
078-0365-01B
®

ShortStack FX User’s Guide

Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron,
3120, 3150, LNS, i.LON, ShortStack, LonMaker, and the
Echelon logo are trademarks of Echelon Corporation
registered in the United States and other countries. FTXL,
OpenLDV, Pyxos, LonScanner, 3170, and 3190 are trademarks
of Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed
for use in equipment or systems, which involve danger to
human health or safety, or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2001, 2009 Echelon Corporation.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

ShortStack User’s Guide iii

Welcome
Echelon’s ShortStack® Micro Server enables any product that contains a
microprocessor or microcontroller to quickly and inexpensively become a
networked, Internet-accessible device. The ShortStack Micro Server provides a
simple way to add LONWORKS® networking to new or existing smart devices. The
ShortStack Micro Server is easy to use due to a simple host API, a simple driver,
a simple hardware interface, a small host memory footprint, and comprehensive
tool support.

This document describes how to develop an application for a LONWORKS device
using Echelon’s ShortStack FX Micro Server. It describes the architecture of a
ShortStack device and how to develop a ShortStack device. Development of a
ShortStack device includes interfacing the ShortStack Micro Server with your
microprocessor, creating your ShortStack serial driver, creating a Neuron® C
model file, running the LonTalk® Interface Developer utility, and using the
LonTalk Compact API functions to program your ShortStack application.

Audience
This document assumes that the reader has a good understanding of the
LONWORKS platform and microprocessor or microcontroller programming.

What’s New for ShortStack FX
The ShortStack FX Developer’s Kit is part of the LONWORKS 2.0 product family.

The ShortStack FX Developer’s Kit includes all of the features and functions of
ShortStack 2.1, and adds new features and functions.

New Hardware Support

The ShortStack FX Developer’s Kit provides standard Micro Servers for the FT
5000 Smart Transceiver and the PL 3170 Smart Transceiver. You can also build
a custom Micro Server for the Neuron 5000 Processor.

ISI Controlled Enrollment

A custom ISI Micro Server can provide support for controlled enrollment. With
controlled enrollment support, your ISI network can include a connection
controller to manage ISI enrollment.

LonTalk Compact API

The ShortStack application programming interface (API) includes new functions
and callback handler functions, including a function to determine the version
number of the Micro Server application and Micro Server core library, and an
echo function to test communications with the link layer.

LonTalk Compact API Compatibility

The LonTalk Compact API for ShortStack FX is essentially the same as the
LonTalk Compact API for ShortStack 2.1. Thus, a ShortStack 2.1 application
requires no changes to the application or the link-layer driver; you need only re-
run the LonTalk Interface Developer utility and recompile the application to run
with a ShortStack FX Micro Server.

iv

Although new API functionality, such as the version or echo functions, is not
available to unmodified existing applications, you can add these functions to
existing applications or create new applications to include this functionality.
Adding such new functionality to existing applications is optional.

Important: The LonTalk Compact API for ShortStack FX is substantially
different than the ShortStack 2 API; see Chapter 13, Converting a ShortStack 2
Application to a ShortStack FX Application, on page 257, for information about
how to convert a ShortStack 2 application to use the ShortStack FX LonTalk
Compact API.

ShortStack User’s Guide

The appendix, Neuron C Syntax for the Model File, has been deleted. All of the
Neuron C syntax is described in the Neuron C Reference Guide. Chapter 8,
Creating a Model File, on page 115, describes how to use the Neuron C
programming language to create a mode file. See the Neuron C Reference Guide
for detailed Neuron C language syntax.

The appendix, LonTalk Interface Developer Utility Error and Warning Messages,
has been deleted. The error codes for the LonTalk Interface Developer utility
have been moved to the Neuron Tools Errors Guide (078-0402-01B) and have
been removed from the ShortStack FX User’s Guide.

What’s New for ShortStack 2.1
ShortStack 2.1 included many new features and functions compared with
ShortStack 2. This section describes some of the major new features and
functions of ShortStack 2.1.

LonTalk API

The ShortStack application programming interface (API) that was used by
ShortStack 2 has been replaced with a new LonTalk API. This API is a C
language interface that can be used by a LonTalk application to send and receive
network variable updates and LonTalk messages; two implementations are
available, a full version with support for up to 4096 network variables and a
compact version with support for up to 254 network variables. The compact
version is used by ShortStack 2.1, and the full version is used by the LonTalk
Platform for FTXL Transceivers. Together, they provide a simple migration path
and the opportunity for shared application code between ShortStack and FTXL
applications. Chapter 13, Converting a ShortStack 2 Application to a ShortStack
FX Application, on page 257, describes how to convert a ShortStack 2 application
to use the ShortStack 2.1 LonTalk Compact API.

LonTalk Interface Developer

The ShortStack Wizard has been enhanced, and is now known as the LonTalk
Interface Developer utility. The new tool includes several usability
improvements and a documented command-line interface for use with some
development platforms (such as the Eclipse IDE), or for automated, script-driven,
build processes. This utility is shared with the LonTalk Platform for FTXL
Transceivers, thus providing a compatible set of tools for developing ShortStack
and FTXL applications.

ShortStack User’s Guide v

Self-Installation Functions

Two new APIs have been added to support self-installation. One is a low-level
API that supports reading and writing the Smart Transceiver’s network
configuration. The other is an optional high-level API that supports the
Interoperable Self-Installation (ISI) protocol. These APIs build on the existing
ShortStack LonTalk Compact host API and therefore have minimal impact on
existing portions of the host API.

Support for 254 Network Variables and 127 Aliases

For FT 3120, FT 3150, PL 3150, or PL 3170 devices, ShortStack 2.1 supports up
to 254 network variables and up to 127 aliases, rather than the 62 maximum for
each that ShortStack 2 supported. There are minor changes to the host API for
this feature. The primary changes are a modification to the data structure used
to pass the network variable index from the host to the Micro Server and back, a
change to the initialization sequence, and a change to the link-layer protocol.
The device interface data is also updated to accommodate more than 62 network
variables.

This feature requires the use of a Micro Server with Neuron firmware version 16
(or later). The PL 3120 Smart Transceiver uses Neuron firmware version 14, and
is thus limited to 62 network variables and 62 aliases.

Changeable-Type NV Support

ShortStack 2.1 supports changeable network variable types as described in the
LONMARK® Application-layer Guidelines. This addition requires minor changes
to the host API. The LonTalk Interface Developer utility provides a new
LonNvDescription type definition in the ShortStackDev.h file, and generates the
network variable table accordingly in the ShortStackDev.c file. The new
definition is incompatible with ShortStack 2 applications.

Direct Memory Files

ShortStack 2.1 simplifies implementation of configuration properties within
configuration files by allowing a network management tool to access
configuration property files without having to implement a LONWORKS file
transfer protocol (LW-FTP) server on the device. ShortStack 2.1 allows a
ShortStack application to implement configuration properties within
configuration files, and exposes an interface that enables a network management
tool to use standard LonTalk memory read and write network management
messages to access the configuration properties. To support this access, a
window of the Smart Transceiver’s memory space is defined so that whenever a
Smart Transceiver receives a memory read or write network management
command that uses addresses within this window, the Micro Server routes it to
the application. This approach eliminates the need to implement the LONWORKS
file transfer protocol on most ShortStack devices, but requires some new code to
handle the read and write requests from the Micro Server. The LonTalk
Interface Developer utility generates this code automatically.

This feature requires the use of a Micro Server with Neuron firmware version 16
(or later). The PL 3120 Smart Transceiver uses Neuron firmware version 14, and
cannot use the direct memory files access method.

Host SI Data Storage

In ShortStack 2 applications, the device’s self-identification (SI) and self-
documentation (SD) data was transferred to the Micro Server during

vi

initialization, and was limited to the size of the Micro Server’s related buffer.
ShortStack 2.1 applications no longer transfer this data to the Micro Server, thus
allowing for simplified initialization, and fewer restrictions to the size of this
data. Code has been added to the ShortStack LonTalk Compact API to handle
the SI data read and write requests forwarded by the ShortStack Micro Server.

Uplink Reset Message

The reset message sent by the ShortStack Micro Server has been extended. The
new message reports link-layer protocol version 3 instead of 2, reports whether
the Micro Server is configured, provides a unique key for the specific version of
the Micro Server, reports the existence and state of an IO9 input, reports the last
reset cause, reports the last error logged, provides information about the Micro
Server’s capacity, and includes a flag to indicate whether the Micro Server is
initialized.

Configuration Property Arrays

ShortStack 2.1 supports implementing configuration property arrays.
Configuration property arrays are multi-dimensional configuration properties
that, as a unit, apply to a network variable or a functional block (or to multiple
network variables or functional blocks).

Support for Non-Volatile Data

Configuration property values, and values of network variables declared with the
eeprom modifier, must persist after resetting or power-cycling the device.
ShortStack 2.1 provides an improved API and framework to assist with the
implementation of persistent configuration property and network variable values.

Configuration Property and Network Variable Initializers

Configuration properties, and sometimes network variables, require well-defined
initial values. ShortStack 2.1 provides an improved application framework,
which includes fully and correctly initialized configuration properties and
network variables, thereby further simplifying the development of interoperable
ShortStack devices.

Custom Micro Servers

Users of the NodeBuilder® Development Tool or the Mini EVK Evaluation Kit
can create their own Micro Server to target a Smart Transceiver with a custom
hardware configuration.

Improved Diagnostics

ShortStack 2.1 simplifies debugging and diagnosing a new Micro Server,
especially while in quiet mode. This includes a combination of API, driver, Micro
Server, and documentation changes.

Example Ports

ShortStack 2.1 host API ports are provided as separate download packages,
rather than being included with the ShortStack Developer’s Kit. This change
allows examples to be delivered independently of the Developer’s Kit. The
ShortStack Developer’s Kit consists of the ShortStack firmware, ShortStack
LonTalk Compact API, LonTalk Interface Developer utility, and documentation.
Each example port consists of the port’s example serial driver, the ported host
API, one or more example applications, and documentation for the port.

ShortStack User’s Guide vii

Related Documentation
In addition to this manual, the ShortStack FX Developer’s Kit includes the
following manuals:

• Neuron C Programmer’s Guide (078-0002-02H). This manual describes
the key concepts of programming using the Neuron C programming
language and describes how to develop a LONWORKS application.

• Neuron C Reference Guide (078-0140-02F). This manual provides
reference information for writing programs that use the Neuron C
language.

• Neuron Tools Errors Guide (078-0402-01B). This manual describes error
codes issued by the Neuron C compiler and related development tools.

The ShortStack Developer’s Kit also includes the reference documentation for the
ShortStack LonTalk Compact API, which is delivered as a set of HTML files.

After you install the ShortStack software, you can view these documents from the
Windows Start menu: select Programs → Echelon ShortStack FX Developer’s Kit
→ Documentation, then select the document that you want to view.

In addition to the ShortStack Developer’s Kit, Echelon provides example ports for
selected host processors. These example ports include example implementations
of the serial driver, API callback handler routines, and one or more sample
applications. You can download these example ports from the Echelon
ShortStack Web site (www.echelon.com/shortstack). The following manual
describes the example port that is currently available:

• ShortStack FX ARM7 Example Port User’s Guide (078-0366-01B). This
manual describes the ShortStack FX ARM7 Example Port for an ARM7-
family microprocessor, the Atmel® ARM® AT91SAM7S64. The manual
also describes working with the example applications, which were built
with the IAR Embedded Workbench®.

The following manuals are available from the Echelon Web site
(www.echelon.com/docs) and provide additional information that can help you
develop applications for a ShortStack Micro Server:

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D). This
manual provides detailed technical specifications on the electrical
interfaces, mechanical interfaces, and operating environment
characteristics for the FT 3120® and FT 3150® Smart Transceivers.

• Introduction to the LONWORKS Platform (078-0183-01B). This manual
provides an introduction to the ISO/IEC 14908 (ANSI/CEA-709.1 and
EN14908) Control Network Protocol, and provides a high-level
introduction to LONWORKS networks and the tools and components that
are used for developing, installing, operating, and maintaining them.

• ISI Programmer's Guide (078-0299-01F). Describes how you can use the
Interoperable Self-Installation (ISI) protocol to create networks of control
devices that interoperate, without requiring the use of an installation
tool. Also describes how to use Echelon's ISI Library to develop devices
that can be used in both self-installed as well as managed networks.

http://www.echelon.com/shortstack
http://www.echelon.com/docs

viii

• ISI Protocol Specification (078-0300-01F). Describes the Interoperable
Self-Installation (ISI) protocol, which is a protocol used to create
networks of control devices without requiring the use of an installation
tool.

• LONMARK® Application Layer Interoperability Guidelines. This manual
describes design guidelines for developing applications for open
interoperable LONWORKS devices, and is available from the LONMARK
Web site, www.lonmark.org.

• LonMaker User's Guide (078-0333-01A). This manual describes how to
use the Turbo edition of the LonMaker® Integration Tool to design,
commission, monitor and control, maintain, and manage a network.

• NodeBuilder® FX User’s Guide (078-0405-01A). This manual describes
how to develop a LONWORKS device using the NodeBuilder tool.

You can use the NodeBuilder FX Development Tool to create a model file
for a ShortStack application. See Chapter 8, Creating a Model File, on
page 115, for more information about model files. You can also use the
NodeBuilder FX Development Tool to create a custom ShortStack Micro
Server. See Chapter 12, Custom Micro Servers, on page 241, for more
information about custom Micro Servers. Most ShortStack developers
will not need to create a custom ShortStack Micro Server.

• Mini FX User’s Guide (078-0398-01A). This manual describes how to use
the Mini FX Evaluation Kit. You can use the Mini kit to develop a
prototype or production control system that requires networking, or to
evaluate the development of applications for such control networks using
the LONWORKS platform.

You can also use the Mini FX Evaluation Kit to create a custom
ShortStack Micro Server. See Chapter 12, Custom Micro Servers, on
page 241, for more information about custom Micro Servers. Most
ShortStack developers will not need to create a custom ShortStack Micro
Server.

• PL 3120 / PL 3150 / PL 3170 Power Line Smart Transceiver Data Book
(005-0193-01A). This manual provides detailed technical specifications
on the electrical interfaces, mechanical interfaces, and operating
environment characteristics for the PL 3120, PL 3150, and PL 3170™
Smart Transceivers.

• Series 5000 Chip Data Book (005-0199-01A). This manual provides
detailed specifications on the electrical interfaces, mechanical interfaces,
and operating environment characteristics for the FT 5000 Smart
Transceiver and Neuron 5000 Processor.

All of the ShortStack documentation, and related product documentation, is
available in Adobe® PDF format. To view the PDF files, you must have a current
version of the Adobe Reader®, which you can download from Adobe at:
www.adobe.com/products/acrobat/readstep2.html.

As you create your serial driver for communications between your host processor
and the ShortStack Micro Server, you will need to be familiar with either the SCI

http://www.lonmark.org/
http://www.adobe.com/products/acrobat/readstep2.html

ShortStack User’s Guide ix

or SPI interface standard. You will find having an appropriate reference for the
interface helpful. Likewise, you should have documentation for your host
processor and development environment available.

x

ShortStack User’s Guide xi

Table of Contents
Welcome...iii
Audience ..iii
What’s New for ShortStack FX ..iii
What’s New for ShortStack 2.1 .. iv
Related Documentation ...vii

Chapter 1. Introduction to ShortStack.. 1
Overview... 2

A LONWORKS Device with a Single Processor Chip 3
A LONWORKS Device with Two Processor Chips 4

LonTalk Platform for FTXL Transceivers....................................... 5
LonTalk Platform for ShortStack Micro Servers 6

Comparing Neuron Hosted, FTXL, and ShortStack Devices 8
Requirements and Restrictions for ShortStack ... 10
Development Tools for ShortStack ... 10
Selecting a Host Processor... 11
ShortStack Architecture .. 12

The ShortStack Micro Server ... 12
The ShortStack Serial Driver ... 13

SCI Architecture ... 13
SPI Architecture.. 14

The ShortStack LonTalk Compact API.. 15
Overview of the ShortStack Development Process 15

Chapter 2. Getting Started with ShortStack .. 19
ShortStack Developer’s Kit Overview... 20
Installing the ShortStack Developer’s Kit.. 20
ShortStack LonTalk Compact API Files .. 21
Standard ShortStack Micro Server Firmware Images.............................. 22
LonTalk Interface Developer... 25

Chapter 3. Selecting and Creating a ShortStack Micro Server...................... 27
Overview... 28
Selecting the Micro Server Hardware .. 28

Micro Server Clock Rate ... 29
Micro Server Memory Map ...29
Development Device Type... 30

Preparing the ShortStack Micro Server ... 31
Firmware Image File Names .. 33
Loading an FT 3120, PL 3120, or PL 3170 Smart Transceiver.......... 34
Loading an FT 3150 or PL 3150 Smart Transceiver........................... 34

Loading a Blank Application.. 35
Loading an FT 5000 Smart Transceiver .. 35
Using a Network Management Tool for In-Circuit Programming 36

Using the NodeLoad Utility with ShortStack............................... 37
Using the LonMaker Integration Tool with ShortStack 38

Working with FT 5000 EVB Evaluation Boards 39
General Jumper Settings for the FT 5000 EVB............................ 40
Using the Gizmo Interface (SCI or SPI) .. 41
Using the EIA-232 Interface (SCI)... 45
Clearing the Non-Volatile Memory.. 47
Using a Logic Analyzer... 49

xii

Working with Mini EVB Evaluation Boards 49
Using the Gizmo Interface (SCI).. 50
Using the EIA-232 Interface (SCI)... 52

Working with Pyxos FT EV Pilot Evaluation Boards 54
ShortStack Device Initialization... 57
Using the ShortStack Micro Server Key .. 58

Chapter 4. Selecting the Host Processor ... 61
Selecting a Host Processor... 62

Serial Communications ... 62
Byte Orientation.. 62
Processing Power ... 63
Volatile Memory .. 63
Modifiable Non-Volatile Memory ... 63
Compiler and Application Programming Language............................ 64

Selecting the Application Development Environment 64
Chapter 5. Designing the Hardware Interface ... 65

Overview of the Hardware Interface .. 66
Reliability... 66
Serial Communication Lines .. 66
The RESET~ Pin ... 67
Using the IO9 Pin.. 68
Selecting the Link-Layer Bit Rate.. 68
Host Latency Considerations..70

SCI Interface .. 71
ShortStack Micro Server I/O Pin Assignments for SCI 72
Setting the SCI Bit Rate ... 73
SCI Communications Interface .. 74
SCI Micro Server to Host (Uplink) Control Flow 75
SCI Host to Micro Server (Downlink) Control Flow............................ 75

SPI Interface... 76
ShortStack Micro Server I/O Pin Assignments for SPI 76
Setting the SPI Bit Rate ... 77
SPI Communications Interface... 79
SPI Micro Server to Host Control Flow (MOSI) 80
SPI Host to Micro Server Control Flow (MISO) 81
SPI Resynchronization..82

Performing an Initial Micro Server Health Check 82
Chapter 6. Creating a ShortStack Serial Driver .. 89

Overview of the ShortStack Serial Driver.. 90
Role of the ShortStack LonTalk Compact API... 92
Role of the ShortStack Serial Driver .. 92
Interface to the ShortStack LonTalk Compact API................................... 92
Creating an SCI ShortStack Driver.. 93

SCI Uplink Operation ... 93
SCI Downlink Operation... 95
Example: Network Variable Fetch .. 99

Creating an SPI ShortStack Driver .. 99
SPI Uplink Operation..100
SPI Downlink Operation...101

Transmit and Receive Buffers... 104
Link-Layer Error Detection and Recovery ... 104

ShortStack User’s Guide xiii

Loading the ShortStack Application into the Host Processor................. 105
Performing an Initial Host Processor Health Check 105

Chapter 7. Porting the ShortStack LonTalk Compact API109
Portability Overview.. 110

Bit Field Members ...111
Enumerations ..112
LonPlatform.h..113
Testing the Ported API Files .. 114

Chapter 8. Creating a Model File ...115
Model File Overview ..116
Defining the Device Interface.. 117

Defining the Interface for a ShortStack Application......................... 117
Choosing the Data Type ... 118

Defining a Functional Block ... 119
Declaring a Functional Block... 120

Defining a Network Variable..120
Defining a Changeable-Type Network Variable 122

Defining a Configuration Property...124
Declaring a Configuration Property .. 124
Responding to Configuration Property Value Changes.............. 126
Defining a Configuration Property Array 126
Sharing a Configuration Property ...129
Inheriting a Configuration Property Type 130

Declaring a Message Tag .. 132
Defining a Resource File ...132

Implementation-Specific Scope Rules.. 134
Writing Acceptable Neuron C Code .. 135

Anonymous Top-Level Types ..135
Legacy Neuron C Constructs ..136

Using Authentication...136
Specifying the Authentication Key... 136
How Authentication Works...137

Example Model files...138
Simple Network Variable Declarations ... 139
Network Variables Using Standard Types ..139
Functional Blocks without Configuration Properties 140
Functional Blocks with Configuration Network Variables............... 141
FBs with CPs Implemented in a Configuration File......................... 142

Chapter 9. Using the LonTalk Interface Developer Utility...........................145
Running the LonTalk Interface Developer...146

Specifying the Project File .. 146
Specifying the Micro Server.. 147
Specifying System Preferences ... 147
Specifying the Device Program ID ... 148
Specifying the Model File..148
Specifying Neuron C Compiler Preferences....................................... 149
Specifying Code Generator Preferences... 149
Compiling and Generating the Files ..150

Using the LonTalk Interface Developer Files .. 150
Copied Files..151
LonNvTypes.h and LonCpTypes.h ...152

xiv

ShortStackDev.h.. 152
ShortStackDev.c .. 152
project.xif and project.xfb.. 153

Using Types ..154
Floating Point Variables ...155

Network Variable and Configuration Property Declarations 156
Constant Configuration Properties...159
The Network Variable Table ... 160

Network Variable Attributes ..161
The Message Tag Table ...162

Chapter 10. Developing a ShortStack Application ..163
Overview of a ShortStack Application.. 164

Using the ShortStack LonTalk Compact API.................................... 164
Using the LonTalk Compact API in Multiple Contexts.................... 167

Tasks Performed by a ShortStack Application .. 167
Initializing the ShortStack Device ... 169
Periodically Calling the Event Handler... 170
Sending a Network Variable Update ...171
Receiving a Network Variable Update from the Network................ 174
Handling a Network Variable Poll Request from the Network........ 176
Handling Changes to Changeable-Type Network Variables 176

Validating a Type Change ..177
Processing a Type Change..178
Processing a Size Change ...179
Rejecting a Type Change .. 180

Communicating with Devices Using Application Messages............. 181
Sending an Application Message to the Network 182
Receiving an Application Message from the Network................ 183

Handling Management Tasks and Events...184
Handling Local Network Management Tasks 184
Handling Reset Events..186
Querying the Error Log...187

Reinitializing the ShortStack Micro Server ... 188
Using Direct Memory Files..189

The DMF Memory Window... 190
File Directory ... 192

Providing Persistent Storage for Non-Volatile Data 192
DMF Memory Drivers ... 192
CPNV and EEPROM NV .. 193
Application Start-Up and Failure Recovery 194

Application Migration: Series 3100 to Series 5000.................................. 195
Chapter 11. Developing a ShortStack Application with ISI..........................197

Overview of ISI...198
Using ISI in a ShortStack Application ... 199

Running ISI on a 3120 Device ..199
Running ISI on a 3150 Device ..200
Running ISI on a PL 3170 Device .. 200
Running ISI on an FT 5000 Device .. 200

Tasks Performed by a ShortStack ISI Application 200
Starting and Stopping ISI...201
Implementing a SCPTnwrkCnfg Configuration Property 201
Managing the Network Address...202

ShortStack User’s Guide xv

Supporting a Pre-Defined Domain...203
Acquiring a Domain from a Domain Address Server 204
Fetching a Device from a Domain Address Server 205
Fetching a Domain for a Domain Address Server205

Managing Network Variable Connections ... 206
ISI Connection Model ... 206
Opening Enrollment ... 209
Receiving an Invitation... 216
Accepting a Connection Invitation... 218
Implementing a Connection ... 220

Canceling a Connection...221
Deleting a Connection ...222
Handling ISI Events.. 222
Domain Address Server Support ..226
Discovering Devices... 226

Maintaining a Device Table within the Micro Server 226
Maintaining a Device Table within a Host Application 231

Recovering Connections .. 233
Example 1: Custom Micro Server Implementation 234
Example 2: Host Implementation .. 236

Deinstalling a Device...237
Comparing ISI for ShortStack and Neuron C .. 238

Chapter 12. Custom Micro Servers ..241
Overview...242
Custom Micro Server Benefits and Restrictions...................................... 242
Configuring and Building a Custom Micro Server 243

Overview of Custom Micro Server Development............................... 245
Creating a Custom Micro Server without ISI Support 246
Creating a Custom Micro Server with ISI Support........................... 248

Configuring MicroServer.h for ISI ...251
Configuring ShortStackIsiHandlers.h... 251
Implementing ISI in MicroServerIsiHandlers.c 252

Using a Custom Micro Server ...253
Supporting Direct Memory Files... 253
Managing Memory ... 254

Address Table .. 255
Alias Table ...255
Domain Table...256
Network Variable Configuration Table.. 256

Chapter 13. Converting a ShortStack 2 Application to a ShortStack FX.....257
Overview...258
Reorganization of API Files... 259
Support for Added Features .. 260
New API Naming Conventions ... 260
Improved Portability Support ...261
Recommended Migration Process ... 261
Modifying the Serial Driver...262
Example Conversion ..262

Changes within the Nios II IDE... 262
Changes to the Serial Driver .. 263

ldvintfc.h..264
ldvqueue.h ...264

xvi

ldvsci.h ...265
ldvintfc.c ..265
ldvqueue.c ..267
ldvsci.c..267

Changes to the Application... 268
main.c...269
Callback Handler Functions...269

Additional Recommended Changes.. 271
Modify the Model File ... 271
Add Range and Error Checking ... 271
Add Timeout Detection... 272

Appendix A. LonTalk Interface Developer Command Line Usage275
Overview...276
Command Usage ..276
Command Switches..277

Appendix B. Model File Compiler Directives...281
Using Model File Compiler Directives.. 282
Acceptable Model File Compiler Directives.. 282

Appendix C. ShortStack LonTalk Compact API ..287
Introduction.. 288
Changes to the API .. 288

ShortStack FX Naming Conventions ... 288
Customizing the API..290
API Memory Requirements ...290
The LonTalk Compact API and Callback Handler Functions 290

ShortStack LonTalk Compact API Functions 291
Commonly Used Functions...291
Other Functions ..291
Application Messaging Functions .. 292
Network Management Query Functions 292
Network Management Update Functions 293
Local Utility Functions ... 294

ShortStack Callback Handler Functions ... 295
Commonly Used Callback Handler Functions 296
Application Messaging Callback Handler Functions 297
Network Management Query Callback Handler Functions 298
Local Utility Callback Handler Functions 299

Appendix D. ShortStack ISI API ..301
Introduction.. 302
The ShortStack ISI API...302
The ShortStack ISI Callback Handler Functions 307

Appendix E. Downloading a ShortStack Application over the Network.......317
Overview...318
Custom Host Application Download Protocol .. 318
Upgrading Multi-Processor Devices ... 319
Application Download Utility..321
Download Capability within the Application ... 321

ShortStack User’s Guide xvii

Glossary...323
Index..327

ShortStack User’s Guide 1

1

Introduction to ShortStack

This chapter introduces the LonTalk Platform for
ShortStack Micro Servers. It describes the architecture of a
ShortStack device, the requirements and restrictions of a
ShortStack Micro Server, and the ShortStack products that
are available from Echelon.

2 Introduction to ShortStack

Overview
Automation solutions for buildings, homes, and industrial applications include
sensors, actuators, and control systems. A LONWORKS network is a peer-to-peer
network that uses an industry-standard control network protocol for monitoring
sensors, controlling actuators, communicating with devices, and managing
network operation. In short, a LONWORKS network provides communications and
complete access to control network data from any device in the network.

The communications protocol used for LONWORKS networks is the ISO/IEC 14908
(ANSI/CEA 709.1-B and EN14908.1) Control Network Protocol. This protocol is
an international standard seven-layer protocol that has been optimized for
control applications, and is based on the Open Systems Interconnection (OSI)
Basic Reference Model (the OSI Model, ISO standard 7498-1). The OSI Model
describes computer network communications through the seven abstract layers
described in Table 1. The implementation of these layers in a LONWORKS device
provides standardized interconnectivity for devices within a LONWORKS network.

Table 1. LONWORKS Network Protocol Layers

OSI Layer Purpose Services Provided

7 Application Application compatibility Network configuration, self-installation,
network diagnostics, file transfer,
application configuration, application
specification, alarms, data logging,
scheduling

6 Presentation Data interpretation Network variables, application messages,
foreign frame transmission

5 Session Control Request/response, authentication

4 Transport End-to-end
communication reliability

Acknowledged and unacknowledged
message delivery, common ordering,
duplicate detection

3 Network Destination addressing Unicast and multicast addressing,
routers

2 Data Link Media access and framing Framing, data encoding, CRC error
checking, predictive carrier sense
multiple access (CSMA), collision
avoidance, priority, collision detection

1 Physical Electrical interconnect Media-specific interfaces and modulation
schemes

Echelon’s implementation of the ISO/IEC 14908 Control Network Protocol is
called the LonTalk protocol. Echelon has implementations of the LonTalk
protocol in several product offerings, including the Neuron firmware (which is
included in a ShortStack Micro Server), LNS® Server, LNS remote client, i.LON®
SmartServers, and the FTXL LonTalk protocol stack. This document refers to

ShortStack User’s Guide 3

the ISO/IEC 14908 Control Network Protocol as the “LonTalk protocol”, although
other interoperable implementations exist.

A LONWORKS Device with a Single Processor Chip
A basic LONWORKS device consists of four primary components:

1. An application processor that implements the application layer, or both
the application and presentation layers, of the LonTalk protocol

2. A protocol engine that implements layers 2 through 5 (or 2 through 7) of
the LonTalk protocol

3. A network transceiver that provides the physical interface for the
LONWORKS network communications media, and implements the physical
layer of the LonTalk protocol

4. Circuitry to implement the device I/O

These components can be combined in a physical device. For example, Echelon’s
Smart Transceiver product can be used as a single-chip solution that combines all
four components in a single chip. When used in this way, the Smart Transceiver
runs the device’s application, implements the LonTalk protocol, and interfaces
with the physical communications media through a transformer. Figure 1 on
page 4 shows the seven-layer LonTalk protocol on a single Neuron Chip or Smart
Transceiver.

A LONWORKS device that uses a single processor chip is called a Neuron hosted
device, which means that the Neuron based processor (the Smart Transceiver)
runs both the application and the LonTalk protocol.

4 Introduction to ShortStack

Figure 1. A Single-Chip LONWORKS Device

For a Neuron hosted device that uses a Neuron Chip or Smart Transceiver, the
physical layer (layer 1) is handled by the Neuron Chip or Smart Transceiver.
The middle layers (layers 2 through 6) are handled by the Neuron firmware. The
application layer (layer 7) is handled by your Neuron C application program. You
create the application program using the Neuron C programming language with
either the NodeBuilder® FX Development Tool or the Mini FX Evaluation Kit.

A LONWORKS Device with Two Processor Chips
Some LONWORKS devices run applications that require more memory, I/O, or
processing capabilities than a single Neuron Chip or Smart Transceiver can
provide. Other LONWORKS devices are implemented by adding a transceiver to
an existing processor and application. For these applications, the device uses two
processor chips working together:

• An Echelon Smart Transceiver

• A microprocessor, microcontroller, or embedded processor in a field-
programmable gate array (FPGA) device, typically called the host
processor

A LONWORKS device that uses two processor chips is called a host-based device,
which means that the device includes a Smart Transceiver plus a host processor.

Compared to the single-chip device, the Smart Transceiver implements only a
subset of the LonTalk protocol layers. The host processor implements the
remaining layers and runs the device’s application program. The Smart

ShortStack User’s Guide 5

Transceiver and the host processor communicate with each other through a link-
layer interface.

For a single-chip, Neuron hosted, device you write the application program in
Neuron C. For a host-based device, you write the application program in ANSI C,
C++, or other high-level language, using a common application framework and
application programming interface (API). This API is called the LonTalk API. In
addition, for a host-based device, you select a suitable host processor and use the
host processor’s application development environment, rather than the
NodeBuilder Development Tool or the Mini kit application, to develop the
application.

Echelon provides the following solutions for creating host-based LONWORKS
devices:

• The LonTalk Platform for FTXL™ Transceivers

• The LonTalk Platform for ShortStack Micro Servers

LonTalk Platform for FTXL Transceivers
The LonTalk Platform for FTXL Transceivers is a set of development tools, APIs,
firmware, and chips for developing host-based LONWORKS devices that use the
LonTalk API and an FTXL Transceiver.

An FTXL Transceiver is an FT 3190 Transceiver with firmware that implements
the data link layer (layer 2) of the LonTalk protocol, as shown in Figure 2 on page
6. The host processor implements the remaining layers (layers 3 to 7). Included
with the FTXL development tools is the FTXL LonTalk protocol stack, which
implements layers 3 to 6 of the LonTalk protocol and runs on the host processor.
Your application implements the application layer (layer 7).

For an FTXL device, you use an Altera® Nios® II processor as the host processor
for your device’s application and I/O. The Nios II processor typically runs on an
Altera Cyclone® II or Cyclone III FPGA device. The FTXL LonTalk protocol stack
implements layers 3 to 6 of the LonTalk protocol, and the FTXL Transceiver
implements layers 1 and 2, including the physical interface for the LONWORKS

communications channel.

The FTXL LonTalk protocol stack includes a communications interface driver for
the parallel link layer that manages communications between the FTXL LonTalk
protocol stack within the Nios II host processor and the FTXL Transceiver. You
need to include the physical implementation of the parallel link layer in your
FTXL device design. However, you do not need to provide the software
implementation of the parallel interface driver because it is included with the
FTXL LonTalk protocol stack, nor can you modify the Echelon-provided
implementation.

For FTXL device development, you use a C or C++ compiler that supports the
Nios II processor. You use the Echelon LonTalk Interface Developer utility to
create the application framework. Your application uses an ANSI C API, the
Echelon LonTalk API, to manage communications with the FTXL LonTalk
protocol stack, FTXL Transceiver, and devices on the LONWORKS network.

Using an FTXL Transceiver, it is easy to add LONWORKS networking to a high-
performance FPGA-based smart device.

6 Introduction to ShortStack

Figure 2. An FTXL Device

LonTalk Platform for ShortStack Micro
Servers
The LonTalk Platform for ShortStack Micro Servers is a set of development tools,
APIs, and firmware for developing host-based LONWORKS devices that use the
LonTalk Compact API and a ShortStack Micro Server.

A ShortStack Micro Server is a Smart Transceiver with firmware, the ShortStack
firmware, that implements layers 2 to 5 (and part of layer 6) of the LonTalk
protocol, as shown in Figure 3 on page 7. The host processor implements the
application layer (layer 7) and part of the presentation layer (layer 6).

The ShortStack firmware allows you to use almost any host processor for your
device’s application and I/O. The Smart Transceiver provides the physical
interface for the LONWORKS communications channel.

A simple serial communications interface provides communications between the
ShortStack Micro Server and the host processor. Because a ShortStack Micro
Server can work with any host processor, you must provide the serial driver

ShortStack User’s Guide 7

implementation, although Echelon does provide the serial driver API and an
example driver for a specific host processor. Currently, an example driver is
available for an Atmel ARM7 microprocessor.

For ShortStack device development, you use the C programming language1. As
with FTXL development, you use the Echelon LonTalk Interface Developer utility
to create the application framework. Your application uses an ANSI C API, the
Echelon LonTalk Compact API, to manage communications with the ShortStack
Micro Server and devices on the LONWORKS network.

Using a ShortStack Micro Server makes it easy to add LONWORKS networks to
any new or existing smart device.

Figure 3. A ShortStack Device

1 For ShortStack device development, you could alternatively use any standard programming
language supported by the host processor if you also port the LonTalk Compact API and the
application framework generated by the LonTalk Interface Developer utility to that language.

8 Introduction to ShortStack

Comparing Neuron Hosted, FTXL, and ShortStack
Devices

Table 2 compares some of the key characteristics of the Neuron hosted and host-
based solutions for LONWORKS devices.

Table 2. Comparing Neuron Hosted and Host-Based Solutions for LONWORKS Devices

Characteristic

Neuron
Hosted
Solution FTXL Solution ShortStack Solution

Maximum number of
network variables

254 or 62 [1] 4096 254, 120, or 62 [2]

Maximum number of
aliases

127 or 62 [1] 8192 127, 75, or 62 [2]

Maximum number of
addresses

15 4096 15

Maximum number of
dynamic network
variables

0 4096 0

Maximum number of
receive transaction
records

16 200 16

Maximum number of
transmit transaction
records

2 2500 2

Support for the
LonTalk Extended
Command Set

No Yes [3] No

File access methods
supported

LW-FTP [4],
DMF[5,6]

LW-FTP [4], DMF [5] LW-FTP [4], DMF[5,6]

Link-layer type N/A 11-line parallel I/O [7] 4- or 5-line SCI
or
6- or 7-line SPI

Typical host API
runtime footprint

N/A 540 KB (includes
LonTalk protocol
stack, but does not
include the
application or
operating system)

5-6 KB code with 1 KB
RAM (includes serial
driver, but does not
include optional API or ISI
API)

ShortStack User’s Guide 9

Host processor type N/A Altera Nios II
embedded processor

Most 8-, 16-, 32-, or 64-bit
microprocessors or
microcontrollers

Application
development language

Neuron C ANSI C or C++ for the
Nios II processor

Most standard
programming languages
(typically ANSI C)

Notes:

1. Neuron Chips and Smart Transceivers with firmware version 16 and later support
up to 254 network variables and up to 127 aliases. Neuron Chips and Smart
Transceivers with firmware version 15 and earlier are limited to 62 network
variables and 62 aliases. Although these limits are architectural maxima, they are
subject to available resources (EEPROM, RAM).

2. ShortStack Micro Servers running on FT 3120, FT 3150, FT 5000, PL 3150, or PL
3170 Smart Transceivers support up to 254 network variables and up to 127 aliases.
However, ISI-enabled ShortStack Micro Servers running on PL 3170 Smart
Transceivers only support up to 120 network variables and up to 75 aliases.
ShortStack Micro Servers running on PL 3120 Smart Transceivers support up to 62
network variables and up to 62 aliases.

3. See the Control Network Protocol Specification, ISO/IEC 14908, for more
information about the extended command set (ECS) network management
commands.

4. An implementation of the LONWORKS file transfer protocol (LW-FTP) is not provided
with the product.

5. For more information about the direct memory file (DMF) access method, see Using
Direct Memory Files on page 189.

6. Neuron firmware version 16 or later is required to support direct memory file (DMF)
access method for either Neuron hosted or ShortStack devices. The PL 3120 Smart
Transceiver uses Neuron firmware version 14, and cannot use the direct memory
files access method; consider using the PL 3170 Smart Transceiver. Also, older FT
3120 Smart Transceivers use version 13 firmware; consider using a newer (RoHS-
compliant) FT 3120 Smart Transceiver, which uses version 16 firmware.

7. The FTXL parallel I/O link-layer driver is included with the FTXL LonTalk protocol
stack.

The FTXL solution provides the best performance and highest network capacity,
but is limited using to an Altera Nios II host processor and the TP/FT-10 channel.
The ShortStack solution provides support for any host processor (with an
available example for an Atmel ARM7 host processor), and supports both the
TP/FT-10 and PL-20 channels.

Because the ShortStack and FTXL solutions are both built on the LonTalk
platform, they share a very similar API (the FTXL LonTalk API and the
ShortStack LonTalk Compact API). Thus, migrating applications from one
solution to the other is fairly easy. In addition, you can create applications that
share a common code base for devices that use both solutions.

10 Introduction to ShortStack

Requirements and Restrictions for ShortStack
The host processor for a ShortStack device can be an 8-, 16-, 32-, or 64-bit
microprocessor, microcontroller, or embedded processor implemented in an FPGA
device. The ShortStack LonTalk Compact API and serial driver typically require
about 6 KB of program memory on the host processor (approximately 2 KB for
the API and 3 to 4 KB for the serial driver) and less than 1 KB of RAM. There is
no requirement for additional non-volatile memory unless you choose to
implement non-volatile interfaces in your application.

The ShortStack FX firmware requires a Smart Transceiver with a minimum of 4
KB of application memory and 2 KB of RAM. The ShortStack Developer’s Kit
includes a variety of standard Micro Server images, which support FT 3120, FT
3150, FT 5000, PL 3120, PL 3150, and PL 3170 Smart Transceivers in various
configurations. You can create a custom Micro Server to support other hardware
configurations for these Smart Transceivers or to provide support for the Neuron
5000 Processor. ShortStack does not support the FTXL 3190 Free Topology
Transceiver.

The interface between your host processor and the ShortStack Micro Server can
be the asynchronous Serial Communications Interface (SCI) or the synchronous
Serial Peripheral Interface (SPI). The speed of the interface depends both on the
type of serial interface and the clock speed of the ShortStack Micro Server:

• The highest bit rate for the SCI interface is approximately 1.2 Mbps for a
ShortStack Micro Server running on an FT 5000 Smart Transceiver with
an 80 MHz system clock.

• The highest bit rates for the SPI interface are approximately 906 kbps
uplink and 690 kbps downlink for a ShortStack Micro Server running on
an FT 5000 Smart Transceiver with an 80 MHz system clock.

The interface rate scales with the ShortStack Micro Server system clock. See
Setting the SCI Bit Rate on page 73 and Setting the SPI Bit Rate on page 77.

Note that some Micro Servers might be feature-restricted. For example, the ISI-
enabled standard Micro Server for the PL 3170 Smart Transceiver supports only
the SCI interface at 38400 bps.

The ShortStack Micro Server can support up to 254 network variables in your
ShortStack application. You can implement configuration properties as
configuration network variables or in configuration files. To access the
configuration files, you can implement the LONWORKS file transfer protocol (LW-
FTP), or, when possible, have the network management tool use standard
memory read and write messages for minimum overhead on your device, using
the direct memory file (DMF) access method. However, because DMF supports
only a finite-sized memory window, you must implement LW-FTP if the total size
of all files and the directory exceeds the window’s size. In addition, the Micro
Server Neuron firmware must be version 16 or later to use the direct memory file
access method.

Development Tools for ShortStack
To develop an application for a device that uses a ShortStack Micro Server, you
need a development system for your host processor. In addition, you need the
ShortStack Developer’s Kit, which includes:

ShortStack User’s Guide 11

• The ShortStack LonTalk Compact API

• ShortStack firmware for creating a PL-20 power line or TP/FT-10 free
topology twisted pair ShortStack Micro Server using a Smart
Transceiver (you can also create a custom Micro Server for the Neuron
5000 Processor)

• The LonTalk Interface Developer utility for defining the interface for
your ShortStack device and generating the application framework

In addition to the ShortStack Developer’s Kit, you can download example ports
for selected host processors. These example ports include example
implementations of the serial driver, API callback handler routines, and one or
more sample applications. Currently, an example driver is available for an
Atmel ARM7 microprocessor.

You can create a ShortStack device that installs itself using the Interoperable
Self-Installation (ISI) protocol, or you can create a device that is installed with a
network management tool. You can also create a device that supports both
installation methods, that is, you can create a device that installs itself in self-
installed networks, or is installed by a network management tool in a managed
network.

For installation into a managed network, you can use the LonMaker Integration
Tool, or another tool that can install and monitor LONWORKS devices. See the
LonMaker User's Guide for more information about the LonMaker tool.
However, if your ShortStack device supports the Interoperable Self-Installation
(ISI) protocol, you might not need a network management tool.

You do not need the NodeBuilder Development Tool to use the ShortStack FX
Developer's Kit; however, the NodeBuilder Code Wizard that is included with the
NodeBuilder Development Tool, version 3 or later, can help you develop your
model file. The model file is used to define the device’s interoperable interface.

The ShortStack Developer’s Kit includes pre-built Micro Server images for a
variety of hardware and buffer configurations. You can use the NodeBuilder
Development Tool to create a custom Micro Server image to support different
hardware or buffer configurations. Most standard hardware is compatible with
one of the standard Micro Server images that are supplied with ShortStack FX,
and do not require either the NodeBuilder Development Tool or the Mini kit.

For diagnosing and troubleshooting, the LonScanner™ protocol analyzer is
highly recommended for most LONWORKS developers. The LonScanner protocol
analyzer collects and displays low-level protocol packets, and often provides
important diagnostics.

Selecting a Host Processor
Although ShortStack supports almost any microprocessor for the host processor,
there are certain requirements and considerations for a ShortStack host
processor that apply if you are choosing a processor or development tool for a new
ShortStack device, or if you are assessing the applicability of existing hardware
or of previously acquired development tools. See Chapter 4, Selecting the Host
Processor, on page 61, for a description of these requirements and considerations.

12 Introduction to ShortStack

ShortStack Architecture
A ShortStack device consists of the following components:

1. The ShortStack Micro Server running the ShortStack firmware

2. An SCI or SPI serial driver for the host processor

3. The ShortStack LonTalk Compact API for the host processor

4. A ShortStack application that uses the ShortStack LonTalk Compact API

Figure 4 shows the basic software architecture of a ShortStack device.

Host Application

Serial Driver

ShortStack Firmware

LONWORKS Network

Transceiver
Interface

API
Interface

SCI or SPI
Interface

ShortStack LonTalk Compact API

Host Microprocessor

ShortStack
Micro Server

Figure 4. ShortStack Architecture

The ShortStack Micro Server
A ShortStack Micro Server consists of the ShortStack firmware running in an
Echelon Smart Transceiver. The ShortStack Micro Server implements layers 1-6
of the LonTalk protocol. You can create a ShortStack Micro Server by loading a
ShortStack firmware image into an Echelon Smart Transceiver. For example,
Figure 5 on page 13 shows an Echelon PL 3120 Smart Transceiver, a PL 3150
Smart Transceiver, and an FT 3120 Smart Transceiver with an FT-X1
Communication Transformer – all of which can be used to create a ShortStack
Micro Server.

ShortStack User’s Guide 13

Figure 5. ShortStack Components

The ShortStack Micro Server communicates with the host processor using either
the SCI or the SPI interface. The ShortStack SCI interface is a half-duplex
asynchronous serial interface with 1 start bit, 8 data bits, and 1 stop bit (least
significant bit first). The ShortStack SPI interface is a half-duplex synchronous
serial interface between the ShortStack Micro Server and the host processor,
where the Micro Server is the SPI master.

The ShortStack Serial Driver
The ShortStack serial driver provides the hardware-specific interface between
the ShortStack LonTalk Compact API and ShortStack Micro Server. The serial
driver manages data exchange between the host processor and the ShortStack
Micro Server. You must create the serial driver that resides on the host
microprocessor, or use one of the available example drivers. An example driver is
available for an ARM7 host processor, the Atmel ARM AT91SAM7S64
microprocessor. You can use or modify this driver, or create your own driver for a
different processor.

SCI Architecture
The SCI interface is an asynchronous serial interface, similar to the EIA-232
standard interface, as shown in Figure 6 on page 14. Standard UART or USART
hardware and software support is generally sufficient to implement this link.

See SCI Interface on page 71 for more information about the SCI interface for
ShortStack devices.

14 Introduction to ShortStack

Figure 6. SCI Architecture for a ShortStack Device

SPI Architecture
The SPI interface is a synchronous serial interface, where the Micro Server acts
as the master, as shown in Figure 7 on page 15. Although most ShortStack
devices use the SCI interface because of the need for fewer I/O lines for the
synchronous link, and because the requirements for the SPI driver are more
complex, the SPI interface can nonetheless be useful if all SCI resources on the
host processor are already in use.

See SPI Interface on page 76 for more information about the SPI interface for
ShortStack devices.

ShortStack User’s Guide 15

Figure 7. SPI Architecture for a ShortStack Device

The ShortStack LonTalk Compact API
The ShortStack Developer's Kit includes source code for the ShortStack LonTalk
Compact API that you compile and link with your application. This API defines
the functions that your application calls to communicate with other devices on a
LONWORKS network. The API code is written in ANSI C. You might need to port
the code for your host processor if an ANSI C compiler is not available.

The ShortStack LonTalk Compact API consists of the following:

• A service to initialize the ShortStack device after each reset.

• A service that the application must call periodically. This service
processes messages pending in any of the data queues.

• Services to initiate typical operations, such as the propagation of network
variable updates.

• Callback handler functions to notify the application of events, such as the
arrival of network variable data or an error in the propagation of an
application message.

• Optional API components to perform low-level self-installation tasks.

• Optional API components to perform high-level ISI self-installation tasks.

• Optional API components for additional utility services.

Overview of the ShortStack Development Process
This manual describes the development process for creating a ShortStack device,
which includes the general tasks listed in Table 3 on page 16.

16 Introduction to ShortStack

Table 3. Tasks for Developing a ShortStack Device

Task Additional Considerations Reference

Install the ShortStack
Developer’s Kit and become
familiar with it

 Chapter 2,
Getting Started
with
ShortStack, on
page 19

Select hardware for the
ShortStack Micro Server
and prepare it by loading
the ShortStack firmware
into it

You must select the Micro Server
configuration and preferences for every
new device, but you can reuse a Micro
Server hardware and software
configuration for a different application,
and thus implement a different device.

Chapter 3,
Selecting and
Creating a
ShortStack
Micro Server, on
page 27

Chapter 4,
Selecting the
Host Processor,
on page 61

Integrate the ShortStack
Micro Server with your
device hardware

You integrate the Micro Server with the
device hardware. You can reuse many
parts of a hardware design for different
applications to create different ShortStack
devices.

Chapter 5,
Designing the
Hardware
Interface, on
page 65

Create the serial driver for
the host processor

You must create a serial driver (typically
derived from an example driver), for each
device’s hardware. You can reuse the driver
with the same device hardware for
different applications, and thus create
different ShortStack devices. You do not
need to re-create a new serial driver for
each application.

Chapter 6,
Creating a
ShortStack
Serial Driver, on
page 89

Port the ShortStack
LonTalk Compact API to
the host processor

You must port the ShortStack LonTalk
Compact API once for each host processor
and compiler, but you can reuse the ported
API files with any number of applications
that share the same hardware and software
development environment.

Chapter 7,
Porting the
ShortStack
LonTalk
Compact API, on
page 109

Appendix C,
ShortStack
LonTalk
Compact API, on
page 287

ShortStack User’s Guide 17

Task Additional Considerations Reference

Select and define the
functional profiles and
resource types for your
device using tools such as
the NodeBuilder Resource
Editor and the SNVT and
SCPT Master List

You must select profiles and types for use
in the device’s interoperable interface for
each application that you plan to
implement. This selection can include the
definition of user-defined types for network
variables, configuration properties or
functional profiles. A large set of standard
definitions is also available and is sufficient
for many applications.

Chapter 8,
Creating a
Model File, on
page 115

Structure the layout and
interoperable interface of
your ShortStack device by
creating a model file

You must define the interoperable interface
for your device in a model file, using the
Neuron C (Version 2) language, for every
application that you implement. You can
write this code by hand, derive it from an
existing Neuron C application, or use the
NodeBuilder Code Wizard included with
the NodeBuilder Development Tool to
create the required code using a graphical
user interface.

Chapter 8,
Creating a
Model File, on
page 115

The Neuron C
Reference Guide

Use the LonTalk Interface
Developer utility to
generate device interface
data, device interface files,
and a skeleton application
framework

You must execute this utility, a simple
click-through wizard, whenever the model
file changes or other preferences change.
The utility generates the interface files
(including the XIF file) and source code
that you compile with your application.
This source code includes data that is
required for initialization and for complete
implementations of some aspects of your
device.

Chapter 9,
Using the
LonTalk
Interface
Developer
Utility, on page
145

Complete the ShortStack
LonTalk Compact API
callback handler functions
to process application-
specific LONWORKS events

You must complete the callback handler
functions for every application that you
implement, or supply the Micro Server with
application-specific data. The completed
callback handler functions provide input
from network events to your application;
they are part of your networked device’s
control algorithm.

Chapter 10,
Developing a
ShortStack
Application, on
page 163

Appendix C,
ShortStack
LonTalk
Compact API, on
page 287

18 Introduction to ShortStack

Task Additional Considerations Reference

Modify your application to
interface with a LONWORKS
network by using the
ShortStack LonTalk
Compact API function calls

You must make these function calls for
every application that you implement.
These calls include, for example, calls to
the LonPropagateNv() function that
propagates an updated output network
variable value to the network. Together
with the completion of the callback handler
functions, this task forms the core of your
networked device’s control algorithm.

Chapter 10,
Developing a
ShortStack
Application, on
page 163

Appendix C,
ShortStack
LonTalk
Compact API, on
page 287

Optionally, add
Interoperable Self-
Installation (ISI) functions
to your ShortStack device,
add low-level functions to
implement self-installation,
or add other optional utility
functions and callbacks

This step is optional. The necessary code is
typically at least partially unique for each
application, and needs to be reviewed and
refined for each application that you write
that uses self-installation procedures.

Chapter 11,
Developing a
ShortStack
Application with
ISI, on page 197

Appendix D,
ShortStack ISI
API, on page
301

Optionally, create a custom
Micro Server image that
supports your own
hardware configuration

The standard Micro Servers are pre-
compiled binary images that support a
variety of hardware configurations. You
can create a custom Micro Server and use it
in place of a standard one to provide better
support for your hardware, or even to
offload some of the application’s control
algorithm to the Micro Server.

Chapter 12,
Custom Micro
Servers, on page
241

Test, install, and integrate
your ShortStack device
using self-installation or a
LONWORKS network tool
such as the LonMaker
Integration Tool

 The LonMaker
User's Guide

If you have a ShortStack 2 application for a ShortStack device, and you want to
take advantage of the new features and API of ShortStack FX, see Chapter 13,
Converting a ShortStack 2 Application to a ShortStack FX Application, on page
257.

ShortStack User’s Guide 19

2

Getting Started with ShortStack

This chapter describes the ShortStack FX Developer’s Kit and how to
install it.

20 Getting Started with ShortStack

ShortStack Developer’s Kit Overview
The ShortStack FX Developer’s Kit is a software toolkit that contains software
tools, the LonTalk Compact API, ShortStack firmware, and documentation
needed for developing applications for any microcontroller or microprocessor that
uses a ShortStack Micro Server to communicate with a LONWORKS network. You
can use the software with ShortStack Micro Servers that use an Echelon Series
3100 or Series 5000 Smart Transceiver or an Echelon Neuron 5000 Processor.

The kit includes the following components:

1. Portable ANSI C source code for the ShortStack LonTalk Compact API
and ShortStack ISI API.

2. ShortStack firmware images for free topology twisted-pair and power line
configurations. Firmware images are provided for both TP/FT-10 and PL-
20 channel types, including 3120, 3150, 3170, and 5000 Smart
Transceiver devices.

3. ANSI C source code and pre-compiled library files that you can use to
create custom Micro Servers to provide support for different hardware
configurations.

4. The LonTalk Interface Developer utility. The LonTalk Interface
Developer utility translates a model file into device interface data and
device interface files that simplify the implementation of your ShortStack
application, and it creates a skeleton application framework that provides
much of the code required by your application to interface with the
ShortStack Micro Server.

5. Documentation. This ShortStack User’s Guide describes how to use the
components of the ShortStack Developer’s Kit to create a ShortStack
device. The kit also includes detailed HTML documentation for the
ShortStack LonTalk Compact API and ShortStack ISI API.

In addition to the ShortStack Developer’s Kit, Echelon provides example ports for
selected host processors. Each example port is separately installable, and
includes its own documentation. For the ShortStack FX release, an example port
is available for an ARM7 host processor (the Atmel ARM AT91SAM7S64
microprocessor). Other example ports may become available after release, from
Echelon or from other vendors.

The ShortStack Developer’s Kit and the example ports are available as free
downloads from www.echelon.com/shortstack.

Installing the ShortStack Developer’s Kit
You can install the ShortStack FX Developer’s Kit on any computer that runs
Microsoft® Windows® XP or Windows Vista®.

To install the ShortStack FX Developer’s Kit, perform the following steps:

1. Download the ShortStack FX Developer’s Kit from
www.echelon.com/shortstack. Although the download is free, you must
agree to the license terms for the ShortStack Developer’s Kit when you
download it. By agreeing to the license terms, you will receive a license
key.

http://www.echelon.com/shortstack
http://www.echelon.com/shortstack

ShortStack User’s Guide 21

2. Double click the ShortStack400.exe file that you downloaded. The
Echelon ShortStack FX Developer’s Kit main installer window opens.

3. Follow the installation dialogs to install the ShortStack FX Developer’s
Kit onto your computer. During installation, you are prompted for the
license key that you received after agreeing to the license terms.

In addition to the ShortStack FX Developer’s Kit, the installation program also
installs current versions of:

• LONMARK® Resource Files

• LONMARK Standard Program ID Calculator

• NodeBuilder Resource Editor

Important: You can have only one version of the ShortStack Developer’s Kit
installed at a time on a single PC. That is, you cannot install both ShortStack FX
and a prior version of the ShortStack Developer’s Kit and switch between
versions during device development. The version of the kit that you install last is
the one that is usable. Echelon recommends that if you should need to revert to
an earlier version, uninstall ShortStack FX before installing the older version.

If you are installing the ShortStack FX Developer’s Kit onto a computer that
already has the ShortStack 2 Developer’s Kit installed, the ShortStack FX
Developer’s Kit installer performs the following actions:

1. Copies all of the files from the C:\LonWorks\ShortStack directory to a
new directory, C:\LonWorks\ShortStack 2.0, as a backup of your
ShortStack 2 data; if you maintain a separate backup of your ShortStack
2 data, you can delete this directory.

2. Uninstalls ShortStack 2.

3. Deletes the C:\LonWorks\ShortStack directory to remove any service
pack data or user files.

4. Installs ShortStack FX.

If you are installing the ShortStack FX Developer’s Kit onto a computer that
already has the ShortStack 2.1 Developer’s Kit installed, the ShortStack FX
Developer’s Kit installer overwrites the files in the default installation path.
However, any user-created files in this directory (or its subdirectories) are not
changed.

ShortStack LonTalk Compact API Files
The ShortStack LonTalk Compact API is provided as a set of portable ANSI C
files, which are listed in Table 4 on page 22. These files are contained in the
[ShortStack]\API directory (where [ShortStack] is the directory in which you
installed ShortStack FX, usually C:\Program Files\LonWorks\ShortStack or
C:\LonWorks\ShortStack). The LonTalk Interface Developer utility
automatically copies these files into your project folder, but does not overwrite
existing files with the same names.

You need to port the API to your host processor; for more information about
porting the API, see Chapter 7, Porting the ShortStack LonTalk Compact API, on
page 109.

22 Getting Started with ShortStack

Table 4. ShortStack LonTalk Compact API Files

File Name Description

LonBegin.h

LonEnd.h

Optional definitions for implementing data packing and
alignment preferences

LonPlatform.h Definitions for adjusting your compiler and environment to the
requirements of the ShortStack LonTalk Compact API

ShortStackApi.c

ShortStackApi.h

Function definitions for the ShortStack LonTalk Compact API

ShortStackHandlers.c

Function definitions for the ShortStack callback handler
functions

ShortStackInternal.c Internal functions and utilities that are used by the ShortStack
LonTalk Compact API, but not exported to the host application

ShortStackIsiApi.c

ShortStackIsiApi.h

Function definitions for the ShortStack ISI API

ShortStackIsiHandlers.c

Function definitions for the ShortStack ISI callback handler
functions

ShortStackIsiInternal.c Internal functions and utilities that are used by the ShortStack
ISI API, but not exported to the host application

ShortStackIsiTypes.h Definitions of the data structures that are typically used by
ShortStack ISI applications

ShortStackTypes.h Definitions of the data structures that are typically used by
ShortStack applications

Standard ShortStack Micro Server Firmware
Images

Several standard ShortStack Micro Server firmware images are provided as pre-
compiled image files that you can program into onchip memory for FT or PL 3120
Smart Transceivers or PL 3170 Smart Transceivers, into flash memory chips to
be used with FT or PL 3150 Smart Transceivers, or into EEPROM memory chips
for FT 5000 Smart Transceivers.

Important: You can use the ShortStack Micro Server only with an Echelon
Smart Transceiver or an Echelon Neuron 5000 Processor. If you run the
ShortStack Micro Server on a different Neuron Chip, the Micro Server exits quiet
mode and enters the applicationless state.

Each set of pre-compiled images includes the following files:

ShortStack User’s Guide 23

• An APB and an NDL file for downloading the images over a LONWORKS
network

• An XIF and a SYM file for use by the LonTalk Interface Developer utility

• For 3120 and 3170 devices, an NFI file for ex-circuit programming of the
Smart Transceiver

• For 3150 devices, an NEI file for ex-circuit programming of the flash
memory chip

• For Series 5000 devices, an NME file for ex-circuit programming of the
EEPROM memory chip

• For standard Micro Servers that support ISI, a *.h file that you use with
your application when writing code to use the ShortStack ISI API; see
Chapter 11, Developing a ShortStack Application with ISI, on page 197,
for more information.

When you use the LonTalk Interface Developer utility, it selects the appropriate
set of Micro Server image files based on your preferences, and copies them to the
project’s output folder. These image files have the project’s base name (rather
than the image’s base name) and the appropriate file extension (APB, NDL, NFI,
NEI, NME, XIF, SYM, or H).

Table 5 describes the standard firmware image files for a ShortStack Micro
Server, along with other information about each image. See Firmware Image
File Names on page 33 for a description of the firmware file naming convention.

Table 5. Standard ShortStack Firmware Image Files

Smart
Transceiver
Type

Channel
Type

Supported
Clock
Rates
(MHz) [1]

Neuron
Firmware
Version [2]

Support for
ISI

Supported CP
Access
Methods [3]

FT 3120-E4
V16

TP/FT-10 10

20

40

16 No DMF, LW-
FTP, CPNV

FT 3150 2K [4] TP/FT-10 10 17.1 Yes DMF, LW-
FTP, CPNV

FT 5000 ES TP/FT-10 20 18 Yes DMF, LW-
FTP, CPNV

FT 5000 TP/FT-10 20 19 Yes DMF, LW-
FTP, CPNV

PL 3120-E4 PL-20C, PL-
20N

10 14 No LW-FTP,
CPNV

PL 3150 [4] PL-20C, PL-
20N

10 17.1 Yes DMF, LW-
FTP, CPNV

24 Getting Started with ShortStack

PL 3170 PL-20C, PL-
20N

10 17 Yes DMF, LW-
FTP, CPNV

Notes:

1. The supported clock rates refer to external crystal or oscillator frequency for Series
3100 devices, but refer to internal system clock rate for Series 5000 devices.

2. The Neuron firmware versions listed refer to the versions used to create the standard
Micro Server images.

3. The configuration property access methods listed are:

• Direct memory file (DMF); see Using Direct Memory Files on page 189

• The LONWORKS file transfer protocol (LW-FTP); see the File Transfer
engineering bulletin at www.echelon.com

• Configuration network variables (CPNVs); see Declaring a Configuration
Property on page 124 and CPNV and EEPROM NV on page 193

4. The standard Micro Servers for FT 3150 and PL 3150 devices support a standard
hardware design with external flash memory of 32 KB or more, and 128 bytes per
sector.

Because not all combinations of hardware, channel type, and ISI features are
supported by the pre-compiled Micro Server images, you might need to create
your own custom Micro Server image. Specifically, you need to create a custom
Micro Server image:

• If your device uses a different Smart Transceiver than the ones listed in
Table 5 (such as a Neuron 5000 Processor).

• If your device uses a different Neuron firmware version than the ones
used for the standard Micro Server images.

• If your device uses a clock speed or system clock setting that is supported
by the chosen hardware and transceiver, but is not listed in Table 5.

• If your device uses a memory map that is different from the one described
in Micro Server Memory Map on page 29.

• If your Micro Server device requires ISI-DAS support, or a different level
of ISI support.

• If you want to create application-specific custom Micro Servers that
support ISI. Such a Micro Server can execute part of the ISI API local to
the Micro Server for optimum performance and minimum host memory
footprint.

• If your application requires a DMF window different from the default size
or location; see Using Direct Memory Files on page 189 for more
information.

• If your device requires a Micro Server with different properties than
those used for the standard Micro Server images.

See Custom Micro Servers on page 241 for more information about creating a
custom Micro Server.

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf

ShortStack User’s Guide 25

Important: A ShortStack FX Micro Server cannot run on an FTXL 3190 Free
Topology Transceiver.

LonTalk Interface Developer
The LonTalk Interface Developer utility generates the device interface data and
the device interface file required to implement the interoperable interface for
your ShortStack device. It also creates a skeleton application framework that
you can modify and link with your application. This framework contains most of
the code that is needed for device initialization and other required processing.

The executable for the LonTalk Interface Developer utility is named LID.exe, and
is installed in the LonTalk Interface Developer directory (usually, C:\Program
Files\LonWorks\InterfaceDeveloper or C:\LonWorks\InterfaceDeveloper).

The [ShortStack]\MicroServers directory includes Micro Server XIF files. The
LonTalk Interface Developer utility uses these files to extract Micro Server-
specific details (such as the hardware description or buffer configuration), which
the utility merges with application-specific details (such as the network variable
configuration) to generate the device’s XIF (and XFB) files in your project folder.

The LonTalk Interface Developer utility also includes a command-line interface
that allows make-file and script-driven use of the utility. For more information
about the command-line interface, see Appendix A, LonTalk Interface Developer
Command Line Usage, on page 275.

For more information about the LonTalk Interface Developer utility, see Chapter
9, Using the LonTalk Interface Developer Utility, on page 145.

ShortStack User’s Guide 27

3

Selecting and Creating a
ShortStack Micro Server

This chapter describes how to create a ShortStack Micro Server using
one of the standard ShortStack Micro Server images that are included
with the ShortStack Developer’s Kit, and how to load them into a
Smart Transceiver.

28 Selecting and Creating a ShortStack Micro Server

Overview
A ShortStack device uses a ShortStack Micro Server to interface with a
LONWORKS network. The ShortStack Micro Server provides the physical
interface to the network, and also implements layers 1-6 of the LONWORKS
network protocol. A Micro Server uses an Echelon Smart Transceiver that
connects to the power line (PL) or twisted-pair free topology (FT) network, runs
the ShortStack Micro Server firmware, and includes some mandatory peripheral
components. A Micro Server based on the FT 3150 or PL 3150 Smart Transceiver
can contain off-chip flash, ROM, or RAM memory for enhanced capabilities, a
Micro Server based on the FT 5000 Smart Transceiver contains off-chip
EEPROM or flash memory for enhanced capabilities, whereas a Micro Server
based on the FT 3120, PL 3120, or PL 3170 Smart Transceiver implements a
single-chip solution.

You can embed the Micro Server hardware within your device’s hardware, or you
can use off-the-shelf hardware for the Micro Server and connect it to your device.
For example, you can use the Echelon Mini FX Evaluation Boards for rapid
prototyping of a Micro Server. You can also use the Pyxos™ FT EV Pilot
Evaluation Board (part of the Pyxos FT EVK Evaluation Kit) for development of
ShortStack devices that use an FT 3150 Smart Transceiver with an ARM7 host
processor.

You can load the ShortStack Micro Server firmware image into an FT 3120, PL
3120, or PL 3170 Smart Transceiver, or into a flash memory device, such as an
Atmel AT29C512 or AT29C010A flash memory device, for an FT 3150 or PL 3150
Smart Transceiver, or into an SPI or I2C EEPROM or SPI flash memory device
for an FT 5000 Smart Transceiver. You can load these images over the
LONWORKS network, or you can use standard ex-circuit programming tools.

This chapter describes how to select a Micro Server, how to load the ShortStack
firmware image into the Micro Server, how to initialize the Micro Server, and
how to work with non-volatile memory within the Micro Server. For information
about creating a custom Micro Server, see Custom Micro Servers on page 241.

Selecting the Micro Server Hardware
The ShortStack Micro Server supports two transceiver types at various clock
rates for either power line (PL) or free-topology (FT) networks. For a ShortStack
device, you can use an Echelon 3120 Smart Transceiver, a 3150 Smart
Transceiver, a 3170 Smart Transceiver, an FT 5000 Smart Transceiver, or a
Neuron 5000 Processor. In addition, for the Neuron 5000 Processor, the
ShortStack Micro Server supports all of the transceiver types supported by that
chip.

For device evaluation and development with the Smart Transceivers, you can use
the Echelon Mini FX Evaluation Kit (with an FT 5000 Smart Transceiver for FT
networks, or a 3150 or 3170 Smart Transceiver for PL networks), which includes
optional Electronic Industries Alliance (EIA) standard RS-232-C level shifters,
jumpers, I/O connectors, and (for most of these boards) a small prototyping area,
to configure the Smart Transceiver for use as a ShortStack Micro Server.

ShortStack User’s Guide 29

More information about Echelon’s evaluation boards is available from the
Echelon Web site, www.echelon.com. In addition, other companies offer similar
products, for which you can create a custom Micro Server.

When considering whether to use a 3120, 3150, 3170, or 5000 Smart Transceiver
for a ShortStack device, the following factors are the most important: the Micro
Server clock rate, memory map, and development device type.

Micro Server Clock Rate
The Micro Server clock rate determines the available bit rate for the link-layer
transfer and the overall performance of the Micro Server. For Series 3100
devices, the clock rate is determined by the external crystal or oscillator; for
Series 5000 devices, the clock rate is determined by the internal system clock
rate. You can specify a Series 5000 device’s internal system clock rate within the
device’s hardware template when you create a custom Micro Server. For the
standard Micro Servers, the internal system clock rate is fixed. Each device type
has its own clock rate maximum:

• For PL 3120, PL 3150, and PL 3170 Smart Transceivers, the highest
possible external clock rate is 10 MHz. Typical PL 3120, PL 3150, or PL
3170 ShortStack devices use a 10 MHz crystal.

• For FT 3120 Smart Transceivers, the highest possible external clock rate
is 40 MHz. Typical FT 3120 ShortStack devices use a 20 MHz crystal.

• For FT 3150 Smart Transceivers, the highest possible external clock rate
is 20 MHz. However, using a flash memory device for off-chip storage
limits the Micro Server’s clock rate to 10 MHz. Thus, typical FT 3150
ShortStack devices use a 10 MHz crystal.

• For FT 5000 Smart Transceivers, the external clock rate is always 10
MHz, from which the chips generate an on-chip system clock rate (the
clock multiplier is configurable). The highest possible system clock rate
is 80 MHz. For this highest system clock rate, the link-layer transfer
speed is very high, and generally non-standard for most UARTs and
USARTs. That is, not all host processors will support all possible bit
rates for the highest system clock rates. The standard Micro Server uses
a 20 MHz system clock rate, which allows standard bit rates to be used.

See Selecting the Link-Layer Bit Rate on page 68 for more information about
requirements for the bit rate.

Micro Server Memory Map
The Micro Server needs its own data storage, which it maintains in mapped non-
volatile memory. For an FT 3120, PL 3120, or PL 3170 Smart Transceiver the
memory map is fixed, but Micro Servers that are based on FT 3150, PL 3150, or
FT 5000 Smart Transceivers can use a variety of memory maps. The memory
map for all standard Micro Servers is fixed, but you can create a custom Micro
Server to provide a different memory map.

For example, additional RAM can be used for creating 3150 Micro Servers that
support ISI-DAS devices or other advanced Micro Server configurations.

A Micro Server with large off-chip flash memory can store additional Micro
Server code, which allows the device to embed feature-rich versions of the ISI

http://www.echelon.com/

30 Selecting and Creating a ShortStack Micro Server

self-installation protocol, or to implement a feature-rich custom Micro Server. A
Micro Server with smaller off-chip flash memory areas leave larger areas of
unused memory in the Micro Server’s physical memory map, which allows the
application to use direct memory files (DMF). Larger areas of such unused
memory allow the application to store configuration property files in the direct
memory files.

A 3120 or 3170 Smart Transceiver provides up to 4 KB of on-chip non-volatile
memory, whereas a 3150 Smart Transceiver uses off-chip flash memory which
can provide 32 KB or more of non-volatile memory. For many applications, the
memory provided with the FT 3120, PL 3120, or PL 3170 Smart Transceivers is
sufficient, but more complex ShortStack applications that implement a large
number of network variables, include a feature-rich self-installation library, or
require an increased buffer configuration, could require a Micro Server based on
an FT 3150, PL 3150, or FT 5000 Smart Transceiver.

For FT 3150 and PL 3150 devices, the standard ShortStack Micro Server images
require a flash device that supports a 128-byte sector size, such as the Atmel
AT29C512 (64 KB) or AT29C010A (128 KB) flash device. The memory map used
in the Micro Server images is declared for a 32 KB flash device, with a 128-byte
sector size (which yields a memory map of 0x0000 to 0x7FFF). This memory map
leaves significant memory available for applications to use the direct memory file
access method; see Using Direct Memory Files on page 189 for more information.

For FT 5000 devices, the standard ShortStack Micro Server images require an
SPI or I2C EEPROM memory device; see the Series 5000 Chip Data Book for
additional information about the external memory requirements for an FT 5000
Smart Transceiver. The memory map used in the Micro Server images is
declared for a 32 KB EEPROM device. This memory map leaves significant
memory available for applications to use the direct memory file access method;
see Using Direct Memory Files on page 189 for more information.

Recommendation: For a free-topology channel, use an FT 5000 Micro Server
(with at least 32 KB of EEPROM, or with 2 KB of EEPROM and at least 32 KB of
flash memory). For a power-line channel, use a PL 3170 Micro Server if the 2 KB
of onchip RAM is sufficient for the required buffer configuration, or a PL 3150
Micro Server if offchip RAM is required. For all other supported channel types,
use a Neuron 5000 Processor with a custom Micro Server.

Development Device Type
Many ShortStack devices use compact, low-cost Micro Server hardware based on
FT 3120, PL 3120, or PL 3170 Smart Transceivers. Other more generic or more
powerful devices use advanced Micro Server hardware based on FT 3150, PL
3150, or FT 5000 Smart Transceivers with additional off-chip memory.

Recommendation:

Use a Micro Server that is based on a FT 3150, PL 3150, or FT 5000 Smart
Transceiver for your initial development of a ShortStack device.

Using a 3150 or 5000 Smart Transceiver with off-chip flash memory rather
than a 3120 or 3170 Smart Transceiver allows easier and more rapid recovery
in case of device programming errors.

After you complete the critical early steps of development, you can use the
Micro Server hardware that your ShortStack device requires.

ShortStack User’s Guide 31

Preparing the ShortStack Micro Server
You can load an application image into a LONWORKS device, such as an Echelon
Smart Transceiver. For ShortStack Micro Servers, the application image is the
ShortStack Micro Server executable image.

You must load the Micro Server executable image into the Micro Server
hardware before you can use it as a ShortStack device. After you complete
hardware development, you can load the Micro Server image into your
ShortStack device as part of your manufacturing process.

You typically load the Micro Server infrequently. After you have correctly loaded
a particular Micro Server, you do not normally need to reload it. However, if you
load a new version of the Neuron firmware into a Smart Transceiver, be sure to
load an updated Micro Server image into the Smart Transceiver at the same
time.

Important:

• After you load a new Micro Server image, the initial initialization of the
Micro Server, together with the initialization of the host application, can
take up to one minute to complete. The Micro Server is unresponsive to
the network until this initialization is complete. After the initial
initialization is complete, resetting or power-cycling the Micro Server
with the same host application completes much more quickly.

• Reloading a Micro Server with an updated version of the Micro Server
firmware could require changes in the serial driver or the API that
resides in your host processor. For example, migrating an application
from ShortStack 2 to ShortStack FX requires some changes to the serial
driver because you use an updated ShortStack Micro Server. Loading a
Micro Server with a version that is incompatible with the current host
application can sever link-layer communications.

Table 6 summarizes the processor and memory combinations that you can use
with the standard, pre-compiled, Micro Server images, along with the files and
tools that you use to program each. See Firmware Image File Names on page 33
for a description of the Micro Server image file extensions and file naming
convention.

Table 6. Loading the Micro Server Executable Image

Smart
Transceiver

Memory
Type

Micro Server
Image File
Extension

Micro Server
Image
Programming
Tool

Example
Programming
Tools

APB, NDL,
or NEI

Network
management
tool

NodeLoad utility

LonMaker
Integration Tool FT 3120, PL

3120, or PL
3170 Smart
Transceiver

On-chip
EEPROM NFI PROM

programmer
A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

32 Selecting and Creating a ShortStack Micro Server

Smart
Transceiver

Memory
Type

Micro Server
Image File
Extension

Micro Server
Image
Programming
Tool

Example
Programming
Tools

APB or NDL Network
management
tool

NodeLoad utility

LonMaker
Integration Tool FT 3150 or

PL 3150
Smart
Transceiver

Off-chip
flash NEI Ex-circuit

flash
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

APB or NDL Network
management
tool

NodeLoad utility

LonMaker
Integration Tool

FT 5000
Smart
Transceiver

Off-chip
EEPROM
or flash

NME or
NMF

EEPROM or
flash
programmer

A universal
programmer, such
as one from BPM
Microsystems or
HiLo Systems

In-circuit
programmer, such
as Total Phase™
Aardvark™
I2C/SPI Host
Adapter

Notes:

• Information about the NodeLoad utility and the LonMaker Integration
tool is available from www.echelon.com.

• Information about BPM Microsystems programmer models is available
from www.bpmicro.com. The Forced Programming option in the menu is
provided only to refresh the internal memory contents and should not be
used to program new devices. In this mode, the programmer simply
reads out the contents of the memory and rewrites them.

• Information about HiLo Systems manual programmer models is available
from www.hilosystems.com.tw.

• Information about TotalPhase programmers is available from
www.totalphase.com.

For device production, you typically use ex-circuit programming (where the chip
is programmed prior to soldering it to the device circuit board); for development,
you typically use in-circuit programming (where the chip is part of the device
during programming) for simplicity rather than programming speed.

http://www.echelon.com/
http://www.bpmicro.com/
http://www.hilosystems.com.tw/
http://www.totalphase.com/

ShortStack User’s Guide 33

Firmware Image File Names
The base file names for the standard Micro Server firmware images use the
following naming convention:

SS400_ + image base file name + _ + 5-digit clock speed + kHz + file extension

For a Series 3100 device, the clock speed figure contained in the file name refers
to the external clock speed (for example, “10000kHz” for a 10 MHz crystal). For
Series 5000 devices, because the external clock speed is fixed (a 10 MHz crystal),
the clock speed figure embedded in the image file name refers to the internal
system clock frequency. The system clock rate is prefixed with “SYS” to highlight
this difference. Micro Servers created for pre-production parts include “ES” (to
signify Engineering Sample) in the name.

Examples:

• The universal chip programmer standard image for the PL 3120-E4
Smart Transceiver has the following name:
SS400_PL3120E4_10000kHz.nfi.

• The NodeLoad standard image for the ISI-enabled FT 5000 Smart
Transceiver has the following name:
SS400_FT5000Isi_SYS20000kHz.ndl.

The firmware images with these names are located in the
[ShortStack]\MicroServers directory, and are intended as backup copies of the
images.

When you use the LonTalk Interface Developer utility, it selects the appropriate
set of Micro Server image files based on your preferences, and copies them to the
project’s output folder. These image files have the project’s base name (rather
than the image’s base name) and the appropriate file extension.

Table 7 lists the valid file extension values for the firmware image files.

Table 7. Micro Server Image File Extensions

Extension Description

APB Micro Server firmware image file for network management
tools, such as the LonMaker Integration tool. Applies to all
Smart Transceivers.

NDL Micro Server firmware image file for the Nodeload utility.
Applies to all Smart Transceivers.

NEI, NXE Micro Server firmware image file for a universal chip
programmer (for 3150 or 5000 Smart Tranceivers) or for image
download tools (for 3120 or 3170 Smart Transceivers).

NFI Micro Server programmable firmware image file for a
universal chip programmer. Applies only to 3120 and 3170
Smart Transceivers.

34 Selecting and Creating a ShortStack Micro Server

Extension Description

NME, NMF Micro Server programmable firmware image file for a
universal chip programmer. Applies only to FT 5000 Smart
Transceivers and Neuron 5000 Processors.

In addition, the [ShortStack]\MicroServers directory includes files with the
following file extensions for each Micro Server type:

• XIF – The Micro Server’s device interface (XIF) file (used only by the
LonTalk Interface Developer utility)

• SYM – The Micro Server’s device symbol file (used only by the LonTalk
Interface Developer utility)

• H – A C header file that is shared between the Micro Server and the host
application to define the location of ISI callbacks and other
implementation details for an ISI application (present only for Micro
Servers that support the ISI protocol)

Loading an FT 3120, PL 3120, or PL 3170 Smart
Transceiver

Because a 3120 or 3170 Smart Transceiver does not support external memory,
the only memory to program is on-chip EEPROM, which you program over the
network or with a PROM programmer that supports the 3120 or 3170 Smart
Transceiver.

To load the ShortStack Micro Server firmware using ex-circuit programming, you
can use:

• A 3120 chip programmer to load a ShortStack Micro Server’s NEI file into
the 3120 or 3170 Smart Transceiver’s non-volatile memory.

• A general-purpose programmer that supports the 3120 or 3170 Smart
Transceiver, such as a BPM Microsystems or Hi-Lo Systems universal
programmer, to load a ShortStack Micro Server’s NFI file into the 3120 or
3170 Smart Transceiver’s non-volatile memory.

To load the ShortStack Micro Server firmware using in-circuit programming, use
the NodeLoad utility or the LonMaker Integration tool. See Using a Network
Management Tool for In-Circuit Programming on page 36 for information about
using these tools to load a ShortStack Micro Server.

Recommendation: Do not use the LonMaker Integration tool for the initial load
of a ShortStack Micro Server into a power line Smart Transceiver. You can use
the LonMaker Integration tool for any subsequent loads as long as the channel
type does not change (for example by adding or removing support for the
CENELEC protocol). See Using the LonMaker Integration Tool with ShortStack
on page 38.

Loading an FT 3150 or PL 3150 Smart Transceiver
A device based on a 3150 Smart Transceiver always has non-volatile off-chip
memory (PROM, EEPROM, or flash memory), and might also have off-chip RAM.

ShortStack User’s Guide 35

The ShortStack firmware must reside in the non-volatile memory. The standard
Micro Servers for FT 3150 and PL 3150 Smart Transceivers support offchip flash
memory with at least 32 KB and 128 bytes per sector.

You can load the ShortStack Micro Server firmware into a flash memory device,
such as an Atmel AT29C512 or AT29C010A flash memory device, for an Echelon
FT 3150 Smart Transceiver or PL 3150 Smart Transceiver.

To load the ShortStack firmware using ex-circuit programming, use an
appropriate flash programmer to load a ShortStack Micro Server’s NEI file into
the 3150 Smart Transceiver’s off-chip memory.

Important: Although you can reload the FT 3150 or PL 3150 Micro Server using
in-circuit programming, you must perform an initial load for the Micro Server
firmware using ex-circuit programming. This initial load is required because the
3150 Smart Transceiver does not contain boot loader code on chip.

After the off-chip non-volatile memory part has been initially programmed and
inserted into the device, you can reload the Micro Server image using in-circuit
programming using network management tools such as the NodeLoad utility or
the LonMaker Integration tool. See Using a Network Management Tool for In-
Circuit Programming on page 36 for information about using these tools to load a
ShortStack Micro Server.

Loading a Blank Application
ShortStack device development does not require the loading of an initially blank
application into the Smart Transceiver. However, for FT 3150 or PL 3150 Smart
Transceivers, you can load a blank application into off-chip memory to clear the
off-chip memory.

Although a device normally performs initialization once for a given firmware
image, it is possible to force this process to occur again with the same firmware
image by resetting the 3150 Smart Transceiver to the blank state (the initial
state of the EEPROM on a newly manufactured Smart Transceiver) using the
EEBLANK utility.

This utility is available as a free download from the LonWorks Downloads page,
www.echelon.com/downloads, in the Development Tools category. To reset a
3150 chip's state, program the appropriate EEBLANK image (there is an image
for each Smart Transceiver clock rate) into a 3150 flash memory chip and power
up the device. For a short period, the service LED flashes, then it changes to full
on to indicate that the chip has been returned to the blank state. The next time
that any image is loaded into the flash memory for this device, the on-chip
EEPROM is re-initialized.

Loading an FT 5000 Smart Transceiver
A device based on a Series 5000 Chip always has non-volatile off-chip memory
(EEPROM or flash memory). The ShortStack firmware must reside in the non-
volatile memory. The standard Micro Server for an FT 5000 Smart Transceiver
supports a 32 KB EEPROM memory part. Note that there is no standard Micro
Server image for a Neuron 5000 Processor.

To load the ShortStack firmware using ex-circuit programming, use an
appropriate EEPROM or flash programmer (such as the Total Phase Aardvark

http://www.echelon.com/downloads

36 Selecting and Creating a ShortStack Micro Server

I2C/SPI Host Adapter) to load a ShortStack Micro Server’s NME or NMF file into
the FT 5000 Smart Transceiver’s off-chip memory. For the FT 5000 EVB,
connect the programmer to the JP23 header, as described in the FT 5000 EVB
Hardware Guide.

To load the Micro Server image using in-circuit programming, use network
management tool such as the NodeLoad utility or the LonMaker Integration tool.
See Using a Network Management Tool for In-Circuit Programming on page 36
for information about using these tools to load a ShortStack Micro Server.

Important: Do not use the LonMaker Integration tool for the initial load of a
ShortStack Micro Server into an FT 5000 Smart Transceiver or Neuron 5000
Processor. You can use the LonMaker Integration tool for any subsequent loads
as long as the Micro Server’s system clock multiplier does not change. See Using
the LonMaker Integration Tool with ShortStack on page 38.

Using a Network Management Tool for In-Circuit
Programming

To load the ShortStack firmware images using in-circuit programming, you can
use network management tools such as Echelon’s NodeLoad utility or LonMaker
Integration tool.

Network management tools load Smart Transceiver application images (for a
ShortStack device, this image is the Micro Server firmware) and normally
complete the load process by resetting the device, waiting for the device to
complete its boot sequence, and confirming a healthy device state.

However, for a ShortStack Micro Server, this health check is likely to fail for
typical load scenarios. Following the device reset, the Micro Server enters quiet
mode, in which all network interaction is suspended, and it waits for the host
processor to complete the ShortStack initialization sequence. The Micro Server
must enter quiet mode in this case to prevent an incomplete implementation of
the LonTalk protocol stack from attaching to the network, but in this state it also
prevents the loader from confirming the successful load completion.

The NodeLoad utility provides a parameter that suppresses the final reset and
health check (the -M parameter) that allows an automated load process to
complete without error.

For the LonMaker Integration tool, you might see an error during the load
process; if you reset the physical device and re-commission the device from the
drawing, the error should resolve itself. However, you should not use the
LonMaker Integration tool for the initial load of a ShortStack Micro Server into
an FT 5000 Smart Transceiver, Neuron 5000 Processor, or a power line Smart
Transceiver. You can use the LonMaker Integration tool for any subsequent
loads as long as the Micro Server’s system clock multiplier does not change.

After the Micro Server image has been loaded, and while the Micro Server is in
quiet mode, the Micro Server performs an extensive one-time initialization. This
initialization period can take as long as one minute. The tasks performed during
initialization depend on the chosen Micro Server hardware and clock settings, as
well as the features and limits supported by the chosen Micro Server.

ShortStack User’s Guide 37

Using the NodeLoad Utility with ShortStack
For in-circuit programming of a Series 3100 or Series 5000 Smart Transceiver,
you can use the NodeLoad utility to load an NDL file into the Smart
Transceiver’s non-volatile memory over a LONWORKS network. To use the
NodeLoad utility, you need a LONWORKS network interface, such as the U10 or
U20 USB Network Interface or the PCLTA-21 PCI Network Interface.

Important:

• The NodeLoad utility is designed for loading known and tested
application images. If you use the utility to load a custom Micro Server
image, or an incorrect Micro Server image for the hardware, the
NodeLoad utility might not prevent you from loading an incompatible
image into the Smart Transceiver. For a 3120 Smart Transceiver, it can
be difficult to recover from such an incompatibility. For example, if you
load an FT Micro Server image into a PL Smart Transceiver, you might
not be able to recover without desoldering the 3120 chip and
reprogramming it with a device programmer.

• Be sure to specify the -M switch for the nodeload command when you load
a Micro Server image into a Series 3100 or Series 5000 Smart
Transceiver. This switch specifies that a Micro Server image is to be
loaded.

• For loading application images during development or manufacture, use
the -X switch for the nodeload command, combined with the -L switch, to
ensure that the correct communication parameter and clock multiplier
settings are loaded.

However, you should generally not use the -X switch for devices in field
(after device deployment) because uploading incompatible communication
parameters or clock multiplier settings can render the device inoperable
or unresponsive to network communication.

• Use the NodeLoad utility only for NDL files. Do not use the utility to
load other files into a Smart Transceiver.

Example: To load an NDL file called ss400_ft5000isi_sys20000khz.ndl over a
LONWORKS network interface named LON1, allowing 20 seconds to press the
service pin on the destination device, specifying that the utility load a Micro
Server image file, and specifying that the load use the communication
parameters included in the NDL file, use the following command:

nodeload –DLON1 –W20 –M –X –Lss400_ft5000isi_sys20000khz.ndl

The result of running the NodeLoad utility should look similar to the following:

nodeload -DLON1 -W20 -M –X –Lss400_ft5000isi_sys20000khz.ndl
Echelon NodeLoad Release 1.20
Received uplink local reset
Received an ID message from device 1.
Program ID is 9FFFFF0000000400
Received uplink local reset
Resetting node
Successfully loaded SS400_FT5000ISI_SYS20000KHZ.NDL
NodeLoad Result: Success; NID=04c5c5e20100.

The Nodeload utility is available as a free download from
www.echelon.com/downloads, in the Development Tools category.

http://www.echelon.com/downloads

38 Selecting and Creating a ShortStack Micro Server

See the NodeLoad Utility User’s Guide for more information about the NodeLoad
utility.

Using the LonMaker Integration Tool with
ShortStack
You can use the LonMaker Integration Tool to load the ShortStack firmware into
a Smart Transceiver, or upgrade it. A blank FT 3120 Smart Transceiver has a
TP/FT-10 twisted-pair compatible communications interface initialized for a 10
MHz input clock, and its Neuron firmware state is applicationless. Likewise, a
blank PL 3120 Smart Transceiver has a PL-20 power line compatible
communications interface initialized for a 10 MHz input clock, and its Neuron
firmware state is applicationless. If your device uses the appropriate
communications parameters with a 10 MHz clock, you can load the Micro Server
and network configuration over the network, using a network management tool,
such as the LonMaker Integration tool. Otherwise, you must load the Smart
Transceiver using an ex-circuit programmer.

Important: You cannot use the LonMaker Integration tool for the initial load of
an FT 5000 Smart Transceiver, Neuron 5000 Processor, or power line Smart
Transceiver (either for the load of a blank device or after the device’s hardware
and clock settings have changed). Because LonMaker cannot adjust the Series
5000 device’s on-chip system clock multiplier (just as it would not adjust a Series
3100 device’s external crystal speed) or a power line Smart Transceiver’s channel
characteristics (such as addition or removal of support for the CENELEC
protocol), a blank or recently changed device could become inoperative after
loading. After you load the device with the correct properties (either by using a
PROM programmer or the Nodeload utility), you can use the LonMaker
Integration tool for subsequent loading as long as the system clock multiplier
remains unchanged.

Recommendation: Use an ex-circuit programmer to perform the initial load for
the Micro Server (either Series 3100 or Series 5000). You can use either an ex-
circuit programmer or in-circuit network management tool for subsequent loads.
For the initial load for the Micro Server, an in-circuit network management tool
can report a failed load because the Micro Server enters quiet mode after an
initial load. In this mode, the network management tool cannot communicate
with the Micro Server. However, for subsequent loads, the Micro Server does not
enter quiet mode.

To load the ShortStack firmware using in-circuit programming using LonMaker
Integration Tool:

1. Add a Device shape to your LonMaker drawing. See the LonMaker
User’s Guide for more information about working with LonMaker
drawings.

2. Optional: Ensure that the host processor is loaded with the ShortStack
LonTalk Compact API and the appropriate application program and
serial driver. This step ensures that the host application, serial driver,
and Micro Server synchronize after the load.

3. Ensure that the Smart Transceiver and the host processor are connected
and able to communicate with one another.

4. Ensure that the device is connected to the LONWORKS network.

ShortStack User’s Guide 39

5. Complete the information required by the LonMaker New Device Wizard.

Do not select the Commission device checkbox (or use the Commission
Device Wizard).

After you add the device to the LonMaker drawing, load the Micro Server
firmware into the device. When prompted for the device application image name,
specify the ShortStack Micro Server image in the Image name field, and specify
the device’s interface file that was generated by the LonTalk Interface Developer
utility in the XIF name field. Do not use the Micro Server’s XIF file.

Important: In the Image name field, be sure to select the correct Micro Server
image for your Smart Transceiver. The LonMaker Integration Tool can prevent
some incompatibilities between the hardware, firmware, and Micro Server image,
but some incorrect configurations are still possible.

Recommendation: To verify that the entire device is operational, do not import
the device’s XIF prior to commissioning, but instead specify Upload from device
for the External Interface Definition in either the New Device Wizard or the
Commission Device Wizard. Because the SI data is located on the host, reading
the SI data requires communications with the Micro Server through the link
layer. If the device can perform such communication successfully, the device is
likely to be fully operational. See Performing an Initial Micro Server Health
Check on page 82 for additional information about verifying the operational
status of the Micro Server.

To test the device within LonMaker, right-click the device’s shape in the
LonMaker drawing and select Manage. From the LonMaker Device Manager
window, select Test.

See the LonMaker User’s Guide for more information about using the LonMaker
Integration Tool.

Working with FT 5000 EVB Evaluation Boards
You can use an Echelon FT 5000 EVB evaluation board to develop your
ShortStack application. However, you must set the jumpers to configure the
Smart Transceiver for the ShortStack Micro Server and to set the appropriate
link-layer bit rate.

You can connect the host processor board to an FT 5000 EVB through either of
the following connectors:

• The evaluation board’s general-purpose peripheral I/O connector P201
(the Gizmo and MiniGizmo connector). This connection allows the
ShortStack Micro Server and the host processor to use a common power
supply with either a 3.3 V or a 5 V signal level. If the ShortStack Micro
Server and the host processor use separate power supplies, you must
ensure that they share a common ground for the link-layer; use the P201
connector to provide the ground connection. This connection supports
either an SCI or an SPI serial driver connection. See Using the Gizmo
Interface (SCI or SPI) on page 41.

• The on-board EIA-232 connector J201. This connection includes a
Maxim® Integrated Products MAX3387E AutoShutdown Plus™ RS-232
Transceiver that allows ShortStack link-layer drivers to use standard
EIA-232 communications levels, with handshake signals, and maintain

40 Selecting and Creating a ShortStack Micro Server

separate power supplies. This connection supports only SCI serial driver
connections. See Using the EIA-232 Interface (SCI) on page 45.

To enable the FT 5000 EVB to support a ShortStack application, you must mount
or dismount jumpers on the following headers: JP31, JP32, JP201, and JP203.
In addition, you should verify the settings for the JP1, JP33, JP202, JP204, and
JP205 jumpers. See the FT 5000 EVB Hardware Guide for more information
about these jumpers.

General Jumper Settings for the FT 5000
EVB
Verify and set the following jumpers to run a ShortStack Micro Server on an FT
5000 EVB.

Although the jumper settings for headers JP1, JP33, and JP202 are not specific
to running a ShortStack Micro Server on the FT 5000 EVB, they are included so
that you can verify the settings for all of the headers on the board.

JP1

Leave the jumpers for the JP1 header mounted as shown in Figure 8. This
header connects the FT 5000 Smart Transceiver to the onboard serial flash
and serial EEPROM memory.

JP1

Figure 8. FT 5000 EVB Serial Memory Connections Header (JP1)

JP31

Dismount all of the jumpers from the JP31 header, as shown in Figure 9.
The settings shown in the figure disconnect the FT 5000 Smart Transceiver’s
I/O lines from the onboard I/O.

JP31

Figure 9. FT 5000 EVB I/O Connections Header (JP31)

JP33

The ShortStack Micro Server does not use the onboard LCD display, so you
can dismount jumper on the JP33 header to remove power to the LCD
display, as shown in Figure 10 on page 41. This jumper setting is optional.

ShortStack User’s Guide 41

JP33

Figure 10. FT 5000 EVB LCD Display Power Header (JP33)

Using the Gizmo Interface (SCI or SPI)
To use the P201 Gizmo interface on an FT 5000 EVB for a ShortStack
application, set the following jumpers as described below.

JP32

Dismount all of the jumpers from the JP32 header, as shown in Figure 11
and Figure 12 on page 42. The settings for pins 1-10 of the header shown in
the figure disconnect the FT 5000 Smart Transceiver’s I/O lines from the
onboard I/O.

The 3 PD jumper setting in Figure 11 specifies the SCI interface for the
ShortStack Micro Server. The 3 PD jumper setting in Figure 12 specifies the
SPI interface for the ShortStack Micro Server.

For SCI, if your ShortStack serial driver does not use the HRDY~ signal,
mount the jumper for 1 PD to tie the HRDY~ signal low. For SPI, leave the 1
PD jumper unmounted, as shown in the figures.

If you use a standard Micro Server or a custom ShortStack Micro Server that
does not use the IO9 pin, you can dismount the 9 PD jumper to engage the
R226 pull-up. If you use a custom ShortStack Micro Server that uses the IO9
pin, you can mount or dismount the 9 PD jumper as needed.

JP32

Figure 11. FT 5000 EVB I/O Connections Header (JP32) – SCI

42 Selecting and Creating a ShortStack Micro Server

JP32

6
SW

SH

7
TE

M
P

8
R

XU
S

B

9
SW

1

10
 T

XU
SB

1
PD

9
PD

3
PD

Figure 12. FT 5000 EVB I/O Connections Header (JP32) – SPI

JP201

Dismount all of the jumpers on the JP201 header, except the 10T1IN jumper,
as shown in Figure 13. Although this header enables the EIA-232 interface,
and is not needed for the Gizmo interface, the 10T1IN jumper connects the
R213 pull-up resistor for the Micro Server’s IO10 pin (TXD for SCI or HRDY~
for SPI).

8
R

10

4
R

20

1
R

30

10
 T

1I
N

JP201

Figure 13. FT 5000 EVB EIA-232 Communications Header (JP201)

JP202

Mount the jumper for the JP202 header to determine the external power
source for the FT 5000 EVB, as shown in Figure 14.

JP202JP202

Power comes
from J202

(default setting)

Power comes
from P201

Figure 14. FT 5000 EVB Power Selector Header (JP202)

To use the Echelon power supply that ships with the FT 5000 EVB, mount
the jumper so that power comes from the J202 connector. This is the factory-
default setting.

ShortStack User’s Guide 43

To allow the FT 5000 EVB to share a common 5 V power supply with your
host board, mount the jumper so that power comes from pin 25 of the P201
Gizmo header.

Recommendation: When possible, use a single power domain for both the
host processor board and the FT 5000 EVB:

1. Important: Do not connect the external power supply to J202
connector of the FT 5000 EVB.

2. Set the FT 5000 EVB’s JP202 jumper to use power from the P201
Gizmo header (the left-hand image of Figure 14).

3. Connect power from the host board to pin 25 of the P201 Gimzo
header.

4. Connect the two boards to a common ground (you can use pin 20 or 23
of the P201 Gizmo header to provide ground to the FT 5000 EVB).

5. Supply power to the host processor board.

If your host processor board is the Pyxos FT EV Pilot EVB, dismount jumper
JP61 (located on the left-hand side of the EVB, near the Smart Transceiver’s
flash memory socket), and use pin 1 (the right-hand pin) of the header for the
5 V power in step 3. Use pin 43 or 44 of header JP505 for the ground
connection in step 4.

JP203

Dismount the 0 T2IN and FON PD jumpers, as shown in Figure 15. These
jumpers apply to the EIA-232 interface only.

The figure also shows the 5 PD and 6 PD jumpers configured to specify the
serial bit rate for the standard 20 MHz Micro Server (76800 bps for SCI;
76700 bps uplink and 38600 bps downlink for SPI).

5
PD

6
PD

0
T2

IN

FO
N

 P
D

Figure 15. FT 5000 EVB ShortStack Header (JP203)

To set the link-layer bit rate for the Micro Server, determine the correct bit
rate for your device according to Selecting the Link-Layer Bit Rate on page
68, and then mount the FT 5000 EVB’s 5 PD and 6 PD jumpers on the JP203
header appropriately to match the correct settings for the IO5 and IO6 pins
on the Smart Transceiver. Depending on which serial driver you use, see
either Setting the SCI Bit Rate on page 73 or Setting the SPI Bit Rate on
page 77 for the correct settings for the IO5 and IO6 pins.

JP204

Mount the jumper for the JP204 header, as shown in Figure 16 on page 44, to
determine whether power is supplied to pin 19 of the P201 Gizmo header.

44 Selecting and Creating a ShortStack Micro Server

The default setting is to provide no power to pin 19, but you can supply either
+5 V or +3.3 V.

Figure 16. FT 5000 EVB Gizmo Pin 19 Power Selector Header (JP204)

JP205

Mount the jumper for the JP205 header to determine whether power is
supplied to pin 17 of the P201 Gizmo header, as shown in Figure 17. The
default setting is to provide no power to pin 17, but you can supply +3.3 V.

JP205 JP205

No power to
Gizmo pin 17

(default setting)

+3.3 V power to
Gizmo pin 17

Figure 17. FT 5000 EVB Gizmo Pin 17 Power Selector Header (JP205)

P201

To connect your host evaluation board or Micro Server custom board to the
P201 Gizmo header, you must create a custom connection cable. For rapid
prototyping, you might consider using short 0.25” (0.635 mm) square socket
test leads for these connections. Figure 18 on page 45 shows the Gizmo
header (P201) on the FT 5000 EVB. The figure shows the signal names as
used by the FT 5000 EVB, and also shows the signal names for the first 12
pins as used by the SCI and SPI interfaces for a ShortStack Micro Server
(signal names are from the Micro Server’s point of view).

When connecting an FT 5000 EVB to a host processor board, be sure to
provide a solid ground connection between the two boards. You can use pin
20 or 23 of the P201 Gizmo header for this ground connection.

ShortStack User’s Guide 45

3432302826242018161412108642
1 3 5 7 9 11 13 15 17 19 23 25 27 29 31 33

IO
0

IO
2

IO
4

IO
6

IO
8

IO
10

S
V

C
~

G
IZM

O
_P

17

V
D

D
_G

IZM
O

G
N

D

V
D

D
_E

X
T

C
P

4

C
P

2_TX

C
P

0

N
C

IO
1

IO
3

IO
5

IO
7

IO
9

IO
11

R
S

T~

G
N

D

N
C V
A

N
C

C
P

3_R
X

C
P

1

N
C

N
C

N
C

N
C

Figure 18. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals

Using the EIA-232 Interface (SCI)
To use the EIA-232 interface on the FT 5000 EVB for a ShortStack application,
set the following jumpers as described below.

JP32

Dismount all of the jumpers from the JP32 header, as shown in Figure 19 on
page 46. The settings for pins 1-10 of the header shown in the figure
disconnect the FT 5000 Smart Transceiver’s I/O lines from the onboard I/O.

The 3 PD jumper setting specifies the SCI interface for the ShortStack Micro
Server. If your ShortStack serial driver does not use the HRDY~ signal,
mount the jumper for 1 PD to tie the HRDY~ signal low.

If you use a standard Micro Server or a custom ShortStack Micro Server that
does not use the IO9 pin, you can dismount the 9 PD jumper to connect the
R226 pull-up. If you use a custom ShortStack Micro Server that uses the IO9
pin, you can mount or dismount the 9 PD jumper as needed.

46 Selecting and Creating a ShortStack Micro Server

JP32

6
SW

SH

7
TE

M
P

8
R

XU
S

B

9
SW

1

10
 T

XU
SB

1
PD

9
PD

3
PD

Figure 19. FT 5000 EVB I/O Connections Header (JP32)

JP201

Mount all of the jumpers on the JP201 header, as shown in Figure 20. These
jumper settings connect the Micro Server’s IO1 (HRDY~), IO4 (RTS~), IO8
(RXD), and IO10 (TXD) signals to the EIA-232 connector. If your ShortStack
serial driver does not use the HRDY~ signal, you can dismount the jumper
for 1 R30.

JP201

Figure 20. FT 5000 EVB EIA-232 Communications Header (JP201)

JP203

Mount the 0 T2IN and FON PD jumpers on the JP203 header, as shown in
Figure 21. The figure also shows the 5 PD and 6 PD jumpers configured to
specify a 76800 bps serial bit rate for the standard 20 MHz Micro Server.

JP203

Figure 21. FT 5000 EVB ShortStack Header (JP203)

ShortStack User’s Guide 47

The MAX3387E RS-232 transceiver that is used on the FT 5000 EVB is
configured to enter autoshutdown mode after inactivity of approximately 30
seconds. For applications that use high link-layer bit rates, the time required for
the transceiver to become fully active (approximately 100 μs) might be long
enough to cause a framing error on the serial link-layer signals.

Recommendation: To prevent the MAX3387E RS-232 transceiver from entering
autoshutdown mode, you can mount the FON PD jumper on the JP203 header
connect the chip’s FORCEON pin (pin 11) to GND, as shown in Figure 21.
Alternatively, your SCI serial driver should briefly toggle the ShortStack Micro
Server’s HRDY~ signal every 10 to 20 seconds during periods of idleness. This
toggle causes the MAX3387E transceiver to detect transmission activity and not
enter autoshutdown mode.

To set the link-layer bit rate for the Micro Server, determine the correct bit rate
for your device according to Selecting the Link-Layer Bit Rate on page 68, and
then mount the FT 5000 EVB’s 5 PD and 6 PD jumpers on the JP203 header
appropriately to match the correct settings for the IO5 and IO6 pins on the Smart
Transceiver. See Setting the SCI Bit Rate on page 73 for the correct settings for
the IO5 and IO6 pins.

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232
connector (J201) on the FT 5000 EVB. To define the null-modem EIA-232
interface, use the pin connections listed in Table 8. Keep the total cable length to
a maximum of 24 inches (0.6 meters).

Table 8. EIA-232 Header to D-SUB9 Connector Pin Connections

D-SUB9 Connector Pin Micro Server SCI Signal

1 N/A

2 TXD

3 RXD

4 HRDY~

5 GND

6 N/A

7 RTS~

8 CTS~

9 N/A

Clearing the Non-Volatile Memory
In general, if you have a working device, you should not need to clear the onboard
non-volatile memory (the I2C serial EEPROM memory U2) on the FT 5000 EVB.
For a working device, you can receive a service-pin message and reload the non-

48 Selecting and Creating a ShortStack Micro Server

volatile memory as needed. However, if it should become necessary to clear the
non-volatile memory, perform the following tasks:

1. Press and hold the EVB’s RESET button.

2. Temporarily connect pin 8 of header JP1 to pin 7 of header JP23. This
step connects the EEPROM's SCL pin to GND.

3. Release the EVB’s RESET button.

4. Wait a few seconds until the EVB’s Service Pin LED is illuminated (on
solid, not flashing).

5. Disconnect pin 8 of header JP1 from pin 7 of header JP23. Ensure that
the jumpers for header JP1 are as shown in Figure 8 on page 40.

6. Use NodeUtil utility to set the memory configuration and set the state for
the device:

a. Connect the PC that will run the NodeUtil utility to the same
network interface that connects to the FT 5000 EVB. For
example, if you connect to the FT 5000 EVB using LON1, connect
the NodeUtil utility to LON1.

b. Start the NodeUtil utility.

c. Press the SVC button on the FT 5000 EVB to send a service-pin
message to the NodeUtil utility. If you cannot receive a service-
pin message from the device, repeat steps 1 to 5.

d. Within the NodeUtil utility, select the L option to see all
connected devices.

e. Select the G option to manage the device that just sent a service-
pin message (the FT 5000 EVB). Typically, this is device 1.

f. Select W to write to a memory location. When prompted, do not
update the application checksum and do not update the
configuration checksum.

g. Enter FDE8 for the starting address. Enter a value of 2 for
address FDE8. This value specifies the memory type as I2C serial
EEPROM memory.

h. Enter a period (.) to exit the memory write session.

i. Select W to write to a different memory location. When
prompted, do not update the application checksum and do not
update the configuration checksum.

j. Enter F037 for the starting address. Enter a value of 0 (zero) for
address 0xF037. This value triggers device re-initialization.

k. Enter a period (.) to exit the memory write session.

l. Select E to exit device management mode.

m. Select E to exit the NodeUtil utility.

At this point, you can reload the board with whatever application is required (for
example, a ShortStack Micro Server or a Neuron C application). Because the
device has returned to its default (empty) state and default settings, use the
NodeLoad utility with the -X switch when loading an application or Micro Server

ShortStack User’s Guide 49

image (see Using the NodeLoad Utility with ShortStack on page 37). Do not use
the LonMaker Integration Tool to load an image following this procedure.

Using a Logic Analyzer
During device development, it is recommended that you use a logic analyzer,
such as the TechTools DigiView™ Logic Analyzer, to verify the link-layer signals.
For an example, see Performing an Initial Micro Server Health Check on page 82.
You can use the JP24 header (see Figure 22) on the FT 5000 EVB to connect a
logic analyzer to the EVB.

161412108642
1 3 5 7 9 11 13 15

IO
0

IO
2

IO
4

IO
6

IO
8

IO
10

S
V

C
~

IO
1

IO
3

IO
5

IO
7

IO
9

IO
11

R
S

T~
JP24

G
N

D
G

N
D

Figure 22. FT 5000 EVB Logic Analyzer Header (JP24)

Working with Mini EVB Evaluation Boards
You can use an Echelon Mini FX or Mini EVK evaluation board to develop your
ShortStack application. However, you must set the jumpers to configure the
Smart Transceiver for the ShortStack Micro Server and to set the appropriate bit
rate.

You can connect the host processor to a Mini EVB through either of the following
connectors:

• The evaluation board’s general-purpose peripheral I/O connector P201
(the Gizmo and MiniGizmo connector). This connection allows the
ShortStack Micro Server and the host processor to use a common power
supply with a 5 V signal level. By default, this connection supports only
SCI serial driver connections. If you want to use the SPI interface, you
must drive the IO3 (SPI/SCI~) pin high with a 10 kΩ pull-up resistor
through the Gizmo (P201) header. See Using the Gizmo Interface (SCI)
on page 50.

• The on-board EIA-232 connector J201. This connection includes a
Maxim® Integrated Products MAX3387E AutoShutdown Plus™ RS-232
Transceiver, which allows ShortStack link-layer drivers to use standard
EIA-232 communications levels and maintain separate power supplies.
This connection supports only SCI serial driver connections. See Using
the EIA-232 Interface (SCI) on page 52.

When connecting a Mini EVB to a host processor board, be sure to provide a solid
ground connection between the two boards.

To enable the Mini EVB to support a ShortStack application, you must mount or
dismount jumpers on the following headers: JP201 and JP203. See the Mini FX
PL Hardware Guide for more information about these jumpers.

50 Selecting and Creating a ShortStack Micro Server

Using the Gizmo Interface (SCI)
To use the P201 Gizmo interface on a Mini EVB for a ShortStack application, set
the following jumpers as described below.

JP201

Dismount all of the jumpers on the JP201 header, as shown in Figure 23.
This header enables the EIA-232 interface, which is not needed for the Gizmo
interface. In the figure, the jumpers for the FT 3120 and 3150 boards are on
the left, and the jumpers for the PL 3120, 3150, and 3170 boards are on the
right.

JP201
(FT 31xx)

IO
8

IO
4

IO
1

IO
10

JP201
(PL 31xx)

IO8

IO4

IO1

IO10

Figure 23. Mini EVB EIA-232 Enable Jumpers (JP201)

JP203

Dismount the IO0 jumper as shown in Figure 24; this jumper applies to the
EIA-232 interface only. The figure also shows the IO5 and IO6 jumpers
configured to specify a 38 400 bit rate on a Mini FX PL 3150 Evaluation
Board for a 10 MHz Micro Server.

IO
5

IO
6

IO
0

Figure 24. PL 3150 Mini FX ShortStack Enable Jumper (JP203)

To set the link-layer bit rate for the Micro Server, determine the correct bit
rate for your device according to Selecting the Link-Layer Bit Rate on page
68, and then mount the Mini EVB’s JP203 jumpers appropriately to match
the correct settings for the IO5 and IO6 pins on the Smart Transceiver. See
Setting the SCI Bit Rate on page 73 for the correct settings for the IO5 and
IO6 pins.

ShortStack User’s Guide 51

Important: The PL 3170 Smart Transceiver supports the 38400 bit rate only.
Therefore, the JP203 jumper settings for the IO5 and IO6 pins do not apply
to the Mini FX PL 3170 Evaluation Board.

Recommendation: When possible, use a single power domain for both the host
processor board and the Mini EVB. If you use the Pyxos FT EV Pilot EVB as
your host processor board, you can allow the Mini EVB to provide 5 V power:

1. Important: Do not connect the external power supply to either the JP201
connector or the J31 connector of the Pyxos FT EV Pilot EVB.

2. Connect pin 26 (VDD5) of the P201 Gimzo header on the Mini EVB to pin
2 of the JP33 header on the Pyxos FT EV Pilot EVB. The JP33 header is
near the center of the EVB, to the right of the JP512 and JP510 headers.
By default, there is a jumper that connects pins 1-2 of the JP33 header;
remove this jumper to connect to pin 2 of the header.

3. Connect the two boards to a common ground: Use pin 20 or 23 of the
P201 Gizmo header to provide ground from the Mini EVB, and use pin 43
or 44 of the JP505 header to provide ground to the Pyxos FT EV Pilot
EVB.

4. Supply power to the Mini EVB.

If you use a host processor board other than the Pyxos FT EV Pilot EVB, you
should still use a common power domain. In this case, you should use a common
power supply that meets the input power requirements of both the host processor
board and the Mini EVB (note that the power line EVBs have different power
requirements from the FT EVBs).

To connect your host evaluation board or Micro Server custom board to the P201
Gizmo header, you must create a custom connection cable. For rapid prototyping,
you might consider using short 0.25” (0.635 mm) square socket test leads for
these connections. Figure 25 on page 52 shows the Gizmo header (P201) on the
PL 3170 EVB. The figure shows the signal names as used by the PL 3170 EVB,
and also shows the signal names for the first 12 pins as used by the SCI and SPI
interfaces for a ShortStack Micro Server (signal names are from the Micro
Server’s point of view).

52 Selecting and Creating a ShortStack Micro Server

Figure 25. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals

Using the EIA-232 Interface (SCI)
To use the EIA-232 interface on a Mini EVB for a ShortStack application, set the
following jumpers as described below.

JP201

To enable the EIA-232 communications on a Mini EVB, mount all of the
jumpers on the JP201 header, as shown in Figure 26. In the figure, the
jumpers for the FT 3120 and 3150 boards are on the left, and the jumpers for
the PL 3120, 3150, and 3170 boards are on the right.

JP201
(FT 31xx)

IO
8

IO
4

IO
1

IO
10

JP201
(PL 31xx)

IO10

IO8

IO4

IO1

Figure 26. Mini EVB EIA-232 Enable Jumpers (JP201)

The MAX3387E RS-232 transceiver that is used on the Mini EVBs is
configured to enter autoshutdown mode after inactivity of approximately 30

ShortStack User’s Guide 53

seconds. For applications that use high link-layer bit rates, the time required
for the transceiver to become fully active (approximately 100 μs) might be
long enough to cause a framing error on the serial link-layer signals.

Recommendation: To prevent the MAX3387E RS-232 transceiver from
entering autoshutdown mode, your serial driver should briefly toggle the
ShortStack Micro Server’s HRDY~ signal every 10 to 20 seconds during
periods of idleness. This toggle causes the MAX3387E transceiver to detect
transmission activity and not enter autoshutdown mode. Alternatively, you
can connect the FORCEON pin (pin 11) either to VDD5 or to the VL pin (pin
15).

JP203

Mount the IO0 jumper as shown in Figure 27 to connect the CTS~ signal to
the MAX3387E RS-232 transceiver. The figure also shows the IO5 and IO6
jumpers configured to specify a 19 200 bit rate on a Mini FX PL 3170
Evaluation Board for a 10 MHz Micro Server.

IO
5

IO
6

IO
0

Figure 27. PL 3170 Mini FX ShortStack Enable Jumper (JP203)

To set the link-layer bit rate for the Micro Server, determine the correct bit
rate for your device according to Selecting the Link-Layer Bit Rate on page
68, and then mount the Mini EVB’s JP203 jumpers appropriately to match
the correct settings for the IO5 and IO6 pins on the Smart Transceiver. See
either Setting the SCI Bit Rate on page 73 for the correct settings for the IO5
and IO6 pins.

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232
connector (J201) on the Mini EVB. To define the null-modem EIA-232 interface,
use the pin connections listed in Table 9. Keep the total cable length to a
maximum of 24 inches (0.6 meters).

Table 9. EIA-232 Header to D-SUB9 Connector Pin Connections

D-SUB9 Connector Pin Micro Server SCI Signal

1 N/A

2 TXD

3 RXD

4 HRDY~

5 GND

54 Selecting and Creating a ShortStack Micro Server

6 N/A

7 RTS~

8 CTS~

9 N/A

Working with Pyxos FT EV Pilot Evaluation Boards
For SCI link-layer connections, you can use an Echelon Pyxos FT EV Pilot EVB
as an Atmel ARM7 host processor board, either with the on-board FT 3150 Smart
Transceiver for the Micro Server, or with an FT 5000 EVB or Mini EVB (as
described above).

For SPI link-layer connections, you cannot use the Pyxos FT EV Pilot EVB, but
you can use another ARM7 host processor board, such as an Atmel AT91SAM7S-
EK evaluation board.

Regardless of which ARM7 host EVB you use (the Pyxos Pilot or the Atmel
evaluation board), you must create a custom connection cable for either the P201
Gizmo header or the J201 EIA-232 connector. For rapid prototyping, you might
consider using short 0.25” (0.635 mm) square socket test leads for these
connections.

To use the Pyxos FT EV Pilot EVB with an external Micro Server board (such as
an FT 5000 EVB or Mini EVB), rather than using the on-board FT 3150 Smart
Transceiver, you must disconnect the ARM7 processor’s GPIO signals from the
FT 3150 Smart Transceiver’s SCI link-layer signals. To disconnect these signals,
dismount all jumpers from header JP512 (near the flash memory socket on the
left side of the board) on the Pyxos FT EV Pilot EVB, as shown in Figure 28 on
page 55. The labels for the header represent the ARM7 pin names.

ShortStack User’s Guide 55

Figure 28. Pyxos FT EV Pilot EVB ShortStack Header (JP512)

For your custom connection cable, you can use either the rightmost side (ARM7-
facing side) of the JP512 header or you can use the relevant pins from the JP505
header to connect the Micro Server SCI signals to the ARM7 host. Table 10 lists
the pin correspondences between the ARM7 host processor and the ShortStack
Micro Server (for hardware pin numbers, see the specific chip’s data sheet or
schematic). Figure 29 on page 56 shows the JP505 header.

Table 10. ARM7 to Micro Server Pin Connections for the SCI Interface

ARM7 Pin Name Micro Server Pin Name

PA8 IO0 (CTS~)

PA2 IO1 (HRDY~)

N/A IO3 (SPI/SCI~) → Tie to GND for SCI

PA7 IO4 (RTS~)

PA0 IO5 (SBRB0)

PA1 IO6 (SBRB1)

PA6 IO8 (RXD)

PA5 IO10 (TXD)

PA23 Reset (RST~)

56 Selecting and Creating a ShortStack Micro Server

Figure 29. Pyxos FT EV Pilot Host Power and I/O Connector Header (JP505)

Table 11 summarizes the connections between the FT 5000 EVB and the Pyxos
FT EV Pilot EVB for the SCI link-layer interface using the Gizmo interface. The
notation “P201:4” represents pin 4 of header P201.

Table 11. SCI Connections for the Pyxos Pilot EVB and the FT 5000 EVB

Signal Name FT 5000 EVB Pins Pyxos Pilot EVB Pins

CTS~ P201:0 JP512:13 (PA8)

RTS~ P201:4 JP512:11 (PA7)

RXD P201:8 JP512:9 (PA6)

TXD P201:10 JP512:7 (PA5)

GND P201:20 JP505:44 (GND)

If you use an external EVB for the ShortStack Micro Server (such as the FT 5000
EVB), do not connect the Micro Server’s IO5 and IO6 lines (SBRB0 and SBRB1)
to the ARM7 processor’s PA0 and PA1 pins. By default, the ShortStack FX

ShortStack User’s Guide 57

ARM7 example port’s serial driver sets the SCI serial bit rate to 76800 bps for a
10 MHz FT 3150 Smart Transceiver; connecting these pins can create a
mismatch in the expected bit rate for the Micro Server. That is, set the Micro
Server bit rate through the jumpers on the FT 5000 EVB, rather than through
the serial driver.

Important: The SCI link layer requires pull-up resistors for the communications
lines (see Serial Communication Lines on page 66):

• If you use the Pyxos FT EV Pilot EVB’s onboard FT 3150 Smart
Transceiver with the ARM7 host processor, the jumper settings for the
JP512 header not only connect the ARM7’s GPIO lines to the Smart
Transceiver, but also provide the necessary pull-ups.

• If you connect the Pyxos FT EV Pilot EVB to an FT 5000 EVB, the
needed pull-up resistors are already present if you connect the boards as
described in Working with FT 5000 EVB Evaluation Boards on page 39.

• If you connect the Pyxos FT EV Pilot EVB to other hardware (a Mini EVB
or your custom hardware), be sure to supply the pull-up and pull-down
resistors as necessary (see your hardware’s schematics or other
documentation).

See the ShortStack FX ARM7 Example Port User’s Guide for more information
about the Pyxos FT EV Pilot EVB and the ARM7 host processor.

ShortStack Device Initialization
A ShortStack device performs the following tasks during initialization:

1. Upon power-up or return from reset, the Micro Server performs initial
health checks, and initializes itself.

Depending on the chosen hardware and the Micro Server’s properties,
this step can take several tens of seconds the first time the Micro Server
initializes; however, this step completes almost instantly for all
subsequent resets.

The Micro Server also enters quiet mode at the end of this step, unless an
application has previously been registered with this Micro Server.

2. While the Micro Server performs initialization step 1, the host
application runs its own local initialization code.

3. When the host application’s initialization is complete, and its serial
driver is ready to receive messages from the Micro Server, it must assert
the HRDY~ signal. This assertion must occur before the Micro Server’s
watchdog timer expires (840 ms after reset for a Series 5000 device; 210
to 840 ms after reset for a Series 3100 device, depending on the external
clock rate). For fast host processors, you can tie the HRDY~ signal low,
so that the Micro Server assumes that the host is always ready to receive
messages. However, your host-side circuitry must ensure that the
HRDY~ signal is reliably high (deasserted) during power-up and host
initialization.

4. When the Micro Server’s initialization is complete and the host signals its
readiness to receive packets (by asserting the HRDY~ signal), the Micro
Server sends an uplink reset message. This message includes

58 Selecting and Creating a ShortStack Micro Server

information about the Micro Server, including its current state, last
known error condition, and its initialization state.

The ShortStack host application must register with the Micro Server to complete
the initialization of the ShortStack device (the Micro Server together with the
host processor) before it can communicate as a LONWORKS device on a
LONWORKS network. Before the application is correctly registered with the Micro
Server, the Micro Server is in quiet mode and does not respond to network events
and appears inoperative to the network. In addition, after you load a new Micro
Server image, the first initialization of the Micro Server, together with the
initialization of the host application and its registration with the Micro Server,
can take up to one minute to complete. Subsequent initializations complete much
more quickly.

The ShortStack host application sends registration information to the ShortStack
Micro Server on startup. The registration information includes the device’s
program ID, communication parameters, network variable configuration data,
and miscellaneous preferences.

The application must send this registration data whenever the Micro Server
reports a reset and indicates that no application is registered. That is, the host
application should re-run its LonInit() function. See Performing an Initial Micro
Server Health Check on page 82 for more information.

After the registration data has been accepted and successfully processed by the
Micro Server, the Micro Server leaves quiet mode, and thus allows the device to
communicate as a LONWORKS device on a LONWORKS network.

See Initializing the ShortStack Device on page 169 for more information about
the initialization ShortStack LonTalk Compact API function, and see Running
the LonTalk Interface Developer on page 146 for more information about
generating the self-identification, self-documentation, and initialization data.

Using the ShortStack Micro Server Key
Each ShortStack Micro Server firmware image has a version number and a key
value that identifies it. The key value identifies the Micro Server in terms of its
Smart Transceiver chip type (FT or PL, 3120, 3150, 3170, or 5000), its clock rate,
whether it supports ISI, and its channel type (FT or PL). The key value is a 16-
bit number that is reported to the host whenever the Micro Server sends a reset
notification; Table 12 defines the bit values that comprise the key for standard
Micro Servers.

Table 12. Micro Server Key Bit Values

Bit Values

Micro
Server Type Custom Revision

Chip
Type

Clock
Speed

ISI
Support

Channel
Type

Key
Value

FT 3120 @
10 MHz 0 0001 0000 001 0 000 0x0010

FT 3120 @
20 MHz 0 0001 0000 010 0 000 0x0020

ShortStack User’s Guide 59

Bit Values

Micro
Server Type Custom Revision

Chip
Type

Clock
Speed

ISI
Support

Channel
Type

Key
Value

FT 3120 @
40 MHz 0 0001 0000 011 0 000 0x0030

FT 3150 @
10 MHz 0 0001 0001 001 0 000 0x0090

FT 3150 @
10 MHz 0 0001 0001 001 1 000 0x0098

PL 3120 @
10 MHz 0 0001 0010 001 0 001 0x0111

PL 3150 @
10 MHz 0 0001 0011 001 0 001 0x0191

PL 3150 @
10 MHz 0 0001 0011 001 1 001 0x0199

PL 3170 @
10 MHz 0 0001 0100 001 1 001 0x0A19

FT 5000 ES 0 0000 0101 011 1 000 0x02B8

FT 5000 0 0001 0101 011 1 000 0x0AB8

In the table:

• Custom is a one-bit field that identifies whether the Micro Server is a
standard Echelon-supplied Micro Server or a custom Micro Server. 0b02
indicates standard; 0b1 indicates custom.

• Revision is a four-bit field that can distinguish otherwise-identical Micro
Servers:

o 0b0000 indicates the initial version.

o 0b0001 indicates the first revision level.

• Chip type is a four-bit field that identifies the chip type:

o 0b0000 indicates an FT 3120 Smart Transceiver

o 0b0001 indicates an FT 3150 Smart Transceiver

o 0b0010 indicates a PL 3120 Smart Transceiver

o 0b0011 indicates a PL 3150 Smart Transceiver

o 0b0100 indicates a PL 3170 Smart Transceiver

2 “0b0” represents a binary literal or constant value of 0 (zero).

60 Selecting and Creating a ShortStack Micro Server

o 0b0101 indicates an FT 5000 Smart Transceiver

o 0b0110 indicates a Neuron 5000 Processor3

• Clock speed is a three-bit field that identifies the clock speed for the
Smart Transceiver or Neuron Processor4:

o 0b000 indicates 5 MHz

o 0b001 indicates 10 MHz

o 0b010 indicates 20 MHz

o 0b011 indicates 40 MHz

o 0b100 indicates 80 MHz

o 0b101 indicates 160 MHz

• ISI support is a one-bit field that identifies whether the Micro Server
supports Interoperable Self-Installation (ISI):

o 0b0 indicates no ISI support

o 0b1 indicates ISI support.

• Channel type is a three-bit field that identifies the LONWORKS network
type:

o 0b000 indicates a TP/FT-10 channel

o 0b001 indicates a PL-20C channel

o 0b010 indicates a PL-20N channel

o 0b111 indicates all other channel types

A ShortStack host application could use this key value to determine whether its
Micro Server is running with an FT or PL transceiver, and perform an
appropriate initialization for that tranceiver type. Alternatively, a host
application could use this key to bypass initialization for ISI for a Micro Server
that does not support ISI.

If you develop a custom Micro Server, you can set the key to any value that has
meaning for your application, however, you must set the most-significant bit to 1
to signify that the key applies to a custom Micro Server. The key is defined in
the [ShortStack]\Custom MicroServer\MicroServer.h header file:

#define MICRO_SERVER_KEY 0x8000ul

Thus, the key is a 16-bit number as defined in the context of Neuron C’s unsigned
long type.

3 The Neuron 5000 Processor is not supported by the standard Micro Servers that are included with
the ShortStack FX Developer’s Kit. You must create a custom Micro Server to support a Neuron
5000 Processor.
4 For a Series 3100 Smart Transceiver, this value is the external crystal or oscillator frequency
value. For an FT 5000 Smart Transceiver or Neuron 5000 Processor, this value is twice its system
clock value (from the device’s hardware template), to represent an equivalent Series 3100 clock rate.

ShortStack User’s Guide 61

4

Selecting the Host Processor

This chapter describes considerations for selecting a new
host processor for a ShortStack device, and for evaluating an
existing host processor. It also describes considerations for
selecting the host programming environment.

62 Selecting the Host Processor

Selecting a Host Processor
For most applications, the choice of the host processor is determined by the
overall needs of the application, rather than the needs of the ShortStack Micro
Server. Other considerations for choosing the host processor include prior
experience with the processor or architecture, cost, performance, memory
support, power requirements, I/O support, and availability of development tools.

The Micro Server has few requirements for the host processor. The following
sections describe considerations that can help you choose a host processor or
determine the suitability of your current host processor.

Serial Communications
The host processor must be able to connect to the ShortStack Micro Server
through either the four (or five) line Serial Communications Interface (SCI) or
the six (or seven) line Serial Peripheral Interface (SPI). In addition, the host
processor’s implementation of the serial interface must support at least one of the
bit rates listed in Setting the SCI Bit Rate on page 73 or Setting the SPI Bit Rate
on page 77.

An existing serial driver, which might be available as part of an embedded
operating system’s services, must allow for flow control that complies with the
ShortStack link layer protocol. Alternatively, you must be able to supply your
own serial driver that implements the required protocol. See SCI Interface on
page 71 or SPI Interface on page 76 for information about the required protocol.

If your application uses SPI, the host processor must support SPI Slave mode,
because the Micro Server always operates as the SPI Master.

Both the SCI and SPI interfaces provide a host ready (HRDY~) signal. Your
application can use this signal to prevent new link layer uplink transfers to the
host processor, but because Micro Server has limited buffering capabilities, the
application should only assert the HRDY~ signal briefly. A typical driver
implementation deasserts this signal only briefly while it enqueues a received
packet, to protect the temporarily busy receiver routine from an input data buffer
overflow. The host must ensure that this signal this deasserted reliably through
the entire power-up and initialization phase, until the host asserts it after the
host application and serial driver are fully initialized and ready to exchange link-
layer data.

If your ShortStack application makes no requirements for which interface to use,
you should consider using the SCI interface. The SCI interface requires fewer
I/O lines, and is more standardized, which allows for easier possible future
transition to a different host platform. In addition, the ShortStack SCI driver is
easier to port because of its simpler link-layer protocol.

Byte Orientation
Unless your application requires a processor with a little-endian (least significant
byte at low address) architecture, you should consider using a processor with a
big-endian (most significant byte at low address) architecture for a ShortStack
device. Network data in a LONWORKS network uses big-endian byte orientation.

ShortStack User’s Guide 63

A big-endian host processor does not need to change byte orientation, and thus
requires fewer processing instructions and machine cycles to access network
data. If you use a little-endian host processor, you might need to implement code
for byte re-ordering on the uplink and downlink. Some processor architectures,
such as that used in the ARM processor family, are bi-endian, and feature
switchable “endianness”.

The ShortStack LonTalk Compact API and application framework provide
utilities to handle the byte orientation correctly.

Processing Power
The processing power required by the ShortStack host processor is generally
determined by the application’s control algorithm. ShortStack has minimal
processing requirements.

However, the ShortStack LonTalk Compact API requires frequent periodic
servicing through the LonEventHandler() API function (see Periodically Calling
the Event Handler on page 170). Different host processors take different
amounts of time to run this function. The time required to run this function also
depends on the incoming and outgoing network traffic.

Most modern microprocessors can run this function without impacting the
application’s control algorithm. However, a device with a very demanding control
algorithm, or a device with a performance-limited host processor might need
additional RAM to buffer link-layer packets to avoid loss of data.

Volatile Memory
Although every application is different, a general ShortStack device requires
about 800 bytes of RAM (as well as approximately 4 to 6 KB of memory for the
application program plus application framework [serial driver, ShortStack
LonTalk Compact API, and so on]). See API Memory Requirements on page 290
for a description of the memory requirements for the ShortStack LonTalk
Compact API and optional APIs.

If your application uses non-interoperable messages, which can include larger
payload data and can require larger buffers or additional buffers in the host
application, the RAM requirement could increase significantly.

Modifiable Non-Volatile Memory
Although the ShortStack LonTalk Compact API does not require modifiable non-
volatile memory, most interoperable ShortStack devices require a small amount
of modifiable non-volatile data storage. This data includes configuration property
values, which control and configure the interoperability and networking aspects
of the ShortStack device.

The total amount of such data depends on your application, and can range from
zero bytes to several kilobytes. Many simple interoperable devices require no
more than a few hundred bytes of modifiable non-volatile memory. Devices
typically use flash or EEPROM memory to store such data, but ShortStack
makes no requirement for the type of memory.

64 Selecting the Host Processor

How the application accesses this memory depends on the application’s
requirements. The ShortStack LonTalk Compact API provides tools and code
that can help manage non-volatile memory. See Providing Persistent Storage for
Non-Volatile Data on page 192 for more information, including recommendations
and considerations for handling non-volatile data.

Compiler and Application Programming Language
The ShortStack Developer’s Kit provides the ShortStack LonTalk Compact API
and application framework as portable ANSI C source code. Thus, a standard
ANSI C (or C++) compiler for application development is appropriate. Other
development tools and languages are possible, but you must then port the driver,
API, and application framework to the other language.

The ShortStack LonTalk Compact API and application framework can be used
with most ANSI C compilers with little or no changes. The LonPlatform.h file
provides a set of common definitions for various compilers.

The ShortStack LonTalk Compact API and application framework use many data
structures and unions, some of which are deeply nested types. All of these
structures are based on byte-sized entities (and combinations of multiple single-
byte entities, rather than multi-byte entities), so the application compiler must
be able to generate the exact memory image of these structures and unions
without inserting any padding bytes. By exclusively using single-byte entities,
the ShortStack LonTalk Compact API allows most compilers to be used with a
ShortStack FX application.

See Porting the ShortStack LonTalk Compact API on page 109 for more
information, including considerations for porting a ShortStack application to a
host development environment and embedded operating system.

Selecting the Application Development
Environment

The ShortStack LonTalk Compact API and framework have no requirement for
an embedded operating system, and use only a few basic routines from the
standard ANSI C toolkit, such as the memcpy() or memset() functions.

Many simple ShortStack devices do not include an embedded operating system.
These devices typically call the ShortStack LonTalk Compact API from the
application’s main loop.

Devices that use an embedded operating system can use dedicated threads, tasks,
or processes to call and process data from the ShortStack LonTalk Compact API.
Other solutions can call and process data from the API from a timer-based
interrupt service handler routine.

Although the ShortStack LonTalk Compact API and application framework
support all of these approaches, the ShortStack model is single-threaded and not
re-entrant. An application that uses a multi-tasking (or multi-threaded) or
interrupt-driven ShortStack LonTalk Compact API must ensure that all
ShortStack LonTalk Compact API access is within a single thread (or task or
interrupt context).

See Appendix C, ShortStack LonTalk Compact API, on page 287, for additional
considerations and recommendations regarding threading and execution context.

ShortStack User’s Guide 65

5

Designing the Hardware Interface

This chapter describes what you need to design the
hardware interface between your ShortStack host processor
and the ShortStack Micro Server.

66 Designing the Hardware Interface

Overview of the Hardware Interface
The hardware interface for a ShortStack Micro Server consists of the 11 or 12
I/O-pin interface of an Echelon Smart Transceiver. However, a ShortStack Micro
Server does not use all 11 or 12 pins. The ShortStack Micro Server supports two
serial interfaces for communications with the host processor: the Serial
Communications Interface (SCI) and the Serial Peripheral Interface (SPI). One
I/O pin selects the serial interface, two pins set the interface bit rate, and five to
seven I/O pins comprise the interface. One pin (IO9) is optionally available to the
host processor, and the remaining I/O pins are not used.

This chapter describes the hardware interface, including the requirement for
pull-up resistors, checking the status of the optional IO9 pin, selecting a
minimum communications interface bit rate, considerations for host latency,
specifying the SCI interface, specifying the SPI interface, and how to perform an
initial health check of the Micro Server.

Reliability
A ShortStack Micro Server considers the serial link reliable, similar to other
serial interfaces that are commonly used within computing equipment and
embedded devices, such as an inter-integrated circuit (I2C) bus connection to a
serial EEPROM device.

The ShortStack link layer protocol does not include error detection or error
recovery. Instead, error detection and recovery are implemented by the LonTalk
protocol, and this protocol detects and recovers from errors.

To minimize possible link-layer errors, be sure to design the hardware interface
for reliable and robust operations. For example, use a star-ground configuration
for your device layout on the device’s printed circuit board (PCB), limit entry
points for electrostatic discharge (ESD) current, provide ground guarding for
switching power supply control loops, provide good decoupling for VDD inputs, and
maintain separation between digital circuitry and cabling for the network and
power. See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 /
PL 3150 / PL 3170 Power Line Smart Transceiver Data Book, or the Series 5000
Chip Data Book for more information about PCB design considerations for a
Smart Transceiver.

The example applications contain example implementations of the link layer
driver, including examples and recommendations for time-out guards within the
various states of that driver. See the ShortStack FX ARM7 Example Port User’s
Guide for more information about the ARM7 example applications. The optional
local utility API functions also include health-check features, such as the facility
to ‘ping’ the Micro Server or to echo data across the serial link layer, to help your
application to prevent and detect unrecoverable link-layer errors.

Serial Communication Lines
For both serial interfaces (SCI and SPI), you must add 10 kΩ pull-up resistors to
all communication lines between the host processor and the ShortStack Micro
Server (including those marked as N/A in Table 13 on page 72 and Table 15 on
page 77, and not connected to the host processor). These pull-up resistors

ShortStack User’s Guide 67

prevent invalid transactions on start-up and reset of the host processor or the
Micro Server. Without a pull-up resistor, certain I/O pins can revert to a floating
state, which can cause unpredictable results.

If your link-layer driver does not use the HRDY~ signal, you can tie it to GND.
However, it is recommended that the host drive the HRDY~ signal, even if the
host processor is fast and always ready to receive uplink data, to assist with a
synchronized start-up after power-up or reset.

High-speed communication lines should also include proper back termination.
Place a series resistor with a value equal to the characteristic impedance (Z0) of
the PCB trace minus the output impedance of the driving gate (the resistor value
should be approximately 50 Ω) at the driving pin. In addition, the trace should
run on the top layer of the PCB, over the inner ground plane, and should not
have any vias to the other side of the PCB. Low-impedance routing and correct
line termination is increasingly important with higher link layer bit rates, so
carefully check the signal quality for both the Micro Server and the host when
you design and test new ShortStack device hardware, or when you change the
link-layer parameters for existing ShortStack device hardware.

The RESET~ Pin
The ShortStack Micro Server has no special requirements for the Smart
Transceiver’s or Neuron Chip’s RESET~ (or RST~) pin. See the FT 3120 / FT
3150 Smart Transceiver Data Book, the PL 3120 / PL 3150 / PL 3170 Power Line
Smart Transceiver Data Book, or the Series 5000 Chip Data Book for information
about the requirements for this pin.

However, because a ShortStack device uses two processor chips, the Smart
Transceiver and the host processor, you have an additional consideration for the
Smart Transceiver’s RESET~ pin: Whether to connect the host processor’s reset
pin to the Smart Transceiver’s RESET~ pin.

For most ShortStack devices, you should not connect the two reset pins to each
other. It is usually better for the Micro Server and the host application to be able
to reset independently. For example, when the Micro Server encounters an error
that causes a reset, it logs the reset cause (see Querying the Error Log on page
187); if the host processor resets the Micro Server directly, possibly before the
Micro Server can detect and log the error, your application cannot query the
Micro Server’s error log after the reset to identify the problem that caused the
reset. The Micro Server also resets as part of the normal process of integrating
the device within a network; there is normally no need for the host application to
reset at the same time.

In addition, the host processor should not reset the Micro Server while the Micro
Server is starting up (that is, before the Micro Server sends the uplink reset
message, LonResetNotification, to the host processor).

For devices that require the host application to be able to control all operating
parameters of the Micro Server, including reset, you can connect one of the host
processor’s general-purpose I/O (GPIO) output pins to the Smart Transceiver’s
RESET~ pin, and drive the GPIO pin to cause a Micro Server reset from within
your application or within your serial driver. Alternatively, you can connect one
of the host processor’s GPIO input pins to the Smart Transceiver’s RESET~ pin
so that the host application can be informed of Smart Transceiver resets.

68 Designing the Hardware Interface

A host processor’s GPIO output pin should not actively drive the Smart
Transceiver’s RESET~ pin high, but instead should drive the pin low. You can
use one of the following methods to ensure that the GPIO pin cannot drive the
RESET~ pin high:

• Ensure that the GPIO pin is configured as an open-drain (open-collector)
output

• Ensure that the GPIO pin is configured as a tri-state output

• Place a Schottky diode between the GPIO pin and the RESET~ pin, with
the cathode end of the diode connected to the GPIO pin

Configuring the GPIO pin as either open drain or tri-state ensures that the GPIO
pin is in a high-impedance state until it is driven low. Using a Schottky diode is
preferable to using a regular diode because a Schottky diode has a low forward
voltage drop (typically, 0.15 to 0.45 V), whereas a regular diode has a much
higher voltage drop (typically, 0.7 V), that is, the Schottky diode ensures that the
voltage drop is low enough to ensure a logic-low signal.

Host-driven reset of the Micro Server should only be an emergency means to
recover from some serious error. In addition, the host application or serial driver
should always log the reason or cause for the reset, along with timestamp
information. An unrecoverable error that requires a reset of the Micro Server is
generally evidence of a malfunction in the host driver, the Micro Server, or the
physical link layer, and should be investigated.

Using the IO9 Pin
Neither of the standard serial interfaces for a ShortStack Micro Server uses the
IO9 pin of the Smart Transceiver chip. However, an application can read the
static input signal that is available to the IO9 pin.

To make this signal available to the application, the Micro Server includes the
following information in each uplink reset notification:

• Whether the IO9 input signal is available for application use (always
TRUE for a ShortStack FX Micro Server)

• The logic state of the IO9 static input

Applications can use this information for automatic configuration of the Micro
Server. For example, your ShortStack device could use a jumper or configuration
switch to select, or deselect, the comité européen de normalisation
electrotechnique5 (CENELEC) media access protocol for power line use, thus
potentially allowing the device to use a single application image for use in
CENELEC member states as well as in countries that are not governed by the
CENELEC committee.

Selecting the Link-Layer Bit Rate
The minimum bit rate for the serial link between the ShortStack Micro Server
and the host processor is most directly determined by the expected number of
packets per second, the type of packets, and the size of the packets. Another
factor that can significantly influence the required bit rate is support for explicit

5 European Committee for Electrotechnical Standardization

ShortStack User’s Guide 69

addressing, an optional feature that the ShortStack application can enable and
disable.

Recommendations: The following recommendations apply to general-use
LONWORKS devices:

• ShortStack Micro Server external clock frequency

o 10 MHz or higher for TP/FT-10 devices (for Series 5000 devices,
specify a minimum 5 MHz system clock rate)

o 5 MHz or higher for power-line devices

• Bit rate

o 38 400 bps or higher for TP/FT-10 devices

o 9600 bps or higher for power-line devices

To generate a more precise estimate for the minimum bit rate for the serial
interface, use the following formula:

() exp**5 PPSBPTPEAPMinBitRate Interfacesizetype +++=

where:

• The constant 5 represents general communications overhead

• typeP is the packet-type overhead, and has one of the following values:

o 3 for network-variable messages

o 1 for application messages

• EA is the explicit-addressing overhead, and has one of the following
values:

o 0 for no explicit-addressing support

o 11 for explicit-addressing support enabled

• sizeP is the packet size of the payload, and has one of the following values:

o sizeof(network_variable)

o sizeof(message_length)

• InterfaceBPT represents data transfer overhead for the serial interface, and

has one of the following values:

o 1 bit per transfer for SPI

o 10 bits per transfer for SCI

• expPPS is the expected packet-per-second throughput value

Example: For an average network variable size of 3 bytes, no explicit messaging
support, and a TP/FT-10 channel that delivers up to 180 packets per second, the
minimum bit rate for an SCI interface is 19 200 bps. To allow for larger NVs,
channel noise, and other systemic latency, you should consider setting the device
bit rate at the next greater value above the minimum calculated from the
formula. Thus, for this example, a bit rate of 38 400 or 76 800 bps is
recommended.

70 Designing the Hardware Interface

To calculate the expected packet-per-second throughput value for a channel, you
can use the Echelon Perf utility, available from www.echelon.com/downloads.

However, the bit rate is not the only factor that determines the link-layer transit
time. Some portion of the link-layer transit time is spent negotiating handshake
lines between the host and the Micro Server. For faster bit rates, the
handshaking overhead can increase, thus your application might require a faster
clock speed for the Micro Server to handle the extra processing.

Example: For a Series 3100 Micro Server running at 10 MHz and an ARM7 host
running at 20 MHz, the link-layer transit for a 4-byte network variable fetch, the
handshaking overhead can be as much as 22% of the total link-layer transit time
at 19 200 bps, and as much as 40% at 38 400 bps.

Even though a Series 3100 Micro Server running at 5 MHz can be sufficient for
the demands of a power-line channel, a typical Micro Server operates at 10 MHz
even when used exclusively with a power line channel. The maximum clock rate
for a Micro Server based on a PL 3120, PL 3150, or PL 3170 Smart Transceiver is
10 MHz.

FT 3150 and PL 3150-based Micro Servers using off-chip flash memory are
limited to 10 MHz operation, but faster operation might be possible with FT 3120
or FT 3150-based Smart Transceivers. FT 5000 Smart Transceivers can operate
with up to an 80 MHz system clock rate, but the standard Micro Server for the
FT 5000 uses a 20 MHz system clock, making its performance equivalent to that
of an FT 3120 Smart Transceiver with an external 40 MHz crystal. The selection
of the 20 MHz clock rate is a compromise between processing performance and
power consumption.

For a performance test application that attempts to maximize the number of
propagated packets, the application is likely to show approximately 3% increased
throughput when operating with a 40 MHz Series 3100 Micro Server compared to
a 10 MHz Series 3100 Micro Server (for Series 5000 Micro Servers, the
comparison is between the 20 MHz system clock setting and the 5 MHz system
clock setting). However, for a production application, which only occasionally
transmits to the network and has unused output buffers available on the Micro
Server, a faster Micro Server reduces the time required for the handshake
overhead (by up to a factor of 4 for Series 3100 devices – or up to a factor of 16 for
Series 5000 devices, compared to Series 3100 devices) so that a downlink packet
can be delivered to the Micro Server more quickly, which can improve overall
application latency. Thus, depending on the needs of your application, you can
use a slower or faster Micro Server.

Host Latency Considerations
The processing time required by the host processor for a ShortStack Micro Server
can have a significant impact on link-layer transit time for network
communications and on the total duration of network transactions. This impact
is the host latency for the ShortStack application.

To maintain consistent network throughput, a host processor must complete each
transaction as quickly as possible. Operations that take a long time to complete,
such as flash memory writes, should be deferred whenever possible. For
example, an ARM7 host processor running at 20 MHz can respond to a network-
variable fetch request in less than 60 μs, but typically requires 10-12 ms to erase
and write a sector in flash memory.

http://www.echelon.com/downloads

ShortStack User’s Guide 71

The following formula shows the overall impact of host latency on total
transaction time:

()() hostlinklayerrMicroServechanneltrans ttttt +++= *2

where:

• transt is the total transaction time

• channelt is the channel propagation time

• rMicroServet is the Micro Server latency (approximately 1 ms for a Series

3100 Micro Server running at 10 MHz; approximately 65 μs for a Series
5000 Micro Server running with an 80 MHz system clock)

• linklayert is the link-layer transit time

• hostt is the host latency

The channel propagation time and the Micro Server latency are fairly constant
for each transaction. However, link-layer transit time and host latency can be
variable, depending on the design of the host application.

You must ensure that the total transaction time for any transaction is much less
than the LONWORKS network transmit timer. For example, the typical transmit
timer for a TP/FT-10 channel is 64 ms, and the transmit timer for a PL-20
channel is 384 ms.

Typical host processors are fast enough to minimize link-layer transit time and
host latency, and to ensure that the total transaction time is sufficiently low.
Nonetheless, your application might benefit from using an asynchronous design
of the host serial driver and from deferring time-consuming operations such as
flash memory writes.

SCI Interface
The ShortStack Serial Communications Interface (SCI) is a half-duplex
asynchronous serial interface between the ShortStack Micro Server and the host
processor. The communications format is:

• 1 start bit

• 8 data bits (least-significant bit first)

• 1 stop bit

The SCI link-layer interface uses two serial data lines: RXD (receive data) and
TXD (transmit data). The signal directions are from the point of view of the
Micro Server. An uplink transaction describes data exchange from the Micro
Server to the host processor, and uses the TXD line. A downlink transaction
refers to data exchange from host processor to the Micro Server, and uses the
RXD line.

The SCI interface includes three flow-control lines: the RTS~ (request to send)
signal that informs the Micro Server of a pending downlink, the CTS~ (clear to
send) signal that allows a downlink transfer to begin, and an optional HRDY~

72 Designing the Hardware Interface

(host ready) signal that can be used to temporarily prevent uplink transfers.
These three signals are all active low.

The interface also includes two bit-rate selection signals and an interface type
selection signal. These signals can be connected to the host processor, but do not
need to be. However, if the host processor does not control the bit-rate selection
signals, you must ensure that the host processor and the Micro Server run at the
same SCI bit rate.

ShortStack Micro Server I/O Pin Assignments for SCI
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of
the Micro Server and provide the interface to the host processor. The IO3 input
pin selects the serial interface: SCI or SPI. The serial interface also determines
the usage of the other I/O pins. Table 13 summarizes these pin assignments for
the SCI interface.

Recommendation: If your host processor can support both the SCI and SPI
interfaces, use the SCI interface because it is typically faster and easier to
implement, both in hardware and software.

Table 13. ShortStack Micro Server Pin Assignments for the SCI Interface

Smart Transceiver Pin Signal Name Direction

IO0 CTS~ Output

IO1 HRDY~ Input

IO2 N/A No connection

IO3 SPI/SCI~ Input (tie to GND for
SCI)

IO4 RTS~ Input

IO5 Serial Bit Rate Bit 0
(SBRB0; LSB)

Input

IO6 Serial Bit Rate Bit 1
(SBRB1; MSB)

Input

IO7 N/A No connection

IO8 RXD Input

IO9 N/A No connection (but see
Using the IO9 Pin on
page 68)

IO10 TXD Output

IO11 N/A No connection

ShortStack User’s Guide 73

Notes:

• Signal direction is from the point of view of the Smart Transceiver
(Micro Server).

• N/A = Not applicable.

Setting the SCI Bit Rate
You select the SCI interface by setting the ShortStack Micro Server’s IO3 input
pin to logic 0 (ground). The settings for pins IO5 and IO6 determine the SCI
serial bit rate, as listed in Table 14. The rates are listed as bits per second; the
values are also approximate and rounded to the nearest 100 bits per second.

Table 14. SCI Serial Bit Rates

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5) Series 3100
External

Clock

Series
5000

System
Clock GND GND GND VDD VDD GND VDD VDD

5 MHz — 38400 19200 9600 4800

10 MHz 5 MHz 76800 38400 19200 9600

20 MHz 10 MHz 153600 76800 38400 19200

40 MHz 20 MHz 302100 153600 76800 38400

— 40 MHz 604200 302100 153600 76800

— 80 MHz 1208400 604200 302100 153600

Note: Specify the Series 5000 system clock rate in the hardware template for a custom Micro
Server. The standard Series 5000 Micro Server images use a 20 MHz system clock. The
external crystal clock frequency for a Series 5000 chip is 10 MHz.

The standard Series 3100 ShortStack Micro Server images support only the 10
MHz, 20 MHz, and 40 MHz clock rates; you need to create a custom Micro Server
image to use the 5 MHz clock rates listed in Table 14. The standard Series 5000
ShortStack Micro Server images support only the 20 MHz system clock rate; you
need to create a custom Micro Server image to use one of the other system clock
rates. See Custom Micro Servers on page 241 for more information about
creating a custom Micro Server image.

Important: The PL 3170 Smart Transceiver supports the 38400 bit rate only.

Note that some of the higher bit rates listed in Table 14 are not standard SCI bit
rates, therefore, some host processors or UART/USART implementations might
not be able to communicate at the specific rate listed in the table. In this case,
modify the UART/USART setting to the closest bit rate to the desired value in
the table, or modify the Micro Server’s bit rate setting.

74 Designing the Hardware Interface

Important: For implementations with higher bit rates, be sure that the link-
layer hardware provides low impedance and correct termination. Also consider
adding extra ground connections between the data signals. If a high-bit rate
application presents link-layer problems, be sure to analyze the waveform with
an oscilloscope to be sure it has the correct shape before proceding to other
debugging procedures.

SCI Communications Interface
The SCI communications interface shown in Figure 30 on page 75 is
implemented with the following inputs and outputs:

• Interface Selector (SPI/SCI~): Tied to GND to specify the SCI interface.

• Request to Send (RTS~): When asserted, indicates that the host
processor has data to send. The serial driver asserts this signal low if the
CTS~ signal is deasserted (high), and waits for the Micro Server to assert
CTS~.

• Clear to Send (CTS~): When asserted, informs the host processor that
Micro Server is ready to receive data from the serial driver. Set by the
Micro Server after the host has asserted RTS~. The Micro Server keeps
CTS~ asserted until it receives the expected number of bytes. The host
must deassert RTS~ after the CTS~ acknowledgement has been received,
and must start transmitting the related data with minimal delay (under
400 ms for a 10 MHz Series 3100 Micro Server; under 100 ms for a 40
MHz Series 3100 Micro Server; under 25 ms for an 80 MHz Series 5000
Micro Server).

• Host Ready (HRDY~): When deasserted, indicates that the host
processor is temporarily not able to accept data transfers from the Micro
Server. This signal is optional; if your application does not use this
signal, you must tie it low so that it is continually asserted (to specify
that the host is always ready to accept data transfers). See Serial
Communications on page 62 for additional considerations for the HRDY~
signal. Typical host applications deassert the HRDY~ signal in the
following situations:

o During power-up and initialization following a reset (until the
serial driver is ready to receive data from the Micro Server)

o When enqueuing received data, following a completed uplink
transfer

• Receive Data (RXD): Transfers data from the host processor to the Micro
Server.

• Transmit Data (TXD): Transfers data from the Micro Server to the host
processor.

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):
Together set the communications bit rate (see Table 14 on page 73).

ShortStack User’s Guide 75

ShortStack
Micro Server

RTS~

CTS~
IO0

IO4

IO8

IO10

IO1
HRDY~

RXD

TXD IO3

IO5

IO6

GND

SBRB0

SBRB1

Figure 30. ShortStack SCI Communications Interface

SCI Micro Server to Host (Uplink) Control Flow
The host must assert the HRDY~ pin low to indicate that it is ready to receive
data. Because the Micro Server has a limited set of buffers, the host processor
should deassert the HRDY~ pin for only a short duration. A typical application
deasserts the HRDY~ signal during its power-up and initial initialization
following a reset, and after an uplink data packet has been completely received,
while the packet data is enqueued for further processing, then reasserts the
signal.

If your host processor is always able to receive data, you can hardwire the
HRDY~ input low.

Figure 31 shows an example for the Micro Server to host SCI control flow,
including the states of the various I/O pins.

Figure 31. SCI Micro Server to Host Transfer Control Flow Diagram

SCI Host to Micro Server (Downlink) Control Flow
The Micro Server uses the CTS~ pin to enforce a half-duplex interface. Every
downlink transfer must be guarded with a complete RTS~ / CTS~ handshake
between the host processor and the Micro Server, by implementing the following
simple protocol:

76 Designing the Hardware Interface

1. The serial link-layer driver awaits the completion of the previous
transaction. That is, it monitors the CTS~ line and waits until the Micro
Server has deasserted this signal.

2. The serial link-layer driver asserts the RTS~ line to indicate the
availability of downlink data.

3. The driver awaits confirmation from the Micro Server, which it indicates
by asserting the CTS~ line. Depending on the type of operation and the
current availability of buffers within the Micro Server, the driver could
wait for a significant amount of time. The driver should include a
timeout guard that can accommodate this wait period, for example, a 60
second timeout guard should suffice for most applications, even though
the CTS~ assertion will usually occur much sooner.

4. After the driver detects that the CTS~ line is asserted (low), it releases
(deasserts) the RTS~ line.

5. The driver transmits the data.

6. After the Micro Server receives the number of bytes of data (indicated in
the message header), it releases (deasserts) the CTS~ line.

See Chapter 6, Creating a ShortStack Serial Driver, on page 89, for more
information about the serial driver.

Figure 32 shows an example for the host to Micro Server SCI control flow. The
figure also shows the transfer of the two-byte header, followed by the payload.

Figure 32. SCI Host to Micro Server Transfer Control Flow Diagram

SPI Interface
The ShortStack Serial Peripheral Interface (SPI) is a half-duplex synchronous
serial interface between the ShortStack Micro Server and the host processor.
The Micro Server is configured as the SPI master. The host processor is
configured as the SPI slave.

If the host processor does not control the bit-rate selection signals, you must
ensure that the host processor and the Micro Server run at the same SPI bit rate.

ShortStack Micro Server I/O Pin Assignments for SPI
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of
the Micro Server and provide the interface to the host processor. The IO3 input
pin selects the serial interface: SCI or SPI. The serial interface also determines
the usage of the other I/O pins. Table 15 on page 77 summarizes these pin
assignments for the SPI interface.

ShortStack User’s Guide 77

Recommendation: If your host processor can support both the SCI and SPI
interfaces, use the SCI interface because it is typically faster and easier to
implement, both in hardware and software.

Table 15. ShortStack Micro Server Pin Assignments for an SPI Interface

Smart Transceiver Pin Signal Name Direction

IO0 R/W~ Output

IO1 SCLK Output

IO2 SS~ Output

IO3 SPI/SCI~ Input (tie to VDD for SPI)

IO4 TREQ~ Input

IO5 Serial Bit Rate Bit 0
(SBRB0; LSB)

Input

IO6 Serial Bit Rate Bit 1
(SBRB1; MSB)

Input

IO7 MOSI Output

IO8 MISO Input

IO9 N/A No connection (but see
Using the IO9 Pin on
page 68)

IO10 HRDY~ Input

IO11 N/A No connection

Notes:

• Signal direction is from the point of view of the Smart Transceiver
(Micro Server).

• N/A = Not applicable.

Setting the SPI Bit Rate
You select the SPI interface by setting the ShortStack Micro Server’s IO3 input
pin to logic 1 (VDD) with a 10 kΩ pull-up resistor. The effective SPI bit rate is
controlled by the SCLK output from the ShortStack Micro Server, but the desired
bit rate can be preselected using the input signals SBRB0 and SBRB1 (IO5 and
IO6). For the SPI interface, there are different bit rates for uplink transfers and
downlink transfers. The settings for pins IO5 and IO6, and the resulting link
layer bit rates, are listed in Table 16 and Table 17 on page 78. The rates in the
tables are listed as bits per second; the values are also approximate and rounded
to the nearest 100 bits per second.

78 Designing the Hardware Interface

Table 16. SPI Serial Bit Rates for Uplink

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5) Series 3100
External

Clock

Series 5000
System
Clock GND GND GND VDD VDD GND VDD VDD

5 MHz — 29200 16600 10200 5100

10 MHz 5 MHz 58300 33200 20300 10300

20 MHz 10 MHz 116700 66300 40600 20500

40 MHz 20 MHz 226600 129500 76700 40900

— 40 MHz 453100 258900 153300 81900

— 80 MHz 906200 517900 306600 163700

Note: Specify the Series 5000 system clock rate in the hardware template for a custom Micro
Server. The standard Series 5000 Micro Server images use a 20 MHz system clock. The
external crystal clock frequency for a Series 5000 chip is 10 MHz.

Table 17. SPI Serial Bit Rates for Downlink

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5)

SBR1

(IO6)

SBR0

(IO5) Series 3100
External

Clock

Series 5000
System
Clock GND GND GND VDD VDD GND VDD VDD

5 MHz — 21700 9200 4800 2900

10 MHz 5 MHz 43400 18400 9700 5700

20 MHz 10 MHz 86800 36800 19300 11500

40 MHz 20 MHz 172600 73300 38600 22800

— 40 MHz 345200 146700 77100 45600

— 80 MHz 690500 293400 154300 91300

The standard Series 3100 ShortStack Micro Server images support only the 10
MHz, 20 MHz, and 40 MHz clock rates; you need to create a custom Micro Server
image to use the 5 MHz clock rates listed in Table 16 and Table 17. The
standard Series 5000 ShortStack Micro Server images support only the 20 MHz
system clock rate; you need to create a custom Micro Server image to use the
other clock rates listed in Table 16 and Table 17. See Custom Micro Servers on
page 241 for more information about creating a custom Micro Server image.

ShortStack User’s Guide 79

Note that some host processors or UART/USART implementations might not be
able to process data at some of the higher bit rates listed in Table 16 and Table
17. In this case, modify the UART/USART setting to the closest bit rate to the
desired value in the table, or modify the Micro Server’s bit rate setting. Most
host processors should be able to process uplink data at up to 129500 bps and
downlink data at up to 73300 bps.

Important: For implementations with higher bit rates, be sure that the link-
layer hardware provides low impedance and correct termination. Also consider
adding extra ground connections between the data signals. If a high-bit rate
application presents link-layer problems, be sure to analyze the waveform with
an oscilloscope to be sure it has the correct shape before proceding to other
debugging procedures.

SPI Communications Interface
The SPI communications interface shown in Figure 33 on page 80 is implemented
with the following inputs and outputs:

• Interface Selector (SPI/SCI~): Tied to VDD to specify the SPI interface.

• Host Ready (HRDY~): When deasserted, indicates that the host
processor is temporarily not able to accept any data transfers from the
Micro Server. This signal is optional; if your application does not use this
signal, you must tie it low so that it is continually asserted (to specify
that the host is always ready to accept data transfers). Typical host
applications deassert the HRDY~ signal in the following situations:

o During power-up and initialization following a reset (until the
serial driver is ready to receive data from the Micro Server)

o When enqueuing received data, following a completed uplink
transfer

• Master Input Slave Output (MISO): Transmits control and data bytes
from the host to the Micro Server. Data is presented at the falling clock
edge, and sampled at the rising edge, MSB first, 8 bit.

• Master Output Slave Input (MOSI): Transmits control and data bytes
from the Micro Server to the host. Data is presented at the falling clock
edge, and sampled at the rising edge, MSB first, 8 bit.

• Serial Clock (SCLK): Provides a clock signal for all data transfers. Data
is presented at the falling clock edge, and sampled at the rising edge.

• Slave Select (SS~): When asserted, selects the host SPI interface for SPI
communication. This signal can be used to drive a (low-active) Enable
signal on the host’s SPI interface, when necessary.

• Transmit Request (TREQ~): When asserted, indicates that the host
processor is ready to send data. The host asserts this signal low and
waits for the Micro Server to assert the R/W~ pin.

• Read/Write (R/W~): Indicates which direction is active during a byte
transfer (low indicates write). The R/W~ pin is low during a transfer
from the Micro Server to the host (MOSI); the R/W~ pin is high during a
transfer from the host to the Micro Server (MISO). See SPI Host to Micro

80 Designing the Hardware Interface

Server Control Flow (MISO) on page 81 for more information about the
MISO flow.

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):
Together set the communications bit rate.

The ShortStack SPI interface supports only one host processor on the bus; it does
not support any other devices or microprocessors on the bus.

ShortStack
Micro Server

TREQ~

R/W~

MISO

MOSI

SCLK

SS~
IO2

IO1

IO8

IO7

IO0

IO4

IO10
HRDY~

IO3

IO5

IO6

VDD

SBRB0

SBRB1

Figure 33. ShortStack SPI Communications Interface

SPI Micro Server to Host Control Flow (MOSI)
The host must assert the HRDY~ pin low to indicate that it is ready to receive
data. Because the Micro Server has a limited set of buffers, the host processor
should deassert the HRDY~ pin for only a short duration. A typical application
deasserts the HRDY~ signal during its power-up and initial initialization
following a reset, and after an uplink data packet has been completely received,
while the packet data is enqueued for further processing, then reasserts the
signal.

If your processor is always able to receive data, you can hardwire the HRDY~
input low.

Before sending a byte to the host, the Micro Server waits for the HRDY~ pin to be
asserted low, then it sets the R/W~ pin low to indicate the direction of the data
transfer. The Micro Server presents data on each falling edge of the SCLK pin;
the host samples the data on each rising edge.

During MOSI transmissions, the MISO pin is ignored, and any data transferred
to the Micro Server during this time is discarded. The SCLK period and duty
cycle can vary during MISO and MOSI transmissions; the SCLK signal should
not be used for any other purpose than ShortStack SPI interface data transfers.

Figure 34 on page 81 shows an example for the Micro Server to host SPI control
flow.

ShortStack User’s Guide 81

Figure 34. SPI Micro Server to Host (MOSI) Transfer Control Flow Diagram

SPI Host to Micro Server Control Flow (MISO)
Because the Micro Server is the SPI master, the host processor loads the first
byte to be transmitted and asserts the TREQ~ pin. Asserting the TREQ~ pin
causes the Micro Server to start the data transfer by driving the SCLK signal.
Loading the data byte before asserting the TREQ~ pin ensures that:

• The data is transmitted as soon as the Micro Server begins sending a
clock signal (the SCLK signal)

• The data is sampled on the rising edge of the SCLK signal

After the byte-received interrupt in the host’s SPI status register is set, the host
tests the R/W~ signal to determine if the transmission was successful. If the
R/W~ pin is low (indicating a write operation by the Micro Server), the host must
save the incoming byte as part of an uplink transfer and retry transmission until
the R/W~ pin is high. When the host attempts to write data while the Micro
Server is already writing data, this condition is known as a write collision.

After the host samples the R/W~ line and it is still high after the transfer of the
first byte, it immediately de-asserts the TREQ~ pin before it loads the second
byte of the burst transfer into its SPI transmission data register.

Because the host samples the R/W~ signal between the transmission of the first
and second byte, the minimum length for a transfer in either direction is two
bytes. This requirement is inherently met by the ShortStack SPI interface
message structure because each link layer packet is two or more bytes in length.
For some packets with only one byte of payload, an extra padding byte (zero) is
added. In addition, the Micro Server keeps the R/W~ signal high for the duration
of one byte; this extra time allows the host to confirm transfer direction.

The Micro Server samples data on the rising edge of the SCLK signal. The host
must ensure that it presents data on the falling edge of the SCLK signal, because
the SCLK signal is high between bytes (idle line). For most SPI
implementations, this idle state is achieved by setting the Clock Polarity Bit
(CPOL) to one and the Clock Phase Bit (CPHA) to one.

Figure 35 on page 82 shows an example for the host to Micro Server SPI control
flow, without a write collision. The figure also shows the transfer of the two-byte
header.

82 Designing the Hardware Interface

Figure 35. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram without Write

Collision

Figure 36 shows the sequence for a MISO transaction when there is a write
collision with a MOSI transmission. The host tests the R/W~ signal after loading
the first byte to be transmitted to determine if the transmission was successful.
Because the R/W~ pin is low, indicating that the ShortStack Micro Server is
currently performing a MOSI transfer, the host saves the incoming byte and
retries transmission until the R/W~ pin is high after the attempted transfer of
the first byte. The figure shows that the host successfully transmits the data on
the second attempt.

Figure 36. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram with Write

Collision

SPI Resynchronization
The Micro Server resynchronizes the ShortStack SPI interface by de-asserting
the SS~ pin during a byte transfer, or by de-asserting the SS~ pin and issuing
several SCLK pulses. This resynchronization occurs during Micro Server start-
up and when the Micro Server resets.

Performing an Initial Micro Server Health Check
After you load the ShortStack Micro Server image into a Smart Transceiver, the
Micro Server enters quiet mode (also known as flush mode). While the Smart
Transceiver is in quiet mode, all network communication is paused.

The Smart Transceiver enters quiet mode to ensure that only complete
implementations of the LonTalk protocol stack attach to a LONWORKS network.
In a functioning ShortStack device, the application initializes the Micro Server.

ShortStack User’s Guide 83

After that initialization is complete, the Micro Server leaves quiet mode and
enables regular network communication.

To check that the Micro Server is functioning correctly before the host processor
has initialized it, you can use an oscilloscope or a logic analyzer to observe the
activity on the TXD (IO10) pin that reflects the uplink LonNiReset message
transfer that follows a Micro Server reset, as shown in Figure 37.

FT 3120, PL 3120
FT 3150, PL 3150
PL 3170, FT 5000

Micro Server

HRDY~

RTS~

CTS~

TXD

RXD

SBRB0

SBRB1

RESET~

VDD

9 x 10 kΩ

GND

SPI/SCI~

GND

Figure 37. Uplink LonNiReset Message Transfer

For a Mini EVB, the Micro Server’s service pin LED flashes slowly (which
indicates that the Smart Transceiver is in the unconfigured state), and all
network communications are disabled while it is in quiet mode.

In general, you should ensure that all communication and handshake lines are
connected to VDD with 10 kΩ pull-up resistors. But for the initial hardware test,
the HRDY~ and SPI/SCI~ input signals should be grounded (asserted). Your
hardware design should include a switch that connects the RESET~ pin to
ground; you press this switch to reset the Micro Server.

When you press the reset switch for a ShortStack device, the Smart Transceiver
firmware performs reset processing, as described in the data books for the Smart
Transceiver chips. Then, the Micro Server performs reset processing that is
generally independent of the host processor. See ShortStack Device Initialization
on page 57 for more information about the Micro Server’s reset processing.

After the Micro Server is fully initialized, it transmits the uplink
LonResetNotification message to the host. The host normally registers (or re-
registers) its application with the Micro Server; the host application (through the
ShortStack LonTalk Compact API) begins application registration with the Micro
Server, in which the driver sends the following messages to the Micro Server (in
the LonInit() function and interrupt service routine for the CTS~ line):

• The LonNiAppInit message

• One or more LonNiNvInit messages (how many depends on the number
of network variables that are defined for the device)

• The LonNiReset message

After the Micro Server completes processing for the LonNiReset message, it
sends the uplink reset message (LonResetNotification) to the host processor.

84 Designing the Hardware Interface

After the host application processes this message, the host application can begin
processing. If the message (in the Flags field) indicates that the Micro Server is
not initialized, the host application should re-run the LonInit() function.

Example: Figure 38 through Figure 42 on page 88 show sample logic analyzer
traces6 for the communications activity between the host processor and the Micro
Server during the initialization sequence after device reset. This example
assumes an SCI setup for a 10 MHz Series 3100 Micro Server, with both the
SBRB0 and SBRB1 pins connected to GND to set the bit rate at 76800 bps. The
data transmission signals (RXD and TXD) in the figures are labeled from the
host’s point of view. This example shows the reset behavior of the serial driver
from the ARM7 example port that is available from www.echelon.com/shortstack.

Figure 38 shows a high-level logic analyzer trace for this initialization sequence:

• The boxed area labeled A represents sending the LonNiAppInit message

• The boxed area labeled B represents sending the LonNiNvInit message

• The boxed area labeled C represents sending the LonNiReset message

The trace also shows the handshake protocol (the RTS~ and CTS~ lines) that the
serial driver and the Micro Server use to negotiate communications. The
handshake interaction is described in the subsequent figures.

Figure 38. High-Level Logic Analyzer Trace for ShortStack Device Reset

Figure 39 shows the detailed trace for the serial driver and Micro Server
interactions for sending the LonNiAppInit message.

Figure 39. Detailed Logic Analyzer Trace for Sending the LonNiAppInit Message

6 The logic analyzer traces were captured using the TechTools DigiView™ Logic Analyzer.

http://www.echelon.com/shortstack

ShortStack User’s Guide 85

The figure shows the following actions by the host processor and the Micro
Server:

1. After a device reset, the driver sleeps for a specified amount of time. For
the ARM7 serial driver, it sleeps for 255 ms (specified by the
LDV_DRVWAKEUPTIME macro in the LdvSci.h file).

2. When the driver wakes up, it asserts the HRDY~ line to inform the Micro
Server that it is ready to receive data (if any).

3. Because the driver needs to send the initialization messages, it confirms
that the CTS~ line is not asserted, and then it asserts the RTS~ line to
inform the Micro Server that the driver has data to send to the Micro
Server (in this case, the header packet for the LonNiAppInit message).

4. The Micro Server asserts the CTS~ line to inform the driver that the
Micro Server is ready to receive data.

5. The driver deasserts the RTS~ line. The handshake between the driver
and the Micro Server is complete, so the driver deasserts the RTS~ line so
that the line can be asserted when the driver needs to send more data to
the Micro Server. It is important that the driver deassert the RTS~ line
before the last byte of data is transmitted, and it is recommended that
the driver deassert the RTS~ line as soon as the CTS~ line is asserted.

6. The driver sends the two-byte header packet to the Micro Server. In this
case, the length byte is 0x1C (decimal 28) and the command byte is 0x08,
which specifies the LonNiAppInit message.

7. After the Micro Server receives the header packet, it deasserts the CTS~
line to inform the driver that the Micro Server is no longer ready to
receive data. The Micro Server is always aware of the number of bytes
that it expects to receive from the driver. In this case, because the packet
is the header, the Micro Server knows that the driver will send only 2
bytes, so it deasserts the CTS~ line after it has received the 2 bytes.

8. The driver confirms that CTS~ is deasserted, and again asserts the RTS~
line to inform the Micro Server that the driver has data to send to the
Micro Server (in this case, the payload packet for the LonNiAppInit
message).

9. After the Micro Server has processed the header information for the
LonNiAppInit message, it asserts the CTS~ line to inform the driver that
the Micro Server is ready to receive the payload data.

10. The driver deasserts the RTS~ line. The handshake between the driver
and the Micro Server is complete.

11. The driver sends the 28-byte payload packet for the LonNiAppInit
message to the Micro Server. The size of this message depends on the
specific device interface.

Although the figure does not show it, after the Micro Server receives the last byte
of the payload data for the LonNiAppInit message, it deasserts the CTS~ line to
inform the driver that the Micro Server is no longer ready to receive data. There
might be a significant delay between the last downlink data byte and the
deassertion of the CTS~ signal, during which the Micro Server processes the data
received, and prepares for another link-layer exchange. Because it parses the

86 Designing the Hardware Interface

data in the link-layer header to read the length byte, the Micro Server is always
aware of the number of bytes that it expects to receive from the driver.

Figure 40 shows the detailed trace for the serial driver and Micro Server
interactions for sending the LonNiNvInit message. The figure also includes the
end of the transaction for the LonNiAppInit message.

Figure 40. Detailed Logic Analyzer Trace for Sending the LonNiNvInit Message

The figure shows the following actions by the host processor and the Micro
Server:

1. The driver confirms that the CTS~ line is not asserted, and then asserts
the RTS~ line to inform the Micro Server that the driver has more data to
send to the Micro Server (in this case, the header packet for the
LonNiNvInit message).

2. The Micro Server asserts the CTS~ line to inform the driver that the
Micro Server is ready to receive data. During the long delay between the
driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the Micro
Server processes the LonNiAppInit message.

3. The driver deasserts the RTS~ line. The handshake between the driver
and the Micro Server is complete.

4. The driver sends the two-byte header packet to the Micro Server. In this
case, the length byte is 0x08 and the command byte is 0x0B, which
specifies the LonNiNvInit message.

5. After the Micro Server receives the header packet, it deasserts the CTS~
line to inform the driver that the Micro Server is no longer ready to
receive data. The Micro Server is always aware of the number of bytes
that it expects to receive from the driver. In this case, because the packet
is the header, the Micro Server knows that the driver will send only 2
bytes, so it deasserts the CTS~ line after it has received the 2 bytes.

6. After confirming that CTS~ is deasserted, the driver again asserts the
RTS~ line to inform the Micro Server that the driver has data to send to
the Micro Server (in this case, the payload packet for the LonNiNvInit
message).

7. After the Micro Server has processed the header information for the
LonNiNvInit message, it asserts the CTS~ line to inform the driver that
the Micro Server is ready to receive the payload data.

8. The driver deasserts the RTS~ line. The handshake between the driver
and the Micro Server is complete.

ShortStack User’s Guide 87

9. The driver sends the eight-byte payload packet for the LonNiNvInit
message to the Micro Server. The size of this message depends on the
number of network variables defined for the device.

When necessary (depending on the application’s set of network variables), steps 1
to 9 can be repeated several times to transfer additional LonNiNvInit data to the
Micro Server.

The last LonNiNvInit packet signals the end of the registration sequence. The
Micro Server completes the final registration steps, and leaves quiet mode. Quiet
mode ensures that only a complete and fully functioning protocol stack attaches
to the network. While in quiet mode, the host processor can use local commands
to communicate with the Micro Server, such as query status or ping, but cannot
communicate with other devices on the network.

Although the figure does not show it, after the Micro Server receives the last byte
of the payload data for the LonNiNvInit message, it deasserts the CTS~ line to
inform the driver that the Micro Server is no longer ready to receive data.
Because it parses the data in the link-layer header to read the length byte, the
Micro Server is always aware of the number of bytes that it expects to receive
from the driver.

Figure 41 shows the detailed trace for the serial driver and Micro Server
interactions for sending the LonNiReset message. The figure also includes the
end of the transaction for the LonNiNvInit message.

Figure 41. Detailed Logic Analyzer Trace for Sending the LonNiReset Message

The figure shows the following actions by the host processor and the Micro
Server:

1. The driver confirms that the CTS~ line is not asserted, and then asserts
the RTS~ line to inform the Micro Server that the driver has more data to
send to the Micro Server (in this case, the header packet for the
LonNiReset message).

2. The Micro Server asserts the CTS~ line to inform the driver that the
Micro Server is ready to receive data. During the long delay between the
driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the Micro
Server processes the LonNiNvInit message.

3. The driver deasserts the RTS~ line. The handshake between the driver
and the Micro Server is complete.

4. The driver sends the two-byte header packet to the Micro Server. In this
case, the length byte is 0x00 (there is no payload for this message) and
the command byte is 0x50, which specifies the LonNiReset message.

88 Designing the Hardware Interface

5. After the Micro Server receives the header packet, it deasserts the CTS~
line to inform the driver that the Micro Server is no longer ready to
receive data.

6. Because the Micro Server received the LonNiReset message, it resets.

In Figure 41, note that the driver does not re-assert the RTS~ line. For this
example, the host processor has no more data to send to the Micro Server because
there is no payload for the LonNiReset message. The Micro Server deasserts the
RESET~ line as it completes reset processing.

Approximately 1 second (for a Series 3100 Smart Transceiver running at 10
MHz) after the Micro Server receives the LonNiReset message, the Micro Server
sends the uplink reset message (LonResetNotification) to the host processor, as
shown in Figure 42. The LonNiReset message is shown on the RXD line because
the signals are labeled from the host’s point of view.

Figure 42. Detailed Logic Analyzer Trace for Receiving the Uplink Reset Message

There is no handshake through the RTS~ and CTS~ control lines for an uplink
message, and the message includes both the two-byte header and the message
payload in a single message transfer. In this case, length byte is 0x10 (decimal
16) and the command byte is 0x50, which specifies the LonNiReset message.
This message is always the first message a Micro Server should send to the host
processor after a reset. The actual content of this message depends on the
characteristics of the Micro Server.

Although it is not likely during Micro Server initialization, an uplink transfer can
interrupt the downlink transmission between the sending of the header and the
sending of the related payload. If the header has been transmitted and an uplink
occurs before the payload can be delivered, the driver must accept the uplink
data before it continues with handshake negotiations for the downlink payload
transfer.

The example described in this section showed the Micro Server initialization
sequence, which consists of two separate message transfers: a two-byte header
and the related payload, both of which require a complete handshake. However,
a link-layer downlink operation for polling or propagating output network
variables with indices larger than 62 consists of three message transfers: a two-
byte header, a second two-byte extended header, and the related payload, all of
which require a complete handshake. See Overview of the ShortStack Serial
Driver on page 90 for more information about the link-layer header.

ShortStack User’s Guide 89

6

Creating a ShortStack Serial Driver

This chapter describes the link-layer serial driver and how
to develop a ShortStack serial driver for your host processor.
This driver manages the handshaking and data transfers
between the host and the ShortStack Micro Server. The
driver also manages the buffers in the host for
communication with the ShortStack Micro Server.

If a ShortStack driver is available for your host processor
that matches your buffer memory and I/O configuration, you
can skip this chapter.

90 Creating a ShortStack Serial Driver

Overview of the ShortStack Serial Driver
Each data exchange on the serial link layer consists of one or more segments.
For downlink messages, the serial driver and Micro Server perform a handshake
for each segment. For uplink messages, there is no handshake.

The link-layer message consists of the following segments:

• A two-byte link-layer header

• A two-byte link-layer extended header (applies only to downlink
messages for network variable updates or polls where the network
variable index is greater than 62)

• The message payload, if any

The link-layer header consists of two parts:

• The length byte. This value describes the length of the message payload.
This value is 0x00 if there is no message payload, and is at least 0x02 if
there is a message payload.

• The command byte. This value determines the command being sent to
the Micro Server or being received from the Micro Server.

The link-layer extended header consists of two parts:

• The info byte. This value is the actual network variable index for the
update or poll request. The command byte of the link-layer header
contains a network variable index of 0x3F (decimal 63) to inform the
Micro Server and the serial driver that an extended header is required to
process the command.

• A reserved byte. For a ShortStack FX Micro Server, the value of this byte
is 0x00.

Figure 43 on page 91 shows the structure of the link-layer message.

ShortStack User’s Guide 91

Figure 43. Link-Layer Message Structure

Thus, for a typical link-layer message, the link-layer message includes the link-
layer header and the data payload. Not all link-layer messages include payload,
but all use the same two-byte header. For network variable polls or updates, the
link-layer message can include three segments: the link-layer header, the link-
layer extended header, and the data payload.

For both the SCI and SPI interfaces, each link-layer downlink transmission
consists of the link-layer header transmission, followed by the link-layer
extended header transmission (if applicable), followed by the optional payload
transmission. For downlink messages, all segments are individually verified
with the handshake procedure between the host and Micro Server that is
described in Chapter 5, Designing the Hardware Interface, on page 65.

However, there is no handshake process for an uplink transfer. If uplink data is
ready in the Micro Server, and the host processor signals its readiness by
asserting the HRDY~ line (or has its HRDY~ line permanently tied low), the
Micro Server transfers the link layer header, immediately followed by the
payload data (if any). In addition, for uplink transfers, the link-layer extended
header is not required.

After each downlink transfer, an uplink transfer can occur. If an uplink transfer
occurs after sending one segment, but prior to sending the next segment, the
subsequent segement transmission must wait for the uplink to complete.

After the uplink is complete, it should be enqueued within the serial driver, and
the pending downlink should be completed before processing the newly arrived
packet.

92 Creating a ShortStack Serial Driver

Important: The actual payload length must match the specified length in the
header byte of the link-layer message. If the actual length exceeds the specified
length, extra bits are ignored, but could cause problems for subsequent
transactions. Transmitting fewer bits than specified in the link-layer header’s
length byte causes the Micro Server to wait for the missing bits, and then reset
when its watchdog timer expires.

Role of the ShortStack LonTalk Compact API
One of the most important tasks performed by the ShortStack LonTalk Compact
API is the processing of uplink link-layer packets into pre-parsed data packets
that it passes to the appropriate callback handler function defined by your
application.

The application periodically calls the LonEventHandler() API function, which
queries the serial driver’s uplink queue and, upon availability of an uplink
packet, dequeues and processes this packet.

For any downlink operation, typically initiated by your application’s calling one
of the ShortStack LonTalk Compact API functions, such as LonPropagateNv(),
the API translates the application-friendly data used with the API call into the
corresponding link-layer packet, and enqueues this packet for downlink transfer.

Some link-layer transfers can occur without any interaction of your application;
for example, a network variable poll or fetch request can typically be satisfied by
the API alone, without intervention by your application.

Role of the ShortStack Serial Driver
The ShortStack serial driver provides a hardware-specific interface between the
ShortStack LonTalk Compact API and the ShortStack Micro Server. The driver
exchanges link-layer messages with ShortStack Micro Server, and implements
the host-side of the link-layer protocol.

The serial driver includes buffer management for incoming and outgoing
messages, and typically allows for non-blocking operation.

Interface to the ShortStack LonTalk Compact API
Typically, the ShortStack serial driver implements a set of interrupt handlers
that respond to USART events such as transmit buffer empty or receive buffer
full. The ShortStack LonTalk Compact API uses eight functions, listed in Table
18 on page 93, that communicate between the API and the driver, including
handling all uplink and downlink data transfers. Your ShortStack serial driver
must support these functions. These functions are declared in the
ShortStackApi.h file (in the serial driver API functions section).

For more information about these interface functions, see an example port’s
implementation of the functions; for example, see the ShortStack FX ARM7
Example Port User’s Guide.

ShortStack User’s Guide 93

Table 18. Interface Functions for the ShortStack LonTalk Compact API

Function Description

LdvInit() Initializes the ShortStack serial driver and the
underlying communication interface.

LdvFlushMsgs() Completes pending transmissions and flushes the
transmit buffer.

LdvAllocateMsg() Allocates a transmit buffer in the ShortStack serial
driver.

LdvPutMsg() Sends a downlink message by putting a message in an
allocated transmit buffer.

This is a non-blocking function.

LdvPutMsgBlocking() Sends a downlink message without first allocating a
transmit buffer in the driver.

This is a blocking function, and is used only during the
device’s initialization phase.

LdvGetMsg() Gets an incoming message (if any) from the ShortStack
serial driver’s receive buffer.

LdvReleaseMsg() Releases a message buffer back to the ShortStack serial
driver after receiving and processing a message.

LdvReset() Resets the serial driver when it receives an uplink reset
message from the Micro Server.

Creating an SCI ShortStack Driver
This section describes how to implement an SCI ShortStack driver. The SCI
hardware interface is described in SCI Interface on page 71.

A ShortStack Micro Server considers the serial link reliable. An inter-byte time-
out (or any other time-out condition) is considered a serious error, and recovery
generally requires resetting the Micro Server and the host driver state. To
minimize the effects of such a time out, set a large time-out interval based on the
communications bit rate or use another appropriate large value (such as 3 or 5
seconds).

SCI Uplink Operation
In an SCI uplink operation, data is transferred from the ShortStack Micro Server
to the host processor. Figure 44 on page 94 and Figure 45 on page 95 show the
activity that the driver must manage for an uplink operation. The figures also
show how the Micro Server, serial driver, LonTalk Compact API, and the
application interact to process an uplink message.

94 Creating a ShortStack Serial Driver

The host processor uses the HRDY~ handshake signal to inform the Micro Server
when it is ready to receive uplink data. The Micro Server does not send uplink
data unless the HRDY~ pin is asserted. While an uplink transfer is in progress,
the Micro Server does not re-sample the HRDY~ pin. To prevent loss of uplink
data, the host must assert this handshake signal whenever possible, and de-
assert it for the shortest time possible.

Processing

DriverMicro Server

Send packet Receive packet

High

Low

Input buffer
available?

No Yes

API

Assert HRDY~
(if implemented)

Application

De-assert HRDY~
(if implemented)

Signal error and
drop packet Enqueue packet

Notify application
(optional)

Check HRDY~

A

Figure 44. SCI Uplink Operation (Part 1)

ShortStack User’s Guide 95

Figure 45. SCI Uplink Operation (Part 2)

SCI Downlink Operation
In an SCI downlink operation, data is transferred from the host processor to the
ShortStack Micro Server. Figure 46 on page 97 shows the activity that the driver
must manage for a downlink operation. Figure 47 on page 98 shows the SCI
handshake and data transfer for the header, extended header, or payload.

To send a message downlink, the driver needs to initiate a downlink operation for
each link-layer message segment: one for the link-layer message header, one for
the extended header (if applicable), and one for the message payload (if any):

1. The driver first initiates the transfer of the link-layer message header,
then, if allowed, transfers the header.

2. If the message applies to a network variable with index greater than 62,
the driver then initiates the transfer of the link-layer extended header,
then, if allowed, transfers the extended header.

3. Then, if payload data exists (indicated by the non-zero length byte in the
header), the driver initiates the transfer of the message payload, and, if
allowed, transfers the message payload.

96 Creating a ShortStack Serial Driver

When the host asserts the RTS~ signal for the first time, the Micro Server
assumes that the assertion is for the 2-byte header. It asserts the CTS~ line
until it has read the two bytes. It then extracts the length of the payload from
the header and parses the command byte to determine if an extended header is
needed. When the host asserts the RTS~ signal a second time, the Micro Server
asserts the CTS~ line until it receives either the extended header or the entire
payload (based on its length and command byte, as indicated in the header),
depending on which is expected. Some messages have no payload (for example,
the reset message), thus the payload length for these messages is zero.

Before beginning a transfer, or after having transferred the entire transaction
payload, the host must wait for the CTS~ signal to become inactive (high) again.
The Micro Server deasserts this signal after it receives all bytes of the current
transaction, and after it has completed any immediate processing that might be
required. If the application does not query this signal state, error states can
occur. For example, the host might attempt to transfer a new transaction
because it would assume that the CTS~ signal’s being asserted is the
acknowledgment of the new transfer request rather than the acknowledgment
from the previous transfer.

It is possible for an uplink transfer to occur after the Micro Server receives the
downlink header, but before it is ready to receive the downlink payload. No
uplink can occur while the CTS~ signal is asserted.

ShortStack User’s Guide 97

Start

HostMicroServer

Processing

Msg len > 0 ?

Yes

NoMsg len > 0 ?

Yes

No

Handshake and Transfer for Header

Handshake and Transfer for Payload

NV Index >
62?

No

NV Index >
62?

Yes

No

Yes

Handshake and Transfer for Extended Header

Figure 46. Downlink Operation

98 Creating a ShortStack Serial Driver

HostMicroServer

Assert RTS~

Assert CTS~

Yes

Enter serial
receive

subroutine

Receive Send

Yes

Yes

De-assert RTS~

RTS~ Low?

CTS~ Low?

No

No (1)

De-assert CTS~

CTS~ High?

No

Figure 47. SCI Handshake and Data Transfer

Note (1): When the Micro Server checks the RTS~ signal for most commands (in
the “RTS~ Low?” decision box), if the signal remains high without data transfer
for longer than the watchdog timer setting for the Smart Transceiver
(approximately 840 ms for a Series 3100 Smart Transceiver at 10 MHz or for a
Series 5000 Smart Transceiver), the Micro Server performs a watchdog reset.

Prior to receiving the payload (if any), the Micro Server prepares to receive the
payload data. For most downlink operations, this preparation includes allocating
an output buffer. If no buffers are available, acknowledgement for the RTS~
signal with CTS~ assertion could take a significant amount of time, depending on
the local channel type, channel usage, the types of transactions that are holding
the buffers, and transport and transaction control properties. Your driver must
be able to handle such delays.

ShortStack User’s Guide 99

Example: Network Variable Fetch
You can use a logic analyzer or oscilloscope to observe the interactions between
the host and Micro Server during network operations, such as a fetch of a
network variable. A logic analyzer trace can be a helpful tool to verify that the
serial driver works as expected.

Figure 48 shows an example logic analyzer trace after the Micro Server receives a
network variable fetch request from the network. The timing for the logic
analyzer trace is 5 ms per division. The example used an FT 3150 Micro Server
running at 10 MHz with an ARM7 host running at 20 MHz.

Notice in the figure that the host waits for the CTS~ signal to become inactive
before it starts a new transfer by asserting the RTS~ signal.

Figure 48. Logic Analyzer Trace for an NV Fetch

The figure shows the following events:

A. The Micro Server samples the HRDY~ signal. If it is asserted, which it is
in this example, the Micro Server begins to transfer the uplink data.

B. The TXD signal shows the uplink data transfer.

C. The host briefly de-asserts the HRDY~ signal while it stores the packet in
an incoming queue (if the host has buffers available, it need not de-assert
the HRDY~ signal). The host can optionally notify the application of the
available data for asynchronous processing.

D. The host prepares its response, waits for the CTS~ signal to be inactive,
asserts the RTS~ signal, then waits for the CTS~ signal to be asserted.

E. The Micro Server asserts the CTS~ signal.

F. The host de-asserts the RTS~ signal and transmits the message header
(shown on the RXD signal).

G. The host waits for the CTS~ signal to become inactive, re-asserts the
RTS~ signal, and waits for the CTS~ signal to be asserted again.

H. The Micro Server is ready for the payload, and asserts the CTS~ signal.

I. The host de-asserts (releases) the RTS~ signal and begins the payload
transfer.

J. The RXD signal shows the payload transfer (the downlink response
containing the requested NV value).

Creating an SPI ShortStack Driver
This section describes how to implement an SPI ShortStack driver. The SPI
hardware interface is described in SPI Interface on page 76.

100 Creating a ShortStack Serial Driver

SPI Uplink Operation
In an SPI uplink operation, data is transferred from the ShortStack Micro Server
to the host processor. Figure 49 and Figure 50 on page 101 show the activity that
the driver must manage for an uplink operation. The figures also show how the
Micro Server, serial driver, ShortStack LonTalk Compact API, and the
application interact to process an uplink message. The driver must see the R/W~
signal low between the arrivals of the first and second bytes in the burst when it
is receiving a packet.

The host processor uses the HRDY~ handshake signal to inform the Micro Server
when it is ready to receive uplink data. The Micro Server does not send uplink
data unless the HRDY~ pin is asserted. To prevent loss of uplink data, the host
must assert this handshake signal whenever possible, and de-assert it for the
shortest time possible.

Figure 49. SPI Uplink Operation (Part 1)

ShortStack User’s Guide 101

DriverMicro Server

Cleanup

API Application

Release input
buffer

Call
LonEventHandler()

LdvGetMsg()

A

LonEventhandler()

Packet
available?

Yes

No
LdvReleaseMsg()

Callback

Processing

Parse packet
(possibly also call

one or more
callbacks)

Figure 50. SPI Uplink Operation (Part 2)

SPI Downlink Operation
In an SPI downlink operation, data is transferred from the host processor to the
ShortStack Micro Server. To send a link-layer message downlink, the driver
initiates two downlink operations: one for the link-layer message header, and the
other for the message payload. Figure 51 on page 102 shows the activity that the
driver must manage for a downlink operation (this figure is the same as Figure
46 on page 97). Figure 52 on page 103 shows the SPI handshake and data
transfer for the header, extended header, or payload. The driver must see the
R/W~ signal high between transmissions of the first and second bytes in the
burst when it is transmitting a packet. In addition, the Micro Server keeps the
R/W~ signal high for an additional byte time; this extra time allows the host to
confirm transfer direction.

As described in SPI Host to Micro Server Control Flow (MISO) on page 81, the
host must detect possible write collisions during data transfer.

102 Creating a ShortStack Serial Driver

Start

HostMicroServer

Processing

Msg len > 0 ?

Yes

NoMsg len > 0 ?

Yes

No

Handshake and Transfer for Header

Handshake and Transfer for Payload

NV Index >
62?

No

NV Index >
62?

Yes

No

Yes

Handshake and Transfer for Extended Header

Figure 51. Downlink Operation

ShortStack User’s Guide 103

HostMicroServer

Transmit First
Byte

De-assert R/W~

Yes

Enter serial
receive

subroutine

Receive Send

No

No

Yes

De-assert TREQ~

TREQ~ Low?

R/W~ Low?

Yes

Assert R/W~

SCLK
Clocking?

No

Load First Byte
into Transmit

Register

Assert TREQ~

Write
Collision

Begin Clocking
SCLK

Figure 52. SPI Handshake and Data Transfer

Prior to receiving the payload (if any), the Micro Server prepares to receive the
payload data. For most downlink operations, this preparation includes allocating
an output buffer. If no buffers are available, the Micro Server could take a

104 Creating a ShortStack Serial Driver

significant amount of time to de-assert the R/W~ signal after the host asserts the
TREQ~ signal, depending on the local channel type, channel usage, the types of
transactions that are holding the buffers, and transport and transaction control
properties. Your driver must be able to handle such delays.

Transmit and Receive Buffers
The ShortStack serial driver needs to define the number and size of the transmit
and receive buffers in the host processor. More buffers require more memory, but
can also increase performance and minimize the potential for lost messages.

Recommendation: Set the serial driver’s buffer count for both transmit and
receive buffers to the number of application buffers defined for the Micro Server,
and adjust upward as necessary for the application. For example:

#define LDV_TXBUFCOUNT 5
#define LDV_RXBUFCOUNT 5

Important: The transmit and receive buffers within the host must not be smaller
than those defined in the Micro Server.

Link-Layer Error Detection and Recovery
The ShortStack Micro Server and the ShortStack LonTalk Compact API both
assume that the serial communication between the host microprocessor and the
ShortStack Micro Server is a reliable link. To maximize performance, the
ShortStack Micro Server uses a simple link layer protocol with minimal error
detection. Your hardware design for the interface between your host and the
ShortStack Micro Server must provide this reliable link.

When either the Micro Server or the host processor resets, your serial driver
must synchronize with the ShortStack Micro Server. Your serial driver must
also implement the following timing characteristics to maintain synchronization
with the ShortStack Micro Server:

• An inter-byte timeout for both the serial receiver and transmitter. If the
receiver timer expires, the current message should be discarded. If the
transmitter timer expires, the current message should be resent later.

• A sleep period of 250 ms during driver startup. This delay allows
synchronization with the ShortStack Micro Server during startup.

Your serial driver should implement appropriate timeout guards. For example,
when your driver waits for an SCI CTS~ assertion by the Micro Server, or for the
byte-transmitted interrupt after asserting the SPI TREQ~ signal, a timeout
period of 5 seconds can help to detect serious malfunction.

Likewise, when the driver expects a predetermined number of bytes to arrive
from the Micro Server, an inter-byte timeout of 1 second, or a total packet
timeout that is a function of the expected byte count, is recommended.

If the link-layer is idle for a period of time, the serial driver or host application
can issue a ping command (the LonSendPing() function with the
LonPingReceived() callback handler function) to verify that the Micro Server is
still running properly and has an operational link layer. The ping command is a
short link-layer message that is echoed by the Micro Server; no other action is
triggered by this command.

ShortStack User’s Guide 105

You can also use the echo command (the LonRequestEcho() function with the
LonEchoReceived() callback handler function) to test the link layer. The echo
command provides more functionality than the ping command, but at the cost of
additional bytes and transfer time. Using the echo command, the application can
send six arbitrary bytes to the Micro Server. The Micro Server receives the data,
increments each of the six bytes (using unsigned 8-bit arithmetic, ignoring any
overflow conditions), and returns the entire data packet to the host.

You can use the echo command when the device is idle to verify that the link
layer and the Micro Server are operational. You can also use the echo command
during device stress testing to verify robust link-layer operations under high
traffic conditions. For such a stress test, an application would repeatedly send
echo requests with different data and confirm that the data received meets
expectations. Data errors detected during such a test could indicate poor link-
layer line termination, excessive crosstalk on the link-layer lines, out-of-sync bit
rates (for SCI), or excessive bit rates (for SPI).

Because the echo command can be processed before the application registers with
the Micro Server, it can be a good early indicator for correct implementation of
both the serial driver and the link-layer protocol.

See Local Utility Functions on page 294, Local Utility Callback Handler
Functions on page 299, or the HTML API documentation for more information
about the ping command and the echo command.

When a serious error condition is detected, your application should log an error
and, if possible, signal the event to the user. You can also optionally assert the
Micro Server’s reset line in an attempt to recovery from the error condition, but
such a reset is not normally necessary.

Loading the ShortStack Application into the Host
Processor

Before you can test and debug your ShortStack device, you need to load the
ShortStack application into the host processor. For an FPGA-based embedded
processor, you might have to load the hardware design into the FPGA, as well
load the ShortStack software application into the FPGA.

How you load the ShortStack application into the host processor depends on the
host processor that your ShortStack device uses. Typically, you use a device
programmer for in-circuit flash programming through a JTAG connection to the
host processor.

For a description of a method for loading a ShortStack application into an ARM7
host processor, see the ShortStack FX ARM7 Example Port User’s Guide.

Performing an Initial Host Processor Health Check
To check that the host processor and the serial driver implementation are
working properly, you need to connect the host to a ShortStack Micro Server. To
ensure that an initial health check of the host tests only the host, you should use
a Micro Server that is already known to work properly.

For an initial health check of the host, you can use an Echelon Mini EVB
evaluation boards, available with PL 3120, FT 3120, PL 3150, FT 3150, and PL
3170 Smart Transceivers, or an FT 5000 EVB evaluation board. These boards

106 Creating a ShortStack Serial Driver

are ideally suited for an initial host check, because they include EIA-232 level
shifters and a set of jumpers to run the transceiver as a ShortStack Micro Server.
You could also use a Micro Server that you tested according to the test described
in Performing an Initial Micro Server Health Check on page 82.

A basic health check for the host includes the following steps:

1. Connect the host to the Micro Server, and supply power to both

2. Issue a downlink reset command (command code 0x50)

3. Observe that the Micro Server resets

4. Observe the uplink reset notification

The reset pulse on the Micro Server is typically very short, and often not
noticeable when visually monitoring the Reset LED. Boards with external flash
memory include pulse-stretching devices that enforce a longer Reset pulse, which
could provide a more visible state change on the Reset LED. However, using an
oscilloscope or logic analyzer is recommended.

During this and similar tests in the early stages of development, you should also
monitor the Reset line carefully, because errors in the host-side driver
implementation can cause the Micro Server to reset. For example, if the host
asserts the RTS~ pin, but fails to deliver data in time, or if the host fails to
deliver the entire packet, or if the host fails to assert the HRDY~ pin in a timely
fashion, the Micro Server could reset due to a watchdog timer timeout. A Smart
Transceiver Chip’s watchdog timer expires in approximately 840 ms (for a Series
3100 Smart Transceiver at 10 MHz or for a Series 5000 Smart Transciever).

Prior to initialization, the Micro Server is in quiet mode, which prevents all
network communication, until the downlink initialization is complete. However,
the basic host health check described in this section works while the Micro Server
is in quiet mode, and can thus be used for an initial health check before the
application framework (which includes the initialization data structure) is
complete.

When you power-up the Micro Server for the first time, allow up to a minute for it
to complete its first-time boot sequence. The duration for the first-time boot
varies with the Micro Server hardware and software configuration, but
subsequent boots require much less time. See ShortStack Device Initialization
on page 57 for more information about the Micro Server’s reset processing.

Then, use a simple test application and your serial driver to issue a downlink
reset command. This is a simple command without a payload; it consists only of
two header bytes: 0x00 for the payload length, and 0x50 for the command
(LonNiReset). The LonNiReset command instructs the Micro Server to reset.
You should be able to observe the Smart Transceiver’s reset line’s being asserted
for a brief moment.

When the Micro Server completes the reset sequence, it notifies the host
processor of the event. The uplink reset message also uses the LonNiReset
(0x50) command in the link-layer header, but includes 16 payload bytes.

The uplink reset message contains information about the state, version, and type
of the Micro Server, its capacity for various system resources, and whether it is
initialized. The message can be helpful to diagnose problems (or success) during
early stages of development.

ShortStack User’s Guide 107

Before your application attempts to register with the Micro Server for the first
time, it should execute an echo command (the LonRequestEcho() function with
the LonEchoReceived() callback handler function). Repeated use of this
command provides an early link-layer stress test, and can provide early
indication of errors in the physical design of the link layer.

ShortStack User’s Guide 109

7

Porting the ShortStack LonTalk
Compact API

If you are using a host processor and development
environment that does not have an available ShortStack FX
example port, you must port the ShortStack LonTalk
Compact API files to work with your chosen host processor
and development environment. A minimal port requires you
to provide definitions that control the portable code, but a
more substantial port might be required. A completed port
applies to all applications that use the same hardware and
software configuration.

This chapter describes the steps and considerations for
porting the ShortStack LonTalk Compact API.

110 Creating a ShortStack Serial Driver

 Portability Overview
The ShortStack LonTalk Compact API is implemented in ANSI C. Although
ANSI C is a standard programming language, different implementations are
required to meet the requirements of different target processors. To support the
largest possible number of target processors and compilers, the ShortStack
LonTalk Compact API implementation is based on the following portability
concepts:

• Host-side types and interfaces use standard ANSI C types and style. For
example, the LonPropagateNv() function, which takes a network
variable’s index as an argument, expects this argument to be of the
standard C type unsigned.

• All data types that interface with the Micro Server or the LONWORKS
network are based on streams of bytes, and do not use multi-byte scalar
types such as 16 or 32-bit integers. Using streams of bytes helps to
control byte padding and packing issues within structures.

All types are based on the LonByte type. Multibyte scalars are composed
of multiple LonByte members in big-endian byte order, such as the
LonWord type.

Optionally, you can use macros such as LON_GET_UNSIGNED_WORD
or LON_SET_UNSIGNED_WORD to assist in transforming those types
into the host processor’s native types. Native types can be more efficient
in numeric algorithms.

• Structures and unions are declared using macros because some compilers
allow you to control packing and alignment of aggregates for each type
definition individually through non-standard keyword extensions. These
macros are LON_BEGIN_STRUCT, LON_END_STRUCT,
LON_BEGIN_UNION, and LON_END_UNION.

Example: For the GNU C Compiler, the macros controlling structure
declarations could be:

#define LON_STRUCT_BEGIN(n) struct
#define LON_STRUCT_END(n) attribute((__packed__)) n

• Structures and unions that are embedded in other structures or unions
use another set of macros to provide further support for non-standard
keywords that control packing and alignment of aggregates. These
macros are LON_BEGIN_NESTED_STRUCT,
LON_END_NESTED_STRUCT, LON_BEGIN_NESTED_UNION, and
LON_END_NESTED_UNION.

• Because some compilers might not allow control over packing and
alignment though non-standard keyword extensions, but do support
compiler directives (pragmas) for this purpose, the ShortStack
Developer’s Kit includes two optional include files: LonBegin.h and
LonEnd.h. The LonBegin.h file can be optionally (and automatically)
inserted prior to any type definition made by the ShortStack LonTalk
Compact API files, and the LonEnd.h file can be optionally (and
automatically) included following the last type definition made by the

ShortStack User’s Guide 111

ShortStack LonTalk Compact API. This method allows you to use one set
of packing and alignment preferences for the ShortStack LonTalk
Compact API, and another set of preferences for the remainder of your
application.

Example: The LonBegin.h file could contain the following directive:

#pragma pack(push,1)

And the LonEnd.h file could contain the following directive:

#pragma pack(pop)

Refer to your compiler’s documentation to determine which directives or
other methods for packing and alignment control are supported.
Compiler directives (pragmas) are implementation-specific for each ANSI
C compiler.

• Enumerations are used to provide literals for many types. Although
ANSI C enumerations are derived from a signed integer type,
enumerations for a ShortStack application (or a LONWORKS network)
must be based on a signed character type (or a signed eight-bit integer).
The ShortStack LonTalk Compact API provides a set of macros that
allows you to define enumerated types with the possible use of non-
standard keyword extensions. It also provides another macro that
references an enumerated type so that the reference consumes only a
single byte.

Example: For a compiler that supports a non-standard syntax extension
to force an enumeration to fit into a user-defined compound (other than
“int”), these macros might be defined as:

 #define LON_ENUM_BEGIN(n) enum : LonByte
 #define LON_ENUM_END(n) n
 #define LON_ENUM(n) n

• The ShortStack LonTalk Compact API does not use bit fields. For ANSI
C, the standard compound for bit fields is the native word size of the
target processor (equivalent to “int”). However, for a ShortStack
application (or a LONWORKS network), bit fields must be packed into
byte-sized entities. This packing requires non-standard keywords, and
another set of implementation-specific controls to determine the
placement of the individual bits within each byte. Not all compilers for
embedded development support bit fields, or standard ways to control bit
fields (for example, anonymous bit fields and zero-length bit fields).

See Using Types on page 154 for information about how the LonTalk Interface
Developer utility handles data types.

Bit Field Members
For portability, none of the types that the LonTalk Interface Developer utility
generates use bit fields. Instead, the utility defines bit fields with their enclosing
bytes, and provides macros to extract or manipulate the bit field information.

112 Creating a ShortStack Serial Driver

By using macros to work directly with the bytes of the bit field, your code is
portable to both big-endian and little-endian platforms (that is, platforms that
represent the most-significant bit in the left-most position and platforms that
represent the most-significant bit in the right-most position). The macros also
reduce the need for anonymous bit fields to achieve the correct alignment and
padding.

Example: The following macros and structure define a simple bit field of two
flags, a 1-bit flag alpha and a 4-bit flag beta:

typedef LON_STRUCT_BEGIN(Example) {
 LonByte flags_1; // contains alpha, beta
} LON_STRUCT_END(Example);

#define LON_ALPHA_MASK 0x80
#define LON_ALPHA_SHIFT 7
#define LON_ALPHA_FIELD flags_1
#define LON_BETA_MASK 0x70
#define LON_BETA_SHIFT 4
#define LON_BETA_FIELD flags_1

When your program refers to the flags_1 structure member, it can use the bit
mask macros (LON_ALPHA_MASK and LON_BETA_MASK), along with the bit
shift values (LON_ALPHA_SHIFT and LON_BETA_SHIFT), to retrieve the two
flag values. These macros are defined in the LonNvTypes.h file. The
LON_STRUCT_* macros enforce platform-specific byte packing.

To read the alpha flag, use the following example assignment:

Example var;
alpha_flag = (var.LON_ALPHA_FIELD & LON_ALPHA_MASK) >>
 LON_ALPHA_SHIFT;

You can also use the LON_GET_ATTRIBUTE() and LON_SET_ATTRIBUTE()
macros to access flag values. For example, for a variable named var, you can use
these macros to get or set the attributes for the alpha flag:

alpha_flag = LON_GET_ATTRIBUTE(var, LON_ALPHA);
…
LON_SET_ATTRIBUTE(var, LON_ALPHA, alpha_flag);

These macros are defined in the ShortStackTypes.h file.

Enumerations
The LonTalk Interface Developer utility does not produce enumerations. The
ShortStack LonTalk Compact API requires an enumeration to be of size byte.
The ANSI C standard requires that an enumeration be an int, which is larger
than one byte for many platforms.

A ShortStack enumeration uses the LON_ENUM_BEGIN and
LON_ENUM_END macros. For many compilers, these macros can be defined to
generate native enumerations:

#define LON_ENUM_BEGIN(name) enum
#define LON_ENUM_END(name) name

Some compilers support a colon notation to define the enumeration’s underlying
type:

ShortStack User’s Guide 113

#define LON_ENUM_BEGIN(name) enum : signed char
#define LON_ENUM_END(name)

When your program refers to an enumerated type in a structure or union, it
should not use the enumeration’s name, but should use the LON_ENUM_*
macros.

For those compilers that support byte-sized enumerations, it can be defined as:

#define LON_ENUM(name) name

For other compilers, it can be defined as:

#define LON_ENUM(name) signed char

Example: Table 19 shows an example enumeration using the ShortStack
LON_ENUM_* macros, and the equivalent ANSI C enumeration.

Table 19. Enumerations in ShortStack

ShortStack Enumeration Equivalent ANSI C Enumeration

LON_ENUM_BEGIN(Color) {
red, green, blue

} LON_ENUM_END(Color);

typedef struct {

…
LON_ENUM(Color) color;

} Example;

enum {
red, green, blue

} Color;

typedef struct {

…
Color color;

} Example;

LonPlatform.h
The file within the ShortStack LonTalk Compact API that helps implement the
portability concepts described in Portability Overview on page 110 is the
LonPlatform.h include file. The ShortStack LonTalk Compact API and
application framework automatically include this file before any other
ShortStack LonTalk Compact API-specific definition or file inclusion.

The LonPlatform.h file uses conditional compilation to detect the specific
compiler and to set various preferences and definitions for portability.

Before you begin porting the ShortStack LonTalk Compact API, you should
ensure that the LonPlatform.h file includes support for your compiler. The
LonTalk Interface Developer utility copies the LonPlatform.h file into your
project directory so that you can modify the file if it does not include support for
your compiler. However, if this file already exists in your project directory, the
utility does not overwrite it.

Recommendation: Make any necessary modifications to the copy of the
LonPlatform.h file in your project directory, rather than modifying the version of
the file in the [ShortStack]\api directory. The master copy of this file might be
overwritten when you install service updates or new versions of the ShortStack
Developer’s Kit.

After you make the appropriate modifications to the LonPlatform.h file, you
should be able to successfully compile the ShortStack LonTalk Compact API files
and the skeleton application framework files generated by the LonTalk Interface
Developer utility.

114 Creating a ShortStack Serial Driver

Testing the Ported API Files
After the ShortStack LonTalk Compact API files and the LonTalk Interface
Developer utility-generated files can be compiled without errors or significant
warnings, you might want to perform a simple test to ensure that the port works
correctly.

For this simple test, compile the following source code:

#include "LonPlatform.h"
#ifdef INCLUDE_LON_BEGIN_END
include "LonBegin.h"
#endif /* INCLUDE_LON_BEGIN_END */

LON_ENUM_BEGIN(Color) {
 red, green, blue
} LON_ENUM_END(Color);

LON_STRUCT_BEGIN(Test) {
 LON_ENUM(Color) color; // offset 0
 LonByte a; // offset 1
 LonWord b; // offset 2+3

 LON_UNION_NESTED_BEGIN(x) {
 LON_STRUCT_NESTED(r) {
 LonByte r1; // offset 4
 LonWord r2; // offset 5+6
 } LON_STRUCT_NESTED(r);
 LonWord w; // offset 4+5
 } LON_UNION_NESTED_END(x);
} LON_STRUCT_END(Test);

#ifdef INCLUDE_LON_BEGIN_END
include "LonEnd.h"
#endif /* INCLUDE_LON_BEGIN_END */

Link (or include) this code with a test application. The test application can be a
simple one, and the ShortStack serial driver is not required. Within the test
application, instantiate a variable of type Test, using an appropriate set of initial
values, as shown in the following example:

int main(void) {
 Test test = {
 (LON_ENUM(Color))green, 12, {2, 100}, { 4, {50, 60}}
 };

 return 0;
}

Within your development environment, load this test application into your
hardware, start a debug session, and use the debugger to inspect the memory
image that contains the test variable. Verify that the values provided with the
initializer can be read at the correct offset locations. For example, the most
significant bit of test.x.w should evaluate to 4, the least significant bit of test.x.w
should evaluate to 50, test.x.r.r1 should be found at offset 4, and so on.

See your development environment documentation for information about using
the debugger and inspecting memory at the location of a given variable.

ShortStack User’s Guide 115

8

Creating a Model File

You use a model file to define your device’s interoperable
interface, including its network inputs and outputs. The
LonTalk Interface Developer utility converts the information
in the model file into device interface data and a device
interface file for your application. This chapter describes
how to create a model file using the Neuron C programming
language.

Syntax for the Neuron C statements in the model file is
described in the Neuron C Reference Guide.

116 Creating a Model File

 Model File Overview
The interoperable application interface of a LONWORKS device consists of its
network variables, configuration properties, functional blocks, and their
relationships. The network variables are the device’s means of sending and
receiving data using interoperable data types. The configuration properties are
the device’s means of providing externally exposed configuration data, again
using interoperable data types. The configuration data items can be read (and
typically also written) by a network tool. The device interface is organized into
functional blocks, each of which groups together a collection of network variables
and configuration properties that are used to perform one task. These network
variables and configuration properties are called the functional block members.

The model file describes the functional blocks, network variables, configuration
properties, and their relationships, that make up the interoperable interface for a
ShortStack device, using the Neuron C programming language. Neuron C is
based on ANSI C, and is designed for creating a device’s interoperable interface
and implementing its algorithms to run on Neuron Chips and Smart
Transceivers. However, you do not need to be proficient in Neuron C to create a
model file for a ShortStack application because the model file does not include
executable code. All of the tools required to process model files are included with
the ShortStack Developer’s Kit; you do not need to license another Neuron C
development tool to work with a ShortStack model file. The model file uses
Neuron C Version 2 declaration syntax.

The LonTalk Interface Developer utility uses the model file to generate device
interface data and device interface files. You can use any of the following
methods to create a model file:

• Manually create a model file
A model file is a text file that you can create with any text or
programming editor, including Windows Notepad. Model files have the
.nc file extension. This chapter describes the types of Neuron C
statements you can include in a model file. The Neuron C Reference
Guide describes the syntax for the Neuron C statements.

• Reuse existing Neuron C code
You can reuse an existing Neuron C application that was originally
written for a Neuron Chip or a Smart Transceiver as a model file. The
LonTalk Interface Developer utility uses only the device interface
declarations from a Neuron C application program, and ignores all other
code. You might have to delete some code from an existing Neuron C
application program, or exclude this code using conditional compilation,
as described later in this chapter.

• Automatically generate a model file
You can use the NodeBuilder Code Wizard, included with Release 3 or
later of the NodeBuilder Development Tool, to automatically generate a
model file. Using the NodeBuilder Code Wizard, you can define your
device interface by dragging functional profiles and type definitions from
a graphical view of your resource catalog to a graphical view of your
device interface, and refine them using a convenient graphical user
interface. When you complete the device interface definition, click the
Generate Code and Exit button to automatically generate your model file.
Use the main file produced by the NodeBuilder Code Wizard as your

ShortStack User’s Guide 117

model file. NodeBuilder software is not included with the ShortStack
Developer’s Kit, and must be licensed separately. See the NodeBuilder
FX User’s Guide for details about using the NodeBuilder Code Wizard.

See the Neuron C Reference Guide for the detailed Neuron C syntax for each type
of statement that can be included in the model file.

Defining the Device Interface
You use a model file to define the device interface for your device. The device
interface for a LONWORKS device consists of its:

• Functional blocks

• Network variables

• Configuration properties

A functional block is a collection of network variables and configuration
properties, which are used together to perform one task. These network
variables and configuration properties are called the functional block members.

Functional blocks are defined by functional profiles. A functional profile is used
to describe common units of functional behavior. Each functional profile defines
mandatory and optional network variables and configuration properties. Each
functional block implements an instance of a functional profile. A functional
block must implement all of the mandatory network variables and configuration
properties defined by the functional profile, and can also implement any of the
optional network variables and configuration properties defined by the functional
profile. In addition, a functional block can implement network variables and
configuration properties that are not defined by the functional profile; these are
called implementation-specific network variables and configuration properties.

The primary inputs and outputs to a functional block are provided by network
variables. A network variable is a data item that a device application expects to
get from other devices on a network (an input network variable) or expects to
make available to other devices on a network (an output network variable).
Network variables are used for operational data such as temperatures, pressures,
switch states, or actuator positions.

A configuration property is a data item that specifies the configurations for a
device (its network variables and functional blocks). Configuration properties are
used for configuration data such as set points, alarm thresholds, or calibration
factors. Configuration properties can be set by a network management tool (such
as the LonMaker Integration tool or a customized plug-in created for the device),
and allow a network integrator to customize a device’s behavior.

These interface components, and the resource files used to define them, are
described in the following sections.

Defining the Interface for a ShortStack Application
Within a model file, you define a simple input network variable with the
following syntax:

network input type name;

118 Creating a Model File

Example: The following declaration defines an input network variable of type
“SNVT_lux” with the name “nviLux”.

network input SNVT_lux nviLux;

You define a simple output network variable using the same syntax, but with the
output modifier:

network output type name;

Example: The following declaration defines an output network variable of type
“SNVT_lux” with the name “nvoLux”.

network output SNVT_lux nvoLux;

By convention, input network variable names have an nvi prefix and output
network variables have an nvo prefix.

See the Neuron C Reference Guide for the full network variable declaration
syntax.

The LonTalk Interface Developer utility reads the network variable declarations
in the model file to generate device-specific code. For the example of the nviLux
and nvoLux pair of network variables above, the utility generates a standard
ANSI C type definition for the SNVT_lux network variable type and implements
two global C-language variables:

typedef ncuLong SNVT_lux;
…
volatile SNVT_lux nviLux;
SNVT_lux nvoLux;

The ncuLong data type defines the host equivalent of a Neuron C unsigned long
variable. This type is defined in the LonPlatform.h file.

Your ShortStack application can simply read the nviLux global C variable to
retrieve the most recently received value from that input network variable.
Likewise, your application can write the result of a calculation to the nvoLux
global C variable, and call the appropriate ShortStack LonTalk Compact API
function to propagate the network variable to the LONWORKS network.

Choosing the Data Type
Many functional profiles define the exact type of each member network variable.
The SNVT_lux type used in the previous section is such a type. Using a different
network variable type within a functional profile that requires this network
variable type renders the implementation of the profile not valid.

Other profiles specify network variable members that are generic so that the type
can be selected by each implementation of the profile. The SFPTopenLoopSensor
functional block (described in the Defining a Functional Block on page 119) is an
example for such a functional profile with generic members. This profile defines
the nvoValue member to be of type SNVT_xxx, which means “any standard
network variable type.”

Implementing a profile with generic members allows you to choose the standard
network variable type from a range of allowed types when you create the model
file.

For added flexibility, if the specific functional profile allows it, your application
can implement changeable-type network variables. A changeable-type network

ShortStack User’s Guide 119

variable is network variable that is initially declared with a distinct default type
(for example, SNVT_volt), but can be changed during device installation to a
different type (for example, SNVT_volt_mil).

Using changeable-type network variables allows you to design a generic device
(such as a generic proportional-integral-derivative (PID) controller) that supports
a wide range of numeric network variable types for set-point, control, and
process-value network variables.

See Defining a Changeable-Type Network Variable on page 122 for more
information about implementing changeable-type network variables for
ShortStack applications.

You can also define your own nonstandard data types. The NodeBuilder
Resource Editor utility, which is included with the ShortStack Development Kit,
allows you to define your own, nonstandard data types for network variables or
configuration properties, and allows definition of your own, nonstandard
functional profiles. These nonstandard types are called user-defined types and
user-defined profiles.

Defining a Functional Block
The first step for defining a device interface is to select the functional profile, or
profiles, that you want your device to implement. You can use the NodeBuilder
Resource Editor to look through the standard functional profiles, as described in
Defining a Resource File on page 132. You can find detailed documentation for
each of the standard functional profiles at types.lonmark.org7.

For example, if your device is a simple sensor or actuator, you can use one of the
following standard profiles:

• Open-loop sensor (SFPTopenLoopSensor)

• Closed-loop sensor (SFPTclosedLoopSensor)

• Open-loop actuator (SFPTopenLoopActuator)

• Closed-loop actuator (SFPTclosedLoopActuator).

If your device is more complex, look through the other functional profiles to see if
any suitable standard profiles have been defined. If you cannot find an existing
profile that meets your needs, you can define a user functional profile, as
described in Defining a Resource File on page 132.

Example: The following example shows a simple functional block declaration.

network output SNVT_lux nvoLux;

fblock SFPTopenLoopSensor {
 nvoLux implements nvoValue;
} fbLightMeter;

This functional block:

• Is named fbLightMeter (network management tools use this name unless
you include the external_name keyword to define a more human-readable
name)

7 Use the Windows Internet Explorer browser to view this site.

http://types.lonmark.org/

120 Creating a Model File

• Implements the SFPTopenLoopSensor standard profile

• Includes a single network variable, named nvoLux, which implements the
nvoValue network variable member of the standard profile

Declaring a Functional Block
A functional block declaration, by itself, does not cause the LonTalk Interface
Developer utility to generate any executable code, although it does create data
that implements various aspects of the functional block. Principally, the
functional block creates associations among network variables and configuration
properties. The LonTalk Interface Developer utility uses these associations to
create the self-documentation (SD) and self-identification (SI) data in the device
and in its associated device interface file (.xif extension).

The functional block information in the device interface file, or the SD and SI
data, communicates the presence and names of the functional blocks contained in
the device to a network management tool.

Network-variable or configuration members of a functional block also have self-
documentation data, which is also automatically generated by the LonTalk
Interface Developer utility. This self-documentation data provides details about
the particular network variable or configuration property, including whether the
network variable or configuration property is a member of a functional block.

Functional blocks can be implemented as single blocks or as arrays of functional
blocks. In a functional block array, each member of the array implements the
same functional profile, but has different network variables and typically has
different configuration properties that implement its network variable and
configuration property members.

Example: The following example shows a simple array of 10 functional blocks.

network output SNVT_lux nvoLux[10];

fblock SFPTopenLoopSensor {
 nvoLux[0] implements nvoValue;
} fbLightingDevice[10];

This functional block array:

• Contains ten functional blocks, fbLightingDevice[0] to
fbLightingDevice[9], each implementing the SFPTopenLoopSensor
profile.

• Distributes the ten nvoLux network variables among the ten functional
blocks, starting with the first network variable (at network variable array
index zero). Each member of the network variable array applies to a
different network variable member of the functional block array.

Defining a Network Variable
Every network variable has a type, called a network variable type, that defines
the units, scaling, and structure of the data contained within the network
variable. To connect a network variable to another network variable, both must
have the same type. This type matching prevents common installation errors
from occurring, such as connecting a pressure output to a temperature input.

ShortStack User’s Guide 121

Type translators are also available to convert network variables of one type to
another type. Some type translators can perform sophisticated transformations
between dissimilar network variable types. Type translators are special
functional blocks that require additional resources, for example, a dedicated type-
translating device in your network.

You can minimize the need for type translators by using standard network
variable types (SNVTs) for commonly used types, and by using changeable-type
network variables, where appropriate. You can also define your own user
network variable types (UNVTs).

You can use the NodeBuilder Resource Editor to look through the standard
network variable types, as described in Defining a Resource File on page 132, or
you can browse the standard profiles online at types.lonmark.org.

You can connect network variables on different devices that are of identical type,
but opposite direction, to allow the devices to share information. For example, an
application on a lighting device could have an input network variable of the
switch type, while an application on a dimmer-switch device could have an
output network variable of the same type. You can use a network tool, such as
the LonMaker Integration Tool, to connect these two devices, allowing the switch
to control the lighting device, as shown in Figure 53.

Figure 53. Simple Switch Controlling a Single Light

A single network variable can be connected to multiple network variables of the
same type but opposite direction. The example in Figure 54 shows the same
switch being used to control three lights.

Figure 54. Simple Switch Controlling Three Lights

http://types.lonmark.org/index.html

122 Creating a Model File

The ShortStack application in a device does not need to know anything about
where input network variables come from or where output network variables go.
After the ShortStack application updates a value for an output network variable,
it passes the new value to the ShortStack Micro Server by using a simple API
function call.

Through a process called binding that takes place during network design and
installation, the ShortStack Micro Server is configured to know the logical
address of the other devices (or groups of devices) in the network that expect a
specific network variable, and the ShortStack Micro Server assembles and sends
the appropriate packets to these devices. Similarly, when the ShortStack Micro
Server receives an updated value for an input network variable required by its
application program, it reads the data from the network and passes the data to
the application program.

The binding process creates logical connections between an output network
variable in one device and an input network variable in another device or group
of devices. You can think of these connections as “virtual wires.” For example,
the dimmer-switch device in the dimmer-switch-light example above could be
replaced with an occupancy sensor, without requiring any changes to the lighting
device.

Network variable processing is transparent, and typical networked applications
do not need to know whether a local network variable is bound (“connected”) to
one or more network variables on the same device, to one or more other devices,
or not bound at all. For those applications that do require such knowledge, tools
are supplied to query the related information.

Defining a Changeable-Type Network
Variable
A changeable-type network variable is a network variable that supports
installation-time changes to its type and its size.

You can use a changeable-type network variable to implement a generic
functional block that works with different types of inputs and outputs. Typically,
an integrator uses a network management tool plug-in that you create to change
network variable types.

For example, you can create a general-purpose device that can be used with a
variety of sensors or actuators, and then create a functional block that allows the
integrator to select the network variable type depending on the physical sensor or
actuator that is attached to the device during installation.

Restrictions:

• Each changeable-type network variable must be declared with an initial
type in the model file. This initial type defines the default type and the
maximum size of the network variable.

• A changeable-type network variable must be a member of a functional
block.

• Only network variables that are not bound can change their type. To
change the type of a bound network variable, you must first unbind
(disconnect) the network variable.

ShortStack User’s Guide 123

• Only a network management tool, such as the LonMaker Integration tool,
can change the type of a changeable-type network variable. The
ShortStack application does not initiate type changes.

To create a changeable-type network variable for a ShortStack application,
perform the following tasks:

1. Declare the network variable (in the model file) with the changeable_type
keyword. You must declare an initial type for the network variable, and
the size of the initial type must be equal to the largest network variable
size that your application supports. The initial type must be one of the
interoperable standard or user network variable types.

2. Select Has changeable interface in the LONMARK Standard Program ID
Calculator (part of the LonTalk Interface Developer utility) to set the
changeable-interface bit in the program ID when you create the device
interface.

3. Declare a SCPTnvType configuration property that applies to the
changeable-type network variable. This configuration property is used by
network management tools to notify your application of changes to the
network variable type.

4. You can optionally also declare a SCPTmaxNVLength configuration
property that applies to the changeable-type network variable. This
configuration property informs network management tools of the
maximum type length supported by the changeable-type network
variable. This value is a constant, so declare this configuration property
with the const modifier.

5. Implement code in your ShortStack application to process changes to the
SCPTnvType value. This code can accept or reject a type change. Ensure
that your application can process all possible types that the changeable-
type network variable might use at runtime.

6. Implement code to provide information about the current length of the
network variable.

The LonMaker browser provides integrators with a user interface to change
network variable types. However, you might want to provide a custom interface
for integrators to change network variable types on your device. For example,
the custom interface could restrict the available types to those types supported by
your application, thus preventing configuration errors.

The LonMaker Integration tool, Turbo Edition (and later), supports changeable-
type network variables. However, if you use LonMaker 3 or earlier to manage a
ShortStack device with changeable-type network variables, you must explicitly
set the SCPTnvType CP value in the LonMaker browser (or in a device plug-in)
to inform the ShortStack Micro Server of the type changes in addition to using
the “Change Network Variable Type” facility that is provided with LonMaker 3 or
earlier to change the type of a network variable in the LNS database.

See Handling Changes to Changeable-Type Network Variables on page 176 for
information about how your application should handle changes to changeable-
type network variables.

124 Creating a Model File

Defining a Configuration Property
Like network variables, configuration properties have types, called configuration
property types, that determine the units, scaling, and structure of the data that
they contain. Unlike network variable types, configuration property types also
specify the meaning of the data. For example, standard network variable types
represent temperature values, whereas configuration property types represent
specific types of temperature settings, such as the air temperature set point used
during daytime control, or the limit value of an air temperature sensor when
calculating an air temperature alarm.

Declaring a Configuration Property
You declare a configuration property in a model file. Similar to network variable
types, there are standard and user-defined configuration property types. You can
use the NodeBuilder Resource Editor to look through the standard configuration
property types, as described in Defining a Resource File on page 132, or you can
browse the standard profiles online at types.lonmark.org. You can also define
your own configuration property type, if needed.

You can implement a configuration property using either of the following
techniques:

• A configuration network variable

• A configuration file

A configuration network variable (CPNV) uses a network variable to implement
the configuration property. In this case, a LONWORKS device can modify the
configuration property, just like any other network variable. A CPNV can also
provide your application with detailed notification of updates to the configuration
property. However, a CPNV is limited to a maximum of 31 bytes, and a
ShortStack application is limited to a maximum of 254 network variables,
including CPNVs. Use the network … config_prop syntax described in the
Neuron C Reference Guide to implement a configuration property as a
configuration network variable. By convention, CPNV names start with an nci
prefix, and configuration properties in files start with a cp prefix.

A configuration file implements the configuration properties for a device as one or
two blocks of data called value files, rather than as separate externally exposed
data items. A value file consists of configuration property records of varying
length concatenated together. Each value file must fit as contiguous bytes into
the memory space in the device. When there are two value files, one contains
writeable configuration properties, and the second contains read-only data. To
allow a network management tool to access the data items in the value file, you
specify a provided template file, which is an array of text characters that
describes the elements in the value files. When you use the direct memory file
access method, the total size of the directory, template file, and value files cannot
exceed 32 KB. The maximum depends on the specified Micro Server, and is
typically several kilobytes. The standard Micro Servers that are included with
the ShortStack Developer’s Kit support over 11 KB. When you use LW-FTP,
individual files cannot exceed 2 147 483 647 bytes (2 GB -1, or 231 -1 bytes).

Other devices cannot connect to or poll a configuration property implemented in a
configuration file. To modify a configuration property implemented in a

http://types.lonmark.org/index.html

ShortStack User’s Guide 125

configuration file, a network management tool must modify the configuration file,
for which your application must provide an appropriate access method.

You must implement configuration properties within a configuration file if any of
the following apply to your application:

• The total number of network variables (including configuration network
variables) exceeds the total number of available network variables (a
maximum of 254 for a ShortStack device, but potentially fewer than 254
depending on the resources available on a particular Micro Server).

• The size of a single configuration property exceeds the maximum size of a
configuration network variable (31 bytes).

• Your device cannot use a configuration network variable (CPNV). For
example, for a device that uses a configuration property array that
applies to several network variables or functional blocks with one
instance of the configuration property array each, the configuration
property array must be shared among all network variables or functional
blocks to which it applies. In this case, the device must implement the
configuration properties within a configuration file.

In addition, you might decide whether to implement configuration properties
within a configuration file for performance reasons. Using the direct memory file
(DMF) access method can be faster than using configuration network variables
(CPNVs) if you have more than a few configuration properties because multiple
configuration properties can be updated during a single write to memory
(especially during device commissioning). However, LW-FTP can be faster than
DMF if there are many configuration properties to be updated.

Use the cp_family syntax described in the Neuron C Reference Guide to
implement a configuration property as a part of a configuration file.

When implementing configuration property files, the LonTalk Interface
Developer utility combines all configuration properties declared using the
cp_family keyword, and creates the value files and a number of related data
structures.

However, you must provide one of two supported mechanisms to access these
files:

• An implementation of the LONWORKS file transfer protocol (LW-FTP)

• Support for the direct memory files access method

The LonTalk Interface Developer provides most of the required code to support
the direct memory file access mthod. However, if you use LW-FTP, you must also
implement the LONWORKS file transfer protocol within your application program.
You would typically implement the LONWORKS file transfer protocol only if the
total amount of related data exceeds (or is likely to exceed) the size of the direct
memory file window, or if your application implements additional files that
require LW-FTP.

See the File Transfer engineering bulletin at www.echelon.com for more
information about the LONWORKS file transfer protocol; see Using Direct Memory
Files on page 189 for more information about the direct memory file access
method.

To indicate which file access method the application should use, you must declare
the appropriate network variables in your model file:

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf

126 Creating a Model File

• For direct memory files, declare an output network variable of type
SNVT_address. If your device implements the SFPTnodeObject
functional profile, you use this network variable to implement the
profile’s nvoFileDirectory member. If your device does not implement the
SFPTnodeObject functional profile, simply add this network variable to
the model file. You do not need to initialize this network variable (any
initial value is ignored; the LonTalk Interface Developer utility calculates
the correct value).

• For LW-FTP, declare at least two mandatory network variables, an input
network variable of type SNVT_file_req, and an output network variable
of type SNVT_file_status. In addition, you need an input network
variable of type SNVT_file_pos to support random access to the various
files. You must also implement the LONWORKS file transfer protocol
within your application program.

The LONWORKS file transfer protocol and the direct memory file access method
are mutually exclusive; your device cannot implement both.

Responding to Configuration Property
Value Changes
Events are not automatically generated when a configuration property
implemented in a configuration file is updated, but you can declare your
configuration property so that a modification to its value causes the related
functional block to be disabled and re-enabled, or causes the device to be taken
offline and brought back online after the modification, or causes the entire device
to reset. These state changes help to synchronize your application with new
configuration property values.

Your application could monitor changes to the configuration file, and thus detect
changes to a particular configuration property. Such monitoring would be
implemented in the LW-FTP server or direct memory file driver.

However, many applications do not need to know that a configuration property
value has changed. For example, an application that uses a configuration
property to parameterize an algorithm that uses some event as a trigger (such as
a network variable update or a change to an input signal) would not typically
need to know of the change to the configuration property value, but simply
consider the most recent value.

Defining a Configuration Property Array
You can define a configuration property as:

• A single configuration property

• An array of configuration properties

• A configuration property array

A single configuration property either applies to one or more network variables or
functional blocks within the model file for the device, or the configuration
property applies to the entire device.

ShortStack User’s Guide 127

When you define an array of configuration properties, each element of the array
can apply to one or more network variables or functional blocks within the model
file.

When you define a configuration property array, the entire array (but not each
element) applies to one or more network variables or functional blocks within the
model file. That is, a configuration property array is atomic, and thus applies in
its entirety to a particular item.

Assuming that the device has sufficient resources, it is always possible to define
arrays of configuration properties. However, configuration property arrays are
subject to the functional profile definition. For each member configuration
property, the profile describes whether it can, cannot, or must be implemented as
a configuration property array. The profile also describes minimum and
maximum dimensions for the array. If you do not implement the configuration
property array as the profile requires, the profile’s implementation becomes
incorrect.

Example:

This example defines a four-channel analog-to-digital converter (ADC), with the
following properties:

• Four channels (implemented as an array of functional blocks)

• One gain setting per channel (implemented as an array of configuration
properties)

• A single offset setting for the ADC (implemented as a shared
configuration property)

• A linearization setting for all channels (implemented as a configuration
property array)

#include <s32.h>
#define CHANNELS 4

network output SNVT_volt nvoAnalogValue[CHANNELS];

network input cp SCPTgain nciGain[CHANNELS];
network input cp SCPToffset nciOffset;
network input cp SCPTsetpoint nciLinearization[5];

fblock SFPTopenLoopSensor {
 // Declare network variable that implements the
 // mandatory nvoValue member of this profile
 nvoAnalogValue[0] implements nvoValue;
} fbAdc[CHANNELS] external_name("Analog Input")
fb_properties {
 // One gain factor per channel
 nciGain[0],
 // One offset, common to all channels
 static nciOffset,
 // One linearization array for all channels
 static nciLinearization = {
 {0, 0}, {2, 0}, {4, 0}, {6, 0}, {8, 0}
 };
};

128 Creating a Model File

This example implements a single output network variable, of type SNVT_volt,
per channel to represent the most recent ADC reading. This network variable
has a fixed type, defined at compile-time, but could be defined as a changeable-
type network variable if needed for the application.

There is one gain setting per channel, implemented as an array of configuration
network variables (CPNVs), of type SCPTgain, where the elements of the array
are distributed among the four functional blocks contained in the functional block
array. Because the SCPTgain configuration property has a default gain factor of
1.0, no explicit initialization is required for this configuration network variable.

There is a single offset setting, implemented as a configuration network variable
(CPNV), of type SCPToffset. This CPNV applies to all channels, and is shared
among the elements of the functional block array. The SCPToffset configuration
property has a default value of zero.

The SCPToffset configuration property is a type-inheriting configuration
property. The true data type of a type-inheriting property is the type of the
network variable to which the property applies. For an SFPTopenLoopSensor
standard functional profile, the SCPToffset configuration property applies to the
functional block, and thus implicitly applies to the profile's primary member
network variable. In this example, the effective data type of this property is
SNVT_volt (inherited from nvoAnalogValue).

The example also includes a five-point linearization factor, implemented as a
configuration property array of type SCPTsetpoint. The SCPTsetpoint
configuration property is also a type-inheriting configuration property, and its
effective data type is also SNVT_volt in this example.

Because the SCPTsetpoint linearization factor is a configuration property array,
it applies to the entire array of functional blocks, unlike the array of SCPTgain
configuration property network variables, whose elements are distributed among
the elements of the functional block array. In this example, the linearization
configuration property array is implemented with configuration network
variables, and must be shared among the elements of the functional block array.

To implement the linearization array of configuration properties such that each
of the four functional blocks has its own linearization data array, you must
implement this configuration property array in files, and declare the
configuration property with the cp_family modifier.

Table 20 shows the relationships between the members of the functional-block
array. As the table shows, each channel has a unique gain value, but all
channels share the offset value and linearization factor.

Table 20. Functional-Block Members for the Four-Channel ADC

Channel Gain Offset Linearization

fbAdc[0] nciGain[0]

fbAdc[1] nciGain[1]

fbAdc[2] nciGain[2]

fbAdc[3] nciGain[3]

nciOffset nciLinearization[0..4]

ShortStack User’s Guide 129

Sharing a Configuration Property
The typical instantiation of a configuration property is unique to a single device,
functional block, or network variable. For example, a configuration property
family whose name appears in the property list of five separate network variables
has five instantiations, and each instance is specific to a single network variable.
Similarly, a network variable array of five elements that includes the same
configuration property family name in its property list instantiates five members
of the configuration property family, and each one applies to one of the network
variable array elements.

Rather than creating extra configuration property instances, you can specify that
functional blocks or network variables share a configuration property by
including the static or global keywords in the configuration property declaration.

The global keyword causes a configuration property member to be shared among
all the functional blocks or network variables whose property list contains that
configuration property family name. The functional blocks or network variables
in the configuration property family can have only one such global member.
Thus, if you specify a global member for both the functional blocks and the
network variables in a configuration property family, the global member shared
by the functional blocks is a different member than the global member shared by
the network variables.

The static keyword causes a configuration property family member to be shared
among all elements of the array it is associated with (either network variable
array or functional block array). However, the sharing of the static member does
not extend to other network variables or functional blocks outside of the array.

Example 1:

// CP for throttle (default 1 minute)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };

// NVs with shared throttle:
network output SNVT_lev_percent nvoValue1
 nv_properties {
 global cpMaxSendT
 };
network output SNVT_lev_percent nvoValue2
 nv_properties {
 global cpMaxSendT // the same as the one above
 };
network output SNVT_lev_percent nvoValueArray[10]
 nv_properties {
 static cpMaxSendT // shared among the array
 // elements only
 };

In addition to sharing members of a configuration property family, you can use
the static or global keywords for a configuration network variable (CPNV) to
specify sharing. However, a shared configuration network variable cannot
appear in two or more property lists without the global keyword because there is
only one instance of the network variable (configuration property families can
have multiple instances).

A configuration property that applies to a device cannot be shared because there
is only one device per application.

130 Creating a Model File

Example 2:

The following model file defines a three-channel (red-green-blue, RGB) light
sensor, implemented with an array of three SFPTopenLoopSensor functional
blocks. Each channel has individual illumination set points, but shares one
property to specify the sample rate for all three channels.

#define NUM_CHANNELS 3

SCPTluxSetPoint cp_family cpLuxSetPoint[NUM_CHANNELS];
SCPTupdateRate cp_family cpUpdateRate;

network output SNVT_lux nvoLux[NUM_CHANNELS];

fblock SFPTopenLoopSensor {
 nvoLux[0] implements nvoValue;
} fbLightSensor[NUM_CHANNELS] external_name("Light Sensor")
 fb_properties {
 cpLuxSetPointp[0],
 static cpUpdateRate
 };

Inheriting a Configuration Property Type
You can define a configuration property type that does not include a complete
type definition, but instead references the type definition of the network variable
to which it applies. A configuration property type that references another type is
called a type-inheriting configuration property. When the configuration property
family member for a type-inheriting configuration property appears in a property
list, the instantiation of the configuration property family member uses the type
of the network variable. Likewise, a configuration property network variable can
be type-inheriting; however, for configuration network variable arrays and arrays
of configuration network variables (CPNVs), each element of the array must
inherit the same type.

Type-inheriting configuration properties that are listed in an nv_properties
clause inherit the type from the network variable to which they apply. Type-
inheriting configuration properties that are listed in an fb_property clause
inherit their type from the functional profile’s principal network variable
member, an attribute that is assigned to exactly one network variable member.

Recommendation: Because the type of a type-inheriting configuration property is
not known until instantiation, you should specify the configuration property
initializer option in the property list rather than in the declaration. Likewise,
you should specify the range-mod string in the property list because different
range-mod strings can apply to different instantiations of the property.

Restrictions:

• Type-inheriting configuration network variables that are also shared can
only be shared among network variables of identical type.

• A type-inheriting configuration property cannot be used as a device
property, because the device has no type from which to inherit.

A typical example of a type-inheriting configuration property is the
SCPTdefOutput configuration property type. Several functional profiles list the
SCPTdefOutput configuration property as an optional configuration property,

ShortStack User’s Guide 131

and use it to define the default value for the sensor’s principal network variable.
The functional profile itself, however, might not define the type for the principal
network variable.

The following example implements a SFPTopenLoopSensor functional block with
an optional SCPTdefOutput configuration property. The configuration property
inherits the type from the network variable it applies to, SNVT_lux in this case.

Example 1:

SCPTdefOutput cp_family cpDefaultOutput;

network output SNVT_lux nvoLux nv_properties {
 cpDefaultOutput = 450
};

fblock SFPTopenLoopSensor {
 nvoLux implements nvoValue;
} fbLightSensor;

The initial value (450) must be provided in the instantiation of the configuration
property, because the type for cpDefaultOutput is not known until it is
instantiated.

You can also combine type-inheriting configuration properties with changeable-
type network variables. The type of such a network variable can be changed
dynamically by a network integrator when the device is installed in a network.

Example 2:

SCPTdefOutput cp_family cpDefaultOutput;
SCPTnvType cp_family cpNvType;

network output changeable_type SNVT_lux nvoValue
 nv_properties {
 cpDefaultOutput = 450,
 cpNvType
 };

fblock SFPTopenLoopSensor {
 nvoValue implements nvoValue;
} fbGenericSensor;

The nvoValue principal network variable, although it is of changeable type, must
still implement a default type (SNVT_lux in the example). The SCPTdefOutput
type-inheriting configuration property inherits the type information from this
initial type. Therefore, the initializer for cpDefaultOutput must be specific to
this instantiation. Furthermore, the initializer must be valid for this initial type.

If the network integrator decides to change this type at runtime, for example, to
SNVT_lev_percent, then it is in the responsibility of the network management
tool to apply the formatting rules that apply to the new type when reading or
writing this configuration property. However, your application has the
responsibility to propagate the new type to this network variable’s type-
inheriting configuration properties (if any).

132 Creating a Model File

Declaring a Message Tag
You can declare a message tag in a model file. A message tag is a connection
point for application messages. Application messages are used for the
LONWORKS file transfer protocol (LW-FTP) and Interoperable Self-Installation
(ISI) protocol, and are also used to implement proprietary interfaces to
LONWORKS devices as described in Chapter 10, Developing a ShortStack
Application, on page 163.

Message tag declarations do not generate code, but result in a simple
enumeration, whose members are used to identify individual tags. There are two
basic forms of message tags: bindable and nonbindable.

Example:

msg_tag myBindableMT;
msg_tag bind_info(nonbind) myNotBindableMT;

Similar to network variables, you can connect bindable message tags together,
thus allowing applications to communicate with each other through the message
tags (rather than having to know specific device addressing details). Each
bindable message tag requires one address-table entry for its exclusive use.

Sending application messages through bindable message tags is also known as
sending application messages with implicit addressing.

Nonbindable message tags enable (and require) the use of explicit addresses,
which the sending application must provide. However, these addresses do not
require address-table entries.

Defining a Resource File
Functional profiles, network variable types, and configuration property types are
defined in resource files. LONWORKS resource files use a standard format that is
recognized by all interoperable network management tools, such as the
LonMaker Integration Tool. This standard format enables device manufacturers
to create definitions for user functional profiles, user network variable types
(UNVTs), and user configuration property types (UCPTs) that can be used during
installation by a network integrator using any interoperable network
management tool.

A set of standard functional profiles, standard network variable types (SNVTs),
and standard configuration property types (SCPTs) is defined by a standard
resource file set distributed by LONMARK International (www.lonmark.org). A
functional profile defined in a resource file is also called a functional profile
template.

Resource files are grouped into resource file sets, where each set applies to a
specified range of program IDs. A complete resource file set consists of a type file
(.TYP extension), a functional profile definitions file (.FPT extension), a format
file (.FMT extension), and one or more language files (.ENG, .ENU, or other
language-specific extensions).

Each set defines functional profiles, network variable types, and configuration
property type for a particular type of device or set of device types. The applicable
device types are specified by a range of program IDs, where the program ID
range is determined by a program ID template, and a scope value in the resource

http://www.lonmark.org/

ShortStack User’s Guide 133

file set. The scope value specifies which fields of the program ID template are
used to match the program ID template to the program ID of a device. That is,
the range of device types to which a resource file applies is the scope of the
resource file.

The program ID template has an identical structure to the program ID of a
device, except that the applicable fields might be restricted by the scope. The
scope value is a kind of filter that indicates the relevant parts of the program ID.
For example, the scope can specify that the resource file applies to an individual
device type, or to all device types.

You can specify a resource file for any of the following scopes:

0 – Standard
Applies to all devices.

1 – Reserved
Reserved for future use.

2 – Reserved
Reserved for future use.

3 – Manufacturer
Applies to all devices from the specified manufacturer.

4 – Manufacturer and Device Class
Applies to all devices from the specified manufacturer with the specified
device class.

5 – Manufacturer, Device Class, and Device Subclass
Applies to all devices from the specified manufacturer with the specified
device class and device subclass.

6 – Manufacturer, Device Class, Device Subclass, and Device Model
Applies to all devices of the specified type from the specified
manufacturer.

For scopes 3 through 6, the program ID template included in the resource file set
specifies the components. Network management tools match this template
against the program ID for a device when searching for an appropriate resource
file.

For a device to be able to use a resource file set, the program ID of the device
must match the program ID template of the resource file set to the degree
specified by the scope. Thus, each LONWORKS manufacturer can create resource
files that are unique to their devices.

Example: Consider a resource file set with a program ID template of
81:23:45:01:02:05:04:00, with manufacturer and device class scope (scope 4). Any
device with the manufacturer ID fields of the program ID set to 1:23:45 and the
device class ID fields set to 01:02 would be able to use types defined in this
resource file set. However, resources on devices of the same class, but from a
different manufacturer, could not access this resource file set.

A resource file set can also use information in any resource file set that has a
numerically lower scope, as long as the relevant fields of their program ID
templates match. For example, a scope 4 resource file set can use resources in a
scope 3 resource file set, assuming that the manufacturer ID components of the
resource file sets’ program ID templates match.

134 Creating a Model File

Scopes 0 through 2 are reserved for standard resource definitions published by
Echelon and distributed by LONMARK International. Scope 0 applies to all
devices, and scopes 1 and 2 are reserved for future use. Because scope 0 applies
to all devices, there is a single scope 0 resource file set called the standard
resource file set.

The ShortStack Developer's Kit includes the scope 0 standard resource file set
that defines the standard functional profiles (SFPTs), SNVTs, and SCPTs
(updates are also available from LONMARK International at www.lonmark.org).
The kit also includes the NodeBuilder Resource Editor that you can use to view
the standard resource file set, or use to create your own user functional profiles
(UFPTs), UNVTs, and UCPTs.

You can define your own functional profiles, types, and formats in scope 3
through 6 resource files.

Most LNS tools, including the LonMaker tool assume a default scope of 3 for all
user resources. LNS Turbo automatically sets the scope to the highest (most
specific) applicable scope level. However, if you use LNS 3 or earlier with scope
4, 5, or 6 resource files, you must explicitly set the scope in LNS so that LNS uses
the appropriate scope. See the NodeBuilder FX User’s Guide for information
about developing a plug-in to set the scope, or see the LonMaker User's Guide (or
online help) for information about modifying a device shape to set the scope.

Implementation-Specific Scope Rules
When you add implementation-specific network variables or configuration
properties to a standard or user functional profile, you must ensure that the
scope of the resource definition for the additional item is numerically less than or
equal to the scope of the functional profile, and that the member number is set
appropriately. For example:

• If you add an implementation-specific network variable or configuration
property to a standard functional block (SFPT, scope 0), it must be
defined by a standard type (SNVT, or SCPT).

• If you implement a functional block that is based on a manufacturer
scope resource file (scope 3), you can add an implementation-specific
network variable or configuration property that is defined in the same
scope 3 resource file, and you can also add an implementation-specific
network variable or configuration property that is defined by a SNVT or
SCPT (scope 0).

You can add implementation-specific members to standard functional profiles
using inheritance by performing the following tasks:

1. Use the NodeBuilder Resource Editor to create a user functional profile
with the same functional profile key as the standard functional profile.

2. Set Inherit members from scope 0 in the functional profile definition.
This setting makes all members of the standard functional profile part of
your user functional profile.

3. Declare a functional block based on the new user functional profile.

4. Add implementation-specific members to the functional block.

http://www.lonmark.org/

ShortStack User’s Guide 135

Writing Acceptable Neuron C Code
When processing a model file, the LonTalk Interface Developer utility
distinguishes between three categories of Neuron C statements:

• Acceptable

• Ignored – ignored statements produce a warning

• Unacceptable – unacceptable statements produce an error

Appendix B, Model File Compiler Directives, on page 281, lists the acceptable
and ignored compiler directives for model files. All other compiler directives are
not accepted by the LonTalk Interface Developer utility and cause an error if
included in a model file. A statement can be unacceptable because it controls
features that are meaningless in a ShortStack device, or because it refers to
attributes that are determined by the ShortStack Micro Server or by other
means.

The LonTalk Interface Developer utility ignores all executable code and I/O
object declarations. These constructs cause the LonTalk Interface Developer
utility to issue a warning message. The LonTalk Interface Developer utility
predefines the _SHORTSTACK and _MODEL_FILE macros, so that you can use
#ifdef or #ifndef directives to control conditional compilation of source code that is
used for regular Neuron C compilation and as a ShortStack model file.

All constructs not specifically mentioned as unacceptable or ignored are
acceptable.

Anonymous Top-Level Types
Anonymous top-level types are not acceptable. The following Neuron C construct
is not acceptable:

network output struct {int a; int b;} nvoZorro;

This statement is not acceptable because the type of the nvoZorro network
variable does not have a name. The LonTalk Interface Developer utility issues
an error when it detects such a construct.

Using a named type solves the problem, for example:

typedef struct {
 int a;
 int b;
} Zorro;
network output Zorro nvoZorro;

The use of anonymous sub-types is permitted. For example, the LonTalk
Interface Developer utility allows the following type definition:

typedef struct {
 int a;
 int b;
 struct {
 long x;
 long y;
 long z;
 } c;
} Zorro;

136 Creating a Model File

network output Zorro nvoZorro;

Legacy Neuron C Constructs
You must use the Neuron C Version 2 syntax described in this manual and the
Neuron C Reference Guide. You cannot use legacy Neuron C constructs for
defining LONMARK compliant interfaces. That is, you cannot use the config
modifier for network variables, and you cannot use Neuron C legacy syntax for
declaring functional blocks or configuration properties. The legacy syntax used
an sd_string() modifier containing a string that starts with a ‘&’ or ‘@’ character.

Using Authentication
Authentication is a special acknowledged service between one source device and
one or more (up to 63) destination devices. Authentication is used by the
destination devices to verify the identity of the source device. This type of service
is useful, for example, if a device containing an electronic lock receives a message
to open the lock. By using authentication, the electronic lock device can verify
that the “open” message comes from an authorized device, not from a person or
device attempting to break into the system.

Authentication doubles the number of messages per transaction. An
unauthenticated acknowledged message normally requires two messages: an
update and an acknowledgment. An authenticated message requires four
messages, as shown in Figure 55 on page 138. These extra messages can affect
system response time and channel capacity.

A device can use authentication with acknowledged updates or network variable
polls. However, a device cannot use authentication with unacknowledged or
repeated updates.

For a program to use authenticated network variables or send authenticated
messages, you must perform the following steps:

1. Declare the network variable as authenticated, or allow the network
management tool to specify that the network variable is to be
authenticated.

2. Specify the authentication key to be used for this device using a network
management tool, and enable authentication. You can use the LonMaker
Integration Tool to install a key during network integration, or your
application can use the LonQueryDomainConfig() and
LonUpdateDomainConfig() API functions to install a key locally.

If you have a NodeBuilder license, you can also create a custom Micro Server
with a pre-set authentication key.

Specifying the Authentication Key
All devices that read or write a given authenticated network variable connection
must have the same authentication key. This 48-bit authentication key is used
in a special way for authentication, as described in How Authentication Works on
page 137. If a device belongs to more than one domain, you must specify a
separate key for each domain.

ShortStack User’s Guide 137

The key itself is transmitted to the device only during the initial configuration.
All subsequent changes to the key do not involve sending it over the network.
The network management tool can modify a device’s key over the network, in a
secure fashion, with a network management message.

Alternatively, your application can use a combination of the
LonQueryDomainConfig() and LonUpdateDomainConfig() API calls to specify the
authentication keys during application start-up.

If you set the authentication key during device manufacturing, you must perform
the following tasks to ensure that the key is not exposed to the network during
device installation:

1. Specify that the device should use network-management authentication
(set the configuration data in the LonConfigData data structure, which is
defined in the ShortStackTypes.h file).

2. Set the device’s state to configured. An unconfigured device does not
enforce authentication.

3. Recommended: Set the device’s domain to an invalid domain value to
avoid address conflicts during device installation.

If you do not set the authentication key during device manufacturing, the device
installer can specify authentication for the device using the network management
tool, but must specify an authentication key because the device has only a default
key.

To produce highly secured ShortStack devices, consider creating a custom Micro
Server using the NodeBuilder Development tool, exporting the generated image
with the authentication keys pre-set. See the NodeBuilder FX User’s Guide for
more information.

How Authentication Works
Figure 55 on page 138 illustrates the process of authentication:

1. Device A uses the acknowledged service to send an update to a network
variable that is configured with the authentication attribute on Device B.
If Device A does not receive the challenge (described in step 2), it sends a
retry of the initial update.

2. Device B generates a 64-bit random number and returns a challenge
packet that includes the 64-bit random number to Device A. Device B
then uses an encryption algorithm (built in to the Smart Transceiver
firmware) to compute a transformation on that random number using its
48-bit authentication key and the message data. The transformation is
stored in Device B.

3. Device A then also uses the same encryption algorithm to compute a
transformation on the random number (returned to it by Device B) using
its 48-bit authentication key and the message data. Device A then sends
this computed transformation to Device B.

4. Device B compares its computed transformation with the number that it
receives from Device A. If the two numbers match, the identity of the
sender is verified, and Device B can perform the requested action and
send its acknowledgment to Device A. If the two numbers do not match,

138 Creating a Model File

Device B does not perform the requested action, and an error is logged in
the error table.

If the acknowledgment is lost and Device A tries to send the same message again,
Device B remembers that the authentication was successfully completed and
acknowledges it again.

Figure 55. Authentication Process

If Device A attempts to update an output network variable that is connected to
multiple readers, each receiver device generates a different 64-bit random
number and sends it in a challenge packet to Device A. Device A must then
transform each of these numbers and send a reply to each receiver device.

The principal strength of authentication is that it cannot be defeated by simple
record and playback of commands that implement the desired functions (for
example, unlocking the lock). Authentication does not require that the specific
messages and commands be secret, because they are sent unencrypted over the
network, and anyone who is determined can read those messages.

It is good practice to connect a device directly to a network management tool
when initially installing its authentication key. This direct connection prevents
the key from being sent over the network, where it might be detected by an
intruder. After a device has its authentication key, a network management tool
can modify the key, over the network, by sending an increment to be added to the
existing key.

You can update the device’s address without having to update the key, and you
can perform authentication even if the devices’ domains do not match. Thus, a
ShortStack device can set its key during device manufacturing, and you can then
use a network management tool to update the key securely over the network.

Example Model files
This section describes a few example model files, with increasing levels of
complexity.

See Network Variable and Configuration Property Declarations on page 156 for
information about mapping types and items declared in the model file to those
shown in the LonTalk Interface Developer utility-generated application
framework.

ShortStack User’s Guide 139

Simple Network Variable Declarations
This example declares one input network variable and one output network
variable. Both network variables are declared with the SNVT_count type. The
names of the network variables (nviCount and nvoCount) are arbitrary.
However, it is a common practice to use the “nvi” prefix for input network
variables and the "nvo" prefix for output network variables.

network input SNVT_count nviCount;
network output SNVT_count nvoCount;

The LonTalk Interface Developer utility compiles this model file into an
application framework that contains, among other things, two global C variables
in the ShortStackDev.c file:

volatile SNVT_count nviCount;
SNVT_count nvoCount;

When an update occurs for the input network variable (nviCount), the Micro
Server stores the updated value in the global variable. The application can use
this variable like any other C variable. When the application needs to update the
output value, it updates the nvoCount variable, so that the Micro Server can read
the updated value and send it to the network.

For more information about how the LonTalk Interface Developer utility-
generated framework represents network variables, see Using Types on page
154.

Important: This example is not interoperable because it does not use functional
blocks to define the purpose of these network variables. However, this type of
declaration can define a functioning device for an initial test application.

Network Variables Using Standard Types
A more complete example includes the use of more complex standard network
variable types and declarations. This example provides the model for a simple
lighting device, where all input data is retrieved from the network through the
nviLux and nviColor input network variables. The result is posted to the
nvoRed, nvoGreen, and nvoBlue output network variables. An additional
nvoUsage output network variable is polled and uses non-volatile storage to
count the device’s total lifetime.

network input SNVT_lux nviLux;
network input SNVT_color nviColor;
network output SNVT_lev_percent nvoRed;
network output SNVT_lev_percent nvoGreen;
network output SNVT_lev_percent nvoBlue;
network output polled eeprom SNVT_elapsed_tm nvoUsage;

The LonTalk Interface Developer utility generates type definitions in the
LonNvTypes.h file for all of the above network variables. However, it does not
generate type definitions in the LonCpTypes.h file because there are no
configuration properties.

In addition to the type definitions and other data, the LonTalk Interface
Developer utility generates the following global C variables for this model file:

volatile SNVT_lux nviLux;

140 Creating a Model File

volatile SNVT_color nviColor;
SNVT_lev_percent nvoRed;
SNVT_lev_percent nvoGreen;
SNVT_lev_percent nvoBlue;
SNVT_elapsed_tm nvoUsage;

The declaration of the nvoUsage output network variable uses the network
variable modifiers polled and eeprom. The LonTalk Interface Developer utility
stores these attributes in the network-variable table (nvTable[]) in the
ShortStackDev.c file. The API uses this table to access the network variables
when the application runs. In addition, the application can query the data in this
table at runtime.

Important: This example is not interoperable because it does not use functional
blocks to define the purpose of these network variables. However, this type of
declaration can define a functioning device for an initial test application.

Functional Blocks without Configuration Properties
The following model file describes a similar lighting device application as in the
previous example, but implements it using functional blocks to provide an
interoperable interface:

• A node object based on the SFPTnodeObject functional profile to manage
the entire device

• An array of three lighting devices, each based on the same user-defined
UFPTlightingDevice profile, implementing three identical devices.

Configuration properties are not used in this example.

// Node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
} NodeObject external_name("NodeObject");

// UFPTlightingDevice
// Implements the device from the previous example.
network input SNVT_lux nviLux[3];
network input SNVT_color nviColor[3];
network output SNVT_lev_percent nvoRed[3];
network output SNVT_lev_percent nvoGreen[3];
network output SNVT_lev_percent nvoBlue[3];
network output polled eeprom SNVT_elapsed_tm
 nvoUsage[3];

fblock UFPTlightingDevice {
 nviLux[0] implements nviLux;
 nviColor[0] implements nviColor;
 nvoRed[0] implements nvoRed;
 nvoGreen[0] implements nvoGreen;
 nvoBlue[0] implements nvoBlue;

 nvoUsage[0] implements nvoUsage;

ShortStack User’s Guide 141

} LightingDevice[3] external_name("LightingDevice");

Because functional blocks only provide logical grouping of network variables and
configuration properties, and meaning to those groups, but do not themselves
contain executable code, the functional blocks appear only in the self-
documentation data generated by the LonTalk Interface Developer utility, but
not in any generated executable code.

Functional Blocks with Configuration Network
Variables

The following example takes the above example and adds a few configuration
properties implemented as configuration network variables. A cp modifier in the
network variable declaration makes the network variable a configuration
network variable (CPNV). The nv_properties and fb_properties modifiers apply
the configuration properties to specific network variables or the functional block.

// Configuration properties for the node object
network input cp SCPTlocation nciLocation;

// network variables for the node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
} NodeObject external_name("NodeObject")
fb_properties {
 nciLocation
};

// config properties for the Lighting Device
network input cp SCPTluxSetpoint nciLuxSetpoint[3];
network input cp SCPTupdateRate nciUpdateRate;

// network variables for the Lighting Device
network input SNVT_lux nviLux[3];
network input SNVT_color nviColor[3];
network output SNVT_lev_percent nvoRed[3];
network output SNVT_lev_percent nvoGreen[3];
network output SNVT_lev_percent nvoBlue[3];
network output polled eeprom SNVT_elapsed_tm
 nvoUsage[3];

fblock UFPTlightingDevice {
 nviLux[0] implements nviLux;
 nviColor[0] implements nviColor;
 nvoRed[0] implements nvoRed;
 nvoGreen[0] implements nvoGreen;
 nvoBlue[0] implements nvoBlue;
 nvoUsage[0] implements nvoUsage;
} LightingDevice[3] external_name("LightingDevice")
fb_properties {
 nciLuxSetPoint[0],
 static nciUpdateRate

142 Creating a Model File

};

This example implements an array of configuration network variables,
nciLuxSetPoint. Each element of this array applies to one element of the
LightingDevice functional block array, starting with nciLuxSetPoint[0].

The SCPTupdateRate configuration property nciUpdateRate is shared among all
three lighting devices. There is only a single nciUpdateRate configuration
property, and it applies to every element of the array of three
UFPTlightingDevice functional blocks.

The LonTalk Interface Developer utility creates a network variable table for the
configuration network variables and the persistent nvoUsage network variable.
You must provide persistent storage for such data. See Providing Persistent
Storage for Non-Volatile Data on page 192 for more information about support for
non-volatile data.

Functional Blocks with Configuration Properties
Implemented in a Configuration File

This example implements a device similar to the one in the previous example,
with these differences:

1. All configuration properties are implemented within a configuration file
instead of as a configuration network variable

2. A SNVT_address type network variable is declared to enable access to
these files through the direct memory file access method

3. The SFPTnodeObject node object has been updated to support the SNVT
address network variable

// config properties for the Node object
SCPTlocation cp_family cpLocation;

// Network variables for the node object
network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;
const network output polled SNVT_address nvoFileDirectory;

// Node object
fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
 nvoFileDirectory implements nvoFileDirectory;
} NodeObject external_name("NodeObject") fb_properties {
 cpLocation
};

// Config properties for the Lighting Device
SCPTluxSetpoint cp_family cpLuxSetpoint[3];
SCPTupdateRate cp_family cpUpdateRate;

// network variables for the Lighting Device
network input SNVT_lux nviLux[3];
network input SNVT_color nviColor[3];
network output SNVT_lev_percent nvoRed[3];

ShortStack User’s Guide 143

network output SNVT_lev_percent nvoGreen[3];
network output SNVT_lev_percent nvoBlue[3];
network output polled eeprom SNVT_elapsed_tm
 nvoUsage[3];

fblock UFPTlightingDevice {
 nviLux[0] implements nviLux;
 nviColor[0] implements nviColor;
 nvoRed[0] implements nvoRed;
 nvoGreen[0] implements nvoGreen;
 nvoBlue[0] implements nvoBlue;
 nvoUsage[0] implements nvoUsage;
} LightingDevice[3] external_name("LightingDevice")
fb_properties {
 cpLuxSetPoint[0],
 static cpUpdateRate
};

The addition of the SNVT_address typed network variable nvoFileDirectory is
important for enabling the direct memory file access method for access to the
configuration property files. The LonTalk Interface Developer initializes this
network variable’s value correctly, and creates all required structures and code
for direct memory file access; see Using Direct Memory Files on page 189 for
more information.

Alternatively, you can use the LONWORKS File Transfer Protocol (LW-FTP) to
access the file directory and the files in the directory. In this case, you need to
implement the network variables and message tags as needed for the
implementation of a LONWORKS FTP server in the model file, and provide
application code in your host to implement the protocol. See the File Transfer
engineering bulletin at www.echelon.com for more information about the
LONWORKS file transfer protocol.

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf

ShortStack User’s Guide 145

9

Using the LonTalk Interface
Developer Utility

You use the model file, described in Chapter 8, and the
LonTalk Interface Developer utility to define the network
inputs and outputs for your device, and to create your
application’s skeleton framework source code. You can use
this skeleton application framework as the basis for your
own application development.

The utility also generates device interface files that are used
by a network management tool when designing a network
that uses your device.

This chapter describes how to use the LonTalk Interface
Developer utility and its options, and describes the files that
it generates and how to use them.

146 Using the LonTalk Interface Developer Utility

Running the LonTalk Interface Developer
You can use the LonTalk Interface Developer utility to create the device interface
data required for your ShortStack application. The LonTalk Interface Developer
utility also generates the device interface (XIF) file that is required by network
management tools to design a network that uses your device.

To create the device interface data and device interface file for your device,
perform the following tasks:

1. Create a model file as described in Chapter 8, Creating a Model File, on
page 115.

2. Start the LonTalk Interface Developer utility: from the Windows Start
menu, select Programs → Echelon ShortStack FX Developer’s Kit →
LonTalk Interface Developer.

3. In the LonTalk Interface Developer utility, specify the Micro Server, the
program ID, the model file for the device, and other preferences for the
utility. The utility uses this information to generate a number of files
that your application uses. See Using the LonTalk Interface Developer
Files on page 150.

4. Add the ShortStackDev.h ANSI C header file to your ShortStack
application with an include statement:

#include "ShortStackDev.h"

5. Add the ShortStackDev.c file, and the executable ShortStack LonTalk
Compact API source files (ShortStackApi.c, ShortStackInternal.c, and
ShortStackHandlers.c) to your project.

In general, you should limit changes to the LonTalk Interface Developer utility-
generated files. Any changes that you make will be overwritten the next time
you run the utility. However, the LonTalk Interface Developer utility does not
overwrite or modify the ShortStack LonTalk Compact API files.

After you have the LonTalk Interface Developer utility-generated files, you need
to modify and add code to your application, using the ShortStack LonTalk
Compact API, to implement desired LONWORKS functionality into your
ShortStack application. See Chapter 10, Developing a ShortStack Application,
on page 163, for information about how to use the ShortStack LonTalk Compact
API calls to implement LONWORKS tasks.

Specifying the Project File
From the Welcome to LonTalk Interface Developer page of the utility, you can
enter the name and location of a new or existing ShortStack project file (.lidprj
extension). The LonTalk Interface Developer utility uses this project file to
maintain your preferences for this project. The base name of the project file is
also used as the base name for the device interface files that the utility generates.

Recommendation: Include a project version number in the name of the project to
facilitate version control and project management for your LonTalk Interface
Developer projects.

ShortStack User’s Guide 147

The utility creates all of its output files in the same directory as the project file.
Your application’s model file does not need to be in this directory; from the
utility’s Model File Selection page, you can specify the name and location of the
model file.

The location of the LonTalk Interface Developer project file can be the same as
your application’s project folder, but you can also generate and maintain the
LonTalk Interface Developer’s project in a separate folder, and manually link the
latest generated framework with your application by copying or referencing the
correct location.

Specifying the Micro Server
From the ShortStack Micro Server Selection page of the utility, you can specify
the following information about the ShortStack Micro Server:

• The Micro Server type

• The Smart Transceiver type

• The Smart Transceiver external clock speed

• The Smart Transceiver clock multiplier value

The LonTalk Interface Developer utility reads the ShortStack Micro Server
Database file (StdServers.xml) and the User Database file (UserServer.xml) to
display the values for each of the standard and custom Micro Servers. For a
standard installation, the StdServers.xml file is in the
\LonWorks\ShortStack\MicroServers directory.

To select a Micro Server that is not in the database file, click Browse to specify
the Micro Server’s XIF file. In this case, the LonTalk Interface Developer utility
presents the chosen Micro Server’s properties as indicated in the XIF file, but for
a custom Micro Server that is based on a Series 5000 Smart Transceiver or
Neuron 5000 Processor, you must select the correct system clock multiplier.

Specifying System Preferences
From the ShortStack System Preferences page of the utility, you can specify the
following general preferences:

• Whether explicit addresses should be enabled

• Whether application addresses should be enabled

• Whether the notification of service-pin-held events is enabled

• If service-pin-held events are enabled, how long the service pin must be
pressed and held before the Micro Server receives the event

These preferences are all optional.

Recommendation: Enable explicit and application addressing only if they are
needed, because they increase the size of buffers and require additional memory
on the ShortStack host processor.

When you press the local service pin on the device, the Micro Server sends a
service-pin message on the LONWORKS network and signals a service-pin event to
the application. However, when you press and hold the local service pin on the

148 Using the LonTalk Interface Developer Utility

device, whether the Micro Server sends a service-pin-held event depends on how
you configure it.

Although your ShortStack device is not required to handle service-pin-held
events, you can include support in your application to receive them, even if it
does not process them. By including support for receiving the service-pin-held
events, you have the flexibility to add support for processing them in the future
without modifying the ShortStack Micro Server image. For example, many
devices support an emergency recovery feature that is triggered by pressing and
holding the service pin for a prolonged amount of time (typically 10 or 20s). Then
the device moves to the unconfigured state (that is, calls LonGoUnconfigured())
or uses another method to return to a factory state.

Specifying the Device Program ID
In the Program ID Selection window, you use the LONMARK Standard Program
ID Calculator to specify the device program ID. The program ID is a 16-digit
hexadecimal number that uniquely identifies the device interface for your device.

The program ID can be formatted as a standard or non-standard program ID.
When formatted as a standard program ID, the 16 hexadecimal digits are
organized into six fields that identify the manufacturer, classification, usage,
channel type, and model number of the device. The LONMARK Standard Program
ID Calculator simplifies the selection of the appropriate values for these fields by
allowing you to select from lists contained in a program ID definition file
distributed by LONMARK International. A version of this list is included with the
ShortStack Developer’s Kit.

Within the device’s program ID, you must include your manufacturer ID. If your
company is a member of LONMARK International, you have a permanent
Manufacturer ID assigned by LONMARK International. You can find those listed
within the Standard Program ID Calculator utility, or online at
www.lonmark.org/mid.

If your company is not a member of the LONMARK International, you can obtain a
temporary manufacturer ID from www.lonmark.org/mid. There is no charge for a
temporary manufacturer ID, and you do not have to join LONMARK International
to obtain one.

For prototypes and example applications, you can use the F:FF:FF manufacturer
ID, but you should not release a device that uses this non-unique identifier into
production. You can, however, produce a device with a temporary manufacturer
ID.

If you want to specify a program ID that does not follow the standard program ID
format, you must use the command-line interface for the LonTalk Interface
Developer utility. LONMARK International requires all interoperable LONWORKS
devices to use a standard-format program ID. Using a non-standard format for
the program ID will prevent the use of functional blocks and configuration
properties, and will prevent certification.

Specifying the Model File
From the Model File Selection page of the utility, you can specify the model file
for the device. You can also click Edit to open the model file in whatever editor is

http://www.lonmark.org/mid
http://www.lonmark.org/mid

ShortStack User’s Guide 149

associated with the .nc file type, for example, Notepad or the NodeBuilder
Development Tool.

The model file is a simple source file written using a subset of the Neuron C
Version 2 programming language. The model file contains declarations of
network variables, configuration properties, functional blocks, and their
relationships.

The LonTalk Interface Developer utility uses the information in the model file,
combined with other user preferences, to generate the application framework
files and the interface files. You must compile and link the application
framework files with the host application.

See Chapter 8, Creating a Model File, on page 115, for more information about
the model file.

Specifying Neuron C Compiler Preferences
From the Neuron C Compiler Preferences page of the utility, you can specify
macros for the Neuron C compiler preprocessor and extend the include search
path for the compiler.

For the preprocessor macros (#define statements), you can only specify macros
that do not require values. These macros are optional. Use separate lines to
specify multiple macros.

The _SHORTSTACK symbol is always predefined by the LonTalk Interface
Developer utility, and does not need to be specified explicitly. You can use this
symbol to control conditional compilation for ShortStack applications. In
addition, the utility predefines the _MODEL_FILE symbol for model file
definitions and the _LID4 symbol for LonTalk Interface Developer utility macros.

For the search path, you can specify additional directories in which the compiler
should search for user-defined include files (files specified within quotation
marks, for example, #include "my_header.h").

Specifying additional directories is optional. Use separate lines to specify
multiple directories.

The LonTalk Interface Developer project directory is automatically included in
the compiler search path, and does not need to be specified explicitly. Similarly,
the Neuron C Compiler system directories (for header files specified with angled
brackets, for example, #include <string.h>) are also automatically included in the
compiler search path.

Specifying Code Generator Preferences
From the Interface Developer Code Generator Preferences page of the utility, you
can specify preferences for the LonTalk Interface Developer compiler, such as
whether to generate verbose source-code comments, whether to include the
optional Query and Update functions, and whether to include the optional
interoperable self-installation (ISI) API functions.

If you use the direct memory files (DMF) access method, you can optionally
specify the size and starting address of the memory window from the Interface
Developer Code Generator Preferences page. If you do not specify values on this

150 Using the LonTalk Interface Developer Utility

page, the utility assigns appropriate values. See Using Direct Memory Files on
page 189 for more information.

Compiling and Generating the Files
In the Summary and Confirmation page of the utility, you can view all of the
information that you specified for the project. When you click Next, the LonTalk
Interface Developer utility compiles the model file and generates a number of C
source files and header files, as described in Using the LonTalk Interface
Developer Files.

The Build Progress and Summary page shows the results of compilation and
generation of the ShortStack project files.

Any warning or error messages have the following format:

Message-type: Model_file_name Line_number(Column_number): Message

Example: A model file named “tester.nc” includes the following single network
variable declaration:

network input SNVT_volt nviVolt

Note the missing semicolon at the end of the line. When you use this file to build
a project from the LonTalk Interface Developer utility, the compiler issues the
following message:

Error: TESTER.NC 1(32):
 Unexpected END-OF-FILE in source file [NCC#21]

The message type is Error, the line number is 1, the column number is 32 (which
corresponds to the position of the error, in this case, the missing semicolon), and
the compiler message number is NCC#21. To fix this error, add a semicolon to
the end of the line.

See the Neuron Tools Errors Guide for information about the compiler messages.

Using the LonTalk Interface Developer Files
The LonTalk Interface Developer utility takes all of the information that you
provide and automatically generates the following files that are needed for your
ShortStack application:

• LonNvTypes.h

• LonCpTypes.h

• ShortStackDev.h

• ShortStackDev.c

• project.xif

• project.xfb

The utility also copies a number of files to your project directory, as described in
Copied Files on page 151. Together, the generated files and the copied files form
the ShortStack application framework, which defines the ShortStack Micro
Server initialization data and self-identification data for use in the initialization
phase, including communication parameters and everything you need to begin
device development. The framework includes ANSI C type definitions for

ShortStack User’s Guide 151

network variable and configuration property types used with the application, and
implements them as global application variables.

To include these files in your application, include the ShortStackDev.h file in
your ShortStack application using an ANSI C #include statement, and add the
ShortStackDev.c file to your project so that it can be compiled and linked.

The following sections describe the copied and generated files.

Copied Files
The LonTalk Interface Developer utility copies the following files into your
project directory if no file with the same name already exists:

• LonBegin.h

• LonEnd.h

• LonPlatform.h

• ShortStackApi.c

• ShortStackApi.h

• ShortStackHandlers.c

• ShortStackInternal.c

• ShortStackTypes.h

For ShortStack ISI applications, the LonTalk Interface Developer utility also
copies the following files into your project directory:

• ShortStackIsiApi.c

• ShortStackIsiApi.h

• ShortStackIsiHandlers.c

• ShortStackIsiInternal.c

• ShortStackIsiTypes.h

Existing files with the same name, even if they are not write-protected, are not
overwritten by the utility.

Because your application includes the ShortStackDev.h file (and
ShortStackIsiApi.h for ShortStack ISI applications), you do not normally have to
explicitly include any of the header files with your application source.

You must add the ShortStackInternal.c, ShortStackApi.c, and
ShortStackHandlers.c files to your project so that they will be compiled and
linked with your application. For ShortStack ISI applications, you must add the
ShortStackIsiInternal.c, ShortStackIsiApi.c and ShortStackIsiHandlers.c files to
your project so that they will be compiled and linked with your application.

The LonTalk Interface Developer utility also copies a number Micro Server image
files into your project directory if no file with the same file already exists. These
image files are based on the Micro Server preferences specified in the utility, and
are renamed to share the project’s base name. The available file extensions
depend on the selected Micro Server, but typically include files with APB, NDL,
NEI, NXE, NME, or NMF file extensions.

152 Using the LonTalk Interface Developer Utility

Important: The LonTalk Interface Developer utility does not copy
implementations of the serial driver into your project folder; you must supply this
code.

LonNvTypes.h and LonCpTypes.h
The LonNvTypes.h file defines network variable types, and includes type
definitions for standard or user network variable types (SNVTs or UNVTs). See
Using Types on page 154 for more information on the generated types.

The LonCpTypes.h file defines configuration property types, and includes
standard or user configuration property types (SCPTs or UCPTs) for
configuration properties implemented within configuration files.

Either of these files might be empty if your application does not use network
variables or configuration properties.

ShortStackDev.h
The ShortStackDev.h file is the main header file that the LonTalk Interface
Developer utility produces. This file provides the definitions that are required for
your application code to interface with the application framework and the
ShortStack LonTalk Compact API, including C extern references to public
functions, variables, and constants generated by the LonTalk Interface Developer
utility.

You should include this file with all source files that make your application, but
you do not normally have to edit this file. Any manual changes to this file are not
retained when you rerun the LonTalk Interface Developer utility. The file
contains comments about how you can override some of the preferences and
assumptions made by the utility.

ShortStackDev.c
The ShortStackDev.c file is the main source file that the LonTalk Interface
Developer utility produces. This file includes the ShortStackDev.h file header
file, declares the network variables, configuration properties, and configuration
files (where applicable).

It defines variables and constants, including the network variable table or the
device’s initialization data block, and a number of utility functions.

The ShortStackDev.c file also defines the appInitData structure, which contains
data that is sent to the Micro Server during initialization (in the LonNiAppInit
and LonNiNvInit messages). Table 21 on page 153 describes the fields of this
data structure.

Important: Although you can modify this data structure, you should not need to
unless you are developing an application that supports multiple device interfaces.
If you do modify this data, you must ensure that other control data remains
consistent with your changes, including the siData array and the nvTable (both
in ShortStackDev.c), and the device interface files (XIF and XFB file extensions).
Other data that also must remain consistent with your preferences are
definitions contained in the ShortStackDev.h file, including those that configure
the API options.

ShortStack User’s Guide 153

Table 21. Fields of the appInitData Structure

Field Description

appInitData.signature A 16-bit number that identifies the current
application. The LonTalk Interface Developer
utility generates a new number whenever you
regenerate the application framework. The Micro
Server uses this number to distinguish repeated
initialization of the same application from
initialization of a new application.

appInitData.programId The 48-bit program ID in binary form.

appInitData.communication The 96-bit communication parameter record that
is used to correctly initialize communications with
the LONWORKS network.

appInitData.preferences An 8-bit vector of flags. Includes 0x20 to enable
explicit addressing, and a 5-bit value for the
service-pin-held delay in seconds (mask 0x1F),
where zero disables the feature. The remaining
flags 0x80 and 0x40 are reserved for future use,
and must be kept cleared (zero). These flags are
optional.

appInitData.nvCount One byte for the total number of network variables
in the application. This number must not exceed
the Micro Server’s maximum network variable
count (also known as the Micro Server’s network
variable capacity).

appInitData.nvData[] One byte for each network variable. Each byte
comprises the following flags: priority (0x80),
output (0x40), service type (acknowledged [0x00],
repeated [0x10], unacknowledged [0x20]), and
authenticated (0x08).

You must compile and link the ShortStackDev.c file with your application, but
you do not normally have to edit this file. Any manual changes to this file are not
retained when you rerun the LonTalk Interface Developer utility, but the file
contains comments about how you can override some of the preferences and
assumptions made by the utility.

project.xif and project.xfb
The LonTalk Interface Developer utility generates the device interface file for
your project in two formats:

• project.xif (a text file)

• project.xfb (a binary file)

154 Using the LonTalk Interface Developer Utility

For both files, project is the name of the ShortStack project that you specified on
the Welcome to LonTalk Interface Developer page of the LonTalk Interface
Developer utility. Thus, these files have the same name as the ShortStack
project file (.lidprj extension).

These files comply with the LONMARK device interface revision 4.402 format.

Important: If your device is defined with a non-standard program ID, the device
interface file cannot contain interoperable LONMARK constructs.

Using Types
The LonTalk Interface Developer utility produces type definitions for the network
variables and configuration properties in your model file. For maximum
portability, all types defined by the utility are based on a small set of host-side
equivalents to the built-in Neuron C types, and should conform to the portability
rules described in Porting the ShortStack LonTalk Compact API on page 109.
For example, the LonPlatform.h file contains a type definition for a Neuron C
signed integer equivalent type called ncsInt. This type must be the equivalent of
a Neuron C signed integer, a signed 8-bit scalar. For most target platforms, the
ncsInt type is defined as signed char type.

A network variable declared by a Neuron C built-in type does not require a host-
side type definition in the LonNvTypes.h file, but is instead declared with its
respective host-side Neuron C equivalent type as declared in LonPlatform.h.

Important: Network variables that use ordinary C types, such as int or long, are
not interoperable. For interoperability, network variables must use types defined
within the device resource files. These network variable types include standard
network variable types (SNVTs) and user-defined network variable types
(UNVTs). You can use the NodeBuilder Resource Editor to define your own
UNVTs.

Example:

A model file contains the following declarations:

network input int nviInteger;
network output SNVT_count nvoCount;
network output SNVT_switch nvoSwitch;

• The nviInteger declaration uses a built-in Neuron C type, so the LonTalk
Interface Developer utility uses the ncsInt type defined in LonPlatform.h.

• The nvoCount declaration uses a type that is not a built-in Neuron C
type. The utility produces the following type definition:

typedef ncuLong SNVT_count;

The ncuLong type represents the host-side equivalent of a Neuron C
unsigned long, a 16-bit unsigned scalar. It is defined in LonPlatform.h,
and typically maps to the LonWord type. LonWord is a platform-
independent definition of a 16-bit scalar in big-endian notation:

typedef struct {
 LonByte msb;
 LonByte lsb;
} LonWord;

ShortStack User’s Guide 155

To use this platform-independent type for numeric operations, you can
use the optional LON_GET_UNSIGNED_WORD or
LON_SET_UNSIGNED_WORD macros. Similar macros are provided for
signed words (16 bit), and for signed and unsigned 32-bit scalars
(DOUBLE).

Important: If a network variable or configuration property is defined
with an initializer in your device’s model file, and if you change the
default definition of multibyte scalars (such as the ncuLong type), you
must modify the initializer generated by the LonTalk Interface Developer
utility if the type is a multibyte scalar type.

• The nvoSwitch declaration is based on a structure. The LonTalk
Interface Developer utility redefines this structure using built-in Neuron
C equivalent types:

typedef LON_STRUCT_BEGIN(SNVT_switch){
 ncuInt value;
 ncsInt state;
} LON_STRUCT_END(SNVT_switch);

Type definitions for structures assume a padding of 0 (zero) bytes and a packing
of 1 byte. The LON_STRUCT_BEGIN and LON_STRUCT_END macros enforce
platform-specific byte packing and padding. These macros are defined in the
LonPlatform.h file, which allows you to adjust them for your compiler. See in
Porting the ShortStack LonTalk Compact API on page 109 for more information.

Floating Point Variables
Floating point variables receive special processing, because the Neuron C
compiler does not have built-in support for floating point types. Instead, it offers
an implementation for floating point arithmetic using a set of floating-point
support functions operating on a float_type type. The LonTalk Interface
Developer utility represents this type as a float_type structure, just like any
other structured type.

This floating-point format can represent numbers with the following
characteristics:

• 103810*1± approximate maximum value

• 710*1 −± approximate relative resolution

The float_type structure declaration represents a floating-point number in IEEE
754 single-precision format. This format has one sign bit, eight exponent bits,
and 23 mantissa bits; the data is stored in big-endian order. The float_type type
is identical to the type used to represent floating-point network variables.

For example, the LonTalk Interface Developer utility generates the following
definitions for the floating point type SNVT_volt_f:

/*
 * Type: SNVT_volt_f
 */
typedef LON_STRUCT_BEGIN(SNVT_volt_f)
{
 LonByte Flags_1; /* Use bit field macros, defined
 below */

156 Using the LonTalk Interface Developer Utility

 LonByte Flags_2; /* Use bit field macros, defined
 below */
 ncuLong LS_mantissa;
} LON_STRUCT_END(SNVT_volt_f);

/*
 * Macros to access the sign bit field contained in
 * Flags_1
 */
#define LON_SIGN_MASK 0x80
#define LON_SIGN_SHIFT 7
#define LON_SIGN_FIELD Flags_1

/*
 * Macros to access the MS_exponent bit field contained in
 * Flags_1
 */
#define LON_MSEXPONENT_MASK 0x7F
#define LON_MSEXPONENT_SHIFT 0
#define LON_MSEXPONENT_FIELD Flags_1

/*
 * Macros to access the LS_exponent bit field contained in
 * Flags_2
 */
#define LON_LSEXPONENT_MASK 0x80
#define LON_LSEXPONENT_SHIFT 7
#define LON_LSEXPONENT_FIELD Flags_2

/*
 * Macros to access the MS_mantissa bit field contained in
 * Flags_2
 */
#define LON_MSMANTISSA_MASK 0x7F
#define LON_MSMANTISSA_SHIFT 0
#define LON_MSMANTISSA_FIELD Flags_2

See the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std
754-1985) documentation for more information.

Network Variable and Configuration Property
Declarations

The LonTalk Interface Developer utility generates network variable and
configuration property declarations using the built-in types defined in
LonPlatform.h along with the types defined in LonNvTypes.h and LonCpTypes.h.
Both network variables and configuration properties are declared in the
ShortStackDev.c file, where input network variables (including configuration
network variables) appear as volatile variables of the relevant type, and
configuration properties that are not implemented with network variables appear
as members of configuration files.

Example:

A model file contains the following Neuron C declarations:

ShortStack User’s Guide 157

SCPTlocation cp_family cpLocation;

network input SNVT_obj_request nviNodeRequest;
network output polled SNVT_obj_status nvoNodeStatus;
const network output polled SNVT_address nvoFileDir;

fblock SFPTnodeObject {
 nviNodeRequest implements nviRequest;
 nvoNodeStatus implements nvoStatus;
 nvoFileDir implements nvoFileDirectory;
} NodeObject external_name("NodeObject") fb_properties {
 cpLocation
};

The LonTalk Interface Developer utility generates the following variables in the
ShortStackDev.c file for the nviNodeRequest, nvoNodeStatus, and nvoFileDir
network variables:

volatile SNVT_obj_request nviNodeRequest;
SNVT_obj_status nvoNodeStatus;
SNVT_address nvoFileDir = {
 LON_DMF_WINDOW_START/256u, LON_DMF_WINDOW_START%256u
};

The application framework generated by the LonTalk Interface Developer utility
also includes the network variable table, which is a table that allows the
ShortStack LonTalk Compact API to locate the network variable’s value in
memory and access other attributes of each network variable.

The ShortStack LonTalk Compact API, upon receipt of an incoming network
variable update, automatically moves data into the corresponding input network
variable and signals this event by calling a callback handler function, which
allows your application to respond to the arrival of new network variable data.
Your application then reads the input variable to obtain the latest value.

To send an update to the nvoNodeStatus output network variable, your
application writes the new value to the nvoNodeStatus variable, and then calls
the LonPropagateNv() function to propagate the new value onto the network.

See Developing a ShortStack Application on page 163 for information about the
development of a ShortStack application using the LonTalk Interface Developer
utility-generated code.

The utility generates a configuration file in ShortStackDev.c for the cpLocation
configuration property:

/*
 *
 * Writable configuration parameter value file
 */
volatile LonWriteableValueFile lonWriteableValueFile = {
 {{'\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0'}}
};

/*
 * CP template file

158 Using the LonTalk Interface Developer Utility

 */
const char lonTemplateFile[] = \
 "1.1;" \
 "1,0,0\x80,17,31;";

#ifndef LON_FILEDIR_USER_DEFINED
/*
 * Variable: File Directory
 */

const LonFileDirectory lonFileDirectory =
{
 LON_FILE_DIRECTORY_VERSION,
 LON_FILE_COUNT,
 {
 LON_REGISTER_FILE("template",
 sizeof(lonTemplateFile), LonTemplateFileType,
 LON_DMF_WINDOW_START+sizeof(lonFileDirectory)),
 LON_REGISTER_FILE("rwValues",
 sizeof(lonWriteableValueFile), LonValueFileType,
 LON_DMF_WINDOW_START+sizeof(lonFileDirectory)
 +sizeof(lonTemplateFile)),
 LON_REGISTER_FILE("roValues", 0, LonValueFileType,
 0)
 }
};
#endif /* LON_FILEDIR_USER_DEFINED */

The LonWriteableValueFile data structure is defined in the ShortStackDev.h
header file:

typedef LON_STRUCT_BEGIN(LonWriteableValueFile)
{
 SCPTlocation cpLocation_1;
 /* sd_string("1,0,0\x80,17,31;") */
} LON_STRUCT_END(LonWriteableValueFile);

extern volatile LonWriteableValueFile
 lonWriteableValueFile;

Similarly, a LonReadOnlyValueFile type is defined and used to declare a
lonReadOnlyValueFile variable if the model file declares read-only configuration
properties.

The LonTalk Interface Developer utility generates resource definitions for
configuration properties and network variables defined with the eeprom keyword.
Your application must provide sufficient persistent storage for these resources.
You can use any type of non-volatile memory, or any other media for persistent
data storage. The template file and the read-only value file would normally be
declared as const, and can be linked into a code segment, which might relate to
non-modifiable memory such as PROM or EPROM (these files must not be
changed at runtime). However, writable, non-volatile storage must be
implemented for the writable configuration value file.

The details of such persistent storage are subject to the host platform
requirements and capabilities; persistent storage options include: flash memory,
EEPROM memory, non-volatile RAM, or storage in a file or database on a hard

ShortStack User’s Guide 159

drive. See Providing Persistent Storage for Non-Volatile Data on page 192 for
more information about persistent storage considerations.

You can specify initializers for network variables or configuration properties in
the model file. Alternatively, you can specify initializers for configuration
properties in the resource file that defines the configuration property type or
functional profile. For network variables without explicit initialization, the rules
imposed by your host development environment apply. These values might have
random content, or might automatically be preset to a well-defined value.

Constant Configuration Properties
In general, a configuration property can be modifiable, either from within the
ShortStack application or from a network management tool. However, the
LonTalk Interface Developer utility declares constant configuration property files
as constants (using the C const keyword), so that they are allocated in non-
modifiable memory.

A special class of configuration properties is the device-specific configuration
property. A device-specific configuration property is one that must always be
read from the device by an external tool or application, rather than relying upon
the value in the device interface file or upon a value stored in a network
database. For example, you can use device-specific configuration property for a
setpoint that is updated by a local operator interface on the device, or for a minor
version number that varies from device to device.

A device-specific configuration property can be set by the device that implements
the configuration property, by another device, or by a configuration tool.
Network management tools must never change a device-specific configuration
property value, except as a side effect of a new program download, device re-
commissioning, or device replacement.

For a ShortStack application, you can specify a device-specific configuration
property by specifying the device_specific modifier for the configuration property.
You can specify the device_specific modifier independently of the const modifier.
For example, specify device_specific, but not const, for a configuration property
that contains a setpoint that is updated by a local operator interface on the
device, and allow the setpoint to be modified by both the host application and
qualifying network tools.

In some cases, you might want to set up a configuration property that is
modifiable by the host application, but not by any other entities on the network.
In this case, perform the following steps:

1. Declare the configuration property as const and, if applicable,
device_specific.

2. At the top of the ShortStackDev.c file, before you include the
ShortStackDev.h header file, define the
LON_READONLY_FILE_IS_WRITEABLE macro with a value of 1 (one).
If you do not define this macro, or define it to equate to zero, the read-
only value file is constant. This is the default state. The
LON_READONLY_FILE_IS_WRITEABLE macro is used within the
ShortStackDev.h header file to define the read-only file’s storage type
with the LON_READONLY_FILE_STORAGE_TYPE macro, which in
turn is used in the declaration and specification of the
lonReadOnlyValueFile variable.

160 Using the LonTalk Interface Developer Utility

If you define the LON_READONLY_FILE_IS_WRITEABLE macro to 1, the read-
only value file is writable by the local application. Because the read-only value
file is now allocated in volatile memory, your driver for non-volatile data must
also read and write the read-only value file.

For the network management tool, however, the read-only file remains non-
writable. If your application uses the direct memory file access method to access
the files, the LonTalk Interface Developer utility generates code that declares
this direct memory files window segment as non-modifiable. If your application
uses LONWORKS FTP to access the files, your implementation of the LONWORKS
file transfer protocol and server must prevent all write operations to the read-
only value file.

The Network Variable Table
The network variable table lists all the network variables that are defined by
your application. It contains a pointer to each network variable and the initial
(or declared) length of each network variable, in bytes. It also contains an
attribute byte that contains flags which define the characteristics of each
network variable.

The network variable table acts as a bridge between your application and the
ShortStack LonTalk Compact API. The network variable table exists only if the
model file contains one or more network variables. The LonGetNvTable()
function, used by the ShortStack LonTalk Compact API, returns the base of the
network variable table or NULL if the table does not exist.

Example: A model file contains the following Neuron C declaration:

network input SNVT_count nviCount;

The LonTalk Interface Developer utility generates code to define the network
variable as follows:

volatile SNVT_count nviCount;

The utility generates a pointer to the nviCount variable in the network variable
table. The ShortStack LonTalk Compact API uses the pData pointer provided by
the network variable table to update the nviCount network variable.

A ShortStack application typically accesses a network variable value through the
C global variable that implements the network variable. However, the
ShortStack LonTalk Compact API also provides a function that returns the
pointer to a network variable’s value as a function of its index:

void* const LonGetNvValue(unsigned index);

The LonGetNvValue() function returns NULL for an invalid index, or a pointer to
the value.

Applications that are designed to share application code between ShortStack and
FTXL, and that are designed to support dynamic network variables, should use
the LonGetNvValue() function because the FTXL LonTalk API requires use of
the LonGetNvValue() function for dynamic network variables. ShortStack does
not support dynamic network variables.

ShortStack User’s Guide 161

Network Variable Attributes
The network variable table contains an attribute byte that contains the following
flags for each network variable:

• IsOutput

• IsPersist

• IsPolled

• IsSync

• IsChangeable

All network variable flags are implemented as structures, as described in Bit
Field Members on page 111, to minimize host memory usage. The type of the
network variable table, LonNvDescription, and the various macros to access
these attributes, are defined in the ShortStackDev.h file.

The IsOutput flag identifies an output network variable. It is true for output
network variables and false for input network variables. This flag is set for all
network variables declared with the output keyword in the model file.

The ShortStack LonTalk Compact API uses the IsOutput flag to prevent
propagating outputs to input network variables, and to prevent a poll of an
output network variable on the ShortStack device.

The IsPersist flag indicates that a network variable must be kept in persistent
storage. This flag is set for all network variables declared with the eeprom,
config_prop, or cp keywords in the model file. See Providing Persistent Storage
for Non-Volatile Data on page 192 for more information about persistent data.

The IsPolled flag indicates that a network variable is a polled network variable.
The flag is set for all network variables declared with the polled modifier in the
model file.

The IsSync flag indicates that a network variable is a synchronous network
variable. This flag is set for all network variables declared with the sync
modifier in the model file. This modifier specifies that all values assigned to this
network variable must be propagated, in their original order. It is mutually
exclusive with the polled modifier.

The ShortStack LonTalk Compact API does not enforce processing for critical
sections. Therefore, your application must implement any required processing to
ensure synchronous outputs when the IsSync flag is set. However, a typical
ShortStack application does not require special design for synchronous outputs,
because a typical ShortStack application treats all output network variables as
synchronous (that is, the application calls LonPropagateNv() whenever it
computes a new value for the network variable, which causes immediate
propagation of the network variable to the network). More advanced applications
that implement critical sections, during which only the last of several possible
assignments to a particular network variable is preserved and propagated, must
honor the IsSync flag to allow for the exceptional case where all value
assignments must be propagated.

The IsChangeable flag indicates that a network variable has a changeable type.
See Defining a Changeable-Type Network Variable on page 122 for more
information about changeable-type network variables.

162 Using the LonTalk Interface Developer Utility

See Developing a ShortStack Application on page 163 for more information about
propagation of network variable updates.

The Message Tag Table
The message tag table lists all the message tags that are defined by your
application. It contains a flag for each message tag which indicates that the
message tag is not associated with an address table entry and therefore can only
be used for sending explicitly addressed messages. This flag is set for all
message tags declared with the bind_info(nonbind) modifier in the model file.

The LonTalk Interface Developer utility declares the message tag table in
ShortStackDev.c if you declare one or more message tags in the model file. The
LonGetMtTable() function, used by the ShortStack LonTalk Compact API,
returns the base of the message tag table or NULL if the table does not exist.

The message tag table is only used by the ShortStack LonTalk Compact API and
is not used by your application. The ShortStack LonTalk Compact API uses the
table to determine if an implicitly addressed message can be sent.

ShortStack User’s Guide 163

10

Developing a ShortStack
Application

This chapter describes how to develop a ShortStack
application. It also describes the various tasks performed by
the application.

164 Developing a ShortStack Application

Overview of a ShortStack Application
This chapter describes how to use the ShortStack LonTalk Compact API and the
device interface data produced by the LonTalk Interface Developer utility to
perform the following tasks:

• Use the ShortStack LonTalk Compact API

• Understand how to use the API with a multitasking operating system

• Initialize the ShortStack LonTalk Compact API

• Periodically call the ShortStack event handler

• Send information to other devices using network variables

• Handle network variable poll requests from other devices

• Handle updates to changeable-type network variables

• Receive information from other devices using network variables

• Communicate with other devices using application messages

• Handle network management commands

• Handle Micro Server reset events

• Query the error log

• Reinitialize the Micro Server

• Provide persistent storage for non-volatile data and use the direct
memory files feature

Most ShortStack applications need to perform only the tasks that relate to
persistent storage, initialization, periodically calling the LonEventhandler()
function, sending and receiving network variables, and handling network
management commands.

This chapter assumes that you have completed the device development described
in the preceding chapters. This chapter shows the basic control flow for each of
the above tasks. It also provides a simple code example to illustrate some of the
basic tasks.

Using the ShortStack LonTalk Compact API
Within the seven-layer OSI Model protocol, the ShortStack LonTalk Compact
API forms the majority of the Presentation layer, and provides the interface
between the serial driver in the Session layer and the host application in the
Application layer, as shown in Figure 56 on page 165.

ShortStack User’s Guide 165

Figure 56. The ShortStack LonTalk Compact API within the OSI Model

The ShortStack LonTalk Compact API is comprised primarily of the following
two ANSI C source files:

• [ShortStack]\API\ShortStackApi.c

• [ShortStack]\API\ShortStackHandlers.c

The ShortStackApi.c source file contains the core of the ShortStack LonTalk
Compact API, which provides functions for handling network events, propagating
network variables, responding to network variable poll requests, and so on.

A ShortStack application must call the LonEventHandler() API function
periodically to process any pending uplink messages. This function calls specific
API functions based on the type of event, and then calls callback functions to
notify the application layer of these network events.

Generally, you do not need to change the ShortStack API files for each of your
applications, but you might have to make some changes when porting the API
source code to your target platform and environment.

The ShortStack application framework connects the ShortStack API with your
application, as shown in Figure 57 on page 166.

166 Developing a ShortStack Application

Figure 57. The ShortStack Application Framework

Note that neither Figure 56 nor Figure 57 shows the API or framework files that
are required for ShortStack ISI applications; see Chapter 11, Developing a
ShortStack Application with ISI, on page 197, for information about supporting
ISI in your ShortStack application.

The ShortStackHandlers.c source file contains stubs for the callback handler
functions that the ShortStack LonTalk Compact API calls. You must add code to
these callback stubs to respond to specific network events. For example, the
LonNvUpdateOccurred() callback could inform the application of the arrival of
new data for a set-point value, and the callback code could re-calculate the
controller’s response, assign output values to peripheral I/O devices, and so on.

The following recommendations can help you manage your ShortStack
application project:

• Keep edits to LonTalk Interface Developer utility-generated files to a
minimum, that is, do not edit the LonNvTypes.h, LonCpTypes.h,
ShortStackDev.h, or ShortStackDev.c files unless necessary.

• Add #include “ShortStackDev.h” to your application source files to
provide access to network variable types and instantiations.

• Keep changes to the ShortStackHandlers.c and ShortStackHandlers.h
files to a minimum:

o Add calls to your own functions in files that you create and
maintain.

o Future versions or fixes to the ShortStack product might affect
these API files.

• Consider using an event-driven (signaled) model, in addition to using the
idle-loop calls to the LonEventHandler() function, to provide enhanced
device responsiveness.

ShortStack User’s Guide 167

• The ShortStack LonTalk Compact API is a non-reentrant, single-
threaded API, as described in Using the ShortStack LonTalk Compact
API in Multiple Contexts.

Using the ShortStack LonTalk Compact API in
Multiple Contexts

Although a ShortStack application does not require an operating system, you can
use the ShortStack LonTalk Compact API with an operating system that
supports multiple system execution contexts. A context could be a process,
thread, task, interrupt service routine, or the operating system’s main thread of
execution, as defined by the operating system.

A typical ShortStack application would use one or more execution contexts for the
link-layer driver, and use a different execution context for both the ShortStack
LonTalk Compact API functions and callback handler functions.

The ShortStack LonTalk Compact API is a non-reentrant, single-threaded API.
If your application uses a multi-tasking (or multi-threading) environment or
interrupt service routines to access the ShortStack LonTalk Compact API, you
must ensure that only one task (or thread or interrupt) accesses the ShortStack
LonTalk Compact API. The same task that calls the LonInit() and
LonEventHandler() functions should also be the only task that calls the
ShortStack LonTalk Compact API.

In a multi-tasking environment, the link-layer driver would typically consist of
USART transmit and receive interrupts, with interrupts that respond to changes
on the link-layer handshake lines.

The example applications that are available from www.echelon.com/shortstack
(such as the ARM7 Example Port) use a single execution context for the link-
layer driver, all ShortStack LonTalk Compact API functions, and the callback
handler functions.

If your application requires the use of multiple contexts, one possible approach
would be to provide two execution contexts (in addition to those used by the link-
layer driver): one to call all ShortStack LonTalk Compact API functions (such as
LonInit() and LonPropagateNv()), and another to call the LonEventHandler()
function. The execution context that calls the LonEventHandler() function also
defines the context for the ShortStack callback handler functions. For such an
approach, you must supply appropriate inter-context communication and
synchronization, and implement and test any related API changes.

Tasks Performed by a ShortStack Application
The general ShortStack application life cycle includes two phases:

• Initialization

• Normal processing

The initialization phase of a ShortStack application typically occurs during each
power-up or reset of the host application, but can also be repeated as necessary.
The initialization phase defines basic parameters for the LONWORKS network
communication, such as the communication parameters for the physical
transceiver in use, and defines the application’s device interface: its network

http://www.echelon.com/shortstack

168 Developing a ShortStack Application

variables, configuration properties, and self-documentation data. Successful
completion of the initialization phase causes the Micro Server to leave quiet
mode, after which it can send and receive messages over the network.

Your application does not always need to run its initialization code when the
Micro Server is reset. For example, the Micro Server can be reset by the network
management tool to change the device’s state. Your application can use the
LonResetNotification message provided to the LonReset() callback handler
function to determine the Micro Server’s state and last reset cause, and
determine whether re-initialization is required.

The Micro Server might also reset during normal operation when a configuration
property (declared with the reset_required modifier) value changes. This
changes acts as a notification that the application, but not necessarily the Micro
Server and the ShortStack device as a whole, should reinitialize.

Recommendations:

• When the host processor powers-up or resets, reinitialize the ShortStack
device.

• When the Micro Server reports that it is not initialized after a reset
(check the Initialized flag of the LonResetNotification message),
reinitialize the ShortStack device.

During normal processing, the application periodically calls the
LonEventHandler() API function, which calls the serial driver API and might call
callback functions (such as the LonNvUpdateOccurred() callback). Other API
functions allow the ShortStack application to initiate transactions. Such a
transaction might in turn lead to calling other callback functions (such as the
LonNvUpdateCompleted() callback).

Figure 58 on page 169 shows how the ShortStack application, ShortStack
LonTalk Compact API, and callback functions work together during the two
phases of the application’s life cycle.

ShortStack User’s Guide 169

Start-up sequence LonInit()

LdvInit()

LdvPutMsgBlocking()

Control Loop
And Callbacks

LonEventHandler()

LdvFlushMsgs()

LdvGetMsg()
LonNvUpdateOccurred()

LonPropagateNv()

LdvAllocateMsg()

LdvPutMsg()

Application ShortStack API Serial Driver

LdvReleaseMsg()

LdvReset()

LonResetOccurred()

Figure 58. A ShortStack Application Communicates with the API and the Serial Driver

The following sections describe the tasks that a ShortStack application performs
during its life cycle.

Initializing the ShortStack Device
Your application must call the LonInit() function once during device startup.
This function initializes the ShortStack LonTalk Compact API, driver, and Micro
Server.

The LonInit() function copies the ShortStack device interface data to the
ShortStack Micro Server. This data defines the network parameters and device
interface for the ShortStack Micro Server. Your application can call this function
after device startup to reinitialize and restart the ShortStack Micro Server, to
change the network parameters, or to change the device interface.

Recommendation: Add a call the LonInit() function in the main() function of your
application (or to your host platform equivalent of that function).

During initialization, the Micro Server enters quiet mode until the initialization
is complete. Quiet mode ensures that only a complete and fully functioning
protocol stack attaches to the network. While the Micro Server is in quiet mode,

170 Developing a ShortStack Application

the host processor can use local commands to communicate with the Micro
Server, such as query status or ping, but the Micro Server cannot communicate
with other devices on the network.

Example:

void main(void) {
 // Initialize host-side hardware
 ...
 // Initialize host software
 ...
 LonInit();

 // Enter the main loop:
 while (TRUE) {
 LonEventHandler();
 // Process your application
 ...
 }
}

Periodically Calling the Event Handler
Your ShortStack application must periodically call the LonEventHandler()
function to check if there are any LONWORKS events to process. You can call this
function from your application’s control (or idle) loop, or from any point in your
application that is processed periodically (if your application meets the execution
context requirements described in Using the ShortStack LonTalk Compact API
on page 164).

The host application should be prepared to process the maximum rate of
LONWORKS traffic delivered to the device. To prevent any possible backlog of
incoming messages, use the following formula to determine the minimum call
rate for the LonEventHandler() function:

1−
=

rCountInputBuffe
ateMaxPacketRrate

where MaxPacketRate is the maximum number of packets per second arriving
for this device, and InputBufferCount is the number of input buffers defined for
your application (that is, buffers that hold incoming data until your application is
ready to process it). The formula subtracts one from the number of available
buffers to allow new data to arrive while other data is being processed. However,
the formula also assumes that your application has more than one input buffer;
having only one input buffer is generally not recommended.

Recommendation: In the absence of measured data for the network, assume 90
packets per second arriving for a TP/FT-10 ShortStack device, or 9 packets
arriving per second for a PL-20 ShortStack device. These packet rates meet the
channels’ throughput figures, assuming that most traffic uses the acknowledged
or request/response service. Use of other service types will increase the required
packet rate, but not every packet on the network is necessarily addressed to the
ShortStack device.

Using the formula, devices that implement two input buffers and are attached to
a TP/FT-10 channel that expect high throughput should call the
LonEventHandler() function approximately once every 10 ms.

ShortStack User’s Guide 171

Again using the formula, a typical PL-20 power-line device would call the
LonEventHandler() function once every 100 ms. However, to ensure low network
latency, all ShortStack devices should call the LonEventHandler() function at
least once every 10 ms.

When an event occurs during a call to the LonEventHandler() function, the
function calls the appropriate callback function for your host application to
handle the event. Your callback handler functions must be designed for this
minimum call rate, and should defer time-consuming operations (such as lengthy
flash writes) whenever possible.

See Appendix C, ShortStack LonTalk Compact API, on page 287, for a list of the
available callback functions.

Sending a Network Variable Update
Your ShortStack device typically communicates with other LONWORKS devices by
sending and receiving network variables. Each network variable is represented
by a global variable declared by the LonTalk Interface Developer utility in the
ShortStackDev.c file, with extern declarations provided in the ShortStackDev.h
file. To send an update for an output network variable, first write the new value
to the network variable declared in ShortStackDev.c, and then call the
LonPropagateNv() function to send the network variable update. The
LonPropagateNv() function requires the index of the network variable, which is
defined in the LonNvIndex enumeration in ShortStackDev.h. The index names
use the following format:

LonNvIndexName

Example: A network variable named nvoValue has the LonNvIndexNvoValue
index name.

The LonPropagateNv() function forwards the update to the ShortStack Micro
Server, which in turn transmits the update to the network. This function returns
an error flag that indicates whether the update was delivered to the Micro
Server, but does not indicate successful completion of the update itself. For
example:

LonApiError error = LonPropagateNv(LonNvIndexNvoValue);

After the update is complete, the ShortStack Micro Server informs the
LonEventHandler() function in the ShortStack LonTalk Compact API, which in
turn calls your LonNvUpdateCompleted() callback handler function, which
notifies your application of the success or failure of the update. You can use this
function for any application-specific processing of update completion. Figure 59
on page 172 shows the control flow for processing a network variable update.

172 Developing a ShortStack Application

Figure 59. Control Flow for Sending a Network Variable Update to the
Network

Perhaps the most frequent cause of propagation failure for a device that
frequently sends network variable updates or application messages is the
LonApiTxBufIsFull error (defined in the LonApiError enumeration) from the
LonPropagateNv() function.

If all output buffers are in use at the time of the API call, the application must
wait until at least one of the outstanding transactions completes, and frees an
output buffer. Because this wait can take a significant amount of time, subject to
the device’s network configuration, networking environment, and the nature of
the outstanding transactions, your application should return to its main
processing control algorithm to process other work before it retries propagation.

Some applications require that the propagation be initiated before processing can
continue. Such an application could support a wrapper around the
LonPropagateNv() function that tests for this particular failure reason, and calls
the API’s periodic service entry point until propagation succeeds. For example:

LonBool lonPreemptionMode = FALSE;

LonApiError myPropagateNv(const unsigned index) {
 LonApiError error = LonApiNoError;

 while((error=LonPropagateNv(index))==LonApiTxBufIsFull) {
 lonPreemptionMode = TRUE;
 LonEventHandler();
 }
 lonPreemptionMode = FALSE;
 return error;
}

This example wrapper supports a global variable, lonPreemptionMode, which is
true while the function waits for an output buffer to become availabile, in order
to satisfy the original request. Until the buffer becomes availabile, the routine
makes frequent calls to the API’s periodic service entry point,
LonEventHandler(). Because the LonEventHandler() function calls callback
handler functions, which in turn could trigger network events, signal the buffer-
unavailable state to the application so that it can avoid further propagation of
network variables or application messages while in this state.

ShortStack User’s Guide 173

In the case of an unacknowledged or repeated service type, the Micro Server
considers the update complete when it has finished sending the update to the
network. In the case of an acknowledged service type, the Micro Server considers
the update complete when it receives acknowledgements from all receiving
devices, or when the retry timer expires.

In case of an unbound network variable (an output network variable that is not
currently connected to any input network variables), propagating a network
variable update always succeeds. This behavior is consistent with that of other
LONWORKS devices, and allows you to create applications without having to track
the device’s network configuration.

Depending on the device’s current network configuration and its networking
environment, completion of any locally initiated transaction, such as the
propagation of an updated output network variable, can take a significant
amount of time until the success or failure of the transaction can be determined.

To process an update failure, edit the LonNvUpdateCompleted() callback handler
function in the ShortStackHandlers.c file. This function is passed the network
variable index (the same one that you passed to the LonPropagateNv() function),
and is also passed a success flag. The function is initially empty, but you can edit
it to add your application-specific processing. The function initially appears as:

void LonNvUpdateCompleted(const unsigned index, const
 LonBool success)
{
 /* TBD */
}

Do not handle an update failure with a repeated propagation; use the retry count
to do that automatically. A completion failure generally indicates a problem that
should be signaled to the user interface (if any), flagged by an error or alarm
output network variable (if any), or be signaled as a comm_failure error through
the nvoStatus network variable of the Node Object functional block (if there is
one).

Example: The following model file defines the device interface for a simple power
converter. This converter accepts current and voltage inputs on its nviAmpere
and nviVolt input network variables. It computes the power and sends the value
on its nvoWatt output network variable:

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network output SNVT_power nvoWatt;

fblock UFPTpowerConverter {
 nvoWatt implements nvoPower;
 nviAmpere implements nviCurrent;
 nviVolt implements nviVoltage;
} powerConverter;

The following code fragment, implemented in your application’s code, uses the
data most recently received by either of the two input network variables,
computes the product, and stores the result in the nvoWatt output network
variable. It then calls the LonPropagateNv() function to send the computed
value.

#include "ShortStackDev.h"

174 Developing a ShortStack Application

void myController(void) {
 nvoWatt = nviAmpere * nviVolt;
 if (LonPropagateNv(LonNvIndexNvoWatt)!= LonApiNoError) {
 // handle error here
 ...
 }
}

Receiving a Network Variable Update from the
Network

When the ShortStack Micro Server receives a network variable update from the
network, it forwards the update to the ShortStack LonTalk Compact API, which
writes the update to your network variable, and then calls the
LonNvUpdateOccurred() callback handler function to inform your application
that the update occurred. The application can read the current value of any
input network variable by reading the value of the corresponding variable
declared in the ShortStackDev.c file.

To receive notification of a network variable update, modify the
LonNvUpdateOccurred() callback handler function (in the ShortStackHandlers.c
file) to call the appropriate functions in your application. The API calls this
function with the index of the updated network variable. Figure 60 shows the
control flow for receiving a network variable update.

LonEventHandler()
(API function)

LonNvUpdateOccurred()
(callback function)

application-specific action

Network variable
updated by the API

Network
variable
update

received
from

network

ShortStack application Micro Server

Figure 60. Control Flow for Receiving a Network Variable Update

Configuration network variables are used much in the same way as input
network variables, with the exception that the values must be kept in persistent
storage, and the application does not always respond to changes immediately.
Example 1, below, shows the processing flow for regular network variable
updates, and example 2 shows the same flow but with the addition of a
configuration network variable.

Example 1:

This example uses the same power converter model file from the example in the
previous section, Sending a Network Variable Update, on page 171. That
example demonstrated how to read the network variable inputs asynchronously

ShortStack User’s Guide 175

by reading the latest values from the network variables declared in the
ShortStackDev.c file.

This example extends the previous example and shows how your application can
be notified of an update to either network variable. To receive notification of a
network variable update, modify the LonNvUpdateOccurred() callback function:

In ShortStackHandlers.c:

extern void myController(void);

void LonNvUpdateCompleted(unsigned index, const LonBool
 success) {

 switch (index) {
 case LonNvIndexNviAmpere: /* fall through */
 case LonNvIndexNviVolt:
 myController();
 break;
 default:
 /* handle other NV updates (if any) */
 }
}

In your application source file:

#include "ShortStackDev.h"

void myController(void) {
 nvoWatt = nviAmpere * nviVolt;
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError)
 {
 // handle error here
 ...
 }
}

This modification calls the myController() function defined in the example in the
previous section, Sending a Network Variable Update, on page 171.

Example 2:

This example adds a configuration network variable to Example 1. A SCPTgain
configuration property is added to the device interface in the model file:

network input SNVT_amp nviAmpere;
network input SNVT_volt nviVolt;
network output SNVT_power nvoWatt;

network input cp SCPTgain nciGain;

fblock UFPTpowerConverter {
 nvoWatt implements nvoPower;
 nviAmpere implements nviCurrent;
 nviVolt implements nviVoltage;
} powerConverter fb_properties {
 nciGain
};

You can enhance the myController() function to implement the new gain factor:

176 Developing a ShortStack Application

void myController(void)
{
 nvoWatt = nviAmpere * nviVolt * nciGain.multiplier;
 nvoWatt /= nciGain.divider;
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError)
 {
 // handle error here
 ...
 }
}

Configuration network variables must be persistent, that is, their values must
withstand a power outage. You must implement suitable hardware or software
to achieve non-volatile data storage for this data. See Providing Persistent
Storage for Non-Volatile Data on page 192 for more information.

Handling a Network Variable Poll Request from the
Network

Devices on the network can request the current value of a network variable on
your device by polling or fetching the network variable. The ShortStack Micro
Server responds to poll or fetch requests by sending the current value of the
requested network variable. The LonEventHandler() function processes the
request and sends the network variable value to the network. Figure 61 shows
the control flow for handling a network variable poll or fetch request.

Figure 61. Control Flow for Handling a Network Variable Request

Handling Changes to Changeable-Type Network
Variables

When a network management tool plug-in, such as the LonMaker browser,
changes the type of a changeable-type network variable, it informs your
application of the change by describing the new type in the SCPTnvType
configuration property that is associated with the network variable.

When your application detects a change to the SCPTnvType value:

ShortStack User’s Guide 177

• It determines if the change is valid.

• If the change is valid, it processes the change.

• If the change is not valid, it reports an error.

Valid type changes are those that the application can support. For example, an
implementation of a generic PID controller might accept any numerical floating-
point typed network variables (such as SNVT_temp_f, SNVT_rpm_f, or
SNVT_volt_f), but can reject other types of network variables. Or a data logger
device might support all types that are less than 16 bytes in size, and so on.

See the ShortStack FX ARM7 Example Port for an example application that
handles changeable-type network variables.

Validating a Type Change
The SCPTnvType configuration property is defined by the following structure:

typedef LON_STRUCT_BEGIN(SCPTnvType) {
 ncuInt type_program_ID[8];
 ncuInt type_scope;
 ncuLong type_index;
 ncsInt type_category;
 ncuInt type_length;
 ncsLong scaling_factor_a;
 ncsLong scaling_factor_b;
 ncsLong scaling_factor_c;
} LON_STRUCT_END(SCPTnvType);

When validating a change to a network variable, an application can check five of
the fields in the SCPTnvType configuration property:

• The program ID template of the resource file that contains the network
variable type definition (type_program_ID[8])

• The scope of the resource file that contains the network variable type
definition (type_scope)

• The index within the specified resource file of the network variable type
definition (type_index)

• The category of the network variable type (type_category)

• The length of the network variable type (type_length)

The type_program_ID and type_scope values specify a program ID template and
a resource scope that together uniquely identify a resource file set. The
type_index value identifies the network variable type within that resource file
set. If the type_scope value is 0, the type_index value is a SNVT index. For
example, checking the type_scope and type_program_ID fields lets you accept
only types that you created.

The type_category enumeration is defined in the <snvt_nvt.h> include file. This
file must be explicitly referenced (#include) in your host application. You can use
the NodeBuilder Resource Editor to determine the file that you need, which is
generally in the [LonWorks]\NeuronC\Include directory. The enumeration is
defined as:

typedef enum nv_type_category_t {
 NVT_CAT_INITIAL = 0, // Initial (default) type

178 Developing a ShortStack Application

 NVT_CAT_SIGNED_CHAR, // Signed Char
 NVT_CAT_UNSIGNED_CHAR, // Unsigned Char
 NVT_CAT_SIGNED_SHORT, // 8-bit Signed Short
 NVT_CAT_UNSIGNED_SHORT, // 8-bit Unsigned Short
 NVT_CAT_SIGNED_LONG, // 16-bit Signed Long
 NVT_CAT_UNSIGNED_LONG, // 16-bit Unsigned Long
 NVT_CAT_ENUM, // Enumeration
 NVT_CAT_ARRAY, // Array
 NVT_CAT_STRUCT, // Structure
 NVT_CAT_UNION, // Union
 NVT_CAT_BITFIELD, // Bitfield
 NVT_CAT_FLOAT, // 32-bit Floating Point
 NVT_CAT_SIGNED_QUAD, // 32-bit Signed Quad
 NVT_CAT_REFERENCE, // Reference
 NVT_CAT_NUL = -1 // Invalid Value
} nv_type_category_t;

This enumeration describes the type (signed short or floating-point, for example),
but does not provide information about structure or union fields. To support all
scalar types, test for a type_category value between NVT_CAT_SIGNED_CHAR
and NVT_UNSIGNED_LONG, plus NVT_CAT_SIGNED_QUAD.

The type_length field provides the size of the type in bytes.

Multiple changeable-type network variables can share the SCPTnvType
configuration property. In this case, the application must process all network
variables from the property’s application set, because just as the SCTPnvType
configuration property applies to all of these network variables, so does the type
change request. The application should accept the type change only if all related
network variables can perform the required change.

If one or more type-inheriting configuration properties apply to any of the
changing configuration network variables (CPNVs), these type-inheriting CPNVs
also change their type at the same time. If this type-inheriting CPNV is shared
among multiple network variables, a network management tool must ensure that
all related network variables change to the new type. You cannot share a type-
inheriting configuration property among both changeable and non-changeable
network variables.

Processing a Type Change
After validating a type change request, the application performs the type change.
The type-dependent part of your application queries these details when required
and processes the network variable data accordingly.

Some type changes require additional processing, while others do not. For
example, if your application supports changing between different floating-point
types, perhaps no additional processing is required. But if your application
supports changing between different scalar types, it might require the use of
scaling factors to convert the raw network variable value to a scaled value. You
can use the three scaling factors defined in the SCPTnvType configuration
property (scaling_factor_a, scaling_factor_b, and scaling_factor_c) to convert from
raw data to scaled fixed-point data according to the following formula:

()()crawascaled b += *10*

ShortStack User’s Guide 179

where raw is the value before scaling is applied, and a, b, and c are the values for
scaling_factor_a, scaling_factor_b, and scaling_factor_c.

To convert the scaled data back to a raw value for an output network variable,
use the following inverted scaling formula:

c
a
scaledraw b −⎟

⎠
⎞

⎜
⎝
⎛=

10*

For example, the SNVT_lev_cont type is an unsigned short value that represents
a continuous level from 0 to 100 percent, with a resolution of 0.5%. The actual
data values (the raw values) are in the variable range from 0 to 200. The scaling
factors for SNVT_lev_cont are defined as a=5, b= -1, c=0.

If the network variable is a member of an inheriting configuration property’s
application set that implements the property as a configuration network variable,
then the application must process the type changes for both the network variable
and the configuration network variable.

If the network variable is a member of a configuration property’s application set
where the configuration property is shared among multiple network variables,
the application must process the type and length changes for all network
variables involved.

However, if the configuration property is implemented within a configuration file,
no change to the configuration file is required. The configuration file states the
configuration property’s initial and maximum size (in the CP documentation-
string length field), and a network management tool derives the current and
actual type for type-inheriting CPs from the associated network variable.

Your application must always support the NVT_CAT_INITIAL type category. If
the requested type is of that category, your application must ignore all other
content of the SCPTnvType configuration property and change the related
network variable’s type back to its initial type. The network variable’s initial
type is the type declared in the model file.

Processing a Size Change
If a supported change to the SCPTnvType configuration property results in a
change in the size of a network variable type, your application must provide code
to inform the ShortStack Micro Server about the current length of the
changeable-type network variable. The current length information must be kept
in non-volatile memory.

Because the application must also ensure that the SCPTnvType configuration
property reports the current and correct type, you can use the configuration
property’s type_size field to store that information.

The ShortStack LonTalk Compact API provides a callback handler function,
LonGetNvSize(), that allows you to inform the API of the network variable’s
current size. The following code shows an example implementation for the
callback handler function.

unsigned LonGetNvSize(const unsigned index) {
 const LidNvDefinition* const nvTable = LonGetNvTable();
 unsigned size = LonGetDeclaredNvSize(index);

180 Developing a ShortStack Application

 if (index < LonNvCount &&
 nvTable[index].Definition.Flags & LON_NV_CHANGEABLE)
 {
 const SCPTnvType* pNvType = myGetNvTypeCp(index);
 // if the NV uses the initial type, its size is
 // the declared size set above
 if (pNvType->type_category != NVT_CAT_INITIAL) {
 size = pNvType->type_length;
 }
 }
 return size;
}

The example uses a myGetNvTypeCp() function (that you provide) to determine
the type of a network variable, based on your knowledge of the relationships
between the network variables and configuration properties implemented.

If the changeable-type network variable is member of an inheriting configuration
property that is implemented as a configuration network variable, the type
information must be propagated from the changeable-type network variable to
the type-inheriting configuration property, so that the LonGetNvSize() callback
handler function can report the correct current size for any implemented network
variable. Your myGetNvTypeCp() function could handle that mapping.

For the convenience of network management tools, you can also declare a
SCPTmaxNVLength configuration property to inform the tools of the maximum
type length supported by the changeable-type network variable. For example:

network input cp SCPTnvType nciNvType;
const SCPTmaxNVLength cp_family nciNvMaxLength;

network output changeable_type SNVT_volt_f nvoVolt
 nv_properties {
 nciNvType,
 nciNvMaxLength=sizeof(SNVT_volt_f)
};

Rejecting a Type Change
If a network management tool attempts to change the type of a changeable-type
network variable to a type that is not supported by the application (or is an
unknown type), your application must do the following:

• Report the error within a maximum of 30 seconds from the receipt of the
type change request. The application should signal an invalid_request
through the Node Object functional block and optionally disable the
related functional block. If the application does not include a Node Object
functional block, the application can set an application-specific error code
and take the device offline (use the offline parameter with the
LonSetNodeMode() function).

• Reset the SCPTnvType value to the last known good value.

• Reset all other housekeeping data, if any, so that the last known good
type is re-established.

ShortStack User’s Guide 181

Communicating with Other Devices Using Application
Messages

You can use application messages to create a proprietary (that is, non-
interoperable) interface for a device. For example, you can use application
messages to implement a manufacturing-test interface that is only used during
manufacturing test of your device. You can also use the same mechanism that is
used for application messaging to create foreign-frame messages (for proprietary
gateways), network management messages, network diagnostic messages, and
explicitly addressed network variable messages.

There are two interoperable uses for application messages: the Interoperable
Self-Installation (ISI) protocol and the LONWORKS file transfer protocol (LW-
FTP). The ISI protocol is used in self-installed networks; see Chapter 11,
Developing a ShortStack Application with ISI, on page 197, for more information
about ISI. LONWORKS FTP is used to exchange large blocks of data between
devices or between devices and tools, and is also used to access configuration files
on some devices.

The content of an application message is defined by a message code that is sent
as part of the message. Message code values are listed in Table 22. For
application messages, you typically use message codes 0 to 47 (0x0 to 0x2F).
Your application must define the meaning of each user-defined message code.
Standard application messages are defined by LONMARK International, and use
message codes 48 to 62 (0x30 to 0x3E).

Table 22. Message Code Values

Message Type
Message
Code Description

User Application
Messages

0 to 47

(0x0 to
0x2F)

Generic application messages. The
interpretation of the message code is left to the
application.

Standard
Application
Messages

48 to 62

(0x30 to
0x3E)

Standard application messages defined by
LONMARK International.

Responder
Offline

63

(0x3F)

Used by application message responses.
Indicates that the sender of the response was in
an offline state and could not process the
request.

Foreign Frames 64 to 78

(0x40 to
0x4E)

Used by application-level gateways to other
networks. The interpretation of the message
code is left to the application.

Foreign
Responder
Offline

79

(0x4F)

Used by foreign frame responses. Indicates that
the sender of the response was in an offline state
and could not process the request.

182 Developing a ShortStack Application

Message Type
Message
Code Description

Network
Diagnostic
Messages

80 to 95

(0x50 to
0x5F)

Used by network tools for network diagnostics.

Network
Management
Messages

96 to 127

(0x60 to
0x7F)

Used by network tools for network installation
and maintenance.

Network
Variables

128 to
255

(0x80 to
0xFF)

The lower six bits of the message code contain
the upper six bits of the network variable
selector. The first data byte contains the lower
eight bits of the selector.

The message code is followed by a variable-length data field, that is, a message
code could have one byte of data in one instance and 25 bytes of data in another
instance.

Each message tag is represented by a global variable declared by the LonTalk
Interface Developer utility in the ShortStackDev.c file, with extern declarations
provided in the ShortStackDev.h file. This file defines an index value for each
message tag in the LonMtIndex enumeration. The index names use the following
format:

LonMtIndexName

Example: A message tag named cpFilePtr has the LonMtIndexCpFilePtr index
name.

Sending an Application Message to the
Network
Call the LonSendMsg() function to send an application message. This function
forwards the message to the ShortStack Micro Server, which in turn transmits
the message on the network. After the message is sent, the ShortStack Micro
Server informs the LonEventHandler() function in the ShortStack LonTalk
Compact API, which in turn calls your LonMsgCompleted() callback handler
function. This function notifies your application of the success or failure of the
transmission. You can use this function for any application-specific processing of
message transmission completion.

To be able to send an application message, the ShortStack device must be
configured and online. If the application calls the LonSendMsg() function when
the device is either not configured or not online, the function returns the
LonApiOffline error code.

You can send an application message as a request message that causes the
generation of a response by the receiving device or devices. If you send a request
message, the receiving device (or devices) sends a response (or responses) to the
message. When the ShortStack Micro Server receives a response, it forwards the
response to the LonEventHandler() function in the ShortStack LonTalk Compact

ShortStack User’s Guide 183

API, which in turn calls your LonResponseArrived() callback handler function for
each response it receives.

Figure 62 shows the control flow for sending an application message.

LonEventHandler()
(API function)

LonResponseArrived()
(callback function)

application-specific action

LonEventHandler()
(API function)

LonMsgComplete()
(callback function)

application-specific action

LlonSendMsg()
(API function)

The process that occurs on
success or failure of delivery of

message to a device

The process that occurs if and
when a device sends a

response to a message. This
will only occur for those
messages with request/

response service.

ShortStack application Micro Server

Receives
message,
transmits

message to
the network,

informs
ShortStack
application

of
completion

Receives an
application
message
response
from the
network

Figure 62. Control Flow for Sending an Application Message

Receiving an Application Message from the
Network
When the ShortStack Micro Server receives an application message from the
network, it forwards the message to the LonEventHandler() function in the
ShortStack LonTalk Compact API, which in turn calls your LonMsgArrived()
callback handler function. Your implementation of this function must process
the application message, and can optionally notify your ShortStack application
about the message.

The ShortStack Micro Server does not call the LonMsgArrived() callback handler
function if an application message is received while the ShortStack device is
either unconfigured or offline.

If the message is a request message, your implementation of the
LonMsgArrived() callback handler function must determine the appropriate
response and send it using the LonSendResponse() function.

Figure 63 on page 184 shows the control flow for receiving an application
message.

184 Developing a ShortStack Application

LonEventHandler()
(API function)

LonMsgArrived()
(callback function)

application-specific action

LonSendResponse()
(API function)

Receives an
application
message
from the
network

ShortStack application Micro Server

Figure 63. Control Flow for Receiving an Application Message

Handling Management Tasks and Events
LONWORKS installation and maintenance tools use network management
commands to set and maintain the network configuration for a device. The
ShortStack Micro Server automatically handles most network management
commands that are received from these tools. A few network management
commands are application-specific, and are forwarded by the Micro Server to the
LonEventHandler() function in the ShortStack LonTalk Compact API, which in
turn forwards the request to your application through the network management
callback handler functions. These commands are requests for your application to
wink, go offline, go online, handle pressed or held service pin events, or reset, and
must be handled by your LonWink(), LonOffline(), LonOnline(),
LonServicePinPressed(), LonServicePinHeld(), and LonReset() callback handler
functions.

Handling Local Network Management Tasks
There are various network management tasks that a device can choose to initiate
on its own. These are local network management tasks, which are initiated by
the ShortStack application and implemented by the ShortStack Micro Server.
Local network management tasks are never propagated to the network. The
optional Network Management Query and Update ShortStack APIs allow you to
include handling of these local network management commands if your
ShortStack application requires it.

Many of these commands are called by your ShortStack application and then
handled by the ShortStack Micro Server with no additional notification through
callback handler functions. These functions include: LonClearStatus(),
LonSetNodeMode(), LonUpdateAddressConfig(), LonUpdateAliasConfig(),
LonUpdateConfigData(), LonUpdateNvConfig(), and LonUpdateDomainConfig().

A few of the extended local network management commands are requests for
information. After the ShortStack Micro Server receives these requests, it makes
the response information available to the ShortStack LonTalk Compact API.
When the Micro Server makes this information available, the LonEventHandler()
function calls the appropriate callback handler function, which you can customize
to handle the information in an application-specific way. Figure 64 on page 185

ShortStack User’s Guide 185

through Figure 67 on page 186 show the control flow for handling these kinds of
network management commands.

Figure 64. Control Flow for Query Domain Network Management Command

Figure 65. Control Flow for Query Configuration Data Local Network
Management Command

186 Developing a ShortStack Application

Figure 66. Control Flow for Query Status Local Network Management
Command

Figure 67. Control Flow for Query Transceiver Status Local Network
Management Command

Handling Reset Events
A ShortStack Micro Server can reset for a variety of reasons. To determine the
cause of a Micro Server reset, you can use the LonGetLastResetNotification()
function of the ShortStack Network Management Query API. This function
returns a pointer to the LonResetNotification structure, which is defined in the
ShortStackTypes.h file. The LonResetNotification structure is also provided with
the LonReset() callback handler function.

The LonResetNotification structure contains the following information:

• The State of the Micro Server

• The Version of the link layer protocol (3 for ShortStack 2.1; 4 for
ShortStack FX)

• Information about availability and state of the static IO9 input signal on
the Micro Server (see Using the IO9 Pin on page 68)

ShortStack User’s Guide 187

• Information about whether the Micro Server is initialized

• The Micro Server Key (see Using the ShortStack Micro Server Key on
page 58)

• The cause for the most recent reset, encoded in a value from the
LonResetCause enumeration

• The most recent system error, encoded in a value from the
LonSystemError enumeration

• The Micro Server’s 48-bit unique ID (also known as its Neuron ID)

• The current number of address table records, domains, and aliases
supported by the Micro Server

Querying the Error Log
The ShortStack Micro Server writes application errors to the system error log.
The reset notification contains the most recent system error code, but you can use
the LonQueryStatus() function to query the complete error and statistics log.

The LonStatus structure, which is provided in response to the LonQueryStatus()
call through the LonStatusReceived() callback handler function, contains
complete statistics information, such as the number of transmit errors,
transaction timeouts, missed and lost messages, and so on.

In addition to the standard system error codes (129 and above), a ShortStack FX
Micro Server can log ShortStack-specific system error codes that help you
diagnose problems.

Table 23 lists the ShortStack-specific system error codes. All system error codes
are provided by the LonSystemError enumeration in ShortStackTypes.h.

Table 23. LonSystemError Enumeration Values for ShortStack

Value Condition Description

1 Smart Transceiver
lock

Unsupported Micro Server hardware. Use an Echelon Smart
Transceiver for the Micro Server.

This error condition also changes the Micro Server’s state to
applicationless.

2 niSiData message
received

This message is unsupported for ShortStack FX. See
Converting a ShortStack 2 Application to a ShortStack FX
Application on page 257 for information about migrating to
ShortStack FX.

3 Network variable
processing with
host selection is not
supported

The Micro Server was created with the #pragma
netvar_processing_off directive, which is not supported.

This error condition also changes the Micro Server’s state to
applicationless.

188 Developing a ShortStack Application

Value Condition Description

4 Transceiver not
supported

This error occurs when the host tries to configure the Micro
Server for a transceiver that is neither special-purpose mode,
nor single-ended at 78 kbps.

Unlike the Smart Transceiver lock, the Micro Server is not
changed to the applicationless state. This error is logged and
the node enters quiet mode.

5 Message too big An outgoing message cannot be sent because it exceeds the
available buffer size.

6 Unknown link-layer
command

The Micro Server received an unknown link-layer command
from the host.

7 Malformed NVINIT
message

The NVINIT message specified a number of network
variables, but provided data for fewer network variables.

64 RPC callback
timeout

The Micro Server attempted a remote procedure call to call
an ISI callback on the host, but the host failed to
acknowledge the uplink message for 15.5 seconds (31*500
ms).

65 RPC callback
NACK

The Micro Server attempted a remote procedure call to call
an ISI callback on the host, but the host replied with an
unexpected negative response.

66 RPC out of
sequence

An out-of-sequence reply from the host has been received.
The out-of-sync reply is ignored.

67 RPC nothing to
acknowledge

A positive or negative RPC acknowledgement has been
received, but was unexpected. The acknowledgement is
ignored.

68 Interleaving RPC
call attempted

An RPC call to the host was attempted while a previous call
was still outstanding. The Micro Server resets.

Error conditions that change the state to applicationless also invalidate the
cached signature, thus enforcing a complete re-initialization after Micro Server
reload.

Reinitializing the ShortStack Micro Server
For ShortStack devices that sense their configuration and alter their device
interface at runtime (for example, a hot-pluggable modular I/O system), the host
must re-initialize the Micro Server with a new interface. Such changes can alter
a device’s interoperability, and thus should be done carefully.

To re-initialize the Micro Server at run-time:

• Each interface must have its own, unique, program ID.

• A unique XIF file must be provided for each supported program ID.

ShortStack User’s Guide 189

• Interface changes must be initiated only when the device is in the
unconfigured state (use the LonQueryStatus() function to determine the
current state).

When the host application reinitializes the Micro Server with a new application,
the Micro Server automatically enters quiet mode until the initialization is
successfully completed.

Using Direct Memory Files
To use configuration properties in files, your host application program must
implement a method that allows the network management tool to access those
files. You can support either one of the following:

• The LONWORKS FTP (LW-FTP) protocol

• The host direct memory file (DMF) access method

The LW-FTP protocol is appropriate when large amounts of data need to be
transferred between the host processor and Smart Transceiver. The host DMF
access method is appropriate for most other cases. The LW-FTP protocol
supports configuration files and configuration network variables (CPNVs). The
host DMF access method supports only configuration files. You can use both the
LW-FTP protocol and the DMF access method within a single application.

By supporting direct memory files, your application allows the network
management tool to use standard memory read and write network messages to
access configuration files located on the host. Direct memory files appear to the
network management tool as if they were located within the Micro Server’s
native address space, but the Micro Server routes memory read and write
requests within the DMF memory window to the host processor. The ShortStack
LonTalk Compact API in turn forwards these requests to code that handles the
request. This code is generated by the LonTalk Interface Developer utility.

You do not generally need to modify the code that the LonTalk Interface
Developer utility generates, unless your application requires support for non-
volatile storage for writeable configuration value files. See Providing Persistent
Storage for Non-Volatile Data on page 192 for more information about managing
non-volatile data storage.

Important: The host DMF access method requires Version 16 system firmware,
or later, and thus is not available for current PL 3120 Smart Transceivers, which
are based on Version 14 system firmware. All other standard Micro Server
images have this feature enabled. See Custom Micro Servers on page 241 for
information about how to create custom Micro Servers that can support the host
DMF access method.

When the host DMF access method is enabled, the Micro Server relays to the
host all memory read or write requests for configuration files that cannot be
locally satisfied. These requests are those that relate to memory that is not
declared in the Micro Server’s memory map, including areas that are declared as
memory-mapped I/O.

Example: An FT 3120 Smart Transceiver has no memory in the
0xA100..0xCEFF address range, and relays all memory read or write requests
concerning this area to the host processor, if the DMF feature is enabled.
Without the DMF access method, the same memory read or write request would
receive a failure code.

190 Developing a ShortStack Application

The standard Micro Servers for 3150 Smart Transceivers use 64 KB (or larger)
flash memory. The memory maps of this memory are declared such that the
same 0xA100..0xCEFF area is available for the DMF access method.

You can create a custom Micro Server with a larger DMF window, and you can
use the LonTalk Interface Developer utility to override the default start address
and size of the DMF memory window.

If the model file contains a SNVT_address typed network variable and at least
one configuration property defined in a configuration file, and the selected Micro
Server supports the DMF access method, the LonTalk Interface Developer utility
automatically generates all code and data that is necessary to satisfy the memory
read and write requests; however, the application must still provide code for non-
volatile, persistent, data storage.

The DMF Memory Window
To the network management tool, all content of the DMF memory window is
presented as a continuous area of memory in the virtual DMF memory space.
The DMF memory space is virtual because it appears to the network
management tool to be located within the Micro Server’s native address space,
even though it usually is not. In the code that the LonTalk Interface Developer
utility generates, the content of the DMF memory window, which can be
physically located in different parts, or even types, of the host processor’s
memory, is presented as a continuous area of memory. Another part of the
generated code identifies the actual segment within the host memory that is
shown at a particular offset within the virtual address space of the DMF memory
window, and allows the DMF memory driver to correctly access the
corresponding data within the host processor’s address space.

Data that appears in the DMF memory window includes:

• The file directory

• The template file

• The writeable configuration value files (if any)

• The read-only configuration value files (if any)

Figure 68 on page 191 shows how the different memory address spaces relate to
each other.

ShortStack User’s Guide 191

Figure 68. Relationship between Different Memory Spaces

The LonTalk Interface Developer utility defines three macros in the generated
ShortStackDev.h file for working with the DMF window:

• LON_DMF_WINDOW_START

• LON_DMF_WINDOW_SIZE

• LON_DMF_WINDOW_USAGE

The LON_DMF_WINDOW_USAGE macro helps you keep track of the DMF
window fill level.

You can modify the DMF framework that the LonTalk Interface Developer utility
generates to include support for user-defined files. However, all of the data must
fit within the DMF memory window.

When your data exceeds the size of the DMF memory window, you must perform
one of the following tasks:

• Reduce the amount of data

• Provide a larger DMF memory window by creating a custom Micro Server

• Implement the LONWORKS File Transfer Protocol (LW-FTP)

192 Developing a ShortStack Application

File Directory
The LonTalk Interface Developer utility produces a configurable file directory
structure, which supports:

• Using named or unnamed files (it uses unnamed by default)

• Up to 64 KB of data for each file

• Up to a total of 64 KB for all files plus the file directory itself

The utility initializes the file directory depending on the chosen access method.
The directory can be used with an LW-FTP server implementation or the direct
memory file access method implementation. The initialization that the utility
provides works for both little-endian and big-endian host processors.

The ShortStackDev.h header file allows you to customize the file directory
structure, if needed.

Providing Persistent Storage for Non-Volatile Data
If you use configuration files, configuration network variables, network variables
declared with the eeprom modifier, or use other, application-specific, persistent
data, you must supply a mechanism to read that data into RAM during startup,
preserve modifications to that data, and track any read or write errors.

The details for handling persistent storage are dependent on your host platform
requirements and capabilities. Persistent storage options include: flash memory,
EEPROM memory, non-volatile RAM, or storage in a file or database on a hard
drive.

DMF Memory Drivers
The LonTalk Interface Developer utility generates all the code necessary for the
basic host memory driver implementation within the generated ShortStackDev.c
file. This code is used by two callback handler functions, LonMemoryRead() and
LonMemoryWrite(), which are defined within the ShortStackHandlers.c file.
This file is copied into the project folder by the LonTalk Interface Developer
utility, but is not overwritten or updated when you re-run the utility. Thus, you
can modify this file for your host memory driver.

The code to handle DMF-related memory read or write requests is based on the
LonMemoryRead() and LonMemoryWrite() callback handler functions that the
LonTalk Interface Developer utility generates. The API calls these callback
handler functions whenever a related request is received.

Both callback handler functions use the LonTranslateWindowArea() function
(defined in ShortStackDev.c) to provide the translation of virtual addresses into
host addresses. This translation is based on the windowLayoutTable array, also
defined in ShortStackDev.c.

When the translation succeeds, the LonTranslateWindowArea() function supplies
a pointer to a record within the windowLayoutTable, which describes the
segment in question. The segment might be the file directory, the template file,
any of the value files, or a user-defined additional file.

ShortStack User’s Guide 193

A segment description is based on the LonDmfWindowSegment type, which is
defined in ShortStackDev.h as:

typedef struct
{
 LonBool Writeable;
 LonMemoryDriver Driver;
 void* Start;
 size_t Size;
} LonDmfWindowSegment;

The Driver member, based on the LonMemoryDriver enumeration, allows the
LonMemoryRead() or LonMemoryWrite() callback handler function to determine
how to access the data. The default memory driver uses a simple memcpy()
approach. This approach might be sufficient for battery-backed RAM, but most
applications need to add an application-specific driver.

To add an application-specific DMF memory driver, add a new member to the
LonMemoryDriver enumeration, or use an identifier for your memory driver that
you derive from the pre-defined LonMemoryDriverUser enumeration member,
and add code to the LonMemoryRead() or LonMemoryWrite() callback handler
functions to dispatch the action to the appropriate memory driver.

Recommendation: Derive your driver identifier from LonMemoryDriverUser,
because this approach avoids editing the ShortStackDev.h file, which will be
overwritten when you re-run the LonTalk Interface Developer utility.

See Application Start-Up and Failure Recovery on page 194 for other
considerations for the memory driver.

CPNV and EEPROM NV
For configuration network variables (CPNVs) and non-volatile network variables
(those declared with the eeprom modifier), your application must provide
functions for reading and writing the non-volatile data.

During processing for the LonInit() function, the ShortStack LonTalk Compact
API calls the LonNvdDeserializeNvs() callback handler function for every CPNV
and non-volatile network variable to read their values (if any) stored in
persistent storage. This function has the following signature:

const LonApiError LonNvdDeserializeNvs(void);

Your application must obtain the most recent value for the network variable with
the given index from non-volatile memory, and store it in the location provided by
the LonGetNvValue() function. For changeable-type network variables, the
application should always retrieve network-variable data that equals the initial
network variable type in size. If the current size of a changeable-type network
variable is less than its maximum (and initial) size, supply zeroes to fill the
remaining, currently unused, memory. You can obtain the size of the initial
network variable from the network variable table or by using the sizeof() operator
with the initial (declared) network variable type, (rather than using the
LonGetNvSize() callback handler function, which returns the current size of the
network variable).

Whenever a CPNV or non-volatile network variable is updated over the network,
your LonNvUpdateOccurred() (or LonNvUpdateCompleted()) callback handler
function should evaluate whether to write the CPNV or network variable data to

194 Developing a ShortStack Application

non-volatile memory, and then call your non-volatile-memory-write function as
needed.

To determine the offset of a particular non-volatile network variable value within
the non-volatile storage, the application can read the network variable table (the
nvTable array). For example, the application could add the sizes of all non-
volatile network variables with index value less than the current network
variable, and use that size as a pointer offset into the non-volatile storage.
Different host platforms and compilers offer other ways to write and read data
from non-volatile memory. For example, if your host processor supports flash
memory, EEPROM, or NVRAM, you might be able to declare your non-volatile
network variables directly in this memory.

Application Start-Up and Failure Recovery
Typical applications load all persistent data into RAM during startup. The
ShortStack LonTalk Compact API handles that process for persistent network
variables by calling the LonNvdDeserializeNvs() function from the LonInit()
function, but your application must take appropriate steps to ensure correct data
for all DMF window segments.

Recommendation: Your application should read data from DMF window
segments prior to calling the LonInit() function, because the device is already
attached to the network when the LonInit() function returns.

Because your application is responsible for loading and modifying applicable data
in non-volatile memory, you should use the application signature generated by
the LonTalk Interface Developer utility to ensure that the application manages
its own data, rather than another application’s data. Use the
LON_APP_SIGNATURE macro defined in the ShortStackDev.h file to retrieve
the current application’s signature.

Writing non-volatile data can be error-prone and slow, depending on the type and
organization of the memory. Your application must detect any failures during the
write process, and to ensure that the write process completes in a timely a
fashion.

Recommendation: If the write process takes too long to complete within the API’s
timing requirements (see Periodically Calling the Event Handler on page 170),
your application should use queues or caches to minimize both latencies and the
number of modifications.

The application should also be able to detect data corruption. If, for example, the
device incurs a power loss during a write operation to non-volatile data, that data
can be invalid. When the application starts up after the failure, and attempts to
re-load that data, it should detect that the data is not valid. If invalid data is
found, the application should cease operation and put the Micro Server into the
unconfigured state.

Applications can implement any method to ensure reliable persistence of data, or
to ensure detection of failure, such as hardware support (for example, battery
backup, or early power-out interrupts to flush any pending write requests).
Typical software support includes management of “dirty” flags and checksum
protection for persistent data.

ShortStack User’s Guide 195

Application Migration: Series 3100 to Series 5000
A ShortStack FX application that is designed to work with a Micro Server on a
Series 3100 chip (such as an FT 3150 Smart Transceiver) can work with a Micro
Server on a Series 5000 chip (such as an FT 5000 Smart Transceiver), but you
must re-run the LonTalk Interface Developer utility and recompile the
application. If the host processor type does not change, you do not need to modify
your link-layer serial driver.

Perform the following general tasks to migrate a ShortStack FX application from
a Series 3100 device to a Series 5000 device:

1. Create a backup copy of your application’s existing project. You will need
the original files from the project for step 3.

2. Re-run the LonTalk Interface Developer utility. Select the desired
standard or custom Micro Server for the Series 5000 device. The utility
will overwrite the LonDev.c and LonDev.h files, among others.

3. Use a DIFF or MERGE tool to compare the backed-up versions of the
LonDev.c and LonDev.h files with the newly created ones. Carefully
merge your application’s code (from the backed-up version) into the new
LonDev.c and LonDev.h files.

Important: Do not to replace the application initialization data blocks
generated by the utility for the Series 5000 hardware.

4. Rebuild your application.

5. Load the appropriate Micro Server image into the FT 5000 Smart
Transceiver or Neuron 5000 Processor.

6. Load the application into the host processor and test the device.

Because this change involves a hardware change and updated software for both
the Micro Server and the host, upgrading a device to use new hardware in the
field is not recommended. In addition, such a hardware change is likely to
invalidate any certificates or declarations of conformity obtained for the device,
given that they were obtained for the previous hardware.

ShortStack User’s Guide 197

11

Developing a ShortStack
Application with ISI

This chapter describes how to develop a ShortStack
application with Interoperable Self-Installation (ISI)
support. It also describes the various tasks performed by
the application.

198 Developing a ShortStack Application with ISI

Overview of ISI
A control network could be a small, simple network in a home or in a machine
consisting of a few devices, or it could be a large network in a building, factory, or
ship consisting of tens of thousands of devices. The devices in the network must
be configured to become part of the common network and to exchange data. The
process of configuring devices in a control network is called network installation.

There are two main categories of networks:

• Managed networks

• Self-installed networks

A managed network is a network where a shared network management server
performs network installation. A user typically uses a tool to interact with the
server and to define how the devices are configured and how they communicate.
Such a tool is called a network management tool. For example, Echelon’s
LonMaker Integration Tool is a network management tool that uses the LNS
Server network management server to install devices in a network. Although a
network management tool and a server are used to establish initial network
communication, they need not be present for the network to function. The
network management tool and server are required only to make changes to the
network’s configuration.

In a managed network, the network management tool and server together
allocate various network resources, such as device and data point addresses. The
network management server is also aware of the network topology, and can
configure devices for optimum performance within the constraints of that
topology.

The alternative to a managed network is a self-installed network. There is no
central tool or server that manages the network configuration in a self-installed
network. Instead, each device contains code that replaces parts of the network
management server’s functionality, which results in a network that does not
require a special tool or server to establish network communication or to change
the configuration of the network.

Because each device is responsible for its own configuration, a common standard
is required to ensure that devices configure themselves in a compatible way. The
standard protocol for performing self-installation in LONWORKS networks is
called the LONWORKS Interoperable Self-Installation (ISI) Protocol. The ISI
protocol can be used for networks of up to 200 devices.

Larger or more complex networks must either be installed as managed networks,
or must be partitioned into multiple smaller subnetworks, where each
subnetwork has no more than 200 devices and meets the ISI topology and
connection constraints. Devices that conform to the LONWORKS ISI protocol are
called ISI devices.

An ISI device manages its network identity (its address) and its network variable
connections with minimum impact on the network performance. These two
groups of services are supported through a set of API calls, callback handlers,
and notification events. See Managing the Network Address on page 202 and
Managing Network Variable Connections on page 206 for more information about
these services.

ShortStack User’s Guide 199

The ShortStack Developer’s Kit includes standard Micro Servers that can be used
to create ISI devices, and allows the creation of custom Micro Servers that
support the ISI protocol. Such an ISI-enabled Micro Server can be used in self-
installed or managed networks, but a Micro Server without built-in support for
the ISI protocol cannot be used in an ISI network (unless you implement the
required portions of the ISI protocol as part of your host application using the
standard ShortStack messaging and self-installation APIs provided). For a
detailed description of the ISI protocol, see the LONWORKS ISI Protocol
Specification.

The ISI protocol is a licensed protocol. In addition to the ShortStack FX
Developer’s Kit, the ISI Developer’s Kit and Mini FX Evaluation Kit each include
a license for development use of the ISI library.

Using ISI in a ShortStack Application
Using the ISI protocol in a ShortStack application is similar to using the ISI
protocol in a Neuron C-based application (such as ones developed with the ISI
Developer’s Kit or the Mini FX Evaluation Kit). The application calls ISI
functions and implements some or all of the ISI callback handler functions to
produce the desired ISI behavior.

There are two ways to modify the ISI behavior of a Micro Server:

• If your ShortStack device uses a Micro Server that supports the ISI
protocol, you can implement most of the ISI callback handler functions
within your host application. Overriding ISI callback handler functions
is an important part of creating an ISI application, because these callback
handlers provide essential, and typically application-specific, details to
the ISI engine.

• If you create an ISI-enabled custom Micro Server, you can determine the
location of most of the ISI callback handler functions. If there is
sufficient space in the Smart Transceiver, you can put enough
intelligence into the Micro Server Neuron C application to have a large
percentage of the ISI logic in the Smart Transceiver. Alternatively, you
can let the Micro Server use the ShortStack ISI RPC protocol to call
callback handler functions located on the host processor.

See Comparing ISI for ShortStack and Neuron C on page 238 for information
about the similarities and differences between ShortStack ISI applications and
Neuron C ISI applications. See Creating a Custom Micro Server with ISI
Support on page 248 for information about customizing an ISI-enabled Micro
Server.

Running ISI on a 3120 Device
A standard ShortStack Micro Server on a 3120 Smart Transceiver does not
include support for ISI because of resource limitations. For 3120 devices, the
ShortStack LonTalk Compact API allows you to implement ISI support on the
host processor.

200 Developing a ShortStack Application with ISI

Running ISI on a 3150 Device
A standard ShortStack Micro Server on a 3150 Smart Transceiver can be
installed in an ISI-S or ISI-DA network. Support for ISI is largely handled by the
Micro Server itself. However, you can also use the ShortStack LonTalk Compact
API to implement ISI support on the host processor. In addition, you can create a
custom Micro Server to provide custom ISI support, including support for ISI-
DAS applications.

Running ISI on a PL 3170 Device
A standard ShortStack Micro Server on a PL 3170 Smart Transceiver can be
installed in an ISI-S or ISI-DA network. Support for ISI is largely handled by the
Micro Server itself. However, you can also use the ShortStack LonTalk Compact
API to implement ISI support on the host processor. In addition, you can create a
custom Micro Server to provide custom ISI support. However, a Micro Server on
a 3170 Smart Transceiver cannot support ISI-DAS applications.

An ISI-enabled Micro Server for the PL 3170 Smart Transceiver has several
limitations, compared to other ISI-enabled standard Micro Servers. The
following limitations are permanent and cannot be overcome by creating a
custom, ISI-enabled, Micro Server:

• The link layer supports SCI at the fixed bit rate of 38400 bps. In
addition, the SPI/SCI~, SBRB0, and SBRB1 signals are ignored.

• The utility functions, which include local operations such as the ping or
echo command, are not supported by the Micro Server.

• ISI-S and ISI-DA modes are supported, but ISI-DAS mode is not.

The following limits can be changed by creating a custom, ISI-enabled, Micro
Server, and adjusting the Micro Server’s properties as needed:

• Capacity is limited to 120 network variables and 75 aliases.

• The ISI connection table is 24 records, local to the Micro Server.

• Controlled enrollment is supported.

Running ISI on an FT 5000 Device
A standard ShortStack Micro Server on an FT 5000 Smart Transceiver can be
installed in an ISI-S or ISI-DA network. Support for ISI is largely handled by the
Micro Server itself. However, you can also use the ShortStack LonTalk Compact
API to implement ISI support on the host processor. In addition, you can create a
custom Micro Server to provide custom ISI support, including support for ISI-
DAS applications.

Tasks Performed by a ShortStack ISI Application
A ShortStack ISI application must decide whether to start the ISI engine (based
on the SCPTnwrkCnfg configuration property), call ISI services as needed,
handle ISI events, and recover from failures.

ShortStack User’s Guide 201

After the ISI engine starts, it manages various aspects of your device, and makes
services available to you through the ISI API. The two major aspects managed
include: managing the device’s network address and managing its network
variable connections.

Starting and Stopping ISI
Use the IsiStart() function to start the ISI engine for any supported ISI type.
Typically, because the ISI engine is stopped after a Micro Server reset, you start
the ISI engine in your LonResetOccurred() callback handler function when self-
installation is enabled.

The IsiStart() function accepts two arguments: the ISI mode of operation
(defined by the IsiType enumeration) and a bit vector with various flags (defined
by the IsiStartFlags enumeration).

The ShortStack ISI API does not support, or require, the host application to call
the IsiPreStart() function. Micro Servers that support hardware which requires
the use of this function automatically call this API during power-up and reset.

Use the IsiStop() function to explicitly stop the ISI engine at any time. Typically,
you stop the ISI engine when self-installation is disabled. Because the ISI engine
is always off after a power-up or reset, and needs to be started explicitly with
each reset, this function is not widely used.

When you stop the ISI engine, ISI callbacks into the application no longer occur.
Because most ISI functions behave appropriately when the engine is stopped, the
ShortStack application does not need to track the engine’s state and can issue the
same set of ISI API calls in any state.

Implementing a SCPTnwrkCnfg Configuration
Property

ISI applications must implement a SCPTnwrkCnfg configuration property that is
implemented as a configuration network variable. This configuration property
must apply to your application’s Node Object functional block, if available, or
apply to the entire device if there is no Node Object.

This configuration property provides an interface for network management tools
to disable self-installation on an ISI device. By using this configuration property,
the same device can be used in both self-installed and managed networks.

Typically, the cp_info(reset_required) attribute is used with the declaration of the
SCPTnwrkCnfg CP. This attribute allows you to check the current ISI state in
the device’s LonResetOccurred() callback handler function.

The configuration property has two values: CFG_LOCAL and CFG_EXTERNAL.
When set to CFG_LOCAL, your application must enable self installation. When
set to CFG_EXTERNAL, your application must disable self installation.
Network management tools automatically set this value to CFG_EXTERNAL to
prevent conflicts between self-installation functions and the network
management tool.

For a device that will use self-installation, during the first start (only) with a new
application image, set the value for the SCPTnwrkCnfg configuration property as

202 Developing a ShortStack Application with ISI

CFG_LOCAL so that the ISI engine can come up running with the first power-up.
Subsequent starts use the default value of CFG_EXTERNAL.

Example:

SCPTnwrkCnfg nciNetConfigLocal;
ReadNonVolatileData();

nciNetConfigLocal = nciNetConfigLastKnownGoodValue;

if (nciNetConfigLocal == CFG_NUL) {
 /* For the first application start, set nciNetConfig to
 * CFG_LOCAL, thus allow the ISI engine to run by default
 */
 nciNetConfig = CFG_LOCAL;
 bWriteNonVolatileData = TRUE;
}

nciNetConfigLastKnownGoodValue = nciNetConfig;

if (nciNetConfig == CFG_LOCAL) {
 /* We are in self-installed mode */
 if (nciNetConfigLocal == CFG_EXTERNAL) {
 /* The application has just returned to the self-
 * installed mode. Make sure to re-initialize the
 * entire ISI engine.
 * Note that running this task on the Micro Server can
 * take a significant amount of time, after which, the
 * Micro Server resets. */
 IsiReturnToFactoryDefaults();
 }

 /* Start the ISI engine */
 IsiStart(IsiTypeS, IsiFlagExtended);
}

Managing the Network Address
After the ISI engine is started, it manages the device’s network address. The
network address consists of a subnet and node ID pair plus a domain identifer.

The subnet and node ID pair is managed automatically: ISI chooses a suitable
value pair, and ensures the uniqueness of that value pair within the network,
making changes to that value pair as needed while the device is running.

The domain identifier and its length (generally referred to collectively as “the
domain”) define the logical network to which the device belongs. Several devices
can share the same physical network media, for example a power line
communications channel, but can be logically isolated into distinct logical
networks. Each logical network is known as a “domain.”

ISI devices can be part of one primary domain. All ISI devices are also part of a
secondary domain for administrative purposes, but all application-specific
communication is limited to the primary domain.

There are four methods to assign a domain to an ISI device:

ShortStack User’s Guide 203

1. The domain can be pre-defined and assigned by the device application or
by the ISI implementation. All ISI devices must initially support this
method because an initial application domain is assigned prior to
acquiring a domain using one of the other methods. This method enables
all devices to be used in an ISI-S network, the smallest form of an ISI
network, which uses this method by default. All ISI-enabled ShortStack
Micro Servers support installation in an ISI-S network.

2. A device that supports domain acquisition can acquire a unique domain
address from a domain address server. If a domain address server is not
available, domain acquisition fails, and the ISI engine continues to use
the most recently assigned domain (initially, the default domain).
Devices that support domain acquisition also support multiple,
redundant, domain address servers. Domain address acquisition is
initiated by the user and controlled by the device acquiring the domain,
not by the domain address server. This method allows the device to make
intelligent decisions about retries, and prevents enrollment during
domain acquisition. It also allows the device to increase automatic
enrollment performance following the completion of domain acquisition.
All standard ISI-enabled ShortStack Micro Servers support domain-
acquisition services, but custom ISI-enabled Micro Servers can choose not
to support them.

3. A domain address server can assign a domain to a device without a
request from the device. This method minimizes the code required in the
device, and can be used with all devices. This process is called fetching a
device. All ISI-enabled devices and all ISI domain address servers
support this method. This method simplifies the implementation of the
ISI application, but control of the process is no longer within the ISI
application.

4. A domain address server can fetch the domain from any of the devices in
a network and assign it to itself. This method keeps multiple domain
address servers in a network synchronized with each other, or allows a
replacement domain address server to join an existing ISI network. This
process is called fetching a domain. All ISI-enabled devices and all ISI
domain address servers support this method.

A domain address server must support all four methods. That is, it can supply a
pre-defined domain (which is typically used as the domain address server’s
default domain), it can support a device that requests a domain (domain
acquisition), it can fetch any ISI device, and it can fetch a domain from another
device.

Supporting a Pre-Defined Domain
While its ISI engine is running, any ISI device is always a member of two
domains: the administrative secondary domain that uses a pre-defined and fixed
domain, and the application-specific primary domain.

The primary domain uses a three-byte domain ID with value 0x49.53.49 (ASCII
codes for “ISI”) by default. An IsiGetPrimaryDid() callback function is supported,
which allows applications to provide a different default for the primary domain.
This alternate default can be used by some devices to start in a closed, non-
interoperable, ISI network. The same method can also be used by domain

204 Developing a ShortStack Application with ISI

address servers to assign a unique domain identifier to the server’s default
primary domain (typically equal to the server’s own unique ID).

Acquiring a Domain from a Domain
Address Server
To acquire a domain from a domain address server using domain acquisition
services, start the ISI engine using the IsiStart() function with the isiTypeDa
type.

A domain address server must be in device acquisition mode to respond to
domain ID requests. To start device acquisition mode on a domain address
server, call the IsiStartDeviceAcquisition() function.

To start domain acquisition on a device that supports domain acquisition, call the
IsiAcquireDomain() function.

A typical implementation starts the domain acquisition process when the
Connect button is activated and a domain is not already assigned. If
SharedServicePin is set to FALSE, the IsiAcquireDomain() function also issues a
standard service pin message, thus allowing the same installation paradigm in
both a managed and an unmanaged environment. If the application uses the
physical service pin to trigger calls to the IsiAcquireDomain() function, the
system image will have issued a service pin message automatically, and the
SharedServicePin flag should be set to TRUE in this case.

When calling IsiAcquireDomain() with SharedServicePin set to FALSE while the
ISI engine is not running, a standard service pin message is issued nevertheless,
allowing the same installation paradigm and same application code to be used in
both self-installed and the managed networks.

After domain acquisition has been enabled by calling IsiStartDeviceAcquisition()
on the domain address server and it has been started on the device by calling
IsiAcquireDomain(), the device responds to the isiWink ISI event with a visible or
audible response. For example, a device may flash its LEDs. The user confirms
that the correct device executed its wink routine by activating an appropriate
user interface control on the domain address server that calls the server’s
IsiStartDeviceAcquisition() function again. When confirmed, the domain address
server grants the unique domain ID to the device. The device notifies its
application with ISI events accordingly.

The device automatically cancels domain acquisition if it receives multiple, but
mismatching, domain response messages. This mismatch can happen if multiple
domain address servers with different domain addresses are in device acquisition
mode, and all respond to the device’s query.

Devices should support domain acquisition whenever possible (device resources
permitting) rather than only supporting device fetching because the domain
acquisition process provides a more robust process with features such as
automatic retries and automatic connection reminders.

The IsiCancelAcquisition() function causes a device to cancel domain acquisition.
The cancellation applies to both device and domain acquisition. After this
function call is completed, the ISI engine calls IsiUpdateUserInterface() with the
IsiNormal event. On a domain address server, use the IsiCancelAcquisitionDas()
function instead.

ShortStack User’s Guide 205

Example 1: The following example starts domain acquisition on a domain
address server when the user presses a Connect button on the server.

if (connect_button_pressed) {
 IsiStartDeviceAcquisition();
}

When started, the domain address server remains in this state for five minutes,
unless cancelled with an IsiCancelAcquisitionDas() call. Each successful device
acquisition retriggers this timeout.

Example 2: The following example starts domain acquisition on a device when
the user pushes a Connect button on the device.

if (connect_button_pressed) {
 IsiAcquireDomain(FALSE);
}

Fetching a Device from a Domain Address
Server
A domain address server can use the IsiFetchDevice() function to assign the DAS’
unique domain ID to any device. Unlike the IsiAcquireDomain() function, the
IsiFetchDevice() function does not require any action, or special library code, on
the device. To fetch a device, call the IsiFetchDevice() function on the domain
address server.

DAS devices must make this feature available to the user. With this feature, it is
not required that devices support domain acquisition in order to participate in an
ISI network that uses unique domain IDs.

Similar to the domain acquisition process, fetching a device also requires a
manual confirmation step to ensure that the correct device is paired with the
correct domain address server.

Example: The following example fetches a device on a domain address server
when the user presses the Connect button on the server.

if (connect_button_pressed) {
 IsiFetchDevice();
}

Fetching a Domain for a Domain Address
Server
A domain address server can use the IsiFetchDomain() function to obtain a
domain ID. Unlike the IsiAcquireDomain() function, the IsiFetchDomain()
process does not require a domain address server to provide the domain ID
information, and does not use the DIDRM, DIDRQ, and DIDCF standard ISI
messages. Instead, the domain address server uses the IsiFetchDomain()
function to obtain the current domain ID from any device in the network, even
from those that do not implement or execute ISI at all. This is typically used
when installing replacement or redundant domain address servers in a network:
a domain address server normally uses the IsiGetPrimaryDid() override to
specify a unique, non-standard, primary domain ID. A replacement domain
address server (or a redundant domain address server) needs to override this

206 Developing a ShortStack Application with ISI

preference by using the domain ID that is actually used in the network. This
override is provided with the IsiFetchDomain() function.

Example: The following example fetches a domain on a domain address server
when the user presses the Connect button on the server.

if (connect_button_pressed) {
 IsiFetchDomain();
}

If no unambiguous domain ID is already present on the network, the domain
address server uses its default domain ID, as advised with the
IsiGetPrimaryDid() callback, as a unique domain ID.

Managing Network Variable Connections
You can exchange data between devices by creating connections between network
variables on the devices. Connections are like virtual wires, replacing the
physical wires of traditional hard-wired systems. A connection defines the data
flow between one or more output network variables to one or more input network
variables. The process of creating a self-installed connection is called enrollment.
Inputs and outputs join a connection during open enrollment, much like students
join a class during open enrollment. Following the sucessful completion of an ISI
enrollment, the ISI engines on the devices in the connection automatically create
and manage the network variable connection, assign the network variable
selectors and other protocol resources, monitor their suitability, and change these
values as needed while the connection is active.

Other connection-related ISI services include deleting an entire connection,
removing individual devices from a connection, or extending a connection by
adding new participants.

Because an ISI network uses unbounded groups (group size 0), your application
should not poll network variable values. Using a request-response service with
unbounded groups can significantly degrade network performance.

This section describes the ISI connection model and describes the procedures
required to create a connection.

ISI Connection Model
Connections are created during an open enrollment period that is initiated by a
user, a connection controller, or a device application. When initiated, a device is
selected to open enrollment—this device is called the connection host. Any device
in a connection can be the connection host; the connection host is responsible for
defining the open enrollment period and for selecting the connection address to
be used by all network variables within the connection. Connection address
assignment and maintenance is handled by the ISI engine, and is transparent to
your application.

Even though any device in a connection can be the connection host, if you have a
choice of connection hosts, pick the natural hub as the connection host. For
example, in a connection with one switch and multiple lights, the switch is the
natural hub, whereas in a connection with one light and multiple switches, the
light is the natural hub. If there is no natural hub—multiple switches connected
to multiple lights for example—you can pick any of the devices (preferably one
with easy access).

ShortStack User’s Guide 207

A connection host opens enrollment by sending a connection invitation. After a
connection host opens enrollment, any number of devices can join the connection.

Connections are created among connection assemblies. A connection assembly is
a block of functionality, a grouping of one or more network variables, much like a
Neuron C functional block. A simple assembly refers to a single network
variable, as shown in Figure 69.

Figure 69. A Simple Assembly

A connection assembly that consists of a single network variable is called a
simple assembly.

A single assembly can include multiple network variables in a functional block,
can include multiple network variables that span multiple functional blocks, or
can exist on a device that does not have any functional blocks; an assembly is a
collection of one or more network variables that can be connected as a unit for
some common purpose.

A connection assembly that consists of more than one network variable is called a
compound assembly, as shown in Figure 70.

Figure 70. A Compound Assembly

For example, a combination light-switch and lamp ballast controller can have
both a switch and a lamp functional block, which are paired to act as a single
assembly in an ISI network, but could be handled as independent functional
blocks in a managed network, as shown in Figure 71 on page 208.

208 Developing a ShortStack Application with ISI

Figure 71. Multiple Functional Blocks as a Single Compound Assembly

To communicate and identify an assembly to the ISI engine, the application
assigns a unique number to each assembly. This assembly number must be in
the 0 to 254 range, sequentially assigned starting at 0. Required assemblies for
standard profiles must be first, assigned in the order that the profiles are
declared in the application. Standard ISI profiles that define multiple assemblies
must specify the order in which the assemblies are to be assigned.

Each assembly has a width, which is equal to the number of network variable
selectors used in the enrollment. Typically, but not necessarily, the number of
network variable selectors in an enrollment equals the number of network
variables in the assembly. In the previous figures, for example, assembly 0 has a
width of 1, assembly 1 typically has a width of 2, and assembly 2 typically has a
width of 4. All assemblies must have a width of at least 1. Simple assemblies
have a width of 1; compound assemblies typically have a width greater than 1.

Recommendation: Keep the width of an assembly as small as possible while
maintaining the functionality of the application. For example, keep the width
below 10.

One of the network variables in a compound assembly is designated as the
primary network variable. If the primary network variable is part of a functional
block, that functional block is designated as the primary functional block.
Information about the primary network variable can be included in the
connection invitation.

To open enrollment, the connection host broadcasts a connection invitation that
can include the following information about the assembly:

• The network variable type of the primary network variable in the
assembly

• The functional profile number of the primary functional profile in the
assembly

• The connection width

ShortStack User’s Guide 209

Other devices on the network receive the invitation and interpret the offered
assembly to decide whether they could join the new connection.

In the case of assembly 0 in Figure 69 on page 207, the connection invitation can
specify a width of one and the network variable type. This is a case similar to the
one employed by a generic switch device where the switch offers a SNVT_switch
network variable that is not tied to a specific functional profile.

Assembly 1 in Figure 70 on page 207 demonstrates a more specialized example.
A switch can offer this assembly and describe it as an implementation of the
SFPTclosedLoopSensor profile, with a width of two, and a SNVT_switch input
and output. The ISI protocol defines how multiple network variable selectors are
mapped to the individual network variables offered.

Because the invitation includes no more than one functional profile number, a
compound assembly is typically limited to a single functional block on each
device. To include multiple functional blocks in an assembly, a variant can be
specified. A variant is an identifier that customizes the information specified in
the connection invitation. Variants can be defined for any device category or any
functional profile-member number pair.

For example, a variant can be specified with the SFPTclosedLoopSensor
functional block offered in assembly 2 in Figure 71 on page 208 to specify that the
SFPTclosedLoopActuator functional block is included in the assembly. Standard
variant values are defined in standard functional profiles that are published by
LONMARK International, and manufacturers can specify manufacturer-specific
variant values for manufacturer-specific assemblies.

Each assembly on a device has a unique number that is assigned by the
application. Each network variable on a device can be assigned to an assembly.
The ISI engine calls the IsiGetNvIndex() and IsiGetNextNvIndex() callback
functions to map a member of an assembly to a network variable on the device.

Opening Enrollment
You can create a connection using automatic, controlled, or manual enrollment.
When you use controlled or manual enrollment, user intervention is required to
identify devices or assemblies to be connected. Controlled enrollment is initiated
by a centralized tool, such as a controller or user interface panel. This
centralized tool is called the connection controller. Most of the standard ISI
profiles require support for controlled enrollment. Manual enrollment is initiated
from the devices to be connected, typically with a push button called the Connect
button. When you use automatic enrollment, connections are automatically
created, and no user intervention is required.

The standard Micro Server images support controlled enrollment.

To join a connection, a device must support at least one type of enrollment. A
device can support multiple types of enrollment, or a device can support all three
types of enrollment. For example, a lamp actuator can support automatic
enrollment to a gateway, controlled enrollment configured by a user interface
panel, and manual enrollment with switch devices. Devices that support
controlled enrollment must also support connection recovery as described in
Recovering Connections on page 233. Standard functional profiles can require
support for specific types of enrollment.

210 Developing a ShortStack Application with ISI

An event triggers your application to open enrollment. The type of event depends
on the type of enrollment:

• Manual enrollment: A user input on the device itself typically triggers
manual enrollment. The input can be a simple button push, or a device
could have a more complex user interface that allows the user to request
a connection.

• Controlled enrollment: A request from a connection controller typically
triggers controlled enrollment. This request is typically initiated by some
user input to the connection controller and arrives in a control request
(CTRQ) message. The CTRQ message identifies an ISI function and an
optional parameter.

• Automatic enrollment: The isiWarm event in the
IsiUpdateUserInterface() callback function typically triggers automatic
enrollment.

To open manual enrollment, call the IsiOpenEnrollment() function on the
connection host, passing in the assembly number to be offered for this connection.
The ISI engine then sends a connection invitation by broadcasting an open
enrollment message (CSMO). The CSMO message is the invitation for other
devices to join this connection, and signals an open enrollment period. The ISI
protocol also provides extended versions of the CSMO messages, which add fields
to determine if the connection is acknowledged or polled, the scope of the
connection and parts of the program ID, and the primary network variable
member.

The ISI engine creates the CSMO message by calling the IsiCreateCsmo()
function, which fills the relevant fields of an IsiCsmoData data structure with the
values needed to describe the connection type and data that is offered to the
network. The default implementation of this function, which is provided with the
ISI libraries and is available to Neuron C applications, is not available to
ShortStack devices. However, you can implement this function either within the
host application or within a custom Micro Server.

After calling the IsiCreateCsmo() function, the ISI engine constructs the
remainder of the CSMO message and broadcasts the connection invitation to the
network. To create a compound connection (one with an assembly width larger
then 1), you must override the IsiGetWidth() callback function. Sending
reminders of this message also calls several callback functions, including
IsiCreateCsmo() and IsiGetWidth().

Controlled enrollment is initiated and controlled by the connection controller,
which opens the controlled enrollment by sending a CTRQ message specifying
the IsiOpenEnrollment() function, and also specifying the assembly number to be
offered. The application must respond to the CTRQ message with a control
response (CTRP) message indicating that it implements the requested operation.

If your ShortStack device needs to use controlled enrollment, you can create a
custom Micro Server that includes it.

To open automatic enrollment, wait for the IsiWarm event from the
IsiUpdateUserInterface() callback function, and then call the
IsiInitiateAutoEnrollment() function, passing a pointer to an IsiCsmoData
structure containing the invitation, and an the assembly number to be offered for
this connection. The ISI engine then sends a connection invitation by
broadcasting an automatic enrollment (CSMA) message. The ISI engine also

ShortStack User’s Guide 211

sends periodic reminders about the automatic connection by sending CSMR
messages. The reminder ensures that new devices have an opportunity to join
the automatic connections.

Whenever a CSMR is due, the ISI engine calls IsiCreateCsmo() to create the
message. The CSMA and CSMR messages are the invitations for other devices to
enroll in this connection automatically. Opening automatic enrollment through
IsiInitiateAutoEnrollment() is an immediate action, and after the call is made,
the connection is implemented for the assembly that the call was made with,
regardless of whether there are any members for the connection.

The ISI engine automatically transmits the extended CSMOEX, CSMAEX, or
CSMREX message (as appropriate) if isiFlagExtended was specified during the
start of the engine. Otherwise, the ISI engine automatically clips the Extended
sub-structure of the IsiCsmoData structure and issues the regular CSMO,
CSMA, or CSMR message.

You can provide feedback to the user while enrollment is open, for example by
starting a Connect light to flash. This is typically only done with manual
enrollment. The ISI engine informs your application of significant ISI events by
calling an IsiUpdateUserInterface() callback function.

Example 1: The following example opens automatic enrollment.

void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 if (event == IsiWarm && !myIsiGetIsConnected(myAssembly))
 {
 IsiInitiateAutoEnrollment(&myCsmoData, myAssembly);
 }
}

In this example, the Event is compared to IsiWarm and to the value returned by
the myIsiGetIsConnected() function. Your application implements this function,
which returns TRUE if the status for the specified assembly (myAssembly) is
connected, and returns FALSE otherwise. To maintain the connection status for
each assembly, the application should periodically call the IsiQueryIsConnected()
function. Then, within the IsiIsConnectedReceived() callback handler function,
you can update the connection status for each assembly.

The IsiWarm event signals that a sufficient amount of time has passed since the
ISI engine has been started. This interval includes a random component to
prevent all devices in the network from simulatenously starting the automatic
enrollment processes and thus colliding in the event of a site-wide return to
power.

Example 2: The following example opens manual enrollment for a simple
assembly with one network variable, using the network variable’s global index as
the application-specific assembly number. This example runs within your host
application.

void startEnrollment(void) {
 IsiOpenEnrollment(LonNvIndexNvoValue);
}

Example 3: The following controlled enrollment example instructs a remote
device with a specified unique ID (Neuron ID) to open enrollment for its assembly
number 5. The first part of this example runs within your host application,
which initiates the controlled enrollment request (the host application

212 Developing a ShortStack Application with ISI

implements an ISI connection controller), and the second part of this example
runs within a custom Micro Server that is used by the targeted remote device.

See the Interoperable Self-Installation Protocol Specification for information
about the ISI Protocol, including its message codes and structures. For example,
the IsiControl enumeration and the IsiMessage data structure are not included in
the ShortStackIsiTypes.h file.

const LonApiError controlEnrollment(IsiControl control,
 unsigned parameter, LonUniqueId* pUniqueId) {

 LonSendUniqueId target;
 IsiMessage message;

 /* Use Neuron ID addressing with one of the addresses
 * gathered during device discovery */
 target.Type = LonAddressNeuronId;
 target.Domain = 0;
 target.RepeatRetry = 3 |
 (LonRpt192<<LON_SENDNID_REPEAT_TIMER_SHIFT);
 target.RsvdTransmit = LonTx96;
 target.subnet = 0;
 memcpy(target.NeuronId, pUniqueId,
 sizeof(target.NeuronId));

 /* Prepare the ISI message */
 message.Header.Code = IsiCtrq;
 message.Msg.Ctrq.Control = control;
 message.Msg.Ctrq.Parameter = parameter;

 return LonSendMsg(LonMtIndexMyTag, FALSE,
 LonServiceRequest, FALSE,
 (const LonSendAddress*)&target,
 IsiApplicationMessageCode, &message,
 sizeof(IsiMessageHeader) + sizeof(IsiCtrqMessage));
}

void myEnroll(...) {
 ...
 LonApiError error = controlEnrollment(IsiOpen, 5, ...);
 ...
}

Your application can evaluate success or failure of the request by using the
LonResponseArrived() callback handler function. When the controlled
enrollment request completes, the target device replies with an ISI CTRP
response message, which indicates success or failure. The CTRP message
includes the target device’s unique ID, which allows you to correlate it with the
outstanding request.

If the device fails to provide a CTRP response message, you should generally
assume that the target device does not implement controlled enrollment. As the
example shows, you should use network protocol features, such as the repeat
counter and timer values, to configure repeated communication attempts.

On the receiving device, a controlledEnrollmentDispatcher() function and a
sendControlResponse() utility function are implemented to process the controlled
enrollment request.

ShortStack User’s Guide 213

To ensure that your custom Micro Server can control enrollment, add a call to the
controlledEnrollmentDispatcher() function within the IsiMsgHandler() function
in the MicroServer.nc file. An example for the calling the
controlledEnrollmentDispatcher() function is provided in Example 2 in Accepting
a Connection Invitation on page 218.

boolean IsiMsgHandler(void) {
 boolean result, preemptionMode;
 boolean enrolled;

 result = FALSE;
 preemptionMode = shortStackInPreempt();

 enrolled = controlledEnrollmentDispatcher();

 switch(isiType) {
#ifdef SS_SUPPORT_ISI_S
 case isiTypeS:
 result = IsiApproveMsg() &&
 (preemptionMode
 || !IsiProcessMsgS()
 || controlledEnrollmentDispatcher());
 break;
#endif // SS_SUPPORT_ISI_S
#ifdef SS_SUPPORT_ISI_DA
 case isiTypeDa:
 result = IsiApproveMsg() &&
 (preemptionMode ||
 !IsiProcessMsgDa() ||
 controlledEnrollmentDispatcher());
 break;
#endif // SS_SUPPORT_ISI_DA
#ifdef SS_SUPPORT_ISI_DAS
 case isiTypeDas:
 result = IsiApproveMsgDas() &&
 (preemptionMode
 || !IsiProcessMsgDas()
 || controlledEnrollmentDispatcher());
 break;
#endif // SS_SUPPORT_ISI_DAS
 }
 return result;
}

Example 4: The following example opens manual enrollment for a compound
assembly with four selectors. The IsiGetWidth() returns the library’s default
value. In this example, enrollment is being opened in response to the user’s
pressing a Connect button. Enrollment can only be opened when the ISI engine
is in the normal state. The ProcessIsiButton() function is called in response to
the Connect button’s being pressed.

This example runs within your host application.

IsiEvent isiState = IsiNormal;

void IsiCreateCsmo(....) {
 // set pCsmoData as desired
}

214 Developing a ShortStack Application with ISI

unsigned IsiGetWidth(unsigned assembly) {
 return 4;
}

void ProcessIsiButton(unsigned assembly) {
 switch(isiState) {
 ...
 case IsiNormal:
 IsiOpenEnrollment(assembly);
 break;
 ... //Processing for other states
 } // end of switch(isiState)
}

The example assumes that the IsiCreateCsmo() and IsiGetWidth() callback
handler functions are implemented in the same location, and implies that both
are implemented in the location of the ProcessIsiButton() function (presumably,
within your host application). When you create an ISI-enabled custom Micro
Server, you can choose whether the IsiCreateCsmo() and IsiGetWidth() callback
handler functions should be implemented local to the Micro Server or on the host,
but these two callback handler functions would typically be implemented in the
same location.

Example 5: The following refines example 1 and provides a more comprehensive
example of opening automatic enrollment for a simple assembly with one
network variable.

This example runs within your host application.

// MyCsmoData defines the enrollment details for the
// automatic ISI network variable connection offered by
// this device.
static const IsiCsmoData MyCsmoData = {
 // group
 ISI_DEFAULT_GROUP,
 // direction and width:
 IsiDirectionOutput << ISI_CSMO_DIR_SHIFT) | 1,
 // Profile number
 { 0, 2 },
 // NV type index (76: SNVT_freq_hz)
 76,
 // Variant:
 0
};

// Call InitiateAutoEnrollment in response to isiWarm
void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 if (event == IsiWarm &&
 !myIsiGetIsConnected(myAssemblyNumber)) {
 // We waited long enough and we are not connected
 // already, so let's open an automatic connection:
 IsiInitiateAutoEnrollment(&MyCsmoData,
 myAssemblyNumber);
 }
}

ShortStack User’s Guide 215

void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) {
 if (assembly == myAssemblyNumber) {
 memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData));
 }
}

unsigned IsiGetWidth(unsigned assembly) {
 unsigned result = 0;
 if (assembly == myAssemblyNumber) {
 result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH);
 }
 return result;
}

In this example, the Event is compared to IsiWarm and to the value returned by
the myIsiGetIsConnected() function. Your application implements this function,
which returns TRUE if the status for the specified assembly (myAssembly) is
connected, and returns FALSE otherwise. To maintain the connection status for
each assembly, the application should periodically call the IsiQueryIsConnected()
function. Then, within the IsiIsConnectedReceived() callback handler function,
you can update the connection status for each assembly.

Example 6: The following example opens automatic enrollment for a compound
assembly with four selectors, offering enrollment for member network variables 1
to 4 of an implementation of the SFPTsceneController profile (the nviScene,
nvoSwitch, nviSetting, and nviSwitch members).

This example runs within your host application.

// MyCsmoData defines the enrollment details for the
// automatic ISI network variable connection offered by
// this device
static const IsiCsmoData MyCsmoData = {
 // group
 ISI_DEFAULT_GROUP,
 // direction and width:
 (isiDirectionVarious << ISI_CSMO_DIR_SHIFT) | 4,
 // Profile number in big-endian notation:
 { 3251 / 256, 3251 % 256 },
 // NV type index (0: determined by SFPT)
 0,
 // Variant:
 0
};

// Call InitiateAutoEnrollment in response to isiWarm
void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 if (event == IsiWarm &&
 !myIsiGetIsConnected(myAssemblyNumber)) {
 // We waited long enough and we are not connected
 // already, so let's open an automatic connection:
 IsiInitiateAutoEnrollment(&MyCsmoData,
 myAssemblyNumber);
 }
}

void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) {

216 Developing a ShortStack Application with ISI

 if (assembly == myAssemblyNumber) {
 memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData));
 }
}

unsigned IsiGetWidth(unsigned assembly) {
 unsigned result = 0;
 if (assembly == myAssemblyNumber) {
 result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH);
 }
 return result;
}

As in the previous example, the Event is compared to IsiWarm and to the value
returned by the myIsiGetIsConnected() function. Your application implements
this function, which returns TRUE if the status for the specified assembly
(myAssembly) is connected, and returns FALSE otherwise. To maintain the
connection status for each assembly, the application should periodically call the
IsiQueryIsConnected() function. Then, within the IsiIsConnectedReceived()
callback handler function, you can update the connection status for each
assembly.

Example 7: For a complete example that implements connection management for
multiple assemblies, see the self-installation example application that is included
with the ShortStack FX ARM7 Example Port, which is available for free
download from www.echelon.com/shortstack.

Receiving an Invitation
You can receive a connection invitation and specify which assemblies are eligible
to join the ISI connection. When an ISI device receives a CSMO, CSMA, or
CSMR connection invitation message, the ISI engine first checks the availability
of the device resources that are required to implement the connection. If any of
these resources is missing or insufficient, such as address or connection table
space, the invitation is dropped.

If the ISI engine determines that there are sufficient resources, it calls the
IsiGetAssembly() and IsiGetNextAssembly() callback handler functions with the
received CSMO, CSMA, or CSMR message. These functions return all assembly
numbers that are provisionally approved to join the connection. The automatic
argument of IsiGetAssembly() and IsiGetNextAssembly() indicates whether the
enrollment is manual or controlled (CSMO) or automatically (CSMA or CSMR)
initiated, with FALSE meaning that the enrollment was initiated manually or by
a connection controller. On devices that do not support connection removal, the
assembly is ignored if it is already engaged in another connection.

When a device receives an extended CSMOEX, CSMAEX, or CSMREX message,
all fields of the IsiCsmoData structure are passed to the application, and the
fields in the Extended sub-structure are all valid.

When a device receives a regular CSMO, CSMA, or CSMR message, the extended
fields are automatically set to all zeros, with exception of the Extended.Member
field, which is set to one.

Applications do not need to distinguish between regular and extended incoming
messages.

http://www.echelon.com/shortstack

ShortStack User’s Guide 217

You can provide feedback to the user when an invitation is received and
provisionally approved, for example by causing a Connect light to flash while
enrollment is open. Such feedback is typically only provided for a manual
connection. The ISI engine informs your application that an eligible invitation
has been received and provisionally approved by calling the
IsiUpdateUserInterface() callback function (with the IsiPending event code) for
each assembly that is provisionally approved to join the connection. The
application can indicate provisionally approved, but not yet accepted, connection
invitations.

Example: The following example receives and provisionally approves a
connection invitation, and blinks a Connect light until the invitation is accepted,
or the connection is confirmed or canceled.

This example runs within your host application.

// IsiUpdateUserInterface is called with IsiPending as the
// IsiEvent parameter in response to receiving a CSMO
void IsiUpdateUserInterface(IsiEvent event, unsigned
 parameter) {
 ... //Optional event processing
 isiState = (event == IsiPending || event == IsiApproved
 || event > IsiWarm) ? event : IsiNormal;
}

unsigned IsiGetAssembly(const IsiCsmoData* pCsmo,
 LonBool automatic) {
 unsigned result = ISI_NO_ASSEMBLY;
 if (pCsmo->Group == ISI_LIGHTING_CATEGORY
 && pCsmo->Extended.Scope == isiScopeStandard
 && pCsmo->NvType == SNVT_SWITCH_2_INDEX
 && !(pCsmo->Variant & 0x60)
 && !LON_GET_ATTRIBUTE(pCsmo->Extended, ISI_CSMO_ACK)
 && !LON_GET_ATTRIBUTE(pCsmo->Extended,
 ISI_CSMO_POLL)) {
 // Recognized CSMO, return appropriate assembly
 // number
 result = myAssemblyNumber;
 }
 return result;
}

unsigned IsiGetNextAssembly(const IsiCsmoData* pCsmo,
 LonBool automatic, unsigned assembly) {
 unsigned result = ISI_NO_ASSEMBLY;

 if (assembly == myAssemblyNumber) {
 result = myAssemblyNumber + 1;
 }
 return result;
}

The example identifies the enrollment and specifies myAssemblyNumber as the
first local applicable assembly for the enrollment. The GetNextAssembly()
callback handler function then adds a second local applicable assembly to the list.
Unacceptable enrollment data, or requests for additional local assemblies, receive
the ISI_NO_ASSEMBLY constant.

218 Developing a ShortStack Application with ISI

Accepting a Connection Invitation
You can accept a connection invitation to join the offered connection. When you
accept a connection invitation, the ISI engine sends an enrollment acceptance
message (CSME) to the connection host. Accepting an invitation only sends an
acceptance to the connection host; the connection is not implemented until the
connection host confirms the new connection.

You can only accept enrollment for an assembly that has been provisionally
approved. To provisionally approve an assembly, the IsiGetAssembly() or
IsiGetNextAssembly() function must return the assembly number for the current
IsiCsmoData structure, and the IsiUpdateUserInterface() callback function must
identify the current assembly as being in the IsiPending state.

For manual enrollment, a connection invitation is typically accepted based on
user input. For example, LEDs blink on a device when invitations are received
and provisionally approved, and the user then pushes the related Connect button
to accept a specific invitation.

For a controlled enrollment, a connection invitation is typically accepted based on
a request from a connection controller. This request is typically initiated by some
user input to the connection controller.

For automatic enrollment, a connection invitation is typically accepted based on
some application-specific criteria. For example, a home gateway opens automatic
enrollment for its inputs and outputs, and newly installed home devices
automatically accept all eligible connection invitations from the home gateway.

The actual establishment of an automatic connection is handled by the ISI
engine, and requires a call to IsiCreateEnrollment() or IsiExtendEnrollment().
The ISI engine extends the connection if the library supports connection
extension, or creates the extension if the library does not support connection
extension and the assembly is not already connected, or if the library supports
connection removal. The ISI libraries that are used with the standard, ISI-
enabled, ShortStack Micro Servers support connection extensions and connection
removal procedures. Different ISI libraries can be used with custom Micro
Server implementations; see Creating a Custom Micro Server with ISI Support
on page 248.

For devices that support connection removal, you can create a connection that
replaces all existing connections for an assembly. For devices that support
connection extension, you can add a new connection to an assembly that might
already be enrolled in other connections.

To create a connection that replaces all existing connections for an assembly, call
IsiCreateEnrollment(). To add a connection to an assembly without overriding
any existing connections associated with the same assembly, call
IsiExtendEnrollment(). You can extend a nonexistent connection;
IsiExtendEnrollment() has the same functionality as IsiCreateEnrollment() if no
connection exists for the assembly.

Extending a connection consumes additional device and network resources,
compared with the initial connection. Each extension to a connection requires
one or more new aliases and connection table entries, and results in additional
network transactions for every update to the connection. You can eliminate this
additional resource usage by deleting and re-creating a connection instead of
extending it.

ShortStack User’s Guide 219

You can provide feedback to the user when an invitation is accepted, for example
by changing the state of the Connect light when the connection invitation is
accepted from flashing to solid on. Such feedback is typically only provided for
manual enrollment. The ISI engine informs your application that a connection
invitation has been accepted by calling the IsiUpdateUserInterface() callback
function, assigning the IsiApproved or IsiApprovedHost state to the respective
assembly. The application indicates the accepted connection invitation.

Example 1: The following manual enrollment example accepts a connection
invitation when the user presses a Connect button.

This example runs within your host application.

IsiEvent isiState;

void ProcessIsiButton(unsigned assembly) {
 switch(isiState) {
 ...
 case IsiPending:
 IsiCreateEnrollment(assembly);
 break;
 ... //Processing for other states
 } // end of switch(state)
}

After the host accepts the connection, your application receives the
IsiUpdateUserInterface() callback with the Event set to IsiApproved. Your
application can use this event status to update the device interface, for example,
by illuminating an LED.

Example 2: The following example opens controlled enrollment when requested
by the connection controller.

This example runs within a custom Micro Server.

void sendControlResponse(boolean success) {
 IsiMessage ctrlResp;

 ctrlResp.Header.Code = isiCtrp;
 ctrlResp.Ctrp.Success = success;
 memcpy(ctrlResp.Ctrp.NeuronID, read_only_data.neuron_id,
 NEURON_ID_LEN);

 resp_out.code = isiApplicationMessageCode;
 memcpy(resp_out.data, &ctrlResp,
 sizeof(IsiMessageHeader)+sizeof(IsiCtrp));
 resp_send();
}

boolean controlledEnrollmentDispatcher(void) {
 boolean isProcessed;
 IsiMessage inMsg;

 isProcessed = FALSE;
 memcpy(&inMsg, msg_in.data, sizeof(IsiMessage));

 if (inMsg.Header.Code == isiCtrq) {
 if (inMsg.Ctrq.Control == isiOpen) {
 sendControlResponse(TRUE);

220 Developing a ShortStack Application with ISI

 IsiOpenEnrollment(inMsg.Ctrq.Parameter);
 isProcessed = TRUE;
 } else if (inMsg.Ctrq.Control == isiCreate) {
 sendControlResponse(TRUE);
 IsiCreateEnrollment(inMsg.Ctrq.Parameter);
 } else if (inMsg.Ctrq.Control == isiFactory) {
 sendControlResponse(TRUE);
 IsiReturnToFactoryDefaults();
 } else {
 sendControlResponse(FALSE);
 }
 } else {
 // Other requests deleted for this example
 ...
 }
 return isProcessed;
}

Implementing a Connection
In a manual or controlled enrollment, when a connection host sends a connection
invitation by broadcasting an open enrollment message, one or more devices can
accept the connection invitation and respond with an enrollment acceptance
message (CSME). When the connection host receives at least one CSME
message, the host application receives the IsiApprovedHost event through the
IsiUpdateUserInterface() callback function. Typically, the application changes
the state of the related Connect light from flashing to solid on.

When the connection host’s assembly is in the IsiApprovedHost state, the
connection can be cancelled or implemented. See Canceling a Connection on page
221 for information about cancellation.

To implement a connection on a connection host, call either
IsiCreateEnrollment() or IsiExtendEnrollment(). The connection host joins the
connection and issues a connection enrollment confirmation message (CSMC).
When calling IsiCreateEnrollment(), any connection that exists for the same
assembly is removed; see Deleting a Connection on page 222 for more
information. When calling IsiExtendEnrollment(), the new connection is added
to any existing connections for the same assembly, consuming an alias table
entry for each NV in the assembly.

After the connection host confirms the connection, devices that have previously
accepted the connection invitation join the connection by replacing or extending
an existing connection, depending on the function that was used to accept the
invitation.

When a device joins a connection, the ISI engine on that device updates the
network configuration for the device, and the accepted connection becomes active.

The ISI engine automatically implements the connections for the accepted
assembly. To determine the network variables to be connected, the ISI engine
calls the IsiGetNvIndex() and IsiGetNextNvIndex() functions for each selector
used with the connection.

You can provide feedback to the user when a connection has been joined, for
example by turning off the Connect light. Such feedback is typically only
provided for manual connections. The ISI engine informs your application that a

ShortStack User’s Guide 221

connection has been implemented by providing the IsiImplemented event
through the IsiUpdateUserInterface() callback function. The application
indicates the new connection. Your application will receive one IsiImplemented
event for each network variable that belongs to the assembly.

Example: The following manual enrollment example implements a connection on
a connection host when the user presses the Connect button a second time. The
complete application also turns off the Connect light to indicate the acceptance on
the host.

void ProcessIsiButton(unsigned assembly) {
 switch(isiState) {
 ...
 case IsiApprovedHost:
 if (bCancelEnrollment)
 IsiCancelEnrollment();
 else
 IsiCreateEnrollment(assembly);
 break;
 ... // Processing for other states
 } // End of switch(state)
}

After the host accepts the connection, your application receives the
IsiImplemented event through the IsiUpdateUserInterface() callback handler
function once for each local network variable associated with the assembly. Your
application can use this event status to update the device interface, for example,
by illuminating an LED.

Canceling a Connection
You can cancel a pending enrollment on the connection host at any stage, and on
any device that has accepted the connection invitation. However, cancellation is
no longer possible after the connection is implemented; see Deleting a Connection
on page 222 for information about deleting an implemented connection.

Pending enrollment sessions are automatically cancelled if:

• On the connection host, if no connection enrollment acceptance message
(CSME) is received within the open enrollment period after the
IsiOpenEnrollment() function call.

• On the connection host, if the connection is not implemented by a
IsiCreateEnrollment() or IsiExtendEnrollment() function call within the
open enrollment period after the receipt of a connection enrollment
confirmation message (CMSE).

• On an accepting device, if the connection has been accepted and no
connection enrollment confirmation message (CMSC) has been received
within the open enrollment period after the acceptance.

To explicitly cancel a pending enrollment, call the IsiCancelEnrollment()
function.

When a connection host cancels a pending enrollment session, it issues a
connection enrollment cancellation message (CSMX). Devices that have accepted
the related connection invitation automatically cancel when they receive a
related CSMX message.

222 Developing a ShortStack Application with ISI

When a connection member cancels a pending enrollment session, the
cancellation only has local effect—the approved assembly changes to the
IsiCancelled state. Because the connection host can re-send invitation messages
(CSMOs), the same device can, once again, conditionally approve the assembly
and move it to the IsiPending state. The user can now accept the connection
invitation again (by causing the application to call IsiCreateEnrollment() or
IsiExtendEnrollment()), or simply do nothing. The pending assembly remains
pending until the enrollment is closed, and automatically returns to the
IsiNormal state.

Deleting a Connection
You can delete an implemented connection using one of three methods:

• The device can restore factory defaults by calling the
IsiReturnToFactoryDefaults() function. This function clears all system
tables, stops the ISI engine, and resets the Micro Server. See
Deinstalling a Device on page 237 for more information about this
function.

• The device can delete a connection by calling the IsiDeleteEnrollment()
function. This function causes the connection information to be removed
from the local device, as well as on all other devices that are members of
the same connection. The IsiDeleteEnrollment() function can be called on
the connection host, and on any other device that has joined the
connection.

• The device can opt out of an existing connection, leaving other devices
that have joined the same connection unchanged. To leave a connection
locally, call the IsiLeaveEnrollment() function. Calling this function on
the connection host has the effect of IsiDeleteEnrollment(), that is, a
connection host cannot leave a connection, but must always delete the
connection.

The ISI engine calls the IsiUpdateUserInterface() function with the IsiDeleted
event to notify the application of the completion of a deletion.

Handling ISI Events
You can signal the progress of the enrollment process to the device user. Such
feedback is typically only provided for devices that use manual connections,
because automatic and controlled connections do not require user interaction
from the connected devices. User feedback could be as simple as a single Connect
light and button, possibly shared with the Service light and button. A more
complex gateway or controller could have a more sophisticated user interface.

To receive status feedback from the ISI engine, override the
IsiUpdateUserInterface() callback function. The ISI engine calls this function
with the IsiEvent parameter set to one of the values listed in Table 24 on page
223 when the associated event occurs. Some of these events carry a meaningful
value in the numeric parameter, as shown in the table.

ShortStack User’s Guide 223

Table 24. ISI Event Types

IsiEvent Value Description

IsiNormal 0 The ISI engine has returned to the normal, or idle, state for an
assembly. The related assembly is encoded in the parameter; a
parameter value of ISI_NO_ASSEMBLY indicates that the
event applies to all assemblies.

IsiRun 1 The ISI engine has been successfully started (parameter is
TRUE) or stopped (parameter is FALSE).

IsiPending 2 The connection related to the assembly given with the numerical
parameter has entered the pending state. The event means that
the device has received, and provisionally approved, a connection
invitation, but has not yet accepted the connection invitation.

This event only applies to a connection member. For a
connection host, see IsiPendingHost.

Devices often signal the IsiPending (or IsiPendingHost) state
with a flashing LED.

IsiApproved 3 The connection related to the assembly given with the numerical
parameter changed from the pending state to the approved
state. This event occurs when a connection invitation has been
provisionally approved and accepted.

This event only applies to a connection member. For a
connection host, see IsiApprovedHost.

Devices often signal the IsiApproved (or IsiApprovedHost) state
by turning on an LED (which was flashing before, coming from
the IsiPending or IsiPendingHost state).

IsiImplemented 4 The connection related to the assembly given with the numerical
parameter has been implemented. This event occurs on a
connection host after calling IsiCreateEnrollment() or
IsiExtendEnrollment() to implement a connection and close
enrollment, and on a connection member after receiving an
enrollment confirmation message (CSMC).

The application receives one IsiImplemented event for each
network variable that is part of the assembly.

IsiCancelled 5 The connection related to the assembly given with the numerical
parameter has been cancelled by a timeout, user intervention, or
network action. An assembly number of ISI_NO_ASSEMBLY
indicates that all pending enrollments are cancelled.

IsiDeleted 6 The connection related to the assembly given with the numerical
parameter has been deleted.

224 Developing a ShortStack Application with ISI

IsiEvent Value Description

IsiWarm 7 The ISI engine has warmed up (that is, a predetermined time,
with a random component, has passed since the last reset).
After this time, the application can call the
IsiInitiateAutoEnrollment() function.

This event occurs no sooner than the expiry of the Tauto ISI
protocol timer, but can occur later.

IsiPendingHost 8 The connection related to the assembly given with the numerical
parameter has entered the pending state. This event occurs on a
connection host after it has issued a connection invitation
(CSMO), but not yet received any enrollment acceptance
messages (CSMEs).

This event only applies to a connection host. For a connection
member, see IsiPending.

IsiApprovedHost 9 The connection indicated with the numerical parameter changed
from the pending state to the approved state. This event occurs
on a connection host at the receipt of the first connection
enrollment acceptance message (CSME).

This event only applies to a connection host. For a connection
member, see IsiApproved.

IsiAborted 10 The device stopped domain or device acquisition. The parameter
is a member of the IsiAbortReason enumeration, and indicates
the reason for the abort.

IsiRetry 11 The device is retrying the device acquisition procedure. The
parameter is the remaining number of retries.

IsiWink 12 The device should perform its wink function. The specific
function is application-dependent, but should provide some
visible or audible feedback to the user. For example, the
application blinks an LED on the device.

IsiRegistered 13 This event indicates either acquisition start or successful
acquisition completion on either a device that supports domain
acquisition or a domain address server. The parameter indicates
either a successful start (parameter = 0) or completion
(parameter = 0xFF).

You typically override the IsiUpdateUserInterface() callback function with an
application-specific function to provide application-specific user feedback. The
default implementation of this function does nothing, and is only useful for
devices that exclusively use automatic enrollment.

Figure 72 on page 225 summarizes the typical sequence of events for a connection
host using manual or controlled enrollment. The sequence of events is similar for
a connection host using automatic enrollment, except that the connection host
skips the IsiApprovedHost event and goes straight to the IsiImplemented event.

ShortStack User’s Guide 225

Although the sequence of events shown in this figure is typical, the actual
sequence of events passed to the IsiUpdateUserInterface() callback can vary.

Figure 72. Sequence of Events for a Connection Host

Figure 73 summarizes the typical sequence of events for a connection member.
Although the sequence of events shown in this figure is typical, the actual
sequence of events passed to the IsiUpdateUserInterface() callback can vary.

Normal

Cancelled

Approved

PendingImplemented

CSMO and
IsiGet[Next]Assembly()

IsiCancelEnrollment()
or timeout
or CSMX

IsiCancelEnrollment()
or timeout
or CSMX

IsiCreateEnrollment(),
IsiExtendEnrollment()CSMC

Figure 73. Sequence of Events for a Connection Member

226 Developing a ShortStack Application with ISI

Domain Address Server Support
None of the standard ShortStack Micro Servers supports the creation of an ISI
domain address server (DAS) because of resource limitations on all supported
hardware platforms.

To implement a domain address server as a ShortStack device, perform either of
the following tasks:

• Create a custom Micro Server on a 3150 Smart Transceiver that supports
more RAM through the external memory interface, or create a custom
Micro Server on an FT 5000 Smart Transceiver. The ISI memory
requirement is approximately 0.5 KB.

Ensure that this Micro Server has sufficient external RAM for buffers (a
DAS typically needs fairly large buffer counts) and any DAS-specific code
that requires external RAM (such as device lists and lookup-tables on the
Micro Server). Typically, external RAM of a few kilobytes suffices.

• Use a standard Micro Server on a 3120 or 3170 Smart Transceiver, or a
custom Micro Server on a 3150 or 5000 Smart Transceiver, that does not
have built-in ISI support, and implement ISI with DAS-features on the
host processor.

Discovering Devices
You can discover all devices in an ISI network. All devices in an ISI network
periodically broadcast their status by sending out Domain Resource Usage
Message (DRUM) messages. To discover devices, you can monitor these status
messages. Gateways and controllers that need to maintain a table of all devices
in a network, or provide unique capabilities for specific types of devices in a
network, should monitor these messages.

To discover devices, monitor the DRUM messages being sent on the network by
other devices and store the relevant information in a device table. A device table
is a table that contains a list of devices and their attributes including their
network addresses. The DRUM messages contain all of the relevant information
for explicit messaging. To create a device table, store the relevant DRUM fields,
such as subnet ID, node ID, and Neuron ID, in a table that you can use to
communicate directly with other devices. To detect deleted devices, monitor the
time of the last update for each entry in the table and detect devices that have
not recently sent a DRUM.

You can implement the code to maintain the device table within a custom Micro
Server or within the host application. For either implementation, you must
create a custom Micro Server.

Maintaining a Device Table within the Micro
Server
To implement device discovery local to the Micro Server, perform the following
steps:

1. Add code to the MicroServer.nc file that defines a data structure for the
device table.

ShortStack User’s Guide 227

2. Implement the ProcessDrum() function.

3. Create a function that decrements credits from each device in the device
table.

4. In the ShortStackIsiHandlers.h file, define the IsiCreatePeriodicMsg()
callback handler function to be implemented within your custom Micro
Server.

5. In the MicroServerIsiHandlers.c file, call the function that decrements
credits from the IsiCreatePeriodicMsg() callback handler function.

6. In the MicroServer.nc file, modify the IsiMsgHandler() function to call
your DRUM dispatcher.

7. Create a utility function that informs the host of newly discovered or
removed devices.

8. Add code to your host application to process the user-defined remote
procedure call for the utility function.

Each of these steps is described in the following sections.

Define the Data Structure
Define a Device data structure to hold information about a discovered device, and
create a devices table to hold information about all discovered devices. You can
add the following code to the MicroServer.nc file or add it to a separate file
(perhaps called DeviceDiscovery.c) that you reference (#include) from
MicroServer.nc.

#include <mem.h>

#define MAX_DEVICES 16
#define MAX_CREDITS 5

unsigned deviceCount;

// Struct to hold device information
typedef struct {
 unsigned credits;
 unsigned subnetId;
 unsigned nodeId;
 unsigned neuronId[NEURON_ID_LEN];
} Device;

Device devices[MAX_DEVICES];

Implement the ProcessDrum() Function
Add the ProcessDrum() function to MicroServer.nc (or to your DeviceDiscovery.c).
This function is called from the ISI message handler whenever it sees an ISI
DRUM message. We’ll add the code that makes this call later.

The function also uses a utility function, ReportDevice(), that is described in The
ReportDevice() Utility Function on page 231.

void ProcessDrum(const IsiDrum* pDrum) {
 unsigned i;
 extern ReportDevice(boolean, unsigned);

228 Developing a ShortStack Application with ISI

 // Iterate through the device list and see if the Neuron
 // ID of the stored device matches that of the new
 // device; if it does, then update the related details
 for (i = 0; i < deviceCount; i++) {
 if (memcmp(devices[i].neuronId, pDrum->NeuronId,
 NEURON_ID_LEN) == 0) {
 devices[i].credits = MAX_CREDITS;
 devices[i].subnetId = pDrum->SubnetId;
 devices[i].nodeId = pDrum->NodeId;
 break;
 }
 }

 // If i is equal to the device count, then the device
 // was not found, so add it to the device table if
 // possible
 if (i == deviceCount && deviceCount < MAX_DEVICES) {
 memcpy(devices[i].neuronId, pDrum->NeuronId,
 NEURON_ID_LEN);
 deviceCount++;
 devices[i].credits = MAX_CREDITS;
 devices[i].subnetId = pDrum->SubnetId;
 devices[i].nodeId = pDrum->NodeId;

 ReportDevice(TRUE, i);
 }
}

Create the Decrement Function
Add the DetectStale() function to MicroServer.nc (or to your DeviceDiscovery.c).
This function slowly decrements credits from each device in the devices table.

If the device is functioning, it continues to send DRUM messages, and thus is
maintained in the table. If a device disappears from the network, it is eventually
removed from the table.

The function also uses a utility function, ReportDevice(), that is described in The
ReportDevice() Utility Function on page 231.

void DetectStale(void) {
 unsigned i;
 extern ReportDevice(boolean, unsigned);

 for (i = 0; i < devicecount; i++) {
 devices[i].credits--;
 if (devices[i].credits == 0) {
 ReportDevice(FALSE, i);
 devicecount--;
 if (devicecount != i) {
 // Move device from end to this spot's location
 memcpy(devices+i, devices+devicecount,
 sizeof(Device));
 }
 }
 }
}

ShortStack User’s Guide 229

Call the DetectStale() function at a rate roughly equal to the expected DRUM
rate. One way to ensure an appropriate call rate is to call this function from the
IsiCreatePeriodicMsg() callback handler function, although in this case, you must
implement the IsiCreatePeriodicMsg() callback handler function local to the
Micro Server.

Define IsiCreatePeriodicMsg() in ShortStackIsiHandlers.h
In the ShortStackIsiHandlers.h file, define the IsiCreatePeriodicMsg() callback
handler function to be implemented within your custom Micro Server.

/*
 * Callback: IsiCreatePeriodicMsg
 * Standard location: default
 *
 * The IsiCreatePeriodicMsg() callback enabled an optional
 * and advanced feature, through which the application can
 * claim a slot in the ISI broadcast scheduler.
 * This callback is rarely overridden.
 */
/*#define ISI_DEFAULT_CREATEPERIODICMSG */
#define ISI_SERVER_CREATEPERIODICMSG
/*#define ISI_HOST_CREATEPERIODICMSG */

Call the Decrement Function
Within the MicroServerIsiHandlers.c file, locate the implementation of the
IsiCreatePeriodicMsg() callback handler function, and call the DetectStale()
function from this callback handler function.

// --
// Callback: IsiCreatePeriodicMsg
// --
#ifndef ISI_DEFAULT_CREATEPERIODICMSG
boolean IsiCreatePeriodicMsg(void) {
#ifdef ISI_SERVER_CREATEPERIODICMSG

 extern void DetectStale(void);

 boolean result;
 result = FALSE;

 DetectStale();

 // TODO: Add code implementing the actual
 // IsiCreatePeriodicMsg() callback, if needed.

 return result;

#else
#ifdef ISI_HOST_CREATEPERIODICMSG
 // DO NOT MODIFY - This code redirects the callback to
 // the host
 return IsiRpc(LicIsiCreatePeriodicMsg, 0, 0, NULL, 0);
#endif // ISI_HOST_CREATEPERIODICMSG
#endif // ISI_SERVER_CREATEPERIODICMSG
} // IsiCreatePeriodicMsg

230 Developing a ShortStack Application with ISI

#pragma ignore_notused IsiCreatePeriodicMsg
#endif // ISI_DEFAULT_CREATEPERIODICMSG

Call Your DRUM Dispatcher from IsiMsgHandler()
Within the MicroServer.nc file, locate the IsiMsgHandler() function. After each
message has been approved, and you have confirmed that preemptionMode is
FALSE, call your DRUM dispatcher. This routine determines whether the newly
arrived ISI message is a DRUM message, and calls ProcessDrum() if necessary.

The ProcessDrum() function is defined to return FALSE so that it can easily be
inserted into the IsiMsgHandler() routine.

boolean ProcessDrum(void) {
 IsiMessage message;

 memcpy(&message, msg_in.data, sizeof(IsiMessage));
 if (message.Header.Code == isiDrum ||
 message.Header.Code == isiDrumEx) {
 ProcessDrum(&message.Msg.Drum);
 }
 return FALSE;
}

// IsiMsgHandler() is a utility function used by the
// ShortStack Micro Server core to identify and process ISI
// messages. This function returns true if the message was
// handled by this function.

extern boolean shortStackInPreempt(void);

boolean IsiMsgHandler(void) {
 boolean result, preemptionMode;

 result = FALSE;
 preemptionMode = shortStackInPreempt();

 switch(isiType) {
#ifdef SS_SUPPORT_ISI_S
 case isiTypeS:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgS());
 break;
#endif // SS_SUPPORT_ISI_S
#ifdef SS_SUPPORT_ISI_DA
 case isiTypeDa:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgDa());
 break;
#endif // SS_SUPPORT_ISI_DA
#ifdef SS_SUPPORT_ISI_DAS
 case isiTypeDas:
 result = IsiApproveMsgDas() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgDas());
 break;
#endif // SS_SUPPORT_ISI_DAS
 }

ShortStack User’s Guide 231

 return result;
}
#pragma ignore_notused IsiMsgHandler

The ReportDevice() Utility Function
The ReportDevice() utility function informs the host application of newly
discovered or removed devices by implementing a user-defined remote-procedure
call (RPC). This call is handled by the IsiRpc() function, which supplies the
related Device data structure and the information about whether this device was
newly added or removed from the devices table. To reduce overhead, this remote
procedure call is implemented as an unacknowledged call.

void ReportDevice(boolean added, unsigned index) {
 (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, added, index,
 devices+index, sizeof(Device));
}

Process Your User-Defined RPC
Your host application must process the information about newly discovered or
removed devices. The Micro Server’s IsiRpc() function supplies this information
to your host application. You add code to your host application to process this
information by extending the IsiUserCommand() callback handler function in the
ShortStackIsiHandlers.c file.

A typical use for this callback is to update an advanced device’s graphical user
interface with a representation of all devices that are located on the same ISI
network. The same device table information can also be used to implement
advanced connection scenarios with ISI.

Maintaining a Device Table within a Host
Application
As an alternative to implementing the device table within the Micro Server, you
can implement most of the device discovery process within the host application.
For this implementation, the host receives a DRUM message through a user-
defined remote procedure call (RPC) and maintains the device table on the host.
You must create a custom Micro Server to forward DRUM messages to the host.

To implement device discovery local to the host application, perform the following
steps:

1. Add code to the host application that receives a DRUM message through
a user-defined remote procedure call

2. Add code to your host application to process the user-defined remote
procedure call

Each of these steps is described in the following sections.

Implement the ProcessDrum() Function
Within the MicroServer.nc file, locate the IsiMsgHandler() function. After each
message has been approved, and you have confirmed that preemptionMode is
FALSE, call your DRUM dispatcher. This function determines whether the

232 Developing a ShortStack Application with ISI

newly arrived ISI message is a DRUM message, and forwards the DRUM
message to the host application, using a user-defined unacknowledged remote
procedure call.

The ProcessDrum() function is defined to return FALSE so that it can easily be
inserted into the IsiMsgHandler() routine.

boolean ProcessDrum(void) {
 IsiMessage message;

 memcpy(&message, msg_in.data, sizeof(IsiMessage));
 if (message.Header.Code == isiDrum ||
 message.Header.Code == isiDrumEx) {
 (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, 0, 0,
 &message.Msg.Drum, sizeof(IsiDrum));
 }
 return FALSE;
}

// IsiMsgHandler() is a utility function used by the
// ShortStack Micro Server core to identify and process ISI
// messages. This function returns true if the message was
// handled by this function.

extern boolean shortStackInPreempt(void);

boolean IsiMsgHandler(void) {
 boolean result, preemptionMode;

 result = FALSE;
 preemptionMode = shortStackInPreempt();

 switch(isiType) {
#ifdef SS_SUPPORT_ISI_S
 case isiTypeS:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgS());
 break;
#endif // SS_SUPPORT_ISI_S
#ifdef SS_SUPPORT_ISI_DA
 case isiTypeDa:
 result = IsiApproveMsg() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgDa());
 break;
#endif // SS_SUPPORT_ISI_DA
#ifdef SS_SUPPORT_ISI_DAS
 case isiTypeDas:
 result = IsiApproveMsgDas() && (preemptionMode ||
 ProcessDrum() || !IsiProcessMsgDas());
 break;
#endif // SS_SUPPORT_ISI_DAS
 }
 return result;
}
#pragma ignore_notused IsiMsgHandler

ShortStack User’s Guide 233

Process Your User-Defined RPC
The Micro Server’s IsiRpc() function supplies DRUM messages to your host
application, which must evaluate these DRUM messages to maintain an accurate
list of devices that are available on the ISI network at any given time. You add
code to your host application to process this information by extending the
IsiUserCommand() callback handler function in the ShortStackIsiHandlers.c file.

A typical use for this callback is to update an advanced device’s graphical user
interface with a representation of all devices that are located on the same ISI
network. The same device table information can also be used to implement
advanced connection scenarios with ISI.

Recovering Connections
A connection controller can display connections that it created but that are no
longer in its database, and it can display connections that it did not create. To
recover connections, a connection controller must first discover all the devices in
the network, as described in Discovering Devices on page 226. To recover the
connections, the controller uses the read connection table request (RDCT)
message, which allows it to read a device’s connection table over the network.
Support for this message is required for devices that support controlled
enrollment, and is optional for other devices.

The RDCT message includes optional host and member assembly fields that
specify which connection table entries are requested:

• If the host and member assembly fields are not supported by the device,
or are both set to 0xFF, the connection table entry indicated by the index
is requested.

• If the host and member assembly fields are supported by the device, and
the host or member field is not 0xFF, the index provided is the starting
index. The first matching connection table entry is returned, if any.

• If both host and member fields are set to a value different from 0xFF,
connection table entries are returned that match either the host or the
member fields, if any.

This message allows a connection controller to read the entire connection table,
or to read the table selectively to provide quick answers to questions like “is
assembly Z on device X connected, and is it the host of the connection?”

If the requested data is available, the response to an RDCT message is a read
connection table success (RDCS) message. This message contains the requested
connection table index and data. If the connection table index does not exist, or if
the requested assemblies do not exist, the response is a read connection table
failure (RDCF) message.

A connection controller can determine if a device does not support the optional
host and member assembly fields by comparing the assembly numbers in the
read response to the requested assembly number, or by receiving an RDCF
message that indicates a failed read. If a device does not support the host and
member assembly fields, the connection controller must read every entry in the
connection table individually. Reading every entry has minimal impact for
devices with one or two connection table entries, but increases network traffic for
devices with many connection table entries.

234 Developing a ShortStack Application with ISI

You can implement much of the code for ISI connection recovery either within
your custom Micro Server or in your host application.

The following sections describe example implementations for supporting
connection recovery. The first example shows a custom Micro Server
implementation, where the Micro Server recovers the ISI connections and relays
the results to the host application. The second example shows a host-based
implementation.

Example 1: Custom Micro Server
Implementation
The following connection controller example uses code implemented within a
custom Micro Server to recover all the connections from a device.

Add the following code to the MicroServer.nc file or add it to a separate file
(perhaps called ConnectionRecovery.c) that you reference (#include) from
MicroServer.nc.

#include <msg_addr.h>
#include <isi.h>

#define RETRY_COUNT 3
#define ENCODED_TX_TIMER 11 // 768ms
#define ENCODED_RPT_TIMER 2
#define PRIMARY_DOMAIN 0

// This structure holds information required while reading
// a remote device's connection table
struct {
 unsigned neuronId[NEURON_ID_LEN];
 unsigned index;
} recoveryJob;

// Issue one read connection table request using the global
// recoveryJob variable for destination address and current
// connection table index information. Increment the index
// kept in that global variable.
void RequestConnectionTable(void) {
 IsiMessage request;
 msg_out_addr destination;

 request.Header.Code = isiRdct;
 request.Msg.Rdct.Index = recoveryJob.index++;
 request.Msg.Rdct.Host = request.Msg.Rdct.Member =
 ISI_NO_ASSEMBLY;

 destination.nrnid.type = NEURON_ID;
 destination.nrnid.domain = PRIMARY_DOMAIN;
 destination.nrnid.rpt_timer = ENCODED_RPT_TIMER;
 destination.nrnid.subnet = 0;
 destination.nrnid.retry = RETRY_COUNT;
 destination.nrnid.tx_timer = ENCODED_TX_TIMER;
 memcpy(destination.nrnid.nid, recoveryJob.neuronId,
 NEURON_ID_LEN);

ShortStack User’s Guide 235

 IsiMsgSend(&request,sizeof(IsiMessageHeader)
 +sizeof(IsiRdct), REQUEST, &destination);
}

// Handle receipt of incoming responses. This example
// focuses on isiRdcs and isiRdcf responses.
boolean processRdc(void) {
 boolean processed;
 IsiMessage response;

 processed = FALSE;

 if (resp_in.code == isiApplicationMessageCode) {
 // This is an ISI response
 memcpy(&response, resp_in.data, resp_in.len);
 if (response.Header.Code == isiRdcf) {
 // The remote device rejected our request, probably
 // because we have queried all available connection
 // table entries already (bad index). Notify the user
 // interface, if needed.
 ...
 processed = TRUE;
 } else if (response.Header.Code == isiRdcs) {
 // The remote device replied to our request with the
 // connection table entry requested, in
 // response.Msg.Rdcs. Notify the UI and/or process
 // this data further, as needed by the application:
 (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck,);

 // Because we received a positive response, let's try
 // for the next index
 RequestConnectionTable();
 processed = TRUE;
 }
 return processed;
}

In the processRdc() function, use the IsiRpc() function to notify your host
application of any results. If you have already used the IsiRpc() function with the
LicIsiUserCommand code for device discovery, use the first numerical parameter
to this function to specify a sub-command so that your host application can
correctly interpret the data delivered.

When you notify the host application about a connection recovery, you also have
to include information about the remote device, the connection table index, and
the remote connection table record. Add that information to a structure (that you
define) that is shared between your host application and your custom Micro
Server. The call to the IsiRpc() function should include the data within that
structure to the host application.

The processRdc() function returns TRUE to allow for simple integration within
the Micro Server code, as shown below.

// Initiate the process of reading a remote device's
// connection table. The function kick-starts the process,
// where the majority of the work is done in the processRdc
// function. Calling this function before the previous
// connection table read job completes causes the previous

236 Developing a ShortStack Application with ISI

// job to abort, and the new one to start
void ReadRemoteConnectionTable(const unsigned*
 remoteNeuronId) {
 memcpy(recoveryJob.neuronId, remoteNeuronId,
 NEURON_ID_LEN);
 recoveryJob.index = 0;
 RequestConnectionTable();
}

Most likely, you call the ReadRemoteConnectionTable() function from within
your code that implements device discovery, either when device discovery is
complete or whenever a new device is discovered.

Finally, within the IsiRespHandler() function in the Micro Server.nc file, add a
call to the processRdc() function.

boolean IsiRespHandler(void) {
 boolean processed;
 processed = processRdc();

#ifdef SS_SUPPORT_ISI_DAS
 return processed || (isiType == isiTypeDas &&
 !IsiProcessResponse());
#else
 return processed;
#endif // SS_SUPPORT_ISI_DAS
}

Example 2: Host Implementation
You can use the standard ShortStack LonTalk Compact API to implement ISI
connection recovery within your host application. If your application has
knowledge of other ISI devices within the same network, for example as a result
of device discovery, you can issue RDCT requests using the standard
LonSendMsg() API function, using the remote device’s unique ID (Neuron ID) or
its current subnet and node ID for addressing. See the Interoperable Self-
Installation Protocol Specification for more information about the RDCT, RDCS,
and RDCF message codes and formats.

One of the parameters that the LonSendMsg() function requires is the message
data to send. In this case, the message data to send is an IsiMessage structure,
using the isiRdct command and the RDCT data block. To send this message, you
need to port the IsiMessage structure, and fill in the RDCT data block and ISI
message header, as appropriate. Then, in the LonSendMsg() function, use
IsiMessage &msg instead of LonByte *pData for the message data.

An example for calling the LonSendMsg() function is shown below. The message
code for ISI messages is 0x3D. The actual data to send and the remote address to
send it to are dependent on the application.

LonBool msgPriority = FALSE;
LonBool msgAuth = FALSE;
LonByte msgCode = 0x3d;

IsiMessage msg;
msg.Header = ...
msg.Rdct = ...

ShortStack User’s Guide 237

LonSendUniqueId remoteAdr;
remoteAdr.Type = LonAddressNeuronId;
remoteAdr.... = ...

LonApiError msgResp;

msgResp = LonSendMsg(LonMtIndexMyTag, msgPriority,
 LonServiceType.LonServiceRequest, msgAuth,
 (LonSendAddress*)&remoteAdr, msgCode, &msg,
 sizeof(IsiMessageHeader)+sizeof(IsiRdct));

if (msgResp != LonApiNoError) {
 /* do something about the error */
}

In this case, the IsiRespHandler() function that runs on the Micro Server will not
recognize the response, or pass it to your LonResponseArrived() callback handler
function, implemented in ShortStackHandlers.c.

Deinstalling a Device
You can deinstall a device to remove all network configuration data, including
the domain addresses, network addresses, and connection configurations. For
devices that do not provide direct connection removal, this is the only way to
remove a device from a connection. You can use this procedure to re-enable self-
installation for an ISI device that was installed in a managed network. You can
also use this procedure to return a device to a known state. You can deinstall a
device to move it from a managed network to a self-installed network, or to move
a self-installed device to a new self-installed network. All ISI devices must
support deinstallation.

To deinstall a device, set the SCPTnwrkCnfg configuration property to
CFG_LOCAL to enable self-installation and then call the
IsiReturnToFactoryDefaults() function. You typically deinstall a device in
response to an explicit user action. For example, the user might be required to
press and hold the service pin for five seconds to trigger deinstallation.

The IsiReturnToFactoryDefaults() function clears and reinitializes all system
tables, stops the ISI engine, and resets the Micro Server. Because of the Micro
Server reset, the call to the IsiReturnToFactoryDefaults() function never returns
when it runs on the Micro Server. When it runs in the host application, the ISI
host API’s implementation of IsiReturnToFactoryDefaults() does return to the
caller, but the Micro Server can take up to one minute to re-initialize. When
initialization is complete, the Micro Server resets and establishes
communications with the host application.

Example: The following example deinstalls a device after the service pin is held
for a long period.

void LonServicePinHeld(void) {
 nciNetConfig = CFG_LOCAL;
 IsiReturnToFactoryDefaults();
}

238 Developing a ShortStack Application with ISI

Comparing ISI for ShortStack and Neuron C
The ShortStack ISI implementation differs from the Neuron C ISI
implementation in the following ways:

• A ShortStack ISI device must have at least two application output
buffers.

• The ISI types and definitions follow the ShortStack rules for portable
types (see ShortStackIsiTypes.h), and are binary compatible with the
equivalent data structures defined in isi.h.

• All ShortStack ISI API functions return a LonApiError code for success
or failure of the remote procedure call request. This code does not
indicate successful completion of the requested function; see
IsiApiComplete() for more information.

• The IsiApiComplete() callback handler function is supported with the
ShortStack ISI API to provide success or failure completion codes, and
possible results, of previous ISI API calls. A negative completion code
indicates that the function could not be called, either at that time or
within the current context. The ISI operation itself signals its success or
failure through state changes, indicated with the
IsiUpdateUserInterface() callback handler function (as in the Neuron C
implementation).

• Most ISI callback handler functions are synchronous. That is, they
cannot return to their caller until the return value is known. In many
cases, the ISI function requires interaction with the host processor.
While waiting for a function call to complete, the Micro Server can handle
only one ISI request from the host processor. Similarly, all ISI requests
from the host are also synchronous. That is, the host waits for a response
to an ISI request before it can issue another one.

• Predicates are synchronous in the Neuron C implementation, but are
necessarily asynchronous in the ShortStack ISI API. Affected predicates
are: IsiQueryIsConnected(), IsiQueryImplementationVersion(),
IsiQueryProtocolVersion(), IsiQueryIsRunning(), and
IsiQueryIsBecomingHost(). The predicates’ results are delivered
asynchronously through: IsiIsConnectedReceived(),
IsiImplementationVersionReceived(), IsiProtocolVersionReceived(),
IsiIsRunningReceived(), and IsiIsBecomingHostReceived().

• The following functions and callback handler functions that are included
with the Neuron C implementation are not supported by the ShortStack
ISI API: IsiMsgDeliver(), IsiMsgSend(), IsiUpdateDiagnostics(),
IsiGetAlias(), IsiSetAlias(), IsiGetNv(), IsiSetNv(), IsiSetDomain(),
IsiGetFreeAliasCount(), and IsiIsConfiguredOnline().

• The following functions and callback handler functions that are included
with the Neuron C implementation are supported by (but not exposed to)
the ShortStack ISI API: IsiStart*(), IsiTick*(), IsiProcessMsg*(), and
IsiApproveMsg*(). Wrapper functions and ShortStack-specific handler
functions are provided in the MicroServer.nc file; you can edit these
handler functions to allow a custom Micro Server to intercept ISI
messages, if needed.

ShortStack User’s Guide 239

• The IsiPreStart() function is not supported because the Micro Server
automatically handles calls to IsiPreStart() as needed.

• The IsiCancelAcquisitionDas() function is not supported. Use the
IsiCancelAcquisition() function when calling from your host application,
even when operating an ISI-DAS device.

• Callback forwardees are only available to callback overrides that are local
to the Micro Server. Callback overrides that reside on the host processor
must provide a complete implementation, and cannot fall back to the
forwardee.

• You should not normally call the ISI API from within an ISI callback
override. With the ShortStack ISI API, you can call exactly one ISI API
function from within a callback override that runs on the host processor.
The API call is buffered, and runs after the callback itself completes. The
Micro Server rejects subsequent API calls from within the callback
override, and returns a negative response.

Because most of the ShortStack ISI API is asynchronous, your host application
typically receives control from a ShortStack host API function while the Micro
Server is still busy executing the related action. While most ISI operations
complete quickly, some operations can take a significant amount of time. For
example, calls to the IsiCreateEnrollment() or IsiExtendEnrollment() functions
on an enrollment host for a connection that involves a large number of network
variables are time-consuming operations.

The Micro Server can appear unresponsive while performing the requested task.
However, most ISI operations include a series of callbacks, including remote
procedure calls to callback overrides implemented within your host application.
The Micro Server processes most of its normal tasks in this state, and honors
incoming and outgoing message queues.

However, you can monitor the IsiApiComplete() callback handler function
(implemented in ShortStackIsiHandlers.c) to determine completion of the more
complex ISI operations, and suspend network communications until the task
completes. Failure to suspend network operations in this case could cause
inconsistent results.

As an example of such an inconsistency, consider the case of a very wide
connection. The enrollment host initiates the implementation of a network
variable connection including, for example, ten output network variables. While
the Micro Server performs all the necessary steps to implement that connection,
the host application could enqueue ten network variable updates in an attempt to
inform the newly connected destination devices of the output network variables’
current values.

If the Micro Server has not yet completed the implementation of the connection
(as signalled through the IsiApiComplete() callback handler function), some of
the related network variables will not yet be bound at the time that the host
application attempts to send the network variable update messages. Only
devices that are already connected will receive the update messages, and update
messages for output network variables that are not yet connected will not be sent
on the network.

Any network device must be designed to handle partial and transient failure.
Thus, the remote device connected to these output network variables should not
rely on updates to network variables to occur within a specific time or order.

240 Developing a ShortStack Application with ISI

However, a robust ShortStack ISI application should monitor the completion of
the operation, and avoid producing inconsistent and potentially confusing data.

ShortStack User’s Guide 241

12

Custom Micro Servers

This chapter describes custom Micro Servers and how to
create and use one. Using a custom Micro Server allows you
to modify the operating parameters for the Micro Server.
You need either the NodeBuilder Development Tool or the
Mini kit to create a custom Micro Server.

242 Custom Micro Servers

Overview
The ShortStack Developer’s Kit includes standard Micro Server firmware images
for 3120 and 3150 Smart Transceivers running on TP/FT-10 or PL-20 channels,
PL 3170 Smart Transceivers, and FT 5000 Smart Transceivers, in some common
hardware configurations (see Table 5 in Standard ShortStack Micro Server
Firmware Images on page 22 for a list of the standard Micro Server images).

If your ShortStack device needs to support different operating parameters from
those provided by the standard Micro Server images, you can create a custom
Micro Server for the device. See Custom Micro Server Benefits and Restrictions
for a description of the kinds of parameters that you can modify.

Because a ShortStack Micro Server can run only on an Echelon Smart
Transceiver or the Echelon Neuron 5000 Processor, the modifications that you
make to the operating parameters for a custom Micro Server must be supported
by the Smart Transceiver or Neuron Processor that your device uses.

To create a custom Micro Server, you must have one of the following tools so that
you can compile the custom image:

• NodeBuilder Development Tool 3.13 or later for Series 3100 Micro
Servers
NodeBuilder FX Development Tool or later for Series 5000 Micro Servers
(see www.echelon.com/nodebuilder for more information)

• Mini EVK Evaluation Kit 1.02 or later for Series 3100 Micro Servers
Mini FX Evaluation Kit or later for Series 5000 Micro Servers
(see www.echelon.com/mini for more information)

If your version of the development tool does not include the Interoperable Self-
Installation (ISI) protocol and current libraries, and you want to create a Micro
Server that supports ISI, you will also need to get version 3.03 or later of the ISI
Developer’s Kit at www.echelon.com/isi.

Custom Micro Server Benefits and Restrictions
When you create a custom Micro Server, you can provide support for any of the
following operating parameters:

• Custom hardware configurations, such as different clock speeds or
memory maps. For example, you can support off-chip RAM for an FT
3150 or PL 3150 device, which can increase the number of buffers that
the device supports. You can also support a Neuron 5000 device.

• Increased buffer counts or alternate buffer sizes for network and
application buffers (within the limits of available hardware resources)

• Maximum number of network variables or network variable aliases. For
example, you could support a lower maximum to optimize processing
speed. However, you cannot support more than 254 network variables
and 127 aliases.

• Alternate levels of support for direct memory files (DMF), including
enabling or disabling DMF. If DMF is enabled, you can define the
maximum size of the DMF window to customize the code and data space
that is local to the Micro Server.

http://www.echelon.com/nodebuilder
http://www.echelon.com/mini
http://www.echelon.com/isi

ShortStack User’s Guide 243

• Alternate levels of support for ISI and ISI network types. You can
customize the implementation of many ISI callback functions, which
allows you to create both general-purpose Micro Servers and application-
specific Micro Servers.

When you create a custom Micro Server, there are certain operating parameters
that you cannot control or change:

• The firmware’s core algorithms or basic behavior.

• The link-layer protocol for communications between the Micro Server and
the host processor.

• The Micro Server’s processing for network variables or application
messages. That is, you cannot provide application-specific processing
within the Micro Server for network variables or application messages.

• Support for transceivers other than Echelon Smart Transceivers and the
Echelon Neuron 5000 Processor. A ShortStack Micro Server can only run
on an FT 3120, PL 3120, FT 3150, PL 3150, PL 3170, or FT 5000 Smart
Transceiver, or the Echelon Neuron 5000 Processor. ShortStack does not
support the FTXL 3190 Free Topology Transceiver.

• Capacity for more network variables, aliases, domains, or address tables
than are supported by an FT 3150-based or FT 5000-based Micro Server.
That is, a custom Micro Server cannot support more than 254 network
variables, 127 network variable aliases, 2 domains, and 15 address table
entries.

Configuring and Building a Custom Micro Server
To configure and build a custom Micro Server, you must create a project for
either the NodeBuilder Development Tool or the Mini kit. This project must
include the main Micro Server Neuron C application and associated source files,
and the ShortStack library. The ShortStack library contains the majority of
ShortStack Micro Server executable code.

Table 25 lists the files that are included with the ShortStack Developer’s Kit for
custom Micro Server development. These files are installed in the
[ShortStack]\Custom MicroServer directory.

Note: The [ShortStack]\Custom MicroServer directory does not include a pre-
built custom Micro Server development project file for either the NodeBuilder
Development Tool or the Mini kit. The Mini kit does not support project files,
and a NodeBuilder project file would be empty because developing a custom
Micro Server requires that you make decisions about hardware templates and
other project preferences during project creation.

Table 25. Files for Custom Micro Server Development

File Name Description

ShortStack400.lib This C library contains the majority of the Micro Server
implementation.

244 Custom Micro Servers

File Name Description

ShortStack400Isi.lib This C library provides the same basic functionality as the
ShortStack400.lib library, but this library also includes ISI
support.

Use this library when you create a custom Micro Server with
ISI support. For a custom Micro Server without ISI support,
use the ShortStack400.lib library instead.

ShortStack400CptIsi.lib This C library provides the same basic functionality as the
ShortStack400Isi.lib library, but with the following
limitations:

• ISI-DAS mode is not supported. Also, all API calls
related to DAS mode are not available.

• The link-layer must use the SCI protocol, and must
use a 38400 bit rate. Therefore, you must use either a
Series 3100 device with a 10 MHz external clock or a
Series 5000 device with a 5 MHz system clock.

• The local utility functions (and their callback handler
functions) are not available. See Local Utility
Functions on page 294 for more information about
these functions.

Use this library when you create a custom Micro Server with
ISI support for a PL 3170 Smart Transceiver, or other
resource-constrained device.

MicroServer.nc This file is the main Neuron C source file for developing a
custom Micro Server.

Although you can edit this file, you should not need to edit it
unless you implement modified ISI behavior locally in your
Micro Server.

MicroServer.h This header file adjusts the features and capabilities of the
custom Micro Server. This file contains numerous compiler
#pragma directives and macro definitions (with descriptive
comments to describe their functions), such as:

• Compiler directives to set application and network
buffer counts and sizes

• Compiler directives to set the size of the receive
transaction database

• Compiler directives to set the maximum number of
network variables (0..254), aliases (0..127), address
table entries (1..15), and domain table entries (1..2)

• Macros for conditional compilation

This file includes all of the preferences for a custom Micro
Server that you might need to modify, except those included in
the ShortStackIsiHandlers.h file.

ShortStack User’s Guide 245

File Name Description

ShortStackIsiHandlers.h This header file adjusts the implementation details for the
various ISI callback handler functions.

You need this file only if your custom Micro Server supports
ISI.

MicroServerIsiHandlers.c This file contains the override callback handler function
implementations for ISI support.

You might need to edit this file for a custom Micro Server to
match the changes you make to the ShortStackIsiHandlers.h
file.

You need this file only if your custom Micro Server supports
ISI.

Overview of Custom Micro Server Development
A custom Micro Server can include or exclude support for the ISI protocol. A
Micro Server that includes support for the ISI protocol does not necessarily need
to use the ISI protocol, but to use the ISI protocol through the ShortStack ISI
API, the Micro Server must support the ISI protocol. Applications that are
designed to work with a variety of Micro Servers can determine the level of ISI
support needed by inspecting the Micro Server’s uplink reset notification; see
Handling Reset Events on page 186.

A Micro Server that does not include support for the ISI protocol requires less
space and can support some of the more resource-limited hardware platforms.
However, if your target hardware provides sufficient resources, you should
generally include support for the ISI protocol within your custom Micro Server,
even if you do not immediately plan to use ISI. If the Micro Server supports the
ISI protocol, you have the flexibility to add ISI support to your host application at
a later time, without requiring an update to your Micro Server firmware image.
The processing overhead for the ISI protocol within the Micro Server is minimal
if the ISI processing engine is not running (which is its default state).

The process of creating a custom Micro Server without ISI support is simpler
than creating one with ISI support.

The general process of creating a custom Micro Server involves the following
tasks:

1. Copy the files in the [ShortStack]\Custom MicroServer directory to a
project directory for your development tool (NodeBuilder or Mini kit).

2. Edit the MicroServer.h file to define your custom Micro Server’s
operating parameters.

3. Edit the MicroServer.nc file as necessary. Generally, you should not need
to edit this file, unless you implement modified ISI behavior locally
within your Micro Server.

4. For a Micro Server that supports ISI, edit the MicroServerIsiHandlers.c
file and ShortStackIsiHandlers.h files as necessary.

246 Custom Micro Servers

5. Compile the project and link with the ShortStack400.lib,
ShortStack400Isi.lib, or ShortStack400CptIsi.lib library. For a Micro
Server that supports ISI, you also link the project with the appropriate
ISI library, such as the IsiFull.lib or IsiCompactS.lib library.

The generated image and interface files define your custom Micro Server. The
image files can be loaded into an appropriate Smart Transceiver, as described in
Preparing the ShortStack Micro Server on page 31.

The following sections describe the process for creating a custom Micro Server in
more detail.

Creating a Custom Micro Server without ISI Support
Figure 74 shows the files that are required to create a custom Micro Server that
does not support the ISI protocol. You edit the MicroServer.h and MicroServer.nc
files, and compile and link the project with the ShortStack400.lib library to
create your custom Micro Server.

Micro Server without ISI Support

// #define SS_SUPPORT_ISI

MicroServer.h

+

#include “MicroServer.h”

MicroServer.nc

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

ShortStack400.lib

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

Generated

Supplied, fixed content

Supplied, user-edited

Figure 74. Files for Creating a Custom Micro Server without ISI Support

To configure and build a custom Micro Server without ISI support, perform the
following tasks:

1. Create a NodeBuilder or Mini kit project, using the files described in
Table 25 on page 243.

For the NodeBuilder tool:

• Expand the Device Templates folder in the Workspace window, right-
click the Release target folder (debugging the ShortStack firmware is
not supported, so you cannot use the Development target), and select
Settings to open the NodeBuilder Device Template Target Properties
dialog.

ShortStack User’s Guide 247

o Select the Linker tab. Select Generate symbol file.

o Also from the Linker tab, you can optionally select Generate
map file and select Verbose. A map file is optional, but
recommended.

o Select the Exporter tab. Select Automatic for boot ID
generation. Also select Checksum all code. For the reboot
options, select Communications Parameters from the
Category dropdown list box to select what should be rebooted,
and select Type/rate mismatch to specify when a reboot
should occur. However, do not enable rebooting of
communication parameters on communication parameter
mismatch for Micro Servers that use a PL 3120, PL 3150, or
PL 3170 Smart Transceiver, unless you are certain that the
optional features of the PL-20 transceiver will not change
(such as CENELEC mode or low-power mode).

o If you use an off-chip flash memory part for the ShortStack
and system firmware, do not enable rebooting the EEPROM,
and do not enable rebooting on a fatal application error. If
you are using a ROM (PROM or EPROM) part for the
ShortStack and system firmware, you can enable these reboot
options to allow possible recovery in the event of a fatal error.

o Select the Configuration tab. Ensure that Export configured
is not selected. The option to export a device with a pre-
defined configuration does not apply to a ShortStack Micro
Server.

• Click OK to save the settings and close the NodeBuilder Device
Template Target Properties dialog.

2. Specify an appropriate program ID. The program ID is not exposed to the
network, because the Micro Server remains in quiet mode until the
application initialization (which includes the application’s program ID) is
complete, but a mismatching channel type identifier might trigger
warnings when using your Micro Server with the LonTalk Interface
Developer utility.

For the NodeBuilder tool, right-click the device template and select
Settings to open the NodeBuilder Device Template Properties dialog.
From the Program ID tab, specify an appropriate program ID.

For the Mini kit application, click Calculate within the Standard
Program Identifier area to open the LonMark Standard Program ID
Calculator to specify the program ID.

3. Specify your target hardware correctly:

• Always build your Micro Server for the correct clock speed. If your
hardware supports multiple clock rates, build one Micro Server for
each. Mismatching clock rates can cause problems during the initial
link-layer connection.

• Always build your Micro Server for the correct transceiver family. If
your hardware supports both TP/FT-10 and PL-20 power line
transceivers, build one Micro Server for each. Within each

248 Custom Micro Servers

transceiver family, the exact details can be configured during
ShortStack application initialization.

• Select the memory map that meets your direct memory files
requirements. See Supporting Direct Memory Files on page 253 for
more information about direct memory files.

4. Review the preferences specified in the MicroServer.h file. See Managing
Memory on page 254 for information about configuring the Micro Server’s
resources within the MicroServer.h file.

5. Build the Micro Server. Link your project with the ShortStack400.lib
library.

Be sure to keep the following files for the custom Micro Server:

• The Micro Server’s device interface file (XIF file extension)

• The Micro Server’s symbol table (SYM file extension)

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE,
NME, or NMF file extensions)

Important: All Micro Server files must share the same base name, which can be
any valid set of characters. However, to avoid confusion with standard Micro
Server images, do not use names that start with SS400_ or similar pattern.

Creating a Custom Micro Server with ISI Support
You can create a custom Micro Server that supports the ISI protocol. However, a
custom Micro Server with ISI support can run only on an FT 3150, PL 3150, PL
3170, or FT 5000 Smart Transceiver. An FT 3120 or PL 3120 Smart Transceiver
does not have sufficient memory to accommodate a Micro Server with ISI
support.

For an ISI device that is not a domain address server, you can use a standard
Micro Server with an FT 3150, PL 3150, PL 3170, or FT 5000 Smart Transceiver.
For a domain address server, you must create a custom Micro Server. A DAS-
enabled Micro Server must run on hardware with at least 512 bytes of additional,
off-chip RAM (or extended RAM for FT 5000 Smart Transceivers). For more
flexibility, supply at least 2 KB RAM (or extended RAM for FT 5000 Smart
Transceivers) for a DAS Micro Server to provide sufficient buffer configurations.

The process for creating a custom Micro Server that supports ISI is similar to the
process described in Creating a Custom Micro Server without ISI Support on
page 246, but includes additional files and additional considerations. Figure 75
on page 249 shows the files that are required to create a custom Micro Server
that supports the ISI protocol.

ShortStack User’s Guide 249

Figure 75. Files for Creating a Custom Micro Server with ISI Support

You edit the MicroServer.h, MicroServer.nc, ShortStackHandlers.h, and
MicroServerIsiHandlers.c files, and compile and link the project with the
ShortStack400Isi.lib (or ShortStack400IsiCpt.lib) library and an appropriate ISI
library (typically, IsiFull.lib) to create your custom Micro Server. Be sure to
select an ISI library that supports all of the functionality that your device
requires; for example, if your device requires that automatic enrollment be able
to replace connections, do not select a small ISI library that does not support
connection removal.

To configure and build a custom Micro Server with ISI support, perform the
following tasks:

1. Create a NodeBuilder or Mini kit project, using the files described in
Table 25 on page 243.

For the NodeBuilder tool:

• Expand the Device Templates folder in the Workspace window, and
right-click one of the target folders (such as Development or Release),
and select Settings to open the NodeBuilder Device Template Target
Properties dialog. In this dialog, select the Linker tab and select
Generate symbol file. Click OK to save the setting and close the
dialog.

• Also in the Linker tab of the NodeBuilder Device Template Target
Properties dialog, you can optionally select Generate map file. A map
file is optional, but recommended.

• For Micro Servers that support authentication, you should export a
configured custom Micro Server, including pre-defined authentication
keys. In the NodeBuilder Device Template Target Properties dialog,
select the Configuration tab and select Export configured. See the

250 Custom Micro Servers

NodeBuilder FX User’s Guide for information about exporting a
configuration.

2. Specify your target hardware correctly:

• Always build your Micro Server for the correct clock speed. If your
hardware supports multiple clock rates, build one Micro Server for
each. Mismatching clock rates can cause problems during the initial
link-layer connection.

• Always build your Micro Server for the correct transceiver family. If
your hardware supports both TP/FT-10 and PL-20 transceivers, build
one Micro Server for each. Within each transceiver family, the exact
details can be configured during the ShortStack initialization phase.

• Select the memory map to meet your direct memory file
requirements. See Supporting Direct Memory Files on page 253 for
more information about direct memory files.

3. Review the preferences in the MicroServer.h file. In particular, you must
uncomment the #define SS_SUPPORT_ISI macro. See Configuring
MicroServer.h for ISI on page 251 for more information.

4. Review the preferences in the ShortStackIsiHandlers.h file.

5. If you implement one or more ISI callback handler functions local to the
Micro Server, review and edit the callback handler functions in the
MicroServer.nc file, as needed.

6. Build the Micro Server:

• Link your project with the ShortStack400Isi.lib (or
ShortStack400IsiCpt.lib) library.

• Link your project with a suitable standard ISI library, such as
IsiFull.lib or IsiCompactDaHb.lib. If resources permit, use the
IsiFull.lib library.

A custom Micro Server that supports the ISI protocol can be used either with an
application that supports ISI or with one that does not. If the application does
not support ISI, it simply does not start the ISI engine (that is, it does not call the
IsiStart() API function). There is minimal performance penalty for a Micro
Server to support a disabled ISI engine.

Be sure to keep the following files for the custom Micro Server:

• The Micro Server’s device interface file (XIF file extension)

• The Micro Server’s symbol table (SYM file extension)

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE,
NME, or NMF file extensions)

• The ShortStackIsiHandlers.h file, but rename it to match the Micro
Server image file (be sure to keep the .h extension)

Important: All Micro Server files must share the same base name, which can be
any valid set of characters. However, to avoid confusion with standard Micro
Server images, do not use names that start with SS400_ or similar pattern.

ShortStack User’s Guide 251

Configuring MicroServer.h for ISI
The MicroServer.h configuration file includes comments that describe how to use
the file. The file provides five ISI-related preferences:

• The SS_SUPPORT_ISI macro enables ISI support.

• The SS_SUPPORT_ISI_S macro controls inclusion of support for an
application that does not support domain acquisition.

• The SS_SUPPORT_ISI_DA macro controls inclusion of support for an
application that supports domain acquisition.

• The SS_SUPPORT_ISI_DAS macro controls inclusion of support for a
domain address server (DAS) application.

• The SS_COMPACT macro specifies that the Micro Server will use the
ShortStack400IsiCpt.lib library, and will have the limitations described
in Table 25 on page 243.

• The SS_CONTROLLED_ENROLLMENT macro specifies that the Micro
Server will support controlled enrolment.

• The SS_ISI_IN_SYSTEM_IMAGE macro indicates that the Micro Server
firmware includes ISI support as part of the Smart Transceiver's system
image. This macro is independent of the SS_SUPPORT_ISI macro, and is
relevant even if ISI support is not configured.

• The SS_5000 macro indicates that the Micro Server will be used with an
FT 5000 Smart Transceiver or Neuron 5000 Processor.

Recommendation: In addition to the SS_SUPPORT_ISI macro, specify both the
SS_SUPPORT_ISI_S and the SS_SUPPORT_ISI_DA macros to support ISI
applications with or without domain acquisition. Because ISI domain address
servers require additional hardware resources (primarily more RAM), specify the
SS_SUPPORT_ISI_DAS macro only if it is needed.

See Managing Memory on page 254 for additional information about configuring
the Micro Server’s resources within the MicroServer.h file.

Configuring ShortStackIsiHandlers.h
For an ISI callback handler function, you can control the location of its
implementation. Specifically, you can choose one of the following actions for
almost every ISI callback handler function:

• Use its default implementation (delivered with the ISI library), and not
override the callback handler function.

Using the default implementation for a callback handler function is the
simplest option, but provides the least customized behavior.

• Implement the callback override within a copy of the
[ShortStack]\Custom MicroServer\MicroServerIsiHandlers.c file (which
runs on the Micro Server).

Implementing a callback override local to the Micro Server can provide
the most responsive ISI implementation, but such a specialized Micro
Server might work only with your specific ISI-enabled host application.

252 Custom Micro Servers

• Implement the callback override within a copy of the
[ShortStack]\Api\ShortStackIsiHandlers.c file (which is part of your
host application).

Implementing a callback override on the host allows you to create a
general-purpose Micro Server, but can require more traffic across the
ShortStack link layer because the Micro Server routes callbacks to the
host using a simple remote procedure call protocol (ISI-RPC).

You control the location of each of the supported ISI callback handler functions in
the [ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h file. This file
includes comments that describe how to override a callback handler function, and
includes recommendations for each callback handler function’s location. Some
callback handler functions are subject to certain restrictions, which are described
in the ShortStackIsiHandlers.h file. For example, some callbacks have fewer
choices for the location of the callback handler, and certain callback handlers
form groups that must always reside in the same location.

Recommendations:

• Implement the ISI connection table local to the Micro Server. The ISI
connection table is a fairly frequently accessed resource; implementing
this table on the host processor can require a high number of ISI-RPC
messages to access this table.

• Implement the IsiUpdateUserInterface() callback handler function within
your host application, so that your application can synchronize its user
interface with the ISI engine.

Important: The IsiGetNvValue() callback handler function must be overridden
within the host application.

The LonTalk Interface Developer utility copies the ShortStackIsiHandlers.h file
to your project directory only if you select a standard Micro Server from the
ShortStack Micro Server Selection page. If you edit this file and re-run the
utility, changes to the file are overwritten. However, if your project directory has
a ShortStackIsiHandlers.h file that you created for a custom Micro Server, the
LonTalk Interface Developer utility does not overwrite the file.

Implementing ISI in
MicroServerIsiHandlers.c
The MicroServerIsiHandlers.c file contains implementations for the Micro
Server-side ISI callback overrides. For callback overrides that run on the host,
the code in the MicroServerIsiHandlers.c file is complete, and contains all the
processing required for the remote procedure call. You must implement the
override within your host application (in ShortStackIsiHandlers.c), but you do
not need to edit the MicroServerIsiHandlers.c file.

For callback overrides that run on Micro Server, you typically need to provide
application-specific code in the MicroServerIsiHandlers.c file. Only those
callback functions that relate to the connection table have a meaningful default
implementation (which implements an ISI connection table with 32 records).

ShortStack User’s Guide 253

Using a Custom Micro Server
For the LonTalk Interface Developer utility, you have two options for a
ShortStack device that uses a custom Micro Server:

• With all of your Micro Server’s image files in a single folder, use the
Browse button on the utility’s ShortStack Micro Server Selection page to
specify your Micro Server’s interface file by name.

• You can create a custom Micro Server database file, which the LonTalk
Interface Developer utility reads when it displays the Micro Server image
files in the Firmware image field of the ShortStack Micro Server
Selection page.

The LonTalk Interface Developer utility reads a standard ShortStack Micro
Server database file (StdServers.xml) to display the values for each of the
supported Micro Servers. This file is in the [ShortStack]\MicroServers directory.

The ShortStack Micro Server database file contains information that is human-
readable as well as machine-readable for each of the supported Micro Servers.
You can view this file in any Web browser that supports the Extensible Markup
Language (XML) with Extensible Stylesheet Language Transformations (XSLT),
such as Windows Internet Explorer 6 or later.

You can create a custom Micro Server database file (UserServers.xml) in the
[ShortStack]\MicroServers directory. The LonTalk Interface Developer utility
can read the user database to display information about custom Micro Servers in
the ShortStack Micro Server Selection window. Use the standard database file
as a template for creating a user database file.

Using a custom Micro Server database file allows you to specify predefined lists
of supported clock rates or transceivers, along with an additional description, so
that you can select the custom Micro Server and be sure of selecting the correct
operating interface for it.

Supporting Direct Memory Files
To allow a custom Micro Server to support the direct memory file (DMF) access
method, you must specify the #pragma enable_dmf compiler directive when you
create the custom Micro Server. Specify this directive, along with other
preferences, in the MicroServer.h configuration file.

You then use the LonTalk Interface Developer utility to specify whether a specific
ShortStack application that uses the custom Micro Server should enable or
disable the DMF access method.

See Using Direct Memory Files on page 189 for information about the benefits
and basic mechanics of the DMF access method.

A Micro Server can receive a memory read or write network management request
that relates either to its own local memory or to non-existent memory (memory
that corresponds to a gap in the Micro Server’s own memory map).

When the Micro Server receives a memory read or write network management
request that can be satisfied from the Micro Server’s own local memory, the
Micro Server responds to the request by accessing its memory. These kinds of
requests allow for normal management tasks, including the loading of a revised
Micro Server image over the network.

254 Custom Micro Servers

For a memory read or write request that does not relate to local memory, but
instead relates to a “gap” in the hardware memory map or to an area declared as
memory-mapped I/O, the Micro Server can have two responses:

• With the DMF access method disabled (or not supported), the Micro
Server replies to such a request with a negative response.

• With the DMF access method enabled, these requests are relayed to the
host processor. It is the responsibility of the host processor to satisfy the
request, or to reply with a failure code.

To allow a custom Micro Server to use the DMF access method, you must leave
an area within the Smart Transceiver’s 64 KB memory space unused. You need
to define your hardware memory map such that it contains an area of undeclared
memory. The standard Micro Servers use the 0xA100..0xCEFF area, but you can
change the size or location of this DMF window in your hardware design.

ShortStack supports only one DMF window. The Micro Server relays all memory
read or write requests that cannot be satisfied locally to the host (if the DMF
access method is enabled), including those relating to disjoint gaps in the memory
map, but the DMF presentation and address translation provided by the LonTalk
Interface Developer utility supports only one DMF window.

Important: The DMF access method requires Version 16 Neuron firmware or
later, and thus is not available for current PL 3120 Smart Transceivers, which
are based on Version 14 firmware. All other standard Micro Server images have
this feature enabled. For custom Micro Servers, if you attempt to enable the
DMF access method for a Smart Transceiver running Version 15 or earlier
firmware, the Neuron C compiler issues a linker error.

Managing Memory
The LonTalk Interface Developer utility’s Neuron C compiler generates four
tables that affect memory usage in on-chip EEPROM within a Smart
Transceiver. The ShortStack Micro Server firmware and network management
tools use these tables to define the network configuration for a device. The four
tables include:

• The address table.
By default, this table is generated at its maximum size, which is 15
entries.

• The alias table.
This table has no default size, and you must specify a size using the
#pragma num_alias_table_entries compiler directive. You can set the
size of the alias table to zero, or any value up to 127.

• The domain table.
By default, this table is generated at its maximum size, which is 2
entries. You should not normally change this default.

• The network variable configuration table.
This table contains one entry for each network variable that is declared
in the model file. Each element of a network variable array counts
separately.

ShortStack User’s Guide 255

See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 / PL 3150 /
PL 3170 Power Line Smart Transceiver Data Book, or the Series 5000 Chip Data
Book for detailed descriptions of these tables.

Address Table
The address table contains the list of network addresses to which the device
sends implicitly addressed network variable updates or polls, or sends implicitly
addressed application messages. You can configure the address table through
network management messages from a network management tool.

By default, the address table contains 15 entries. Each address table entry uses
five bytes of on-chip EEPROM (extended RAM for a Series 5000 Micro Server).
Use the following compiler directive to specify the number of address table
entries:

#pragma num_addr_table_entries nn

where nn can be any value from 0 to 15.

Recommendation: Whenever possible, specify the maximum size of 15 entries for
the address table.

Alias Table
An alias is an abstraction for a network variable that is managed by network
management tools, the ISI engine, and the Micro Server firmware. Network
management tools and the ISI engine use aliases to create connections that
cannot be created solely with the address and network variable tables. Aliases
provide network integrators flexibility for how devices are installed into
networks.

The alias table has no default size, and can contain between 0 and 127 entries.
Each alias entry uses four bytes of on-chip EEPROM (extended RAM for a Series
5000 Micro Server). Use the following compiler directive to specify the number of
alias table entries:

#pragma num_alias_table_entries nnn

where nnn can be any value from 0 to 127 (or 0 to 62 for PL 3120 Micro Servers
with Version 14 firmware). Subject to the Micro Server’s preferences and
hardware capabilities, it might not be possible to implement the maximum
number of aliases.

Recommendation: Specify the number of entries for the alias table, within the
amount of available on-chip EEPROM. The number of required entries is
typically fewer than the maximum of 127. The following calculation provides a
useful starting point for the alias table size, nnn:

nnn = 0; for nv_count = 0

nnn = 10 + (nv_count / 3); for nv_count > 0

The number of aliases defined here is fixed, and cannot be changed from the
ShortStack application. You should use any special knowledge that you have
about the application to set the size of the alias table appropriately. A small
number of aliases can prevent you from using the device in a complex network,

256 Custom Micro Servers

but a large number of unused aliases can reduce the Micro Server’s throughput
and the overall device performance.

Domain Table
By default, the domain table is configured for two domains. Each domain uses 15
bytes of on-chip EEPROM (extended RAM for a Series 5000 Micro Server). The
number of domain table entries is dependent on the network in which the device
is installed; it is not dependent on the application.

Use the following compiler directive to specify the number of domain table
entries:

#pragma num_domain_entries n

where n can be either 1 or 2.

Recommendation: Specify the maximum of 2 domain table entries. LONMARK
International requires all interoperable LONWORKS devices to have two domain
table entries. Reducing the size of the domain table to one entry will prevent
certification.

Network Variable Configuration Table
This table contains one entry for each network variable that is declared in the
model file. Each element of a network variable array counts separately.

The maximum size of the network variable configuration table is 254 entries,
provided that there are sufficient available EEPROM resources (extended RAM
resources for a Series 5000 Micro Server). Each entry uses three bytes of
EEPROM (or extended RAM). You cannot change the size of this table, except by
adding or deleting network variables.

You can use the following compiler directive to specify the maximum number of
network variables that the Micro Server supports, which in turn, affects the size
of the network variable configuration table:

#pragma set_netvar_count nnn

where nnn can be any value from 0 to 254 (or 0 to 62 for PL 3120 Micro Servers
with Version 14 firmware). Subject to the Micro Server’s preferences and
hardware capabilities, it might not be possible to implement the maximum
network variable capacity.

The actual number of network variables is set by the application. Unlike for the
alias table, providing support for more network variables than are needed does
not affect the device’s throughput. However, the total number of network
variables declared for a device does affect its overall throughput and the time
that the device might require for reset; also the maximum number of network
variables declared with this directive affects the amount of memory required by
your custom Micro Server.

ShortStack User’s Guide 257

13

Converting a ShortStack 2
Application to a ShortStack FX

Application

This chapter describes the steps that are required to migrate
a ShortStack application that uses the ShortStack 2 API to
one that uses the ShortStack FX LonTalk Compact API with
a ShortStack FX Micro Server.

For your application to benefit from the new features and
capabilities introduced with ShortStack 2.1 or ShortStack
FX, you must upgrade your ShortStack 2 application.

258 Converting a ShortStack 2 Application to a ShortStack FX Application

Overview
Because there are a number of changes to the ShortStack FX LonTalk Compact
API and link-layer protocol compared to ShortStack 2, and because there are new
features provided by ShortStack FX, you cannot use an unmodified ShortStack 2
application with a ShortStack FX Micro Server. That is, you must migrate the
ShortStack host application from ShortStack 2 to ShortStack FX. However, you
do not need to migrate from ShortStack 2 to ShortStack 2.1 before migrating to
ShortStack FX; you can migrate from ShortStack 2 directly to ShortStack FX.

Important: To complete the migration for a ShortStack 2.1 host application and
use a ShortStack FX Micro Server, you need only run the LonTalk Interface
Developer utility from the ShortStack FX Developer’s Kit and recompile the
application. No changes to the host application or link-layer driver are required.
However, the Micro Server attributes must be the same (except for its version
number), that is, it must use the same clock setting, transceiver type, and so on.

If you are migrating an existing ShortStack device from a Series 3100 Micro
Server to a Series 5000 Micro Server, see Application Migration: Series 3100 to
Series 5000 on page 195 for additional considerations.

A typical migration from ShortStack 2 to ShortStack FX consists of the following
steps:

1. Save your original ShortStack 2 design for reference.

2. Update your device’s Micro Server to use a ShortStack FX standard or
custom Micro Server.

Important: Ensure that you load the appropriate Micro Server image for
your device’s Smart Transceiver. For a standard Micro Server, the image
files are in the [ShortStack]\MicroServers directory.

3. Run the LonTalk Interface Developer utility to generate the ShortStack
FX application framework files based on your existing model file and
device characteristics.

4. Update the serial driver to use the ShortStack FX initialization sequence,
link-layer message types, and the naming conventions.

5. Update the host API files by manually merging the new host API with
the old ported API, preserving any application-specific changes.

6. Update the application code to meet ShortStack FX naming conventions
and API changes.

A general estimate for the effort required to migrate a ShortStack 2 application
to ShortStack FX is two to three days per application or port. This estimate does
not include any additional effort that is required to support new features, but
porting multiple devices that share the same or similar hardware will likely be
faster after you have completed the process for the first device.

Important: If you use a ShortStack solution with a generic Neuron Chip, you can
continue to use the ShortStack 2 Micro Server. Echelon does not plan to release
updates or fixes to the ShortStack 2 Micro Servers. The discontinued images are
available for download from www.echelon.com/downloads, in the Archived
Downloads section.

http://www.echelon.com/downloads

ShortStack User’s Guide 259

Reorganization of API Files
The ShortStack FX LonTalk Compact API file structure is significantly different
than the ShortStack 2 API file structure.

A ShortStack 2 application required many include files and two API
implementation files. The organization of these files was simplified for
ShortStack 2.1 (ShortStack FX uses the same organization), and now includes
two implementation files (one for the API implementation and one for utilities
used by the API implementation), and a small number of include files.

Table 26 lists the correspondences between the ShortStack 2 and ShortStack FX
LonTalk Compact API files. You should incorporate all of the new ShortStack FX
files into the application, and merge any application-specific changes that you
made to the old API files into the new ones.

Table 26. ShortStack 2 API Files and ShortStack FX LonTalk Compact API Files

ShortStack 2 File ShortStack FX File Description

LonApi.c ShortStackApi.c Principal API implementation file

— ShortStackInternal.c Utilities functions used by the API.

LonApp.c ShortStackHandlers.c Templates for application-specific
callback handler function
implementations

platform.h LonPlatform.h Portability support

— LonBegin.h

LonEnd.h

Optional files that are typically used
for processor-specific packing and
byte alignment control (if necessary)

— ShortStackTypes.h Defines all type definitions,
structures, and enumerations that
are used by the API

— ShortStackIsiHandlers.h Optional file (ISI only) that allows
control over the location of ISI
callback functions

— ShortStackIsiTypes.h

ShortStackIsiApi.h

ShortStackIsiApi.c

ShortStackIsiInternal.c

ShortStackIsiHandlers.c

Optional files (ISI only) that
implement the ISI API for
ShortStack

260 Converting a ShortStack 2 Application to a ShortStack FX Application

ShortStack 2 File ShortStack FX File Description

lonaccess.h

lonaddr.h

lonapp.h

lonerr.h

lonmgmt.h

lonmodel.h

lonmsg.h

lonopts.h

lonsicb.h

lonstate.h

— Now integrated into ShortStackApi.h
and ShortStackTypes.h

filedir.h — Now integrated into ShortStackDev.h

LonDev.c

LonDev.h

ShortStackDev.c

ShortStackDev.h

Generated by LonTalk Interface
Developer utility (ShortStack Wizard
for ShortStack 2)

Support for Added Features
Several features were added to ShortStack 2.1, and new ones have been added for
ShortStack FX. See What’s New for ShortStack 2.1 on page iv and What’s New
for ShortStack FX on page iii for a brief summary of these new features. Most of
these features required changes to the ShortStack LonTalk Compact API, its
implementation, and the link layer protocol.

New API Naming Conventions
The names of types and of functions that are used with the API were changed for
ShortStack 2.1 (ShortStack FX uses the same names). This name change serves
three primary goals:

• The new names are more consistent and aligned with current
recommendations and conventions, which makes the API more consistent
and easier to learn.

• The new names use name prefixes that provide unique names, rather
than relying on explicit namespaces (which are not provided by the ANSI
C language). These prefixes make it easier to integrate the ShortStack
LonTalk Compact API and the ShortStack application framework with
your application and environment.

• The new names are consistent with the LonTalk API used by the FTXL
3190 Free Topology Transceiver chip, which simplifies sharing code
between applications written for a ShortStack Micro Server and
applications written for the FTXL Transceiver.

ShortStack User’s Guide 261

When migrating your existing application to ShortStack FX, you must change
these names, wherever they are used within your application, to meet the new
guidelines.

In the source code comments for the ShortStack LonTalk Compact API, most of
the functions and data structures provide the ShortStack 2 name so that you can
search the API source code for the ShortStack 2 name and find the equivalent
ShortStack FX name. For example, if you search for config_data_struct, you will
find LonConfigData.

See ShortStack FX Naming Conventions on page 288 for more information on the
naming convention.

Improved Portability Support
Portability for the ShortStack LonTalk Compact API and ShortStack application
framework has been greatly improved; see Portability Overview on page 110 for a
description of related changes.

All types defined for use with the ShortStack LonTalk Compact API have been
redefined to meet these guidelines. Thus when you migrate an application that
accesses members of these types, you will likely also need to change the related
code.

Recommended Migration Process

The following process is recommended to perform this migration:

1. Save your ShortStack 2 existing design, including the Micro Server image
files and all other data that you might need to reproduce the device from
the ShortStack 2 baseline.

2. Update your device’s Micro Server to a ShortStack FX Micro Server. See
Preparing the ShortStack Micro Server on page 31 for more information.
Because the FX Micro Server uses the same pin-out as the ShortStack 2
Micro Server, no hardware changes should be required.

Important: If your current device does not use an Echelon FT or PL
Smart Transceiver, you must change your Micro Server hardware. In
addition, ensure that you load the appropriate Micro Server image for
your device’s Smart Transceiver.

3. Run the LonTalk Interface Developer utility with a copy of your original
application’s model file to generate the ShortStack FX application
framework files. See Using the LonTalk Interface Developer Utility on
page 145 (or the utility’s online help) for information about using the
LonTalk Interface Developer utility.

4. Migrate your ShortStack 2 serial driver to a ShortStack FX serial driver.
See Modifying the Serial Driver on page 262 for more information. If
your ShortStack device uses a host processor for which a ShortStack FX
example application is available, you might be able to derive your
ShortStack FX driver from one of these example implementations.

5. Move code that implements your ShortStack callback functions from the
ShortStack 2-based application and its lonapp.c file to the new
ShortStackHandlers.c file.

262 Converting a ShortStack 2 Application to a ShortStack FX Application

Modifying the Serial Driver
Many of the changes for ShortStack FX (such as the new initialization sequence
and the new link-layer messages) should not affect the serial driver. However,
because of the change in naming conventions (see ShortStack FX Naming
Conventions on page 288 or the ShortStackApi.h file), you do need to make at
least minor changes to the serial driver, including changing the names of the
functions implemented by the driver.

One change for ShortStack FX that does require a change to the serial driver is
the support for more than 62 network variables. If your ShortStack application
uses more than 62 network variables, the driver requires an extra handshake to
process an extra two bytes of header information. See Chapter 6, Creating a
ShortStack Serial Driver, on page 89, for more information about the serial
driver.

In addition, some of the serial driver functions return success or error codes that
you might need to update to comply with the FX API.

The serial driver code should follow the ShortStack FX naming conventions listed
in ShortStack FX Naming Conventions on page 288 when defining types and
variables; however, following these conventions within the driver is not required.

Example Conversion
As an example of the tasks required for a conversion of a ShortStack 2
application and serial driver to use the ShortStack FX LonTalk Compact API,
this section describes a conversion for the ShortStack 2 Nios II Example Port
(available on the Echelon Web site at www.echelon.com/shortstack). This
example port provides a simple example for a 3120 device that uses an Altera
Nios II processor. For more information about the example port, see the
ShortStack 2 Nios II Example Port User’s Guide (078-0354-01A).

To enable the ShortStack 2 Nios II Example Port to use the ShortStack FX
LonTalk Compact API and feature set, you must make modifications to the
following parts of the example port:

• The properties and files defined within the Nios integrated development
environment (IDE)

• The serial driver

• The application, including callback handler functions

In general, for a conversion from the ShortStack 2 API to the ShortStack FX
LonTalk Compact API, you should not need to modify any files that are
generated by the LonTalk Interface Developer utility.

The changes described in this section are specific to the ShortStack 2 Nios II
Example Port, but the changes are representative of the kinds of changes that
you would make for any ShortStack 2 driver and application.

Changes within the Nios II IDE
Because ShortStack FX uses different file names and assumes a different file
directory structure than the ShortStack 2 Nios II Example Port uses, you cannot
leave all of the example port’s files in the project’s workspace. You can either

http://www.echelon.com/shortstack

ShortStack User’s Guide 263

create a new workspace and copy the necessary files into it (including the files
generated by the LonTalk Interface Developer utility), or exclude certain existing
files from being compiled and built with the project.

To exclude files from the build, right-click the file and select Properties to open
the Properties window. Select C/C++ Build from the left-hand pane. In the
right-hand pane, select Exclude from build from the Active Resource
configuration area. Click OK to apply the change and close the Properties
window.

The files that you need to exclude from the build are all *.c files in the \api folder
and the LonDev.c file in the \wizard folder. See the ShortStack 2 Nios II
Example Port User’s Guide for a description of the example port’s directory
structure.

Because the LonPlatform.h file defines the GCC_NIOS symbol rather than the
GCC symbol for the GNU Compiler Collection (GCC) compiler that the Nios IDE
uses, you must add the symbol to the project’s properties. Right-click the
application (Application_FT or Application_PL) in the Projects pane, and select
Properties to open the Properties window. Select C/C++ Build from the left-hand
pane. On Tool Settings tab, select Preprocessor. In the Defined Symbols area,
click the Add button to add the GCC_NIOS symbol. You should move the new
symbol to appear directly below the ALT_DEBUG symbol. You can leave or
delete the GCC symbol (if defined).

Changes to the Serial Driver
The implementation of the serial driver for the ShortStack 2 Nios II Example
Port is contained in the \driver directory. As described in Table 27, half of the
serial driver’s source files require changes for the conversion to the ShortStack
FX LonTalk Compact API. The majority of the changes are in the primary file for
the serial driver, ldvintfc.c.

Table 27. ShortStack 2 Nios II Example Port Serial Driver Files

File
Changes Required for
ShortStack FX? Description

hndshk.h No Function prototypes to access reset and handshake
lines

ldvintfc.h Yes Function prototypes for the serial driver

ldvqueue.h Yes Data structure definitions for the receive and
transmit buffers used by the serial driver

ldvsci.h Yes Function prototypes and data structure definitions
for the lower-layer serial driver (SCI interface)

londrv.h No Conditional compilation definitions that control
whether driver uses SCI or SPI interface

lonsystem.h No Definitions for literals that control compile-time
options

264 Converting a ShortStack 2 Application to a ShortStack FX Application

File
Changes Required for
ShortStack FX? Description

hndshk.c No Functions to access reset and handshake lines

ldvintfc.c Yes Functions for the serial driver

ldvqueue.c Yes Utility functions to access buffer queues used by
the driver

ldvsci.c Yes Lower-layer serial driver (SCI interface)

londrv.c No Conditional compilation definitions that control
whether driver uses SCI or SPI interface

The following sections describe the changes that are needed for the conversion to
the ShortStack FX LonTalk Compact API in the ShortStack 2 Nios II Example
Port serial driver.

ldvintfc.h
The ldvintfc.h file can be deleted from the project. This file contains function
prototypes for the ShortStack 2 serial driver API functions (ldv_init(),
ldv_flush_msgs(), ldv_allocate_msg(), ldv_put_msg(), ldv_put_msg_init(),
ldv_get_msg(), and ldv_release_msg()). However, the function prototypes for the
equivalent ShortStack FX serial driver API functions (LdvInit(), LdvFlushMsgs(),
LdvAllocateMsg(), LdvPutMsg(), LdvPutMsgBlocking(), LdvGetMsg(),
LdvReleaseMsg(), and LdvReset()) are in the ShortStackApi.h file.

ldvqueue.h
The ldvqueue.h file requires the following types of changes, as listed in Table 28:

• Change the included header files.

• Change buffer size definitions (the size definitions correspond to the
buffer sizes defined in ShortStackDev.h).

Table 28. Changes for ldvqueue.h

From To

#include "platform.h"
#include "LonDev.h"

#include "ShortStackDev.h"
#include "LonPlatform.h"

#define SYSRXBUFSIZE
MIP_APP_INPUT_BUFSIZE

#define SYSTXBUFSIZE
MIP_APP_OUTPUT_BUFSIZE

#define SYSRXBUFSIZE
LON_APP_INPUT_BUFSIZE

#define SYSTXBUFSIZE
LON_APP_OUTPUT_BUFSIZE

ShortStack User’s Guide 265

ldvsci.h
The ldvsci.h file requires changes to the included header files, as listed in Table
29.

Table 29. Changes for ldvsci.h

From To

#include "platform.h"
#include "system.h"
#include "lonmsg.h"

#include "LonPlatform.h"
#include "system.h"
#include "ShortStackTypes.h"

ldvintfc.c
The ldvintfc.c file is the primary file for the serial driver, and requires the most
changes. The changes required include the following types of changes, as listed
in Table 30:

• Change the included header files.

• Change function calls for the ldv_* functions (some of these functions
have return values for the ShortStack FX LonTalk Compact API).

• Change references to Bool and Byte types (the FX types are defined in
LonPlatform.h).

• Modify the ldv_put_msg_init() function so that it returns a value (a more
correct implementation would return a meaningful return value and
would include a timeout within the SysPutMsgInit() function; see Add
Timeout Detection on page 272).

• Change the TRUE and FALSE return values in the ldv_allocate_msg()
function (the FX return values are defined in ShortStackTypes.h).

• Change the TRUE and FALSE return values in the ldv_get_msg()
function (the FX return values are defined in ShortStackTypes.h).

• Add the LdvReset() function.

Table 30. Changes for ldvintfc.c

From To

#include "platform.h"
#include "lonmsg.h"
#include "ldvqueue.h"
#include "londrv.h"
#include "ldvsci.h"

#include "ShortStackDev.h"
#include "LonPlatform.h"
#include "ShortStackTypes.h"
#include "ldvqueue.h"
#include "londrv.h"
#include "ldvsci.h"

266 Converting a ShortStack 2 Application to a ShortStack FX Application

From To

void ldv_flush_msgs(void)

void ldv_init(void)

Bool ldv_get_msg(LonSmipMsg**
ppMsg)

void ldv_release_msg(const
LonSmipMsg* pMsg)

Bool ldv_allocate_msg(LonSmipMsg**
ppMsg)

void ldv_put_msg(const LonSmipMsg*
pMsg)

void ldv_put_msg_init(const
LonSmipMsg* pMsg)

—

void LdvFlushMsgs(void)

void LdvInit(void)

LonApiError LdvGetMsg(LonSmipMsg**
ppMsg)

void LdvReleaseMsg(const
LonSmipMsg* pMsg)

LonApiError
LdvAllocateMsg(LonSmipMsg** ppMsg)

void LdvPutMsg(const LonSmipMsg*
pMsg)

LonApiError LdvPutMsgBlocking(const
LonSmipMsg* pMsg)

void LdvReset(void)

Bool

Byte

LonBool

LonByte

void ldv_put_msg_init(const
LonSmipMsg* pMsg)
{
 SysPutMsgInit(pMsg);

}

LonApiError LdvPutMsgBlocking(const
LonSmipMsg* pMsg)
{
 SysPutMsgInit(pMsg);
 return LonApiNoError;
}

Bool ldv_allocate_msg (LonSmipMsg**
ppMsg)
{
 QElement* element;

 SysDisableInterrupts();

 element = DeQueue(qfreeout);

 SysEnableInterrupts();

 if (element != NULL)
 {
 *ppMsg =
(LonSmipMsg*)(((SysTxBuf*)element)
->data);
 return TRUE;
 }
 else
 {
 return FALSE;
 }
}

LonApiError
LdvAllocateMsg(LonSmipMsg** ppMsg)
{
 QElement* element;

 SysDisableInterrupts();

 element = DeQueue(qfreeout);

 SysEnableInterrupts();

 if (element != NULL)
 {
 *ppMsg =
(LonSmipMsg*)(((SysTxBuf*)element)
->data);
 return LonApiNoError;
 }
 else
 {
 return LonApiTxBufIsFull;
 }
}

ShortStack User’s Guide 267

From To

void ldv_put_msg_init (LonSmipMsg**
ppMsg)
{
 QElement* element;

 SysDisableInterrupts();

 element = DeQueue(qincoming);

 SysEnableInterrupts();

 if (element != NULL)
 {
 *ppMsg =
(LonSmipMsg*)(((SysRxBuf*)element)
->data);
 return TRUE;
 }
 else
 {
 return FALSE;

 }
}

LonApiError LdvGetMsg(LonSmipMsg**
ppMsg)
{
 QElement* element;

 SysDisableInterrupts();

 element = DeQueue(qincoming);

 SysEnableInterrupts();

 if (element != NULL)
 {
 *ppMsg =
(LonSmipMsg*)(((SysRxBuf*)element)
->data);
 return LonApiNoError;
 }
 else
 {
 return LonApiRxMsgNotAvailable;
 }
}

—

void LdvReset(void) {
 SysResetSCI(); /* in LdvSci.c */
}

ldvqueue.c
The ldvqueue.c file requires changes to the references to Bool and Byte types (the
FX types are defined in LonPlatform.h), as listed in Table 31.

Table 31. Changes for ldvqueue.c

From To

Bool

Byte

LonBool

LonByte

ldvsci.c
The ldvsci.c file requires the following types of changes, as listed in Table 32 on
page 268:

• Change the included header files.

• Change references to Bool and Byte types (the FX types are defined in
LonPlatform.h).

268 Converting a ShortStack 2 Application to a ShortStack FX Application

Table 32. Changes for ldvsci.c

From To

#include "platform.h"
#include "lonmsg.h"

#include "ldvsci.h"
#include "ldvqueue.h"

#include "ShortStackDev.h"
#include "LonPlatform.h"
#include "ShortStackTypes.h"
#include "ldvsci.h"
#include "ldvqueue.h"

Bool

Byte

LonBool

LonByte

To support the extended link-layer header for network variables with indexes
greater than 62, you need to modify the state machine within the serial driver. A
simple such change would be to add an additional check to the TX_Len state for
the presence of the extended link-layer header, as shown below.

/* Check to see if info byte needs to be sent */
if (G_DriverStatus.pTxMsg[G_DriverStatus.tx_nextchar-1] ==
 (LonNiNv | LON_NV_ESCAPE_SEQUENCE)) {
 AssertRTS();
 WaitForCTSLow();
 DeassertRTS();

 /* Write the first Info byte */
 IOWR_ALTERA_AVALON_UART_TXDATA(SHORTSTACK_UART_BASE,
 ((LonSicb*) ((LonSmipMsg*) G_DriverStatus.pTxMsg)
 ->Payload)->NvMessage.Index);

 /* Write the second Info byte */
 IOWR_ALTERA_AVALON_UART_TXDATA(SHORTSTACK_UART_BASE,
 0x00);

}

This code compares the data in the driver buffer with the
LON_NV_ESCAPE_SEQUENCE value (defined in ShortStackDev.h); if the value
is equal, the code performs the handshake with the Micro Server and writes the
two extended link-layer bytes. If the value is not equal, the code does nothing.

See the ShortStack FX ARM7 Example Port for a more complete example of a
serial driver that handles the extended link-layer header.

Changes to the Application
Changes to the application include changes to the main.c file and changes to the
callback handler functions.

For a ShortStack 2 application, the callback handler functions were often defined
in the lonapp.c file. For a ShortStack FX application, they are defined in the
ShortStackHandlers.c file. In many cases, you can copy the existing callback
code from lonapp.c to ShortStackHandlers.c without any changes.

ShortStack User’s Guide 269

The following sections describe the changes that are needed for the conversion of
the main.c file and the callback handler functions.

main.c
The main.c file requires the following types of changes, as listed in Table 33:

• Change the included header files.

• Change the calls to the lonInit() and lonEventHandler() functions.

• Modify the call to the lonInit() function to handle the return value (and
take appropriate action, which for the example application is simply to
display the result to the IDE console).

Table 33. Changes for main.c

From To

#include "system.h"
#include "platform.h"
#include "lonapi.h"
#include "londev.h"
#include "hndshk.h"

#include "system.h"
#include "ShortStackDev.h"
#include "LonPlatform.h"
#include "ShortStackApi.h"
#include "hndshk.h"

lonInit();

lonEventHandler();

LonInit();

LonEventHandler();

printf ("Initializing LON...");
LonInit();

printf ("done.\n");
printf ("You can use LonMaker to
test your device now.\n");

printf ("Initializing LON...");
LonApiError rc = LonInit();
if (rc == LonApiNoError) {
 printf ("done.\n");
 printf ("You can use LonMaker to
test your device now.\n");
}
else {
 printf("Failed. RC=%d\n", rc);
}

Callback Handler Functions
The example application has modified code for only one callback handler
function, LonNvUpdateOccurred(). This function processes updates to the two
input network variables defined for the example device.

The LonNvUpdateOccurred() function in the ShortStackHandlers.c file requires
the following types of changes, as listed in Table 34 on page 270:

• Copy the existing code from the lonNvUpdateOccurred() function in
lonapp.c to the LonNvUpdateOccurred() function in
ShortStackHandlers.c.

• Ensure that the LonNvUpdateOccurred() function has the correct
parameters (they are slightly different than the parameters for the 2.0
lonNvUpdateOccurred() function) – if you use the function as generated
by the LonTalk Interface Developer utility, no change is necessary.

270 Converting a ShortStack 2 Application to a ShortStack FX Application

• Change the network variable index values used for the case statements
(the index values are defined in ShortStackDev.h).

• When setting an attribute value for a structured output network variable,
use the LON_SET_ATTRIBUTE macro (the macro is defined in
ShortStackTypes.h and the attribute values are defined in
LonNvTypes.h).

• When retrieving or setting the value for a single-valued output network
variable, use the LON_GET_SIGNED_WORD and
LON_SET_SIGNED_WORD macros (defined in ShortStackTypes.h).

• Change the call to the lonPropagateNv() function, the network variable
index value passed to it, and its return value.

Table 34. Changes for the LonNvUpdateOccurred() Callback Handler Function

From To

void lonNvUpdateOccurred(const Byte
nvIndex, const RcvAddrDtl* const
pNvInAddr)

void LonNvUpdateOccurred(const
unsigned index, const
LonReceiveAddress* const
pSourceAddress)

case NVIDX_nviRequest:

case NVIDX_nviVolt:

case LonNvIndexNviRequest:

case LonNvIndexNviVolt:

nvoStatus.invalid_id = 1;

nvoStatus.invalid_request = 1;

LON_SET_ATTRIBUTE(nvoStatus,
LON_INVALIDID, 1);

LON_SET_ATTRIBUTE(nvoStatus,
LON_INVALIDREQUEST, 1);

nvoVolt =
NET_SWAB_WORD(2*NET_SWAB_WORD(nviVolt)
);

LON_SET_SIGNED_WORD(nvoVolt,
LON_GET_SIGNED_WORD(nviVolt) * 2);

if (lonPropagateNv(NVIDX_nvoVolt) !=
API_NO_ERROR)

if
(LonPropagateNv(LonNvIndexNvoVolt)
!= LonApiNoError)

Complete code for the modified LonNvUpdateOccurred() function is shown below.

void LonNvUpdateOccurred(const unsigned index, const
LonReceiveAddress* const pSourceAddress)
{
 switch (index)
 {
 case LonNvIndexNviRequest:
 nvoStatus.object_id = nviRequest.object_id;
 LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDID, 1);
 LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDREQUEST, 1);
 break;

 case LonNvIndexNviVolt:

ShortStack User’s Guide 271

 LON_SET_SIGNED_WORD(nvoVolt,
 LON_GET_SIGNED_WORD(nviVolt) * 2);
 if (LonPropagateNv(LonNvIndexNvoVolt) != LonApiNoError)
 {
 // Handle error here, if desired.
 }
 break;

 default:
 break;
 }
}

Additional Recommended Changes
In addition to the changes to the serial driver and application described in the
previous sections, this section describes a few additional, optional, changes for
the ShortStack FX implementation that can improve the application.

As with the changes described for the serial driver, the LonTalk Interface
Developer files, and the application, the changes described in this section are
specific to the ShortStack 2 Nios II Example Port, but are representative of the
kinds of changes that you might make for any ShortStack 2 driver and
application.

Modify the Model File
The model file (Sample_Node.nc) for the ShortStack 2 Nios II Example Port
includes a node object of type SFPTnodeObject. However, the application does
not use the node object (the LonNvUpdateOccurred() function in the
ShortStackHandlers.c file simply returns an invalid request).

In addition, the model file uses a controller functional block that is based on an
obsolete functional profile (SFPTcontroller). Because the controller functional
block is deprecated, the example is not compliant with current LONMARK
Interoperability Guidelines, which are available at www.lonmark.org.

Recommendations:

• Either remove the node object from the model file and re-run the LonTalk
Interface Developer utility, or add code to the LonNvUpdateOccurred()
function to handle the updates to the node object.

• Replace the functional profile (SFPTcontroller) for the functional block
with a functional profile that complies with current LONMARK
interoperability guidelines. For example, change the functional profile to
SFPTclosedLoopActuator. The functional block still defines the same two
network variables, nviVolt and nvoVolt.

Add Range and Error Checking

Because the ShortStack 2 Nios II Example Port is not intended to act as a
production ShortStack device, it does not perform as much range checking or
error checking as a production device’s application would.

http://www.lonmark.org/

272 Converting a ShortStack 2 Application to a ShortStack FX Application

For example, add range checking for updates to the nviVolt network variable in
the LonNvUpdateOccurred() function to ensure that the application does not set
the voltage levels to invalid or erroneous values.

/* Limits for nviVolt */
#define MIN_VOLT (-32768/2)
#define MAX_VOLT (32767/2)

…

case LonNvIndexNviVolt:
{
 /* Whenever nviVolt is updated, set nvoVolt to twice
 the value of nviVolt.
 */
 int value = LON_GET_SIGNED_WORD(nviVolt);
 if (value > MAX_VOLT) {
 /* Input value is out of range. Set it to maximum */
 value = MAX_VOLT;
 LON_SET_SIGNED_WORD(nviVolt, value);
 }
 else if (value < MIN_VOLT) {
 /* Input value is out of range. Set it to minimum */
 value = MIN_VOLT;
 LON_SET_SIGNED_WORD(nviVolt, value);
 }
 LON_SET_SIGNED_WORD(nvoVolt, value * 2);

 /* Propagate the NV onto the network. */
 if (LonPropagateNv(LonNvIndexNvoVolt) != LonApiNoError) {
 /* Handle error here, if desired. */
 }
 break;
}

Add Timeout Detection

The current implementation of the LdvPutMsgBlocking() function (in the
SysPutMsgInit() function) does not perform error checking to ensure that it does
not wait forever to send a message to the Micro Server. It is important that this
function not block indefinitely so that the LonInit() function can complete. Thus,
a more correct implementation would add timeout detection, and return the
appropriate error code:

1. Add a field to the DriverStatus structure (in the ldvsci.h file) for a
timeout value for sending a message from the driver to the Micro Server.
For example:
typedef LON_STRUCT_BEGIN(LdvDriverStatus)
{
 …
 LonUbits32 PutMsgTimeout;
} LON_STRUCT_END(LdvDriverStatus);

2. Define an appropriate timeout value for the serial link (in the ldvsci.h
file). For example, set the timeout to 60 seconds (as 60000 milliseconds):
#define LDV_PUTMSGTIMEOUT 60000

ShortStack User’s Guide 273

3. Near the beginning of the LdvPutMsgBlocking() function, set the driver
status for the timeout value. For example:
DriverStatus.PutMsgTimeout = LDV_PUTMSGTIMEOUT;

4. Within the first while loop (while (!bSuccess)) of the
LdvPutMsgBlocking() function, add a check for the timeout value. For
example:
/* Check the timer */
if (DriverStatus.PutMsgTimeout == 0) {
 /* The timer has expired. */
 /* Declare the Micro Server as unresponsive */
 SysEnableInterrupts();
 result = LonApiMicroServerUnresponsive;
 break;
}

5. Similarly, within the second while loop (while ((G_DriverStatus.TxInit ==
TRUE))) of the LdvPutMsgBlocking() function, add the same check for
the timeout value described in item number 4. Also, remove the 50000 μs
sleep from this while loop.

The changes described in this section are optional because the current
implementation provides the same behavior as the ShortStack 2 serial driver,
and behavioral changes might require extra testing for your ShortStack device.
However, a production device should ensure that the LdvPutMsgBlocking()
function does not block indefinitely.

ShortStack User’s Guide 275

A

LonTalk Interface Developer
Command Line Usage

This appendix describes the command-line interface for the
LonTalk Interface Developer utility. You can use this
interface for script-driven or other automation uses of the
LonTalk Interface Developer utility.

276 LonTalk Interface Developer Command Line Usage

Overview
The LonTalk Interface Developer utility consists of two main components:

• The LonTalk Interface Developer graphical user interface (GUI), which
collects your preferences and displays the results

• The LonTalk Interface Builder, which processes the data from the GUI
and generates the required output files

If you plan to run the LonTalk Interface Developer in an unattended mode, for
example as part of an automated build process, you can use the command-line
interface to the LonTalk Interface Builder part of the LonTalk Interface
Developer utility.

All commonly used project preferences are available through either the GUI or
the command line interface.

To run the LonTalk Interface Builder tool for ShortStack, open a Windows
command prompt (Start → Programs → Accessories → Command Prompt), and
enter the following command from LonWorks Interface Developer directory
(\LonWorks\InterfaceDeveloper):

libs

Command Usage
The following command usage notes apply to running the libs command:

• If no command switches or arguments follow the command name, the tool
responds with usage hints and a list of available command switches.

• Most command switches come in two forms: A short form and a long
form.

The short form consists of a single, case-sensitive, character that
identifies the command, and must be prefixed with a single forward slash
'/' or a single dash '-'. Short command switches can be separated from
their respective values with a single space or an equal sign. Short
command switches do not require a separator; the value can follow the
command identifier immediately.

The long form consists of the verbose, case-sensitive, name of the
command, and must be prefixed with a double dash '- -'. Long command
switches require a separator, which can consist of a single space or an
equal sign.

Examples:
Short form: libs –n …

Long form: libs --source …

• Multiple command switches can be separated by a single space.

• Commands of a Boolean type need not be followed by a value. In this
case, the value yes is assumed. Possible values for Boolean commands
are yes, on, 1, +, no, off, 0, - (a minus sign or dash).

ShortStack User’s Guide 277

Examples:
libs -–queryapi=yes
libs --queryapi

• Commands can be read from the command line or from a command file
(script file). A command file contains empty lines, lines starting with a
semicolon (comment lines), or lines containing one command switch on
each line (with value as applicable). The file extension can be any
characters, but it is recommended that you use the “.libs” extension. For
the command line, you must use quotation marks for strings that include
spaces. However, do not include the quotation marks in a command file
(spaces in strings are supported for command files).

Example command file:

; LIBS command file for myProject
--source=myModelFile.nc
--basename=myProjectVer1
--server= SS400_FT3120E4_40000kHz
--clock=10
--multiplier=1/2
--pid=9F:FF:FF:00:00:00:04:00
--out=C:\myFolder\ProjectVer1

• Command switches can appear at any location within the command line
or in any order (on separate lines) within a script.

Command Switches
Table 35 lists the available command switches for the libs command. Only the
following switches are required for the command:

• --source (-n)

• --pid (-i)

• --basename (-b)

• --server (-s)

• --clock (-c)

• --multiplier (-P)

Other command switches are optional.

Table 35. Command Switches for the libs Command

Command Switch

Long Form
Short
Form Description

--applmsg -m Enable support for application messages

--basename -b Set the project's base name

278 LonTalk Interface Developer Command Line Usage

Command Switch

Long Form
Short
Form Description

--clock -c Set external clock rate (in MHz) for the Micro Server

--clockfactor -f Scale the Micro Server clock rate ('STD' (default) or
'ALT')

--define -D Define a specified preprocessor symbol (without value)

--defloc Location of an optional default command file

--dmfsize -z Override size of the direct memory file memory window

--dmfstart -a Override start address of the direct memory file
memory window

--expladdr -e Enable the use and availability of explicit addresses

--file -@ Include a command file

--help -? Display usage hint for command

--include -I Add the specified folder to the include search path

--isi Enables support for ISI in host-side API

--mkscript Generate command script in specified location

--multiplier -P Set the clock multiplier for the Micro Server (valid
values are: ½, 1. 2. 4. and 8)

--nodefaults Disable processing of default command files

--out -o Generate all output files in the specified location

--pid -i Use the specified program ID (in colon-separated
format)

--queryapi -q Enables and includes optional Query API functions

ShortStack User’s Guide 279

Command Switch

Long Form
Short
Form Description

--server -s Specifies the Micro Server image file name. For a
standard Micro Server (or a custom Micro Server in the
[ShortStack]\MicroServers directory), you can specify
the Micro Server’s base name (such as
SS400_FT3150ISI_10000kHz). You can also provide an
absolute path to the Micro Server without a file
extension, for example
“C:\myServers\myCustomServer” (where
myCustomServer is the Micro Server image name
without the file extension).

--silent Suppress banner message display

--source -n Use the specified model file

--spdelay -p Set the service pin notification delay (255=default,
0=off)

--updateapi -u Enables and includes optional Update API functions

--utilityapi Enables and includes the optional local utility API
functions

--verbose -v Run with verbosity level 0 (normal), 1 (verbose), or 2
(trace)

--verbosecomments -V Generate verbose comments

--warning Display specified message number as a warning

--xcvr -x Use the specified transceiver (by name)

ShortStack User’s Guide 281

B

Model File Compiler Directives

This appendix lists the compiler directives that can be
included in a model file. Model files are described in
Chapter 8, Creating a Model File, on page 115.

282 Model File Compiler Directives

Using Model File Compiler Directives
ANSI C permits compiler extensions through the #pragma directive. These
directives are implementation-specific. The ANSI standard states that a
compiler can define any sort of language extensions through the use of these
directives. Unknown directives can be ignored or discarded. The Neuron C
compiler issues warning messages for unrecognized directives.

In the Neuron C compiler, pragmas can be used to set certain Neuron firmware
system resources and device parameters such as code generation options,
debugging options, error reporting options, and other miscellaneous features. In
general, these directives can appear anywhere in the model file.

Any compiler directive that is not described in this appendix is not accepted by
the LonTalk Interface Developer utility, and causes an error if included in a
model file. You can use conditional compilation to exclude unsupported
directives.

Acceptable Model File Compiler Directives
You can specify the following compiler directives in a model file. These directives
can appear anywhere in the model file, and control the output produced by the
LonTalk Interface Developer utility.

#pragma codegen option

This pragma allows control of certain features in the compiler’s code
generator. Application timing and code size could be affected by use of these
directives. The valid options that can be specified within a model file are:

 cp_family_space_optimization
 no_cp_template_compression

The automatic configuration property merging feature in NodeBuilder 3.1
(and later) might change the device interface for a device that was previously
built with the NodeBuilder 3 tool. You can specify #pragma codegen
no_cp_template_compression in your program to disable the automatic
merging and compaction of the configuration property template file. Use of
this directive could cause your program to consume more of the device’s
memory, and is intended only to provide compatibility with the NodeBuilder
3.0 Neuron C compiler. You cannot use both the
no_cp_template_compression option and the cp_family_space_optimization
option in the same application program.

#pragma disable_warning number

Controls the compiler’s printing of specific warning and hint messages
Warning messages are less severe than errors, yet could indicate a problem
in a program, or a place where code could be improved. To disable all
warning messages, specify an asterisk (*) for the number.

See the enable_warning directive to enable disabled warnings.

The disable_warning directive supercedes the warnings_off directive.

ShortStack User’s Guide 283

#pragma enable_dmf

Enables the direct memory file access method for the ShortStack Micro
Server.

#pragma enable_sd_nv_names

Causes the LonTalk Interface Developer utility to include the network
variable names in the self-documentation (SD) information when self-
identification (SI) data is generated. This pragma can only appear once in
the model file. See the Neuron C Programmer’s Guide for more information
about SD and SI data.

#pragma enable_warning number

Controls the compiler’s printing of specific warning and hint messages
Warning messages are less severe than errors, yet could indicate a problem
in a program, or a place where code could be improved. To enable all warning
messages, specify an asterisk (*) for the number.

See the disable_warning directive for the reverse operation.

The enable_warning directive supercedes the warnings_on directive.

#pragma fyi_off
#pragma fyi_on

Controls the compiler's printing of informational messages. Informational
messages are less severe than warnings, yet can indicate a problem in the
model file. Informational messages are off by default at the start of
compilation. These pragmas can be intermixed multiple times throughout a
program to turn informational message printing on and off as needed.

#pragma hidden

This pragma is for use only in the <echelon.h> standard include file.

#pragma ignore_notused symbol

Requests that the compiler ignore the symbol-not-referenced flag for the
named symbol. The compiler normally prints warning messages for any
variables, functions, I/O objects, and so on, that are declared but are never
used in the model file. This pragma can be used one or more times to
suppress the warning on a symbol-by-symbol basis.

The pragma should appear after the variable declaration. A good coding
convention is to place this pragma on the line that immediately follows the
variable's declaration. For automatic scope variables, the pragma must
appear no later than the line preceding the close brace character '}', which
terminates the scope containing the variable. There is no terminating brace
for any variable declared at file scope.

#pragma micro_interface

This pragma is only used with the Microprocessor Interface Program (MIP) or
with ShortStack Micro Server applications. You must include this directive
in your custom Micro Server source code.

#pragma no_hidden

This pragma is for use only in the <echelon.h> standard include file.

284 Model File Compiler Directives

#pragma optimization level

For Neuron C applications, this pragma allows you to specify a code
optimization level for optimal use of device memory. See the Neuron C
Reference Guide for information about using this pragma for Neuron C
applications.

For model file compilation, executable code is ignored. You can use this
pragma to specify optimization for CP template files.

Table 36 lists the levels of optimization for model file compilation (levels that
are specific to Neuron C code are omitted). For most model files, optimization
level 5 is recommended.

As part of optimization, the Neuron C compiler can attempt to compact the
configuration property template file by merging adjacent family members
that are scalars into elements of an array. Any CP family members that are
adjacent in the template file and value file, and that have identical
properties, except for the item index to which they apply, are merged. Using
optional configuration property re-ordering and merging can achieve
additional compaction beyond what is normally provided by automatic
merging of whatever CP family members happen to be adjacent in the files.
With this feature enabled, the Neuron C compiler optimizes the layout of CP
family members in the value and template files to make merging more likely.

Important: Configuration property re-ordering and merging can reduce the
memory required for the template file, but could also result in slower access
to the application’s configuration properties by network tools. This could
potentially cause a significant increase in the time required to commission
your device, especially on low-bandwidth channel types such as power line
channels. You should typically only use configuration property re-ordering
and merging if you must conserve memory. If you use configuration property
re-ordering and merging, be sure to test the effect on the time required to
commission and configure your device.

Table 36. Optimization Levels for the #pragma optimization Directive

Level Optimization Performed

0 No optimization

CP templates are not compressed

3 CP templates are compressed

5 Maximum optimization

You can use the following keywords instead of the numeric level indicators:

• none for level 0

• standard for level 3

• all for level 5

The keyword level indicators are generally preferred over their numeric
counterparts because they are self-documenting.

The #pragma optimization directive replaces the following directives:

ShortStack User’s Guide 285

#pragma codegen cp_family_space_optimization
#pragma codegen optimization_on
#pragma codegen optimization_off
#pragma codegen no_cp_template_compression

The compiler issues the NCC#589 warning message if you use these
deprecated directives. If your model file uses any of these directives with the
#pragma optimization directive, the compiler issues the NCC#588 warning
message.

#pragma relaxed_casting_off
#pragma relaxed_casting_on

These pragmas control whether the compiler treats a cast that removes the
const attribute as an error or as a warning. The cast can be explicit or
implicit (for example, an automatic conversion due to assignment).
Normally, the compiler considers any conversion that removes the const
attribute to be an error. Turning on the relaxed casting feature causes the
compiler to treat this condition as a warning instead. These pragmas can be
intermixed throughout a program to enable and disable the relaxed casting
as needed.

#pragma set_guidelines_version string

The Neuron C version 2.1 (and later) compiler generates LONMARK
information in the device’s XIF file and in the device’s SIDATA (stored in
device program memory). By default, the compiler uses “3.4” as the string
identifying the LONMARK guidelines version that the device conforms to. To
override this default, specify the overriding value in a string constant
following the pragma name, as shown. For example, a program could specify
#pragma set_guidelines_version “3.2” to indicate that the device conforms to
the 3.2 guidelines. This directive is useful for backward compatibility with
older versions of the Neuron C compiler.

Note this directive can be used to state compatibility with a guidelines
version that is not actually supported by the compiler. Future versions of the
guidelines that require a different syntax for SI/SD data are likely to require
an update to the compiler. This directive only has the effect described above,
and does not change the syntax of SD strings generated.

The set_guidelines_version directive is typically used to specify a version
string in the major.minor form (for example, “3.4”). The compiler issues a
NCC#604 warning message if the application-specific version string does not
match that format, but permits the string.

Using this directive can prevent certification of the generated device.

#pragma set_id_string "ssssssss"

Provides a legacy mechanism for setting the device’s 8-byte program ID. This
directive is allowed for legacy application support, and should not be used in
a model file. Use the LonTalk Interface Developer utility to set the program
ID.

#pragma set_node_sd_string C-string-const

Specifies and controls the generation of a comment string in the self-
documentation (SD) data in a device's application image. Most devices have
an SD string. The first part of this string documents the functional blocks for

286 Model File Compiler Directives

the device. This part is automatically generated by the LonTalk Interface
Developer utility. This first part is followed by a comment string that
documents the purpose of the device. This comment string defaults to a
NULL string and can have a maximum of 1023 bytes, minus the first part of
the SD string generated by the LonTalk Interface Developer utility, including
the zero termination character. This pragma explicitly sets the comment
string. Concatenated string constants are not allowed. This pragma can only
appear once in the model file.

#pragma set_std_prog_id hh:hh:hh:hh:hh:hh:hh:hh

Provides a legacy mechanism for setting the device’s 8-byte program ID. This
directive is allowed for legacy application support, and should not be used in
a model file. Use the LonTalk Interface Developer utility to set the program
ID.

#pragma warnings_off
#pragma warnings_on

Controls the compiler's printing of warning messages. Warning messages
generally indicate a problem in the model file, or a place where the code could
be improved. Warning messages are on by default. These pragmas can be
intermixed multiple times throughout a model file to turn informational
message printing on and off as needed.

These directives override the settings for the #pragma enable_warning
number and #pragma disable_warning number directives.

The warnings_off and warnings_on directives are deprecated. Use the
enable_warning and disable_warning directives instead.

ShortStack User’s Guide 287

C

ShortStack LonTalk Compact API

This appendix describes the functions and callback handler
functions included with the ShortStack LonTalk Compact
API. It also describes modifying the API callback handlers
for use with your ShortStack application.

288 ShortStack LonTalk Compact API

Introduction
The ShortStack LonTalk Compact API provides the functions that you call from
your ShortStack application to send and receive information to and from a
LONWORKS network. The API also defines the callback functions that your
ShortStack application must provide to handle LONWORKS events from the
network and Micro Server. Because each ShortStack application handles these
callbacks in its own specific way, you need to modify the callback functions.

Typically, you use the API functions for ShortStack initialization and sending
and receiving network variable updates. See Chapter 10, Developing a
ShortStack Application, on page 163, for more information about using these
functions.

The ShortStack LonTalk Compact API functions are implemented in the
ShortStackApi.c file; the ShortStack callback functions are defined in the
ShortStackHandlers.c file. See ShortStack LonTalk Compact API Files on page
21 for a list of the files included with the ShortStack Developer’s Kit.

This appendix provides an overview of the functions and callbacks. For detailed
information about the ShortStack LonTalk Compact API, see the HTML
documentation that is available from the Windows Start menu: select Programs
→ Echelon ShortStack FX Developer’s Kit → API Documentation.

Changes to the API
The ShortStack FX LonTalk Compact API is essentially the same as the
ShortStack 2.1 LonTalk Compact API. ShortStack 2.1 applications require no
changes to compile with the ShortStack FX Developer’s Kit.

The ShortStack FX LonTalk Compact API is considerably different from the
ShortStack 2 API. The basic functionality of the two APIs is similar, but the
naming convention used for ShortStack FX (and ShortStack 2.1) is different and
more regular than the ShortStack 2 API, and the ShortStack FX LonTalk
Compact API includes a different set of header files.

See Using Types on page 154 for other changes to the ShortStack LonTalk
Compact API, as implemented by the LonTalk Interface Developer utility.

ShortStack FX Naming Conventions
All ShortStack names, members of structures, unions, or enumerations (but not
those for function arguments, variables, and macros) use upper case for the
beginning letter of each word, and include no underscores in the names. For
example: LonDomainConfigReceived.

All function arguments and variables use lower case for the first letter with
upper case for the beginning letter of each subsequent word, and include no
underscores in the names. For example: myVariable.

All global names, with the exception of macro names and global variables, have a
“Lon” name prefix (rather than using explicit ANSI C namespaces). Global
variables have a “lon” prefix, but global constants (because they are immutable)
have a “Lon” prefix. For example:

ShortStack User’s Guide 289

• LonEventHandler: a global name

• lonErrorCount: a global variable

• LonErrorLimit: a global constant

Function arguments, local variables, or members of structures and unions do not
include the “Lon” or “lon” prefix. Members of enumerations are prefixed with
“lon”. Pointer variables include a “p” prefix, for example, pDomain.

Macros follow standard ANSI C conventions. That is, they are all capital letters,
with individual words separated with a single underscore. Macro and predefined
symbol names also include a “LON_” prefix. For example:
LON_NEURON_ID_LENGTH.

The LonTalk Interface Developer utility generates network variable and
configuration property types that comply with the rules for enhanced portability;
see Portability Overview on page 110 for more information about these rules.
However, the following additional rules apply to utility-generated types:

• The generated network variable and configuration property types use
their Neuron C equivalents (such as ncuInt or ncsLong). These types are
defined in the LonPlatform.h file, and by default are defined using types
such as LonByte and LonWord. The LonPlatform.h file maintains the
indirection of types because a particular compiler might offer a better,
more convenient, equivalent for these Neuron C types. In that case, you
can edit the appropriate section of the LonPlatform.h file to use these
more convenient types.

• Non-native Neuron C types (such as s32_type and float_type) are defined
in terms of their true Neuron C equivalent, for example, as arrays of four
bytes.

• Enumerations referenced from types are defined as signed Neuron C
integers (ncsInt). Thus, the generated types do not use the LON_ENUM
macros.

• Type references are defined as dereferenced types.

• For purely host-side types, such as LonNvDescription (formerly
TNvTable), bit fields are avoided where possible because not all target
compilers support bit fields. Another exception is the
LonNvDescription.Size field, which is declared as the LonByte type
(instead of the natural size_t) to reduce the memory footprint.

• The access macros defined for bit field replacements are generated
following the type definition, rather than preceding it. The bit field
identifier that is part of the access macro’s name is generated by
converting the bit field member name to all upper case, removing leading
prefixes (UNVT_, SNVT_, SCPT_ , UCPT_, or LON_), and removing all
underscores.

• Bit field access macros include a comment that clarifies the meaning of
the related bit field.

• Names of network variable and configuration property types, and all
their member names, that support the direct memory file access method
might not meet the naming guidelines.

290 ShortStack LonTalk Compact API

Customizing the API
Portions of the API are optional, in particular, application messaging, network
management query support, network management update support, and network
management callbacks. If you do not plan to use these functions, you can choose
not to include them in your ShortStack application to reduce the footprint of the
application in your host microprocessor. The LonTalk Interface Developer utility
includes options that control whether to include the optional APIs in your
application.

API Memory Requirements
The memory requirements for the ShortStack LonTalk Compact API depend on
which parts of the API you include in your application. You control which parts
of the API to include in your application from the Interface Developer Code
Generator Preferences page of the LonTalk Interface Developer utility.

Table 37 lists the approximate API memory requirements. Part of the memory
requirement is application specific, depending on the device interface. 10 to 20%
of the memory requirements listed in the table assume a simple device interface.

Table 37. ShortStack LonTalk Compact API Memory Requirements

Included API

Standard
API

Optional
API ISI API Memory Requirement

 1.8 KB

 2.3 KB

 3.0 KB

 3.5 KB

The memory requirements for the serial driver depend on the driver’s
implementation. For the ARM7 serial driver that is included with the ARM7
Example Port, the memory requirement is approximately 3 KB.

The ShortStack LonTalk Compact API and
Callback Handler Functions

This section provides an overview of the ShortStack FX LonTalk Compact API
functions and callback handler functions. For detailed information about the
ShortStack LonTalk Compact API and the callback handler functions, see the
HTML API documentation and the API source code:

• Start → Programs → Echelon ShortStack FX Developer’s Kit →
Documentation → API Reference

• Start → Programs → Echelon ShortStack FX Developer’s Kit → API
Source Code

ShortStack User’s Guide 291

ShortStack LonTalk Compact API Functions
The ShortStack LonTalk Compact API includes functions for managing network
data and the ShortStack Micro Server.

Commonly Used Functions
Table 38 lists API functions that you will most likely use in your ShortStack
application to send and receive data over a LONWORKS network.

Table 38. Commonly Used ShortStack LonTalk Compact API Functions

Function Description

LonEventHandler() Processes any messages received by the ShortStack driver. If
messages are received, it calls the appropriate callback functions.

See Periodically Calling the Event Handler on page 170 for more
information about how to use this function.

LonInit() Initializes the ShortStack LonTalk Compact API, the serial driver,
and the ShortStack Micro Server. This function downloads
ShortStack device interface data from the ShortStack application
to the ShortStack Micro Server.

The ShortStack application must call LonInit() once on startup.

LonPropagateNv() Propagates a network variable value to the network.

This function propagates a network variable if all of the following
conditions are met:

• The network variable is declared with the output modifier

• The network variable must be bound to the network

Other Functions
Table 39 lists other ShortStack LonTalk Compact API functions that you can use
in your ShortStack application. These functions are not typically used by most
ShortStack applications.

Table 39. Other ShortStack LonTalk Compact API Functions

Function Description

LonGetUniqueId() Gets the unique ID (Neuron ID) value of the ShortStack Micro
Server.

LonGetVersion() Gets the version number of the ShortStack firmware in the
ShortStack Micro Server.

292 ShortStack LonTalk Compact API

Function Description

LonPollNv() Requests a network variable value from the network. A
ShortStack application can call LonPollNv() to request that
another LONWORKS device (or devices) send the latest value (or
values) for network variables that are bound to the specified input
variable. To be able to poll an input network variable, it must be
declared in the model file as an input network variable and include
the polled modifier. You cannot poll an output network variable
with the LonPollNv() function.

Do not use polling with ISI connections.

LonSendServicePin() Broadcasts a service-pin message to the network. The service-pin
message is used during configuration, installation, and
maintenance of a LONWORKS device.

Application Messaging Functions
Table 40 lists the ShortStack LonTalk Compact API functions that are used for
implementing application messaging and for responding to an application
message. Application messages can be used to implement a proprietary interface
that does not need to interface to devices from other manufacturers. The same
functions can be used for foreign frame and explicit network variable messages.
Support for application messaging is optional.

If you choose not to support application messaging, this function is not available
for use in your ShortStack application. You can select whether to include these
functions in the LonTalk Interface Developer utility’s Micro Server Preferences
page.

Table 40. Application Messaging ShortStack LonTalk Compact API Functions

Function Description

LonSendMsg() Sends an application, foreign frame, or explicit network variable
message.

LonSendResponse() Sends an application, foreign frame, or explicit network variable
message response to a request message.

The ShortStack application calls LonSendResponse() in response to
a LonMsgArrived() callback handler function.

Network Management Query Functions
The ShortStack LonTalk Compact API includes the optional network
management query API functions that provide additional network management
commands listed in Table 41 on page 293. Support for these network
management API functions is optional.

The network management query API functions are asynchronous functions.
They issue a downlink request and return immediately. The functions can fail if
no downlink buffer is available.

ShortStack User’s Guide 293

If you do not plan to use these local network management commands, you do not
need to include these functions in your ShortStack application. You can select
whether to include these functions in the LonTalk Interface Developer utility’s
Code Generator Preferences page.

Table 41. Network Management Query API Functions

Function Description

LonQueryAddressConfig() Queries configuration data for the Micro Server’s address
table.

LonQueryAliasConfig() Queries configuration data for the Micro Server’s alias table.

LonQueryConfigData() Queries configuration data on the ShortStack Micro Server.

LonQueryDomainConfig() Retrieves domain information from the ShortStack Micro
Server.

LonQueryNvConfig() Queries configuration data for the Micro Server’s network
variable table.

LonQueryStatus() Requests the status of the ShortStack Micro Server.

LonQueryTransceiverStatus() Requests the status of the ShortStack Micro Server’s
transceiver. Used with power line transceivers.

If this function is used with an FT transceiver, the function
will appear to succeed, but the callback that contains the
results will declare a failure.

Network Management Update Functions
The ShortStack LonTalk Compact API includes the optional network
management update API functions that provide additional network management
commands listed in Table 42. Support for these network management API
functions is optional.

The network management update API functions can fail if no downlink buffer is
available.

If you do not plan to use these local network management commands, you do not
need to include these functions in your ShortStack application. You can select
whether to include these functions in the LonTalk Interface Developer utility’s
Code Generator Preferences page.

Table 42. Network Management Update API Functions

Function Description

LonClearStatus() Clears a subset of status information on the ShortStack
Micro Server.

294 ShortStack LonTalk Compact API

Function Description

LonSetNodeMode() Sets the operating mode for the Micro Server:

• Online: For an online device, both the host
application and the Micro Server are running, and
the device responds to all network messages.

• Offline: For an offline device, the host application
cannot propagate network variables or send network
messages. The Micro Server processes network
variable update requests, and updates the network
variable values, but the ShortStack LonTalk
Compact API does not call the
LonNvUpdateOccurred() callback handler function.
The Micro Server acknowledges application
messages that the device receives, but discards them.

LonUpdateAddressConfig() Sets configuration data for the Micro Server’s address table.

LonUpdateAliasConfig() Sets configuration data for the Micro Server’s alias table.

LonUpdateConfigData() Sets configuration data on the ShortStack Micro Server.

LonUpdateDomainConfig() Sets domain information from the ShortStack Micro Server.

LonUpdateNvConfig() Sets configuration data for the Micro Server’s network
variable table.

Local Utility Functions
Table 43 lists the ShortStack LonTalk Compact API functions that provide local
utility functions for the host application. Including these functions is optional.

If you choose not to include these functions, they are not available for use in your
ShortStack application. You can select whether to include these functions in the
LonTalk Interface Developer utility’s Code Generator Preferences page.

Table 43. Local Utility ShortStack LonTalk Compact API Functions

Function Description

LonGoConfigured() Puts the Micro Server in the configured state and online mode.

LonGoUnconfigured() Puts the Micro Server in the unconfigured state.

LonMtIsBound() Queries the ShortStack Micro Server to determine if the
specified message tag is bound to the network. You can use this
function to ensure that transactions are initiated only for
connected message tags. The LonMtIsBoundReceived() callback
handler function processes the reply to the query.

ShortStack User’s Guide 295

Function Description

LonNvIsBound() Queries the ShortStack Micro Server to determine if the
specified network variable is bound to the network. You can use
this function to ensure that transactions are initiated only for
connected network variables. The LonNvIsBoundReceived()
callback handler function processes the reply to the query.

LonQueryAppSignature() Queries the Micro Server's current version of the host
application signature.

LonQueryVersion() Queries the version number of the Micro Server application and
the Micro Server core library used for the Micro Server.

With this version information and the Micro Server key, you
can uniquely identify the current Micro Server.

LonRequestEcho() Sends a six-byte message (arbitrary values defined by the
application) to the ShortStack Micro Server. The Micro Server
transforms this message by incrementing each of the six data
bytes and returning the message to the host.

You can use the echo command instead of the ping command,
but the echo command takes longer to complete (because of
larger messages, and because of the data transformation
performed by the Micro Server). Echo tests should be
performed frequently during early stages of device development
or stress testing, but should be executed infrequently on a
production device.

LonSendPing() Sends a message to the ShortStack Micro Server to verify that
communications with the Micro Server are functional. This
function can be useful after long periods of network inactivity.

Recommendation: Define a ping timer of at least 60 seconds.
The application should reset this timer upon completion of
every successful uplink or downlink communication. When this
timer expires, the application issues a ping request to the Micro
Server. If the Micro Server is functional, it replies to the ping
request by causing the LonPingReceived() callback event. In
general, link layer idleness of more than 1.5 times the ping
timer’s duration indicates a serious error. An application can
recover from this error by physically resetting the Micro Server.

ShortStack Callback Handler Functions
The ShortStack LonTalk Compact API provides event handler functions for
managing network and device events.

296 ShortStack LonTalk Compact API

Commonly Used Callback Handler
Functions
Table 44 lists the callback handler functions that you will most likely need to
define so that your application can perform application-specific processing for
certain LONWORKS events. You do not need to modify these callback functions if
you have no application-specific processing requirements.

Table 44. Commonly Used ShortStack Callback Handler Functions

Function Description

LonGetCurrentNvSize() Indicates a request for the network variable size.

The ShortStack LonTalk Compact API calls this callback
handler function to determine the current size of a changeable-
type network variable.

For non-changeable-type network variables, this function
should return the value of the LonGetDeclaredNvSize()
function. For changeable-type network variables, you must
modify this function in the ShortStackHandlers.c file.

LonNvUpdateCompleted() Indicates that either an update network variable call or a poll
network variable call is completed.

LonNvUpdateOccurred() Indicates that a network variable update request from the
network has been processed by the ShortStack LonTalk
Compact API. This call indicates that the network variable
value has already been updated, and allows your host
application to perform any additional processing, if necessary.

LonOffline() A request from the network that the device go offline.

Installation tools use this message to disable application
processing in a device. An offline device continues to respond
to network management messages, but the host application
cannot propagate network variables or send network messages.

When this function is called, the ShortStack Micro Server is
still online, but changes to the offline state as soon as this
callback handler completes.

LonOnline() A request from the network that the device go online.

Installation tools use this message to enable application
processing in a device.

When this function is called, the ShortStack Micro Server is
still offline, but changes to the online state as soon as this
callback handler completes.

LonReset() A notification that the ShortStack Micro Server has been reset.

ShortStack User’s Guide 297

Function Description

LonServicePinHeld() An indication that the service pin on the device has been held
for some number of seconds (default is 10 seconds). Use it if
your application needs notification of the service pin’s being
held.

LonServicePinPressed() An indication that the service pin on the device has been
pressed. Use it if your application needs notification of the
service pin’s being pressed.

LonWink() A wink request from the network.

Installation tools use the Wink message to help installers
physically identify devices. When a device receives a Wink
message, it should provide some visual, audio, or other
indication for an installer to be able to physically identify this
device.

Application Messaging Callback Handler
Functions
Table 45 lists the callback handler functions that are called by the ShortStack
LonTalk Compact API for application messaging transactions. Customize these
functions if you use application messaging in your ShortStack device.
Application messaging is optional and only recommended for implementing the
LONWORKS file transfer protocol, the ISI protocol, and for proprietary interfaces.

If you choose not to support application messaging, you do not need to customize
these functions. You can select whether to include these functions in the
LonTalk Interface Developer utility’s Code Generator Preferences page.

Table 45. Application Messaging ShortStack Callback Handler Functions

Function Description

LonMsgArrived() An application or foreign frame message from the network to be
processed. This function performs any application-specific
processing required for the message. If the message is a request
message, the function must deliver a response using the
LonSendMsgResponse() function.

Application messages are always delivered to the application,
regardless of whether the message passed authentication. The
application decides whether authentication is required for a
message.

LonMsgCompleted() Indicates that downlink transfer for a message, initiated by a
LonSendMsg() call, was completed.

If a request message has been sent, this callback handler is called
only after all responses have been reported by the
LonResponseArrived() callback handler.

298 ShortStack LonTalk Compact API

Function Description

LonResponseArrived() An application message response from the network. This function
performs any application-specific processing required for the
message.

Network Management Query Callback
Handler Functions
The ShortStack LonTalk Compact API includes the optional network
management query API callback handler functions listed in Table 46. These
callbacks allow you to customize the application processing for responses to local
network management commands (see Table 41 on page 293). Support of these
network management query API callback functions is optional.

If you do not plan to use extended local network management commands, there is
no need to customize or include these functions in your ShortStack application.
You can select whether to include these functions in the LonTalk Interface
Developer utility’s Code Generator Preferences page.

Table 46. Network Management Query API Callback Handler Functions

Function Description

LonAddressReceived() Indicates that configuration data for the Micro Server’s
address table has been received.

LonAliasConfigReceived() Indicates that configuration data for the Micro Server’s
alias table has been received.

LonConfigDataReceived() Indicates that configuration data has been received from
the Micro Server. Receipt of this data is initiated by a
call to the LonQueryConfigData() function.

LonDomainConfigReceived() Indicates that domain information has become available.
This event is initiated by the Micro Server in response to
a previous call to LonQueryDomain() by the ShortStack
application.

LonNvConfigReceived() Indicates that configuration data for the Micro Server’s
network variable table has been received.

LonStatusReceived() Indicates that the status report has been received from
the Micro Server. Receipt of this data is initiated by a
call to the LonQueryStatus() function. Modify this
function to perform application-specific handling of the
status report.

ShortStack User’s Guide 299

Function Description

LonTransceiverStatusReceived() Indicates that the transceiver status report has been
received from the Micro Server. Receipt of this data is
initiated by a call to the LonQueryTransceiverStatus()
function. Modify this function to perform application-
specific handling of the transceiver status.

Local Utility Callback Handler Functions
Table 47 lists the callback handler functions for the local utility functions
described in Local Utility Functions on page 294.

You can select whether to include the local API functions and their callback
handler functions in the LonTalk Interface Developer utility’s Code Generator
Preferences page.

Table 47. Local Utility API Callback Handler Functions

Function Description

LonAppSignatureReceived() Indicates the current host application signature.

LonEchoReceived() Provides the Micro Server’s echo response, containing the
transformed data from the corresponding
LonRequestEcho() request.

The application is responsible for verifying that the echo
response meets expectations.

LonGoConfiguredReceived() Indicates that the Micro Server has responded to the
LonGoConfigured() request.

LonGoUnconfiguredReceived() Indicates that the Micro Server has responded to the
LonGoUnConfigured() request.

LonMtIsBoundReceived() Indicates whether the specified message tag is bound to
the network.

LonNvIsBoundReceived() Indicates whether the specified network variable is bound
to the network.

LonPingReceived() Indicates whether the Micro Server received the ping
message.

LonVersionReceived() Indicates the version number of the Micro Server
application and the Micro Server core library used for the
Micro Server.

ShortStack User’s Guide 301

D

ShortStack ISI API

This appendix describes the functions and callbacks
included with the ShortStack ISI API. It also describes why
and how to modify the API callbacks for use with your
ShortStack application.

302 ShortStack ISI API

Introduction
The ShortStackIsiTypes.h and ShortStackIsiApi.h header files include all types,
enumerations, and prototypes that are needed to create an ISI-compliant host
application.

This appendix provides an overview of the ShortStack ISI functions and
callbacks. For detailed information about the ShortStack ISI API, see the HTML
documentation that is available from the Windows Start menu: select Programs
→ Echelon ShortStack FX Developer’s Kit → API Documentation.

The ShortStack ISI API
Table 48 lists the ShortStack ISI API functions. When the host application calls
one of the functions listed in Table 48, a common function sends the downlink
message. When the API completes (that is, when the API receives either an ACK
or NACK response from the Micro Server for the downlink API call), it calls the
IsiApiComplete() callback handler function to inform the host application that it
can issue additional API calls.

Table 48. ShortStack ISI API Functions

Function Description

IsiAcquireDomain() Starts or re-starts the domain ID acquisition process in
a device that supports domain acquisition.

Do not use this function if the engine is started with
isiTypeS.

IsiCancelAcquistion() Cancels both device and domain acquisition.

After this function call completes, the ISI engine calls
the IsiUpdateUserInterface() function with the
IsiNormal event.

Do not use this function if the engine is started with
isiTypeS.

IsiCancelEnrollment() Cancels an open (pending or approved) enrollment.
When used on a connection host, a CSMX connection
cancellation message is issued to cancel enrollment on
the connection members. When used on a device that
has accepted (but not yet implemented) an open
enrollment, this function causes the device to opt out of
the enrollment locally.

The function has no effect unless the ISI engine is
running and in the pending or approved state.

ShortStack User’s Guide 303

Function Description

IsiCreateEnrollment() Accepts a connection invitation. This function can be
called after the application has received and approved a
CSMO open enrollment message. If the assembly is not
already in a connection, or if the assembly is in a
connection and the device supports direct connection
removal, the connection is re-created. If the assembly
is already in a connection, any previous connection
information is replaced. This function must not be
called with an assembly that is already in a connection
on a device that does not support direct connection
removal.

On a connection host that has received at least one
CSME enrollment acceptance message, this command
completes the enrollment and implements the
connection as new, replacing any previously existing
enrollment information associated with this assembly.

Calling this function on a device that does not support
connection removal while indicating an assembly
number that is already engaged in another connection,
does not implement the new connection. The
IsiImplemented event is not fired in this case. The
application can use the IsiQueryIsConnected() function
to determine if a given assembly is currently engaged
in a connection.

Where supported, and unless application requirements
dictate otherwise, the IsiExtendEnrollment() function
should be used instead.

The ISI engine must be running and in the correct
state when calling this function. For a connection host,
the ISI engine must be in the approved state. Other
devices must be in the pending state.

IsiDeleteEnrollment() Removes the specified assembly from all connections,
and sends a CSMD connection deletion message to all
other devices in each connection to remove them from
the connection. This function has no effect if the ISI
engine is stopped.

304 ShortStack ISI API

Function Description

IsiExtendEnrollment() Accepts a connection invitation on a device that
supports connection extension. This function can be
called after the application has received and approved a
CSMO open enrollment message. The connection is
added to any previously existing connections. If no
previous connection exists for the assembly, a new
connection is created. This function must not be called
on a device that does not support connection extension.

Where supported, and unless application requirements
dictate otherwise, call this function instead of the
IsiCreateEnrollment() function.

On a connection host that has received at least one
CSME enrollment acceptance message, this command
completes the enrollment and extends any existing
connections. If no previous connection exists for the
assembly, a new connection is created.

The ISI engine must be running and in the correct
state for this function to have any effect. For a
connection host, the ISI engine must be in the approved
state. Other devices must be in the pending state.

IsiFetchDevice() Fetches a device by assigning a domain to the device
from a domain address server (DAS). An alternate
method to assign a domain to a device is for the device
to use the IsiAcquireDomain() function.

This function must be called only from a domain
address server.

IsiFetchDomain() Starts or restarts the fetch domain process in a domain
address server (DAS).

This function must be called only from a domain
address server.

IsiInitiateAutoEnrollment() Starts automatic enrollment. The local device becomes
the connection host. Automatic enrollment can replace
previous connections, if any. When this call returns,
the ISI connection is implemented for the associated
assembly.

This function should not be called before the IsiWarm
event has been signaled in the
IsiUpdateUserInterface() callback.

This function does nothing when the ISI engine is
stopped.

ShortStack User’s Guide 305

Function Description

IsiIssueHeartbeat() Sends an update for the specified bound output
network variable and its aliases, using group
addressing. This function is typically called by the
IsiQueryHeartbeat() callback handler function.

This function requires that the ISI engine has been
started with the IsiFlagHeartbeat flag.

IsiLeaveEnrollment() Removes the specified assembly from all enrolled
connections as a local operation only. When used on
the connection host, the function is automatically
interpreted as IsiDeleteEnrollment().

This function has no effect if the ISI engine is stopped.

IsiOpenEnrollment() Opens manual enrollment for the specified assembly.
The device becomes a connection host for this
connection and sends a CSMO manual connection
invitation to all devices in the network.

The ISI engine must be running, and in the idle state.

IsiQueryImplementationVersion() Returns the version number of this ISI
implementation.

This function returns its result asynchronously through
the IsiImplementationVersionReceived() callback
function.

The most current ISI implementation is version 3.03.
For this version, this function reports implementation
version 3.

IsiQueryIsBecomingHost() Returns TRUE if IsiOpenEnrollment() has been called
for the specified assembly and the enrollment has not
yet timed out, been cancelled, or confirmed. The
function returns FALSE otherwise.

This function returns its result asynchronously through
the IsiIsBecomingHostReceived() callback function.

IsiQueryIsConnected() Returns TRUE if the specified assembly is enrolled in a
connection. The function returns FALSE if the ISI
engine is stopped.

This function returns its result asynchronously through
the IsiIsConnectedReceived() callback function.

IsiQueryIsRunning() Returns TRUE if the ISI engine is running and FALSE
if the ISI engine is stopped.

This function returns its result asynchronously through
the IsiIsRunningReceived() callback function.

306 ShortStack ISI API

Function Description

IsiQueryProtocolVersion() Returns the version of the ISI protocol supported by the
ISI engine. The number indicates the maximum
protocol version supported. The ISI engine also
supports protocol versions less than the number
returned unless explicitly indicated.

This function returns its result asynchronously through
the IsiProtocolVersionReceived() callback function.

The most current ISI protocol version is 1.

IsiReturnToFactoryDefaults() Restores the device’s self-installation data to factory
defaults, causing the immediate and unrecoverable loss
of all connection information.

This function returns to the caller, however, calling this
function resets the Micro Server.

IsiStart() Starts the ISI engine. The ISI engine sends and
receives ISI messages, and manages the network
configuration of your device.

This function also specifies whether domain acquisition
server or client services are supported.

Calls to this function with the IsiTypeDas parameter
for a Micro Server that does not support ISI DAS are
NACKed.

IsiStartDeviceAcquisition() Starts or retriggers device acquisition mode on a
domain address server. The domain address server
responds to domain ID requests from devices that
implement a domain acquisition client, as long as it is
in device acquisition mode.

Call this function only if the ISI engine has been
started with the IsiTypeDas type.

IsiStop() Stops the ISI engine.

Certain ISI API calls are managed by the Micro Server itself. These include the
following functions:

• IsiTick()

• IsiApproveMsg()

• IsiProcessMsg()

• IsiProcessResponse()

The Micro Server automatically translates these calls according to the mode that
was used when starting the ISI engine. Wrapper functions for the related ISI
functions are implemented within the MicroServer.nc file. For a custom Micro
Server, you can modify those wrapper functions, for example, to intercept ISI

ShortStack User’s Guide 307

messages. These wrapper functions (and any extensions that you supply) must
be located on the Micro Server.

The ShortStack ISI Callback Handler Functions
Table 49 lists the ShortStack ISI callback handler functions.

In any ISI application, callback handlers provide application-specific details to
the ISI engine. ShortStack ISI applications can choose whether to implement
these callback handlers on the host processor or on the Micro Server. In either
case, the set of callback handler functions and their prototypes remain the same.

ISI callback handler functions must return to the caller as soon as possible,
providing the requested information.

Table 49. ShortStack ISI Callback Handler Functions

Function Description

IsiApiComplete() Indicates that the API function is complete and that
the result has been received.

This function is called when an API function
completes. Generally, you should not call an ISI API
function until the previous one completes.

This callback is available only on the host processor.

IsiCreateCsmo() Constructs the IsiCsmoData portion of a CSMO
Message. This function is called by the ISI engine
prior to sending a CSMO message.

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers expect this callback on the
host. Typical applications implement this callback
handler function in the same location (host or
custom Micro Server) as the IsiGetWidth() callback
handler function.

308 ShortStack ISI API

Function Description

IsiCreatePeriodicMsg() Specifies whether the application has any messages
for the ISI engine to send using the periodic
broadcast scheduler. Because the ISI engine sends
periodic outgoing messages at regular intervals, this
function allows an application to send a message
during one of the periodic message slots. If the
application has no message to send, then this
function should return FALSE. If it does have a
message to send, then this function should return
TRUE.

To use this function, you must enable application-
specific periodic messages using the
IsiFlagApplicationPeriodic flag when you call the
IsiStart() function.

The default implementation of this function does
nothing but return FALSE. You can override this
function by providing an application-specific
implementation of IsiCreatePeriodicMsg().

Do not send any messages, start other network
transactions, or call other ISI API functions while
the IsiCreatePeriodicMsg() callback is running. To
call other ISI API functions or start other network
transactions, signal the application’s readiness
through an application-specific utility in the
IsiCreatePeriodicMsg() callback function and
evaluate the signal when appropriate. This separate
utility can send the periodic message soon after the
IsiCreatePeriodicMsg() function is completed.

This callback handler can be implemented on an
application-specific custom Micro Server or on the
host. The standard Micro Servers use the default
implementation of this callback.

IsiGetAssembly() Returns the number of the first assembly that can
join the connection. The function returns
ISI_NO_ASSEMBLY (0xFF) if no such assembly
exists, or an application-defined assembly number (0
to 254).

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers expect this callback on the
host.

ShortStack User’s Guide 309

Function Description

IsiGetConnection() Returns a pointer to an entry in the connection table.
The default implementation returns a pointer to a
built-in connection table with 32 entries, stored in
the Micro Server’s on-chip EEPROM memory
(extended RAM for a Series 5000 Micro Server). You
can override this function to provide an application-
specific means of accessing the connection table, or
to provide an application table of a different size.

This function is frequently called and should return
as soon as possible.

If you override this function, you must also override
the IsiGetConnectionTableSize() and
IsiSetConnection() functions. And, if you implement
any of these callback handlers either on the host or
on the Micro Server, you must override the other two
in the same location. Assuming that the Micro
Server has sufficient resources, implement all three
of these functions on the Micro Server for
performance reasons.

IsiGetConnectionTableSize() Returns the number of entries in the connection
table. The default implementation returns the
number of entries in the built-in connection table
(32). You can override this function to support an
application-specific implementation of the ISI
connection table. You can use this function to
support a larger connection table.

The ISI library supports connection tables with 0 to
254 entries. The connection table size is considered
constant following a call to IsiStart(); you must first
stop, then re-start, the ISI engine if the connection
table size changes dynamically.

If you override this function, you must also override
the IsiGetConnection() and IsiSetConnection()
functions. And, if you implement any of these
callback handlers either on the host or on the Micro
Server, you must override the other two in the same
location. Assuming that the Micro Server has
sufficient resources, implement all three of these
functions on the Micro Server for performance
reasons.

Custom Micro Servers can change the connection
table size, or its location, or both.

310 ShortStack ISI API

Function Description

IsiGetNextAssembly() Returns the next applicable assembly for an
incoming CSMO following the specified assembly.
The function returns ISI_NO_ASSEMBLY (0xFF) if
there are no such assemblies, or an application-
specific assembly number (1 to 254). This function is
called after calling the IsiGetAssembly() function,
unless IsiGetAssembly() returned
ISI_NO_ASSEMBLY.

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers expect this callback on the
host.

IsiGetNextNvIndex() Returns the network variable index of the network
variable at the specified offset within the specified
assembly, following the specified network variable.
Returns ISI_NO_INDEX (0xFF) if there are no more
network variables or a valid network variable index
(0 to 254) otherwise.

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers expect this callback on the
host.

IsiGetNvIndex() Returns the network variable index (0 to 254) of the
network variable at the specified offset within the
specified assembly or ISI_NO_INDEX (0xFF) if no
such network variable exists. This function must
return at least one valid network variable index for
each assembly number returned by IsiGetAssembly()
and IsiGetNextAssembly().

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers expect this callback on the
host.

IsiGetNvValue() Returns the value of the specified network variable.

This callback must be implemented on the host, but
is only required if ISI network variable heartbeats
are supported and enabled.

ShortStack User’s Guide 311

Function Description

IsiGetPrimaryDid() Returns a pointer to the default primary domain ID
for the device. The function also provides the
domain ID length. Domain IDs can be 1, 3, or 6
bytes long; the 0-length domain ID cannot be used
for the primary domain.

You can override this function to override the ISI
standard domain ID value.

This function is only used to define a unique primary
domain when creating a domain address server, and
to define a non-standard domain when creating a
non-interoperable self-installed system. Both length
and value of the domain ID provided are considered
constant after the ISI engine is running. To change
the primary domain ID at runtime using the
IsiGetPrimaryDid() callback, stop and re-start the
ISI engine.

Important: Non-interoperable self-installed devices
cannot interoperate with ISI devices.

This callback is implemented on the Micro Server.
By default, the default implementation is used. If
you want to create an ISI domain address server
with ShortStack, you must create a custom Micro
Server and override the IsiGetPrimaryDid()
function. Typically, such an overridden
IsiGetPrimaryDid() callback returns the Micro
Server’s own Neuron ID.

IsiGetPrimaryGroup() Returns the group ID for the specified assembly.
The default implementation returns
ISI_DEFAULT_GROUP (128).

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers expect this callback on the
host.

312 ShortStack ISI API

Function Description

IsiGetRepeatCount() Specifies the repeat count used with all network
variable connections, where all connections share the
same repeat counter. The repeat counter value is
considered constant for the lifetime of the
application, and is only queried when the device
powers up the first time after a new application
image has been loaded, and every time
IsiReturnToFactoryDefaults() runs. Only repeat
counts of 1, 2 or 3 are supported. To take full
advantage of the secondary frequency on a PL
transceiver, only use a repeat count of 1 or 3. This
function has no affect on ISI messages.

The default implementation of this function always
returns 3.

This function operates whether the ISI engine is
running or not.

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers use the default
implementation that is provided with the ISI library,
which results in 3 repeats.

IsiGetWidth() Returns the width in the specified assembly. The
width is equal to the number of network variable
selectors associated with the assembly.

This callback can be implemented on an application-
specific custom Micro Server or on the host. The
standard Micro Servers expect this callback on the
host.

IsiImplementationVersionReceived() Retrieves the version number of this ISI
implementation.

This callback occurs as a result of an earlier call to
the IsiQueryImplementationVersion() function.

IsiIsBecomingHostReceived() Reports TRUE if IsiOpenEnrollment() has been
called for the specified assembly and the enrollment
has not yet timed out, been cancelled, or confirmed.
The function reports FALSE otherwise.

This callback occurs as a result of an earlier call to
the IsiQueryIsBecomingHost() API function.

IsiIsConnectedReceived() Reports TRUE if the specified assembly is enrolled
in a connection. The function reports FALSE if the
ISI engine is stopped.

This callback occurs as a result of an earlier call to
the IsiQueryIsConnected() API function.

ShortStack User’s Guide 313

Function Description

IsiIsRunningReceived() Reports TRUE if the ISI engine is running and
FALSE if the ISI engine is stopped.

This callback occurs as a result of an earlier call to
the IsiQueryIsRunning() API function.

IsiProtocolVersionReceived() Retrieves the version of the ISI protocol supported
by the ISI engine. The number indicates the
maximum protocol version supported. The ISI
engine also supports protocol versions less than the
number returned unless explicitly indicated.

This callback occurs as a result of an earlier call to
the IsiQueryProtocolVersion() API function.

IsiQueryHeartbeat() Returns TRUE if a heartbeat for the network
variable with the specified global index has been
sent, and returns FALSE otherwise. When network
variable heartbeat processing is enabled, and the ISI
engine is running, the engine queries bound output
network variables using this callback (including any
alias connections) whenever the heartbeat is due.
This function does not send the heartbeat update—
see IsiIssueHeartbeat(). For more details on
network variable heartbeat scheduling, see the ISI
Protocol Specification.

This callback handler can be implemented on an
application-specific custom Micro Server or on the
host. The standard Micro Servers expect this
callback to be implemented on the host.

314 ShortStack ISI API

Function Description

IsiSetConnection() Updates an entry in the connection table, which
must be kept in persistent, nonvolatile, storage.

The default implementation updates an entry in the
built-in connection table with 32 entries, stored in
the Micro Server’s on-chip EEPROM memory. You
can override this function to provide an application-
specific means of accessing the connection table, or
to provide an application table of a different size.

This function is frequently called and should return
as soon as possible.

If you override this function, you must also override
the IsiGetConnectionTableSize() and
IsiGetConnection() functions. And, if you implement
any of these callback handlers either on the host or
on the Micro Server, you must override the other two
in the same location. Assuming that the Micro
Server has sufficient resources, implement all three
of these functions on the Micro Server for
performance reasons.

IsiUpdateUserInterface() Provides status feedback from the ISI engine. These
events are useful for synchronizing the device’s user
interface with the ISI engine. To receive notification
of ISI status events, override the
IsiUpdateUserInterface() callback function. The
default implementation of this function does nothing.

This callback is typically, and by default,
implemented on the host.

IsiUserCommand() Informs the host application about user-defined
Micro Server events.

A custom Micro Server might need to inform the host
application about events that are otherwise known
only to custom code that is local to a custom Micro
Server.

See Discovering Devices on page 226 for an example
of using this function.

An ISI-aware host application requires an ISI-aware Micro Server, but an ISI-
aware Micro Server can be used with an ISI-unaware host application and host
API.

As defined in the [ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h
header file, an ISI callback handler function can reside in one of the following
locations:

• The ISI Library. The callback handler is an ISI default function. No
development effort is required to implement these functions, but no
customized behavior is available.

ShortStack User’s Guide 315

• The Micro Server application. The callback handler is a locally
overridden function. Customization of these handlers requires a custom
Micro Server. Assuming the Micro Server has sufficient resources, these
callback handler overrides offer the best performance and control and
minimal host footprint, but can lead to application-specific Micro Server
implementations.

• The host application. The callback handler is a remote function that uses
the ShortStack ISI protocol. These callback handlers are the most
flexible, but lowest performance ISI callback handlers. This type of
callback handler is typically used for application-specific callbacks, and
allows the use of a single Micro Server for multiple applications.

Important: A callback handler function should not call any other ISI callback
handler functions, unless both the caller and the called functions reside on the
same platform (host or Micro Server).

For each callback, you can choose whether the callback is handled by the ISI
default, by a version local to the Micro Server, or by the host application. The
[ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h header file includes
conditional-compilation macros for each callback handler function:

• To direct the callback to the Micro Server

• To direct the callback to the host

• To enable the default implementation

The callback control macros use the following naming convention:

ISI_location_callback

For example: ISI_HOST_GETASSEMBLY or
ISI_SERVER_GETCONNECTIONTABLESIZE.

For a remote callback handler, the ShortStack Micro Server includes a proxy
function that receives the function’s parameters, packs them into a message
buffer, and passes the data to the host function.

If the host application needs to send a response to a callback handler, and it is
unable to do so because there are no transmit buffers, it retries sending the
response until it is successful. The Micro Server’s RPC guard times out after 5
seconds, after which the Micro Server logs an error and resets. See Table 23 on
page 187 in Chapter 10, Developing a ShortStack Application, for a list of the
LonSystemError enumeration values.

While waiting for the response, the Micro Server continues to process downlink
and uplink traffic. However, because only one downlink ISI API request can be
buffered, additional requests are NACKed. Other functionality might be delayed
and enqueued for later processing while waiting for the completion of an RPC.

ShortStack User’s Guide 317

E

Downloading a ShortStack
Application over the Network

This appendix describes considerations for designing a
ShortStack host application that allows host application
updates over the network.

318 Downloading a ShortStack Application over the Network

Overview
For a Neuron hosted device, you can update the application image over the
network using an LNS tool, such as the LonMaker Integration tool or another
network management tool. However, you cannot use the same tools or technique
to update a ShortStack application image over the network. Many ShortStack
devices do not require application updates over the network, but for those that
do, this appendix describes considerations for adding this capability to the device.

If a ShortStack host has sufficient non-volatile memory, it can hold two (or more)
application images: one image for the currently running application, and the
other image to control downloaded updates to the application. The device then
switches between these images as necessary. Because neither the ShortStack
LonTalk Compact API nor the ShortStack Micro Server directly supports
updating the host application over the network, you must:

1. Define a custom host application download protocol.

2. Implement an application download utility.

3. Implement application download capability within your ShortStack host
application.

For the application download process:

• The application must be running and configured for the duration of the
download.

• There must be sufficient volatile and non-volatile memory to store the
new image without affecting the current image.

• The application must be able to boot the new image at the end of the
download. During this critical period, the application must be able to
tolerate device resets and boot either the old application image or the new
one, as appropriate.

This appendix decribes some of the considerations for designing a ShortStack
application download function.

Custom Host Application Download Protocol
The custom host application protocol that you define for downloading a
ShortStack host application over the network should support the following steps:

1. Prepare for application download.

When the application download utility informs the current ShortStack
host application that it needs to start an application download, the
application should respond by indicating whether it is ready for the
utility to begin the download. The utility must be able to wait until the
application is ready, or abort download preparation after a timeout
period. The utility should also inform the user of its state.

During this stage, the ShortStack host application should verify that the
application to be downloaded can run on the device platform (using the
Micro Server key and link layer protocol version numbers or similar

ShortStack User’s Guide 319

mechanism), and verify that the application image is from a trusted
source (for example, by using an encrypted signature).

2. Download the application.

A reliable and efficient data transfer mechanism should be used. The
LONWORKS file transfer protocol (LW-FTP) can be used, treating the
entire application image as a file.

The download utility and the application must support long flash write
times during this portion of the download process. The ShortStack host
application should update the flash in the background, however, it might
be necessary for the protocol to define additional flow control to allow the
host application to complete flash writes before accepting new data.

3. Complete download.

The application download utility informs the current application that the
download is complete. The host application should verify the integrity of
the image, and either:

a. Accept the image, and proceed to the final steps below.

b. Request retransmission of some sections of the image.

c. Reject the download.

4. Boot the new application.

To boot the new application, you must implement a custom boot loader
(or boot copier) so that the host processor can load the new application
and restart the processor with the new image. See your host processor’s
and operating system’s documentation for recommendations and
information about creating a custom boot loader.

Important: For the duration of the first three steps, the application must be
running, the link-layer driver must be operational, and the ShortStack device
must be configured and online.

Upgrading Multi-Processor Devices
A ShortStack device consists of at least two processor chips, each with their
respective applications: a Smart Transceiver with the ShortStack Micro Server
and your host processor with the ShortStack link-layer driver, ShortStack
LonTalk Compact API, and your application program.

Because both processor chips must be able to communicate through the link
layer, both must use the same protocol for application download, and have
matching settings.

Most updates to ShortStack host applications will likely address issues within
the application’s control algorithm, and leave the ShortStack LonTalk Compact
API and link-layer driver unchanged. To ensure that the new application is
correct for the current device and its settings, the host application download
protocol must ensure that at least the following requirements are met before
control is handed to the new application:

320 Downloading a ShortStack Application over the Network

• The Micro Server and the host application must support the same link-
layer protocol version. The link-layer protocol version is contained in the
Micro Server’s reset notification message.

• The Micro Server and the host application must support matching
transceiver types. You can configure the variations of the PL-20
transceiver into a Micro Server that supports any of the PL-20 channel
types (PL-20N, PL-20C, PL-20C-LOW, PL-20N-LOW), but you cannot run
an application designed for any of the supported power line channels on a
Micro Server designed for a twisted-pair free topology (TP/FT-10)
channel, nor can you run a TP/FT-10 Micro Server on a PL-20 channel.
The Micro Server can report the supported channel types through its
Micro Server key, which is part of the reset notification message.

• In addition to matching transceiver families, the host application could
require additional Micro Server features, such as support for the ISI
protocol. These settings are also contained in the Micro Server’s reset
notification message, if applicable.

• The Micro Server and host application must support the same physical
link-layer protocol (SCI or SPI). Unless the host processor controls the
Micro Server’s SBRB0 and SBRB1 input signals for bitrate selection, both
sides’ link-layer bit rates must match.

In addition, the new application will have certain requirements for the host
environment, such as availability of memory or I/O resources, or the availability
or version numbers of the embedded operating system, and so on. Your host
application download protocol should include an appropriate mechanism to
determine and verify these requirements before passing control to the new
application.

In some cases, your host application download could require an upgrade to the
Micro Server image at the same time as the upgrade of the host application. The
following considerations apply for designing the dual-processor application
download protocol:

• Because a complete and fully operational ShortStack device is required to
run the host application download protocol, the host application download
must be completed first.

• The application must not reset or initialize the Micro Server until the
download process has been completed for both the host application and
the Micro Server image.

• Because the Micro Server will also be updated in the process, some steps
of the application verification process can or must be postponed. For
example, the new host application might require a Micro Server key
value that is correctly implemented by the new Micro Server image, but
not the current one.

• After the successful download of the Micro Server image, the Micro
Server resets and enters quiet mode until the entire device has been
successfully initialized. While the Micro Server is in quiet mode, no
network communication is possible with the device.

• After the new Micro Server resets (after loading its new application
image), it sends a reset notification to the host application. This reset

ShortStack User’s Guide 321

notification reports the new Micro Server’s capabilities and attributes,
and indicates that an application initialization is required.

• After the host application has completed initialization, the host
application download protocol must perform any previously postponed
verification steps and pass control to the new host application, which in
turn initializes the Micro Server.

Application Download Utility
This tool needs to read the application image to be loaded, and run the
application download protocol described in Custom Host Application Download
Protocol on page 318. You can write the utility as an LNS plug-in or as any type
of network-aware application.

Download Capability within the Application
Your application must implement the custom application download protocol, and
provide sufficient non-volatile storage for the new application image. The
application also must tolerate time consuming writes to flash during the transfer.
At a minimum, the ShortStack host application should reserve enough RAM to
buffer two flash sectors. When one sector has been completely received, the
application should write it to flash in a background process. If the write is not
complete when the second buffer is filled, the ShortStack host application must
tell the application download utility to delay additional updates until the
application is ready to receive the data.

After the transfer is complete, and all data has been written to non-volatile
memory, the application must perform all necessary verification tasks, and
prepare the image so that the boot loader can reboot the host processor from the
new image. This preparation must be defined so that a device or processor reset
at any point will result in a functioning ShortStack device. For example, the
reset could always cause a boot from the old application image, or from the new
application image, or from some temporary boot application that can complete
the transition (possibly with user intervention).

See your host processor and operating system documentation about guidance,
recommendations, and tools that support these tasks.

ShortStack User’s Guide 323

F

Glossary

This appendix defines many of the common terms used for
ShortStack device development.

324 Glossary

C
configuration property

A data value used to configure the application program in a device.

D
downlink

Link-layer data transfer from the host to the Micro Server.

H
handshake

The communication across the link layer between the host serial driver and
the ShortStack Micro Server that confirms readiness to receive a link-layer
segment. For the serial driver, the handshake involves three or four control
signals.

host processor

A microcontroller, microprocessor, or FPGA with an embedded processor that
is attached to an FTXL Transceiver or ShortStack Micro Server and runs a
LonTalk application.

L
link layer

A protocol and interface definition for communication between a host
processor and either an FTXL Transceiver or ShortStack Micro Server; see
ShortStack link layer.

link-layer protocol

The protocol that is used for data exchange across the link layer.

link-layer segment

A part of a message sent across the link layer that requires a handshake
between the host serial driver and the ShortStack Micro Server. Examples of
a link-layer segment are: the link-layer header, the link-layer extended
header, and the link-layer payload.

LonTalk API

A C language interface that can be used by a LonTalk application to send and
receive network variable updates and LonTalk messages. Two
implementations are available: a full version for FTXL devices and a
compact version for ShortStack devices.

LonTalk application

An application for a LONWORKS device that communicates with other devices
using the ISO/IEC 14908 (ANSI/CEA-709.1 and EN14908-1) Control Network
Protocol and is based on the LonTalk API or the LonTalk Compact API.

ShortStack User’s Guide 325

LonTalk application framework

Application code and device interface data structures created by the LonTalk
Interface Developer based on a model file.

LonTalk Compact API

A compact version of the LonTalk API for ShortStack devices with support for
up to 254 network variables.

LonTalk Interface Developer

A utility that generates an application framework for a LonTalk application;
the LonTalk Interface Developer is part of the LonTalk Platform and is
included with both the FTXL Developer's Kit and the ShortStack Developer's
Kit.

LonTalk Platform

Development tools, APIs, firmware, and chips for developing LONWORKS
devices that use the LonTalk API or LonTalk Compact API; two versions are
available—the LonTalk Platform for FTXL Transceivers and the LonTalk
Platform for ShortStack Micro Servers.

LonTalk Platform for ShortStack Micro Servers

Development tools, APIs, and firmware for developing LONWORKS devices
that use the LonTalk Compact API and a ShortStack Micro Server; included
with the ShortStack FX Developer’s Kit.

M
model file

A Neuron C application that is used to define the network interface for an
FTXL or ShortStack application.

N
network variable

A data item that a particular device application program expects to get from
other devices on a network (an input network variable) or expects to make
available to other devices on a network (an output network variable).
Examples are a temperature value, switch value, and actuator position
setting.

Neuron C

A programming language based on ANSI C with extensions for control
network communication, I/O, and event-driven programming; also used for
defining a network interface when used for a model file.

S
ShortStack application

An application for a LONWORKS device implemented with the LonTalk
Compact API and a ShortStack Micro Server.

326 Glossary

ShortStack Developer’s Kit

Software required to develop LonTalk applications for any microcontroller or
microprocessor. The kit includes software tools, examples, documentation,
plus the LonTalk Compact API and ShortStack firmware.

ShortStack device

A LONWORKS device based on the LonTalk Compact API and a ShortStack
Micro Server.

ShortStack Driver API

A portable C language hardware driver that encapsulates platform-
dependent code for transferring data between a host processor and a
ShortStack Micro Server.

ShortStack Firmware

Firmware for an Echelon Smart Transceiver that enables the Smart
Transceiver to be used as a network interface by a ShortStack host processor.

ShortStack host processor

Any 8-, 16-, 32-, or 64-bit host microprocessor or microcontroller that is
integrated with the LonTalk Compact API, ShortStack Driver API, and a
ShortStack Micro Server to create a LONWORKS device.

ShortStack link layer

The physical connection and protocol used to attach a ShortStack host
processor to a ShortStack Micro Server; the hardware interface is either an
SCI or SPI serial interface.

ShortStack Micro Server

An Echelon Smart Transceiver running the ShortStack Firmware.

U
uplink

Link-layer data transfer from the Micro Server to the host.

ShortStack User’s Guide 327

Index

3
3100 to 5000 migration, 195
3120, loading, 34
3150, loading, 34
3190, 5

5
5000, loading, 35

A
address table, 255
alias table, 255
anonymous types, 135
ANSI C, 64
ANSI/CEA 709.1-B, 2
APB, 33
appInitData structure, 152
application

downloading over a network, 318
tasks, 167

application message, 181
application migration, 195
architecture, 12
ARM7 example, 20
assembly, 207
AT29C010A, 30
AT29C512, 30
authentication

description, 136
key, 136

automatic enrollment, 210

B
big endian, 62
binding, 122
bit rate, link layer

SCI, 73
selecting, 68
SPI, 77

bit-field members, 111
blank application, 35
BPM Microsystems, 32
buffers, transmit and receive, 104
byte orientation, 62

C
callbacks

LonTalk Compact API, 295

ShortStack ISI API, 307
changeable-type network variable

defining, 122
processing, 178
rejecting, 180
validating, 177

clock rate, 29
collision, write, 81
command byte, link-layer, 90
compiler directive, 282
compiler, host, 64
configuration file, 124
configuration network variable, 124
configuration properties

template file compaction, 284
configuration property

array, 126
constant, 159
declaration, 156
declaring, 124
defining, 124
definition, 116
device specific, 159
inheriting type, 130
responding to changes, 126
sharing, 129

connection
assembly, 207
canceling, 221
controller, 209
deleting, 222
host, 206
implementing, 220
invitation, 207
network variable, 206
recovery, 233

context, multiple, 167
control network protocol, 2
controlled enrollment, 210
CPNV, 124, 193
CSMA, 210
CSMC, 220
CSME, 218
CSMO, 210
CSMR, 210
CSMX, 221
CTRP, 210
CTRQ, 210
CTS~, 71
custom Micro Server

configuring, 243
developing, 245
DMF, 253
memory, 254

328 Index

overview, 242
restrictions, 242
using, 253
with ISI, 248
without ISI, 246

D
DAS, 226
developer's kit, 20
development

host environment, 64
process, 15
tools, 10

device
deinstalling, 237
discovery, 226
initialization, 57, 169
interface, 117

device table
host application, 231
Micro Server, 226

direct memory files, 189
DMF

custom Micro Server, 253
description, 189
memory driver, 192
memory window, 190

documentation, vii
domain address, 204
domain address server, 226
domain table, 256
downlink

SCI, 75, 95
SPI, 81, 101

downloading an application over a network,
318

driver
buffers, 104
modifying for ShortStack FX, 262
overview, 13, 90
SCI, 93
SPI, 99

DRUM, 226

E
EEBLANK utility, 35
EEPROM network variable, 193
EIA-232 interface

FT 5000 EVB, 45
Mini kit, 52

EN 14908.1, 2
endian, 62
enrollment, 206
enumerations, 112
error detection, link layer, 104
error log, 187
event handler, 170

events, ISI, 222
example ports, 20
examples, model file, 138
ex-circuit programming, 34
extended header, link-layer, 90

F
file

comparing ShortStack 2.0 to FX, 259
DMF directory, 192
extension, Micro Server, 33
LonTalk Compact API, 21
names, Micro Server, 33

firmware images, 22
floating-point variables, 155
flush mode, 169
FT 3190 Free Topology Transceiver, 5
FT 5000 EVB

EIA-232 interface, 45
Gizmo interface, 41
jumper settings, general, 40
logic analyzer header, 49
non-volatile memory, 47

FTP, 125
FTXL

comparison with ShortStack and Neuron
hosted devices, 8

overview, 5
functional block

declaring, 120
defining, 119
definition, 116

functional profile, 117
functions

LonTalk Compact API, 291
ShortStack ISI API, 302

G
Gizmo interface

FT 5000 EVB, 41
Mini kit, 50

H
handshake

SCI, 98
SPI, 103

hardware interface, 66
header, link-layer, 90
HiLo Systems, 32
host latency, 70
host processor

initial health check, 105
selecting, 11, 62

host, connection, 206
host-based device, 4
HRDY~, 71

ShortStack User’s Guide 329

I
IEEE 754, 155
in-circuit programming, 36
info bytes, link-layer, 90
installation, 20
interface, device, 117
interoperable self-installation. See ISI
invitation

accepting, 218
connection, 207
receiving, 216

IO9 pin, 68
ISI

3120, 199
3150, 200
3170, 200
5000, 200
accepting invitation, 218
canceling connection, 221
comparing ShortStack and Neuron C, 238
connection, 206
deinstalling device, 237
deleting connection, 222
device discovery, 226
device table, 226
domain address server, 226
enrollment, 206
events, 222
implementing connection, 220
network address, 202
network variable connections, 206
overview, 198
receiving invitation, 216
recovering connection, 233
ShortStack API, 302
ShortStack application, 199
starting, 201
stopping, 201

ISO 7498-1, 2
ISO/IEC 14908, 2

K
key

authentication, 136
Micro Server, 58

L
language, host programming, 64
latency, host, 70
Ldv* functions, 92
length byte, link-layer, 90
libs command, 276
lidprj file, 146
link layer

error detection, 104
message, 90

recovery, 104
link-layer bit rate

SCI, 73
selecting, 68
SPI, 77

little endian, 62
local network management tasks, handling,

184
logic analyzer header, FT 5000 EVB, 49
LON_ENUM_* macros, 112
LON_STRUCT_* macros, 111
LonCpTypes.h, 152
LonEventHandler() function, 170
LonInit() function, 169
Lonmaker Integration tool, 38
LonNiAppInit message, trace for, 85
LonNiNvInit message, trace for, 86
LonNiReset message, trace for, 87
LonNvTypes.h, 152
LonPlatform.h, 113
LonResetNotification message, trace for, 88
LonTalk Compact API

callbacks, 295
changes, 288
customizing, 290
description, 288
files, 21
functions, 291
memory requirements, 290
migrating from ShortStack 2.0, 258
multiple contexts, 167
naming conventions, 288
overview, 15
porting, 110
serial driver functions, 92
using, 164

LonTalk Interface Developer
command line, 276
description, 146
files, 150
overview, 25

LonTalk Platform for FTXL Transceivers, 5
LonTalk Platform for ShortStack Micro

Servers, 6
LonTalk protocol, 2
LonWorks device

single processor chip, 3
two processor chips, 4

LonWorks file transfer protocol, 125
LonWorks network, 2

M
managed network, 198
management tasks, handling, 184
manual enrollment, 210
memory

LonTalk Compact API requirements, 290
map, 29

330 Index

message code, 181
message tag

declaring, 132
table, 162

Micro Server
clock rate, 29
custom, 242
hardware, 28
hardware interface, 66
I/O pins for SCI, 72
I/O pins for SPI, 76
image file names, 33
initial health check, 82
initialization, 57
key, 58
link-layer bit rate, 68
loading, 31
memory map, 29
preparing, 31
reinitializing, 188
selecting, 28
specifying in LonTalk Interface Developer,

147
standard firmware images, 22

MicroServer.h, 251
MicroServerIsiHandlers.h, 252
migrating ShortStack 2.0 to FX

example, 262
process, 261

Mini kit
custom Micro Server, 243
EIA-232 interface, 52
Gizmo interface, 50

MIP, 283
MISO, 76, 81
model file

compiler directives, 282
description, 116
example, 138
specifying in LonTalk Interface Developer,

148
MOSI, 76, 80

N
naming conventions, 260, 288
NDL, 33
NEI, 33
network

address, 202
managed, 198
management tasks, 184
self-installed, 198

network variable
attributes, 161
binding, 122
changeable type, 122, 176
configuration table, 256
connections, 206

declaration, 156
defining, 120
definition, 116
EEPROM, 193
fetch example, 99
poll request, 176
receiving an update, 174
sending an update, 171
table, 160

Neuron C
anonymous types, 135
compiler directives, 282
compiler preferences, 149
legacy constructs, 136

Neuron C model file. See model file
Neuron hosted device

comparison with FTXL and ShortStack, 8
definition, 3

NFI, 33
Nios II example, 262
NME, 33
NMF, 33
NodeBuilder Code Wizard, 116
NodeBuilder Development Tool, 243
NodeBuilder Resource Editor, 119
NodeLoad utility, 37
non-volatile data, 192
non-volatile memory, 63
NXE, 33

O
open enrollment, 206
optimization pragma, 284
OSI Model, 2

P
persistent storage, 192
Pilot EVB, 54
portability, 110
pragma, 282
preferences, LonTalk Interface Developer, 147
processing power, 63
processor, selecting, 11
program ID, 133, 148
programming language, host, 64
project file, 146
project.xif, 153
pull-up resistors, 66
Pyxos FT EV Pilot EVB, 54

Q
quiet mode, 58, 169

R
R/W~, 76

ShortStack User’s Guide 331

RDCF, 233
RDCS, 233
RDCT, 233
recovery

application, 194
link layer, 104

reinitializing, Micro Server, 188
reliability, 66
requirements, 10
reset events, 186
RESET~ pin, 67
resistors, pull-up, 66
resource file, 132
restrictions, 10
RTS~, 71
RXD, 71

S
SCI

architecture, 13
bit rate, 73
communications interface, 74
downlink, 75, 95
handshake, 98
I/O pins, 72
network variable fetch example, 99
overview, 71
uplink, 75, 93

SCLK, 76
scope rules, resource file, 134
SCPTnwrkCnfg, 201
segment, link-layer, 90
self-installed network, 198
serial communications, 62
serial communications interface. See SCI
serial driver

buffers, 104
modifying for ShortStack FX, 262
overview, 13, 90

serial peripheral interface. See SPI
Series 3100 to Series 5000 migration, 195
SFPT, 134
ShortStack

architecture, 12
comparison with FTXL and Neuron hosted

devices, 8
developer’s kit, 20
development process, 15
example ports, 20
LonTalk Compact API, 15
new for 2.1, iv
overview, 6
requirements, 10
restrictions, 10
selecting host processor, 11
serial driver, 13
tools, 10

ShortStack 2 Nios II Example Port, converting
to FX, 262

ShortStack firmware
definition, 6
images, 22

ShortStack ISI API
callbacks, 307
description, 302
functions, 302

ShortStackDev.c, 152
ShortStackDev.h, 152
ShortStackIsiHandlers.h, 251
SNVT, 121
SPI

architecture, 14
communications interface, 79
downlink, 81, 101
handshake, 103
I/O pins, 76
MISO, 81
MOSI, 80
overview, 76
resynchronization, 82
uplink, 80, 100
write collision, 81

SS~, 76
StdServers.xml, 147
swprj file, 146
SYM, 34

T
tools, 10
TREQ~, 76
TXD, 71
type definitions, 154
type-inheriting configuration property, 130

U
UCPT, 132
UNVT, 121, 132
uplink

SCI, 75, 93
SPI, 80, 100

UserServers.xml, 253

V
volatile memory, 63

W
write collision, 81

X
XIF, 34

www.echelon.com

	Welcome
	Audience
	What’s New for ShortStack FX
	What’s New for ShortStack 2.1
	Related Documentation
	1. Introduction to ShortStack
	Overview
	A LonWorks Device with a Single Processor Chip
	A LonWorks Device with Two Processor Chips
	Comparing Neuron Hosted, FTXL, and ShortStack Devices

	Requirements and Restrictions for ShortStack
	Development Tools for ShortStack
	Selecting a Host Processor
	ShortStack Architecture
	The ShortStack Micro Server
	The ShortStack Serial Driver
	The ShortStack LonTalk Compact API

	Overview of the ShortStack Development Process

	2. Getting Started with ShortStack
	ShortStack Developer’s Kit Overview
	Installing the ShortStack Developer’s Kit
	ShortStack LonTalk Compact API Files
	Standard ShortStack Micro Server Firmware Images
	LonTalk Interface Developer

	3. Selecting and Creating a ShortStack Micro Server
	Overview
	Selecting the Micro Server Hardware
	Micro Server Clock Rate
	Micro Server Memory Map
	Development Device Type

	Preparing the ShortStack Micro Server
	Firmware Image File Names
	Loading an FT 3120, PL 3120, or PL 3170 Smart Transceiver
	Loading an FT 3150 or PL 3150 Smart Transceiver
	Loading an FT 5000 Smart Transceiver
	Using a Network Management Tool for In-Circuit Programming
	Working with FT 5000 EVB Evaluation Boards
	Working with Mini EVB Evaluation Boards
	Working with Pyxos FT EV Pilot Evaluation Boards

	ShortStack Device Initialization
	Using the ShortStack Micro Server Key

	4. Selecting the Host Processor
	 Selecting a Host Processor
	Serial Communications
	Byte Orientation
	Processing Power
	Volatile Memory
	Modifiable Non-Volatile Memory
	Compiler and Application Programming Language

	Selecting the Application Development Environment

	5. Designing the Hardware Interface
	 Overview of the Hardware Interface
	Reliability
	Serial Communication Lines
	The RESET~ Pin
	Using the IO9 Pin
	Selecting the Link-Layer Bit Rate
	Host Latency Considerations

	SCI Interface
	ShortStack Micro Server I/O Pin Assignments for SCI
	Setting the SCI Bit Rate
	SCI Communications Interface
	SCI Micro Server to Host (Uplink) Control Flow
	SCI Host to Micro Server (Downlink) Control Flow

	SPI Interface
	ShortStack Micro Server I/O Pin Assignments for SPI
	Setting the SPI Bit Rate
	SPI Communications Interface
	SPI Micro Server to Host Control Flow (MOSI)
	SPI Host to Micro Server Control Flow (MISO)
	SPI Resynchronization

	Performing an Initial Micro Server Health Check

	6. Creating a ShortStack Serial Driver
	 Overview of the ShortStack Serial Driver
	Role of the ShortStack LonTalk Compact API
	Role of the ShortStack Serial Driver
	Interface to the ShortStack LonTalk Compact API
	Creating an SCI ShortStack Driver
	SCI Uplink Operation
	SCI Downlink Operation
	Example: Network Variable Fetch

	Creating an SPI ShortStack Driver
	SPI Uplink Operation
	SPI Downlink Operation

	Transmit and Receive Buffers
	Link-Layer Error Detection and Recovery
	Loading the ShortStack Application into the Host Processor
	Performing an Initial Host Processor Health Check

	7. Porting the ShortStack LonTalk Compact API
	 Portability Overview
	Bit Field Members
	Enumerations
	LonPlatform.h
	Testing the Ported API Files

	8. Creating a Model File
	 Model File Overview
	Defining the Device Interface
	Defining the Interface for a ShortStack Application
	Defining a Functional Block
	Defining a Network Variable
	Defining a Configuration Property
	Declaring a Message Tag
	Defining a Resource File

	Writing Acceptable Neuron C Code
	Anonymous Top-Level Types
	Legacy Neuron C Constructs

	Using Authentication
	Specifying the Authentication Key
	How Authentication Works

	Example Model files
	Simple Network Variable Declarations
	Network Variables Using Standard Types
	Functional Blocks without Configuration Properties
	Functional Blocks with Configuration Network Variables
	Functional Blocks with Configuration Properties Implemented in a Configuration File

	9. Using the LonTalk Interface Developer Utility
	 Running the LonTalk Interface Developer
	Specifying the Project File
	Specifying the Micro Server
	Specifying System Preferences
	Specifying the Device Program ID
	Specifying the Model File
	Specifying Neuron C Compiler Preferences
	Specifying Code Generator Preferences
	Compiling and Generating the Files

	Using the LonTalk Interface Developer Files
	Copied Files
	LonNvTypes.h and LonCpTypes.h
	ShortStackDev.h
	ShortStackDev.c
	project.xif and project.xfb

	Using Types
	Floating Point Variables

	Network Variable and Configuration Property Declarations
	Constant Configuration Properties
	The Network Variable Table
	Network Variable Attributes

	The Message Tag Table

	10. Developing a ShortStack Application
	 Overview of a ShortStack Application
	Using the ShortStack LonTalk Compact API
	Using the ShortStack LonTalk Compact API in Multiple Contexts

	Tasks Performed by a ShortStack Application
	Initializing the ShortStack Device
	Periodically Calling the Event Handler
	Sending a Network Variable Update
	Receiving a Network Variable Update from the Network
	Handling a Network Variable Poll Request from the Network
	Handling Changes to Changeable-Type Network Variables
	Communicating with Other Devices Using Application Messages
	Handling Management Tasks and Events
	Handling Local Network Management Tasks
	Handling Reset Events
	Querying the Error Log

	Reinitializing the ShortStack Micro Server
	Using Direct Memory Files
	The DMF Memory Window
	File Directory

	Providing Persistent Storage for Non-Volatile Data
	DMF Memory Drivers
	CPNV and EEPROM NV
	Application Start-Up and Failure Recovery

	Application Migration: Series 3100 to Series 5000

	11. Developing a ShortStack Application with ISI
	 Overview of ISI
	Using ISI in a ShortStack Application
	Running ISI on a 3120 Device
	Running ISI on a 3150 Device
	Running ISI on a PL 3170 Device
	Running ISI on an FT 5000 Device

	Tasks Performed by a ShortStack ISI Application
	Starting and Stopping ISI
	Implementing a SCPTnwrkCnfg Configuration Property
	Managing the Network Address
	Managing Network Variable Connections
	Canceling a Connection
	Deleting a Connection
	Handling ISI Events
	Domain Address Server Support
	Discovering Devices
	Define the Data Structure
	Implement the ProcessDrum() Function
	Create the Decrement Function
	Define IsiCreatePeriodicMsg() in ShortStackIsiHandlers.h
	Call the Decrement Function
	Call Your DRUM Dispatcher from IsiMsgHandler()
	The ReportDevice() Utility Function
	Process Your User-Defined RPC
	Implement the ProcessDrum() Function
	Process Your User-Defined RPC

	Recovering Connections
	Deinstalling a Device

	Comparing ISI for ShortStack and Neuron C

	12. Custom Micro Servers
	 Overview
	Custom Micro Server Benefits and Restrictions
	Configuring and Building a Custom Micro Server
	Overview of Custom Micro Server Development
	Creating a Custom Micro Server without ISI Support
	Creating a Custom Micro Server with ISI Support

	Using a Custom Micro Server
	Supporting Direct Memory Files
	Managing Memory
	Address Table
	Alias Table
	Domain Table
	Network Variable Configuration Table

	13. Converting a ShortStack 2 Application to a ShortStack FX Application
	 Overview
	Reorganization of API Files
	Support for Added Features
	New API Naming Conventions
	Improved Portability Support
	Recommended Migration Process
	Modifying the Serial Driver
	Example Conversion
	Changes within the Nios II IDE
	Changes to the Serial Driver
	Changes to the Application
	Additional Recommended Changes

	A. LonTalk Interface Developer Command Line Usage
	 Overview
	Command Usage
	Command Switches

	B. Model File Compiler Directives
	 Using Model File Compiler Directives
	Acceptable Model File Compiler Directives

	C. ShortStack LonTalk Compact API
	 Introduction
	Changes to the API
	ShortStack FX Naming Conventions

	Customizing the API
	API Memory Requirements
	The ShortStack LonTalk Compact API and Callback Handler Functions
	ShortStack LonTalk Compact API Functions
	ShortStack Callback Handler Functions

	D. ShortStack ISI API
	 Introduction
	The ShortStack ISI API
	The ShortStack ISI Callback Handler Functions

	E. Downloading a ShortStack Application over the Network
	 Overview
	Custom Host Application Download Protocol
	Upgrading Multi-Processor Devices
	Application Download Utility
	Download Capability within the Application

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

