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Welcome 
Echelon’s ShortStack® Micro Server enables any product that contains a 
microprocessor or microcontroller to quickly and inexpensively become a 
networked, Internet-accessible device.  The ShortStack Micro Server provides a 
simple way to add LONWORKS® networking to new or existing smart devices.  The 
ShortStack Micro Server is easy to use due to a simple host API, a simple driver, 
a simple hardware interface, a small host memory footprint, and comprehensive 
tool support.   

This document describes how to develop an application for a LONWORKS device 
using Echelon’s ShortStack FX Micro Server.  It describes the architecture of a 
ShortStack device and how to develop a ShortStack device.  Development of a 
ShortStack device includes interfacing the ShortStack Micro Server with your 
microprocessor, creating your ShortStack serial driver, creating a Neuron® C 
model file, running the LonTalk® Interface Developer utility, and using the 
LonTalk Compact API functions to program your ShortStack application. 

Audience 
This document assumes that the reader has a good understanding of the 
LONWORKS platform and microprocessor or microcontroller programming. 

What’s New for ShortStack FX 
The ShortStack FX Developer’s Kit is part of the LONWORKS 2.0 product family. 

The ShortStack FX Developer’s Kit includes all of the features and functions of 
ShortStack 2.1, and adds new features and functions. 

New Hardware Support 

The ShortStack FX Developer’s Kit provides standard Micro Servers for the FT 
5000 Smart Transceiver and the PL 3170 Smart Transceiver.  You can also build 
a custom Micro Server for the Neuron 5000 Processor. 

ISI Controlled Enrollment 

A custom ISI Micro Server can provide support for controlled enrollment.  With 
controlled enrollment support, your ISI network can include a connection 
controller to manage ISI enrollment. 

LonTalk Compact API 

The ShortStack application programming interface (API) includes new functions 
and callback handler functions, including a function to determine the version 
number of the Micro Server application and Micro Server core library, and an 
echo function to test communications with the link layer. 

LonTalk Compact API Compatibility 

The LonTalk Compact API for ShortStack FX is essentially the same as the 
LonTalk Compact API for ShortStack 2.1.  Thus, a ShortStack 2.1 application 
requires no changes to the application or the link-layer driver; you need only re-
run the LonTalk Interface Developer utility and recompile the application to run 
with a ShortStack FX Micro Server. 
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Although new API functionality, such as the version or echo functions, is not 
available to unmodified existing applications, you can add these functions to 
existing applications or create new applications to include this functionality.  
Adding such new functionality to existing applications is optional. 

Important:  The LonTalk Compact API for ShortStack FX is substantially 
different than the ShortStack 2 API; see Chapter 13, Converting a ShortStack 2 
Application to a ShortStack FX Application, on page 257, for information about 
how to convert a ShortStack 2 application to use the ShortStack FX LonTalk 
Compact API.  

ShortStack User’s Guide 

The appendix, Neuron C Syntax for the Model File, has been deleted.  All of the 
Neuron C syntax is described in the Neuron C Reference Guide.  Chapter 8, 
Creating a Model File, on page 115, describes how to use the Neuron C 
programming language to create a mode file.  See the Neuron C Reference Guide 
for detailed Neuron C language syntax. 

The appendix, LonTalk Interface Developer Utility Error and Warning Messages, 
has been deleted.  The error codes for the LonTalk Interface Developer utility 
have been moved to the Neuron Tools Errors Guide (078-0402-01B) and have 
been removed from the ShortStack FX User’s Guide. 

What’s New for ShortStack 2.1 
ShortStack 2.1 included many new features and functions compared with 
ShortStack 2.  This section describes some of the major new features and 
functions of ShortStack 2.1. 

LonTalk API 

The ShortStack application programming interface (API) that was used by 
ShortStack 2 has been replaced with a new LonTalk API.  This API is a C 
language interface that can be used by a LonTalk application to send and receive 
network variable updates and LonTalk messages; two implementations are 
available, a full version with support for up to 4096 network variables and a 
compact version with support for up to 254 network variables.  The compact 
version is used by ShortStack 2.1, and the full version is used by the LonTalk 
Platform for FTXL Transceivers.  Together, they provide a simple migration path 
and the opportunity for shared application code between ShortStack and FTXL 
applications.  Chapter 13, Converting a ShortStack 2 Application to a ShortStack 
FX Application, on page 257, describes how to convert a ShortStack 2 application 
to use the ShortStack 2.1 LonTalk Compact API. 

LonTalk Interface Developer 

The ShortStack Wizard has been enhanced, and is now known as the LonTalk 
Interface Developer utility.  The new tool includes several usability 
improvements and a documented command-line interface for use with some 
development platforms (such as the Eclipse IDE), or for automated, script-driven, 
build processes.  This utility is shared with the LonTalk Platform for FTXL 
Transceivers, thus providing a compatible set of tools for developing ShortStack 
and FTXL applications. 
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Self-Installation Functions 

Two new APIs have been added to support self-installation.  One is a low-level 
API that supports reading and writing the Smart Transceiver’s network 
configuration.  The other is an optional high-level API that supports the 
Interoperable Self-Installation (ISI) protocol.  These APIs build on the existing 
ShortStack LonTalk Compact host API and therefore have minimal impact on 
existing portions of the host API. 

Support for 254 Network Variables and 127 Aliases 

For FT 3120, FT 3150, PL 3150, or PL 3170 devices, ShortStack 2.1 supports up 
to 254 network variables and up to 127 aliases, rather than the 62 maximum for 
each that ShortStack 2 supported.  There are minor changes to the host API for 
this feature.  The primary changes are a modification to the data structure used 
to pass the network variable index from the host to the Micro Server and back, a 
change to the initialization sequence, and a change to the link-layer protocol.  
The device interface data is also updated to accommodate more than 62 network 
variables. 

This feature requires the use of a Micro Server with Neuron firmware version 16 
(or later).  The PL 3120 Smart Transceiver uses Neuron firmware version 14, and 
is thus limited to 62 network variables and 62 aliases. 

Changeable-Type NV Support 

ShortStack 2.1 supports changeable network variable types as described in the 
LONMARK® Application-layer Guidelines.  This addition requires minor changes 
to the host API.  The LonTalk Interface Developer utility provides a new 
LonNvDescription type definition in the ShortStackDev.h file, and generates the 
network variable table accordingly in the ShortStackDev.c file.  The new 
definition is incompatible with ShortStack 2 applications.  

Direct Memory Files 

ShortStack 2.1 simplifies implementation of configuration properties within 
configuration files by allowing a network management tool to access 
configuration property files without having to implement a LONWORKS file 
transfer protocol (LW-FTP) server on the device.  ShortStack 2.1 allows a 
ShortStack application to implement configuration properties within 
configuration files, and exposes an interface that enables a network management 
tool to use standard LonTalk memory read and write network management 
messages to access the configuration properties.  To support this access, a 
window of the Smart Transceiver’s memory space is defined so that whenever a 
Smart Transceiver receives a memory read or write network management 
command that uses addresses within this window, the Micro Server routes it to 
the application.  This approach eliminates the need to implement the LONWORKS 
file transfer protocol on most ShortStack devices, but requires some new code to 
handle the read and write requests from the Micro Server.  The LonTalk 
Interface Developer utility generates this code automatically. 

This feature requires the use of a Micro Server with Neuron firmware version 16 
(or later).  The PL 3120 Smart Transceiver uses Neuron firmware version 14, and 
cannot use the direct memory files access method. 

Host SI Data Storage 

In ShortStack 2 applications, the device’s self-identification (SI) and self-
documentation (SD) data was transferred to the Micro Server during 



vi 

initialization, and was limited to the size of the Micro Server’s related buffer.  
ShortStack 2.1 applications no longer transfer this data to the Micro Server, thus 
allowing for simplified initialization, and fewer restrictions to the size of this 
data.  Code has been added to the ShortStack LonTalk Compact API to handle 
the SI data read and write requests forwarded by the ShortStack Micro Server. 

Uplink Reset Message 

The reset message sent by the ShortStack Micro Server has been extended.  The 
new message reports link-layer protocol version 3 instead of 2, reports whether 
the Micro Server is configured, provides a unique key for the specific version of 
the Micro Server, reports the existence and state of an IO9 input, reports the last 
reset cause, reports the last error logged, provides information about the Micro 
Server’s capacity, and includes a flag to indicate whether the Micro Server is 
initialized. 

Configuration Property Arrays 

ShortStack 2.1 supports implementing configuration property arrays. 
Configuration property arrays are multi-dimensional configuration properties 
that, as a unit, apply to a network variable or a functional block (or to multiple 
network variables or functional blocks).  

Support for Non-Volatile Data 

Configuration property values, and values of network variables declared with the 
eeprom modifier, must persist after resetting or power-cycling the device. 
ShortStack 2.1 provides an improved API and framework to assist with the 
implementation of persistent configuration property and network variable values. 

Configuration Property and Network Variable Initializers 

Configuration properties, and sometimes network variables, require well-defined 
initial values.  ShortStack 2.1 provides an improved application framework, 
which includes fully and correctly initialized configuration properties and 
network variables, thereby further simplifying the development of interoperable 
ShortStack devices. 

Custom Micro Servers 

Users of the NodeBuilder® Development Tool or the Mini EVK Evaluation Kit 
can create their own Micro Server to target a Smart Transceiver with a custom 
hardware configuration. 

Improved Diagnostics 

ShortStack 2.1 simplifies debugging and diagnosing a new Micro Server, 
especially while in quiet mode.  This includes a combination of API, driver, Micro 
Server, and documentation changes. 

Example Ports 

ShortStack 2.1 host API ports are provided as separate download packages, 
rather than being included with the ShortStack Developer’s Kit.  This change 
allows examples to be delivered independently of the Developer’s Kit.  The 
ShortStack Developer’s Kit consists of the ShortStack firmware, ShortStack 
LonTalk Compact API, LonTalk Interface Developer utility, and documentation.  
Each example port consists of the port’s example serial driver, the ported host 
API, one or more example applications, and documentation for the port. 
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Related Documentation 
In addition to this manual, the ShortStack FX Developer’s Kit includes the 
following manuals: 

• Neuron C Programmer’s Guide (078-0002-02H).  This manual describes 
the key concepts of programming using the Neuron C programming 
language and describes how to develop a LONWORKS application. 

• Neuron C Reference Guide (078-0140-02F).  This manual provides 
reference information for writing programs that use the Neuron C 
language. 

• Neuron Tools Errors Guide (078-0402-01B).  This manual describes error 
codes issued by the Neuron C compiler and related development tools. 

The ShortStack Developer’s Kit also includes the reference documentation for the 
ShortStack LonTalk Compact API, which is delivered as a set of HTML files. 

After you install the ShortStack software, you can view these documents from the 
Windows Start menu:  select Programs → Echelon ShortStack FX Developer’s Kit 
→ Documentation, then select the document that you want to view.  

In addition to the ShortStack Developer’s Kit, Echelon provides example ports for 
selected host processors.  These example ports include example implementations 
of the serial driver, API callback handler routines, and one or more sample 
applications.  You can download these example ports from the Echelon 
ShortStack Web site (www.echelon.com/shortstack).  The following manual 
describes the example port that is currently available: 

• ShortStack FX ARM7 Example Port User’s Guide (078-0366-01B).  This 
manual describes the ShortStack FX ARM7 Example Port for an ARM7-
family microprocessor, the Atmel® ARM® AT91SAM7S64.  The manual 
also describes working with the example applications, which were built 
with the IAR Embedded Workbench®. 

The following manuals are available from the Echelon Web site 
(www.echelon.com/docs) and provide additional information that can help you 
develop applications for a ShortStack Micro Server: 

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D).  This 
manual provides detailed technical specifications on the electrical 
interfaces, mechanical interfaces, and operating environment 
characteristics for the FT 3120® and FT 3150® Smart Transceivers. 

• Introduction to the LONWORKS Platform (078-0183-01B).  This manual 
provides an introduction to the ISO/IEC 14908 (ANSI/CEA-709.1 and 
EN14908) Control Network Protocol, and provides a high-level 
introduction to LONWORKS networks and the tools and components that 
are used for developing, installing, operating, and maintaining them. 

• ISI Programmer's Guide (078-0299-01F).  Describes how you can use the 
Interoperable Self-Installation (ISI) protocol to create networks of control 
devices that interoperate, without requiring the use of an installation 
tool.  Also describes how to use Echelon's ISI Library to develop devices 
that can be used in both self-installed as well as managed networks. 

http://www.echelon.com/shortstack
http://www.echelon.com/docs
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• ISI Protocol Specification (078-0300-01F).  Describes the Interoperable 
Self-Installation (ISI) protocol, which is a protocol used to create 
networks of control devices without requiring the use of an installation 
tool. 

• LONMARK® Application Layer Interoperability Guidelines.  This manual 
describes design guidelines for developing applications for open 
interoperable LONWORKS devices, and is available from the LONMARK 
Web site, www.lonmark.org.  

• LonMaker User's Guide (078-0333-01A).  This manual describes how to 
use the Turbo edition of the LonMaker® Integration Tool to design, 
commission, monitor and control, maintain, and manage a network. 

• NodeBuilder® FX User’s Guide (078-0405-01A).  This manual describes 
how to develop a LONWORKS device using the NodeBuilder tool.   
 
You can use the NodeBuilder FX Development Tool to create a model file 
for a ShortStack application.  See Chapter 8, Creating a Model File, on 
page 115, for more information about model files.  You can also use the 
NodeBuilder FX Development Tool to create a custom ShortStack Micro 
Server.  See Chapter 12, Custom Micro Servers, on page 241, for more 
information about custom Micro Servers.  Most ShortStack developers 
will not need to create a custom ShortStack Micro Server. 

• Mini FX User’s Guide (078-0398-01A).  This manual describes how to use 
the Mini FX Evaluation Kit.  You can use the Mini kit to develop a 
prototype or production control system that requires networking, or to 
evaluate the development of applications for such control networks using 
the LONWORKS platform.   
 
You can also use the Mini FX Evaluation Kit to create a custom 
ShortStack Micro Server.  See Chapter 12, Custom Micro Servers, on 
page 241, for more information about custom Micro Servers.  Most 
ShortStack developers will not need to create a custom ShortStack Micro 
Server. 

• PL 3120 / PL 3150 / PL 3170 Power Line Smart Transceiver Data Book 
(005-0193-01A).  This manual provides detailed technical specifications 
on the electrical interfaces, mechanical interfaces, and operating 
environment characteristics for the PL 3120, PL 3150, and PL 3170™ 
Smart Transceivers. 

• Series 5000 Chip Data Book (005-0199-01A).  This manual provides 
detailed specifications on the electrical interfaces, mechanical interfaces, 
and operating environment characteristics for the FT 5000 Smart 
Transceiver and Neuron 5000 Processor. 

All of the ShortStack documentation, and related product documentation, is 
available in Adobe® PDF format.  To view the PDF files, you must have a current 
version of the Adobe Reader®, which you can download from Adobe at:  
www.adobe.com/products/acrobat/readstep2.html.   

As you create your serial driver for communications between your host processor 
and the ShortStack Micro Server, you will need to be familiar with either the SCI 

http://www.lonmark.org/
http://www.adobe.com/products/acrobat/readstep2.html
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or SPI interface standard.  You will find having an appropriate reference for the 
interface helpful.  Likewise, you should have documentation for your host 
processor and development environment available. 



x 

 



ShortStack User’s Guide        xi 

Table of Contents 
Welcome.........................................................................................................iii 
Audience ........................................................................................................iii 
What’s New for ShortStack FX ....................................................................iii 
What’s New for ShortStack 2.1 .................................................................... iv 
Related Documentation ...............................................................................vii 

Chapter 1. Introduction to ShortStack.............................................................. 1 
Overview......................................................................................................... 2 

A LONWORKS Device with a Single Processor Chip .............................. 3 
A LONWORKS Device with Two Processor Chips ................................... 4 

LonTalk Platform for FTXL Transceivers....................................... 5 
LonTalk Platform for ShortStack Micro Servers ............................ 6 

Comparing Neuron Hosted, FTXL, and ShortStack Devices ............... 8 
Requirements and Restrictions for ShortStack ......................................... 10 
Development Tools for ShortStack ............................................................. 10 
Selecting a Host Processor........................................................................... 11 
ShortStack Architecture .............................................................................. 12 

The ShortStack Micro Server ............................................................... 12 
The ShortStack Serial Driver ............................................................... 13 

SCI Architecture ............................................................................. 13 
SPI Architecture.............................................................................. 14 

The ShortStack LonTalk Compact API................................................ 15 
Overview of the ShortStack Development Process .................................... 15 

Chapter 2. Getting Started with ShortStack .................................................. 19 
ShortStack Developer’s Kit Overview......................................................... 20 
Installing the ShortStack Developer’s Kit.................................................. 20 
ShortStack LonTalk Compact API Files .................................................... 21 
Standard ShortStack Micro Server Firmware Images.............................. 22 
LonTalk Interface Developer....................................................................... 25 

Chapter 3. Selecting and Creating a ShortStack Micro Server...................... 27 
Overview....................................................................................................... 28 
Selecting the Micro Server Hardware ........................................................ 28 

Micro Server Clock Rate ....................................................................... 29 
Micro Server Memory Map ...................................................................29 
Development Device Type..................................................................... 30 

Preparing the ShortStack Micro Server ..................................................... 31 
Firmware Image File Names ................................................................ 33 
Loading an FT 3120, PL 3120, or PL 3170 Smart Transceiver.......... 34 
Loading an FT 3150 or PL 3150 Smart Transceiver........................... 34 

Loading a Blank Application.......................................................... 35 
Loading an FT 5000 Smart Transceiver .............................................. 35 
Using a Network Management Tool for In-Circuit Programming ..... 36 

Using the NodeLoad Utility with ShortStack............................... 37 
Using the LonMaker Integration Tool with ShortStack .............. 38 

Working with FT 5000 EVB Evaluation Boards ................................. 39 
General Jumper Settings for the FT 5000 EVB............................ 40 
Using the Gizmo Interface (SCI or SPI) ........................................ 41 
Using the EIA-232 Interface (SCI)................................................. 45 
Clearing the Non-Volatile Memory................................................ 47 
Using a Logic Analyzer................................................................... 49 



xii 

Working with Mini EVB Evaluation Boards ....................................... 49 
Using the Gizmo Interface (SCI).................................................... 50 
Using the EIA-232 Interface (SCI)................................................. 52 

Working with Pyxos FT EV Pilot Evaluation Boards ......................... 54 
ShortStack Device Initialization................................................................. 57 
Using the ShortStack Micro Server Key .................................................... 58 

Chapter 4. Selecting the Host Processor ......................................................... 61 
Selecting a Host Processor........................................................................... 62 

Serial Communications ......................................................................... 62 
Byte Orientation.................................................................................... 62 
Processing Power ................................................................................... 63 
Volatile Memory .................................................................................... 63 
Modifiable Non-Volatile Memory ......................................................... 63 
Compiler and Application Programming Language............................ 64 

Selecting the Application Development Environment .............................. 64 
Chapter 5. Designing the Hardware Interface ............................................... 65 

Overview of the Hardware Interface .......................................................... 66 
Reliability............................................................................................... 66 
Serial Communication Lines ................................................................ 66 
The RESET~ Pin ................................................................................... 67 
Using the IO9 Pin.................................................................................. 68 
Selecting the Link-Layer Bit Rate........................................................ 68 
Host Latency Considerations................................................................70 

SCI Interface ................................................................................................ 71 
ShortStack Micro Server I/O Pin Assignments for SCI ...................... 72 
Setting the SCI Bit Rate ....................................................................... 73 
SCI Communications Interface ............................................................ 74 
SCI Micro Server to Host (Uplink) Control Flow ................................ 75 
SCI Host to Micro Server (Downlink) Control Flow............................ 75 

SPI Interface................................................................................................. 76 
ShortStack Micro Server I/O Pin Assignments for SPI ...................... 76 
Setting the SPI Bit Rate ....................................................................... 77 
SPI Communications Interface............................................................. 79 
SPI Micro Server to Host Control Flow (MOSI) .................................. 80 
SPI Host to Micro Server Control Flow (MISO) .................................. 81 
SPI Resynchronization..........................................................................82 

Performing an Initial Micro Server Health Check .................................... 82 
Chapter 6. Creating a ShortStack Serial Driver ............................................ 89 

Overview of the ShortStack Serial Driver.................................................. 90 
Role of the ShortStack LonTalk Compact API........................................... 92 
Role of the ShortStack Serial Driver .......................................................... 92 
Interface to the ShortStack LonTalk Compact API................................... 92 
Creating an SCI ShortStack Driver............................................................ 93 

SCI Uplink Operation ........................................................................... 93 
SCI Downlink Operation....................................................................... 95 
Example:  Network Variable Fetch ...................................................... 99 

Creating an SPI ShortStack Driver ............................................................ 99 
SPI Uplink Operation..........................................................................100 
SPI Downlink Operation.....................................................................101 

Transmit and Receive Buffers................................................................... 104 
Link-Layer Error Detection and Recovery ............................................... 104 



ShortStack User’s Guide        xiii 

Loading the ShortStack Application into the Host Processor................. 105 
Performing an Initial Host Processor Health Check ............................... 105 

Chapter 7. Porting the ShortStack LonTalk Compact API ...........................109 
Portability Overview.................................................................................. 110 

Bit Field Members ...............................................................................111 
Enumerations ......................................................................................112 
LonPlatform.h......................................................................................113 
Testing the Ported API Files .............................................................. 114 

Chapter 8. Creating a Model File ...................................................................115 
Model File Overview ..................................................................................116 
Defining the Device Interface.................................................................... 117 

Defining the Interface for a ShortStack Application......................... 117 
Choosing the Data Type ............................................................... 118 

Defining a Functional Block ............................................................... 119 
Declaring a Functional Block....................................................... 120 

Defining a Network Variable..............................................................120 
Defining a Changeable-Type Network Variable ......................... 122 

Defining a Configuration Property.....................................................124 
Declaring a Configuration Property ............................................ 124 
Responding to Configuration Property Value Changes.............. 126 
Defining a Configuration Property Array ................................... 126 
Sharing a Configuration Property ...............................................129 
Inheriting a Configuration Property Type .................................. 130 

Declaring a Message Tag .................................................................... 132 
Defining a Resource File .....................................................................132 

Implementation-Specific Scope Rules.......................................... 134 
Writing Acceptable Neuron C Code .......................................................... 135 

Anonymous Top-Level Types ..............................................................135 
Legacy Neuron C Constructs ..............................................................136 

Using Authentication.................................................................................136 
Specifying the Authentication Key..................................................... 136 
How Authentication Works.................................................................137 

Example Model files...................................................................................138 
Simple Network Variable Declarations ............................................. 139 
Network Variables Using Standard Types ........................................139 
Functional Blocks without Configuration Properties ....................... 140 
Functional Blocks with Configuration Network Variables............... 141 
FBs with CPs Implemented in a Configuration File......................... 142 

Chapter 9. Using the LonTalk Interface Developer Utility...........................145 
Running the LonTalk Interface Developer...............................................146 

Specifying the Project File .................................................................. 146 
Specifying the Micro Server................................................................ 147 
Specifying System Preferences ........................................................... 147 
Specifying the Device Program ID ..................................................... 148 
Specifying the Model File....................................................................148 
Specifying Neuron C Compiler Preferences....................................... 149 
Specifying Code Generator Preferences............................................. 149 
Compiling and Generating the Files ..................................................150 

Using the LonTalk Interface Developer Files .......................................... 150 
Copied Files..........................................................................................151 
LonNvTypes.h and LonCpTypes.h .....................................................152 



xiv 

ShortStackDev.h.................................................................................. 152 
ShortStackDev.c .................................................................................. 152 
project.xif and project.xfb.................................................................... 153 

Using Types ................................................................................................154 
Floating Point Variables .....................................................................155 

Network Variable and Configuration Property Declarations ................. 156 
Constant Configuration Properties...........................................................159 
The Network Variable Table ..................................................................... 160 

Network Variable Attributes ..............................................................161 
The Message Tag Table .............................................................................162 

Chapter 10. Developing a ShortStack Application ........................................163 
Overview of a ShortStack Application...................................................... 164 

Using the ShortStack LonTalk Compact API.................................... 164 
Using the LonTalk Compact API in Multiple Contexts.................... 167 

Tasks Performed by a ShortStack Application ........................................ 167 
Initializing the ShortStack Device ..................................................... 169 
Periodically Calling the Event Handler............................................. 170 
Sending a Network Variable Update .................................................171 
Receiving a Network Variable Update from the Network................ 174 
Handling a Network Variable Poll Request from the Network........ 176 
Handling Changes to Changeable-Type Network Variables ............ 176 

Validating a Type Change ............................................................177 
Processing a Type Change............................................................178 
Processing a Size Change .............................................................179 
Rejecting a Type Change .............................................................. 180 

Communicating with Devices Using Application Messages............. 181 
Sending an Application Message to the Network ....................... 182 
Receiving an Application Message from the Network................ 183 

Handling Management Tasks and Events.........................................184 
Handling Local Network Management Tasks ................................... 184 
Handling Reset Events........................................................................186 
Querying the Error Log.......................................................................187 

Reinitializing the ShortStack Micro Server ............................................. 188 
Using Direct Memory Files........................................................................189 

The DMF Memory Window................................................................. 190 
File Directory ....................................................................................... 192 

Providing Persistent Storage for Non-Volatile Data ............................... 192 
DMF Memory Drivers ......................................................................... 192 
CPNV and EEPROM NV .................................................................... 193 
Application Start-Up and Failure Recovery ...................................... 194 

Application Migration: Series 3100 to Series 5000.................................. 195 
Chapter 11. Developing a ShortStack Application with ISI..........................197 

Overview of ISI...........................................................................................198 
Using ISI in a ShortStack Application ..................................................... 199 

Running ISI on a 3120 Device ............................................................199 
Running ISI on a 3150 Device ............................................................200 
Running ISI on a PL 3170 Device ...................................................... 200 
Running ISI on an FT 5000 Device .................................................... 200 

Tasks Performed by a ShortStack ISI Application .................................. 200 
Starting and Stopping ISI...................................................................201 
Implementing a SCPTnwrkCnfg Configuration Property ................ 201 
Managing the Network Address.........................................................202 



ShortStack User’s Guide        xv 

Supporting a Pre-Defined Domain...............................................203 
Acquiring a Domain from a Domain Address Server ................. 204 
Fetching a Device from a Domain Address Server ..................... 205 
Fetching a Domain for a Domain Address Server ......................205 

Managing Network Variable Connections ......................................... 206 
ISI Connection Model ................................................................... 206 
Opening Enrollment ..................................................................... 209 
Receiving an Invitation................................................................. 216 
Accepting a Connection Invitation............................................... 218 
Implementing a Connection ......................................................... 220 

Canceling a Connection.......................................................................221 
Deleting a Connection .........................................................................222 
Handling ISI Events............................................................................ 222 
Domain Address Server Support ........................................................226 
Discovering Devices............................................................................. 226 

Maintaining a Device Table within the Micro Server ................ 226 
Maintaining a Device Table within a Host Application ............. 231 

Recovering Connections ...................................................................... 233 
Example 1: Custom Micro Server Implementation .................... 234 
Example 2: Host Implementation ................................................ 236 

Deinstalling a Device...........................................................................237 
Comparing ISI for ShortStack and Neuron C .......................................... 238 

Chapter 12. Custom Micro Servers ................................................................241 
Overview.....................................................................................................242 
Custom Micro Server Benefits and Restrictions...................................... 242 
Configuring and Building a Custom Micro Server .................................. 243 

Overview of Custom Micro Server Development............................... 245 
Creating a Custom Micro Server without ISI Support ..................... 246 
Creating a Custom Micro Server with ISI Support........................... 248 

Configuring MicroServer.h for ISI ...............................................251 
Configuring ShortStackIsiHandlers.h......................................... 251 
Implementing ISI in MicroServerIsiHandlers.c ......................... 252 

Using a Custom Micro Server ...................................................................253 
Supporting Direct Memory Files............................................................... 253 
Managing Memory ..................................................................................... 254 

Address Table ...................................................................................... 255 
Alias Table ...........................................................................................255 
Domain Table.......................................................................................256 
Network Variable Configuration Table.............................................. 256 

Chapter 13. Converting a ShortStack 2 Application to a ShortStack FX.....257 
Overview.....................................................................................................258 
Reorganization of API Files....................................................................... 259 
Support for Added Features ...................................................................... 260 
New API Naming Conventions ................................................................. 260 
Improved Portability Support ...................................................................261 
Recommended Migration Process ............................................................. 261 
Modifying the Serial Driver.......................................................................262 
Example Conversion ..................................................................................262 

Changes within the Nios II IDE......................................................... 262 
Changes to the Serial Driver .............................................................. 263 

ldvintfc.h........................................................................................264 
ldvqueue.h .....................................................................................264 



xvi 

ldvsci.h ...........................................................................................265 
ldvintfc.c ........................................................................................265 
ldvqueue.c ......................................................................................267 
ldvsci.c............................................................................................267 

Changes to the Application................................................................. 268 
main.c.............................................................................................269 
Callback Handler Functions.........................................................269 

Additional Recommended Changes.................................................... 271 
Modify the Model File ................................................................... 271 
Add Range and Error Checking ................................................... 271 
Add Timeout Detection................................................................. 272 

Appendix A. LonTalk Interface Developer Command Line Usage ...............275 
Overview.....................................................................................................276 
Command Usage ........................................................................................276 
Command Switches....................................................................................277 

Appendix B. Model File Compiler Directives.................................................281 
Using Model File Compiler Directives...................................................... 282 
Acceptable Model File Compiler Directives.............................................. 282 

Appendix C. ShortStack LonTalk Compact API ............................................287 
Introduction................................................................................................ 288 
Changes to the API .................................................................................... 288 

ShortStack FX Naming Conventions ................................................. 288 
Customizing the API..................................................................................290 
API Memory Requirements .......................................................................290 
The LonTalk Compact API and Callback Handler Functions ................ 290 

ShortStack LonTalk Compact API Functions ................................... 291 
Commonly Used Functions...........................................................291 
Other Functions ............................................................................291 
Application Messaging Functions ................................................ 292 
Network Management Query Functions ..................................... 292 
Network Management Update Functions ................................... 293 
Local Utility Functions ................................................................. 294 

ShortStack Callback Handler Functions ........................................... 295 
Commonly Used Callback Handler Functions ............................ 296 
Application Messaging Callback Handler Functions ................. 297 
Network Management Query Callback Handler Functions ...... 298 
Local Utility Callback Handler Functions .................................. 299 

Appendix D. ShortStack ISI API ....................................................................301 
Introduction................................................................................................ 302 
The ShortStack ISI API.............................................................................302 
The ShortStack ISI Callback Handler Functions .................................... 307 

Appendix E. Downloading a ShortStack Application over the Network.......317 
Overview.....................................................................................................318 
Custom Host Application Download Protocol .......................................... 318 
Upgrading Multi-Processor Devices ......................................................... 319 
Application Download Utility....................................................................321 
Download Capability within the Application ........................................... 321 



ShortStack User’s Guide        xvii 

Glossary...........................................................................................................323 
Index................................................................................................................327 

 





ShortStack User’s Guide        1 

1  

Introduction to ShortStack 

This chapter introduces the LonTalk Platform for 
ShortStack Micro Servers.  It describes the architecture of a 
ShortStack device, the requirements and restrictions of a 
ShortStack Micro Server, and the ShortStack products that 
are available from Echelon. 
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Overview 
Automation solutions for buildings, homes, and industrial applications include 
sensors, actuators, and control systems.  A LONWORKS network is a peer-to-peer 
network that uses an industry-standard control network protocol for monitoring 
sensors, controlling actuators, communicating with devices, and managing 
network operation.  In short, a LONWORKS network provides communications and 
complete access to control network data from any device in the network.  

The communications protocol used for LONWORKS networks is the ISO/IEC 14908 
(ANSI/CEA 709.1-B and EN14908.1) Control Network Protocol.  This protocol is 
an international standard seven-layer protocol that has been optimized for 
control applications, and is based on the Open Systems Interconnection (OSI) 
Basic Reference Model (the OSI Model, ISO standard 7498-1).  The OSI Model 
describes computer network communications through the seven abstract layers 
described in Table 1.  The implementation of these layers in a LONWORKS device 
provides standardized interconnectivity for devices within a LONWORKS network. 

Table 1. LONWORKS Network Protocol Layers 

OSI Layer  Purpose  Services Provided  

7 Application  Application compatibility  Network configuration, self-installation, 
network diagnostics, file transfer, 
application configuration, application 
specification, alarms, data logging, 
scheduling  

6 Presentation  Data interpretation  Network variables, application messages, 
foreign frame transmission  

5 Session  Control  Request/response, authentication 

4 Transport  End-to-end 
communication reliability  

Acknowledged and unacknowledged 
message delivery, common ordering, 
duplicate detection 

3 Network  Destination addressing  Unicast and multicast addressing, 
routers  

2 Data Link  Media access and framing  Framing, data encoding, CRC error 
checking, predictive carrier sense 
multiple access (CSMA), collision 
avoidance, priority, collision detection 

1 Physical  Electrical interconnect  Media-specific interfaces and modulation 
schemes 

Echelon’s implementation of the ISO/IEC 14908 Control Network Protocol is 
called the LonTalk protocol.  Echelon has implementations of the LonTalk 
protocol in several product offerings, including the Neuron firmware (which is 
included in a ShortStack Micro Server), LNS® Server, LNS remote client, i.LON® 
SmartServers, and the FTXL LonTalk protocol stack.  This document refers to 
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the ISO/IEC 14908 Control Network Protocol as the “LonTalk protocol”, although 
other interoperable implementations exist. 

A LONWORKS Device with a Single Processor Chip 
A basic LONWORKS device consists of four primary components: 

1. An application processor that implements the application layer, or both 
the application and presentation layers, of the LonTalk protocol  

2. A protocol engine that implements layers 2 through 5 (or 2 through 7) of 
the LonTalk protocol  

3. A network transceiver that provides the physical interface for the 
LONWORKS network communications media, and implements the physical 
layer of the LonTalk protocol 

4. Circuitry to implement the device I/O 

These components can be combined in a physical device.  For example, Echelon’s 
Smart Transceiver product can be used as a single-chip solution that combines all 
four components in a single chip.  When used in this way, the Smart Transceiver 
runs the device’s application, implements the LonTalk protocol, and interfaces 
with the physical communications media through a transformer.  Figure 1 on 
page 4 shows the seven-layer LonTalk protocol on a single Neuron Chip or Smart 
Transceiver.  

A LONWORKS device that uses a single processor chip is called a Neuron hosted 
device, which means that the Neuron based processor (the Smart Transceiver) 
runs both the application and the LonTalk protocol. 
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Figure 1. A Single-Chip LONWORKS Device 

For a Neuron hosted device that uses a Neuron Chip or Smart Transceiver, the 
physical layer (layer 1) is handled by the Neuron Chip or Smart Transceiver.  
The middle layers (layers 2 through 6) are handled by the Neuron firmware.  The 
application layer (layer 7) is handled by your Neuron C application program.  You 
create the application program using the Neuron C programming language with 
either the NodeBuilder® FX Development Tool or the Mini FX Evaluation Kit. 

A LONWORKS Device with Two Processor Chips 
Some LONWORKS devices run applications that require more memory, I/O, or 
processing capabilities than a single Neuron Chip or Smart Transceiver can 
provide.  Other LONWORKS devices are implemented by adding a transceiver to 
an existing processor and application.  For these applications, the device uses two 
processor chips working together:   

• An Echelon Smart Transceiver  

• A microprocessor, microcontroller, or embedded processor in a field-
programmable gate array (FPGA) device, typically called the host 
processor  

A LONWORKS device that uses two processor chips is called a host-based device, 
which means that the device includes a Smart Transceiver plus a host processor. 

Compared to the single-chip device, the Smart Transceiver implements only a 
subset of the LonTalk protocol layers.  The host processor implements the 
remaining layers and runs the device’s application program.  The Smart 
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Transceiver and the host processor communicate with each other through a link-
layer interface. 

For a single-chip, Neuron hosted, device you write the application program in 
Neuron C.  For a host-based device, you write the application program in ANSI C, 
C++, or other high-level language, using a common application framework and 
application programming interface (API).  This API is called the LonTalk API.  In 
addition, for a host-based device, you select a suitable host processor and use the 
host processor’s application development environment, rather than the 
NodeBuilder Development Tool or the Mini kit application, to develop the 
application. 

Echelon provides the following solutions for creating host-based LONWORKS 
devices: 

• The LonTalk Platform for FTXL™ Transceivers 

• The LonTalk Platform for ShortStack Micro Servers 

LonTalk Platform for FTXL Transceivers 
The LonTalk Platform for FTXL Transceivers is a set of development tools, APIs, 
firmware, and chips for developing host-based LONWORKS devices that use the 
LonTalk API and an FTXL Transceiver. 

An FTXL Transceiver is an FT 3190 Transceiver with firmware that implements 
the data link layer (layer 2) of the LonTalk protocol, as shown in Figure 2 on page 
6.  The host processor implements the remaining layers (layers 3 to 7).  Included 
with the FTXL development tools is the FTXL LonTalk protocol stack, which 
implements layers 3 to 6 of the LonTalk protocol and runs on the host processor.  
Your application implements the application layer (layer 7). 

For an FTXL device, you use an Altera® Nios® II processor as the host processor 
for your device’s application and I/O.  The Nios II processor typically runs on an 
Altera Cyclone® II or Cyclone III FPGA device.  The FTXL LonTalk protocol stack 
implements layers 3 to 6 of the LonTalk protocol, and the FTXL Transceiver 
implements layers 1 and 2, including the physical interface for the LONWORKS 

communications channel.  

The FTXL LonTalk protocol stack includes a communications interface driver for 
the parallel link layer that manages communications between the FTXL LonTalk 
protocol stack within the Nios II host processor and the FTXL Transceiver.  You 
need to include the physical implementation of the parallel link layer in your 
FTXL device design.  However, you do not need to provide the software 
implementation of the parallel interface driver because it is included with the 
FTXL LonTalk protocol stack, nor can you modify the Echelon-provided 
implementation. 

For FTXL device development, you use a C or C++ compiler that supports the 
Nios II processor.  You use the Echelon LonTalk Interface Developer utility to 
create the application framework.  Your application uses an ANSI C API, the 
Echelon LonTalk API, to manage communications with the FTXL LonTalk 
protocol stack, FTXL Transceiver, and devices on the LONWORKS network. 

Using an FTXL Transceiver, it is easy to add LONWORKS networking to a high-
performance FPGA-based smart device. 
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Figure 2. An FTXL Device 

LonTalk Platform for ShortStack Micro 
Servers 
The LonTalk Platform for ShortStack Micro Servers is a set of development tools, 
APIs, and firmware for developing host-based LONWORKS devices that use the 
LonTalk Compact API and a ShortStack Micro Server. 

A ShortStack Micro Server is a Smart Transceiver with firmware, the ShortStack 
firmware, that implements layers 2 to 5 (and part of layer 6) of the LonTalk 
protocol, as shown in Figure 3 on page 7.  The host processor implements the 
application layer (layer 7) and part of the presentation layer (layer 6).  

The ShortStack firmware allows you to use almost any host processor for your 
device’s application and I/O.  The Smart Transceiver provides the physical 
interface for the LONWORKS communications channel.  

A simple serial communications interface provides communications between the 
ShortStack Micro Server and the host processor.  Because a ShortStack Micro 
Server can work with any host processor, you must provide the serial driver 
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implementation, although Echelon does provide the serial driver API and an 
example driver for a specific host processor.  Currently, an example driver is 
available for an Atmel ARM7 microprocessor. 

For ShortStack device development, you use the C programming language1.  As 
with FTXL development, you use the Echelon LonTalk Interface Developer utility 
to create the application framework.  Your application uses an ANSI C API, the 
Echelon LonTalk Compact API, to manage communications with the ShortStack 
Micro Server and devices on the LONWORKS network. 

Using a ShortStack Micro Server makes it easy to add LONWORKS networks to 
any new or existing smart device. 

 

Figure 3. A ShortStack Device 

                                                 
1 For ShortStack device development, you could alternatively use any standard programming 
language supported by the host processor if you also port the LonTalk Compact API and the 
application framework generated by the LonTalk Interface Developer utility to that language. 
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Comparing Neuron Hosted, FTXL, and ShortStack 
Devices 

Table 2 compares some of the key characteristics of the Neuron hosted and host-
based solutions for LONWORKS devices. 

Table 2. Comparing Neuron Hosted and Host-Based Solutions for LONWORKS Devices 

Characteristic 

Neuron 
Hosted 
Solution FTXL Solution ShortStack Solution 

Maximum number of 
network variables 

254 or 62 [1] 4096 254, 120, or 62 [2] 

Maximum number of 
aliases 

127 or 62 [1] 8192 127, 75, or 62 [2] 

Maximum number of 
addresses 

15 4096 15 

Maximum number of 
dynamic network 
variables 

0 4096 0 

Maximum number of 
receive transaction 
records 

16 200 16 

Maximum number of 
transmit transaction 
records 

2 2500 2 

Support for the 
LonTalk Extended 
Command Set 

No Yes [3] No 

File access methods 
supported 

LW-FTP [4], 
DMF[5,6] 

LW-FTP [4], DMF [5] LW-FTP [4], DMF[5,6] 

Link-layer type N/A 11-line parallel I/O [7] 4- or 5-line SCI  
or  
6- or 7-line SPI 

Typical host API 
runtime footprint 

N/A 540 KB (includes 
LonTalk protocol 
stack, but does not 
include the 
application or 
operating system) 

5-6 KB code with 1 KB 
RAM (includes serial 
driver, but does not 
include optional API or ISI 
API) 
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Host processor type N/A Altera Nios II 
embedded processor 

Most 8-, 16-, 32-, or 64-bit 
microprocessors or 
microcontrollers 

Application 
development language 

Neuron C ANSI C or C++ for the 
Nios II processor 

Most standard 
programming languages 
(typically ANSI C) 

Notes: 

1. Neuron Chips and Smart Transceivers with firmware version 16 and later support 
up to 254 network variables and up to 127 aliases.  Neuron Chips and Smart 
Transceivers with firmware version 15 and earlier are limited to 62 network 
variables and 62 aliases.  Although these limits are architectural maxima, they are 
subject to available resources (EEPROM, RAM).  

2. ShortStack Micro Servers running on FT 3120, FT 3150, FT 5000, PL 3150, or PL 
3170 Smart Transceivers support up to 254 network variables and up to 127 aliases.  
However, ISI-enabled ShortStack Micro Servers running on PL 3170 Smart 
Transceivers only support up to 120 network variables and up to 75 aliases.  
ShortStack Micro Servers running on PL 3120 Smart Transceivers support up to 62 
network variables and up to 62 aliases.   

3. See the Control Network Protocol Specification, ISO/IEC 14908, for more 
information about the extended command set (ECS) network management 
commands.  

4. An implementation of the LONWORKS file transfer protocol (LW-FTP) is not provided 
with the product. 

5. For more information about the direct memory file (DMF) access method, see Using 
Direct Memory Files on page 189. 

6. Neuron firmware version 16 or later is required to support direct memory file (DMF) 
access method for either Neuron hosted or ShortStack devices.  The PL 3120 Smart 
Transceiver uses Neuron firmware version 14, and cannot use the direct memory 
files access method; consider using the PL 3170 Smart Transceiver.  Also, older FT 
3120 Smart Transceivers use version 13 firmware; consider using a newer (RoHS-
compliant) FT 3120 Smart Transceiver, which uses version 16 firmware. 

7. The FTXL parallel I/O link-layer driver is included with the FTXL LonTalk protocol 
stack. 

The FTXL solution provides the best performance and highest network capacity, 
but is limited using to an Altera Nios II host processor and the TP/FT-10 channel.  
The ShortStack solution provides support for any host processor (with an 
available example for an Atmel ARM7 host processor), and supports both the 
TP/FT-10 and PL-20 channels.  

Because the ShortStack and FTXL solutions are both built on the LonTalk 
platform, they share a very similar API (the FTXL LonTalk API and the 
ShortStack LonTalk Compact API).  Thus, migrating applications from one 
solution to the other is fairly easy.  In addition, you can create applications that 
share a common code base for devices that use both solutions. 
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Requirements and Restrictions for ShortStack 
The host processor for a ShortStack device can be an 8-, 16-, 32-, or 64-bit 
microprocessor, microcontroller, or embedded processor implemented in an FPGA 
device.  The ShortStack LonTalk Compact API and serial driver typically require 
about 6 KB of program memory on the host processor (approximately 2 KB for 
the API and 3 to 4 KB for the serial driver) and less than 1 KB of RAM.  There is 
no requirement for additional non-volatile memory unless you choose to 
implement non-volatile interfaces in your application. 

The ShortStack FX firmware requires a Smart Transceiver with a minimum of 4 
KB of application memory and 2 KB of RAM.  The ShortStack Developer’s Kit 
includes a variety of standard Micro Server images, which support FT 3120, FT 
3150, FT 5000, PL 3120, PL 3150, and PL 3170 Smart Transceivers in various 
configurations.  You can create a custom Micro Server to support other hardware 
configurations for these Smart Transceivers or to provide support for the Neuron 
5000 Processor.  ShortStack does not support the FTXL 3190 Free Topology 
Transceiver. 

The interface between your host processor and the ShortStack Micro Server can 
be the asynchronous Serial Communications Interface (SCI) or the synchronous 
Serial Peripheral Interface (SPI).  The speed of the interface depends both on the 
type of serial interface and the clock speed of the ShortStack Micro Server: 

• The highest bit rate for the SCI interface is approximately 1.2 Mbps for a 
ShortStack Micro Server running on an FT 5000 Smart Transceiver with 
an 80 MHz system clock.  

• The highest bit rates for the SPI interface are approximately 906 kbps 
uplink and 690 kbps downlink for a ShortStack Micro Server running on 
an FT 5000 Smart Transceiver with an 80 MHz system clock.   

The interface rate scales with the ShortStack Micro Server system clock.  See 
Setting the SCI Bit Rate on page 73 and Setting the SPI Bit Rate on page 77. 

Note that some Micro Servers might be feature-restricted.  For example, the ISI-
enabled standard Micro Server for the PL 3170 Smart Transceiver supports only 
the SCI interface at 38400 bps. 

The ShortStack Micro Server can support up to 254 network variables in your 
ShortStack application.  You can implement configuration properties as 
configuration network variables or in configuration files.  To access the 
configuration files, you can implement the LONWORKS file transfer protocol (LW-
FTP), or, when possible, have the network management tool use standard 
memory read and write messages for minimum overhead on your device, using 
the direct memory file (DMF) access method.  However, because DMF supports 
only a finite-sized memory window, you must implement LW-FTP if the total size 
of all files and the directory exceeds the window’s size.  In addition, the Micro 
Server Neuron firmware must be version 16 or later to use the direct memory file 
access method.  

Development Tools for ShortStack 
To develop an application for a device that uses a ShortStack Micro Server, you 
need a development system for your host processor.  In addition, you need the 
ShortStack Developer’s Kit, which includes: 
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• The ShortStack LonTalk Compact API  

• ShortStack firmware for creating a PL-20 power line or TP/FT-10 free 
topology twisted pair ShortStack Micro Server using a Smart 
Transceiver (you can also create a custom Micro Server for the Neuron 
5000 Processor) 

• The LonTalk Interface Developer utility for defining the interface for 
your ShortStack device and generating the application framework 

In addition to the ShortStack Developer’s Kit, you can download example ports 
for selected host processors.  These example ports include example 
implementations of the serial driver, API callback handler routines, and one or 
more sample applications.  Currently, an example driver is available for an 
Atmel ARM7 microprocessor. 

You can create a ShortStack device that installs itself using the Interoperable 
Self-Installation (ISI) protocol, or you can create a device that is installed with a 
network management tool.  You can also create a device that supports both 
installation methods, that is, you can create a device that installs itself in self-
installed networks, or is installed by a network management tool in a managed 
network. 

For installation into a managed network, you can use the LonMaker Integration 
Tool, or another tool that can install and monitor LONWORKS devices.  See the 
LonMaker User's Guide for more information about the LonMaker tool.  
However, if your ShortStack device supports the Interoperable Self-Installation 
(ISI) protocol, you might not need a network management tool.   

You do not need the NodeBuilder Development Tool to use the ShortStack FX 
Developer's Kit; however, the NodeBuilder Code Wizard that is included with the 
NodeBuilder Development Tool, version 3 or later, can help you develop your 
model file.  The model file is used to define the device’s interoperable interface. 

The ShortStack Developer’s Kit includes pre-built Micro Server images for a 
variety of hardware and buffer configurations.  You can use the NodeBuilder 
Development Tool to create a custom Micro Server image to support different 
hardware or buffer configurations.  Most standard hardware is compatible with 
one of the standard Micro Server images that are supplied with ShortStack FX, 
and do not require either the NodeBuilder Development Tool or the Mini kit. 

For diagnosing and troubleshooting, the LonScanner™ protocol analyzer is 
highly recommended for most LONWORKS developers.  The LonScanner protocol 
analyzer collects and displays low-level protocol packets, and often provides 
important diagnostics. 

Selecting a Host Processor  
Although ShortStack supports almost any microprocessor for the host processor, 
there are certain requirements and considerations for a ShortStack host 
processor that apply if you are choosing a processor or development tool for a new 
ShortStack device, or if you are assessing the applicability of existing hardware 
or of previously acquired development tools.  See Chapter 4, Selecting the Host 
Processor, on page 61, for a description of these requirements and considerations. 
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ShortStack Architecture 
A ShortStack device consists of the following components: 

1. The ShortStack Micro Server running the ShortStack firmware  

2. An SCI or SPI serial driver for the host processor 

3. The ShortStack LonTalk Compact API for the host processor 

4. A ShortStack application that uses the ShortStack LonTalk Compact API 

Figure 4 shows the basic software architecture of a ShortStack device. 

Host Application

Serial Driver

ShortStack Firmware

LONWORKS Network

Transceiver 
Interface

API 
Interface

SCI or SPI 
Interface

ShortStack LonTalk Compact API

Host Microprocessor

ShortStack 
Micro Server

 
Figure 4. ShortStack Architecture 

The ShortStack Micro Server 
A ShortStack Micro Server consists of the ShortStack firmware running in an 
Echelon Smart Transceiver.  The ShortStack Micro Server implements layers 1-6 
of the LonTalk protocol.  You can create a ShortStack Micro Server by loading a 
ShortStack firmware image into an Echelon Smart Transceiver.  For example, 
Figure 5 on page 13 shows an Echelon PL 3120 Smart Transceiver, a PL 3150 
Smart Transceiver, and an FT 3120 Smart Transceiver with an FT-X1 
Communication Transformer – all of which can be used to create a ShortStack 
Micro Server. 
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Figure 5. ShortStack Components 

The ShortStack Micro Server communicates with the host processor using either 
the SCI or the SPI interface.  The ShortStack SCI interface is a half-duplex 
asynchronous serial interface with 1 start bit, 8 data bits, and 1 stop bit (least 
significant bit first).  The ShortStack SPI interface is a half-duplex synchronous 
serial interface between the ShortStack Micro Server and the host processor, 
where the Micro Server is the SPI master.  

The ShortStack Serial Driver 
The ShortStack serial driver provides the hardware-specific interface between 
the ShortStack LonTalk Compact API and ShortStack Micro Server.  The serial 
driver manages data exchange between the host processor and the ShortStack 
Micro Server.  You must create the serial driver that resides on the host 
microprocessor, or use one of the available example drivers.  An example driver is 
available for an ARM7 host processor, the Atmel ARM AT91SAM7S64 
microprocessor.  You can use or modify this driver, or create your own driver for a 
different processor. 

SCI Architecture 
The SCI interface is an asynchronous serial interface, similar to the EIA-232 
standard interface, as shown in Figure 6 on page 14.  Standard UART or USART 
hardware and software support is generally sufficient to implement this link. 

See SCI Interface on page 71 for more information about the SCI interface for 
ShortStack devices. 
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Figure 6. SCI Architecture for a ShortStack Device 

SPI Architecture 
The SPI interface is a synchronous serial interface, where the Micro Server acts 
as the master, as shown in Figure 7 on page 15.  Although most ShortStack 
devices use the SCI interface because of the need for fewer I/O lines for the 
synchronous link, and because the requirements for the SPI driver are more 
complex, the SPI interface can nonetheless be useful if all SCI resources on the 
host processor are already in use.  

See SPI Interface on page 76 for more information about the SPI interface for 
ShortStack devices. 
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Figure 7. SPI Architecture for a ShortStack Device 

The ShortStack LonTalk Compact API 
The ShortStack Developer's Kit includes source code for the ShortStack LonTalk 
Compact API that you compile and link with your application.  This API defines 
the functions that your application calls to communicate with other devices on a 
LONWORKS network.  The API code is written in ANSI C.  You might need to port 
the code for your host processor if an ANSI C compiler is not available. 

The ShortStack LonTalk Compact API consists of the following: 

• A service to initialize the ShortStack device after each reset. 

• A service that the application must call periodically.  This service 
processes messages pending in any of the data queues. 

• Services to initiate typical operations, such as the propagation of network 
variable updates. 

• Callback handler functions to notify the application of events, such as the 
arrival of network variable data or an error in the propagation of an 
application message. 

• Optional API components to perform low-level self-installation tasks. 

• Optional API components to perform high-level ISI self-installation tasks. 

• Optional API components for additional utility services. 

Overview of the ShortStack Development Process 
This manual describes the development process for creating a ShortStack device, 
which includes the general tasks listed in Table 3 on page 16. 
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Table 3. Tasks for Developing a ShortStack Device 

Task Additional Considerations Reference 

Install the ShortStack 
Developer’s Kit and become 
familiar with it 

 Chapter 2, 
Getting Started 
with 
ShortStack, on 
page 19 

Select hardware for the 
ShortStack Micro Server 
and prepare it by loading 
the ShortStack firmware 
into it 

You must select the Micro Server 
configuration and preferences for every 
new device, but you can reuse a Micro 
Server hardware and software 
configuration for a different application, 
and thus implement a different device. 

Chapter 3, 
Selecting and 
Creating a 
ShortStack 
Micro Server, on 
page 27 

Chapter 4, 
Selecting the 
Host Processor, 
on page 61 

Integrate the ShortStack 
Micro Server with your 
device hardware 

You integrate the Micro Server with the 
device hardware.  You can reuse many 
parts of a hardware design for different 
applications to create different ShortStack 
devices. 

Chapter 5, 
Designing the 
Hardware 
Interface, on 
page 65 

Create the serial driver for 
the host processor 

You must create a serial driver (typically 
derived from an example driver), for each 
device’s hardware. You can reuse the driver 
with the same device hardware for 
different applications, and thus create 
different ShortStack devices.  You do not 
need to re-create a new serial driver for 
each application. 

Chapter 6, 
Creating a 
ShortStack 
Serial Driver, on 
page 89 

Port the ShortStack 
LonTalk Compact API to 
the host processor 

You must port the ShortStack LonTalk 
Compact API once for each host processor 
and compiler, but you can reuse the ported 
API files with any number of applications 
that share the same hardware and software 
development environment. 

Chapter 7, 
Porting the 
ShortStack 
LonTalk 
Compact API, on 
page 109 

Appendix C, 
ShortStack 
LonTalk 
Compact API, on 
page 287 
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Task Additional Considerations Reference 

Select and define the 
functional profiles and 
resource types for your 
device using tools such as 
the NodeBuilder Resource 
Editor and the SNVT and 
SCPT Master List 

You must select profiles and types for use 
in the device’s interoperable interface for 
each application that you plan to 
implement.  This selection can include the 
definition of user-defined types for network 
variables, configuration properties or 
functional profiles.  A large set of standard 
definitions is also available and is sufficient 
for many applications. 

Chapter 8, 
Creating a 
Model File, on 
page 115 

Structure the layout and 
interoperable interface of 
your ShortStack device by 
creating a model file 

You must define the interoperable interface 
for your device in a model file, using the 
Neuron C (Version 2) language, for every 
application that you implement.  You can 
write this code by hand, derive it from an 
existing Neuron C application, or use the 
NodeBuilder Code Wizard included with 
the NodeBuilder Development Tool to 
create the required code using a graphical 
user interface. 

Chapter 8, 
Creating a 
Model File, on 
page 115 

The Neuron C 
Reference Guide 

Use the LonTalk Interface 
Developer utility to 
generate device interface 
data, device interface files, 
and a skeleton application 
framework 

You must execute this utility, a simple 
click-through wizard, whenever the model 
file changes or other preferences change.  
The utility generates the interface files 
(including the XIF file) and source code 
that you compile with your application.  
This source code includes data that is 
required for initialization and for complete 
implementations of some aspects of your 
device. 

Chapter 9, 
Using the 
LonTalk 
Interface 
Developer 
Utility, on page 
145 

Complete the ShortStack 
LonTalk Compact API 
callback handler functions 
to process application-
specific LONWORKS events 

You must complete the callback handler 
functions for every application that you 
implement, or supply the Micro Server with 
application-specific data.  The completed 
callback handler functions provide input 
from network events to your application;  
they are part of your networked device’s 
control algorithm. 

Chapter 10, 
Developing a 
ShortStack 
Application, on 
page 163 

Appendix C, 
ShortStack 
LonTalk 
Compact API, on 
page 287 
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Task Additional Considerations Reference 

Modify your application to 
interface with a LONWORKS 
network by using the 
ShortStack LonTalk 
Compact API function calls 

You must make these function calls for 
every application that you implement.  
These calls include, for example, calls to 
the LonPropagateNv() function that 
propagates an updated output network 
variable value to the network.  Together 
with the completion of the callback handler 
functions, this task forms the core of your 
networked device’s control algorithm. 

Chapter 10, 
Developing a 
ShortStack 
Application, on 
page 163 

Appendix C, 
ShortStack 
LonTalk 
Compact API, on 
page 287 

Optionally, add 
Interoperable Self-
Installation (ISI) functions 
to your ShortStack device, 
add low-level functions to 
implement self-installation,  
or add other optional utility 
functions and callbacks 

This step is optional.  The necessary code is 
typically at least partially unique for each 
application, and needs to be reviewed and 
refined for each application that you write 
that uses self-installation procedures. 

Chapter 11, 
Developing a 
ShortStack 
Application with 
ISI, on page 197  

Appendix D, 
ShortStack ISI 
API, on page 
301 

Optionally, create a custom 
Micro Server image that 
supports your own 
hardware configuration 

The standard Micro Servers are pre-
compiled binary images that support a 
variety of hardware configurations.  You 
can create a custom Micro Server and use it 
in place of a standard one to provide better 
support for your hardware, or even to 
offload some of the application’s control 
algorithm to the Micro Server. 

Chapter 12, 
Custom Micro 
Servers, on page 
241 

Test, install, and integrate 
your ShortStack device 
using self-installation or a 
LONWORKS network tool 
such as the LonMaker 
Integration Tool 

 The LonMaker 
User's Guide 

If you have a ShortStack 2 application for a ShortStack device, and you want to 
take advantage of the new features and API of ShortStack FX, see Chapter 13, 
Converting a ShortStack 2 Application to a ShortStack FX Application, on page 
257. 
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2  

Getting Started with ShortStack  

This chapter describes the ShortStack FX Developer’s Kit and how to 
install it.   
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ShortStack Developer’s Kit Overview 
The ShortStack FX Developer’s Kit is a software toolkit that contains software 
tools, the LonTalk Compact API, ShortStack firmware, and documentation 
needed for developing applications for any microcontroller or microprocessor that 
uses a ShortStack Micro Server to communicate with a LONWORKS network.  You 
can use the software with ShortStack Micro Servers that use an Echelon Series 
3100 or Series 5000 Smart Transceiver or an Echelon Neuron 5000 Processor.   

The kit includes the following components: 

1. Portable ANSI C source code for the ShortStack LonTalk Compact API 
and ShortStack ISI API. 

2. ShortStack firmware images for free topology twisted-pair and power line 
configurations.  Firmware images are provided for both TP/FT-10 and PL-
20 channel types, including 3120, 3150, 3170, and 5000 Smart 
Transceiver devices.  

3. ANSI C source code and pre-compiled library files that you can use to 
create custom Micro Servers to provide support for different hardware 
configurations. 

4. The LonTalk Interface Developer utility.  The LonTalk Interface 
Developer utility translates a model file into device interface data and 
device interface files that simplify the implementation of your ShortStack 
application, and it creates a skeleton application framework that provides 
much of the code required by your application to interface with the 
ShortStack Micro Server. 

5. Documentation.  This ShortStack User’s Guide describes how to use the 
components of the ShortStack Developer’s Kit to create a ShortStack 
device.  The kit also includes detailed HTML documentation for the 
ShortStack LonTalk Compact API and ShortStack ISI API. 

In addition to the ShortStack Developer’s Kit, Echelon provides example ports for 
selected host processors.  Each example port is separately installable, and 
includes its own documentation.  For the ShortStack FX release, an example port 
is available for an ARM7 host processor (the Atmel ARM AT91SAM7S64 
microprocessor).  Other example ports may become available after release, from 
Echelon or from other vendors.  

The ShortStack Developer’s Kit and the example ports are available as free 
downloads from www.echelon.com/shortstack. 

Installing the ShortStack Developer’s Kit 
You can install the ShortStack FX Developer’s Kit on any computer that runs 
Microsoft® Windows® XP or Windows Vista®. 

To install the ShortStack FX Developer’s Kit, perform the following steps: 

1. Download the ShortStack FX Developer’s Kit from 
www.echelon.com/shortstack.  Although the download is free, you must 
agree to the license terms for the ShortStack Developer’s Kit when you 
download it.  By agreeing to the license terms, you will receive a license 
key. 

http://www.echelon.com/shortstack
http://www.echelon.com/shortstack
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2. Double click the ShortStack400.exe file that you downloaded.  The 
Echelon ShortStack FX Developer’s Kit main installer window opens. 

3. Follow the installation dialogs to install the ShortStack FX Developer’s 
Kit onto your computer.  During installation, you are prompted for the 
license key that you received after agreeing to the license terms. 

In addition to the ShortStack FX Developer’s Kit, the installation program also 
installs current versions of: 

• LONMARK® Resource Files 

• LONMARK Standard Program ID Calculator 

• NodeBuilder Resource Editor 

Important:  You can have only one version of the ShortStack Developer’s Kit 
installed at a time on a single PC.  That is, you cannot install both ShortStack FX 
and a prior version of the ShortStack Developer’s Kit and switch between 
versions during device development.  The version of the kit that you install last is 
the one that is usable.  Echelon recommends that if you should need to revert to 
an earlier version, uninstall ShortStack FX before installing the older version.  

If you are installing the ShortStack FX Developer’s Kit onto a computer that 
already has the ShortStack 2 Developer’s Kit installed, the ShortStack FX 
Developer’s Kit installer performs the following actions: 

1. Copies all of the files from the C:\LonWorks\ShortStack directory to a 
new directory, C:\LonWorks\ShortStack 2.0, as a backup of your 
ShortStack 2 data; if you maintain a separate backup of your ShortStack 
2 data, you can delete this directory. 

2. Uninstalls ShortStack 2. 

3. Deletes the C:\LonWorks\ShortStack directory to remove any service 
pack data or user files. 

4. Installs ShortStack FX. 

If you are installing the ShortStack FX Developer’s Kit onto a computer that 
already has the ShortStack 2.1 Developer’s Kit installed, the ShortStack FX 
Developer’s Kit installer overwrites the files in the default installation path.  
However, any user-created files in this directory (or its subdirectories) are not 
changed. 

ShortStack LonTalk Compact API Files 
The ShortStack LonTalk Compact API is provided as a set of portable ANSI C 
files, which are listed in Table 4 on page 22.  These files are contained in the 
[ShortStack]\API directory (where [ShortStack] is the directory in which you 
installed ShortStack FX, usually C:\Program Files\LonWorks\ShortStack or 
C:\LonWorks\ShortStack).  The LonTalk Interface Developer utility 
automatically copies these files into your project folder, but does not overwrite 
existing files with the same names. 

You need to port the API to your host processor; for more information about 
porting the API, see Chapter 7, Porting the ShortStack LonTalk Compact API, on 
page 109. 
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Table 4. ShortStack LonTalk Compact API Files 

File Name Description 

LonBegin.h 

LonEnd.h 

Optional definitions for implementing data packing and 
alignment preferences 

LonPlatform.h Definitions for adjusting your compiler and environment to the 
requirements of the ShortStack LonTalk Compact API 

ShortStackApi.c 

ShortStackApi.h 

Function definitions for the ShortStack LonTalk Compact API 

ShortStackHandlers.c 

 

Function definitions for the ShortStack callback handler 
functions 

ShortStackInternal.c Internal functions and utilities that are used by the ShortStack 
LonTalk Compact API, but not exported to the host application 

ShortStackIsiApi.c 

ShortStackIsiApi.h 

Function definitions for the ShortStack ISI API 

ShortStackIsiHandlers.c 

 

Function definitions for the ShortStack ISI callback handler 
functions 

ShortStackIsiInternal.c Internal functions and utilities that are used by the ShortStack 
ISI API, but not exported to the host application 

ShortStackIsiTypes.h Definitions of the data structures that are typically used by 
ShortStack ISI applications 

ShortStackTypes.h Definitions of the data structures that are typically used by 
ShortStack applications 

Standard ShortStack Micro Server Firmware 
Images 

Several standard ShortStack Micro Server firmware images are provided as pre-
compiled image files that you can program into onchip memory for FT or PL 3120 
Smart Transceivers or PL 3170 Smart Transceivers, into flash memory chips to 
be used with FT or PL 3150 Smart Transceivers, or into EEPROM memory chips 
for FT 5000 Smart Transceivers. 

Important:  You can use the ShortStack Micro Server only with an Echelon 
Smart Transceiver or an Echelon Neuron 5000 Processor.  If you run the 
ShortStack Micro Server on a different Neuron Chip, the Micro Server exits quiet 
mode and enters the applicationless state. 

Each set of pre-compiled images includes the following files: 
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• An APB and an NDL file for downloading the images over a LONWORKS 
network 

• An XIF and a SYM file for use by the LonTalk Interface Developer utility 

• For 3120 and 3170 devices, an NFI file for ex-circuit programming of the 
Smart Transceiver 

• For 3150 devices, an NEI file for ex-circuit programming of the flash 
memory chip 

• For Series 5000 devices, an NME file for ex-circuit programming of the 
EEPROM memory chip  

• For standard Micro Servers that support ISI, a *.h file that you use with 
your application when writing code to use the ShortStack ISI API; see 
Chapter 11, Developing a ShortStack Application with ISI, on page 197, 
for more information.  

When you use the LonTalk Interface Developer utility, it selects the appropriate 
set of Micro Server image files based on your preferences, and copies them to the 
project’s output folder.  These image files have the project’s base name (rather 
than the image’s base name) and the appropriate file extension (APB, NDL, NFI, 
NEI, NME, XIF, SYM, or H). 

Table 5 describes the standard firmware image files for a ShortStack Micro 
Server, along with other information about each image.  See Firmware Image 
File Names on page 33 for a description of the firmware file naming convention.    

Table 5. Standard ShortStack Firmware Image Files 

Smart 
Transceiver 
Type 

Channel 
Type 

Supported 
Clock 
Rates 
(MHz) [1] 

Neuron 
Firmware 
Version [2] 

Support for 
ISI 

Supported CP 
Access 
Methods [3] 

FT 3120-E4 
V16 

TP/FT-10 10 

20 

40 

16 No DMF, LW-
FTP, CPNV 

FT 3150 2K [4] TP/FT-10 10 17.1 Yes DMF, LW-
FTP, CPNV 

FT 5000 ES TP/FT-10 20 18 Yes DMF, LW-
FTP, CPNV 

FT 5000 TP/FT-10 20 19 Yes DMF, LW-
FTP, CPNV 

PL 3120-E4 PL-20C, PL-
20N 

10 14 No LW-FTP, 
CPNV 

PL 3150 [4] PL-20C, PL-
20N 

10 17.1 Yes DMF, LW-
FTP, CPNV 
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PL 3170 PL-20C, PL-
20N 

10 17 Yes DMF, LW-
FTP, CPNV 

Notes:   

1. The supported clock rates refer to external crystal or oscillator frequency for Series 
3100 devices, but refer to internal system clock rate for Series 5000 devices. 

2. The Neuron firmware versions listed refer to the versions used to create the standard 
Micro Server images. 

3. The configuration property access methods listed are:   

• Direct memory file (DMF); see Using Direct Memory Files on page 189 

• The LONWORKS file transfer protocol (LW-FTP); see the File Transfer 
engineering bulletin at www.echelon.com 

• Configuration network variables (CPNVs); see Declaring a Configuration 
Property on page 124 and CPNV and EEPROM NV on page 193 

4. The standard Micro Servers for FT 3150 and PL 3150 devices support a standard 
hardware design with external flash memory of 32 KB or more, and 128 bytes per 
sector. 

Because not all combinations of hardware, channel type, and ISI features are 
supported by the pre-compiled Micro Server images, you might need to create 
your own custom Micro Server image.  Specifically, you need to create a custom 
Micro Server image: 

• If your device uses a different Smart Transceiver than the ones listed in 
Table 5 (such as a Neuron 5000 Processor). 

• If your device uses a different Neuron firmware version than the ones 
used for the standard Micro Server images. 

• If your device uses a clock speed or system clock setting that is supported 
by the chosen hardware and transceiver, but is not listed in Table 5. 

• If your device uses a memory map that is different from the one described 
in Micro Server Memory Map on page 29. 

• If your Micro Server device requires ISI-DAS support, or a different level 
of ISI support. 

• If you want to create application-specific custom Micro Servers that 
support ISI.  Such a Micro Server can execute part of the ISI API local to 
the Micro Server for optimum performance and minimum host memory 
footprint. 

• If your application requires a DMF window different from the default size 
or location; see Using Direct Memory Files on page 189 for more 
information. 

• If your device requires a Micro Server with different properties than 
those used for the standard Micro Server images. 

See Custom Micro Servers on page 241 for more information about creating a 
custom Micro Server. 

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
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Important:  A ShortStack FX Micro Server cannot run on an FTXL 3190 Free 
Topology Transceiver. 

LonTalk Interface Developer 
The LonTalk Interface Developer utility generates the device interface data and 
the device interface file required to implement the interoperable interface for 
your ShortStack device.  It also creates a skeleton application framework that 
you can modify and link with your application.  This framework contains most of 
the code that is needed for device initialization and other required processing. 

The executable for the LonTalk Interface Developer utility is named LID.exe, and 
is installed in the LonTalk Interface Developer directory (usually, C:\Program 
Files\LonWorks\InterfaceDeveloper or C:\LonWorks\InterfaceDeveloper).   

The [ShortStack]\MicroServers directory includes Micro Server XIF files.  The 
LonTalk Interface Developer utility uses these files to extract Micro Server-
specific details (such as the hardware description or buffer configuration), which 
the utility merges with application-specific details (such as the network variable 
configuration) to generate the device’s XIF (and XFB) files in your project folder. 

The LonTalk Interface Developer utility also includes a command-line interface 
that allows make-file and script-driven use of the utility.  For more information 
about the command-line interface, see Appendix A, LonTalk Interface Developer 
Command Line Usage, on page 275. 

For more information about the LonTalk Interface Developer utility, see Chapter 
9, Using the LonTalk Interface Developer Utility, on page 145. 
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3  

Selecting and Creating a 
ShortStack Micro Server 

This chapter describes how to create a ShortStack Micro Server using 
one of the standard ShortStack Micro Server images that are included 
with the ShortStack Developer’s Kit, and how to load them into a 
Smart Transceiver.   
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Overview 
A ShortStack device uses a ShortStack Micro Server to interface with a 
LONWORKS network.  The ShortStack Micro Server provides the physical 
interface to the network, and also implements layers 1-6 of the LONWORKS 
network protocol.  A Micro Server uses an Echelon Smart Transceiver that 
connects to the power line (PL) or twisted-pair free topology (FT) network, runs 
the ShortStack Micro Server firmware, and includes some mandatory peripheral 
components.  A Micro Server based on the FT 3150 or PL 3150 Smart Transceiver 
can contain off-chip flash, ROM, or RAM memory for enhanced capabilities, a 
Micro Server based on the FT 5000 Smart Transceiver contains off-chip 
EEPROM or flash memory for enhanced capabilities, whereas a Micro Server 
based on the FT 3120, PL 3120, or PL 3170 Smart Transceiver implements a 
single-chip solution.  

You can embed the Micro Server hardware within your device’s hardware, or you 
can use off-the-shelf hardware for the Micro Server and connect it to your device. 
For example, you can use the Echelon Mini FX Evaluation Boards for rapid 
prototyping of a Micro Server.  You can also use the Pyxos™ FT EV Pilot 
Evaluation Board (part of the Pyxos FT EVK Evaluation Kit) for development of 
ShortStack devices that use an FT 3150 Smart Transceiver with an ARM7 host 
processor. 

You can load the ShortStack Micro Server firmware image into an FT 3120, PL 
3120, or PL 3170 Smart Transceiver, or into a flash memory device, such as an 
Atmel AT29C512 or AT29C010A flash memory device, for an FT 3150 or PL 3150 
Smart Transceiver, or into an SPI or I2C EEPROM or SPI flash memory device 
for an FT 5000 Smart Transceiver.  You can load these images over the 
LONWORKS network, or you can use standard ex-circuit programming tools. 

This chapter describes how to select a Micro Server, how to load the ShortStack 
firmware image into the Micro Server, how to initialize the Micro Server, and 
how to work with non-volatile memory within the Micro Server.  For information 
about creating a custom Micro Server, see Custom Micro Servers on page 241.   

Selecting the Micro Server Hardware 
The ShortStack Micro Server supports two transceiver types at various clock 
rates for either power line (PL) or free-topology (FT) networks.  For a ShortStack 
device, you can use an Echelon 3120 Smart Transceiver, a 3150 Smart 
Transceiver, a 3170 Smart Transceiver, an FT 5000 Smart Transceiver, or a 
Neuron 5000 Processor.  In addition, for the Neuron 5000 Processor, the 
ShortStack Micro Server supports all of the transceiver types supported by that 
chip. 

For device evaluation and development with the Smart Transceivers, you can use 
the Echelon Mini FX Evaluation Kit (with an FT 5000 Smart Transceiver for FT 
networks, or a 3150 or 3170 Smart Transceiver for PL networks), which includes 
optional Electronic Industries Alliance (EIA) standard RS-232-C level shifters, 
jumpers, I/O connectors, and (for most of these boards) a small prototyping area, 
to configure the Smart Transceiver for use as a ShortStack Micro Server. 
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More information about Echelon’s evaluation boards is available from the 
Echelon Web site, www.echelon.com.  In addition, other companies offer similar 
products, for which you can create a custom Micro Server. 

When considering whether to use a 3120, 3150, 3170, or 5000 Smart Transceiver 
for a ShortStack device, the following factors are the most important:  the Micro 
Server clock rate, memory map, and development device type. 

Micro Server Clock Rate 
The Micro Server clock rate determines the available bit rate for the link-layer 
transfer and the overall performance of the Micro Server.  For Series 3100 
devices, the clock rate is determined by the external crystal or oscillator; for 
Series 5000 devices, the clock rate is determined by the internal system clock 
rate.  You can specify a Series 5000 device’s internal system clock rate within the 
device’s hardware template when you create a custom Micro Server.  For the 
standard Micro Servers, the internal system clock rate is fixed.  Each device type 
has its own clock rate maximum: 

• For PL 3120, PL 3150, and PL 3170 Smart Transceivers, the highest 
possible external clock rate is 10 MHz.  Typical PL 3120, PL 3150, or PL 
3170 ShortStack devices use a 10 MHz crystal.   

• For FT 3120 Smart Transceivers, the highest possible external clock rate 
is 40 MHz.  Typical FT 3120 ShortStack devices use a 20 MHz crystal. 

• For FT 3150 Smart Transceivers, the highest possible external clock rate 
is 20 MHz.  However, using a flash memory device for off-chip storage 
limits the Micro Server’s clock rate to 10 MHz.  Thus, typical FT 3150 
ShortStack devices use a 10 MHz crystal. 

• For FT 5000 Smart Transceivers, the external clock rate is always 10 
MHz, from which the chips generate an on-chip system clock rate (the 
clock multiplier is configurable).  The highest possible system clock rate 
is 80 MHz.  For this highest system clock rate, the link-layer transfer 
speed is very high, and generally non-standard for most UARTs and 
USARTs.  That is, not all host processors will support all possible bit 
rates for the highest system clock rates.  The standard Micro Server uses 
a 20 MHz system clock rate, which allows standard bit rates to be used. 

See Selecting the Link-Layer Bit Rate on page 68 for more information about 
requirements for the bit rate. 

Micro Server Memory Map 
The Micro Server needs its own data storage, which it maintains in mapped non-
volatile memory.  For an FT 3120, PL 3120, or PL 3170 Smart Transceiver the 
memory map is fixed, but Micro Servers that are based on FT 3150, PL 3150, or 
FT 5000 Smart Transceivers can use a variety of memory maps.  The memory 
map for all standard Micro Servers is fixed, but you can create a custom Micro 
Server to provide a different memory map.  

For example, additional RAM can be used for creating 3150 Micro Servers that 
support ISI-DAS devices or other advanced Micro Server configurations.  

A Micro Server with large off-chip flash memory can store additional Micro 
Server code, which allows the device to embed feature-rich versions of the ISI 

http://www.echelon.com/
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self-installation protocol, or to implement a feature-rich custom Micro Server.  A 
Micro Server with smaller off-chip flash memory areas leave larger areas of 
unused memory in the Micro Server’s physical memory map, which allows the 
application to use direct memory files (DMF).  Larger areas of such unused 
memory allow the application to store configuration property files in the direct 
memory files. 

A 3120 or 3170 Smart Transceiver provides up to 4 KB of on-chip non-volatile 
memory, whereas a 3150 Smart Transceiver uses off-chip flash memory which 
can provide 32 KB or more of non-volatile memory.  For many applications, the 
memory provided with the FT 3120, PL 3120, or PL 3170 Smart Transceivers is 
sufficient, but more complex ShortStack applications that implement a large 
number of network variables, include a feature-rich self-installation library, or 
require an increased buffer configuration, could require a Micro Server based on 
an FT 3150, PL 3150, or FT 5000 Smart Transceiver.  

For FT 3150 and PL 3150 devices, the standard ShortStack Micro Server images 
require a flash device that supports a 128-byte sector size, such as the Atmel 
AT29C512 (64 KB) or AT29C010A (128 KB) flash device.  The memory map used 
in the Micro Server images is declared for a 32 KB flash device, with a 128-byte 
sector size (which yields a memory map of 0x0000 to 0x7FFF).  This memory map 
leaves significant memory available for applications to use the direct memory file 
access method; see Using Direct Memory Files on page 189 for more information. 

For FT 5000 devices, the standard ShortStack Micro Server images require an 
SPI or I2C EEPROM memory device; see the Series 5000 Chip Data Book for 
additional information about the external memory requirements for an FT 5000 
Smart Transceiver.  The memory map used in the Micro Server images is 
declared for a 32 KB EEPROM device.  This memory map leaves significant 
memory available for applications to use the direct memory file access method; 
see Using Direct Memory Files on page 189 for more information. 

Recommendation:  For a free-topology channel, use an FT 5000 Micro Server 
(with at least 32 KB of EEPROM, or with 2 KB of EEPROM and at least 32 KB of 
flash memory).  For a power-line channel, use a PL 3170 Micro Server if the 2 KB 
of onchip RAM is sufficient for the required buffer configuration, or a PL 3150 
Micro Server if offchip RAM is required.  For all other supported channel types, 
use a Neuron 5000 Processor with a custom Micro Server. 

Development Device Type 
Many ShortStack devices use compact, low-cost Micro Server hardware based on 
FT 3120, PL 3120, or PL 3170 Smart Transceivers.  Other more generic or more 
powerful devices use advanced Micro Server hardware based on FT 3150, PL 
3150, or FT 5000 Smart Transceivers with additional off-chip memory.   

Recommendation:   

Use a Micro Server that is based on a FT 3150, PL 3150, or FT 5000 Smart 
Transceiver for your initial development of a ShortStack device. 

Using a 3150 or 5000 Smart Transceiver with off-chip flash memory rather 
than a 3120 or 3170 Smart Transceiver allows easier and more rapid recovery 
in case of device programming errors.  

After you complete the critical early steps of development, you can use the 
Micro Server hardware that your ShortStack device requires. 
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Preparing the ShortStack Micro Server 
You can load an application image into a LONWORKS device, such as an Echelon 
Smart Transceiver.  For ShortStack Micro Servers, the application image is the 
ShortStack Micro Server executable image.   

You must load the Micro Server executable image into the Micro Server 
hardware before you can use it as a ShortStack device.  After you complete 
hardware development, you can load the Micro Server image into your 
ShortStack device as part of your manufacturing process.   

You typically load the Micro Server infrequently.  After you have correctly loaded 
a particular Micro Server, you do not normally need to reload it.  However, if you 
load a new version of the Neuron firmware into a Smart Transceiver, be sure to 
load an updated Micro Server image into the Smart Transceiver at the same 
time. 

Important:   

• After you load a new Micro Server image, the initial initialization of the 
Micro Server, together with the initialization of the host application, can 
take up to one minute to complete.  The Micro Server is unresponsive to 
the network until this initialization is complete.  After the initial 
initialization is complete, resetting or power-cycling the Micro Server 
with the same host application completes much more quickly. 

• Reloading a Micro Server with an updated version of the Micro Server 
firmware could require changes in the serial driver or the API that 
resides in your host processor.  For example, migrating an application 
from ShortStack 2 to ShortStack FX requires some changes to the serial 
driver because you use an updated ShortStack Micro Server.  Loading a 
Micro Server with a version that is incompatible with the current host 
application can sever link-layer communications. 

Table 6 summarizes the processor and memory combinations that you can use 
with the standard, pre-compiled, Micro Server images, along with the files and 
tools that you use to program each.  See Firmware Image File Names on page 33 
for a description of the Micro Server image file extensions and file naming 
convention. 

Table 6. Loading the Micro Server Executable Image 

Smart 
Transceiver 

Memory 
Type 

Micro Server 
Image File 
Extension 

Micro Server 
Image 
Programming 
Tool 

Example 
Programming 
Tools 

APB, NDL, 
or NEI  

Network 
management 
tool 

NodeLoad utility  

LonMaker 
Integration Tool FT 3120, PL 

3120, or PL 
3170 Smart 
Transceiver 

On-chip 
EEPROM NFI PROM 

programmer 
A universal 
programmer, such 
as one from BPM 
Microsystems or 
HiLo Systems 
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Smart 
Transceiver 

Memory 
Type 

Micro Server 
Image File 
Extension 

Micro Server 
Image 
Programming 
Tool 

Example 
Programming 
Tools 

APB or NDL Network 
management 
tool 

NodeLoad utility  

LonMaker 
Integration Tool FT 3150 or 

PL 3150 
Smart 
Transceiver 

Off-chip 
flash NEI Ex-circuit 

flash 
programmer 

A universal 
programmer, such 
as one from BPM 
Microsystems or 
HiLo Systems 

APB or NDL Network 
management 
tool 

NodeLoad utility  

LonMaker 
Integration Tool 

FT 5000 
Smart 
Transceiver 

Off-chip 
EEPROM 
or flash 

NME or 
NMF 

EEPROM or 
flash 
programmer 

A universal 
programmer, such 
as one from BPM 
Microsystems or 
HiLo Systems 

In-circuit 
programmer, such 
as Total Phase™ 
Aardvark™ 
I2C/SPI Host 
Adapter 

Notes: 

• Information about the NodeLoad utility and the LonMaker Integration 
tool is available from www.echelon.com. 

• Information about BPM Microsystems programmer models is available 
from www.bpmicro.com.  The Forced Programming option in the menu is 
provided only to refresh the internal memory contents and should not be 
used to program new devices.  In this mode, the programmer simply 
reads out the contents of the memory and rewrites them.  

• Information about HiLo Systems manual programmer models is available 
from www.hilosystems.com.tw.  

• Information about TotalPhase programmers is available from 
www.totalphase.com. 

For device production, you typically use ex-circuit programming (where the chip 
is programmed prior to soldering it to the device circuit board); for development, 
you typically use in-circuit programming (where the chip is part of the device 
during programming) for simplicity rather than programming speed. 

http://www.echelon.com/
http://www.bpmicro.com/
http://www.hilosystems.com.tw/
http://www.totalphase.com/
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Firmware Image File Names 
The base file names for the standard Micro Server firmware images use the 
following naming convention:   

SS400_ + image base file name + _ + 5-digit clock speed + kHz + file extension 

For a Series 3100 device, the clock speed figure contained in the file name refers 
to the external clock speed (for example, “10000kHz” for a 10 MHz crystal).  For 
Series 5000 devices, because the external clock speed is fixed (a 10 MHz crystal), 
the clock speed figure embedded in the image file name refers to the internal 
system clock frequency.  The system clock rate is prefixed with “SYS” to highlight 
this difference.  Micro Servers created for pre-production parts include “ES” (to 
signify Engineering Sample) in the name. 

Examples:   

• The universal chip programmer standard image for the PL 3120-E4 
Smart Transceiver has the following name:  
SS400_PL3120E4_10000kHz.nfi. 

• The NodeLoad standard image for the ISI-enabled FT 5000 Smart 
Transceiver has the following name:  
SS400_FT5000Isi_SYS20000kHz.ndl. 

The firmware images with these names are located in the 
[ShortStack]\MicroServers directory, and are intended as backup copies of the 
images.  

When you use the LonTalk Interface Developer utility, it selects the appropriate 
set of Micro Server image files based on your preferences, and copies them to the 
project’s output folder.  These image files have the project’s base name (rather 
than the image’s base name) and the appropriate file extension. 

Table 7 lists the valid file extension values for the firmware image files. 

Table 7. Micro Server Image File Extensions 

Extension Description 

APB Micro Server firmware image file for network management 
tools, such as the LonMaker Integration tool.  Applies to all 
Smart Transceivers. 

NDL Micro Server firmware image file for the Nodeload utility.  
Applies to all Smart Transceivers. 

NEI, NXE Micro Server firmware image file for a universal chip 
programmer (for 3150 or 5000 Smart Tranceivers) or for image 
download tools (for 3120 or 3170 Smart Transceivers). 

NFI Micro Server programmable firmware image file for a 
universal chip programmer.  Applies only to 3120 and 3170 
Smart Transceivers. 
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Extension Description 

NME, NMF Micro Server programmable firmware image file for a 
universal chip programmer.  Applies only to FT 5000 Smart 
Transceivers and Neuron 5000 Processors. 

In addition, the [ShortStack]\MicroServers directory includes files with the 
following file extensions for each Micro Server type: 

• XIF – The Micro Server’s device interface (XIF) file (used only by the 
LonTalk Interface Developer utility) 

• SYM – The Micro Server’s device symbol file (used only by the LonTalk 
Interface Developer utility) 

• H – A C header file that is shared between the Micro Server and the host 
application to define the location of ISI callbacks and other 
implementation details for an ISI application (present only for Micro 
Servers that support the ISI protocol) 

Loading an FT 3120, PL 3120, or PL 3170 Smart 
Transceiver 

Because a 3120 or 3170 Smart Transceiver does not support external memory, 
the only memory to program is on-chip EEPROM, which you program over the 
network or with a PROM programmer that supports the 3120 or 3170 Smart 
Transceiver. 

To load the ShortStack Micro Server firmware using ex-circuit programming, you 
can use: 

• A 3120 chip programmer to load a ShortStack Micro Server’s NEI file into 
the 3120 or 3170 Smart Transceiver’s non-volatile memory.  

• A general-purpose programmer that supports the 3120 or 3170 Smart 
Transceiver, such as a BPM Microsystems or Hi-Lo Systems universal 
programmer, to load a ShortStack Micro Server’s NFI file into the 3120 or 
3170 Smart Transceiver’s non-volatile memory. 

To load the ShortStack Micro Server firmware using in-circuit programming, use 
the NodeLoad utility or the LonMaker Integration tool.  See Using a Network 
Management Tool for In-Circuit Programming on page 36 for information about 
using these tools to load a ShortStack Micro Server. 

Recommendation:  Do not use the LonMaker Integration tool for the initial load 
of a ShortStack Micro Server into a power line Smart Transceiver.  You can use 
the LonMaker Integration tool for any subsequent loads as long as the channel 
type does not change (for example by adding or removing support for the 
CENELEC protocol).  See Using the LonMaker Integration Tool with ShortStack 
on page 38. 

Loading an FT 3150 or PL 3150 Smart Transceiver 
A device based on a 3150 Smart Transceiver always has non-volatile off-chip 
memory (PROM, EEPROM, or flash memory), and might also have off-chip RAM.  
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The ShortStack firmware must reside in the non-volatile memory.  The standard 
Micro Servers for FT 3150 and PL 3150 Smart Transceivers support offchip flash 
memory with at least 32 KB and 128 bytes per sector. 

You can load the ShortStack Micro Server firmware into a flash memory device, 
such as an Atmel AT29C512 or AT29C010A flash memory device, for an Echelon 
FT 3150 Smart Transceiver or PL 3150 Smart Transceiver.  

To load the ShortStack firmware using ex-circuit programming, use an 
appropriate flash programmer to load a ShortStack Micro Server’s NEI file into 
the 3150 Smart Transceiver’s off-chip memory.   

Important:  Although you can reload the FT 3150 or PL 3150 Micro Server using 
in-circuit programming, you must perform an initial load for the Micro Server 
firmware using ex-circuit programming.  This initial load is required because the 
3150 Smart Transceiver does not contain boot loader code on chip. 

After the off-chip non-volatile memory part has been initially programmed and 
inserted into the device, you can reload the Micro Server image using in-circuit 
programming using network management tools such as the NodeLoad utility or 
the LonMaker Integration tool.  See Using a Network Management Tool for In-
Circuit Programming on page 36 for information about using these tools to load a 
ShortStack Micro Server. 

Loading a Blank Application 
ShortStack device development does not require the loading of an initially blank 
application into the Smart Transceiver.  However, for FT 3150 or PL 3150 Smart 
Transceivers, you can load a blank application into off-chip memory to clear the 
off-chip memory.   

Although a device normally performs initialization once for a given firmware 
image, it is possible to force this process to occur again with the same firmware 
image by resetting the 3150 Smart Transceiver to the blank state (the initial 
state of the EEPROM on a newly manufactured Smart Transceiver) using the 
EEBLANK utility.   

This utility is available as a free download from the LonWorks Downloads page, 
www.echelon.com/downloads, in the Development Tools category.  To reset a 
3150 chip's state, program the appropriate EEBLANK image (there is an image 
for each Smart Transceiver clock rate) into a 3150 flash memory chip and power 
up the device.  For a short period, the service LED flashes, then it changes to full 
on to indicate that the chip has been returned to the blank state.  The next time 
that any image is loaded into the flash memory for this device, the on-chip 
EEPROM is re-initialized. 

Loading an FT 5000 Smart Transceiver 
A device based on a Series 5000 Chip always has non-volatile off-chip memory 
(EEPROM or flash memory).  The ShortStack firmware must reside in the non-
volatile memory.  The standard Micro Server for an FT 5000 Smart Transceiver 
supports a 32 KB EEPROM memory part.  Note that there is no standard Micro 
Server image for a Neuron 5000 Processor. 

To load the ShortStack firmware using ex-circuit programming, use an 
appropriate EEPROM or flash programmer (such as the Total Phase Aardvark 

http://www.echelon.com/downloads
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I2C/SPI Host Adapter) to load a ShortStack Micro Server’s NME or NMF file into 
the FT 5000 Smart Transceiver’s off-chip memory.  For the FT 5000 EVB, 
connect the programmer to the JP23 header, as described in the FT 5000 EVB 
Hardware Guide. 

To load the Micro Server image using in-circuit programming, use network 
management tool such as the NodeLoad utility or the LonMaker Integration tool.  
See Using a Network Management Tool for In-Circuit Programming on page 36 
for information about using these tools to load a ShortStack Micro Server. 

Important:  Do not use the LonMaker Integration tool for the initial load of a 
ShortStack Micro Server into an FT 5000 Smart Transceiver or Neuron 5000 
Processor.  You can use the LonMaker Integration tool for any subsequent loads 
as long as the Micro Server’s system clock multiplier does not change.  See Using 
the LonMaker Integration Tool with ShortStack on page 38. 

Using a Network Management Tool for In-Circuit 
Programming 

To load the ShortStack firmware images using in-circuit programming, you can 
use network management tools such as Echelon’s NodeLoad utility or LonMaker 
Integration tool. 

Network management tools load Smart Transceiver application images (for a 
ShortStack device, this image is the Micro Server firmware) and normally 
complete the load process by resetting the device, waiting for the device to 
complete its boot sequence, and confirming a healthy device state.  

However, for a ShortStack Micro Server, this health check is likely to fail for 
typical load scenarios.  Following the device reset, the Micro Server enters quiet 
mode, in which all network interaction is suspended, and it waits for the host 
processor to complete the ShortStack initialization sequence.  The Micro Server 
must enter quiet mode in this case to prevent an incomplete implementation of 
the LonTalk protocol stack from attaching to the network, but in this state it also 
prevents the loader from confirming the successful load completion.  

The NodeLoad utility provides a parameter that suppresses the final reset and 
health check (the -M parameter) that allows an automated load process to 
complete without error.   

For the LonMaker Integration tool, you might see an error during the load 
process; if you reset the physical device and re-commission the device from the 
drawing, the error should resolve itself.  However, you should not use the 
LonMaker Integration tool for the initial load of a ShortStack Micro Server into 
an FT 5000 Smart Transceiver, Neuron 5000 Processor, or a power line Smart 
Transceiver.  You can use the LonMaker Integration tool for any subsequent 
loads as long as the Micro Server’s system clock multiplier does not change. 

After the Micro Server image has been loaded, and while the Micro Server is in 
quiet mode, the Micro Server performs an extensive one-time initialization.  This 
initialization period can take as long as one minute.  The tasks performed during 
initialization depend on the chosen Micro Server hardware and clock settings, as 
well as the features and limits supported by the chosen Micro Server. 
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Using the NodeLoad Utility with ShortStack 
For in-circuit programming of a Series 3100 or Series 5000 Smart Transceiver, 
you can use the NodeLoad utility to load an NDL file into the Smart 
Transceiver’s non-volatile memory over a LONWORKS network.  To use the 
NodeLoad utility, you need a LONWORKS network interface, such as the U10 or 
U20 USB Network Interface or the PCLTA-21 PCI Network Interface. 

Important:   

• The NodeLoad utility is designed for loading known and tested 
application images.  If you use the utility to load a custom Micro Server 
image, or an incorrect Micro Server image for the hardware, the 
NodeLoad utility might not prevent you from loading an incompatible 
image into the Smart Transceiver.  For a 3120 Smart Transceiver, it can 
be difficult to recover from such an incompatibility.  For example, if you 
load an FT Micro Server image into a PL Smart Transceiver, you might 
not be able to recover without desoldering the 3120 chip and 
reprogramming it with a device programmer. 

• Be sure to specify the -M switch for the nodeload command when you load 
a Micro Server image into a Series 3100 or Series 5000 Smart 
Transceiver.  This switch specifies that a Micro Server image is to be 
loaded. 

• For loading application images during development or manufacture, use 
the -X switch for the nodeload command, combined with the -L switch, to 
ensure that the correct communication parameter and clock multiplier 
settings are loaded. 
 
However, you should generally not use the -X switch for devices in field 
(after device deployment) because uploading incompatible communication 
parameters or clock multiplier settings can render the device inoperable 
or unresponsive to network communication. 

• Use the NodeLoad utility only for NDL files.  Do not use the utility to 
load other files into a Smart Transceiver. 

Example:  To load an NDL file called ss400_ft5000isi_sys20000khz.ndl over a 
LONWORKS network interface named LON1, allowing 20 seconds to press the 
service pin on the destination device, specifying that the utility load a Micro 
Server image file, and specifying that the load use the communication 
parameters included in the NDL file, use the following command: 

nodeload –DLON1 –W20 –M –X –Lss400_ft5000isi_sys20000khz.ndl 

The result of running the NodeLoad utility should look similar to the following: 

nodeload -DLON1 -W20 -M –X –Lss400_ft5000isi_sys20000khz.ndl 
Echelon NodeLoad Release 1.20 
Received uplink local reset 
Received an ID message from device 1. 
Program ID is 9FFFFF0000000400 
Received uplink local reset 
Resetting node 
Successfully loaded SS400_FT5000ISI_SYS20000KHZ.NDL 
NodeLoad Result: Success; NID=04c5c5e20100. 

The Nodeload utility is available as a free download from 
www.echelon.com/downloads, in the Development Tools category. 

http://www.echelon.com/downloads
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See the NodeLoad Utility User’s Guide for more information about the NodeLoad 
utility. 

Using the LonMaker Integration Tool with 
ShortStack 
You can use the LonMaker Integration Tool to load the ShortStack firmware into 
a Smart Transceiver, or upgrade it.  A blank FT 3120 Smart Transceiver has a 
TP/FT-10 twisted-pair compatible communications interface initialized for a 10 
MHz input clock, and its Neuron firmware state is applicationless.  Likewise, a 
blank PL 3120 Smart Transceiver has a PL-20 power line compatible 
communications interface initialized for a 10 MHz input clock, and its Neuron 
firmware state is applicationless.  If your device uses the appropriate 
communications parameters with a 10 MHz clock, you can load the Micro Server 
and network configuration over the network, using a network management tool, 
such as the LonMaker Integration tool.  Otherwise, you must load the Smart 
Transceiver using an ex-circuit programmer. 

Important:  You cannot use the LonMaker Integration tool for the initial load of 
an FT 5000 Smart Transceiver, Neuron 5000 Processor, or power line Smart 
Transceiver (either for the load of a blank device or after the device’s hardware 
and clock settings have changed).  Because LonMaker cannot adjust the Series 
5000 device’s on-chip system clock multiplier (just as it would not adjust a Series 
3100 device’s external crystal speed) or a power line Smart Transceiver’s channel 
characteristics (such as addition or removal of support for the CENELEC 
protocol), a blank or recently changed device could become inoperative after 
loading.  After you load the device with the correct properties (either by using a 
PROM programmer or the Nodeload utility), you can use the LonMaker 
Integration tool for subsequent loading as long as the system clock multiplier 
remains unchanged. 

Recommendation:  Use an ex-circuit programmer to perform the initial load for 
the Micro Server (either Series 3100 or Series 5000).  You can use either an ex-
circuit programmer or in-circuit network management tool for subsequent loads.  
For the initial load for the Micro Server, an in-circuit network management tool 
can report a failed load because the Micro Server enters quiet mode after an 
initial load.  In this mode, the network management tool cannot communicate 
with the Micro Server.  However, for subsequent loads, the Micro Server does not 
enter quiet mode. 

To load the ShortStack firmware using in-circuit programming using LonMaker 
Integration Tool: 

1. Add a Device shape to your LonMaker drawing.  See the LonMaker 
User’s Guide for more information about working with LonMaker 
drawings. 

2. Optional:  Ensure that the host processor is loaded with the ShortStack 
LonTalk Compact API and the appropriate application program and 
serial driver.  This step ensures that the host application, serial driver, 
and Micro Server synchronize after the load. 

3. Ensure that the Smart Transceiver and the host processor are connected 
and able to communicate with one another.  

4. Ensure that the device is connected to the LONWORKS network. 
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5. Complete the information required by the LonMaker New Device Wizard. 
 
Do not select the Commission device checkbox (or use the Commission 
Device Wizard). 

After you add the device to the LonMaker drawing, load the Micro Server 
firmware into the device.  When prompted for the device application image name, 
specify the ShortStack Micro Server image in the Image name field, and specify 
the device’s interface file that was generated by the LonTalk Interface Developer 
utility in the XIF name field.  Do not use the Micro Server’s XIF file. 

Important:  In the Image name field, be sure to select the correct Micro Server 
image for your Smart Transceiver.  The LonMaker Integration Tool can prevent 
some incompatibilities between the hardware, firmware, and Micro Server image, 
but some incorrect configurations are still possible. 

Recommendation:  To verify that the entire device is operational, do not import 
the device’s XIF prior to commissioning, but instead specify Upload from device 
for the External Interface Definition in either the New Device Wizard or the 
Commission Device Wizard.  Because the SI data is located on the host, reading 
the SI data requires communications with the Micro Server through the link 
layer.  If the device can perform such communication successfully, the device is 
likely to be fully operational.  See Performing an Initial Micro Server Health 
Check on page 82 for additional information about verifying the operational 
status of the Micro Server. 

To test the device within LonMaker, right-click the device’s shape in the 
LonMaker drawing and select Manage.  From the LonMaker Device Manager 
window, select Test. 

See the LonMaker User’s Guide for more information about using the LonMaker 
Integration Tool. 

Working with FT 5000 EVB Evaluation Boards 
You can use an Echelon FT 5000 EVB evaluation board to develop your 
ShortStack application.  However, you must set the jumpers to configure the 
Smart Transceiver for the ShortStack Micro Server and to set the appropriate 
link-layer bit rate. 

You can connect the host processor board to an FT 5000 EVB through either of 
the following connectors: 

• The evaluation board’s general-purpose peripheral I/O connector P201 
(the Gizmo and MiniGizmo connector).  This connection allows the 
ShortStack Micro Server and the host processor to use a common power 
supply with either a 3.3 V or a 5 V signal level.  If the ShortStack Micro 
Server and the host processor use separate power supplies, you must 
ensure that they share a common ground for the link-layer; use the P201 
connector to provide the ground connection.  This connection supports 
either an SCI or an SPI serial driver connection.  See Using the Gizmo 
Interface (SCI or SPI) on page 41. 

• The on-board EIA-232 connector J201.  This connection includes a 
Maxim® Integrated Products MAX3387E AutoShutdown Plus™ RS-232 
Transceiver that allows ShortStack link-layer drivers to use standard 
EIA-232 communications levels, with handshake signals, and maintain 
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separate power supplies.  This connection supports only SCI serial driver 
connections.  See Using the EIA-232 Interface (SCI) on page 45. 

To enable the FT 5000 EVB to support a ShortStack application, you must mount 
or dismount jumpers on the following headers:  JP31, JP32, JP201, and JP203.  
In addition, you should verify the settings for the JP1, JP33, JP202, JP204, and 
JP205 jumpers.  See the FT 5000 EVB Hardware Guide for more information 
about these jumpers. 

General Jumper Settings for the FT 5000 
EVB 
Verify and set the following jumpers to run a ShortStack Micro Server on an FT 
5000 EVB. 

Although the jumper settings for headers JP1, JP33, and JP202 are not specific 
to running a ShortStack Micro Server on the FT 5000 EVB, they are included so 
that you can verify the settings for all of the headers on the board. 

JP1 

Leave the jumpers for the JP1 header mounted as shown in Figure 8.  This 
header connects the FT 5000 Smart Transceiver to the onboard serial flash 
and serial EEPROM memory. 

JP1

 

Figure 8. FT 5000 EVB Serial Memory Connections Header (JP1) 

JP31 

Dismount all of the jumpers from the JP31 header, as shown in Figure 9.  
The settings shown in the figure disconnect the FT 5000 Smart Transceiver’s 
I/O lines from the onboard I/O. 

JP31

 

Figure 9. FT 5000 EVB I/O Connections Header (JP31) 

JP33 

The ShortStack Micro Server does not use the onboard LCD display, so you 
can dismount jumper on the JP33 header to remove power to the LCD 
display, as shown in Figure 10 on page 41.  This jumper setting is optional. 
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JP33

 

Figure 10. FT 5000 EVB LCD Display Power Header (JP33) 

Using the Gizmo Interface (SCI or SPI) 
To use the P201 Gizmo interface on an FT 5000 EVB for a ShortStack 
application, set the following jumpers as described below. 

JP32 

Dismount all of the jumpers from the JP32 header, as shown in Figure 11 
and Figure 12 on page 42.  The settings for pins 1-10 of the header shown in 
the figure disconnect the FT 5000 Smart Transceiver’s I/O lines from the 
onboard I/O.   

The 3 PD jumper setting in Figure 11 specifies the SCI interface for the 
ShortStack Micro Server.  The 3 PD jumper setting in Figure 12 specifies the 
SPI interface for the ShortStack Micro Server. 

For SCI, if your ShortStack serial driver does not use the HRDY~ signal, 
mount the jumper for 1 PD to tie the HRDY~ signal low.  For SPI, leave the 1 
PD jumper unmounted, as shown in the figures. 

If you use a standard Micro Server or a custom ShortStack Micro Server that 
does not use the IO9 pin, you can dismount the 9 PD jumper to engage the 
R226 pull-up.  If you use a custom ShortStack Micro Server that uses the IO9 
pin, you can mount or dismount the 9 PD jumper as needed. 

JP32
 

Figure 11. FT 5000 EVB I/O Connections Header (JP32) – SCI 
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Figure 12. FT 5000 EVB I/O Connections Header (JP32) – SPI 

JP201 

Dismount all of the jumpers on the JP201 header, except the 10T1IN jumper, 
as shown in Figure 13.  Although this header enables the EIA-232 interface, 
and is not needed for the Gizmo interface, the 10T1IN jumper connects the 
R213 pull-up resistor for the Micro Server’s IO10 pin (TXD for SCI or HRDY~ 
for SPI). 
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Figure 13. FT 5000 EVB EIA-232 Communications Header (JP201)  

JP202 

Mount the jumper for the JP202 header to determine the external power 
source for the FT 5000 EVB, as shown in Figure 14.   

JP202JP202

Power comes 
from J202

(default setting)

Power comes 
from P201

 

Figure 14. FT 5000 EVB Power Selector Header (JP202) 

To use the Echelon power supply that ships with the FT 5000 EVB, mount 
the jumper so that power comes from the J202 connector.  This is the factory-
default setting.   
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To allow the FT 5000 EVB to share a common 5 V power supply with your 
host board, mount the jumper so that power comes from pin 25 of the P201 
Gizmo header. 

Recommendation:  When possible, use a single power domain for both the 
host processor board and the FT 5000 EVB: 

1. Important:  Do not connect the external power supply to J202 
connector of the FT 5000 EVB. 

2. Set the FT 5000 EVB’s JP202 jumper to use power from the P201 
Gizmo header (the left-hand image of Figure 14). 

3. Connect power from the host board to pin 25 of the P201 Gimzo 
header. 

4. Connect the two boards to a common ground (you can use pin 20 or 23 
of the P201 Gizmo header to provide ground to the FT 5000 EVB). 

5. Supply power to the host processor board. 

If your host processor board is the Pyxos FT EV Pilot EVB, dismount jumper 
JP61 (located on the left-hand side of the EVB, near the Smart Transceiver’s 
flash memory socket), and use pin 1 (the right-hand pin) of the header for the 
5 V power in step 3.  Use pin 43 or 44 of header JP505 for the ground 
connection in step 4. 

JP203 

Dismount the 0 T2IN and FON PD jumpers, as shown in Figure 15.  These 
jumpers apply to the EIA-232 interface only. 

The figure also shows the 5 PD and 6 PD jumpers configured to specify the 
serial bit rate for the standard 20 MHz Micro Server (76800 bps for SCI; 
76700 bps uplink and 38600 bps downlink for SPI). 
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Figure 15. FT 5000 EVB ShortStack Header (JP203) 

To set the link-layer bit rate for the Micro Server, determine the correct bit 
rate for your device according to Selecting the Link-Layer Bit Rate on page 
68, and then mount the FT 5000 EVB’s 5 PD and 6 PD jumpers on the JP203 
header appropriately to match the correct settings for the IO5 and IO6 pins 
on the Smart Transceiver.  Depending on which serial driver you use, see 
either Setting the SCI Bit Rate on page 73 or Setting the SPI Bit Rate on 
page 77 for the correct settings for the IO5 and IO6 pins. 

JP204 

Mount the jumper for the JP204 header, as shown in Figure 16 on page 44, to 
determine whether power is supplied to pin 19 of the P201 Gizmo header.  



 

44 Selecting and Creating a ShortStack Micro Server                                 

The default setting is to provide no power to pin 19, but you can supply either 
+5 V or +3.3 V. 

 

Figure 16. FT 5000 EVB Gizmo Pin 19 Power Selector Header (JP204) 

JP205 

Mount the jumper for the JP205 header to determine whether power is 
supplied to pin 17 of the P201 Gizmo header, as shown in Figure 17.  The 
default setting is to provide no power to pin 17, but you can supply +3.3 V. 

JP205 JP205

No power to 
Gizmo pin 17

(default setting)

+3.3 V power to 
Gizmo pin 17

 

Figure 17. FT 5000 EVB Gizmo Pin 17 Power Selector Header (JP205) 

P201 

To connect your host evaluation board or Micro Server custom board to the 
P201 Gizmo header, you must create a custom connection cable.  For rapid 
prototyping, you might consider using short 0.25” (0.635 mm) square socket 
test leads for these connections.  Figure 18 on page 45 shows the Gizmo 
header (P201) on the FT 5000 EVB.  The figure shows the signal names as 
used by the FT 5000 EVB, and also shows the signal names for the first 12 
pins as used by the SCI and SPI interfaces for a ShortStack Micro Server 
(signal names are from the Micro Server’s point of view). 

When connecting an FT 5000 EVB to a host processor board, be sure to 
provide a solid ground connection between the two boards.  You can use pin 
20 or 23 of the P201 Gizmo header for this ground connection. 



ShortStack User’s Guide        45 

3432302826242018161412108642
1 3 5 7 9 11 13 15 17 19 23 25 27 29 31 33

IO
0

IO
2

IO
4

IO
6

IO
8

IO
10

S
V

C
~

G
IZM

O
_P

17

V
D

D
_G

IZM
O

G
N

D

V
D

D
_E

X
T

C
P

4

C
P

2_TX

C
P

0

N
C

IO
1

IO
3

IO
5

IO
7

IO
9

IO
11

R
S

T~

G
N

D

N
C V
A

N
C

C
P

3_R
X

C
P

1

N
C

N
C

N
C

N
C

 

Figure 18. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals 

Using the EIA-232 Interface (SCI) 
To use the EIA-232 interface on the FT 5000 EVB for a ShortStack application, 
set the following jumpers as described below. 

JP32 

Dismount all of the jumpers from the JP32 header, as shown in Figure 19 on 
page 46.  The settings for pins 1-10 of the header shown in the figure 
disconnect the FT 5000 Smart Transceiver’s I/O lines from the onboard I/O.   

The 3 PD jumper setting specifies the SCI interface for the ShortStack Micro 
Server.  If your ShortStack serial driver does not use the HRDY~ signal, 
mount the jumper for 1 PD to tie the HRDY~ signal low.   

If you use a standard Micro Server or a custom ShortStack Micro Server that 
does not use the IO9 pin, you can dismount the 9 PD jumper to connect the 
R226 pull-up.  If you use a custom ShortStack Micro Server that uses the IO9 
pin, you can mount or dismount the 9 PD jumper as needed. 
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Figure 19. FT 5000 EVB I/O Connections Header (JP32) 

JP201 

Mount all of the jumpers on the JP201 header, as shown in Figure 20.  These 
jumper settings connect the Micro Server’s IO1 (HRDY~), IO4 (RTS~), IO8 
(RXD), and IO10 (TXD) signals to the EIA-232 connector.  If your ShortStack 
serial driver does not use the HRDY~ signal, you can dismount the jumper 
for 1 R30. 

JP201
 

Figure 20. FT 5000 EVB EIA-232 Communications Header (JP201) 

JP203 

Mount the 0 T2IN and FON PD jumpers on the JP203 header, as shown in 
Figure 21.  The figure also shows the 5 PD and 6 PD jumpers configured to 
specify a 76800 bps serial bit rate for the standard 20 MHz Micro Server. 

JP203
 

Figure 21. FT 5000 EVB ShortStack Header (JP203) 
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The MAX3387E RS-232 transceiver that is used on the FT 5000 EVB is 
configured to enter autoshutdown mode after inactivity of approximately 30 
seconds.  For applications that use high link-layer bit rates, the time required for 
the transceiver to become fully active (approximately 100 μs) might be long 
enough to cause a framing error on the serial link-layer signals.  

Recommendation:  To prevent the MAX3387E RS-232 transceiver from entering 
autoshutdown mode, you can mount the FON PD jumper on the JP203 header 
connect the chip’s FORCEON pin (pin 11) to GND, as shown in Figure 21.  
Alternatively, your SCI serial driver should briefly toggle the ShortStack Micro 
Server’s HRDY~ signal every 10 to 20 seconds during periods of idleness.  This 
toggle causes the MAX3387E transceiver to detect transmission activity and not 
enter autoshutdown mode.   

To set the link-layer bit rate for the Micro Server, determine the correct bit rate 
for your device according to Selecting the Link-Layer Bit Rate on page 68, and 
then mount the FT 5000 EVB’s 5 PD and 6 PD jumpers on the JP203 header 
appropriately to match the correct settings for the IO5 and IO6 pins on the Smart 
Transceiver.  See Setting the SCI Bit Rate on page 73 for the correct settings for 
the IO5 and IO6 pins. 

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232 
connector (J201) on the FT 5000 EVB.  To define the null-modem EIA-232 
interface, use the pin connections listed in Table 8.  Keep the total cable length to 
a maximum of 24 inches (0.6 meters). 

Table 8. EIA-232 Header to D-SUB9 Connector Pin Connections 

D-SUB9 Connector Pin Micro Server SCI Signal 

1 N/A  

2 TXD  

3 RXD 

4  HRDY~ 

5 GND 

6 N/A 

7 RTS~ 

8 CTS~ 

9 N/A 

Clearing the Non-Volatile Memory 
In general, if you have a working device, you should not need to clear the onboard 
non-volatile memory (the I2C serial EEPROM memory U2) on the FT 5000 EVB.  
For a working device, you can receive a service-pin message and reload the non-
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volatile memory as needed.  However, if it should become necessary to clear the 
non-volatile memory, perform the following tasks: 

1. Press and hold the EVB’s RESET button.  

2. Temporarily connect pin 8 of header JP1 to pin 7 of header JP23.  This 
step connects the EEPROM's SCL pin to GND. 

3. Release the EVB’s RESET button.   

4. Wait a few seconds until the EVB’s Service Pin LED is illuminated (on 
solid, not flashing). 

5. Disconnect pin 8 of header JP1 from pin 7 of header JP23.  Ensure that 
the jumpers for header JP1 are as shown in Figure 8 on page 40. 

6. Use NodeUtil utility to set the memory configuration and set the state for 
the device: 

a. Connect the PC that will run the NodeUtil utility to the same 
network interface that connects to the FT 5000 EVB.  For 
example, if you connect to the FT 5000 EVB using LON1, connect 
the NodeUtil utility to LON1. 

b. Start the NodeUtil utility. 

c. Press the SVC button on the FT 5000 EVB to send a service-pin 
message to the NodeUtil utility.  If you cannot receive a service-
pin message from the device, repeat steps 1 to 5. 

d. Within the NodeUtil utility, select the L option to see all 
connected devices.   

e. Select the G option to manage the device that just sent a service-
pin message (the FT 5000 EVB).  Typically, this is device 1. 

f. Select W to write to a memory location.  When prompted, do not 
update the application checksum and do not update the 
configuration checksum.   

g. Enter FDE8 for the starting address.  Enter a value of 2 for 
address FDE8.  This value specifies the memory type as I2C serial 
EEPROM memory. 

h. Enter a period (.) to exit the memory write session. 

i. Select W to write to a different memory location.  When 
prompted, do not update the application checksum and do not 
update the configuration checksum. 

j. Enter F037 for the starting address.  Enter a value of 0 (zero) for 
address 0xF037.  This value triggers device re-initialization.   

k. Enter a period (.) to exit the memory write session. 

l. Select E to exit device management mode. 

m. Select E to exit the NodeUtil utility. 

At this point, you can reload the board with whatever application is required (for 
example, a ShortStack Micro Server or a Neuron C application).  Because the 
device has returned to its default (empty) state and default settings, use the 
NodeLoad utility with the -X switch when loading an application or Micro Server 
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image (see Using the NodeLoad Utility with ShortStack on page 37).  Do not use 
the LonMaker Integration Tool to load an image following this procedure. 

Using a Logic Analyzer 
During device development, it is recommended that you use a logic analyzer, 
such as the TechTools DigiView™ Logic Analyzer, to verify the link-layer signals.  
For an example, see Performing an Initial Micro Server Health Check on page 82.  
You can use the JP24 header (see Figure 22) on the FT 5000 EVB to connect a 
logic analyzer to the EVB. 
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Figure 22. FT 5000 EVB Logic Analyzer Header (JP24) 

Working with Mini EVB Evaluation Boards 
You can use an Echelon Mini FX or Mini EVK evaluation board to develop your 
ShortStack application.  However, you must set the jumpers to configure the 
Smart Transceiver for the ShortStack Micro Server and to set the appropriate bit 
rate. 

You can connect the host processor to a Mini EVB through either of the following 
connectors: 

• The evaluation board’s general-purpose peripheral I/O connector P201 
(the Gizmo and MiniGizmo connector).  This connection allows the 
ShortStack Micro Server and the host processor to use a common power 
supply with a 5 V signal level.  By default, this connection supports only 
SCI serial driver connections.  If you want to use the SPI interface, you 
must drive the IO3 (SPI/SCI~) pin high with a 10 kΩ pull-up resistor 
through the Gizmo (P201) header.  See Using the Gizmo Interface (SCI) 
on page 50. 

• The on-board EIA-232 connector J201.  This connection includes a 
Maxim® Integrated Products MAX3387E AutoShutdown Plus™ RS-232 
Transceiver, which allows ShortStack link-layer drivers to use standard 
EIA-232 communications levels and maintain separate power supplies.  
This connection supports only SCI serial driver connections.  See Using 
the EIA-232 Interface (SCI) on page 52. 

When connecting a Mini EVB to a host processor board, be sure to provide a solid 
ground connection between the two boards. 

To enable the Mini EVB to support a ShortStack application, you must mount or 
dismount jumpers on the following headers:  JP201 and JP203.  See the Mini FX 
PL Hardware Guide for more information about these jumpers. 
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Using the Gizmo Interface (SCI) 
To use the P201 Gizmo interface on a Mini EVB for a ShortStack application, set 
the following jumpers as described below. 

JP201 

Dismount all of the jumpers on the JP201 header, as shown in Figure 23.  
This header enables the EIA-232 interface, which is not needed for the Gizmo 
interface.  In the figure, the jumpers for the FT 3120 and 3150 boards are on 
the left, and the jumpers for the PL 3120, 3150, and 3170 boards are on the 
right.   
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Figure 23. Mini EVB EIA-232 Enable Jumpers (JP201) 

JP203 

Dismount the IO0 jumper as shown in Figure 24; this jumper applies to the 
EIA-232 interface only.  The figure also shows the IO5 and IO6 jumpers 
configured to specify a 38 400 bit rate on a Mini FX PL 3150 Evaluation 
Board for a 10 MHz Micro Server.  
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Figure 24. PL 3150 Mini FX ShortStack Enable Jumper (JP203) 

To set the link-layer bit rate for the Micro Server, determine the correct bit 
rate for your device according to Selecting the Link-Layer Bit Rate on page 
68, and then mount the Mini EVB’s JP203 jumpers appropriately to match 
the correct settings for the IO5 and IO6 pins on the Smart Transceiver.  See 
Setting the SCI Bit Rate on page 73 for the correct settings for the IO5 and 
IO6 pins. 
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Important:  The PL 3170 Smart Transceiver supports the 38400 bit rate only.  
Therefore, the JP203 jumper settings for the IO5 and IO6 pins do not apply 
to the Mini FX PL 3170 Evaluation Board. 

Recommendation:  When possible, use a single power domain for both the host 
processor board and the Mini EVB.  If you use the Pyxos FT EV Pilot EVB as 
your host processor board, you can allow the Mini EVB to provide 5 V power: 

1. Important:  Do not connect the external power supply to either the JP201 
connector or the J31 connector of the Pyxos FT EV Pilot EVB. 

2. Connect pin 26 (VDD5) of the P201 Gimzo header on the Mini EVB to pin 
2 of the JP33 header on the Pyxos FT EV Pilot EVB.  The JP33 header is 
near the center of the EVB, to the right of the JP512 and JP510 headers.  
By default, there is a jumper that connects pins 1-2 of the JP33 header; 
remove this jumper to connect to pin 2 of the header. 

3. Connect the two boards to a common ground:  Use pin 20 or 23 of the 
P201 Gizmo header to provide ground from the Mini EVB, and use pin 43 
or 44 of the JP505 header to provide ground to the Pyxos FT EV Pilot 
EVB. 

4. Supply power to the Mini EVB. 

If you use a host processor board other than the Pyxos FT EV Pilot EVB, you 
should still use a common power domain.  In this case, you should use a common 
power supply that meets the input power requirements of both the host processor 
board and the Mini EVB (note that the power line EVBs have different power 
requirements from the FT EVBs).   

To connect your host evaluation board or Micro Server custom board to the P201 
Gizmo header, you must create a custom connection cable.  For rapid prototyping, 
you might consider using short 0.25” (0.635 mm) square socket test leads for 
these connections.  Figure 25 on page 52 shows the Gizmo header (P201) on the 
PL 3170 EVB.  The figure shows the signal names as used by the PL 3170 EVB, 
and also shows the signal names for the first 12 pins as used by the SCI and SPI 
interfaces for a ShortStack Micro Server (signal names are from the Micro 
Server’s point of view). 
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Figure 25. The Gizmo Header (P201) with the SCI and SPI Micro Server Signals 

Using the EIA-232 Interface (SCI) 
To use the EIA-232 interface on a Mini EVB for a ShortStack application, set the 
following jumpers as described below. 

JP201 

To enable the EIA-232 communications on a Mini EVB, mount all of the 
jumpers on the JP201 header, as shown in Figure 26.  In the figure, the 
jumpers for the FT 3120 and 3150 boards are on the left, and the jumpers for 
the PL 3120, 3150, and 3170 boards are on the right.   
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Figure 26. Mini EVB EIA-232 Enable Jumpers (JP201) 

The MAX3387E RS-232 transceiver that is used on the Mini EVBs is 
configured to enter autoshutdown mode after inactivity of approximately 30 
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seconds.  For applications that use high link-layer bit rates, the time required 
for the transceiver to become fully active (approximately 100 μs) might be 
long enough to cause a framing error on the serial link-layer signals.  

Recommendation:  To prevent the MAX3387E RS-232 transceiver from 
entering autoshutdown mode, your serial driver should briefly toggle the 
ShortStack Micro Server’s HRDY~ signal every 10 to 20 seconds during 
periods of idleness.  This toggle causes the MAX3387E transceiver to detect 
transmission activity and not enter autoshutdown mode.  Alternatively, you 
can connect the FORCEON pin (pin 11) either to VDD5 or to the VL pin (pin 
15). 

JP203 

Mount the IO0 jumper as shown in Figure 27 to connect the CTS~ signal to 
the MAX3387E RS-232 transceiver.  The figure also shows the IO5 and IO6 
jumpers configured to specify a 19 200 bit rate on a Mini FX PL 3170 
Evaluation Board for a 10 MHz Micro Server.  
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Figure 27. PL 3170 Mini FX ShortStack Enable Jumper (JP203) 

To set the link-layer bit rate for the Micro Server, determine the correct bit 
rate for your device according to Selecting the Link-Layer Bit Rate on page 
68, and then mount the Mini EVB’s JP203 jumpers appropriately to match 
the correct settings for the IO5 and IO6 pins on the Smart Transceiver.  See 
either Setting the SCI Bit Rate on page 73 for the correct settings for the IO5 
and IO6 pins. 

The EIA-232 interface requires a null-modem cable for the D-SUB9 EIA-232 
connector (J201) on the Mini EVB.  To define the null-modem EIA-232 interface, 
use the pin connections listed in Table 9.  Keep the total cable length to a 
maximum of 24 inches (0.6 meters). 

Table 9. EIA-232 Header to D-SUB9 Connector Pin Connections 

D-SUB9 Connector Pin Micro Server SCI Signal 

1 N/A  

2 TXD  

3 RXD 

4  HRDY~ 

5 GND 
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6 N/A 

7 RTS~ 

8 CTS~ 

9 N/A 

Working with Pyxos FT EV Pilot Evaluation Boards 
For SCI link-layer connections, you can use an Echelon Pyxos FT EV Pilot EVB 
as an Atmel ARM7 host processor board, either with the on-board FT 3150 Smart 
Transceiver for the Micro Server, or with an FT 5000 EVB or Mini EVB (as 
described above).  

For SPI link-layer connections, you cannot use the Pyxos FT EV Pilot EVB, but 
you can use another ARM7 host processor board, such as an Atmel AT91SAM7S-
EK evaluation board. 

Regardless of which ARM7 host EVB you use (the Pyxos Pilot or the Atmel 
evaluation board), you must create a custom connection cable for either the P201 
Gizmo header or the J201 EIA-232 connector.  For rapid prototyping, you might 
consider using short 0.25” (0.635 mm) square socket test leads for these 
connections.  

To use the Pyxos FT EV Pilot EVB with an external Micro Server board (such as 
an FT 5000 EVB or Mini EVB), rather than using the on-board FT 3150 Smart 
Transceiver, you must disconnect the ARM7 processor’s GPIO signals from the 
FT 3150 Smart Transceiver’s SCI link-layer signals.  To disconnect these signals, 
dismount all jumpers from header JP512 (near the flash memory socket on the 
left side of the board) on the Pyxos FT EV Pilot EVB, as shown in Figure 28 on 
page 55.  The labels for the header represent the ARM7 pin names.  
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Figure 28. Pyxos FT EV Pilot EVB ShortStack Header (JP512) 

For your custom connection cable, you can use either the rightmost side (ARM7- 
facing side) of the JP512 header or you can use the relevant pins from the JP505 
header to connect the Micro Server SCI signals to the ARM7 host.  Table 10 lists 
the pin correspondences between the ARM7 host processor and the ShortStack 
Micro Server (for hardware pin numbers, see the specific chip’s data sheet or 
schematic).  Figure 29 on page 56 shows the JP505 header. 

Table 10. ARM7 to Micro Server Pin Connections for the SCI Interface 

ARM7 Pin Name Micro Server Pin Name 

PA8 IO0 (CTS~) 

PA2 IO1 (HRDY~) 

N/A IO3 (SPI/SCI~) → Tie to GND for SCI 

PA7 IO4 (RTS~) 

PA0 IO5 (SBRB0) 

PA1 IO6 (SBRB1) 

PA6 IO8 (RXD) 

PA5 IO10 (TXD) 

PA23 Reset (RST~) 
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Figure 29. Pyxos FT EV Pilot Host Power and I/O Connector Header (JP505) 

Table 11 summarizes the connections between the FT 5000 EVB and the Pyxos 
FT EV Pilot EVB for the SCI link-layer interface using the Gizmo interface.  The 
notation “P201:4” represents pin 4 of header P201. 

Table 11. SCI Connections for the Pyxos Pilot EVB and the FT 5000 EVB 

Signal Name FT 5000 EVB Pins Pyxos Pilot EVB Pins 

CTS~ P201:0 JP512:13 (PA8) 

RTS~ P201:4 JP512:11 (PA7) 

RXD P201:8 JP512:9 (PA6) 

TXD P201:10 JP512:7 (PA5) 

GND P201:20 JP505:44 (GND) 

If you use an external EVB for the ShortStack Micro Server (such as the FT 5000 
EVB), do not connect the Micro Server’s IO5 and IO6 lines (SBRB0 and SBRB1) 
to the ARM7 processor’s PA0 and PA1 pins.  By default, the ShortStack FX 
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ARM7 example port’s serial driver sets the SCI serial bit rate to 76800 bps for a 
10 MHz FT 3150 Smart Transceiver; connecting these pins can create a 
mismatch in the expected bit rate for the Micro Server.  That is, set the Micro 
Server bit rate through the jumpers on the FT 5000 EVB, rather than through 
the serial driver. 

Important:  The SCI link layer requires pull-up resistors for the communications 
lines (see Serial Communication Lines on page 66): 

• If you use the Pyxos FT EV Pilot EVB’s onboard FT 3150 Smart 
Transceiver with the ARM7 host processor, the jumper settings for the 
JP512 header not only connect the ARM7’s GPIO lines to the Smart 
Transceiver, but also provide the necessary pull-ups.   

• If you connect the Pyxos FT EV Pilot EVB to an FT 5000 EVB, the 
needed pull-up resistors are already present if you connect the boards as 
described in Working with FT 5000 EVB Evaluation Boards on page 39.   

• If you connect the Pyxos FT EV Pilot EVB to other hardware (a Mini EVB 
or your custom hardware), be sure to supply the pull-up and pull-down 
resistors as necessary (see your hardware’s schematics or other 
documentation). 

See the ShortStack FX ARM7 Example Port User’s Guide for more information 
about the Pyxos FT EV Pilot EVB and the ARM7 host processor. 

ShortStack Device Initialization 
A ShortStack device performs the following tasks during initialization:  

1. Upon power-up or return from reset, the Micro Server performs initial 
health checks, and initializes itself. 
 
Depending on the chosen hardware and the Micro Server’s properties, 
this step can take several tens of seconds the first time the Micro Server 
initializes; however, this step completes almost instantly for all 
subsequent resets. 
 
The Micro Server also enters quiet mode at the end of this step, unless an 
application has previously been registered with this Micro Server.  

2. While the Micro Server performs initialization step 1, the host 
application runs its own local initialization code. 

3. When the host application’s initialization is complete, and its serial 
driver is ready to receive messages from the Micro Server, it must assert 
the HRDY~ signal.  This assertion must occur before the Micro Server’s 
watchdog timer expires (840 ms after reset for a Series 5000 device; 210 
to 840 ms after reset for a Series 3100 device, depending on the external 
clock rate).  For fast host processors, you can tie the HRDY~ signal low, 
so that the Micro Server assumes that the host is always ready to receive 
messages.  However, your host-side circuitry must ensure that the 
HRDY~ signal is reliably high (deasserted) during power-up and host 
initialization. 

4. When the Micro Server’s initialization is complete and the host signals its 
readiness to receive packets (by asserting the HRDY~ signal), the Micro 
Server sends an uplink reset message.  This message includes 
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information about the Micro Server, including its current state, last 
known error condition, and its initialization state. 

The ShortStack host application must register with the Micro Server to complete 
the initialization of the ShortStack device (the Micro Server together with the 
host processor) before it can communicate as a LONWORKS device on a 
LONWORKS network.  Before the application is correctly registered with the Micro 
Server, the Micro Server is in quiet mode and does not respond to network events 
and appears inoperative to the network.  In addition, after you load a new Micro 
Server image, the first initialization of the Micro Server, together with the 
initialization of the host application and its registration with the Micro Server, 
can take up to one minute to complete.  Subsequent initializations complete much 
more quickly. 

The ShortStack host application sends registration information to the ShortStack 
Micro Server on startup.  The registration information includes the device’s 
program ID, communication parameters, network variable configuration data, 
and miscellaneous preferences.  

The application must send this registration data whenever the Micro Server 
reports a reset and indicates that no application is registered.  That is, the host 
application should re-run its LonInit() function.  See Performing an Initial Micro 
Server Health Check on page 82 for more information. 

After the registration data has been accepted and successfully processed by the 
Micro Server, the Micro Server leaves quiet mode, and thus allows the device to 
communicate as a LONWORKS device on a LONWORKS network.    

See Initializing the ShortStack Device on page 169 for more information about 
the initialization ShortStack LonTalk Compact API function, and see Running 
the LonTalk Interface Developer on page 146 for more information about 
generating the self-identification, self-documentation, and initialization data. 

Using the ShortStack Micro Server Key 
Each ShortStack Micro Server firmware image has a version number and a key 
value that identifies it.  The key value identifies the Micro Server in terms of its 
Smart Transceiver chip type (FT or PL, 3120, 3150, 3170, or 5000), its clock rate, 
whether it supports ISI, and its channel type (FT or PL).  The key value is a 16-
bit number that is reported to the host whenever the Micro Server sends a reset 
notification; Table 12 defines the bit values that comprise the key for standard 
Micro Servers. 

Table 12. Micro Server Key Bit Values 

Bit Values 

Micro 
Server Type Custom Revision 

Chip 
Type 

Clock 
Speed 

ISI 
Support 

Channel 
Type 

Key 
Value 

FT 3120 @ 
10 MHz 0 0001 0000 001 0 000 0x0010 

FT 3120 @ 
20 MHz 0 0001 0000 010 0 000 0x0020 
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Bit Values 

Micro 
Server Type Custom Revision 

Chip 
Type 

Clock 
Speed 

ISI 
Support 

Channel 
Type 

Key 
Value 

FT 3120 @ 
40 MHz 0 0001 0000 011 0 000 0x0030 

FT 3150 @ 
10 MHz 0 0001 0001 001 0 000 0x0090 

FT 3150 @ 
10 MHz 0 0001 0001 001 1 000 0x0098 

PL 3120 @ 
10 MHz 0 0001 0010 001 0 001 0x0111 

PL 3150 @ 
10 MHz 0 0001 0011 001 0 001 0x0191 

PL 3150 @ 
10 MHz 0 0001 0011 001 1 001 0x0199 

PL 3170 @ 
10 MHz 0 0001 0100 001 1 001 0x0A19 

FT 5000 ES 0 0000 0101 011 1 000 0x02B8 

FT 5000 0 0001 0101 011 1 000 0x0AB8 

In the table: 

• Custom is a one-bit field that identifies whether the Micro Server is a 
standard Echelon-supplied Micro Server or a custom Micro Server.  0b02 
indicates standard; 0b1 indicates custom. 

• Revision is a four-bit field that can distinguish otherwise-identical Micro 
Servers:   

o 0b0000 indicates the initial version. 

o 0b0001 indicates the first revision level. 

• Chip type is a four-bit field that identifies the chip type: 

o 0b0000 indicates an FT 3120 Smart Transceiver 

o 0b0001 indicates an FT 3150 Smart Transceiver 

o 0b0010 indicates a PL 3120 Smart Transceiver  

o 0b0011 indicates a PL 3150 Smart Transceiver 

o 0b0100 indicates a PL 3170 Smart Transceiver 

                                                 
2 “0b0” represents a binary literal or constant value of 0 (zero). 
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o 0b0101 indicates an FT 5000 Smart Transceiver 

o 0b0110 indicates a Neuron 5000 Processor3 

• Clock speed is a three-bit field that identifies the clock speed for the 
Smart Transceiver or Neuron Processor4: 

o 0b000 indicates 5 MHz 

o 0b001 indicates 10 MHz 

o 0b010 indicates 20 MHz 

o 0b011 indicates 40 MHz 

o 0b100 indicates 80 MHz 

o 0b101 indicates 160 MHz 

• ISI support is a one-bit field that identifies whether the Micro Server 
supports Interoperable Self-Installation (ISI): 

o 0b0 indicates no ISI support 

o 0b1 indicates ISI support. 

• Channel type is a three-bit field that identifies the LONWORKS network 
type: 

o 0b000 indicates a TP/FT-10 channel 

o 0b001 indicates a PL-20C channel 

o 0b010 indicates a PL-20N channel 

o 0b111 indicates all other channel types 

A ShortStack host application could use this key value to determine whether its 
Micro Server is running with an FT or PL transceiver, and perform an 
appropriate initialization for that tranceiver type.  Alternatively, a host 
application could use this key to bypass initialization for ISI for a Micro Server 
that does not support ISI. 

If you develop a custom Micro Server, you can set the key to any value that has 
meaning for your application, however, you must set the most-significant bit to 1 
to signify that the key applies to a custom Micro Server.  The key is defined in 
the [ShortStack]\Custom MicroServer\MicroServer.h header file: 

#define MICRO_SERVER_KEY 0x8000ul   

Thus, the key is a 16-bit number as defined in the context of Neuron C’s unsigned 
long type.   

                                                 
3 The Neuron 5000 Processor is not supported by the standard Micro Servers that are included with 
the ShortStack FX Developer’s Kit. You must create a custom Micro Server to support a Neuron 
5000 Processor. 
4 For a Series 3100 Smart Transceiver, this value is the external crystal or oscillator frequency 
value.  For an FT 5000 Smart Transceiver or Neuron 5000 Processor, this value is twice its system 
clock value (from the device’s hardware template), to represent an equivalent Series 3100 clock rate. 
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4  

Selecting the Host Processor 

This chapter describes considerations for selecting a new 
host processor for a ShortStack device, and for evaluating an 
existing host processor.  It also describes considerations for 
selecting the host programming environment. 
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Selecting a Host Processor 
For most applications, the choice of the host processor is determined by the 
overall needs of the application, rather than the needs of the ShortStack Micro 
Server.  Other considerations for choosing the host processor include prior 
experience with the processor or architecture, cost, performance, memory 
support, power requirements, I/O support, and availability of development tools. 

The Micro Server has few requirements for the host processor.  The following 
sections describe considerations that can help you choose a host processor or 
determine the suitability of your current host processor. 

Serial Communications 
The host processor must be able to connect to the ShortStack Micro Server 
through either the four (or five) line Serial Communications Interface (SCI) or 
the six (or seven) line Serial Peripheral Interface (SPI).  In addition, the host 
processor’s implementation of the serial interface must support at least one of the 
bit rates listed in Setting the SCI Bit Rate on page 73 or Setting the SPI Bit Rate 
on page 77.   

An existing serial driver, which might be available as part of an embedded 
operating system’s services, must allow for flow control that complies with the 
ShortStack link layer protocol.  Alternatively, you must be able to supply your 
own serial driver that implements the required protocol.  See SCI Interface on 
page 71 or SPI Interface on page 76 for information about the required protocol. 

If your application uses SPI, the host processor must support SPI Slave mode, 
because the Micro Server always operates as the SPI Master. 

Both the SCI and SPI interfaces provide a host ready (HRDY~) signal.  Your 
application can use this signal to prevent new link layer uplink transfers to the 
host processor, but because Micro Server has limited buffering capabilities, the 
application should only assert the HRDY~ signal briefly.  A typical driver 
implementation deasserts this signal only briefly while it enqueues a received 
packet, to protect the temporarily busy receiver routine from an input data buffer 
overflow.  The host must ensure that this signal this deasserted reliably through 
the entire power-up and initialization phase, until the host asserts it after the 
host application and serial driver are fully initialized and ready to exchange link-
layer data. 

If your ShortStack application makes no requirements for which interface to use, 
you should consider using the SCI interface.  The SCI interface requires fewer 
I/O lines, and is more standardized, which allows for easier possible future 
transition to a different host platform.  In addition, the ShortStack SCI driver is 
easier to port because of its simpler link-layer protocol. 

Byte Orientation 
Unless your application requires a processor with a little-endian (least significant 
byte at low address) architecture, you should consider using a processor with a 
big-endian (most significant byte at low address) architecture for a ShortStack 
device.  Network data in a LONWORKS network uses big-endian byte orientation.   
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A big-endian host processor does not need to change byte orientation, and thus 
requires fewer processing instructions and machine cycles to access network 
data.  If you use a little-endian host processor, you might need to implement code 
for byte re-ordering on the uplink and downlink.  Some processor architectures, 
such as that used in the ARM processor family, are bi-endian, and feature 
switchable “endianness”.  

The ShortStack LonTalk Compact API and application framework provide 
utilities to handle the byte orientation correctly.   

Processing Power 
The processing power required by the ShortStack host processor is generally 
determined by the application’s control algorithm.  ShortStack has minimal 
processing requirements.   

However, the ShortStack LonTalk Compact API requires frequent periodic 
servicing through the LonEventHandler() API function (see Periodically Calling 
the Event Handler on page 170).  Different host processors take different 
amounts of time to run this function.  The time required to run this function also 
depends on the incoming and outgoing network traffic.  

Most modern microprocessors can run this function without impacting the 
application’s control algorithm.  However, a device with a very demanding control 
algorithm, or a device with a performance-limited host processor might need 
additional RAM to buffer link-layer packets to avoid loss of data. 

Volatile Memory 
Although every application is different, a general ShortStack device requires 
about 800 bytes of RAM (as well as approximately 4 to 6 KB of memory for the 
application program plus application framework [serial driver, ShortStack 
LonTalk Compact API, and so on]).  See API Memory Requirements on page 290 
for a description of the memory requirements for the ShortStack LonTalk 
Compact API and optional APIs. 

If your application uses non-interoperable messages, which can include larger 
payload data and can require larger buffers or additional buffers in the host 
application, the RAM requirement could increase significantly.   

Modifiable Non-Volatile Memory 
Although the ShortStack LonTalk Compact API does not require modifiable non-
volatile memory, most interoperable ShortStack devices require a small amount 
of modifiable non-volatile data storage.  This data includes configuration property 
values, which control and configure the interoperability and networking aspects 
of the ShortStack device.  

The total amount of such data depends on your application, and can range from 
zero bytes to several kilobytes.  Many simple interoperable devices require no 
more than a few hundred bytes of modifiable non-volatile memory.  Devices 
typically use flash or EEPROM memory to store such data, but ShortStack 
makes no requirement for the type of memory.  
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How the application accesses this memory depends on the application’s 
requirements.  The ShortStack LonTalk Compact API provides tools and code 
that can help manage non-volatile memory.  See Providing Persistent Storage for 
Non-Volatile Data on page 192 for more information, including recommendations 
and considerations for handling non-volatile data.  

Compiler and Application Programming Language 
The ShortStack Developer’s Kit provides the ShortStack LonTalk Compact API 
and application framework as portable ANSI C source code.  Thus, a standard 
ANSI C (or C++) compiler for application development is appropriate.  Other 
development tools and languages are possible, but you must then port the driver, 
API, and application framework to the other language.  

The ShortStack LonTalk Compact API and application framework can be used 
with most ANSI C compilers with little or no changes.  The LonPlatform.h file 
provides a set of common definitions for various compilers. 

The ShortStack LonTalk Compact API and application framework use many data 
structures and unions, some of which are deeply nested types.  All of these 
structures are based on byte-sized entities (and combinations of multiple single-
byte entities, rather than multi-byte entities), so the application compiler must 
be able to generate the exact memory image of these structures and unions 
without inserting any padding bytes.  By exclusively using single-byte entities, 
the ShortStack LonTalk Compact API allows most compilers to be used with a 
ShortStack FX application. 

See Porting the ShortStack LonTalk Compact API on page 109 for more 
information, including considerations for porting a ShortStack application to a 
host development environment and embedded operating system. 

Selecting the Application Development 
Environment 

The ShortStack LonTalk Compact API and framework have no requirement for 
an embedded operating system, and use only a few basic routines from the 
standard ANSI C toolkit, such as the memcpy() or memset() functions.  

Many simple ShortStack devices do not include an embedded operating system.  
These devices typically call the ShortStack LonTalk Compact API from the 
application’s main loop. 

Devices that use an embedded operating system can use dedicated threads, tasks, 
or processes to call and process data from the ShortStack LonTalk Compact API.  
Other solutions can call and process data from the API from a timer-based 
interrupt service handler routine.  

Although the ShortStack LonTalk Compact API and application framework 
support all of these approaches, the ShortStack model is single-threaded and not 
re-entrant.  An application that uses a multi-tasking (or multi-threaded) or 
interrupt-driven ShortStack LonTalk Compact API must ensure that all 
ShortStack LonTalk Compact API access is within a single thread (or task or 
interrupt context). 

See Appendix C, ShortStack LonTalk Compact API, on page 287, for additional 
considerations and recommendations regarding threading and execution context. 
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5  

Designing the Hardware Interface 

This chapter describes what you need to design the 
hardware interface between your ShortStack host processor 
and the ShortStack Micro Server. 
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Overview of the Hardware Interface 
The hardware interface for a ShortStack Micro Server consists of the 11 or 12 
I/O-pin interface of an Echelon Smart Transceiver.  However, a ShortStack Micro 
Server does not use all 11 or 12 pins.  The ShortStack Micro Server supports two 
serial interfaces for communications with the host processor:  the Serial 
Communications Interface (SCI) and the Serial Peripheral Interface (SPI).  One 
I/O pin selects the serial interface, two pins set the interface bit rate, and five to 
seven I/O pins comprise the interface.  One pin (IO9) is optionally available to the 
host processor, and the remaining I/O pins are not used. 

This chapter describes the hardware interface, including the requirement for 
pull-up resistors, checking the status of the optional IO9 pin, selecting a 
minimum communications interface bit rate, considerations for host latency, 
specifying the SCI interface, specifying the SPI interface, and how to perform an 
initial health check of the Micro Server. 

Reliability 
A ShortStack Micro Server considers the serial link reliable, similar to other 
serial interfaces that are commonly used within computing equipment and 
embedded devices, such as an inter-integrated circuit (I2C) bus connection to a 
serial EEPROM device. 

The ShortStack link layer protocol does not include error detection or error 
recovery.  Instead, error detection and recovery are implemented by the LonTalk 
protocol, and this protocol detects and recovers from errors.  

To minimize possible link-layer errors, be sure to design the hardware interface 
for reliable and robust operations.  For example, use a star-ground configuration 
for your device layout on the device’s printed circuit board (PCB), limit entry 
points for electrostatic discharge (ESD) current, provide ground guarding for 
switching power supply control loops, provide good decoupling for VDD inputs, and 
maintain separation between digital circuitry and cabling for the network and 
power.  See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 / 
PL 3150 / PL 3170 Power Line Smart Transceiver Data Book, or the Series 5000 
Chip Data Book for more information about PCB design considerations for a 
Smart Transceiver. 

The example applications contain example implementations of the link layer 
driver, including examples and recommendations for time-out guards within the 
various states of that driver.  See the ShortStack FX ARM7 Example Port User’s 
Guide for more information about the ARM7 example applications.  The optional 
local utility API functions also include health-check features, such as the facility 
to ‘ping’ the Micro Server or to echo data across the serial link layer, to help your 
application to prevent and detect unrecoverable link-layer errors. 

Serial Communication Lines 
For both serial interfaces (SCI and SPI), you must add 10 kΩ pull-up resistors to 
all communication lines between the host processor and the ShortStack Micro 
Server (including those marked as N/A in Table 13 on page 72 and Table 15 on 
page 77, and not connected to the host processor).  These pull-up resistors 
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prevent invalid transactions on start-up and reset of the host processor or the 
Micro Server.  Without a pull-up resistor, certain I/O pins can revert to a floating 
state, which can cause unpredictable results. 

If your link-layer driver does not use the HRDY~ signal, you can tie it to GND. 
However, it is recommended that the host drive the HRDY~ signal, even if the 
host processor is fast and always ready to receive uplink data, to assist with a 
synchronized start-up after power-up or reset. 

High-speed communication lines should also include proper back termination.  
Place a series resistor with a value equal to the characteristic impedance (Z0) of 
the PCB trace minus the output impedance of the driving gate (the resistor value 
should be approximately 50 Ω) at the driving pin.  In addition, the trace should 
run on the top layer of the PCB, over the inner ground plane, and should not 
have any vias to the other side of the PCB.  Low-impedance routing and correct 
line termination is increasingly important with higher link layer bit rates, so 
carefully check the signal quality for both the Micro Server and the host when 
you design and test new ShortStack device hardware, or when you change the 
link-layer parameters for existing ShortStack device hardware. 

The RESET~ Pin 
The ShortStack Micro Server has no special requirements for the Smart 
Transceiver’s or Neuron Chip’s RESET~ (or RST~) pin.  See the FT 3120 / FT 
3150 Smart Transceiver Data Book, the PL 3120 / PL 3150 / PL 3170 Power Line 
Smart Transceiver Data Book, or the Series 5000 Chip Data Book for information 
about the requirements for this pin. 

However, because a ShortStack device uses two processor chips, the Smart 
Transceiver and the host processor, you have an additional consideration for the 
Smart Transceiver’s RESET~ pin:  Whether to connect the host processor’s reset 
pin to the Smart Transceiver’s RESET~ pin. 

For most ShortStack devices, you should not connect the two reset pins to each 
other.  It is usually better for the Micro Server and the host application to be able 
to reset independently.  For example, when the Micro Server encounters an error 
that causes a reset, it logs the reset cause (see Querying the Error Log on page 
187); if the host processor resets the Micro Server directly, possibly before the 
Micro Server can detect and log the error, your application cannot query the 
Micro Server’s error log after the reset to identify the problem that caused the 
reset.  The Micro Server also resets as part of the normal process of integrating 
the device within a network; there is normally no need for the host application to 
reset at the same time. 

In addition, the host processor should not reset the Micro Server while the Micro 
Server is starting up (that is, before the Micro Server sends the uplink reset 
message, LonResetNotification, to the host processor). 

For devices that require the host application to be able to control all operating 
parameters of the Micro Server, including reset, you can connect one of the host 
processor’s general-purpose I/O (GPIO) output pins to the Smart Transceiver’s 
RESET~ pin, and drive the GPIO pin to cause a Micro Server reset from within 
your application or within your serial driver.  Alternatively, you can connect one 
of the host processor’s GPIO input pins to the Smart Transceiver’s RESET~ pin 
so that the host application can be informed of Smart Transceiver resets. 
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A host processor’s GPIO output pin should not actively drive the Smart 
Transceiver’s RESET~ pin high, but instead should drive the pin low.  You can 
use one of the following methods to ensure that the GPIO pin cannot drive the 
RESET~ pin high: 

• Ensure that the GPIO pin is configured as an open-drain (open-collector) 
output 

• Ensure that the GPIO pin is configured as a tri-state output  

• Place a Schottky diode between the GPIO pin and the RESET~ pin, with 
the cathode end of the diode connected to the GPIO pin 

Configuring the GPIO pin as either open drain or tri-state ensures that the GPIO 
pin is in a high-impedance state until it is driven low.  Using a Schottky diode is 
preferable to using a regular diode because a Schottky diode has a low forward 
voltage drop (typically, 0.15 to 0.45 V), whereas a regular diode has a much 
higher voltage drop (typically, 0.7 V), that is, the Schottky diode ensures that the 
voltage drop is low enough to ensure a logic-low signal.   

Host-driven reset of the Micro Server should only be an emergency means to 
recover from some serious error.  In addition, the host application or serial driver 
should always log the reason or cause for the reset, along with timestamp 
information.  An unrecoverable error that requires a reset of the Micro Server is 
generally evidence of a malfunction in the host driver, the Micro Server, or the 
physical link layer, and should be investigated. 

Using the IO9 Pin 
Neither of the standard serial interfaces for a ShortStack Micro Server uses the 
IO9 pin of the Smart Transceiver chip.  However, an application can read the 
static input signal that is available to the IO9 pin. 

To make this signal available to the application, the Micro Server includes the 
following information in each uplink reset notification:  

• Whether the IO9 input signal is available for application use (always 
TRUE for a ShortStack FX Micro Server) 

• The logic state of the IO9 static input 

Applications can use this information for automatic configuration of the Micro 
Server.  For example, your ShortStack device could use a jumper or configuration 
switch to select, or deselect, the comité européen de normalisation 
electrotechnique5 (CENELEC) media access protocol for power line use, thus 
potentially allowing the device to use a single application image for use in 
CENELEC member states as well as in countries that are not governed by the 
CENELEC committee. 

Selecting the Link-Layer Bit Rate 
The minimum bit rate for the serial link between the ShortStack Micro Server 
and the host processor is most directly determined by the expected number of 
packets per second, the type of packets, and the size of the packets.  Another 
factor that can significantly influence the required bit rate is support for explicit 

                                                 
5 European Committee for Electrotechnical Standardization 
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addressing, an optional feature that the ShortStack application can enable and 
disable. 

Recommendations:  The following recommendations apply to general-use 
LONWORKS devices: 

• ShortStack Micro Server external clock frequency 

o 10 MHz or higher for TP/FT-10 devices (for Series 5000 devices, 
specify a minimum 5 MHz system clock rate) 

o 5 MHz or higher for power-line devices 

• Bit rate 

o 38 400 bps or higher for TP/FT-10 devices 

o 9600 bps or higher for power-line devices 

To generate a more precise estimate for the minimum bit rate for the serial 
interface, use the following formula:  

( ) exp**5 PPSBPTPEAPMinBitRate Interfacesizetype +++=  

where: 

• The constant 5 represents general communications overhead 

• typeP  is the packet-type overhead, and has one of the following values: 

o 3 for network-variable messages 

o 1 for application messages  

• EA  is the explicit-addressing overhead, and has one of the following 
values: 

o 0 for no explicit-addressing support 

o 11 for explicit-addressing support enabled 

• sizeP  is the packet size of the payload, and has one of the following values: 

o sizeof(network_variable) 

o sizeof(message_length) 

• InterfaceBPT  represents data transfer overhead for the serial interface, and 

has one of the following values: 

o 1 bit per transfer for SPI 

o 10 bits per transfer for SCI 

• expPPS  is the expected packet-per-second throughput value 

Example:  For an average network variable size of 3 bytes, no explicit messaging 
support, and a TP/FT-10 channel that delivers up to 180 packets per second, the 
minimum bit rate for an SCI interface is 19 200 bps.  To allow for larger NVs, 
channel noise, and other systemic latency, you should consider setting the device 
bit rate at the next greater value above the minimum calculated from the 
formula.  Thus, for this example, a bit rate of 38 400 or 76 800 bps is 
recommended. 
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To calculate the expected packet-per-second throughput value for a channel, you 
can use the Echelon Perf utility, available from www.echelon.com/downloads.  

However, the bit rate is not the only factor that determines the link-layer transit 
time.  Some portion of the link-layer transit time is spent negotiating handshake 
lines between the host and the Micro Server.   For faster bit rates, the 
handshaking overhead can increase, thus your application might require a faster 
clock speed for the Micro Server to handle the extra processing. 

Example:  For a Series 3100 Micro Server running at 10 MHz and an ARM7 host 
running at 20 MHz, the link-layer transit for a 4-byte network variable fetch, the 
handshaking overhead can be as much as 22% of the total link-layer transit time 
at 19 200 bps, and as much as 40% at 38 400 bps.  

Even though a Series 3100 Micro Server running at 5 MHz can be sufficient for 
the demands of a power-line channel, a typical Micro Server operates at 10 MHz 
even when used exclusively with a power line channel.  The maximum clock rate 
for a Micro Server based on a PL 3120, PL 3150, or PL 3170 Smart Transceiver is 
10 MHz. 

FT 3150 and PL 3150-based Micro Servers using off-chip flash memory are 
limited to 10 MHz operation, but faster operation might be possible with FT 3120 
or FT 3150-based Smart Transceivers.  FT 5000 Smart Transceivers can operate 
with up to an 80 MHz system clock rate, but the standard Micro Server for the 
FT 5000 uses a 20 MHz system clock, making its performance equivalent to that 
of an FT 3120 Smart Transceiver with an external 40 MHz crystal.  The selection 
of the 20 MHz clock rate is a compromise between processing performance and 
power consumption. 

For a performance test application that attempts to maximize the number of 
propagated packets, the application is likely to show approximately 3% increased 
throughput when operating with a 40 MHz Series 3100 Micro Server compared to 
a 10 MHz Series 3100 Micro Server (for Series 5000 Micro Servers, the 
comparison is between the 20 MHz system clock setting and the 5 MHz system 
clock setting).  However, for a production application, which only occasionally 
transmits to the network and has unused output buffers available on the Micro 
Server, a faster Micro Server reduces the time required for the handshake 
overhead (by up to a factor of 4 for Series 3100 devices – or up to a factor of 16 for 
Series 5000 devices, compared to Series 3100 devices) so that a downlink packet 
can be delivered to the Micro Server more quickly, which can improve overall 
application latency.   Thus, depending on the needs of your application, you can 
use a slower or faster Micro Server.  

Host Latency Considerations 
The processing time required by the host processor for a ShortStack Micro Server 
can have a significant impact on link-layer transit time for network 
communications and on the total duration of network transactions.  This impact 
is the host latency for the ShortStack application. 

To maintain consistent network throughput, a host processor must complete each 
transaction as quickly as possible.  Operations that take a long time to complete, 
such as flash memory writes, should be deferred whenever possible.  For 
example, an ARM7 host processor running at 20 MHz can respond to a network-
variable fetch request in less than 60 μs, but typically requires 10-12 ms to erase 
and write a sector in flash memory. 

http://www.echelon.com/downloads
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The following formula shows the overall impact of host latency on total 
transaction time: 

( )( ) hostlinklayerrMicroServechanneltrans ttttt +++= *2  

where: 

• transt  is the total transaction time 

• channelt  is the channel propagation time 

• rMicroServet  is the Micro Server latency (approximately 1 ms for a Series 

3100 Micro Server running at 10 MHz; approximately 65 μs for a Series 
5000 Micro Server running with an 80 MHz system clock) 

• linklayert  is the link-layer transit time 

• hostt  is the host latency 

The channel propagation time and the Micro Server latency are fairly constant 
for each transaction.  However, link-layer transit time and host latency can be 
variable, depending on the design of the host application.  

You must ensure that the total transaction time for any transaction is much less 
than the LONWORKS network transmit timer.  For example, the typical transmit 
timer for a TP/FT-10 channel is 64 ms, and the transmit timer for a PL-20 
channel is 384 ms. 

Typical host processors are fast enough to minimize link-layer transit time and 
host latency, and to ensure that the total transaction time is sufficiently low.  
Nonetheless, your application might benefit from using an asynchronous design 
of the host serial driver and from deferring time-consuming operations such as 
flash memory writes. 

SCI Interface 
The ShortStack Serial Communications Interface (SCI) is a half-duplex 
asynchronous serial interface between the ShortStack Micro Server and the host 
processor.  The communications format is:  

• 1 start bit  

• 8 data bits  (least-significant bit first) 

• 1 stop bit 

The SCI link-layer interface uses two serial data lines:  RXD (receive data) and 
TXD (transmit data).  The signal directions are from the point of view of the 
Micro Server.  An uplink transaction describes data exchange from the Micro 
Server to the host processor, and uses the TXD line.  A downlink transaction 
refers to data exchange from host processor to the Micro Server, and uses the 
RXD line.  

The SCI interface includes three flow-control lines:  the RTS~ (request to send) 
signal that informs the Micro Server of a pending downlink, the CTS~ (clear to 
send) signal that allows a downlink transfer to begin, and an optional HRDY~ 
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(host ready) signal that can be used to temporarily prevent uplink transfers.  
These three signals are all active low. 

The interface also includes two bit-rate selection signals and an interface type 
selection signal.  These signals can be connected to the host processor, but do not 
need to be.  However, if the host processor does not control the bit-rate selection 
signals, you must ensure that the host processor and the Micro Server run at the 
same SCI bit rate. 

ShortStack Micro Server I/O Pin Assignments for SCI 
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of 
the Micro Server and provide the interface to the host processor.  The IO3 input 
pin selects the serial interface:  SCI or SPI.  The serial interface also determines 
the usage of the other I/O pins.  Table 13 summarizes these pin assignments for 
the SCI interface.  

Recommendation:  If your host processor can support both the SCI and SPI 
interfaces, use the SCI interface because it is typically faster and easier to 
implement, both in hardware and software.  

Table 13. ShortStack Micro Server Pin Assignments for the SCI Interface 

Smart Transceiver Pin Signal Name Direction 

IO0 CTS~ Output 

IO1 HRDY~ Input 

IO2 N/A No connection 

IO3 SPI/SCI~ Input (tie to GND for 
SCI) 

IO4 RTS~ Input 

IO5 Serial Bit Rate Bit 0 
(SBRB0; LSB) 

Input 

IO6 Serial Bit Rate Bit 1 
(SBRB1; MSB) 

Input 

IO7 N/A No connection 

IO8 RXD Input 

IO9 N/A No connection (but see 
Using the IO9 Pin on 
page 68) 

IO10 TXD Output 

IO11 N/A No connection 
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Notes:   

• Signal direction is from the point of view of the Smart Transceiver 
(Micro Server). 

• N/A = Not applicable. 

Setting the SCI Bit Rate 
You select the SCI interface by setting the ShortStack Micro Server’s IO3 input 
pin to logic 0 (ground).  The settings for pins IO5 and IO6 determine the SCI 
serial bit rate, as listed in Table 14.  The rates are listed as bits per second; the 
values are also approximate and rounded to the nearest 100 bits per second.  

Table 14. SCI Serial Bit Rates 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) Series 3100 
External 

Clock 

Series 
5000 

System 
Clock GND GND GND VDD VDD GND VDD VDD 

5 MHz — 38400 19200 9600 4800 

10 MHz 5 MHz 76800 38400 19200 9600 

20 MHz 10 MHz 153600 76800 38400 19200 

40 MHz 20 MHz 302100 153600 76800 38400 

— 40 MHz 604200 302100 153600 76800 

— 80 MHz 1208400 604200 302100 153600 

Note:  Specify the Series 5000 system clock rate in the hardware template for a custom Micro 
Server.  The standard Series 5000 Micro Server images use a 20 MHz system clock.  The 
external crystal clock frequency for a Series 5000 chip is 10 MHz. 

The standard Series 3100 ShortStack Micro Server images support only the 10 
MHz, 20 MHz, and 40 MHz clock rates; you need to create a custom Micro Server 
image to use the 5 MHz clock rates listed in Table 14.  The standard Series 5000 
ShortStack Micro Server images support only the 20 MHz system clock rate; you 
need to create a custom Micro Server image to use one of the other system clock 
rates.  See Custom Micro Servers on page 241 for more information about 
creating a custom Micro Server image. 

Important:  The PL 3170 Smart Transceiver supports the 38400 bit rate only.  

Note that some of the higher bit rates listed in Table 14 are not standard SCI bit 
rates, therefore, some host processors or UART/USART implementations might 
not be able to communicate at the specific rate listed in the table.  In this case, 
modify the UART/USART setting to the closest bit rate to the desired value in 
the table, or modify the Micro Server’s bit rate setting. 
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Important:  For implementations with higher bit rates, be sure that the link-
layer hardware provides low impedance and correct termination.  Also consider 
adding extra ground connections between the data signals.  If a high-bit rate 
application presents link-layer problems, be sure to analyze the waveform with 
an oscilloscope to be sure it has the correct shape before proceding to other 
debugging procedures. 

SCI Communications Interface 
The SCI communications interface shown in Figure 30 on page 75 is 
implemented with the following inputs and outputs: 

• Interface Selector (SPI/SCI~):  Tied to GND to specify the SCI interface. 

• Request to Send (RTS~):  When asserted, indicates that the host 
processor has data to send.  The serial driver asserts this signal low if the 
CTS~ signal is deasserted (high), and waits for the Micro Server to assert 
CTS~. 

• Clear to Send (CTS~):  When asserted, informs the host processor that 
Micro Server is ready to receive data from the serial driver.  Set by the 
Micro Server after the host has asserted RTS~.  The Micro Server keeps 
CTS~ asserted until it receives the expected number of bytes.  The host 
must deassert RTS~ after the CTS~ acknowledgement has been received, 
and must start transmitting the related data with minimal delay (under 
400 ms for a 10 MHz Series 3100 Micro Server; under 100 ms for a 40 
MHz Series 3100 Micro Server; under 25 ms for an 80 MHz Series 5000 
Micro Server). 

• Host Ready (HRDY~):  When deasserted, indicates that the host 
processor is temporarily not able to accept data transfers from the Micro 
Server.  This signal is optional; if your application does not use this 
signal, you must tie it low so that it is continually asserted (to specify 
that the host is always ready to accept data transfers).  See Serial 
Communications on page 62 for additional considerations for the HRDY~ 
signal.  Typical host applications deassert the HRDY~ signal in the 
following situations: 

o During power-up and initialization following a reset (until the 
serial driver is ready to receive data from the Micro Server) 

o When enqueuing received data, following a completed uplink 
transfer 

• Receive Data (RXD):  Transfers data from the host processor to the Micro 
Server. 

• Transmit Data (TXD):  Transfers data from the Micro Server to the host 
processor. 

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):  
Together set the communications bit rate (see Table 14 on page 73). 
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Figure 30. ShortStack SCI Communications Interface 

SCI Micro Server to Host (Uplink) Control Flow 
The host must assert the HRDY~ pin low to indicate that it is ready to receive 
data.  Because the Micro Server has a limited set of buffers, the host processor 
should deassert the HRDY~ pin for only a short duration.  A typical application 
deasserts the HRDY~ signal during its power-up and initial initialization 
following a reset, and after an uplink data packet has been completely received, 
while the packet data is enqueued for further processing, then reasserts the 
signal. 

If your host processor is always able to receive data, you can hardwire the 
HRDY~ input low. 

Figure 31 shows an example for the Micro Server to host SCI control flow, 
including the states of the various I/O pins.   

 

Figure 31. SCI Micro Server to Host Transfer Control Flow Diagram 

SCI Host to Micro Server (Downlink) Control Flow 
The Micro Server uses the CTS~ pin to enforce a half-duplex interface.  Every 
downlink transfer must be guarded with a complete RTS~ / CTS~ handshake 
between the host processor and the Micro Server, by implementing the following 
simple protocol: 
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1. The serial link-layer driver awaits the completion of the previous 
transaction.  That is, it monitors the CTS~ line and waits until the Micro 
Server has deasserted this signal. 

2. The serial link-layer driver asserts the RTS~ line to indicate the 
availability of downlink data. 

3. The driver awaits confirmation from the Micro Server, which it indicates 
by asserting the CTS~ line.  Depending on the type of operation and the 
current availability of buffers within the Micro Server, the driver could 
wait for a significant amount of time.  The driver should include a 
timeout guard that can accommodate this wait period, for example, a 60 
second timeout guard should suffice for most applications, even though 
the CTS~ assertion will usually occur much sooner. 

4. After the driver detects that the CTS~ line is asserted (low), it releases 
(deasserts) the RTS~ line. 

5. The driver transmits the data. 

6. After the Micro Server receives the number of bytes of data (indicated in 
the message header), it releases (deasserts) the CTS~ line. 

See Chapter 6, Creating a ShortStack Serial Driver, on page 89, for more 
information about the serial driver. 

Figure 32 shows an example for the host to Micro Server SCI control flow.  The 
figure also shows the transfer of the two-byte header, followed by the payload. 

 

Figure 32. SCI Host to Micro Server Transfer Control Flow Diagram 

SPI Interface 
The ShortStack Serial Peripheral Interface (SPI) is a half-duplex synchronous 
serial interface between the ShortStack Micro Server and the host processor.  
The Micro Server is configured as the SPI master.  The host processor is 
configured as the SPI slave. 

If the host processor does not control the bit-rate selection signals, you must 
ensure that the host processor and the Micro Server run at the same SPI bit rate. 

ShortStack Micro Server I/O Pin Assignments for SPI 
A ShortStack Micro Server has 11 or 12 I/O pins that control the configuration of 
the Micro Server and provide the interface to the host processor.  The IO3 input 
pin selects the serial interface:  SCI or SPI.  The serial interface also determines 
the usage of the other I/O pins.  Table 15 on page 77 summarizes these pin 
assignments for the SPI interface.  
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Recommendation:  If your host processor can support both the SCI and SPI 
interfaces, use the SCI interface because it is typically faster and easier to 
implement, both in hardware and software. 

Table 15. ShortStack Micro Server Pin Assignments for an SPI Interface 

Smart Transceiver Pin Signal Name Direction 

IO0 R/W~ Output 

IO1 SCLK Output 

IO2 SS~ Output 

IO3 SPI/SCI~ Input (tie to VDD for SPI) 

IO4 TREQ~ Input 

IO5 Serial Bit Rate Bit 0 
(SBRB0; LSB) 

Input 

IO6 Serial Bit Rate Bit 1 
(SBRB1; MSB) 

Input 

IO7 MOSI Output 

IO8 MISO Input 

IO9 N/A No connection (but see 
Using the IO9 Pin on 
page 68) 

IO10 HRDY~ Input 

IO11 N/A No connection 

Notes:   

• Signal direction is from the point of view of the Smart Transceiver 
(Micro Server). 

• N/A = Not applicable. 

Setting the SPI Bit Rate 
You select the SPI interface by setting the ShortStack Micro Server’s IO3 input 
pin to logic 1 (VDD) with a 10 kΩ pull-up resistor.  The effective SPI bit rate is 
controlled by the SCLK output from the ShortStack Micro Server, but the desired 
bit rate can be preselected using the input signals SBRB0 and SBRB1 (IO5 and 
IO6).  For the SPI interface, there are different bit rates for uplink transfers and 
downlink transfers.  The settings for pins IO5 and IO6, and the resulting link 
layer bit rates, are listed in Table 16 and Table 17 on page 78.  The rates in the 
tables are listed as bits per second; the values are also approximate and rounded 
to the nearest 100 bits per second.  
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Table 16. SPI Serial Bit Rates for Uplink 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) Series 3100 
External 

Clock 

Series 5000 
System 
Clock GND GND GND VDD VDD GND VDD VDD 

5 MHz — 29200 16600 10200 5100 

10 MHz 5 MHz 58300 33200 20300 10300 

20 MHz 10 MHz 116700 66300 40600 20500 

40 MHz 20 MHz 226600 129500 76700 40900 

— 40 MHz 453100 258900 153300 81900 

— 80 MHz 906200 517900 306600 163700 

Note:  Specify the Series 5000 system clock rate in the hardware template for a custom Micro 
Server.  The standard Series 5000 Micro Server images use a 20 MHz system clock.  The 
external crystal clock frequency for a Series 5000 chip is 10 MHz. 

 

Table 17. SPI Serial Bit Rates for Downlink 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) 

SBR1 

(IO6) 

SBR0 

(IO5) Series 3100 
External 

Clock 

Series 5000 
System 
Clock GND GND GND VDD VDD GND VDD VDD 

5 MHz — 21700 9200 4800 2900 

10 MHz 5 MHz 43400 18400 9700 5700 

20 MHz 10 MHz 86800 36800 19300 11500 

40 MHz 20 MHz 172600 73300 38600 22800 

— 40 MHz 345200 146700 77100 45600 

— 80 MHz 690500 293400 154300 91300 

The standard Series 3100 ShortStack Micro Server images support only the 10 
MHz, 20 MHz, and 40 MHz clock rates; you need to create a custom Micro Server 
image to use the 5 MHz clock rates listed in Table 16 and Table 17.  The 
standard Series 5000 ShortStack Micro Server images support only the 20 MHz 
system clock rate; you need to create a custom Micro Server image to use the 
other clock rates listed in Table 16 and Table 17.  See Custom Micro Servers on 
page 241 for more information about creating a custom Micro Server image. 
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Note that some host processors or UART/USART implementations might not be 
able to process data at some of the higher bit rates listed in Table 16 and Table 
17.  In this case, modify the UART/USART setting to the closest bit rate to the 
desired value in the table, or modify the Micro Server’s bit rate setting.  Most 
host processors should be able to process uplink data at up to 129500 bps and 
downlink data at up to 73300 bps. 

Important:  For implementations with higher bit rates, be sure that the link-
layer hardware provides low impedance and correct termination.  Also consider 
adding extra ground connections between the data signals.  If a high-bit rate 
application presents link-layer problems, be sure to analyze the waveform with 
an oscilloscope to be sure it has the correct shape before proceding to other 
debugging procedures. 

SPI Communications Interface 
The SPI communications interface shown in Figure 33 on page 80 is implemented 
with the following inputs and outputs: 

• Interface Selector (SPI/SCI~):  Tied to VDD to specify the SPI interface. 

• Host Ready (HRDY~):   When deasserted, indicates that the host 
processor is temporarily not able to accept any data transfers from the 
Micro Server.  This signal is optional; if your application does not use this 
signal, you must tie it low so that it is continually asserted (to specify 
that the host is always ready to accept data transfers).  Typical host 
applications deassert the HRDY~ signal in the following situations: 

o During power-up and initialization following a reset (until the 
serial driver is ready to receive data from the Micro Server) 

o When enqueuing received data, following a completed uplink 
transfer 

• Master Input Slave Output (MISO):  Transmits control and data bytes 
from the host to the Micro Server.  Data is presented at the falling clock 
edge, and sampled at the rising edge, MSB first, 8 bit.   

• Master Output Slave Input (MOSI):  Transmits control and data bytes 
from the Micro Server to the host.  Data is presented at the falling clock 
edge, and sampled at the rising edge, MSB first, 8 bit.   

• Serial Clock (SCLK):  Provides a clock signal for all data transfers.  Data 
is presented at the falling clock edge, and sampled at the rising edge.   

• Slave Select (SS~):  When asserted, selects the host SPI interface for SPI 
communication.  This signal can be used to drive a (low-active) Enable 
signal on the host’s SPI interface, when necessary.   

• Transmit Request (TREQ~):  When asserted, indicates that the host 
processor is ready to send data.  The host asserts this signal low and 
waits for the Micro Server to assert the R/W~ pin.  

• Read/Write (R/W~):  Indicates which direction is active during a byte 
transfer (low indicates write).  The R/W~ pin is low during a transfer 
from the Micro Server to the host (MOSI); the R/W~ pin is high during a 
transfer from the host to the Micro Server (MISO).  See SPI Host to Micro 
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Server Control Flow (MISO) on page 81 for more information about the 
MISO flow. 

• Serial Bit Rate Bit 0 (SBRB0) and Serial Bit Rate Bit 1 (SBRB1):  
Together set the communications bit rate. 

The ShortStack SPI interface supports only one host processor on the bus; it does 
not support any other devices or microprocessors on the bus.   

ShortStack
Micro Server

TREQ~

R/W~

MISO

MOSI

SCLK

SS~
IO2

IO1

IO8

IO7

IO0

IO4

IO10
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SBRB0

SBRB1

 
Figure 33. ShortStack SPI Communications Interface 

SPI Micro Server to Host Control Flow (MOSI) 
The host must assert the HRDY~ pin low to indicate that it is ready to receive 
data.  Because the Micro Server has a limited set of buffers, the host processor 
should deassert the HRDY~ pin for only a short duration.  A typical application 
deasserts the HRDY~ signal during its power-up and initial initialization 
following a reset, and after an uplink data packet has been completely received, 
while the packet data is enqueued for further processing, then reasserts the 
signal. 

If your processor is always able to receive data, you can hardwire the HRDY~ 
input low. 

Before sending a byte to the host, the Micro Server waits for the HRDY~ pin to be 
asserted low, then it sets the R/W~ pin low to indicate the direction of the data 
transfer.  The Micro Server presents data on each falling edge of the SCLK pin; 
the host samples the data on each rising edge.   

During MOSI transmissions, the MISO pin is ignored, and any data transferred 
to the Micro Server during this time is discarded.  The SCLK period and duty 
cycle can vary during MISO and MOSI transmissions; the SCLK signal should 
not be used for any other purpose than ShortStack SPI interface data transfers. 

Figure 34 on page 81 shows an example for the Micro Server to host SPI control 
flow.   
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Figure 34. SPI Micro Server to Host (MOSI) Transfer Control Flow Diagram 

SPI Host to Micro Server Control Flow (MISO) 
Because the Micro Server is the SPI master, the host processor loads the first 
byte to be transmitted and asserts the TREQ~ pin.  Asserting the TREQ~ pin 
causes the Micro Server to start the data transfer by driving the SCLK signal.  
Loading the data byte before asserting the TREQ~ pin ensures that: 

• The data is transmitted as soon as the Micro Server begins sending a 
clock signal (the SCLK signal) 

• The data is sampled on the rising edge of the SCLK signal 

After the byte-received interrupt in the host’s SPI status register is set, the host 
tests the R/W~ signal to determine if the transmission was successful.  If the 
R/W~ pin is low (indicating a write operation by the Micro Server), the host must 
save the incoming byte as part of an uplink transfer and retry transmission until 
the R/W~ pin is high.  When the host attempts to write data while the Micro 
Server is already writing data, this condition is known as a write collision. 

After the host samples the R/W~ line and it is still high after the transfer of the 
first byte, it immediately de-asserts the TREQ~ pin before it loads the second 
byte of the burst transfer into its SPI transmission data register. 

Because the host samples the R/W~ signal between the transmission of the first 
and second byte, the minimum length for a transfer in either direction is two 
bytes.  This requirement is inherently met by the ShortStack SPI interface 
message structure because each link layer packet is two or more bytes in length.  
For some packets with only one byte of payload, an extra padding byte (zero) is 
added.  In addition, the Micro Server keeps the R/W~ signal high for the duration 
of one byte; this extra time allows the host to confirm transfer direction.  

The Micro Server samples data on the rising edge of the SCLK signal.  The host 
must ensure that it presents data on the falling edge of the SCLK signal, because 
the SCLK signal is high between bytes (idle line).  For most SPI 
implementations, this idle state is achieved by setting the Clock Polarity Bit 
(CPOL) to one and the Clock Phase Bit (CPHA) to one. 

Figure 35 on page 82 shows an example for the host to Micro Server SPI control 
flow, without a write collision.  The figure also shows the transfer of the two-byte 
header. 
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Figure 35. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram without Write 

Collision 

Figure 36 shows the sequence for a MISO transaction when there is a write 
collision with a MOSI transmission.  The host tests the R/W~ signal after loading 
the first byte to be transmitted to determine if the transmission was successful.  
Because the R/W~ pin is low, indicating that the ShortStack Micro Server is 
currently performing a MOSI transfer, the host saves the incoming byte and 
retries transmission until the R/W~ pin is high after the attempted transfer of 
the first byte.  The figure shows that the host successfully transmits the data on 
the second attempt.  

 
Figure 36. SPI Host to Micro Server (MISO) Transfer Control Flow Diagram with Write 

Collision 

SPI Resynchronization 
The Micro Server resynchronizes the ShortStack SPI interface by de-asserting 
the SS~ pin during a byte transfer, or by de-asserting the SS~ pin and issuing 
several SCLK pulses.  This resynchronization occurs during Micro Server start-
up and when the Micro Server resets. 

Performing an Initial Micro Server Health Check  
After you load the ShortStack Micro Server image into a Smart Transceiver, the 
Micro Server enters quiet mode (also known as flush mode).  While the Smart 
Transceiver is in quiet mode, all network communication is paused. 

The Smart Transceiver enters quiet mode to ensure that only complete 
implementations of the LonTalk protocol stack attach to a LONWORKS network.  
In a functioning ShortStack device, the application initializes the Micro Server. 
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After that initialization is complete, the Micro Server leaves quiet mode and 
enables regular network communication. 

To check that the Micro Server is functioning correctly before the host processor 
has initialized it, you can use an oscilloscope or a logic analyzer to observe the 
activity on the TXD (IO10) pin that reflects the uplink LonNiReset message 
transfer that follows a Micro Server reset, as shown in Figure 37. 
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FT 3150, PL 3150
PL 3170, FT 5000
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RTS~

CTS~
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RXD

SBRB0

SBRB1

RESET~
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GND
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GND

 

Figure 37. Uplink LonNiReset Message Transfer 

For a Mini EVB, the Micro Server’s service pin LED flashes slowly (which 
indicates that the Smart Transceiver is in the unconfigured state), and all 
network communications are disabled while it is in quiet mode. 

In general, you should ensure that all communication and handshake lines are 
connected to VDD with 10 kΩ pull-up resistors.  But for the initial hardware test, 
the HRDY~ and SPI/SCI~ input signals should be grounded (asserted).  Your 
hardware design should include a switch that connects the RESET~ pin to 
ground; you press this switch to reset the Micro Server. 

When you press the reset switch for a ShortStack device, the Smart Transceiver 
firmware performs reset processing, as described in the data books for the Smart 
Transceiver chips.  Then, the Micro Server performs reset processing that is 
generally independent of the host processor.  See ShortStack Device Initialization 
on page 57 for more information about the Micro Server’s reset processing. 

After the Micro Server is fully initialized, it transmits the uplink 
LonResetNotification message to the host.  The host normally registers (or re-
registers) its application with the Micro Server; the host application (through the 
ShortStack LonTalk Compact API) begins application registration with the Micro 
Server, in which the driver sends the following messages to the Micro Server (in 
the LonInit() function and interrupt service routine for the CTS~ line):   

• The LonNiAppInit message 

• One or more LonNiNvInit messages (how many depends on the number 
of network variables that are defined for the device) 

• The LonNiReset message 

After the Micro Server completes processing for the LonNiReset message, it 
sends the uplink reset message (LonResetNotification) to the host processor.  
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After the host application processes this message, the host application can begin 
processing.  If the message (in the Flags field) indicates that the Micro Server is 
not initialized, the host application should re-run the LonInit() function. 

Example:  Figure 38 through Figure 42 on page 88 show sample logic analyzer 
traces6 for the communications activity between the host processor and the Micro 
Server during the initialization sequence after device reset.  This example 
assumes an SCI setup for a 10 MHz Series 3100 Micro Server, with both the 
SBRB0 and SBRB1 pins connected to GND to set the bit rate at 76800 bps.  The 
data transmission signals (RXD and TXD) in the figures are labeled from the 
host’s point of view.  This example shows the reset behavior of the serial driver 
from the ARM7 example port that is available from www.echelon.com/shortstack.  

Figure 38 shows a high-level logic analyzer trace for this initialization sequence: 

• The boxed area labeled A represents sending the LonNiAppInit message 

• The boxed area labeled B represents sending the LonNiNvInit message 

• The boxed area labeled C represents sending the LonNiReset message 

The trace also shows the handshake protocol (the RTS~ and CTS~ lines) that the 
serial driver and the Micro Server use to negotiate communications.  The 
handshake interaction is described in the subsequent figures. 

 

Figure 38. High-Level Logic Analyzer Trace for ShortStack Device Reset 

Figure 39 shows the detailed trace for the serial driver and Micro Server 
interactions for sending the LonNiAppInit message.   

 

Figure 39. Detailed Logic Analyzer Trace for Sending the LonNiAppInit Message 

                                                 
6 The logic analyzer traces were captured using the TechTools DigiView™ Logic Analyzer. 

http://www.echelon.com/shortstack
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The figure shows the following actions by the host processor and the Micro 
Server: 

1. After a device reset, the driver sleeps for a specified amount of time.  For 
the ARM7 serial driver, it sleeps for 255 ms (specified by the 
LDV_DRVWAKEUPTIME macro in the LdvSci.h file).  

2. When the driver wakes up, it asserts the HRDY~ line to inform the Micro 
Server that it is ready to receive data (if any). 

3. Because the driver needs to send the initialization messages, it confirms 
that the CTS~ line is not asserted, and then it asserts the RTS~ line to 
inform the Micro Server that the driver has data to send to the Micro 
Server (in this case, the header packet for the LonNiAppInit message).  

4. The Micro Server asserts the CTS~ line to inform the driver that the 
Micro Server is ready to receive data. 

5. The driver deasserts the RTS~ line.  The handshake between the driver 
and the Micro Server is complete, so the driver deasserts the RTS~ line so 
that the line can be asserted when the driver needs to send more data to 
the Micro Server.  It is important that the driver deassert the RTS~ line 
before the last byte of data is transmitted, and it is recommended that 
the driver deassert the RTS~ line as soon as the CTS~ line is asserted. 

6. The driver sends the two-byte header packet to the Micro Server.  In this 
case, the length byte is 0x1C (decimal 28) and the command byte is 0x08, 
which specifies the LonNiAppInit message. 

7. After the Micro Server receives the header packet, it deasserts the CTS~ 
line to inform the driver that the Micro Server is no longer ready to 
receive data.  The Micro Server is always aware of the number of bytes 
that it expects to receive from the driver.  In this case, because the packet 
is the header, the Micro Server knows that the driver will send only 2 
bytes, so it deasserts the CTS~ line after it has received the 2 bytes. 

8. The driver confirms that CTS~ is deasserted, and again asserts the RTS~ 
line to inform the Micro Server that the driver has data to send to the 
Micro Server (in this case, the payload packet for the LonNiAppInit 
message). 

9. After the Micro Server has processed the header information for the 
LonNiAppInit message, it asserts the CTS~ line to inform the driver that 
the Micro Server is ready to receive the payload data. 

10. The driver deasserts the RTS~ line.  The handshake between the driver 
and the Micro Server is complete. 

11. The driver sends the 28-byte payload packet for the LonNiAppInit 
message to the Micro Server.  The size of this message depends on the 
specific device interface. 

Although the figure does not show it, after the Micro Server receives the last byte 
of the payload data for the LonNiAppInit message, it deasserts the CTS~ line to 
inform the driver that the Micro Server is no longer ready to receive data.  There 
might be a significant delay between the last downlink data byte and the 
deassertion of the CTS~ signal, during which the Micro Server processes the data 
received, and prepares for another link-layer exchange.  Because it parses the 
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data in the link-layer header to read the length byte, the Micro Server is always 
aware of the number of bytes that it expects to receive from the driver. 

Figure 40 shows the detailed trace for the serial driver and Micro Server 
interactions for sending the LonNiNvInit message.  The figure also includes the 
end of the transaction for the LonNiAppInit message. 

 

Figure 40. Detailed Logic Analyzer Trace for Sending the LonNiNvInit Message 

The figure shows the following actions by the host processor and the Micro 
Server: 

1. The driver confirms that the CTS~ line is not asserted, and then asserts 
the RTS~ line to inform the Micro Server that the driver has more data to 
send to the Micro Server (in this case, the header packet for the 
LonNiNvInit message). 

2. The Micro Server asserts the CTS~ line to inform the driver that the 
Micro Server is ready to receive data.  During the long delay between the 
driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the Micro 
Server processes the LonNiAppInit message. 

3. The driver deasserts the RTS~ line.  The handshake between the driver 
and the Micro Server is complete. 

4. The driver sends the two-byte header packet to the Micro Server.  In this 
case, the length byte is 0x08 and the command byte is 0x0B, which 
specifies the LonNiNvInit message. 

5. After the Micro Server receives the header packet, it deasserts the CTS~ 
line to inform the driver that the Micro Server is no longer ready to 
receive data.  The Micro Server is always aware of the number of bytes 
that it expects to receive from the driver.  In this case, because the packet 
is the header, the Micro Server knows that the driver will send only 2 
bytes, so it deasserts the CTS~ line after it has received the 2 bytes. 

6. After confirming that CTS~ is deasserted, the driver again asserts the 
RTS~ line to inform the Micro Server that the driver has data to send to 
the Micro Server (in this case, the payload packet for the LonNiNvInit 
message). 

7. After the Micro Server has processed the header information for the 
LonNiNvInit message, it asserts the CTS~ line to inform the driver that 
the Micro Server is ready to receive the payload data. 

8. The driver deasserts the RTS~ line.  The handshake between the driver 
and the Micro Server is complete. 
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9. The driver sends the eight-byte payload packet for the LonNiNvInit 
message to the Micro Server.  The size of this message depends on the 
number of network variables defined for the device. 

When necessary (depending on the application’s set of network variables), steps 1 
to 9 can be repeated several times to transfer additional LonNiNvInit data to the 
Micro Server. 

The last LonNiNvInit packet signals the end of the registration sequence.  The 
Micro Server completes the final registration steps, and leaves quiet mode.  Quiet 
mode ensures that only a complete and fully functioning protocol stack attaches 
to the network.  While in quiet mode, the host processor can use local commands 
to communicate with the Micro Server, such as query status or ping, but cannot 
communicate with other devices on the network. 

Although the figure does not show it, after the Micro Server receives the last byte 
of the payload data for the LonNiNvInit message, it deasserts the CTS~ line to 
inform the driver that the Micro Server is no longer ready to receive data.  
Because it parses the data in the link-layer header to read the length byte, the 
Micro Server is always aware of the number of bytes that it expects to receive 
from the driver. 

Figure 41 shows the detailed trace for the serial driver and Micro Server 
interactions for sending the LonNiReset message.  The figure also includes the 
end of the transaction for the LonNiNvInit message. 

 

Figure 41. Detailed Logic Analyzer Trace for Sending the LonNiReset Message 

The figure shows the following actions by the host processor and the Micro 
Server: 

1. The driver confirms that the CTS~ line is not asserted, and then asserts 
the RTS~ line to inform the Micro Server that the driver has more data to 
send to the Micro Server (in this case, the header packet for the 
LonNiReset message). 

2. The Micro Server asserts the CTS~ line to inform the driver that the 
Micro Server is ready to receive data.  During the long delay between the 
driver’s asserting RTS~ and the Micro Server’s asserting CTS~, the Micro 
Server processes the LonNiNvInit message. 

3. The driver deasserts the RTS~ line.  The handshake between the driver 
and the Micro Server is complete. 

4. The driver sends the two-byte header packet to the Micro Server.  In this 
case, the length byte is 0x00 (there is no payload for this message) and 
the command byte is 0x50, which specifies the LonNiReset message. 
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5. After the Micro Server receives the header packet, it deasserts the CTS~ 
line to inform the driver that the Micro Server is no longer ready to 
receive data. 

6. Because the Micro Server received the LonNiReset message, it resets. 

In Figure 41, note that the driver does not re-assert the RTS~ line.  For this 
example, the host processor has no more data to send to the Micro Server because 
there is no payload for the LonNiReset message.  The Micro Server deasserts the 
RESET~ line as it completes reset processing.  

Approximately 1 second (for a Series 3100 Smart Transceiver running at 10 
MHz) after the Micro Server receives the LonNiReset message, the Micro Server 
sends the uplink reset message (LonResetNotification) to the host processor, as 
shown in Figure 42.  The LonNiReset message is shown on the RXD line because 
the signals are labeled from the host’s point of view. 

 

Figure 42. Detailed Logic Analyzer Trace for Receiving the Uplink Reset Message 

There is no handshake through the RTS~ and CTS~ control lines for an uplink 
message, and the message includes both the two-byte header and the message 
payload in a single message transfer.  In this case, length byte is 0x10 (decimal 
16) and the command byte is 0x50, which specifies the LonNiReset message.  
This message is always the first message a Micro Server should send to the host 
processor after a reset.  The actual content of this message depends on the 
characteristics of the Micro Server. 

Although it is not likely during Micro Server initialization, an uplink transfer can 
interrupt the downlink transmission between the sending of the header and the 
sending of the related payload.  If the header has been transmitted and an uplink 
occurs before the payload can be delivered, the driver must accept the uplink 
data before it continues with handshake negotiations for the downlink payload 
transfer.   

The example described in this section showed the Micro Server initialization 
sequence, which consists of two separate message transfers:  a two-byte header 
and the related payload, both of which require a complete handshake.  However, 
a link-layer downlink operation for polling or propagating output network 
variables with indices larger than 62 consists of three message transfers:  a two-
byte header, a second two-byte extended header, and the related payload, all of 
which require a complete handshake.  See Overview of the ShortStack Serial 
Driver on page 90 for more information about the link-layer header. 
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6  

Creating a ShortStack Serial Driver 

This chapter describes the link-layer serial driver and how 
to develop a ShortStack serial driver for your host processor.  
This driver manages the handshaking and data transfers 
between the host and the ShortStack Micro Server.  The 
driver also manages the buffers in the host for 
communication with the ShortStack Micro Server.   

If a ShortStack driver is available for your host processor 
that matches your buffer memory and I/O configuration, you 
can skip this chapter. 
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Overview of the ShortStack Serial Driver 
Each data exchange on the serial link layer consists of one or more segments.  
For downlink messages, the serial driver and Micro Server perform a handshake 
for each segment.  For uplink messages, there is no handshake. 

The link-layer message consists of the following segments: 

• A two-byte link-layer header 

• A two-byte link-layer extended header (applies only to downlink 
messages for network variable updates or polls where the network 
variable index is greater than 62) 

• The message payload, if any 

The link-layer header consists of two parts:   

• The length byte.  This value describes the length of the message payload. 
This value is 0x00 if there is no message payload, and is at least 0x02 if 
there is a message payload. 

• The command byte.  This value determines the command being sent to 
the Micro Server or being received from the Micro Server. 

The link-layer extended header consists of two parts: 

• The info byte.  This value is the actual network variable index for the 
update or poll request.  The command byte of the link-layer header 
contains a network variable index of 0x3F (decimal 63) to inform the 
Micro Server and the serial driver that an extended header is required to 
process the command. 

• A reserved byte.  For a ShortStack FX Micro Server, the value of this byte 
is 0x00. 

Figure 43 on page 91 shows the structure of the link-layer message. 
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Figure 43. Link-Layer Message Structure 

Thus, for a typical link-layer message, the link-layer message includes the link-
layer header and the data payload.  Not all link-layer messages include payload, 
but all use the same two-byte header.  For network variable polls or updates, the 
link-layer message can include three segments:  the link-layer header, the link-
layer extended header, and the data payload. 

For both the SCI and SPI interfaces, each link-layer downlink transmission 
consists of the link-layer header transmission, followed by the link-layer 
extended header transmission (if applicable), followed by the optional payload 
transmission.  For downlink messages, all segments are individually verified 
with the handshake procedure between the host and Micro Server that is 
described in Chapter 5, Designing the Hardware Interface, on page 65.  

However, there is no handshake process for an uplink transfer.  If uplink data is 
ready in the Micro Server, and the host processor signals its readiness by 
asserting the HRDY~ line (or has its HRDY~ line permanently tied low), the 
Micro Server transfers the link layer header, immediately followed by the 
payload data (if any).  In addition, for uplink transfers, the link-layer extended 
header is not required. 

After each downlink transfer, an uplink transfer can occur.  If an uplink transfer 
occurs after sending one segment, but prior to sending the next segment, the 
subsequent segement transmission must wait for the uplink to complete.  

After the uplink is complete, it should be enqueued within the serial driver, and 
the pending downlink should be completed before processing the newly arrived 
packet. 
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Important:  The actual payload length must match the specified length in the 
header byte of the link-layer message.  If the actual length exceeds the specified 
length, extra bits are ignored, but could cause problems for subsequent 
transactions.  Transmitting fewer bits than specified in the link-layer header’s 
length byte causes the Micro Server to wait for the missing bits, and then reset 
when its watchdog timer expires. 

Role of the ShortStack LonTalk Compact API 
One of the most important tasks performed by the ShortStack LonTalk Compact 
API is the processing of uplink link-layer packets into pre-parsed data packets 
that it passes to the appropriate callback handler function defined by your 
application.  

The application periodically calls the LonEventHandler() API function, which 
queries the serial driver’s uplink queue and, upon availability of an uplink 
packet, dequeues and processes this packet. 

For any downlink operation, typically initiated by your application’s calling one 
of the ShortStack LonTalk Compact API functions, such as LonPropagateNv(), 
the API translates the application-friendly data used with the API call into the 
corresponding link-layer packet, and enqueues this packet for downlink transfer. 

Some link-layer transfers can occur without any interaction of your application; 
for example, a network variable poll or fetch request can typically be satisfied by 
the API alone, without intervention by your application. 

Role of the ShortStack Serial Driver 
The ShortStack serial driver provides a hardware-specific interface between the 
ShortStack LonTalk Compact API and the ShortStack Micro Server.  The driver 
exchanges link-layer messages with ShortStack Micro Server, and implements 
the host-side of the link-layer protocol.   

The serial driver includes buffer management for incoming and outgoing 
messages, and typically allows for non-blocking operation. 

Interface to the ShortStack LonTalk Compact API 
Typically, the ShortStack serial driver implements a set of interrupt handlers 
that respond to USART events such as transmit buffer empty or receive buffer 
full.  The ShortStack LonTalk Compact API uses eight functions, listed in Table 
18 on page 93, that communicate between the API and the driver, including 
handling all uplink and downlink data transfers.  Your ShortStack serial driver 
must support these functions.  These functions are declared in the 
ShortStackApi.h file (in the serial driver API functions section).  

For more information about these interface functions, see an example port’s 
implementation of the functions; for example, see the ShortStack FX ARM7 
Example Port User’s Guide. 
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Table 18. Interface Functions for the ShortStack LonTalk Compact API 

Function Description 

LdvInit() Initializes the ShortStack serial driver and the 
underlying communication interface. 

LdvFlushMsgs() Completes pending transmissions and flushes the 
transmit buffer. 

LdvAllocateMsg() Allocates a transmit buffer in the ShortStack serial 
driver. 

LdvPutMsg() Sends a downlink message by putting a message in an 
allocated transmit buffer. 

This is a non-blocking function. 

LdvPutMsgBlocking() Sends a downlink message without first allocating a 
transmit buffer in the driver. 

This is a blocking function, and is used only during the 
device’s initialization phase. 

LdvGetMsg() Gets an incoming message (if any) from the ShortStack 
serial driver’s receive buffer. 

LdvReleaseMsg() Releases a message buffer back to the ShortStack serial 
driver after receiving and processing a message. 

LdvReset() Resets the serial driver when it receives an uplink reset 
message from the Micro Server. 

Creating an SCI ShortStack Driver 
This section describes how to implement an SCI ShortStack driver.  The SCI 
hardware interface is described in SCI Interface on page 71. 

A ShortStack Micro Server considers the serial link reliable.  An inter-byte time-
out (or any other time-out condition) is considered a serious error, and recovery 
generally requires resetting the Micro Server and the host driver state.  To 
minimize the effects of such a time out, set a large time-out interval based on the 
communications bit rate or use another appropriate large value (such as 3 or 5 
seconds). 

SCI Uplink Operation 
In an SCI uplink operation, data is transferred from the ShortStack Micro Server 
to the host processor.  Figure 44 on page 94 and Figure 45 on page 95 show the 
activity that the driver must manage for an uplink operation.  The figures also 
show how the Micro Server, serial driver, LonTalk Compact API, and the 
application interact to process an uplink message. 
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The host processor uses the HRDY~ handshake signal to inform the Micro Server 
when it is ready to receive uplink data.  The Micro Server does not send uplink 
data unless the HRDY~ pin is asserted.  While an uplink transfer is in progress, 
the Micro Server does not re-sample the HRDY~ pin.  To prevent loss of uplink 
data, the host must assert this handshake signal whenever possible, and de-
assert it for the shortest time possible.   

 

Processing

DriverMicro Server

Send packet Receive packet

High

Low

Input buffer 
available?

No Yes

API

Assert HRDY~
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Application

De-assert HRDY~
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Figure 44. SCI Uplink Operation (Part 1) 
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Figure 45. SCI Uplink Operation (Part 2) 

SCI Downlink Operation 
In an SCI downlink operation, data is transferred from the host processor to the 
ShortStack Micro Server.  Figure 46 on page 97 shows the activity that the driver 
must manage for a downlink operation.  Figure 47 on page 98 shows the SCI 
handshake and data transfer for the header, extended header, or payload. 

To send a message downlink, the driver needs to initiate a downlink operation for 
each link-layer message segment:  one for the link-layer message header, one for 
the extended header (if applicable), and one for the message payload (if any): 

1. The driver first initiates the transfer of the link-layer message header, 
then, if allowed, transfers the header.   

2. If the message applies to a network variable with index greater than 62, 
the driver then initiates the transfer of the link-layer extended header, 
then, if allowed, transfers the extended header.  

3. Then, if payload data exists (indicated by the non-zero length byte in the 
header), the driver initiates the transfer of the message payload, and, if 
allowed, transfers the message payload. 
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When the host asserts the RTS~ signal for the first time, the Micro Server 
assumes that the assertion is for the 2-byte header.  It asserts the CTS~ line 
until it has read the two bytes.  It then extracts the length of the payload from 
the header and parses the command byte to determine if an extended header is 
needed.  When the host asserts the RTS~ signal a second time, the Micro Server 
asserts the CTS~ line until it receives either the extended header or the entire 
payload (based on its length and command byte, as indicated in the header), 
depending on which is expected.  Some messages have no payload (for example, 
the reset message), thus the payload length for these messages is zero.  

Before beginning a transfer, or after having transferred the entire transaction 
payload, the host must wait for the CTS~ signal to become inactive (high) again.  
The Micro Server deasserts this signal after it receives all bytes of the current 
transaction, and after it has completed any immediate processing that might be 
required.  If the application does not query this signal state, error states can 
occur.  For example, the host might attempt to transfer a new transaction 
because it would assume that the CTS~ signal’s being asserted is the 
acknowledgment of the new transfer request rather than the acknowledgment 
from the previous transfer.  

It is possible for an uplink transfer to occur after the Micro Server receives the 
downlink header, but before it is ready to receive the downlink payload.  No 
uplink can occur while the CTS~ signal is asserted. 
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Figure 46. Downlink Operation 
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Figure 47. SCI Handshake and Data Transfer 

Note (1):  When the Micro Server checks the RTS~ signal for most commands (in 
the “RTS~ Low?” decision box), if the signal remains high without data transfer 
for longer than the watchdog timer setting for the Smart Transceiver 
(approximately 840 ms for a Series 3100 Smart Transceiver at 10 MHz or for a 
Series 5000 Smart Transceiver), the Micro Server performs a watchdog reset. 

Prior to receiving the payload (if any), the Micro Server prepares to receive the 
payload data.  For most downlink operations, this preparation includes allocating 
an output buffer.  If no buffers are available, acknowledgement for the RTS~ 
signal with CTS~ assertion could take a significant amount of time, depending on 
the local channel type, channel usage, the types of transactions that are holding 
the buffers, and transport and transaction control properties.  Your driver must 
be able to handle such delays. 
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Example:  Network Variable Fetch 
You can use a logic analyzer or oscilloscope to observe the interactions between 
the host and Micro Server during network operations, such as a fetch of a 
network variable.  A logic analyzer trace can be a helpful tool to verify that the 
serial driver works as expected. 

Figure 48 shows an example logic analyzer trace after the Micro Server receives a 
network variable fetch request from the network.  The timing for the logic 
analyzer trace is 5 ms per division.  The example used an FT 3150 Micro Server 
running at 10 MHz with an ARM7 host running at 20 MHz. 

Notice in the figure that the host waits for the CTS~ signal to become inactive 
before it starts a new transfer by asserting the RTS~ signal. 

 

Figure 48. Logic Analyzer Trace for an NV Fetch 

The figure shows the following events: 

A. The Micro Server samples the HRDY~ signal.  If it is asserted, which it is 
in this example, the Micro Server begins to transfer the uplink data. 

B. The TXD signal shows the uplink data transfer. 

C. The host briefly de-asserts the HRDY~ signal while it stores the packet in 
an incoming queue (if the host has buffers available, it need not de-assert 
the HRDY~ signal).  The host can optionally notify the application of the 
available data for asynchronous processing. 

D. The host prepares its response, waits for the CTS~ signal to be inactive, 
asserts the RTS~ signal, then waits for the CTS~ signal to be asserted. 

E. The Micro Server asserts the CTS~ signal. 

F. The host de-asserts the RTS~ signal and transmits the message header 
(shown on the RXD signal). 

G. The host waits for the CTS~ signal to become inactive, re-asserts the 
RTS~ signal, and waits for the CTS~ signal to be asserted again. 

H. The Micro Server is ready for the payload, and asserts the CTS~ signal. 

I. The host de-asserts (releases) the RTS~ signal and begins the payload 
transfer. 

J. The RXD signal shows the payload transfer (the downlink response 
containing the requested NV value). 

Creating an SPI ShortStack Driver 
This section describes how to implement an SPI ShortStack driver.  The SPI 
hardware interface is described in SPI Interface on page 76. 
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SPI Uplink Operation 
In an SPI uplink operation, data is transferred from the ShortStack Micro Server 
to the host processor.  Figure 49 and Figure 50 on page 101 show the activity that 
the driver must manage for an uplink operation.  The figures also show how the 
Micro Server, serial driver, ShortStack LonTalk Compact API, and the 
application interact to process an uplink message.  The driver must see the R/W~ 
signal low between the arrivals of the first and second bytes in the burst when it 
is receiving a packet. 

The host processor uses the HRDY~ handshake signal to inform the Micro Server 
when it is ready to receive uplink data.  The Micro Server does not send uplink 
data unless the HRDY~ pin is asserted.  To prevent loss of uplink data, the host 
must assert this handshake signal whenever possible, and de-assert it for the 
shortest time possible. 

 

Figure 49. SPI Uplink Operation (Part 1) 
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Figure 50. SPI Uplink Operation (Part 2) 

SPI Downlink Operation 
In an SPI downlink operation, data is transferred from the host processor to the 
ShortStack Micro Server.  To send a link-layer message downlink, the driver 
initiates two downlink operations:  one for the link-layer message header, and the 
other for the message payload.  Figure 51 on page 102 shows the activity that the 
driver must manage for a downlink operation (this figure is the same as Figure 
46 on page 97).  Figure 52 on page 103 shows the SPI handshake and data 
transfer for the header, extended header, or payload.  The driver must see the 
R/W~ signal high between transmissions of the first and second bytes in the 
burst when it is transmitting a packet.  In addition, the Micro Server keeps the 
R/W~ signal high for an additional byte time; this extra time allows the host to 
confirm transfer direction. 

As described in SPI Host to Micro Server Control Flow (MISO) on page 81, the 
host must detect possible write collisions during data transfer. 



 

102 Creating a ShortStack Serial Driver                                 

Start

HostMicroServer

Processing

Msg len > 0 ?

Yes

NoMsg len > 0 ?

Yes

No

Handshake and Transfer for Header

Handshake and Transfer for Payload

NV Index > 
62?

No

NV Index > 
62?

Yes

No

Yes

Handshake and Transfer for Extended Header

 
Figure 51. Downlink Operation 
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Figure 52. SPI Handshake and Data Transfer 

Prior to receiving the payload (if any), the Micro Server prepares to receive the 
payload data.  For most downlink operations, this preparation includes allocating 
an output buffer.  If no buffers are available, the Micro Server could take a 
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significant amount of time to de-assert the R/W~ signal after the host asserts the 
TREQ~ signal, depending on the local channel type, channel usage, the types of 
transactions that are holding the buffers, and transport and transaction control 
properties.  Your driver must be able to handle such delays. 

Transmit and Receive Buffers 
The ShortStack serial driver needs to define the number and size of the transmit 
and receive buffers in the host processor.  More buffers require more memory, but 
can also increase performance and minimize the potential for lost messages.   

Recommendation:  Set the serial driver’s buffer count for both transmit and 
receive buffers to the number of application buffers defined for the Micro Server, 
and adjust upward as necessary for the application.  For example: 

#define LDV_TXBUFCOUNT 5 
#define LDV_RXBUFCOUNT 5 

Important:  The transmit and receive buffers within the host must not be smaller 
than those defined in the Micro Server.   

Link-Layer Error Detection and Recovery 
The ShortStack Micro Server and the ShortStack LonTalk Compact API both 
assume that the serial communication between the host microprocessor and the 
ShortStack Micro Server is a reliable link.  To maximize performance, the 
ShortStack Micro Server uses a simple link layer protocol with minimal error 
detection.  Your hardware design for the interface between your host and the 
ShortStack Micro Server must provide this reliable link.  

When either the Micro Server or the host processor resets, your serial driver 
must synchronize with the ShortStack Micro Server.  Your serial driver must 
also implement the following timing characteristics to maintain synchronization 
with the ShortStack Micro Server:  

• An inter-byte timeout for both the serial receiver and transmitter.  If the 
receiver timer expires, the current message should be discarded.  If the 
transmitter timer expires, the current message should be resent later. 

• A sleep period of 250 ms during driver startup.  This delay allows 
synchronization with the ShortStack Micro Server during startup. 

Your serial driver should implement appropriate timeout guards.  For example, 
when your driver waits for an SCI CTS~ assertion by the Micro Server, or for the 
byte-transmitted interrupt after asserting the SPI TREQ~ signal, a timeout 
period of 5 seconds can help to detect serious malfunction.  

Likewise, when the driver expects a predetermined number of bytes to arrive 
from the Micro Server, an inter-byte timeout of 1 second, or a total packet 
timeout that is a function of the expected byte count, is recommended.  

If the link-layer is idle for a period of time, the serial driver or host application 
can issue a ping command (the LonSendPing() function with the 
LonPingReceived() callback handler function) to verify that the Micro Server is 
still running properly and has an operational link layer.  The ping command is a 
short link-layer message that is echoed by the Micro Server; no other action is 
triggered by this command.   
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You can also use the echo command (the LonRequestEcho() function with the 
LonEchoReceived() callback handler function) to test the link layer.  The echo 
command provides more functionality than the ping command, but at the cost of 
additional bytes and transfer time.  Using the echo command, the application can 
send six arbitrary bytes to the Micro Server.  The Micro Server receives the data, 
increments each of the six bytes (using unsigned 8-bit arithmetic, ignoring any 
overflow conditions), and returns the entire data packet to the host.  

You can use the echo command when the device is idle to verify that the link 
layer and the Micro Server are operational.  You can also use the echo command 
during device stress testing to verify robust link-layer operations under high 
traffic conditions.  For such a stress test, an application would repeatedly send 
echo requests with different data and confirm that the data received meets 
expectations.  Data errors detected during such a test could indicate poor link- 
layer line termination, excessive crosstalk on the link-layer lines, out-of-sync bit 
rates (for SCI), or excessive bit rates (for SPI). 

Because the echo command can be processed before the application registers with 
the Micro Server, it can be a good early indicator for correct implementation of 
both the serial driver and the link-layer protocol. 

See Local Utility Functions on page 294, Local Utility Callback Handler 
Functions on page 299, or the HTML API documentation for more information 
about the ping command and the echo command. 

When a serious error condition is detected, your application should log an error 
and, if possible, signal the event to the user.  You can also optionally assert the 
Micro Server’s reset line in an attempt to recovery from the error condition, but 
such a reset is not normally necessary. 

Loading the ShortStack Application into the Host 
Processor 

Before you can test and debug your ShortStack device, you need to load the 
ShortStack application into the host processor.  For an FPGA-based embedded 
processor, you might have to load the hardware design into the FPGA, as well 
load the ShortStack software application into the FPGA. 

How you load the ShortStack application into the host processor depends on the 
host processor that your ShortStack device uses.  Typically, you use a device 
programmer for in-circuit flash programming through a JTAG connection to the 
host processor.   

For a description of a method for loading a ShortStack application into an ARM7 
host processor, see the ShortStack FX ARM7 Example Port User’s Guide. 

Performing an Initial Host Processor Health Check 
To check that the host processor and the serial driver implementation are 
working properly, you need to connect the host to a ShortStack Micro Server.  To 
ensure that an initial health check of the host tests only the host, you should use 
a Micro Server that is already known to work properly.   

For an initial health check of the host, you can use an Echelon Mini EVB 
evaluation boards, available with PL 3120, FT 3120, PL 3150, FT 3150, and PL 
3170 Smart Transceivers, or an FT 5000 EVB evaluation board.  These boards 
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are ideally suited for an initial host check, because they include EIA-232 level 
shifters and a set of jumpers to run the transceiver as a ShortStack Micro Server.  
You could also use a Micro Server that you tested according to the test described 
in Performing an Initial Micro Server Health Check  on page 82.  

A basic health check for the host includes the following steps: 

1. Connect the host to the Micro Server, and supply power to both  

2. Issue a downlink reset command (command code 0x50) 

3. Observe that the Micro Server resets 

4. Observe the uplink reset notification 

The reset pulse on the Micro Server is typically very short, and often not 
noticeable when visually monitoring the Reset LED.  Boards with external flash 
memory include pulse-stretching devices that enforce a longer Reset pulse, which 
could provide a more visible state change on the Reset LED.  However, using an 
oscilloscope or logic analyzer is recommended. 

During this and similar tests in the early stages of development, you should also 
monitor the Reset line carefully, because errors in the host-side driver 
implementation can cause the Micro Server to reset.  For example, if the host 
asserts the RTS~ pin, but fails to deliver data in time, or if the host fails to 
deliver the entire packet, or if the host fails to assert the HRDY~ pin in a timely 
fashion, the Micro Server could reset due to a watchdog timer timeout.  A Smart 
Transceiver Chip’s watchdog timer expires in approximately 840 ms (for a Series 
3100 Smart Transceiver at 10 MHz or for a Series 5000 Smart Transciever). 

Prior to initialization, the Micro Server is in quiet mode, which prevents all 
network communication, until the downlink initialization is complete.  However, 
the basic host health check described in this section works while the Micro Server 
is in quiet mode, and can thus be used for an initial health check before the 
application framework (which includes the initialization data structure) is 
complete. 

When you power-up the Micro Server for the first time, allow up to a minute for it 
to complete its first-time boot sequence.  The duration for the first-time boot 
varies with the Micro Server hardware and software configuration, but 
subsequent boots require much less time.  See ShortStack Device Initialization 
on page 57 for more information about the Micro Server’s reset processing. 

Then, use a simple test application and your serial driver to issue a downlink 
reset command.  This is a simple command without a payload; it consists only of 
two header bytes: 0x00 for the payload length, and 0x50 for the command 
(LonNiReset).  The LonNiReset command instructs the Micro Server to reset.  
You should be able to observe the Smart Transceiver’s reset line’s being asserted 
for a brief moment.  

When the Micro Server completes the reset sequence, it notifies the host 
processor of the event.  The uplink reset message also uses the LonNiReset 
(0x50) command in the link-layer header, but includes 16 payload bytes. 

The uplink reset message contains information about the state, version, and type 
of the Micro Server, its capacity for various system resources, and whether it is 
initialized.  The message can be helpful to diagnose problems (or success) during 
early stages of development. 
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Before your application attempts to register with the Micro Server for the first 
time, it should execute an echo command (the LonRequestEcho() function with 
the LonEchoReceived() callback handler function).  Repeated use of this 
command provides an early link-layer stress test, and can provide early 
indication of errors in the physical design of the link layer. 
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7  

Porting the ShortStack LonTalk 
Compact API 

If you are using a host processor and development 
environment that does not have an available ShortStack FX 
example port, you must port the ShortStack LonTalk 
Compact API files to work with your chosen host processor 
and development environment.  A minimal port requires you 
to provide definitions that control the portable code, but a 
more substantial port might be required.  A completed port 
applies to all applications that use the same hardware and 
software configuration. 

 

This chapter describes the steps and considerations for 
porting the ShortStack LonTalk Compact API. 
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 Portability Overview 
The ShortStack LonTalk Compact API is implemented in ANSI C.  Although 
ANSI C is a standard programming language, different implementations are 
required to meet the requirements of different target processors.  To support the 
largest possible number of target processors and compilers, the ShortStack 
LonTalk Compact API implementation is based on the following portability 
concepts: 

• Host-side types and interfaces use standard ANSI C types and style.  For 
example, the LonPropagateNv() function, which takes a network 
variable’s index as an argument, expects this argument to be of the 
standard C type unsigned.  

• All data types that interface with the Micro Server or the LONWORKS 
network are based on streams of bytes, and do not use multi-byte scalar 
types such as 16 or 32-bit integers.  Using streams of bytes helps to 
control byte padding and packing issues within structures.  
 
All types are based on the LonByte type.  Multibyte scalars are composed 
of multiple LonByte members in big-endian byte order, such as the 
LonWord type.  
 
Optionally, you can use macros such as LON_GET_UNSIGNED_WORD 
or LON_SET_UNSIGNED_WORD to assist in transforming those types 
into the host processor’s native types.  Native types can be more efficient 
in numeric algorithms.  

• Structures and unions are declared using macros because some compilers 
allow you to control packing and alignment of aggregates for each type 
definition individually through non-standard keyword extensions.  These 
macros are LON_BEGIN_STRUCT, LON_END_STRUCT, 
LON_BEGIN_UNION, and LON_END_UNION. 
 
Example:  For the GNU C Compiler, the macros controlling structure 
declarations could be: 
 
#define LON_STRUCT_BEGIN(n) struct  
#define LON_STRUCT_END(n)   attribute((__packed__)) n 

• Structures and unions that are embedded in other structures or unions 
use another set of macros to provide further support for non-standard 
keywords that control packing and alignment of aggregates.  These 
macros are LON_BEGIN_NESTED_STRUCT, 
LON_END_NESTED_STRUCT, LON_BEGIN_NESTED_UNION, and 
LON_END_NESTED_UNION.  

• Because some compilers might not allow control over packing and 
alignment though non-standard keyword extensions, but do support 
compiler directives (pragmas) for this purpose, the ShortStack 
Developer’s Kit includes two optional include files:  LonBegin.h and 
LonEnd.h.  The LonBegin.h file can be optionally (and automatically) 
inserted prior to any type definition made by the ShortStack LonTalk 
Compact API files, and the LonEnd.h file can be optionally (and 
automatically) included following the last type definition made by the 
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ShortStack LonTalk Compact API.  This method allows you to use one set 
of packing and alignment preferences for the ShortStack LonTalk 
Compact API, and another set of preferences for the remainder of your 
application. 
 
Example:  The LonBegin.h file could contain the following directive: 
 
#pragma pack(push,1) 
 
And the LonEnd.h file could contain the following directive: 
 
#pragma pack(pop) 
 
Refer to your compiler’s documentation to determine which directives or 
other methods for packing and alignment control are supported.  
Compiler directives (pragmas) are implementation-specific for each ANSI 
C compiler. 

• Enumerations are used to provide literals for many types.  Although 
ANSI C enumerations are derived from a signed integer type, 
enumerations for a ShortStack application (or a LONWORKS network) 
must be based on a signed character type (or a signed eight-bit integer).  
The ShortStack LonTalk Compact API provides a set of macros that 
allows you to define enumerated types with the possible use of non-
standard keyword extensions.  It also provides another macro that 
references an enumerated type so that the reference consumes only a 
single byte. 
 
Example:  For a compiler that supports a non-standard syntax extension 
to force an enumeration to fit into a user-defined compound (other than 
“int”), these macros might be defined as: 
 
 #define LON_ENUM_BEGIN(n)   enum : LonByte 
 #define LON_ENUM_END(n)     n 
 #define LON_ENUM(n)         n  

• The ShortStack LonTalk Compact API does not use bit fields.  For ANSI 
C, the standard compound for bit fields is the native word size of the 
target processor (equivalent to “int”).  However, for a ShortStack 
application (or a LONWORKS network), bit fields must be packed into 
byte-sized entities.  This packing requires non-standard keywords, and 
another set of implementation-specific controls to determine the 
placement of the individual bits within each byte.  Not all compilers for 
embedded development support bit fields, or standard ways to control bit 
fields (for example, anonymous bit fields and zero-length bit fields).  

See Using Types on page 154 for information about how the LonTalk Interface 
Developer utility handles data types. 

Bit Field Members 
For portability, none of the types that the LonTalk Interface Developer utility 
generates use bit fields.  Instead, the utility defines bit fields with their enclosing 
bytes, and provides macros to extract or manipulate the bit field information. 
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By using macros to work directly with the bytes of the bit field, your code is 
portable to both big-endian and little-endian platforms (that is, platforms that 
represent the most-significant bit in the left-most position and platforms that 
represent the most-significant bit in the right-most position).  The macros also 
reduce the need for anonymous bit fields to achieve the correct alignment and 
padding. 

Example:  The following macros and structure define a simple bit field of two 
flags, a 1-bit flag alpha and a 4-bit flag beta: 

typedef LON_STRUCT_BEGIN(Example) { 
 LonByte flags_1;  // contains alpha, beta 
} LON_STRUCT_END(Example); 
 
#define LON_ALPHA_MASK 0x80 
#define LON_ALPHA_SHIFT 7 
#define LON_ALPHA_FIELD flags_1 
#define LON_BETA_MASK 0x70 
#define LON_BETA_SHIFT 4 
#define LON_BETA_FIELD flags_1 

When your program refers to the flags_1 structure member, it can use the bit 
mask macros (LON_ALPHA_MASK and LON_BETA_MASK), along with the bit 
shift values (LON_ALPHA_SHIFT and LON_BETA_SHIFT), to retrieve the two 
flag values.  These macros are defined in the LonNvTypes.h file.  The 
LON_STRUCT_* macros enforce platform-specific byte packing. 

To read the alpha flag, use the following example assignment: 

Example var; 
alpha_flag = (var.LON_ALPHA_FIELD & LON_ALPHA_MASK) >> 
      LON_ALPHA_SHIFT; 

You can also use the LON_GET_ATTRIBUTE() and LON_SET_ATTRIBUTE() 
macros to access flag values.  For example, for a variable named var, you can use 
these macros to get or set the attributes for the alpha flag: 

alpha_flag = LON_GET_ATTRIBUTE(var, LON_ALPHA); 
… 
LON_SET_ATTRIBUTE(var, LON_ALPHA, alpha_flag); 

These macros are defined in the ShortStackTypes.h file. 

Enumerations 
The LonTalk Interface Developer utility does not produce enumerations.  The 
ShortStack LonTalk Compact API requires an enumeration to be of size byte.  
The ANSI C standard requires that an enumeration be an int, which is larger 
than one byte for many platforms.  

A ShortStack enumeration uses the LON_ENUM_BEGIN and 
LON_ENUM_END macros.  For many compilers, these macros can be defined to 
generate native enumerations: 

#define LON_ENUM_BEGIN(name)  enum 
#define LON_ENUM_END(name)  name 

Some compilers support a colon notation to define the enumeration’s underlying 
type: 
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#define LON_ENUM_BEGIN(name) enum : signed char 
#define LON_ENUM_END(name) 

When your program refers to an enumerated type in a structure or union, it 
should not use the enumeration’s name, but should use the LON_ENUM_* 
macros.  

For those compilers that support byte-sized enumerations, it can be defined as: 

#define LON_ENUM(name) name 

For other compilers, it can be defined as: 

#define LON_ENUM(name) signed char 

Example:  Table 19 shows an example enumeration using the ShortStack 
LON_ENUM_* macros, and the equivalent ANSI C enumeration.  

Table 19. Enumerations in ShortStack 

ShortStack Enumeration Equivalent ANSI C Enumeration 

LON_ENUM_BEGIN(Color) { 
red, green, blue 

} LON_ENUM_END(Color); 
 
typedef struct { 

… 
LON_ENUM(Color) color; 

} Example; 

enum { 
red, green, blue 

} Color; 
 
typedef struct { 

… 
Color color; 

} Example; 

LonPlatform.h 
The file within the ShortStack LonTalk Compact API that helps implement the 
portability concepts described in Portability Overview on page 110 is the 
LonPlatform.h include file.  The ShortStack LonTalk Compact API and 
application framework automatically include this file before any other 
ShortStack LonTalk Compact API-specific definition or file inclusion.  

The LonPlatform.h file uses conditional compilation to detect the specific 
compiler and to set various preferences and definitions for portability. 

Before you begin porting the ShortStack LonTalk Compact API, you should 
ensure that the LonPlatform.h file includes support for your compiler.  The 
LonTalk Interface Developer utility copies the LonPlatform.h file into your 
project directory so that you can modify the file if it does not include support for 
your compiler.  However, if this file already exists in your project directory, the 
utility does not overwrite it.  

Recommendation:  Make any necessary modifications to the copy of the 
LonPlatform.h file in your project directory, rather than modifying the version of 
the file in the [ShortStack]\api directory.  The master copy of this file might be 
overwritten when you install service updates or new versions of the ShortStack 
Developer’s Kit. 

After you make the appropriate modifications to the LonPlatform.h file, you 
should be able to successfully compile the ShortStack LonTalk Compact API files 
and the skeleton application framework files generated by the LonTalk Interface 
Developer utility.   
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Testing the Ported API Files 
After the ShortStack LonTalk Compact API files and the LonTalk Interface 
Developer utility-generated files can be compiled without errors or significant 
warnings, you might want to perform a simple test to ensure that the port works 
correctly.   

For this simple test, compile the following source code: 

#include "LonPlatform.h" 
#ifdef  INCLUDE_LON_BEGIN_END 
#   include "LonBegin.h"     
#endif  /* INCLUDE_LON_BEGIN_END */ 
 
LON_ENUM_BEGIN(Color) { 
 red, green, blue 
} LON_ENUM_END(Color); 
 
LON_STRUCT_BEGIN(Test) { 
   LON_ENUM(Color) color;       // offset 0 
   LonByte         a;           // offset 1 
   LonWord         b;           // offset 2+3 
 
   LON_UNION_NESTED_BEGIN(x) { 
      LON_STRUCT_NESTED(r) { 
         LonByte   r1;          // offset 4 
         LonWord   r2;          // offset 5+6 
      } LON_STRUCT_NESTED(r); 
      LonWord   w;              // offset 4+5 
   } LON_UNION_NESTED_END(x); 
} LON_STRUCT_END(Test); 
 
#ifdef  INCLUDE_LON_BEGIN_END 
#   include "LonEnd.h"     
#endif  /* INCLUDE_LON_BEGIN_END */ 

Link (or include) this code with a test application.  The test application can be a 
simple one, and the ShortStack serial driver is not required.  Within the test 
application, instantiate a variable of type Test, using an appropriate set of initial 
values, as shown in the following example: 

int main(void) { 
    Test test = {  
      (LON_ENUM(Color))green, 12, {2, 100}, { 4, {50, 60}} 
    }; 
 
    return 0; 
} 

Within your development environment, load this test application into your 
hardware, start a debug session, and use the debugger to inspect the memory 
image that contains the test variable.  Verify that the values provided with the 
initializer can be read at the correct offset locations.  For example, the most 
significant bit of test.x.w should evaluate to 4, the least significant bit of test.x.w 
should evaluate to 50, test.x.r.r1 should be found at offset 4, and so on. 

See your development environment documentation for information about using 
the debugger and inspecting memory at the location of a given variable. 
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8  

Creating a Model File 

You use a model file to define your device’s interoperable 
interface, including its network inputs and outputs.  The 
LonTalk Interface Developer utility converts the information 
in the model file into device interface data and a device 
interface file for your application.  This chapter describes 
how to create a model file using the Neuron C programming 
language.   

Syntax for the Neuron C statements in the model file is 
described in the Neuron C Reference Guide. 
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 Model File Overview 
The interoperable application interface of a LONWORKS device consists of its 
network variables, configuration properties, functional blocks, and their 
relationships.  The network variables are the device’s means of sending and 
receiving data using interoperable data types.  The configuration properties are 
the device’s means of providing externally exposed configuration data, again 
using interoperable data types.  The configuration data items can be read (and 
typically also written) by a network tool.  The device interface is organized into 
functional blocks, each of which groups together a collection of network variables 
and configuration properties that are used to perform one task.  These network 
variables and configuration properties are called the functional block members. 

The model file describes the functional blocks, network variables, configuration 
properties, and their relationships, that make up the interoperable interface for a 
ShortStack device, using the Neuron C programming language.  Neuron C is 
based on ANSI C, and is designed for creating a device’s interoperable interface 
and implementing its algorithms to run on Neuron Chips and Smart 
Transceivers.  However, you do not need to be proficient in Neuron C to create a 
model file for a ShortStack application because the model file does not include 
executable code.  All of the tools required to process model files are included with 
the ShortStack Developer’s Kit; you do not need to license another Neuron C 
development tool to work with a ShortStack model file.  The model file uses 
Neuron C Version 2 declaration syntax.   

The LonTalk Interface Developer utility uses the model file to generate device 
interface data and device interface files.  You can use any of the following 
methods to create a model file: 

• Manually create a model file 
A model file is a text file that you can create with any text or 
programming editor, including Windows Notepad.  Model files have the 
.nc file extension.  This chapter describes the types of Neuron C 
statements you can include in a model file.  The Neuron C Reference 
Guide describes the syntax for the Neuron C statements. 

• Reuse existing Neuron C code  
You can reuse an existing Neuron C application that was originally 
written for a Neuron Chip or a Smart Transceiver as a model file.  The 
LonTalk Interface Developer utility uses only the device interface 
declarations from a Neuron C application program, and ignores all other 
code.  You might have to delete some code from an existing Neuron C 
application program, or exclude this code using conditional compilation, 
as described later in this chapter. 

• Automatically generate a model file 
You can use the NodeBuilder Code Wizard, included with Release 3 or 
later of the NodeBuilder Development Tool, to automatically generate a 
model file.  Using the NodeBuilder Code Wizard, you can define your 
device interface by dragging functional profiles and type definitions from 
a graphical view of your resource catalog to a graphical view of your 
device interface, and refine them using a convenient graphical user 
interface.  When you complete the device interface definition, click the 
Generate Code and Exit button to automatically generate your model file.  
Use the main file produced by the NodeBuilder Code Wizard as your 
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model file.  NodeBuilder software is not included with the ShortStack 
Developer’s Kit, and must be licensed separately.  See the NodeBuilder 
FX User’s Guide for details about using the NodeBuilder Code Wizard. 

See the Neuron C Reference Guide for the detailed Neuron C syntax for each type 
of statement that can be included in the model file. 

Defining the Device Interface 
You use a model file to define the device interface for your device.  The device 
interface for a LONWORKS device consists of its:  

• Functional blocks 

• Network variables 

• Configuration properties 

A functional block is a collection of network variables and configuration 
properties, which are used together to perform one task.  These network 
variables and configuration properties are called the functional block members. 

Functional blocks are defined by functional profiles.  A functional profile is used 
to describe common units of functional behavior.  Each functional profile defines 
mandatory and optional network variables and configuration properties.  Each 
functional block implements an instance of a functional profile.  A functional 
block must implement all of the mandatory network variables and configuration 
properties defined by the functional profile, and can also implement any of the 
optional network variables and configuration properties defined by the functional 
profile.  In addition, a functional block can implement network variables and 
configuration properties that are not defined by the functional profile; these are 
called implementation-specific network variables and configuration properties. 

The primary inputs and outputs to a functional block are provided by network 
variables.  A network variable is a data item that a device application expects to 
get from other devices on a network (an input network variable) or expects to 
make available to other devices on a network (an output network variable).  
Network variables are used for operational data such as temperatures, pressures, 
switch states, or actuator positions. 

A configuration property is a data item that specifies the configurations for a 
device (its network variables and functional blocks).  Configuration properties are 
used for configuration data such as set points, alarm thresholds, or calibration 
factors.  Configuration properties can be set by a network management tool (such 
as the LonMaker Integration tool or a customized plug-in created for the device), 
and allow a network integrator to customize a device’s behavior. 

These interface components, and the resource files used to define them, are 
described in the following sections. 

Defining the Interface for a ShortStack Application 
Within a model file, you define a simple input network variable with the 
following syntax: 

network input type name; 



 

118 Creating a Model File                                 

Example:  The following declaration defines an input network variable of type 
“SNVT_lux” with the name “nviLux”. 

network input SNVT_lux nviLux; 

You define a simple output network variable using the same syntax, but with the 
output modifier: 

network output type name; 

Example:  The following declaration defines an output network variable of type 
“SNVT_lux” with the name “nvoLux”. 

network output SNVT_lux nvoLux; 

By convention, input network variable names have an nvi prefix and output 
network variables have an nvo prefix. 

See the Neuron C Reference Guide for the full network variable declaration 
syntax. 

The LonTalk Interface Developer utility reads the network variable declarations 
in the model file to generate device-specific code.  For the example of the nviLux 
and nvoLux pair of network variables above, the utility generates a standard 
ANSI C type definition for the SNVT_lux network variable type and implements 
two global C-language variables: 

typedef ncuLong  SNVT_lux; 
… 
volatile SNVT_lux nviLux; 
SNVT_lux nvoLux; 

The ncuLong data type defines the host equivalent of a Neuron C unsigned long 
variable.  This type is defined in the LonPlatform.h file. 

Your ShortStack application can simply read the nviLux global C variable to 
retrieve the most recently received value from that input network variable.  
Likewise, your application can write the result of a calculation to the nvoLux 
global C variable, and call the appropriate ShortStack LonTalk Compact API 
function to propagate the network variable to the LONWORKS network.  

Choosing the Data Type 
Many functional profiles define the exact type of each member network variable. 
The SNVT_lux type used in the previous section is such a type.  Using a different 
network variable type within a functional profile that requires this network 
variable type renders the implementation of the profile not valid.  

Other profiles specify network variable members that are generic so that the type 
can be selected by each implementation of the profile.  The SFPTopenLoopSensor 
functional block (described in the Defining a Functional Block on page 119) is an 
example for such a functional profile with generic members.  This profile defines 
the nvoValue member to be of type SNVT_xxx, which means “any standard 
network variable type.”  

Implementing a profile with generic members allows you to choose the standard 
network variable type from a range of allowed types when you create the model 
file. 

For added flexibility, if the specific functional profile allows it, your application 
can implement changeable-type network variables.  A changeable-type network 
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variable is network variable that is initially declared with a distinct default type 
(for example, SNVT_volt), but can be changed during device installation to a 
different type (for example, SNVT_volt_mil).  

Using changeable-type network variables allows you to design a generic device 
(such as a generic proportional-integral-derivative (PID) controller) that supports 
a wide range of numeric network variable types for set-point, control, and 
process-value network variables.  

See Defining a Changeable-Type Network Variable on page 122 for more 
information about implementing changeable-type network variables for 
ShortStack applications. 

You can also define your own nonstandard data types.  The NodeBuilder 
Resource Editor utility, which is included with the ShortStack Development Kit, 
allows you to define your own, nonstandard data types for network variables or 
configuration properties, and allows definition of your own, nonstandard 
functional profiles. These nonstandard types are called user-defined types and 
user-defined profiles. 

Defining a Functional Block 
The first step for defining a device interface is to select the functional profile, or 
profiles, that you want your device to implement.  You can use the NodeBuilder 
Resource Editor to look through the standard functional profiles, as described in 
Defining a Resource File on page 132.  You can find detailed documentation for 
each of the standard functional profiles at types.lonmark.org7.   

For example, if your device is a simple sensor or actuator, you can use one of the 
following standard profiles:   

• Open-loop sensor (SFPTopenLoopSensor) 

• Closed-loop sensor (SFPTclosedLoopSensor) 

• Open-loop actuator (SFPTopenLoopActuator) 

• Closed-loop actuator (SFPTclosedLoopActuator).   

If your device is more complex, look through the other functional profiles to see if 
any suitable standard profiles have been defined.  If you cannot find an existing 
profile that meets your needs, you can define a user functional profile, as 
described in Defining a Resource File on page 132. 

Example:  The following example shows a simple functional block declaration. 

network output SNVT_lux nvoLux; 
 
fblock SFPTopenLoopSensor { 
 nvoLux implements nvoValue; 
} fbLightMeter; 

This functional block: 

• Is named fbLightMeter (network management tools use this name unless 
you include the external_name keyword to define a more human-readable 
name) 

                                                 
7 Use the Windows Internet Explorer browser to view this site.  

http://types.lonmark.org/
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• Implements the SFPTopenLoopSensor standard profile 

• Includes a single network variable, named nvoLux, which implements the 
nvoValue network variable member of the standard profile 

Declaring a Functional Block 
A functional block declaration, by itself, does not cause the LonTalk Interface 
Developer utility to generate any executable code, although it does create data 
that implements various aspects of the functional block.  Principally, the 
functional block creates associations among network variables and configuration 
properties.  The LonTalk Interface Developer utility uses these associations to 
create the self-documentation (SD) and self-identification (SI) data in the device 
and in its associated device interface file (.xif extension). 

The functional block information in the device interface file, or the SD and SI 
data, communicates the presence and names of the functional blocks contained in 
the device to a network management tool.   

Network-variable or configuration members of a functional block also have self-
documentation data, which is also automatically generated by the LonTalk 
Interface Developer utility.  This self-documentation data provides details about 
the particular network variable or configuration property, including whether the 
network variable or configuration property is a member of a functional block. 

Functional blocks can be implemented as single blocks or as arrays of functional 
blocks.  In a functional block array, each member of the array implements the 
same functional profile, but has different network variables and typically has 
different configuration properties that implement its network variable and 
configuration property members.  

Example:  The following example shows a simple array of 10 functional blocks. 

network output SNVT_lux nvoLux[10]; 
 
fblock SFPTopenLoopSensor { 
 nvoLux[0] implements nvoValue; 
} fbLightingDevice[10]; 

This functional block array: 

• Contains ten functional blocks, fbLightingDevice[0] to 
fbLightingDevice[9], each implementing the SFPTopenLoopSensor 
profile. 

• Distributes the ten nvoLux network variables among the ten functional 
blocks, starting with the first network variable (at network variable array 
index zero).  Each member of the network variable array applies to a 
different network variable member of the functional block array. 

Defining a Network Variable 
Every network variable has a type, called a network variable type, that defines 
the units, scaling, and structure of the data contained within the network 
variable.  To connect a network variable to another network variable, both must 
have the same type.  This type matching prevents common installation errors 
from occurring, such as connecting a pressure output to a temperature input.  
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Type translators are also available to convert network variables of one type to 
another type.  Some type translators can perform sophisticated transformations 
between dissimilar network variable types.  Type translators are special 
functional blocks that require additional resources, for example, a dedicated type-
translating device in your network. 

You can minimize the need for type translators by using standard network 
variable types (SNVTs) for commonly used types, and by using changeable-type 
network variables, where appropriate.  You can also define your own user 
network variable types (UNVTs). 

You can use the NodeBuilder Resource Editor to look through the standard 
network variable types, as described in Defining a Resource File on page 132, or 
you can browse the standard profiles online at types.lonmark.org.  

You can connect network variables on different devices that are of identical type, 
but opposite direction, to allow the devices to share information.  For example, an 
application on a lighting device could have an input network variable of the 
switch type, while an application on a dimmer-switch device could have an 
output network variable of the same type.  You can use a network tool, such as 
the LonMaker Integration Tool, to connect these two devices, allowing the switch 
to control the lighting device, as shown in Figure 53. 

 
Figure 53. Simple Switch Controlling a Single Light 

A single network variable can be connected to multiple network variables of the 
same type but opposite direction.  The example in Figure 54 shows the same 
switch being used to control three lights. 

 
Figure 54. Simple Switch Controlling Three Lights 

http://types.lonmark.org/index.html
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The ShortStack application in a device does not need to know anything about 
where input network variables come from or where output network variables go.  
After the ShortStack application updates a value for an output network variable, 
it passes the new value to the ShortStack Micro Server by using a simple API 
function call.   

Through a process called binding that takes place during network design and 
installation, the ShortStack Micro Server is configured to know the logical 
address of the other devices (or groups of devices) in the network that expect a 
specific network variable, and the ShortStack Micro Server assembles and sends 
the appropriate packets to these devices.  Similarly, when the ShortStack Micro 
Server receives an updated value for an input network variable required by its 
application program, it reads the data from the network and passes the data to 
the application program.   

The binding process creates logical connections between an output network 
variable in one device and an input network variable in another device or group 
of devices.  You can think of these connections as “virtual wires.”  For example, 
the dimmer-switch device in the dimmer-switch-light example above could be 
replaced with an occupancy sensor, without requiring any changes to the lighting 
device. 

Network variable processing is transparent, and typical networked applications 
do not need to know whether a local network variable is bound (“connected”) to 
one or more network variables on the same device, to one or more other devices, 
or not bound at all.  For those applications that do require such knowledge, tools 
are supplied to query the related information. 

Defining a Changeable-Type Network 
Variable 
A changeable-type network variable is a network variable that supports 
installation-time changes to its type and its size.  

You can use a changeable-type network variable to implement a generic 
functional block that works with different types of inputs and outputs.  Typically, 
an integrator uses a network management tool plug-in that you create to change 
network variable types. 

For example, you can create a general-purpose device that can be used with a 
variety of sensors or actuators, and then create a functional block that allows the 
integrator to select the network variable type depending on the physical sensor or 
actuator that is attached to the device during installation.  

Restrictions: 

• Each changeable-type network variable must be declared with an initial 
type in the model file.  This initial type defines the default type and the 
maximum size of the network variable. 

• A changeable-type network variable must be a member of a functional 
block.  

• Only network variables that are not bound can change their type.  To 
change the type of a bound network variable, you must first unbind 
(disconnect) the network variable. 
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• Only a network management tool, such as the LonMaker Integration tool, 
can change the type of a changeable-type network variable.  The 
ShortStack application does not initiate type changes. 

To create a changeable-type network variable for a ShortStack application, 
perform the following tasks:  

1. Declare the network variable (in the model file) with the changeable_type 
keyword.  You must declare an initial type for the network variable, and 
the size of the initial type must be equal to the largest network variable 
size that your application supports.  The initial type must be one of the 
interoperable standard or user network variable types. 

2. Select Has changeable interface in the LONMARK Standard Program ID 
Calculator (part of the LonTalk Interface Developer utility) to set the 
changeable-interface bit in the program ID when you create the device 
interface. 

3. Declare a SCPTnvType configuration property that applies to the 
changeable-type network variable.  This configuration property is used by 
network management tools to notify your application of changes to the 
network variable type.  

4. You can optionally also declare a SCPTmaxNVLength configuration 
property that applies to the changeable-type network variable.  This 
configuration property informs network management tools of the 
maximum type length supported by the changeable-type network 
variable.  This value is a constant, so declare this configuration property 
with the const modifier. 

5. Implement code in your ShortStack application to process changes to the 
SCPTnvType value.  This code can accept or reject a type change.  Ensure 
that your application can process all possible types that the changeable-
type network variable might use at runtime. 

6. Implement code to provide information about the current length of the 
network variable.  

The LonMaker browser provides integrators with a user interface to change 
network variable types.  However, you might want to provide a custom interface 
for integrators to change network variable types on your device.  For example, 
the custom interface could restrict the available types to those types supported by 
your application, thus preventing configuration errors.   

The LonMaker Integration tool, Turbo Edition (and later), supports changeable-
type network variables.  However, if you use LonMaker 3 or earlier to manage a 
ShortStack device with changeable-type network variables, you must explicitly 
set the SCPTnvType CP value in the LonMaker browser (or in a device plug-in) 
to inform the ShortStack Micro Server of the type changes in addition to using 
the “Change Network Variable Type” facility that is provided with LonMaker 3 or 
earlier to change the type of a network variable in the LNS database. 

See Handling Changes to Changeable-Type Network Variables on page 176 for 
information about how your application should handle changes to changeable-
type network variables. 
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Defining a Configuration Property 
Like network variables, configuration properties have types, called configuration 
property types, that determine the units, scaling, and structure of the data that 
they contain.  Unlike network variable types, configuration property types also 
specify the meaning of the data.  For example, standard network variable types 
represent temperature values, whereas configuration property types represent 
specific types of temperature settings, such as the air temperature set point used 
during daytime control, or the limit value of an air temperature sensor when 
calculating an air temperature alarm. 

Declaring a Configuration Property 
You declare a configuration property in a model file.  Similar to network variable 
types, there are standard and user-defined configuration property types.  You can 
use the NodeBuilder Resource Editor to look through the standard configuration 
property types, as described in Defining a Resource File on page 132, or you can 
browse the standard profiles online at types.lonmark.org.  You can also define 
your own configuration property type, if needed. 

You can implement a configuration property using either of the following 
techniques: 

• A configuration network variable  

• A configuration file 

A configuration network variable (CPNV) uses a network variable to implement 
the configuration property.  In this case, a LONWORKS device can modify the 
configuration property, just like any other network variable.  A CPNV can also 
provide your application with detailed notification of updates to the configuration 
property.  However, a CPNV is limited to a maximum of 31 bytes, and a 
ShortStack application is limited to a maximum of 254 network variables, 
including CPNVs.  Use the network … config_prop syntax described in the 
Neuron C Reference Guide to implement a configuration property as a 
configuration network variable.  By convention, CPNV names start with an nci 
prefix, and configuration properties in files start with a cp prefix. 

A configuration file implements the configuration properties for a device as one or 
two blocks of data called value files, rather than as separate externally exposed 
data items.  A value file consists of configuration property records of varying 
length concatenated together.  Each value file must fit as contiguous bytes into 
the memory space in the device.  When there are two value files, one contains 
writeable configuration properties, and the second contains read-only data.  To 
allow a network management tool to access the data items in the value file, you 
specify a provided template file, which is an array of text characters that 
describes the elements in the value files.  When you use the direct memory file 
access method, the total size of the directory, template file, and value files cannot 
exceed 32 KB.  The maximum depends on the specified Micro Server, and is 
typically several kilobytes.  The standard Micro Servers that are included with 
the ShortStack Developer’s Kit support over 11 KB.  When you use LW-FTP, 
individual files cannot exceed 2 147 483 647 bytes (2 GB -1, or 231 -1 bytes). 

Other devices cannot connect to or poll a configuration property implemented in a 
configuration file.  To modify a configuration property implemented in a 

http://types.lonmark.org/index.html
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configuration file, a network management tool must modify the configuration file, 
for which your application must provide an appropriate access method.   

You must implement configuration properties within a configuration file if any of 
the following apply to your application: 

• The total number of network variables (including configuration network 
variables) exceeds the total number of available network variables (a 
maximum of 254 for a ShortStack device, but potentially fewer than 254 
depending on the resources available on a particular Micro Server).   

• The size of a single configuration property exceeds the maximum size of a 
configuration network variable (31 bytes).   

• Your device cannot use a configuration network variable (CPNV).  For 
example, for a device that uses a configuration property array that 
applies to several network variables or functional blocks with one 
instance of the configuration property array each, the configuration 
property array must be shared among all network variables or functional 
blocks to which it applies.  In this case, the device must implement the 
configuration properties within a configuration file. 

In addition, you might decide whether to implement configuration properties 
within a configuration file for performance reasons.  Using the direct memory file 
(DMF) access method can be faster than using configuration network variables 
(CPNVs) if you have more than a few configuration properties because multiple 
configuration properties can be updated during a single write to memory 
(especially during device commissioning).  However, LW-FTP can be faster than 
DMF if there are many configuration properties to be updated.  

Use the cp_family syntax described in the Neuron C Reference Guide to 
implement a configuration property as a part of a configuration file.   

When implementing configuration property files, the LonTalk Interface 
Developer utility combines all configuration properties declared using the 
cp_family keyword, and creates the value files and a number of related data 
structures. 

However, you must provide one of two supported mechanisms to access these 
files:   

• An implementation of the LONWORKS file transfer protocol (LW-FTP) 

• Support for the direct memory files access method   

The LonTalk Interface Developer provides most of the required code to support 
the direct memory file access mthod.  However, if you use LW-FTP, you must also 
implement the LONWORKS file transfer protocol within your application program.  
You would typically implement the LONWORKS file transfer protocol only if the 
total amount of related data exceeds (or is likely to exceed) the size of the direct 
memory file window, or if your application implements additional files that 
require LW-FTP. 

See the File Transfer engineering bulletin at www.echelon.com for more 
information about the LONWORKS file transfer protocol; see Using Direct Memory 
Files on page 189 for more information about the direct memory file access 
method. 

To indicate which file access method the application should use, you must declare 
the appropriate network variables in your model file: 

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
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• For direct memory files, declare an output network variable of type 
SNVT_address.  If your device implements the SFPTnodeObject 
functional profile, you use this network variable to implement the 
profile’s nvoFileDirectory member.  If your device does not implement the 
SFPTnodeObject functional profile, simply add this network variable to 
the model file.  You do not need to initialize this network variable (any 
initial value is ignored; the LonTalk Interface Developer utility calculates 
the correct value). 

• For LW-FTP, declare at least two mandatory network variables, an input 
network variable of type SNVT_file_req, and an output network variable 
of type SNVT_file_status.  In addition, you need an input network 
variable of type SNVT_file_pos to support random access to the various 
files.  You must also implement the LONWORKS file transfer protocol 
within your application program. 

The LONWORKS file transfer protocol and the direct memory file access method 
are mutually exclusive; your device cannot implement both. 

Responding to Configuration Property 
Value Changes 
Events are not automatically generated when a configuration property 
implemented in a configuration file is updated, but you can declare your 
configuration property so that a modification to its value causes the related 
functional block to be disabled and re-enabled, or causes the device to be taken 
offline and brought back online after the modification, or causes the entire device 
to reset.  These state changes help to synchronize your application with new 
configuration property values. 

Your application could monitor changes to the configuration file, and thus detect 
changes to a particular configuration property.  Such monitoring would be 
implemented in the LW-FTP server or direct memory file driver. 

However, many applications do not need to know that a configuration property 
value has changed.  For example, an application that uses a configuration 
property to parameterize an algorithm that uses some event as a trigger (such as 
a network variable update or a change to an input signal) would not typically 
need to know of the change to the configuration property value, but simply 
consider the most recent value. 

Defining a Configuration Property Array 
You can define a configuration property as: 

• A single configuration property 

• An array of configuration properties 

• A configuration property array 

A single configuration property either applies to one or more network variables or 
functional blocks within the model file for the device, or the configuration 
property applies to the entire device. 
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When you define an array of configuration properties, each element of the array 
can apply to one or more network variables or functional blocks within the model 
file.  

When you define a configuration property array, the entire array (but not each 
element) applies to one or more network variables or functional blocks within the 
model file.  That is, a configuration property array is atomic, and thus applies in 
its entirety to a particular item. 

Assuming that the device has sufficient resources, it is always possible to define 
arrays of configuration properties.  However, configuration property arrays are 
subject to the functional profile definition.  For each member configuration 
property, the profile describes whether it can, cannot, or must be implemented as 
a configuration property array.  The profile also describes minimum and 
maximum dimensions for the array.  If you do not implement the configuration 
property array as the profile requires, the profile’s implementation becomes 
incorrect. 

Example: 

This example defines a four-channel analog-to-digital converter (ADC), with the 
following properties: 

• Four channels (implemented as an array of functional blocks) 

• One gain setting per channel (implemented as an array of configuration 
properties) 

• A single offset setting for the ADC (implemented as a shared 
configuration property) 

• A linearization setting for all channels (implemented as a configuration 
property array) 

#include <s32.h> 
#define CHANNELS    4 
 
network output   SNVT_volt    nvoAnalogValue[CHANNELS]; 
 
network input cp SCPTgain     nciGain[CHANNELS];   
network input cp SCPToffset   nciOffset; 
network input cp SCPTsetpoint nciLinearization[5]; 
 
fblock SFPTopenLoopSensor { 
  // Declare network variable that implements the 
  // mandatory nvoValue member of this profile 
  nvoAnalogValue[0] implements nvoValue; 
} fbAdc[CHANNELS] external_name("Analog Input") 
fb_properties { 
  // One gain factor per channel 
  nciGain[0], 
  // One offset, common to all channels 
  static nciOffset, 
  // One linearization array for all channels 
  static nciLinearization = { 
    {0, 0}, {2, 0}, {4, 0}, {6, 0}, {8, 0} 
  }; 
}; 
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This example implements a single output network variable, of type SNVT_volt, 
per channel to represent the most recent ADC reading.  This network variable 
has a fixed type, defined at compile-time, but could be defined as a changeable-
type network variable if needed for the application.  

There is one gain setting per channel, implemented as an array of configuration 
network variables (CPNVs), of type SCPTgain, where the elements of the array 
are distributed among the four functional blocks contained in the functional block 
array.  Because the SCPTgain configuration property has a default gain factor of 
1.0, no explicit initialization is required for this configuration network variable.  

There is a single offset setting, implemented as a configuration network variable 
(CPNV), of type SCPToffset.  This CPNV applies to all channels, and is shared 
among the elements of the functional block array.  The SCPToffset configuration 
property has a default value of zero.  

The SCPToffset configuration property is a type-inheriting configuration 
property.  The true data type of a type-inheriting property is the type of the 
network variable to which the property applies.  For an SFPTopenLoopSensor 
standard functional profile, the SCPToffset configuration property applies to the 
functional block, and thus implicitly applies to the profile's primary member 
network variable.  In this example, the effective data type of this property is 
SNVT_volt (inherited from nvoAnalogValue).  

The example also includes a five-point linearization factor, implemented as a 
configuration property array of type SCPTsetpoint.  The SCPTsetpoint 
configuration property is also a type-inheriting configuration property, and its 
effective data type is also SNVT_volt in this example.    

Because the SCPTsetpoint linearization factor is a configuration property array, 
it applies to the entire array of functional blocks, unlike the array of SCPTgain 
configuration property network variables, whose elements are distributed among 
the elements of the functional block array.  In this example, the linearization 
configuration property array is implemented with configuration network 
variables, and must be shared among the elements of the functional block array. 

To implement the linearization array of configuration properties such that each 
of the four functional blocks has its own linearization data array, you must 
implement this configuration property array in files, and declare the 
configuration property with the cp_family modifier. 

Table 20 shows the relationships between the members of the functional-block 
array.  As the table shows, each channel has a unique gain value, but all 
channels share the offset value and linearization factor. 

Table 20. Functional-Block Members for the Four-Channel ADC 

Channel Gain Offset Linearization 

fbAdc[0] nciGain[0] 

fbAdc[1] nciGain[1] 

fbAdc[2] nciGain[2] 

fbAdc[3] nciGain[3] 

nciOffset nciLinearization[0..4] 
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Sharing a Configuration Property 
The typical instantiation of a configuration property is unique to a single device, 
functional block, or network variable.  For example, a configuration property 
family whose name appears in the property list of five separate network variables 
has five instantiations, and each instance is specific to a single network variable. 
Similarly, a network variable array of five elements that includes the same 
configuration property family name in its property list instantiates five members 
of the configuration property family, and each one applies to one of the network 
variable array elements. 

Rather than creating extra configuration property instances, you can specify that 
functional blocks or network variables share a configuration property by 
including the static or global keywords in the configuration property declaration. 

The global keyword causes a configuration property member to be shared among 
all the functional blocks or network variables whose property list contains that 
configuration property family name.  The functional blocks or network variables 
in the configuration property family can have only one such global member.  
Thus, if you specify a global member for both the functional blocks and the 
network variables in a configuration property family, the global member shared 
by the functional blocks is a different member than the global member shared by 
the network variables. 

The static keyword causes a configuration property family member to be shared 
among all elements of the array it is associated with (either network variable 
array or functional block array).  However, the sharing of the static member does 
not extend to other network variables or functional blocks outside of the array. 

Example 1: 

// CP for throttle (default 1 minute) 
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 }; 
  
// NVs with shared throttle: 
network output SNVT_lev_percent nvoValue1 
 nv_properties { 
  global cpMaxSendT 
 }; 
network output SNVT_lev_percent nvoValue2 
 nv_properties { 
  global cpMaxSendT  // the same as the one above 
 }; 
network output SNVT_lev_percent nvoValueArray[10] 
 nv_properties { 
  static cpMaxSendT  // shared among the array 
        // elements only 
 }; 

In addition to sharing members of a configuration property family, you can use 
the static or global keywords for a configuration network variable (CPNV) to 
specify sharing.  However, a shared configuration network variable cannot 
appear in two or more property lists without the global keyword because there is 
only one instance of the network variable (configuration property families can 
have multiple instances).   

A configuration property that applies to a device cannot be shared because there 
is only one device per application. 
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Example 2: 

The following model file defines a three-channel (red-green-blue, RGB) light 
sensor, implemented with an array of three SFPTopenLoopSensor functional 
blocks.  Each channel has individual illumination set points, but shares one 
property to specify the sample rate for all three channels. 

#define NUM_CHANNELS 3 
 
SCPTluxSetPoint  cp_family cpLuxSetPoint[NUM_CHANNELS]; 
SCPTupdateRate   cp_family cpUpdateRate; 
 
network output SNVT_lux nvoLux[NUM_CHANNELS]; 
 
fblock SFPTopenLoopSensor { 
 nvoLux[0] implements nvoValue; 
} fbLightSensor[NUM_CHANNELS] external_name("Light Sensor") 
 fb_properties { 
  cpLuxSetPointp[0], 
  static cpUpdateRate 
 }; 

Inheriting a Configuration Property Type 
You can define a configuration property type that does not include a complete 
type definition, but instead references the type definition of the network variable 
to which it applies.  A configuration property type that references another type is 
called a type-inheriting configuration property.  When the configuration property 
family member for a type-inheriting configuration property appears in a property 
list, the instantiation of the configuration property family member uses the type 
of the network variable.  Likewise, a configuration property network variable can 
be type-inheriting; however, for configuration network variable arrays and arrays 
of configuration network variables (CPNVs), each element of the array must 
inherit the same type. 

Type-inheriting configuration properties that are listed in an nv_properties 
clause inherit the type from the network variable to which they apply.  Type-
inheriting configuration properties that are listed in an fb_property clause 
inherit their type from the functional profile’s principal network variable 
member, an attribute that is assigned to exactly one network variable member. 

Recommendation:  Because the type of a type-inheriting configuration property is 
not known until instantiation, you should specify the configuration property 
initializer option in the property list rather than in the declaration.  Likewise, 
you should specify the range-mod string in the property list because different 
range-mod strings can apply to different instantiations of the property. 

Restrictions: 

• Type-inheriting configuration network variables that are also shared can 
only be shared among network variables of identical type. 

• A type-inheriting configuration property cannot be used as a device 
property, because the device has no type from which to inherit. 

A typical example of a type-inheriting configuration property is the 
SCPTdefOutput configuration property type.  Several functional profiles list the 
SCPTdefOutput configuration property as an optional configuration property, 
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and use it to define the default value for the sensor’s principal network variable.  
The functional profile itself, however, might not define the type for the principal 
network variable. 

The following example implements a SFPTopenLoopSensor functional block with 
an optional SCPTdefOutput configuration property.  The configuration property 
inherits the type from the network variable it applies to, SNVT_lux in this case. 

Example 1: 

SCPTdefOutput cp_family cpDefaultOutput; 
 
network output SNVT_lux nvoLux nv_properties { 
 cpDefaultOutput = 450 
}; 
 
fblock SFPTopenLoopSensor { 
 nvoLux implements nvoValue; 
} fbLightSensor; 

The initial value (450) must be provided in the instantiation of the configuration 
property, because the type for cpDefaultOutput is not known until it is 
instantiated. 

You can also combine type-inheriting configuration properties with changeable- 
type network variables.  The type of such a network variable can be changed 
dynamically by a network integrator when the device is installed in a network. 

Example 2: 

SCPTdefOutput cp_family cpDefaultOutput; 
SCPTnvType cp_family    cpNvType; 
 
network output changeable_type SNVT_lux nvoValue 
 nv_properties { 
  cpDefaultOutput = 450, 
  cpNvType 
 }; 
 
fblock SFPTopenLoopSensor { 
 nvoValue implements nvoValue; 
} fbGenericSensor; 

The nvoValue principal network variable, although it is of changeable type, must 
still implement a default type (SNVT_lux in the example).  The SCPTdefOutput 
type-inheriting configuration property inherits the type information from this 
initial type.  Therefore, the initializer for cpDefaultOutput must be specific to 
this instantiation.  Furthermore, the initializer must be valid for this initial type. 

If the network integrator decides to change this type at runtime, for example, to 
SNVT_lev_percent, then it is in the responsibility of the network management 
tool to apply the formatting rules that apply to the new type when reading or 
writing this configuration property.  However, your application has the 
responsibility to propagate the new type to this network variable’s type-
inheriting configuration properties (if any). 
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Declaring a Message Tag 
You can declare a message tag in a model file.  A message tag is a connection 
point for application messages.  Application messages are used for the 
LONWORKS file transfer protocol (LW-FTP) and Interoperable Self-Installation 
(ISI) protocol, and are also used to implement proprietary interfaces to 
LONWORKS devices as described in Chapter 10, Developing a ShortStack 
Application, on page 163. 

Message tag declarations do not generate code, but result in a simple 
enumeration, whose members are used to identify individual tags.  There are two 
basic forms of message tags:  bindable and nonbindable. 

Example: 

msg_tag myBindableMT; 
msg_tag bind_info(nonbind) myNotBindableMT; 

Similar to network variables, you can connect bindable message tags together, 
thus allowing applications to communicate with each other through the message 
tags (rather than having to know specific device addressing details).  Each 
bindable message tag requires one address-table entry for its exclusive use. 

Sending application messages through bindable message tags is also known as 
sending application messages with implicit addressing. 

Nonbindable message tags enable (and require) the use of explicit addresses, 
which the sending application must provide.  However, these addresses do not 
require address-table entries. 

Defining a Resource File 
Functional profiles, network variable types, and configuration property types are 
defined in resource files.  LONWORKS resource files use a standard format that is 
recognized by all interoperable network management tools, such as the 
LonMaker Integration Tool.  This standard format enables device manufacturers 
to create definitions for user functional profiles, user network variable types 
(UNVTs), and user configuration property types (UCPTs) that can be used during 
installation by a network integrator using any interoperable network 
management tool.   

A set of standard functional profiles, standard network variable types (SNVTs), 
and standard configuration property types (SCPTs) is defined by a standard 
resource file set distributed by LONMARK International (www.lonmark.org).  A 
functional profile defined in a resource file is also called a functional profile 
template. 

Resource files are grouped into resource file sets, where each set applies to a 
specified range of program IDs.  A complete resource file set consists of a type file 
(.TYP extension), a functional profile definitions file (.FPT extension), a format 
file (.FMT extension), and one or more language files (.ENG, .ENU, or other 
language-specific extensions). 

Each set defines functional profiles, network variable types, and configuration 
property type for a particular type of device or set of device types.  The applicable 
device types are specified by a range of program IDs, where the program ID 
range is determined by a program ID template, and a scope value in the resource 

http://www.lonmark.org/
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file set.  The scope value specifies which fields of the program ID template are 
used to match the program ID template to the program ID of a device.  That is, 
the range of device types to which a resource file applies is the scope of the 
resource file. 

The program ID template has an identical structure to the program ID of a 
device, except that the applicable fields might be restricted by the scope.  The 
scope value is a kind of filter that indicates the relevant parts of the program ID.  
For example, the scope can specify that the resource file applies to an individual 
device type, or to all device types.   

You can specify a resource file for any of the following scopes: 

0 – Standard 
Applies to all devices. 

1 – Reserved 
Reserved for future use. 

2 – Reserved 
Reserved for future use. 

3 – Manufacturer 
Applies to all devices from the specified manufacturer. 

4 – Manufacturer and Device Class 
Applies to all devices from the specified manufacturer with the specified 
device class. 

5 – Manufacturer, Device Class, and Device Subclass 
Applies to all devices from the specified manufacturer with the specified 
device class and device subclass. 

6 – Manufacturer, Device Class, Device Subclass, and Device Model 
Applies to all devices of the specified type from the specified 
manufacturer. 

For scopes 3 through 6, the program ID template included in the resource file set 
specifies the components.  Network management tools match this template 
against the program ID for a device when searching for an appropriate resource 
file. 

For a device to be able to use a resource file set, the program ID of the device 
must match the program ID template of the resource file set to the degree 
specified by the scope.  Thus, each LONWORKS manufacturer can create resource 
files that are unique to their devices. 

Example:  Consider a resource file set with a program ID template of 
81:23:45:01:02:05:04:00, with manufacturer and device class scope (scope 4).  Any 
device with the manufacturer ID fields of the program ID set to 1:23:45 and the 
device class ID fields set to 01:02 would be able to use types defined in this 
resource file set.  However, resources on devices of the same class, but from a 
different manufacturer, could not access this resource file set. 

A resource file set can also use information in any resource file set that has a 
numerically lower scope, as long as the relevant fields of their program ID 
templates match.  For example, a scope 4 resource file set can use resources in a 
scope 3 resource file set, assuming that the manufacturer ID components of the 
resource file sets’ program ID templates match. 
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Scopes 0 through 2 are reserved for standard resource definitions published by 
Echelon and distributed by LONMARK International.  Scope 0 applies to all 
devices, and scopes 1 and 2 are reserved for future use.  Because scope 0 applies 
to all devices, there is a single scope 0 resource file set called the standard 
resource file set.   

The ShortStack Developer's Kit includes the scope 0 standard resource file set 
that defines the standard functional profiles (SFPTs), SNVTs, and SCPTs 
(updates are also available from LONMARK International at www.lonmark.org).  
The kit also includes the NodeBuilder Resource Editor that you can use to view 
the standard resource file set, or use to create your own user functional profiles 
(UFPTs), UNVTs, and UCPTs. 

You can define your own functional profiles, types, and formats in scope 3 
through 6 resource files. 

Most LNS tools, including the LonMaker tool assume a default scope of 3 for all 
user resources.  LNS Turbo automatically sets the scope to the highest (most 
specific) applicable scope level.  However, if you use LNS 3 or earlier with scope 
4, 5, or 6 resource files, you must explicitly set the scope in LNS so that LNS uses 
the appropriate scope.  See the NodeBuilder FX User’s Guide for information 
about developing a plug-in to set the scope, or see the LonMaker User's Guide (or 
online help) for information about modifying a device shape to set the scope. 

Implementation-Specific Scope Rules 
When you add implementation-specific network variables or configuration 
properties to a standard or user functional profile, you must ensure that the 
scope of the resource definition for the additional item is numerically less than or 
equal to the scope of the functional profile, and that the member number is set 
appropriately.  For example: 

• If you add an implementation-specific network variable or configuration 
property to a standard functional block (SFPT, scope 0), it must be 
defined by a standard type (SNVT, or SCPT).   

• If you implement a functional block that is based on a manufacturer 
scope resource file (scope 3), you can add an implementation-specific 
network variable or configuration property that is defined in the same 
scope 3 resource file, and you can also add an implementation-specific 
network variable or configuration property that is defined by a SNVT or 
SCPT (scope 0).  

You can add implementation-specific members to standard functional profiles 
using inheritance by performing the following tasks: 

1. Use the NodeBuilder Resource Editor to create a user functional profile 
with the same functional profile key as the standard functional profile. 

2. Set Inherit members from scope 0 in the functional profile definition.  
This setting makes all members of the standard functional profile part of 
your user functional profile. 

3. Declare a functional block based on the new user functional profile. 

4. Add implementation-specific members to the functional block. 

http://www.lonmark.org/
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Writing Acceptable Neuron C Code 
When processing a model file, the LonTalk Interface Developer utility 
distinguishes between three categories of Neuron C statements:  

• Acceptable 

• Ignored – ignored statements produce a warning 

• Unacceptable – unacceptable statements produce an error 

Appendix B, Model File Compiler Directives, on page 281, lists the acceptable 
and ignored compiler directives for model files.  All other compiler directives are 
not accepted by the LonTalk Interface Developer utility and cause an error if 
included in a model file.  A statement can be unacceptable because it controls 
features that are meaningless in a ShortStack device, or because it refers to 
attributes that are determined by the ShortStack Micro Server or by other 
means.   

The LonTalk Interface Developer utility ignores all executable code and I/O 
object declarations.  These constructs cause the LonTalk Interface Developer 
utility to issue a warning message.  The LonTalk Interface Developer utility 
predefines the _SHORTSTACK and _MODEL_FILE macros, so that you can use 
#ifdef or #ifndef directives to control conditional compilation of source code that is 
used for regular Neuron C compilation and as a ShortStack model file. 

All constructs not specifically mentioned as unacceptable or ignored are 
acceptable. 

Anonymous Top-Level Types 
Anonymous top-level types are not acceptable.  The following Neuron C construct 
is not acceptable: 

network output struct {int a; int b;} nvoZorro; 

This statement is not acceptable because the type of the nvoZorro network 
variable does not have a name.  The LonTalk Interface Developer utility issues 
an error when it detects such a construct.   

Using a named type solves the problem, for example: 

typedef struct { 
 int a; 
 int b; 
} Zorro; 
network output Zorro nvoZorro; 

The use of anonymous sub-types is permitted.  For example, the LonTalk 
Interface Developer utility allows the following type definition: 

typedef struct { 
 int a; 
 int b; 
 struct { 
  long x; 
  long y; 
  long  z; 
 }  c; 
} Zorro; 
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network output Zorro nvoZorro; 

Legacy Neuron C Constructs 
You must use the Neuron C Version 2 syntax described in this manual and the 
Neuron C Reference Guide.  You cannot use legacy Neuron C constructs for 
defining LONMARK compliant interfaces.  That is, you cannot use the config 
modifier for network variables, and you cannot use Neuron C legacy syntax for 
declaring functional blocks or configuration properties.  The legacy syntax used 
an sd_string() modifier containing a string that starts with a ‘&’ or ‘@’ character. 

Using Authentication 
Authentication is a special acknowledged service between one source device and 
one or more (up to 63) destination devices.  Authentication is used by the 
destination devices to verify the identity of the source device.  This type of service 
is useful, for example, if a device containing an electronic lock receives a message 
to open the lock.  By using authentication, the electronic lock device can verify 
that the “open” message comes from an authorized device, not from a person or 
device attempting to break into the system. 

Authentication doubles the number of messages per transaction.  An 
unauthenticated acknowledged message normally requires two messages:  an 
update and an acknowledgment.  An authenticated message requires four 
messages, as shown in Figure 55 on page 138. These extra messages can affect 
system response time and channel capacity. 

A device can use authentication with acknowledged updates or network variable 
polls.  However, a device cannot use authentication with unacknowledged or 
repeated updates.   

For a program to use authenticated network variables or send authenticated 
messages, you must perform the following steps:  

1. Declare the network variable as authenticated, or allow the network 
management tool to specify that the network variable is to be 
authenticated. 

2. Specify the authentication key to be used for this device using a network 
management tool, and enable authentication.  You can use the LonMaker 
Integration Tool to install a key during network integration, or your 
application can use the LonQueryDomainConfig() and 
LonUpdateDomainConfig() API functions to install a key locally. 

If you have a NodeBuilder license, you can also create a custom Micro Server 
with a pre-set authentication key. 

Specifying the Authentication Key 
All devices that read or write a given authenticated network variable connection 
must have the same authentication key.  This 48-bit authentication key is used 
in a special way for authentication, as described in How Authentication Works on 
page 137.  If a device belongs to more than one domain, you must specify a 
separate key for each domain. 
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The key itself is transmitted to the device only during the initial configuration.  
All subsequent changes to the key do not involve sending it over the network.  
The network management tool can modify a device’s key over the network, in a 
secure fashion, with a network management message. 

Alternatively, your application can use a combination of the 
LonQueryDomainConfig() and LonUpdateDomainConfig() API calls to specify the 
authentication keys during application start-up.  

If you set the authentication key during device manufacturing, you must perform 
the following tasks to ensure that the key is not exposed to the network during 
device installation: 

1. Specify that the device should use network-management authentication 
(set the configuration data in the LonConfigData data structure, which is 
defined in the ShortStackTypes.h file). 

2. Set the device’s state to configured.  An unconfigured device does not 
enforce authentication. 

3. Recommended:  Set the device’s domain to an invalid domain value to 
avoid address conflicts during device installation. 

If you do not set the authentication key during device manufacturing, the device 
installer can specify authentication for the device using the network management 
tool, but must specify an authentication key because the device has only a default 
key.  

To produce highly secured ShortStack devices, consider creating a custom Micro 
Server using the NodeBuilder Development tool, exporting the generated image 
with the authentication keys pre-set.  See the NodeBuilder FX User’s Guide for 
more information. 

How Authentication Works 
Figure 55 on page 138 illustrates the process of authentication: 

1. Device A uses the acknowledged service to send an update to a network 
variable that is configured with the authentication attribute on Device B.  
If Device A does not receive the challenge (described in step 2), it sends a 
retry of the initial update. 

2. Device B generates a 64-bit random number and returns a challenge 
packet that includes the 64-bit random number to Device A.  Device B 
then uses an encryption algorithm (built in to the Smart Transceiver 
firmware) to compute a transformation on that random number using its 
48-bit authentication key and the message data.  The transformation is 
stored in Device B. 

3. Device A then also uses the same encryption algorithm to compute a 
transformation on the random number (returned to it by Device B) using 
its 48-bit authentication key and the message data.  Device A then sends 
this computed transformation to Device B. 

4. Device B compares its computed transformation with the number that it 
receives from Device A.  If the two numbers match, the identity of the 
sender is verified, and Device B can perform the requested action and 
send its acknowledgment to Device A.  If the two numbers do not match, 
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Device B does not perform the requested action, and an error is logged in 
the error table. 

If the acknowledgment is lost and Device A tries to send the same message again, 
Device B remembers that the authentication was successfully completed and 
acknowledges it again. 

 
Figure 55. Authentication Process 

If Device A attempts to update an output network variable that is connected to 
multiple readers, each receiver device generates a different 64-bit random 
number and sends it in a challenge packet to Device A.  Device A must then 
transform each of these numbers and send a reply to each receiver device. 

The principal strength of authentication is that it cannot be defeated by simple 
record and playback of commands that implement the desired functions (for 
example, unlocking the lock).  Authentication does not require that the specific 
messages and commands be secret, because they are sent unencrypted over the 
network, and anyone who is determined can read those messages. 

It is good practice to connect a device directly to a network management tool 
when initially installing its authentication key.  This direct connection prevents 
the key from being sent over the network, where it might be detected by an 
intruder.  After a device has its authentication key, a network management tool 
can modify the key, over the network, by sending an increment to be added to the 
existing key. 

You can update the device’s address without having to update the key, and you 
can perform authentication even if the devices’ domains do not match.  Thus, a 
ShortStack device can set its key during device manufacturing, and you can then 
use a network management tool to update the key securely over the network. 

Example Model files 
This section describes a few example model files, with increasing levels of 
complexity.   

See Network Variable and Configuration Property Declarations on page 156 for 
information about mapping types and items declared in the model file to those 
shown in the LonTalk Interface Developer utility-generated application 
framework. 
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Simple Network Variable Declarations 
This example declares one input network variable and one output network 
variable.  Both network variables are declared with the SNVT_count type.  The 
names of the network variables (nviCount and nvoCount) are arbitrary.  
However, it is a common practice to use the “nvi” prefix for input network 
variables and the "nvo" prefix for output network variables. 

network input  SNVT_count nviCount; 
network output SNVT_count nvoCount; 

The LonTalk Interface Developer utility compiles this model file into an 
application framework that contains, among other things, two global C variables 
in the ShortStackDev.c file: 

volatile SNVT_count nviCount; 
SNVT_count nvoCount; 

When an update occurs for the input network variable (nviCount), the Micro 
Server stores the updated value in the global variable.  The application can use 
this variable like any other C variable.  When the application needs to update the 
output value, it updates the nvoCount variable, so that the Micro Server can read 
the updated value and send it to the network. 

For more information about how the LonTalk Interface Developer utility-
generated framework represents network variables, see Using Types on page 
154.  

Important:  This example is not interoperable because it does not use functional 
blocks to define the purpose of these network variables.  However, this type of 
declaration can define a functioning device for an initial test application. 

Network Variables Using Standard Types 
A more complete example includes the use of more complex standard network 
variable types and declarations. This example provides the model for a simple 
lighting device, where all input data is retrieved from the network through the 
nviLux and nviColor input network variables.  The result is posted to the 
nvoRed, nvoGreen, and nvoBlue output network variables.  An additional 
nvoUsage output network variable is polled and uses non-volatile storage to 
count the device’s total lifetime.  

network input     SNVT_lux  nviLux; 
network input     SNVT_color  nviColor; 
network output    SNVT_lev_percent nvoRed; 
network output    SNVT_lev_percent nvoGreen; 
network output    SNVT_lev_percent nvoBlue; 
network output polled eeprom  SNVT_elapsed_tm nvoUsage; 

The LonTalk Interface Developer utility generates type definitions in the 
LonNvTypes.h file for all of the above network variables.  However, it does not 
generate type definitions in the LonCpTypes.h file because there are no 
configuration properties.   

In addition to the type definitions and other data, the LonTalk Interface 
Developer utility generates the following global C variables for this model file: 

volatile SNVT_lux nviLux; 
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volatile SNVT_color nviColor; 
SNVT_lev_percent nvoRed; 
SNVT_lev_percent nvoGreen; 
SNVT_lev_percent nvoBlue; 
SNVT_elapsed_tm nvoUsage; 

The declaration of the nvoUsage output network variable uses the network 
variable modifiers polled and eeprom.  The LonTalk Interface Developer utility 
stores these attributes in the network-variable table (nvTable[]) in the 
ShortStackDev.c file.  The API uses this table to access the network variables 
when the application runs.  In addition, the application can query the data in this 
table at runtime. 

Important:  This example is not interoperable because it does not use functional 
blocks to define the purpose of these network variables.  However, this type of 
declaration can define a functioning device for an initial test application. 

Functional Blocks without Configuration Properties 
The following model file describes a similar lighting device application as in the 
previous example, but implements it using functional blocks to provide an 
interoperable interface:   

• A node object based on the SFPTnodeObject functional profile to manage 
the entire device 

• An array of three lighting devices, each based on the same user-defined 
UFPTlightingDevice profile, implementing three identical devices. 

Configuration properties are not used in this example. 

// Node object 
network input    SNVT_obj_request  nviNodeRequest; 
network output polled  SNVT_obj_status  nvoNodeStatus; 
 
fblock SFPTnodeObject { 
 nviNodeRequest implements nviRequest; 
 nvoNodeStatus implements nvoStatus; 
} NodeObject external_name("NodeObject"); 
 
// UFPTlightingDevice  
// Implements the device from the previous example. 
network input    SNVT_lux  nviLux[3]; 
network input    SNVT_color  nviColor[3]; 
network output   SNVT_lev_percent nvoRed[3]; 
network output   SNVT_lev_percent nvoGreen[3]; 
network output   SNVT_lev_percent nvoBlue[3]; 
network output polled eeprom  SNVT_elapsed_tm
 nvoUsage[3]; 
 
fblock UFPTlightingDevice { 
 nviLux[0]   implements nviLux; 
 nviColor[0]  implements nviColor; 
 nvoRed[0]   implements nvoRed; 
 nvoGreen[0]  implements nvoGreen; 
 nvoBlue[0]   implements nvoBlue; 
 
 nvoUsage[0]  implements nvoUsage; 
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} LightingDevice[3] external_name("LightingDevice"); 

Because functional blocks only provide logical grouping of network variables and 
configuration properties, and meaning to those groups, but do not themselves 
contain executable code, the functional blocks appear only in the self-
documentation data generated by the LonTalk Interface Developer utility, but 
not in any generated executable code. 

Functional Blocks with Configuration Network 
Variables 

The following example takes the above example and adds a few configuration 
properties implemented as configuration network variables.  A cp modifier in the 
network variable declaration makes the network variable a configuration 
network variable (CPNV).  The nv_properties and fb_properties modifiers apply 
the configuration properties to specific network variables or the functional block.   

// Configuration properties for the node object 
network input cp SCPTlocation nciLocation; 
 
// network variables for the node object 
network input    SNVT_obj_request  nviNodeRequest; 
network output polled  SNVT_obj_status  nvoNodeStatus; 
 
fblock SFPTnodeObject { 
 nviNodeRequest implements nviRequest; 
 nvoNodeStatus implements nvoStatus; 
} NodeObject external_name("NodeObject") 
fb_properties { 
 nciLocation 
}; 
 
// config properties for the Lighting Device 
network input cp SCPTluxSetpoint nciLuxSetpoint[3]; 
network input cp SCPTupdateRate nciUpdateRate; 
 
// network variables for the Lighting Device 
network input    SNVT_lux  nviLux[3]; 
network input    SNVT_color  nviColor[3]; 
network output   SNVT_lev_percent nvoRed[3]; 
network output   SNVT_lev_percent nvoGreen[3]; 
network output   SNVT_lev_percent nvoBlue[3]; 
network output polled eeprom  SNVT_elapsed_tm
 nvoUsage[3]; 
 
fblock UFPTlightingDevice { 
 nviLux[0]   implements nviLux; 
 nviColor[0]  implements nviColor; 
 nvoRed[0]   implements nvoRed; 
 nvoGreen[0]  implements nvoGreen; 
 nvoBlue[0]   implements nvoBlue; 
 nvoUsage[0]  implements nvoUsage; 
} LightingDevice[3] external_name("LightingDevice") 
fb_properties { 
 nciLuxSetPoint[0], 
   static nciUpdateRate 
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}; 

This example implements an array of configuration network variables, 
nciLuxSetPoint.  Each element of this array applies to one element of the 
LightingDevice functional block array, starting with nciLuxSetPoint[0]. 

The SCPTupdateRate configuration property nciUpdateRate is shared among all 
three lighting devices.  There is only a single nciUpdateRate configuration 
property, and it applies to every element of the array of three 
UFPTlightingDevice functional blocks. 

The LonTalk Interface Developer utility creates a network variable table for the 
configuration network variables and the persistent nvoUsage network variable.  
You must provide persistent storage for such data.  See Providing Persistent 
Storage for Non-Volatile Data on page 192 for more information about support for 
non-volatile data. 

Functional Blocks with Configuration Properties 
Implemented in a Configuration File 

This example implements a device similar to the one in the previous example, 
with these differences:  

1. All configuration properties are implemented within a configuration file 
instead of as a configuration network variable  

2. A SNVT_address type network variable is declared to enable access to 
these files through the direct memory file access method 

3. The SFPTnodeObject node object has been updated to support the SNVT 
address network variable 

// config properties for the Node object 
SCPTlocation cp_family cpLocation; 
 
// Network variables for the node object 
network input    SNVT_obj_request  nviNodeRequest; 
network output polled  SNVT_obj_status  nvoNodeStatus; 
const network output polled SNVT_address nvoFileDirectory; 
 
// Node object 
fblock SFPTnodeObject { 
 nviNodeRequest  implements nviRequest; 
 nvoNodeStatus  implements nvoStatus; 
 nvoFileDirectory implements nvoFileDirectory; 
} NodeObject external_name("NodeObject") fb_properties { 
 cpLocation 
}; 
 
// Config properties for the Lighting Device 
SCPTluxSetpoint cp_family cpLuxSetpoint[3]; 
SCPTupdateRate cp_family cpUpdateRate; 
 
// network variables for the Lighting Device 
network input    SNVT_lux  nviLux[3]; 
network input    SNVT_color  nviColor[3]; 
network output   SNVT_lev_percent nvoRed[3]; 
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network output   SNVT_lev_percent nvoGreen[3]; 
network output   SNVT_lev_percent nvoBlue[3]; 
network output polled eeprom  SNVT_elapsed_tm
 nvoUsage[3]; 
 
fblock UFPTlightingDevice { 
 nviLux[0]   implements nviLux; 
 nviColor[0]  implements nviColor; 
 nvoRed[0]   implements nvoRed; 
 nvoGreen[0]  implements nvoGreen; 
 nvoBlue[0]   implements nvoBlue; 
 nvoUsage[0]  implements nvoUsage; 
} LightingDevice[3] external_name("LightingDevice") 
fb_properties { 
 cpLuxSetPoint[0], 
   static cpUpdateRate 
}; 

The addition of the SNVT_address typed network variable nvoFileDirectory is 
important for enabling the direct memory file access method for access to the 
configuration property files.  The LonTalk Interface Developer initializes this 
network variable’s value correctly, and creates all required structures and code 
for direct memory file access; see Using Direct Memory Files on page 189 for 
more information.  

Alternatively, you can use the LONWORKS File Transfer Protocol (LW-FTP) to 
access the file directory and the files in the directory.  In this case, you need to 
implement the network variables and message tags as needed for the 
implementation of a LONWORKS FTP server in the model file, and provide 
application code in your host to implement the protocol.  See the File Transfer 
engineering bulletin at www.echelon.com for more information about the 
LONWORKS file transfer protocol.  

 

http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
http://www.echelon.com/Support/documentation/Bulletin/005-0025-01D.pdf
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9  

Using the LonTalk Interface 
Developer Utility 

You use the model file, described in Chapter 8, and the 
LonTalk Interface Developer utility to define the network 
inputs and outputs for your device, and to create your 
application’s skeleton framework source code.  You can use 
this skeleton application framework as the basis for your 
own application development.   

The utility also generates device interface files that are used 
by a network management tool when designing a network 
that uses your device.  

This chapter describes how to use the LonTalk Interface 
Developer utility and its options, and describes the files that 
it generates and how to use them. 
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Running the LonTalk Interface Developer 
You can use the LonTalk Interface Developer utility to create the device interface 
data required for your ShortStack application. The LonTalk Interface Developer 
utility also generates the device interface (XIF) file that is required by network 
management tools to design a network that uses your device.  

To create the device interface data and device interface file for your device, 
perform the following tasks: 

1. Create a model file as described in Chapter 8, Creating a Model File, on 
page 115.  

2. Start the LonTalk Interface Developer utility:  from the Windows Start 
menu, select Programs → Echelon ShortStack FX Developer’s Kit → 
LonTalk Interface Developer.  

3. In the LonTalk Interface Developer utility, specify the Micro Server, the 
program ID, the model file for the device, and other preferences for the 
utility.  The utility uses this information to generate a number of files 
that your application uses.  See Using the LonTalk Interface Developer 
Files on page 150. 

4. Add the ShortStackDev.h ANSI C header file to your ShortStack 
application with an include statement: 
 
#include "ShortStackDev.h" 

5. Add the ShortStackDev.c file, and the executable ShortStack LonTalk 
Compact API source files (ShortStackApi.c, ShortStackInternal.c, and 
ShortStackHandlers.c) to your project. 

In general, you should limit changes to the LonTalk Interface Developer utility-
generated files.  Any changes that you make will be overwritten the next time 
you run the utility.  However, the LonTalk Interface Developer utility does not 
overwrite or modify the ShortStack LonTalk Compact API files.  

After you have the LonTalk Interface Developer utility-generated files, you need 
to modify and add code to your application, using the ShortStack LonTalk 
Compact API, to implement desired LONWORKS functionality into your 
ShortStack application.  See Chapter 10, Developing a ShortStack Application, 
on page 163, for information about how to use the ShortStack LonTalk Compact 
API calls to implement LONWORKS tasks. 

Specifying the Project File 
From the Welcome to LonTalk Interface Developer page of the utility, you can 
enter the name and location of a new or existing ShortStack project file (.lidprj 
extension).  The LonTalk Interface Developer utility uses this project file to 
maintain your preferences for this project.  The base name of the project file is 
also used as the base name for the device interface files that the utility generates.   

Recommendation:  Include a project version number in the name of the project to 
facilitate version control and project management for your LonTalk Interface 
Developer projects. 
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The utility creates all of its output files in the same directory as the project file.  
Your application’s model file does not need to be in this directory; from the 
utility’s Model File Selection page, you can specify the name and location of the 
model file. 

The location of the LonTalk Interface Developer project file can be the same as 
your application’s project folder, but you can also generate and maintain the 
LonTalk Interface Developer’s project in a separate folder, and manually link the 
latest generated framework with your application by copying or referencing the 
correct location. 

Specifying the Micro Server 
From the ShortStack Micro Server Selection page of the utility, you can specify 
the following information about the ShortStack Micro Server: 

• The Micro Server type 

• The Smart Transceiver type 

• The Smart Transceiver external clock speed 

• The Smart Transceiver clock multiplier value 

The LonTalk Interface Developer utility reads the ShortStack Micro Server 
Database file (StdServers.xml) and the User Database file (UserServer.xml) to 
display the values for each of the standard and custom Micro Servers.  For a 
standard installation, the StdServers.xml file is in the 
\LonWorks\ShortStack\MicroServers directory. 

To select a Micro Server that is not in the database file, click Browse to specify 
the Micro Server’s XIF file.  In this case, the LonTalk Interface Developer utility 
presents the chosen Micro Server’s properties as indicated in the XIF file, but for 
a custom Micro Server that is based on a Series 5000 Smart Transceiver or 
Neuron 5000 Processor, you must select the correct system clock multiplier. 

Specifying System Preferences 
From the ShortStack System Preferences page of the utility, you can specify the 
following general preferences: 

• Whether explicit addresses should be enabled 

• Whether application addresses should be enabled 

• Whether the notification of service-pin-held events is enabled 

• If service-pin-held events are enabled, how long the service pin must be 
pressed and held before the Micro Server receives the event 

These preferences are all optional. 

Recommendation:  Enable explicit and application addressing only if they are 
needed, because they increase the size of buffers and require additional memory 
on the ShortStack host processor. 

When you press the local service pin on the device, the Micro Server sends a 
service-pin message on the LONWORKS network and signals a service-pin event to 
the application.  However, when you press and hold the local service pin on the 
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device, whether the Micro Server sends a service-pin-held event depends on how 
you configure it. 

Although your ShortStack device is not required to handle service-pin-held 
events, you can include support in your application to receive them, even if it 
does not process them.  By including support for receiving the service-pin-held 
events, you have the flexibility to add support for processing them in the future 
without modifying the ShortStack Micro Server image.  For example, many 
devices support an emergency recovery feature that is triggered by pressing and 
holding the service pin for a prolonged amount of time (typically 10 or 20s).  Then 
the device moves to the unconfigured state (that is, calls LonGoUnconfigured()) 
or uses another method to return to a factory state. 

Specifying the Device Program ID 
In the Program ID Selection window, you use the LONMARK Standard Program 
ID Calculator to specify the device program ID.  The program ID is a 16-digit 
hexadecimal number that uniquely identifies the device interface for your device. 

The program ID can be formatted as a standard or non-standard program ID.  
When formatted as a standard program ID, the 16 hexadecimal digits are 
organized into six fields that identify the manufacturer, classification, usage, 
channel type, and model number of the device.  The LONMARK Standard Program 
ID Calculator simplifies the selection of the appropriate values for these fields by 
allowing you to select from lists contained in a program ID definition file 
distributed by LONMARK International.  A version of this list is included with the 
ShortStack Developer’s Kit. 

Within the device’s program ID, you must include your manufacturer ID.  If your 
company is a member of LONMARK International, you have a permanent 
Manufacturer ID assigned by LONMARK International.  You can find those listed 
within the Standard Program ID Calculator utility, or online at 
www.lonmark.org/mid. 

If your company is not a member of the LONMARK International, you can obtain a 
temporary manufacturer ID from www.lonmark.org/mid.  There is no charge for a 
temporary manufacturer ID, and you do not have to join LONMARK International 
to obtain one.   

For prototypes and example applications, you can use the F:FF:FF manufacturer 
ID, but you should not release a device that uses this non-unique identifier into 
production.  You can, however, produce a device with a temporary manufacturer 
ID. 

If you want to specify a program ID that does not follow the standard program ID 
format, you must use the command-line interface for the LonTalk Interface 
Developer utility.  LONMARK International requires all interoperable LONWORKS 
devices to use a standard-format program ID.  Using a non-standard format for 
the program ID will prevent the use of functional blocks and configuration 
properties, and will prevent certification. 

Specifying the Model File 
From the Model File Selection page of the utility, you can specify the model file 
for the device.  You can also click Edit to open the model file in whatever editor is 

http://www.lonmark.org/mid
http://www.lonmark.org/mid
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associated with the .nc file type, for example, Notepad or the NodeBuilder 
Development Tool. 

The model file is a simple source file written using a subset of the Neuron C 
Version 2 programming language.  The model file contains declarations of 
network variables, configuration properties, functional blocks, and their 
relationships. 

The LonTalk Interface Developer utility uses the information in the model file, 
combined with other user preferences, to generate the application framework 
files and the interface files.  You must compile and link the application 
framework files with the host application. 

See Chapter 8, Creating a Model File, on page 115, for more information about 
the model file. 

Specifying Neuron C Compiler Preferences 
From the Neuron C Compiler Preferences page of the utility, you can specify 
macros for the Neuron C compiler preprocessor and extend the include search 
path for the compiler. 

For the preprocessor macros (#define statements), you can only specify macros 
that do not require values.  These macros are optional.  Use separate lines to 
specify multiple macros. 

The _SHORTSTACK symbol is always predefined by the LonTalk Interface 
Developer utility, and does not need to be specified explicitly.  You can use this 
symbol to control conditional compilation for ShortStack applications.  In 
addition, the utility predefines the _MODEL_FILE symbol for model file 
definitions and the _LID4 symbol for LonTalk Interface Developer utility macros. 

For the search path, you can specify additional directories in which the compiler 
should search for user-defined include files (files specified within quotation 
marks, for example, #include "my_header.h"). 

Specifying additional directories is optional.  Use separate lines to specify 
multiple directories. 

The LonTalk Interface Developer project directory is automatically included in 
the compiler search path, and does not need to be specified explicitly.  Similarly, 
the Neuron C Compiler system directories (for header files specified with angled 
brackets, for example, #include <string.h>) are also automatically included in the 
compiler search path. 

Specifying Code Generator Preferences 
From the Interface Developer Code Generator Preferences page of the utility, you 
can specify preferences for the LonTalk Interface Developer compiler, such as 
whether to generate verbose source-code comments, whether to include the 
optional Query and Update functions, and whether to include the optional 
interoperable self-installation (ISI) API functions.   

If you use the direct memory files (DMF) access method, you can optionally 
specify the size and starting address of the memory window from the Interface 
Developer Code Generator Preferences page.  If you do not specify values on this 
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page, the utility assigns appropriate values.  See Using Direct Memory Files on 
page 189 for more information. 

Compiling and Generating the Files 
In the Summary and Confirmation page of the utility, you can view all of the 
information that you specified for the project.  When you click Next, the LonTalk 
Interface Developer utility compiles the model file and generates a number of C 
source files and header files, as described in Using the LonTalk Interface 
Developer Files.   

The Build Progress and Summary page shows the results of compilation and 
generation of the ShortStack project files. 

Any warning or error messages have the following format: 

Message-type:  Model_file_name  Line_number(Column_number):  Message 

Example:  A model file named “tester.nc” includes the following single network 
variable declaration: 

network input SNVT_volt nviVolt 

Note the missing semicolon at the end of the line.  When you use this file to build 
a project from the LonTalk Interface Developer utility, the compiler issues the 
following message: 

Error:   TESTER.NC    1( 32): 
        Unexpected END-OF-FILE in source file [NCC#21] 

The message type is Error, the line number is 1, the column number is 32 (which 
corresponds to the position of the error, in this case, the missing semicolon), and 
the compiler message number is NCC#21.  To fix this error, add a semicolon to 
the end of the line. 

See the Neuron Tools Errors Guide for information about the compiler messages. 

Using the LonTalk Interface Developer Files 
The LonTalk Interface Developer utility takes all of the information that you 
provide and automatically generates the following files that are needed for your 
ShortStack application: 

• LonNvTypes.h 

• LonCpTypes.h 

• ShortStackDev.h 

• ShortStackDev.c 

• project.xif 

• project.xfb 

The utility also copies a number of files to your project directory, as described in 
Copied Files on page 151.  Together, the generated files and the copied files form 
the ShortStack application framework, which defines the ShortStack Micro 
Server initialization data and self-identification data for use in the initialization 
phase, including communication parameters and everything you need to begin 
device development.  The framework includes ANSI C type definitions for 
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network variable and configuration property types used with the application, and 
implements them as global application variables. 

To include these files in your application, include the ShortStackDev.h file in 
your ShortStack application using an ANSI C #include statement, and add the 
ShortStackDev.c file to your project so that it can be compiled and linked. 

The following sections describe the copied and generated files. 

Copied Files 
The LonTalk Interface Developer utility copies the following files into your 
project directory if no file with the same name already exists: 

• LonBegin.h 

• LonEnd.h 

• LonPlatform.h 

• ShortStackApi.c 

• ShortStackApi.h 

• ShortStackHandlers.c 

• ShortStackInternal.c 

• ShortStackTypes.h 

For ShortStack ISI applications, the LonTalk Interface Developer utility also 
copies the following files into your project directory: 

• ShortStackIsiApi.c 

• ShortStackIsiApi.h 

• ShortStackIsiHandlers.c 

• ShortStackIsiInternal.c 

• ShortStackIsiTypes.h 

Existing files with the same name, even if they are not write-protected, are not 
overwritten by the utility.  

Because your application includes the ShortStackDev.h file (and 
ShortStackIsiApi.h for ShortStack ISI applications), you do not normally have to 
explicitly include any of the header files with your application source. 

You must add the ShortStackInternal.c, ShortStackApi.c, and 
ShortStackHandlers.c files to your project so that they will be compiled and 
linked with your application.  For ShortStack ISI applications, you must add the 
ShortStackIsiInternal.c, ShortStackIsiApi.c and ShortStackIsiHandlers.c files to 
your project so that they will be compiled and linked with your application. 

The LonTalk Interface Developer utility also copies a number Micro Server image 
files into your project directory if no file with the same file already exists. These 
image files are based on the Micro Server preferences specified in the utility, and 
are renamed to share the project’s base name.  The available file extensions 
depend on the selected Micro Server, but typically include files with APB, NDL, 
NEI, NXE, NME, or NMF file extensions.  
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Important:  The LonTalk Interface Developer utility does not copy 
implementations of the serial driver into your project folder; you must supply this 
code. 

LonNvTypes.h and LonCpTypes.h 
The LonNvTypes.h file defines network variable types, and includes type 
definitions for standard or user network variable types (SNVTs or UNVTs).  See 
Using Types on page 154 for more information on the generated types. 

The LonCpTypes.h file defines configuration property types, and includes 
standard or user configuration property types (SCPTs or UCPTs) for 
configuration properties implemented within configuration files.   

Either of these files might be empty if your application does not use network 
variables or configuration properties. 

ShortStackDev.h 
The ShortStackDev.h file is the main header file that the LonTalk Interface 
Developer utility produces.  This file provides the definitions that are required for 
your application code to interface with the application framework and the 
ShortStack LonTalk Compact API, including C extern references to public 
functions, variables, and constants generated by the LonTalk Interface Developer 
utility.  

You should include this file with all source files that make your application, but 
you do not normally have to edit this file.  Any manual changes to this file are not 
retained when you rerun the LonTalk Interface Developer utility.  The file 
contains comments about how you can override some of the preferences and 
assumptions made by the utility. 

ShortStackDev.c 
The ShortStackDev.c file is the main source file that the LonTalk Interface 
Developer utility produces.  This file includes the ShortStackDev.h file header 
file, declares the network variables, configuration properties, and configuration 
files (where applicable).   

It defines variables and constants, including the network variable table or the 
device’s initialization data block, and a number of utility functions.  

The ShortStackDev.c file also defines the appInitData structure, which contains 
data that is sent to the Micro Server during initialization (in the LonNiAppInit 
and LonNiNvInit messages).  Table 21 on page 153 describes the fields of this 
data structure.    

Important:  Although you can modify this data structure, you should not need to 
unless you are developing an application that supports multiple device interfaces.  
If you do modify this data, you must ensure that other control data remains 
consistent with your changes, including the siData array and the nvTable (both 
in ShortStackDev.c), and the device interface files (XIF and XFB file extensions). 
Other data that also must remain consistent with your preferences are 
definitions contained in the ShortStackDev.h file, including those that configure 
the API options. 
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Table 21. Fields of the appInitData Structure 

Field Description 

appInitData.signature A 16-bit number that identifies the current 
application.  The LonTalk Interface Developer 
utility generates a new number whenever you 
regenerate the application framework.  The Micro 
Server uses this number to distinguish repeated 
initialization of the same application from 
initialization of a new application. 

appInitData.programId The 48-bit program ID in binary form. 

appInitData.communication The 96-bit communication parameter record that 
is used to correctly initialize communications with 
the LONWORKS network. 

appInitData.preferences An 8-bit vector of flags.  Includes 0x20 to enable 
explicit addressing, and a 5-bit value for the 
service-pin-held delay in seconds (mask 0x1F), 
where zero disables the feature.  The remaining 
flags 0x80 and 0x40 are reserved for future use, 
and must be kept cleared (zero).  These flags are 
optional.  

appInitData.nvCount One byte for the total number of network variables 
in the application.  This number must not exceed 
the Micro Server’s maximum network variable 
count (also known as the Micro Server’s network 
variable capacity). 

appInitData.nvData[] One byte for each network variable.  Each byte 
comprises the following flags:  priority (0x80), 
output (0x40), service type (acknowledged [0x00], 
repeated [0x10], unacknowledged [0x20]), and 
authenticated (0x08). 

You must compile and link the ShortStackDev.c file with your application, but 
you do not normally have to edit this file.  Any manual changes to this file are not 
retained when you rerun the LonTalk Interface Developer utility, but the file 
contains comments about how you can override some of the preferences and 
assumptions made by the utility. 

project.xif and project.xfb 
The LonTalk Interface Developer utility generates the device interface file for 
your project in two formats: 

• project.xif (a text file) 

• project.xfb (a binary file) 
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For both files, project is the name of the ShortStack project that you specified on 
the Welcome to LonTalk Interface Developer page of the LonTalk Interface 
Developer utility.  Thus, these files have the same name as the ShortStack 
project file (.lidprj extension). 

These files comply with the LONMARK device interface revision 4.402 format.  

Important:  If your device is defined with a non-standard program ID, the device 
interface file cannot contain interoperable LONMARK constructs.   

Using Types 
The LonTalk Interface Developer utility produces type definitions for the network 
variables and configuration properties in your model file.  For maximum 
portability, all types defined by the utility are based on a small set of host-side 
equivalents to the built-in Neuron C types, and should conform to the portability 
rules described in Porting the ShortStack LonTalk Compact API on page 109.  
For example, the LonPlatform.h file contains a type definition for a Neuron C 
signed integer equivalent type called ncsInt.  This type must be the equivalent of 
a Neuron C signed integer, a signed 8-bit scalar.  For most target platforms, the 
ncsInt type is defined as signed char type.   

A network variable declared by a Neuron C built-in type does not require a host-
side type definition in the LonNvTypes.h file, but is instead declared with its 
respective host-side Neuron C equivalent type as declared in LonPlatform.h. 

Important:  Network variables that use ordinary C types, such as int or long, are 
not interoperable.  For interoperability, network variables must use types defined 
within the device resource files.  These network variable types include standard 
network variable types (SNVTs) and user-defined network variable types 
(UNVTs).  You can use the NodeBuilder Resource Editor to define your own 
UNVTs. 

Example: 

A model file contains the following declarations: 

network input  int  nviInteger;   
network output SNVT_count nvoCount;   
network output SNVT_switch nvoSwitch; 

• The nviInteger declaration uses a built-in Neuron C type, so the LonTalk 
Interface Developer utility uses the ncsInt type defined in LonPlatform.h.  

• The nvoCount declaration uses a type that is not a built-in Neuron C 
type.  The utility produces the following type definition: 

typedef ncuLong SNVT_count; 
 
The ncuLong type represents the host-side equivalent of a Neuron C 
unsigned long, a 16-bit unsigned scalar.  It is defined in LonPlatform.h, 
and typically maps to the LonWord type.  LonWord is a platform-
independent definition of a 16-bit scalar in big-endian notation: 
 
typedef struct { 
   LonByte msb; 
   LonByte lsb; 
} LonWord; 
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To use this platform-independent type for numeric operations, you can 
use the optional LON_GET_UNSIGNED_WORD or 
LON_SET_UNSIGNED_WORD macros.  Similar macros are provided for 
signed words (16 bit), and for signed and unsigned 32-bit scalars 
(DOUBLE). 
 
Important:  If a network variable or configuration property is defined 
with an initializer in your device’s model file, and if you change the 
default definition of multibyte scalars (such as the ncuLong type), you 
must modify the initializer generated by the LonTalk Interface Developer 
utility if the type is a multibyte scalar type. 

• The nvoSwitch declaration is based on a structure.  The LonTalk 
Interface Developer utility redefines this structure using built-in Neuron 
C equivalent types: 

typedef LON_STRUCT_BEGIN(SNVT_switch){ 
 ncuInt value; 
 ncsInt state; 
} LON_STRUCT_END(SNVT_switch);  

Type definitions for structures assume a padding of 0 (zero) bytes and a packing 
of 1 byte.  The LON_STRUCT_BEGIN and LON_STRUCT_END macros enforce 
platform-specific byte packing and padding.  These macros are defined in the 
LonPlatform.h file, which allows you to adjust them for your compiler.  See in 
Porting the ShortStack LonTalk Compact API on page 109 for more information. 

Floating Point Variables 
Floating point variables receive special processing, because the Neuron C 
compiler does not have built-in support for floating point types.  Instead, it offers 
an implementation for floating point arithmetic using a set of floating-point 
support functions operating on a float_type type.  The LonTalk Interface 
Developer utility represents this type as a float_type structure, just like any 
other structured type.   

This floating-point format can represent numbers with the following 
characteristics: 

• 103810*1±  approximate maximum value 

• 710*1 −±  approximate relative resolution  

The float_type structure declaration represents a floating-point number in IEEE 
754 single-precision format.  This format has one sign bit, eight exponent bits, 
and 23 mantissa bits; the data is stored in big-endian order.  The float_type type 
is identical to the type used to represent floating-point network variables.   

For example, the LonTalk Interface Developer utility generates the following 
definitions for the floating point type SNVT_volt_f:  

/*  
 *  Type: SNVT_volt_f 
 */ 
typedef LON_STRUCT_BEGIN(SNVT_volt_f) 
{ 
  LonByte  Flags_1;   /* Use bit field macros, defined 
                         below */ 



 

156 Using the LonTalk Interface Developer Utility                                 

  LonByte  Flags_2;   /* Use bit field macros, defined 
                         below */ 
  ncuLong  LS_mantissa; 
} LON_STRUCT_END(SNVT_volt_f); 
 
 
/* 
 *  Macros to access the sign bit field contained in 
 *  Flags_1 
 */ 
#define LON_SIGN_MASK  0x80 
#define LON_SIGN_SHIFT 7 
#define LON_SIGN_FIELD Flags_1 
 
/* 
 *  Macros to access the MS_exponent bit field contained in  
 *  Flags_1 
 */ 
#define LON_MSEXPONENT_MASK  0x7F 
#define LON_MSEXPONENT_SHIFT 0 
#define LON_MSEXPONENT_FIELD Flags_1 
 
/* 
 *  Macros to access the LS_exponent bit field contained in 
 *  Flags_2 
 */ 
#define LON_LSEXPONENT_MASK  0x80 
#define LON_LSEXPONENT_SHIFT 7 
#define LON_LSEXPONENT_FIELD Flags_2 
 
/* 
 *  Macros to access the MS_mantissa bit field contained in  
 *  Flags_2 
 */ 
#define LON_MSMANTISSA_MASK  0x7F 
#define LON_MSMANTISSA_SHIFT 0 
#define LON_MSMANTISSA_FIELD Flags_2 

See the IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 
754-1985) documentation for more information. 

Network Variable and Configuration Property 
Declarations 

The LonTalk Interface Developer utility generates network variable and 
configuration property declarations using the built-in types defined in 
LonPlatform.h along with the types defined in LonNvTypes.h and LonCpTypes.h.  
Both network variables and configuration properties are declared in the 
ShortStackDev.c file, where input network variables (including configuration 
network variables) appear as volatile variables of the relevant type, and 
configuration properties that are not implemented with network variables appear 
as members of configuration files. 

Example: 

A model file contains the following Neuron C declarations: 
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SCPTlocation cp_family cpLocation; 
 
network input SNVT_obj_request nviNodeRequest; 
network output polled SNVT_obj_status nvoNodeStatus; 
const network output polled SNVT_address nvoFileDir; 
 
fblock SFPTnodeObject { 
 nviNodeRequest implements nviRequest; 
 nvoNodeStatus implements nvoStatus; 
 nvoFileDir   implements nvoFileDirectory; 
} NodeObject external_name("NodeObject") fb_properties { 
 cpLocation 
}; 

The LonTalk Interface Developer utility generates the following variables in the 
ShortStackDev.c file for the nviNodeRequest, nvoNodeStatus, and nvoFileDir 
network variables: 

volatile SNVT_obj_request nviNodeRequest; 
SNVT_obj_status nvoNodeStatus; 
SNVT_address nvoFileDir = { 
    LON_DMF_WINDOW_START/256u, LON_DMF_WINDOW_START%256u 
}; 

The application framework generated by the LonTalk Interface Developer utility 
also includes the network variable table, which is a table that allows the 
ShortStack LonTalk Compact API to locate the network variable’s value in 
memory and access other attributes of each network variable. 

The ShortStack LonTalk Compact API, upon receipt of an incoming network 
variable update, automatically moves data into the corresponding input network 
variable and signals this event by calling a callback handler function, which 
allows your application to respond to the arrival of new network variable data.  
Your application then reads the input variable to obtain the latest value.  

To send an update to the nvoNodeStatus output network variable, your 
application writes the new value to the nvoNodeStatus variable, and then calls 
the LonPropagateNv() function to propagate the new value onto the network.  

See Developing a ShortStack Application on page 163 for information about the 
development of a ShortStack application using the LonTalk Interface Developer 
utility-generated code. 

The utility generates a configuration file in ShortStackDev.c for the cpLocation 
configuration property: 

/* 
 * 
 *  Writable configuration parameter value file 
 */ 
volatile LonWriteableValueFile lonWriteableValueFile = { 
 {{'\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', 
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',  
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0',  
 '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0', '\x0'}} 
}; 
 
/* 
 *  CP template file 
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 */ 
const char lonTemplateFile[] = \ 
    "1.1;" \ 
    "1,0,0\x80,17,31;"; 
 
 
#ifndef LON_FILEDIR_USER_DEFINED 
/* 
 * Variable: File Directory 
 */ 
 
const LonFileDirectory lonFileDirectory =  
{ 
  LON_FILE_DIRECTORY_VERSION, 
  LON_FILE_COUNT, 
  { 
      LON_REGISTER_FILE("template", 
        sizeof(lonTemplateFile), LonTemplateFileType, 
        LON_DMF_WINDOW_START+sizeof(lonFileDirectory)), 
      LON_REGISTER_FILE("rwValues", 
        sizeof(lonWriteableValueFile), LonValueFileType,  
        LON_DMF_WINDOW_START+sizeof(lonFileDirectory) 
        +sizeof(lonTemplateFile)), 
      LON_REGISTER_FILE("roValues", 0, LonValueFileType, 
        0) 
    } 
}; 
#endif /* LON_FILEDIR_USER_DEFINED */ 

The LonWriteableValueFile data structure is defined in the ShortStackDev.h 
header file: 

typedef LON_STRUCT_BEGIN(LonWriteableValueFile) 
{ 
    SCPTlocation cpLocation_1;    
 /* sd_string("1,0,0\x80,17,31;") */ 
} LON_STRUCT_END(LonWriteableValueFile); 
 
extern volatile LonWriteableValueFile  
 lonWriteableValueFile; 

Similarly, a LonReadOnlyValueFile type is defined and used to declare a 
lonReadOnlyValueFile variable if the model file declares read-only configuration 
properties. 

The LonTalk Interface Developer utility generates resource definitions for 
configuration properties and network variables defined with the eeprom keyword. 
Your application must provide sufficient persistent storage for these resources.  
You can use any type of non-volatile memory, or any other media for persistent 
data storage.  The template file and the read-only value file would normally be 
declared as const, and can be linked into a code segment, which might relate to 
non-modifiable memory such as PROM or EPROM (these files must not be 
changed at runtime).  However, writable, non-volatile storage must be 
implemented for the writable configuration value file.   

The details of such persistent storage are subject to the host platform 
requirements and capabilities; persistent storage options include:  flash memory, 
EEPROM memory, non-volatile RAM, or storage in a file or database on a hard 
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drive.  See Providing Persistent Storage for Non-Volatile Data on page 192 for 
more information about persistent storage considerations. 

You can specify initializers for network variables or configuration properties in 
the model file.  Alternatively, you can specify initializers for configuration 
properties in the resource file that defines the configuration property type or 
functional profile.  For network variables without explicit initialization, the rules 
imposed by your host development environment apply.  These values might have 
random content, or might automatically be preset to a well-defined value. 

Constant Configuration Properties 
In general, a configuration property can be modifiable, either from within the 
ShortStack application or from a network management tool.  However, the 
LonTalk Interface Developer utility declares constant configuration property files 
as constants (using the C const keyword), so that they are allocated in non-
modifiable memory.   

A special class of configuration properties is the device-specific configuration 
property.  A device-specific configuration property is one that must always be 
read from the device by an external tool or application, rather than relying upon 
the value in the device interface file or upon a value stored in a network 
database.  For example, you can use device-specific configuration property for a 
setpoint that is updated by a local operator interface on the device, or for a minor 
version number that varies from device to device. 

A device-specific configuration property can be set by the device that implements 
the configuration property, by another device, or by a configuration tool.  
Network management tools must never change a device-specific configuration 
property value, except as a side effect of a new program download, device re-
commissioning, or device replacement.    

For a ShortStack application, you can specify a device-specific configuration 
property by specifying the device_specific modifier for the configuration property.  
You can specify the device_specific modifier independently of the const modifier.  
For example, specify device_specific, but not const, for a configuration property 
that contains a setpoint that is updated by a local operator interface on the 
device, and allow the setpoint to be modified by both the host application and 
qualifying network tools. 

In some cases, you might want to set up a configuration property that is 
modifiable by the host application, but not by any other entities on the network.  
In this case, perform the following steps: 

1. Declare the configuration property as const and, if applicable, 
device_specific. 

2. At the top of the ShortStackDev.c file, before you include the 
ShortStackDev.h header file, define the 
LON_READONLY_FILE_IS_WRITEABLE macro with a value of 1 (one).  
If you do not define this macro, or define it to equate to zero, the read-
only value file is constant.  This is the default state.  The 
LON_READONLY_FILE_IS_WRITEABLE macro is used within the 
ShortStackDev.h header file to define the read-only file’s storage type 
with the LON_READONLY_FILE_STORAGE_TYPE macro, which in 
turn is used in the declaration and specification of the 
lonReadOnlyValueFile variable. 
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If you define the LON_READONLY_FILE_IS_WRITEABLE macro to 1, the read-
only value file is writable by the local application. Because the read-only value 
file is now allocated in volatile memory, your driver for non-volatile data must 
also read and write the read-only value file. 

For the network management tool, however, the read-only file remains non-
writable.  If your application uses the direct memory file access method to access 
the files, the LonTalk Interface Developer utility generates code that declares 
this direct memory files window segment as non-modifiable.  If your application 
uses LONWORKS FTP to access the files, your implementation of the LONWORKS 
file transfer protocol and server must prevent all write operations to the read-
only value file. 

The Network Variable Table 
The network variable table lists all the network variables that are defined by 
your application.  It contains a pointer to each network variable and the initial 
(or declared) length of each network variable, in bytes.  It also contains an 
attribute byte that contains flags which define the characteristics of each 
network variable.   

The network variable table acts as a bridge between your application and the 
ShortStack LonTalk Compact API.  The network variable table exists only if the 
model file contains one or more network variables.  The LonGetNvTable() 
function, used by the ShortStack LonTalk Compact API, returns the base of the 
network variable table or NULL if the table does not exist. 

Example:  A model file contains the following Neuron C declaration: 

network input SNVT_count nviCount; 

The LonTalk Interface Developer utility generates code to define the network 
variable as follows: 

volatile SNVT_count nviCount; 

The utility generates a pointer to the nviCount variable in the network variable 
table.  The ShortStack LonTalk Compact API uses the pData pointer provided by 
the network variable table to update the nviCount network variable.  

A ShortStack application typically accesses a network variable value through the 
C global variable that implements the network variable.  However, the 
ShortStack LonTalk Compact API also provides a function that returns the 
pointer to a network variable’s value as a function of its index: 

void* const LonGetNvValue(unsigned index); 

The LonGetNvValue() function returns NULL for an invalid index, or a pointer to 
the value.  

Applications that are designed to share application code between ShortStack and 
FTXL, and that are designed to support dynamic network variables, should use 
the LonGetNvValue() function because the FTXL LonTalk API requires use of 
the LonGetNvValue() function for dynamic network variables.  ShortStack does 
not support dynamic network variables. 
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Network Variable Attributes 
The network variable table contains an attribute byte that contains the following 
flags for each network variable: 

• IsOutput 

• IsPersist 

• IsPolled 

• IsSync 

• IsChangeable 

All network variable flags are implemented as structures, as described in Bit 
Field Members on page 111, to minimize host memory usage.  The type of the 
network variable table, LonNvDescription, and the various macros to access 
these attributes, are defined in the ShortStackDev.h file. 

The IsOutput flag identifies an output network variable.  It is true for output 
network variables and false for input network variables.  This flag is set for all 
network variables declared with the output keyword in the model file. 

The ShortStack LonTalk Compact API uses the IsOutput flag to prevent 
propagating outputs to input network variables, and to prevent a poll of an 
output network variable on the ShortStack device.   

The IsPersist flag indicates that a network variable must be kept in persistent 
storage.  This flag is set for all network variables declared with the eeprom, 
config_prop, or cp keywords in the model file.  See Providing Persistent Storage 
for Non-Volatile Data on page 192 for more information about persistent data. 

The IsPolled flag indicates that a network variable is a polled network variable. 
The flag is set for all network variables declared with the polled modifier in the 
model file. 

The IsSync flag indicates that a network variable is a synchronous network 
variable.  This flag is set for all network variables declared with the sync 
modifier in the model file.  This modifier specifies that all values assigned to this 
network variable must be propagated, in their original order.  It is mutually 
exclusive with the polled modifier.   

The ShortStack LonTalk Compact API does not enforce processing for critical 
sections.  Therefore, your application must implement any required processing to 
ensure synchronous outputs when the IsSync flag is set.  However, a typical 
ShortStack application does not require special design for synchronous outputs, 
because a typical ShortStack application treats all output network variables as 
synchronous (that is, the application calls LonPropagateNv() whenever it 
computes a new value for the network variable, which causes immediate 
propagation of the network variable to the network).  More advanced applications 
that implement critical sections, during which only the last of several possible 
assignments to a particular network variable is preserved and propagated, must 
honor the IsSync flag to allow for the exceptional case where all value 
assignments must be propagated. 

The IsChangeable flag indicates that a network variable has a changeable type.  
See Defining a Changeable-Type Network Variable on page 122 for more 
information about changeable-type network variables. 
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See Developing a ShortStack Application on page 163 for more information about 
propagation of network variable updates. 

The Message Tag Table 
The message tag table lists all the message tags that are defined by your 
application.  It contains a flag for each message tag which indicates that the 
message tag is not associated with an address table entry and therefore can only 
be used for sending explicitly addressed messages.  This flag is set for all 
message tags declared with the bind_info(nonbind) modifier in the model file. 

The LonTalk Interface Developer utility declares the message tag table in 
ShortStackDev.c if you declare one or more message tags in the model file.  The 
LonGetMtTable() function, used by the ShortStack LonTalk Compact API, 
returns the base of the message tag table or NULL if the table does not exist. 

The message tag table is only used by the ShortStack LonTalk Compact API and 
is not used by your application.  The ShortStack LonTalk Compact API uses the 
table to determine if an implicitly addressed message can be sent. 
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10  

Developing a ShortStack 
Application 

This chapter describes how to develop a ShortStack 
application.  It also describes the various tasks performed by 
the application.  
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Overview of a ShortStack Application 
This chapter describes how to use the ShortStack LonTalk Compact API and the 
device interface data produced by the LonTalk Interface Developer utility to 
perform the following tasks: 

• Use the ShortStack LonTalk Compact API 

• Understand how to use the API with a multitasking operating system  

• Initialize the ShortStack LonTalk Compact API 

• Periodically call the ShortStack event handler 

• Send information to other devices using network variables 

• Handle network variable poll requests from other devices 

• Handle updates to changeable-type network variables 

• Receive information from other devices using network variables 

• Communicate with other devices using application messages 

• Handle network management commands 

• Handle Micro Server reset events 

• Query the error log 

• Reinitialize the Micro Server 

• Provide persistent storage for non-volatile data and use the direct 
memory files feature 

Most ShortStack applications need to perform only the tasks that relate to 
persistent storage, initialization, periodically calling the LonEventhandler() 
function, sending and receiving network variables, and handling network 
management commands. 

This chapter assumes that you have completed the device development described 
in the preceding chapters.  This chapter shows the basic control flow for each of 
the above tasks.  It also provides a simple code example to illustrate some of the 
basic tasks. 

Using the ShortStack LonTalk Compact API 
Within the seven-layer OSI Model protocol, the ShortStack LonTalk Compact 
API forms the majority of the Presentation layer, and provides the interface 
between the serial driver in the Session layer and the host application in the 
Application layer, as shown in Figure 56 on page 165. 
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Figure 56. The ShortStack LonTalk Compact API within the OSI Model 

The ShortStack LonTalk Compact API is comprised primarily of the following 
two ANSI C source files: 

• [ShortStack]\API\ShortStackApi.c 

• [ShortStack]\API\ShortStackHandlers.c 

The ShortStackApi.c source file contains the core of the ShortStack LonTalk 
Compact API, which provides functions for handling network events, propagating 
network variables, responding to network variable poll requests, and so on.  

A ShortStack application must call the LonEventHandler() API function 
periodically to process any pending uplink messages.  This function calls specific 
API functions based on the type of event, and then calls callback functions to 
notify the application layer of these network events.   

Generally, you do not need to change the ShortStack API files for each of your 
applications, but you might have to make some changes when porting the API 
source code to your target platform and environment.  

The ShortStack application framework connects the ShortStack API with your 
application, as shown in Figure 57 on page 166. 
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Figure 57. The ShortStack Application Framework 

Note that neither Figure 56 nor Figure 57 shows the API or framework files that 
are required for ShortStack ISI applications; see Chapter 11, Developing a 
ShortStack Application with ISI, on page 197, for information about supporting 
ISI in your ShortStack application. 

The ShortStackHandlers.c source file contains stubs for the callback handler 
functions that the ShortStack LonTalk Compact API calls.  You must add code to 
these callback stubs to respond to specific network events.  For example, the 
LonNvUpdateOccurred() callback could inform the application of the arrival of 
new data for a set-point value, and the callback code could re-calculate the 
controller’s response, assign output values to peripheral I/O devices, and so on. 

The following recommendations can help you manage your ShortStack 
application project: 

• Keep edits to LonTalk Interface Developer utility-generated files to a 
minimum, that is, do not edit the LonNvTypes.h, LonCpTypes.h, 
ShortStackDev.h, or ShortStackDev.c files unless necessary. 

• Add #include “ShortStackDev.h” to your application source files to 
provide access to network variable types and instantiations. 

• Keep changes to the ShortStackHandlers.c and ShortStackHandlers.h 
files to a minimum: 

o Add calls to your own functions in files that you create and 
maintain. 

o Future versions or fixes to the ShortStack product might affect 
these API files. 

• Consider using an event-driven (signaled) model, in addition to using the 
idle-loop calls to the LonEventHandler() function, to provide enhanced 
device responsiveness.  
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• The ShortStack LonTalk Compact API is a non-reentrant, single-
threaded API, as described in Using the ShortStack LonTalk Compact 
API in Multiple Contexts. 

Using the ShortStack LonTalk Compact API in 
Multiple Contexts 

Although a ShortStack application does not require an operating system, you can 
use the ShortStack LonTalk Compact API with an operating system that 
supports multiple system execution contexts.  A context could be a process, 
thread, task, interrupt service routine, or the operating system’s main thread of 
execution, as defined by the operating system. 

A typical ShortStack application would use one or more execution contexts for the 
link-layer driver, and use a different execution context for both the ShortStack 
LonTalk Compact API functions and callback handler functions. 

The ShortStack LonTalk Compact API is a non-reentrant, single-threaded API.  
If your application uses a multi-tasking (or multi-threading) environment or 
interrupt service routines to access the ShortStack LonTalk Compact API, you 
must ensure that only one task (or thread or interrupt) accesses the ShortStack 
LonTalk Compact API.  The same task that calls the LonInit() and 
LonEventHandler() functions should also be the only task that calls the 
ShortStack LonTalk Compact API. 

In a multi-tasking environment, the link-layer driver would typically consist of 
USART transmit and receive interrupts, with interrupts that respond to changes 
on the link-layer handshake lines.  

The example applications that are available from www.echelon.com/shortstack  
(such as the ARM7 Example Port) use a single execution context for the link-
layer driver, all ShortStack LonTalk Compact API functions, and the callback 
handler functions.   

If your application requires the use of multiple contexts, one possible approach 
would be to provide two execution contexts (in addition to those used by the link-
layer driver):  one to call all ShortStack LonTalk Compact API functions (such as 
LonInit() and LonPropagateNv()), and another to call the LonEventHandler() 
function.  The execution context that calls the LonEventHandler() function also 
defines the context for the ShortStack callback handler functions.  For such an 
approach, you must supply appropriate inter-context communication and 
synchronization, and implement and test any related API changes.  

Tasks Performed by a ShortStack Application 
The general ShortStack application life cycle includes two phases:  

• Initialization  

• Normal processing  

The initialization phase of a ShortStack application typically occurs during each 
power-up or reset of the host application, but can also be repeated as necessary.  
The initialization phase defines basic parameters for the LONWORKS network 
communication, such as the communication parameters for the physical 
transceiver in use, and defines the application’s device interface:  its network 

http://www.echelon.com/shortstack


 

168 Developing a ShortStack Application                                 

variables, configuration properties, and self-documentation data.  Successful 
completion of the initialization phase causes the Micro Server to leave quiet 
mode, after which it can send and receive messages over the network. 

Your application does not always need to run its initialization code when the 
Micro Server is reset.  For example, the Micro Server can be reset by the network 
management tool to change the device’s state.  Your application can use the 
LonResetNotification message provided to the LonReset() callback handler 
function to determine the Micro Server’s state and last reset cause, and 
determine whether re-initialization is required.  

The Micro Server might also reset during normal operation when a configuration 
property (declared with the reset_required modifier) value changes.  This 
changes acts as a notification that the application, but not necessarily the Micro 
Server and the ShortStack device as a whole, should reinitialize.  

Recommendations:  

• When the host processor powers-up or resets, reinitialize the ShortStack 
device. 

• When the Micro Server reports that it is not initialized after a reset 
(check the Initialized flag of the LonResetNotification message), 
reinitialize the ShortStack device.  

During normal processing, the application periodically calls the 
LonEventHandler() API function, which calls the serial driver API and might call 
callback functions (such as the LonNvUpdateOccurred() callback).  Other API 
functions allow the ShortStack application to initiate transactions.  Such a 
transaction might in turn lead to calling other callback functions (such as the 
LonNvUpdateCompleted() callback). 

Figure 58 on page 169 shows how the ShortStack application, ShortStack 
LonTalk Compact API, and callback functions work together during the two 
phases of the application’s life cycle. 
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Figure 58. A ShortStack Application Communicates with the API and the Serial Driver 

The following sections describe the tasks that a ShortStack application performs 
during its life cycle. 

Initializing the ShortStack Device 
Your application must call the LonInit() function once during device startup.  
This function initializes the ShortStack LonTalk Compact API, driver, and Micro 
Server.   

The LonInit() function copies the ShortStack device interface data to the 
ShortStack Micro Server.  This data defines the network parameters and device 
interface for the ShortStack Micro Server.  Your application can call this function 
after device startup to reinitialize and restart the ShortStack Micro Server, to 
change the network parameters, or to change the device interface.   

Recommendation:  Add a call the LonInit() function in the main() function of your 
application (or to your host platform equivalent of that function). 

During initialization, the Micro Server enters quiet mode until the initialization 
is complete.  Quiet mode ensures that only a complete and fully functioning 
protocol stack attaches to the network.  While the Micro Server is in quiet mode, 



 

170 Developing a ShortStack Application                                 

the host processor can use local commands to communicate with the Micro 
Server, such as query status or ping, but the Micro Server cannot communicate 
with other devices on the network. 

Example: 

void main(void) { 
 // Initialize host-side hardware  
 ... 
 // Initialize host software  
 ... 
 LonInit(); 
  
 // Enter the main loop: 
 while (TRUE) { 
  LonEventHandler(); 
  // Process your application 
  ... 
 }  
}  

Periodically Calling the Event Handler 
Your ShortStack application must periodically call the LonEventHandler() 
function to check if there are any LONWORKS events to process.  You can call this 
function from your application’s control (or idle) loop, or from any point in your 
application that is processed periodically (if your application meets the execution 
context requirements described in Using the ShortStack LonTalk Compact API 
on page 164).  

The host application should be prepared to process the maximum rate of 
LONWORKS traffic delivered to the device.  To prevent any possible backlog of 
incoming messages, use the following formula to determine the minimum call 
rate for the LonEventHandler() function:  

1−
=

rCountInputBuffe
ateMaxPacketRrate  

where MaxPacketRate is the maximum number of packets per second arriving 
for this device, and InputBufferCount is the number of input buffers defined for 
your application (that is, buffers that hold incoming data until your application is 
ready to process it).  The formula subtracts one from the number of available 
buffers to allow new data to arrive while other data is being processed.  However, 
the formula also assumes that your application has more than one input buffer; 
having only one input buffer is generally not recommended. 

Recommendation:  In the absence of measured data for the network, assume 90 
packets per second arriving for a TP/FT-10 ShortStack device, or 9 packets 
arriving per second for a PL-20 ShortStack device.  These packet rates meet the 
channels’ throughput figures, assuming that most traffic uses the acknowledged 
or request/response service.  Use of other service types will increase the required 
packet rate, but not every packet on the network is necessarily addressed to the 
ShortStack device.  

Using the formula, devices that implement two input buffers and are attached to 
a TP/FT-10 channel that expect high throughput should call the 
LonEventHandler() function approximately once every 10 ms.  
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Again using the formula, a typical PL-20 power-line device would call the 
LonEventHandler() function once every 100 ms.  However, to ensure low network 
latency, all ShortStack devices should call the LonEventHandler() function at 
least once every 10 ms. 

When an event occurs during a call to the LonEventHandler() function, the 
function calls the appropriate callback function for your host application to 
handle the event.  Your callback handler functions must be designed for this 
minimum call rate, and should defer time-consuming operations (such as lengthy 
flash writes) whenever possible. 

See Appendix C, ShortStack LonTalk Compact API, on page 287, for a list of the 
available callback functions.  

Sending a Network Variable Update 
Your ShortStack device typically communicates with other LONWORKS devices by 
sending and receiving network variables.  Each network variable is represented 
by a global variable declared by the LonTalk Interface Developer utility in the 
ShortStackDev.c file, with extern declarations provided in the ShortStackDev.h 
file.  To send an update for an output network variable, first write the new value 
to the network variable declared in ShortStackDev.c, and then call the 
LonPropagateNv() function to send the network variable update.  The 
LonPropagateNv() function requires the index of the network variable, which is 
defined in the LonNvIndex enumeration in ShortStackDev.h.  The index names 
use the following format: 

LonNvIndexName 

Example:  A network variable named nvoValue has the LonNvIndexNvoValue 
index name. 

The LonPropagateNv() function forwards the update to the ShortStack Micro 
Server, which in turn transmits the update to the network.  This function returns 
an error flag that indicates whether the update was delivered to the Micro 
Server, but does not indicate successful completion of the update itself.  For 
example: 

LonApiError error = LonPropagateNv(LonNvIndexNvoValue);  

After the update is complete, the ShortStack Micro Server informs the 
LonEventHandler() function in the ShortStack LonTalk Compact API, which in 
turn calls your LonNvUpdateCompleted() callback handler function, which 
notifies your application of the success or failure of the update.  You can use this 
function for any application-specific processing of update completion.  Figure 59 
on page 172 shows the control flow for processing a network variable update. 
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Figure 59. Control Flow for Sending a Network Variable Update to the 
Network 

Perhaps the most frequent cause of propagation failure for a device that 
frequently sends network variable updates or application messages is the 
LonApiTxBufIsFull error (defined in the LonApiError enumeration) from the 
LonPropagateNv() function.  

If all output buffers are in use at the time of the API call, the application must 
wait until at least one of the outstanding transactions completes, and frees an 
output buffer.  Because this wait can take a significant amount of time, subject to 
the device’s network configuration, networking environment, and the nature of 
the outstanding transactions, your application should return to its main 
processing control algorithm to process other work before it retries propagation.  

Some applications require that the propagation be initiated before processing can 
continue.  Such an application could support a wrapper around the 
LonPropagateNv() function that tests for this particular failure reason, and calls 
the API’s periodic service entry point until propagation succeeds.  For example: 

LonBool lonPreemptionMode = FALSE; 
 
LonApiError myPropagateNv(const unsigned index) { 
  LonApiError error = LonApiNoError;  
  
  while((error=LonPropagateNv(index))==LonApiTxBufIsFull) { 
    lonPreemptionMode = TRUE; 
    LonEventHandler(); 
  } 
  lonPreemptionMode = FALSE; 
  return error; 
} 

This example wrapper supports a global variable, lonPreemptionMode, which is 
true while the function waits for an output buffer to become availabile, in order 
to satisfy the original request.  Until the buffer becomes availabile, the routine 
makes frequent calls to the API’s periodic service entry point, 
LonEventHandler().  Because the LonEventHandler() function calls callback 
handler functions, which in turn could trigger network events, signal the buffer-
unavailable state to the application so that it can avoid further propagation of 
network variables or application messages while in this state. 
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In the case of an unacknowledged or repeated service type, the Micro Server 
considers the update complete when it has finished sending the update to the 
network.  In the case of an acknowledged service type, the Micro Server considers 
the update complete when it receives acknowledgements from all receiving 
devices, or when the retry timer expires. 

In case of an unbound network variable (an output network variable that is not 
currently connected to any input network variables), propagating a network 
variable update always succeeds.  This behavior is consistent with that of other 
LONWORKS devices, and allows you to create applications without having to track 
the device’s network configuration.  

Depending on the device’s current network configuration and its networking 
environment, completion of any locally initiated transaction, such as the 
propagation of an updated output network variable, can take a significant 
amount of time until the success or failure of the transaction can be determined. 

To process an update failure, edit the LonNvUpdateCompleted() callback handler 
function in the ShortStackHandlers.c file.  This function is passed the network 
variable index (the same one that you passed to the LonPropagateNv() function), 
and is also passed a success flag.  The function is initially empty, but you can edit 
it to add your application-specific processing.  The function initially appears as: 

void LonNvUpdateCompleted(const unsigned index, const 
         LonBool success)  
{ 
 /* TBD */ 
} 

Do not handle an update failure with a repeated propagation; use the retry count 
to do that automatically.  A completion failure generally indicates a problem that 
should be signaled to the user interface (if any), flagged by an error or alarm 
output network variable (if any), or be signaled as a comm_failure error through 
the nvoStatus network variable of the Node Object functional block (if there is 
one). 

Example:  The following model file defines the device interface for a simple power 
converter.  This converter accepts current and voltage inputs on its nviAmpere 
and nviVolt input network variables.  It computes the power and sends the value 
on its nvoWatt output network variable: 

network input  SNVT_amp  nviAmpere; 
network input  SNVT_volt nviVolt; 
network output SNVT_power  nvoWatt; 
 
fblock UFPTpowerConverter { 
 nvoWatt   implements nvoPower; 
 nviAmpere  implements nviCurrent; 
 nviVolt   implements nviVoltage; 
} powerConverter; 

The following code fragment, implemented in your application’s code, uses the 
data most recently received by either of the two input network variables, 
computes the product, and stores the result in the nvoWatt output network 
variable.  It then calls the LonPropagateNv() function to send the computed 
value. 

#include "ShortStackDev.h" 
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void myController(void) { 
 nvoWatt = nviAmpere * nviVolt; 
 if (LonPropagateNv(LonNvIndexNvoWatt)!= LonApiNoError) { 
  // handle error here 
  ... 
 } 
} 

Receiving a Network Variable Update from the 
Network 

When the ShortStack Micro Server receives a network variable update from the 
network, it forwards the update to the ShortStack LonTalk Compact API, which 
writes the update to your network variable, and then calls the 
LonNvUpdateOccurred() callback handler function to inform your application 
that the update occurred.  The application can read the current value of any 
input network variable by reading the value of the corresponding variable 
declared in the ShortStackDev.c file. 

To receive notification of a network variable update, modify the 
LonNvUpdateOccurred() callback handler function (in the ShortStackHandlers.c 
file) to call the appropriate functions in your application.  The API calls this 
function with the index of the updated network variable.  Figure 60 shows the 
control flow for receiving a network variable update. 

LonEventHandler()
(API function)

LonNvUpdateOccurred()
(callback function)

application-specific action

Network variable 
updated by the API

Network 
variable 
update 

received 
from 

network

ShortStack application Micro Server

 

Figure 60. Control Flow for Receiving a Network Variable Update 

Configuration network variables are used much in the same way as input 
network variables, with the exception that the values must be kept in persistent 
storage, and the application does not always respond to changes immediately.  
Example 1, below, shows the processing flow for regular network variable 
updates, and example 2 shows the same flow but with the addition of a 
configuration network variable. 

Example 1: 

This example uses the same power converter model file from the example in the 
previous section, Sending a Network Variable Update, on page 171. That 
example demonstrated how to read the network variable inputs asynchronously 
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by reading the latest values from the network variables declared in the 
ShortStackDev.c file. 

This example extends the previous example and shows how your application can 
be notified of an update to either network variable.  To receive notification of a 
network variable update, modify the LonNvUpdateOccurred() callback function: 

In ShortStackHandlers.c: 

extern void myController(void); 
 
void LonNvUpdateCompleted(unsigned index, const LonBool 
         success) { 
  
 switch (index) { 
  case LonNvIndexNviAmpere:   /* fall through */ 
  case LonNvIndexNviVolt: 
   myController(); 
   break; 
  default: 
   /* handle other NV updates (if any) */ 
 } 
} 

In your application source file: 

#include "ShortStackDev.h" 
 
void myController(void) { 
 nvoWatt = nviAmpere * nviVolt; 
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError)  
   { 
  // handle error here 
  ... 
 } 
} 

This modification calls the myController() function defined in the example in the 
previous section, Sending a Network Variable Update, on page 171. 

Example 2: 

This example adds a configuration network variable to Example 1.  A SCPTgain 
configuration property is added to the device interface in the model file: 

network input  SNVT_amp  nviAmpere; 
network input  SNVT_volt nviVolt; 
network output SNVT_power  nvoWatt; 
 
network input cp SCPTgain nciGain; 
 
fblock UFPTpowerConverter { 
 nvoWatt   implements nvoPower; 
 nviAmpere  implements nviCurrent; 
 nviVolt   implements nviVoltage; 
} powerConverter fb_properties { 
 nciGain 
}; 

You can enhance the myController() function to implement the new gain factor: 
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void myController(void)  
{ 
 nvoWatt = nviAmpere * nviVolt * nciGain.multiplier; 
 nvoWatt /= nciGain.divider; 
 if (LonPropagateNv(LonNvIndexNvoWatt) != LonApiNoError) 
   { 
  // handle error here 
  ... 
 } 
} 

Configuration network variables must be persistent, that is, their values must 
withstand a power outage.  You must implement suitable hardware or software 
to achieve non-volatile data storage for this data.  See Providing Persistent 
Storage for Non-Volatile Data on page 192 for more information. 

Handling a Network Variable Poll Request from the 
Network 

Devices on the network can request the current value of a network variable on 
your device by polling or fetching the network variable.  The ShortStack Micro 
Server responds to poll or fetch requests by sending the current value of the 
requested network variable.  The LonEventHandler() function processes the 
request and sends the network variable value to the network.  Figure 61 shows 
the control flow for handling a network variable poll or fetch request. 

 

Figure 61. Control Flow for Handling a Network Variable Request 

Handling Changes to Changeable-Type Network 
Variables 

When a network management tool plug-in, such as the LonMaker browser, 
changes the type of a changeable-type network variable, it informs your 
application of the change by describing the new type in the SCPTnvType 
configuration property that is associated with the network variable.  

When your application detects a change to the SCPTnvType value: 
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• It determines if the change is valid.  

• If the change is valid, it processes the change. 

• If the change is not valid, it reports an error.  

Valid type changes are those that the application can support.  For example, an 
implementation of a generic PID controller might accept any numerical floating-
point typed network variables (such as SNVT_temp_f, SNVT_rpm_f, or 
SNVT_volt_f), but can reject other types of network variables.  Or a data logger 
device might support all types that are less than 16 bytes in size, and so on. 

See the ShortStack FX ARM7 Example Port for an example application that 
handles changeable-type network variables. 

Validating a Type Change  
The SCPTnvType configuration property is defined by the following structure: 

typedef LON_STRUCT_BEGIN(SCPTnvType) { 
    ncuInt  type_program_ID[8]; 
    ncuInt  type_scope; 
    ncuLong type_index; 
    ncsInt  type_category; 
    ncuInt  type_length; 
    ncsLong scaling_factor_a; 
    ncsLong scaling_factor_b; 
    ncsLong scaling_factor_c; 
} LON_STRUCT_END(SCPTnvType);  

When validating a change to a network variable, an application can check five of 
the fields in the SCPTnvType configuration property: 

• The program ID template of the resource file that contains the network 
variable type definition (type_program_ID[8]) 

• The scope of the resource file that contains the network variable type 
definition (type_scope) 

• The index within the specified resource file of the network variable type 
definition (type_index) 

• The category of the network variable type (type_category)  

• The length of the network variable type (type_length) 

The type_program_ID and type_scope values specify a program ID template and 
a resource scope that together uniquely identify a resource file set.  The 
type_index value identifies the network variable type within that resource file 
set.  If the type_scope value is 0, the type_index value is a SNVT index.  For 
example, checking the type_scope and type_program_ID fields lets you accept 
only types that you created. 

The type_category enumeration is defined in the <snvt_nvt.h> include file.  This 
file must be explicitly referenced (#include) in your host application.  You can use 
the NodeBuilder Resource Editor to determine the file that you need, which is 
generally in the [LonWorks]\NeuronC\Include directory.  The enumeration is 
defined as:  

typedef enum nv_type_category_t {  
 NVT_CAT_INITIAL = 0,  // Initial (default) type  
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 NVT_CAT_SIGNED_CHAR,  // Signed Char  
 NVT_CAT_UNSIGNED_CHAR,  // Unsigned Char  
 NVT_CAT_SIGNED_SHORT,  // 8-bit Signed Short  
 NVT_CAT_UNSIGNED_SHORT,  // 8-bit Unsigned Short  
 NVT_CAT_SIGNED_LONG,  // 16-bit Signed Long  
 NVT_CAT_UNSIGNED_LONG,  // 16-bit Unsigned Long  
 NVT_CAT_ENUM,    // Enumeration  
 NVT_CAT_ARRAY,   // Array  
 NVT_CAT_STRUCT,   // Structure  
 NVT_CAT_UNION,   // Union  
 NVT_CAT_BITFIELD,   // Bitfield  
 NVT_CAT_FLOAT,   // 32-bit Floating Point  
 NVT_CAT_SIGNED_QUAD,  // 32-bit Signed Quad  
 NVT_CAT_REFERENCE,   // Reference  
 NVT_CAT_NUL = -1   // Invalid Value  
} nv_type_category_t;  

This enumeration describes the type (signed short or floating-point, for example), 
but does not provide information about structure or union fields.  To support all 
scalar types, test for a type_category value between NVT_CAT_SIGNED_CHAR 
and NVT_UNSIGNED_LONG, plus NVT_CAT_SIGNED_QUAD.  

The type_length field provides the size of the type in bytes.  

Multiple changeable-type network variables can share the SCPTnvType 
configuration property.  In this case, the application must process all network 
variables from the property’s application set, because just as the SCTPnvType 
configuration property applies to all of these network variables, so does the type 
change request.  The application should accept the type change only if all related 
network variables can perform the required change.  

If one or more type-inheriting configuration properties apply to any of the 
changing configuration network variables (CPNVs), these type-inheriting CPNVs 
also change their type at the same time.  If this type-inheriting CPNV is shared 
among multiple network variables, a network management tool must ensure that 
all related network variables change to the new type.  You cannot share a type-
inheriting configuration property among both changeable and non-changeable 
network variables. 

Processing a Type Change  
After validating a type change request, the application performs the type change.  
The type-dependent part of your application queries these details when required 
and processes the network variable data accordingly.  

Some type changes require additional processing, while others do not.  For 
example, if your application supports changing between different floating-point 
types, perhaps no additional processing is required.  But if your application 
supports changing between different scalar types, it might require the use of 
scaling factors to convert the raw network variable value to a scaled value.  You 
can use the three scaling factors defined in the SCPTnvType configuration 
property (scaling_factor_a, scaling_factor_b, and scaling_factor_c) to convert from 
raw data to scaled fixed-point data according to the following formula:  

( )( )crawascaled b += *10*  
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where raw is the value before scaling is applied, and a, b, and c are the values for 
scaling_factor_a, scaling_factor_b, and scaling_factor_c. 

To convert the scaled data back to a raw value for an output network variable, 
use the following inverted scaling formula:  

c
a
scaledraw b −⎟

⎠
⎞

⎜
⎝
⎛=

10*
 

For example, the SNVT_lev_cont type is an unsigned short value that represents 
a continuous level from 0 to 100 percent, with a resolution of 0.5%.  The actual 
data values (the raw values) are in the variable range from 0 to 200.  The scaling 
factors for SNVT_lev_cont are defined as a=5, b= -1, c=0.  

If the network variable is a member of an inheriting configuration property’s 
application set that implements the property as a configuration network variable, 
then the application must process the type changes for both the network variable 
and the configuration network variable.  

If the network variable is a member of a configuration property’s application set 
where the configuration property is shared among multiple network variables, 
the application must process the type and length changes for all network 
variables involved. 

However, if the configuration property is implemented within a configuration file, 
no change to the configuration file is required.  The configuration file states the 
configuration property’s initial and maximum size (in the CP documentation-
string length field), and a network management tool derives the current and 
actual type for type-inheriting CPs from the associated network variable.  

Your application must always support the NVT_CAT_INITIAL type category.  If 
the requested type is of that category, your application must ignore all other 
content of the SCPTnvType configuration property and change the related 
network variable’s type back to its initial type.  The network variable’s initial 
type is the type declared in the model file.  

Processing a Size Change  
If a supported change to the SCPTnvType configuration property results in a 
change in the size of a network variable type, your application must provide code 
to inform the ShortStack Micro Server about the current length of the 
changeable-type network variable.  The current length information must be kept 
in non-volatile memory.  

Because the application must also ensure that the SCPTnvType configuration 
property reports the current and correct type, you can use the configuration 
property’s type_size field to store that information. 

The ShortStack LonTalk Compact API provides a callback handler function, 
LonGetNvSize(), that allows you to inform the API of the network variable’s 
current size.  The following code shows an example implementation for the 
callback handler function.  

unsigned LonGetNvSize(const unsigned index) { 
 const LidNvDefinition* const nvTable = LonGetNvTable(); 
 unsigned size = LonGetDeclaredNvSize(index); 
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 if (index < LonNvCount && 
       nvTable[index].Definition.Flags & LON_NV_CHANGEABLE) 
 { 
  const SCPTnvType* pNvType = myGetNvTypeCp(index); 
      // if the NV uses the initial type, its size is  
      // the declared size set above 
  if (pNvType->type_category != NVT_CAT_INITIAL) { 
   size = pNvType->type_length; 
  }  
   } 
 return size; 
} 

The example uses a myGetNvTypeCp() function (that you provide) to determine 
the type of a network variable, based on your knowledge of the relationships 
between the network variables and configuration properties implemented. 

If the changeable-type network variable is member of an inheriting configuration 
property that is implemented as a configuration network variable, the type 
information must be propagated from the changeable-type network variable to 
the type-inheriting configuration property, so that the LonGetNvSize() callback 
handler function can report the correct current size for any implemented network 
variable.  Your myGetNvTypeCp() function could handle that mapping. 

For the convenience of network management tools, you can also declare a 
SCPTmaxNVLength configuration property to inform the tools of the maximum 
type length supported by the changeable-type network variable.  For example:  

network input cp SCPTnvType nciNvType;  
const SCPTmaxNVLength cp_family nciNvMaxLength;  
 
network output changeable_type SNVT_volt_f nvoVolt 
  nv_properties {  
  nciNvType,  
  nciNvMaxLength=sizeof(SNVT_volt_f)  
};  

Rejecting a Type Change  
If a network management tool attempts to change the type of a changeable-type 
network variable to a type that is not supported by the application (or is an 
unknown type), your application must do the following:  

• Report the error within a maximum of 30 seconds from the receipt of the 
type change request.  The application should signal an invalid_request 
through the Node Object functional block and optionally disable the 
related functional block.  If the application does not include a Node Object 
functional block, the application can set an application-specific error code 
and take the device offline (use the offline parameter with the 
LonSetNodeMode() function).  

• Reset the SCPTnvType value to the last known good value. 

• Reset all other housekeeping data, if any, so that the last known good 
type is re-established.  
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Communicating with Other Devices Using Application 
Messages 

You can use application messages to create a proprietary (that is, non-
interoperable) interface for a device.  For example, you can use application 
messages to implement a manufacturing-test interface that is only used during 
manufacturing test of your device.  You can also use the same mechanism that is 
used for application messaging to create foreign-frame messages (for proprietary 
gateways), network management messages, network diagnostic messages, and 
explicitly addressed network variable messages. 

There are two interoperable uses for application messages:  the Interoperable 
Self-Installation (ISI) protocol and the LONWORKS file transfer protocol (LW-
FTP).  The ISI protocol is used in self-installed networks; see Chapter 11, 
Developing a ShortStack Application with ISI, on page 197, for more information 
about ISI.  LONWORKS FTP is used to exchange large blocks of data between 
devices or between devices and tools, and is also used to access configuration files 
on some devices. 

The content of an application message is defined by a message code that is sent 
as part of the message.  Message code values are listed in Table 22.  For 
application messages, you typically use message codes 0 to 47 (0x0 to 0x2F).  
Your application must define the meaning of each user-defined message code.  
Standard application messages are defined by LONMARK International, and use 
message codes 48 to 62 (0x30 to 0x3E). 

Table 22. Message Code Values 

Message Type 
Message 
Code Description 

User Application 
Messages 

0 to 47 

(0x0 to 
0x2F) 

Generic application messages.  The 
interpretation of the message code is left to the 
application. 

Standard 
Application 
Messages 

48 to 62 

(0x30 to 
0x3E) 

Standard application messages defined by 
LONMARK International. 

Responder 
Offline 

63 

(0x3F) 

Used by application message responses.  
Indicates that the sender of the response was in 
an offline state and could not process the 
request. 

Foreign Frames 64 to 78  

(0x40 to 
0x4E) 

Used by application-level gateways to other 
networks.  The interpretation of the message 
code is left to the application. 

Foreign 
Responder 
Offline 

79  

(0x4F) 

Used by foreign frame responses.  Indicates that 
the sender of the response was in an offline state 
and could not process the request. 
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Message Type 
Message 
Code Description 

Network 
Diagnostic 
Messages 

80 to 95 

(0x50 to 
0x5F) 

Used by network tools for network diagnostics. 

Network 
Management 
Messages 

96 to 127 

(0x60 to 
0x7F) 

Used by network tools for network installation 
and maintenance. 

Network 
Variables 

128 to 
255 

(0x80 to 
0xFF) 

The lower six bits of the message code contain 
the upper six bits of the network variable 
selector.  The first data byte contains the lower 
eight bits of the selector. 

The message code is followed by a variable-length data field, that is, a message 
code could have one byte of data in one instance and 25 bytes of data in another 
instance. 

Each message tag is represented by a global variable declared by the LonTalk 
Interface Developer utility in the ShortStackDev.c file, with extern declarations 
provided in the ShortStackDev.h file.  This file defines an index value for each 
message tag in the LonMtIndex enumeration.  The index names use the following 
format: 

LonMtIndexName 

Example:  A message tag named cpFilePtr has the LonMtIndexCpFilePtr index 
name. 

Sending an Application Message to the 
Network 
Call the LonSendMsg() function to send an application message.  This function 
forwards the message to the ShortStack Micro Server, which in turn transmits 
the message on the network.  After the message is sent, the ShortStack Micro 
Server informs the LonEventHandler() function in the ShortStack LonTalk 
Compact API, which in turn calls your LonMsgCompleted() callback handler 
function.  This function notifies your application of the success or failure of the 
transmission.  You can use this function for any application-specific processing of 
message transmission completion. 

To be able to send an application message, the ShortStack device must be 
configured and online.  If the application calls the LonSendMsg() function when 
the device is either not configured or not online, the function returns the 
LonApiOffline error code. 

You can send an application message as a request message that causes the 
generation of a response by the receiving device or devices.  If you send a request 
message, the receiving device (or devices) sends a response (or responses) to the 
message.  When the ShortStack Micro Server receives a response, it forwards the 
response to the LonEventHandler() function in the ShortStack LonTalk Compact 
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API, which in turn calls your LonResponseArrived() callback handler function for 
each response it receives. 

Figure 62 shows the control flow for sending an application message. 

LonEventHandler()
(API function)

LonResponseArrived()
(callback function)

application-specific action

LonEventHandler()
(API function)

LonMsgComplete()
(callback function)

application-specific action
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application 
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from the 
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Figure 62. Control Flow for Sending an Application Message 

Receiving an Application Message from the 
Network 
When the ShortStack Micro Server receives an application message from the 
network, it forwards the message to the LonEventHandler() function in the 
ShortStack LonTalk Compact API, which in turn calls your LonMsgArrived() 
callback handler function.  Your implementation of this function must process 
the application message, and can optionally notify your ShortStack application 
about the message. 

The ShortStack Micro Server does not call the LonMsgArrived() callback handler 
function if an application message is received while the ShortStack device is 
either unconfigured or offline. 

If the message is a request message, your implementation of the 
LonMsgArrived() callback handler function must determine the appropriate 
response and send it using the LonSendResponse() function. 

Figure 63 on page 184 shows the control flow for receiving an application 
message. 
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Figure 63. Control Flow for Receiving an Application Message 

Handling Management Tasks and Events 
LONWORKS installation and maintenance tools use network management 
commands to set and maintain the network configuration for a device.  The 
ShortStack Micro Server automatically handles most network management 
commands that are received from these tools.  A few network management 
commands are application-specific, and are forwarded by the Micro Server to the 
LonEventHandler() function in the ShortStack LonTalk Compact API, which in 
turn forwards the request to your application through the network management 
callback handler functions.  These commands are requests for your application to 
wink, go offline, go online, handle pressed or held service pin events, or reset, and 
must be handled by your LonWink(), LonOffline(), LonOnline(), 
LonServicePinPressed(), LonServicePinHeld(), and LonReset() callback handler 
functions.   

Handling Local Network Management Tasks  
There are various network management tasks that a device can choose to initiate 
on its own.  These are local network management tasks, which are initiated by 
the ShortStack application and implemented by the ShortStack Micro Server.  
Local network management tasks are never propagated to the network.  The 
optional Network Management Query and Update ShortStack APIs allow you to 
include handling of these local network management commands if your 
ShortStack application requires it. 

Many of these commands are called by your ShortStack application and then 
handled by the ShortStack Micro Server with no additional notification through 
callback handler functions.  These functions include:  LonClearStatus(), 
LonSetNodeMode(), LonUpdateAddressConfig(), LonUpdateAliasConfig(), 
LonUpdateConfigData(), LonUpdateNvConfig(), and LonUpdateDomainConfig(). 

A few of the extended local network management commands are requests for 
information.  After the ShortStack Micro Server receives these requests, it makes 
the response information available to the ShortStack LonTalk Compact API.  
When the Micro Server makes this information available, the LonEventHandler() 
function calls the appropriate callback handler function, which you can customize 
to handle the information in an application-specific way.  Figure 64 on page 185 
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through Figure 67 on page 186 show the control flow for handling these kinds of 
network management commands.  

 

Figure 64. Control Flow for Query Domain Network Management Command 

 

Figure 65. Control Flow for Query Configuration Data Local Network 
Management Command 
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Figure 66. Control Flow for Query Status Local Network Management 
Command 

 

Figure 67. Control Flow for Query Transceiver Status Local Network 
Management Command 

Handling Reset Events 
A ShortStack Micro Server can reset for a variety of reasons.  To determine the 
cause of a Micro Server reset, you can use the LonGetLastResetNotification() 
function of the ShortStack Network Management Query API.  This function 
returns a pointer to the LonResetNotification structure, which is defined in the 
ShortStackTypes.h file.  The LonResetNotification structure is also provided with 
the LonReset() callback handler function.    

The LonResetNotification structure contains the following information: 

• The State of the Micro Server  

• The Version of the link layer protocol (3 for ShortStack 2.1; 4 for 
ShortStack FX) 

• Information about availability and state of the static IO9 input signal on 
the Micro Server (see Using the IO9 Pin on page 68) 
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• Information about whether the Micro Server is initialized 

• The Micro Server Key (see Using the ShortStack Micro Server Key on 
page 58) 

• The cause for the most recent reset, encoded in a value from the 
LonResetCause enumeration 

• The most recent system error, encoded in a value from the 
LonSystemError enumeration 

• The Micro Server’s 48-bit unique ID (also known as its Neuron ID) 

• The current number of address table records, domains, and aliases 
supported by the Micro Server 

Querying the Error Log 
The ShortStack Micro Server writes application errors to the system error log.  
The reset notification contains the most recent system error code, but you can use 
the LonQueryStatus() function to query the complete error and statistics log. 

The LonStatus structure, which is provided in response to the LonQueryStatus() 
call through the LonStatusReceived() callback handler function, contains 
complete statistics information, such as the number of transmit errors, 
transaction timeouts, missed and lost messages, and so on.  

In addition to the standard system error codes (129 and above), a ShortStack FX 
Micro Server can log ShortStack-specific system error codes that help you 
diagnose problems. 

Table 23 lists the ShortStack-specific system error codes.  All system error codes 
are provided by the LonSystemError enumeration in ShortStackTypes.h. 

Table 23. LonSystemError Enumeration Values for ShortStack 

Value Condition Description 

1 Smart Transceiver 
lock 

Unsupported Micro Server hardware. Use an Echelon Smart 
Transceiver for the Micro Server.   

This error condition also changes the Micro Server’s state to 
applicationless. 

2 niSiData message 
received 

This message is unsupported for ShortStack FX.  See 
Converting a ShortStack 2 Application to a ShortStack FX 
Application on page 257 for information about migrating to 
ShortStack FX. 

3 Network variable 
processing with 
host selection is not 
supported 

The Micro Server was created with the #pragma 
netvar_processing_off directive, which is not supported. 

This error condition also changes the Micro Server’s state to 
applicationless. 
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Value Condition Description 

4 Transceiver not 
supported 

This error occurs when the host tries to configure the Micro 
Server for a transceiver that is neither special-purpose mode, 
nor single-ended at 78 kbps.  

Unlike the Smart Transceiver lock, the Micro Server is not 
changed to the applicationless state.  This error is logged and 
the node enters quiet mode. 

5 Message too big An outgoing message cannot be sent because it exceeds the 
available buffer size. 

6 Unknown link-layer 
command 

The Micro Server received an unknown link-layer command 
from the host. 

7 Malformed NVINIT 
message 

The NVINIT message specified a number of network 
variables, but provided data for fewer network variables. 

64 RPC callback 
timeout 

The Micro Server attempted a remote procedure call to call 
an ISI callback on the host, but the host failed to 
acknowledge the uplink message for 15.5 seconds (31*500 
ms). 

65 RPC callback 
NACK 

The Micro Server attempted a remote procedure call to call 
an ISI callback on the host, but the host replied with an 
unexpected negative response. 

66 RPC out of 
sequence 

An out-of-sequence reply from the host has been received.   
The out-of-sync reply is ignored. 

67 RPC nothing to 
acknowledge 

A positive or negative RPC acknowledgement has been 
received, but was unexpected.  The acknowledgement is 
ignored. 

68 Interleaving RPC 
call attempted 

An RPC call to the host was attempted while a previous call 
was still outstanding.  The Micro Server resets. 

Error conditions that change the state to applicationless also invalidate the 
cached signature, thus enforcing a complete re-initialization after Micro Server 
reload. 

Reinitializing the ShortStack Micro Server 
For ShortStack devices that sense their configuration and alter their device 
interface at runtime (for example, a hot-pluggable modular I/O system), the host 
must re-initialize the Micro Server with a new interface.  Such changes can alter 
a device’s interoperability, and thus should be done carefully. 

To re-initialize the Micro Server at run-time:    

• Each interface must have its own, unique, program ID.  

• A unique XIF file must be provided for each supported program ID.  
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• Interface changes must be initiated only when the device is in the 
unconfigured state (use the LonQueryStatus() function to determine the 
current state).  

When the host application reinitializes the Micro Server with a new application, 
the Micro Server automatically enters quiet mode until the initialization is 
successfully completed. 

Using Direct Memory Files 
To use configuration properties in files, your host application program must 
implement a method that allows the network management tool to access those 
files.  You can support either one of the following: 

• The LONWORKS FTP (LW-FTP) protocol 

• The host direct memory file (DMF) access method 

The LW-FTP protocol is appropriate when large amounts of data need to be 
transferred between the host processor and Smart Transceiver.  The host DMF 
access method is appropriate for most other cases.  The LW-FTP protocol 
supports configuration files and configuration network variables (CPNVs).  The 
host DMF access method supports only configuration files.  You can use both the 
LW-FTP protocol and the DMF access method within a single application. 

By supporting direct memory files, your application allows the network 
management tool to use standard memory read and write network messages to 
access configuration files located on the host.  Direct memory files appear to the 
network management tool as if they were located within the Micro Server’s 
native address space, but the Micro Server routes memory read and write 
requests within the DMF memory window to the host processor.  The ShortStack 
LonTalk Compact API in turn forwards these requests to code that handles the 
request.  This code is generated by the LonTalk Interface Developer utility. 

You do not generally need to modify the code that the LonTalk Interface 
Developer utility generates, unless your application requires support for non-
volatile storage for writeable configuration value files.  See Providing Persistent 
Storage for Non-Volatile Data on page 192 for more information about managing 
non-volatile data storage. 

Important:  The host DMF access method requires Version 16 system firmware, 
or later, and thus is not available for current PL 3120 Smart Transceivers, which 
are based on Version 14 system firmware.  All other standard Micro Server 
images have this feature enabled.  See Custom Micro Servers on page 241 for 
information about how to create custom Micro Servers that can support the host 
DMF access method. 

When the host DMF access method is enabled, the Micro Server relays to the 
host all memory read or write requests for configuration files that cannot be 
locally satisfied.  These requests are those that relate to memory that is not 
declared in the Micro Server’s memory map, including areas that are declared as 
memory-mapped I/O. 

Example:  An FT 3120 Smart Transceiver has no memory in the 
0xA100..0xCEFF address range, and relays all memory read or write requests 
concerning this area to the host processor, if the DMF feature is enabled.  
Without the DMF access method, the same memory read or write request would 
receive a failure code. 
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The standard Micro Servers for 3150 Smart Transceivers use 64 KB (or larger) 
flash memory.  The memory maps of this memory are declared such that the 
same 0xA100..0xCEFF area is available for the DMF access method.  

You can create a custom Micro Server with a larger DMF window, and you can 
use the LonTalk Interface Developer utility to override the default start address 
and size of the DMF memory window. 

If the model file contains a SNVT_address typed network variable and at least 
one configuration property defined in a configuration file, and the selected Micro 
Server supports the DMF access method, the LonTalk Interface Developer utility 
automatically generates all code and data that is necessary to satisfy the memory 
read and write requests; however, the application must still provide code for non-
volatile, persistent, data storage.  

The DMF Memory Window 
To the network management tool, all content of the DMF memory window is 
presented as a continuous area of memory in the virtual DMF memory space.  
The DMF memory space is virtual because it appears to the network 
management tool to be located within the Micro Server’s native address space, 
even though it usually is not.  In the code that the LonTalk Interface Developer 
utility generates, the content of the DMF memory window, which can be 
physically located in different parts, or even types, of the host processor’s 
memory, is presented as a continuous area of memory.  Another part of the 
generated code identifies the actual segment within the host memory that is 
shown at a particular offset within the virtual address space of the DMF memory 
window, and allows the DMF memory driver to correctly access the 
corresponding data within the host processor’s address space. 

Data that appears in the DMF memory window includes: 

• The file directory 

• The template file 

• The writeable configuration value files (if any)  

• The read-only configuration value files (if any) 

Figure 68 on page 191 shows how the different memory address spaces relate to 
each other. 
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Figure 68. Relationship between Different Memory Spaces 

The LonTalk Interface Developer utility defines three macros in the generated 
ShortStackDev.h file for working with the DMF window: 

• LON_DMF_WINDOW_START 

• LON_DMF_WINDOW_SIZE 

• LON_DMF_WINDOW_USAGE 

The LON_DMF_WINDOW_USAGE macro helps you keep track of the DMF 
window fill level. 

You can modify the DMF framework that the LonTalk Interface Developer utility 
generates to include support for user-defined files.  However, all of the data must 
fit within the DMF memory window. 

When your data exceeds the size of the DMF memory window, you must perform 
one of the following tasks: 

• Reduce the amount of data 

• Provide a larger DMF memory window by creating a custom Micro Server 

• Implement the LONWORKS File Transfer Protocol (LW-FTP) 
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File Directory 
The LonTalk Interface Developer utility produces a configurable file directory 
structure, which supports: 

• Using named or unnamed files (it uses unnamed by default) 

• Up to 64 KB of data for each file 

• Up to a total of 64 KB for all files plus the file directory itself   

The utility initializes the file directory depending on the chosen access method.  
The directory can be used with an LW-FTP server implementation or the direct 
memory file access method implementation.  The initialization that the utility 
provides works for both little-endian and big-endian host processors. 

The ShortStackDev.h header file allows you to customize the file directory 
structure, if needed. 

Providing Persistent Storage for Non-Volatile Data 
If you use configuration files, configuration network variables, network variables 
declared with the eeprom modifier, or use other, application-specific, persistent 
data, you must supply a mechanism to read that data into RAM during startup, 
preserve modifications to that data, and track any read or write errors.  

The details for handling persistent storage are dependent on your host platform 
requirements and capabilities.  Persistent storage options include:  flash memory, 
EEPROM memory, non-volatile RAM, or storage in a file or database on a hard 
drive.   

DMF Memory Drivers 
The LonTalk Interface Developer utility generates all the code necessary for the 
basic host memory driver implementation within the generated ShortStackDev.c 
file.  This code is used by two callback handler functions, LonMemoryRead() and 
LonMemoryWrite(), which are defined within the ShortStackHandlers.c file.  
This file is copied into the project folder by the LonTalk Interface Developer 
utility, but is not overwritten or updated when you re-run the utility.  Thus, you 
can modify this file for your host memory driver. 

The code to handle DMF-related memory read or write requests is based on the 
LonMemoryRead() and LonMemoryWrite() callback handler functions that the 
LonTalk Interface Developer utility generates.  The API calls these callback 
handler functions whenever a related request is received. 

Both callback handler functions use the LonTranslateWindowArea() function 
(defined in ShortStackDev.c) to provide the translation of virtual addresses into 
host addresses.  This translation is based on the windowLayoutTable array, also 
defined in ShortStackDev.c.  

When the translation succeeds, the LonTranslateWindowArea() function supplies 
a pointer to a record within the windowLayoutTable, which describes the 
segment in question.  The segment might be the file directory, the template file, 
any of the value files, or a user-defined additional file. 
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A segment description is based on the LonDmfWindowSegment type, which is 
defined in ShortStackDev.h as: 

typedef struct              
{                           
    LonBool  Writeable;     
    LonMemoryDriver Driver; 
    void*    Start;         
    size_t   Size;          
} LonDmfWindowSegment;      

The Driver member, based on the LonMemoryDriver enumeration, allows the 
LonMemoryRead() or LonMemoryWrite() callback handler function to determine 
how to access the data.  The default memory driver uses a simple memcpy() 
approach.  This approach might be sufficient for battery-backed RAM, but most 
applications need to add an application-specific driver. 

To add an application-specific DMF memory driver, add a new member to the 
LonMemoryDriver enumeration, or use an identifier for your memory driver that 
you derive from the pre-defined LonMemoryDriverUser enumeration member, 
and add code to the LonMemoryRead() or LonMemoryWrite() callback handler 
functions to dispatch the action to the appropriate memory driver. 

Recommendation:  Derive your driver identifier from LonMemoryDriverUser, 
because this approach avoids editing the ShortStackDev.h file, which will be 
overwritten when you re-run the LonTalk Interface Developer utility. 

See Application Start-Up and Failure Recovery on page 194 for other 
considerations for the memory driver. 

CPNV and EEPROM NV 
For configuration network variables (CPNVs) and non-volatile network variables 
(those declared with the eeprom modifier), your application must provide 
functions for reading and writing the non-volatile data.   

During processing for the LonInit() function, the ShortStack LonTalk Compact 
API calls the LonNvdDeserializeNvs() callback handler function for every CPNV 
and non-volatile network variable to read their values (if any) stored in 
persistent storage.  This function has the following signature: 

const LonApiError LonNvdDeserializeNvs(void); 

Your application must obtain the most recent value for the network variable with 
the given index from non-volatile memory, and store it in the location provided by 
the LonGetNvValue() function.  For changeable-type network variables, the 
application should always retrieve network-variable data that equals the initial 
network variable type in size.  If the current size of a changeable-type network 
variable is less than its maximum (and initial) size, supply zeroes to fill the 
remaining, currently unused, memory.  You can obtain the size of the initial 
network variable from the network variable table or by using the sizeof() operator 
with the initial (declared) network variable type, (rather than using the 
LonGetNvSize() callback handler function, which returns the current size of the 
network variable). 

Whenever a CPNV or non-volatile network variable is updated over the network, 
your LonNvUpdateOccurred() (or LonNvUpdateCompleted()) callback handler 
function should evaluate whether to write the CPNV or network variable data to 



 

194 Developing a ShortStack Application                                 

non-volatile memory, and then call your non-volatile-memory-write function as 
needed. 

To determine the offset of a particular non-volatile network variable value within 
the non-volatile storage, the application can read the network variable table (the 
nvTable array).  For example, the application could add the sizes of all non-
volatile network variables with index value less than the current network 
variable, and use that size as a pointer offset into the non-volatile storage.  
Different host platforms and compilers offer other ways to write and read data 
from non-volatile memory.  For example, if your host processor supports flash 
memory, EEPROM, or NVRAM, you might be able to declare your non-volatile 
network variables directly in this memory. 

Application Start-Up and Failure Recovery 
Typical applications load all persistent data into RAM during startup.  The 
ShortStack LonTalk Compact API handles that process for persistent network 
variables by calling the LonNvdDeserializeNvs() function from the LonInit() 
function, but your application must take appropriate steps to ensure correct data 
for all DMF window segments.   

Recommendation:  Your application should read data from DMF window 
segments prior to calling the LonInit() function, because the device is already 
attached to the network when the LonInit() function returns. 

Because your application is responsible for loading and modifying applicable data 
in non-volatile memory, you should use the application signature generated by 
the LonTalk Interface Developer utility to ensure that the application manages 
its own data, rather than another application’s data.  Use the 
LON_APP_SIGNATURE macro defined in the ShortStackDev.h file to retrieve 
the current application’s signature. 

Writing non-volatile data can be error-prone and slow, depending on the type and 
organization of the memory. Your application must detect any failures during the 
write process, and to ensure that the write process completes in a timely a 
fashion.  

Recommendation:  If the write process takes too long to complete within the API’s 
timing requirements (see Periodically Calling the Event Handler on page 170), 
your application should use queues or caches to minimize both latencies and the 
number of modifications. 

The application should also be able to detect data corruption.  If, for example, the 
device incurs a power loss during a write operation to non-volatile data, that data 
can be invalid.  When the application starts up after the failure, and attempts to 
re-load that data, it should detect that the data is not valid.  If invalid data is 
found, the application should cease operation and put the Micro Server into the 
unconfigured state. 

Applications can implement any method to ensure reliable persistence of data, or 
to ensure detection of failure, such as hardware support (for example, battery 
backup, or early power-out interrupts to flush any pending write requests). 
Typical software support includes management of “dirty” flags and checksum 
protection for persistent data. 



ShortStack User’s Guide        195 

Application Migration: Series 3100 to Series 5000 
A ShortStack FX application that is designed to work with a Micro Server on a 
Series 3100 chip (such as an FT 3150 Smart Transceiver) can work with a Micro 
Server on a Series 5000 chip (such as an FT 5000 Smart Transceiver), but you 
must re-run the LonTalk Interface Developer utility and recompile the 
application.  If the host processor type does not change, you do not need to modify 
your link-layer serial driver. 

Perform the following general tasks to migrate a ShortStack FX application from 
a Series 3100 device to a Series 5000 device:  

1. Create a backup copy of your application’s existing project.  You will need 
the original files from the project for step 3. 

2. Re-run the LonTalk Interface Developer utility.  Select the desired 
standard or custom Micro Server for the Series 5000 device.  The utility 
will overwrite the LonDev.c and LonDev.h files, among others.  

3. Use a DIFF or MERGE tool to compare the backed-up versions of the 
LonDev.c and LonDev.h files with the newly created ones.  Carefully 
merge your application’s code (from the backed-up version) into the new 
LonDev.c and LonDev.h files. 
 
Important:  Do not to replace the application initialization data blocks 
generated by the utility for the Series 5000 hardware. 

4. Rebuild your application. 

5. Load the appropriate Micro Server image into the FT 5000 Smart 
Transceiver or Neuron 5000 Processor. 

6. Load the application into the host processor and test the device. 

Because this change involves a hardware change and updated software for both 
the Micro Server and the host, upgrading a device to use new hardware in the 
field is not recommended.  In addition, such a hardware change is likely to 
invalidate any certificates or declarations of conformity obtained for the device, 
given that they were obtained for the previous hardware. 
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11  

Developing a ShortStack 
Application with ISI 

This chapter describes how to develop a ShortStack 
application with Interoperable Self-Installation (ISI) 
support.  It also describes the various tasks performed by 
the application.  
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Overview of ISI 
A control network could be a small, simple network in a home or in a machine 
consisting of a few devices, or it could be a large network in a building, factory, or 
ship consisting of tens of thousands of devices.  The devices in the network must 
be configured to become part of the common network and to exchange data.  The 
process of configuring devices in a control network is called network installation. 

There are two main categories of networks: 

• Managed networks  

• Self-installed networks 

A managed network is a network where a shared network management server 
performs network installation.  A user typically uses a tool to interact with the 
server and to define how the devices are configured and how they communicate. 
Such a tool is called a network management tool.  For example, Echelon’s 
LonMaker Integration Tool is a network management tool that uses the LNS 
Server network management server to install devices in a network.  Although a 
network management tool and a server are used to establish initial network 
communication, they need not be present for the network to function.  The 
network management tool and server are required only to make changes to the 
network’s configuration. 

In a managed network, the network management tool and server together 
allocate various network resources, such as device and data point addresses.  The 
network management server is also aware of the network topology, and can 
configure devices for optimum performance within the constraints of that 
topology. 

The alternative to a managed network is a self-installed network.  There is no 
central tool or server that manages the network configuration in a self-installed 
network.  Instead, each device contains code that replaces parts of the network 
management server’s functionality, which results in a network that does not 
require a special tool or server to establish network communication or to change 
the configuration of the network. 

Because each device is responsible for its own configuration, a common standard 
is required to ensure that devices configure themselves in a compatible way.  The 
standard protocol for performing self-installation in LONWORKS networks is 
called the LONWORKS Interoperable Self-Installation (ISI) Protocol.  The ISI 
protocol can be used for networks of up to 200 devices. 

Larger or more complex networks must either be installed as managed networks, 
or must be partitioned into multiple smaller subnetworks, where each 
subnetwork has no more than 200 devices and meets the ISI topology and 
connection constraints.  Devices that conform to the LONWORKS ISI protocol are 
called ISI devices. 

An ISI device manages its network identity (its address) and its network variable 
connections with minimum impact on the network performance.  These two 
groups of services are supported through a set of API calls, callback handlers, 
and notification events.  See Managing the Network Address on page 202 and 
Managing Network Variable Connections on page 206 for more information about 
these services. 
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The ShortStack Developer’s Kit includes standard Micro Servers that can be used 
to create ISI devices, and allows the creation of custom Micro Servers that 
support the ISI protocol.  Such an ISI-enabled Micro Server can be used in self-
installed or managed networks, but a Micro Server without built-in support for 
the ISI protocol cannot be used in an ISI network (unless you implement the 
required portions of the ISI protocol as part of your host application using the 
standard ShortStack messaging and self-installation APIs provided).  For a 
detailed description of the ISI protocol, see the LONWORKS ISI Protocol 
Specification. 

The ISI protocol is a licensed protocol.  In addition to the ShortStack FX 
Developer’s Kit, the ISI Developer’s Kit and Mini FX Evaluation Kit each include 
a license for development use of the ISI library. 

Using ISI in a ShortStack Application  
Using the ISI protocol in a ShortStack application is similar to using the ISI 
protocol in a Neuron C-based application (such as ones developed with the ISI 
Developer’s Kit or the Mini FX Evaluation Kit).  The application calls ISI 
functions and implements some or all of the ISI callback handler functions to 
produce the desired ISI behavior. 

There are two ways to modify the ISI behavior of a Micro Server: 

• If your ShortStack device uses a Micro Server that supports the ISI 
protocol, you can implement most of the ISI callback handler functions 
within your host application.  Overriding ISI callback handler functions 
is an important part of creating an ISI application, because these callback 
handlers provide essential, and typically application-specific, details to 
the ISI engine. 

• If you create an ISI-enabled custom Micro Server, you can determine the 
location of most of the ISI callback handler functions.  If there is 
sufficient space in the Smart Transceiver, you can put enough 
intelligence into the Micro Server Neuron C application to have a large 
percentage of the ISI logic in the Smart Transceiver.  Alternatively, you 
can let the Micro Server use the ShortStack ISI RPC protocol to call 
callback handler functions located on the host processor. 

See Comparing ISI for ShortStack and Neuron C on page 238 for information 
about the similarities and differences between ShortStack ISI applications and 
Neuron C ISI applications.  See Creating a Custom Micro Server with ISI 
Support on page 248 for information about customizing an ISI-enabled Micro 
Server. 

Running ISI on a 3120 Device 
A standard ShortStack Micro Server on a 3120 Smart Transceiver does not 
include support for ISI because of resource limitations.  For 3120 devices, the 
ShortStack LonTalk Compact API allows you to implement ISI support on the 
host processor. 
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Running ISI on a 3150 Device 
A standard ShortStack Micro Server on a 3150 Smart Transceiver can be 
installed in an ISI-S or ISI-DA network.  Support for ISI is largely handled by the 
Micro Server itself.  However, you can also use the ShortStack LonTalk Compact 
API to implement ISI support on the host processor.  In addition, you can create a 
custom Micro Server to provide custom ISI support, including support for ISI-
DAS applications. 

Running ISI on a PL 3170 Device 
A standard ShortStack Micro Server on a PL 3170 Smart Transceiver can be 
installed in an ISI-S or ISI-DA network.  Support for ISI is largely handled by the 
Micro Server itself.  However, you can also use the ShortStack LonTalk Compact 
API to implement ISI support on the host processor.  In addition, you can create a 
custom Micro Server to provide custom ISI support.  However, a Micro Server on 
a 3170 Smart Transceiver cannot support ISI-DAS applications. 

An ISI-enabled Micro Server for the PL 3170 Smart Transceiver has several 
limitations, compared to other ISI-enabled standard Micro Servers.  The 
following limitations are permanent and cannot be overcome by creating a 
custom, ISI-enabled, Micro Server: 

• The link layer supports SCI at the fixed bit rate of 38400 bps.  In 
addition, the SPI/SCI~, SBRB0, and SBRB1 signals are ignored. 

• The utility functions, which include local operations such as the ping or 
echo command, are not supported by the Micro Server. 

• ISI-S and ISI-DA modes are supported, but ISI-DAS mode is not. 

The following limits can be changed by creating a custom, ISI-enabled, Micro 
Server, and adjusting the Micro Server’s properties as needed: 

• Capacity is limited to 120 network variables and 75 aliases. 

• The ISI connection table is 24 records, local to the Micro Server. 

• Controlled enrollment is supported. 

Running ISI on an FT 5000 Device 
A standard ShortStack Micro Server on an FT 5000 Smart Transceiver can be 
installed in an ISI-S or ISI-DA network.  Support for ISI is largely handled by the 
Micro Server itself.  However, you can also use the ShortStack LonTalk Compact 
API to implement ISI support on the host processor.  In addition, you can create a 
custom Micro Server to provide custom ISI support, including support for ISI-
DAS applications. 

Tasks Performed by a ShortStack ISI Application 
A ShortStack ISI application must decide whether to start the ISI engine (based 
on the SCPTnwrkCnfg configuration property), call ISI services as needed, 
handle ISI events, and recover from failures. 
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After the ISI engine starts, it manages various aspects of your device, and makes 
services available to you through the ISI API.  The two major aspects managed 
include: managing the device’s network address and managing its network 
variable connections. 

Starting and Stopping ISI 
Use the IsiStart() function to start the ISI engine for any supported ISI type.  
Typically, because the ISI engine is stopped after a Micro Server reset, you start 
the ISI engine in your LonResetOccurred() callback handler function when self-
installation is enabled.  

The IsiStart() function accepts two arguments:  the ISI mode of operation 
(defined by the IsiType enumeration) and a bit vector with various flags (defined 
by the IsiStartFlags enumeration). 

The ShortStack ISI API does not support, or require, the host application to call 
the IsiPreStart() function.  Micro Servers that support hardware which requires 
the use of this function automatically call this API during power-up and reset. 

Use the IsiStop() function to explicitly stop the ISI engine at any time.  Typically, 
you stop the ISI engine when self-installation is disabled.  Because the ISI engine 
is always off after a power-up or reset, and needs to be started explicitly with 
each reset, this function is not widely used. 

When you stop the ISI engine, ISI callbacks into the application no longer occur. 
Because most ISI functions behave appropriately when the engine is stopped, the 
ShortStack application does not need to track the engine’s state and can issue the 
same set of ISI API calls in any state.   

Implementing a SCPTnwrkCnfg Configuration 
Property 

ISI applications must implement a SCPTnwrkCnfg configuration property that is 
implemented as a configuration network variable.  This configuration property 
must apply to your application’s Node Object functional block, if available, or 
apply to the entire device if there is no Node Object.   

This configuration property provides an interface for network management tools 
to disable self-installation on an ISI device.  By using this configuration property, 
the same device can be used in both self-installed and managed networks.   

Typically, the cp_info(reset_required) attribute is used with the declaration of the 
SCPTnwrkCnfg CP.  This attribute allows you to check the current ISI state in 
the device’s LonResetOccurred() callback handler function. 

The configuration property has two values:  CFG_LOCAL and CFG_EXTERNAL. 
When set to CFG_LOCAL, your application must enable self installation.  When 
set to CFG_EXTERNAL, your application must disable self installation.  
Network management tools automatically set this value to CFG_EXTERNAL to 
prevent conflicts between self-installation functions and the network 
management tool. 

For a device that will use self-installation, during the first start (only) with a new 
application image, set the value for the SCPTnwrkCnfg configuration property as 
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CFG_LOCAL so that the ISI engine can come up running with the first power-up.  
Subsequent starts use the default value of CFG_EXTERNAL. 

Example: 

SCPTnwrkCnfg nciNetConfigLocal; 
ReadNonVolatileData(); 
         
nciNetConfigLocal = nciNetConfigLastKnownGoodValue;  
 
if (nciNetConfigLocal == CFG_NUL) { 
  /* For the first application start, set nciNetConfig to 
   * CFG_LOCAL, thus allow the ISI engine to run by default 
   */ 
  nciNetConfig = CFG_LOCAL; 
  bWriteNonVolatileData = TRUE; 
} 
 
nciNetConfigLastKnownGoodValue = nciNetConfig; 
     
if (nciNetConfig == CFG_LOCAL) { 
  /* We are in self-installed mode */ 
  if (nciNetConfigLocal == CFG_EXTERNAL) { 
    /* The application has just returned to the self- 
     * installed mode. Make sure to re-initialize the 
     * entire ISI engine.   
     * Note that running this task on the Micro Server can 
     * take a significant amount of time, after which, the 
     * Micro Server resets. */ 
    IsiReturnToFactoryDefaults();    
  } 
 
  /* Start the ISI engine */ 
  IsiStart(IsiTypeS, IsiFlagExtended); 
} 

Managing the Network Address 
After the ISI engine is started, it manages the device’s network address.  The 
network address consists of a subnet and node ID pair plus a domain identifer.  

The subnet and node ID pair is managed automatically:  ISI chooses a suitable 
value pair, and ensures the uniqueness of that value pair within the network, 
making changes to that value pair as needed while the device is running. 

The domain identifier and its length (generally referred to collectively as “the 
domain”) define the logical network to which the device belongs.  Several devices 
can share the same physical network media, for example a power line 
communications channel, but can be logically isolated into distinct logical 
networks.  Each logical network is known as a “domain.”  

ISI devices can be part of one primary domain.  All ISI devices are also part of a 
secondary domain for administrative purposes, but all application-specific 
communication is limited to the primary domain. 

There are four methods to assign a domain to an ISI device: 
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1. The domain can be pre-defined and assigned by the device application or 
by the ISI implementation.  All ISI devices must initially support this 
method because an initial application domain is assigned prior to 
acquiring a domain using one of the other methods.  This method enables 
all devices to be used in an ISI-S network, the smallest form of an ISI 
network, which uses this method by default.  All ISI-enabled ShortStack 
Micro Servers support installation in an ISI-S network. 

2. A device that supports domain acquisition can acquire a unique domain 
address from a domain address server.  If a domain address server is not 
available, domain acquisition fails, and the ISI engine continues to use 
the most recently assigned domain (initially, the default domain).  
Devices that support domain acquisition also support multiple, 
redundant, domain address servers.  Domain address acquisition is 
initiated by the user and controlled by the device acquiring the domain, 
not by the domain address server.  This method allows the device to make 
intelligent decisions about retries, and prevents enrollment during 
domain acquisition.  It also allows the device to increase automatic 
enrollment performance following the completion of domain acquisition.  
All standard ISI-enabled ShortStack Micro Servers support domain-
acquisition services, but custom ISI-enabled Micro Servers can choose not 
to support them. 

3. A domain address server can assign a domain to a device without a 
request from the device.  This method minimizes the code required in the 
device, and can be used with all devices.  This process is called fetching a 
device.  All ISI-enabled devices and all ISI domain address servers 
support this method.  This method simplifies the implementation of the 
ISI application, but control of the process is no longer within the ISI 
application. 

4. A domain address server can fetch the domain from any of the devices in 
a network and assign it to itself.  This method keeps multiple domain 
address servers in a network synchronized with each other, or allows a 
replacement domain address server to join an existing ISI network.  This 
process is called fetching a domain.  All ISI-enabled devices and all ISI 
domain address servers support this method. 

A domain address server must support all four methods.  That is, it can supply a 
pre-defined domain (which is typically used as the domain address server’s 
default domain), it can support a device that requests a domain (domain 
acquisition), it can fetch any ISI device, and it can fetch a domain from another 
device.  

Supporting a Pre-Defined Domain 
While its ISI engine is running, any ISI device is always a member of two 
domains:  the administrative secondary domain that uses a pre-defined and fixed 
domain, and the application-specific primary domain.  

The primary domain uses a three-byte domain ID with value 0x49.53.49 (ASCII 
codes for “ISI”) by default.  An IsiGetPrimaryDid() callback function is supported, 
which allows applications to provide a different default for the primary domain.  
This alternate default can be used by some devices to start in a closed, non-
interoperable, ISI network.  The same method can also be used by domain 
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address servers to assign a unique domain identifier to the server’s default 
primary domain (typically equal to the server’s own unique ID). 

Acquiring a Domain from a Domain 
Address Server 
To acquire a domain from a domain address server using domain acquisition 
services, start the ISI engine using the IsiStart() function with the isiTypeDa 
type. 

A domain address server must be in device acquisition mode to respond to 
domain ID requests.  To start device acquisition mode on a domain address 
server, call the IsiStartDeviceAcquisition() function. 

To start domain acquisition on a device that supports domain acquisition, call the 
IsiAcquireDomain() function. 

A typical implementation starts the domain acquisition process when the 
Connect button is activated and a domain is not already assigned.  If 
SharedServicePin is set to FALSE, the IsiAcquireDomain() function also issues a 
standard service pin message, thus allowing the same installation paradigm in 
both a managed and an unmanaged environment.  If the application uses the 
physical service pin to trigger calls to the IsiAcquireDomain() function, the 
system image will have issued a service pin message automatically, and the 
SharedServicePin flag should be set to TRUE in this case. 

When calling IsiAcquireDomain() with SharedServicePin set to FALSE while the 
ISI engine is not running, a standard service pin message is issued nevertheless, 
allowing the same installation paradigm and same application code to be used in 
both self-installed and the managed networks. 

After domain acquisition has been enabled by calling IsiStartDeviceAcquisition() 
on the domain address server and it has been started on the device by calling 
IsiAcquireDomain(), the device responds to the isiWink ISI event with a visible or 
audible response.  For example, a device may flash its LEDs.  The user confirms 
that the correct device executed its wink routine by activating an appropriate 
user interface control on the domain address server that calls the server’s 
IsiStartDeviceAcquisition() function again.  When confirmed, the domain address 
server grants the unique domain ID to the device.  The device notifies its 
application with ISI events accordingly. 

The device automatically cancels domain acquisition if it receives multiple, but 
mismatching, domain response messages.  This mismatch can happen if multiple 
domain address servers with different domain addresses are in device acquisition 
mode, and all respond to the device’s query. 

Devices should support domain acquisition whenever possible (device resources 
permitting) rather than only supporting device fetching because the domain 
acquisition process provides a more robust process with features such as 
automatic retries and automatic connection reminders. 

The IsiCancelAcquisition() function causes a device to cancel domain acquisition.  
The cancellation applies to both device and domain acquisition.  After this 
function call is completed, the ISI engine calls IsiUpdateUserInterface() with the 
IsiNormal event.  On a domain address server, use the IsiCancelAcquisitionDas() 
function instead. 
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Example 1:  The following example starts domain acquisition on a domain 
address server when the user presses a Connect button on the server. 

if (connect_button_pressed) { 
  IsiStartDeviceAcquisition(); 
} 

When started, the domain address server remains in this state for five minutes, 
unless cancelled with an IsiCancelAcquisitionDas() call.  Each successful device 
acquisition retriggers this timeout. 

Example 2:  The following example starts domain acquisition on a device when 
the user pushes a Connect button on the device. 

if (connect_button_pressed) { 
  IsiAcquireDomain(FALSE); 
} 

Fetching a Device from a Domain Address 
Server 
A domain address server can use the IsiFetchDevice() function to assign the DAS’ 
unique domain ID to any device.  Unlike the IsiAcquireDomain() function, the 
IsiFetchDevice() function does not require any action, or special library code, on 
the device.  To fetch a device, call the IsiFetchDevice() function on the domain 
address server. 

DAS devices must make this feature available to the user.  With this feature, it is 
not required that devices support domain acquisition in order to participate in an 
ISI network that uses unique domain IDs. 

Similar to the domain acquisition process, fetching a device also requires a 
manual confirmation step to ensure that the correct device is paired with the 
correct domain address server. 

Example:  The following example fetches a device on a domain address server 
when the user presses the Connect button on the server. 

if (connect_button_pressed) { 
  IsiFetchDevice(); 
} 

Fetching a Domain for a Domain Address 
Server 
A domain address server can use the IsiFetchDomain() function to obtain a 
domain ID.  Unlike the IsiAcquireDomain() function, the IsiFetchDomain() 
process does not require a domain address server to provide the domain ID 
information, and does not use the DIDRM, DIDRQ, and DIDCF standard ISI 
messages.  Instead, the domain address server uses the IsiFetchDomain() 
function to obtain the current domain ID from any device in the network, even 
from those that do not implement or execute ISI at all.  This is typically used 
when installing replacement or redundant domain address servers in a network:  
a domain address server normally uses the IsiGetPrimaryDid() override to 
specify a unique, non-standard, primary domain ID.  A replacement domain 
address server (or a redundant domain address server) needs to override this 
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preference by using the domain ID that is actually used in the network.  This 
override is provided with the IsiFetchDomain() function. 

Example:  The following example fetches a domain on a domain address server 
when the user presses the Connect button on the server. 

if (connect_button_pressed) { 
  IsiFetchDomain(); 
} 

If no unambiguous domain ID is already present on the network, the domain 
address server uses its default domain ID, as advised with the 
IsiGetPrimaryDid() callback, as a unique domain ID. 

Managing Network Variable Connections 
You can exchange data between devices by creating connections between network 
variables on the devices.  Connections are like virtual wires, replacing the 
physical wires of traditional hard-wired systems.  A connection defines the data 
flow between one or more output network variables to one or more input network 
variables.  The process of creating a self-installed connection is called enrollment. 
Inputs and outputs join a connection during open enrollment, much like students 
join a class during open enrollment.  Following the sucessful completion of an ISI 
enrollment, the ISI engines on the devices in the connection automatically create 
and manage the network variable connection, assign the network variable 
selectors and other protocol resources, monitor their suitability, and change these 
values as needed while the connection is active. 

Other connection-related ISI services include deleting an entire connection, 
removing individual devices from a connection, or extending a connection by 
adding new participants. 

Because an ISI network uses unbounded groups (group size 0), your application 
should not poll network variable values.  Using a request-response service with 
unbounded groups can significantly degrade network performance. 

This section describes the ISI connection model and describes the procedures 
required to create a connection. 

ISI Connection Model 
Connections are created during an open enrollment period that is initiated by a 
user, a connection controller, or a device application.  When initiated, a device is 
selected to open enrollment—this device is called the connection host.  Any device 
in a connection can be the connection host; the connection host is responsible for 
defining the open enrollment period and for selecting the connection address to 
be used by all network variables within the connection.  Connection address 
assignment and maintenance is handled by the ISI engine, and is transparent to 
your application. 

Even though any device in a connection can be the connection host, if you have a 
choice of connection hosts, pick the natural hub as the connection host.  For 
example, in a connection with one switch and multiple lights, the switch is the 
natural hub, whereas in a connection with one light and multiple switches, the 
light is the natural hub.  If there is no natural hub—multiple switches connected 
to multiple lights for example—you can pick any of the devices (preferably one 
with easy access). 
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A connection host opens enrollment by sending a connection invitation.  After a 
connection host opens enrollment, any number of devices can join the connection. 

Connections are created among connection assemblies.  A connection assembly is 
a block of functionality, a grouping of one or more network variables, much like a 
Neuron C functional block.  A simple assembly refers to a single network 
variable, as shown in Figure 69. 

 

Figure 69. A Simple Assembly 

A connection assembly that consists of a single network variable is called a 
simple assembly.   

A single assembly can include multiple network variables in a functional block, 
can include multiple network variables that span multiple functional blocks, or 
can exist on a device that does not have any functional blocks; an assembly is a 
collection of one or more network variables that can be connected as a unit for 
some common purpose.   

A connection assembly that consists of more than one network variable is called a 
compound assembly, as shown in Figure 70. 

 

Figure 70. A Compound Assembly 

For example, a combination light-switch and lamp ballast controller can have 
both a switch and a lamp functional block, which are paired to act as a single 
assembly in an ISI network, but could be handled as independent functional 
blocks in a managed network, as shown in Figure 71 on page 208. 
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Figure 71. Multiple Functional Blocks as a Single Compound Assembly 

To communicate and identify an assembly to the ISI engine, the application 
assigns a unique number to each assembly.  This assembly number must be in 
the 0 to 254 range, sequentially assigned starting at 0.  Required assemblies for 
standard profiles must be first, assigned in the order that the profiles are 
declared in the application.  Standard ISI profiles that define multiple assemblies 
must specify the order in which the assemblies are to be assigned. 

Each assembly has a width, which is equal to the number of network variable 
selectors used in the enrollment.  Typically, but not necessarily, the number of 
network variable selectors in an enrollment equals the number of network 
variables in the assembly.  In the previous figures, for example, assembly 0 has a 
width of 1, assembly 1 typically has a width of 2, and assembly 2 typically has a 
width of 4.  All assemblies must have a width of at least 1.  Simple assemblies 
have a width of 1; compound assemblies typically have a width greater than 1.  

Recommendation:  Keep the width of an assembly as small as possible while 
maintaining the functionality of the application.  For example, keep the width 
below 10. 

One of the network variables in a compound assembly is designated as the 
primary network variable.  If the primary network variable is part of a functional 
block, that functional block is designated as the primary functional block. 
Information about the primary network variable can be included in the 
connection invitation. 

To open enrollment, the connection host broadcasts a connection invitation that 
can include the following information about the assembly:   

• The network variable type of the primary network variable in the 
assembly 

• The functional profile number of the primary functional profile in the 
assembly 

• The connection width  
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Other devices on the network receive the invitation and interpret the offered 
assembly to decide whether they could join the new connection. 

In the case of assembly 0 in Figure 69 on page 207, the connection invitation can 
specify a width of one and the network variable type.  This is a case similar to the 
one employed by a generic switch device where the switch offers a SNVT_switch 
network variable that is not tied to a specific functional profile. 

Assembly 1 in Figure 70 on page 207 demonstrates a more specialized example.  
A switch can offer this assembly and describe it as an implementation of the 
SFPTclosedLoopSensor profile, with a width of two, and a SNVT_switch input 
and output.  The ISI protocol defines how multiple network variable selectors are 
mapped to the individual network variables offered. 

Because the invitation includes no more than one functional profile number, a 
compound assembly is typically limited to a single functional block on each 
device.  To include multiple functional blocks in an assembly, a variant can be 
specified.  A variant is an identifier that customizes the information specified in 
the connection invitation.  Variants can be defined for any device category or any 
functional profile-member number pair.   

For example, a variant can be specified with the SFPTclosedLoopSensor 
functional block offered in assembly 2 in Figure 71 on page 208 to specify that the 
SFPTclosedLoopActuator functional block is included in the assembly.  Standard 
variant values are defined in standard functional profiles that are published by 
LONMARK International, and manufacturers can specify manufacturer-specific 
variant values for manufacturer-specific assemblies. 

Each assembly on a device has a unique number that is assigned by the 
application.  Each network variable on a device can be assigned to an assembly. 
The ISI engine calls the IsiGetNvIndex() and IsiGetNextNvIndex() callback 
functions to map a member of an assembly to a network variable on the device. 

Opening Enrollment 
You can create a connection using automatic, controlled, or manual enrollment. 
When you use controlled or manual enrollment, user intervention is required to 
identify devices or assemblies to be connected.  Controlled enrollment is initiated 
by a centralized tool, such as a controller or user interface panel.  This 
centralized tool is called the connection controller.  Most of the standard ISI 
profiles require support for controlled enrollment.  Manual enrollment is initiated 
from the devices to be connected, typically with a push button called the Connect 
button.  When you use automatic enrollment, connections are automatically 
created, and no user intervention is required. 

The standard Micro Server images support controlled enrollment.   

To join a connection, a device must support at least one type of enrollment.  A 
device can support multiple types of enrollment, or a device can support all three 
types of enrollment.  For example, a lamp actuator can support automatic 
enrollment to a gateway, controlled enrollment configured by a user interface 
panel, and manual enrollment with switch devices.  Devices that support 
controlled enrollment must also support connection recovery as described in 
Recovering Connections on page 233.  Standard functional profiles can require 
support for specific types of enrollment. 
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An event triggers your application to open enrollment.  The type of event depends 
on the type of enrollment: 

• Manual enrollment:  A user input on the device itself typically triggers 
manual enrollment.  The input can be a simple button push, or a device 
could have a more complex user interface that allows the user to request 
a connection. 

• Controlled enrollment:  A request from a connection controller typically 
triggers controlled enrollment.  This request is typically initiated by some 
user input to the connection controller and arrives in a control request 
(CTRQ) message.  The CTRQ message identifies an ISI function and an 
optional parameter. 

• Automatic enrollment:  The isiWarm event in the 
IsiUpdateUserInterface() callback function typically triggers automatic 
enrollment.  

To open manual enrollment, call the IsiOpenEnrollment() function on the 
connection host, passing in the assembly number to be offered for this connection. 
The ISI engine then sends a connection invitation by broadcasting an open 
enrollment message (CSMO).  The CSMO message is the invitation for other 
devices to join this connection, and signals an open enrollment period.  The ISI 
protocol also provides extended versions of the CSMO messages, which add fields 
to determine if the connection is acknowledged or polled, the scope of the 
connection and parts of the program ID, and the primary network variable 
member. 

The ISI engine creates the CSMO message by calling the IsiCreateCsmo() 
function, which fills the relevant fields of an IsiCsmoData data structure with the 
values needed to describe the connection type and data that is offered to the 
network.  The default implementation of this function, which is provided with the 
ISI libraries and is available to Neuron C applications, is not available to 
ShortStack devices.  However, you can implement this function either within the 
host application or within a custom Micro Server. 

After calling the IsiCreateCsmo() function, the ISI engine constructs the 
remainder of the CSMO message and broadcasts the connection invitation to the 
network.  To create a compound connection (one with an assembly width larger 
then 1), you must override the IsiGetWidth() callback function.  Sending 
reminders of this message also calls several callback functions, including 
IsiCreateCsmo() and IsiGetWidth(). 

Controlled enrollment is initiated and controlled by the connection controller, 
which opens the controlled enrollment by sending a CTRQ message specifying 
the IsiOpenEnrollment() function, and also specifying the assembly number to be 
offered.  The application must respond to the CTRQ message with a control 
response (CTRP) message indicating that it implements the requested operation. 

If your ShortStack device needs to use controlled enrollment, you can create a 
custom Micro Server that includes it. 

To open automatic enrollment, wait for the IsiWarm event from the 
IsiUpdateUserInterface() callback function, and then call the 
IsiInitiateAutoEnrollment() function, passing a pointer to an IsiCsmoData 
structure containing the invitation, and an the assembly number to be offered for 
this connection.  The ISI engine then sends a connection invitation by 
broadcasting an automatic enrollment (CSMA) message.  The ISI engine also 
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sends periodic reminders about the automatic connection by sending CSMR 
messages.  The reminder ensures that new devices have an opportunity to join 
the automatic connections.  

Whenever a CSMR is due, the ISI engine calls IsiCreateCsmo() to create the 
message.  The CSMA and CSMR messages are the invitations for other devices to 
enroll in this connection automatically.  Opening automatic enrollment through 
IsiInitiateAutoEnrollment() is an immediate action, and after the call is made, 
the connection is implemented for the assembly that the call was made with, 
regardless of whether there are any members for the connection. 

The ISI engine automatically transmits the extended CSMOEX, CSMAEX, or 
CSMREX message (as appropriate) if isiFlagExtended was specified during the 
start of the engine.  Otherwise, the ISI engine automatically clips the Extended 
sub-structure of the IsiCsmoData structure and issues the regular CSMO, 
CSMA, or CSMR message. 

You can provide feedback to the user while enrollment is open, for example by 
starting a Connect light to flash.  This is typically only done with manual 
enrollment.  The ISI engine informs your application of significant ISI events by 
calling an IsiUpdateUserInterface() callback function. 

Example 1:  The following example opens automatic enrollment. 

void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  if (event == IsiWarm && !myIsiGetIsConnected(myAssembly)) 
  { 
    IsiInitiateAutoEnrollment(&myCsmoData, myAssembly); 
  } 
} 

In this example, the Event is compared to IsiWarm and to the value returned by 
the myIsiGetIsConnected() function.  Your application implements this function, 
which returns TRUE if the status for the specified assembly (myAssembly) is 
connected, and returns FALSE otherwise.  To maintain the connection status for 
each assembly, the application should periodically call the IsiQueryIsConnected() 
function.  Then, within the IsiIsConnectedReceived() callback handler function, 
you can update the connection status for each assembly. 

The IsiWarm event signals that a sufficient amount of time has passed since the 
ISI engine has been started.  This interval includes a random component to 
prevent all devices in the network from simulatenously starting the automatic 
enrollment processes and thus colliding in the event of a site-wide return to 
power. 

Example 2:  The following example opens manual enrollment for a simple 
assembly with one network variable, using the network variable’s global index as 
the application-specific assembly number.  This example runs within your host 
application. 

void startEnrollment(void) { 
  IsiOpenEnrollment(LonNvIndexNvoValue); 
} 

Example 3:  The following controlled enrollment example instructs a remote 
device with a specified unique ID (Neuron ID) to open enrollment for its assembly 
number 5.  The first part of this example runs within your host application, 
which initiates the controlled enrollment request (the host application 
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implements an ISI connection controller), and the second part of this example 
runs within a custom Micro Server that is used by the targeted remote device.  

See the Interoperable Self-Installation Protocol Specification for information 
about the ISI Protocol, including its message codes and structures.  For example, 
the IsiControl enumeration and the IsiMessage data structure are not included in 
the ShortStackIsiTypes.h file. 

const LonApiError controlEnrollment(IsiControl control, 
        unsigned parameter, LonUniqueId* pUniqueId) { 
 
  LonSendUniqueId target; 
  IsiMessage message; 
 
  /* Use Neuron ID addressing with one of the addresses 
   * gathered during device discovery */ 
  target.Type = LonAddressNeuronId;    
  target.Domain = 0; 
  target.RepeatRetry = 3 | 
      (LonRpt192<<LON_SENDNID_REPEAT_TIMER_SHIFT); 
  target.RsvdTransmit = LonTx96; 
  target.subnet = 0;   
  memcpy(target.NeuronId, pUniqueId, 
      sizeof(target.NeuronId)); 
 
  /* Prepare the ISI message */ 
  message.Header.Code = IsiCtrq;       
  message.Msg.Ctrq.Control = control; 
  message.Msg.Ctrq.Parameter = parameter; 
 
  return LonSendMsg(LonMtIndexMyTag, FALSE, 
      LonServiceRequest, FALSE,  
      (const LonSendAddress*)&target, 
      IsiApplicationMessageCode, &message, 
      sizeof(IsiMessageHeader) + sizeof(IsiCtrqMessage)); 
} 
 
void myEnroll(...) { 
    ... 
    LonApiError error = controlEnrollment(IsiOpen, 5, ...); 
    ... 
} 

Your application can evaluate success or failure of the request by using the 
LonResponseArrived() callback handler function.  When the controlled 
enrollment request completes, the target device replies with an ISI CTRP 
response message, which indicates success or failure.  The CTRP message 
includes the target device’s unique ID, which allows you to correlate it with the 
outstanding request.  

If the device fails to provide a CTRP response message, you should generally 
assume that the target device does not implement controlled enrollment.  As the 
example shows, you should use network protocol features, such as the repeat 
counter and timer values, to configure repeated communication attempts. 

On the receiving device, a controlledEnrollmentDispatcher() function and a 
sendControlResponse() utility function are implemented to process the controlled 
enrollment request.   
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To ensure that your custom Micro Server can control enrollment, add a call to the 
controlledEnrollmentDispatcher() function within the IsiMsgHandler() function 
in the MicroServer.nc file.  An example for the calling the 
controlledEnrollmentDispatcher() function is provided in Example 2 in Accepting 
a Connection Invitation on page 218. 

boolean IsiMsgHandler(void) { 
  boolean result, preemptionMode; 
  boolean enrolled; 
 
  result = FALSE; 
  preemptionMode = shortStackInPreempt(); 
 
  enrolled = controlledEnrollmentDispatcher(); 
 
  switch(isiType) { 
#ifdef  SS_SUPPORT_ISI_S 
    case isiTypeS: 
      result = IsiApproveMsg() &&  
          (preemptionMode  
           || !IsiProcessMsgS()  
           || controlledEnrollmentDispatcher()); 
      break; 
#endif  //  SS_SUPPORT_ISI_S 
#ifdef  SS_SUPPORT_ISI_DA 
    case isiTypeDa: 
      result = IsiApproveMsg() &&  
         (preemptionMode ||  
          !IsiProcessMsgDa() ||  
          controlledEnrollmentDispatcher()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DA 
#ifdef  SS_SUPPORT_ISI_DAS 
    case isiTypeDas: 
      result = IsiApproveMsgDas() &&  
          (preemptionMode  
           || !IsiProcessMsgDas()  
           || controlledEnrollmentDispatcher()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DAS 
  }  
  return result; 
} 

Example 4:  The following example opens manual enrollment for a compound 
assembly with four selectors.  The IsiGetWidth() returns the library’s default 
value.  In this example, enrollment is being opened in response to the user’s 
pressing a Connect button.  Enrollment can only be opened when the ISI engine 
is in the normal state.  The ProcessIsiButton() function is called in response to 
the Connect button’s being pressed. 

This example runs within your host application. 

IsiEvent isiState = IsiNormal; 
 
void IsiCreateCsmo(....) { 
  // set pCsmoData as desired 
} 
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unsigned IsiGetWidth(unsigned assembly) { 
  return 4; 
} 
 
void ProcessIsiButton(unsigned assembly) { 
  switch(isiState) { 
    ... 
    case IsiNormal: 
      IsiOpenEnrollment(assembly); 
      break; 
    ... //Processing for other states 
  } // end of switch(isiState) 
} 

The example assumes that the IsiCreateCsmo() and IsiGetWidth() callback 
handler functions are implemented in the same location, and implies that both 
are implemented in the location of the ProcessIsiButton() function (presumably, 
within your host application).  When you create an ISI-enabled custom Micro 
Server, you can choose whether the IsiCreateCsmo() and IsiGetWidth() callback 
handler functions should be implemented local to the Micro Server or on the host, 
but these two callback handler functions would typically be implemented in the 
same location. 

Example 5:  The following refines example 1 and provides a more comprehensive 
example of opening automatic enrollment for a simple assembly with one 
network variable. 

This example runs within your host application. 

// MyCsmoData defines the enrollment details for the  
// automatic ISI network variable connection offered by 
// this device. 
static const IsiCsmoData MyCsmoData = { 
  // group 
  ISI_DEFAULT_GROUP,   
  // direction and width: 
  IsiDirectionOutput << ISI_CSMO_DIR_SHIFT) | 1,  
  // Profile number 
  { 0, 2 }, 
  // NV type index (76: SNVT_freq_hz) 
  76, 
  // Variant: 
  0 
}; 
 
// Call InitiateAutoEnrollment in response to isiWarm 
void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  if (event == IsiWarm && 
      !myIsiGetIsConnected(myAssemblyNumber)) { 
    // We waited long enough and we are not connected 
    // already, so let's open an automatic connection: 
    IsiInitiateAutoEnrollment(&MyCsmoData, 
      myAssemblyNumber); 
  } 
} 
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void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) { 
  if (assembly == myAssemblyNumber) { 
    memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData)); 
  } 
} 
 
unsigned IsiGetWidth(unsigned assembly) { 
  unsigned result = 0; 
  if (assembly == myAssemblyNumber) { 
    result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH); 
  } 
  return result; 
} 

In this example, the Event is compared to IsiWarm and to the value returned by 
the myIsiGetIsConnected() function.  Your application implements this function, 
which returns TRUE if the status for the specified assembly (myAssembly) is 
connected, and returns FALSE otherwise.  To maintain the connection status for 
each assembly, the application should periodically call the IsiQueryIsConnected() 
function.  Then, within the IsiIsConnectedReceived() callback handler function, 
you can update the connection status for each assembly. 

Example 6:  The following example opens automatic enrollment for a compound 
assembly with four selectors, offering enrollment for member network variables 1 
to 4 of an implementation of the SFPTsceneController profile (the nviScene, 
nvoSwitch, nviSetting, and nviSwitch members). 

This example runs within your host application. 

// MyCsmoData defines the enrollment details for the 
// automatic ISI network variable connection offered by 
// this device 
static const IsiCsmoData MyCsmoData = { 
  // group 
  ISI_DEFAULT_GROUP,   
  // direction and width: 
  (isiDirectionVarious << ISI_CSMO_DIR_SHIFT) | 4,  
  // Profile number in big-endian notation: 
  { 3251 / 256, 3251 % 256 }, 
  // NV type index (0: determined by SFPT) 
  0, 
  // Variant: 
  0 
}; 
 
// Call InitiateAutoEnrollment in response to isiWarm 
void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  if (event == IsiWarm && 
      !myIsiGetIsConnected(myAssemblyNumber)) { 
    // We waited long enough and we are not connected 
    // already, so let's open an automatic connection: 
    IsiInitiateAutoEnrollment(&MyCsmoData, 
      myAssemblyNumber); 
  } 
} 
 
void IsiCreateCsmo(unsigned assembly, IsiCsmoData* pCsmo) { 
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  if (assembly == myAssemblyNumber) { 
    memcpy(pCsmo, &MyCsmoData, sizeof(IsiCsmoData)); 
  } 
} 
 
unsigned IsiGetWidth(unsigned assembly) { 
  unsigned result = 0; 
  if (assembly == myAssemblyNumber) { 
    result = LON_GET_ATTRIBUTE(MyCsmoData, ISI_CSMO_WIDTH); 
  } 
  return result; 
} 

As in the previous example, the Event is compared to IsiWarm and to the value 
returned by the myIsiGetIsConnected() function.  Your application implements 
this function, which returns TRUE if the status for the specified assembly 
(myAssembly) is connected, and returns FALSE otherwise.  To maintain the 
connection status for each assembly, the application should periodically call the 
IsiQueryIsConnected() function.  Then, within the IsiIsConnectedReceived() 
callback handler function, you can update the connection status for each 
assembly. 

Example 7:  For a complete example that implements connection management for 
multiple assemblies, see the self-installation example application that is included 
with the ShortStack FX ARM7 Example Port, which is available for free 
download from www.echelon.com/shortstack.  

Receiving an Invitation 
You can receive a connection invitation and specify which assemblies are eligible 
to join the ISI connection.  When an ISI device receives a CSMO, CSMA, or 
CSMR connection invitation message, the ISI engine first checks the availability 
of the device resources that are required to implement the connection.  If any of 
these resources is missing or insufficient, such as address or connection table 
space, the invitation is dropped.  

If the ISI engine determines that there are sufficient resources, it calls the 
IsiGetAssembly() and IsiGetNextAssembly() callback handler functions with the 
received CSMO, CSMA, or CSMR message.  These functions return all assembly 
numbers that are provisionally approved to join the connection.  The automatic 
argument of IsiGetAssembly() and IsiGetNextAssembly() indicates whether the 
enrollment is manual or controlled (CSMO) or automatically (CSMA or CSMR) 
initiated, with FALSE meaning that the enrollment was initiated manually or by 
a connection controller.  On devices that do not support connection removal, the 
assembly is ignored if it is already engaged in another connection. 

When a device receives an extended CSMOEX, CSMAEX, or CSMREX message, 
all fields of the IsiCsmoData structure are passed to the application, and the 
fields in the Extended sub-structure are all valid. 

When a device receives a regular CSMO, CSMA, or CSMR message, the extended 
fields are automatically set to all zeros, with exception of the Extended.Member 
field, which is set to one. 

Applications do not need to distinguish between regular and extended incoming 
messages. 

http://www.echelon.com/shortstack
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You can provide feedback to the user when an invitation is received and 
provisionally approved, for example by causing a Connect light to flash while 
enrollment is open.  Such feedback is typically only provided for a manual 
connection.  The ISI engine informs your application that an eligible invitation 
has been received and provisionally approved by calling the 
IsiUpdateUserInterface() callback function (with the IsiPending event code) for 
each assembly that is provisionally approved to join the connection.  The 
application can indicate provisionally approved, but not yet accepted, connection 
invitations. 

Example:  The following example receives and provisionally approves a 
connection invitation, and blinks a Connect light until the invitation is accepted, 
or the connection is confirmed or canceled. 

This example runs within your host application. 

// IsiUpdateUserInterface is called with IsiPending as the 
// IsiEvent parameter in response to receiving a CSMO 
void IsiUpdateUserInterface(IsiEvent event, unsigned 
      parameter) { 
  ... //Optional event processing 
  isiState = (event == IsiPending || event == IsiApproved 
      || event > IsiWarm) ? event : IsiNormal; 
} 
 
unsigned IsiGetAssembly(const IsiCsmoData* pCsmo,  
      LonBool automatic) { 
  unsigned result = ISI_NO_ASSEMBLY; 
  if (pCsmo->Group == ISI_LIGHTING_CATEGORY 
      && pCsmo->Extended.Scope == isiScopeStandard 
      && pCsmo->NvType == SNVT_SWITCH_2_INDEX 
      && !(pCsmo->Variant & 0x60) 
      && !LON_GET_ATTRIBUTE(pCsmo->Extended, ISI_CSMO_ACK) 
      && !LON_GET_ATTRIBUTE(pCsmo->Extended, 
          ISI_CSMO_POLL)) { 
    // Recognized CSMO, return appropriate assembly 
    // number 
    result = myAssemblyNumber; 
  } 
  return result; 
} 
 
unsigned IsiGetNextAssembly(const IsiCsmoData* pCsmo, 
      LonBool automatic, unsigned assembly) { 
  unsigned result = ISI_NO_ASSEMBLY; 
 
  if (assembly == myAssemblyNumber) { 
    result = myAssemblyNumber + 1; 
  }  
  return result; 
} 

The example identifies the enrollment and specifies myAssemblyNumber as the 
first local applicable assembly for the enrollment.  The GetNextAssembly() 
callback handler function then adds a second local applicable assembly to the list. 
Unacceptable enrollment data, or requests for additional local assemblies, receive 
the ISI_NO_ASSEMBLY constant. 
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Accepting a Connection Invitation 
You can accept a connection invitation to join the offered connection.  When you 
accept a connection invitation, the ISI engine sends an enrollment acceptance 
message (CSME) to the connection host.  Accepting an invitation only sends an 
acceptance to the connection host; the connection is not implemented until the 
connection host confirms the new connection. 

You can only accept enrollment for an assembly that has been provisionally 
approved.  To provisionally approve an assembly, the IsiGetAssembly() or 
IsiGetNextAssembly() function must return the assembly number for the current 
IsiCsmoData structure, and the IsiUpdateUserInterface() callback function must 
identify the current assembly as being in the IsiPending state. 

For manual enrollment, a connection invitation is typically accepted based on 
user input.  For example, LEDs blink on a device when invitations are received 
and provisionally approved, and the user then pushes the related Connect button 
to accept a specific invitation. 

For a controlled enrollment, a connection invitation is typically accepted based on 
a request from a connection controller.  This request is typically initiated by some 
user input to the connection controller. 

For automatic enrollment, a connection invitation is typically accepted based on 
some application-specific criteria.  For example, a home gateway opens automatic 
enrollment for its inputs and outputs, and newly installed home devices 
automatically accept all eligible connection invitations from the home gateway.  

The actual establishment of an automatic connection is handled by the ISI 
engine, and requires a call to IsiCreateEnrollment() or IsiExtendEnrollment(). 
The ISI engine extends the connection if the library supports connection 
extension, or creates the extension if the library does not support connection 
extension and the assembly is not already connected, or if the library supports 
connection removal.  The ISI libraries that are used with the standard, ISI-
enabled, ShortStack Micro Servers support connection extensions and connection 
removal procedures.  Different ISI libraries can be used with custom Micro 
Server implementations; see Creating a Custom Micro Server with ISI Support 
on page 248. 

For devices that support connection removal, you can create a connection that 
replaces all existing connections for an assembly.  For devices that support 
connection extension, you can add a new connection to an assembly that might 
already be enrolled in other connections.   

To create a connection that replaces all existing connections for an assembly, call 
IsiCreateEnrollment().  To add a connection to an assembly without overriding 
any existing connections associated with the same assembly, call 
IsiExtendEnrollment().  You can extend a nonexistent connection; 
IsiExtendEnrollment() has the same functionality as IsiCreateEnrollment() if no 
connection exists for the assembly. 

Extending a connection consumes additional device and network resources, 
compared with the initial connection.  Each extension to a connection requires 
one or more new aliases and connection table entries, and results in additional 
network transactions for every update to the connection.  You can eliminate this 
additional resource usage by deleting and re-creating a connection instead of 
extending it. 
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You can provide feedback to the user when an invitation is accepted, for example 
by changing the state of the Connect light when the connection invitation is 
accepted from flashing to solid on.  Such feedback is typically only provided for 
manual enrollment.  The ISI engine informs your application that a connection 
invitation has been accepted by calling the IsiUpdateUserInterface() callback 
function, assigning the IsiApproved or IsiApprovedHost state to the respective 
assembly.  The application indicates the accepted connection invitation. 

Example 1:  The following manual enrollment example accepts a connection 
invitation when the user presses a Connect button.  

This example runs within your host application. 

IsiEvent isiState; 
 
void ProcessIsiButton(unsigned assembly) { 
  switch(isiState) { 
  ... 
    case IsiPending: 
      IsiCreateEnrollment(assembly); 
      break; 
      ... //Processing for other states 
  } // end of switch(state) 
} 

After the host accepts the connection, your application receives the 
IsiUpdateUserInterface() callback with the Event set to IsiApproved.  Your 
application can use this event status to update the device interface, for example, 
by illuminating an LED. 

Example 2:  The following example opens controlled enrollment when requested 
by the connection controller. 

This example runs within a custom Micro Server. 

void sendControlResponse(boolean success) { 
  IsiMessage ctrlResp; 
 
  ctrlResp.Header.Code = isiCtrp; 
  ctrlResp.Ctrp.Success = success; 
  memcpy(ctrlResp.Ctrp.NeuronID, read_only_data.neuron_id, 
      NEURON_ID_LEN); 
  
  resp_out.code = isiApplicationMessageCode; 
  memcpy(resp_out.data, &ctrlResp, 
      sizeof(IsiMessageHeader)+sizeof(IsiCtrp)); 
  resp_send(); 
} 
 
boolean controlledEnrollmentDispatcher(void) {  
  boolean isProcessed; 
  IsiMessage inMsg; 
 
  isProcessed = FALSE; 
  memcpy(&inMsg, msg_in.data, sizeof(IsiMessage)); 
 
  if (inMsg.Header.Code == isiCtrq) { 
    if (inMsg.Ctrq.Control == isiOpen) { 
      sendControlResponse(TRUE); 
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      IsiOpenEnrollment(inMsg.Ctrq.Parameter); 
      isProcessed = TRUE; 
    } else if (inMsg.Ctrq.Control == isiCreate) { 
      sendControlResponse(TRUE); 
      IsiCreateEnrollment(inMsg.Ctrq.Parameter); 
    } else if (inMsg.Ctrq.Control == isiFactory) { 
      sendControlResponse(TRUE); 
      IsiReturnToFactoryDefaults(); 
    } else { 
      sendControlResponse(FALSE); 
    } 
  } else { 
    // Other requests deleted for this example 
    ... 
  } 
  return isProcessed; 
} 

Implementing a Connection 
In a manual or controlled enrollment, when a connection host sends a connection 
invitation by broadcasting an open enrollment message, one or more devices can 
accept the connection invitation and respond with an enrollment acceptance 
message (CSME).  When the connection host receives at least one CSME 
message, the host application receives the IsiApprovedHost event through the 
IsiUpdateUserInterface() callback function.  Typically, the application changes 
the state of the related Connect light from flashing to solid on. 

When the connection host’s assembly is in the IsiApprovedHost state, the 
connection can be cancelled or implemented.  See Canceling a Connection on page 
221 for information about cancellation. 

To implement a connection on a connection host, call either 
IsiCreateEnrollment() or IsiExtendEnrollment().  The connection host joins the 
connection and issues a connection enrollment confirmation message (CSMC). 
When calling IsiCreateEnrollment(), any connection that exists for the same 
assembly is removed; see Deleting a Connection on page 222 for more 
information.  When calling IsiExtendEnrollment(), the new connection is added 
to any existing connections for the same assembly, consuming an alias table 
entry for each NV in the assembly. 

After the connection host confirms the connection, devices that have previously 
accepted the connection invitation join the connection by replacing or extending 
an existing connection, depending on the function that was used to accept the 
invitation. 

When a device joins a connection, the ISI engine on that device updates the 
network configuration for the device, and the accepted connection becomes active. 

The ISI engine automatically implements the connections for the accepted 
assembly.  To determine the network variables to be connected, the ISI engine 
calls the IsiGetNvIndex() and IsiGetNextNvIndex() functions for each selector 
used with the connection. 

You can provide feedback to the user when a connection has been joined, for 
example by turning off the Connect light.  Such feedback is typically only 
provided for manual connections.  The ISI engine informs your application that a 
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connection has been implemented by providing the IsiImplemented event 
through the IsiUpdateUserInterface() callback function.  The application 
indicates the new connection.  Your application will receive one IsiImplemented 
event for each network variable that belongs to the assembly. 

Example:  The following manual enrollment example implements a connection on 
a connection host when the user presses the Connect button a second time.  The 
complete application also turns off the Connect light to indicate the acceptance on 
the host. 

void ProcessIsiButton(unsigned assembly) { 
  switch(isiState) { 
  ... 
    case IsiApprovedHost: 
      if (bCancelEnrollment) 
        IsiCancelEnrollment(); 
      else  
        IsiCreateEnrollment(assembly); 
      break; 
      ... // Processing for other states 
  } // End of switch(state) 
} 

After the host accepts the connection, your application receives the 
IsiImplemented event through the IsiUpdateUserInterface() callback handler 
function once for each local network variable associated with the assembly.  Your 
application can use this event status to update the device interface, for example, 
by illuminating an LED. 

Canceling a Connection 
You can cancel a pending enrollment on the connection host at any stage, and on 
any device that has accepted the connection invitation.  However, cancellation is 
no longer possible after the connection is implemented; see Deleting a Connection 
on page 222 for information about deleting an implemented connection. 

Pending enrollment sessions are automatically cancelled if: 

• On the connection host, if no connection enrollment acceptance message 
(CSME) is received within the open enrollment period after the 
IsiOpenEnrollment() function call. 

• On the connection host, if the connection is not implemented by a 
IsiCreateEnrollment() or IsiExtendEnrollment() function call within the 
open enrollment period after the receipt of a connection enrollment 
confirmation message (CMSE). 

• On an accepting device, if the connection has been accepted and no 
connection enrollment confirmation message (CMSC) has been received 
within the open enrollment period after the acceptance. 

To explicitly cancel a pending enrollment, call the IsiCancelEnrollment() 
function. 

When a connection host cancels a pending enrollment session, it issues a 
connection enrollment cancellation message (CSMX).  Devices that have accepted 
the related connection invitation automatically cancel when they receive a 
related CSMX message. 
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When a connection member cancels a pending enrollment session, the 
cancellation only has local effect—the approved assembly changes to the 
IsiCancelled state.  Because the connection host can re-send invitation messages 
(CSMOs), the same device can, once again, conditionally approve the assembly 
and move it to the IsiPending state.  The user can now accept the connection 
invitation again (by causing the application to call IsiCreateEnrollment() or 
IsiExtendEnrollment()), or simply do nothing.  The pending assembly remains 
pending until the enrollment is closed, and automatically returns to the 
IsiNormal state. 

Deleting a Connection 
You can delete an implemented connection using one of three methods: 

• The device can restore factory defaults by calling the 
IsiReturnToFactoryDefaults() function.  This function clears all system 
tables, stops the ISI engine, and resets the Micro Server.  See 
Deinstalling a Device on page 237 for more information about this 
function. 

• The device can delete a connection by calling the IsiDeleteEnrollment() 
function.  This function causes the connection information to be removed 
from the local device, as well as on all other devices that are members of 
the same connection.  The IsiDeleteEnrollment() function can be called on 
the connection host, and on any other device that has joined the 
connection. 

• The device can opt out of an existing connection, leaving other devices 
that have joined the same connection unchanged.  To leave a connection 
locally, call the IsiLeaveEnrollment() function.  Calling this function on 
the connection host has the effect of IsiDeleteEnrollment(), that is, a 
connection host cannot leave a connection, but must always delete the 
connection. 

The ISI engine calls the IsiUpdateUserInterface() function with the IsiDeleted 
event to notify the application of the completion of a deletion. 

Handling ISI Events 
You can signal the progress of the enrollment process to the device user.  Such 
feedback is typically only provided for devices that use manual connections, 
because automatic and controlled connections do not require user interaction 
from the connected devices.  User feedback could be as simple as a single Connect 
light and button, possibly shared with the Service light and button.  A more 
complex gateway or controller could have a more sophisticated user interface. 

To receive status feedback from the ISI engine, override the 
IsiUpdateUserInterface() callback function.  The ISI engine calls this function 
with the IsiEvent parameter set to one of the values listed in Table 24 on page 
223 when the associated event occurs.  Some of these events carry a meaningful 
value in the numeric parameter, as shown in the table. 
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Table 24. ISI Event Types 

IsiEvent Value Description 

IsiNormal 0 The ISI engine has returned to the normal, or idle, state for an 
assembly.  The related assembly is encoded in the parameter; a 
parameter value of ISI_NO_ASSEMBLY indicates that the 
event applies to all assemblies. 

IsiRun 1 The ISI engine has been successfully started (parameter is 
TRUE) or stopped (parameter is FALSE). 

IsiPending 2 The connection related to the assembly given with the numerical 
parameter has entered the pending state.  The event means that 
the device has received, and provisionally approved, a connection 
invitation, but has not yet accepted the connection invitation.   

This event only applies to a connection member.  For a 
connection host, see IsiPendingHost. 

Devices often signal the IsiPending (or IsiPendingHost) state 
with a flashing LED. 

IsiApproved 3 The connection related to the assembly given with the numerical 
parameter changed from the pending state to the approved 
state.  This event occurs when a connection invitation has been 
provisionally approved and accepted.  

This event only applies to a connection member.  For a 
connection host, see IsiApprovedHost. 

Devices often signal the IsiApproved (or IsiApprovedHost) state 
by turning on an LED (which was flashing before, coming from 
the IsiPending or IsiPendingHost state). 

IsiImplemented 4 The connection related to the assembly given with the numerical 
parameter has been implemented.  This event occurs on a 
connection host after calling IsiCreateEnrollment() or 
IsiExtendEnrollment() to implement a connection and close 
enrollment, and on a connection member after receiving an 
enrollment confirmation message (CSMC). 

The application receives one IsiImplemented event for each 
network variable that is part of the assembly. 

IsiCancelled 5 The connection related to the assembly given with the numerical 
parameter has been cancelled by a timeout, user intervention, or 
network action.  An assembly number of ISI_NO_ASSEMBLY 
indicates that all pending enrollments are cancelled. 

IsiDeleted 6 The connection related to the assembly given with the numerical 
parameter has been deleted. 
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IsiEvent Value Description 

IsiWarm 7 The ISI engine has warmed up (that is, a predetermined time, 
with a random component, has passed since the last reset).  
After this time, the application can call the 
IsiInitiateAutoEnrollment() function.  

This event occurs no sooner than the expiry of the Tauto ISI 
protocol timer, but can occur later. 

IsiPendingHost 8 The connection related to the assembly given with the numerical 
parameter has entered the pending state.  This event occurs on a 
connection host after it has issued a connection invitation 
(CSMO), but not yet received any enrollment acceptance 
messages (CSMEs).  

This event only applies to a connection host.  For a connection 
member, see IsiPending. 

IsiApprovedHost 9 The connection indicated with the numerical parameter changed 
from the pending state to the approved state.  This event occurs 
on a connection host at the receipt of the first connection 
enrollment acceptance message (CSME).  

This event only applies to a connection host.  For a connection 
member, see IsiApproved. 

IsiAborted 10 The device stopped domain or device acquisition.  The parameter 
is a member of the IsiAbortReason enumeration, and indicates 
the reason for the abort. 

IsiRetry 11 The device is retrying the device acquisition procedure.  The 
parameter is the remaining number of retries. 

IsiWink 12 The device should perform its wink function.  The specific 
function is application-dependent, but should provide some 
visible or audible feedback to the user.  For example, the 
application blinks an LED on the device. 

IsiRegistered 13 This event indicates either acquisition start or successful 
acquisition completion on either a device that supports domain 
acquisition or a domain address server.  The parameter indicates 
either a successful start (parameter = 0) or completion 
(parameter = 0xFF). 

You typically override the IsiUpdateUserInterface() callback function with an 
application-specific function to provide application-specific user feedback.  The 
default implementation of this function does nothing, and is only useful for 
devices that exclusively use automatic enrollment. 

Figure 72 on page 225 summarizes the typical sequence of events for a connection 
host using manual or controlled enrollment.  The sequence of events is similar for 
a connection host using automatic enrollment, except that the connection host 
skips the IsiApprovedHost event and goes straight to the IsiImplemented event.   
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Although the sequence of events shown in this figure is typical, the actual 
sequence of events passed to the IsiUpdateUserInterface() callback can vary. 

 

Figure 72. Sequence of Events for a Connection Host 

Figure 73 summarizes the typical sequence of events for a connection member.  
Although the sequence of events shown in this figure is typical, the actual 
sequence of events passed to the IsiUpdateUserInterface() callback can vary. 
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Figure 73. Sequence of Events for a Connection Member 
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Domain Address Server Support 
None of the standard ShortStack Micro Servers supports the creation of an ISI 
domain address server (DAS) because of resource limitations on all supported 
hardware platforms. 

To implement a domain address server as a ShortStack device, perform either of 
the following tasks: 

• Create a custom Micro Server on a 3150 Smart Transceiver that supports 
more RAM through the external memory interface, or create a custom 
Micro Server on an FT 5000 Smart Transceiver.  The ISI memory 
requirement is approximately 0.5 KB.   
 
Ensure that this Micro Server has sufficient external RAM for buffers (a 
DAS typically needs fairly large buffer counts) and any DAS-specific code 
that requires external RAM (such as device lists and lookup-tables on the 
Micro Server).  Typically, external RAM of a few kilobytes suffices. 

• Use a standard Micro Server on a 3120 or 3170 Smart Transceiver, or a 
custom Micro Server on a 3150 or 5000 Smart Transceiver, that does not 
have built-in ISI support, and implement ISI with DAS-features on the 
host processor. 

Discovering Devices 
You can discover all devices in an ISI network.  All devices in an ISI network 
periodically broadcast their status by sending out Domain Resource Usage 
Message (DRUM) messages.  To discover devices, you can monitor these status 
messages.  Gateways and controllers that need to maintain a table of all devices 
in a network, or provide unique capabilities for specific types of devices in a 
network, should monitor these messages. 

To discover devices, monitor the DRUM messages being sent on the network by 
other devices and store the relevant information in a device table.  A device table 
is a table that contains a list of devices and their attributes including their 
network addresses.  The DRUM messages contain all of the relevant information 
for explicit messaging.  To create a device table, store the relevant DRUM fields, 
such as subnet ID, node ID, and Neuron ID, in a table that you can use to 
communicate directly with other devices.  To detect deleted devices, monitor the 
time of the last update for each entry in the table and detect devices that have 
not recently sent a DRUM. 

You can implement the code to maintain the device table within a custom Micro 
Server or within the host application.  For either implementation, you must 
create a custom Micro Server. 

Maintaining a Device Table within the Micro 
Server  
To implement device discovery local to the Micro Server, perform the following 
steps: 

1. Add code to the MicroServer.nc file that defines a data structure for the 
device table. 
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2. Implement the ProcessDrum() function. 

3. Create a function that decrements credits from each device in the device 
table. 

4. In the ShortStackIsiHandlers.h file, define the IsiCreatePeriodicMsg() 
callback handler function to be implemented within your custom Micro 
Server. 

5. In the MicroServerIsiHandlers.c file, call the function that decrements 
credits from the IsiCreatePeriodicMsg() callback handler function. 

6. In the MicroServer.nc file, modify the IsiMsgHandler() function to call 
your DRUM dispatcher.   

7. Create a utility function that informs the host of newly discovered or 
removed devices. 

8. Add code to your host application to process the user-defined remote 
procedure call for the utility function. 

Each of these steps is described in the following sections.  

Define the Data Structure 
Define a Device data structure to hold information about a discovered device, and 
create a devices table to hold information about all discovered devices.  You can 
add the following code to the MicroServer.nc file or add it to a separate file 
(perhaps called DeviceDiscovery.c) that you reference (#include) from 
MicroServer.nc.      

#include <mem.h> 
             
#define MAX_DEVICES 16 
#define MAX_CREDITS 5 
             
unsigned deviceCount; 
 
// Struct to hold device information 
typedef struct { 
  unsigned credits; 
  unsigned subnetId; 
  unsigned nodeId; 
  unsigned neuronId[NEURON_ID_LEN]; 
} Device; 
             
Device devices[MAX_DEVICES]; 

Implement the ProcessDrum() Function 
Add the ProcessDrum() function to MicroServer.nc (or to your DeviceDiscovery.c).   
This function is called from the ISI message handler whenever it sees an ISI 
DRUM message.  We’ll add the code that makes this call later. 

The function also uses a utility function, ReportDevice(), that is described in The 
ReportDevice() Utility Function on page 231.     

void ProcessDrum(const IsiDrum* pDrum) { 
  unsigned i; 
  extern ReportDevice(boolean, unsigned);    
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  // Iterate through the device list and see if the Neuron 
  // ID of the stored device matches that of the new 
  // device; if it does, then update the related details 
  for (i = 0; i < deviceCount; i++) { 
    if (memcmp(devices[i].neuronId, pDrum->NeuronId,  
          NEURON_ID_LEN) == 0) { 
      devices[i].credits = MAX_CREDITS; 
      devices[i].subnetId = pDrum->SubnetId; 
      devices[i].nodeId = pDrum->NodeId; 
      break; 
    } 
  } 
 
  // If i is equal to the device count, then the device 
  // was not found, so add it to the device table if 
  // possible 
  if (i == deviceCount && deviceCount < MAX_DEVICES) { 
    memcpy(devices[i].neuronId, pDrum->NeuronId, 
        NEURON_ID_LEN); 
    deviceCount++; 
    devices[i].credits = MAX_CREDITS; 
    devices[i].subnetId = pDrum->SubnetId; 
    devices[i].nodeId = pDrum->NodeId; 
     
    ReportDevice(TRUE, i); 
  } 
} 

Create the Decrement Function     
Add the DetectStale() function to MicroServer.nc (or to your DeviceDiscovery.c).  
This function slowly decrements credits from each device in the devices table.  

If the device is functioning, it continues to send DRUM messages, and thus is 
maintained in the table.  If a device disappears from the network, it is eventually 
removed from the table. 

The function also uses a utility function, ReportDevice(), that is described in The 
ReportDevice() Utility Function on page 231.     

void DetectStale(void) { 
  unsigned i; 
  extern ReportDevice(boolean, unsigned);    
 
  for (i = 0; i < devicecount; i++) { 
    devices[i].credits--; 
    if (devices[i].credits == 0) { 
      ReportDevice(FALSE, i); 
      devicecount--; 
      if (devicecount != i) { 
        // Move device from end to this spot's location 
        memcpy(devices+i, devices+devicecount, 
            sizeof(Device)); 
      } 
    } 
  } 
} 
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Call the DetectStale() function at a rate roughly equal to the expected DRUM 
rate.  One way to ensure an appropriate call rate is to call this function from the 
IsiCreatePeriodicMsg() callback handler function, although in this case, you must 
implement the IsiCreatePeriodicMsg() callback handler function local to the 
Micro Server.  

Define IsiCreatePeriodicMsg() in ShortStackIsiHandlers.h 
In the ShortStackIsiHandlers.h file, define the IsiCreatePeriodicMsg() callback 
handler function to be implemented within your custom Micro Server.     

/* 
 * Callback: IsiCreatePeriodicMsg 
 * Standard location: default 
 * 
 * The IsiCreatePeriodicMsg() callback enabled an optional 
 * and advanced feature, through which the application can 
 * claim a slot in the ISI broadcast scheduler. 
 * This callback is rarely overridden. 
 */ 
/*#define ISI_DEFAULT_CREATEPERIODICMSG */ 
#define ISI_SERVER_CREATEPERIODICMSG   
/*#define ISI_HOST_CREATEPERIODICMSG    */ 

Call the Decrement Function     
Within the MicroServerIsiHandlers.c file, locate the implementation of the 
IsiCreatePeriodicMsg() callback handler function, and call the DetectStale() 
function from this callback handler function.     

// -------------------------------------------------------- 
//  Callback:   IsiCreatePeriodicMsg 
// -------------------------------------------------------- 
#ifndef ISI_DEFAULT_CREATEPERIODICMSG 
boolean IsiCreatePeriodicMsg(void) { 
#ifdef  ISI_SERVER_CREATEPERIODICMSG 
     
  extern void DetectStale(void); 
     
  boolean result; 
  result = FALSE; 
     
  DetectStale(); 
     
  // TODO: Add code implementing the actual 
  // IsiCreatePeriodicMsg() callback, if needed.  
     
  return result; 
     
#else 
#ifdef  ISI_HOST_CREATEPERIODICMSG 
  // DO NOT MODIFY - This code redirects the callback to 
  // the host 
  return IsiRpc(LicIsiCreatePeriodicMsg, 0, 0, NULL, 0); 
#endif  //  ISI_HOST_CREATEPERIODICMSG 
#endif  //  ISI_SERVER_CREATEPERIODICMSG 
}   // IsiCreatePeriodicMsg 
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#pragma ignore_notused  IsiCreatePeriodicMsg 
#endif  //  ISI_DEFAULT_CREATEPERIODICMSG 

Call Your DRUM Dispatcher from IsiMsgHandler() 
Within the MicroServer.nc file, locate the IsiMsgHandler() function.  After each 
message has been approved, and you have confirmed that preemptionMode is 
FALSE, call your DRUM dispatcher.  This routine determines whether the newly 
arrived ISI message is a DRUM message, and calls ProcessDrum() if necessary. 

The ProcessDrum() function is defined to return FALSE so that it can easily be 
inserted into the IsiMsgHandler() routine. 

boolean ProcessDrum(void) { 
  IsiMessage message;  
             
  memcpy(&message, msg_in.data, sizeof(IsiMessage)); 
  if (message.Header.Code == isiDrum || 
        message.Header.Code == isiDrumEx) { 
    ProcessDrum(&message.Msg.Drum); 
  } 
  return FALSE; 
} 
         
// IsiMsgHandler() is a utility function used by the 
// ShortStack Micro Server core to identify and process ISI 
// messages.  This function returns true if the message was 
// handled by this function. 
 
extern boolean shortStackInPreempt(void); 
  
boolean IsiMsgHandler(void) { 
  boolean result, preemptionMode; 
         
  result = FALSE; 
  preemptionMode = shortStackInPreempt(); 
         
  switch(isiType) { 
#ifdef  SS_SUPPORT_ISI_S 
    case isiTypeS: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgS()); 
      break; 
#endif  //  SS_SUPPORT_ISI_S 
#ifdef  SS_SUPPORT_ISI_DA 
    case isiTypeDa: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgDa()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DA 
#ifdef  SS_SUPPORT_ISI_DAS 
    case isiTypeDas: 
      result = IsiApproveMsgDas() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgDas()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DAS 
  }   
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  return result; 
} 
#pragma ignore_notused IsiMsgHandler 

The ReportDevice() Utility Function  
The ReportDevice() utility function informs the host application of newly 
discovered or removed devices by implementing a user-defined remote-procedure 
call (RPC).  This call is handled by the IsiRpc() function, which supplies the 
related Device data structure and the information about whether this device was 
newly added or removed from the devices table.  To reduce overhead, this remote 
procedure call is implemented as an unacknowledged call.     

void ReportDevice(boolean added, unsigned index) { 
  (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, added, index, 
       devices+index, sizeof(Device)); 
} 

Process Your User-Defined RPC 
Your host application must process the information about newly discovered or 
removed devices.  The Micro Server’s IsiRpc() function supplies this information 
to your host application.  You add code to your host application to process this 
information by extending the IsiUserCommand() callback handler function in the 
ShortStackIsiHandlers.c file.   

A typical use for this callback is to update an advanced device’s graphical user 
interface with a representation of all devices that are located on the same ISI 
network.  The same device table information can also be used to implement 
advanced connection scenarios with ISI. 

Maintaining a Device Table within a Host 
Application 
As an alternative to implementing the device table within the Micro Server, you 
can implement most of the device discovery process within the host application.  
For this implementation, the host receives a DRUM message through a user-
defined remote procedure call (RPC) and maintains the device table on the host.  
You must create a custom Micro Server to forward DRUM messages to the host. 

To implement device discovery local to the host application, perform the following 
steps: 

1. Add code to the host application that receives a DRUM message through 
a user-defined remote procedure call 

2. Add code to your host application to process the user-defined remote 
procedure call 

Each of these steps is described in the following sections. 

Implement the ProcessDrum() Function 
Within the MicroServer.nc file, locate the IsiMsgHandler() function.  After each 
message has been approved, and you have confirmed that preemptionMode is 
FALSE, call your DRUM dispatcher.  This function determines whether the 
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newly arrived ISI message is a DRUM message, and forwards the DRUM 
message to the host application, using a user-defined unacknowledged remote 
procedure call. 

The ProcessDrum() function is defined to return FALSE so that it can easily be 
inserted into the IsiMsgHandler() routine. 

boolean ProcessDrum(void) { 
  IsiMessage message;  
 
  memcpy(&message, msg_in.data, sizeof(IsiMessage)); 
  if (message.Header.Code == isiDrum || 
      message.Header.Code == isiDrumEx) { 
    (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, 0, 0, 
        &message.Msg.Drum, sizeof(IsiDrum)); 
  } 
  return FALSE; 
} 
 
// IsiMsgHandler() is a utility function used by the 
// ShortStack Micro Server core to identify and process ISI 
// messages.  This function returns true if the message was 
// handled by this function. 
 
extern boolean shortStackInPreempt(void); 
  
boolean IsiMsgHandler(void) { 
  boolean result, preemptionMode; 
 
  result = FALSE; 
  preemptionMode = shortStackInPreempt(); 
 
  switch(isiType) { 
#ifdef  SS_SUPPORT_ISI_S 
    case isiTypeS: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgS()); 
      break; 
#endif  //  SS_SUPPORT_ISI_S 
#ifdef  SS_SUPPORT_ISI_DA 
    case isiTypeDa: 
      result = IsiApproveMsg() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgDa()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DA 
#ifdef  SS_SUPPORT_ISI_DAS 
    case isiTypeDas: 
      result = IsiApproveMsgDas() && (preemptionMode || 
          ProcessDrum() || !IsiProcessMsgDas()); 
      break; 
#endif  //  SS_SUPPORT_ISI_DAS 
  }   
  return result; 
} 
#pragma ignore_notused IsiMsgHandler 



ShortStack User’s Guide        233 

Process Your User-Defined RPC 
The Micro Server’s IsiRpc() function supplies DRUM messages to your host 
application, which must evaluate these DRUM messages to maintain an accurate 
list of devices that are available on the ISI network at any given time.  You add 
code to your host application to process this information by extending the 
IsiUserCommand() callback handler function in the ShortStackIsiHandlers.c file. 

A typical use for this callback is to update an advanced device’s graphical user 
interface with a representation of all devices that are located on the same ISI 
network.  The same device table information can also be used to implement 
advanced connection scenarios with ISI. 

Recovering Connections 
A connection controller can display connections that it created but that are no 
longer in its database, and it can display connections that it did not create.  To 
recover connections, a connection controller must first discover all the devices in 
the network, as described in Discovering Devices on page 226.  To recover the 
connections, the controller uses the read connection table request (RDCT) 
message, which allows it to read a device’s connection table over the network.  
Support for this message is required for devices that support controlled 
enrollment, and is optional for other devices. 

The RDCT message includes optional host and member assembly fields that 
specify which connection table entries are requested: 

• If the host and member assembly fields are not supported by the device, 
or are both set to 0xFF, the connection table entry indicated by the index 
is requested.   

• If the host and member assembly fields are supported by the device, and 
the host or member field is not 0xFF, the index provided is the starting 
index.  The first matching connection table entry is returned, if any.   

• If both host and member fields are set to a value different from 0xFF, 
connection table entries are returned that match either the host or the 
member fields, if any. 

This message allows a connection controller to read the entire connection table, 
or to read the table selectively to provide quick answers to questions like “is 
assembly Z on device X connected, and is it the host of the connection?” 

If the requested data is available, the response to an RDCT message is a read 
connection table success (RDCS) message.  This message contains the requested 
connection table index and data.  If the connection table index does not exist, or if 
the requested assemblies do not exist, the response is a read connection table 
failure (RDCF) message. 

A connection controller can determine if a device does not support the optional 
host and member assembly fields by comparing the assembly numbers in the 
read response to the requested assembly number, or by receiving an RDCF 
message that indicates a failed read.  If a device does not support the host and 
member assembly fields, the connection controller must read every entry in the 
connection table individually.  Reading every entry has minimal impact for 
devices with one or two connection table entries, but increases network traffic for 
devices with many connection table entries. 



 

234 Developing a ShortStack Application with ISI                                 

You can implement much of the code for ISI connection recovery either within 
your custom Micro Server or in your host application.  

The following sections describe example implementations for supporting 
connection recovery.  The first example shows a custom Micro Server 
implementation, where the Micro Server recovers the ISI connections and relays 
the results to the host application.  The second example shows a host-based 
implementation.  

Example 1: Custom Micro Server 
Implementation 
The following connection controller example uses code implemented within a 
custom Micro Server to recover all the connections from a device. 

Add the following code to the MicroServer.nc file or add it to a separate file 
(perhaps called ConnectionRecovery.c) that you reference (#include) from 
MicroServer.nc. 

#include <msg_addr.h> 
#include <isi.h> 
 
#define RETRY_COUNT 3 
#define ENCODED_TX_TIMER 11 // 768ms 
#define ENCODED_RPT_TIMER 2 
#define PRIMARY_DOMAIN 0 
 
// This structure holds information required while reading 
// a remote device's connection table 
struct { 
  unsigned neuronId[NEURON_ID_LEN]; 
  unsigned index; 
} recoveryJob; 
 
// Issue one read connection table request using the global 
// recoveryJob variable for destination address and current 
// connection table index information. Increment the index 
// kept in that global variable. 
void RequestConnectionTable(void) { 
  IsiMessage request; 
  msg_out_addr destination; 
 
  request.Header.Code = isiRdct; 
  request.Msg.Rdct.Index = recoveryJob.index++; 
  request.Msg.Rdct.Host = request.Msg.Rdct.Member = 
        ISI_NO_ASSEMBLY; 

 
  destination.nrnid.type = NEURON_ID; 
  destination.nrnid.domain = PRIMARY_DOMAIN; 
  destination.nrnid.rpt_timer = ENCODED_RPT_TIMER; 
  destination.nrnid.subnet = 0; 
  destination.nrnid.retry = RETRY_COUNT; 
  destination.nrnid.tx_timer = ENCODED_TX_TIMER; 
  memcpy(destination.nrnid.nid, recoveryJob.neuronId, 
        NEURON_ID_LEN); 
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  IsiMsgSend(&request,sizeof(IsiMessageHeader) 
        +sizeof(IsiRdct), REQUEST, &destination); 
} 
 
// Handle receipt of incoming responses. This example 
// focuses on isiRdcs and isiRdcf responses. 
boolean processRdc(void) { 
  boolean processed; 
  IsiMessage response; 
 
  processed = FALSE; 
 
  if (resp_in.code == isiApplicationMessageCode) { 
    // This is an ISI response 
    memcpy(&response, resp_in.data, resp_in.len); 
    if (response.Header.Code == isiRdcf) { 
    // The remote device rejected our request, probably 
    // because we have queried all available connection 
    // table entries already (bad index). Notify the user 
    // interface, if needed. 
    ... 
    processed = TRUE; 
  } else if (response.Header.Code == isiRdcs) { 
    // The remote device replied to our request with the 
    // connection table entry requested, in 
    // response.Msg.Rdcs. Notify the UI and/or process 
    // this data further, as needed by the application: 
    (void)IsiRpc(LicIsiUserCommand|LicIsiNoAck, ....); 
 
    // Because we received a positive response, let's try 
    // for the next index 
    RequestConnectionTable(); 
    processed = TRUE; 
  } 
  return processed; 
} 

In the processRdc() function, use the IsiRpc() function to notify your host 
application of any results.  If you have already used the IsiRpc() function with the 
LicIsiUserCommand code for device discovery, use the first numerical parameter 
to this function to specify a sub-command so that your host application can 
correctly interpret the data delivered.  

When you notify the host application about a connection recovery, you also have 
to include information about the remote device, the connection table index, and 
the remote connection table record.  Add that information to a structure (that you 
define) that is shared between your host application and your custom Micro 
Server.  The call to the IsiRpc() function should include the data within that 
structure to the host application.  

The processRdc() function returns TRUE to allow for simple integration within 
the Micro Server code, as shown below. 

// Initiate the process of reading a remote device's 
// connection table.  The function kick-starts the process, 
// where the majority of the work is done in the processRdc 
// function. Calling this function before the previous 
// connection table read job completes causes the previous  
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// job to abort, and the new one to start 
void ReadRemoteConnectionTable(const unsigned*  
      remoteNeuronId) { 
  memcpy(recoveryJob.neuronId, remoteNeuronId, 
      NEURON_ID_LEN); 
  recoveryJob.index = 0; 
  RequestConnectionTable(); 
} 

Most likely, you call the ReadRemoteConnectionTable() function from within 
your code that implements device discovery, either when device discovery is 
complete or whenever a new device is discovered. 

Finally, within the IsiRespHandler() function in the Micro Server.nc file, add a 
call to the processRdc() function. 

boolean IsiRespHandler(void) { 
  boolean processed; 
  processed = processRdc(); 
 
#ifdef  SS_SUPPORT_ISI_DAS 
  return processed || (isiType == isiTypeDas && 
    !IsiProcessResponse()); 
#else 
  return processed; 
#endif  // SS_SUPPORT_ISI_DAS 
} 

Example 2: Host Implementation 
You can use the standard ShortStack LonTalk Compact API to implement ISI 
connection recovery within your host application.  If your application has 
knowledge of other ISI devices within the same network, for example as a result 
of device discovery, you can issue RDCT requests using the standard 
LonSendMsg() API function, using the remote device’s unique ID (Neuron ID) or 
its current subnet and node ID for addressing.  See the Interoperable Self-
Installation Protocol Specification for more information about the RDCT, RDCS, 
and RDCF message codes and formats. 

One of the parameters that the LonSendMsg() function requires is the message 
data to send.  In this case, the message data to send is an IsiMessage structure, 
using the isiRdct command and the RDCT data block.  To send this message, you 
need to port the IsiMessage structure, and fill in the RDCT data block and ISI 
message header, as appropriate.  Then, in the LonSendMsg() function, use 
IsiMessage &msg instead of LonByte *pData for the message data.    

An example for calling the LonSendMsg() function is shown below.  The message 
code for ISI messages is 0x3D.  The actual data to send and the remote address to 
send it to are dependent on the application. 

LonBool msgPriority = FALSE; 
LonBool msgAuth = FALSE; 
LonByte msgCode = 0x3d; 
 
IsiMessage msg;  
msg.Header = ... 
msg.Rdct = ... 
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LonSendUniqueId remoteAdr; 
remoteAdr.Type = LonAddressNeuronId; 
remoteAdr.... = ... 
  
LonApiError msgResp; 
 
msgResp = LonSendMsg(LonMtIndexMyTag, msgPriority, 
    LonServiceType.LonServiceRequest, msgAuth, 
    (LonSendAddress*)&remoteAdr, msgCode, &msg, 
    sizeof(IsiMessageHeader)+sizeof(IsiRdct)); 
  
if (msgResp != LonApiNoError) { 
  /* do something about the error */ 
} 

In this case, the IsiRespHandler() function that runs on the Micro Server will not 
recognize the response, or pass it to your LonResponseArrived() callback handler 
function, implemented in ShortStackHandlers.c. 

Deinstalling a Device 
You can deinstall a device to remove all network configuration data, including 
the domain addresses, network addresses, and connection configurations.  For 
devices that do not provide direct connection removal, this is the only way to 
remove a device from a connection.  You can use this procedure to re-enable self-
installation for an ISI device that was installed in a managed network.  You can 
also use this procedure to return a device to a known state.  You can deinstall a 
device to move it from a managed network to a self-installed network, or to move 
a self-installed device to a new self-installed network.  All ISI devices must 
support deinstallation. 

To deinstall a device, set the SCPTnwrkCnfg configuration property to 
CFG_LOCAL to enable self-installation and then call the 
IsiReturnToFactoryDefaults() function.  You typically deinstall a device in 
response to an explicit user action.  For example, the user might be required to 
press and hold the service pin for five seconds to trigger deinstallation. 

The IsiReturnToFactoryDefaults() function clears and reinitializes all system 
tables, stops the ISI engine, and resets the Micro Server.  Because of the Micro 
Server reset, the call to the IsiReturnToFactoryDefaults() function never returns 
when it runs on the Micro Server.  When it runs in the host application, the ISI 
host API’s implementation of IsiReturnToFactoryDefaults() does return to the 
caller, but the Micro Server can take up to one minute to re-initialize.  When 
initialization is complete, the Micro Server resets and establishes 
communications with the host application. 

Example:  The following example deinstalls a device after the service pin is held 
for a long period. 

void LonServicePinHeld(void) { 
 nciNetConfig = CFG_LOCAL; 
 IsiReturnToFactoryDefaults(); 
} 
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Comparing ISI for ShortStack and Neuron C 
The ShortStack ISI implementation differs from the Neuron C ISI 
implementation in the following ways: 

• A ShortStack ISI device must have at least two application output 
buffers. 

• The ISI types and definitions follow the ShortStack rules for portable 
types (see ShortStackIsiTypes.h), and are binary compatible with the 
equivalent data structures defined in isi.h. 

• All ShortStack ISI API functions return a LonApiError code for success 
or failure of the remote procedure call request.  This code does not 
indicate successful completion of the requested function; see 
IsiApiComplete() for more information. 

• The IsiApiComplete() callback handler function is supported with the 
ShortStack ISI API to provide success or failure completion codes, and 
possible results, of previous ISI API calls.  A negative completion code 
indicates that the function could not be called, either at that time or 
within the current context.  The ISI operation itself signals its success or 
failure through state changes, indicated with the 
IsiUpdateUserInterface() callback handler function (as in the Neuron C 
implementation).   

• Most ISI callback handler functions are synchronous.  That is, they 
cannot return to their caller until the return value is known.  In many 
cases, the ISI function requires interaction with the host processor.  
While waiting for a function call to complete, the Micro Server can handle 
only one ISI request from the host processor.  Similarly, all ISI requests 
from the host are also synchronous.  That is, the host waits for a response 
to an ISI request before it can issue another one. 

• Predicates are synchronous in the Neuron C implementation, but are 
necessarily asynchronous in the ShortStack ISI API.  Affected predicates 
are:  IsiQueryIsConnected(), IsiQueryImplementationVersion(), 
IsiQueryProtocolVersion(), IsiQueryIsRunning(), and 
IsiQueryIsBecomingHost().  The predicates’ results are delivered 
asynchronously through:  IsiIsConnectedReceived(), 
IsiImplementationVersionReceived(), IsiProtocolVersionReceived(), 
IsiIsRunningReceived(), and IsiIsBecomingHostReceived(). 

• The following functions and callback handler functions that are included 
with the Neuron C implementation are not supported by the ShortStack 
ISI API:  IsiMsgDeliver(), IsiMsgSend(), IsiUpdateDiagnostics(), 
IsiGetAlias(), IsiSetAlias(), IsiGetNv(), IsiSetNv(), IsiSetDomain(), 
IsiGetFreeAliasCount(), and IsiIsConfiguredOnline().  

• The following functions and callback handler functions that are included 
with the Neuron C implementation are supported by (but not exposed to) 
the ShortStack ISI API:  IsiStart*(), IsiTick*(), IsiProcessMsg*(), and 
IsiApproveMsg*().  Wrapper functions and ShortStack-specific handler 
functions are provided in the MicroServer.nc file; you can edit these 
handler functions to allow a custom Micro Server to intercept ISI 
messages, if needed. 
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• The IsiPreStart() function is not supported because the Micro Server 
automatically handles calls to IsiPreStart() as needed. 

• The IsiCancelAcquisitionDas() function is not supported.  Use the 
IsiCancelAcquisition() function when calling from your host application, 
even when operating an ISI-DAS device.  

• Callback forwardees are only available to callback overrides that are local 
to the Micro Server.  Callback overrides that reside on the host processor 
must provide a complete implementation, and cannot fall back to the 
forwardee. 

• You should not normally call the ISI API from within an ISI callback 
override.  With the ShortStack ISI API, you can call exactly one ISI API 
function from within a callback override that runs on the host processor.  
The API call is buffered, and runs after the callback itself completes.  The 
Micro Server rejects subsequent API calls from within the callback 
override, and returns a negative response. 

Because most of the ShortStack ISI API is asynchronous, your host application 
typically receives control from a ShortStack host API function while the Micro 
Server is still busy executing the related action.  While most ISI operations 
complete quickly, some operations can take a significant amount of time. For 
example, calls to the IsiCreateEnrollment() or IsiExtendEnrollment() functions 
on an enrollment host for a connection that involves a large number of network 
variables are time-consuming operations.  

The Micro Server can appear unresponsive while performing the requested task. 
However, most ISI operations include a series of callbacks, including remote 
procedure calls to callback overrides implemented within your host application. 
The Micro Server processes most of its normal tasks in this state, and honors 
incoming and outgoing message queues.  

However, you can monitor the IsiApiComplete() callback handler function 
(implemented in ShortStackIsiHandlers.c) to determine completion of the more 
complex ISI operations, and suspend network communications until the task 
completes.  Failure to suspend network operations in this case could cause 
inconsistent results.  

As an example of such an inconsistency, consider the case of a very wide 
connection.  The enrollment host initiates the implementation of a network 
variable connection including, for example, ten output network variables.  While 
the Micro Server performs all the necessary steps to implement that connection, 
the host application could enqueue ten network variable updates in an attempt to 
inform the newly connected destination devices of the output network variables’ 
current values.  

If the Micro Server has not yet completed the implementation of the connection 
(as signalled through the IsiApiComplete() callback handler function), some of 
the related network variables will not yet be bound at the time that the host 
application attempts to send the network variable update messages.  Only 
devices that are already connected will receive the update messages, and update 
messages for output network variables that are not yet connected will not be sent 
on the network.  

Any network device must be designed to handle partial and transient failure.  
Thus, the remote device connected to these output network variables should not 
rely on updates to network variables to occur within a specific time or order. 
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However, a robust ShortStack ISI application should monitor the completion of 
the operation, and avoid producing inconsistent and potentially confusing data. 
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12  

Custom Micro Servers 

This chapter describes custom Micro Servers and how to 
create and use one.  Using a custom Micro Server allows you 
to modify the operating parameters for the Micro Server. 
You need either the NodeBuilder Development Tool or the 
Mini kit to create a custom Micro Server.  
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Overview 
The ShortStack Developer’s Kit includes standard Micro Server firmware images 
for 3120 and 3150 Smart Transceivers running on TP/FT-10 or PL-20 channels, 
PL 3170 Smart Transceivers, and FT 5000 Smart Transceivers, in some common 
hardware configurations (see Table 5 in Standard ShortStack Micro Server 
Firmware Images on page 22 for a list of the standard Micro Server images). 

If your ShortStack device needs to support different operating parameters from 
those provided by the standard Micro Server images, you can create a custom 
Micro Server for the device.  See Custom Micro Server Benefits and Restrictions 
for a description of the kinds of parameters that you can modify.   

Because a ShortStack Micro Server can run only on an Echelon Smart 
Transceiver or the Echelon Neuron 5000 Processor, the modifications that you 
make to the operating parameters for a custom Micro Server must be supported 
by the Smart Transceiver or Neuron Processor that your device uses.  

To create a custom Micro Server, you must have one of the following tools so that 
you can compile the custom image: 

• NodeBuilder Development Tool 3.13 or later for Series 3100 Micro 
Servers 
NodeBuilder FX Development Tool or later for Series 5000 Micro Servers 
(see www.echelon.com/nodebuilder for more information)  

• Mini EVK Evaluation Kit 1.02 or later for Series 3100 Micro Servers 
Mini FX Evaluation Kit or later for Series 5000 Micro Servers  
(see www.echelon.com/mini for more information) 

If your version of the development tool does not include the Interoperable Self-
Installation (ISI) protocol and current libraries, and you want to create a Micro 
Server that supports ISI, you will also need to get version 3.03 or later of the ISI 
Developer’s Kit at www.echelon.com/isi. 

Custom Micro Server Benefits and Restrictions 
When you create a custom Micro Server, you can provide support for any of the 
following operating parameters: 

• Custom hardware configurations, such as different clock speeds or 
memory maps.  For example, you can support off-chip RAM for an FT 
3150 or PL 3150 device, which can increase the number of buffers that 
the device supports.  You can also support a Neuron 5000 device. 

• Increased buffer counts or alternate buffer sizes for network and 
application buffers (within the limits of available hardware resources) 

• Maximum number of network variables or network variable aliases.  For 
example, you could support a lower maximum to optimize processing 
speed.  However, you cannot support more than 254 network variables 
and 127 aliases. 

• Alternate levels of support for direct memory files (DMF), including 
enabling or disabling DMF.  If DMF is enabled, you can define the 
maximum size of the DMF window to customize the code and data space 
that is local to the Micro Server. 

http://www.echelon.com/nodebuilder
http://www.echelon.com/mini
http://www.echelon.com/isi
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• Alternate levels of support for ISI and ISI network types.  You can 
customize the implementation of many ISI callback functions, which 
allows you to create both general-purpose Micro Servers and application-
specific Micro Servers. 

When you create a custom Micro Server, there are certain operating parameters 
that you cannot control or change: 

• The firmware’s core algorithms or basic behavior.   

• The link-layer protocol for communications between the Micro Server and 
the host processor.   

• The Micro Server’s processing for network variables or application 
messages.  That is, you cannot provide application-specific processing 
within the Micro Server for network variables or application messages. 

• Support for transceivers other than Echelon Smart Transceivers and the 
Echelon Neuron 5000 Processor.  A ShortStack Micro Server can only run 
on an FT 3120, PL 3120, FT 3150, PL 3150, PL 3170, or FT 5000 Smart 
Transceiver, or the Echelon Neuron 5000 Processor.  ShortStack does not 
support the FTXL 3190 Free Topology Transceiver. 

• Capacity for more network variables, aliases, domains, or address tables 
than are supported by an FT 3150-based or FT 5000-based Micro Server.  
That is, a custom Micro Server cannot support more than 254 network 
variables, 127 network variable aliases, 2 domains, and 15 address table 
entries. 

Configuring and Building a Custom Micro Server 
To configure and build a custom Micro Server, you must create a project for 
either the NodeBuilder Development Tool or the Mini kit.  This project must 
include the main Micro Server Neuron C application and associated source files, 
and the ShortStack library.  The ShortStack library contains the majority of 
ShortStack Micro Server executable code. 

Table 25 lists the files that are included with the ShortStack Developer’s Kit for 
custom Micro Server development.  These files are installed in the 
[ShortStack]\Custom MicroServer directory.   

Note:  The [ShortStack]\Custom MicroServer directory does not include a pre-
built custom Micro Server development project file for either the NodeBuilder 
Development Tool or the Mini kit.  The Mini kit does not support project files, 
and a NodeBuilder project file would be empty because developing a custom 
Micro Server requires that you make decisions about hardware templates and 
other project preferences during project creation. 

Table 25. Files for Custom Micro Server Development  

File Name Description 

ShortStack400.lib This C library contains the majority of the Micro Server 
implementation. 
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File Name Description 

ShortStack400Isi.lib This C library provides the same basic functionality as the 
ShortStack400.lib library, but this library also includes ISI 
support. 

Use this library when you create a custom Micro Server with 
ISI support.  For a custom Micro Server without ISI support, 
use the ShortStack400.lib library instead.   

ShortStack400CptIsi.lib This C library provides the same basic functionality as the 
ShortStack400Isi.lib library, but with the following 
limitations: 

• ISI-DAS mode is not supported.  Also, all API calls 
related to DAS mode are not available. 

• The link-layer must use the SCI protocol, and must 
use a 38400 bit rate.  Therefore, you must use either a 
Series 3100 device with a 10 MHz external clock or a 
Series 5000 device with a 5 MHz system clock. 

• The local utility functions (and their callback handler 
functions) are not available.  See Local Utility 
Functions on page 294 for more information about 
these functions. 

Use this library when you create a custom Micro Server with 
ISI support for a PL 3170 Smart Transceiver, or other 
resource-constrained device.   

MicroServer.nc This file is the main Neuron C source file for developing a 
custom Micro Server. 

Although you can edit this file, you should not need to edit it 
unless you implement modified ISI behavior locally in your 
Micro Server. 

MicroServer.h This header file adjusts the features and capabilities of the 
custom Micro Server.  This file contains numerous compiler 
#pragma directives and macro definitions (with descriptive 
comments to describe their functions), such as: 

• Compiler directives to set application and network 
buffer counts and sizes 

• Compiler directives to set the size of the receive 
transaction database 

• Compiler directives to set the maximum number of 
network variables (0..254), aliases (0..127), address 
table entries (1..15), and domain table entries (1..2)  

• Macros for conditional compilation 

This file includes all of the preferences for a custom Micro 
Server that you might need to modify, except those included in 
the ShortStackIsiHandlers.h file. 
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File Name Description 

ShortStackIsiHandlers.h This header file adjusts the implementation details for the 
various ISI callback handler functions. 

You need this file only if your custom Micro Server supports 
ISI. 

MicroServerIsiHandlers.c This file contains the override callback handler function 
implementations for ISI support.  

You might need to edit this file for a custom Micro Server to 
match the changes you make to the ShortStackIsiHandlers.h 
file. 

You need this file only if your custom Micro Server supports 
ISI. 

Overview of Custom Micro Server Development 
A custom Micro Server can include or exclude support for the ISI protocol.  A 
Micro Server that includes support for the ISI protocol does not necessarily need 
to use the ISI protocol, but to use the ISI protocol through the ShortStack ISI 
API, the Micro Server must support the ISI protocol.  Applications that are 
designed to work with a variety of Micro Servers can determine the level of ISI 
support needed by inspecting the Micro Server’s uplink reset notification; see 
Handling Reset Events on page 186. 

A Micro Server that does not include support for the ISI protocol requires less 
space and can support some of the more resource-limited hardware platforms. 
However, if your target hardware provides sufficient resources, you should 
generally include support for the ISI protocol within your custom Micro Server, 
even if you do not immediately plan to use ISI.  If the Micro Server supports the 
ISI protocol, you have the flexibility to add ISI support to your host application at 
a later time, without requiring an update to your Micro Server firmware image.  
The processing overhead for the ISI protocol within the Micro Server is minimal 
if the ISI processing engine is not running (which is its default state). 

The process of creating a custom Micro Server without ISI support is simpler 
than creating one with ISI support. 

The general process of creating a custom Micro Server involves the following 
tasks: 

1. Copy the files in the [ShortStack]\Custom MicroServer directory to a 
project directory for your development tool (NodeBuilder or Mini kit). 

2. Edit the MicroServer.h file to define your custom Micro Server’s 
operating parameters. 

3. Edit the MicroServer.nc file as necessary.  Generally, you should not need 
to edit this file, unless you implement modified ISI behavior locally 
within your Micro Server. 

4. For a Micro Server that supports ISI, edit the MicroServerIsiHandlers.c 
file and ShortStackIsiHandlers.h files as necessary. 
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5. Compile the project and link with the ShortStack400.lib, 
ShortStack400Isi.lib, or ShortStack400CptIsi.lib library.  For a Micro 
Server that supports ISI, you also link the project with the appropriate 
ISI library, such as the IsiFull.lib or IsiCompactS.lib library. 

The generated image and interface files define your custom Micro Server.  The 
image files can be loaded into an appropriate Smart Transceiver, as described in 
Preparing the ShortStack Micro Server on page 31. 

The following sections describe the process for creating a custom Micro Server in 
more detail. 

Creating a Custom Micro Server without ISI Support 
Figure 74 shows the files that are required to create a custom Micro Server that 
does not support the ISI protocol.  You edit the MicroServer.h and MicroServer.nc 
files, and compile and link the project with the ShortStack400.lib library to 
create your custom Micro Server.  

Micro Server without ISI Support

// #define SS_SUPPORT_ISI

MicroServer.h

+

#include “MicroServer.h”

MicroServer.nc

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

ShortStack400.lib

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

011001011001100111001001
001010010010010011110100
011100110010011110101001
001010010010010011110100
000100011000110101101111

Your Micro Server

Generated

Supplied, fixed content

Supplied, user-edited
 

Figure 74. Files for Creating a Custom Micro Server without ISI Support 

To configure and build a custom Micro Server without ISI support, perform the 
following tasks: 

1. Create a NodeBuilder or Mini kit project, using the files described in 
Table 25 on page 243. 
 
For the NodeBuilder tool: 

• Expand the Device Templates folder in the Workspace window, right-
click the Release target folder (debugging the ShortStack firmware is 
not supported, so you cannot use the Development target), and select 
Settings to open the NodeBuilder Device Template Target Properties 
dialog.   
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o Select the Linker tab.  Select Generate symbol file.   

o Also from the Linker tab, you can optionally select Generate 
map file and select Verbose.  A map file is optional, but 
recommended. 

o Select the Exporter tab.  Select Automatic for boot ID 
generation.  Also select Checksum all code.  For the reboot 
options, select Communications Parameters from the 
Category dropdown list box to select what should be rebooted, 
and select Type/rate mismatch to specify when a reboot 
should occur.  However, do not enable rebooting of 
communication parameters on communication parameter 
mismatch for Micro Servers that use a PL 3120, PL 3150, or 
PL 3170 Smart Transceiver, unless you are certain that the 
optional features of the PL-20 transceiver will not change 
(such as CENELEC mode or low-power mode). 

o If you use an off-chip flash memory part for the ShortStack 
and system firmware, do not enable rebooting the EEPROM, 
and do not enable rebooting on a fatal application error.  If 
you are using a ROM (PROM or EPROM) part for the 
ShortStack and system firmware, you can enable these reboot 
options to allow possible recovery in the event of a fatal error.  

o Select the Configuration tab.  Ensure that Export configured 
is not selected.  The option to export a device with a pre-
defined configuration does not apply to a ShortStack Micro 
Server. 

• Click OK to save the settings and close the NodeBuilder Device 
Template Target Properties dialog. 

2. Specify an appropriate program ID.  The program ID is not exposed to the 
network, because the Micro Server remains in quiet mode until the 
application initialization (which includes the application’s program ID) is 
complete, but a mismatching channel type identifier might trigger 
warnings when using your Micro Server with the LonTalk Interface 
Developer utility. 
 
For the NodeBuilder tool, right-click the device template and select 
Settings to open the NodeBuilder Device Template Properties dialog.  
From the Program ID tab, specify an appropriate program ID. 
 
For the Mini kit application, click Calculate within the Standard 
Program Identifier area to open the LonMark Standard Program ID 
Calculator to specify the program ID.   

3. Specify your target hardware correctly: 

• Always build your Micro Server for the correct clock speed.  If your 
hardware supports multiple clock rates, build one Micro Server for 
each.  Mismatching clock rates can cause problems during the initial 
link-layer connection. 

• Always build your Micro Server for the correct transceiver family.  If 
your hardware supports both TP/FT-10 and PL-20 power line 
transceivers, build one Micro Server for each.  Within each 
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transceiver family, the exact details can be configured during 
ShortStack application initialization. 

• Select the memory map that meets your direct memory files 
requirements.  See Supporting Direct Memory Files on page 253 for 
more information about direct memory files. 

4. Review the preferences specified in the MicroServer.h file.  See Managing 
Memory on page 254 for information about configuring the Micro Server’s 
resources within the MicroServer.h file. 

5. Build the Micro Server.  Link your project with the ShortStack400.lib 
library. 

Be sure to keep the following files for the custom Micro Server: 

• The Micro Server’s device interface file (XIF file extension) 

• The Micro Server’s symbol table (SYM file extension) 

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE, 
NME, or NMF file extensions) 

Important:  All Micro Server files must share the same base name, which can be 
any valid set of characters.  However, to avoid confusion with standard Micro 
Server images, do not use names that start with SS400_ or similar pattern. 

Creating a Custom Micro Server with ISI Support 
You can create a custom Micro Server that supports the ISI protocol.  However, a 
custom Micro Server with ISI support can run only on an FT 3150, PL 3150, PL 
3170, or FT 5000 Smart Transceiver.  An FT 3120 or PL 3120 Smart Transceiver 
does not have sufficient memory to accommodate a Micro Server with ISI 
support.  

For an ISI device that is not a domain address server, you can use a standard 
Micro Server with an FT 3150, PL 3150, PL 3170, or FT 5000 Smart Transceiver.  
For a domain address server, you must create a custom Micro Server.  A DAS-
enabled Micro Server must run on hardware with at least 512 bytes of additional, 
off-chip RAM (or extended RAM for FT 5000 Smart Transceivers).  For more 
flexibility, supply at least 2 KB RAM (or extended RAM for FT 5000 Smart 
Transceivers) for a DAS Micro Server to provide sufficient buffer configurations.   

The process for creating a custom Micro Server that supports ISI is similar to the 
process described in Creating a Custom Micro Server without ISI Support on 
page 246, but includes additional files and additional considerations.  Figure 75 
on page 249 shows the files that are required to create a custom Micro Server 
that supports the ISI protocol.    
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Figure 75. Files for Creating a Custom Micro Server with ISI Support 

You edit the MicroServer.h, MicroServer.nc, ShortStackHandlers.h, and 
MicroServerIsiHandlers.c files, and compile and link the project with the 
ShortStack400Isi.lib (or ShortStack400IsiCpt.lib) library and an appropriate ISI 
library (typically, IsiFull.lib) to create your custom Micro Server.  Be sure to 
select an ISI library that supports all of the functionality that your device 
requires; for example, if your device requires that automatic enrollment be able 
to replace connections, do not select a small ISI library that does not support 
connection removal. 

To configure and build a custom Micro Server with ISI support, perform the 
following tasks: 

1. Create a NodeBuilder or Mini kit project, using the files described in 
Table 25 on page 243. 
 
For the NodeBuilder tool: 

• Expand the Device Templates folder in the Workspace window, and 
right-click one of the target folders (such as Development or Release), 
and select Settings to open the NodeBuilder Device Template Target 
Properties dialog.  In this dialog, select the Linker tab and select 
Generate symbol file.  Click OK to save the setting and close the 
dialog. 

• Also in the Linker tab of the NodeBuilder Device Template Target 
Properties dialog, you can optionally select Generate map file.  A map 
file is optional, but recommended. 

• For Micro Servers that support authentication, you should export a 
configured custom Micro Server, including pre-defined authentication 
keys.  In the NodeBuilder Device Template Target Properties dialog, 
select the Configuration tab and select Export configured.  See the 
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NodeBuilder FX User’s Guide for information about exporting a 
configuration. 

2. Specify your target hardware correctly: 

• Always build your Micro Server for the correct clock speed.  If your 
hardware supports multiple clock rates, build one Micro Server for 
each.  Mismatching clock rates can cause problems during the initial 
link-layer connection. 

• Always build your Micro Server for the correct transceiver family.  If 
your hardware supports both TP/FT-10 and PL-20 transceivers, build 
one Micro Server for each.  Within each transceiver family, the exact 
details can be configured during the ShortStack initialization phase. 

• Select the memory map to meet your direct memory file 
requirements. See Supporting Direct Memory Files on page 253 for 
more information about direct memory files. 

3. Review the preferences in the MicroServer.h file.  In particular, you must 
uncomment the #define SS_SUPPORT_ISI macro.  See Configuring 
MicroServer.h for ISI on page 251 for more information. 

4. Review the preferences in the ShortStackIsiHandlers.h file. 

5. If you implement one or more ISI callback handler functions local to the 
Micro Server, review and edit the callback handler functions in the 
MicroServer.nc file, as needed. 

6. Build the Micro Server: 

• Link your project with the ShortStack400Isi.lib (or 
ShortStack400IsiCpt.lib) library. 

• Link your project with a suitable standard ISI library, such as 
IsiFull.lib or IsiCompactDaHb.lib.  If resources permit, use the 
IsiFull.lib library. 

A custom Micro Server that supports the ISI protocol can be used either with an 
application that supports ISI or with one that does not.  If the application does 
not support ISI, it simply does not start the ISI engine (that is, it does not call the 
IsiStart() API function).  There is minimal performance penalty for a Micro 
Server to support a disabled ISI engine.  

Be sure to keep the following files for the custom Micro Server: 

• The Micro Server’s device interface file (XIF file extension) 

• The Micro Server’s symbol table (SYM file extension) 

• The Micro Server’s application image files (APB, NDL, NEI, NFI, NXE, 
NME, or NMF file extensions) 

• The ShortStackIsiHandlers.h file, but rename it to match the Micro 
Server image file (be sure to keep the .h extension) 

Important:  All Micro Server files must share the same base name, which can be 
any valid set of characters.  However, to avoid confusion with standard Micro 
Server images, do not use names that start with SS400_ or similar pattern. 
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Configuring MicroServer.h for ISI 
The MicroServer.h configuration file includes comments that describe how to use 
the file.  The file provides five ISI-related preferences: 

• The SS_SUPPORT_ISI macro enables ISI support. 

• The SS_SUPPORT_ISI_S macro controls inclusion of support for an 
application that does not support domain acquisition. 

• The SS_SUPPORT_ISI_DA macro controls inclusion of support for an 
application that supports domain acquisition. 

• The SS_SUPPORT_ISI_DAS macro controls inclusion of support for a 
domain address server (DAS) application. 

• The SS_COMPACT macro specifies that the Micro Server will use the 
ShortStack400IsiCpt.lib library, and will have the limitations described 
in Table 25 on page 243. 

• The SS_CONTROLLED_ENROLLMENT macro specifies that the Micro 
Server will support controlled enrolment. 

• The SS_ISI_IN_SYSTEM_IMAGE macro indicates that the Micro Server 
firmware includes ISI support as part of the Smart Transceiver's system 
image.  This macro is independent of the SS_SUPPORT_ISI macro, and is 
relevant even if ISI support is not configured. 

• The SS_5000 macro indicates that the Micro Server will be used with an 
FT 5000 Smart Transceiver or Neuron 5000 Processor. 

Recommendation:  In addition to the SS_SUPPORT_ISI macro, specify both the 
SS_SUPPORT_ISI_S and the SS_SUPPORT_ISI_DA macros to support ISI 
applications with or without domain acquisition.  Because ISI domain address 
servers require additional hardware resources (primarily more RAM), specify the 
SS_SUPPORT_ISI_DAS macro only if it is needed. 

See Managing Memory on page 254 for additional information about configuring 
the Micro Server’s resources within the MicroServer.h file. 

Configuring ShortStackIsiHandlers.h  
For an ISI callback handler function, you can control the location of its 
implementation.  Specifically, you can choose one of the following actions for 
almost every ISI callback handler function: 

• Use its default implementation (delivered with the ISI library), and not 
override the callback handler function.  
 
Using the default implementation for a callback handler function is the 
simplest option, but provides the least customized behavior. 

• Implement the callback override within a copy of the 
[ShortStack]\Custom MicroServer\MicroServerIsiHandlers.c file (which 
runs on the Micro Server).  
 
Implementing a callback override local to the Micro Server can provide 
the most responsive ISI implementation, but such a specialized Micro 
Server might work only with your specific ISI-enabled host application. 
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• Implement the callback override within a copy of the 
[ShortStack]\Api\ShortStackIsiHandlers.c file (which is part of your 
host application).  
 
Implementing a callback override on the host allows you to create a 
general-purpose Micro Server, but can require more traffic across the 
ShortStack link layer because the Micro Server routes callbacks to the 
host using a simple remote procedure call protocol (ISI-RPC). 

You control the location of each of the supported ISI callback handler functions in 
the [ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h file.  This file 
includes comments that describe how to override a callback handler function, and 
includes recommendations for each callback handler function’s location.  Some 
callback handler functions are subject to certain restrictions, which are described 
in the ShortStackIsiHandlers.h file.  For example, some callbacks have fewer 
choices for the location of the callback handler, and certain callback handlers 
form groups that must always reside in the same location. 

Recommendations:   

• Implement the ISI connection table local to the Micro Server.  The ISI 
connection table is a fairly frequently accessed resource; implementing 
this table on the host processor can require a high number of ISI-RPC 
messages to access this table. 

• Implement the IsiUpdateUserInterface() callback handler function within 
your host application, so that your application can synchronize its user 
interface with the ISI engine.  

Important:  The IsiGetNvValue() callback handler function must be overridden 
within the host application.  

The LonTalk Interface Developer utility copies the ShortStackIsiHandlers.h file 
to your project directory only if you select a standard Micro Server from the 
ShortStack Micro Server Selection page.  If you edit this file and re-run the 
utility, changes to the file are overwritten.  However, if your project directory has 
a ShortStackIsiHandlers.h file that you created for a custom Micro Server, the 
LonTalk Interface Developer utility does not overwrite the file. 

Implementing ISI in 
MicroServerIsiHandlers.c 
The MicroServerIsiHandlers.c file contains implementations for the Micro 
Server-side ISI callback overrides.  For callback overrides that run on the host, 
the code in the MicroServerIsiHandlers.c file is complete, and contains all the 
processing required for the remote procedure call.  You must implement the 
override within your host application (in ShortStackIsiHandlers.c), but you do 
not need to edit the MicroServerIsiHandlers.c file.  

For callback overrides that run on Micro Server, you typically need to provide 
application-specific code in the MicroServerIsiHandlers.c file.  Only those 
callback functions that relate to the connection table have a meaningful default 
implementation (which implements an ISI connection table with 32 records).  
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Using a Custom Micro Server 
For the LonTalk Interface Developer utility, you have two options for a 
ShortStack device that uses a custom Micro Server: 

• With all of your Micro Server’s image files in a single folder, use the 
Browse button on the utility’s ShortStack Micro Server Selection page to 
specify your Micro Server’s interface file by name. 

• You can create a custom Micro Server database file, which the LonTalk 
Interface Developer utility reads when it displays the Micro Server image 
files in the Firmware image field of the ShortStack Micro Server 
Selection page. 

The LonTalk Interface Developer utility reads a standard ShortStack Micro 
Server database file (StdServers.xml) to display the values for each of the 
supported Micro Servers.  This file is in the [ShortStack]\MicroServers directory. 

The ShortStack Micro Server database file contains information that is human-
readable as well as machine-readable for each of the supported Micro Servers.  
You can view this file in any Web browser that supports the Extensible Markup 
Language (XML) with Extensible Stylesheet Language Transformations (XSLT), 
such as Windows Internet Explorer 6 or later. 

You can create a custom Micro Server database file (UserServers.xml) in the 
[ShortStack]\MicroServers directory.  The LonTalk Interface Developer utility 
can read the user database to display information about custom Micro Servers in 
the ShortStack Micro Server Selection window.  Use the standard database file 
as a template for creating a user database file. 

Using a custom Micro Server database file allows you to specify predefined lists 
of supported clock rates or transceivers, along with an additional description, so 
that you can select the custom Micro Server and be sure of selecting the correct 
operating interface for it.   

Supporting Direct Memory Files 
To allow a custom Micro Server to support the direct memory file (DMF) access 
method, you must specify the #pragma enable_dmf compiler directive when you 
create the custom Micro Server.  Specify this directive, along with other 
preferences, in the MicroServer.h configuration file. 

You then use the LonTalk Interface Developer utility to specify whether a specific 
ShortStack application that uses the custom Micro Server should enable or 
disable the DMF access method. 

See Using Direct Memory Files on page 189 for information about the benefits 
and basic mechanics of the DMF access method. 

A Micro Server can receive a memory read or write network management request 
that relates either to its own local memory or to non-existent memory (memory 
that corresponds to a gap in the Micro Server’s own memory map). 

When the Micro Server receives a memory read or write network management 
request that can be satisfied from the Micro Server’s own local memory, the 
Micro Server responds to the request by accessing its memory.  These kinds of 
requests allow for normal management tasks, including the loading of a revised 
Micro Server image over the network.  
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For a memory read or write request that does not relate to local memory, but 
instead relates to a “gap” in the hardware memory map or to an area declared as 
memory-mapped I/O, the Micro Server can have two responses: 

• With the DMF access method disabled (or not supported), the Micro 
Server replies to such a request with a negative response.  

• With the DMF access method enabled, these requests are relayed to the 
host processor.  It is the responsibility of the host processor to satisfy the 
request, or to reply with a failure code. 

To allow a custom Micro Server to use the DMF access method, you must leave 
an area within the Smart Transceiver’s 64 KB memory space unused.  You need 
to define your hardware memory map such that it contains an area of undeclared 
memory.  The standard Micro Servers use the 0xA100..0xCEFF area, but you can 
change the size or location of this DMF window in your hardware design. 

ShortStack supports only one DMF window.  The Micro Server relays all memory 
read or write requests that cannot be satisfied locally to the host (if the DMF 
access method is enabled), including those relating to disjoint gaps in the memory 
map, but the DMF presentation and address translation provided by the LonTalk 
Interface Developer utility supports only one DMF window. 

Important:  The DMF access method requires Version 16 Neuron firmware or 
later, and thus is not available for current PL 3120 Smart Transceivers, which 
are based on Version 14 firmware.  All other standard Micro Server images have 
this feature enabled.  For custom Micro Servers, if you attempt to enable the 
DMF access method for a Smart Transceiver running Version 15 or earlier 
firmware, the Neuron C compiler issues a linker error. 

Managing Memory 
The LonTalk Interface Developer utility’s Neuron C compiler generates four 
tables that affect memory usage in on-chip EEPROM within a Smart 
Transceiver.  The ShortStack Micro Server firmware and network management 
tools use these tables to define the network configuration for a device.  The four 
tables include: 

• The address table. 
By default, this table is generated at its maximum size, which is 15 
entries. 

• The alias table. 
This table has no default size, and you must specify a size using the 
#pragma num_alias_table_entries compiler directive.  You can set the 
size of the alias table to zero, or any value up to 127.   

• The domain table.   
By default, this table is generated at its maximum size, which is 2 
entries.  You should not normally change this default. 

• The network variable configuration table. 
This table contains one entry for each network variable that is declared 
in the model file.  Each element of a network variable array counts 
separately. 
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See the FT 3120 / FT 3150 Smart Transceiver Data Book, the PL 3120 / PL 3150 / 
PL 3170 Power Line Smart Transceiver Data Book, or the Series 5000 Chip Data 
Book for detailed descriptions of these tables. 

Address Table 
The address table contains the list of network addresses to which the device 
sends implicitly addressed network variable updates or polls, or sends implicitly 
addressed application messages.  You can configure the address table through 
network management messages from a network management tool.  

By default, the address table contains 15 entries.  Each address table entry uses 
five bytes of on-chip EEPROM (extended RAM for a Series 5000 Micro Server).  
Use the following compiler directive to specify the number of address table 
entries:  

#pragma num_addr_table_entries nn  

where nn can be any value from 0 to 15. 

Recommendation:  Whenever possible, specify the maximum size of 15 entries for 
the address table.  

Alias Table  
An alias is an abstraction for a network variable that is managed by network 
management tools, the ISI engine, and the Micro Server firmware.  Network 
management tools and the ISI engine use aliases to create connections that 
cannot be created solely with the address and network variable tables.  Aliases 
provide network integrators flexibility for how devices are installed into 
networks.  

The alias table has no default size, and can contain between 0 and 127 entries.  
Each alias entry uses four bytes of on-chip EEPROM (extended RAM for a Series 
5000 Micro Server).  Use the following compiler directive to specify the number of 
alias table entries: 

#pragma num_alias_table_entries nnn  

where nnn can be any value from 0 to 127 (or 0 to 62 for PL 3120 Micro Servers 
with Version 14 firmware).  Subject to the Micro Server’s preferences and 
hardware capabilities, it might not be possible to implement the maximum 
number of aliases. 

Recommendation:   Specify the number of entries for the alias table, within the 
amount of available on-chip EEPROM.  The number of required entries is 
typically fewer than the maximum of 127.  The following calculation provides a 
useful starting point for the alias table size, nnn:  

nnn = 0; for nv_count = 0  

nnn = 10 + ( nv_count / 3 ); for nv_count > 0  

The number of aliases defined here is fixed, and cannot be changed from the 
ShortStack application.  You should use any special knowledge that you have 
about the application to set the size of the alias table appropriately.  A small 
number of aliases can prevent you from using the device in a complex network, 
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but a large number of unused aliases can reduce the Micro Server’s throughput 
and the overall device performance. 

Domain Table  
By default, the domain table is configured for two domains.  Each domain uses 15 
bytes of on-chip EEPROM (extended RAM for a Series 5000 Micro Server).  The 
number of domain table entries is dependent on the network in which the device 
is installed; it is not dependent on the application.   

Use the following compiler directive to specify the number of domain table 
entries:  

#pragma num_domain_entries n 

where n can be either 1 or 2. 

Recommendation:  Specify the maximum of 2 domain table entries.  LONMARK 
International requires all interoperable LONWORKS devices to have two domain 
table entries.  Reducing the size of the domain table to one entry will prevent 
certification.  

Network Variable Configuration Table 
This table contains one entry for each network variable that is declared in the 
model file.  Each element of a network variable array counts separately. 

The maximum size of the network variable configuration table is 254 entries, 
provided that there are sufficient available EEPROM resources (extended RAM 
resources for a Series 5000 Micro Server).  Each entry uses three bytes of 
EEPROM (or extended RAM).  You cannot change the size of this table, except by 
adding or deleting network variables. 

You can use the following compiler directive to specify the maximum number of 
network variables that the Micro Server supports, which in turn, affects the size 
of the network variable configuration table: 

#pragma set_netvar_count nnn 

where nnn can be any value from 0 to 254 (or 0 to 62 for PL 3120 Micro Servers 
with Version 14 firmware).  Subject to the Micro Server’s preferences and 
hardware capabilities, it might not be possible to implement the maximum 
network variable capacity. 

The actual number of network variables is set by the application.  Unlike for the 
alias table, providing support for more network variables than are needed does 
not affect the device’s throughput.  However, the total number of network 
variables declared for a device does affect its overall throughput and the time 
that the device might require for reset; also the maximum number of network 
variables declared with this directive affects the amount of memory required by 
your custom Micro Server. 
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13  

Converting a ShortStack 2 
Application to a ShortStack FX 

Application 

This chapter describes the steps that are required to migrate 
a ShortStack application that uses the ShortStack 2 API to 
one that uses the ShortStack FX LonTalk Compact API with 
a ShortStack FX Micro Server.  

For your application to benefit from the new features and 
capabilities introduced with ShortStack 2.1 or ShortStack 
FX, you must upgrade your ShortStack 2 application. 
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Overview 
Because there are a number of changes to the ShortStack FX LonTalk Compact 
API and link-layer protocol compared to ShortStack 2, and because there are new 
features provided by ShortStack FX, you cannot use an unmodified ShortStack 2 
application with a ShortStack FX Micro Server.  That is, you must migrate the 
ShortStack host application from ShortStack 2 to ShortStack FX.  However, you 
do not need to migrate from ShortStack 2 to ShortStack 2.1 before migrating to 
ShortStack FX; you can migrate from ShortStack 2 directly to ShortStack FX. 

Important:  To complete the migration for a ShortStack 2.1 host application and 
use a ShortStack FX Micro Server, you need only run the LonTalk Interface 
Developer utility from the ShortStack FX Developer’s Kit and recompile the 
application.  No changes to the host application or link-layer driver are required.  
However, the Micro Server attributes must be the same (except for its version 
number), that is, it must use the same clock setting, transceiver type, and so on. 

If you are migrating an existing ShortStack device from a Series 3100 Micro 
Server to a Series 5000 Micro Server, see Application Migration: Series 3100 to 
Series 5000 on page 195 for additional considerations. 

A typical migration from ShortStack 2 to ShortStack FX consists of the following 
steps: 

1. Save your original ShortStack 2 design for reference. 

2. Update your device’s Micro Server to use a ShortStack FX standard or 
custom Micro Server. 
 
Important:  Ensure that you load the appropriate Micro Server image for 
your device’s Smart Transceiver.  For a standard Micro Server, the image 
files are in the [ShortStack]\MicroServers directory.   

3. Run the LonTalk Interface Developer utility to generate the ShortStack 
FX application framework files based on your existing model file and 
device characteristics. 

4. Update the serial driver to use the ShortStack FX initialization sequence, 
link-layer message types, and the naming conventions. 

5. Update the host API files by manually merging the new host API with 
the old ported API, preserving any application-specific changes. 

6. Update the application code to meet ShortStack FX naming conventions 
and API changes. 

A general estimate for the effort required to migrate a ShortStack 2 application 
to ShortStack FX is two to three days per application or port.  This estimate does 
not include any additional effort that is required to support new features, but 
porting multiple devices that share the same or similar hardware will likely be 
faster after you have completed the process for the first device.   

Important:  If you use a ShortStack solution with a generic Neuron Chip, you can 
continue to use the ShortStack 2 Micro Server.  Echelon does not plan to release 
updates or fixes to the ShortStack 2 Micro Servers.  The discontinued images are 
available for download from www.echelon.com/downloads, in the Archived 
Downloads section. 

http://www.echelon.com/downloads


ShortStack User’s Guide        259 

Reorganization of API Files 
The ShortStack FX LonTalk Compact API file structure is significantly different 
than the ShortStack 2 API file structure. 

A ShortStack 2 application required many include files and two API 
implementation files.  The organization of these files was simplified for 
ShortStack 2.1 (ShortStack FX uses the same organization), and now includes 
two implementation files (one for the API implementation and one for utilities 
used by the API implementation), and a small number of include files.  

Table 26 lists the correspondences between the ShortStack 2 and ShortStack FX 
LonTalk Compact API files.  You should incorporate all of the new ShortStack FX 
files into the application, and merge any application-specific changes that you 
made to the old API files into the new ones. 

Table 26. ShortStack 2 API Files and ShortStack FX LonTalk Compact API Files 

ShortStack 2 File ShortStack FX File Description 

LonApi.c ShortStackApi.c Principal API implementation file 

— ShortStackInternal.c Utilities functions used by the API. 

LonApp.c ShortStackHandlers.c Templates for application-specific 
callback handler function 
implementations 

platform.h LonPlatform.h Portability support 

— LonBegin.h 

LonEnd.h 

Optional files that are typically used 
for processor-specific packing and 
byte alignment control (if necessary) 

— ShortStackTypes.h Defines all type definitions, 
structures, and enumerations that 
are used by the API  

— ShortStackIsiHandlers.h Optional file (ISI only) that allows 
control over the location of ISI 
callback functions 

— ShortStackIsiTypes.h 

ShortStackIsiApi.h 

ShortStackIsiApi.c 

ShortStackIsiInternal.c 

ShortStackIsiHandlers.c 

Optional files (ISI only) that 
implement the ISI API for 
ShortStack 
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ShortStack 2 File ShortStack FX File Description 

lonaccess.h 

lonaddr.h 

lonapp.h 

lonerr.h 

lonmgmt.h 

lonmodel.h 

lonmsg.h 

lonopts.h 

lonsicb.h 

lonstate.h 

— Now integrated into ShortStackApi.h 
and ShortStackTypes.h 

filedir.h — Now integrated into ShortStackDev.h 

LonDev.c 

LonDev.h 

ShortStackDev.c 

ShortStackDev.h 

Generated by LonTalk Interface 
Developer utility (ShortStack Wizard 
for ShortStack 2) 

Support for Added Features 
Several features were added to ShortStack 2.1, and new ones have been added for 
ShortStack FX.  See What’s New for ShortStack 2.1 on page iv and What’s New 
for ShortStack FX on page iii for a brief summary of these new features.  Most of 
these features required changes to the ShortStack LonTalk Compact API, its 
implementation, and the link layer protocol. 

New API Naming Conventions 
The names of types and of functions that are used with the API were changed for 
ShortStack 2.1 (ShortStack FX uses the same names).  This name change serves 
three primary goals: 

• The new names are more consistent and aligned with current 
recommendations and conventions, which makes the API more consistent 
and easier to learn. 

• The new names use name prefixes that provide unique names, rather 
than relying on explicit namespaces (which are not provided by the ANSI 
C language).  These prefixes make it easier to integrate the ShortStack 
LonTalk Compact API and the ShortStack application framework with 
your application and environment. 

• The new names are consistent with the LonTalk API used by the FTXL 
3190 Free Topology Transceiver chip, which simplifies sharing code 
between applications written for a ShortStack Micro Server and 
applications written for the FTXL Transceiver. 
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When migrating your existing application to ShortStack FX, you must change 
these names, wherever they are used within your application, to meet the new 
guidelines.  

In the source code comments for the ShortStack LonTalk Compact API, most of 
the functions and data structures provide the ShortStack 2 name so that you can 
search the API source code for the ShortStack 2 name and find the equivalent 
ShortStack FX name.  For example, if you search for config_data_struct, you will 
find LonConfigData. 

See ShortStack FX Naming Conventions on page 288 for more information on the 
naming convention. 

Improved Portability Support 
Portability for the ShortStack LonTalk Compact API and ShortStack application 
framework has been greatly improved; see Portability Overview on page 110 for a 
description of related changes.  

All types defined for use with the ShortStack LonTalk Compact API have been 
redefined to meet these guidelines.  Thus when you migrate an application that 
accesses members of these types, you will likely also need to change the related 
code. 

Recommended Migration Process 

The following process is recommended to perform this migration: 

1. Save your ShortStack 2 existing design, including the Micro Server image 
files and all other data that you might need to reproduce the device from 
the ShortStack 2 baseline. 

2. Update your device’s Micro Server to a ShortStack FX Micro Server.  See 
Preparing the ShortStack Micro Server on page 31 for more information.  
Because the FX Micro Server uses the same pin-out as the ShortStack 2 
Micro Server, no hardware changes should be required.   
 
Important:  If your current device does not use an Echelon FT or PL 
Smart Transceiver, you must change your Micro Server hardware.  In 
addition, ensure that you load the appropriate Micro Server image for 
your device’s Smart Transceiver. 

3. Run the LonTalk Interface Developer utility with a copy of your original 
application’s model file to generate the ShortStack FX application 
framework files.  See Using the LonTalk Interface Developer Utility on 
page 145 (or the utility’s online help) for information about using the 
LonTalk Interface Developer utility. 

4. Migrate your ShortStack 2 serial driver to a ShortStack FX serial driver.  
See Modifying the Serial Driver on page 262 for more information.  If 
your ShortStack device uses a host processor for which a ShortStack FX 
example application is available, you might be able to derive your 
ShortStack FX driver from one of these example implementations.   

5. Move code that implements your ShortStack callback functions from the 
ShortStack 2-based application and its lonapp.c file to the new 
ShortStackHandlers.c file. 
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Modifying the Serial Driver 
Many of the changes for ShortStack FX (such as the new initialization sequence 
and the new link-layer messages) should not affect the serial driver.  However, 
because of the change in naming conventions (see ShortStack FX Naming 
Conventions on page 288 or the ShortStackApi.h file), you do need to make at 
least minor changes to the serial driver, including changing the names of the 
functions implemented by the driver.   

One change for ShortStack FX that does require a change to the serial driver is 
the support for more than 62 network variables.  If your ShortStack application 
uses more than 62 network variables, the driver requires an extra handshake to 
process an extra two bytes of header information.  See Chapter 6, Creating a 
ShortStack Serial Driver, on page 89, for more information about the serial 
driver. 

In addition, some of the serial driver functions return success or error codes that 
you might need to update to comply with the FX API.   

The serial driver code should follow the ShortStack FX naming conventions listed 
in ShortStack FX Naming Conventions on page 288 when defining types and 
variables; however, following these conventions within the driver is not required. 

Example Conversion 
As an example of the tasks required for a conversion of a ShortStack 2 
application and serial driver to use the ShortStack FX LonTalk Compact API, 
this section describes a conversion for the ShortStack 2 Nios II Example Port 
(available on the Echelon Web site at www.echelon.com/shortstack).  This 
example port provides a simple example for a 3120 device that uses an Altera 
Nios II processor.  For more information about the example port, see the 
ShortStack 2 Nios II Example Port User’s Guide (078-0354-01A). 

To enable the ShortStack 2 Nios II Example Port to use the ShortStack FX 
LonTalk Compact API and feature set, you must make modifications to the 
following parts of the example port: 

• The properties and files defined within the Nios integrated development 
environment (IDE) 

• The serial driver 

• The application, including callback handler functions 

In general, for a conversion from the ShortStack 2 API to the ShortStack FX 
LonTalk Compact API, you should not need to modify any files that are 
generated by the LonTalk Interface Developer utility. 

The changes described in this section are specific to the ShortStack 2 Nios II 
Example Port, but the changes are representative of the kinds of changes that 
you would make for any ShortStack 2 driver and application. 

Changes within the Nios II IDE 
Because ShortStack FX uses different file names and assumes a different file 
directory structure than the ShortStack 2 Nios II Example Port uses, you cannot 
leave all of the example port’s files in the project’s workspace.  You can either 

http://www.echelon.com/shortstack
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create a new workspace and copy the necessary files into it (including the files 
generated by the LonTalk Interface Developer utility), or exclude certain existing 
files from being compiled and built with the project. 

To exclude files from the build, right-click the file and select Properties to open 
the Properties window.  Select C/C++ Build from the left-hand pane.  In the 
right-hand pane, select Exclude from build from the Active Resource 
configuration area.  Click OK to apply the change and close the Properties 
window.   

The files that you need to exclude from the build are all *.c files in the \api folder 
and the LonDev.c file in the \wizard folder.  See the ShortStack 2 Nios II 
Example Port User’s Guide for a description of the example port’s directory 
structure. 

Because the LonPlatform.h file defines the GCC_NIOS symbol rather than the 
GCC symbol for the GNU Compiler Collection (GCC) compiler that the Nios IDE 
uses, you must add the symbol to the project’s properties.  Right-click the 
application (Application_FT or Application_PL) in the Projects pane, and select 
Properties to open the Properties window.   Select C/C++ Build from the left-hand 
pane.  On Tool Settings tab, select Preprocessor.   In the Defined Symbols area, 
click the Add button to add the GCC_NIOS symbol.  You should move the new 
symbol to appear directly below the ALT_DEBUG symbol.  You can leave or 
delete the GCC symbol (if defined). 

Changes to the Serial Driver 
The implementation of the serial driver for the ShortStack 2 Nios II Example 
Port is contained in the \driver directory.  As described in Table 27, half of the 
serial driver’s source files require changes for the conversion to the ShortStack 
FX LonTalk Compact API.  The majority of the changes are in the primary file for 
the serial driver, ldvintfc.c. 

Table 27. ShortStack 2 Nios II Example Port Serial Driver Files 

File 
Changes Required for 
ShortStack FX? Description 

hndshk.h No Function prototypes to access reset and handshake 
lines 

ldvintfc.h Yes Function prototypes for the serial driver 

ldvqueue.h Yes Data structure definitions for the receive and 
transmit buffers used by the serial driver 

ldvsci.h Yes Function prototypes and data structure definitions 
for the lower-layer serial driver (SCI interface) 

londrv.h No Conditional compilation definitions that control 
whether driver uses SCI or SPI interface 

lonsystem.h No Definitions for literals that control compile-time 
options 
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File 
Changes Required for 
ShortStack FX? Description 

hndshk.c No Functions to access reset and handshake lines 

ldvintfc.c Yes Functions for the serial driver 

ldvqueue.c Yes Utility functions to access buffer queues used by 
the driver 

ldvsci.c Yes Lower-layer serial driver (SCI interface) 

londrv.c No Conditional compilation definitions that control 
whether driver uses SCI or SPI interface 

The following sections describe the changes that are needed for the conversion to 
the ShortStack FX LonTalk Compact API in the ShortStack 2 Nios II Example 
Port serial driver. 

ldvintfc.h 
The ldvintfc.h file can be deleted from the project.  This file contains function 
prototypes for the ShortStack 2 serial driver API functions (ldv_init(), 
ldv_flush_msgs(), ldv_allocate_msg(), ldv_put_msg(), ldv_put_msg_init(), 
ldv_get_msg(), and ldv_release_msg()).  However, the function prototypes for the 
equivalent ShortStack FX serial driver API functions (LdvInit(), LdvFlushMsgs(), 
LdvAllocateMsg(), LdvPutMsg(), LdvPutMsgBlocking(), LdvGetMsg(), 
LdvReleaseMsg(), and LdvReset()) are in the ShortStackApi.h file.  

ldvqueue.h 
The ldvqueue.h file requires the following types of changes, as listed in Table 28: 

• Change the included header files. 

• Change buffer size definitions (the size definitions correspond to the 
buffer sizes defined in ShortStackDev.h). 

Table 28. Changes for ldvqueue.h 

From To 

 
#include "platform.h" 
#include "LonDev.h" 
 

 
#include "ShortStackDev.h" 
#include "LonPlatform.h" 
 

 
#define    SYSRXBUFSIZE     
MIP_APP_INPUT_BUFSIZE 
 
#define    SYSTXBUFSIZE     
MIP_APP_OUTPUT_BUFSIZE 
 

 
#define    SYSRXBUFSIZE     
LON_APP_INPUT_BUFSIZE 
 
#define    SYSTXBUFSIZE     
LON_APP_OUTPUT_BUFSIZE 
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ldvsci.h 
The ldvsci.h file requires changes to the included header files, as listed in Table 
29. 

Table 29. Changes for ldvsci.h 

From To 

 
#include "platform.h" 
#include "system.h" 
#include "lonmsg.h" 
 

 
#include "LonPlatform.h" 
#include "system.h" 
#include "ShortStackTypes.h" 
 

ldvintfc.c 
The ldvintfc.c file is the primary file for the serial driver, and requires the most 
changes.  The changes required include the following types of changes, as listed 
in Table 30: 

• Change the included header files. 

• Change function calls for the ldv_* functions (some of these functions 
have return values for the ShortStack FX LonTalk Compact API). 

• Change references to Bool and Byte types (the FX types are defined in 
LonPlatform.h). 

• Modify the ldv_put_msg_init() function so that it returns a value (a more 
correct implementation would return a meaningful return value and 
would include a timeout within the SysPutMsgInit() function; see Add 
Timeout Detection on page 272). 

• Change the TRUE and FALSE return values in the ldv_allocate_msg() 
function (the FX return values are defined in ShortStackTypes.h). 

• Change the TRUE and FALSE return values in the ldv_get_msg() 
function (the FX return values are defined in ShortStackTypes.h). 

• Add the LdvReset() function. 

Table 30. Changes for ldvintfc.c 

From To 

 
 
#include "platform.h" 
#include "lonmsg.h" 
#include "ldvqueue.h" 
#include "londrv.h" 
#include "ldvsci.h" 
 

 
#include "ShortStackDev.h" 
#include "LonPlatform.h" 
#include "ShortStackTypes.h" 
#include "ldvqueue.h" 
#include "londrv.h" 
#include "ldvsci.h" 
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From To 

 
void ldv_flush_msgs(void) 

 
void ldv_init(void) 
 
Bool ldv_get_msg(LonSmipMsg** 
ppMsg) 
 
void ldv_release_msg(const 
LonSmipMsg* pMsg) 
 
Bool ldv_allocate_msg(LonSmipMsg** 
ppMsg) 

 
void ldv_put_msg(const LonSmipMsg* 
pMsg) 
 
void ldv_put_msg_init(const 
LonSmipMsg* pMsg) 
 
— 

 
void LdvFlushMsgs(void) 

 
void LdvInit(void) 

 
LonApiError LdvGetMsg(LonSmipMsg** 
ppMsg) 

 
void LdvReleaseMsg(const 
LonSmipMsg* pMsg) 
 
LonApiError 
LdvAllocateMsg(LonSmipMsg** ppMsg) 

 
void LdvPutMsg(const LonSmipMsg* 
pMsg) 

 
LonApiError LdvPutMsgBlocking(const 
LonSmipMsg* pMsg) 
 
void LdvReset(void) 
 

 
Bool 
 
Byte 
 

 
LonBool 
 
LonByte 
 

 
void ldv_put_msg_init(const 
LonSmipMsg* pMsg) 
{ 
  SysPutMsgInit(pMsg); 
 
} 
 

 
LonApiError LdvPutMsgBlocking(const 
LonSmipMsg* pMsg) 
{ 
  SysPutMsgInit(pMsg); 
  return LonApiNoError;  
} 
 

 
Bool ldv_allocate_msg (LonSmipMsg** 
ppMsg) 
{ 
  QElement* element; 
 
  SysDisableInterrupts(); 
 
  element = DeQueue(qfreeout); 
 
  SysEnableInterrupts(); 
 
  if (element != NULL) 
  { 
    *ppMsg = 
(LonSmipMsg*)(((SysTxBuf*)element) 
->data); 
    return TRUE; 
  } 
  else 
  { 
    return FALSE; 
  } 
} 
 

 
LonApiError 
LdvAllocateMsg(LonSmipMsg** ppMsg) 
{ 
  QElement* element; 
 
  SysDisableInterrupts(); 
 
  element = DeQueue(qfreeout); 
 
  SysEnableInterrupts(); 
 
  if (element != NULL) 
  { 
    *ppMsg = 
(LonSmipMsg*)(((SysTxBuf*)element) 
->data); 
    return LonApiNoError; 
  } 
  else 
  { 
    return LonApiTxBufIsFull; 
  } 
} 
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From To 

 
void ldv_put_msg_init (LonSmipMsg** 
ppMsg) 
{ 
  QElement* element; 
 
  SysDisableInterrupts(); 
 
  element = DeQueue(qincoming); 
 
  SysEnableInterrupts(); 
 
  if (element != NULL) 
  { 
    *ppMsg = 
(LonSmipMsg*)(((SysRxBuf*)element) 
->data); 
    return TRUE; 
  } 
  else 
  { 
    return FALSE; 
 
  } 
} 
 

 
LonApiError LdvGetMsg(LonSmipMsg** 
ppMsg) 
{ 
  QElement* element; 
 
  SysDisableInterrupts(); 
 
  element = DeQueue(qincoming); 
 
  SysEnableInterrupts(); 
 
  if (element != NULL) 
  { 
    *ppMsg = 
(LonSmipMsg*)(((SysRxBuf*)element) 
->data); 
    return LonApiNoError; 
  } 
  else 
  { 
    return LonApiRxMsgNotAvailable;
  } 
} 
 

— 
 
void LdvReset(void)  { 
  SysResetSCI(); /* in LdvSci.c */ 
} 
 

ldvqueue.c 
The ldvqueue.c file requires changes to the references to Bool and Byte types (the 
FX types are defined in LonPlatform.h), as listed in Table 31. 

Table 31. Changes for ldvqueue.c 

From To 

 
Bool 
 
Byte 
 

 
LonBool 
 
LonByte 
 

ldvsci.c 
The ldvsci.c file requires the following types of changes, as listed in Table 32 on 
page 268: 

• Change the included header files. 

• Change references to Bool and Byte types (the FX types are defined in 
LonPlatform.h). 
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Table 32. Changes for ldvsci.c 

From To 

 
#include "platform.h" 
#include "lonmsg.h" 
 
#include "ldvsci.h" 
#include "ldvqueue.h" 
 

 
#include "ShortStackDev.h" 
#include "LonPlatform.h" 
#include "ShortStackTypes.h" 
#include "ldvsci.h" 
#include "ldvqueue.h" 
 

 
Bool 
 
Byte 
 

 
LonBool 
 
LonByte 
 

To support the extended link-layer header for network variables with indexes 
greater than 62, you need to modify the state machine within the serial driver.  A 
simple such change would be to add an additional check to the TX_Len state for 
the presence of the extended link-layer header, as shown below. 

/* Check to see if info byte needs to be sent */ 
if (G_DriverStatus.pTxMsg[G_DriverStatus.tx_nextchar-1] == 
      (LonNiNv | LON_NV_ESCAPE_SEQUENCE)) {             
  AssertRTS(); 
  WaitForCTSLow(); 
  DeassertRTS();  
    
  /* Write the first Info byte */ 
  IOWR_ALTERA_AVALON_UART_TXDATA(SHORTSTACK_UART_BASE, 
    ((LonSicb*) ((LonSmipMsg*) G_DriverStatus.pTxMsg) 
    ->Payload)->NvMessage.Index);    
    
  /* Write the second Info byte */ 
  IOWR_ALTERA_AVALON_UART_TXDATA(SHORTSTACK_UART_BASE, 
    0x00); 
   
} 

This code compares the data in the driver buffer with the 
LON_NV_ESCAPE_SEQUENCE value (defined in ShortStackDev.h); if the value 
is equal, the code performs the handshake with the Micro Server and writes the 
two extended link-layer bytes.  If the value is not equal, the code does nothing. 

See the ShortStack FX ARM7 Example Port for a more complete example of a 
serial driver that handles the extended link-layer header. 

Changes to the Application 
Changes to the application include changes to the main.c file and changes to the 
callback handler functions.   

For a ShortStack 2 application, the callback handler functions were often defined 
in the lonapp.c file.  For a ShortStack FX application, they are defined in the 
ShortStackHandlers.c file.  In many cases, you can copy the existing callback 
code from lonapp.c to ShortStackHandlers.c without any changes. 
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The following sections describe the changes that are needed for the conversion of 
the main.c file and the callback handler functions. 

main.c 
The main.c file requires the following types of changes, as listed in Table 33: 

• Change the included header files. 

• Change the calls to the lonInit() and lonEventHandler() functions. 

• Modify the call to the lonInit() function to handle the return value (and 
take appropriate action, which for the example application is simply to 
display the result to the IDE console). 

Table 33. Changes for main.c 

From To 

 
#include "system.h" 
#include "platform.h" 
#include "lonapi.h" 
#include "londev.h" 
#include "hndshk.h" 
 

 
#include "system.h" 
#include "ShortStackDev.h" 
#include "LonPlatform.h" 
#include "ShortStackApi.h" 
#include "hndshk.h" 
 

 
lonInit(); 
 
lonEventHandler(); 
 

 
LonInit(); 
 
LonEventHandler(); 
 

 
printf ("Initializing LON..."); 
LonInit(); 
 
printf ("done.\n");     
printf ("You can use LonMaker to 
test your device now.\n"); 
 

 
printf ("Initializing LON..."); 
LonApiError rc = LonInit(); 
if (rc == LonApiNoError) { 
  printf ("done.\n");     
  printf ("You can use LonMaker to 
test your device now.\n"); 
} 
else { 
  printf("Failed. RC=%d\n", rc); 
} 
 

Callback Handler Functions 
The example application has modified code for only one callback handler 
function, LonNvUpdateOccurred().  This function processes updates to the two 
input network variables defined for the example device. 

The LonNvUpdateOccurred() function in the ShortStackHandlers.c file requires 
the following types of changes, as listed in Table 34 on page 270: 

• Copy the existing code from the lonNvUpdateOccurred() function in 
lonapp.c to the LonNvUpdateOccurred() function in 
ShortStackHandlers.c. 

• Ensure that the LonNvUpdateOccurred() function has the correct 
parameters (they are slightly different than the parameters for the 2.0 
lonNvUpdateOccurred() function) – if you use the function as generated 
by the LonTalk Interface Developer utility, no change is necessary. 
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• Change the network variable index values used for the case statements 
(the index values are defined in ShortStackDev.h). 

• When setting an attribute value for a structured output network variable, 
use the LON_SET_ATTRIBUTE macro (the macro is defined in 
ShortStackTypes.h and the attribute values are defined in 
LonNvTypes.h). 

• When retrieving or setting the value for a single-valued output network 
variable, use the LON_GET_SIGNED_WORD and 
LON_SET_SIGNED_WORD macros (defined in ShortStackTypes.h). 

• Change the call to the lonPropagateNv() function, the network variable 
index value passed to it, and its return value. 

Table 34. Changes for the LonNvUpdateOccurred() Callback Handler Function 

From To 

 
void lonNvUpdateOccurred(const Byte 
nvIndex, const RcvAddrDtl* const 
pNvInAddr) 

 
void LonNvUpdateOccurred(const 
unsigned index, const 
LonReceiveAddress* const 
pSourceAddress) 
 

 
case NVIDX_nviRequest: 
 
case NVIDX_nviVolt: 
 

 
case LonNvIndexNviRequest: 
 
case LonNvIndexNviVolt: 

 
nvoStatus.invalid_id = 1; 
 
 
nvoStatus.invalid_request = 1; 
 

 
LON_SET_ATTRIBUTE(nvoStatus, 
LON_INVALIDID, 1); 
        
LON_SET_ATTRIBUTE(nvoStatus, 
LON_INVALIDREQUEST, 1);   
     

 
nvoVolt = 
NET_SWAB_WORD(2*NET_SWAB_WORD(nviVolt)
); 
 

 
LON_SET_SIGNED_WORD(nvoVolt, 
LON_GET_SIGNED_WORD(nviVolt) * 2); 
 

 
if (lonPropagateNv(NVIDX_nvoVolt) != 
API_NO_ERROR) 
 

 
if 
(LonPropagateNv(LonNvIndexNvoVolt) 
!= LonApiNoError) 
 

Complete code for the modified LonNvUpdateOccurred() function is shown below. 

void LonNvUpdateOccurred(const unsigned index, const 
LonReceiveAddress* const pSourceAddress) 
{ 
  switch (index) 
  { 
  case LonNvIndexNviRequest: 
    nvoStatus.object_id = nviRequest.object_id;  
    LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDID, 1); 
    LON_SET_ATTRIBUTE(nvoStatus, LON_INVALIDREQUEST, 1);        
    break; 
 
  case LonNvIndexNviVolt: 
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    LON_SET_SIGNED_WORD(nvoVolt, 
      LON_GET_SIGNED_WORD(nviVolt) * 2); 
    if (LonPropagateNv(LonNvIndexNvoVolt) != LonApiNoError) 
    { 
      // Handle error here, if desired. 
    } 
    break; 
 
    default: 
      break; 
    } 
} 

Additional Recommended Changes 
In addition to the changes to the serial driver and application described in the 
previous sections, this section describes a few additional, optional, changes for 
the ShortStack FX implementation that can improve the application. 

As with the changes described for the serial driver, the LonTalk Interface 
Developer files, and the application, the changes described in this section are 
specific to the ShortStack 2 Nios II Example Port, but are representative of the 
kinds of changes that you might make for any ShortStack 2 driver and 
application. 

Modify the Model File 
The model file (Sample_Node.nc) for the ShortStack 2 Nios II Example Port 
includes a node object of type SFPTnodeObject.  However, the application does 
not use the node object (the LonNvUpdateOccurred() function in the 
ShortStackHandlers.c file simply returns an invalid request). 

In addition, the model file uses a controller functional block that is based on an 
obsolete functional profile (SFPTcontroller).  Because the controller functional 
block is deprecated, the example is not compliant with current LONMARK 
Interoperability Guidelines, which are available at www.lonmark.org.  

Recommendations:   

• Either remove the node object from the model file and re-run the LonTalk 
Interface Developer utility, or add code to the LonNvUpdateOccurred() 
function to handle the updates to the node object.  

• Replace the functional profile (SFPTcontroller) for the functional block 
with a functional profile that complies with current LONMARK 
interoperability guidelines.  For example, change the functional profile to 
SFPTclosedLoopActuator.  The functional block still defines the same two 
network variables, nviVolt and nvoVolt. 

Add Range and Error Checking 

Because the ShortStack 2 Nios II Example Port is not intended to act as a 
production ShortStack device, it does not perform as much range checking or 
error checking as a production device’s application would. 

http://www.lonmark.org/
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For example, add range checking for updates to the nviVolt network variable in 
the LonNvUpdateOccurred() function to ensure that the application does not set 
the voltage levels to invalid or erroneous values. 

/* Limits for nviVolt */ 
#define MIN_VOLT                (-32768/2) 
#define MAX_VOLT                (32767/2) 
 
… 
 
case LonNvIndexNviVolt: 
{ 
  /* Whenever nviVolt is updated, set nvoVolt to twice 
     the value of nviVolt.  
   */ 
  int value = LON_GET_SIGNED_WORD(nviVolt); 
  if (value > MAX_VOLT) { 
    /* Input value is out of range.  Set it to maximum */ 
    value = MAX_VOLT; 
    LON_SET_SIGNED_WORD(nviVolt, value); 
  } 
  else if (value < MIN_VOLT) { 
    /* Input value is out of range.  Set it to minimum */ 
    value = MIN_VOLT; 
    LON_SET_SIGNED_WORD(nviVolt, value); 
  } 
  LON_SET_SIGNED_WORD(nvoVolt, value * 2); 
 
  /* Propagate the NV onto the network. */ 
  if (LonPropagateNv(LonNvIndexNvoVolt) != LonApiNoError) { 
    /* Handle error here, if desired. */ 
  } 
  break; 
} 

Add Timeout Detection 

The current implementation of the LdvPutMsgBlocking() function (in the 
SysPutMsgInit() function) does not perform error checking to ensure that it does 
not wait forever to send a message to the Micro Server.  It is important that this 
function not block indefinitely so that the LonInit() function can complete.  Thus, 
a more correct implementation would add timeout detection, and return the 
appropriate error code: 

1. Add a field to the DriverStatus structure (in the ldvsci.h file) for a 
timeout value for sending a message from the driver to the Micro Server.  
For example:   
typedef LON_STRUCT_BEGIN(LdvDriverStatus) 
{ 
  … 
  LonUbits32 PutMsgTimeout;  
} LON_STRUCT_END(LdvDriverStatus); 

2. Define an appropriate timeout value for the serial link (in the ldvsci.h 
file).  For example, set the timeout to 60 seconds (as 60000 milliseconds): 
#define LDV_PUTMSGTIMEOUT       60000 
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3. Near the beginning of the LdvPutMsgBlocking() function, set the driver 
status for the timeout value.  For example: 
DriverStatus.PutMsgTimeout = LDV_PUTMSGTIMEOUT;  

4. Within the first while loop (while (!bSuccess)) of the 
LdvPutMsgBlocking() function, add a check for the timeout value. For 
example: 
/* Check the timer */ 
if (DriverStatus.PutMsgTimeout == 0) { 
  /* The timer has expired. */ 
  /* Declare the Micro Server as unresponsive */ 
  SysEnableInterrupts(); 
  result = LonApiMicroServerUnresponsive; 
  break; 
} 

5. Similarly, within the second while loop (while ((G_DriverStatus.TxInit == 
TRUE))) of the LdvPutMsgBlocking() function, add the same check for 
the timeout value described in item number 4.  Also, remove the 50000 μs 
sleep from this while loop. 

The changes described in this section are optional because the current 
implementation provides the same behavior as the ShortStack 2 serial driver, 
and behavioral changes might require extra testing for your ShortStack device.  
However, a production device should ensure that the LdvPutMsgBlocking() 
function does not block indefinitely. 
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A 

LonTalk Interface Developer 
Command Line Usage 

This appendix describes the command-line interface for the 
LonTalk Interface Developer utility.  You can use this 
interface for script-driven or other automation uses of the 
LonTalk Interface Developer utility. 
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Overview 
The LonTalk Interface Developer utility consists of two main components: 

• The LonTalk Interface Developer graphical user interface (GUI), which 
collects your preferences and displays the results 

• The LonTalk Interface Builder, which processes the data from the GUI 
and generates the required output files 

If you plan to run the LonTalk Interface Developer in an unattended mode, for 
example as part of an automated build process, you can use the command-line 
interface to the LonTalk Interface Builder part of the LonTalk Interface 
Developer utility. 

All commonly used project preferences are available through either the GUI or 
the command line interface. 

To run the LonTalk Interface Builder tool for ShortStack, open a Windows 
command prompt (Start → Programs → Accessories → Command Prompt), and 
enter the following command from LonWorks Interface Developer directory 
(\LonWorks\InterfaceDeveloper): 

libs 

Command Usage 
The following command usage notes apply to running the libs command:  

• If no command switches or arguments follow the command name, the tool 
responds with usage hints and a list of available command switches. 

• Most command switches come in two forms:  A short form and a long 
form.   
 
The short form consists of a single, case-sensitive, character that 
identifies the command, and must be prefixed with a single forward slash 
'/' or a single dash '-'.  Short command switches can be separated from 
their respective values with a single space or an equal sign.  Short 
command switches do not require a separator; the value can follow the 
command identifier immediately. 
 
The long form consists of the verbose, case-sensitive, name of the 
command, and must be prefixed with a double dash '- -'.  Long command 
switches require a separator, which can consist of a single space or an 
equal sign. 
 
Examples: 
Short form:  libs –n … 
 
Long form:  libs --source … 

• Multiple command switches can be separated by a single space.  

• Commands of a Boolean type need not be followed by a value.  In this 
case, the value yes is assumed.  Possible values for Boolean commands 
are yes, on, 1, +, no, off, 0, - (a minus sign or dash).  
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Examples: 
libs -–queryapi=yes 
libs --queryapi 

• Commands can be read from the command line or from a command file 
(script file).  A command file contains empty lines, lines starting with a 
semicolon (comment lines), or lines containing one command switch on 
each line (with value as applicable).  The file extension can be any 
characters, but it is recommended that you use the “.libs” extension.  For 
the command line, you must use quotation marks for strings that include 
spaces.  However, do not include the quotation marks in a command file 
(spaces in strings are supported for command files). 
 
Example command file:   
 
; LIBS command file for myProject 
--source=myModelFile.nc 
--basename=myProjectVer1 
--server= SS400_FT3120E4_40000kHz 
--clock=10 
--multiplier=1/2 
--pid=9F:FF:FF:00:00:00:04:00 
--out=C:\myFolder\ProjectVer1 

• Command switches can appear at any location within the command line 
or in any order (on separate lines) within a script.  

Command Switches 
Table 35 lists the available command switches for the libs command.  Only the 
following switches are required for the command: 

• --source (-n) 

• --pid (-i) 

• --basename (-b)  

• --server (-s) 

• --clock (-c) 

• --multiplier (-P) 

Other command switches are optional. 

Table 35. Command Switches for the libs Command 

Command Switch 

Long Form 
Short 
Form Description 

--applmsg -m Enable support for application messages 

--basename -b Set the project's base name 
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Command Switch 

Long Form 
Short 
Form Description 

--clock -c Set external clock rate (in MHz) for the Micro Server 

--clockfactor -f Scale the Micro Server clock rate ('STD' (default) or 
'ALT') 

--define -D Define a specified preprocessor symbol (without value) 

--defloc  Location of an optional default command file 

--dmfsize -z Override size of the direct memory file memory window 

--dmfstart -a Override start address of the direct memory file 
memory window 

--expladdr -e Enable the use and availability of explicit addresses 

--file -@ Include a command file 

--help -? Display usage hint for command 

--include -I Add the specified folder to the include search path 

--isi  Enables support for ISI in host-side API 

--mkscript  Generate command script in specified location 

--multiplier -P Set the clock multiplier for the Micro Server (valid 
values are: ½, 1. 2. 4. and 8) 

--nodefaults  Disable processing of default command files 

--out -o Generate all output files in the specified location 

--pid -i Use the specified program ID (in colon-separated 
format) 

--queryapi -q Enables and includes optional Query API functions 
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Command Switch 

Long Form 
Short 
Form Description 

--server -s Specifies the Micro Server image file name.  For a 
standard Micro Server (or a custom Micro Server in the 
[ShortStack]\MicroServers directory), you can specify 
the Micro Server’s base name (such as 
SS400_FT3150ISI_10000kHz).  You can also provide an 
absolute path to the Micro Server without a file 
extension, for example 
“C:\myServers\myCustomServer” (where 
myCustomServer is the Micro Server image name 
without the file extension). 

--silent  Suppress banner message display 

--source -n Use the specified model file 

--spdelay -p Set the service pin notification delay (255=default, 
0=off) 

--updateapi -u Enables and includes optional Update API functions 

--utilityapi  Enables and includes the optional local utility API 
functions 

--verbose -v Run with verbosity level 0 (normal), 1 (verbose), or 2 
(trace) 

--verbosecomments -V Generate verbose comments 

--warning  Display specified message number as a warning 

--xcvr -x Use the specified transceiver (by name) 
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B 

Model File Compiler Directives 

This appendix lists the compiler directives that can be 
included in a model file.  Model files are described in 
Chapter 8, Creating a Model File, on page 115.  
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Using Model File Compiler Directives 
ANSI C permits compiler extensions through the #pragma directive.  These 
directives are implementation-specific.  The ANSI standard states that a 
compiler can define any sort of language extensions through the use of these 
directives.  Unknown directives can be ignored or discarded.  The Neuron C 
compiler issues warning messages for unrecognized directives.  

In the Neuron C compiler, pragmas can be used to set certain Neuron firmware 
system resources and device parameters such as code generation options, 
debugging options, error reporting options, and other miscellaneous features.  In 
general, these directives can appear anywhere in the model file.  

Any compiler directive that is not described in this appendix is not accepted by 
the LonTalk Interface Developer utility, and causes an error if included in a 
model file.  You can use conditional compilation to exclude unsupported 
directives. 

Acceptable Model File Compiler Directives 
You can specify the following compiler directives in a model file.  These directives 
can appear anywhere in the model file, and control the output produced by the 
LonTalk Interface Developer utility.  

#pragma codegen option 

This pragma allows control of certain features in the compiler’s code 
generator.  Application timing and code size could be affected by use of these 
directives.  The valid options that can be specified within a model file are: 

 cp_family_space_optimization    
 no_cp_template_compression  
   
The automatic configuration property merging feature in NodeBuilder 3.1 
(and later) might change the device interface for a device that was previously 
built with the NodeBuilder 3 tool.  You can specify #pragma codegen 
no_cp_template_compression in your program to disable the automatic 
merging and compaction of the configuration property template file.  Use of 
this directive could cause your program to consume more of the device’s 
memory, and is intended only to provide compatibility with the NodeBuilder 
3.0 Neuron C compiler.  You cannot use both the 
no_cp_template_compression option and the cp_family_space_optimization 
option in the same application program.    

#pragma disable_warning number 

Controls the compiler’s printing of specific warning and hint messages 
Warning messages are less severe than errors, yet could indicate a problem 
in a program, or a place where code could be improved.  To disable all 
warning messages, specify an asterisk (*) for the number.  

See the enable_warning directive to enable disabled warnings. 

The disable_warning directive supercedes the warnings_off directive. 
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#pragma enable_dmf 

Enables the direct memory file access method for the ShortStack Micro 
Server. 

#pragma enable_sd_nv_names 

Causes the LonTalk Interface Developer utility to include the network 
variable names in the self-documentation (SD) information when self-
identification (SI) data is generated.  This pragma can only appear once in 
the model file.  See the Neuron C Programmer’s Guide for more information 
about SD and SI data. 

#pragma enable_warning number 

Controls the compiler’s printing of specific warning and hint messages 
Warning messages are less severe than errors, yet could indicate a problem 
in a program, or a place where code could be improved.  To enable all warning 
messages, specify an asterisk (*) for the number.   

See the disable_warning directive for the reverse operation. 

The enable_warning directive supercedes the warnings_on directive. 

#pragma fyi_off 
#pragma fyi_on 

Controls the compiler's printing of informational messages.  Informational 
messages are less severe than warnings, yet can indicate a problem in the 
model file.  Informational messages are off by default at the start of 
compilation.  These pragmas can be intermixed multiple times throughout a 
program to turn informational message printing on and off as needed. 

#pragma hidden 

This pragma is for use only in the <echelon.h> standard include file. 

#pragma ignore_notused symbol 

Requests that the compiler ignore the symbol-not-referenced flag for the 
named symbol.  The compiler normally prints warning messages for any 
variables, functions, I/O objects, and so on, that are declared but are never 
used in the model file.  This pragma can be used one or more times to 
suppress the warning on a symbol-by-symbol basis. 

The pragma should appear after the variable declaration.  A good coding 
convention is to place this pragma on the line that immediately follows the 
variable's declaration.  For automatic scope variables, the pragma must 
appear no later than the line preceding the close brace character '}', which 
terminates the scope containing the variable.  There is no terminating brace 
for any variable declared at file scope. 

#pragma micro_interface 

This pragma is only used with the Microprocessor Interface Program (MIP) or 
with ShortStack Micro Server applications.  You must include this directive 
in your custom Micro Server source code.  

#pragma no_hidden 

This pragma is for use only in the <echelon.h> standard include file. 
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#pragma optimization level 

For Neuron C applications, this pragma allows you to specify a code 
optimization level for optimal use of device memory.  See the Neuron C 
Reference Guide for information about using this pragma for Neuron C 
applications. 

For model file compilation, executable code is ignored.  You can use this 
pragma to specify optimization for CP template files.   

Table 36 lists the levels of optimization for model file compilation (levels that 
are specific to Neuron C code are omitted).  For most model files, optimization 
level 5 is recommended. 

As part of optimization, the Neuron C compiler can attempt to compact the 
configuration property template file by merging adjacent family members 
that are scalars into elements of an array.  Any CP family members that are 
adjacent in the template file and value file, and that have identical 
properties, except for the item index to which they apply, are merged.  Using 
optional configuration property re-ordering and merging can achieve 
additional compaction beyond what is normally provided by automatic 
merging of whatever CP family members happen to be adjacent in the files.  
With this feature enabled, the Neuron C compiler optimizes the layout of CP 
family members in the value and template files to make merging more likely.   

Important:  Configuration property re-ordering and merging can reduce the 
memory required for the template file, but could also result in slower access 
to the application’s configuration properties by network tools.  This could 
potentially cause a significant increase in the time required to commission 
your device, especially on low-bandwidth channel types such as power line 
channels.  You should typically only use configuration property re-ordering 
and merging if you must conserve memory.  If you use configuration property 
re-ordering and merging, be sure to test the effect on the time required to 
commission and configure your device. 

Table 36. Optimization Levels for the #pragma optimization Directive 

Level Optimization Performed 

0 No optimization 

CP templates are not compressed 

3 CP templates are compressed 

5 Maximum optimization 

You can use the following keywords instead of the numeric level indicators: 

• none for level 0 

• standard for level 3 

• all for level 5 

The keyword level indicators are generally preferred over their numeric 
counterparts because they are self-documenting. 

The #pragma optimization directive replaces the following directives: 
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#pragma codegen cp_family_space_optimization 
#pragma codegen optimization_on 
#pragma codegen optimization_off 
#pragma codegen no_cp_template_compression 

The compiler issues the NCC#589 warning message if you use these 
deprecated directives.  If your model file uses any of these directives with the 
#pragma optimization directive, the compiler issues the NCC#588 warning 
message. 

#pragma relaxed_casting_off 
#pragma relaxed_casting_on 

These pragmas control whether the compiler treats a cast that removes the 
const attribute as an error or as a warning.  The cast can be explicit or 
implicit (for example, an automatic conversion due to assignment).  
Normally, the compiler considers any conversion that removes the const 
attribute to be an error.  Turning on the relaxed casting feature causes the 
compiler to treat this condition as a warning instead.  These pragmas can be 
intermixed throughout a program to enable and disable the relaxed casting 
as needed. 

#pragma set_guidelines_version string 

The Neuron C version 2.1 (and later) compiler generates LONMARK 
information in the device’s XIF file and in the device’s SIDATA (stored in 
device program memory).  By default, the compiler uses “3.4” as the string 
identifying the LONMARK guidelines version that the device conforms to.  To 
override this default, specify the overriding value in a string constant 
following the pragma name, as shown.  For example, a program could specify 
#pragma set_guidelines_version “3.2” to indicate that the device conforms to 
the 3.2 guidelines.  This directive is useful for backward compatibility with 
older versions of the Neuron C compiler. 

Note this directive can be used to state compatibility with a guidelines 
version that is not actually supported by the compiler.  Future versions of the 
guidelines that require a different syntax for SI/SD data are likely to require 
an update to the compiler.  This directive only has the effect described above, 
and does not change the syntax of SD strings generated. 

The set_guidelines_version directive is typically used to specify a version 
string in the major.minor form (for example, “3.4”).  The compiler issues a 
NCC#604 warning message if the application-specific version string does not 
match that format, but permits the string. 

Using this directive can prevent certification of the generated device. 

#pragma set_id_string "ssssssss" 

Provides a legacy mechanism for setting the device’s 8-byte program ID.  This 
directive is allowed for legacy application support, and should not be used in 
a model file.  Use the LonTalk Interface Developer utility to set the program 
ID. 

#pragma set_node_sd_string C-string-const 

Specifies and controls the generation of a comment string in the self-
documentation (SD) data in a device's application image.  Most devices have 
an SD string.  The first part of this string documents the functional blocks for 
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the device.  This part is automatically generated by the LonTalk Interface 
Developer utility.  This first part is followed by a comment string that 
documents the purpose of the device.  This comment string defaults to a 
NULL string and can have a maximum of 1023 bytes, minus the first part of 
the SD string generated by the LonTalk Interface Developer utility, including 
the zero termination character.  This pragma explicitly sets the comment 
string.  Concatenated string constants are not allowed.  This pragma can only 
appear once in the model file. 

#pragma set_std_prog_id hh:hh:hh:hh:hh:hh:hh:hh 

Provides a legacy mechanism for setting the device’s 8-byte program ID.  This 
directive is allowed for legacy application support, and should not be used in 
a model file.  Use the LonTalk Interface Developer utility to set the program 
ID. 

#pragma warnings_off 
#pragma warnings_on 

Controls the compiler's printing of warning messages.  Warning messages 
generally indicate a problem in the model file, or a place where the code could 
be improved.  Warning messages are on by default.  These pragmas can be 
intermixed multiple times throughout a model file to turn informational 
message printing on and off as needed. 

These directives override the settings for the #pragma enable_warning 
number and #pragma disable_warning number directives. 

The warnings_off and warnings_on directives are deprecated.  Use the 
enable_warning and disable_warning directives instead. 
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ShortStack LonTalk Compact API 

This appendix describes the functions and callback handler 
functions included with the ShortStack LonTalk Compact 
API.  It also describes modifying the API callback handlers 
for use with your ShortStack application.  



 

288 ShortStack LonTalk Compact API                                 

Introduction 
The ShortStack LonTalk Compact API provides the functions that you call from 
your ShortStack application to send and receive information to and from a 
LONWORKS network.  The API also defines the callback functions that your 
ShortStack application must provide to handle LONWORKS events from the 
network and Micro Server.  Because each ShortStack application handles these 
callbacks in its own specific way, you need to modify the callback functions. 

Typically, you use the API functions for ShortStack initialization and sending 
and receiving network variable updates.  See Chapter 10, Developing a 
ShortStack Application, on page 163, for more information about using these 
functions. 

The ShortStack LonTalk Compact API functions are implemented in the 
ShortStackApi.c file; the ShortStack callback functions are defined in the 
ShortStackHandlers.c file.  See ShortStack LonTalk Compact API Files on page 
21 for a list of the files included with the ShortStack Developer’s Kit. 

This appendix provides an overview of the functions and callbacks.  For detailed 
information about the ShortStack LonTalk Compact API, see the HTML 
documentation that is available from the Windows Start menu:  select Programs 
→ Echelon ShortStack FX Developer’s Kit → API Documentation. 

Changes to the API  
The ShortStack FX LonTalk Compact API is essentially the same as the 
ShortStack 2.1 LonTalk Compact API.  ShortStack 2.1 applications require no 
changes to compile with the ShortStack FX Developer’s Kit. 

The ShortStack FX LonTalk Compact API is considerably different from the 
ShortStack 2 API.  The basic functionality of the two APIs is similar, but the 
naming convention used for ShortStack FX (and ShortStack 2.1) is different and 
more regular than the ShortStack 2 API, and the ShortStack FX LonTalk 
Compact API includes a different set of header files. 

See Using Types on page 154 for other changes to the ShortStack LonTalk 
Compact API, as implemented by the LonTalk Interface Developer utility.  

ShortStack FX Naming Conventions 
All ShortStack names, members of structures, unions, or enumerations (but not 
those for function arguments, variables, and macros) use upper case for the 
beginning letter of each word, and include no underscores in the names.  For 
example:  LonDomainConfigReceived. 

All function arguments and variables use lower case for the first letter with 
upper case for the beginning letter of each subsequent word, and include no 
underscores in the names.  For example:  myVariable. 

All global names, with the exception of macro names and global variables, have a 
“Lon” name prefix (rather than using explicit ANSI C namespaces).  Global 
variables have a “lon” prefix, but global constants (because they are immutable) 
have a “Lon” prefix.  For example:   
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• LonEventHandler:  a global name  

• lonErrorCount:  a global variable  

• LonErrorLimit:  a global constant 

Function arguments, local variables, or members of structures and unions do not 
include the “Lon” or “lon” prefix.  Members of enumerations are prefixed with 
“lon”.   Pointer variables include a “p” prefix, for example, pDomain. 

Macros follow standard ANSI C conventions.  That is, they are all capital letters, 
with individual words separated with a single underscore.  Macro and predefined 
symbol names also include a “LON_” prefix.  For example:  
LON_NEURON_ID_LENGTH. 

The LonTalk Interface Developer utility generates network variable and 
configuration property types that comply with the rules for enhanced portability; 
see Portability Overview on page 110 for more information about these rules.  
However, the following additional rules apply to utility-generated types: 

• The generated network variable and configuration property types use 
their Neuron C equivalents (such as ncuInt or ncsLong).  These types are 
defined in the LonPlatform.h file, and by default are defined using types 
such as LonByte and LonWord.  The LonPlatform.h file maintains the 
indirection of types because a particular compiler might offer a better, 
more convenient, equivalent for these Neuron C types.  In that case, you 
can edit the appropriate section of the LonPlatform.h file to use these 
more convenient types. 

• Non-native Neuron C types (such as s32_type and float_type) are defined 
in terms of their true Neuron C equivalent, for example, as arrays of four 
bytes. 

• Enumerations referenced from types are defined as signed Neuron C 
integers (ncsInt).  Thus, the generated types do not use the LON_ENUM 
macros. 

• Type references are defined as dereferenced types. 

• For purely host-side types, such as LonNvDescription (formerly 
TNvTable), bit fields are avoided where possible because not all target 
compilers support bit fields.  Another exception is the 
LonNvDescription.Size field, which is declared as the LonByte type 
(instead of the natural size_t) to reduce the memory footprint. 

• The access macros defined for bit field replacements are generated 
following the type definition, rather than preceding it.  The bit field 
identifier that is part of the access macro’s name is generated by 
converting the bit field member name to all upper case, removing leading 
prefixes (UNVT_, SNVT_, SCPT_ , UCPT_, or LON_), and removing all 
underscores. 

• Bit field access macros include a comment that clarifies the meaning of 
the related bit field. 

• Names of network variable and configuration property types, and all 
their member names, that support the direct memory file access method 
might not meet the naming guidelines.   
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Customizing the API 
Portions of the API are optional, in particular, application messaging, network 
management query support, network management update support, and network 
management callbacks.  If you do not plan to use these functions, you can choose 
not to include them in your ShortStack application to reduce the footprint of the 
application in your host microprocessor.  The LonTalk Interface Developer utility 
includes options that control whether to include the optional APIs in your 
application. 

API Memory Requirements 
The memory requirements for the ShortStack LonTalk Compact API depend on 
which parts of the API you include in your application.  You control which parts 
of the API to include in your application from the Interface Developer Code 
Generator Preferences page of the LonTalk Interface Developer utility.   

Table 37 lists the approximate API memory requirements.  Part of the memory 
requirement is application specific, depending on the device interface.  10 to 20% 
of the memory requirements listed in the table assume a simple device interface. 

Table 37. ShortStack LonTalk Compact API Memory Requirements 

Included API 

Standard 
API 

Optional 
API ISI API Memory Requirement 

   1.8 KB 

   2.3 KB 

   3.0 KB 

   3.5 KB 

The memory requirements for the serial driver depend on the driver’s 
implementation.  For the ARM7 serial driver that is included with the ARM7 
Example Port, the memory requirement is approximately 3 KB. 

The ShortStack LonTalk Compact API and 
Callback Handler Functions 

This section provides an overview of the ShortStack FX LonTalk Compact API 
functions and callback handler functions.  For detailed information about the 
ShortStack LonTalk Compact API and the callback handler functions, see the 
HTML API documentation and the API source code: 

• Start → Programs → Echelon ShortStack FX Developer’s Kit → 
Documentation → API Reference 

• Start → Programs → Echelon ShortStack FX Developer’s Kit → API 
Source Code 
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ShortStack LonTalk Compact API Functions 
The ShortStack LonTalk Compact API includes functions for managing network 
data and the ShortStack Micro Server. 

Commonly Used Functions 
Table 38 lists API functions that you will most likely use in your ShortStack 
application to send and receive data over a LONWORKS network. 

Table 38. Commonly Used ShortStack LonTalk Compact API Functions 

Function  Description 

LonEventHandler() Processes any messages received by the ShortStack driver.  If 
messages are received, it calls the appropriate callback functions. 

See Periodically Calling the Event Handler on page 170 for more 
information about how to use this function. 

LonInit() Initializes the ShortStack LonTalk Compact API, the serial driver, 
and the ShortStack Micro Server.  This function downloads 
ShortStack device interface data from the ShortStack application 
to the ShortStack Micro Server. 

The ShortStack application must call LonInit() once on startup. 

LonPropagateNv() Propagates a network variable value to the network. 

This function propagates a network variable if all of the following 
conditions are met: 

• The network variable is declared with the output modifier 

• The network variable must be bound to the network 

Other Functions 
Table 39 lists other ShortStack LonTalk Compact API functions that you can use 
in your ShortStack application.  These functions are not typically used by most 
ShortStack applications. 

Table 39. Other ShortStack LonTalk Compact API Functions 

Function  Description 

LonGetUniqueId() Gets the unique ID (Neuron ID) value of the ShortStack Micro 
Server. 

LonGetVersion() Gets the version number of the ShortStack firmware in the 
ShortStack Micro Server. 
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Function  Description 

LonPollNv() Requests a network variable value from the network.  A 
ShortStack application can call LonPollNv() to request that 
another LONWORKS device (or devices) send the latest value (or 
values) for network variables that are bound to the specified input 
variable.  To be able to poll an input network variable, it must be 
declared in the model file as an input network variable and include 
the polled modifier.  You cannot poll an output network variable 
with the LonPollNv() function. 

Do not use polling with ISI connections. 

LonSendServicePin() Broadcasts a service-pin message to the network.  The service-pin 
message is used during configuration, installation, and 
maintenance of a LONWORKS device. 

Application Messaging Functions 
Table 40 lists the ShortStack LonTalk Compact API functions that are used for 
implementing application messaging and for responding to an application 
message.  Application messages can be used to implement a proprietary interface 
that does not need to interface to devices from other manufacturers.  The same 
functions can be used for foreign frame and explicit network variable messages.  
Support for application messaging is optional.   

If you choose not to support application messaging, this function is not available 
for use in your ShortStack application.  You can select whether to include these 
functions in the LonTalk Interface Developer utility’s Micro Server Preferences 
page. 

Table 40. Application Messaging ShortStack LonTalk Compact API Functions 

Function  Description 

LonSendMsg() Sends an application, foreign frame, or explicit network variable 
message. 

LonSendResponse() Sends an application, foreign frame, or explicit network variable 
message response to a request message.   

The ShortStack application calls LonSendResponse() in response to 
a LonMsgArrived() callback handler function.   

Network Management Query Functions 
The ShortStack LonTalk Compact API includes the optional network 
management query API functions that provide additional network management 
commands listed in Table 41 on page 293.  Support for these network 
management API functions is optional.  

The network management query API functions are asynchronous functions.  
They issue a downlink request and return immediately.  The functions can fail if 
no downlink buffer is available. 
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If you do not plan to use these local network management commands, you do not 
need to include these functions in your ShortStack application.  You can select 
whether to include these functions in the LonTalk Interface Developer utility’s 
Code Generator Preferences page. 

Table 41. Network Management Query API Functions 

Function  Description 

LonQueryAddressConfig() Queries configuration data for the Micro Server’s address 
table. 

LonQueryAliasConfig() Queries configuration data for the Micro Server’s alias table. 

LonQueryConfigData() Queries configuration data on the ShortStack Micro Server. 

LonQueryDomainConfig() Retrieves domain information from the ShortStack Micro 
Server. 

LonQueryNvConfig() Queries configuration data for the Micro Server’s network 
variable table. 

LonQueryStatus() Requests the status of the ShortStack Micro Server. 

LonQueryTransceiverStatus() Requests the status of the ShortStack Micro Server’s 
transceiver.  Used with power line transceivers.  

If this function is used with an FT transceiver, the function 
will appear to succeed, but the callback that contains the 
results will declare a failure. 

Network Management Update Functions 
The ShortStack LonTalk Compact API includes the optional network 
management update API functions that provide additional network management 
commands listed in Table 42.  Support for these network management API 
functions is optional.  

The network management update API functions can fail if no downlink buffer is 
available. 

If you do not plan to use these local network management commands, you do not 
need to include these functions in your ShortStack application.  You can select 
whether to include these functions in the LonTalk Interface Developer utility’s 
Code Generator Preferences page. 

Table 42. Network Management Update API Functions 

Function  Description 

LonClearStatus() Clears a subset of status information on the ShortStack 
Micro Server. 
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Function  Description 

LonSetNodeMode() Sets the operating mode for the Micro Server: 

• Online:  For an online device, both the host 
application and the Micro Server are running, and 
the device responds to all network messages. 

• Offline:  For an offline device, the host application 
cannot propagate network variables or send network 
messages.  The Micro Server processes network 
variable update requests, and updates the network 
variable values, but the ShortStack LonTalk 
Compact API does not call the 
LonNvUpdateOccurred() callback handler function.  
The Micro Server acknowledges application 
messages that the device receives, but discards them.  

LonUpdateAddressConfig() Sets configuration data for the Micro Server’s address table. 

LonUpdateAliasConfig() Sets configuration data for the Micro Server’s alias table. 

LonUpdateConfigData() Sets configuration data on the ShortStack Micro Server. 

LonUpdateDomainConfig() Sets domain information from the ShortStack Micro Server. 

LonUpdateNvConfig() Sets configuration data for the Micro Server’s network 
variable table. 

Local Utility Functions 
Table 43 lists the ShortStack LonTalk Compact API functions that provide local 
utility functions for the host application.  Including these functions is optional.   

If you choose not to include these functions, they are not available for use in your 
ShortStack application.  You can select whether to include these functions in the 
LonTalk Interface Developer utility’s Code Generator Preferences page. 

Table 43. Local Utility ShortStack LonTalk Compact API Functions 

Function  Description 

LonGoConfigured() Puts the Micro Server in the configured state and online mode. 

LonGoUnconfigured() Puts the Micro Server in the unconfigured state. 

LonMtIsBound() Queries the ShortStack Micro Server to determine if the 
specified message tag is bound to the network.  You can use this 
function to ensure that transactions are initiated only for 
connected message tags.  The LonMtIsBoundReceived() callback 
handler function processes the reply to the query.   
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Function  Description 

LonNvIsBound() Queries the ShortStack Micro Server to determine if the 
specified network variable is bound to the network.  You can use 
this function to ensure that transactions are initiated only for 
connected network variables.  The LonNvIsBoundReceived() 
callback handler function processes the reply to the query. 

LonQueryAppSignature() Queries the Micro Server's current version of the host 
application signature. 

LonQueryVersion() Queries the version number of the Micro Server application and 
the Micro Server core library used for the Micro Server. 

With this version information and the Micro Server key, you 
can uniquely identify the current Micro Server. 

LonRequestEcho() Sends a six-byte message (arbitrary values defined by the 
application) to the ShortStack Micro Server.  The Micro Server 
transforms this message by incrementing each of the six data 
bytes and returning the message to the host.  

You can use the echo command instead of the ping command, 
but the echo command takes longer to complete (because of 
larger messages, and because of the data transformation 
performed by the Micro Server).  Echo tests should be 
performed frequently during early stages of device development 
or stress testing, but should be executed infrequently on a 
production device. 

LonSendPing() Sends a message to the ShortStack Micro Server to verify that 
communications with the Micro Server are functional.  This 
function can be useful after long periods of network inactivity. 

Recommendation:  Define a ping timer of at least 60 seconds.  
The application should reset this timer upon completion of 
every successful uplink or downlink communication.  When this 
timer expires, the application issues a ping request to the Micro 
Server.  If the Micro Server is functional, it replies to the ping 
request by causing the LonPingReceived() callback event.  In 
general, link layer idleness of more than 1.5 times the ping 
timer’s duration indicates a serious error.  An application can 
recover from this error by physically resetting the Micro Server. 

ShortStack Callback Handler Functions 
The ShortStack LonTalk Compact API provides event handler functions for 
managing network and device events. 
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Commonly Used Callback Handler 
Functions 
Table 44 lists the callback handler functions that you will most likely need to 
define so that your application can perform application-specific processing for 
certain LONWORKS events.  You do not need to modify these callback functions if 
you have no application-specific processing requirements. 

Table 44. Commonly Used ShortStack Callback Handler Functions 

Function  Description 

LonGetCurrentNvSize() Indicates a request for the network variable size. 

The ShortStack LonTalk Compact API calls this callback 
handler function to determine the current size of a changeable-
type network variable.   

For non-changeable-type network variables, this function 
should return the value of the LonGetDeclaredNvSize() 
function.  For changeable-type network variables, you must 
modify this function in the ShortStackHandlers.c file. 

LonNvUpdateCompleted() Indicates that either an update network variable call or a poll 
network variable call is completed. 

LonNvUpdateOccurred() Indicates that a network variable update request from the 
network has been processed by the ShortStack LonTalk 
Compact API.  This call indicates that the network variable 
value has already been updated, and allows your host 
application to perform any additional processing, if necessary. 

LonOffline() A request from the network that the device go offline.   

Installation tools use this message to disable application 
processing in a device.  An offline device continues to respond 
to network management messages, but the host application 
cannot propagate network variables or send network messages.   

When this function is called, the ShortStack Micro Server is 
still online, but changes to the offline state as soon as this 
callback handler completes. 

LonOnline() A request from the network that the device go online. 

Installation tools use this message to enable application 
processing in a device.   

When this function is called, the ShortStack Micro Server is 
still offline, but changes to the online state as soon as this 
callback handler completes. 

LonReset() A notification that the ShortStack Micro Server has been reset. 
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LonServicePinHeld() An indication that the service pin on the device has been held 
for some number of seconds (default is 10 seconds).  Use it if 
your application needs notification of the service pin’s being 
held. 

LonServicePinPressed() An indication that the service pin on the device has been 
pressed.  Use it if your application needs notification of the 
service pin’s being pressed. 

LonWink() A wink request from the network.   

Installation tools use the Wink message to help installers 
physically identify devices. When a device receives a Wink 
message, it should provide some visual, audio, or other 
indication for an installer to be able to physically identify this 
device. 

Application Messaging Callback Handler 
Functions  
Table 45 lists the callback handler functions that are called by the ShortStack 
LonTalk Compact API for application messaging transactions.  Customize these 
functions if you use application messaging in your ShortStack device.  
Application messaging is optional and only recommended for implementing the 
LONWORKS file transfer protocol, the ISI protocol, and for proprietary interfaces.  

If you choose not to support application messaging, you do not need to customize 
these functions.  You can select whether to include these functions in the 
LonTalk Interface Developer utility’s Code Generator Preferences page. 

Table 45. Application Messaging ShortStack Callback Handler Functions 

Function  Description 

LonMsgArrived() An application or foreign frame message from the network to be 
processed.  This function performs any application-specific 
processing required for the message.  If the message is a request 
message, the function must deliver a response using the 
LonSendMsgResponse() function.  

Application messages are always delivered to the application, 
regardless of whether the message passed authentication.  The 
application decides whether authentication is required for a 
message. 

LonMsgCompleted() Indicates that downlink transfer for a message, initiated by a 
LonSendMsg() call, was completed.  

If a request message has been sent, this callback handler is called 
only after all responses have been reported by the 
LonResponseArrived() callback handler. 
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LonResponseArrived() An application message response from the network.  This function 
performs any application-specific processing required for the 
message.  

Network Management Query Callback 
Handler Functions 
The ShortStack LonTalk Compact API includes the optional network 
management query API callback handler functions listed in Table 46.  These 
callbacks allow you to customize the application processing for responses to local 
network management commands (see Table 41 on page 293).  Support of these 
network management query API callback functions is optional.  

If you do not plan to use extended local network management commands, there is 
no need to customize or include these functions in your ShortStack application. 
You can select whether to include these functions in the LonTalk Interface 
Developer utility’s Code Generator Preferences page.  

Table 46. Network Management Query API Callback Handler Functions 

Function  Description 

LonAddressReceived() Indicates that configuration data for the Micro Server’s 
address table has been received. 

LonAliasConfigReceived() Indicates that configuration data for the Micro Server’s 
alias table has been received. 

LonConfigDataReceived() Indicates that configuration data has been received from 
the Micro Server.  Receipt of this data is initiated by a 
call to the LonQueryConfigData() function. 

LonDomainConfigReceived() Indicates that domain information has become available.  
This event is initiated by the Micro Server in response to 
a previous call to LonQueryDomain() by the ShortStack 
application. 

LonNvConfigReceived() Indicates that configuration data for the Micro Server’s 
network variable table has been received. 

LonStatusReceived() Indicates that the status report has been received from 
the Micro Server.  Receipt of this data is initiated by a 
call to the LonQueryStatus() function.  Modify this 
function to perform application-specific handling of the 
status report. 
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LonTransceiverStatusReceived() Indicates that the transceiver status report has been 
received from the Micro Server.  Receipt of this data is 
initiated by a call to the LonQueryTransceiverStatus() 
function.  Modify this function to perform application-
specific handling of the transceiver status. 

Local Utility Callback Handler Functions 
Table 47 lists the callback handler functions for the local utility functions 
described in Local Utility Functions on page 294.   

You can select whether to include the local API functions and their callback 
handler functions in the LonTalk Interface Developer utility’s Code Generator 
Preferences page. 

Table 47. Local Utility API Callback Handler Functions 

Function  Description 

LonAppSignatureReceived() Indicates the current host application signature. 

LonEchoReceived() Provides the Micro Server’s echo response, containing the 
transformed data from the corresponding 
LonRequestEcho() request.  

The application is responsible for verifying that the echo 
response meets expectations.  

LonGoConfiguredReceived() Indicates that the Micro Server has responded to the 
LonGoConfigured() request. 

LonGoUnconfiguredReceived() Indicates that the Micro Server has responded to the 
LonGoUnConfigured() request. 

LonMtIsBoundReceived() Indicates whether the specified message tag is bound to 
the network. 

LonNvIsBoundReceived() Indicates whether the specified network variable is bound 
to the network.  

LonPingReceived() Indicates whether the Micro Server received the ping 
message. 

LonVersionReceived() Indicates the version number of the Micro Server 
application and the Micro Server core library used for the 
Micro Server. 
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D 

ShortStack ISI API 

This appendix describes the functions and callbacks 
included with the ShortStack ISI API.  It also describes why 
and how to modify the API callbacks for use with your 
ShortStack application.  
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Introduction 
The ShortStackIsiTypes.h and ShortStackIsiApi.h header files include all types, 
enumerations, and prototypes that are needed to create an ISI-compliant host 
application.   

This appendix provides an overview of the ShortStack ISI functions and 
callbacks.  For detailed information about the ShortStack ISI API, see the HTML 
documentation that is available from the Windows Start menu:  select Programs 
→ Echelon ShortStack FX Developer’s Kit → API Documentation. 

The ShortStack ISI API 
Table 48 lists the ShortStack ISI API functions.  When the host application calls 
one of the functions listed in Table 48, a common function sends the downlink 
message.  When the API completes (that is, when the API receives either an ACK 
or NACK response from the Micro Server for the downlink API call), it calls the 
IsiApiComplete() callback handler function to inform the host application that it 
can issue additional API calls. 

Table 48. ShortStack ISI API Functions 

Function Description 

IsiAcquireDomain() Starts or re-starts the domain ID acquisition process in 
a device that supports domain acquisition. 

Do not use this function if the engine is started with 
isiTypeS. 

IsiCancelAcquistion() Cancels both device and domain acquisition. 

After this function call completes, the ISI engine calls 
the IsiUpdateUserInterface() function with the 
IsiNormal event. 

Do not use this function if the engine is started with 
isiTypeS. 

IsiCancelEnrollment() Cancels an open (pending or approved) enrollment.  
When used on a connection host, a CSMX connection 
cancellation message is issued to cancel enrollment on 
the connection members.  When used on a device that 
has accepted (but not yet implemented) an open 
enrollment, this function causes the device to opt out of 
the enrollment locally. 

The function has no effect unless the ISI engine is 
running and in the pending or approved state. 
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IsiCreateEnrollment() Accepts a connection invitation.  This function can be 
called after the application has received and approved a 
CSMO open enrollment message.  If the assembly is not 
already in a connection, or if the assembly is in a 
connection and the device supports direct connection 
removal, the connection is re-created.  If the assembly 
is already in a connection, any previous connection 
information is replaced.  This function must not be 
called with an assembly that is already in a connection 
on a device that does not support direct connection 
removal. 

On a connection host that has received at least one 
CSME enrollment acceptance message, this command 
completes the enrollment and implements the 
connection as new, replacing any previously existing 
enrollment information associated with this assembly. 

Calling this function on a device that does not support 
connection removal while indicating an assembly 
number that is already engaged in another connection, 
does not implement the new connection.  The 
IsiImplemented event is not fired in this case.  The 
application can use the IsiQueryIsConnected() function 
to determine if a given assembly is currently engaged 
in a connection. 

Where supported, and unless application requirements 
dictate otherwise, the IsiExtendEnrollment() function 
should be used instead. 

The ISI engine must be running and in the correct 
state when calling this function.  For a connection host, 
the ISI engine must be in the approved state.  Other 
devices must be in the pending state. 

IsiDeleteEnrollment() Removes the specified assembly from all connections, 
and sends a CSMD connection deletion message to all 
other devices in each connection to remove them from 
the connection.  This function has no effect if the ISI 
engine is stopped. 
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IsiExtendEnrollment() Accepts a connection invitation on a device that 
supports connection extension.  This function can be 
called after the application has received and approved a 
CSMO open enrollment message.  The connection is 
added to any previously existing connections.  If no 
previous connection exists for the assembly, a new 
connection is created.  This function must not be called 
on a device that does not support connection extension. 

Where supported, and unless application requirements 
dictate otherwise, call this function instead of the 
IsiCreateEnrollment() function. 

On a connection host that has received at least one 
CSME enrollment acceptance message, this command 
completes the enrollment and extends any existing 
connections.  If no previous connection exists for the 
assembly, a new connection is created. 

The ISI engine must be running and in the correct 
state for this function to have any effect.  For a 
connection host, the ISI engine must be in the approved 
state.  Other devices must be in the pending state. 

IsiFetchDevice() Fetches a device by assigning a domain to the device 
from a domain address server (DAS).  An alternate 
method to assign a domain to a device is for the device 
to use the IsiAcquireDomain() function. 

This function must be called only from a domain 
address server. 

IsiFetchDomain() Starts or restarts the fetch domain process in a domain 
address server (DAS). 

This function must be called only from a domain 
address server. 

IsiInitiateAutoEnrollment() Starts automatic enrollment.  The local device becomes 
the connection host.  Automatic enrollment can replace 
previous connections, if any.  When this call returns, 
the ISI connection is implemented for the associated 
assembly. 

This function should not be called before the IsiWarm 
event has been signaled in the 
IsiUpdateUserInterface() callback. 

This function does nothing when the ISI engine is 
stopped. 
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IsiIssueHeartbeat() Sends an update for the specified bound output 
network variable and its aliases, using group 
addressing.  This function is typically called by the 
IsiQueryHeartbeat() callback handler function. 

This function requires that the ISI engine has been 
started with the IsiFlagHeartbeat flag. 

IsiLeaveEnrollment() Removes the specified assembly from all enrolled 
connections as a local operation only.  When used on 
the connection host, the function is automatically 
interpreted as IsiDeleteEnrollment(). 

This function has no effect if the ISI engine is stopped. 

IsiOpenEnrollment() Opens manual enrollment for the specified assembly.  
The device becomes a connection host for this 
connection and sends a CSMO manual connection 
invitation to all devices in the network. 

The ISI engine must be running, and in the idle state. 

IsiQueryImplementationVersion() Returns the version number of this ISI 
implementation. 

This function returns its result asynchronously through 
the IsiImplementationVersionReceived() callback 
function. 

The most current ISI implementation is version 3.03. 
For this version, this function reports implementation 
version 3. 

IsiQueryIsBecomingHost() Returns TRUE if IsiOpenEnrollment() has been called 
for the specified assembly and the enrollment has not 
yet timed out, been cancelled, or confirmed.  The 
function returns FALSE otherwise. 

This function returns its result asynchronously through 
the IsiIsBecomingHostReceived() callback function. 

IsiQueryIsConnected() Returns TRUE if the specified assembly is enrolled in a 
connection.  The function returns FALSE if the ISI 
engine is stopped. 

This function returns its result asynchronously through 
the IsiIsConnectedReceived() callback function. 

IsiQueryIsRunning() Returns TRUE if the ISI engine is running and FALSE 
if the ISI engine is stopped. 

This function returns its result asynchronously through 
the IsiIsRunningReceived() callback function. 



 

306 ShortStack ISI API                                 

Function Description 

IsiQueryProtocolVersion() Returns the version of the ISI protocol supported by the 
ISI engine.  The number indicates the maximum 
protocol version supported.  The ISI engine also 
supports protocol versions less than the number 
returned unless explicitly indicated. 

This function returns its result asynchronously through 
the IsiProtocolVersionReceived() callback function. 

The most current ISI protocol version is 1. 

IsiReturnToFactoryDefaults() Restores the device’s self-installation data to factory 
defaults, causing the immediate and unrecoverable loss 
of all connection information. 

This function returns to the caller, however, calling this 
function resets the Micro Server. 

IsiStart() Starts the ISI engine.  The ISI engine sends and 
receives ISI messages, and manages the network 
configuration of your device. 

This function also specifies whether domain acquisition 
server or client services are supported. 

Calls to this function with the IsiTypeDas parameter 
for a Micro Server that does not support ISI DAS are 
NACKed. 

IsiStartDeviceAcquisition() Starts or retriggers device acquisition mode on a 
domain address server.  The domain address server 
responds to domain ID requests from devices that 
implement a domain acquisition client, as long as it is 
in device acquisition mode. 

Call this function only if the ISI engine has been 
started with the IsiTypeDas type. 

IsiStop() Stops the ISI engine. 

Certain ISI API calls are managed by the Micro Server itself.  These include the 
following functions: 

• IsiTick() 

• IsiApproveMsg() 

• IsiProcessMsg() 

• IsiProcessResponse() 

The Micro Server automatically translates these calls according to the mode that 
was used when starting the ISI engine.  Wrapper functions for the related ISI 
functions are implemented within the MicroServer.nc file.  For a custom Micro 
Server, you can modify those wrapper functions, for example, to intercept ISI 
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messages.  These wrapper functions (and any extensions that you supply) must 
be located on the Micro Server. 

The ShortStack ISI Callback Handler Functions 
Table 49 lists the ShortStack ISI callback handler functions.   

In any ISI application, callback handlers provide application-specific details to 
the ISI engine.  ShortStack ISI applications can choose whether to implement 
these callback handlers on the host processor or on the Micro Server.  In either 
case, the set of callback handler functions and their prototypes remain the same.  

ISI callback handler functions must return to the caller as soon as possible, 
providing the requested information.  

Table 49. ShortStack ISI Callback Handler Functions 

Function Description 

IsiApiComplete() Indicates that the API function is complete and that 
the result has been received. 

This function is called when an API function 
completes.  Generally, you should not call an ISI API 
function until the previous one completes. 

This callback is available only on the host processor. 

IsiCreateCsmo() Constructs the IsiCsmoData portion of a CSMO 
Message.  This function is called by the ISI engine 
prior to sending a CSMO message.   

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers expect this callback on the 
host.  Typical applications implement this callback 
handler function in the same location (host or 
custom Micro Server) as the IsiGetWidth() callback 
handler function. 
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IsiCreatePeriodicMsg() Specifies whether the application has any messages 
for the ISI engine to send using the periodic 
broadcast scheduler.  Because the ISI engine sends 
periodic outgoing messages at regular intervals, this 
function allows an application to send a message 
during one of the periodic message slots.  If the 
application has no message to send, then this 
function should return FALSE.  If it does have a 
message to send, then this function should return 
TRUE. 

To use this function, you must enable application-
specific periodic messages using the 
IsiFlagApplicationPeriodic flag when you call the 
IsiStart() function. 

The default implementation of this function does 
nothing but return FALSE.  You can override this 
function by providing an application-specific 
implementation of IsiCreatePeriodicMsg(). 

Do not send any messages, start other network 
transactions, or call other ISI API functions while 
the IsiCreatePeriodicMsg() callback is running.  To 
call other ISI API functions or start other network 
transactions, signal the application’s readiness 
through an application-specific utility in the 
IsiCreatePeriodicMsg() callback function and 
evaluate the signal when appropriate.  This separate 
utility can send the periodic message soon after the 
IsiCreatePeriodicMsg() function is completed. 

This callback handler can be implemented on an 
application-specific custom Micro Server or on the 
host.  The standard Micro Servers use the default 
implementation of this callback. 

IsiGetAssembly() Returns the number of the first assembly that can 
join the connection.  The function returns 
ISI_NO_ASSEMBLY (0xFF) if no such assembly 
exists, or an application-defined assembly number (0 
to 254).  

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers expect this callback on the 
host. 
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IsiGetConnection() Returns a pointer to an entry in the connection table.  
The default implementation returns a pointer to a 
built-in connection table with 32 entries, stored in 
the Micro Server’s on-chip EEPROM memory 
(extended RAM for a Series 5000 Micro Server).  You 
can override this function to provide an application-
specific means of accessing the connection table, or 
to provide an application table of a different size. 

This function is frequently called and should return 
as soon as possible. 

If you override this function, you must also override 
the IsiGetConnectionTableSize() and 
IsiSetConnection() functions.  And, if you implement 
any of these callback handlers either on the host or 
on the Micro Server, you must override the other two 
in the same location. Assuming that the Micro 
Server has sufficient resources, implement all three 
of these functions on the Micro Server for 
performance reasons. 

IsiGetConnectionTableSize() Returns the number of entries in the connection 
table. The default implementation returns the 
number of entries in the built-in connection table 
(32).  You can override this function to support an 
application-specific implementation of the ISI 
connection table.  You can use this function to 
support a larger connection table. 

The ISI library supports connection tables with 0 to 
254 entries.  The connection table size is considered 
constant following a call to IsiStart(); you must first 
stop, then re-start, the ISI engine if the connection 
table size changes dynamically.  

If you override this function, you must also override 
the IsiGetConnection() and IsiSetConnection() 
functions.  And, if you implement any of these 
callback handlers either on the host or on the Micro 
Server, you must override the other two in the same 
location. Assuming that the Micro Server has 
sufficient resources, implement all three of these 
functions on the Micro Server for performance 
reasons.  

Custom Micro Servers can change the connection 
table size, or its location, or both. 
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IsiGetNextAssembly() Returns the next applicable assembly for an 
incoming CSMO following the specified assembly.  
The function returns ISI_NO_ASSEMBLY (0xFF) if 
there are no such assemblies, or an application-
specific assembly number (1 to 254).  This function is 
called after calling the IsiGetAssembly() function, 
unless IsiGetAssembly() returned 
ISI_NO_ASSEMBLY.  

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers expect this callback on the 
host. 

IsiGetNextNvIndex() Returns the network variable index of the network 
variable at the specified offset within the specified 
assembly, following the specified network variable.   
Returns ISI_NO_INDEX (0xFF) if there are no more 
network variables or a valid network variable index 
(0 to 254) otherwise. 

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers expect this callback on the 
host. 

IsiGetNvIndex() Returns the network variable index (0 to 254) of the 
network variable at the specified offset within the 
specified assembly or ISI_NO_INDEX (0xFF) if no 
such network variable exists.  This function must 
return at least one valid network variable index for 
each assembly number returned by IsiGetAssembly() 
and IsiGetNextAssembly(). 

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers expect this callback on the 
host. 

IsiGetNvValue() Returns the value of the specified network variable. 

This callback must be implemented on the host, but 
is only required if ISI network variable heartbeats 
are supported and enabled. 
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IsiGetPrimaryDid() Returns a pointer to the default primary domain ID 
for the device.  The function also provides the 
domain ID length.  Domain IDs can be 1, 3, or 6 
bytes long; the 0-length domain ID cannot be used 
for the primary domain.  

You can override this function to override the ISI 
standard domain ID value. 

This function is only used to define a unique primary 
domain when creating a domain address server, and 
to define a non-standard domain when creating a 
non-interoperable self-installed system.  Both length 
and value of the domain ID provided are considered 
constant after the ISI engine is running.  To change 
the primary domain ID at runtime using the 
IsiGetPrimaryDid() callback, stop and re-start the 
ISI engine. 

Important:  Non-interoperable self-installed devices 
cannot interoperate with ISI devices. 

This callback is implemented on the Micro Server.  
By default, the default implementation is used.  If 
you want to create an ISI domain address server 
with ShortStack, you must create a custom Micro 
Server and override the IsiGetPrimaryDid() 
function.  Typically, such an overridden 
IsiGetPrimaryDid() callback returns the Micro 
Server’s own Neuron ID. 

IsiGetPrimaryGroup() Returns the group ID for the specified assembly.  
The default implementation returns 
ISI_DEFAULT_GROUP (128).  

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers expect this callback on the 
host. 
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IsiGetRepeatCount() Specifies the repeat count used with all network 
variable connections, where all connections share the 
same repeat counter.  The repeat counter value is 
considered constant for the lifetime of the 
application, and is only queried when the device 
powers up the first time after a new application 
image has been loaded, and every time 
IsiReturnToFactoryDefaults() runs.  Only repeat 
counts of 1, 2 or 3 are supported.  To take full 
advantage of the secondary frequency on a PL 
transceiver, only use a repeat count of 1 or 3.  This 
function has no affect on ISI messages. 

The default implementation of this function always 
returns 3. 

This function operates whether the ISI engine is 
running or not. 

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers use the default 
implementation that is provided with the ISI library, 
which results in 3 repeats. 

IsiGetWidth() Returns the width in the specified assembly.  The 
width is equal to the number of network variable 
selectors associated with the assembly. 

This callback can be implemented on an application-
specific custom Micro Server or on the host.  The 
standard Micro Servers expect this callback on the 
host. 

IsiImplementationVersionReceived() Retrieves the version number of this ISI 
implementation.   

This callback occurs as a result of an earlier call to 
the IsiQueryImplementationVersion() function. 

IsiIsBecomingHostReceived() Reports TRUE if IsiOpenEnrollment() has been 
called for the specified assembly and the enrollment 
has not yet timed out, been cancelled, or confirmed.  
The function reports FALSE otherwise. 

This callback occurs as a result of an earlier call to 
the IsiQueryIsBecomingHost() API function. 

IsiIsConnectedReceived() Reports TRUE if the specified assembly is enrolled 
in a connection.  The function reports FALSE if the 
ISI engine is stopped. 

This callback occurs as a result of an earlier call to 
the IsiQueryIsConnected() API function. 
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IsiIsRunningReceived() Reports TRUE if the ISI engine is running and 
FALSE if the ISI engine is stopped. 

This callback occurs as a result of an earlier call to 
the IsiQueryIsRunning() API function. 

IsiProtocolVersionReceived() Retrieves the version of the ISI protocol supported 
by the ISI engine.  The number indicates the 
maximum protocol version supported.  The ISI 
engine also supports protocol versions less than the 
number returned unless explicitly indicated. 

This callback occurs as a result of an earlier call to 
the IsiQueryProtocolVersion() API function. 

IsiQueryHeartbeat() Returns TRUE if a heartbeat for the network 
variable with the specified global index has been 
sent, and returns FALSE otherwise.  When network 
variable heartbeat processing is enabled, and the ISI 
engine is running, the engine queries bound output 
network variables using this callback (including any 
alias connections) whenever the heartbeat is due.  
This function does not send the heartbeat update—
see IsiIssueHeartbeat().  For more details on 
network variable heartbeat scheduling, see the ISI 
Protocol Specification. 

This callback handler can be implemented on an 
application-specific custom Micro Server or on the 
host.  The standard Micro Servers expect this 
callback to be implemented on the host. 
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IsiSetConnection() Updates an entry in the connection table, which 
must be kept in persistent, nonvolatile, storage. 

The default implementation updates an entry in the 
built-in connection table with 32 entries, stored in 
the Micro Server’s on-chip EEPROM memory.  You 
can override this function to provide an application-
specific means of accessing the connection table, or 
to provide an application table of a different size. 

This function is frequently called and should return 
as soon as possible. 

If you override this function, you must also override 
the IsiGetConnectionTableSize() and 
IsiGetConnection() functions.  And, if you implement 
any of these callback handlers either on the host or 
on the Micro Server, you must override the other two 
in the same location. Assuming that the Micro 
Server has sufficient resources, implement all three 
of these functions on the Micro Server for 
performance reasons. 

IsiUpdateUserInterface() Provides status feedback from the ISI engine.  These 
events are useful for synchronizing the device’s user 
interface with the ISI engine.  To receive notification 
of ISI status events, override the 
IsiUpdateUserInterface() callback function.  The 
default implementation of this function does nothing.  

This callback is typically, and by default, 
implemented on the host. 

IsiUserCommand() Informs the host application about user-defined 
Micro Server events. 

A custom Micro Server might need to inform the host 
application about events that are otherwise known 
only to custom code that is local to a custom Micro 
Server.  

See Discovering Devices on page 226 for an example 
of using this function. 

An ISI-aware host application requires an ISI-aware Micro Server, but an ISI-
aware Micro Server can be used with an ISI-unaware host application and host 
API. 

As defined in the [ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h 
header file, an ISI callback handler function can reside in one of the following 
locations: 

• The ISI Library.  The callback handler is an ISI default function.  No 
development effort is required to implement these functions, but no 
customized behavior is available. 
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• The Micro Server application.  The callback handler is a locally 
overridden function.  Customization of these handlers requires a custom 
Micro Server.  Assuming the Micro Server has sufficient resources, these 
callback handler overrides offer the best performance and control and 
minimal host footprint, but can lead to application-specific Micro Server 
implementations. 

• The host application.  The callback handler is a remote function that uses 
the ShortStack ISI protocol.  These callback handlers are the most 
flexible, but lowest performance ISI callback handlers.  This type of 
callback handler is typically used for application-specific callbacks, and 
allows the use of a single Micro Server for multiple applications. 

Important:  A callback handler function should not call any other ISI callback 
handler functions, unless both the caller and the called functions reside on the 
same platform (host or Micro Server). 

For each callback, you can choose whether the callback is handled by the ISI 
default, by a version local to the Micro Server, or by the host application.  The 
[ShortStack]\Custom MicroServer\ShortStackIsiHandlers.h header file includes 
conditional-compilation macros for each callback handler function:  

• To direct the callback to the Micro Server 

• To direct the callback to the host 

• To enable the default implementation 

The callback control macros use the following naming convention: 

ISI_location_callback 

For example:  ISI_HOST_GETASSEMBLY or 
ISI_SERVER_GETCONNECTIONTABLESIZE. 

For a remote callback handler, the ShortStack Micro Server includes a proxy 
function that receives the function’s parameters, packs them into a message 
buffer, and passes the data to the host function.   

If the host application needs to send a response to a callback handler, and it is 
unable to do so because there are no transmit buffers, it retries sending the 
response until it is successful.  The Micro Server’s RPC guard times out after 5 
seconds, after which the Micro Server logs an error and resets.  See Table 23 on 
page 187 in Chapter 10, Developing a ShortStack Application, for a list of the 
LonSystemError enumeration values. 

While waiting for the response, the Micro Server continues to process downlink 
and uplink traffic.  However, because only one downlink ISI API request can be 
buffered, additional requests are NACKed.  Other functionality might be delayed 
and enqueued for later processing while waiting for the completion of an RPC. 
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E 

Downloading a ShortStack 
Application over the Network 

This appendix describes considerations for designing a 
ShortStack host application that allows host application 
updates over the network.  
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Overview 
For a Neuron hosted device, you can update the application image over the 
network using an LNS tool, such as the LonMaker Integration tool or another 
network management tool.  However, you cannot use the same tools or technique 
to update a ShortStack application image over the network.  Many ShortStack 
devices do not require application updates over the network, but for those that 
do, this appendix describes considerations for adding this capability to the device. 

If a ShortStack host has sufficient non-volatile memory, it can hold two (or more) 
application images:  one image for the currently running application, and the 
other image to control downloaded updates to the application.  The device then 
switches between these images as necessary.  Because neither the ShortStack 
LonTalk Compact API nor the ShortStack Micro Server directly supports 
updating the host application over the network, you must: 

1. Define a custom host application download protocol.  

2. Implement an application download utility. 

3. Implement application download capability within your ShortStack host 
application.  

For the application download process: 

• The application must be running and configured for the duration of the 
download.  

• There must be sufficient volatile and non-volatile memory to store the 
new image without affecting the current image. 

• The application must be able to boot the new image at the end of the 
download.  During this critical period, the application must be able to 
tolerate device resets and boot either the old application image or the new 
one, as appropriate.   

This appendix decribes some of the considerations for designing a ShortStack 
application download function.   

Custom Host Application Download Protocol 
The custom host application protocol that you define for downloading a 
ShortStack host application over the network should support the following steps: 

1. Prepare for application download. 
 
When the application download utility informs the current ShortStack 
host application that it needs to start an application download, the 
application should respond by indicating whether it is ready for the 
utility to begin the download.  The utility must be able to wait until the 
application is ready, or abort download preparation after a timeout 
period.  The utility should also inform the user of its state. 
 
During this stage, the ShortStack host application should verify that the 
application to be downloaded can run on the device platform (using the 
Micro Server key and link layer protocol version numbers or similar 
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mechanism), and verify that the application image is from a trusted 
source (for example, by using an encrypted signature). 

2. Download the application. 
 
A reliable and efficient data transfer mechanism should be used.  The 
LONWORKS file transfer protocol (LW-FTP) can be used, treating the 
entire application image as a file. 
 
The download utility and the application must support long flash write 
times during this portion of the download process.  The ShortStack host 
application should update the flash in the background, however, it might 
be necessary for the protocol to define additional flow control to allow the 
host application to complete flash writes before accepting new data. 

3. Complete download. 
 
The application download utility informs the current application that the 
download is complete.  The host application should verify the integrity of 
the image, and either: 

a. Accept the image, and proceed to the final steps below. 

b. Request retransmission of some sections of the image. 

c. Reject the download.  

4. Boot the new application. 
 
To boot the new application, you must implement a custom boot loader 
(or boot copier) so that the host processor can load the new application 
and restart the processor with the new image.  See your host processor’s 
and operating system’s documentation for recommendations and 
information about creating a custom boot loader. 

Important:  For the duration of the first three steps, the application must be 
running, the link-layer driver must be operational, and the ShortStack device 
must be configured and online. 

Upgrading Multi-Processor Devices 
A ShortStack device consists of at least two processor chips, each with their 
respective applications:  a Smart Transceiver with the ShortStack Micro Server 
and your host processor with the ShortStack link-layer driver, ShortStack 
LonTalk Compact API, and your application program.  

Because both processor chips must be able to communicate through the link 
layer, both must use the same protocol for application download, and have 
matching settings. 

Most updates to ShortStack host applications will likely address issues within 
the application’s control algorithm, and leave the ShortStack LonTalk Compact 
API and link-layer driver unchanged.  To ensure that the new application is 
correct for the current device and its settings, the host application download 
protocol must ensure that at least the following requirements are met before 
control is handed to the new application: 
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• The Micro Server and the host application must support the same link-
layer protocol version.  The link-layer protocol version is contained in the 
Micro Server’s reset notification message. 

• The Micro Server and the host application must support matching 
transceiver types.  You can configure the variations of the PL-20 
transceiver into a Micro Server that supports any of the PL-20 channel 
types (PL-20N, PL-20C, PL-20C-LOW, PL-20N-LOW), but you cannot run 
an application designed for any of the supported power line channels on a 
Micro Server designed for a twisted-pair free topology (TP/FT-10) 
channel, nor can you run a TP/FT-10 Micro Server on a PL-20 channel.  
The Micro Server can report the supported channel types through its 
Micro Server key, which is part of the reset notification message.  

• In addition to matching transceiver families, the host application could 
require additional Micro Server features, such as support for the ISI 
protocol.  These settings are also contained in the Micro Server’s reset 
notification message, if applicable. 

• The Micro Server and host application must support the same physical 
link-layer protocol (SCI or SPI).  Unless the host processor controls the 
Micro Server’s SBRB0 and SBRB1 input signals for bitrate selection, both 
sides’ link-layer bit rates must match. 

In addition, the new application will have certain requirements for the host 
environment, such as availability of memory or I/O resources, or the availability 
or version numbers of the embedded operating system, and so on.  Your host 
application download protocol should include an appropriate mechanism to 
determine and verify these requirements before passing control to the new 
application.  

In some cases, your host application download could require an upgrade to the 
Micro Server image at the same time as the upgrade of the host application.  The 
following considerations apply for designing the dual-processor application 
download protocol: 

• Because a complete and fully operational ShortStack device is required to 
run the host application download protocol, the host application download 
must be completed first.  

• The application must not reset or initialize the Micro Server until the 
download process has been completed for both the host application and 
the Micro Server image. 

• Because the Micro Server will also be updated in the process, some steps 
of the application verification process can or must be postponed.  For 
example, the new host application might require a Micro Server key 
value that is correctly implemented by the new Micro Server image, but 
not the current one.  

• After the successful download of the Micro Server image, the Micro 
Server resets and enters quiet mode until the entire device has been 
successfully initialized.  While the Micro Server is in quiet mode, no 
network communication is possible with the device.  

• After the new Micro Server resets (after loading its new application 
image), it sends a reset notification to the host application.  This reset 
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notification reports the new Micro Server’s capabilities and attributes, 
and indicates that an application initialization is required. 

• After the host application has completed initialization, the host 
application download protocol must perform any previously postponed 
verification steps and pass control to the new host application, which in 
turn initializes the Micro Server. 

Application Download Utility 
This tool needs to read the application image to be loaded, and run the 
application download protocol described in Custom Host Application Download 
Protocol on page 318.  You can write the utility as an LNS plug-in or as any type 
of network-aware application. 

Download Capability within the Application 
Your application must implement the custom application download protocol, and 
provide sufficient non-volatile storage for the new application image.  The 
application also must tolerate time consuming writes to flash during the transfer.  
At a minimum, the ShortStack host application should reserve enough RAM to 
buffer two flash sectors.  When one sector has been completely received, the 
application should write it to flash in a background process.  If the write is not 
complete when the second buffer is filled, the ShortStack host application must 
tell the application download utility to delay additional updates until the 
application is ready to receive the data. 

After the transfer is complete, and all data has been written to non-volatile 
memory, the application must perform all necessary verification tasks, and 
prepare the image so that the boot loader can reboot the host processor from the 
new image.  This preparation must be defined so that a device or processor reset 
at any point will result in a functioning ShortStack device.  For example, the 
reset could always cause a boot from the old application image, or from the new 
application image, or from some temporary boot application that can complete 
the transition (possibly with user intervention).   

See your host processor and operating system documentation about guidance, 
recommendations, and tools that support these tasks.   
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F 

Glossary 

This appendix defines many of the common terms used for 
ShortStack device development.  
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C 
configuration property 

A data value used to configure the application program in a device. 

D 
downlink 

Link-layer data transfer from the host to the Micro Server. 

H 
handshake 

The communication across the link layer between the host serial driver and 
the ShortStack Micro Server that confirms readiness to receive a link-layer 
segment.  For the serial driver, the handshake involves three or four control 
signals. 

host processor  

A microcontroller, microprocessor, or FPGA with an embedded processor that 
is attached to an FTXL Transceiver or ShortStack Micro Server and runs a 
LonTalk application. 

L 
link layer 

A protocol and interface definition for communication between a host 
processor and either an FTXL Transceiver or ShortStack Micro Server; see 
ShortStack link layer. 

link-layer protocol 

The protocol that is used for data exchange across the link layer. 

link-layer segment 

A part of a message sent across the link layer that requires a handshake 
between the host serial driver and the ShortStack Micro Server.  Examples of 
a link-layer segment are:  the link-layer header, the link-layer extended 
header, and the link-layer payload. 

LonTalk API 

A C language interface that can be used by a LonTalk application to send and 
receive network variable updates and LonTalk messages.  Two 
implementations are available:  a full version for FTXL devices and a 
compact version for ShortStack devices. 

LonTalk application 

An application for a LONWORKS device that communicates with other devices 
using the ISO/IEC 14908 (ANSI/CEA-709.1 and EN14908-1) Control Network 
Protocol and is based on the LonTalk API or the LonTalk Compact API. 
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LonTalk application framework 

Application code and device interface data structures created by the LonTalk 
Interface Developer based on a model file. 

LonTalk Compact API 

A compact version of the LonTalk API for ShortStack devices with support for 
up to 254 network variables. 

LonTalk Interface Developer 

A utility that generates an application framework for a LonTalk application; 
the LonTalk Interface Developer is part of the LonTalk Platform and is 
included with both the FTXL Developer's Kit and the ShortStack Developer's 
Kit. 

LonTalk Platform 

Development tools, APIs, firmware, and chips for developing LONWORKS 
devices that use the LonTalk API or LonTalk Compact API; two versions are 
available—the LonTalk Platform for FTXL Transceivers and the LonTalk 
Platform for ShortStack Micro Servers. 

LonTalk Platform for ShortStack Micro Servers 

Development tools, APIs, and firmware for developing LONWORKS devices 
that use the LonTalk Compact API and a ShortStack Micro Server; included 
with the ShortStack FX Developer’s Kit. 

M 
model file 

A Neuron C application that is used to define the network interface for an 
FTXL or ShortStack application. 

N 
network variable 

A data item that a particular device application program expects to get from 
other devices on a network (an input network variable) or expects to make 
available to other devices on a network (an output network variable).  
Examples are a temperature value, switch value, and actuator position 
setting. 

Neuron C  

A programming language based on ANSI C with extensions for control 
network communication, I/O, and event-driven programming; also used for 
defining a network interface when used for a model file. 

S 
ShortStack application 

An application for a LONWORKS device implemented with the LonTalk 
Compact API and a ShortStack Micro Server. 
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ShortStack Developer’s Kit 

Software required to develop LonTalk applications for any microcontroller or 
microprocessor.  The kit includes software tools, examples, documentation, 
plus the LonTalk Compact API and ShortStack firmware. 

ShortStack device 

A LONWORKS device based on the LonTalk Compact API and a ShortStack 
Micro Server. 

ShortStack Driver API 

A portable C language hardware driver that encapsulates platform-
dependent code for transferring data between a host processor and a 
ShortStack Micro Server. 

ShortStack Firmware 

Firmware for an Echelon Smart Transceiver that enables the Smart 
Transceiver to be used as a network interface by a ShortStack host processor. 

ShortStack host processor 

Any 8-, 16-, 32-, or 64-bit host microprocessor or microcontroller that is 
integrated with the LonTalk Compact API, ShortStack Driver API, and a 
ShortStack Micro Server to create a LONWORKS device. 

ShortStack link layer 

The physical connection and protocol used to attach a ShortStack host 
processor to a ShortStack Micro Server; the hardware interface is either an 
SCI or SPI serial interface. 

ShortStack Micro Server 

An Echelon Smart Transceiver running the ShortStack Firmware. 

U 
uplink 

Link-layer data transfer from the Micro Server to the host. 
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3100 to 5000 migration, 195 
3120, loading, 34 
3150, loading, 34 
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5000, loading, 35 
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address table, 255 
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anonymous types, 135 
ANSI C, 64 
ANSI/CEA 709.1-B, 2 
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appInitData structure, 152 
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application message, 181 
application migration, 195 
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AT29C010A, 30 
AT29C512, 30 
authentication 

description, 136 
key, 136 

automatic enrollment, 210 

B 
big endian, 62 
binding, 122 
bit rate, link layer 

SCI, 73 
selecting, 68 
SPI, 77 

bit-field members, 111 
blank application, 35 
BPM Microsystems, 32 
buffers, transmit and receive, 104 
byte orientation, 62 

C 
callbacks 

LonTalk Compact API, 295 

ShortStack ISI API, 307 
changeable-type network variable 

defining, 122 
processing, 178 
rejecting, 180 
validating, 177 

clock rate, 29 
collision, write, 81 
command byte, link-layer, 90 
compiler directive, 282 
compiler, host, 64 
configuration file, 124 
configuration network variable, 124 
configuration properties 

template file compaction, 284 
configuration property 

array, 126 
constant, 159 
declaration, 156 
declaring, 124 
defining, 124 
definition, 116 
device specific, 159 
inheriting type, 130 
responding to changes, 126 
sharing, 129 

connection 
assembly, 207 
canceling, 221 
controller, 209 
deleting, 222 
host, 206 
implementing, 220 
invitation, 207 
network variable, 206 
recovery, 233 

context, multiple, 167 
control network protocol, 2 
controlled enrollment, 210 
CPNV, 124, 193 
CSMA, 210 
CSMC, 220 
CSME, 218 
CSMO, 210 
CSMR, 210 
CSMX, 221 
CTRP, 210 
CTRQ, 210 
CTS~, 71 
custom Micro Server 

configuring, 243 
developing, 245 
DMF, 253 
memory, 254 
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overview, 242 
restrictions, 242 
using, 253 
with ISI, 248 
without ISI, 246 

D 
DAS, 226 
developer's kit, 20 
development 

host environment, 64 
process, 15 
tools, 10 

device 
deinstalling, 237 
discovery, 226 
initialization, 57, 169 
interface, 117 

device table 
host application, 231 
Micro Server, 226 

direct memory files, 189 
DMF 

custom Micro Server, 253 
description, 189 
memory driver, 192 
memory window, 190 

documentation, vii 
domain address, 204 
domain address server, 226 
domain table, 256 
downlink 

SCI, 75, 95 
SPI, 81, 101 

downloading an application over a network, 
318 

driver 
buffers, 104 
modifying for ShortStack FX, 262 
overview, 13, 90 
SCI, 93 
SPI, 99 

DRUM, 226 

E 
EEBLANK utility, 35 
EEPROM network variable, 193 
EIA-232 interface 

FT 5000 EVB, 45 
Mini kit, 52 

EN 14908.1, 2 
endian, 62 
enrollment, 206 
enumerations, 112 
error detection, link layer, 104 
error log, 187 
event handler, 170 

events, ISI, 222 
example ports, 20 
examples, model file, 138 
ex-circuit programming, 34 
extended header, link-layer, 90 

F 
file 

comparing ShortStack 2.0 to FX, 259 
DMF directory, 192 
extension, Micro Server, 33 
LonTalk Compact API, 21 
names, Micro Server, 33 

firmware images, 22 
floating-point variables, 155 
flush mode, 169 
FT 3190 Free Topology Transceiver, 5 
FT 5000 EVB 

EIA-232 interface, 45 
Gizmo interface, 41 
jumper settings, general, 40 
logic analyzer header, 49 
non-volatile memory, 47 

FTP, 125 
FTXL 

comparison with ShortStack and Neuron 
hosted devices, 8 

overview, 5 
functional block 

declaring, 120 
defining, 119 
definition, 116 

functional profile, 117 
functions 

LonTalk Compact API, 291 
ShortStack ISI API, 302 

G 
Gizmo interface 

FT 5000 EVB, 41 
Mini kit, 50 

H 
handshake 

SCI, 98 
SPI, 103 

hardware interface, 66 
header, link-layer, 90 
HiLo Systems, 32 
host latency, 70 
host processor 

initial health check, 105 
selecting, 11, 62 

host, connection, 206 
host-based device, 4 
HRDY~, 71 
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I 
IEEE 754, 155 
in-circuit programming, 36 
info bytes, link-layer, 90 
installation, 20 
interface, device, 117 
interoperable self-installation. See ISI 
invitation 

accepting, 218 
connection, 207 
receiving, 216 

IO9 pin, 68 
ISI 

3120, 199 
3150, 200 
3170, 200 
5000, 200 
accepting invitation, 218 
canceling connection, 221 
comparing ShortStack and Neuron C, 238 
connection, 206 
deinstalling device, 237 
deleting connection, 222 
device discovery, 226 
device table, 226 
domain address server, 226 
enrollment, 206 
events, 222 
implementing connection, 220 
network address, 202 
network variable connections, 206 
overview, 198 
receiving invitation, 216 
recovering connection, 233 
ShortStack API, 302 
ShortStack application, 199 
starting, 201 
stopping, 201 

ISO 7498-1, 2 
ISO/IEC 14908, 2 

K 
key 

authentication, 136 
Micro Server, 58 

L 
language, host programming, 64 
latency, host, 70 
Ldv* functions, 92 
length byte, link-layer, 90 
libs command, 276 
lidprj file, 146 
link layer 

error detection, 104 
message, 90 

recovery, 104 
link-layer bit rate 

SCI, 73 
selecting, 68 
SPI, 77 

little endian, 62 
local network management tasks, handling, 

184 
logic analyzer header, FT 5000 EVB, 49 
LON_ENUM_* macros, 112 
LON_STRUCT_* macros, 111 
LonCpTypes.h, 152 
LonEventHandler() function, 170 
LonInit() function, 169 
Lonmaker Integration tool, 38 
LonNiAppInit message, trace for, 85 
LonNiNvInit message, trace for, 86 
LonNiReset message, trace for, 87 
LonNvTypes.h, 152 
LonPlatform.h, 113 
LonResetNotification message, trace for, 88 
LonTalk Compact API 

callbacks, 295 
changes, 288 
customizing, 290 
description, 288 
files, 21 
functions, 291 
memory requirements, 290 
migrating from ShortStack 2.0, 258 
multiple contexts, 167 
naming conventions, 288 
overview, 15 
porting, 110 
serial driver functions, 92 
using, 164 

LonTalk Interface Developer 
command line, 276 
description, 146 
files, 150 
overview, 25 

LonTalk Platform for FTXL Transceivers, 5 
LonTalk Platform for ShortStack Micro 

Servers, 6 
LonTalk protocol, 2 
LonWorks device 

single processor chip, 3 
two processor chips, 4 

LonWorks file transfer protocol, 125 
LonWorks network, 2 

M 
managed network, 198 
management tasks, handling, 184 
manual enrollment, 210 
memory 

LonTalk Compact API requirements, 290 
map, 29 
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message code, 181 
message tag 

declaring, 132 
table, 162 

Micro Server 
clock rate, 29 
custom, 242 
hardware, 28 
hardware interface, 66 
I/O pins for SCI, 72 
I/O pins for SPI, 76 
image file names, 33 
initial health check, 82 
initialization, 57 
key, 58 
link-layer bit rate, 68 
loading, 31 
memory map, 29 
preparing, 31 
reinitializing, 188 
selecting, 28 
specifying in LonTalk Interface Developer, 

147 
standard firmware images, 22 

MicroServer.h, 251 
MicroServerIsiHandlers.h, 252 
migrating ShortStack 2.0 to FX 

example, 262 
process, 261 

Mini kit 
custom Micro Server, 243 
EIA-232 interface, 52 
Gizmo interface, 50 

MIP, 283 
MISO, 76, 81 
model file 

compiler directives, 282 
description, 116 
example, 138 
specifying in LonTalk Interface Developer, 

148 
MOSI, 76, 80 

N 
naming conventions, 260, 288 
NDL, 33 
NEI, 33 
network 

address, 202 
managed, 198 
management tasks, 184 
self-installed, 198 

network variable 
attributes, 161 
binding, 122 
changeable type, 122, 176 
configuration table, 256 
connections, 206 

declaration, 156 
defining, 120 
definition, 116 
EEPROM, 193 
fetch example, 99 
poll request, 176 
receiving an update, 174 
sending an update, 171 
table, 160 

Neuron C 
anonymous types, 135 
compiler directives, 282 
compiler preferences, 149 
legacy constructs, 136 

Neuron C model file. See model file 
Neuron hosted device 

comparison with FTXL and ShortStack, 8 
definition, 3 

NFI, 33 
Nios II example, 262 
NME, 33 
NMF, 33 
NodeBuilder Code Wizard, 116 
NodeBuilder Development Tool, 243 
NodeBuilder Resource Editor, 119 
NodeLoad utility, 37 
non-volatile data, 192 
non-volatile memory, 63 
NXE, 33 

O 
open enrollment, 206 
optimization pragma, 284 
OSI Model, 2 

P 
persistent storage, 192 
Pilot EVB, 54 
portability, 110 
pragma, 282 
preferences, LonTalk Interface Developer, 147 
processing power, 63 
processor, selecting, 11 
program ID, 133, 148 
programming language, host, 64 
project file, 146 
project.xif, 153 
pull-up resistors, 66 
Pyxos FT EV Pilot EVB, 54 

Q 
quiet mode, 58, 169 

R 
R/W~, 76 
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RDCF, 233 
RDCS, 233 
RDCT, 233 
recovery 

application, 194 
link layer, 104 

reinitializing, Micro Server, 188 
reliability, 66 
requirements, 10 
reset events, 186 
RESET~ pin, 67 
resistors, pull-up, 66 
resource file, 132 
restrictions, 10 
RTS~, 71 
RXD, 71 

S 
SCI 

architecture, 13 
bit rate, 73 
communications interface, 74 
downlink, 75, 95 
handshake, 98 
I/O pins, 72 
network variable fetch example, 99 
overview, 71 
uplink, 75, 93 

SCLK, 76 
scope rules, resource file, 134 
SCPTnwrkCnfg, 201 
segment, link-layer, 90 
self-installed network, 198 
serial communications, 62 
serial communications interface. See SCI 
serial driver 

buffers, 104 
modifying for ShortStack FX, 262 
overview, 13, 90 

serial peripheral interface. See SPI 
Series 3100 to Series 5000 migration, 195 
SFPT, 134 
ShortStack 

architecture, 12 
comparison with FTXL and Neuron hosted 

devices, 8 
developer’s kit, 20 
development process, 15 
example ports, 20 
LonTalk Compact API, 15 
new for 2.1, iv 
overview, 6 
requirements, 10 
restrictions, 10 
selecting host processor, 11 
serial driver, 13 
tools, 10 

ShortStack 2 Nios II Example Port, converting 
to FX, 262 

ShortStack firmware 
definition, 6 
images, 22 

ShortStack ISI API 
callbacks, 307 
description, 302 
functions, 302 

ShortStackDev.c, 152 
ShortStackDev.h, 152 
ShortStackIsiHandlers.h, 251 
SNVT, 121 
SPI 

architecture, 14 
communications interface, 79 
downlink, 81, 101 
handshake, 103 
I/O pins, 76 
MISO, 81 
MOSI, 80 
overview, 76 
resynchronization, 82 
uplink, 80, 100 
write collision, 81 

SS~, 76 
StdServers.xml, 147 
swprj file, 146 
SYM, 34 

T 
tools, 10 
TREQ~, 76 
TXD, 71 
type definitions, 154 
type-inheriting configuration property, 130 

U 
UCPT, 132 
UNVT, 121, 132 
uplink 

SCI, 75, 93 
SPI, 80, 100 

UserServers.xml, 253 

V 
volatile memory, 63 

W 
write collision, 81 

X 
XIF, 34 
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