uses hardwired registration, it will
automatically configure itself and send a Point Ready command on that timeslot,
and the Pilot API will call the PyxosPilotPointConfigured() callback so that the
Pilot application knows about it. If the Pyxos Point uses automatic registration,
it will send the registration request to the Pilot automatically, but only if the
Pilot is currently advertising at least one free timeslot. If the Pyxos Point uses
manual registration, it will not inform the Pilot.

78 Pyxos FT Programmer’s Guide

The Pilot must be able to detect when Points become unconfigured and attempt
to reconfigure them, whether or not the Points resend their unique IDs, and must
set the Points online after they have been successfully reconfigured.

Transaction ID Mismatches
The Pyxos FT Protocol uses transaction IDs to prevent retries from being treated
as new updates. Transaction ID mismatches can occur if the Pilot, the Pyxos
Point or both are unexpectedly reset, or if a Pilot transaction times out and is
aborted. Communication between the Point and the Pilot cannot resume until
the transaction mismatch is resolved. The Pyxos Pilot API can automatically
resolve some mismatches, but other mismatches require the Point to be reset.
See the TID Synchronization section on page 131 for more information
concerning transaction ID synchronization.

Hanging Applications
If a Pyxos Point application stops calling PyxosPointEventHandler() for any
reason, the Pilot will not be able to send application data to it. This could be due
to a bug in the application, or some hardware problem that is preventing the
application from running properly. Resetting and reconfiguring the Pyxos Point
may fix the problem.

Invalid Configuration
It is possible that a static discharge could cause the Pyxos FT Chip configuration
to become invalid. Typically the result of this is that the Pyxos Point will reset
and become unconfigured. For an unhosted Point, the Pilot must detect that the
Point is missing its timeslot, and reconfigure it. For a hosted Point, the host
must detect that the Pyxos FT Chip has an invalid configuration and recover it.

The Pilot application must monitor the configuration register of its Points, and if
a hosted Pyxos Point becomes unhosted, the Pilot must reset and reconfigure the
Point. The problem could also be with the Pilot’s configuration. The Pilot must
periodically check its own configuration and fix it as necessary, as described in
the next section.

Detecting and Correcting Errors
While there are several types of errors that may cause communication problems,
there are a few simple things the Pilot can do to detect and, in many cases,
correct these failures.

1. The Pilot application must periodically check its own configuration by calling
the PyxosPilotCheckConfiguration() function. If this function returns an
error, the Pilot must call the PyxosPilotReInitPyxosInterface() function to fix
its configuration. If this fails (because the serial driver can no longer
communicate with the Pyxos FT Chip, for example), it may be necessary for
the Pilot application to reset the driver or to reset itself (and as a result, reset
the Pyxos FT Chip). The recovery action required to re-establish
communication with the Pyxos FT Chip may be dependent on the
implementation of the Pyxos Serial Driver.

Pyxos FT Programmer’s Guide 79

2. Periodically poll the configuration register of every registered Pyxos Point,
and validate the Point’s type (hosted or unhosted).

a. If the poll request is acknowledged, then the Pyxos Point is
configured and the Pilot can communicate with the Point. If it is not
acknowledged, the Point may be unconfigured or there may be a
transaction ID mismatch. The Pilot must reset the Point to clear a
possible transaction ID problem, and then reconfigure the Pyxos
Point. However, success does not necessarily mean that the Point is
in a valid state. That can only be determined for sure if both the poll
is acknowledged and the Point sends a value.

b. If the Pyxos Point sends the configuration register or any other
values in a timely manner, the Pyxos Point must be able to
communicate with the Pilot. The Pyxos Point may not be able to send
the configuration register right away, if it has a lot of other data to
send, so the Pilot must take action only if it does not get any data
from the Point for several frames. In that case, there may be a
transaction ID mismatch. The Pilot must reset the Pyxos Point and
reconfigure it.

c. If the Pilot receives the configuration register, but the host bit is
incorrect, the Pyxos Point is misconfigured. The Pilot must reset the
Point and reconfigure it.

3. If the Pilot has persistent errors updating a Pyxos Point’s input PNV, the
Point may be misconfigured or the application may be hung. The Pilot can
reset and reconfigure the Point to try to fix this condition.

4. If reconfiguring the device does not work after a short time, the Pilot should
typically provide some error indication, but continue trying to reconfigure the
device. This way if the device becomes reconnected later the Pilot will
automatically reconfigure it.

In some instances, a Pyxos Point may be replaced or removed from the system
due to failure. The Pilot may be able to deduce that a Point has been replaced
when it has detected communication errors with a Point and discovers another
Point of the same type. However, the Pilot will only find out about the
replacement device if there are available timeslots. It may be necessary for the
Pilot application to delete a Point, thus freeing its timeslot. However, it is
generally advisable to do this only when requested based on operator input.
Until told otherwise, the Pilot application should generally keep trying to
reconfigure the Point. If automatic replacement is a requirement in your system,
make sure that your maximum number of timeslots is at least one greater than
the maximum number of points that will be installed in your system at any time,
to ensure that replacement points can be discovered.

A simple and reliable method for reconfiguring Points that use the automatic or
manual registration methods is to follow the steps listed below. The functions
introduced in these steps are described in the next section, Functions for
Resetting and Reconfiguring Pyxos Points.

80 Pyxos FT Programmer’s Guide

1. Reset the Point by calling PyxosPilotResetPoint(). If the Point was not
already configured this step will do nothing, but it will not cause any harm.
If the Point was already configured it must be reset to reconfigure it.

2. In the PyxosPilotResetPointCompleted() callback, call
PyxosPilotReconfigurePoint()to reconfigure the Point, whether the reset
initiated in step 1 was successful or not.

3. If the reconfiguration is successful, the API will call the
PyxosPilotPointConfigured() callback. The Pilot application must then set
the Point online.

4. If the reconfiguration failed, the API will call the
PyxosPilotPointConfigurationFailed() callback. This failure may occur for a
number of reasons:

a. The Point was not ready to be reconfigured yet.

b. The Point is missing.

c. The Point is already configured but due to a long-standing
communication error the Point was never reset.

The Pilot should continue attempting to reconfigure the Point. However, it
may be necessary to reset the Point first, e.g. if the Point was disconnected
the last time the Pilot attempted to reset it. A simple approach is to reset the
Point in the PyxosPilotPointConfigurationFailed() callback, and then depend
on the PyxosPilotResetPointCompleted() callback to reconfigure the Point.

Points using hardwired registration do not need to be reconfigured. However, the
Pilot application must still monitor these Points to determine whether or not they
can communicate with the Pilot. If not, the Pilot may need to reset the Points in
order to resynchronize the transaction IDs. However, to the Pilot must not reset
a hardwired Point too frequently. Resetting an automatic or manual Point prior
to reconfiguring it is not a problem since the reset only works if the Point is
already configured, and the Pilot is attempting to reconfigure it anyway.
Hardwired Points, on the other hand, configure themselves, and if the Pilot keeps
resetting the Point because it cannot communicate with the Point it will never
come up.

The Pilot application can use the same strategy to re-establish communication
with Points using the hardwired registration method as it does for Points using
the manual or automatic registration methods. When a communication error is
detected, the Pilot application should reset the Point. In the
PyxosPilotResetCompleted() callback, the Pilot should call
PyxosPilotReconfigurePoint(). When the Point uses hardwired registration, this
function does not update the Point’s timeslot (the Point does that), but it does
wait for the Point to be ready. When the Point is ready the Pyxos API will call
the PyxosPilotPointConfigured() callback. If the Point is not ready within the
specified timeout, the Pyxos API will call the
PyxosPilotPointConfigurationFailed() callback, and the application can attempt
to reset the Point from that callback. The timeout parameter specified when
calling PyxosPilotReconfigurePoint() is particularly important for hardwired
Points, to ensure that the Pyxos API waits long enough to prevent the application
from resetting the Point prematurely

Pyxos FT Programmer’s Guide 81

The following sections describe the syntax of the functions and callbacks you will
use to handle errors on the Pyxos FT network. Example code demonstrating how
to use these functions and callbacks follows.

If a hardwired Point resets on its own, it will configure itself, and the Pilot API
will call the PyxosPilotPointConfigured() callback. In this case, the Pilot does not
need to reset the Point again or call PyxosPilotConfigurePoint(). Instead it need
only call PyxosPilotSetPointOnline() to notify the Point that it can start
processing data. As a result, the implementation of the
PyxosPilotPointConfiugred() callback does not have to determine why the Point
has been reconfigured, but it is notified that the Point has been reconfigured and
that the Point is not currently online.

Functions for Resetting and Reconfiguring Pyxos
Points

This section describes the functions you will use when resetting or reconfiguring
a Pyxos Point in more detail.

PyxosPilotResetPoint()
Resets a Pyxos Point. You may need to reset a Pyxos Point if it does not respond
to PNV polls and updates.

Syntax:

PyxosSts PyxosPilotResetPoint(PyxosTimeslot timeslot);

Remarks: You can reference the Pyxos Point to be reset by its timeslot (timeslot
parameter). This function cancels all pending polls and updates to the specified
Pyxos Point, and sends a reset command to the Point.

If the Pyxos Point stops acknowledging updates or polls, the application may call
this function to reset the Point. When the operation is complete, the Pyxos API
calls the PyxosPilotResetPointCompleted() callback to indicate that the Pyxos
Point has acknowledged the reset, or that the reset has timed out. The
application will typically call PyxosPilotReconfigurePoint() from the
PyxosPilotResetPointCompleted() callback. If the Point uses manual or
automatic registration, this will reconfigure the Point. If it uses hardwired
registration, this will verify that the Point has configured itself.

PyxosPilotReconfigurePoint()
Reconfigures a Pyxos Point and verifies that the configuration of the Point has
completed. If the Point uses automatic or manual registration, this function
reconfigures the Point by resending its timeslot and then waits for the Point to
indicate that it is ready. If the Point uses hardwired registration, this function
does not attempt to reconfigure the Point, but waits for the Point to reconfigure
itself. This has no effect on the current values of the input PNVs cached by the
Pilot for this Pyxos Point.

Syntax:

82 Pyxos FT Programmer’s Guide

PyxosSts PyxosPilotReconfigurePoint(PyxosTimeslot timeslot,
Word timeout);

Remarks: If the Pilot resets a Point it can call this function to reconfigure the
Point. Upon completion, the API will either call the PyxosPilotPointConfigured()
callback or the PyxosPilotPointConfigurationFailed() callback, depending on
whether or not the Pyxos Point was successfully reconfigured. If the Point is
hardwired, this function does not attempt to assign the timeslot to the Point, but
does wait until the Point has been successfully configured before calling the
PyxosPilotPointConfigured() callback.

The timeout parameter indicates the number of frames that the Pilot should wait
before timing out the configuration process. The time it takes for this process to
complete varies depending on the Point’s processor and application, especially if
the Point has just been reset. Be sure to specify a sufficient timeout. A value of 0
indicates that the Pilot should use the default time period you specified with the
Number of Frames Before Timeout property on the Pilot Application Options
dialog when you configured the Pilot with the Pyxos FT Interface Developer.
This value corresponds to the PYXOS_MAX_UNACKD_FRAME_COUNT macro
in the MyPyxosApplication.h file.

It is not possible to reconfigure a point that used automatic or manual
registration, and has already been allocated a timeslot. Attempting to do so will
fail, and will cause the Pilot API to call the PyxosPilotReconfigurePointFailed()
callback. If a Point may already be configured, the Pilot application should call
the PyxosPilotResetPoint() function, and wait for the
PyxosPilotResetPointCompleted() callback to be called, before calling this
function.

PyxosPilotReplacePoint()
Replaces one Point with another of the same type, so that the new Point uses the
same timeslot and the same PNV values as the old Point.

Syntax: PyxosSts PyxosPilotReplacePoint(PyxosTimeslot timeslot
 PyxosUniqueId *pUniqueId,
 Word timeout);

Remarks: Use the timeslot parameter to specify the Pyxos Point to replace. This
function updates the unique ID of the old Pyxos Point with the unique ID of the
specified Pyxos Point, and then reconfigures the Point and waits for the
completion, as described in the section above. If the Point is successfully
reconfigured, the Pyxos API calls the PyxosPilotPointConfigured() callback. If the
configuration times out, it calls the PyxosPilotPointConfigurationFailed()
callback.

Callbacks for Resetting and Reconfiguring Pyxos
Points

This section describes some of the callbacks you will use when resetting or
reconfiguring a Pyxos Point in more detail. The other callbacks that you will use
when reconfiguring a Pyxos Point are the PyxosPilotPointConfigured() and

Pyxos FT Programmer’s Guide 83

PyxosPilotPointConfigurationFailed() callbacks, both of which were described in
the Callbacks for Registering Points section.

PyxosPilotResetPointCompleted()
Provides notification that a call to PyxosPilotResetPoint() has completed,
meaning that a Pyxos Point has been successfully reset or a reset operation has
timed out.

Syntax:

void PyxosPilotResetPointCompleted(PyxosTimeslot timeslot,
 Bool success)

Remarks: If the success parameter returns True, the Pyxos Point has been
successfully reset. If it is False, it is likely that the Point has been removed or it
is not currently configured. Typically, a Pilot application calls
PyxosPilotReconfigurePoint() after a Point has been reset, even if the reset failed,
since the most likely cause of failure is that the Point is unconfigured.

Functions for Checking the Pyxos FT Chip
Configurations

This section describes the functions you can use to check the configuration of a
Pyxos FT Chip. You should do this periodically to ensure that the Pyxos FT Chip
has not been reset or otherwise misconfigured, especially if there is no network
traffic

PyxosPilotCheckConfiguration()
Checks the configuration of a Pyxos FT Chip. This function must be called
periodically, to ensure that the Pyxos FT Chip has not been reset or otherwise
misconfigured, especially if there is no network traffic.

Syntax:

PyxosSts PyxosPilotCheckConfiguration(void);

Remarks: This function reads the configuration of the Pyxos FT Chip and verifies
that it is in the expected state. If the configuration of the Pyxos FT Chip is valid,
the function returns PyxosSts_Good. Otherwise, the function returns
PyxosSts_BadConfiguration. The function may also return any errors returned
by the Pyxos serial driver.

If this function returns anything other than PyxosSts_Good, you must call
PyxosPilotReInitPyxosInterface() to correct the Pyxos FT Chip’s configuration. If
this is not successful, it may be necessary to reset the processor and the Pyxos FT
Chip to re-establish communication with the Pyxos FT Chip.

84 Pyxos FT Programmer’s Guide

PyxosPilotReInitPyxosInterface()
Re-initializes a Pyxos FT Chip. This function must be called anytime
PyxosPilotCheckConfiguration() returns an error.

Syntax:

PyxosSts PyxosPilotReInitPyxosInterface(void);

Remarks: This function re-initializes the Pyxos FT Chip configuration, and reads
it back to make sure that it is correct. If this function does not return
PyxosSts_Good, it may be necessary to reset the Pyxos FT Chip, the processor or
both. If so, this recovery action must be performed by the application.

Error Correction Example
This example illustrates how a Pilot application can detect and recover from
communication problems with Pyxos Points. This example includes the following
sections:

• Checking Pilot Configuration: This section illustrates how to detect and
correct problems with the Pilot’s configuration.

• Point Status Declarations: This section defines data structures and literals
used to maintain status information about each Point.

• Checking Point Configuration. This section illustrates how to detect
communication errors and recover from them using the Point status
information.

• Reconfiguring a Point. This section illustrates how to reliably reconfigure a
Point.

This example includes calls to a few application-specific functions whose
implementations are not shown. For example, the UpdateUserInterface()
function is meant to update the user interface when a Point is connected or
disconnected. The use of these functions will be called out.

The Pyxos FT API defines a number of other callbacks that are not included in
the following section. These callbacks are described previously in the chapter.
Some of these callbacks play a role in error detection and correction as well.

Checking Pilot Configuration
The following function is called on each iteration of the main control loop to check
and (if necessary) correct the Pilot’s configuration. This function relies on an
application defined function (not shown) called TimeToCheckPilotConfiguration()
that returns True whenever it is time to check the Pilot’s configuration. This
could be implemented using a timer or simply based on the number of times it
has been called.

void CheckPilotConfiguration(void)
{

/* Periodically check the Pilot configuration. This should
not depend on the frame count, since no write frames will
occur if there is a problem with the Pilot configuration.

Pyxos FT Programmer’s Guide 85

If the host has a timer, it could use that to determine the
period. Otherwise it could be based on how many iterations
of the main control loop have passed.

 */
if (TimeToCheckPilotConfiguration()) {

/* Check to see if the Pilot configuration is good */
if (PyxosPilotCheckConfiguration() != PyxosSts_Good) {

/* Its not good, try to fix it */
if (PyxosPilotReInitPyxosInterface() != PyxosSts_Good) {

/* It may be necessary to reset the Pilot; this step
may depend on the particular driver

 */

/* To do: post an error, and then do whatever is

necessary to regain communication with the Pyxos
FT Chip. This may require resetting the driver or
the host itself.

 */
}

}
}

}

Point Status Declarations
The following data structures are used in this example to keep track of the status
of each Point.

 /* The maximum number of frames without receiving an update

 before deciding that the Point is not properly configured
 */
 #define MAX_FRAMES_WITHOUT_AN_UPDATE 100

 /* The frequency to check on the health of the Point, in frames;

 this must be much less than MAX_FRAMES_WITHOUT_AN_UPDATE
 */
 #define NUM_FRAMES_BETWEEN_CHECKUP \

(MAX_FRAMES_WITHOUT_AN_UPDATE/2)

 typedef struct
 {

/* Set to TRUE when the Point is connected and correctly
configured, FALSE when it is not.

 */
Bool pointConnected;

/* Frame count the last time the Point was checked. When this

is NUM_FRAMES_BETWEEN_CHECKUP less than the current write
frame, check up on the Point.

 */
Dword fcPointChecked;

/* Frame count the last time a value was received. If this is

ever MAX_FRAMES_WITHOUT_AN_UPDATE less than the current
write frame, assume the Point has a problem.

 */

86 Pyxos FT Programmer’s Guide

Dword fcValueReceived;
 } PointStatus;

 /* Array of status information for each Point*/
 PointStatus pointStatus[PYXOS_MAX_TIMESLOTS];

Checking Point Configuration
The following function is used to maintain Point status information using the
pointStatus array defined in the previous section. The application calls this
function with the connected parameter set to False whenever it determines that
the Point is disconnected, and calls it with the connected parameter set to True
whenever the Pilot receives a value from the Point (whether it was previously
connected or not) to ensure that the frame count values are properly updated.

This function relies on an application defined function (not shown) called
UpdateUserInterface(), which is responsible for updating some kind of user
interface (LED, liquid crystal display, etc) indicating the connection status of
each Point.

 /* Update the Point status information. Update the user

interface to denote that the Point is connected or
disconnected, and maintain the pointStatus array. This should
be called each time we confirm that the Point is connected and
each time we determine that it is disconnected.

 */
 void UpdatePointStatus(PyxosTimeslot timeslot, Bool connected)
 {

 /* Update the user interface as appropriate */
 UpdateUserInterface(timeslot, connected);
 pointStatus[timeslot].pointConnected = connected;

 if (connected) {

 /* Update the frame count of the most recent value
received.

 */
 pointStatus[timeslot].fcValueReceived =

pyxosPilotWriteFrameCount;
 }

 }

The following function is called on each iteration of the main control loop in order
to check on the connectivity of each of the Points.

/* This function is called on each iteration of the main control

loop to check the status of each Point. It periodically polls
the configuration register. If, after polling the
configuration register, the Point has not responded for a
number of frames, the Point is reset and will be reconfigured
in the PyxosPilotResetPointCompleted() callback.

 */
void CheckPoints(void)
{

PyxosTimeslot timeslot;

Pyxos FT Programmer’s Guide 87

for (timeslot = 0; timeslot < PYXOS_MAX_TIMESLOTS; timeslot++)
{

if (pointStatus[timeslot].pointConnected) {
 /* The Point has been configured and has recently been

communicating with the Pilot
 */

if (pyxosPilotWriteFrameCount –
 pointStatus[timeslot].fcValueReceived >
 MAX_FRAMES_WITHOUT_AN_UPDATE) {

/* No data has been received for a long time. The
Point is probably misconfigured.

 */

/* Update config status, display user info, etc. */
UpdatePointStatus(timeslot, FALSE);

/* Reset and then reconfigure the Point */
PyxosPilotResetPoint(timeslot);

} else if (pyxosPilotWriteFrameCount –
 pointStatus[timeslot].fcPointChecked >
 NUM_FRAMES_BETWEEN_CHECKUP) {

/* It has been a while since we checked up on the
Point. Do so now.

 */
pointStatus[timeslot].fcPointChecked =
 pyxosPilotWriteFrameCount;

PyxosPilotPollRegister(timeslot, PYXOS_REGI_CONFIG);

}
}

}
}

The ValidatePointConfiguration() function is used to check the configuration of a
Point whenever the Pilot receives the Point’s configuration register. It is called
in the PyxosPilotPnvUpdateOccurred() callback. This function uses a utility
function called HostedPoint() (not shown) that takes a Point interface Pointer
and returns True if the Point is hosted, and False otherwise.

 /* This function is used to validate a Point's configuration

register. If the register is invalid, the Point is reset.
 */
 void ValidatePointConfiguration(PyxosTimeslot timeslot,

const Byte *pConfigReg)
 {

Bool badConfig;
PyxosConfigRegister config;

/* We know that the device is configured, and in the correct

timeslot, otherwise we wouldn't have gotten this update.
However, we should check the host type to make sure it is
correct. The host type could get corrupted due to an ESD
hit.

 */
memcpy(&config, pConfigReg, sizeof(config));

88 Pyxos FT Programmer’s Guide

if (HostedPoint(PyxosPilotGetPointInterface(timeslot))) {

badConfig = PYXOS_CFG_GET_HOST_TYPE(config) !=
PYXOS_CFG_HOST_POINT;

} else {
badConfig = PYXOS_CFG_GET_HOST_TYPE(config) !=

PYXOS_CFG_UNHOSTED_POINT;
}

if (badConfig) {

/* Report error */
UpdatePointStatus(timeslot, FALSE);
PyxosPilotResetPoint(timeslot);

}
 }

The PyxosPilotPnvUpdateOccurred() callback is called by the Pyxos API
whenever a PNV update is received by the Pilot. In addition to any application
processing of the PNV, this function should mark the Point as being connected.
In addition, if the PNV is the Point’s configuration register, the function should
verify that the configuration is correct.

void PyxosPilotPnvUpdateOccurred(PyxosTimeslot timeslot,

PyxosPci pci,
const Byte *pPnvValue,
Byte length)

{
UpdatePointStatus(timeslot, TRUE);
if (pci == PYXOS_REGI_CONFIG) {

ValidatePointConfiguration(timeslot, pPnvValue);
} else {

/* Process PNV updates as necessary */
}

}

The PyxosPilotUpdatePnvCompleted() callback is called by the Pyxos API when a
Pyxos FT network is successfully updated, or when a PNV update times out. If
the success parameter is False, the status of the Point should be set to
Disconnected and Point should be reset. If the status parameter is set to success,
it does not necessarily mean that the Point is in good shape. It only indicates
that the Pilot can send updates to the Point and receive acknowledgement from
the Point. This could be the case even if the Point’s send TID does not match the
Pilot’s receive TID. For that reason the Point status is updated only on failure.

void PyxosPilotUpdatePnvCompleted(PyxosTimeslot timeslot,

PyxosPci pci,
Bool success)

{
if (!success) {

/* Can no longer talk to the Point. Try resetting to re-
establish communication.

 */
UpdatePointStatus(timeslot, FALSE);
PyxosPilotResetPoint(timeslot);

Pyxos FT Programmer’s Guide 89

}
}

The PyxosPilotPollRegisterCompleted() callback is called by the API when a poll
request has been acknowledged or has timed out. If the success parameter is
False, the status of the Point should be set to Disconnected, and Point should be
reset. The status of success does not necessarily mean that the Point is in good
shape. It only indicates that the Pilot can send updates to the Point and receive
acknowledgement from the Point. This could be the case even if the Point’s send
TID does not match the Pilot’s receive TID. For that reason the Point status is
updated only on failure.

void PyxosPilotPollRegisterCompleted(PyxosTimeslot

timeslot,PyxosPci pci,
Bool success)

{
if (!success) {

/* Can no longer talk to the Point. Try resetting to re-
establish communication.

 */
UpdatePointStatus(timeslot, FALSE);
PyxosPilotResetPoint(timeslot);

}
}

Reconfiguring a Point
The following code illustrates how to properly reconfigure a Pyxos Point after it
has been reset, after a configuration error has been detected, or after a previous
configuration attempt has failed. The callbacks use UpdatePointStatus() to
manage the pointStatus array.

The PyxosPilotResetPointCompleted() callback is called by the API when a reset
has completed or timed out. It should attempt to reconfigure the Point, and
make sure that the status of the Point is set to “unconnected”.

/* The configuration timeout depends on how long it takes the
Point to reset. This is very specific to the Point
application and host processor. This parameter is expressed
in terms of frames, and so it depends on the value of
PYXOS_NUM_TIMESLOTS. In this example, allow 1 second for the
Point to reset and be ready to be reconfigured, and assume 32
timeslots, resulting in a frame every 25 Msec (25Mse*40 = 1
second.

 */
 #define CONFIGURATION_TIMEOUT 40

 /* PyxosPilotResetPoint was called, and has either succeeded or

 timed out.
 */
 void PyxosPilotResetPointCompleted(PyxosTimeslot timeslot,

 Bool success)
 {

/* If the reset succeeded then the Point is no longer
configured. If it failed it is probably because it is no

90 Pyxos FT Programmer’s Guide

longer configured. Mark it as unconnected, and then try to
reconfigure it.

 */
UpdatePointStatus(timeslot, FALSE);

PyxosPilotReconfigurePoint(timeslot, CONFIGURATION_TIMEOUT);

 }

The PyxosPilotPointConfigured() callback is called by the Pyxos API if the
configuration completes successfully, and the
PyxosPilotPointConfigurationFailed() callback is called if the configuration
process times out. These callbacks are also used after the initial timeslot
allocation. See the Example Code for Automatic and Manual Registration section
on page 62 for examples of these callbacks.

Reconfiguring the Network After a Reset
When the Pilot application resets, all information about the Pyxos Points stored
by the Pyxos Pilot API is lost. Depending on whether the Pyxos Points were reset
or not, they may or may not be configured when the Pilot reset is complete. In
either case, the Pilot must re-allocate timeslots and set Point interfaces in order
to restore the network to the same status it was in before the reset. This section
describes what the Pilot application must do to reconfigure the network after it
resets.

A Pilot application should almost always provide non-volatile storage to keep
track of the Points that it has discovered. At a minimum, this storage should
include the unique ID and timeslot of each Pyxos Point that is currently defined
in the system. If the Pilot cannot automatically determine the interface to use
from the Point, the Pilot should also record which interface each Point uses.
There are two main reasons why the Pilot should store this information:

1. If any user intervention was required to define the network, this
information should be captured in the non-volatile data. Otherwise user
intervention will be required each time the Pilot resets.

2. Even if all of the Points on the network use automatic registration and
the Pilot can register them without any user intervention, it is still a good
idea to maintain the unique ID of each Point. When the Pilot starts, it
will reset any configured points in the network and any Points using the
automatic registration method will re-register themselves with the Pilot.
However, the Pilot does not need to wait for the Points to send
registration requests if it allocates the timeslots on startup after reading
the information from non-volatile data.

It may not be necessary for the Pilot application to maintain non-volatile storage
if the network is composed entirely of hardwired Points, or if the network has no
manual Points and there is no possibility that the Pilot will reset without all the
automatic Points resetting as well.

Reset Example
In this example the Pilot stores only the timeslot and unique ID of each Point. If
any user intervention was required to distinguish the function of one Point

Pyxos FT Programmer’s Guide 91

versus another, that information should be stored in the non-volatile data as
well.

The data for each Point is stored in an array, indexed by timeslot, using the
following definition:

/* NonVolatilePointInfoEntry is used to store persistent

information about a specific Point.
 */
typedef struct
{
/* The Point's unique ID. 0 if none. */
PyxosUniqueId uniqueId;
} NonVolatilePointInfoEntry;

The RestorePointsFromNvData() function is called by the main function, after
calling PyxosPilotInit() (but before calling the event handler). This function
reads the non-volatile data using the ReadNonVolatileData() utility function (not
shown), and then re-allocates the timeslots based on that information. After the
timeslots have been allocated, the PyxosPilotPointConfigured() callback will
continue the process. The Pilot should not set the interface until
PyxosPilotPointConfigured() has been called, as doing so will cancel reconfiguring
the Point.

static const PyxosUniqueId nullUniqueId = {0,0,0,0,0,0,0,0};
/*
Restore Points from non-volatile data.
*/
void RestorePointsFromNvData(void)
{

PyxosTimeslot timeslot;
NonVolatilePointInfoEntry nvData[PYXOS_MAX_TIMESLOTS];

/* This function reads the unique IDs of each Point out of

non-volatile data into the nvData array, indexed by
timeslot.

 */
 ReadNonVolatileData(nvData);

 /* Scan the nvData array and re-allocate the timeslots of

each Point that appears in the array.
 */
 for (timeslot = 0;

timeslot < PYXOS_NUM_TIMESLOTS;
timeslot++) {

if (memcmp(nvData[timeslot].uniqueId, nullUniqueId,
sizeof(PyxosUniqueId)) != 0) {

/* Re-allocate the timeslot to the Point. */
PyxosPilotAllocateTimeslot(&nvData[timeslot].uniqueId,

timeslot,
CONFIGURATION_TIMEOUT,
FALSE);

}
}

}

92 Pyxos FT Programmer’s Guide

The UpdateNvData() function is called each time a Point is allocated or deleted.
If more information, such as the program interface, is stored in the non-volatile
data, this function may need to be called in other places as well. The
WriteNonVolatileData() function (not shown) is used to write the array of
NonVolatilePointInfoEntry out to non-volatile memory.

/* This function updates the non-volatile data with the current

timeslot assignments.
 */
void UpdateNvData(void)
{

PyxosTimeslot timeslot;

/* An array of unique IDs, indexed by timeslot. */
NonVolatilePointInfoEntry nvData[PYXOS_MAX_TIMESLOTS];

memset(nvData, 0, sizeof(nvData));

/* Find the unique IDs of every Point and fill in the nvData

array.
 */
for (timeslot = 0; timeslot < PYXOS_NUM_TIMESLOTS; timeslot++)
{

const PyxosUniqueId *pUniqueId =
PyxosPilotGetUniqueId(timeslot);

if (pUniqueId != NULL) {

memcpy(nvData[timeslot].uniqueId, pUniqueId,
sizeof(PyxosUniqueId));

}
}

/* Write the nvData array out to non-volatile data. */
WriteNonVolatileData(nvData);

}

Analyzing Pyxos FT Network Communication
When debugging a Pyxos application, it may be useful to implement a protocol
analyzer that logs the packets sent on the Pyxos FT network. You can use the
PyxosPilotProtocolAnalyzerCallback() to aid in this development. This
information may also be extremely valuable when diagnosing problems in the
field.

If you select the Select the Enable Support for Protocol Analyzer Callbacks check
box when you configure the Pilot with the Pilot Application Options dialog, this
function will be called every time the Pilot API reads or writes a packet. You can
log these packets in whatever way works with the resources available to your
host processor.

PyxosPilotProtocolAnalyzerCallback()
Provides notification that a the Pilot API has read or written a packet. If you
select the Select the Enable Support for Protocol Analyzer Callbacks check box

Pyxos FT Programmer’s Guide 93

when you configure the Pilot with the Pilot Application Options dialog, this
function will be called every time the Pilot API reads or writes a packet.

Syntax:

PYXOS_API_DECL void
 PyxosPilotProtocolAnalyzerCallback(Bool incoming,
 Dword writeFrameCount,
 PyxosTimeslot timeslot,
 const PyxosPacket
 *pPacket);

Remarks: You can use this function to create a protocol analyzer to monitor the
Pyxos FT network. It is called every time the Pilot reads or writes a packet. This
callback does not necessarily get called for every frame. For example, the Pilot
application may write data to a timeslot and the Pyxos FT Chip may continue
writing that data for several frames. Similarly, once the data has been
acknowledged, the chip will send idles once the Pilot has no more data to send. If
a Pyxos Point has no data to send to the Pilot, the Point’s chip will send idles, but
the Pilot API will not read them, and will not call this function.

The incoming parameter is True when the Pilot has read the timeslot, and False
if the Pilot has written the timeslot. The writeFrameCount parameter is equal to
the pyxosPilotWriteFrameCount global value, which is incremented each time
the Pilot processes a write frame. The timeslot is a value between 0 and
PYXOS_NUM_TIMESLOTS - 1, representing the timeslot of data. The final
parameter, pPacket, points to an internal buffer containing the 10 bytes of the
Pyxos packet data. The application must not modify this data at any time, or use
this pointer once the callback returns. No Pyxos FT API functions may be called
during this callback. The format is shown below.

NOTE: When operating in on-demand TDM mode (meaning that you selected the
Use On-Demand TDM Mode check box when configuring the Pilot with the Pilot
Application Options dialog), the Pilot forces frames onto the network when the
Pilot Application calls PyxosPilotEventHandler() and the network is currently
idle. It does this by sending the next outstanding updates, if there are any. If
there are none, it forces a frame to be sent by writing an idle pattern (both PCIs
set to 0xff) to timeslot 0. As a result, PyxosPilotProtocolAnalyzerCallback() may
be called for timeslot 0 more often than for any other timeslot. See Chapter 7 for
more information on on-demand TDM mode.

/* Each timeslot contains two entries consisting of a PyxosPci
and 4 bytes of data. These entries are represented by a
PyxosDataItem (PDI)
 */

#define PYXOS_NUM_PDIS 2
typedef struct _PyxosDataItem
{
 PyxosPci index;
 Byte data[PYXOS_PCV_SIZE];
} PyxosDataItem;

/* The PyxosPacket structure represents a single packet. */
typedef struct _PyxosPacket
{
 PyxosDataItem pdi[PYXOS_NUM_PDIS];

94 Pyxos FT Programmer’s Guide

} PyxosPacket;

System Diagnostics
You can design system diagnostic capability into your Pyxos Pilot application to
simplify field debugging by a maintenance technician. The information that you
will need to gather, and how that information should be reported to a technician,
depends largely on your application needs and platform capabilities. Some
typical diagnostics that you should consider reporting are:

1. Timeslot allocation report: Which Points are allocated to each timeslot.
Include which interface each Point uses, and any pertinent user
configuration.

2. Status information:

a. For each Point, indicate whether or not the Pilot is currently able
to communicate with it, and if not, what action the Pilot is taking
to recover the Point.

b. Provide the ability to collect the missed slot and CRC error
statistics gathered by calling PyxosReadNetworkStats().

c. The number of errors reported by callback functions.

3. Tracing:

a. Provide the output of from the
PyxosPilotProtocolAnalyzerCallback() callback.

b. Provide tracing from other callback functions, especially when a
failure has occurred.

Pyxos FT Programmer’s Guide 95

5

Including the Pyxos FT API

This chapter describes how to include the Pyxos Pilot or
Point API in your application.

96 Pyxos FT Programmer’s Guide

Introduction
This chapter describes how to include the Pyxos FT API in your application.
Both the Pilot API and the Point API are delivered as portable C source code,
rather than as a library. There are two reasons for this:

1. You can port the Pyxos FT API to other platforms.

2. You can customize the Pyxos FT API with compile-time options that you
choose with the Pyxos FT Interface Developer.

To include the Pyxos FT API in your application, follow these steps:

1. Customize the [Pyxos FT EVK]\Pyxos FT API\Platform.h file to include
a section for each of the host processors you intend to support. See
Chapter 6 for more information on this.

2. Implement a Pyxos serial driver for your host platform. See Chapter 6
for more information on this.

3. Use the Pyxos FT Interface Developer to create the required include files
for your Pyxos Point or Pilot application, as described in Chapter 2. This
tool generates includes files that are required by the Pyxos FT API.

4. Include the Pyxos FT API files as described in the remainder of this
chapter.

Common Components
The Pyxos FT Point and Pilot APIs consist of the following components. In the
following list, [Pyxos FT EVK] is the directory in which you installed the Pyxos
FT EVK software, usually C:\Program Files\Echelon\Pyxos FT EVK:

1. The Pyxos Point interface include file, which is generated by the Pyxos
FT Interface Developer for your Pyxos Point application. One of these
files is created for each Pyxos Point. This interface file is used by the
Point application, the Pyxos FT API, and the Pilot application.

2. The MyPyxosApplication.h file generated by the Pyxos FT Interface
Developer for your Pyxos Point or Pyxos Pilot application. This file is not
generally shared with other applications, as it customizes the
implementation of the Pyxos FT API for a particular type of Pyxos Point
or Pilot. This file includes the Pyxos Point interface include file (or all of
them on a Pilot). While the content of this file is customized for each type
of Point and Pilot, the name is fixed, because the file is included by the
Pyxos FT API. The Pyxos FT API uses the definitions in this file, as well
as the definitions of the Pyxos Point Interface for compile time
customization of the Point API.

3. The C source files in the [Pyxos FT EVK]\Pyxos FT API folder.

4. The external API header files that the API includes, and your application
may need to reference, in the [Pyxos FT EVK]\Pyxos FT API\include
folder. Your application must include the Pyxos.h file, which
automatically includes all of the other required include files, including

Pyxos FT Programmer’s Guide 97

your MyPyxosApplication.h file. The Pyxos FT API external include files
are:

• Platform.h: Platform-specific type definitions. You must
customize this file to support your host processor. See Chapter
6 for more information on this.

• Pyxos.h: The main Pyxos FT API include file for both the Pyxos
Point and Pilot APIs. This file includes your
MyPyxosApplication.h file, and indirectly includes your Point
interface file or files.

• PyxosRegister.h: Pyxos FT Chip register definitions.
• PyxosShared.h: Miscellaneous definitions that are shared by

both the Pyxos Pilot and Point APIs.
• PyxosPoint.h: External definitions and functions used by the

Point API. Used by Pyxos Point applications only. The Pyxos.h
file does not include this for Pilot applications.

• PyxosPilot.h: External definitions and functions used by the
Pilot API. Used by Pyxos Pilot applications only. The Pyxos.h
file does not include this for Point applications.

5. The internal API header files contained in the [Pyxos FT EVK]/Pyxos FT
API/include/internal folder. The include files in this folder are used by
the Pyxos FT API, but are not meant for use by the Pyxos application.

6. Shared Pyxos Serial Driver source code, in the [Pyxos FT EVK]\Pyxos FT
API\Serial API folder. This consists of a single file, psUtilImpl.c.

7. Shared Pyxos Serial Driver include files, in the [Pyxos FT EVK]\Pyxos
FT API\Serial API\include folder. These include files are used by the
Pyxos Point and Pilot APIs.

8. The Customized Pyxos Serial Driver Code. You must implement the
Pyxos serial driver, as described in Chapter 6. This implementation may
be shared by many Points and Pilots, but is affected both by the host
processor and the pins used to connect to the Pyxos FT Chip.

9. You will also have to define your host’s type in your project settings to
pick up the correct definitions from the platform.h file. See Chapter 6 for
more information on this.

Including the Point API in your Application
The project you use to create the Pyxos Point application must include the
following source files, where [Pyxos FT EVK] is the directory in which you
installed the Pyxos FT EVK software, usually C:\Program Files\Echelon\Pyxos
FT EVK:

• [Pyxos FT EVK]\Pyxos FT API\PyxosPoint.c
• [Pyxos FT EVK]\Pyxos FT API\PyxosBits.c
• [Pyxos FT EVK]\Pyxos FT API\PyxosUtil.c
• [Pyxos FT EVK]\Serial API\psUtilImpl.c
• Your implementation of the Pyxos Serial API

98 Pyxos FT Programmer’s Guide

• Your Point application source files.

The project must include the following folders in the include path:

• [Pyxos FT EVK]\Pyxos FT API\include
• [Pyxos FT EVK]\Pyxos FT API\Serial API\include
• Path of the folders containing your MyPyxosApplication.h file and your Point

interface include file.
• Path for any include files that your custom serial driver might need.
• Path for your application’s include files.

Any source files that access either the Point API or the Point’s interface
definitions must include the Pyxos.h file, which automatically includes the
MyPyxosApplication.h file, the Point’s interface include file and all of the
external API functions supported by the Point API.

Including the Pilot API in your Application
The project you use to create the Pyxos Pilot application must include the
following source files, where [Pyxos FT EVK] is the directory in which you
installed the Pyxos FT EVK software, usually C:\Program Files\Echelon\Pyxos
FT EVK:

• [Pyxos FT EVK]\Pyxos FT API\PyxosPilot.c
• [Pyxos FT EVK]\Pyxos FT API\PyxosPilotProcessInputs.c
• [Pyxos FT EVK]\Pyxos FT API\pyxosPilotProcessOutputs.c
• [Pyxos FT EVK]\Pyxos FT API\PyxosBits.c
• [Pyxos FT EVK]\Pyxos FT API\PyxosUtil.c.
• [Pyxos FT EVK]\Pyxos FT API\Serial API\psUtilImpl.c
• Your implementation of the Pyxos Serial API
• Your Point application source files.

The project must include the following folders in the include path

• [Pyxos FT EVK]\Pyxos FT API\Include
• [Pyxos FT EVK]\Pyxos FT API\Serial API\Include
• Path of the folders containing your MyPyxosApplication.h file and all of your

Point interface include files.
• Path for any include files that your custom serial driver might need.
• Path for your application’s include files.

Any source files that access either the Pilot API or any of the Point’s interface
definitions must include the Pyxos.h file, which automatically includes the
MyPyxosApplication.h file, all of the Point’s interface include files and all of the
external API functions supported by the Pilot API.

ANSI C
The Pyxos FT API is compatible with strict ANSI C compilers. However, you
may need to modify some of the type definitions used to implement bitfields in
the platform.h file if you intend to use a strict ANSI C compiler. The BitField

Pyxos FT Programmer’s Guide 99

and SignedBitField types are typically defined as an 8-bit quantity, while ANSI C
requires that bitfields be defined as int. The BitFieldWord type, used to
implement bitfields that are between 9 and 16 bits (or span the 9 and 16 bit
boundary) is typically defined as a 16-bit value. In order to use a strict ANSI C
compiler you will need to define all three of these types using int. However,
doing so will have two side effects:

1. Increased memory consumption

2. If you are using the ShortStack API and have included any LONWORKS

definitions using these fields, you will probably need to redefine these
structures to eliminate the bit fields and replace them with the
appropriately sized data items to ensure that the structures maintain the
proper alignment (matching those specified by the ANSI/CEA-709.1
protocol). You will then need to convert any references to the bit fields to
use bitmasks.

For more information about the customizing the platform.h file, see Chapter 6.

100 Pyxos FT Programmer’s Guide

Pyxos FT Programmer’s Guide 101

6

Porting the Pyxos FT API

This chapter describes how to port the Pyxos FT API to a
new processor or compiler. This includes hardware
considerations and details on the Pyxos Serial API (psAPI),
and on modifications you can make to the platform.h file to
suit your microprocessor.

102 Pyxos FT Programmer’s Guide

SPI Overview
When you use the Pyxos FT Chip in hosted mode, your host processor
communicates with the Pyxos FT Chip using a serial peripheral interface (SPI)
bus. The SPI bus is a synchronous serial data link standard. Devices
communicate in master/slave mode where the master device (your host) initiates
each data frame. Multiple slave devices are allowed with individual slave select
(chip select) lines. A typical SPI slave port consists of a clock input, a select line,
data input, and data output. The Pyxos FT Chip provides these interfaces, as
well as an interrupt line to improve microcontroller response times, and support
for two- and three-wire modes of operation.

Many microcontrollers have an embedded SPI port that can be configured to
work with the Pyxos FT Chip. If the microcontroller does not include an SPI
port, the SPI can be bit-banged from software.

The SPI protocol simply defines a physical interface—there are no universal SPI
standards for data framing and command structure. However, many serial
memories have adopted a standard for messaging over an SPI port, and many
software drivers have been developed that use this standard. The Pyxos FT Chip
adopts this standard with only minor variations—existing serial memory drivers
can be easily adapted to work with the Pyxos FT Chip.

SPI Slave Mode Port Connections
The Pyxos FT Chip SPI interface consists of the standard 4-pin SPI slave mode
interface (CS~/DIO2, SCLK/DI, MOSI/DIO0, and MISO/DIO1) plus an interrupt
signal (INT~/DIO3). These pins are summarized in Table 15 below. A host
microcontroller can interface to the Pyxos FT Chip with as few as two pins (using
SCLK and tying MOSI and MISO together). Higher performance
microcontrollers can use all five pins to take advantage of the interrupt and other
features.

Table 15 Pyxos FT Chip SPI Slave Mode Interface Pins

Name Pin SPI Function

CS~/DIO2 1 Active-low chip select for selecting the Pyxos FT Chip on the SPI bus
and framing transfers

SCLK/DI 3 SPI bus transfer clock (max 1.25MHz)

MOSI/DIO0 4 Master-out, slave-in serial data

MISO/DIO1 5 Master-in, slave-out serial data

INT~/DIO3 2 Active-low interrupt output to signal Pyxos FT network activity

http://en.wikipedia.org/wiki/Synchronous
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Data_frame
http://en.wikipedia.org/wiki/Slave_select

Pyxos FT Programmer’s Guide 103

SPI Modes, Transfer Framing, and Half-Duplex
Operation

There are four standard modes of SPI clock operation, depending upon whether
the output data (both MOSI and MISO) are changed on the asserted or released
edge of the clock, and whether SCLK idles high or low. The assert clock edge is
the edge going from idle to active; the release edge of the clock is the edge going
from active to idle. The Pyxos FT Chip supports two of these modes: mode 0 and
mode 3, as described in Table 16.

In addition, data transfers are framed either by the chip select (CS~), or by
timeouts. If CS~ framing is used, CS~ is asserted (low) before the data transfer
begins, and is released (high) after the last byte of the transfer completes. If
timeout framing is used, the time between bits and bytes within a transfer must
be less than the minimum timeout value and CS~ must remain high for the
entire duration of the transfer. Timeouts are defined by holding SCLK high for
longer than the maximum timeout value (this method of defining data transfers
cannot be used in SPI mode 0). If SCLK is expected to idle for significant periods
(greater than the timeout value) within a transfer, then CS~ framing must be
used along with SPI Mode 0.

Table 16 Supported SPI Transfer Modes and Transfer Framing Options

SPI Mode SCLK
Idle

Change Output on
SCLK Edge

Sample Input on
SCLK Edge

Transfer
Framing

01 Low Release (high-to-low) Assert (low-to-high) CS~

1 Low Assert (low-to-high) Release (high-to-low) NA

2 High Release (low-to-high) Assert (high-to-low) NA

CS~ 32 High Assert (high-to-low) Release (low-to-high)

timeout

Notes:
1. SCLK is allowed to idle for greater than timeout within a transfer in this mode.
2. SCLK period must be less than timeout for all bits with a transfer in this mode.

All transfers to and from the Pyxos FT Chip are half-duplex: data is sent only in
one direction at a time. The MISO pin is driven only during the portion of a
transfer where the Pyxos FT Chip is actually sending data. For example, during
a read operation, the first two bytes set up the read, so the Pyxos FT Chip will
not drive MISO; after that, the Pyxos FT Chip will drive MISO until the end of
the transfer. If the host microcontroller also obeys this convention (i.e., only
drives the MOSI pin when sending data), then the MISO and MOSI pins can be
electrically tied together to one pin on the microcontroller.

Microcontroller Connections
The Pyxos FT Chip SPI slave mode interface provides several options for
connecting to a host microcontroller, depending upon performance, flexibility,

104 Pyxos FT Programmer’s Guide

and available hardware resources. There are three connection schemes: four-
wire connection, three-wire connection, and two-wire connection.

The four-wire connection scheme shown in Figure 16 provides the most flexible
solution. It allows other SPI peripherals to be attached to the SPI bus. However,
you must determine whether there is sufficient bandwidth available to service all
of the devices on the SPI bus. It is the fastest connection scheme since timeout
framed transfers require that the timeout period (100µs) expire between
transfers. However, CS~ framed transfers only require that CS~ be raised for
400ns between transfers. It is straightforward to use this solution; if the
microcontroller contains a hardware SPI port or there is an available software
SPI master, then this can be used as is. This design is most appropriate for
Pilots or a Point that has multiple SPI devices.

CS~

SCLK

MOSI

MISO

Microcontroller

R1

Other SPI
peripheral

Pyxos FT
Chip

CS~

SCLK

MOSI

MISO

Figure 16 Four-wire Connection Scheme

The three-wire connection scheme shown in Figure 17 is used for Pyxos Points
when the Pyxos FT Chip is the only SPI device that the microcontroller
communicates with, at least on that SPI port. This design is not appropriate for
Pilots since the inter-transfer gap must be at least 100µs. However, if you are
developing a Pyxos Point and the microcontroller includes a hardware SPI port or
has an available software SPI port, then this is a good choice.

Pyxos FT Programmer’s Guide 105

SCLK

MOSI

MISO

Microcontroller

R1

·

Pyxos FT
Chip

CS~

SCLK

MOSI

MISO

Figure 17 Three-wire Connection Scheme

The two-connection scheme shown in Figure 18 is used when the host
microcontroller has extremely limited IO capability. This connection likely
requires that the SPI port be bit-banged on the microcontroller. Hardware based
SPI ports do not typically support sharing the MOSI and MISO signals. This is
most appropriate for low-cost Points.

SCLK

SDATA
Microcontroller

R1

·

Pyxos FT
Chip

CS~

SCLK

MOSI

MISO

Figure 18 Two-wire Connection Scheme

Table 17 SPI Connection Options

Connection
Scheme

Host
Pins

Transfer
Framing

Inter-
transfer
Time

Supported
by Standard
SPI

Multi SPI
Device
Support

Typical Usage

Four-wire 4 CS~ 400ns Yes Yes Pilot or Point
with other SPI
devices

Three-wire 3 Timeout 100µs Yes No Point

Two-wire 2 Timeout 100µs No No Low-cost Point

106 Pyxos FT Programmer’s Guide

Your application’s performance requirements and your selected host
microcontroller will determine which communications schemes are available and
sufficient. Some applications may be able to tolerate the performance overhead
of a bit-banged SPI port, and others may need to run the SPI bus at the
maximum allowable clock rate.

On the Pilot, the Pyxos FT Chip needs to transfer all of the timeslot data for
every frame. However, on a Point, the Pyxos FT Chip can send and receive at
most two four-byte values per frame. On the Pilot, as the number of timeslots
decreases, the amount of data that needs to be exchanged between the
microcontroller and the Pyxos FT Chip decreases, but so does the frame time. As
a result, the SPI bandwidth requirement on a Pilot is relatively constant.
However, on a Point, fewer timeslots on the network require greater SPI
bandwidth.

Table 18 indicates the maximum number of bytes that need to be transferred
between the host microcontroller and the Pyxos FT Chip on both a Pilot and a
Point. These bandwidth values are only required if the application expects to
service all I/O with minimal latency. If the application can tolerate greater
latencies, the bandwidth requirements can be scaled down. Table 18 does not
include overhead; e.g. reading each byte from the Pyxos FT Chip with separate
SPI transfers will increase the bandwidth requirements by a factor of three,
while reading all timeslots in one transfer incurs very little overhead. There may
also be overhead factors in the software that need to be accounted for. Finally,
these are maximum sustained-average rates; peak rates may be substantially
higher.

Pyxos FT Programmer’s Guide 107

Table 18 Sustained SPI bandwidth requirements

Pilot Point Time-
slots

Frame
Time
(ms)1 Max Data

Bytes Per
Frame2,3

Average SPI
Bandwidth
(kbps)5

Max Data
Bytes Per
Frame2,4

Average SPI
Bandwidth
(kbps)5

2 1.8 40 175 16 70

4 3.4 80 190 16 38

6 4.9 120 195 16 26

8 6.5 160 198 16 20

10 8.0 200 200 16 16

12 9.5 240 201 16 13

14 11.1 280 202 16 12

16 12.6 320 203 16 10

18 14.2 360 203 16 9.0

20 15.7 400 204 16 8.1

22 17.3 440 204 16 7.4

24 18.8 480 204 16 6.8

26 20.3 520 205 16 6.3

28 21.9 560 205 16 5.9

30 23.4 600 205 16 5.5

32 25.0 640 205 16 5.1

Notes:
1. Approximate value.
2. Does not include SPI transfer overhead bytes.

3. A timeslot requires 10 bytes (two indices + eight bytes of data), and
there are both a read timeslot and write timeslot in each frame.

4. A Point receives and sends at most two indices in each direction per
frame.

5. Sustained average rate; peak rate may be significantly greater.

108 Pyxos FT Programmer’s Guide

Serial Driver Design
The serial driver design is dependent on the host used, and whether it will be
used on a Pilot or Point. There are three different approaches that can be used
for the implementation of the serial driver:

• MANUAL: The serial driver drives specific I/O pins of the host manually to
communicate over the SPI bus with the Pyxos FT Chip.

• USART: The serial driver uses an existing universal synchronous
asynchronous receiver/transmitter (USART) directly to communicate over the
SPI bus with the Pyxos FT Chip.

• DMA: The serial driver uses a direct memory access (DMA) engine provided
by the host to communicate over the SPI bus with the Pyxos FT Chip.

The Pyxos FT EVK uses the peripheral DMA controller (PDC) of the ARM7 chip
to implement the serial driver.

SPI Protocol Operation Codes
The SPI interface uses a simple protocol modeled after SPI EEPROM memories
for reading and writing to memory locations within the Pyxos FT Chip. Existing
SPI EEPROM drivers can easily be adapted to working with the Pyxos FT Chip
SPI interface.

The Pyxos FT Chip supports a total of four SPI operations, as described in Table
19. Figures 19 through 22, which follow Table 19, illustrate each of these
operations with examples.

All data and address bytes are transferred most-significant bit first.

Table 19 Pyxos FT Chip SPI Op Codes

Op Code1,2 Mnemonic Operation

000A9A8011 READ Read data from memory

000A9A8010 WRITE Write data to memory

000XX101 RDSR Read status register

000XX001 WRSR Write status register

Notes:

1. ‘X’ represents a don’t care bit; these may be either 0 or 1.

2. A9 and A8 are the most significant address bits. The rest of the
address (A7 – A0) follows in the next byte.

The read and write operations (Figures 19 and 20) support multi-byte transfers.
The initial address is taken from the first two bytes (A9 to A0). The address is
then incremented for successive bytes (incrementing address 0x3FF will wrap
around to 0x000). Thus, a large block of data can be read or written in one

Pyxos FT Programmer’s Guide 109

transfer with only two bytes of overhead. The transfer is terminated by either
raising CS~ (for CS~ framing) or allowing SCLK to timeout (for timeout framing).
A read operation can be terminated in the middle of a byte. Write operations
must write all 8 bits of a byte to modify the byte on the Pyxos FT Chip.

Figure 19 shows a single byte read and Figure 20 shows a single byte write. Both
assume SPI Mode 0 and CS~ framing.

CS~

SCLK

MOSI

MISO
READ OP

CODE ADDR[7:0] RDATA[7:0]

A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

D7 D6 D5 D4 D3 D2 D1 D0

0 1 10 0 0

Figure 19 Example SPI Read Operations Using SPI Mode 0 and CS~ Framing

CS~

SCLK

MOSI

MISO
WRITE OP

CODE ADDR[7:0] WDATA[7:0]

A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D00 0 0 0 1 0

Figure 20 Example SPI Write Operation Using SPI Mode 0 and CS~ Framing

The RDSR and WRSR operations (Figures 21 and 22) provide quick access to the
interrupt register (this register is also available through the standard READ and
WRITE operations using the 10-bit address of the ISR). These operations reduce
the transfer length to access the ISR by 8 bits. All four bytes of the ISR can be
accessed, or the transfer can be terminated early. If a write is terminated early,
only those bytes that are completely transferred will be written. Attempting to
read or write beyond the four ISR bytes will have no affect.

110 Pyxos FT Programmer’s Guide

CS~

SCLK

MOSI

MISO
RDSR OP

CODE RISR[31:24]

0 0 0 1 0 1

I31 I30 I29 I28 I27 I26 I25 I24

Figure 21 Example SPI Read Status Register Operation Using SPI Mode 0 and CS~ Framing

CS~

SCLK

MOSI

MISO
WRSR OP

CODE WISR[31:24]

0 0 0 0 0 1 I31 I30 I29 I28 I27 I26 I25 I24

Figure 22 Example SPI Write Status Register Operation Using SPI Mode 0 and CS~
Framing

Detailed SPI Timing
Figures 23 through 25 provide detailed timing diagrams for several different
methods of interfacing to the Pyxos FT Chip SPI port. Table 20 lists the values
for the timing parameters.

tCSS

tSCH tSCL

tIS tIH

tOV tOH

tCSD

tOD

MISO

MOSI

SCLK

CS~

Figure 23 Detailed SPI Port Timing for SPI Mode 0 and CS~ Framing

Pyxos FT Programmer’s Guide 111

MOSI

tSCS

tSCH tSCL

tIS tIH

tOV tOH

tSCD

tOD

SCLK

MISO

Figure 24 Detailed SPI Port Timing for SPI Mode 3 and Timeout Framing with CS~ Held
Active (Low)

tSCS

tSCH tSCL

tIS tIH

tOV tOH

tSCD

tOD

tIE tID

MOSI

MISO

SCLK

Figure 25 Detailed Timing for Two-wire (MISO and MOSI Tied Together at Microcontroller)
SPI Port Interface with CS~ Held Active (Low)

112 Pyxos FT Programmer’s Guide

Table 20 SPI Interface Detailed Timing Parameters

Parameter Description Min Max Units

fSCLK Maximum SCLK frequency 1.25 MHz

tCSS CS~ setup to first rising edge of SCLK1 400 ns

tSCS SCLK setup to first rising edge of SCLK2 400 ns

tSCH SCLK high width 0.4 99 us

tSCL SCLK low width 0.4 us

tIS MOSI setup to rising edge of SCLK 12 ns

tIH MOSI hold after rising edge of SCLK 1 ns

tOV SCLK falling edge to MISO valid 12 ns

tOH MISO hold time after falling edge of SCLK 1 ns

tOD MISO disable time after end of transfer 400 ns

tCSD Time required to hold CS~ high between subsequent
transfers1

400 ns

tSCD Time required to hold SCLK high to terminate a transfer2 103 us

tIE Time after first falling edge of SCLK before MOSI
enabled3

0 ns

tID Time on last MOSI bit before SCLK falling edge to MOSI
disabled3

0 ns

Notes:
1. For CS~ framed transfers.

2. For timeout framed transfers.

3. For shared MOSI/MISO transfers.

Pyxos FT Programmer’s Guide 113

Pyxos Serial API
This section describes the Pyxos Serial API, and how to port it to a different
microprocessor. The Pyxos Serial API interfaces are defined in the psApi.h file.
The examples that ship with the Pyxos FT EVK contain an implementation of the
Pyxos Serial API for an Atmel® ARM® AT91SAM7S64 microprocessor.

Table 21 lists the functions that are implemented by the Pyxos Serial API. These
functions are described in more detail later in the chapter.

Table 21 Pyxos Serial API

Function Description

psInit() Initializes the Pyxos Serial Driver.

PsWrite() Writes data to the Pyxos FT Chip at a specified address.

psRead() Reads data from the Pyxos FT Chip at a specified
address.

psIsInterruptSet() Checks to see if the interrupt line of the Pyxos FT Chip is
set or not.

Pyxos Serial API Functions
The following sections describe the functions of the Pyxos Serial API in detail.

psInit()
Initializes the Pyxos serial driver and put the Pyxos FT Chip in idle state.

Syntax:

void psInit(void);

Remarks: This function must be called once by a Pilot or Point application before
any other functions of this API are called.

PS_PBUFFER
PS_BUFFER is a pointer to the data buffer used by psRead() and psWrite().

Syntax:

unsigned char* const PS_PBUFFER;

Remarks: The size of this buffer is defined by the PS_BUFFER_LENGTH macro.
This buffer will be provided and initialized by the driver.

114 Pyxos FT Programmer’s Guide

The Point API defines the PS_BUFFER_LENGTH macro in the PyxosPoint.h
file, based on the number of PNVs supported by the Point. The Pilot API defines
the PS_BUFFER_LENGTH macro in the PyxosPilot.h file.

psWrite()
Writes data from the PS_PBUFFER location to the Pyxos FT Chip over the SPI
bus.

Syntax:

int psWrite(const unsigned int addr, const unsigned int
length);

Remarks: Will block until this transaction has succeeded or failed. The addr
parameter contains the SPI chip address to write to. See the Pyxos FT Chip data
sheet for more information on this parameter.

The length parameter is the length of the data values in memory in bytes. This
parameter does not contain the OPCODE and address byte, which are handled by
this driver only. The parameter must be greater than 0, and must be less than or
equal to the value of the PS_BUFFER_LENGTH macro.

The function returns 0 when all the values have been written to the chip
successfully. If the function returns a non-zero value, then the operation failed.

psRead()
Reads data from the Pyxos FT Chip over the SPI bus and stores it at the
PS_PBUFFER location in memory.

Syntax:

int psRead(const unsigned int addr,
 const unsigned int length);

Remarks: Will block until this transaction has succeeded or failed. The addr
parameter contains the SPI chip address to read from. See the Pyxos FT Chip
data sheet for more information on this parameter.

The length parameter is the number of bytes of data values to read from the chip.
This parameter does not contain the OPCODE and address byte, which are
handled by this driver only. The parameter must be greater than 0, and must be
less than or equal to the value of the PS_BUFFER_LENGTH macro.

The function returns 0 when all the data has been successfully read from the
chip. If the function returns a non-zero value, then the operation failed.

psIsInterruptSet()
Checks if the interrupt line of the Pyxos FT Chip is currently set or not.

Syntax:

int psIsInterruptSet(void);

Pyxos FT Programmer’s Guide 115

Remarks: This function returns 1 if the chip is currently signaling an interrupt
on the IR line. Otherwise, it returns 0.

Modifying the Platform.h File
The platform.h file defines the development environment, compiler, and target
platform for the Pyxos application. It includes declarations for the built-in
Neuron C types which are the basis for Pyxos types. The platform.h file is not
project-specific. It is compiler and platform specific, and you can edit it to ensure
maximum cross-platform and cross-compiler portability.

The platform.h file includes comments and porting instructions. It supports
multiple targets and platforms in a single file using compiler directives. For each
compiler and platform, the file contains a section defining all compiler-dependent
and platform-dependent types and preferences. Each such section starts with an
#ifdef XXX clause, where XXX indicates the compiler in use. Use the symbol
used by your compiler, enforce the presence of the symbol by means of compiler
arguments, or change the default implementation of the platform.h file so that it
meets your target compiler and platform without conditional compilation. The
compilation of platform.h will fail with an error if you fail to meet these
requirements.
The master copy of the platform.h file is kept in the [Pyxos FT EVK]\Pyxos FT
API\include folder (c:\Program Files\Echelon\Pyxos FT EVK\Pyxos FT
API\include by default). Edit this to add compiler definitions for your target
compilers and platforms that persist for all projects.

In addition to type definitions, the Platform.h file includes the following macros
that can be used by little-endian processors to convert data to and from Pyxos FT
network (big-endian) format to the processor’s native format:

• NET_SWAB_WORD(aWord). Swaps the bytes in the 16-bit aWord
value.

• NET_SWAB_LONG(aLong). Swaps the bytes in the 32-bit aLong
value.

• NET_SWAP_WORD(aWord). Returns the byte swapped value of the
16-bit aWord value.

• NET_SWAP_LONG(aLong). Returns the byte swapped value of the
32-bit aLong value.

These macros have no effect on big-endian hosts, and so may be used whether the
host is a big-endian or little-endian processor.

Using Types
The Pyxos FT Interface Developer produces type definitions for the PNVs defined
by the Point interfaces when it creates the Resources files. The Pyxos FT API
also defines several data structures. For maximum portability, all types defined
by the Pyxos FT Interface Developer and by the Pyxos FT API are based on a
small set of nc* types. These types are host-side equivalents to the built-in
Neuron C types, which are used as the basis for both Pyxos FT and LONWORKS
network types.

For example, the platform.h file contains a type definition for a Neuron C signed
integer equivalent type called ncsInt. This type must be the equivalent of a

116 Pyxos FT Programmer’s Guide

Neuron C signed integer. On most target platforms, the ncsInt type will be
defined as a signed char type.

In the following example, one or more PNVs on a Point use the SNVT_switch
type from the standard resource files. The Pyxos FT Interface Developer creates
the following entry in the Point’s Resources.h file:

typedef struct

{

 ncuShort value; ncsShort state;

} SNVT_switch;

Type definitions for structures assume a padding of 0 (zero) bytes, and a packing
of 1 byte. Consult your compiler's documentation, and specify the appropriate
compiler-options to enforce this. You can add appropriate compiler directives
(#pragmas), if needed, to the compiler-specific section of the platform.h file.

Bitfield Members
Bitfield members are an exception to the above rules, since they are not based on
the nc* type equivalents. Bitfields use three types: Bitfield, SignedBitfield, and
BitFieldWord. These types are also defined in the platform.h file.

The Bitfield and SignedBitfield types support unsigned and signed bitfields
packed in an 8-bit byte. The BitfieldWord type is used when the number of bits
is more than 8 but less than 17. Bitfields are generated to work with compilers
with both big-endian bitfield ordering and with little-endian bitfield ordering.
The Pyxos FT Interface Developer inserts anonymous bitfields to achieve the
correct alignment and padding. You must verify that bitfields developed with the
Pyxos FT Interface Developer, and aggregates (structures, unions), meet the
requirements for your target compiler to produce bitfield and aggregate data
structures that match Neuron C's layout.

Enumerations
Enumerations are not produced by the Pyxos FT Interface Developer. The ANSI
C language defines an enumeration (enum) type to be equivalent to a signed int
type. The ANSI C language does not have a standard mechanism to enforce a
particular size for an enumeration. Neuron C always uses 8-bit enumerations
(because a Neuron C signed int type is an 8-bit scalar), so the Resources.h files
generated by the Pyxos FT Interface Developer represent enumerations with the
ncsInt type defined in the platform.h file.

Pyxos FT Programmer’s Guide 117

7

Pyxos FT Protocol

This chapter describes the Pyxos FT Protocol, and how to
directly access the Pyxos FT Chip to use the protocol.

118 Pyxos FT Programmer’s Guide

Introduction
This chapter describes the Pyxos FT Protocol and how to directly access the
Pyxos FT Chip to use the protocol. The simplest way to develop a Pyxos Point or
Pyxos Pilot application is to use the Pyxos APIs provided with the Pyxos
software. When using these APIs, you do not generally need to be concerned with
the underlying Pyxos FT Protocol.

However, this chapter will be useful to you under any of the following
circumstances:
• You want to modify or extend the Pyxos Pilot or Point API to better suit the

needs of your application.
• You want to understand the protocol to aid debugging while developing your

Pyxos application.
• You want to program directly to the Pyxos FT Chip, rather than use the

Pyxos FT API. This may be necessary when implementing a Pyxos Point
using a host microcontroller with limited hardware resources.

Pyxos FT Protocol Overview
The Pyxos FT protocol uses time-division multiplexing (TDM) to manage the
communications between the Pilot and the Points. TDM is a type of digital
multiplexing in which two or more simultaneous bit streams are encoded as sub-
channels into a single bit stream by interleaving bits from the different bit
streams. The combined bit stream is decoded at the receiving end. For a Pyxos
FT network, the different sub-channels are the bit streams from the different
Points on the Pyxos FT network, each communicating with the Pilot. Each of the
sub-channels has a fixed bit rate, providing deterministic response for each of the
sub-channels. The Pyxos FT Chips on the Pilot and the Points manage the
interleaving of the channels.

The Pyxos FT protocol divides the time domain into several recurrent timeslots of
fixed length, one for each sub-channel. A Pyxos frame consists of one window of
time containing all the timeslots for all the sub-channels. Every frame includes 8
bytes of data sent by the Pilot to each Point, and 8 bytes of data from each Point
to the Pilot.

The Pilot assigns a unique timeslot to each Point when the Point joins the
network. Timeslot assignment is not necessarily sequential, but is randomized
across the Points in the network. However, once a Point is assigned a timeslot, it
uses that same timeslot until the Point leaves the network.

A Point sends data to the Pilot and receives data from the Pilot only during its
assigned timeslot. The Pyxos FT Chip physically writes to a “write” timeslot and
reads from a “read” timeslot, but a Pilot application sees both the write and read
timeslots as a single timeslot assigned to the Point. Each timeslot carries 16
bytes of data—8 bytes in the read timeslot and 8 bytes in the write timeslot. The
Pilot sends data to a Pyxos Point by writing to the Pilot Pyxos FT Chip memory.
And, a Pyxos Point sends data to the Pilot by writing to the Point Pyxos FT Chip
memory. The Pilot can also request the current value of a location in the Point
Pyxos FT Chip memory by sending a poll request.

Pyxos FT Programmer’s Guide 119

A Pyxos FT network can support up to 32 Points, and the number of timeslots is
configurable, from 2 to 32. The Pilot can reserve timeslots for network expansion
or it can assign as many timeslots as the current number of Points in the
network. There must be at least as many timeslots as Points on the network.

Figure 26 shows a frame divided into four timeslots; the figure shows the
physical write and read timeslots. Two of the timeslots are allocated to Points on
the network, and the remaining timeslots are unused and are available for future
Points that might join the network.

Write
Timeslot

0

Write
Timeslot

1

Write
Timeslot

2

Write
Timeslot

3

Read
Timeslot

0

Read
Timeslot

1

Read
Timeslot

2

Read
Timeslot

3

FRAME

Pyxos FT
Point

A

Pyxos FT
Point

B

Pyxos FT
Point

A

Pyxos FT
Point

B

Free
timeslot

Free
timeslot

Free
timeslot

Free
timeslot

Figure 26 Timeslots in Each Network Frame

The number of timeslots within each frame directly determines overall network
latency and response time. For a network with two timeslots (two write plus two
read timeslots), that is, two Points, response time is less than 2 ms; for a network
with a full 32 timeslots (32 write plus 32 read timeslots for 32 Points), response
time is about 25 ms. It does not matter if a timeslot is allocated to a device or is a
free timeslot—the network response time is the same.

The Pyxos FT Protocol ensures reliable delivery of data. The Pyxos FT Chip
automatically acknowledges transactions, and new data cannot be sent until the
previous data has been successfully delivered. Each packet has its own 18-bit
CRC for error detection so that only valid data is delivered and acknowledged.

When a Pyxos Point is added to a network, it must be assigned to a timeslot. The
Pyxos FT Protocol provides built-in mechanisms to facilitate registration of new
Pyxos Points into a network. There are several registration methods supported
including automatic registration, manual registration, and hardwired
registration.

Memory and Registers
From a host microcontroller, the Pyxos FT Chip appears to be a serial memory
with an SPI port. A host application controls a Pyxos FT Chip by reading and
writing to memory on the chip. The host can read any location at any time.
Writing to certain locations will invoke side effects, such as sending the value to
another Pyxos FT Chip or configuring the Pyxos FT Chip.

120 Pyxos FT Programmer’s Guide

The memory space is divided into two areas: control registers and data memory.
On a Pilot, the data memory is used for the frame memory. The Pilot uses the
frame memory to buffer communications with Points.

The data memory is reserved for Pyxos Chip value (PCV) memory on a Point.
PCV memory contains a collection of PCVs addressed by Pyxos Chip index (PCI).
The Pilot and Pyxos Points exchange data by reading and writing to a PCI—the
value is the PCV. When a Pyxos Point writes to a PCI, the PCI and PCV are
propagated to the Pilot. A Pilot can address a Pyxos Point in a timeslot, and
write a PCV to a PCI on that Point over the network.

Pilot
SPI

address

Write
Timeslots

Pilot
Control

Registers

Read
Timeslots

0x000

0x3FF

0x27F
0x280

0x13F
0x140

Point
SPI

address
Pyxos Chip

Indices

Pyxos Chip
Values

Reserved

Point
Control

Registers

0x277
0x278

0x3FF

0x000

0x1FF
0x200

0x00

0xFF

0x80
0x7F

0x9E
0x9D

Figure 27 Pyxos FT Chip Memory and Registers

When accessed over the SPI interface, the memory space is byte addressable.
Over the network, the memory space is addressed by PCI. A PCI addresses a
PCV, which is a four-byte value. Bytes are packed big-endian into a PCI location
(the most-significant byte is at the lowest address). Bits are numbered in the
conventional manner (little-endian—the least-significant bit is at position 0).

To translate from a PCI to an SPI address, multiply the PCI by four. To access a
particular byte within a PCI location, add the appropriate offset. To translate
from an SPI address to a PCI, divide by four. Figure 28 shows an example of this
mapping for PCI 0xF0.

Pyxos FT Programmer’s Guide 121

0x3C0 0x3C1 0x3C2 0x3C3

7 0 7 0 7 0 7 0

0xF0

31 0

PCI

SPI address
bit index

bit index

Figure 28 Register Addressing From Network and From SPI Interface

There is an asymmetry in how the Pilot and the Pyxos Points view and address
PCVs. From the Pilot’s perspective, the Pyxos Points’ PCV memories appear to
be a large memory space addressed by timeslot and PCI. The Pyxos Points,
however, can only see their own PCV memory space. For a Pilot to send a
message, it must specify both the timeslot and the PCI, but a Pyxos Point only
needs to provide the PCI.

Pyxos Chip
Values

Reserved

Point Control
Registers

WTS 0

WTS 1

WTS n-1

RTS 0

RTS 1

RTS n-1

WTS i

RTS i

...

...

...

...

Figure 29 Pilot View of PCV Memory

The Pilot’s frame memory is an intermediate buffer where the data is sent to or
received from a Pyxos Point. The Pilot application maintains a local cache of
some subset of the PCVs. When it updates a PCV, it must also send the update
to the appropriate Pyxos Point by looking up the timeslot and writing the PCV to
the PCI at that timeslot. When a Pyxos Point updates a PCV, the PCI and PCV

122 Pyxos FT Programmer’s Guide

are automatically propagated to the Pilot’s frame memory. The Pilot application
must then accept the data and merge it into its copy of the PCVs.

Control Registers
Registers at PCI 0x9E and above (SPI addresses 0x278 and above) are used to
control the operation of the Pyxos FT Chip. These registers configure the Pyxos
FT Chip and network, provide network status, and control data transfers. Some
registers behave differently on a Pyxos Pilot than on Pyxos Point. These
registers are summarized in Table 22. Many of the control registers are
discussed in detail in later sections.

Table 22 Pyxos Control Register Map

Register Function Index
Addresses

SPI
Address

On Pilot On Point

0xFF 0x3FC – 0x3FF IDLE – Can be freely written and read.

0xFE 0x3F8 – 0x3FB Not used. UID2 – Three least significant bytes
of unique ID. See Configuration and
Registration.

0xFD 0x3F4 – 0x3F7 Not used. UID1 – Three most significant bytes
of unique ID. See Configuration and
Registration.

0xFC 0x3F0 – 0x3F3 CONFIG – Controls device type, network configuration, and slot
assignment. See Configuration and Registration.

0xFB 0x3EC – 0x3EF SOFCNT – Frame counter. See Protocol Statistics.

0xFA 0x3E8 – 0x3EB RSTCNTL – Writing 0xde 0xad 0xbe 0xef to this register resets the
Pyxos FT Chip. When updated over the network, an ACK is sent
before performing the reset.

0xF9 0x3E4 – 0x3E7 Not used. PID2 – Four most significant
bytes of program ID. See
Configuration and Registration.

Pyxos FT Programmer’s Guide 123

Register Function Index
Addresses

SPI
Address

On Pilot On Point

0xF8 0x3E0 – 0x3E3 Not used. PID1—Four least significant
bytes of program ID. See
Configuration and Registration.

0xF7 0x3DC – 0x3DF ISR—Interrupt status register. See Interrupts.

0xF6 0x3D8 – 0x3DB IENA—Interrupt enable. Controls which state changes results in
asserting the INT~ pin. See Interrupts.

0xF5 0x3D4 – 0x3D7 Not used. POLL—Pyxos FT Chip
automatically sends requested
PCIs. See Transactions.

0xF0 – 0xF4 0x3C0 – 0x3D3 Reserved.

0xEF 0x3BC – 0x3BF Not used. DIO FCT 1—Configure and
control DIO pins. See DIO.

0xE0 – 0xEE 0x380 – 0x3BB Reserved.

0xC0 – 0xDF 0x300 – 0x37F CRC/MS—Counts CRC errors and missed slots for each timeslot.
See Protocol Statistics.

0xB0 – 0xBF 0x2C0 – 0x2FF Reserved.

0xA8 – 0xAF 0x2A0 – 0xBF Pilot RCVD flags—Indicates
received timeslots. See
Transactions.

Point SENT flags—Indicates
PCIs to send. See Transactions.

0xA0 – 0xA7 0x280 – 0x29F Pilot SENT flags—Indicates
timeslots to send. See
Transactions.

Point RCVD flags—Indicates
received PCIs. See
Transactions.

0x9F 0x27C– 0x27F Not used. POINT_READY—Sent by a
Point application after it has
been configured to indicate that
it is ready to accept updates.
See the Configuration and
Registration section on page 141
for more information.

0x9E 0x278– 0x27B Not used SET_POINT_ONLINE—Sent by
the Pilot application when it is
ready for the Point to start
sending data. See the
Configuration and Registration
section on page 141 for more
information.

124 Pyxos FT Programmer’s Guide

Frame Memory
On a Pilot, the memory from SPI address 0x000 through 0x27F is used to buffer
send and receive data from the Pyxos Points. The memory is mapped to timeslots
in 10-byte increments. The 10 bytes are two Pyxos Data items (PDI) sent to the
Pyxos Point at the addressed timeslot. Each PDI is a PCI (one byte) and a
corresponding PCV (four bytes). This document often uses the following notation
for a PDI: { PCI, PCV }, where PCI is a one-byte value, and PCV is a four-byte
value. SPI addresses in the range 0x000 through 0x13F buffer the write
timeslots; addresses 0x140 through 0x27F buffer the read timeslots. Figure 30
shows the layout of a timeslot buffer in the Pilot Pyxos FT Chip, and Table 23
shows the mapping of timeslots to SPI address.

SPI address 0x046

PCI 0
byte 0 byte 1 byte 2 byte 3

PCI 1

Pyxos Data Item 0 Pyxos Data Item 1

0x047 0x048 0x049 0x04A 0x04B 0x04C 0x04D 0x04E 0x04F

PCV 0 PCV 1

byte 0 byte 1 byte 2 byte 3

Figure 30 Example Timeslot Layout For Write Timeslot 7

Table 23 Timeslot SPI Address Assignments

Time-slot Write Timeslot
SPI Addresses

Read Timeslot
SPI Addresses

 Time-
slot

Write Timeslot
SPI Addresses

Read Timeslot SPI
Addresses

0 0x000 – 0x009 0x140 – 0x149 16 0x0A0 – 0x0A9 0x1E0 – 0x1E9

1 0x00A – 0x013 0x14A – 0x153 17 0x0AA – 0x0B3 0x1EA – 0x1F3

2 0x014 – 0x01D 0x154 – 0x15D 18 0x0B4 – 0x0BD 0x1F4 – 0x1FD

3 0x01E – 0x027 0x15E – 0x167 19 0x0BE – 0x0C7 0x1FE – 0x207

4 0x028 – 0x031 0x168 – 0x171 20 0x0C8 – 0x0D1 0x208 – 0x211

5 0x032 – 0x03B 0x172 – 0x17B 21 0x0D2 – 0x0DB 0x212 – 0x21B

6 0x03C – 0x045 0x17C – 0x185 22 0x0DC – 0x0E5 0x21C – 0x225

7 0x046 – 0x04F 0x186 – 0x18F 23 0x0E6 – 0x0EF 0x226 – 0x22F

8 0x050 – 0x059 0x190 – 0x199 24 0x0F0 – 0x0F9 0x230 – 0x239

9 0x05A – 0x063 0x19A – 0x1A3 25 0x0FA – 0x103 0x23A – 0x243

10 0x064 – 0x06D 0x1A4 – 0x1AD 26 0x104 – 0x10D 0x244 – 0x24D

11 0x06E – 0x077 0x1AE – 0x1B7 27 0x10E – 0x117 0x24E – 0x257

12 0x078 – 0x081 0x1B8 – 0x1C1 28 0x118 – 0x121 0x258 – 0x261

Pyxos FT Programmer’s Guide 125

13 0x082 – 0x08B 0x1C2 – 0x1CB 29 0x122 – 0x12B 0x262 – 0x26B

14 0x08C – 0x095 0x1CC – 0x1D5 30 0x12C – 0x135 0x26C – 0x275

15 0x096 – 0x09F 0x1D6 – 0x1DF 31 0x136 – 0x13F 0x276 – 0x27F

PCV Memory
On a Pyxos Point, the memory from PCI 0x00 through 0x7F (SPI addresses 0x00
through 0x1FF) is used to store PCVs. When a Point microcontroller writes to a
PCI in this address space, the PCI and PCV are sent to the Pilot through the
appropriate read timeslot. When the Pilot sends a new PCI and PCV pair to the
Point in a write timeslot, a bit is set (in the Point’s RCVD bits) to indicate that
new data has arrived. The Point microcontroller can then access the new data at
the indicated PCI.

The PCV memory is supports unidirectional transactions only—PCVs can be sent
from or received in a given PCI, but attempting to use a PCI bi-directionally will
result in corrupt data. There is no mechanism, for example, to prevent an
application from writing to a PCI at the same time as the network.

Physical Layer
A cycle of communication where the Pilot exchanges a packet in each direction
with each Point is referred to as a frame. Each frame starts with a start-of-frame
(SOF) packet, followed by the write timeslots (WTSlots), and then the read
timeslots (RTSlots). The WTSlots is divided into a sequence of individual
packets, one per timeslot. Similarly, the RTSlots is divided into packets, one per
timeslot.

SOF WTS 0 WTS 1 WTS
n-1 RTS 0 RTS 1 RTS

n-1

 Frame i

Frame i+1Frame i-1

 WTSlots RTSlots

Figure 31 Pyxos FT Protocol Frame

A frame can have up to 32 timeslots, numbered from 0 to n-1, where n is the
number of timeslots in the frame. The timeslot identifiers assigned to each Point
are used to index into the WTSlots and RTSlots. The Point then accepts the
packet in the WTSlots at its index and sends a packet out in the RTSlots at its
index. For example, a Point with timeslot identifier 3 will read WTS 3 and write
to RTS 3.

There are three types of packets in the Pyxos FT Protocol:

• SOF packet
• Write packet (in the WTSlots)
• Read packet (in the RTSlots)

126 Pyxos FT Programmer’s Guide

The SOF and write packets are sent from the Pilot in one automatic
transmission. The read packets are sent from each Point, one at a time. The
SOF and read packets start with a preamble to allow for physical layer
synchronization. All packets contain an 18-bit CRC.

The SOF has two primary purposes. It signals the start of a frame, and it
indicates the length of the frame. The Points use this information to determine
where to find their write packet, and when to send their read packet. The SOF
packet includes a pattern that marks the SOF packet as distinct from other data.
A field within the SOF encodes the number of timeslots in the frame.

Each data packet (WTS or RTS) contains a pair of Pyxos data items (PDI) and a
3-bit flags field. Each PDI consists of a one-byte Pyxos Chip index (PCI) and a
four-byte Pyxos Chip value (PCV). The PCI uniquely identifies the data item
within the Point. The flags field is discussed in the following section.

The Pyxos FT network runs at 312.5 kHz—or 3.2µs per bit. The length of each of
the packet types in bits and time is shown in Table 24. There is a 2-bit gap
between the WTS and the RTS.

Table 24 Packet Sizes

Packet Type Bits Time (µs)

SOF 87 278.4

WTS 111 355.2

Gap 2 6.4

RTS 130 416.0

The frame time depends upon the number of timeslots in the frame. The number
of timeslots must be an even number between 2 and 32, inclusive. Table 25
shows the frame time and frame rate for all valid frame lengths.

Table 25 Frame Times

Timeslots WTSlots
time (ms)

RTSlots
time (ms)

Frame
time1 (ms)

Frame
rate (fps)

2 0.71 0.83 1.8 547

4 1.42 1.66 3.4 297

6 2.13 2.50 4.9 204

8 2.84 3.33 6.5 155

10 3.55 4.16 8.0 125

12 4.26 4.99 9.5 105

14 4.97 5.82 11.1 90.2

Pyxos FT Programmer’s Guide 127

Timeslots WTSlots
time (ms)

RTSlots
time (ms)

Frame
time1 (ms)

Frame
rate (fps)

16 5.68 6.66 12.6 79.2

18 6.39 7.49 14.2 70.6

20 7.10 8.32 15.7 63.7

22 7.81 9.15 17.3 58.0

24 8.52 9.98 18.8 53.2

26 9.24 10.8 20.3 49.2

28 9.95 11.6 21.9 45.7

30 10.7 12.5 23.4 42.7

32 11.4 13.3 25.0 40.1

Notes:

 1. Includes SOF (278.4µs) and gap (6.4µs).

Transactions
A transaction in the Pyxos FT Protocol is a successful, acknowledged transfer of
data between the Pilot and a Pyxos Point. In any given frame, there are as many
as 64 open transactions—one transaction from the Pilot to each Point, and one
transaction from each Point to the Pilot. In addition, the Points can queue up
future transactions for each PCI. The Pyxos FT Chip maintains several data
structures and buffers to manage the transactions and keep track of the queues.

There are two basic transaction types—a write transaction from the Pilot to a
Point, and a read transaction from a Point to the Pilot. There are several special
forms of these transactions that are used during initialization (TID
synchronization) or when there is no data to send (Idle transactions). The Pyxos
FT Protocol also provides several higher-level services (block transfers, polling,
and registration).

This section examines the on-chip data structures, transaction processing, the
higher level services (except registration, which is discussed in a separate
section), and how the programmer uses these resources effectively.

Packet Flags—ACK, ACKD TID, and TID
All data packets contain a flags field that is used for handshaking between the
Pilot and the Points. There are three flags: TID, ACK, and ACKD TID.

The TID flag is a simple one-bit transaction identifier. The TID toggles for each
unique packet sent in each timeslot. This flag prevents the same data from being
delivered and accepted multiple times. The Pyxos FT Chip maintains the state of

128 Pyxos FT Programmer’s Guide

the TID for all outgoing and incoming transactions. On outgoing transactions, it
toggles the state of the TID for each new transaction it sends. On incoming
transactions, it adopts the state of the TID from the transaction when it accepts
the transaction; it will not accept a transaction if the incoming TID matches the
state of the last accepted TID (except in special circumstances—more is said
about this later).

The ACK flag is used to acknowledge the receipt of a previous packet—the ACK
flag on a write packet acknowledges the previous read packet from the
corresponding timeslot, and similarly on a read packet. This flag ensure that the
transaction completes before going to the next transaction.

The ACKD TID identifies which transaction is being acknowledged. This ensures
that an acknowledgement does not get confused with the wrong transaction.

SENT and RCVD Flags
The Pyxos FT Chip keeps track of data items to send, and new data items
available from the network. It prevents new data from being accepted until the
previous item has been consumed. It also prevents an attached host processor
from attempting to send new data until the previous data has been consumed.
This state is maintained in the SENT and RCVD flags described in Table 22. On
the Pilot, the SENT and RCVD flags track the status of transactions for each
timeslot. On a Point, the SENT and RCVD flags track the status of transactions
for each PCI.

An application can read these flags to monitor the state of a transaction, but
cannot directly write to them. They are only set when a transaction is initiated.
However, an application can clear one of these flags; doing so will cancel an
ongoing transaction. For more information on canceling a transaction, see the
Canceling a Transaction section.

On the Pilot, there are a total of 32 SENT flags (S0 to S31) and 32 RCVD flags
(R0 to R31) —one for each timeslot buffer. If the network is configured for less
than 32 timeslots, then only the lower SENT and RCVD flags are used. The flags
are mapped into the control register space with S0 to S7 and R0 to R7 at the
most-significant bytes of their respective registers. S0 and R0 are at the least-
significant bit position of those bytes, as shown in Figure 32. This allows the
Pilot to address the base of the register and only shift out the flags for the
number of timeslots in the network. For example, if there are only 8 timeslots in
the network, then only the first byte of SENT flags and RCVD flags need to be
monitored.

SENT flags0x280 - 0x283

RCVD flags0x2A0 - 0x2A3 R7 R0 R15 R8 R23 R16 R31 R24

S7 S0 S15 S8 S23 S16 S31 S24

SPI addresses: Bit index 031

Figure 32 Pilot SENT and RCVD flags

On a Point, there are 256 SENT flags (S0 to S255) and 256 RCVD flags (R0 to
R255) – one for each PCI. Some of these correspond to PCVs that are not
available (PCIs 0x80 through 0x9F), or to PCIs that the Point application cannot
directly send or receive (the registers from 0xA0 through 0xFF). However, the
registers can be sent or updated in response to Pilot requests (for example a Poll

Pyxos FT Programmer’s Guide 129

request—see the Polling section). A Point can have one outstanding read or write
for each PCV in its memory (a scheduling algorithm then determines the order
that the PCVs are sent). The location of these flags in the Point Pyxos FT Chip is
shown in Figure 33.

The PCI SENT and RCVD flags ensure that data is transferred properly between
the Pilot and Point applications. However, they only support unidirectional
transactions. Attempting to use a single PCI to both send and receive data from
a Point application will result in corrupt data. There is no mechanism, for
example, to prevent an application from writing to a PCI at the same time as the
network.

RCVD flags

SENT flags

0x280 - 0x283

0x2A0 - 0x2A3

SPI addresses: Bit index 031

0x2A4 - 0x2A7

0x2A8 - 0x2AB

0x2AC - 0x2AF

0x2B0 - 0x2B3

0x2B4 - 0x2B7

0x2B8 - 0x2BB

0x2BC - 0x2BF

0x284 - 0x287

0x288 - 0x28B

0x28C - 0x28F

0x290 - 0x293

0x294 - 0x297

0x298 - 0x29B

0x29C - 0x29F

S7 S0 S15 S8 S23 S16 S31 S24

S39 S32 S47 S40 S55 S48 S63 S56

S71 S64 S79 S72 S87 S80 S95 S88

S103 S96 S111 S104 S119 S112 S127 S120

S135 S128 S133 S136 S141 S134 S159 S142

S167 S160 S175 S168 S183 S176 S191 S184

S199 S192 S207 S200 S215 S208 S223 S216

S231 S224 S239 S232 S247 S240 S255 S248

R7 R0 R15 R8 R23 R16 R31 R24

R39 R32 R47 R40 R55 R48 R63 R56

R71 R64 R79 R72 R87 R80 R95 R88

R103 R96 R111 R104 R119 R112 R127 R120

R135 R128 R133 R136 R141 R134 R159 R142

R167 R160 R175 R168 R183 R176 R191 R184

R199 R192 R207 R200 R215 R208 R223 R216

R231 R224 R239 R232 R247 R240 R255 R248

Figure 33 Point SENT and RCVD flags

Read and Write Hotspots
Transactions begin when a host (Pilot or Point) application writes to specific
locations on the Pyxos FT Chip over the SPI port. The transactions complete
when the application reads specific locations. These locations are read and write
hotspots; there are such hotspots for both the Pilot (timeslot hotspots) and the
Points (PCV hotspots).

Write hotspots are the last byte of a timeslot buffer (on a Pilot) or a PCV (on a
Point). When an application writes to one of these locations, the Pyxos FT Chip
will set the corresponding SENT flag. The write hotspots prevent the Pyxos FT

130 Pyxos FT Programmer’s Guide

Chip from beginning to transmit the data item before the application has
completed the data transfer.

On the Pilot, there is an additional requirement that the SPI transfer that writes
to the timeslot write hotspot must also include at least one byte that is not 0xFF.
If this condition is not met, the SENT flag will not be set. This allows the Pilot to
transfer all of the write timeslots in one SPI transfer, using {0xFF,
0xFFFFFFFF} for any Pyxos Data Item that has no update.

Read hotspots are the last two bytes of a timeslot buffer or a PCV. When an
application reads from either of these locations, the Pyxos FT Chip will clear the
corresponding RCVD flag. The read hotspots prevent the Pyxos FT Chip from
overwriting the buffer with new data from the network until the application
finishes reading the data item. When an application reads from data memory
over the SPI port, the Pyxos FT Chip caches the byte one beyond the currently
addressed byte. This ensures that reading the next to last byte and the last byte
of a timeslot buffer or PCV in one SPI transfer will return coherent data.

In general, an application should read or write an entire data item in one SPI
transfer. This will prevent data items from being sent prematurely or being
overwritten before being completely read.

When an application has less data than necessary to fill a PCV or timeslot buffer,
it should right-align the data. For example, a two-byte quantity should be stored
in the two least-significant bytes of a PCV. Or, if the Pilot application has only a
single PDI to send to a timeslot buffer, it should use the right-most PDI (bytes 5
through 9); an unused PDI should always be {0xFF, 0xFFFFFFFF}. This ensures
that the application will always read or write from the hotspots, and that it may
be able to optimize SPI accesses in some cases to read or write only the relevant
bytes.

Canceling a Transaction
An application can monitor the SENT and RCVD flags, but it cannot directly
write to them. However, it can clear one of the flags by writing a 1 to the bit in
the Pyxos FT Chip register that contains the flag. The application shares access
to these flags with the Pyxos FT Chip protocol engine. Writing ones to clear a bit
allows the application to selectively clear flags without affecting the state of other
flags in the register. When the application clears a flag, it cannot determine
whether the clearing was a result of its action or because the protocol engine
completed its task.

Clearing a RCVD flag will not cancel a transaction, as the data has already been
delivered by the time a RCVD flag is set. In addition, clearing a RCVD flag on
the Pilot will result in the Pilot not returning an ACK—the sending Point will not
be able to terminate the transaction and will require a reset. It is much safer to
simply read and discard a data item if the application determines that it is no
longer interested in it, than to clear a RCVD flag.

Clearing a SENT flag on the Pilot will attempt to cancel the transaction. The
application cannot be certain whether it prevented delivery, but it will free the
timeslot buffer to be used for another transaction. When the Pilot successfully
cancels a write timeslot transaction, it will toggle its outgoing TID; however, the
Point will not toggle its incoming TID. To re-establish communication, the TIDs
must be re-synchronized (see the TID Synchronization section below).

Pyxos FT Programmer’s Guide 131

The Point application cannot cancel an ongoing read transaction. Once the Pyxos
FT Chip has begun the transaction, it will continue to attempt to complete it.
However, clearing a SENT flag on a Point will attempt to cancel a queued
transaction for the corresponding PCI. The application cannot be certain
whether it actually cancelled the delivery, or the Pyxos FT Chip simply began the
transaction. Clearing a Point SENT flag will not disrupt any ongoing or future
transactions.

Idle Transactions
When the Pyxos FT Chip has no data to send, it sends an idle timeslot. An idle
timeslot consists of two idle PDIs; the idle PDI is { 0xFF, 0xFFFFFFFF }.
Sending and receiving an idle timeslot is referred to as the Idle Transaction.

The Idle Transaction has several useful properties. The Idle Transaction is
always accepted by the destination node, but is never acknowledged. Since the
Idle Transaction is always accepted, it is a special case of a TID synchronizing
transaction (see TID Synchronization). The Idle Transaction will never set or
clear a SENT or RCVD flag; it does not require any servicing from the application
to ensure its use, either to send or receive.

In on-demand Pilot mode (see Configuration and Registration below), the Pilot
application can explicitly send an Idle Transaction if it has no data to send. This
allows the network to run for a single cycle, allowing the Points to send any data
they have.

A PDI with a 0xFF PCI is not an idle PDI, unless the PCV is also 0xFFFFFFFF.
If a Pilot attempts to send a timeslot where both PCIs are 0xFF, but one of them
is not the idle PDI, then the SENT bit will get set (because one of the bytes is not
0xFF). However, the Point will still treat the timeslots as idle, and will not
acknowledge the transfer. The Pilot application must cancel the transaction to
clear such a transaction.

TID Synchronization
Both a sending and receiving node must agree on the state of the TID before they
can successfully exchange data. After reset, the TIDs are set to an arbitrary
value. A TID synchronizing transaction is required to ensure that the TIDs
agree. Such transaction are required at other times as well, such as after the
Pilot cancels a transaction.

A TID synchronizing transaction is any transaction where both PCIs are at least
0xF0. The receiving node never checks the state of the TID flag before accepting
such transactions. A Point always accepts a TID synchronizing transaction—the
RCVD flags for these PCIs never get set (they correspond to control registers;
writing to them takes effect immediately without notifying the application). On
the Pilot, they are accepted as long as the Pilot application has ensured that the
RCVD flag is clear by reading the timeslot buffer.

When a Pyxos FT Chip accepts a TID synchronizing, it adopts the TID flag as the
state of the last incoming TID. After this, the sending and receiving nodes agree
on the state of the TID, and all subsequent transactions can proceed normally.

After assigning a Point to a timeslot, the Pilot and Point send TID synchronizing
transactions to each other to establish reliable communication before performing
any other transactions. If the Point is an unhosted Point, the Pilot will need to

132 Pyxos FT Programmer’s Guide

Poll a register in the 0xF0 – 0xFF range to ensure a TID synchronizing
transaction in the read timeslot.

Although the Idle Transaction is a TID synchronizing transaction, an application
may attempt to send data before an idle transaction has occurred. This is
especially true if the Pilot is using on-demand Pilot mode. The best approach is
for both Pilot and Point applications to explicitly send a TID synchronizing
transaction before any other transactions.

The Pilot can use a poll (PCI 0xF5) of the UID of the Point as a TID
synchronizing transaction. This will ensure that the write timeslot TID is
synchronized, but it does not ensure that the read timeslot TID will be
synchronized. This will work for an unhosted Point, however, the application on
a hosted Point may attempt to queue up a transaction before the UID poll occurs.

For hosted Points, the application should send its UID as the first transaction
after receiving a slot assignment. It can determine when it has received its slot
assignment by monitoring the CFG bit in the CONFIG register—see the
Configuration and Registration section for more information on this. And
because the round-robin scheduler may select other PCIs first, the Point
application should not attempt to send any other PCIs before it sees the SENT
flags of the UID registers clear.

Because the Pyxos FT Chip accepts TID synchronizing transactions regardless of
the state of the TID, it is possible for the Pyxos FT Chip to see and accept such a
transaction multiple times. For example, if the acknowledgement is lost on the
first attempt due to noise, the sending node will continue to send the transaction
until it sees the acknowledgement. In general, this is harmless. However, when
the Pilot sends a Poll request, it may see multiple responses. The Pilot should be
able to tolerate multiple responses to a Poll request.

Write (Pilot-to-Point) Transactions
A write transaction starts with the Pilot application’s request to send data and
completes when the Point accepts the data. The steps involved in this
transaction include:

1. Initiate: the Pilot application writes to a write timeslot buffer over the SPI
bus.

2. Send: the Pilot Pyxos FT Chip sends a write timeslot buffer to a Point.
3. Accept: the Point Pyxos FT Chip accepts data, returns an acknowledgement,

and notifies the Point application of new data.
4. Read: the Point application reads new data.
5. Terminate: the Pilot Pyxos FT Chip receives acknowledgement and clears the

transaction.

These steps are illustrated in the figure below for a simple case—the Pilot sends
a single PDI (PCIk, PCVk) to the Point in timeslot j. PCIk is in the range of 0x00
to 0x9F and the ISR updates are not shown. These steps are described in more
detail in the following sections.

Pyxos FT Programmer’s Guide 133

2

ReadSENT[WTSj]

SENT[WTSj]

== 1

WriteWTSj = {PCIk, PCVk}

WTSj = {PCIk, PCVk}, TIDj = t

ACKj = 0, ACKD TID = X

SENT[WTSj] = 0

Initially:
SENT[WTSj] == 1

outgoing TIDj == ~t

ReadSENT[WTSj]

SENT[WTSj]

== 0

WTSj = {PCIk, PCVk}
SENT[WTSj] = 1

AC
Kj

 =
 1

, A
CK

D
TI

D
=

t

PCIk = PCVk
RCVD[PCIk] = 1
incoming TIDj = t

RCVD[PCIk] = 0

Initially:
RCVD[PCIk] == 1

incoming TIDj == ~t

WTSj = {PCIk, PCVk}, TIDj = tAccept

Read

Terminate

Send

Initiate

RCVD[PCIk]== 1

Read

RCVD[PCIk]

PCIk== PCVk

Read
PCIk

SENT[WTSj] = 0
outgoing TIDj = ~t

RCVD[PCIk] = 0

Pxyos FT
Chip

Pxyos FT
Chip

SPI SPIPyxos FT Network

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Pilot Point

1

Figure 34 Example Write Transaction

Notes:

 1. Packet rejected (ACKj=0) because RCVD[PCIk]==1.

 2. RCVD[PCIk] cleared by previous transaction.

Initiate
When the Pilot writes to a write timeslot buffer over the SPI bus, the
corresponding SENT flag is set. If the SENT flag is already set, then the Pyxos

134 Pyxos FT Programmer’s Guide

FT Chip will ignore any attempt to write the timeslot buffer, and the write data
is discarded. The Pilot application must ensure that the previous transaction has
cleared by checking the SENT flag before writing to the timeslot buffer.

Not all SPI writes to a write timeslot buffer will set a SENT flag. The SPI write
must include a write timeslot hotspot and must contain at least one byte that is
not 0xFF. See the Read and Write Hotspots section for more details on this.

Send
Once the SENT flag has been set, the Pilot Pyxos FT Chip will send the data in
the timeslot buffer in the next frame. It continues to send the data with the TID
flag until it receives (on the corresponding read timeslot) an ACK where the
ACKD TID matches its TID.

If the Pilot never receives an acknowledgement, it will continue to send the
timeslot buffer. However, if the addressed Point cannot respond—for example, if
it has been disconnected from the network—then this condition may persist
indefinitely. The Pilot application can monitor for this and establish a
transaction timeout. If it does not receive an acknowledgement from the Point
within the timeout period, it can recover by canceling the transaction, sending a
reset command, and re-establishing communication with the Point. This is
explained in more detail in the Reset Handling and Error Recovery section below.

Accept
A Point Pyxos FT Chip examines every write packet in its timeslot. It will accept
the packet if the PCIs and TID of the incoming packet meet one of two conditions:

• The PCIs are both 0xF0 or greater.
• The RCVD flags for the PCIs are both clear and the TID is different from the

last accepted TID.

When the Point Pyxos FT Chip accepts a write packet, it performs the following
actions:

1. For any PCI less than 0xFF, copy the PCVs to the appropriate location as
indicated by the PCIs.

2. Set the RCVD flag for any PCI in the packet that is less than 0xA0.
3. If any PCI RCVD flag gets set, set the ISR RCVD flag.
4. Update the local copy of the last received TID.
5. If either PCI is not 0xFF, set the ACK and ACKD TID flags for the

corresponding read timeslot.
6. If the PCI is a POLL command, the appropriate SEND bits are immediately

set.

If both PCIs are at least 0xF0, the packet is always unconditionally accepted.
See the TID Synchronization section for more information. If both PCIs are
0xFF, the packet is treated as the idle packet. See the Idle Transactions section
for more information.

PCIs greater than 0xA0 are in the register space. The Point Pyxos FT Chip
handles these PCIs directly, without Point application intervention. So, the
RCVD flag does not need to be set, and no interrupt will be sent to the Point
application. Two registers (0x9F and 0x9E) are defined below 0xA0. These
registers are not handled directly by the Pyxos FT Chip, but rather are used as

Pyxos FT Programmer’s Guide 135

control registers accessed by the Point application. Therefore, the RCVD flag and
an interrupt are set for registers in this range.

Writing to the CONFIG register, however, can disrupt communications. It is
possible to prevent the Point from responding properly to the transaction when
writing to this register. For example, if the Pilot attempts to de-configure a Point
by clearing its CFG bit (see the Configuration and Registration section), the Point
will not return an ACK. The Pilot will then need to cancel the transaction.

A better method of de-configuring a Point is to send it a soft reset (writing the
reset pattern to the RSTCNTL register). The Point Pyxos FT Chip will always
acknowledge this transaction before performing the reset.

Read
The Point application is notified of new data in one of two ways: either through
monitoring the ISR or monitoring specific RCVD flags.

The ISR RCVD flag is set when new data has arrived (see above), so the
application can monitor this single flag to wait for new data. In fact, the
interrupt output of the chip can be configured (using the IENA register) to
monitor for changes to the ISR RCVD flag. Once the application learns that the
ISR RCVD flag has been set, it must then determine which PCI RCVD flag has
been set by reading the RCVD flags.

If, however, the Point application is only concerned with a few PCIs, it may be
more convenient to watch the RCVD flags for those PCIs. This avoids the extra
step of searching for which RCVD flag was set.

Once the application determines that it has new data at a given PCI, it can read
that data at any time. Since the RCVD flag is set, the Pyxos FT Chip will not
accept new data until the Point application clears the RCVD flag, which it does
by reading the data. See the Read and Write Hotspots section for more
information on clearing the RCVD flag by reading the data.

Terminate
As soon as the Pilot Pyxos FT Chip recognizes an ACK for the TID that it is
sending, it terminates the transaction. When it terminates a transaction, it
performs the following steps:

1. Clear the SENT flag for the timeslot.
2. Set the ISR SENT flag.
3. Toggle the local copy of the TID.

Since the SENT flag has been cleared, it will no longer attempt to send the data
from the timeslot buffer. The Pilot application can monitor the ISR SENT flag or
the timeslot SENT flag to determine when the transaction has completed. It can
then initiate a new transaction. If no new transaction is available, the Pilot Pyxos
FT Chip will send the idle packet.

Read (Point-to-Pilot) Transactions
Read transactions differ from write transactions because of the way PCVs are
queued and scheduled on a Point, and because of the way the Pilot acknowledges
receipt of a read timeslot.

136 Pyxos FT Programmer’s Guide

A Point Pyxos FT Chip can queue a read transaction for each PCV (up to 128). It
contains a built-in round-robin scheduler to determine which PCVs to send next.
When it selects one or two PCVs to send, those PCVs are copied to a transmit
buffer, where they remain until the read transaction completes. This buffer
allows the Point application to queue a second update to the PCV as soon as the
first update has been copied to the buffer.

Read transaction acknowledgements require Pilot application intervention – the
ACK is not sent until the application has seen the data and read it.

These differences lead to a slightly different flow for read transactions:

1. Enqueue: The Point application writes to a PCV over the SPI bus.
2. Send: The Point Pyxos FT Chip selects up to two PCVs to send, copies them

to the transmit buffer, and sends the read timeslot to the Pilot.
3. Accept: The Pilot Pyxos FT Chip accepts the data and notifies the Pilot

application, but does not acknowledge receipt.
4. Read: The Pilot application reads and processes the data.
5. Acknowledge: The Pilot Pyxos FT Chip acknowledges the read transaction.
6. Terminate: The Point Pyxos FT Chip receives acknowledgement and clears

the transaction.

These steps are illustrated in Figure 35 for a simple case—the Point sends a
single PDI (PCIk, PCVk) to the Pilot in timeslot j. PCIk is in the range of 0x00 to
0x9F and the ISR updates are not shown. These steps are described in more
detail in the sections following Figure 35.

Pyxos FT Programmer’s Guide 137

RTSj = {PCIk, PCVk}, TIDj = t

ACKj = 0, ACKD TID = X

Initially:
RCVD[RTSj] == 1

incomding TIDj == ~t

SENT[PCIk]== 1

ACKj = 1, ACKD TID = t

RTSj = {PCIk, PCVk}
RCVD[RTSj] = 1

TIDj = t

RCVD[RTSj] = 0

Initially:
SENT[PCIk] == 1

outgoing TIDj == ~t

WTSj = {PCIk, PCVk}, TIDj = t

Accept

Read

Terminate

Send

Enqueue

Read

SENT[PCIk]

RCVD[RTSj]

== 1

ReadRCVD[RTSj]

RTSj

== {PCIk, PCVk}

Read
RTSj

TIDj = ~t

SENT[PCIk] = 0
Read

SENT[PCIk]

SENT[PCIk]== 0

Write

PCIk = PCVk

Pxyos FT
Chip

Pxyos FT
Chip

SPI SPIPyxos FT Network

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Pilot Point

Acknowledge

Copy {PCIk, PCVk} to
transmit buffer

RTSj = {PCIk, PCVk}
SENT[PCIk] = 0

SENT[PCIk] = 1

RTSj = {PCIk, PCVk}, TIDj = t

ACKj = 0, ACKD TID = X

RCVD[RTSj] = 0

Figure 35 Example Read Transaction

Enqueue
When a Point application writes to PCV memory, the PCV is marked for sending
to the Pilot in a read timeslot. The Point Pyxos FT Chip marks the PCV by
setting the corresponding SENT flag. If the Point application writes to a control
register (PCI 0xA0 or greater) other than one of the UID registers (0xFD and
0xFE) or POLL register 0xF5, then no SENT flag is set. In general, writing to a
control register does not cause the register to be sent to the Pilot. The exception

138 Pyxos FT Programmer’s Guide

for the UID registers is used as part of the registration process (see the
Configuration and Registration section later). The POLL register exception
allows the Point applications to send poll requests. The Pilot can still read the
Point control registers using the Polling mechanism (see the Polling section
later).

The Point Pyxos FT Chip will only set the SENT flag if the SPI write is to the
PCV write hotspot. See the Read and Write Hotspots section for more
information on this.

If the SENT flag for the PCI is already set when the Point application attempts
to write to the PCI, the Pyxos FT Chip will ignore the data. The application must
ensure that the SENT flag is clear before attempting to write to a PCI.

Send
The Point Pyxos FT Chip uses a round-robin scheduler to select PCIs to send on
the next read timeslot. Once it selects the PCIs, it copies those values to its
transmit buffer, clearing the SENT bits for those PCIs. Those values remain in
the transmit buffer until the Point Pyxos FT Chip receives an acknowledgement.

The round-robin scheduler begins at the PCI after the last PCI sent, and
increments through the entire PCV memory space, including the register space,
wrapping around to PCI 0x00 after 0xFF. It stops either when it finds two PCIs
with SENT flags set or when it reaches its starting Point.

If it reaches the starting Point without finding two PCIs, it rounds off the
starting Point to the next mod 8 PCI. For example, if the last PCV sent was at
PCI 0x1A, and there are no other PCIs to send, when it runs through SENT flags
and reaches 0x1A again, it will then set the next start Point to be PCI 0x20.

The scheduler is invoked after the Point Pyxos FT Chip has processed its
incoming write timeslot (if the transmit buffer is empty). This allows the Pyxos
FT Chip to service a Poll request in the same frame in which it was made. It also
allows the Point application time to process the write timeslot before the read
timeslot.

Once the scheduler has found PCIs to send, the Pyxos FT Chip collects those
PCIs and moves them to the transmit buffer. If only one PCI is found, the other
Pyxos Data Item is filled with PCI 0xFF. If no PCIs are found to send, then both
PDIs are filled with PCI 0xFF.

When the PCIs are copied to the transmit buffer, the SENT flags are cleared, and
the ISR SENT flag is set. The Point application can monitor these flags to
determine when it is allowed to queue another update.

Accept
The Pilot Pyxos FT Chip accepts the read timeslot if the following conditions are
met:

• The PCIs are both 0xF0 or greater, or the TID is different from the last
received TID.

• The RCVD flag for the timeslot is clear.
When it accepts the read timeslot packet, the Pilot Pyxos FT Chip performs the
following:

Pyxos FT Programmer’s Guide 139

1. If either PCI is not 0xFF, set the RCVD flag for the read timeslot and set the
ISR RCVD flag.

2. Update the local copy of the last received TID.

Any packet that has both PCIs at 0xF0 or greater is accepted even if the TID does
not indicate a new packet. This is used for TID synchronization for the read
timeslots. See the TID Synchronization section for more details.

If both PCIs are 0xFF, the packet is treated as the idle packet. The Pilot Pyxos
FT Chip will accept this packet as long as the timeslot buffer is not full (the
RCVD flag is clear), but it will not set the RCVD flag. Consequently, this packet
will never be acknowledged. See the Idle Transactions section for more details.

Read
The Pilot application can determine when new data has arrived in a timeslot by
monitoring the RCVD flags, or the ISR RCVD flag. Typically, the Pilot
application will check the RCVD flags at one or more of the interrupts (MORT or
EORT), and use the flags as bitmasks to read in all of the new timeslot buffers.
See the Interrupts section below for more information on this.

It is important for the Pilot to be synchronized to the network so that it clears the
RCVD flags in the window between an RTS and its corresponding WTS. This is
done using the MORT and EORT interrupts. Otherwise, it is possible for a TID
synchronizing transaction to be sent from a Point continuously. If the Pilot
clears the RCVD flag after the WTS for the timeslot, and before the next RTS, the
ACK will not go out; but the Pyxos FT Chip will re-accept the transaction when it
sees the RTS, because it ignores the TID, again clearing the ACK. This will
continue until the Pilot application clears the RCVD flag after the RTS and
before the WTS.

Acknowledge
When the Pilot application reads a read timeslot over the SPI bus, the Pilot
Pyxos FT Chip performs the following:

1. If the RCVD flag for the timeslots is set, send an acknowledgement with the
appropriate ACKD TID on the next write timeslot.

2. Clear the RCVD flag for the timeslot.
3. Update the local copy of the last received TID.

These actions are only performed when one of the read timeslot hotspots are
read. See the Read and Write Hotspots section below.

Terminate
When the Point Pyxos FT Chip receives an ACK for the TID that it is sending, it
terminates the transaction. It stops sending the contents of the transaction
buffer, and it restarts the round-robin scheduler. If new PCIs are found for
sending, it starts a new transaction. Otherwise, it sends the Idle Transaction.

The SEND flag was already cleared at the beginning of the transaction (at the
Send step), when the PCVs were copied into the transmit buffer. There is local
state in the transmit buffer to track the status of the transaction. However, this
state is not available to the Point application, and so the Point application cannot
determine when a transaction successfully completes. If the transaction does not

140 Pyxos FT Programmer’s Guide

complete, the Pilot will determine that it has lost communication with the Point
and attempt to recover. See the Reset Handling and Error Recovery section
below for more information.

Block Transfers
A Pyxos Chip value is a four-byte quantity. If a larger quantity is required, block
transfers can be used to ensure delivery of coherent values larger than four bytes.

A block is simply a contiguous group of PCIs. The lowest numbered PCI is
considered to contain the least significant bytes of the block.

To send a block from Pilot to a Point, or vice-versa, the following rules must be
observed:

• The block must be sent in PCI order, starting with the lowest numbered PCI.
• The entire block must always be transferred; sending only a subset of the

block is not allowed.
• For Point-to-Pilot transfers, the Point application must write the entire block

to the Pyxos FT Chip in one SPI transfer.
• Updates of a given block must be treated atomically—a subsequent block

transfer cannot start until all PCIs of the previous transfer have been sent
(all the RCVD flags for the PCIs in the block must be clear).

The Point application will see the PCVs arrive in order from the lowest PCI to
the highest.

The Pilot application will generally see the PCVs arrive in increasing PCI order.
However, the first PCI may not be the lowest PCI. The first PCI to arrive may be
in the middle of the block, and when the highest numbered PCI of the block
arrives, the next PCI will be the lowest PCI of the block. In very unusual cases
some PCVs may be skipped and sent out of order. The Pilot application must be
prepared to put the block back into proper order.

Polling
The Pyxos FT Protocol provides a special mechanism that allows the Pilot to
request an update to a given PCI (a Poll Request). The Point Pyxos FT Chip
automatically recognizes this and sends the requested updates with no
application intervention required. A Point can also request an update from the
Pilot, but the Pilot application must recognize the request and perform the
update.

The Pilot application sends a Poll Request to a Point by using a POLL command,
as described in Table 22. A POLL command consists of the PCI 0xF5 and up to
four Poll Requests; each Poll Request includes a PCI to be polled (see Figure 36).
If less than four PCIs are to be polled, the remainder of the PCV should be filled
with 0xFF, which is interpreted as a null Poll Request.

Poll Req 0 Req 1 Req 2 Req 3

0xF5 PCI0 PCI1 PCI2 PCI3

Figure 36 POLL Command Structure

Pyxos FT Programmer’s Guide 141

The POLL command sets the SENT flag for the PCIs in the command. Any PCI
except 0xFF will set the SENT flag and cause the value to be returned, even
values in the register space. The Pilot can use this to query the configuration,
UID, or PID of a Point.

The order in which the values are returned is indeterminate. It depends upon
the state of the Point’s round-robin scheduler, and on what other values have
already been scheduled. You cannot perform two POLL commands in a single
timeslot. However, multiple POLL commands can be sent in successive frames.

The Pilot application will always get at least one response to a Poll Request, but
it may get more than one. If the Point application sends a PCI at the same time
that the Pilot is sending a Poll Request for the PCI, the Point may send the PCI
once or twice, depending upon the timing of the requests, and how quickly the
value is sent.

Polling PCIs that a Point application may asynchronously update should be
avoided. If the Pilot polls a PCI that the Point application plans to update, a race
condition could exist that will prevent the Point from successfully updating the
PCV. This occurs if the Point application reads the POINT_SENT flags and
determines that the value can be sent, but the Pyxos FT Chip processes a poll
request for that same PCI, before it has a chance to write the PCV to the Pyxos
FT Chip, causing the SENT flag to be set. When the Point application tries to
write the PCV to the Pyxos FT Chip, the write will fail silently because the SENT
flag is set. To avoid this situation, the Pilot application should restrict polling to
the register space, and only poll those registers that the Pyxos FT Chip does not
send on its own. The Pilot application should receive all values that the Point
has written after going online (see Point Configuration and Registration below),
so there should be no need to poll any data values.

If the Pilot application sends multiple Poll Requests of the same PCI in multiple
frames, no more than one response is guaranteed. If all of the Poll Requests
reach the Point Pyxos FT Chip before the first can be serviced, then only one
response will be made. However, if the requests are sent only after receiving a
response, then each request will receive a response.

A Point can also poll the Pilot for an update to a PCI. If the Point writes to the
Poll register (0xF5), a POLL command will be sent to the Pilot. However, the
Pilot Pyxos FT Chip does not contain an image of the Point’s PCV memory (it
only has timeslot buffers). Instead, the Pilot application maintains this image, so
the Pilot application must respond to the request. So, the Pilot POLL command
is defined by convention only to be the same as a Point POLL command. The
Pilot application must then interpret and service the request.

Configuration and Registration
Before a Pyxos FT Chip can be used for communications, it must be configured
and, when used in a Point, registered. To configure the Pyxos FT Chip, the
CONFIG register (SPI addresses 0x3F0 to 0x3F3) must be set correctly.

Configuration consists of declaring the Pyxos FT Chip to be either a Pilot or a
Point, and then providing additional configuration information that depends on
whether it is a Pilot or a Point.

Registration is the process that allocates a timeslot to a Point. The timeslot must
be unique among all of the Points on the network. The application must

142 Pyxos FT Programmer’s Guide

determine how best to map Points to timeslots. However, the Pyxos FT Protocol
provides several built-in mechanisms to facilitate timeslot assignment.

• Automatic discovery—If the application does not have any constraints on the
mapping, the Pyxos FT Protocol can randomly assign Points to any available
timeslot.

• Manual registration—If the application requires the user to identify devices,
the Pilot can assign timeslots as a user identifies devices.

• Hardwired registration—If the application can assign timeslots based on
unique information within each Point such as an identifier provided by a
wiring harness or other Point physical input, each Point can assign itself a
timeslot.

An application can use any combination of these methods. The Pilot can
maintain a free timeslot map, which it uses for the automatic discovery method.
If there are any hardwired Points in the network, it can eliminate their timeslots
from the free timeslot map. It can also reserve some timeslots for any Points
registered with the manual registration method; the installer indicates which
Point is being registered, and thus the appropriate timeslot.

You cannot reconfigure a Pyxos FT Chip from Point mode to Pilot mode, or vice-
versa. To change modes, you must first deconfigure the Pyxos FT Chip and then
set the CFG bit to 0.

UID and PID
The Pyxos FT Chip has two values that are used to identify devices during
registration: the UID and the PID.

The unique identifier (UID) is a 48-bit value that is created during manufacture
of the Pyxos FT Chip and is unique among all Pyxos FT Chips. The value is
stored in control registers UID1 (PCI 0xFD) and UID2 (PCI 0xFE): the three
most significant bytes of the UID are stored in UID1, and the three least
significant in UID2. The fourth byte of UID1 is 0x2E, and the fourth byte of
UID2 is 0x74.

The Pilot application can use the UID to uniquely identify all Points in the
network. It is usually only used, however, as part of the registration process.
Once the Pilot assigns a timeslot to the Point, the Pilot can reference the Point by
its timeslot index.

The program identifier (PID) is a 64-bit value that is assigned by the Point host
application. It is stored in two control registers: the most significant four bytes
are in PID1 (PCI 0xF8) and the least significant four bytes are in PID2 (PCI
0xF9). When the Pyxos FT Chip is reset, the PID is reset to
0x0000000000000000. The host application then writes the appropriate value to
the PID. Since unhosted Points do not have a processor to set their PID, the PID
remains at the default value: 0x0000000000000000.

The value stored in the PID is application dependent, and is normally used to
indicate a class of devices that have a similar interface (input and output
variables, as well as what IO is controlled, and how the data is interpreted). The
Pilot reads a Point’s PID to determine how to use the Point.

Pyxos FT Programmer’s Guide 143

Timeslot Map
The Pilot application must maintain a mapping of timeslot allocations to Points.
This map will also indicate which timeslots are unclaimed, and which may be
reserved for other uses, for example for hardwired Points.

The timeslot map can then be used during registration. The Pilot uses it to
advertise free timeslots and to determine which timeslot to allocate to newly
registered devices. If the Pilot discovers a Point that it has seen previously, the
Pilot can put the Point back into its old timeslot. And, after a reset, the Pilot can
short-circuit the registration process by putting the Point into its assigned
timeslot directly.

If the timeslot map is kept in non-volatile storage, the Pilot application can
recover the state of the system after resets and power cycles.

Pilot Configuration
The Pilot application determines how large the network is (number of timeslots)
and whether frames are sent continuously or only on demand. Table 26 shows
the bits that the Pilot application uses in the CONFIG register to configure
network size and how frames are sent.

Table 26 Pilot CONFIG Register Fields
Field Bits Reset

Value
Value Effect/Notes

0 Point mode (see below) MD 31 0

1 Pilot mode

0 On-demand TMD mode (frames sent only on
command)

CF 30 0

1 Continuous TDM mode (frames sent continuously)

0 Do not send frames CFG 28 0

1 Send frames

TSCNT 27:24 0 TSCNT Number of timeslots = 2 * (TSCNT + 1)

Reserved 23:0 0 0 Only write 0’s to reserved fields

It is possible to change from on-demand mode to continuous mode, and vice-
versa, while the Pyxos FT Chip is configured. The change will occur at the end of
the next frame.

It is also possible to change the number of timeslots on the fly. However, if the
Pilot reduces the number of available timeslots, any Points with a timeslot
number greater than the number of available timeslots will get lost and require

144 Pyxos FT Programmer’s Guide

re-registration. The frame time also changes when the number of timeslots
changes.

Continuous and On-demand TDM Mode
When the Pilot is in continuous TDM mode, the Pyxos FT Chip continuously
sends frames. Each frame is sent with only a small gap from the preceding
frame, even if there is no new data to send. This mode is recommended for most
networks. It ensures that data is delivered as quickly as possible.

When the Pilot is in on-demand TDM mode, the Pyxos FT Chip will only send a
single frame when the Pilot application commands it to. The Pilot has no way of
determining when a Point has new data for it, so it must periodically issue a
frame to collect new read data from the Points. This mode is useful for
applications that need to conserve power.

Only one frame will be sent on command, even if the write data is not accepted by
the Point. The Pilot application can monitor the SENT flags and issue another
frame if the data is not accepted.

The Pilot application commands the Pilot Pyxos FT Chip to issue a frame by
writing data to a write timeslot buffer in frame memory (over the SPI bus). The
frame will be sent, even if the write was simply the IDLE command (PCI 0xFF
and PCV 0xFFFFFFFF). This is a useful command to send when the Pilot
application has no data to send, but needs to issue a frame to determine whether
a Point has new data available.

The frame will also be sent even if the SPI write is rejected due to the SENT flag
still being set for that timeslot. The Pilot application must monitor the SENT
bits and issue new frames as needed to ensure the data gets delivered.

In manual Pilot mode, a Point may occasionally interpret noise on an otherwise
quiet line as the beginning of a packet. When this occurs, it will eventually
attempt to recognize an SOF packet, and reject the noise when the SOF is found
to be invalid. However, if the Pilot starts a frame while the Point is tracking the
noise, the read frame may be lost. The Pilot may need to send a frame several
times to ensure that all packets are delivered. The Pilot can monitor the SENT
flags to determine when all packets have been delivered.

Point Configuration and Registration
A Point’s configuration determines whether the device is hosted or unhosted, how
to perform registration, and the timeslot identifier. Table 27 below shows the
bits used in the CONFIG register for the Point.

Pyxos FT Programmer’s Guide 145

Table 27 CONFIG Register Fields – Point

Field Bits Reset
value

Value Effect

0 Point mode MD 31 0

1 Pilot mode (see above)

0 Hosted—if INST/MD pin low during reset HST1 30 HST

1 Unhosted—if INST/MD pin high during reset

0 Manual or hardwired registration AD 29 0

1 Automatic discovery

0 Ignore timeslot packets CFG 28 0

1 Accept and send packets at timeslot TSID

TSCNT1 27:24 0 TSCNT Number of timeslots = 2 * (TSCNT + 1).

Updated each SOF packet. Not valid until first
SOF.

Reserved 23:21 0 0 Only write 0’s to reserved fields

0 Reject registration attempt from Pilot PRE 20 0

1 Accept registration attempt from Pilot

Reserved 19:5 0 0 Only write 0’s to reserved fields

TSID 4:0 0 TSID Timeslot index into WTSlots and RTSlots

Notes:

1. Read-only.

The TSID field is the timeslot identifier; it tells the Pyxos FT Chip which timeslot
to use for sending and receiving packets. The process of assigning a value to the
TSID is referred to as registration. The PRE bit is used to prevent the Point
Pyxos FT Chip from accepting registration commands from the Pilot until the
Point application is ready. Once the CFG bit is set, the Point Pyxos FT Chip will
begin to participate in the network. This should not be done until the TSID field
is set appropriately during registration. Assigning values to these fields in the
proper sequence for each registration scheme is discussed below.

The Pilot must ensure that no two Points on a single network are assigned the
same timeslot. Otherwise, neither Point will be able to communicate, as they will
both continuously collide with each other.

146 Pyxos FT Programmer’s Guide

An application must never change the TSID field while the Pyxos FT Chip is
configured. Doing so could cause the Pyxos FT Chip to interfere with a Point on
another timeslot. If the timeslot needs to be changed, the Pyxos FT Chip must be
de-configured first (by setting the CFG bit to 0).

A Point application must refrain from sending (i.e. writing to a PCI) until the
Point has been configured. Part of the automatic and manual registration
processes put the Pyxos FT Chip into a pseudo-configured state while looking for
free timeslots. The Pyxos FT Chip may actually send values that it has queued
up while in this state, but the Pilot will not yet recognize the sender, so the data
will get lost.

For all registration schemes, the Point application must initialize its PID before
allowing the Pyxos FT Chip to begin the registration. Once the Pilot recognizes a
registration request from a Point, it will poll the PID. Writing the PID before
starting the registration ensures that the correct PID is provided when the Pilot
polls for it.

Once a Point is configured and registered, the first thing it must do is announce
itself by sending its UID on its assigned timeslot. The Point application must
ensure that this transaction begins before beginning any other transactions (it
can monitor the SENT flag to be certain). Besides notifying the Pilot of its
presence, the UID transaction is a TID synchronizing transaction; this assures
that the Point and Pilot TIDs are synchronized on the read timeslot.

After verifying that the Pilot has received the UID, the Point application must
write to its POINT_READY register (SPI addresses 0x27C to 0x27F), and wait
for the Pilot to acknowledge receipt of the update. Table 28 shows the bits used
in the POINT_READY register:

Table 28 Point POINT_READY Register Fields

Field Bits Reset
value

Value Effect

0 Initial value. It is illegal to set this bit to 0 READY 31 0

1 Point is ready

Reserved 30:0 0 0 Only write zeros to reserved fields

It is the act of writing to the POINT_READY register and the receipt by the Pilot
that indicates that the Point is ready, not the actual value written. The Pilot
application may ignore the value of this register. The only legal value for the
Point to write to the POINT_READY register is READY = 1, and reserved bits set
to 0. In future releases, the reserved bits may include additional semantics. The
Pilot must not update this value

After the Point application has verified that the POINT_READY register has
been received by the Pilot, the Point application must wait until the Pilot
application updates the SET_POINT_ONLINE register. It can do this by
monitoring the POINT_RCVD flag for the POINT_ONLINE register.

If the Point is hosted, the Pilot application must wait for the POINT_READY
command before setting the POINT_ONLINE register. Unhosted Points do not
support the POINT_READY or SET_POINT_ONLINE registers. The Pilot
application can determine whether the Point is hosted or not either by reading

Pyxos FT Programmer’s Guide 147

the program ID (all zeros indicating that the Point is unhosted) or by reading the
Point configuration register. The Pyxos Pilot API uses the program ID, since this
program ID is generally needed by the Pilot application. The Pilot must not poll
any values below PCI 0xF0 before it receives an update from the Point to ensure
that the Point’s send TID is synchronized with the Pilot’s receive TID.

Table 29 shows the bits used in the SET_POINT_ONLINE register:

Table 29 POINT_READY Register Fields – Point

Field Bits Reset
value

Value Effect

0 Initial value. It is illegal to set this bit to 0 ONLINE 31 0

1 Point is online.

Reserved 30:0 0 0 Only write zeros to reserved fields

The act of sending the SET_POINT_ONLINE register that indicates that the
Point is online, not that the value actually sent. The Point application may
ignore the value of this register. The only legal value for the Pilot application to
write to this register is ONLINE = 1, and reserved bits set to 0. In future
releases the reserved values may include additional semantics. Point
applications must not update this value.

After the Point application has received the SET_POINT_ONLINE register, it is
free to update and process incoming PCV values.

Automatic Discovery
Registration using automatic discovery is performed in three steps:

1. Free timeslot advertisements—The Pilot application advertises timeslots as
available for use.

2. Registration request—An unconfigured Point Pyxos FT Chip recognizes a free
timeslot advertisement, and requests a timeslot.

3. Timeslot assignment—The Pilot application recognizes the registration
request and notifies the Point of its timeslot assignment.

Free Slot Advertisements
The Pilot application must keep track of which timeslots are currently allocated,
and which are available to be assigned (see the Timeslot Map section for more
information on this). The Pilot application must then decide when to advertise
free timeslots. This can be done all the time, or constrained to occur only during
specific periods, depending upon the application requirements.

A free timeslot advertisement consists of the UID1 and UID2 PCIs with all zeros
for the data placed in the free write timeslot. That is, {0xFE, 0x00000000},
{0xFD, 0x00000000} in a write timeslot signals that the timeslot is available;
both indices must appear in the same transaction.

Points do not acknowledge a free timeslot advertisement when they send a
registration request. This transaction should not get acknowledged, and should
continue until the Pilot cancels it. If the Pilot application finds that the

148 Pyxos FT Programmer’s Guide

transaction has been acknowledged, it must assume that a Point has mistakenly
assumed the timeslot. In this case, the Pilot application resets the Point in the
timeslot and re-attempts the free timeslot advertisement.

Registration Request
If a Point Pyxos FT Chip is unconfigured and set for automatic registration (MD is
0; HST is 0; AD is 1; CFG is 0; and PRE is 1), then the Pyxos FT Chip monitors the
timeslots looking for free timeslot advertisements. If it finds one or more, it
randomly selects one of the free timeslots and attempts to send a registration
request on that free timeslot. A registration request consists of UID1 and UID2
of the Pyxos FT Chip.

Once the Point Pyxos FT Chip sends the registration request, it waits for a
timeslot assignment. The assignment may or may not be to the same timeslot
that it used to make the registration request.

If more than one Point Pyxos FT Chips attempts to send a registration request on
the same free timeslot, the Pilot will not receive a valid registration request. In
this case, the registration request will not be acknowledged by the Pilot, and the
Point Pyxos FT Chips will stop sending their registration request. They then
back off for a random number of frames, and re-start the process.

Timeslot Assignment
Once the Pilot receives the registration request, it selects a timeslot to assign to
the Point. The timeslot may be different than the timeslot that the Point used to
make the registration request. Before making the actual assignment, the Pilot
must cancel the free slot advertisement for the timeslot so that no other Points
attempt to use the timeslot.

To make the timeslot assignment, the Pilot writes the UID of the Point into the
assigned timeslot. The Pyxos FT Chip then recognizes its UID, writes the TSID
field with the appropriate value, goes configured (sets CFG to 1), and
then acknowledges the timeslot assignment transaction. If the Pilot does not
receive an acknowledgement within a reasonable timeout period, it must assume
that something has disrupted the Pyxos FT Chip. It must then attempt to reset
the Point with the PyxosPilotResetPoint() function, and re-start the registration
process.

In some cases, the Pilot application may need to assign timeslots based on the
PID. In these cases, the Pilot must first temporarily assign the Point to a
timeslot, and then read the PID. After reading the PID, it can move the Point to
another timeslot. To move a Point to a different timeslot, the Pilot must first
reset the Point, and then make the timeslot assignment to the permanent
timeslot.

Manual Registration
Manual registration is used when there may be more than one device in the
system with the same PID, but the Pilot application needs to be able to treat
them differently. For example, the system may include two similar sensor inputs
that are placed in physically different locations. The system will need to
associate a physical Point with a location.

Pyxos FT Programmer’s Guide 149

Unhosted Points all have a PID of 0x0000000000000000, so they will all appear
identical to the Pilot. Therefore, an unhosted Point must use the manual
registration scheme if the Pilot needs to be able to treat them differently. .

In these cases, the devices do not have enough information to identify
themselves, so some user interaction with the installer is required. This type of
registration can range from a simple button push at the Point in a particular
order, to a sophisticated graphical interface that allows the installer to identify
the device. All of these systems can be built on top of the manual registration
scheme.

Manual registration is similar to automatic discovery. However, at a minimum,
the registration request step requires user intervention to identify the device to
be registered. User interaction can also be provided at the other steps to increase
the flexibility of the registration process. The same basic steps are performed:

1. Free timeslot advertisements—The Pilot application advertises timeslots as
available for use.

2. Registration request—When the installer directs the Point to begin looking
for a free timeslot, the unconfigured Point Pyxos FT Chip recognizes a free
timeslot advertisement, and requests a timeslot.

3. Timeslot assignment—The Pilot application recognizes the registration
request and notifies the Point of its timeslot assignment.

Free Slot Advertisements
This is the same as for automatic discovery. However, the Pilot application may
provide a mode that is entered through some external user interaction (e.g.
pushing a button on the Pilot) that then advertise only free timeslots for a
selected device. The installer can then indicate which device is being registered.

Registration Request
When using the manual registration method, the Point Pyxos FT Chip will only
make a registration request when one of the two actions below is performed:

• A transition is detected on the INST/MODE pin.
• The Point application (hosted Points only) writes to the UID registers over

the SPI bus.

The Point will only send one registration request when it detects one of these
events, and finds a free timeslot. If the Pilot does not receive the registration
request, this step will need to be repeated.

The installer must ensure that only one device is being registered at a time. If
multiple devices attempt to send in a registration request at the same time, the
Pilot may not be able to distinguish which device it needs to register.

Timeslot Assignment
This step is similar to what is done for automatic discovery. However, the Pilot
application may again provide an installer confirmation step at this point. This
confirmation may be simply the Pilot application sending a special command to
the Point that causes the Point to wink an LED, or it may provide a more
sophisticated confirmation mechanism.

150 Pyxos FT Programmer’s Guide

Hardwired Registration
Hardwired registration does not rely on the Pilot or any network transactions.
However, the Pilot application must reserve timeslots for hardwired Points.

This registration scheme is used when the Point application gets assigned a
timeslot through some other mechanism than from the Pilot. For example, the
Point’s wiring harness could be keyed so that each position has a pre-assigned
timeslot. In this example, the Point microcontroller reads the timeslot from the
wiring harness. Another example is to manufacture each Point in a system with
a different application that has a hard-coded timeslot. In this case, each Point’s
application contains all the information necessary for it to do timeslot
assignment.

Before writing to the CONFIG register, the Point application must initialize the
PID. Once the Point is configured, it will announce its presence to the Pilot, and
the Pilot will poll the PID to determine what type of Point has occupied the
timeslot.

Once the Point application determines the desired timeslot, it must inform the
Pyxos FT Chip. The Point application writes to the CONFIG register to make
the timeslot assignment. The assignment must be performed in two steps—first
write the TSID, and then go configured.

In addition to writing the TSID, the first step also writes zero to the AD bit
(manual register), the CFG bit (unconfigured), and the PRE bit.

The second step then sets the CFG bit to 1; the AD and PRE bits should remain
at 0, and the TSID should not change.

After writing the configuration register, the Point application completes the
registration process as described above, by performing the following steps:

1. Write the UID

2. Wait for acknowledgement

3. Write the POINT_READY

4. Wait for acknowledgement

5. Wait for SET_POINT_ONLINE to be sent by the Pilot

Protocol Statistics
The Pyxos FT Chip keeps track of the number of frames sent from the Pilot or
received on the Point, as well as the number of CRC errors and missed slots that
occur.

The frame counter is kept in the SOFCNT register (PCI 0xFB) on both the Pilot
and the Point. The SOFCNT register is a 24-bit counter, using bits 23 to 0. The
upper byte is reserved. The Pilot increments the SOFCNT register for each SOF
packet it sends, and the Points each count the number of valid SOF packets they
see. The counter rolls back to 0 after reaching 0xFFFFFF. You can write any
valid value to this register and treat it as a counter that counts at the configured
frame rate.

The CRC errors and missed slot counters are in the registers from PCI 0xC0
through 0xDF. There is a pair of counters (one for the CRC errors and one for the
missed slot counters) for each timeslot, with timeslot 0 at PCI 0xC0 (SPI

Pyxos FT Programmer’s Guide 151

addresses 0x300 to 0x303) and timeslot 31 at PCI 0xDF (SPI address 0x37C to
0x37F). The register layout is shown in Figure 7.11.

CRC/MS register for timeslot

031Bit 16 15

CRC error counter MS (missed slot) counter

Figure 37 CRC/MS Register Layout

These counters stop counting when they reach 0xFFFF. You cannot directly
write these counters. However, you can write a one to bit 29 of the ISR to clear
all CRC and MS counters. The clear occurs at the beginning of the next frame
after issuing the reset (at the SOF).

The Pilot accumulates error statistics for the read timeslots. The Points
accumulate errors for all write timeslots, not just the timeslot for which it is
configured.

The Pyxos FT Chip logs a CRC error whenever it receives a data (read or write)
packet with a CRC error. There are several possible causes of CRC errors:

• Significant noise on the network.
• The network extent is beyond the specified limits.
• There is some network fault, such as a short or mis-wire.

A missed slot (MS) error is logged if the Pyxos FT Chip cannot recognize a valid
preamble. This primarily occurs on read timeslots when there is no Point in a
timeslot. The Pilot always drives all write timeslots, so it is rare to see a missed
write timeslot. Missed slots often show up as CRC errors as well as MS errors.
In addition to not having a Point to drive a read timeslot, the same conditions
that result in CRC errors can cause MS errors. However, in most cases the limits
need to be exceeded greatly for these faults to show up as MS errors.

Reset Handling and Error Recovery
You can design a Pilot or Point application to anticipate potential errors and
provide error recovery and notification in the case of unrecoverable errors. The
following errors can be detected:

• Lost network communication.
• High network communication error rates.
• Host microcontroller unable to communicate with the Pyxos FT Chip.

All error condition monitoring and recovery can be handled by the Pilot. It is in a
position to monitor all of these error conditions and a Point may not have enough
information to draw reasonable conclusions.

There are several potential reasons that the Pilot might lose communication with
a Point. For example, the Point could get reset and lose its configuration, it could
be removed from the network, or it could suffer from some application error.
More is said about detecting and recovering from these types of errors below.

High network error rates may be caused by excessive electrical noise or wiring
problems (for example, an intermittent short). These errors require manual
intervention to clear. The Pilot can simply log the errors, and provide user
notification. The tolerable error rate may vary by application, but a well-
designed system should expect to see very few errors. See the Protocol Statistics
section for more information on monitoring network error rates.

152 Pyxos FT Programmer’s Guide

If a host microcontroller loses communication with the Pyxos FT Chip, it will no
longer see network traffic. If this occurs on a Point, this will appear to the Pilot
as lost communication, and will be handled by the Pilot. The Pilot itself can
monitor for these problems by watching one of the periodic interrupts: EOWT,
EORT, and MORT (see the Interrupts section below). If an extended period of
time has gone by without any frames, then the Pilot application should reset its
own Pyxos FT Chip. The timeout does not need to be precise as long as it is
longer than a single frame.

Lost Communication Recovery
The Pilot application must monitor the health of the Points in the network to
detect communication problems with the Points. The simplest and most reliable
method to detect Point failures is for the Pilot to keep track of how many frames
have gone by since it has successfully communicated with each Point — either
receiving data from the Point, or getting an acknowledgement to a write
transaction.

If the Pilot application detects that there might be a problem with a Point, it can
explicitly check to see that the Point is still on line. A simple means to do this is
to Poll the CONFIG register. If it gets a response, it can then verify that the
CONFIG register has appropriate contents.

Once the Pilot application determines that there is a problem with a Point, it
must attempt to reset the Point. This has two benefits: if multiple Points were
inadvertently configured for the same timeslot, all of them will be reset. The
Point’s attached microcontroller will also be reset, so that the application can be
re-initialized.

After the reset completes, the Pilot must ensure that the Point is properly
configured. If the Point was registered using hardwired registration, then the
Pilot does not need to perform any registration. However, it must wait for the
Point to send its UID as an indication that it has successfully reconfigured (this
also ensures that the read timeslot’s TID is synchronized). For manual and
automatic registrations, it only needs to send the Point’s UID in its assigned
timeslot. The Point will then use this transaction to configure itself into the
proper timeslot.

If the Point cannot be successfully reconfigured, the Pilot application may elect to
free the timeslot. This allows other devices to request the timeslot. If a similar
device (with the same PID but different UID) requests the timeslot, the Pilot
application may consider it to be a replacement device.

If all these attempts fail, the Pilot application can signal an error condition.

Pilot Reset or Reconfiguration
After the Pilot application resets or reconfigures itself, it must send a reset
command in every timeslot for at least two frames, to ensure that all Points have
been reset as well. The Pilot application will then need to re-register the Points.
Re-registration may depend on the Points sending their UIDs, or, if the Pilot
already knows the UID of each Point, the Pilot can start the registration process
without waiting for the Points. Resetting all of the Points ensures that the TIDs
are synchronized and that the Pilot receives all PCVs from the Points.

Pyxos FT Programmer’s Guide 153

Interrupts
The Pyxos FT Chip provides an indication when certain events occur on the
Pyxos FT network, including new data arrival, sent data delivered, and network
timing points. Each of these events can be enabled to activate the interrupt pin
(INT~) when the event occurs. The enable is controlled by the IENA (interrupt
enable) register. These events are recorded in the ISR (interrupt status register)
register. The available events are slightly different for the Pilot and the Point.
Table 30 summarizes the events for both the Pilot and the Point, along with the
bit index used for both the ISR and IENA.

Table 30 Interrupt Sources
Pilot Point Bit

Event Description Event Description

31 RCVD New data in timeslot buffer SENT PCV delivered

30 SENT Timeslot buffer delivered RCVD New PCV available

29 Reserved Reserved

28 EOWT End of write-timeslots EOWT End of write-timeslots

27 EORT End of read-timeslots EORT End of read-timeslots

26 MORT Middle of read-timeslots Reserved

0 – 25 Reserved Reserved

Although these events are called interrupts, and can be reflected on the Pyxos FT
Chip INT~ signal, they do not need to be implemented as interrupts on the
application processor. The application can periodically monitor the ISR to
determine which events have occurred. Or, particular interrupts can be enabled,
and the application can poll the INT~ pin before reading the ISR.

Writing a one to a bit in the ISR clears the corresponding interrupt.

Figure 38 shows the relative timing for the interrupts within a frame for both a
Pilot and a Point. The timing is shown relative to events occurring on the
network; these events are indicated with a dashed line, and are named with a
prefixed ‘N’. These network events are:

• NSOWT—Start of write timeslots on the network.
• NMOWT—Middle of write timeslots on the network.
• NSOWTSi—Start of write timeslot i on the network.
• NEOWTSi—End of write timeslot i on the network.
• NMORT—Middle of read timeslots on the network.
• NEORT—End of read timeslots on the network.
• NEORTSj—End of read timeslot j on the network.

154 Pyxos FT Programmer’s Guide

WTSlots RTSlotsSOF SOF WTSlots

EOWT

EOWT MORT

EORT
SENT
RCVD

EORT
SENT
RCVD

NEOWTSi NSOWTSi

NEORTSj NMORT NEORT

NSOWT

NMOWT
Pilot view

Point view

Figure 38 Interrupt Timing Diagram

Table 31 shows the latencies involved from the events occurring on the network
to when the event is reflected in an interrupt.

The EOWT interrupt is synchronized with the network. From the Pilot, this is
accomplished because it is in control of the timing. The Points track and predict
the timing starting with the SOF. Any errors in the timing of the EOWT relative
to the end of write timeslots on the network are less than 5µs.

Table 31 Interrupt Latencies

Parameter Pilot or
Point

Network
Event

Interrupt Maximum
Latency

Description

tTS Pilot NEORTSj SENT

RCVD

200µs Latency for Pilot Pyxos FT
Chip to process read timeslot.

tMORT Pilot NMORT MORT 200µs Latency for Pilot Pyxos FT
Chip to process middle read
timeslot.

tEORT Pilot NEORT EORT 200µs Latency for Pilot Pyxos FT
Chip to process last read
timeslot.

tPoint Point NEOWTSi EORT

SENT

RCVD

200µs Latency for Point Pyxos FT
Chip to process its write
timeslot.

If an application needs to minimize system latencies, for example from the time
an event occurs at a Point to when a response occurs, then each of the component

Pyxos FT Programmer’s Guide 155

steps need to be minimized. The network processing time is available (see Table
25 in the Physical Layer section).

The application controls the other latencies, such as the time to send a message
from the Point and the time for the Pilot to respond. However, the Pyxos FT
Chip interrupts can be used to aid in minimizing these latencies. The following
sections discuss how to use the interrupts to minimize latencies on the Pilot or a
Point. These sections assume that the application needs to handle each message
as it arrives. If the application can afford to allow multiple frames to pass before
servicing a message, then a more relaxed interrupt handling scheme can be used.

Handling Pilot Interrupts
A Pilot application can use any of the available interrupts to minimize processing
requirements or message latencies. However, for most applications, the MORT
and EORT interrupts are better suited to the application requirements. The
SENT and RCVD interrupts can occur for every read timeslot, while the MORT
and EORT each occur only once per frame, but at fixed points within the frame.

A Pilot application can use the SENT and RCVD interrupts to handle each
timeslot separately. The SENT and RCVD interrupts are set (if necessary) for
each read timeslot as the timeslot is processed. When the Pilot Pyxos FT Chip
sees a read timeslot, it sets the RCVD interrupt if it received a new packet, and
sets the SENT interrupt if it receives an acknowledgement for data it sent in the
corresponding write timeslot.

If the SENT and RCVD interrupts are used, the Pilot application must search the
SENT and RCVD flags to determine which timeslot and event caused the
interrupt, and then determine how to handle the event. Then, for each timeslot,
it will need to process the read data and send out new write data before the next
timeslot interrupt. A read timeslot is 416µs (see Table 24 in the Physical Layer
section), and the maximum latency for the SENT and RCVD interrupts is 200µs
(see Table 31 above). So, the Pilot must process each timeslot within 216µs
(including the search time).

The other approach is for the Pilot application to use the MORT and EORT
interrupts to batch process the timeslots. This adds a little time to the message
latencies, but significantly reduces peak processing requirements. The
application can choose to use just the EORT interrupt or both the EORT and
EOWT.

If the application chooses to use just the EORT interrupt, it must batch process
all read timeslot and all write timeslot in the window of time between the EORT
and the start of the write timeslots (about 80µs). Few applications will rely on
only the EORT.

Using the MORT interrupt gives the application much more time to service the
timeslots. When the MORT occurs, the first half of the read timeslots will have
been received. The application then has until the start of the write timeslots
before it needs to complete processing the read timeslots and creating new data
for the write timeslots. Then, when the EORT occurs, the application needs to
finish processing the second half of the read timeslots before the second half of
the write timeslots begin to be sent.

The application must therefore service the first half of the timeslots in the
window between MORT and NSOWT, and the second half of the timeslots in the
window between EORT and NMOWT. Table 32 shows how much time is

156 Pyxos FT Programmer’s Guide

available in these windows; the second window is slightly larger than the first
because the read timeslots are larger than the write timeslots (see Table 25). For
the MORT interrupt to NSOWT window, this is calculated as simply ½ of the
write timeslots plus the SOF minus the MORT interrupt latency (see Table 31);
and for the EORT to NMOWT window, the time is ½ of the read timeslots plus
the SOF minus the EORT interrupt latency. The application must allow for any
latency in detecting the assertion of the interrupts as well as actual processing
time.

Table 32 Available Timeslot Processing Time

Timeslots MORT to
NSOWT (ms)

EORT to
NMOWT (ms)

2 0.49 0.43

4 0.91 0.79

6 1.33 1.14

8 1.74 1.50

10 2.16 1.85

12 2.57 2.21

14 2.99 2.56

16 3.41 2.92

18 3.82 3.28

20 4.24 3.63

22 4.65 3.99

24 5.07 4.34

26 5.49 4.70

28 5.90 5.05

30 6.32 5.41

32 6.73 5.76

The EOWT interrupt provides a reliable timing indicator—it occurs on every
frame at the same point in the frame. Applications may use this to implement
transaction timeout timers, watchdog timers, or other timers that rely on the
frame time.

Pyxos FT Programmer’s Guide 157

Handling Point Interrupts
A Point can use the SENT, RCVD, or EORT interrupts to service new data as it
arrives and queue new data for sending. All three of these interrupts are set at
approximately the same point in the frame—after the Pyxos FT Chip has
processed a write timeslot that the Point is assigned to.

The SENT interrupt will occur only if the transmit buffer was empty (because the
previous read transaction was acknowledged) and the scheduler copies a new
PCV to the transmit buffer, clearing a SENT flag. The RCVD interrupt will occur
if a new PCV arrives in the timeslot. The EORT interrupt will occur on every
frame whether or not a new PCV has been received or a new outgoing transaction
has been started.

The Point application can use the SENT and RCVD interrupts to only get notified
when new data arrives or an outgoing PCV has been freed up. When the
interrupt occurs, the application must search through the SENT and RCVD flags
to determine which one caused the interrupt.

If the Point application is using only a small number of PCIs, then it can use just
the EORT interrupt instead and check the flags for all of the PCIs that it is
using. This avoids the step of reading the ISR to determine the cause of the
interrupt.

The EOWT interrupt can be used in the same way as on the Pilot: it provides a
reliable timing indicator with a fixed relationship to the data on the network.
This can be used to implement various timers.

Managing Unhosted Points
A Pyxos FT Chip can be used without a host microcontroller to implement a Point
with unhosted digital I/O requirements. The Pilot must manage the I/O on the
unhosted Point—including configuration, reading, and writing.

The COUT pin (clock output) is available on both hosted and unhosted Points.
Configuration of this pin for both types of Points is covered in this section as well.

DIO
Some of the Pyxos FT Chip SPI pins are converted to general purpose digital IOs
when used in unhosted mode, as shown in Table 33.

158 Pyxos FT Programmer’s Guide

 Table 33 Pyxos FT Chip DIO Pins

Name Pin Direction

MOSI/DIO0 4 Configurable

MISO/DIO1 5 Configurable

CS~/DIO2 1 Configurable

INT~/DIO3 2 Configurable

SCLK~/DI 3 Input

The direction of the first four DIO pins is configured over the network by the
Pilot. Each of these pins can be configured independently. They can be
configured to be either an output (with the value set by the Pilot) or an input. As
an input, the value can be polled by the Pilot, or sent automatically when it
changes. Tables 34 through 37 provide details on how to configure the DIO from
the Pilot. DI, always acts as an input.

Table 34 DIO Index

Index Address Byte 0 Byte 1 Byte 2 Byte 3

0xEF Bits [31:24] Bits [23:16] Bits [15:8] Bits [7:0]

IO Registers Data Direction Config Reserved

The DIO Data Register is used to read and write to the DIO pins. If a pin is
configured as an output, then writing a value to the appropriate bit of this
register will change the state of the pin to match. Reading from this register will
return the current state of the pin. DI is always an input.

Table 35 DIO Data Register

Index
Bits

31:29 28 27 26 25 24

Pin Reserved SCLK/DI INT~/DIO3 CS~/DIO2 MISO/DIO1 MOSI/DIO0

Default Reserved 0 0 0 0 0

The DIO Direction Register is used to configure the DIO pins as inputs or
outputs. Writing a 0 to a bit in this register sets the corresponding pin to be an
input; a 1 sets the pin to be an output. The DIO pins are initially inputs.

This register also controls the direction of the COUT pin (which is available for
both unhosted and hosted Points). This output, when enabled provides a

Pyxos FT Programmer’s Guide 159

buffered clock output that matches the clock input to the Pyxos FT Chip
(10MHz). The COUT pin is initially enabled as an output.

Table 36 DIO Direction Register

Index Bits 23:21 20 19 18 17 16

Pin Reserved COUT INT~/DIO3 CS~/DIO2 MISO/DIO1 MOSI/DIO0

Default Reserved Output (1) Input (0) Input (0) Input (0) Input (0)

The DIO Config Register provides configuration control of the DIO pins. There is
only one field: AUTOUPDATE (bit 8). If AUTOUPDATE is enabled (1), then the
DIO pin values are sampled on each frame, and if any of the inputs have
changed, the updated value is sent to the Pilot. Since the inputs are sampled
once per frame, changes occurring more frequently than this will be lost. In
addition, inputs must not change at a rate faster than 5MHz; there must be more
than 200ns between changes to input pins.

Table 37 DIO Config Register

Index Bits 15:9 8

Field Reserved AUTOUPDATE

Default Reserved Disabled (0)

160 Pyxos FT Programmer’s Guide

Pyxos FT Programmer’s Guide 161

Appendix A

Advanced Topics

This chapter discusses advanced topics, including
descriptions of the functions you can use to read and write
registers that control the operation of a Pyxos FT Chip, and
a discussion on the data space and code size consumed by a
Pyxos application.

162 Pyxos FT Programmer’s Guide

Accessing Pyxos Registers
The Pyxos FT Chip contains several registers that control the operation of the
chip. The Pyxos FT API uses these registers to perform work on behalf of the
application, such as configuring the chip, determining when values have arrived
and when new values can be sent, and reading and clearing statistics. Normally,
the Pyxos application will not access the Pyxos registers directly. However,
access to the registers is provided in case there is some function that the
application must perform that is not directly supported by the API. Modifying
these registers directly can cause unanticipated side affects as described in this
appendix.

The Pyxos FT API implements two functions, PyxosReadRegister() and
PyxosUpdateRegister(), that are used to read and update a register. The API
also defines constants to be used when accessing the registers. The following
sections describe the register functions and definitions in detail. For details on
what each register does, see Chapter 7, Pyxos FT Protocol.

PyxosReadRegister
Reads a Pyxos register.

Syntax:

PyxosSts PyxosReadRegister(PyxosPci registerIndex,
 Byte *pData,
 PyxosPnvSize size);

Remarks: This function reads the contents of the register indicated by the
registerIndex parameter, and stores the contents in the buffer pointed to by the
pData parameter. The size of the register, in bytes, is given by the size
parameter.

PyxosUpdateRegister
Updates a Pyxos Register.

Syntax:

PyxosSts PyxosUpdateRegister(PyxosPci registerIndex,
 const Byte *pData,
 PyxosPnvSize size);

Remarks: This function updates the contents of the register indicated by the
parameter registerIndex with the contents in the buffer Pointed to by the pData
parameter. The size of the register, in bytes, is given by the size parameter.

Register Definitions
The Pyxos FT API defines several constants that you can use when accessing the
Pyxos registers. These can be found in the PyxosRegisters.h header file in the
[Pyxos FT EVK]\Pyxos FT API\include\ directory. Table A.1 lists the constants
the file contains for each register.

Pyxos FT Programmer’s Guide 163

Table 38 Register Constants

Name Description

PYXOS_REGI_<registerName> Represents the Pyxos Chip index of the register. You can use this
value as the registerIndex parameter when calling
PyxosReadRegister() or PyxosUpdateRegister().

PYXOS_REGS_<registerName> Represents the size, in bytes, of the register. You can use this
value as the size parameter when calling PyxosReadRegister() or
PyxosUpdateRegister().

The Pyxos FT Chip defines each register as 4 bytes in length.
However, the Pyxos FT API combines some of these registers into a
single logical register. For example, the Pyxos FT Chip defines two
4-byte registers to hold the unique ID. The API treats this as a
single 8-byte register.

PYXOS_REGR_<registerName> Defines a subset of the registers. Used internally by the Pyxos API
to add the register to a Point’s interface. This allows the Pilot to
access the register on a Point just as if it were a PNV. These are
included in a Point’s interface via the
PYXOS_STANDARD_REGISTERS macro defined in the
PyxosPilot.h file. The definition of this macro is given below:

#define PYXOS_STANDARD_REGISTERS \
 PYXOS_REGR_UID \
 PYXOS_REGR_RESET_CONTROL \
 PYXOS_REGR_CONFIG \
 PYXOS_REGR_SET_POINT_ONLINE \
 PYXOS_REGR_PID

The Pilot can also access remote registers on a Point, provided that
they are part of the Point’s program interface definition. To add
registers to the Point interface definition, you can modify the
definition of the PYXOS_STANDARD_REGISTERS to include
additional remote register definitions.

The Register.h file also includes several constants and macros that you can use to
interpret the contents of the registers, often in the form of bit bitmasks. For
more information about each of the registers supported by the Pyxos FT Chip, see
Chapter 7, Pyxos FT Protocol. For details concerning the definitions supplied by
the Pyxos API for each register, see the Register.h header file.

164 Pyxos FT Programmer’s Guide

Code and Data Space Considerations
The code and data space taken by the Pyxos APIs depend on a number of
variables:

1. The processor architecture. This affects the size of the code, as well as
the size and alignment of the data.

2. Compiler optimizations.

3. Which API features have been included in the application.

4. The number, size, type, and direction of the PNVs

5. The number of Points supported by the Pilot.

6. Hardware support for SPI, which affects the size of the PsAPI.

The following sections provide some guidelines that you can use to estimate the
amount of memory required by the Pyxos API.

Pyxos Serial API Footprint
The size of the Pyxos serial driver implementation is hardware-specific. For
reference, the implementation shipped with the Pyxos EVK for the
AT91SAM7S64 uses about 500 bytes of code space and 64 bytes of data.

Pilot API Footprint
The Pilot API code size compiled for the AT91SAM7S64 is between 5 and 6.5
Kbytes, depending on the particular features included. This estimate does not
include the serial API driver or system overhead.

Constant Data
The size of the constant data used by the Pilot API depends on the number of
PNVs supported by each type of interface on the Pyxos FT network, and on the
size of the structures used to hold this information. Since the size of the
structure may depend on the processor used, these numbers may differ on
different processors.

You can calculate the constant data consumed by each interface supported by the
Pilot with the following formula:

sizeof(PyxosPilotPointInterface) +
(Number of PNVs + 5) * sizeof(PyxosPilotPnv)

Table 39 lists the size of these data structure on the AT91SAM7S64.

Pyxos FT Programmer’s Guide 165

Table 39 Data Structure Sizes for AT91SAM7S64

Structure Size in Byte on AT91SAM7S64

PyxosPilotPointInterface 40

PyxosPilotPnv 4

Dynamic Data
The Pilot pre-allocates some dynamic data based on the maximum number of
Points supported by the Pilot. The size of this memory is calculated as follows:

PYXOS_MAX_POINTS *
(sizeof(PyxosPilotPointCache) + 5*sizeof(PyxosPnvCache) + 37)

You can calculate the amount of dynamic memory used for a single Point with a
given interface as shown below. If you use the heap, this memory is allocated
when the interface is set. If you do not use the heap, the API pre-allocates this
memory for the maximum number of Points that may be using this interface:

(5 + Number of PNVs in this interface) * sizeof(PyxosPnvCache) +
19 +
Maximum size of an input PNV in this interface +
Total number of bytes used by all PNVs in this interface.

Table 40 lists the size of these data structures on the AT91SAM7S64.

Table 40 Data Structure Sizes for AT91SAM7S64

Structure Size in Byte on AT91SAM7S64

PyxosPilotPointCache 767

PyxosPnvCache 2

These estimates are based on the current definition of
PYXOS_STANDARD_REGISTERS.

Point API Footprint
Table 41 lists the approximate code size of the Point API, based on the features
included. These estimates are based on an implementation using the
AT91SAM7S64. These numbers do not include the serial API driver or system
overhead.

Table 41 Point API Code Size

Input PNVs Output PNVs Polling Size (Kbytes)

Yes No No 0.8

No Yes No 1.2

166 Pyxos FT Programmer’s Guide

Input PNVs Output PNVs Polling Size (Kbytes)

Yes Yes No 1.3

Yes Yes Yes 1.6

Constant Data
The Point API consumes sizeof(PyxosPointPnv) constant data for every PNV
supported by the Point. This structure is typically 3 bytes long.

Dynamic Data
The fixed amount of RAM used by the Point API is small, but additional RAM is
used based on the Pyxos Points’ interface as follows:

1/8 * total number of PNVs (rounded up)
 +
1/8 * number of Pyxos Chip indices used by inputs (rounded up).
 +
1/8 * number of Pyxos Chip indices used by outputs (rounded up)
 +
4 * number of Pyxos Chip indices used by outputs

Interrupt Driven Pyxos Programs
The simplest way to use the Pyxos Point and Pilot APIs is to call the event
handlers (PyxosPilotEventHandler() or PyxosPointEventHandler()) periodically
in a control loop. Calling the event handler when there are no tasks to perform is
generally very fast. The first thing the event handler does is read the Pyxos Chip
interrupt line. If the interrupt is not set, it returns. If you are concerned that
this read operation is too expensive to perform during each iteration of your
control loop, you can use the Pyxos Chip interrupt line to cause a processor
interrupt. Set a global variable in the interrupt. In your main control loop, check
this variable and call the Pyxos event handler only when the flag has been set.

If your Point or Pilot is typically very busy and cannot run a control loop
frequently enough, you may find that calling the event handler from an interrupt
routine driven by the Pyxos Chip interrupt pin provides better network
throughput. Following are critical design considerations if you call the event
handler or any Pyxos API function from an interrupt service routine:

Pyxos FT Programmer’s Guide 167

1. The Pyxos API does not protect any of its global data from being accessed
simultaneously by an interrupt service routine and by your main
function. If you ever call any Pyxos API function from an interrupt
service routine, you must ensure that the interrupt does not do so while
your main application (or another interrupt) is calling into the Pyxos
API. The simplest approach is to disable the Pyxos interrupt handler
whenever your application calls any of the Pyxos API functions, or
accesses any of the Pyxos API data structures.

2. The Pyxos event handler calls psRead() and psWrite(). You must make
sure that your implementation of the Pyxos serial API supports calling
these functions from within an interrupt service routine.

3. All API callback functions are called directly from the Pyxos event
handler. If the event handler is called from an interrupt handler, then
your callbacks are also being called from an interrupt handler. This may
limit the sorts of thing you can do from within your callback handlers.

Defining Point Interfaces Dynamically
Typically, all of the Point interfaces that a Pilot will use are pre-defined when
the Pilot is created. However, you can create a Pilot application that constructs
Pyxos Point interfaces on the fly, and still use the Pyxos Pilot API. To do so, the
Pyxos Pilot application must construct the PyxosPilotPointInterface structure
and all of its sub-structures, rather than relying on the Pyxos Interface
Developer to do so.

This section describes the data structures required by the Pyxos Pilot API to
describe a Point’s interface, so that you can program your Pilot application to
construct those data structures dynamically.

The Pyxos Pilot API supports hosts that use the heap and hosts that do not.
When you use the heap, the API allocates dynamic data structures on demand
when the application calls the PyxosPilotSetPointInterface() function. When you
do not use a heap, the Pyxos Interface Developer creates compile time data
structures to hold the PNV cache and control data. The interface structures
used by the Pilot API differ depending on whether the heap is used or not. The
heap method should be used for Pilots that dynamically create Point interfaces
since it is better suited to dynamic data structures. This section describes how
to create dynamic interfaces using the heap method

Each Point interface is defined by two data structures: PyxosPilotPointInterface
and an array of PyxosPilotPnv values. These data structures are both defined in
the PyxosPilot.h file and are described below. Fields that are not used with the
heap allocation method have been omitted.

168 Pyxos FT Programmer’s Guide

PyxosPilotPointInterface
pid

ioConfig
numPnvs

pPnvs
firstPci lastPci size output
firstPci lastPci size output
firstPci lastPci size output
firstPci lastPci size output
firstPci lastPci size output

PyxosPilotPnv

firstPci lastPci size output

.

.

.
numPnvs

Figure 39 Point Interface Data Structures

The PyxosPilotPointInterface data structure is passed to
PyxosPilotSetPointInterface() and has the following definition:

typedef struct PyxosPilotPointInterface
{
 /* The Point's program ID. */
 PyxosProgramId pid;
 Dword ioConfig;
 /* Number of Pyxos Network Variables and Remote

registers
 */
 PyxosPci numPnvs;

 /* Pointer to array of Pyxos Network Variables and

Remote registers.
 */
 const PyxosPilotPnv *pPnvs;
} PyxosPilotPointInterface;

The fields are described below:

pid PyxosProgramId

An array of 8 bytes specifying the Point’s program ID. This field is typically
set to PYXOS_<pointName>_PROGRAM_ID defined in the Point interface
header file. If the Point is unhosted, this field should consist of all zeros.

ioConfig Dword

For hosted Points, this must be set to PYXOS_HOSTED_IO_CONFIG
(0xFFFFFFFF). For unhosted Points, set this to the desired initial value of
the I/O register. The I/O register contains the following bit masks (defined in
PyxosRegisters.h), all of which are ORed together.

1. The direction of each of the four general-purpose digital I/O values.
Each DIOx general-purpose DIO pin must be either

Pyxos FT Programmer’s Guide 169

PYXOS_IO_OUTPUT_DIO_<x> or PYXOS_IO_INPUT_DIO_<x> (see
example below).

2. The configuration of the clock out pin. Either
PYXOS_IO_COUT_ENABLED or PYXOS_IO_COUT_DISABLED.

3. Whether the Point sends data on change or not. Either
PYXOS_IO_MODE_POLL or
PYXOS_IO_MODE_SEND_ON_CHANGE.

4. The current I/O values. Leave these values set to zero.

EXAMPLE:

An unhosted device has two inputs, DIO1 and DIO2 two outputs, DIO3 and
DIO4, does not require the clock out pin, and sends updates on change. The
value of the ioConfig field for this device is:

(PYXOS_IO_INPUT_DIO_1 |
 PYXOS_IO_INPUT_DIO_2 |
 PYXOS_IO_OUTPUT_DIO_3 |
 PYXOS_IO_OUTPUT_DIO_4 |
 PXYOS_IO_COUT_DISABLED |
 PYXOS_IO_MODE_SEND_ON_CHANGE)

numPnvs PyxosPci

The number of PNVs defined on the Point plus the number of registers on the
Point that the Pilot needs to access. This is equal to the number of entries in
the PyxosPilotPnv array described later in this section.

pPnvs const PyxosPilotPnv *

A pointer to an array of all PNVs defined on the Point, as well as all registers
on the Point that the Pilot has to access. This array is described in more
detail below.

The PyxosPilotPnv array is accessed via the pPnvs field of the
PyxosPilotPointInterface data structure. This array contains one element for
each PNV supported by the Point, plus one element for each register on the
Point that the Pilot has to access. The Pilot API requires access to the following
registers on each Point: PYXOS_REGI_UID, PYXOS_REGI_RESET_CONTROL
and PYXOS_REGI_CONFIG. In addition, the Pilot must access the
PYXOS_REGI_UNHOSTED_IO register for all unhosted Points. The order of
the entries in the array is unimportant.

Each element of this array uses the following structure:

typedef struct _PyxosPilotPnv
{
 PyxosPci firstPci; /* The lowest Pyxos Chip index used

by the PNV */
 PyxosPci lastPci; /* The largest Pyxos Chip index

used by the PNV */
 Byte size; /* The size of the PNV in bytes.

Not necessarily divisible by 4.
 */

170 Pyxos FT Programmer’s Guide

 BitField output : 1; /* 1 if this is a
PYXOS_POINT_OUTPUT, 0 if it is a
PYXOS_POINT_INPUT.

 */
 BitField reserved : 7;
} PyxosPilotPnv;

firstPci PyxosPci

The lowest Pyxos Chip index (PCI) of the Pyxos network variable or register.

lastPci PyxosPci

The highest Pyxos Chip index (PCI) of the Pyxos network variable or register.

size Byte

The size of the Pyxos network variable or register in bytes.

output BitField:1

A one if the Pyxos network variable or register is an output, a zero if it is an
input.

The PYXOS_STANDARD_REGISTERS macro defines the initialization values
for all of the standard registers. The PYXOS_REGS_UNHOSTED_IO macro
evaluates to the initialization values for the unhosted I/O register. The
PYXOS_<pointName>_NETWORK_VARIABLES macro defined in the Point
interface evaluates to the initialization values for the PNVs defined by the Point.
This macro is not typically available to Pilots that define Point interfaces
dynamically (otherwise it could have defined the Point interface statically).
However this macro can be used as a reference during development to ensure
that the data structures created by the Pilot are correct.

Supporting Multiple Pyxos Networks
The Pyxos Pilot API supports only a single Pyxos network at any given time.
However, a single host connected to multiple Pyxos chips can act as the Pilot for
multiple networks. To do so, you must modify the Pyxos Pilot API to support
multiple networks. This section describes, in very general terms, an approach
that can be used to modify the Pyxos Pilot API in order to support multiple
networks.

Nearly every function and callback defined by the Pyxos Pilot API needs to be
changed to include a network identifier. The easiest approach is to define the
network identifier as an index from 0 to n-1, where n is the maximum number of
Pyxos networks supported by a single Pilot. The Pilot application must specify
this interface ID in all calls to the Pyxos API. The Pyxos API in turn must
specify this ID to the Pyxos Serial API (psAPI) and use that information to
identify which Pyxos Chip to communicate with.

The Pyxos Pilot API also uses a number of global variables to maintain status
information. Except for a few constant variables, and a few variables that are
used only temporarily, these must be replicated for each Pyxos network
supported. The easiest way to change the Pilot API to support multiple instances
of these global variables is replace all of the global variables with a structure

Pyxos FT Programmer’s Guide 171

definition with a field corresponding to each variable, and to define an array of
these structures, one element per network.

For example, you can use the following definitions to maintain network specific
information:

typedef Byte NetworkId;

typedef struct _PyxosNetworkData
{
 /* The Point directory, indexed by timeslot.

Allocated by PyxosPilotAllocateTimeslot().
Contains Point control information, pointer to
the Point data cache, the Point's unique ID and
pointer to the Point's interface record.

 */
 PyxosPilotPointCache

pyxosPointDirectory[PYXOS_MAX_POINTS];

 /* A bitmask, indexed by timeslot. A set bit

indicates that the Pilot should send a new value
even if the last value was never acknowledged.

 */
 Dword pyxosClearUnackedWrite = 0;

 /* Flag indicating that there is a new PNV update

or poll request to send. This is used run the
event handler even if there is no interrupt,
since there may be no interrupt if there are no
updates or acknowledgments coming in.

 */
 Bool pyxosNewPnvUpdateToSend = FALSE;

 /* The pyxosPilotWriteFrameCount is set to 0 by

PyxosPilotInit() and is incremented by
PyxosPilotEventHandler() each time it processes a
write frame. This value may be less than the
actual number of frames if
PyxosPilotEventHandler() is not called frequently
enough. This value wraps at 0xFFFFFFFF. This
value can be used to perform frame relative
timing.

 */
 Dword pyxosPilotWriteFrameCount;
 /* The following variables record the frame count

last time MORT and EORT respectively were
processed.

 */
 static Dword lastFrameToProcessMort;
 static Dword lastFrameToProcessEort;

 /* The Pilot resets all timeslots on startup to

ensure that the Point's send transaction IDs are
synchronized with the Pilot's, and to force them
to resend any updates. This variable is used to

172 Pyxos FT Programmer’s Guide

determine how many frames of resets have been
sent thus far.

 */
 Byte numResetsLeftToSend;
} PyxosNetworkData;

#define MAX_NETWORKS 5
PyxosNetworkData pyxosNetworkData[MAX_NETWORKS];

A new NetworkId parameter can be added as the first parameter of nearly every
Pyxos API function. The example implementation of PyxosPilotInit() shown
below illustrates how each function can be modified. Code that has been added is
in bold.

/* Initialize the Pyxos Pilot cache, and configure the
Pyxos chip.

 */
PyxosSts PyxosPilotInit(NetworkId netId)
{
 PyxosTimeslot timeslot;
 PyxosNetworkData *pNet = &pyxosNetworkData[netId];

 memset(pNet->pyxosPointDirectory, 0,

sizeof(pNet->pyxosPointDirectory));

 pNet->pyxosPilotWriteFrameCount = 0;
 pNet->lastFrameToProcessMort= 0;
 pNet->lastFrameToProcessEort= 0;

 /* Initialize each timeslot to use the

pyxosTemporaryPointInterface.
 */
 for (timeslot = 0; timeslot < PYXOS_MAX_POINTS;

timeslot++)
 {
 PyxosPilotSetPointInterface(netId, timeslot, NULL);
 }

 return PyxosPilotInitPyxosInterface(netId);
}

The Pyxos Serial API must also be modified to accept a NetworkId, and select the
correct Pyxos FT Chip accordingly. This can be used to drive the Pyxos FT Chip
chip select pin (CS~).

Supporting Multiple Pyxos Networks without a Heap
You can modify the Pyxos API to support multiple networks as described in the
previous section. If you are not using the heap, additional changes are required
as described in this section. If this is the case, the Pyxos Interface Developer
creates byte arrays for each type of Point supported by the Pilot that are sized
based on the Point’s interface and the maximum number of instances of that
Point within the network. An extra byte for each instance is reserved to indicate
which timeslot the chunk of data is being used for (or 0 if none). At runtime, data
is allocated from these arrays, with the first byte of each “chunk” set to timeslot +

Pyxos FT Programmer’s Guide 173

1. This scheme requires modification to support multiple networks. One fairly
straightforward way to change this is to reserve an extra byte for each “chunk” to
store the network ID. This requires changing the
PYXOS_DEFINE_POINT_INTERFACE_RECORD and
PYXOS_DEFINE_UNHOSTED_POINT_INTERFACE macros (defined in the
PyxosPilot.h file) to include room for the network ID. For example, refer to the
following portion of the PYXOS_DEFINE_POINT_INTERFACE_RECORD
macro:

Byte name##DataCache[(maximumPoints)* \
 (sizeof(PyxosTimeslot) + \
 PYXOS_MAX_INPUT_SIZE(maxInputSize) + \
 (pnvBytesPerPoint) + \
 (remoteRegisterSize))] = { 0 }; \

Change this portion to:

Byte name##DataCache[(maximumPoints)* \
 (sizeof(PyxosTimeslot) + \
 sizeof(NetworkId) + \
 PYXOS_MAX_INPUT_SIZE(maxInputSize) + \
 (pnvBytesPerPoint) + \
 (remoteRegisterSize))] = { 0 }; \

Similar changes must be made to update the dataCacheEntrySize field of the
PyxosPilotPointInterface structure.

To allocate the cache data properly you must modify
PyxosPilotAllocateCacheData() to set the network ID as well as the timeslot, and
you must modify PyxosPilotFreeTimeslotData() to use both the network ID and
timeslot to identify the cache data to be freed.

For more details, refer to the macros and functions mentioned above.

Designing Deterministic Systems
The Pyxos Platform is inherently deterministic at the physical communication
layer. This is because communication occurs at a well defined, predictable rate,
based on the number of timeslots. Because communication with each Point
occurs only in its assigned timeslot, there is no possibility of contention. As a
result, both the communication rate and latency at the physical level is
deterministic.

You can take advantage of the deterministic nature of the Pyxos Platform to
create deterministic systems. However, determinism at the physical layer by
itself is not sufficient. In order to design a deterministic system, there are a
number of factors that you must consider. This section briefly describes some of
these factors. However, there may be other factors specific to your application
that will affect the determinism of the system as a whole.

Physical Network Reliability
The Pyxos network ensures reliable data delivery. Data sent on the network
includes a CRC to protect against data corruption, and all data is acknowledged.
If a packet was corrupted, due to noise for example, the data will automatically
be retransmitted in the next frame. However, since noise may require data to be

174 Pyxos FT Programmer’s Guide

retransmitted it is not possible to predict the transmission rates or latency in a
noisy system.

To ensure deterministic network communication at the physical layer, transients
should be kept out of the network cable and power supply cable, in order to avoid
having single frames corrupted. See the discussion of EMC in the Pyxos FT Chip
Data Book for more information on this.

Host Responsiveness
The Pyxos platform does not require that either the Pilot or Point applications
process data at the Pyxos frame rate. If a Point fails to read a value and the Pilot
tries to send a new value to the same index, the Pilot will automatically retry
until the Point has successfully read the previous value. Likewise, if the Point
sends a value to the Pilot and the Pilot has not read the value, the Point will
retransmit the value.

If the Point or Pilot application does not process data as quickly as the network
delivers the data, the application processing becomes the data transfer
bottleneck. In order to design a deterministic system, you must ensure that both
the Pilot and Point applications process data as quickly as the network provides
the data. If not, you must ensure that the frequency and latency that they will
process the data with is deterministic.

The Pyxos Point and Pyxos Pilot APIs both use the Pyxos Chip interrupt line to
tell when data is available. However, when using either API, it is up to the
application to call the event handler either frequently enough to keep up with the
network or at some slower, but deterministic, frequency. In order to keep up
with the network the Point application should call the event handler at least as
fast as the frame rate. In order to keep up with the network the Pilot application
should call the event handler approximately four times as fast as the frame rate.
In either case, calling the event handler more quickly is perfectly acceptable, and
has very little overhead. Note that you may also use the Pyxos Chip interrupt
line as a processor interrupt, and call the event handler from an interrupt service
routine.

For more information about network timing see Physical Layer on page 125. For
more information regarding use of interrupts when using the API, see Interrupt
Driven Pyxos Programs on page 166. For more information about Pyxos Chip
Interrupts, see Interrupts on page 153.

Application Data Rates
The system can only be considered deterministic if the application produces data
deterministically. For example, in order for the Pilot to receive a sensor update
from a hosted Point with a deterministic frequency, the application on the Point
must read the value and update the corresponding Pyxos Network Variable at a
deterministic rate. If this rate exceeds the effective network rate, which is gated
either by the physical network rate or the processing latency on the host, some of
these values must be lost.

The Pyxos Point and Pyxos Pilot APIs allow the application to update Pyxos
Network Variables as quickly as they like. The API ensures the delivery of the

Pyxos FT Programmer’s Guide 175

latest value of each Pyxos Network Variable. However, if the application
produces updates for a given PNV faster than the network can deliver it and any
other updates, intermediate values will be lost.

A Pyxos Point application may use the PyxosPointIsPnvUpdatePending()
function to determine whether or not a value has been set which has not yet been
acknowledged by the Pilot. Similarly, a Pilot application can use the
PyxosPilotIsPnvUpdatePending() function to determine whether or not a value
has been set which has not been written to the Point. These functions can be
used by the application to prevent overwriting intermediate values. However,
the application cannot exceed the effectively network transmission rate, which is
based either on the physical transmission rate or the rate at which the hosts
process their data.

Polling
It is possible for both the Pilot and the Point to send poll requests. When
designing a deterministic system you must consider the impact polling has on
network communications. The Poll request itself consumes network bandwidth,
and the values sent as a result of the poll consume network bandwidth, assuming
that those values would not have been sent anyway.

For more information about polling, see Polling on page 140.

176 Pyxos FT Programmer’s Guide

Pyxos FT Programmer’s Guide 177

Appendix B

Pyxos FT Network
Gateways

This appendix provides background information you will
need when extending your Pyxos FT network to connect to
other Pyxos FT networks, or to a LONWORKS network.

178 Pyxos FT Programmer’s Guide

Pyxos FT Network Gateways
You can use a Pyxos FT network as a fully-contained standalone network
managed by the Pyxos Pilot. The Pilot is responsible for managing the Pyxos
Points on the network, and any communication between the Points. However,
you can also extend a Pyxos FT network to:

1. Connect multiple Pyxos FT networks together, sharing data from all the
remote sensors and actuators with all the Pilots.

2. Connect to other networks, sharing data from the remote sensors and
actuators with other devices on other networks or in other systems.

To provide access to the Pyxos FT network, you can implement a Pyxos FT
network gateway in your Pyxos Pilot application. You can use this gateway to
connect to other Pilots with their own Pyxos FT networks, LONWORKS networks,
or other third-party networks or systems.

Due to the high performance of a Pyxos FT network, a gateway application will
typically expose aggregate data or alarm conditions, or will provide high-level
functions, rather than providing direct access to individual Points. In this way,
the Pyxos FT network can operate autonomously, while providing the ability to
monitor and control functions of the Pyxos FT network as a whole.

Since a gateway is implemented as part of a Pilot application, the types of
external networks and which functions are provided are completely up to the
gateway developer.

The next section describes, in general terms, how you can develop a Pyxos –
LONWORKS gateway.

Pyxos – LONWORKS Gateways
To implement a Pyxos – LONWORKS gateway, the Pilot must implement a
LONWORKS application device, as well as perform the standard functions of a
Pyxos Pilot. You can use an Echelon Smart Transceiver with Echelon’s
ShortStack® Micro Server and ShortStack API to add LONWORKS connectivity to
a Pyxos Pilot. For more complex Pilots you can use a Smart Transceiver with
Echelon’s Microprocessor Interface Program (MIP) firmware and host API. See
the ShortStack Web page at www.echelon.com/shortstack for more information
on the ShortStack Developer’s Kit.

Device Interface
The device interface for a LONWORKS device consists of its functional blocks,
network variables, and configuration properties. A LONWORKS network
variable is similar to a Pyxos network variable—it is a data item that can be
sent from one LONWORKS device to one or more other LONWORKS devices.
You will expose selected Pyxos data points and conditions as LONWORKS
network variables. Data points may represent PNVs within the Pyxos
network, or they may be values calculated by the Pilot based on PNV values.
LONWORKS network variables representing PNV values may use the same
network variable types as the PNVs they represent. LONWORKS network

http://www.echelon.com/shortstack

Pyxos FT Programmer’s Guide 179

variables representing calculated values or other conditions may use different
network variable types.

A LONWORKS configuration property is a data item that, like a network
variable, is part of the device interface for a device. Configuration properties
are used to configure the behavior of a network variable, functional block, or
device. For example, you can use a configuration property to indicate a
heartbeat rate to ensure that a network variable gets updated periodically, a
second configuration property to throttle updates to limit bandwidth
consumption, and a third configuration property to indicate a minimum delta
required to send an update. You can also use configuration properties to
define alarm thresholds for a network variable so that an alarm condition is
reported when the value goes out of range.

A functional block is a collection of network variables and configuration
properties that are used together to perform one task. These network
variables and configuration properties are called the functional block
members.

Functional blocks are defined by functional profiles. A functional profile is
used to describe common units of functional behavior. Each functional profile
defines mandatory and optional network variables and mandatory and
optional configuration properties. Each functional block implements an
instance of a functional profile. A functional block must implement all the
mandatory network variables and configuration properties defined by the
functional profile, and can implement any of the optional network variables
and configuration properties defined by the functional profile. A functional
block may also implement network variables and configuration properties not
defined by the functional profile—these are called implementation-specific
network variables and configuration properties.

A Pyxos – LonWorks gateway must map the PNVs on the Pyxos network to
appropriate LONWORKS functional blocks, network variables, and
configuration properties.

EXAMPLE:

A Pyxos FT network for an HVAC controller has a temperature sensor
Point, a humidity sensor Point, and a valve actuator Point. The
LONWORKS interfaces for the Points consist of an SFPTnodeObject,
SFPThvacTempSensor, a SFPThvacRelativeHumiditySensor, and a
SFPThvacValvePositioner functional profile. The two sensor profiles
each define a standard LONWORKS network variable output to report the
sensor value, and the actuator profile defines two standard network
variable inputs to control the valve position, as well as standard network
variable outputs to report the current valve state. The Node Object
functional block is used to report alarms with a standard SNVT_alarm_2
alarm output, and is also used to control the other functional blocks with
a standard request input and response output. All four profiles define
standard configuration properties that are used to control when data is
reported, to control when alarm conditions are reported, and to optionally
configure the sensors.

180 Pyxos FT Programmer’s Guide

Connections
When a Pyxos Pilot includes a Pyxos – LONWORKS gateway, you can connect the
LONWORKS network variables implemented by the gateway to other LONWORKS
network variables on the LONWORKS network. You can use a connection to
establish a data flow from a LONWORKS output network variable to one or more
LONWORKS input network variables. These LONWORKS network variables may
appear on another Pyxos – LONWORKS gateway device, providing communication
between two Pyxos FT networks. Or the LONWORKS network variables may
appear on other LONWORKS devices that are not Pyxos network gateways.
LONWORKS network variables on the same Pyxos – LONWORKS gateway may also
be connected.

EXAMPLE:

A Pyxos FT network consists of 16 sensor Points with simple switches on
them, and 16 actuator Points connected to lamps. The sensor Points each
support a single SNVT_switch output PNV, and the actuators each
support a single SNVT_switch input PNV.

The Pilot implements a Pyxos – LONWORKS gateway, and exposes the
output of each of the sensor Points using an array of 16
SFPTopenLoopSensor functional blocks, and exposes the actuator Points
as an array of 16 SFPTopenLoopActuator functional blocks. You can
connect the switches and lamps in the Pyxos FT network by connecting
the corresponding LONWORKS network variables with LONWORKS

connections. These connections can be contained entirely within a single
Pyxos FT Pilot, could span multiple Pyxos FT Pilots, or could connect
switches or lamps from other LONWORKS devices to the lamps and
switches within the Pyxos FT network.

The illustration below shows two such Pyxos Pilots and Pyxos FT
networks. On the left there are three switches and a lamp that belong to
one Pyxos FT network. The three Open Loop Sensor functional blocks
labeled switch represents these switches. The first switch is connected
over the LONWORKS network to a network variable on the Open Loop
Actuator function block on another Pilot that is used to control a lamp
device. As a result, the first switch controls a lamp on another Pyxos FT
network.

The second switch is connected to another LONWORKS device used to
control a lamp device, so that the second switch controls that lamp. The
third switch uses a turn-around connection (a connection between two
LONWORKS network variables on the same device) to connect the switch
to one of the lamps within the same Pyxos FT network. Turn-around
connections are handled by the protocol stack and do not cause traffic to
be sent on the LONWORKS network when the switch changes state.

Pyxos FT Programmer’s Guide 181

Figure B.1 Example Pyxos – LONWORKS Gateway

	Welcome
	Related Documentation
	System Requirements
	Table of Contents
	Introduction to Pyxos Programming
	Introduction
	How Pyxos Points Interact With the Pilot
	How Pyxos Points Join a Network

	Getting Started

	Using the Pyxos FT Interface Developer
	Installing the Pyxos Software
	Using the Pyxos FT Interface Developer
	Step One: Creating a Network Project
	Step Two: Creating and Importing Pyxos Point Interface Definitions
	Importing Point Interface Definitions
	Using the Standard Program ID Calculator

	Step Three: Setting Advanced Options
	Setting the Pilot Application Options
	Setting the Network Project Settings
	Setting Project Options

	Step Four: Generating Include Files
	Generated XML Files
	Generated Header Files
	Generating Include Files

	Creating a Pyxos Point Application
	Overview
	Initializing the Pyxos FT API
	psInit()
	PyxosPointInit()

	Allocating Timeslots
	Timeslot Functions

	Handling Events
	PyxosPointEventHandler()

	Reading, Writing and Receiving PNV Updates
	PyxosPointUpdatePnv() Function
	PyxosPointPollPnv() Function
	PyxosPointIsPnvUpdatePending()
	PyxosPointPnvUpdateOccurred() Callback

	Pyxos Point Example Application
	Example for Manual or Automatic Registration
	Example for Hardwired Registration

	Creating a Pilot Application
	Overview
	Initializing the Pyxos Pilot
	psInit()
	PyxosPilotInit()

	Handling Events
	PyxosPilotEventHandler()
	pyxosPilotWriteFrameCount Global Variable

	Registering Points
	Functions for Registering Points
	Callbacks for Registering Points
	Example Code for Event Handling, and Registering Pyxos Points
	Example Code for Automatic and Manual Registration
	Pyxos Pilot Example Code for Hardwired Registration

	Reading and Writing PNVs
	PyxosPilotUpdatePnv()
	PyxosPilotUpdateUnhostedPointIo()
	PyxosPilotPollRegister()
	PyxosPilotGetPnvValue()
	PyxosPilotIsPnvUpdatePending()
	Callbacks for Reading and Writing PNVs
	Example Code for Sending and Receiving PNVs
	Example Code For Updating and Monitoring Unhosted Point I/O

	Reading Network Statistics
	PyxosReadNetworkStats()
	PyxosClearNetworkStats()

	Detecting, Reporting, and Correcting Communication Errors
	Types of Errors
	Detecting and Correcting Errors
	Functions for Resetting and Reconfiguring Pyxos Points
	Callbacks for Resetting and Reconfiguring Pyxos Points
	Functions for Checking the Pyxos FT Chip Configurations
	Error Correction Example

	Reconfiguring the Network After a Reset
	Reset Example

	Analyzing Pyxos FT Network Communication
	System Diagnostics

	Including the Pyxos FT API
	Introduction
	Common Components
	Including the Point API in your Application
	Including the Pilot API in your Application
	ANSI C

	Porting the Pyxos FT API
	SPI Overview
	SPI Slave Mode Port Connections
	SPI Modes, Transfer Framing, and Half-Duplex Operation

	Serial Driver Design
	Detailed SPI Timing

	Pyxos Serial API
	Pyxos Serial API Functions

	Modifying the Platform.h File
	Using Types

	Pyxos FT Protocol
	Introduction
	Pyxos FT Protocol Overview
	Memory and Registers
	Physical Layer
	Transactions
	Configuration and Registration
	Protocol Statistics
	Reset Handling and Error Recovery
	Interrupts
	Managing Unhosted Points

	Advanced Topics
	Accessing Pyxos Registers
	Code and Data Space Considerations
	Interrupt Driven Pyxos Programs
	Defining Point Interfaces Dynamically
	Supporting Multiple Pyxos Networks
	Supporting Multiple Pyxos Networks without a Heap

	Designing Deterministic Systems
	Physical Network Reliability
	Host Responsiveness
	Application Data Rates
	Polling

	Pyxos FT Network Gateways
	Pyxos FT Network Gateways
	Pyxos – LonWorks Gateways

