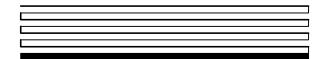


PLT-22 Power Line Transceiver


User's Guide

(110kHz – 140kHz Operation)

Version 1.2

Corporation

078-0175-01C

Echelon, LON, LONWORKS, LonBuilder, NodeBuilder, LonManager, LonTalk, LONMARK, Neuron, 3120, 3150, the LonUsers logo, the LONMARK logo, and the Echelon logo are trademarks of Echelon registered in the United States and other countries. LonPoint, LonSupport, and LonMaker are trademarks of Echelon Corporation.

Other brand and product names are trademarks or registered trademarks of their respective holders.

Neuron Chips, Power Line products, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage, and Echelon assumes no responsibility or liability for use of the Neuron Chips or Power Line products in such applications.

Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation.

Printed in the United States of America. Copyright ©1996 - 2002 by Echelon Corporation.

Echelon Corporation www.echelon.com

Contents

1	Introduction	1-1
	Audience	1-6
	Content	1-6
	Related Documentation	1-6
2	Using the PLT-22 Transceiver	2-1
	Mechanical Dimensions	2-2
	PLT-22 Transceiver Pinout	2-3
	PLT-22 Transceiver Electrical Specifications	2-4
	External Components	2-6
	Crystal	2-6
	Power Supply Bypassing and Grounding	2-7
	Band-in-Use (BIU) and Packet Detect (PKD) LED Connections	2-7
	Neuron [®] Chip Connections	2-8
	Transmit Output Level	2 - 10
	TXON Output Signal	2-10
	Application Schematic: Neuron 3150 [®] Chip	2-11
	Application Schematic: Neuron 3120 [®] Chip	2-12
3	PLT-22 Transceiver Programming	3-1
	Dual Carrier Frequency Mode	3-2
	CENELEC Access Protocol	3-3
	Power Management	3-3
	Standard Transceiver Types	3-4
	LonBuilder [®] and NodeBuilder [®] PLT-22 Transceiver	3-6
	Channel Definitions	
4	Coupling Circuits	4-1
	Power Line Communications	4-2
	Coupling Techniques	4-4
	Power Line Coupling Basics	4-4
	Power Line Coupling Details	4-8
	Safety Issues	4-11
	Safety Isolation Considerations	4-11
	Ground Leakage Currents	4-13
	Capacitor Charge Storage	4-13
	Line Surge Protection	4-13
	Fuse Selection	4-16
	Recommended Coupling Circuit Schematics	4-16
	Example 1: Line-to-Neutral, Non-Isolated Coupling	4-18
	Example 2: Line-to-Neutral, Transformer-Isolated Coupling	4-20
	Example 3: Line-to-Earth, Non-Isolated Coupling	4-22
	Example 4: Line-to-Earth, Transformer-Isolated Coupling	4-24

5	Power Supplies for the PLT-22 Transceiver	5-1
	Introduction	5-2
	Power Supply Design Considerations	5-2
	Power Supply-Induced Attenuation	5-2
	Power Supply Noise	5-3
	Energy Storage Power Supplies	5-3
	Energy Storage Capacitor-Input Power Supplies	5-5
	Capacitor-Input Power Supply Schematic	5-7
	Energy Storage Linear Supplies	5-8
	Traditional Linear Power Supplies	5-9
	Switching Power Supplies	5-9
	Power Supply-Induced Attenuation	5-9
	Noise at the Power Supply Input	5 - 12
	Switching Power Supply Frequency Selection	5 - 12
	Switching Power Supply Input Noise Masks	5-12
	Switching Power Supply Output Noise Masks	5-17
	Options	5-21
	Pre-designed Switching Supplies	5-21
	Off-the-Shelf Switching Supplies	5-22
	Custom Switching Supplies	5-22
6	Design and Test for Electromagnetic Compatibility	6-1
	EMI Design Issues	6-2
	Designing Systems for EMC (Electromagnetic Compatibility)	6-2
	ESD Design Issues	6-4
	Designing Systems for ESD Immunity	6-4
	Conducted Emissions Testing	6-6
7	Communication Performance Verification	7-1
	Why Verify Communication Performance?	7-2
	Verification Strategy	7-2
	Power Line Test Isolator	7-3
	Test Equipment	7-4
	Good Citizen Verification	7-6
	Unintentional Output Noise Verification	7-6
	Excessive Loading Verification	7-7
	Transmit Performance Verification	7-10
	Receive Performance Verification	7-11
	Packet Error Measurement with Nodeutil	7-11
	Verification Procedure	7-12
8	References	8-1
	Reference Documentation	8-2
Appendix	A PLT-22 Transceiver Isolation Transformer	A-1
	Specifications	
	PLT-22 Transceiver Isolation Transformer Schematic	A-2
	PLT-22 Transceiver Isolation Transformer Electrical	A-2
	Specifications	
	PLT-22 Transceiver Isolation Transformer Vendors	A-3

Appendix B PLT-22 Transceiver-Based Node Checklist	B-1
PLT-22 Transceiver-Based Node Checklist	B-2
PLT-22 Transceiver and Neuron Chip Connections	B-2
PLT-22 Transceiver Programming	B-4
PLT-22 Transceiver Coupling Circuit General	B-4
PLT-22 Transceiver Coupling Circuit Components Key	B-5
Specifications	
PLT-22 Transceiver Power Supply - General	B-6
PLT-22 Transceiver Power Supply - Switching Type	B-6
EMI & ESD Design	B-7
Product Qualification - EMC	B-8
Product Qualification - Electromagnetic Immunity and	B-8
Communication Performance	
Appendix C External Power Supplies with Integrated	

Coupling CircuitsC-1Vendors for External Power Supplies w/ Integrated Coupling CircuitsC-2

Introduction

The PLT-22 Power Line Transceiver provides a simple, cost-effective method of adding LONWORKS® power line technology to any control system. Network data are broadcast through the power mains, eliminating the need for dedicated wiring and greatly reducing installation costs. A replacement for Echelon's popular PLT-21 Power Line Transceiver, the PLT-22 transceiver also includes several new features to significantly improve communications reliability and lower node cost.

Intermittent noise sources, impedance changes, and attenuation make the power line a hostile signal path. The PLT-22 transceiver operates reliably in this harsh environment through a novel dual carrier frequency capability as well as custom digital signal processing which provides adaptive carrier and data correlation, impulse noise cancellation, tone rejection, and low-overhead error correction. These innovations permit the transceiver to operate reliably in the presence of consumer electronics, power line intercoms, motor noise, electronic ballasts, dimmers, and other typical sources of interference.

Each PLT-22 transceiver operates as a backward compatible replacement for the PLT-20 and PLT-21 transceivers when used with previous versions of configuration parameters. In this mode, all transmissions can be received by any PLT-20, PLT-21, or PLT-22 transceiver.

When used with new transceiver configuration parameters, the dual carrier frequency mode of the PLT-22 transceiver is activated. In this mode, PLT-22 based-nodes are able to communicate even when the primary frequency range (125kHz - 140kHz) is blocked by noise. With dual frequency mode, a PLT-22 transceiver begins each transaction by sending backward compatible packets. If impairments prevent communication in this frequency range, the PLT-22 node will automatically switch carrier frequencies in order to complete the transaction with other PLT-22 based nodes.

The PLT-22 transceiver complies with FCC, Industry Canada, Japan MPT, and European CENELEC EN 50065-1¹ regulations for signaling in the 125kHz-to-140kHz and 95kHz-to-125 kHz frequency bands. The transceiver implements the CENELEC access protocol, which can be enabled or disabled by the user. By incorporating the access protocol into the power line transceiver, Echelon has eliminated the need for users to independently develop the complex timing and access algorithms mandated by the CENELEC EN 50065-1 regulation. The PLT-22 transceiver also is compliant with the Electronic Industries Association Standard EIA-709.2.

The transceiver's power amplifier includes a selectable 3.5V peak-to-peak (p-p) or 7V p-p mode for maximum communication performance. The 1Ω output impedance and 1A p-p current capability of the amplifier allow it to drive high output levels into low impedance circuits, while the highly efficient design draws less total current than previous transceivers.

The PLT-22 transceiver is powered by user-supplied +8.5 to +16VDC and +5VDC power supplies. The wide supply range is a key benefit when designing inexpensive power supplies. If a battery-backed power supply is used, the transceiver will continue signaling even during a power failure on the power mains.

The PLT-22 transceiver incorporates a power management feature that constantly monitors the status of the node's power supply. If during transmission the power supply voltage falls to a level that is insufficient to ensure reliable signaling, the transceiver tells the Neuron Chip to stop transmitting until the power supply voltage rises to an acceptable level. This allows the use of a power supply with 1/3 the current capacity otherwise required (100mA versus 300mA). The net result is a reduction in the size, cost, and thermal dissipation of the power supply. Power management is especially useful for high volume, low cost consumer products such as electrical switches, outlets, and dimmers.

The PLT-22 transceiver uses a low-cost external coupling circuit and can communicate over virtually any AC or DC power mains, as well as unpowered twisted pair. The PLT-22 transceiver can use all of the same coupling circuits as the PLT-21 transceiver.

The PLT-22 transceiver is supplied as a miniature uncoated Single In-Line Package (SIP) which can be mounted on or inside an OEM product, directly adjacent to the Neuron Chip with which it is used. The PLT-22 transceiver maintains drop-in pin compatibility with the PLT-20 and PLT-21 transceivers while at the same time providing smaller package dimensions to more easily fit into tight enclosures. When connected to an external crystal, the transceiver can supply either a 1.25, 2.5, 5, or 10MHz clock signal for the Neuron Chip, eliminating the need for a separate Neuron Chip crystal.

The transceiver communicates at a raw bit rate of 5kbps. With the CENELEC protocol disabled, the transceiver has a maximum packet rate of 20 packets per second. With the CENELEC protocol enabled, the transceiver has a maximum throughput of 18 packets per second. This high throughput makes the transceiver well suited for residential, commercial, and industrial automation applications.

For commercial and industrial applications in high rises, manufacturing plants, utility substations, and other large facilities, the PLT-22 transceiver can be used with Echelon's PLA-21 Power Line Amplifier. Capable of transmitting a 10Vp-p signal with 2Ap-p current drive, the PLA-21 amplifier is ideal for driving multiple phase coupling circuits, high attentuation power circuits, and very low impedance loads near circuit breaker panels and distribution transformers.

This guide describes the use of the PLT-22 transceiver in the 110kHz to 140kHz frequency range. The PLT-22 transceiver also supports communication in the CENELEC utility band (European A-band from 70 to 95kHz) when the transceiver is used with a different external crystal and modified coupling circuit. For CENELEC utility applications, refer to the companion user's guide, *Using the LonWorks PLT-22 Power Line Transceiver in European Utility Applications*.

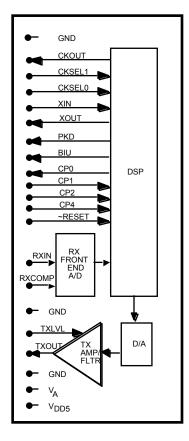


Figure 1.1 PLT-22 Transceiver Block Diagram

The compact PLT-22 transceiver must be mounted using hand or wave soldering and requires only the addition of a Neuron 3120[®] Chip or Neuron 3150[®] Chip, crystal, power line coupling network, power supply, and application electronics to build a complete node (figure 1.2).

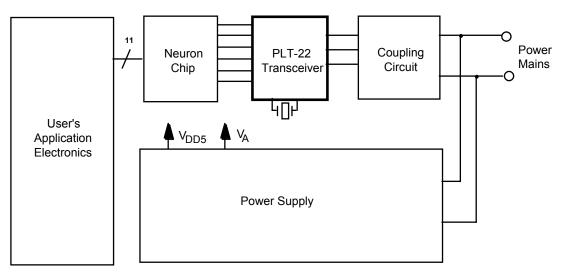


Figure 1.2 Typical PLT-22 Transceiver-Based Node

The PLT-22 transceiver meets the regulations for AC mains signaling of the FCC (Federal Communication Commission), Industry Canada (formerly DOC), CENELEC (European Committee for Electrotechnical Standardization), and Japanese MPT (Ministry of Post and Telecommunications).

Under FCC Section 15.107 "Limits for carrier current systems," as well as Industry Canada guidelines, communication frequencies are allocated as shown in figure 1.3. To protect aircraft radio navigation systems operating between 190kHz and 525kHz, restrictions on power line communication above 185kHz are being considered⁷. The PLT-22 transceiver avoids interfering with these systems by signaling in the frequency range of 110kHz to 140kHz.

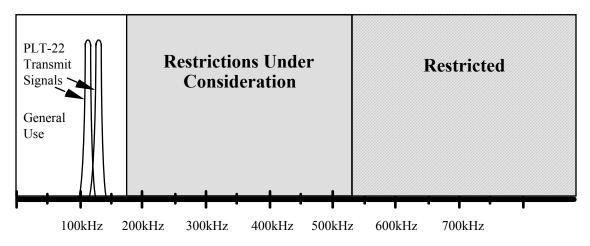
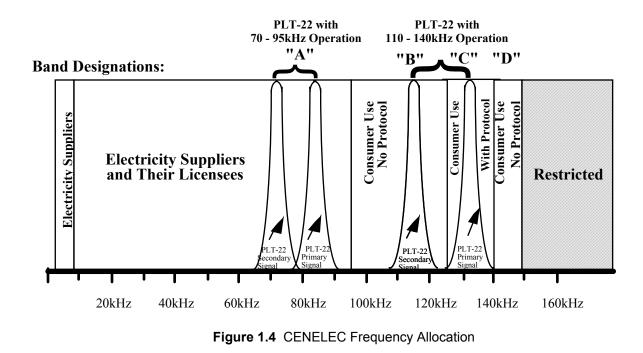



Figure 1.3 FCC and Industry Canada Frequency Allocation

Under CENELEC EN 50065-1 "Signaling on low-voltage electrical installations in the frequency range 3kHz to 148.5kHz" Part 1 "General requirements, frequency bands and electromagnetic disturbances," communication frequencies are allocated as shown in figure 1.4. When used with a 10MHz crystal, the PLT-22 transceiver signals in CENELEC C and B bands and implements the access protocol as specified in CENELEC EN 50065-1 (see CENELEC Access Protocol section in Chapter 3 for more information). For operation in the CENELEC A-band, refer to Using the LONWORKS PLT-22 Power Line Transceiver in European Utility Applications.

Audience

This document is intended for designers of products using the PLT-22 Power Line Transceiver.

Content

This manual provides detailed operating instructions for the PLT-22 transceiver.

Related Documentation

The following documents are suggested reading:

PLT-22 Power Line Transceiver data sheet (003-0250-01)

PLCA-22 Power Line Communication Analyzer User's Guide (078-0147-01)

PLA-21 Power Line Amplifier Specification and User's Guide (078-0161-01)

Centralized Commercial Building Applications with the LONWORKS PLT-21 Power Line Transceiver (005-0056-01)

Demand Side Management with the LONWORKS Power Line Transceivers (005-0070-01)

Using the LONWORKS PLT-22 Power Line Transceiver in European Utility Applications (078-0180-01) LONWORKS Custom Node Development (005-0024-01) LONMARK[®]Layers 1-6 Interoperability Guidelines (078-0014-01) LONMARK Application Layer Interoperability Guidelines (078-0120-01) Neuron Chip Data Book as published by Motorola and Toshiba

2

Using the PLT-22 Transceiver

This chapter describes the mechanical and electrical characteristics of the PLT-22 transceiver along with the interface to a Neuron Chip and external circuitry requirements. Typical application schematics are included.

Mechanical Dimensions

Figure 2.1 presents the mechanical dimensions of the PLT-22 transceiver.

The PLT-22 is produced as an uncoated SIP (in contrast to the coated PLT-20 and PLT-21 transceivers).

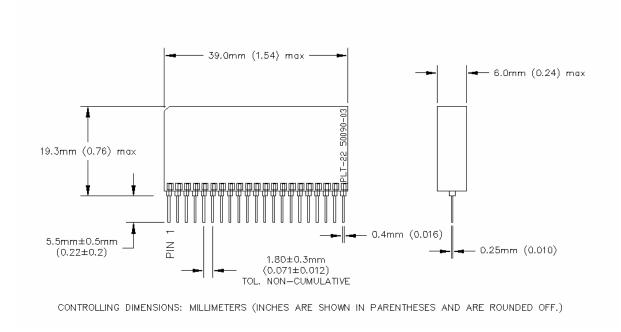


Figure 2.1 PLT-22 Transceiver Dimensions

Note: If a socket is required for prototype purposes, a Mill-Max #317-93-121-41-005 connector may be used. For more information, contact:

Mill-Max Manufacturing Corporation 190 Pine Hollow Road Oyster Bay, New York, 11771 Telephone: +1-516-922-6000 Fax: +1-516-922-9253 Internet: http://www.mill-max.com

PLT-22 Transceiver Pinout

Table 2.1 lists the functions of the PLT-22 transceiver pins.

Pin #	Pin Name	Function	
1	RXCOMP	Connection to receive compensation component	
2	RXIN	Receive signal input from line coupling circuit	
3	GND	Ground	
4	CP4	Frame clock synchronization from Neuron Chip (FCLK)	
5	CP2	Bit clock synchronization from Neuron Chip (BCLK)	
6	CP1	Transmit data and configuration from Neuron Chip (TXD)	
7	CP0	Receive data and status to Neuron Chip (RXD)	
8	GND	Ground	
9	V _{DD5}	+5VDC power supply input	
10	CKOUT	Buffered CMOS clock output: 10, 5, 2.5 or 1.25 MHz	
11	CKSEL0	Selects frequency of CKOUT—see table 2.4	
12	CKSEL1/TXON	Selects frequency of CKOUT—see table 2.4 / TXON (supports PLA-21 Power Line Amplifier)	
13	~RESET	Reset input from Neuron Chip	
14	BIU	CENELEC Band-In-Use indication output	
15	PKD	Packet detect indication output	
16	TXOUT	Transmit signal output to line coupling circuit	
17	GND	Ground	
18	XIN	10MHz oscillator input	
19	XOUT	10MHz oscillator output	
20	V _A	Analog power supply input	
21	TXLVL	Transmit level selection input	

Table 2.1	PI T-22	Transceiver	Pinout
		Transcerver	i inout

PLT-22 Transceiver Electrical Specifications

Table 2.2 lists the electrical specifications of the PLT-22 transceiver when used in the 110kHz – 140kHz frequency range. All specifications apply over the full operating temperature and supply voltage ranges unless otherwise indicated.

Parameter	Min	Тур	Max	Units
Operating temperature range ¹	-40		+85	°C
V _{DD5} input supply voltage	4.75	5	5.25	Volts
V _A input supply voltage				
TXLVL = open	8.5	9.7	16	Volts
TXLVL = GND^2	11.4	12.0	16	Volts
$\mathrm{I}_{\mathrm{DD5}}$ input supply current (not including PKD and BIU LE	D Current)			
receive		16	23	mA
transmit		13	18	mA
I _A input supply current				
receive		4	6	mA
transmit		130	250	mA
TXOUT signal level: TXLVL=open, into 50Ω load			3.6	Volts p-p
TXOUT signal level: TXLVL=GND, into 50Ω load			7	Volts p-p
Output current limit		1.0		Amps p-p
Output impedance, in-band (transmit)		0.9	1.1	Ohms
Input impedance, in-band (receive)	500			Ohms
PKD output source current @ V _{DD5} -0.6 V	8			mA
BIU output source current @ V _{DD5} -0.6 V	8			mA
Power management, lower threshold	7.2	7.9	8.5	Volts
Power management, upper threshold	11.1	12.0	12.9	Volts

Table 2.2 PLT-22 Transceiver Electrical Specifications
--

Notes:

- 1. Maximum operating temperature is a function of V_A supply voltage and the maximum transmission duty cycle for the node. A maximum operating temperature of 85°C is specified for a V_A supply \leq 12.6V and a maximum transmit duty cycle of 65%, which is the maximum achievable with LONMARK interoperable transceiver parameters and messages of \leq 34 Bytes. For other cases see figure 2.2.
- 2. While operating in the 7V p-p mode (TXLVL = GND), the V_A supply must not drop below 11.4V under conditions of typical line voltage, room temperature, and typical current drain (including the PLT-22 transceiver's typical I_A transmit current of 130mA). This condition ensures adequate transmit amplifier headroom to drive the full 7Vp-p signal

onto typical lines. Under worst case conditions, the minimum V_A supply voltage may be relaxed **if** the following additional condition is met. With worst case power supply loading (including PLT-22 $I_A = 250$ mA), worst case component tolerances, worst case line voltage, and worst case temperature, V_A must remain greater than or equal to 9.0V. This condition ensures adequate transmit amplifier headroom when driving low impedance power lines.

When using an energy storage type power supply refer to Chapter 5 for additional timing requirements on the above conditions.

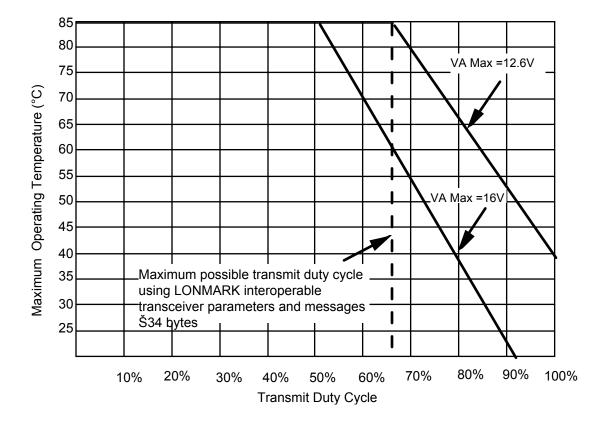


Figure 2.2 PLT-22 Transceiver Maximum Operating Temperature vs. Transmit Duty Cycle

External Components

Crystal

The PLT-22 transceiver requires the connection of an external 10.0000MHz crystal. The crystal connects directly to two pins of the PLT-22 transceiver, with no other oscillator components being required external to the transceiver. The crystal should be mounted as close as possible to the transceiver to minimize parasitic effects. The traces connecting the crystal to the transceiver preferably should be less than 10mm (0.4") in length, and under no circumstances can they exceed 20mm (0.8") in length.

In addition to the nominal frequency specification of 10.0000MHz, the crystal should be a parallel resonant type with a load rating of 13 to 20pF (series resonant crystals should **not** be used). The frequency accuracy of the oscillator must be held to ± 200 ppm over the full temperature range of operation. The PLT-22 oscillator design is centered for the use of a crystal with a 16pF load rating. If a 13pF crystal is used, the nominal frequency of oscillation will be 30 to 55ppm low, leaving 145ppm available for crystal accuracy, temperature, and aging. If a 20pF crystal is used, the nominal frequency will be 50 to 85ppm high, leaving 115 ppm for accuracy, temperature, and aging.

While the PLT-22 transceiver design is centered around the use of a crystal whose load capacitance rating is 16pF, it is possible to recenter the design for a crystal whose load capacitance rating is higher than 16pF. The PLT-22 transceiver effectively contains two 32pF capacitors, one from XIN to ground and one from XOUT to ground. Note that the *series* combination of the two capacitors equals the load capacitance of the recommended crystal. Recentering the design for the use of a crystal with a higher load capacitance specification requires the addition of two external capacitors whose series equivalent capacitance is equal to the load capacitance specification of the crystal less 16pF. For instance, to use a crystal with a load capacitance specification of 30pF, the operating frequency can be centered by adding two 27pF capacitors, one from XIN to ground and one from XOUT to ground.

If a 10.0000MHz ±200ppm 0-5V clock signal is already available as part of the node hardware then it may be used as a clock source for the PLT-22 transceiver by connecting it to Pin 18 (XIN) of the transceiver. In this instance pin 19 (XOUT) of the PLT-22 should be left unconnected. With this option, appropriate high speed clock distribution techniques must be strictly followed in order to ensure that a clean clock signal is present at the XIN pin of the PLT-22 transceiver.

Oscillator frequency accuracy should be checked during the design verification phase of every PLT-22 based product. Frequency accuracy should be measured by using a frequency counter connected to the CKOUT pin to compare the frequency of that pin to the selected value (i.e., 10, 5, 2.5, or 1.25MHz). Be sure that no instruments or extra cabling are connected to either the XIN or XOUT pins of the PLT-22 since even 2pF of extra load on either pin will significantly change the oscillator frequency.

Power Supply Bypassing and Grounding

The PLT-22 transceiver requires the connection of external bypass capacitors. The bypass capacitors should be placed as close as possible to the PLT-22 transceiver, and low-impedance ground and supply traces should be used between the PLT-22 transceiver and the bypass capacitors. In addition to the bypass capacitors specified for the Neuron Chip (see *Neuron Chip Data Book* ^{2,3,18}), the recommended values of the V_{DD5} and V_A bypass capacitors are, as follows:

- $\begin{array}{ll} V_{DD5}{:} & \mbox{None required if the V_{DD5} supply at the PLT-22 transceiver pin 9} \\ & \mbox{meets the noise masks described in Chapter 5. It is recommended that PCB designs initially incorporate a $10 \mu F$ 10V tantalum capacitor and a $0.1 \mu F$ ceramic capacitor on the V_{DD5} suppy. These capacitors can be eliminated if the design meets the noise masks in Chapter 5 and passes the receive performance tests described in Chapter 7 without the capacitors installed. \end{array}$

The PLT-22 transceiver provides three ground pins. For proper operation, all three pins must be connected to ground with low-impedance traces, or to a ground plane between the transceiver and the Neuron Chip.

Band-In-Use (BIU) and Packet Detect (PKD) LED Connections

The PLT-22 transceiver supplies two output signals, PKD and BIU, that are intended to drive low-current light-emitting diodes (LEDs). Both signals are active-high and must be connected to separate LEDs, with series current-limiting resistors added between the LEDs and ground.

A Band-In-Use detector, as defined under CENELEC EN 50065-1, must be active whenever a signal that exceeds $80dB\mu Vrms$ anywhere in the frequency range 131.5kHz to 133.5kHz is present for at least 4ms. The Band-In-Use detector is defined by CENELEC EN 50065-1 as part of the CENELEC access protocol. The PLT-22 transceiver incorporates the CENELEC access protocol, and the PLT-22 transceiver may be programmed to enable or disable its operation. (See *CENELEC Access Protocol* in Chapter 3 for more information.) When the PLT-22 transceiver is programmed such that the CENELEC access protocol is enabled, the BIU signal is active high whenever the CENELEC-defined conditions for Band-In-Use are met. When the transceiver is programmed such that the CENELEC access protocol is disabled, the threshold for the BIU signal is increased to $84dB\mu Vrms$ to reduce the possibility that power mains noise activates the BIU indicator. When the CENELEC access protocol is disabled, an active BIU signal does not prevent the PLT-22 transceiver from transmitting. Connecting the BIU signal to an LED is most useful when the CENELEC access protocol is enabled, since in this case the BIU signal indicates when the PLT-22 transceiver's transmissions are restricted.

The PKD signal is active whenever a valid LonTalk[®] packet is being received by the PLT-22 transceiver. The receive sensitivity of the transceiver is considerably greater than that of the BIU indicator. The PKD signal will go active when the PLT-22 transceiver receives packets whose signal level is as small as $36dB\mu Vrms$. Thus it is not uncommon for the PKD indicator to signal that a packet is present without the BIU indicator turning on; this occurs in cases where the received packet signal strength is less than the BIU threshold.

Both the BIU and PKD signals are driven directly by the PLT-22 transceiver's DSP processor. ESD protection diodes should be connected to these pins in applications where the BIU and PKD signals drive LEDs that could be subject to ESD exceeding 2kV. In applications where the LEDs are surrounded by a metallic ground plane, such as a hole in a grounded metal enclosure, the ESD diodes may not be necessary. However, if a plastic or metal enclosure without a good ground connection is used, then ESD diodes are needed to prevent damage to the PLT-22 transceiver. ESD protection diodes include industry part types 1N4148 (thru-hole) and BAV99 (SMT). Typical sources for BAV99 diodes include Motorola (BAV99LT1), National (BAV99), and Diodes, Inc. (BAV99).

Neuron Chip Connections

The link between the Neuron Chip and the PLT-22 transceiver makes use of the Neuron Chip's special-purpose mode interface. This interface requires that the CP and ~RESET lines of the two devices be interconnected as shown in table 2.3.

Neuron Chip Pin	PLT-22 Pin
CP0	7
CP1	6
CP2	5
CP3	Do not connect
CP4	4
~Reset	13
CLK1	10

 Table 2.3 Neuron Chip and PLT-22 Transceiver Interconnections

The Neuron Chip and PLT-22 transceiver should be placed adjacent to one another on the same printed circuit board. The length of the ~RESET and CP lines should be kept to an absolute minimum and in no case should exceed 50mm (2"). In addition,

the ground traces and V_{DD5} trace between the PLT-22 transceiver and the Neuron Chip should have impedances as low as possible.

The PLT-22 transceiver's CKOUT pin provides a clock suitable for driving the Neuron Chip CLK1 at 1.25MHz, 2.5MHz, 5MHz, or 10MHz. The frequency of the CKOUT pin (Neuron Chip CLK1 input) is selected by two pins, CKSEL0 and CKSEL1/TXON, as shown in table 2.4. The Neuron Chip CLK2 pin is not connected. The length of the CKOUT line should be kept to an absolute minimum and should in no case exceed 50mm (2").

CKSEL1/TXON	CKSEL0	CKOUT FREQ. (MHz)
≥ 4.7k to GND (or open)	GND	1.25
≥ 4.7k to GND (or open)	V _{DD}	2.5
4.7k to V _{DD}	V _{DD}	5
4.7k to V _{DD}	GND	10

Table 2.4 PLT-22 Transceiver Output Clock Frequency Settings

The CKSEL1/TXON pin must never be connected directly to a supply rail. The CKSEL1/TXON pin will draw large currents and potentially damage the PLT-22 transceiver if it is connected directly to a supply rail. The CKSEL0 pin may be tied directly to V_{DD5} or GND.

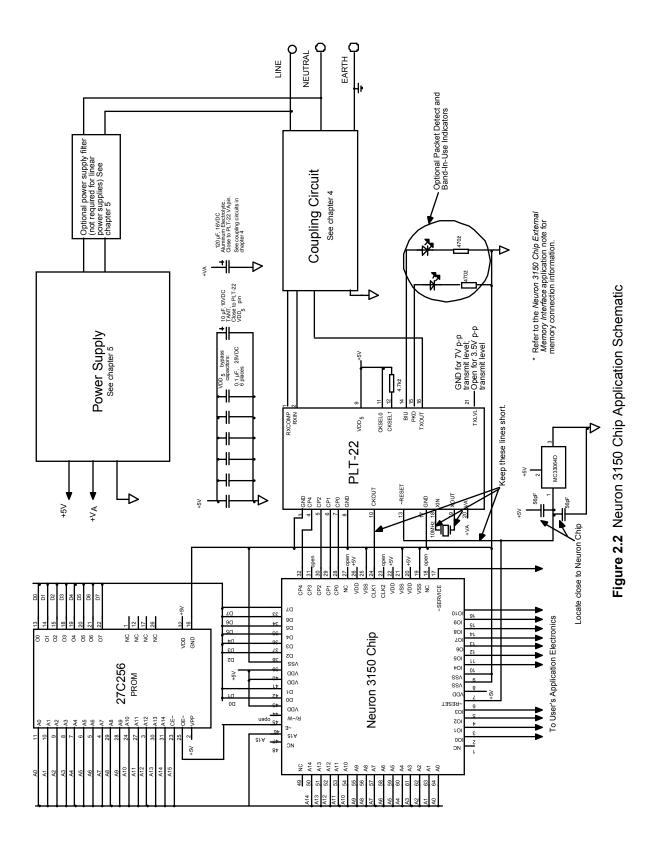
Λ

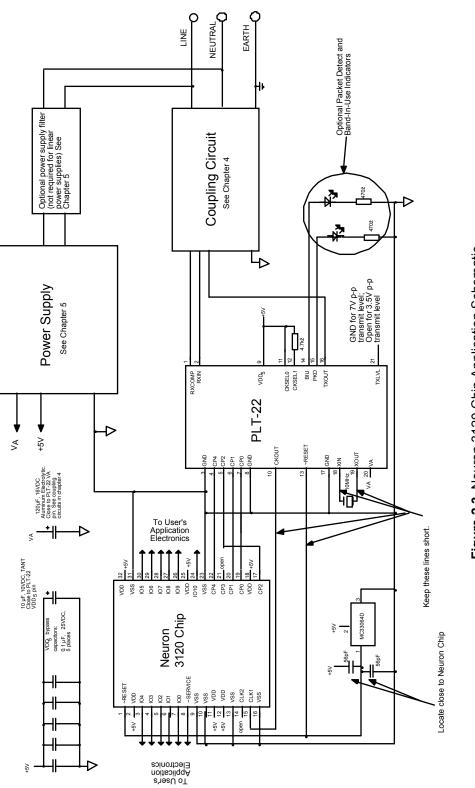
Note that when the PLT-22 transceiver is operated in its new dual frequency mode (as described in Chapter 3, *PLT-22 Transceiver Programming*) the Neuron Chip clock must be set to be 2.5MHz or higher.

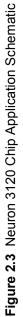
The PLT-22 transceiver ~RESET pin is designed to connect directly to the Neuron Chip ~RESET pin. The Neuron Chip Data Book ^{2,3,18} provides information on the Neuron Chip's external reset circuitry. Depending on the particular Neuron Chip version used, a Low Voltage Indicator (LVI) circuit such as the Motorola MC33064 or Dallas 1233 may be necessary to supply a reset signal to both the Neuron Chip and the PLT-22 transceiver. All of the application circuits shown in this documentation include an LVI chip. Consult your Neuron Chip manufacturer for the latest reset circuit requirements. Whether an LVI chip or a simpler discrete circuit is required, the ~RESET pin of the PLT-22 should always be tied directly to the ~RESET pin of the Neuron Chip. To minimize the effect of ESD discharges on the Neuron Chip ~RESET pin, use two external 56pF ceramic capacitors, one tied between ~RESET and V_{DD5} , the other between ~RESET and GND. The capacitors should be placed as close as possible to the Neuron **Chip** ~**RESET pin.** Note that the PLT-22 transceiver already incorporates two 56pF capacitors on the ~RESET line internal to the transceiver. These internal capacitors should be taken into account when calculating the total allowable capacitive load on the Neuron Chip ~RESET pin, as specified in the Neuron Chip Data Book^{2,3,18}

Transmit Output Level

The TXLVL input pin on the PLT-22 transceiver determines the output voltage of the transmit signal. When the TXLVL pin is left floating, the transceiver's open-circuit output voltage is 3.5V p-p. When the TXLVL pin is grounded, the open-circuit output voltage is increased by 6dB to 7Vp-p. The appropriate setting for TXLVL is summarized in table 2.5.


TXLVL	OUTPUT VOLTAGE	APPLICATION
grounded	7Vр-р	Preferred mode of operation. Use for FCC, Industry Canada, CENELEC class 134, Japan MPT, and all dedicated wiring applications.
open	3.5Vp-p	Use for CENELEC EN50065-1 class 116 applications


Table 2.5 TXLVL Setting


TXON Output Signal

The PLT-22 transceiver provides an output signal suitable for controlling a PLA-21 Power Line Amplifier via the CKSEL1/TXON pin. The CKSEL1/TXON pin functions as an input during the period in which the ~RESET pin of the PLT-22 transceiver is held active (low). During the reset active period the logical states of the CKSEL1/TXON and CKSEL0 pins are sampled and stored by the PLT-22 transceiver. The stored state is used to determine the frequency of CKOUT, as described in table 2.4. After RESET becomes inactive (high) CKSEL1/TXON changes to an output (CKSEL0 remains an input, but its state is ignored). The output, called TXON, is a buffered version of the internal signal used to control the transceiver's output amplifier. The TXON signal output is active high when the PLT-22 transceiver transmits packets.

The TXON signal is typically used to provide tri-state control of an external booster amplifier, such as the PLA-21 Power Line Amplifier model 53001-01. For more details see the *PLA-21 Power Line Amplifier Specification and User's Guide*.

3

PLT-22 Transceiver Programming

Certain parameters of the PLT-22 transceiver are programmed by the user. This chapter presents a list of these parameters and their values, plus a description of how they are programmed via the LonBuilder[®] Developer's Workbench and the NodeBuilder[™] Development Tool.

Dual Carrier Frequency Mode

Each PLT-22 transceiver incorporates a new dual carrier frequency capability which allows it to communicate with other PLT-22-based nodes, even if noise is blocking its primary communication frequency range. If impairments prevent communication in this range, a PLT-22-based node can automatically switch to a secondary carrier frequency to complete a transaction with other PLT-22-based nodes.

With dual carrier frequency mode enabled, the last two retries of acknowledged service messages are sent using the secondary carrier frequency. Thus when acknowledged service is used with three retries (four total tries), the first two tries are sent using the 132kHz primary carrier frequency. If the last two tries are needed to complete the transaction, they are sent (and acknowledged) using the 115kHz secondary carrier frequency. A minimum of two retries must be used if the PLT-22 transceiver is to be able to use both carrier frequency choices. For optimum reliability and efficiency, Echelon recommends the use of three retries when using acknowledged service messaging with the PLT-22 transceiver.

When unacknowledged repeat message service is used, the PLT-22 transceiver leverages the reliability of both carrier frequencies by alternating between them. In this case an unacknowledged repeat message with three repeats results in the first and third packets being sent using the 132kHz primary carrier frequency, while the second and fourth packets are sent using the 115kHz secondary carrier frequency. A minimum of one repeat must be used for the PLT-22 transceiver to use both carrier frequency choices.

Every PLT-22 transmission at the 115kHz secondary carrier frequency is accompanied by a simultaneous 132kHz "pilot" signal which older PLT-20 and PLT-21-based nodes can use to recognize that the channel is busy. This pilot signal prevents PLT-20- or PLT-21-based nodes (which cannot detect the 115kHz secondary carrier frequency) from transmitting at the same time that a PLT-22 is transmitting on its 115kHz secondary carrier frequency.

The user can configure a PLT-22-based node to operate with the dual carrier frequency mode either enabled or disabled. When a PLT-22-based node is operated with dual carrier frequency mode enabled, it will operate as described above. When a PLT-22-based node is operated with dual carrier mode disabled, it will only transmit using its 132kHz primary carrier frequency. Note that the selection of dual frequency mode on a PLT-22-based node only affects its transmission characteristics. Each PLT-22 transceiver is always able to automatically detect and properly receive packets at either frequency, regardless of whether or not dual frequency transmission is enabled. Activation of dual carrier frequency mode is controlled by the revision level of standard transceiver parameters, as described later in this chapter.

CENELEC Access Protocol

To allow multiple power line signaling devices from different manufacturers to operate on a common AC mains circuit, the CENELEC standard EN 50065-1 specifies an access protocol for the C-band (125kHz to 140kHz). The frequency 132.5kHz is designated as the primary band-in-use frequency that indicates when a transmission is in progress.

Every power line signaling device must both monitor the 132.5kHz band-in-use frequency and be able to detect the presence of a signal of at least $80dB\mu Vrms$ anywhere in the range from 131.5kHz to 133.5kHz which has a duration greater than or equal to 4 milliseconds. A power line signaling device is permitted to transmit if the band-in-use detector shows the band to have been free for at least 85 milliseconds. Each device must randomly choose an interval for transmission, and at least seven evenly distributed intervals must be available for selection. A group of power line signaling devices is allowed to transmit continually for a period less than or equal to one second, after which it must cease transmitting for at least 125 milliseconds.

The PLT-22 transceiver incorporates the CENELEC access protocol and the user can enable or disable the CENELEC access protocol at the time of channel definition. When enabled, the PLT-22 transceiver enforces the CENELEC access protocol while still maintaining the benefits of the LonTalk protocol. When the CENELEC access protocol is enabled, overall network throughput is reduced by 11%.

Power Management

The PLT-22 transceiver incorporates a power management feature that supports the design of very low cost power supplies in low cost consumer applications such as networked light dimmers, switches, and household appliances. This class of consumer applications have low transmit duty cycle operation requirements. These low cost power supplies take advantage of a number of PLT-22 features: the low receive current requirements of the PLT-22 transceiver; the 9:1 difference between the PLT-22 transceiver transmit and receive mode currents and the wide (+8.5VDC to +16VDC) V_A operating voltage of the PLT-22 transceiver.

A low transmit duty cycle implies that the device transmits packets infrequently, e.g., the product waits for a minimum of 10 packet times between transmitting each packet - a 10% transmit duty cycle. A power supply design that takes advantage of this duty cycle can store energy on a capacitor during the relatively long period between transmissions, when the PLT-22 transceiver draws minimal current, and then consume the stored energy to transmit a packet. This type of power supply, referred to as an "energy storage power supply," stores energy by charging an energy storage capacitor to a relatively high voltage (e.g., 15V) while in receive mode. The voltage on the capacitor then falls or "droops" toward a lower limit (e.g., 9.0V) while transmitting. The energy storage capacitor is then slowly recharged to the higher voltage during the relatively long time between transmissions. Traditionally, the proper design of such a power supply required knowledge of the maximum transmit duty cycle to be supported, and an implementation that accounted for all worst case operating conditions (temperature, line voltage, component variation and transmitter loading).

The cost of such a power supply can be significantly reduced if, instead of designing the supply for the maximum possible transmit duty cycle and for the worst case environmental conditions, the supply can be designed for typical operating conditions. However, designing for typical operating conditions implies that a mechanism exists to "manage" the worst case operating conditions such that reliable operation is assured. This management feature must also address products whose operating conditions (especially transmit duty cycle) are not defined prior to use in a network, but rather are controlled by application programs loaded after installation.

The PLT-22 power management feature implements the needed management functionality by intelligently monitoring the energy storage power supply. Should the node attempt to transmit too frequently, the power management feature enforces a limit on the transmit duty cycle by preventing the Neuron Chip from transmitting until the node's power supply recovers to the point that sufficient energy is available to transmit a packet. Details of this feature and application examples are provided in Chapter 5.

When power management is enabled, the PLT-22 transceiver requires a V_A power supply voltage of 12.9V before it will attempt to transmit a packet. Products with fixed V_A power supplies lower than 12.9V should <u>never</u> be programmed to enable the power management feature as they may never be allowed to transmit. Likewise a node whose power supply relies on power management to operate correctly should <u>never</u> be programmed with the power management feature disabled.

The user can enable or disable power management at the time of channel definition by selecting a standard transceiver type with a "low" suffix. The only difference between a set of standard transceiver parameters with the "low" suffix and the corresponding set without the "low" suffix is that the power management feature is enabled with the "low" set and disabled with the set without the suffix.

Note that some installation tools load a device's communication parameters as part of the installation and replacement process and calculate those parameters based on the channel (rather than the particular device). Such tools can not be used for systems that contain a mixture of nodes with and without power management enabled on the same channel.

Tools based on the LONWORKS Network Services (LNS) architecture, such as LonMaker for Windows Integration Tool, correctly support all configurations of PLT-22 (and PLT-21) nodes with or without power management. For a tool not based on LNS, contact your tool vendor to determine if it can support a mixture of power management and non-power management nodes on the same channel.

Standard Transceiver Types

Four standard transceiver types are defined for the PLT-22 transceiver operating in the 110 kHz - 140kHz range. These standard transceiver types specify communications parameters for a PLT-22 (or PLT-20 or PLT-21) node. The

communication parameters of the four standard types are identical except for the state of the CENELEC protocol and power management features (enabled or disabled) of the PLT-22 node. The revision level for each of these parameter sets determines whether the dual carrier frequency feature of the PLT-22 transceiver is enabled or disabled. When used with a STDXCVR.TYP file with a date prior to 1999, the PLT-22 transceiver will only transmit packets using its 132kHz primary carrier frequency. In this mode, all transmissions are compatible with prior generation PLT-20 and PLT-21 transceivers.

The dual carrier frequency mode can be enabled by using updated standard transceiver parameters. Standard transceiver parameters are used in the LonBuilder and NodeBuilder development tools, and in the firmware of a number of Echelon's "connectivity" products as well (e.g., the Echelon RTR-10 router core). See the next section for a discussion of how to update the LonBuilder and NodeBuilder tools, and see the power line products section of Echelon's web site (www.echelon.com) to determine how to update other devices used in a PLT-22 power line network.

With dual frequency mode activated, a PLT-22 transceiver begins each transaction by sending backward compatible 132kHz packets. In this mode, the last two tries of acknowledged service messages are sent using the 115kHz secondary carrier frequency. For unacknowledged repeated messages, every other repeat is sent at the secondary frequency. When the primary frequency range is not blocked by noise, a PLT-22-based node can inter-communicate with any other PLT-20, PLT-21, and PLT-22 node. In addition, with the dual frequency mode activated, PLT-22-based nodes can intercommunicate even if the primary frequency range is blocked by noise.

Table 3.1 lists the names of the four standard transceiver types and shows the differences between them.

Standard Transceiver Type	CENELEC Protocol	Power Management
PL-20C	Enabled	Disabled
PL-20N	Disabled	Disabled
PL-20C-LOW	Enabled	Enabled
PL-20N-LOW	Disabled	Enabled

Table 3.1 Standard PLT-22 Transceiver Types

Table 3.2 shows which combinations of standard transceiver types and power supply types are allowed.

Standard Transceiver Type Selection	Fixed V _A power supply <12.9V	Energy Storage V _A power supply >12.9V
PL-20C	ок	Not allowed if the power supply design relies on power management for worst case duty cycle and load conditions
PL-20N	ОК	Not allowed if the power supply design relies on power management for worst case duty cycle and load conditions
PL-20C-LOW	Not allowed: node may not transmit	ОК
PL-20N-LOW	Not allowed: node may not transmit	ОК

Table 3.2 Allowed Power Supply Types Versus Standard Transceiver Types

LonBuilder and NodeBuilder PLT-22 Transceiver Channel Definitions

To use the PLT-22 transceiver in dual frequency mode with the LonBuilder or NodeBuilder tools, you must have STDXCVR.TYP file with a date stamp of 1999 or later. PLT-22-based nodes built from a system with a STDXCVR.TYP file earlier than 1999 will transmit using only a single carrier frequency, even if it is blocked by noise. To take advantage of the PLT-22 transceiver's ability to automatically change frequency if the primary frequency range is blocked by noise, verify that the year on the date of your STDXCVR.TYP file is 1999 or later. This file is located in the LONWORKS TYPES directory (c:\lonworks\types by default) for the NodeBuilder software, and in the LonBuilder TYPES directory (c:\lb\types by default) for the LonBuilder software. If the date on your STDXCVR.TYP file is older than 1999, you can download an update from Echelon's web site at www.echelon.com/toolbox.

Once you have verified that you are using the correct version of the STDXCVR.TYP file, specify PL-20N, PL-20C, PL-20N-LOW, or PL-20C-LOW as the standard transceiver type in the NodeBuilder Device Template, as shown in figure 3.1, or the LonBuilder Channel Create window. Select "Yes" for the "Enforce Standard Type" field.

🖷 Device Temp	olate: C:\	LONW	ORKS\TEM	PLA	TE\SAMPLE.D	
Hardware	Firmware		Memory Map		Export	Description
Target Hard Neuron Mod Clock Spee Transceive	del: d:	Other 3150 10 MH PL-20 PL-30 DC-78 DC-62 DC-12 FO-10 PL-200	C [N 5 50	 	Info	
<u>S</u> ave	<u>C</u> lose	;	Copy <u>A</u> ll] [<u>P</u> aste All	Help

Figure 3.1 NodeBuilder Device Template Window

Table 3.3 shows the channel definition parameters for the PLT-22 transceiver. If you do not have access to an updated STDXCVR.TYP file, these channel definition parameters may be entered in the Channel Modify screen and sub-screens to create a standard PLT-22 transceiver definition which will activate the PLT-22 transceiver's dual frequency mode.

Parameter	Value	
Channel Modify Screen		
Std Xcvr Type	Custom	
Comm Mode	Special Purpose	
Comm Rate	1.25Mbps	
Number of Priorities	8	
Min Clock Rate	2.5MHz	
Avg Pkt Size	15 bytes	
Osc Accuracy	200ppm	
Osc Wakeup	0 µsec	

 Table 3.3 Channel Definition Parameters for the PLT-22 Transceiver

Comm Mode Specific Parameters	
Channel Bit Rate	3987 bps
Alternate Bit Rate	3987 bps
Wakeup Pin Dir	Output
Xcvr Controls Preamble?	Yes
General Purpose Data (power management disabled)	
CENELEC Access Protocol OFF	0E 01 00 10 00 00 00
CENELEC Access Protocol ON	4A 00 00 10 00 00 00
General Purpose Data (power management enabled)	
CENELEC Access Protocol OFF	0E 01 00 12 00 00 00
CENELEC Access Protocol ON	4A 00 00 12 00 00 00
Allow Node Override?	
PL-20N, PL20C PL-20N-LOW, PL-20C-LOW	YES
Layer 1 Time Factors	
Rcv Start Delay	7.3 bits
Rcv End Delay	1.6 bits
Indeterm Time	10.1 bits
Min Interpacket	17.5 bits
Preamble Len	33.5 bits
Use Raw Data?	No

 Table 3.3
 Channel Definition Parameters for the PLT-22 Transceiver (continued)

The standard transceiver definitions in table 3.1 were chosen as the best balance between flexibility in network design and network throughput. Flexibility is provided by the selection of 8 priority slots on the channel and a minimum input clock of 2.5MHz (a Neuron Chip input clock frequency as low as 2.5MHz may be chosen in order to reduce node power consumption). These parameters support a packet rate of 10 packets/sec with 80% throughput, 4% collisions, and 11 byte packets.

Λ

Note that when the PLT-22 transceiver is operated in its dual carrier mode, the minimum Neuron Chip clock is 2.5MHz. When the PLT-22 transceiver is operated in its single carrier frequency mode, the minimum Neuron Chip clock is 1.25MHz.

4

Coupling Circuits

This chapter includes a technical discussion about the means by which communication signals are coupled to power mains. Coupling circuit designs, including schematics and electrical safety issues, are included.

Power Line Communications

The PLT-22 transceiver employs sophisticated digital signal processing techniques, a transmit power amplifier with a very low output impedance, and a very wide (80dB) dynamic range receiver to overcome the signal attenuation and noise inherent in power mains communication. Maintaining the full communication capability of the PLT-22 transceiver requires careful selection and implementation of the mains coupling circuitry external to the PLT-22 transceiver. This section gives an overview of the sources of signal attenuation as a basis for understanding choices in selecting and implementing mains coupling circuits.

Attenuation is the difference between the signal level at the output of the power line transmitter and the level of that same signal at the input of the intended receiver. While attenuation is technically defined as the ratio of power levels, it is referred to in this document as the ratio of the transmitted signal voltage (unloaded) to the voltage of that same signal at the receiver input. A voltage ratio is more convenient to measure since power measurements require knowledge of the circuit impedance which, in the case of the power mains, varies with both location and time.

In power mains communications the attenuation of transmitted signals spans a wide range and is most conveniently denoted in decibels (dB), where voltage attenuation is defined in dB as $20\log_{10}$ (V_{transmit}/V_{receive}). Thus 20dB of attenuation means that the signal was reduced by a factor of 10 by the time it arrived at the receiver, 40dB of attenuation corresponds to a factor of 100, 60dB a factor of 1000, and so on. A PLT-22 transceiver is capable of reliably communicating on a low-noise line, such as a dedicated twisted wire pair, when the transmit signal is attenuated by as much as 80dB (a factor of 10,000). Thus a signal transmitted at 7Vp-p (2.5Vrms) may be received when reduced to less than 700μ Vp-p (250μ Vrms).

To better understand the sources of attenuation in a power mains network, it is helpful to look at a simplified model of a power distribution network. This example is based on an installation having one power distribution panel and two phases of mains power. While many applications for power line communication employ more phases, different topologies, voltages, and wire types, this example illustrates some of the key issues affecting the successful application of the PLT-22 transceiver.

Figure 4.1 depicts the path that a power line communication signal might traverse, starting from a wall socket and passing through the building's electrical wiring and circuit breaker panel, across power phases, and ultimately to another wall socket. Each socket in the power network may power a device that generates noise and loads the transmitted signal. For clarity, neutral and earth wires have not been shown.

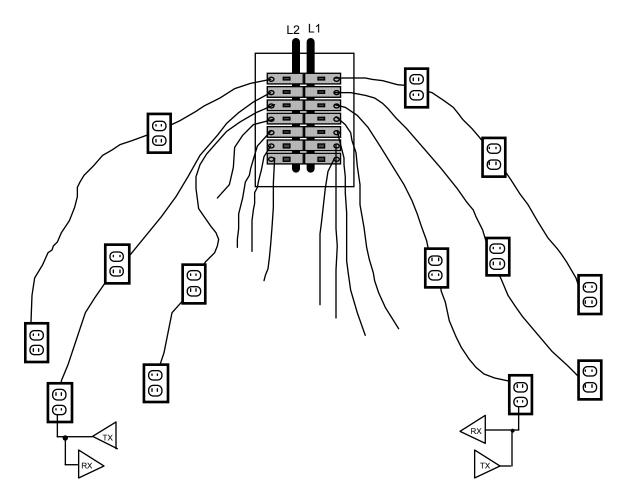


Figure 4.1 Power Distribution Model

Attenuation is most easily understood in terms of a voltage-divider circuit formed by the output impedance of the transmitter, the impedance of the various mains circuit branches, and any loads present on the mains branch circuits. At the communication frequencies of the PLT-22 transceiver (110kHz to 140kHz), the significant impedances are due to the series inductance of the mains wiring itself, capacitive loads between line and neutral, resistive loads between line and neutral, and the coupling between L1 and L2 which occurs due to mutual inductance and parasitic capacitance between phases. If these distributed impedances are lumped together and treated as if a single frequency is being transmitted, the simple model shown in figure 4.2 results.

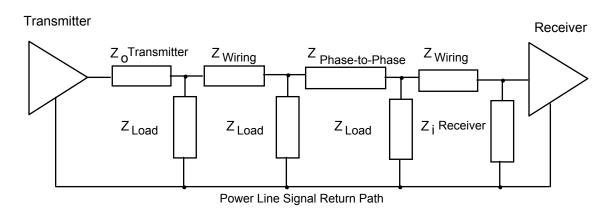


Figure 4.2 Power Mains Attenuation Model

This model illustrates that minimizing the series impedances and maximizing the line-to-return path impedances reduces the attenuation of the transmitted signal.

Coupling Techniques

Power Line Coupling Basics

Injecting a communication signal into a power mains circuit is normally accomplished by capacitively coupling a transceiver's output to the power mains. In addition to the coupling capacitor, an inductor or transformer is generally present. The coupling capacitor and the inductor or transformer together act as a high-pass filter when receiving the communications signal. The high-pass filter attenuates the large AC mains signal (at either 50Hz or 60Hz), while passing the transceiver's communication signal. Figure 4.3 below shows a basic mains coupling circuit. The value of the capacitor is chosen to be large enough so that its impedance at the communication frequencies is low, yet small enough that its impedance at the mains power frequency (50Hz or 60Hz) is high. The impedance of the capacitor can be considered as part of the transmitter's output impedance ($Z_{0Transmitter}$) shown in figure 4.2. Keeping the impedance of the coupling capacitor low minimizes the *signal injection loss* caused by the voltage divider formed between the output impedance of the amplifier and the mains loading (Z_{Load}).

The value of the inductor is chosen to have a relatively high impedance at the PLT-22 transceiver's communication frequencies. The inductor impedance can be considered part of the receiver input impedance ($Z_{i \ Receiver}$) shown in figure 4.2. Keeping the inductor impedance high helps minimize any signal loss at the receiver due to the voltage divider formed by the wiring impedance and the receiver input impedance.

PL Transmitter

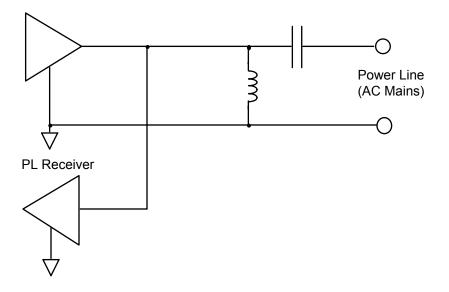


Figure 4.3 Basic Mains Coupling Circuit

A key factor affecting the type of mains coupling circuit to be used is the wiring style of the power distribution system to which the coupling circuit will be connected. Wiring topologies vary from application to application, e.g., homes versus commercial buildings, as well as from country to country. Even so, wiring styles can be divided into two major categories: wiring systems where a separate earth conductor is present and accessible (i.e., safety ground, which is not the same as a neutral wire with an earth bond), and wiring systems where there is no earth conductor.

When earth is always present, a coupling method known as *line-to-earth* coupling is preferred. In line-to-earth coupling the communications signal is coupled to the line wire relative to earth, and earth is used as the communications signal return path. This coupling technique is also referred to as *earth-return* coupling. Local restrictions may apply to the use of line-to-earth coupling; see *Ground Leakage Currents* later in this chapter.

A simple example of a line-to-earth coupling circuit is shown in figure 4.4.

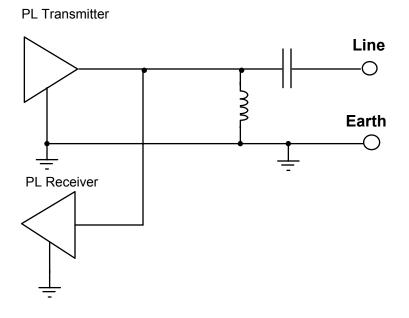


Figure 4.4 Line-to-Earth Coupling Method

To understand the advantage of line-to-earth coupling, recall that a major component of signal attenuation is due to the loads presented by devices that are connected to the power mains between the line and neutral wires. These loads do not affect signal attenuation when line-to-earth coupling is used. Field measurements have shown consistent improvements in received signal-to-noise ratios of more than 15dB for transceivers using line-to-earth coupling, relative to transceivers using non-earthreturn coupling. For this reason, when a safety ground connection is known to be available throughout the wiring system, a line-to-earth coupling scheme is preferred.

In applications where a safety ground connection may not exist, or line-to-earth coupling is precluded by local regulations, the coupling circuit must be connected between the line and neutral wires. This style of coupling is known as *line-to-neutral* coupling and is shown in figure 4.5.

PL Transmitter

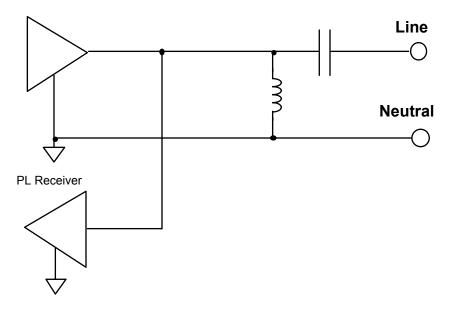


Figure 4.5 Line-to-Neutral Coupling Style

In the following section the simple circuits shown in figures 4.4 and 4.5 are expanded to make them practical in real applications. The following discussion applies to both line-to-neutral coupling and line-to-earth coupling, as the coupling circuit topology for each is the same. However, in addition to the different mains connections, the required component values differ for line-to-neutral coupling and line-to-earth coupling. At the end of this chapter, recommended coupling circuit schematics and component specifications are provided for both line-to-neutral coupling and line-toearth coupling.

Power Line Coupling Details

The coupling circuits shown in figures 4.4 and 4.5 require the addition of a small number of components to make them practical. Figure 4.6 shows the addition of an AC coupling capacitor (C2) to prevent the inductor from shorting the transmit amplifier's DC bias voltage.

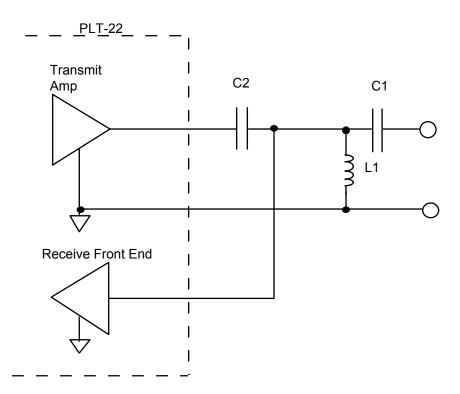


Figure 4.6 Simplified Coupling Circuit with Blocking Capacitor

Given the attenuation model presented earlier in figure 4.2, one critical design constraint is that the series combination of C1 and C2 must have a low impedance at the PLT-22 transceiver's communication frequencies. The impedance of these capacitors, along with the PLT-22 transceiver's transmit output impedance, corresponds to "Z₀ Transmitter" in figure 4.2. Since the equivalent load impedance of the power line may in some cases be as low as 1-2 Ohms, and since the output impedance of the PLT-22 transceiver is less than 1 Ohm, the impedance of these capacitors should be on the order of 1 Ohm so that they do not add significantly to " Z_0 Transmitter". While the values of C1 and C2 could be set high enough to meet this goal, doing so would significantly increase the cost of the high-voltage capacitor C1. Since C2 is connected only to low voltage, and thus is lower cost for a given value, its value can be set higher relative to the value of the high-voltage capacitor C1. A simple, cost-effective solution is obtained when an inexpensive inductor, L2, is added as shown in figure 4.7 below. This inductor forms a series-resonant circuit with C1 and C2, and its value can therefore be chosen to optimize coupling at the PLT-22 transceiver's communication frequencies while minimizing the cost of C1 and C2.

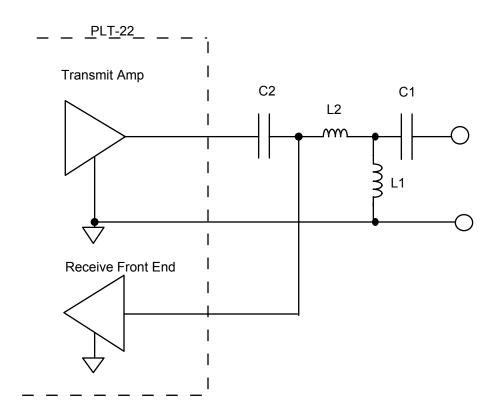


Figure 4.7 Simplified Coupling Circuit with Resonant Inductor

An important design constraint on L2 is that its DC resistance be kept very low since it is in the transmit signal path and effectively part of the transmitter's output impedance. Low-cost inductors with DC resistance on the order of 0.2 Ohms are widely available.

Capacitors C1 and C2 should be of metalized polyester construction in order to minimize equivalent series resistance and provide adequate surge immunity.

Λ

It is critical that no additional series impedance be added in the signal path between the TXOUT pin of the PLT-22 transceiver and the power mains (or in the return path from the power mains to the ground pins of the PLT-22) unless verified to be significantly less than 1 Ohm near 130kHz. If, for example, a ferrite bead with an impedance of 9 Ohms at 130kHz were added then the signal injected into a 1 Ohm power line would be reduced by a factor of 10. Under typical conditions the end product would still function, however, communication margin and reliability over a full range of power line environments would be severely compromised. For the same reason, the impedance of series circuit protection elements must also be kept very low. Low current fuses (<2A), protection devices that can be reset, and ferrite beads generally add unacceptable series impedance to the signal path.

Figure 4.8 shows additions to the coupling circuit which are required to make it fully functional. The first is a 1.0mH inductor, L3, connected to the PLT-22 transceiver receive filtering circuitry. The DC resistance of L3 can be up to 50 Ohms. The second is a diode, D1, connected from the transmitter to the amplifier supply voltage (V_A) to protect the inputs of the PLT-22 transceiver from large (>15V) transients. This diode works in conjunction with a diode internal to the PLT-22 transceiver that connects from the transmitter output to ground. Bypass capacitor C3 also has been added to emphasize the fact that it is an integral part of the coupling circuit. One of the functions of this capacitor is to protect the V_A supply line from excessive overshoot when positive going line surges discharge through diode D1. The last addition is an optional circuit that improves performance in environments where large (>50V) impulses may be present from devices such as SCR-controlled light dimmers. This circuit consists of an LCR series network that acts as a notch filter whose center frequency is at the characteristic "ringing" frequency of the coupling circuit. This optional circuit should be included on nodes containing an SCR or triac switching device, and in nodes operating from a nominal V_A supply of less than 12V.

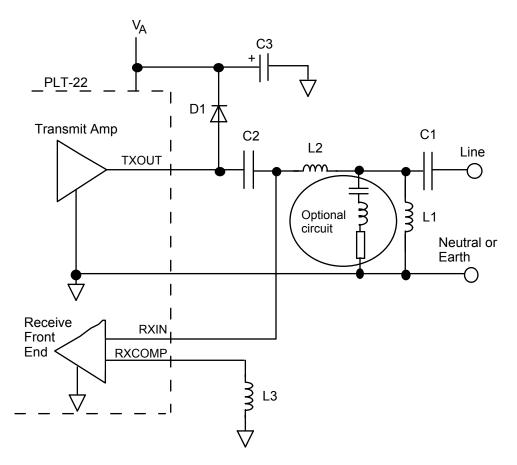


Figure 4.8 Functional Line-to-Neutral or Line-to-Earth Coupling Circuit

In instances where large ambient fields may be present (such as from switched mode power supply open frame magnetic elements), it is possible that one or more of the PLT-22 coupling circuit inductors may pick up these stray fields and conduct them onto the power mains. Depending on the frequency and amplitude of these fields they could result in failure to meet CENELEC conducted emission regulations.

If noise from parasitic coupling is suspected, it can be confirmed by inserting a 10cm (4") twisted wire pair in series with one of the inductors in question. If the conducted noise spectrum varies by more than a few dB when this inductor is moved closer to, and farther from, other components, then parasitic coupling may be the source of the problem.

If stray coupling is a problem, regulations can usually be met by adjusting the location or orientation of the radiating device relative to the coupling circuit inductors. Alternately, shielded or toroidal inductors may be used to reduce coupling as long as all electrical parameters specified in the example coupling circuit tables given later in this chapter are met. If, however, a toroidal or shielded inductor is used in place of L2, then the selected part must handle the maximum 1App output current of the PLT-22 transceiver without approaching saturation. If L2 even approaches saturation it can add harmonics of the PLT-22 transmit signal which may result in failure to meet CENELEC emission regulations (in this instance, due to inductor used for L2 may need to have DC current rating two or three times higher than listed in the example circuits given later in this chapter. The recommended open frame axial inductor does not need this extra operating margin due to the linearity provided by its magnetic path being partly in air.

Safety Issues

This guide is intended only as an introduction to some of the safety issues associated with designing circuits using the PLT-22 transceiver. This document is not a primer on electrical safety or electrical codes, and it is the responsibility of the user to familiarize himself or herself with any applicable safety rules or regulations. A review of all designs by competent safety consultants and the pertinent regulatory or safety agencies is strongly recommended.

Safety Isolation Considerations

Many products include an isolation barrier in the form of an insulated enclosure between a user and any hazardous conductors. A typical product of this type is a light switch in which the PLT-22 transceiver and all of the associated electrical components are contained inside the switch enclosure. The type of coupling circuit that can be used in these applications is called a *non-isolated coupling circuit*. A non-isolated coupling circuit generally requires lower cost components, making it especially desirable for use in price-sensitive consumer products and wiring devices. All of the coupling circuit examples that have been shown so far are of the nonisolated type.

Some products cannot practically incorporate an enclosed isolation barrier and an alternate method of safety isolation must then be provided. For example, a circuit board that uses a PLT-22 transceiver, a non-isolated line-to-neutral coupling circuit, and a Neuron Chip whose I/O pins are user-accessible presents a potential electrical shock

hazard. Since the mains neutral lead is connected directly to the circuit board common, the user could be exposed to a hazardous voltage at the I/O connector, especially if the line and neutral connections are accidentally reversed. Additional circuitry is needed in such a product to provide a safety isolation barrier between the user-accessible I/O connector and the mains line and neutral conductors.

The most common solution is to provide isolation in the coupling circuit by modifying the simple coupling circuit described earlier. This style of coupling circuit is referred to as an *isolated coupling circuit*.

The preferred isolated coupling circuit uses *transformer-isolation*. Transformerisolation requires substituting a safety agency-approved transformer having the appropriate communication characteristics in place of L1 (see Appendix A). Transformer-isolation can be used for both line-to-neutral and line-to-earth coupling. Transformer-isolated coupling has the advantage that the resonant inductor L2 can be incorporated into the isolation transformer by designing the leakage inductance of the transformer to match the value of L2. A transformer-isolated coupling circuit is shown in figure 4.9, where it can be seen that the transformer isolates the PLT-22 transceiver from the line conductor and the neutral or earth conductor.

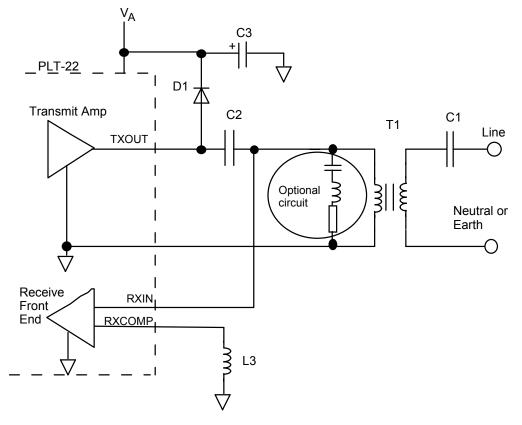


Figure 4.9 Transformer-Isolated Coupling Circuit

An alternate method of providing safety isolation is to add optical isolation between the Neuron Chip and the I/O connector, or between the Neuron Chip and the PLT-22 transceiver. If optical isolation is used between the Neuron Chip and the PLT-22 transceiver, then a maximum of 150ns propagation delay may be added to the CP interface lines in either direction and a separate crystal may be used for the Neuron Chip clock.

Ground Leakage Currents

There are both safety and practical limits on the level of ground leakage currents that are permitted in power line systems that use line-to-earth coupling. In the case of products intended for use in commercial buildings and homes, many safety agency standards set a maximum limit of 3.5mA of ground leakage current. This leakage limit determines the maximum value of C1 (in figures 4.8 and 4.9) for line-to-earth coupling circuits. In the application schematics that follow, the values for these capacitors have been chosen to limit the ground leakage current to less than 3.5mA.

A practical limit on the use of line-to-earth coupling also exists. Many single circuit ground fault interrupters (GFIs), also known as residual current devices (RCDs), can be triggered with ground currents as low as 4mA. If each PLT-22 transceiver employing line-to-earth coupling generates about 3mA of ground current, then only one such transceiver can be installed on each GFI-protected circuit. For this reason line-to-earth coupling may not be suitable for some applications with low-current GFIs, and line-to-neutral coupling should be used instead. Local regulations also may prohibit to the use of earth as the return path for a signaling system.

Capacitor Charge Storage

The coupling capacitors depicted in the earlier figures can retain substantial charge even after a PLT-22 transceiver-based device has been disconnected from the power mains. This can be of significant concern in applications where a line cord could be touched by a user after being disconnected from the power mains. To minimize potential shock hazard, coupling circuits should include a large value bleeder resistor to discharge the capacitors following disconnection from the mains. Even in applications where the connection to the mains is permanently wired, it is good practice to include the resistor to protect service personnel. The coupling circuit schematics in this document include appropriate bleeder resistors.

Line Surge Protection

Coupling circuits that connect the PLT-22 transceiver to the power mains require the addition of component(s) to provide protection of the PLT-22 transceiver from the high-voltage surges that occur on all power distribution systems. Primarily lightning induced, these surges can present voltages of up to 6kV at very high current levels for brief periods to the coupling circuits inside buildings and homes. Even higher voltages can be seen on mains wiring outside of buildings. The recommendations that follow are based on testing performed on a particular PCB

layout. The efficacy of the surge protection implemented in each product containing the PLT-22 transceiver must always be verified empirically, since factors such as PCB layout and packaging can influence the results as much as the choice of protection components.

The level of surge protection required for a given product often depends on the installed location of the product to be protected. Devices connected to branch circuits within a building or home are typically subject to the lowest level of surge stress. Devices connected at, or close to, the power entry point of a building or home, e.g., electrical meters and main breaker panels, are subject to higher levels of surge stress. Devices connected to outdoor wiring are subjected to the highest surge stress of all.

Standard tests for surge immunity are defined in IEEE C62.41-1991¹⁷ and CEI/IEC 1000-4-5¹⁶. Both documents classify levels of surge stress by the type of surge waveform (either Ring wave or Combo wave), surge voltage, and surge current. In addition to describing standard test methods, both documents also suggest surge immunity levels for the device environments described above.

Comparison of the two documents reveals that their recommended test procedures are identical, while the suggested immunity levels called out in IEEE C62.41-1991 substantially exceed the suggested immunity levels of CEI/IEC 1000-4-5. The more severe (and thus more conservative) immunity levels called out in IEEE C62.41-1991 were used in characterizing the recommended surge protection circuitry shown in the PLT-22 transceiver coupling circuit examples that follow.

The line-to-neutral coupling circuits documented later in this chapter have been demonstrated to meet the IEEE C62.41-1991 "high system exposure" levels with no damage for *branch circuit applications*, *power entry applications*, and *outdoor wiring applications*, up to the limits of the available test equipment.

Table 4.1 summarizes the surge immunity of the PLT-22 transceiver in conjunction with the specified line-to-neutral coupling circuits.

	Ring W	ave Test	Combo Wave Test (1.2/50μs-8/20μs)		
	(0.5µs-	100kHz)			
Product Location	<i>IEEE C62.41-1991</i> <i>system exposure</i> <i>level</i>	<i>Surge level verified not to damage PLT-22</i>	IEEE C62.41- 1991 system exposure level	Surge level verified not to damage PLT-22	
Branch Circuit	low -2kV @70A				
	med-4kV @130A		Not specified	6kV @500A	
	high-6kV @200A	6kV @200A		2kV @1,000A	
Power Entry	low -2kV @170A		low -2kV @1,000A		
	med-4kV @330A		med-4kV @2,000A		
	high-6kV @500A	6kV @500A	high-6kV @3,000A	6kV @3,000A	
Outdoor Wiring			low -6kV @3,000A	6kV @3,000A	
	Not specified	6kV @500A	med-10kV @5,000A	(limited by test equipment)	
			high-20kV @10,000A	equipmenty	

Table 4.1 Line-to-Neutral Coupling Circuit Surge Immunity Test Results

Surge protection with line-to-earth coupling is often constrained by the need to maintain low leakage current. A variator connected between line and earth adds leakage current that may result in violation of applicable safety standards. This use of a variator for surge protection in line-to-earth coupling circuits is often prohibited. Adequate surge immunity in branch circuit applications may be achieved without variators by the use of an X2-type capacitor instead of a non-safety rated metalized polyester-type in the C1 location in line-to-earth coupling circuits. Surge immunity may be further enhanced in power entry and outside wiring applications by the addition of a gas tube surge arrester between line and earth.

If a gas tube surge arrestor is used between line and earth, the arrestor will have to be loaded on the PCB after hi-pot testing. Hi-pot testing between line and earth is usually performed at voltages above the break-down voltage of gas tube surge arrestors, and the test will fail if a gas tube surge arrestor fires during testing.

The line-to-earth coupling circuits documented later in this chapter have been demonstrated to meet the IEEE C62.41-1991 "medium system exposure" levels with no damage for *branch circuit applications*, and the "high system exposure" levels with no damage for *power entry applications* and for *outdoor wiring applications* (up to the limits of the available test equipment).

Table 4.2 summarizes the surge immunity of the PLT-22 transceiver in conjunction with the line-to-earth coupling circuits specified later in this chapter.

	Ring Wave Test (0.5µs-100kHz)		Combo Wave Test (1.2/50µs-8/20µs)		
Product Location	<i>IEEE C62.41-1991</i> <i>system exposure</i> <i>level</i>	Surge level verified not to damage PLT-22	IEEE C62.41- 1991 system exposure level	Surge level verified not to damage PLT-22	
Branch Circuit	low -2kV @70A				
	med-4kV @130A	4kV @130A	Not specified	3kV @250A	
	high-6kV @200A			2kV @1,000A	
Power Entry	low -2kV @170A		low -2kV @1,000A		
	med-4kV @330A		med-4kV @2,000A		
	high-6kV @500A	6kV @500A	high-6kV @3,000A	6kV @3,000A	
Outdoor Wiring			low -6kV @3,000A	6kV @3,000A	
	Not specified	6kV @500A	med-10kV @5,000A	(limited by test equipment)	
			high-20kV @10,000A	equipment)	

Fuse Selection

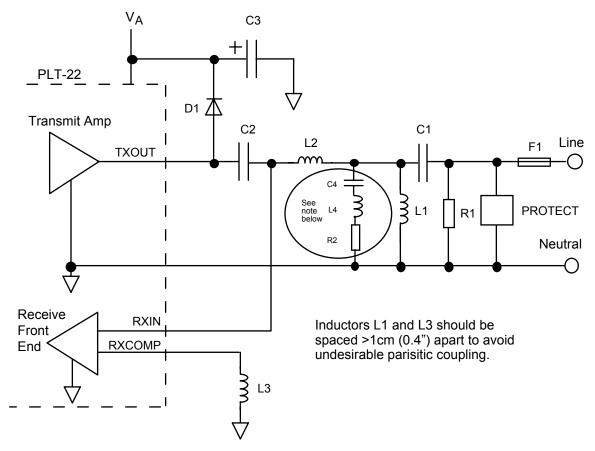
Safety considerations may require a fuse in series with the mains connection. For an end product to continue to function (without user intervention) it is necessary that the selected fuse not open following a specified line surge. A minimum 6A time-lag ("slow blow") rating has been shown to be necessary to avoid unintentional fusing action at "high system exposure" levels of IEEE C62.41-1991.

If a coupling circuit which incorporates varistor protection is selected, the varistor manufacturer's recommendations for maximum fuse current should be followed. The vendor listed in the coupling circuits which follow suggests a maximum fuse rating of 6A for use with 7mm (1200A) varistors and a maximum rating of 18A for use with 14mm (4500A) varistors.

A 6A time-lag fuse is specified in all of the following coupling circuits since it satisfies all of the above criteria, as well as the critical requirement that it add very little resistance (<0.1 Ohms) to the transmit signal path. If a current rating greater than 6A is required by the application then either larger varistor (>7mm) or gas discharge tube protection is recommended.

Recommended Coupling Circuit Schematics

This section provides schematics and component information for coupling the PLT-22 transceiver to the power mains. Coupling circuits presented here are unchanged from those recommended for use with the PLT-21 transceiver. The schematics are divided into four classes based on coupling method and type of safety isolation. For each schematic, component specifications and suggested suppliers/part numbers are provided.


Vendor part number information is provided as a way to reduce component selection times, since the suggested parts have already been verified to meet all required specifications. Alternate component suppliers may be used provided that **all** specifications listed for each component are met. While surge testing must be performed for every new product design, using the suggested vendor part numbers listed in tables 4.1 and 4.2 has the additional advantage that the same vendor parts were verified by Echelon.

For three phase coupling applications, the coupling circuit shown in Appendix A of the LONWORKS Engineering Bulletin, *Centralized Commercial Building Applications with LONWORKS PLT-21 Power Line Transceiver* (005-0056-01), is recommended. Recommended coupling circuits for applications where two out-of-phase hot lines are used (e.g., North American 240V appliances) and for 24VAC applications are listed in LONWORKS Engineering Bulletin, *Demand Side Management with LONWORKS Power Line Transceivers* (005-0070-01). Both of these bulletins are available on the Echelon web site at www.echelon.com.

The PLT-22 transceiver also is fully compatible with all of the older coupling circuits described in the following older documents: *PLT-20 Power Line Transceiver User's Guide*, (version 3 or later), *Demand Side Management Coupling Circuits Recommendations (14 February 1996)*, and *Centralized Commercial Building Applications with LonWorks PLT-20 Power Line Transceiver*.

Example 1: Line-to-Neutral (L-to-N), Non-Isolated Coupling Circuit

Figure 4.10 presents a schematic for a line-to-neutral, non-isolated mains coupling circuit. Table 4.3 lists component values and recommended suppliers/part numbers for coupling to the AC mains with a nominal line voltage in the range 100-240VAC. For coupling to AC mains with a nominal line voltage in the range of 100-120VAC, refer to table 4.4. This schematic may also be used for coupling to wiring other than AC mains with AC or DC voltages of 250VRMS or less.

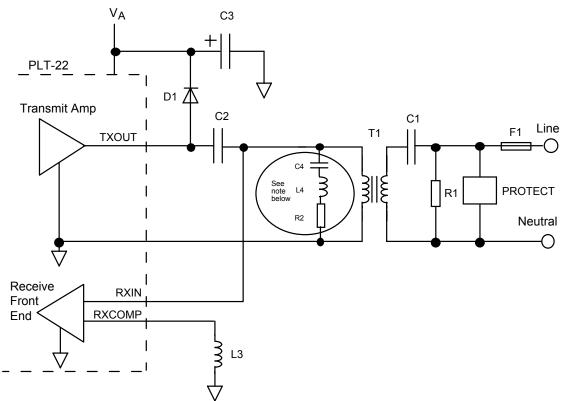
Note: This optional circuit should be added to nodes with a nominal V_A<12V or nodes that contain a triac or SCR load switching device.

Figure 4.10 L-to-N, Non-Isolated Coupling Circuit Schematic

Сотр	Value	Specifications	Vendor / Part Number
C1	0.068µF	±10%, ≥400VDC, metalized polyester ⁽¹⁾	Matsushita Electric / ECQ-E4683KF
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	±20%, 16VDC, aluminum electrolytic,	Matsushita Electric / ECA-1CFQ121
		≤ 0.3Ω ESR @100kHz	
C4	0.068µF	±5%, ≥50VDC	AVX / SR205C683JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	250VAC, slow blow ⁽²⁾	
L1, L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
L2	18µH	±10%, Imax≥500mA, R _{DC} ≤0.3Ω	TAIYO YUDEN / LAL05TB180K
R1	1MΩ	\pm 5%, 1/4W, max working volt \geq 360VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
PROTECT	300VAC(470VDC)	For indoor branch circuits use 7mm varistor	Matsushita Electric / ERZ-V07D471
	300VAC(470VDC)	For power entry use 14mm varistor	Matsushita Electric / ERZ-V14D471
	240VAC	For outdoor use AC gas discharge tube ⁽⁵⁾	CPClare / AC240L

Table 4.3 100-240VAC, L-to-N, Non-Isolated Coupling Circuit Component Values

Table 4.4 100-120VAC, L-to-N, Non-Isolated Coupling Circuit Component Values


Сотр	Value	Specifications	Vendor / Part Number
C1	0.10µF	$\pm 10\%$, ≥ 250 VDC, metalized polyester ⁽¹⁾	Matsushita Electric / ECQ-E2104KF
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	\pm 20%, 16VDC, aluminum electrolytic, ≤ 0.3Ω ESR @100kHz	Matsushita Electric / ECA-1CFQ121
C4	0.10µF	±5%, ≥50VDC	AVX / SR205C104JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	125VAC, slow blow ⁽²⁾	
L1, L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
L2	12µH	±10%, Imax ≥500mA, R _{DC} ≤0.3Ω	TAIYO YUDEN / LAL05TB120K
R1	1ΜΩ	\pm 5%, 1/4W, max working volt \geq 200VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
PROTECT	150VAC(240VDC) 150VAC(240VDC) 120VAC	For indoor branch circuits use 7mm varistor For power entry use 14mm varistor For outdoor use AC gas discharge tube ⁽⁵⁾	Matsushita Electric / ERZ-V07D241 Matsushita Electric / ERZ-V14D241 CPClare / AC120L

(1) In some applications an X2 safety rated capacitor may be required. Consult applicable safety standards.

- (2) In some applications a fuse may not be required. Consult applicable safety standards.
- (3) The value of R2 should be selected so that the series combination of the DC resistance of L4 and R1 is equal to 82 Ω .
- (4) The working voltage rating of R1 may be achieved by using two $470k\Omega$ resistors in series, each with a working voltage rating of at least half of the value listed above.
- ⁽⁵⁾ Install the gas discharge tube on the line side of F1 (if a fuse is used).

Example 2: Line-to-Neutral, Transformer-Isolated Coupling Circuit

Figure 4.11 presents a schematic for a line-to-neutral, transformer-isolated coupling circuit. Table 4.5 lists component values and recommended suppliers/part numbers for coupling to AC mains with a nominal line voltage in the range 100-240VAC. For coupling to AC mains with a nominal line voltage in the range of 100-120VAC, refer to table 4.6. This schematic may also be used for coupling to wiring other than AC mains with AC or DC voltages of $250V_{RMS}$ or less or for coupling to an unpowered wire pair.

Note: This optional circuit should be added to nodes with a nominal V_A <12V or nodes that contain a triac or SCR load switching device.

For long haul operations (\geq 300m) on lightly loaded lines communication distance can be maximized by installing a termination circuit at each end of the cable. Examples include unpowered twisted pair networks, low voltage networks, and dedicated mains networks with minimal loading at the communication frequency of the transceiver. A recommended termination circuit is shown in figure 4.12.

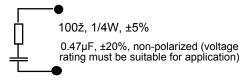


Figure 4.12 Termination Circuit

Сотр	Value	Specifications	Vendor / Part Number
C1	0.10µF	±10%, ≥400VDC, metalized polyester ⁽¹⁾	Matsushita Electric / ECQ-E4104KF
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	\pm 20%, 16VDC, aluminum electrolytic, \leq 0.3Ω ESR @100kHz	Matsushita Electric / ECA-1CFQ121
C4	0.10µF	±5%, ≥50VDC	AVX / R205C104JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	250VAC, slow blow ⁽²⁾	
L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
R1	1MΩ	±5%, 1/4W, max working volt ≥360VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
PROTECT	300VAC(470VDC) 300VAC(470VDC) 240VAC	For indoor branch circuits use 7mm varistor For power entry use 14mm varistor For outdoor use AC gas discharge tube ⁽⁵⁾	Matsushita Electric / ERZ-V07D471 Matsushita Electric / ERZ-V14D471 CPClare / AC240L
T1		See Appendix A	

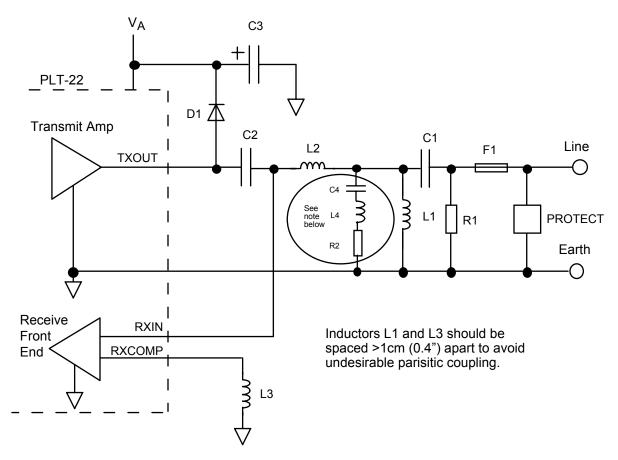
Table 4.5 100-240VAC, L-to-N, Isolated Coupling Circuit Component Values

Table 4.6 100-120VAC, L-to-N, Isolated Coupling Circuit Component Values

Comp	Value	Specifications	Vendor / Part Number
C1	0.10µF	±10%, ≥250VDC, metalized polyester ⁽¹⁾	Matsushita Electric / ECQ-E2104KF
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	±20%, 16VDC, aluminum electrolytic,	Matsushita Electric / ECA-1CFQ121
		≤ 0.3Ω ESR @100kHz	
C4	0.10µF	±5%, ≥50VDC	AVX / SR205C104JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	125VAC, slow blow ⁽²⁾	
L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
R1	1ΜΩ	\pm 5%, 1/4W, max working volt \geq 200VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
PROTECT	150VAC(240VDC)	For indoor branch circuits use 7mm varistor	Matsushita Electric / ERZ-V07D241
	150VAC(240VDC)	For power entry use 14mm varistor	Matsushita Electric / ERZ-V14D241
	120VAC	For outdoor use AC gas discharge tube ⁽⁵⁾	CPClare / AC120L
T1		See Appendix A	

(1) In some applications an X2 safety rated capacitor may be required. Consult applicable safety standards.

(2) In some applications a fuse may not be required. Consult applicable safety standards.


(3) The value of R2 should be selected so that the series combination of the DC resistance of L4 and R1 is equal to 82Ω .

(4) The working voltage rating of R1 may be achieved by using two $470k\Omega$ resistors in series, each with a working voltage rating of at least half of the value listed above.

(5) Install the gas discharge tube on the line side of F1 (if a fuse is used).

Example 3: Line-to-Earth (L-to-E), Non-Isolated Coupling Circuit

Figure 4.13 shows a schematic for a line-to-earth, non-isolated mains coupling circuit. Table 4.7 lists component values and recommended suppliers/part numbers for coupling to AC mains with a nominal line voltage in the range 100-240VAC. For coupling to AC mains with a nominal line voltage in the range of 100-120VAC, refer to table 4.8. This schematic may also be used for coupling to wiring other than AC mains with AC or DC voltages of $250V_{RMS}$ or less.

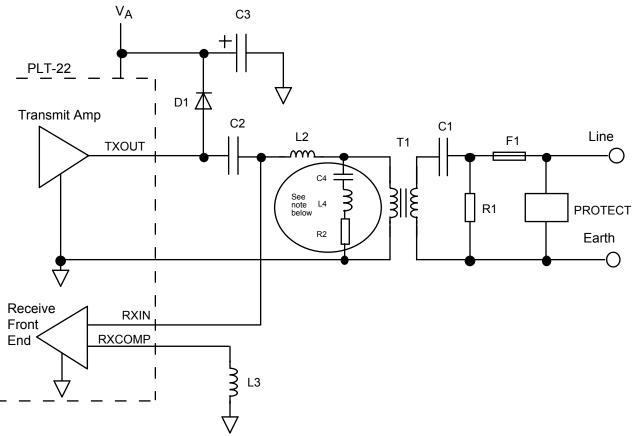
Note: This optional circuit should be added to nodes with a nominal V_A<12V or nodes that contain a triac or SCR load switching device.

Figure 4.13 L-to-E, Non-Isolated Coupling Circuit Schematic

Сотр	Value	Specifications	Vendor / Part Number
C1	0.033µF	±10%, ≥250VAC, X2 type ⁽¹⁾	Nissei Denki / Arcotronics R40333K275XXXX
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	\pm 20%, 16VDC, aluminum electrolytic, \leq 0.3Ω ESR @100kHz	Matsushita Electric / ECA-1CFQ121
C4	0.033µF	±5%, ≥50VDC	AVX / SR205C333JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	250VAC, slow blow ⁽²⁾	
L1, L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
L2	39µH	±10%, Imax≥500mA , R _{DC} ≤0.3Ω	TAIYO YUDEN / LAL05TB390K
R1	1MΩ	±5%, 1/4W, max working volt ≥360VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
PROTECT	none 240VAC 240VAC	For indoor branch circuits no component required For power entry use AC gas discharge tube ⁽⁵⁾ For outdoor use AC gas discharge tube ⁽⁵⁾	n/a CPClare / AC240L CPClare / AC240L

Table 4.7 100-240VAC, L-to-E, Non-Isolated Coupling Circuit Component Values

Table 4.8 100-120VAC, L-to-E, Non-Isolated Coupling Circuit Component Values


Сотр	Value	Specifications	Vendor / Part Number
C1	0.068µF	±10%, ≥250VAC, X2 type ⁽¹⁾	Nissei Denki / Arcotronics R40683K275XXXX
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	\pm 20%, 16VDC, aluminum electrolytic, ≤ 0.3Ω ESR @100kHz	Matsushita Electric / ECA-1CFQ121
C4	0.068µF	±5%, ≥50VDC	AVX / SR205C683JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	125VAC, slow blow ⁽²⁾	
L1, L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
L2	18µH	±10%, Imax≥500mA, R _{DC} ≤0.3Ω	TAIYO YUDEN / LAL05TB180K
R1	1MΩ	±5%, 1/4W, max working volt ≥200VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
PROTECT	none 120VAC 120VAC	For indoor branch circuits no component required For power entry use AC gas discharge tube ⁽⁵⁾ For outdoor use AC gas discharge tube ⁽⁵⁾	n/a CPClare / AC120L CPClare / AC120L

(1) An X2-type capacitor is required for adequate surge immunity in branch circuit applications.

- (2) In some applications a fuse may not be required. Consult applicable safety standards.
- (3) The value of R2 should be selected so that the series combination the DC resistance of L4 and R2 is equal to 82Ω .
- (4) The working voltage rating of R1 may be achieved by using two 470kΩ resistors in series, each with a working voltage rating of at least half of the value listed above. In addition, the peak power and peak voltage rating of R1 must be chosen to meet the high-pot testing requirements of the application.
- (5) High-pot manufacturing tests must be performed proir to installation of this gas discharge tube. High-pot testing between line and earth is usually performed at voltages above the gas tube arc-over voltage, and the test will fail if the gas tube arcs during testing. In addition, a DC high-pot tester must be used to avoid excessive current flow through C1.

Example 4: Line-to-Earth, Transformer-Isolated Coupling Circuit

Figure 4.14 shows a schematic for a line-to-earth, transformer-isolated coupling circuit. Table 4.9 lists component values and recommended suppliers/part numbers for coupling to AC mains with a nominal line voltage in the range 100-240VAC. For coupling to AC mains with a nominal line voltage in the range of 100-120VAC, refer to table 4.10. This schematic may also be used for coupling to wiring other than AC mains with AC or DC voltages of $250V_{RMS}$ or less.

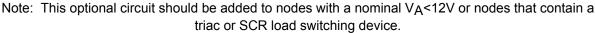


Figure 4.14 L-to-E, Transformer-Isolated Coupling Circuit Schematic

Comp	Value	Specifications	Vendor / Part Number
C1	0.033µF	±10%, ≥250VAC, X2 type ⁽¹⁾	Nissei Denki / Arcotronics R40333K275XXXX
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	\pm 20%, 16VDC, aluminum electrolytic, ≤ 0.3Ω ESR @100kHz	Matsushita Electric / ECA-1CFQ121
C4	0.033µF	±5%, ≥50VDC	AVX / SR205C333JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	250VAC, slow blow ⁽²⁾	
L2	27µH	±10%, Imax≥500mA, R _{DC} ≤0.3Ω	TAIYO YUDEN / LAL05TB270K
L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
R1	1ΜΩ	±5%, 1/4W, max working volt ≥360VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
T1		See Appendix A	
PROTECT	none	For indoor branch circuits no component required	n/a
	240VAC	For power entry use AC gas discharge tube ⁽⁵⁾	CPClare / AC240L
	240VAC	For outdoor use AC gas discharge tube ⁽⁵⁾	CPClare / AC240L

Table 4.9 100-240VAC, L-to-E, Transformer-Isolated Coupling Circuit Component Values

Table 4.10 100-120VAC, L-to-E, Transformer-Isolated Coupling Circuit Component Values

Comp	Value	Specifications	Vendor / Part Number
C1	0.068µF	±10%, ≥250VAC, X2 type ⁽¹⁾	Nissei Denki / Arcotronics R40683K275XXXX
C2	0.82µF	±5%, ≥50VDC, metalized polyester	Matsushita Electric / ECQ-V1H824JL
C3	≥120µF	$\pm 20\%$, 16VDC, aluminum electrolytic, $\leq 0.3\Omega$ ESR @100kHz	Matsushita Electric / ECA-1CFQ121
C4	0.068µF	±5%, ≥50VDC	AVX / SR205C683JAA
D1	1A	Reverse breakdown ≥50V, surge current ≥30A for 8.3mS, reverse recovery ≤200nS	1N4935
F1	6A	125VAC, slow blow ⁽²⁾	
L2	5.6µH	±10%, Imax≥500mA, R _{DC} ≤0.4Ω	TAIYO YUDEN / LAL04NA5R6K
L3, L4	1.0mH	±10%, Imax≥30mA, R _{DC} ≤50Ω	TAIYO YUDEN / LAL03NA102K
R1	1MΩ	±5%, 1/4W, max working volt ≥200VDC ⁽⁴⁾	
R2	82Ω-L4 _{RDC} ⁽³⁾	±5%, ≥1/16W	
T1		See Appendix A	
PROTECT	none	For indoor branch circuits no component required	n/a
	120VAC	For power entry use AC gas discharge tube ⁽⁵⁾	CPClare / AC120L
	120VAC	For outdoor use AC gas discharge tube ⁽⁵⁾	CPClare / AC120L

(1) An X2-type capacitor is required for adequate surge immunity in branch circuit applications.

- (2) In some applications a fuse may not be required. Consult applicable safety standards.
- (3) The value of R2 should be selected so that the series combination the DC resistance of L4 and R2 is equal to 82Ω . (notes are continued on next page)

- (4) The working voltage rating of R1 may be achieved by using two 470kΩ resistors in series, each with a working voltage rating of at least half of the value listed above. In addition, the peak power and peak voltage rating of R1 must be chosen to meet the high-pot testing requirements of the application.
- (5) High-pot manufacturing tests must be performed proir to installation of this gas discharge tube. High-pot testing between line and earth is usually performed at voltages above the gas tube arc-over voltage, and the test will fail if the gas tube arcs during testing. In addition, a DC high-pot tester must be used to avoid excessive current flow through C1.

5

Power Supplies for the PLT-22 Transceiver

This chapter discusses options and requirements for the PLT-22 transceiver power supply. At the end of the chapter, requirements for conducted emissions testing are discussed.

Introduction

There are a number of power supply options available for use with the PLT-22 transceiver. These various options differ in key characteristics such as size and cost.

The following table is designed to aid in the selection of the optimal supply type.

Power Supply Type	Application Current	Neuron Chip Support	Safety- Isolated	Universal Input (i.e., 88- 254VAC)	Relative Cost (1 = low)	Relative Size (1 = low)	Relative Design Effort (1 =low)	Page
Energy Storage Capacitor Input	≤ 10mA	3120, E1, E2	No	No	1	1	2	5-3
Energy Storage Linear	\leq 20mA	3120, E1, E2	Yes	No	2	2	2	
Traditional Linear	Any	All	Yes	No	3	≥3	1	5-9
Pre-designed Switcher	approx. 100mA	All	Optional	Optional	4	2	5	
Off-the-shelf Switcher	Any	All	Yes	Yes	6	≥4	4	5-9
Full Custom Switcher	Any	All	Optional	Optional	5	≥3	10	

 Table 5.1 Power Supply Options

Power Supply Design Considerations

In order to realize the full communications capability of the PLT-22 transceiver, it is important to ensure that the power supply does not limit overall performance. Since the power supply input is directly connected to the communications channel, it has the potential both to attenuate the transmit signal and to couple noise into the input of the receiver. Likewise, the power supply outputs, V_{DD5} and V_A , have the potential to degrade performance by coupling noise into the PLT-22 transceiver. The design or selection of an appropriate power supply is critical in ensuring that neither power supply loading nor power supply noise degrades communications performance.

The following sections introduce some of the key design considerations in the selection or design of a power supply. For additional detail, consult the sections describing the specific power supply types.

Power Supply-Induced Attenuation

As discussed in Chapter 4, attenuation of a power line communication signal can be a significant factor in overall system performance. A poorly chosen or poorly designed power supply can greatly increase signal attenuation. In particular, the input stage of a switching power supply can significantly attenuate both transmitted and received power line communication signals. Supplies which have a low input impedance at communication frequencies will require the addition of an inductor in

series with the supply input. Optimal inductor selection will be covered in the switching supply section of this chapter.

Power Supply Noise

Power supplies have the opportunity to introduce noise both at their inputs and outputs. Noise conducted out of the input onto the AC line can degrade communication performance as well as cause the device to violate emissions regulations. Similarly, output noise can couple into the transceiver and degrade communication performance.

Due to regulatory constraints, it is important to verify that the total noise conducted onto the AC mains is adequately contained. Some supplies may require the addition of an input filter as shown in the switching supply section of this chapter.

For information on conducted emissions test methodology, see chapter 6.

Energy Storage Power Supplies

In cost or size-sensitive devices, it may be desirable to use an energy storage power supply. These supplies take advantage of the wide supply voltage range and the disparity between the PLT-22 transceiver's transmit and receive mode current requirements, storing energy while the device is in receive mode and expending it during signal transmission. By using an energy storage system, the device can use a smaller, less expensive, power supply than an equivalent "full power" device. In this way, a low-current supply may be used which only has to supply the required receive mode current, plus an incremental current to recharge a capacitor between transmissions.

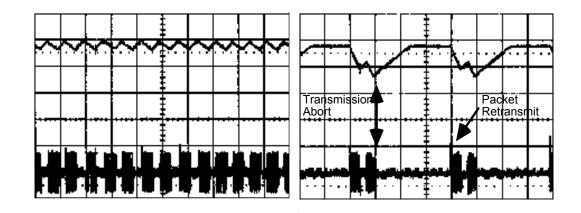
In order for this energy-storage architecture to work, consideration must be given to the capacitance value required to maintain an acceptably small supply voltage drop during transmission. The capacitor value must be selected such that proper node operation can be maintained during the transmission of a maximum length packet. The definition of proper node operation includes preserving transmit and receive functionality of the PLT-22 transceiver, as well as maintaining V_{DD5} supply regulation. The size of the capacitor can be minimized by designing the supply to have the highest possible nominal voltage while guaranteeing that V_A will not exceed 16V, the maximum V_A specification of the PLT-22 transceiver. See Appendix C for details on how to balance network messaging requirements with power supply designs.

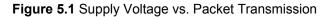
For nodes set to transmit at 7Vp-p (TXLVL pin grounded), proper node operation is then maintained when the node power supply meets both of the following conditions:

- $V_A \ge 11.4V$ after the typical I_A transmit load of 130mA has been active for $90.7 ms^{(1)}$. This condition ensures adequate transmit amplifier headroom to drive the full 7Vp-p signal onto the line under lightly loaded conditions. This condition needs to be met only with nominal line input voltage and at room temperature.
- $V_A \ge 9.0V$ after the worst case I_A transmit load of 250mA has been active for $90.7 ms^{(1)}$. This condition ensures adequate headroom when the transmit

LONWORKS PLT-22 Transceiver's User Guide

amplifier is driving a low impedance line and its loaded output voltage is somewhat less than 7Vp-p. For proper node operation this condition must be met over the full range of worst-case component tolerances (including I_{DD5} drain), AC line voltage, and temperature.


Having chosen a storage capacitor to ensure adequate supply voltage after one packet, the power management circuitry must then be enabled to prevent the erratic operation of a node that transmits so frequently that its energy-storage capacitor cannot fully recharge between transmissions. If the V_A supply were to droop too far due to closely spaced packet transmissions, a linear regulator used to generate V_{DD5} would eventually drop out of regulation. This would cause the node to experience a power-on reset. Since it is difficult, if not impossible, for a developer to guarantee that a node will not transmit too frequently, the PLT-22 transceiver's power management circuitry specifically covers this case.


The power management circuitry continuously monitors the V_A supply voltage. If the V_A supply drops below the lower power management threshold (nominally 7.9V), the PLT-22 transceiver will prevent the Neuron Chip from transmitting until the energy storage capacitor has sufficiently recharged to allow transmission of a complete packet. The Neuron Chip and the PLT-22 transceiver automatically work in concert to ensure the transmission of any waiting packets once the capacitor has fully recharged. If a high packet transmission duty cycle causes V_A to drop too low, in turn causing the packet transmission to be aborted prior to completion, the transceiver automatically signals the Neuron Chip to retransmit the packet, independent of the LonTalk protocol service in use. Even when unacknowledged service is employed, a packet that is interrupted by V_A droop will be re-transmitted once the power management system determines that the supply has fully recharged.

The power management circuitry of the PLT-22 transceiver automatically adjusts the amount of time that it inhibits transmission based on the node's actual recharge characteristics. This adaptive feature allows energy storage nodes to typically transmit without constraint or intervention from the power management circuitry. When a node powered by an energy storage supply has worst case component tolerances and is exposed to low AC line voltage, the PLT-22 transceiver's power management circuitry actually measures the supply recharge rate and calculates a suitable transmit hold-off time. The formula used to make this calculation is three times the time required for the supply to charge from its lower power management threshold (nominally 7.9V) to its upper power management threshold (nominally 12.0V). Figure 5.1 illustrates examples of an energy storage node operating under both typical and worst case conditions.

(1) The maximum packet length adequate for most applications is 34 bytes (this is the maximum length for nodes which use default buffer sizes, input and output network variables of 15 bytes or less, and non-explicit messaging). If the application does not require both group addressing and 6 byte domains, then 32 bytes becomes the maximum. For the primary carrier frequency, a 32 byte packet corresponds to a maximum transmission duration of 74.6ms.

Calculating the maximum transmission duration for a packet at the secondary carrier frequency is somewhat more complicated due to the combination of error correction and data compression used with that carrier frequency. If we consider a case where message traffic satisfies three further common conditions, then the maximum transmission duration can be calculated to be 90.7ms. This maximum duration is applicable for applications where: 1) there are no priority packet transmissions from the energy storage node; 2) subnet and node numbers are in the range 0 through 15; and 3) if a six byte domain is used, it is assigned to be equal to a Neuron Chip ID number.

Products incorporating an energy storage power supply must have the power management feature of the PLT-22 transceiver enabled (by using the appropriate standard transceiver type) to prevent signal transmission if the supply voltage drops too low. The transceiver's power management system is software selectable through the use of transceiver programming options as described in Chapter 3.

Energy Storage Capacitor-Input Power Supplies

A particularly cost-effective example of an energy storage power supply is the *capacitor-input power supply*. The most attractive feature of this supply is that both V_A and V_{DD5} supplies can be built with just a few components for approximately US\$1.00-2.00.

Figure 5.2 illustrates the operation of a capacitor-input power supply. As shown in the figure, a capacitor in series with the AC mains causes AC current to flow through a zener diode, which acts as a shunt regulator. This regulator is selected to limit the V_A supply voltage to $\leq 16V$, the specified maximum value of the transceiver's V_A supply. An energy storage capacitor is connected across the shunt regulator to provide current capacity required for transmission. Note that unused source current flows through the shunt regulator, maximizing the zener diode temperature when the supply load is at a minimum. Since the regulation voltages of zener diodes above 10V have strong positive temperature coefficients, a pair of forward-biased silicon diodes, which have negative temperature coefficients, have been added in series with a slightly lower-voltage zener diode. Note that this type of capacitor-input power supply would inherently attenuate communication signals if not for the addition of a series inductor, as shown in figure 5.2.

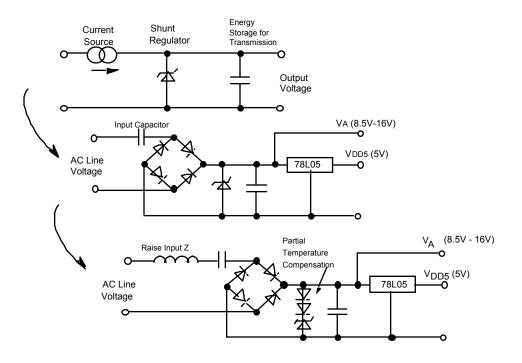


Figure 5.2 Capacitor-Input Power Supply Theory of Operation

Due to the low current available, the application of capacitor-input power supplies is restricted to nodes which use 0.8μ or smaller geometry Neuron 3120 Chips and which require minimal I/O application current (e.g., latching relays, SCR triggers, low-power LEDs). Figure 5.3 presents a schematic for a complete node based on a Neuron 3120 Chip and powered by a capacitor-input power supply. This node is designed to operate with an internal box air temperature range of 0-70°C. The coupling circuit shown in this figure is different from those shown in Chapter 4 to accommodate the unique requirements of this capacitor-input node.

The schematic contains a table which shows typical and worst-case transmit duty cycles achievable with 120VAC and 230VAC lines for various capacitor values and load options. Each of these options provides sufficient energy storage to transmit one complete 90.7ms packet under worst-case conditions. Note that the use of any of these capacitor-input power supply options requires that the node's configuration data be programmed to enable power management, as described in Chapter 3.

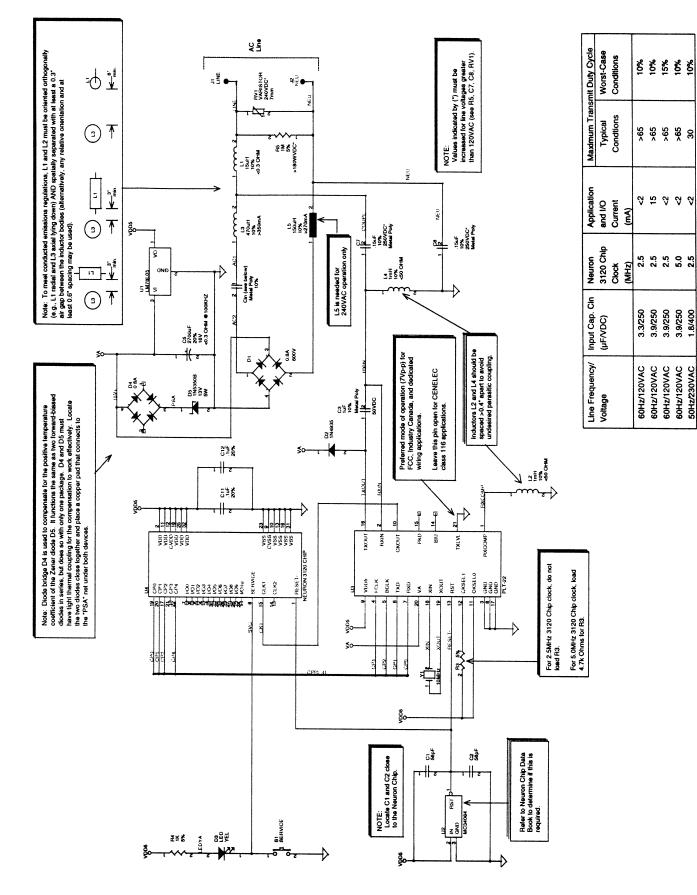


Figure 5.3 Capacitor-Input Power Supply Schematic

LONWORKS PLT-22 Transceiver's User Guide

Energy Storage Linear Supplies

For products requiring minimal application current and safety isolation, an energy storage linear supply may be the smallest and most cost effective option. Consider a node based on a Neuron 3120 Chip, operating at 2.5MHz and consuming 1mA of application and I/O current. Using a linear power supply for the V_A supply and a linear regulator for the V_{DD5} supply, the worst case current requirements are presented in Table 5.2.

	Transmit	Receive
PLT-22 V _A	250mA	6mA
PLT-22 V _{DD5}	18mA	23mA
Neuron 3120 Chip (@2.5MHz)	8mA	8mA
Application & I/O Current	1mA	1mA
78L05 Regulator Current	5mA	4mA
Total	282mA	42mA

Table 5.2 Example Worst-Case Node Current Consumption

A traditional linear supply would require a transformer with an output current rating of \geq 300mA. By taking advantage of the PLT-22 transceiver's power management feature, an energy storage linear supply can be built with a 100mA transformer.

Figure 5.4 shows an example of an energy storage linear supply. This example supply meets the criteria listed in the energy storage section of this chapter. With a transient load of 130mA for 90.7ms added to a constant 42mA receive load, this supply does not droop below 11.4V. This supply also maintains \geq 9.0V after a 250mA load is added to the constant 42mA load for 90.7ms. Both of these criteria hold true even with an AC line voltage which is 10% low and an output capacitance value that is 20% low. In addition, this example supply supports duty cycles of \geq 50% under typical transmission conditions and \geq 10% over worst case line voltage and component tolerances.

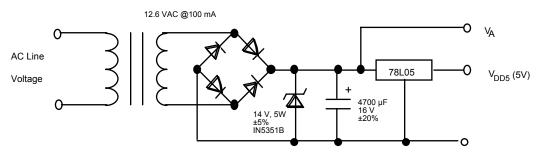


Figure 5.4 Energy Storage Linear Power Supply

Note that this supply is kept from exceeding the 16V maximum supply voltage rating of the PLT-22 transceiver by the inclusion of zener diode over-voltage protection. Without this diode, the combination of high AC line voltage and light

output loading would result in output voltages >16V. In this application the zener diode does not conduct unless the output load is light and the line voltage is high.

In summary, an energy storage linear supply differs from a traditional linear supply in the following ways:

- 1. Allows the use of a smaller transformer;
- 2. Requires more output capacitance for energy storage;
- 3. May require over-voltage zener diode protection;
- 4. Requires that the node be programmed to enable power management, as described in chapter 3;
- 5. Under typical conditions, exhibits transmit duty cycles which are not limited. Over the full range of line voltage and component tolerance, the PLT-22 transceiver's power management may act to regulate a particular node's transmit duty cycle (to ≥10% in the above example).

Traditional Linear Power Supplies

This option is usually suitable if the physical size of the power supply is not constrained in the application, since linear supplies tend to be physically larger than switching power supplies. Linear power supplies do not load the power line in the range of the PLT-22 transceiver's communication frequencies, nor do they generate significant noise. For these reasons, a linear power supply may be used without concern that communication performance will be adversely affected.

Switching Power Supplies

While generally smaller than linear power supplies, switching power supplies can be a significant source of noise and power line signal attenuation. As a result the required design effort is significantly greater than that required for linear or capacitor-input power supplies.

Several design options are available for use if a switching power supply is required due to size or application current constraints. These options include a predesigned switcher, an off-the-shelf switcher, and a custom-designed switcher. They are described following the discussion of switching supply design issues.

Power Supply-Induced Attenuation

The input stage of a switching power supply typically contains an EMC filter that includes one or more capacitors connected directly from line to neutral and, in many cases, additional capacitors from line and neutral to ground. When the AC line terminals of the switching power supply are connected to the AC mains (in parallel with the coupling circuit), additional signal attenuation occurs. This loss can be avoided by inserting a series inductor between the power supply input and the power line communication channel as shown in figure 5.5.

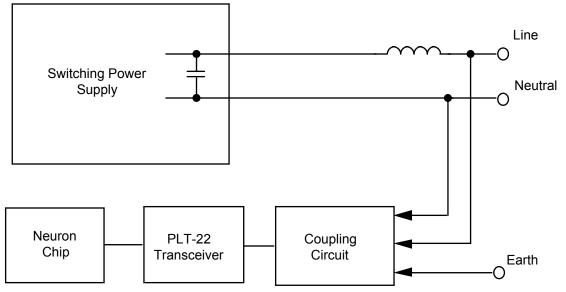


Figure 5.5 Reducing Attenuation Caused by a Switching Power Supply

Including this inductor is desirable because the increase in attenuation for a given load is much worse when the load, in this case the switching power supply, is connected directly to the transceiver. In contrast, the loading caused by a switching supply that is separated from the receiver is reduced by the series inductance of power line wiring.

The loading effect of a switching power supply almost always dictates the addition of the inductor for L-to-N coupling circuits. The inductor may or may not be required for L-to-E coupling circuits depending on the EMC filter topology of the switching power supply. In either case, the value of the inductor should be chosen such that the power supply does not impose a low impedance onto the power line in the communication frequency range of 110kHz-140kHz. The appropriate value of inductance is a trade-off between required impedance, which is a function of system topology, and node cost. The selected inductor must have a current rating which is greater than the peak current drawn by the power supply in order to avoid impedance reduction due to inductor saturation. Higher impedances require larger inductance values which are more expensive for a given power supply input current.

For most AC mains distribution systems, where communication frequency impedances are typically in the range of 1 to 20 Ohms, a power supply input impedance of 100 Ohms is sufficient to avoid added signal attenuation.

An example of a system that would benefit from an input impedance >100 Ω would be one in which 100 or more PLT-22 transceiver-based nodes were connected to a 1000m powered, twisted pair cable. In this case the input impedance of the power supply could limit either the maximum transmission distance and/or the maximum number of transceivers that could be connected to the cable. To maximize communication distance on dedicated twisted pair wiring where the system impedance is approximately 100 Ohms, a minimum power supply input impedance of 500 Ohms is recommended. For extreme cases with >100 nodes on dedicated lines longer than 1000m (3279 feet), a power supply input impedance of 2000 Ohms may be needed to maximize communication distance. Table 5.3 shows the appropriate inductor value by application.

Application	Network Impedance @130kHz	Inductor Impedance @130kHz	Inductor Value	
Single building AC mains	1-20 Ohms	≥100 Ohms	≥120µH	
Dedicated cable ≤100 nodes ≤100m	50-100 Ohms	≥500 Ohms	≥680µH	
Dedicated cable >100 nodes >100m	50-100 Ohms	≥2000 Ohms	≥2.4mH	

Table 5.3 Inductor Value vs. Application

There is one further constraint on the value of the inductor. When the inductor is combined with the input capacitance of the switching supply, the LC resonant frequency should be at least one octave away from the communication frequency range (110 kHz-140kHz). The unintentional series resonance between the inductor's reactance and the power supply's capacitive reactance can produce a low impedance at communication frequencies if this frequency range is not avoided.

One way to reduce the size and cost of an inductor used to raise a power supply's input impedance is to purposefully parallel resonate it at the communication frequency with a capacitor, as shown in figure 5.6. If this option is chosen, resistive damping must be included so that impulsive power line noise does not excite excessive filter ringing, which could degrade the reception of weak signals. The 330 Ohm parallel, and 3.3 Ohm series, resistor values have been selected to optimize receive impedance and impulsive noise damping. Note that even though only a 100 μ H inductor is shown in figure 5.6, a series impedance of \geq 200 Ohms from 125kHz to 140kHz is maintained due to the parallel resonant effect. Also, note that the inductor must be rated for the peak AC current drawn by the power supply; the 3.3 Ohm resistor should have a power rating consistent with the AC current drawn by the power supply, and its voltage drop should be verified as acceptable.

Figure 5.6 Reducing Attenuation Caused by a Switching Power Supply with a Resonant Circuit

Noise at the Power Supply Input

In order to achieve maximum communication performance and to comply with the conducted emissions specifications of CENELEC EN 50065-1 and FCC Part 15, the switching power supply input must not conduct excessive noise onto the power mains. A switching power supply contains an oscillator that operates at a frequency between 10kHz and several MHz. Depending on the power supply design, significant energy at the switching frequency fundamental and/or its harmonics may appear at the input (line side) of the power supply. If the amplitude of the signal is large enough in sensitive frequency ranges, the performance of the PLT-22 transceiver may be degraded.

While the PLT-22 transceiver is designed to operate reliably with a combination of attenuation and significant switching supply noise, noise from the switching power supply closest to the receiver will have the most deleterious effect on communication performance. Noise from more distant sources will be attenuated before reaching a receiver, reducing its effect on reception.

Switching Power Supply Frequency Selection

Selection of an appropriate operating frequency for a switching power supply will minimize the effect of switching noise on the PLT-22 transceiver's communication performance. By choosing an operating frequency such that the fundamental and harmonics of that switching supply avoid the transceiver's communication frequencies, the amount and cost of additional circuitry to filter interference from the switching supply can be minimized. Table 5.4 below lists the optimal switching frequency ranges. The switching supply should be designed such that the fundamental switching frequency falls within the stated ranges under all line, load, environmental, and production conditions.

Table 5.4 Optimal Switching Power Supply Fundamental Operating Frequencies

Optimal Frequency Ranges	
80kHz-110kHz	
>155kHz	

Switching Power Supply Input Noise Masks

The noise "masks" presented below show the maximum noise allowable at the input of a switching power supply such that optimum performance of the PLT-22 transceiver is achieved **and** the appropriate conducted emissions specification is met. Figure 5.7 defines the noise mask for CENELEC EN 50065-1 conducted emissions compliance. Figure 5.8 defines the noise mask for FCC-conducted emissions compliance. The limits assume that the PLT-22 transceiver is used in conjunction with one of the recommended coupling circuits shown in Chapter 4.

Measurements of a particular power supply should be made by connecting the supply to the artificial mains network as specified in subclause 8.2.1 of CISPR Publication 16, second edition. Measurements should be made over the full range of anticipated loads on the supply since many switching supplies vary their switching frequency with load. Two different limits are shown for the CENELEC

EN 50065-1 measurements. One limit is measured using a quasi-peak detector, the other using an average detector. Note that those limits are the same as required for any other CENELEC compliant product, except in the communication range of 110kHz to 140kHz where lower noise levels are specified.

For FCC applications, the limit of figure 5.8 corresponds to FCC Class B limits for frequencies above 450kHz. Below 450kHz, the limits are set such that the full communication performance of the PLT-22 transceiver is maintained. Two lines are indicated. The solid "single carrier" line shows the noise limits required to maintain full performance if the transceiver is used only in its single carrier frequency mode. If the PLT-22 transceiver is going to be used in its dual carrier frequency mode, then it is recommended that the power supply noise fall below the dashed "dual carrier" line. Meeting this criteria ensures that the full performance of both operating frequencies is available to overcome unexpected power line noise in either of the two frequency ranges. A quasi-peak detector should be used when verifying power supply noise against the limit lines of figure 5.8.

For both CENELEC and FCC measurements, the measurement bandwidths are 200Hz for measurements below 150kHz, and 9kHz for measurements above 150kHz, as described in CISPR 16.

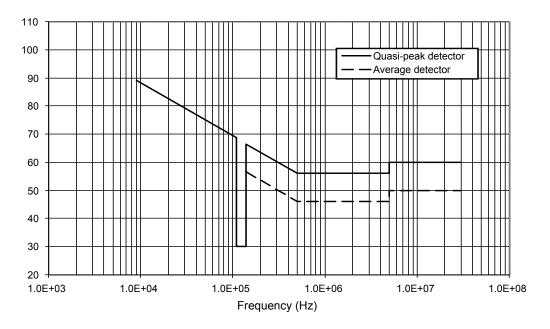


Figure 5.7 Switching Power Supply Input Noise Limits for CENELEC EN 50065-1 Compliance

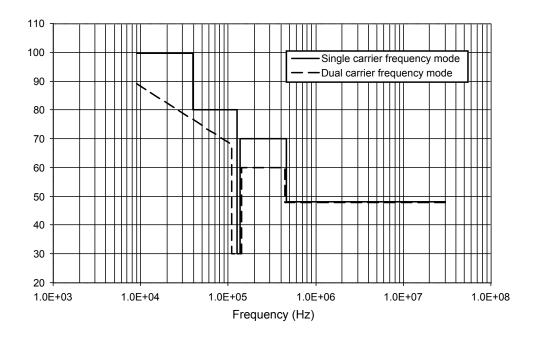


Figure 5.8 Switching Power Supply Input Noise Limits for FCC Compliance

Table 5.5 lists the endpoints of the straight lines shown in figure 5.7, and table 5.6 lists those shown in figure 5.8.

Frequency(kHz)	Noise Level (dBuV): Quasi-Peak Detector	Noise Level (dBuV):Average Detector
9	89	N/A
110	68	N/A
110+	30	N/A
140	30	N/A
140+	66	56
500	56	46
500+	56	46
5000	56	46
5000+	60	50
30000	60	50

 Table 5.5
 Switching Power Supply Input Noise Limits for CENELEC EN 50065-1

 Compliance

Table 5 6	Switching Powe	r Supply Inpu	t Noise Limits	for FCC Compliance
	Switching F Owe	i Suppiy ilipu		

Frequency(kHz)	Single Carrier Frequency Noise Level (dBuV): Quasi-Peak Detector	Dual Carrier Frequency Noise Level (dBuV): Quasi-Peak Detector
9	100	89
40	100	76
40+	80	76
50	80	75
50+	80	75
110	80	68
110+	80	30
125	80	30
125+	30	30
140	30	30
140+	70	60
450	70	60
450+	48	48
30000	48	48

Δ

A power supply that does not meet the appropriate noise mask for the power supply input may require a filter between the local switching power supply and the power mains. A filter example which both attenuates switching supply noise and provides >200 Ohm input impedance is shown in figure 5.9. Note that both inductors must be rated for the peak AC current drawn by the power supply; the 3.3 Ohm resistor should have a power rating consistent with the AC current drawn by the power supply, and its voltage drop should be verified as acceptable.

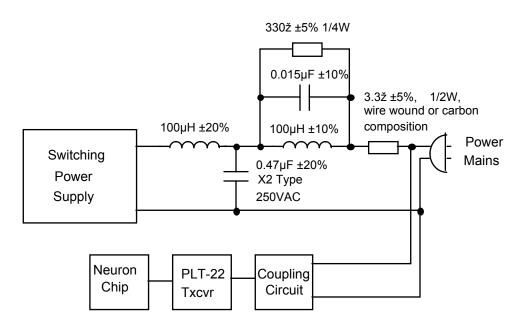
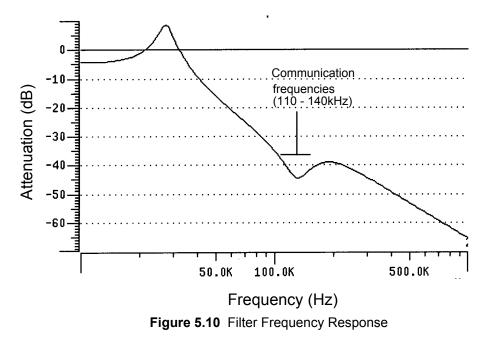



Figure 5.9 Optional Switching Power Supply LC Network

This filter has the attenuation characteristics shown in figure 5.10, when connected to a 50Ω mains network. If the supply noise drops by less than the values shown in figure 5.10 it is likely due to parasitic coupling between the two inductors. If this occurs, filtering close to the level shown in figure 5.10 can usually be accomplished by adjusting the relative location and orientation of the inductors (orthogonal orientation typically reduces inductor coupling). Alternately, shielded or toroidal inductors may be used to reduce coupling.

In some instances it is possible that noise radiated from either the power supply or the supply filter may couple into the inductors of the transceiver's coupling circuit. The coupling circuit may then couple this noise onto the power mains. This problem can be diagnosed by disconnecting the transceiver's coupling circuit and then analyzing the conducted line noise.

If noise from parasitic coupling is suspected, it can be confirmed by inserting a 10cm (4") twisted wire pair in series with one of the inductors in question. If the conducted noise spectrum varies by more than a few dB when this inductor is moved closer to, and farther from, other components, then parasitic coupling may be the source of the problem.

There is a second, although less likely, potential cause for reduced filter effectiveness. It is possible for the inductive reactance of the filter components to be canceled by capacitive reactance from the input of the power supply. This problem is generally seen as narrow band noise which appears to pass through the filter unattenuated. This problem can be remedied by either damping the unintended resonance, or by adjusting the values of the filter inductor and capacitor to move the resonance to a non-interfering frequency. Damping may be accomplished by adding resistance in the range of 200 Ohms to 5k Ohms in parallel with the filter inductor closest to the power supply.

Switching Power Supply Output Noise Masks

The PLT-22 transceiver requires +5VDC (V_{DD5}) and +8.5VDC to +16VDC (V_A) supply voltages. The amplitude of the noise and ripple on these power supply outputs must be controlled in order to comply with CENELEC EN 50065-1 or FCC-conducted emission limits, as well as to achieve maximum communication performance. Noise "masks" are provided in figures 5.11 through 5.14. Figures 5.11 and 5.12 show the recommended noise (ripple) limits on the V_{DD5} supply for CENELEC EN 50065-1 and FCC compliance, respectively. Figures 5.13 and 5.14 show the recommended noise (ripple) limits on the V_A supply for CENELEC EN 50065-1 and FCC compliance, respectively.

For each graph, two limit lines are indicated. The solid "single carrier" line shows the noise limits required to maintain full performance if the transceiver is used only in its single carrier frequency mode. If the PLT-22 transceiver is going to be used in its dual carrier frequency mode, then it is recommended that the power supply noise fall below the dashed "dual carrier" line. Meeting this criteria ensures that full performance of both operating frequencies is available to overcome unexpected power line noise in either of the two frequency ranges.

Measurements should be made over the full range of anticipated loads on the supply, since many switching supplies vary their switching frequency with load. For both CENELEC EN 50065-1 and FCC measurements, a quasi-peak detector should be used. The measurement bandwidths are 200Hz for measurements below 150kHz, and 9kHz for measurements above 150kHz.

Figure 5.15 shows a probe that can be used to measure the noise on the power supplies. The twisted wires must be connected directly to the PLT-22 power and ground pins, and the coaxial cable must be connected to the 50Ω measuring equipment. Note that the 1/10 gain of the probe must be taken into account.

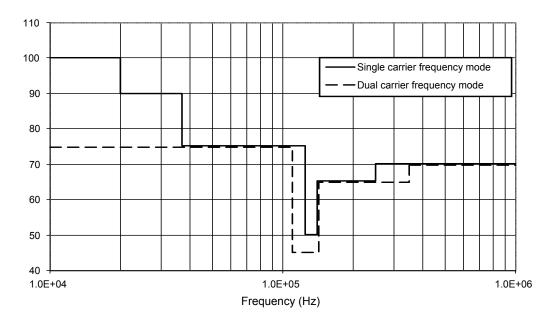
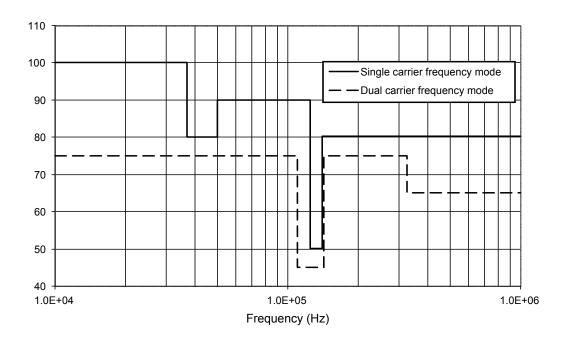



Figure 5.11 V_{DD5} Power Supply Noise Limits vs. Frequency for CENELEC EN 50065-1 Compliance

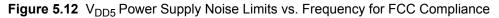


Table 5.7 and 5.8 lists the levels shown on the previous graphs in figures 5.11 and 5.12, respectively.

Frequency(kHz)	Single Carrier Frequency Noise Level (dBuV)	Dual Carrier Frequency Noise Level (dBuV)
10-20	100	75
20-37	90	75
37-110	75	75
110-125	75	45
125-140	50	45
140-250	65	65
250-350	70	65
350-1000	70	70

Frequency(kHz)	Single Carrier Frequency Noise Level (dBuV)	Dual Carrier Frequency Noise Level (dBuV)
10-37	100	75
37-50	80	75
50-110	90	75
110-125	90	45
125-140	50	45
140-325	80	75
325-1000	80	65

Table 5.9 and 5.10 list the levels shown on the graphs following in figures 5.13 and 5.14, respectively.

Table 5.9 V _A Power Supply Noise Limits vs. Frequency for CENELEC EN 50065	5-1 Compliance
---	----------------

Frequency(kHz)	Single Carrier Frequency Noise Level (dBuV)	Dual Carrier Frequency Noise Level (dBuV)
10-37	100	65
37-50	80	65
50-110	90	65
110-125	90	40
125-140	40	40
140-325	70	70
325-1000	70	65

Table 5.10	V _A Power Supply	v Noise Limits vs.	. Frequency for FCC	Compliance
			. Thequeincy for TOO	Compliance

Frequency(kHz)	Single Carrier Frequency Noise Level (dBuV)	Dual Carrier Frequency Noise Level (dBuV)
10-37	100	65
37-50	80	65
50-110	90	65
110-125	90	40
125-140	40	40
140-325	70	70
325-1000	70	65

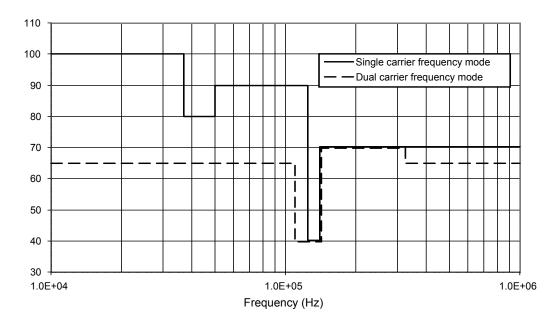


Figure 5.13 V_A Power Supply Noise Limits vs. Frequency for CENELEC EN 50065-1 Compliance

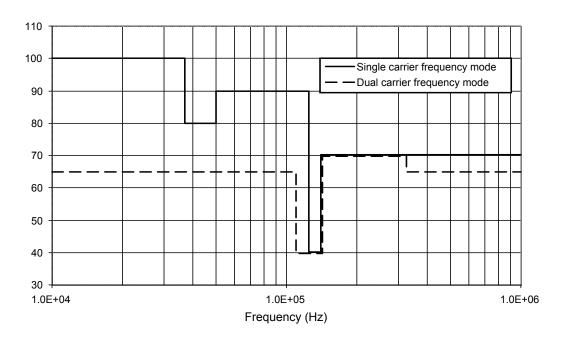


Figure 5.14 $\,V_A\,$ Power Supply Noise Limits vs. Frequency for FCC Compliance

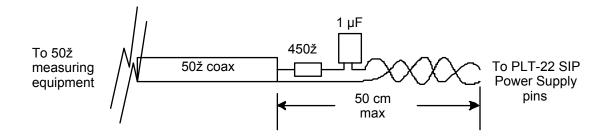


Figure 5.15 10x Power Supply Noise Probe

Options

The following switching power supply options are available: pre-designed, offthe-shelf, and custom.

Pre-designed Switching Supplies

This option is highly recommended if a small, low-cost power supply is desired and significant application current is required. Power Integrations has developed a power supply based on their TOP210 chip to specifically meet all of the design requirements for PLT-22 based nodes. This TOP210 design can supply a total of 400 mA at 12V and thus can support the PLT-22 transceiver operating in 7Vp-p mode, a Neuron Chip plus about 100mA of application electronics. Detailed design information, including schematic and parts list, is available from Power Integrations in design note DN-15, *TOPSwitch® Power Supply for Echelon PLT-21 Power Line Transceiver*. This design note is available on the Power Integrations web site at http://www.powerint.com, or it can be ordered from Power Integrations at the following address:

Power Integrations, Inc. 477 North Mathilda Avenue Sunnyvale, CA 94086 Phone: +1-408-523-9200 or 1-800-552-3155 Fax: +1-408-523-9300

Building a power supply using DN-15 greatly simplifies the task of developing a switching supply-based PLT-22 node since an instance of this design has been verified to meet all of the impedance and noise requirements documented in this chapter. Even though it is necessary to re-verify noise performance (due to variations in PCB layout), using a predesigned/preverified supply significantly reduces development time relative to a custom switching supply.

Off-the-Shelf Switching Supplies

Most commercially available switching power supplies have been designed with some level of input noise filtering. Frequently this level of filtering is adequate if the supply's fundamental switching frequency is within the optimal ranges of Table 5.4 over all operating conditions and tolerances. Supplies with other fundamental operating frequencies may be able to meet the required noise masks of the previous sections with greater effort and/or cost; however, meeting the noise mask requirements with a power supply fundamental frequency (or second or third harmonic) in the 110kHz to 140kHz range is **very challenging and not recommended**.

Most off-the-shelf switching supplies have a very low input impedance and require the addition of an input inductor as shown in figure 5.5.

Custom Switching Supplies

Design of a custom switching supply, even one which employs a commerically available controller chip, is **very** challenging and is only recommended if none of the other options outlined in this chapter are suitable. If this option is chosen, it is recommended that it only be pursued by experienced switching supply and electromagnetic compatibility experts. Even if such personnel are available, extra time must be allowed for design iterations during development. If this approach is chosen, it is absolutely essential that the supply is verified to meet the input and output noise masks of this chapter.

A

Note that many of the popular power supply designs documented by National Semiconductor in conjuntion with their Simple Switcher[™] controller chips **do not** meet the required noise masks. Due to their very wide frequency tolerance, the use of any Simple Switcher controller with a rated operating frequency of 52kHz, 100kHz, or 150kHz is not recommended (e.g., LM2574, LM2575, LM2576, LM2577, LM2585, LM2587, LM2594, LM2595, LM2596, LM2597, LM2598, LM2599, LM1575, LM1577). Other Simple Switcher controller chips with nominal operating frequencies of 200kHz or higher may be considered, providing the design has been verified to meet the input and output noise mask requirements of this chapter (over all of the operating conditions).

6

Design and Test for Electromagnetic Compatibility

This chapter includes discussions of radiated electromagnetic interference (EMI) and electrostatic discharge (ESD) design practices for products containing the PLT-22 transceiver. These design practices help the designer to create a product with the required Electromagnetic Compatibility (EMC).

EMI Design Issues

The high-speed digital signals associated with microcontroller designs can generate unintentional electromagnetic interference (EMI). High-speed voltage transitions generate RF currents that can radiate from a product if a nearby length of wire or piece of metal acts as an antenna.

Products that use a PLT-22 transceiver together with a Neuron Chip will generally need to demonstrate compliance with EMI limits enforced by various regulatory agencies. In the USA, the FCC⁶ requires that unintentional radiators comply with Part 15 level "A" for industrial products, and level "B" for consumer and household products. Most European countries require compliance to CENELEC EN 50065-1. Similar regulations are imposed in most countries throughout the world.

In addition to the following discussion, designers of PLT-22 transceiver-based nodes are strongly encouraged to read reference [11] for a good treatment of EMC. The *EDN Designer's Guide to EMC*¹² is also a good source of design advice regarding EMC issues.

Designing Systems for EMC (Electromagnetic Compatibility)

Careful PCB layout is important to ensure that a PLT-22 transceiver-based node will achieve the desired level of EMC. A typical PLT-22 transceiver-based node will have several digital signals switching in the 1MHz-10MHz range. These signals will generate both voltage noise near the signal traces, and current noise in the signal and power supply traces. The goal of good node design is to keep voltage and current noise from coupling out of the product enclosure.

It is very important to minimize the "leakage" capacitance from circuit traces in the node to any external metal near the node because this capacitance provides a path for the digital noise to couple out of the product enclosure. Figure 6.1 shows the leakage capacitances to earth ground from a node's logic ground ($C_{leak,GND}$) and from a digital signal line in the node ($C_{leak,SIGNAL}$). If the PLT-22 transceiver-based node is housed inside a metal chassis, then that metal chassis will probably have the largest leakage capacitance to other nearby pieces of metal. If the node is housed inside a plastic package, then PCB ground guarding must be used to minimize $C_{leak,SIGNAL}$. Effective guarding of digital traces with logic ground reduces $C_{leak,SIGNAL}$ significantly, which in turn reduces the level of common-mode RF currents driven onto the AC mains.

When a node is mounted near a piece of metal, especially metal that is earth grounded, any leakage capacitance from fast signal lines to that metal will provide a path for RF currents to flow. When V_{gate} is pulled down to logic ground, the voltage of logic ground with respect to earth ground will increase slightly. When V_{gate} pulls up to V_{DD5} , logic ground will be pushed down slightly with respect to earth ground. As $C_{leak,SIGNAL}$ increases, a larger current flows during V_{gate} transitions, generating more common-mode RF current. This common-mode RF current can generate EMI in the 30MHz-300MHz frequency band, thereby exceeding FCC/CENELEC levels, even when $C_{leak,SIGNAL}$ from a clock line to earth ground is less than 1pF. This means that it is essential to guard the clock lines.

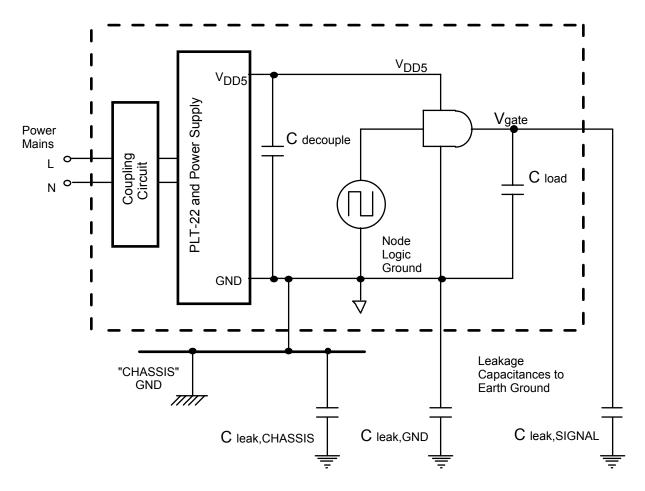


Figure 6.1 Parasitic Leakage Capacitances to Earth Ground

From this discussion, it is apparent that minimizing $C_{leak,SIGNAL}$ is very important. By using 0.1μ F or 0.01μ F decoupling capacitors at each digital IC power pin, V_{DD5} and logic ground noise can be reduced. Logic ground can then be used as a ground shield for other noisy digital signals and clock lines.

For example, in most PLT-22 transceiver-based nodes that use the Neuron 3120 Chip, the fastest digital signal on the PCB is the CKOUT line from the PLT-22 transceiver to the Neuron Chip. If a two-layer PCB is being used, CKOUT can be routed to the Neuron Chip with ground guard traces straddling the clock trace on the component side of the board, and a wide ground trace (or ground plane) covering the underside of the clock trace on the solder side of the PCB. If a four-layer PCB is used, the clock trace can be moved to an inner layer and guarded on all four sides. The CKOUT line from the PLT-22 transceiver to the Neuron Chip should be as short as practical, and in all cases \leq 50mm (2").

Since the Neuron 3150 Chip has an external memory interface bus, there are many more traces in a node using a Neuron 3150 Chip that need to be guarded by logic ground. In addition, the V_{DD5} noise generated by the memory interface and external ROM/RAM components requires more V_{DD5} decoupling, and may require a four-layer PCB to maintain RF-quiet V_{DD5} and logic ground lines.

In summary, the following general rules apply:

- the faster the Neuron Chip clock speed, the higher the level of EMI;
- better V_{DD5} decoupling quiets RF noise at the sources (the digital ICs), which lowers EMI;
- the Neuron 3120 Chip generates less EMI than the Neuron 3150 Chip since the Neuron 3120 Chip has no external memory interface lines;
- a four-layer PCB generates less EMI than a two-layer PCB since the extra layers facilitate better V_{DD5} decoupling and more effective logic ground guarding;
- a two-layer PLT-22 transceiver-based node using on a Neuron 3120 Chip operating at 5MHz should be able to meet FCC/CENELEC EMC if good decoupling and ground guarding of the CKOUT line are used.

Early testing of prototype circuits at an outdoor EMI range should be used to determine the effectiveness of these EMC techniques.

ESD Design Issues

Electrostatic discharge (ESD) is encountered frequently in industrial and commercial use of electronic systems¹⁰. In addition, the European Community has adopted requirements for ESD testing in product qualifications analogous to the present EMI requirements¹³ under the EMC directive.

Reliable system designs must consider the effects of ESD and take steps to protect sensitive components. Static discharges occur frequently in low-humidity environments when operators touch electronic equipment. Keyboards, connectors, and enclosures may provide paths for static discharges to reach ESD sensitive components such as the Neuron Chip and the PLT-22 transceiver. This section describes the issues involved in designing ESD immunity into PLT-22 transceiver-based products.

In addition to the following discussion, designers of PLT-22 transceiver-based nodes are strongly encouraged to read references [10] and [12]. The *EDN Designer's Guide* to EMC^{12} is especially helpful in understanding the importance of managing ESD return currents.

Designing Systems for ESD Immunity

There are two general methods that are used to protect products from ESD. The first is to seal the product to prevent static discharges from reaching the sensitive circuits inside the package. The second method involves grounding circuits so that ESD hits to user-accessible metal parts can be shunted around any sensitive circuitry.

For safety reasons, PLT-22 transceiver-based nodes that communicate on the AC mains generally do not have a user-accessible network connection. The network connection may be accessible on nodes that communicate on low-voltage (<42.4V) or unpowered lines. The product's package should be designed to minimize the possibility of ESD hits arcing into the node's circuit board. If the product's package

is plastic, then the PCB should be supported in the package so that unprotected circuitry on the PCB is not adjacent to any seams in the package. The PCB should not touch the plastic of an enclosure near a seam, since a static discharge can "creep" along the surface of the plastic through the seam and arc onto the PCB.

Once an ESD hit has arced to the product, the current from the discharge will flow through all possible paths back to earth ground. Proper use of ground traces combined with the protection of user-accessible circuitry will permit ESD return currents to flow back to earth ground without disrupting the normal operation of the Neuron Chip and other node circuitry. Generally, this means that the ESD currents should be shunted to the center of a star ground configuration and then out to a chassis or earth ground connection. The location of the star ground center should be such that the shunted current doesn't pass through, or close to, the Neuron Chip or other sensitive components. If the node is floating with respect to earth ground, then the ESD current will return capacitively to earth via the power supply wires and/or the PCB ground plane.

Explicit clamping of user-accessible circuitry is required to shunt ESD currents from that circuitry to the center of the star ground on the PCB. For example, if the Neuron Chip in a PLT-22 transceiver-based node is scanning a keypad using I/O lines, then the I/O lines to that keypad will need to be diode-clamped as shown in figure 6.2. If a negative ESD hit discharges into the keypad, the diode clamps to ground shunt the ESD current into the ground plane. If a positive ESD hit discharges into the keypad, the ground plane via a 0.1μ F decoupling capacitor that is placed directly adjacent to the clamp diodes. The keypad connector, diodes and decoupling capacitor should all be located close to the center of the star ground so that ESD current does not pass through sensitive circuitry as it exits from the PCB.

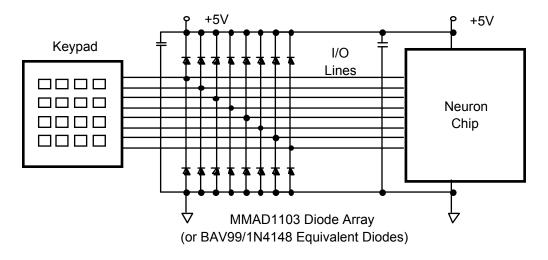


Figure 6.2 Illustration of I/O Line ESD Clamps

Conducted Emissions Testing

The PLT-22 transceiver is designed to comply with both FCC Section 15.107 "Limits for carrier current systems" and CENELEC EN 50065-1 "Signaling on low-voltage electrical installations in the frequency range 3kHz to 148.5kHz" Part 1 "General requirements, frequency bands and electromagnetic disturbances".

Many commercial testing laboratories lack experience measuring conducted emissions of intentional power line communicators, and commonly-applied testing procedures will give erroneous measurement results. Proper measurement of conducted emissions to verify compliance with FCC and CENELEC EN 50065-1 requires strict adherence to the following guidelines.

- Connect the product under test to the correct network for measurement. For both FCC and CENELEC EN 50065-1 measurements, use the $50\Omega/(50\mu H+5\Omega)$ Line Impedance Stabilization Network (LISN) as specified in CISPR Publication 16⁽⁹⁾, second edition.
- Care must be taken to ensure that the PLT-22 transceiver's transmit signal does not overload the measurement apparatus. Typically, an attenuator must be installed at the input to the measuring receiver, i.e., spectrum analyzer, to avoid erroneous results due to instrumentation overload. A test for determining whether or not the results are being distorted due to overload is as follows: measure the emissions, then increase the attenuation between the product under test and the measuring receiver, and then re-measure emissions. There is an overload problem if the level of emissions at frequencies other than the main carrier has decreased by more than the increase in attenuation. Most spectrum analyzers have a built-in input attenuator. If this is the case, the attenuator setting is usually taken into account by the instrument. Consequently, the reported levels should not change when the spectrum analyzer input attenuation is changed. There is an overload problem if a level change is reported at frequencies other than the main carrier frequencies other than the main carrier frequencies other than the main carrier is reported at frequencies other than the main carrier frequency.
- Care must be taken to ensure that the residual noise floor of the entire measurement set remains at least 10dB below the specification limit once the appropriate attenuator is installed. That is, a noise floor less than 38dBµV for FCC measurements, and a noise floor less than 36dBµV for CENELEC EN 50065-1 measurements.
- The measurements must be made with the specified detector. For both FCC and CENELEC EN 50065-1 measurements, use the quasi-peak detector and the average detector as specified in CISPR Publication 16. Although a scan with a peak detector is common because it may be performed quickly, the limits specified by FCC Section 15.107 and by CENELEC EN 50065-1 are for quasi-peak and average detectors only. For power line transceivers, peak measurements often appear erroneously high relative to the quasi-peak limits.
- The measurements must be made with the specified filter. For FCC measurements, a 9kHz bandwidth filter is specified. For CENELEC EN 50065-1 measurements, a 200Hz bandwidth filter is specified for

measurements below 150kHz, and a 9kHz bandwidth filter is specified above 150kHz.

For FCC measurements, an input filter which meets the requirements of CISPR 16 is suitable. The CENELEC EN 50065-1 specification requires that the filter inside the measuring receiver have even steeper filter skirts than the minimum required by CISPR 16.

CENELEC EN 50065-1 specifies a 9kHz filter for measurements above 150kHz. The allowable transmit level is +116dB μ V between 95kHz and 140kHz (+134dB μ V in some applications). The CENELEC EN 50065-1 specification limit is +66dB μ V quasi-peak at 150kHz. To make a proper measurement, the filter inside the measuring receiver must have filter skirts providing at least 60dB of attenuation 10kHz from its center.

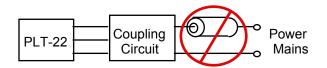
The CENELEC EN 50065-1 sub-committee SC 105A (Mains Communicating Systems) recognized the need for a filter with steeper skirts than the minimum specified by CISPR Publication 16. As stated in a final draft of an amendment to EN 50065-1 dated January, 1994, "the measuring instrument defined by the minimum requirements of CISPR 16 is unsuitable for the measurement of mains signaling equipment that uses a signaling frequency not far below 150kHz," and the sub-committee SC 105A agreed that "the proper solution would be to specify the attenuation characteristic of the measuring receiver more closely, receivers being known to be available on the market."¹ EN 50065-1 Amendment AC specifies a filter that still complies with CISPR 16 but which has steeper filter skirts. Many spectrum analyzers, even very expensive ones, do **not** meet this requirement.

The Rohde&Schwarz EMI Test Receiver ESHS30 has been found to have adequate filter skirts. Although its specification does not *guarantee* adequate filter skirts, two samples of the ESHS30 test receiver were found to make the measurement reliably.

In addition, care must be taken in setting up the Rohde&Schwarz EMI Test Receiver ESHS30. The "automatic" mode for setting input attenuation selects an incorrect attenuation level that will result in an overload condition, which is not properly reported by the overload indicator on the Test Receiver. The proper attenuation must be selected using manual mode. A set-up program to accurately run scans for CENELEC EN 50065-1 compliance testing on the Rohde&Schwarz EMI Test Receiver ESHS30 is available from Echelon's LONWORKS Developer's Toolbox at www.echelon.com/toolbox.

An application note from Hewlett-Packard⁵ describes a test method for performing EN 50065-1 conducted emissions tests using Hewlett-Packard EMI test receivers. The title of the application note is "Conducted Emissions Measurements on Power Line Transceiver Products." This application note describes an "off-the-shelf" external filter and a methodology that allows the measurements specified in EN 50065-1 to be performed accurately.

If the unit under test is found to exceed the applicable conducted noise limit at frequencies above 500kHz, it may be the result of unintentional coupling from the node's various digital circuits. If this occurs, improvements in grounding and printed circuit layout are generally required. Refer to Chapter 4 for a discussion of how to avoid coupling circuit stray field pickup.


In some instances conducted emissions above 500kHz can be adequately reduced by the addition of a **small** value capacitor (e.g., \leq 470pF) either across the AC mains or from the line conductor to ground. While nodes using the PLT-22 transceiver have been demonstrated to pass various limits without an additional capacitor, variations in node design and layout may require the addition of this small value capacitor. If a capacitor is added across the line it should be an X2 safety-rated type for maximum surge reliability. If capacitors are added from either line or neutral to earth, they should be Y safety rated. Alternately, this capacitor can be added across coupling circuit inductor L1 (see figures 4.10 and 4.13) or across the secondary winding of transformer T1 (see figures 4.11 and 4.14). If this option is chosen, either a metalized polyester capacitor \geq 250VDC, a ceramic 1000VDC capacitor, or a Y-type capacitor should be used for surge reliability.

Adding capacitance in any of the above locations reduces the input impedance of the node and could therefore cause an increase in communication signal attenuation. The maximum value of capacitance which can be added without significantly affecting attenuation depends on the application. Table 6.1 shows the maximum value of added capacitance by application. **Under no circumstances should capacitors >5000pF be used since they will result in excessive signal attenuation.**

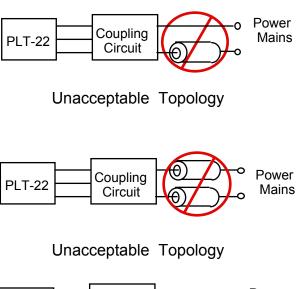

Application	Network Impedance @ 130kHz	Capacitor Impedance @ 130kHz	Capacitor Value
Single building AC mains	1-20 Ohms	≥ 250 Ohms	≤ 4700pF
Dedicated cable ≤100 nodes ≤100m	50 - 100 Ohms	≥ 1000 Ohms	≤ 1200pF
Dedicated cable >100 nodes >100m	50 - 100 Ohms	≥ 2500 Ohms	≤ 470pF

Table 6.1 EMC Suppression Capacitor Value versus Application

Another common method of EMC suppression, the addition of ferrite beads, is generally unacceptable if they are placed anywhere in the transmit signal path. Most ferrite beads have several Ohms of impedance at 130kHz. The impedance of any element placed in series with the transmit signal or return path must be significantly less than 1 Ohm as described in chapter 4. There is, however, one means whereby a ferrite bead can be used to reduce common mode high frequency emissions without affecting the transmit signal. If both the communication signal and its return conductor (i.e., Line and Neutral for L-to-N coupling or Line and Earth for L-to-E coupling) pass through the same bead in a common fashion, the bead will not add any series impedance to the transmitter. This is true since the signal currents in the two conductors produce opposite polarity (canceling) flux in the ferrite bead's core. Common mode noise of equal polarity on both conductors will produce additive flux in the ferrite bead's core and will thus be attenuated. Figure 6.3 illustrates both acceptable and unacceptable ferrite bead topologies.

Unacceptable Topology

Acceptable Topology

Figure 6.3 Ferrite Bead Topologies

7

Communication Performance Verification

This chapter describes procedures to verify basic communication performance of products based on the PLT-22 transceiver.

Why Verify Communication Performance?

While each PLT-22 transceiver is verified to meet its full communication performance capabilities prior to shipment, circuitry external to the transceiver could compromise the communication performance of the node in which the transceiver is used. Ways in which communication performance could be compromised include mis-loaded components, inadequately filtered switching power supplies, circuitry improperly added between the transceiver's coupling circuit and the power mains, and deviations from recommended part specifications. Due to the robust communication capability of the transceiver, it may not be obvious that communication performance has been compromised when testing in a nominal environment.

Since compromised performance is generally observable only under "corner-case" conditions, failure to verify performance prior to deployment could result in many marginal units in the field before a problem is detected. It is therefore essential that the communication performance of every PLT-22-based design be verified prior to field deployment. This can be accomplished either by self verification, using the procedures given in this chapter, or by contacting your Echelon sales representative to make arrangements to send the node to Echelon for confidential evaluation.

This chapter describes a simple "black box" testing methodology for determining whether or not the communication performance of a PLT-22 transceiver-based product has been compromised. This procedure works equally well for products employing L-N or L-E coupling.

Before starting the verification process it is essential that the checklist in Appendix B be completed in its entirety.

Verification Strategy

An overview of the recommended verification procedure is as follows:

- **1** Create a controlled power line environment that is isolated from typical power mains noise and loading.
- **2** Provide known load impedances at the PLT-22 transceiver's communication frequencies.
- **3** Use the PLCA-22 Power Line Communications Analyzer (model 58022) as a calibrated reference transmitter and receiver.
- 4 Test the performance independent of the product's application by making use of the Neuron Chip service pin and internal statistics features. If the product under test does not have a service pin switch then it will need to be added to the product for testing purposes.
- **5** Test for unintentional noise injection and excessive loading by the product under test. This is to ensure that the device can behave as a "good citizen" on a power line network.

- **6** Verify that the product's transmit signal level is within acceptable limits. This is done by deliberately loading the isolated power mains on which the product under test is operating and comparing the output transmission level under load against a reference level.
- 7 Verify that the product's receive sensitivity is within acceptable limits. This is performed using a pair of PLCA-22 analyzers. The communication signal level of the transmitting PLCA-22 analyzer is gradually decreased and the receive performance of the product under test is monitored and compared against reference performance levels.

Power Line Test Isolator

The circuit shown in figure 7.1 is used to create a power mains environment that is isolated from the noise and loading present on typical power mains. When properly constructed, the circuit provides 60 to 80dB of isolation between the power mains and the product under test at the PLT-22 transceiver's communication frequencies. The effectiveness of the circuit should be verified by using a pair of PLCA-22 analyzers communicating between the power mains input and the output. To perform this verification, set the PLCA-22 analyzer that is connected to the input side of the isolator to send packets at 3.5Vpp in UnackPri mode in the C band. The green bargraph meter on the receiving analyzer (connected to the "product under test" output) should indicate a signal strength no higher than -60dB. Without any packet transmission, no LEDs above the -78dB primary and secondary signal strength LEDs should be illuminated or flashing. Note that Neon power indicators should not be used on the isolated output, since they frequently produce noise in the -72dB range.

Since the isolator does not completely block communications from other PLT-22 transceivers communicating on the power mains, receive testing must only be performed when there is no other packet activity on the power mains.

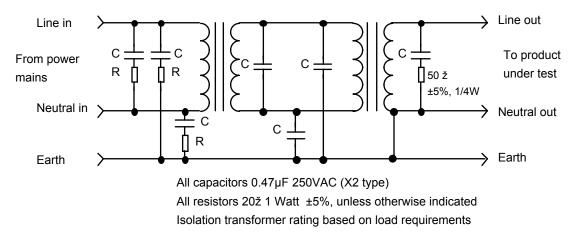


Figure 7.1 Power Mains Isolation Circuit

The transformers shown in the circuit are 50/60 Hz, 1:1 isolation transformers. The load (VA) rating of each transformer should be chosen based on the load requirements of the devices under test. Care should be taken when wiring the isolator to avoid inadvertent signal coupling between the input and output wiring by spacing the input and output wires at least 15cm (6") apart.

Test Equipment

In addition to the power mains isolator described in the previous section, the following "off-the-shelf" equipment will be needed for testing:

- One pair of PLCA-22 Power Line Communications Analyzers (Model 58022). PLCA-21 Power Line Communication Analyzers are not able to test the secondary operating frequency of the PLT-22 transceiver and are **not** recommended for this test. The PLCA-21 lacks the features required to perform these tests accurately and should not be used.
- One PL-20 Line-to-Neutral power line coupler, Echelon model 78200-221.
- Two 50Ω coax cables approximately 25cm (12") long with male BNC connectors on both ends (AMP 1-221128-x or equivalent).
- A power strip, equipped with both a circuit breaker and 4 or more outlets, which does not include either surge protection, neon lights, or noise isolation circuitry.

The following additional equipment will need to be constructed for testing:

• A "5 Ω load" circuit, as shown in figure 7.2, should be built in a suitable enclosure and provided with an appropriate male AC mains plug. Note that the 1M Ω resistor's stand-off voltage should be greater than or equal to the peak line voltage.

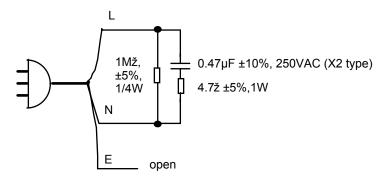


Figure 7.2 "5Ω load" Circuit

• A "7 Ω load" circuit, as shown in figure 7.3, should be built in a suitable enclosure and provided with an appropriate male AC mains plug. Note that the 1M Ω resistor's stand-off voltage should be greater than or equal to the peak line voltage.

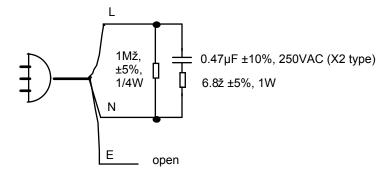


Figure 7.3 "7Ω load" Circuit

• An impedance circuit shown in figure 7.4 should be built in a suitable enclosure with bulkhead BNC jacks (AMP 413771-x or equivalent). This impedance circuit, placed in series with the output path of a PLCA-22 analyzer, effectively increases its output impedance. This will allow for a more sensitive measurement of the receive mode impedance of the product under test.

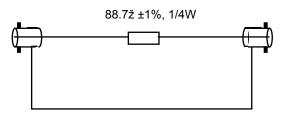


Figure 7.4 Impedance Circuit Used For Excessive Loading Verification

• An attenuation circuit shown in figure 7.5 should be built in a suitable enclosure with bulkhead BNC jacks (AMP 413771-x or equivalent). This attenuation circuit, or "pad", will provide approximately 60dB of attenuation when connected into the receive performance verification set-up of figure 7.9.

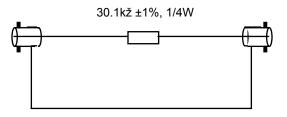


Figure 7.5 Attenuation Circuit Used For Receive Performance Verification

For the receive performance verification, a PC running nodetuil.exe (available on Echelon's web site in the Developer's Toolbox at www.echelon.com/toolbox) is required. The Node Status command will be used to obtain a record of the number of uncorrupted packets received by the Unit Under Test (UUT). This set-up will be described in detail in a later section.

Good Citizen Verification

Use the following steps to verify that the Unit Under Test (UUT) does not inject unwanted noise onto the power mains or excessively load the power mains.

Unintentional Output Noise Verification

The following procedure determines if the UUT is generating unwanted noise which may hinder its communication performance or that of other devices on the power mains.

- 1 Connect a single PCLA-22 analyzer, the UUT, and the Isolator as shown in figure 7.6. Verify that the anlayzer is set for C-band operation by observing the selected band in the upper right-hand corner of the LCD display (if it is set for A-band, then it must be changed to C-band using the Setup screen of the anlayzer). Leave the PLCA-22 analyzer in idle mode (no packets being transmitted) and set it for Internal and Line-to-Neutral coupling (coupling mode switch to the right).
- 2 Verify that the UUT application program is not sending messages.
- **3** Observe the signal strength bar graph LEDs. None of the LEDs, above the -72dB LED, should be flashing on either the primary or secondary bar graph meters. In addition, the Packet Detect (PKD) LEDs should not flash any more than once per minute.

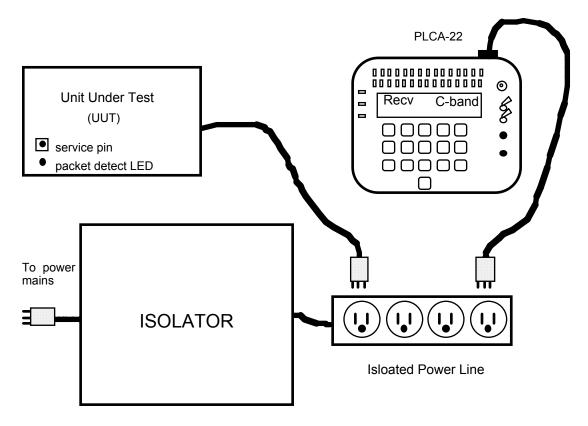


Figure 7.6 Unintentional Output Noise Verification

If any of the signal strength LEDs, above the -72dB LEDs, flash, or the PKD LEDs flashes more than once per minute, then excessive noise or interference is present. This could be caused by one or more of the following sources:

- The UUT is generating unwanted noise internally. This is most often associated with on-board switching power supplies. If the UUT includes a switching power supply, verify that the power supply noise masks of Chapter 5 have been met.
- Power line communications signals present on the power input side of the isolator are not sufficiently attenuated. Ensure that no other power line signaling equipment is operating on the power mains when performing this test.
- The isolator is not completely isolating the test set-up from noise on the power mains. Verify the effectiveness of the isolator as described earlier.

The source of this noise or interference must be identified and eliminated before proceeding with verification testing.

Excessive Loading Verification

The procedure described in this section is used to determine if the receive mode impedance of the UUT is greater than approximately 100Ω at 132kHz (as it should be). A receive mode impedance of less than 100Ω could cause excessive signal attenuation resulting in impaired reception by both the UUT and its neighboring

nodes. For applications which require an even higher receive impedance, refer to discussions in Chapters 5 and 6.

The 10Vp-p output capability of the PLCA-22 analyzer is used to increase the sensitivity of the test. The higher output signal allows the 0dB, -3dB, and -6dB LEDs of the PLCA-22 analyzer signal strength meter to be used for observing signal strength. These LEDs, unlike the other LEDs in the signal strength meter, are only 3dB apart allowing for better measurement resolution.

A series impedance circuit (figure 7-4) in the output path of the transmitting PLCA-22 analyzer is used to increase its effective output impedance, thereby preventing its normally low transmit output impedance from overshadowing the impedance of the product under test.

- 1 Set a PLCA-22 analyzer in Recv, UnackPri, and C-band modes (referred to as the Recv PLCA-22 analyzer) and configured for Internal and Line-to-Neutral coupling, as shown in figure 7.7.
- 2 Connect a second PLCA-22 analyzer in Send, UnackPri, and C-band modes (referred to as the Send PLCA-22 analyzer) and set it for External and Line-to-Neutral coupling as shown in figure 7.7. Connect the impedance circuit (88.7 Ω resistor; figure 7-4) and the coupling circuit as shown. This test is best conducted with the CENELEC protocol turned off in order to provide uninterrupted LED illumination (set on the send unit's setup screen).
- **3** Verify that Attn on the SPHY PLCA-22 analyzer is set to 0. Set the number of packets to be transmitted to 9999k on that unit and set the packet length to 13 bytes. Set TxVpp: 10V.
- 4 Without the UUT connected, press START on the Send PLCA-22 analyzer. A test should begin and the receive packet count on the Recv PLCA-22 analyzer should increment with a packet error rate very close to 0%. The signal strength meter on the Recv PLCA-22 analyzer should have the LEDs up to and including the -3dB primary signal strength LED illuminated. The 0dB primary LED may or may not be flashing.
- 5 Next, connect the UUT as shown in figure 7.7. The -3dB primary signal strength LED on the Recv PLCA-22 analyzer either should be flashing or illuminated continuously. If the -3dB primary LED is extinguished, then the UUT's input impedance is excessively low (<100 Ω). The impedance of the UUT must be corrected before proceeding; refer to the node checklist described in Appendix B for assistance.

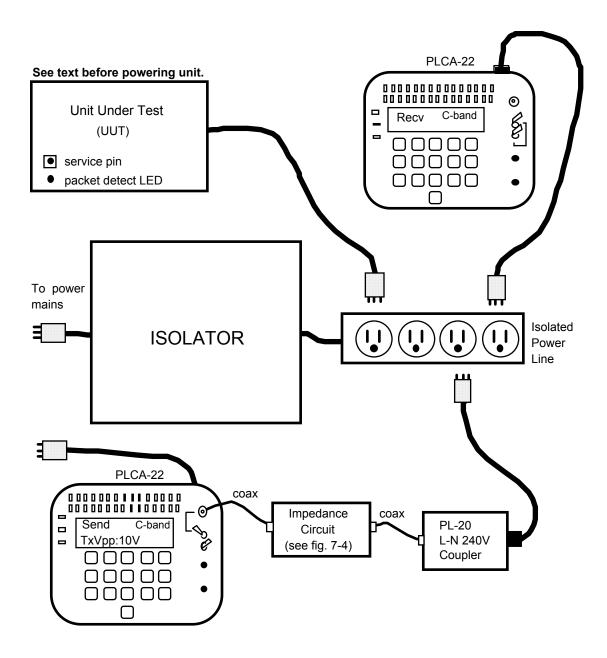


Figure 7.7 Excessive Loading Verification

Transmit Performance Verification

Use the following steps to verify that the transmit output impedance of the UUT is low enough to adequately drive low impedance loads.

- 2 Verify that the UUT application program is not sending messages.
- **3** Press the service switch on the UUT.
- 4 Observe the primary signal strength LEDs on the PLCA-22 analyzer and check which of the primary LEDs illuminate. If the UUT is configured for 3.5Vp-p output (TXLVL, pin 21, on the PLT-22 transceiver is left open), all primary signal strength LEDs up to, and including, the -6dB LED should flash for at least 6 out of 10 service pin messages from the UUT.

If the UUT is configured for 7Vp-p output (TXLVL, pin 21, on the PLT-22 transceiver is grounded), all primary LEDs up to, and including, the 0dB LED should flash for at least 6 out of 10 service pin messages from the UUT.

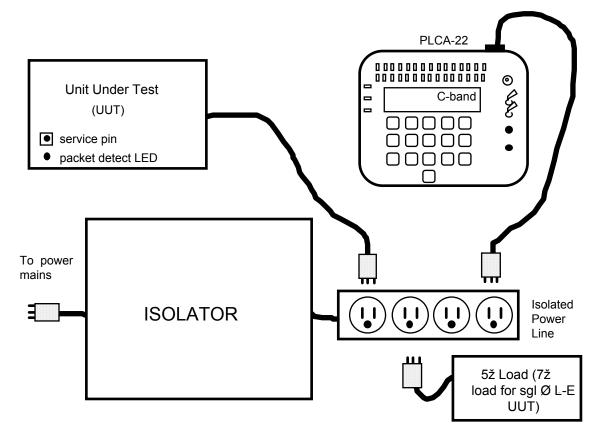


Figure 7.8 Transmit Performance Verification

If the correct LEDs do not illuminate, there may be a problem in the transmit path of the power mains coupling circuit of the UUT. Possible causes of a reduced transmit signal level include:

- Additional series impedance has been inadvertently added between the PLT-22 transceiver's coupling circuit and the mains connection.
- The DC resistance of the series resonant inductor in the coupling circuit (L2 in Chapter 4 coupling circuit figures) is too high.
- The UUT contains a line fuse that has high series resistance.
- A component of the wrong value has been inadvertently used in the UUT.
- Inadequate analog power supply (V_A) voltage under conditions of full transmit current loading.

Refer to the node checklist in Appendix B for more information about verifying the UUT's design.

Receive Performance Verification

The receive performance verification procedure requires a software tool to measure the number of uncorrupted packets received by the UUT. Packet error rate is then calculated based on the number of packets sent and the number correctly received. A utility program to monitor packet activity is described below, followed by a description of the verification procedure.

Packet Error Measurement with Nodeutil

A DOS utility called nodeutil.exe will be used to measure packets correctly received by the UUT. The Nodeutil software allows a PC to remotely query the UUT and extract its status, including uncorrupted packets received by the node (stored in every Neuron Chip). The nodeutil.exe utility is available free of charge from Echelon's Web site at www.echelon.com/toolbox.

Figure 7.9 illustrates the setup for the PC running the Nodeutil utility. The PC should contain one of Echelon's network adapters: PCLTA, PCNSS, or PCNSI equipped with a PLM-21 or PLM-22 SMX transceiver. The adapter is connected to the isolated power line via a PL-20 power line coupler.

The DOS driver for the network adapter, ldvpclta.sys, should be used by adding the following line to the config.sys file on the PC:

device:c:\[path]\ldvpclta.sys [options]

The latest version of ldvpclta.sys is available from Echelon's Web site. Refer to the pertinent network adapter user's guide or detailed information about the driver set-up and its options.

The nodeutil.exe program runs on the PC (under DOS) and accesses the UUT over the power line. The verification procedure below describes how to use the Nodeutil utility to access the UUT.

The startup screen for the Nodeutil utility is shown below. Refer to the nodeutil.txt file for information on its proper setup.

```
Node Utility Release 1.46
Copyright (c) 1994, 1996 Echelon Corporation. All rights reserved.
Successfully installed network interface.
Welcome to the LONWORKS Node Utility application.
Activate the service pin on remote node to access it.
Enter one of the following commands by typing the indicated letter:
The NODEUTIL MAIN Menu
_____
The main command menu for NODEUTIL is as follows:
       A -- (A)dd node to list.
       C -- Set (C)lock rates of the network interface
       D -- Set the (D)omain of the network interface.
       E -- (E)xit this application and return to DOS.
       F -- (F)ind nodes in the current domain.
       G -- (G)o to node menu.....
       H -- (H)elp with commands.
       L -- Display node (L)ist.
       M -- Change node (M)ode or state.
       O -- Redirect (O)utput to a file.
        P -- Send a service (P)in message from a PCLTA.
       R -- (R)eboot 3150 node.
       S -- Report node (S)tatus and statistics.
       V -- Control (V)erbose modes.
       W -- (W) ink a node.
        Z -- Shell out to DOS.
```

Verification Procedure

Use the following steps to verify that the receive sensitivity of the UUT is correct. Determination of receive sensitivity is made by monitoring the physical layer error rate while increasing the level of signal attenuation between a reference transmitter and the UUT.

- **1** Verify that the UUT application program is not sending messages.
- 2 Set a PLCA-22 analyzer in Recv, UnackPri, and C-band modes (referred to as the Recv PLCA-22 analyzer) configured for internal coupling and Line-to-Neutral coupling, as shown in figure 7.9.

- 3 Set a second PLCA-22 analyzer in Send, UnackPri, and C-band modes (referred to as the Send PLCA-22 analyzer) and configure the coupling switch for external coupling. Connect the PLCA-22 analyzer using the attenuation circuit ($30k\Omega$ resistor; figure 7-5) and the PL-20 Line-to-Neutral coupler as shown in figure 7.9. Note that the line cord of the Send PLCA-22 analyzer is connected to the power mains on the input side of the isolator to prevent communications between the two PLCA-22 analyzers via parasitic line cord coupling.
- 4 Set the following parameters on the Send PLCA-22 analyzer:

Number of Packets	= 1000 (1k)
Packet Length	= 13 bytes
TxVpp	= 3.5 V
Attn	= 0 dB

Note that 3.5Vp-p should always be used for TxVpp even if the UUT is configured for 7Vp-p output. This provides a common reference against which the receive sensitivity of any UUT can be measured.

- 5 Connect the UUT test setup as shown in figure 7.9. Once the Nodeutil utility is running correctly and the start-up screen shown above is displayed, press the service switch on the UUT. This will cause Nodeutil to register the service pin message received from the device. Select the "S" command to obtain the status from the UUT (the entry in the results screen named "Packets received by node" is the number of uncorrupted packets received by the UUT since the last time the statistics were cleared). Type "Y" at the prompt to clear the status of the UUT. The S command will be used in the next few steps to obtain the received packet count from the UUT. Be sure to clear the status of the UUT after each reading.
- 6 Press START on the Send PLCA-22 analyzer. The test will begin and the receive packet count on the Recv PLCA-22 analyzer should increment with a packet error rate very close to 0% (<1%). The -60dB LED on the primary frequency signal strength meter on the Recv PLCA-22 analyzer should illuminate, indicating that the received signal is approximately -60dB relative to the nominal 3.5Vp-p transmit signal. The -60dB level serves as a starting point; additional attenuation will be added via the Attn function of the Send PLCA-22 analyzer.
- 7 Once the Send PLCA-22 analyzer has transmitted 1000 packets, obtain the received packet count from the UUT using the "S" command of the Nodeutil utility. Record that value and the packet error rate of the Recv PLCA-22's analyzer in columns 4 and 5 of table 7.1. Calculate the error value as a percentage by subtracting the number of packets received by the node from 1011 and then dividing by 10 (divide by 1000 then multiply by 100) and record the result in the rightmost column of table 7.1. This procedure yields a sufficiently accurate approximation of the actual packet error rate. Refer to the notes at the end of these steps for details.

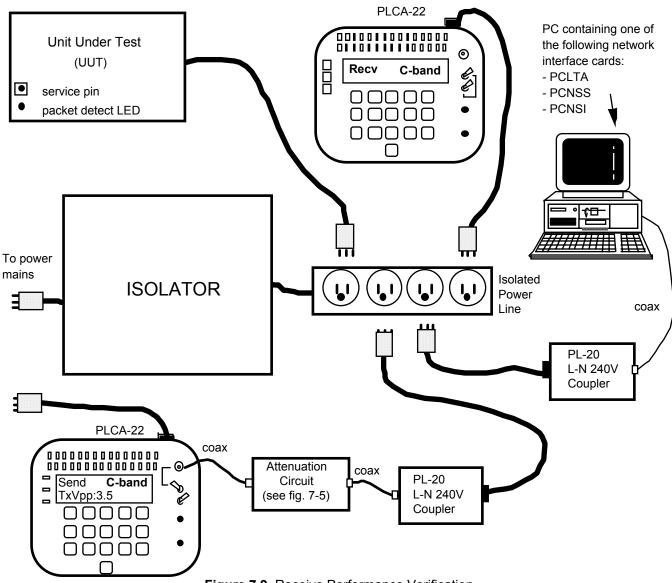


Figure 7.9 Receive Performance Verification

- 8 After moving the cursor to the Attn field, press the CHANGE and ENTER keys on the Send PLCA-22 analyzer to increment the Attn level by 6dB. Then clear the status on the UUT by responding with a "Y" to the Nodeutil prompt and then press START on the Send PLCA-22 analyzer.
- **9** Repeat steps 7 through 8 above for all Send Attn levels up to, and including 24dB, recording the results each time in table 7.1.
- 10 To test the UUT's secondary operating frequency, change the PLCA-22 analyzers from UnackPri to UnackSec mode. Repeat steps 6 through 9, above, but record the results in table 7.2.

Notes:

The calculation of packet error rate used in the above verification procedure avoids inaccuracies which would result from the use of CRC error count to compute packet error rate. It does, however, make use of one simplifying approximation which does not alter the resultant observed sensitivity. The material in this note is provided for other applications where a precise measure of packet error rate may be required.

Packet error rate actually includes both packets received with an incorrect CRC plus any packets which were so weak or corrupted they were not detected at all. These "missed packets" are, by definition, not included in the CRC error count of a node. For a physical layer packet error rate of 10%, the percentage of missed packets is generally negligible. Under conditions where the packet error rate is greater than 10%, a significant portion of the error rate may be due to missed packets.

The "Packets received by node" field in Nodeutil software yields the actual number of packets correctly received by the node. Subtracting this number from the total number of packets sent gives the exact packet error count, including missed packets.

In addition to the number of test packets selected on the PLCA-22 analyzers, the total number of packets sent on the power line actually includes several control packets sent between the PLCA-22 analyzers. These control packets are used by the PLCA-22 analyzers to synchronize their settings before the test, and to exchange data related to the test immediately after the test. Additionally, querying the status of the UUT causes some packets to be logged, the number of which will depend on the tool used and the firmware version number of the UUT's Neuron Chip. This number can be determined by performing a non-attenuated, noise-free test with the PLCA-22 analyzers and then observing the number of "Packets received by node" above the number of test packets defined on the PLCA-22 analyzer. The total overhead is generally either 11 or 13 packets.

Given the above, a more accurate formula for calculating the physical layer packet error rate with 1000 test packets is then:

PER% = (1011 - # "Packets received by node") x 100 / 1011

Send Transmit Attenuatio n (PLCA Attn)	Overall Attenuatio n (Attn + 60)	UnackPr i Error % (expecte d)	UnackPr i Error % (observe d)	UUT Pkts Received (observed)	UUT Error % (expected)	UUT Error % (1011 - #Rcvd)/10 (observed)
0 dB	60 dB	<1%			<1%	
6 dB	66 dB	<2%			<2%	
12 dB	72 dB	<3%			<3%	
18 dB	78 dB	≥3%			≥3%	
24 dB	84 dB	≥3%			≥3%	

Table 7.1 Primary Frequency Receive Performance Verification Table

 Table 7.2
 Secondary Frequency Receive Performance Verification Table

Send Transmit Attenuatio n (PLCA Attn)	Overall Attenuatio n (Attn + 60)	UnackSe c Error % (expecte d)	UnackSe c Error % (observe d)	UUT Pkts Received (observed)	UUT Error % (expected)	UUT Error % (1011 - #Rcvd)/10 (observed)
0 dB	60 dB	<1%			<1%	
6 dB	66 dB	<3%			<3%	
12 dB	72 dB	≥3%			≥3%	
18 dB	78 dB	≥3%			≥3%	

The approximate signal attenuation between the Send PLCA-22 analyzer and Recv PLCA-22 analyzer shown in tables 7.1 and 7.2 is the sum of the attenuation level of the attenuator circuit and the Attn level of the Send PLCA-22 analyzer. A properly performing product will show a low level of CRC errors (<3%) up to an attenuation of 72dB between the two analyzers (66dB for secondary frequency). Above these attenuations the error rate for the UUT should increase.

If the results of this test are worse than expected, it is helpful to know if the problem affects only the performance of the UUT or if adjacent receivers are also impaired by the presence of UUT. If the receive performance of the Recv PLCA-22 analyzer was worse than expected, disconnect the UUT and recheck the PLCA-22 analyzer error rate versus attenuation. If it is determined that the presence of the UUT impairs the performance of the PLCA-22 analyzers then the UUT may be injecting noise back onto the power line. Note that the same symptoms would also be observed if no

corrections were made to a UUT which previously failed the Excessive Loading Verification test.

If it is determined through a comparison of the UUT's expected and observed error rates that the UUT cannot reliably receive packets attenuated by at least 72dB (66dB for the secondary frequency), then check the following:

- If the UUT includes a switching power supply, ensure that the power supply noise masks of Chapter 5 have been met.
- Compare the values of the coupling circuit components with those recommended in Chapter 4. It is possible that the wrong value component was inserted and partial, if compromised, receive performance was still possible.
- Re-verify the Unintentional Output Noise Verification test earlier in this chapter.
- Re-verify the receive mode impedance of the UUT by repeating the Excessive Loading Verification Test earlier in this chapter.

Refer to the node checklist in Appendix B for more information about verifying the UUT's design.

8

References

This section provides a list of the reference material used in the preparation of this manual.

Reference Documentation

[1] CENELEC EN 50065-1 "Signaling on low-voltage electrical installations in the frequency range 3kHz to 148.5kHz" Part 1 "General requirements, frequency bands and electromagnetic disturbances," Amendment AC.

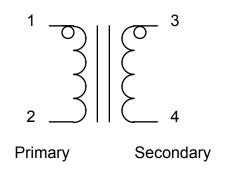
A copy of this EN 50065-1 and Amendment AC are available from:

CENELEC Central Secretariàt Rue de Stassart 35 B-1050 Brussels The reference numbers are EN 50065-1:1991/prAC:1994.

- [2] Motorola Neuron Chip Data Book.
- [3] Toshiba Neuron Chip Data Book.
- [4] LONWORKS Custom Node Development engineering bulletin, Echelon Corporation, 1992.
- [5] Conducted Emissions Measurements on Power Line Transceiver Products: Test method for performing EN 50065-1 conducted emissions tests using Hewlett-Packard EMI test receivers, May 19, 1995. A copy of this application note may be obtained by contacting:

Clay Bilby, EMC Applications Engineer, Santa Rosa Systems Division Hewlett-Packard Company 1400 Fountaingrove Parkway Santa Rosa, California, 95403 Main telephone number: 707/577-1414 Direct number: 707/577-3842 Fax: 707/577-5329

- [6] 47CFR15, Subpart B (Unintentional Radiators), U.S. Code of Federal Regulations, (formerly known as FCC Part 15, Subpart J).
- [7] Technical Notes #217, Household Carrier Current Radiation Measurements, by Kwai Lum and Andrew Adam, Industry Canada, April 10, 1977.
- [8] CISPR 22, Limits and methods of measurement of radio disturbance characteristics of information technology equipment, International Electrotechnical Commission, Second edition, 1993-12.
- [9] CISPR 16, CISPR Specification for radio interference measuring apparatus and measurement methods, International Electrotechnical Commission, Second edition, 1987.
- [10] Protection of Electronic Circuits from Overvoltages, by Ronald B. Standler, John Wiley & Sons, 1989.


- [11] Noise Reduction Techniques in Electronic Systems, 2nd ed., by Henry W. Ott, John Wiley & Sons, 1988.
- [12] "ESD as an EMI Problem....How to Prevent and Fix," *EDN Designer's Guide to Electromagnetic Compatibility*, EDN Supplement, pp. S23-S29, 1/20/94.
- [13] CEI/IEC 1000-4-2 Electromagnetic compatibility, Part 4: Testing and measurement techniques - Section 2: Electrostatic discharge immunity test, International Standard, First Edition, 1995-01.
- [14] CEI/IEC 1000-4-3 Electromagnetic compatibility, Part 4: Testing and measurement techniques - Section 3: Radiated, radio-frequency, electromagnetic field immunity test, International Standard, First Edition, 1995-02.
- [15] CEI/IEC 1000-4-4 Electromagnetic compatibility, Part 4: Testing and measurement techniques - Section 4: Electrical fast transient/burst immunity test, International Standard, First Edition, 1995-01.
- [16] CEI/IEC 1000-4-5 Electromagnetic compatibility, Part 4: Testing and measurement techniques - Section 5: Surge immunity test, International Standard, First Edition, 1995-02.
- [17] IEEE C62.41-1991, IEEE Recommended Practice on Surge Voltage in Low-Voltage AC Power Circuits.
- [18] Cypress Neuron Chip Data Book.

Appendix A

PLT-22 Transceiver Isolation Transformer Specifications

This appendix provides a schematic, specifications and supplier information for the PLT-22 transceiver isolation transformer.

PLT-22 Transceiver Isolation Transformer Schematic

PLT-22 Transceiver Isolation Transformer Electrical Specifications

Below are specifications for the PLT-22 Transceiver I solation Transformer Schematic shown above.

Parameter	Min	Тур	Max	Units
Turns Ratio (1-2) : (3-4)		1.0		
DC Resistance				
1-2 3-4			0.20 0.20	Ohm Ohm
Magnetizing Inductance 1-2 Dry, @100kHz, 1Vrms	0.75	1.0	1.25	mH
Magnetizing Inductance 1-2, Wet, @100kHz, 1Vrms, plus15mADC	0.75			mH
Leakage Inductance 1-2 (3-4 shorted) @100kHz, 1Vrms	10.8	12.0	13.2	μH
Winding Capacitance 1-2			30	pF
Winding to Winding Capacitance 1-2 shorted to 3-4 shorted			30	pF

PLT-22 Transceiver Isolation Transformer Vendors

Contact vendors for details on operating temperatur `e ranges, storage temperature ranges, safety agency compliance, mechanical design information, and pricing.

Vendor	Part Number	Contact Instructions
Precision Components, Inc. 125 E. Lake Street, Suite 305 Bloomingdale, Illinois 60481	0505-0671	Telephone: +1-708-980-6448 Fax: +1-708-980-6485
EXCEL Electric Corporation 6501 N.W. 13th Court Plantation, Florida 33313	EXL-165	Telephone: +1-954-581-2330 Fax: +1-954-581-2355
Transpower Technologies, Inc. P.O. Box 187 Crystal Bay, Nevada 89402	TTI7143	Telephone: +1-702-831-0140 Fax: +1-702-831-3521
Tamura Corporation Industrial Device B.U. Marketing and Sales Group 5-5-30 Chiyoda, Sakado-shi, Saitama 350-0214 JAPAN	PLPO1	Telephone: +81-492-84-5721 Fax: +81-492-84-9106

Appendix B

PLT-22 Transceiver-Based Node Checklist

This appendix includes a checklist to ensure that products using the PLT-22 transceiver meet the specifications presented in this user's guide.

PLT-22 Transceiver-based Node Checklist

ltem	Check When Completed	Description
1		Transceiver pins connected as shown in table 2.1.
2		Environmental and electrical specifications shown in table 2.2 and figure 2.2.
3		10 MHz parallel resonant crystal with a load capacitance rating of 13 pF to 20 pF is connected to the PLT-22 transceiver.
4		Clock frequency measured to be 10.0000MHz ±200ppm (including allowance for temperature variation).
5		The recommended number and placement of 0.1µF bypass capacitors are near the Neuron Chip. See the <i>Neuron Chip</i> <i>Data Book</i> from Toshiba or Motorola.
6		The Neuron Chip input clock is ≥ 1.25 MHz for single carrier frequency mode and ≥ 2.5 MHz for dual carrier frequency mode.
7		The traces connecting the crystal to the transceiver are not greater than 20mm (0.8") in length.
8		External 120 μ F [minimum] 16VDC, aluminum electrolytic, low-ESR [<0.3 Ω @ 100kHz] V _A capacitor is used. The
		capacitor must be exactly 16VDC (no higher or lower) to meet surge suppression levels. Verify suitable capacitor lifetime rating.
9		V_A bypass capacitor is placed as close as possible to the transceiver with low-impedance ground and supply traces between the PLT-22 transceiver and the capacitor.
10		The three transceiver ground pins are connected with low- impedance traces, or a ground plane, between the transceiver and the Neuron Chip.
11		If used, the transceiver BIU and PKD are connected to low- current (≤8mA) LEDs via series current-limiting resistor connected to ground.
12		The BIU and PKD signals are connected to ESD protection diodes if a plastic or metal enclosure without a good ground connection is used.
13		The Neuron Chip CP3 pin is not connected and is left floating.

PLT-22 Transceiver and Neuron Chip Connections

14 The Neuron Chip CLK2 pin is not connected 15 The Neuron Chip and PLT-22 transceiver a to one another on the same printed circuit 16 The length of the ~RESET line is ≤50mm (2000) 17 The length of the CKOUT line is ≤50mm (2000) 18 The ground traces and V _{DD5} traces betwee and the Neuron Chip are low impedance. 19 The correct frequency of the CKOUT pin (2000) input) is selected. If the PLT-22 transceiver	are placed adjacent board. 2"). 2"). n the transceiver
15The Neuron Chip and PLT-22 transceiver a to one another on the same printed circuit16The length of the ~RESET line is ≤ 50 mm (17The length of the CKOUT line is ≤ 50 mm (218The ground traces and V _{DD5} traces betwee and the Neuron Chip are low impedance.19The correct frequency of the CKOUT pin (N	are placed adjacent board. 2"). 2"). n the transceiver
16 The length of the ~RESET line is ≤50mm (17 The length of the CKOUT line is ≤50mm (2 18 The ground traces and V _{DD5} traces betwee and the Neuron Chip are low impedance. 19 The correct frequency of the CKOUT pin (N	2"). 2"). n the transceiver
17The length of the CKOUT line is \leq 50mm (218The ground traces and V _{DD5} traces betwee and the Neuron Chip are low impedance.19The correct frequency of the CKOUT pin (1)	2"). n the transceiver
18The ground traces and VDD5 traces betwee and the Neuron Chip are low impedance.19The correct frequency of the CKOUT pin (Note: Section 19)	n the transceiver
and the Neuron Chip are low impedance.19The correct frequency of the CKOUT pin (1)	
19 The correct frequency of the CKOUT pin (N	Neuron Chin CLK1
19 The correct frequency of the CKOUT pin (N	Veuron Chin CLK1
1 0 1 1	
input) is selected. If the PLI-22 transceive	
frequency mode, the Neuron Chip clock is s	
higher.	
20 The CKSEL1 pin is connected via a 4.7kΩ	resistor to the
appropriate supply rail. Do not tie this pir	
rail. The CLKSEL0 pin may be tied direct	
supply rail.	
21 A Low Voltage Interrupt (LVI) circuit with	open collector
output (such as the Motorola MC33064) is	used to supply a
reset signal to both the Neuron Chip and t	he transceiver.
22 Two external 56pF capacitors are used, one	e tied between
~RESET and V _{DD5} , the other between ~RE	ESET and GND, are
used, and placed as close as possible to the	Neuron Chip
~RESET pin. Total load capacitance on ~F	
Neuron Chip specification limits taking int	
56pF capacitors on the ~RESET line interr	
transceiver.	
23 The transceiver's TXLVL pin is grounded f	or most devices
(TXLVL=7Vp-p).	
OR	
The transceiver's TXLVL pin is left open (7	TXLVL=3.5Vp-p)
only if the transceiver is to be used in a CE	
compliant device or if the V _A supply will be	
Volts and power management is disabled.	
24 PLT-22 SIP not touching any electrically of	onductive adiacent
components or chassis.	

PLT-22 Transceiver Programming

ltem	Check When Completed	Description
25		The correct standard transceiver type is defined for the transceiver:
		STDXCVR.TYP date of 1999 or newer for dual carrier
		frequency operation
		Power management disabled:
		PL-20N for CENELEC access protocol disabled
		PL-20C for CENELEC access protocol enabled
		Power management enabled:
		PL-20N-LOW for CENELEC access protocol disabled
		PL-20C-LOW for CENELEC access protocol enabled

PLT-22 Transceiver Coupling Circuit General

ltem	Check When Completed	Description
26		A coupling circuit that is suitable for the intended
		application is selected, and coupling circuit components meet
		the specifications shown in chapter 4 (as appropriate).
27		The maximum value of C1 for Line-to-Earth coupling circuits
		results in a maximum of 3.5mA ground leakage current (or
		as required by local electrical codes and the presence of
		GFIs/RCDs.)
28		Appropriate high voltage surge protection is provided and
		has been verified. See chapter 4 surge protection section.
29		No filters, ferrite beads, or power supply transformers are in
		the coupling circuit path.
30		Capacitors added for EMI suppression meet the
		requirements of table 6.1.

PLT-22 Transceiver Coupling Circuit Components Key Specifications

ltem	Check When Completed	Description
31		Fuse F1
		$(A_{\text{res}}, a_{\text{res}})$
		6Amp rating (DC resistance $\leq 0.1\Omega$)
		Time lag, i.e., slow blow type
32		Proper voltage rating Capacitor C1
34		Capacitor C1
		Proper value selected
		10% (or better) tolerance
		Proper voltage rating (including AC or DC)
		Safety listing, if applicable
33		Capacitor C2
		Matalized volucetor (required for surge immunity)
		Metalized polyester (required for surge immunity) Proper value selected
		Proper tolerance
		Proper voltage rating
		Toper voltage fatting
34		Capacitor C4
		Value such that C4*L4=C1*L1
		5% tolerance
		\geq 50VDC rating
35		Inductor L1,L3,L4
		1.0mH value
		DC current rating ≥30mA
		DC resistance $\leq 50\Omega$
36		10% (or better) tolerance L1 and L3 spaced >1 cm (0.4") apart
37		Inductor L2
0.		
		Proper value selected per chapter 4
		DC current rating ≥500mA
		DC resistance $\leq 0.3\Omega$
		10% (or better) tolerance
38		Transformer T1
		PCI 0505-0671 or equivalent
		EXCEL EXL-165 or equivalent
		Transpower TTI7143 or equivalent
		וומווטףטאיטו בבורביט טו טעמוימוטווו

ltem	Check When Completed	Description
39	•	Resistor R1
		Proper value for discharge time requirements
		Proper voltage rating (>1.4*AC _{RMS} line voltage)
		Proper power rating for hi-pot test (if applicable)
40		Resistor R2
		Value of 82Ω minus L4 DC resistance
41		Varistor RV1
		Proper AC or DC voltage rating so as <u>not</u> to clamp AC peaks Surge rating for application requirements, see chapter 4
		No varistors to earth unless hi-pot testing is performed prior to insertion of varistor and ground leakage current is not an
		issue.
42		Diode D1
		1N4935 type

PLT-22 Transceiver Power Supply - General

ltem	Check When Completed	Description
43		If a linear supply has been used skip the remaining power supply check list sections.

PLT-22 Transceiver Power Supply - Switching Type

ltem	Check When Completed	Description
44		The preferred operating frequency of the switching power supply is either 80kHz - 110kHz or >155kHz under all line, load, environmental, and production conditions.
45		A series inductor is used between the power supply input and the power mains communication channel to avoid attenuation due to the input stage of a switching power supply.
46		The value of the series inductor has been selected for the application requirements as described in chapter 5.
47		The inductor has a current rating adequate to support the peak currents drawn by the power supply without saturation.

ltem	Check When Completed	Description
48		The LC resonant frequency of the inductor is at least 1 octave from the communication frequency range (110kHz-140kHz) when the inductor is combined with the input capacitance of the switching supply.
49		The power supply complies with the input noise masks shown in chapter 5.
50		Measurements of the power supply are made by connecting the supply to the artificial mains network as specified in subclause 8.2.1 of CISPR Publication 16, second edition. Measurements are made over the full range of anticipated loads on the supply and conducted in accordance with CENELEC EN 50065-1 and FCC measurement standards with measurement bandwidths of 200Hz below 150kHz and 9kHz above 150kHz, as described in CISPR 16.
51		If the power supply does not meet the appropriate noise mask for the power supply input, a correct filter is installed between the local switching power supply and the power line.
52		All output noise "masks" shown in chapter 5 are satisfied using measurements taken over the full range of anticipated loads on the supply.

EMI & ESD Design

ltem	Check When Completed	Description
53		The "leakage" capacitance from high frequency circuit traces
		is controlled via guard traces.
54		The product's package is designed to minimize the possibility
		of ESD hits arcing into the node's circuit board. If the
		product's package is plastic, then the PCB is supported in
		the package so that unprotected circuitry on the PCB is not
		adjacent to any seams in the package. The PCB is not
		touching the plastic enclosure near a seam.
55		Explicit clamping of user-accessible circuitry is used to shunt
		ESD currents from that circuitry to the center of the star
		ground on the PCB.
56		The connector, diodes and decoupling capacitor are all
		located close to the center of the star ground.

Product Qualification - EMC

ltem	Check When Completed	Description
57		Proper measurement of conducted emissions is used to verify compliance with FCC Part 15 and/or CENELEC EN 50065-1 as described in chapter 5.
58		A $50\Omega/(50\mu H+5\Omega)$ Line Impedance Stabilization Network (LISN) as specified in <i>CISPR Publication 16</i> , second edition is used for measurement.
59		The appropriate attenuator is used to ensure that the transceiver's transmit signal does not overload the measurement apparatus. The residual noise floor of the entire measurement set is verified to be at least 10dB below the specification limit (a noise floor less than 38dBµV for FCC measurements, and a noise floor less than 36dBµV for CENELEC EN 50065-1 measurements).
60		Measurements are made with a quasi-peak detector and the average detector as specified in <i>CISPR Publication 16</i> .
61		FCC measurements are made with a 9kHz bandwidth filter as specified. The CENELEC EN 50065-1 measurements are made with a 200Hz bandwidth filter for measurements below 150kHz, and a 9kHz bandwidth filter for measurements above 150kHz.
62		For EN50065-1 verification all testing is done with a Rohde&Schwarz EMI Test Receiver ESHS30 (or equivalent tester with proper filter skirts) set to manual mode using a set-up program described in chapter 5. Alternatively, Hewlett Packard equipment is used with an appropriate external filter.

Product Qualification - Electromagnetic Immunity and Communication Performance

ltem	Check When Completed	Description		
63		The product is tested to appropriate levels of either		
		CEI/IEC 1000-4-5, or IEEE C62.41-1991.		
64		The product is verified to meet communication performance		
		capabilities per chapter 7.		

Appendix C

External Power Supplies with Integrated Coupling Circuits

This appendix provides source information about plug-in AC-to-DC power supplies in which a Line-to-Neutral coupling circuit, compatible with the PLT-22 Power Line Transceiver, is integrated into the power supply.

Vendors for External Power Supplies with Integrated Coupling Circuits

The following vendors provide external power supplies with integrated coupling circuits.

Vendor	Target Market	Part Number	Description	Contact Instructions
Tamura Corporation Industrial Device B.U. Marketing & Sales Group 5-5-30 Chiyoda, Sakado-shi Saitama 350-0214 Japan	North America	425A12400P	Input: 120VAC ± 10%, 60Hz ± 0.5Hz Output: 12.5VDC @ 400mA Coupling Circuit: Line-to-Neutral	Telephone: +81-492-84-5721 FAX: +81-492-84-9106
Tamura Corporation Industrial Device B.U. Marketing & Sales Group 5-5-30 Chiyoda, Sakado-shi Saitama 350-0214 Japan	Continental Europe	425F12400P	Input: 230VAC ± 10%, 50Hz Output: 12.5VDC @ 400mA Coupling Circuit: Line-to-Neutral	Telephone: +81-492-84-5721 FAX: +81-492-84-9106