
OpenLDV
Programmer’s Guide

078-0275-01D

Echelon, i.LON, LonMaker, LONMARK, LonTalk, LONWORKS, LNS,
Neuron, NodeBuilder, 3120, 3150, and the Echelon logo are
trademarks of Echelon Corporation registered in the United
States and other countries. LonScanner and OpenLDV are
trademarks of the Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Smart Transceivers, Neuron Chips, and other OEM Products
were not designed for use in equipment or systems, which
involve danger to human health or safety, or a risk of
property damage and Echelon assumes no responsibility or
liability for use of the Smart Transceivers or Neuron Chips in
such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2004, 2011 Echelon Corporation.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

OpenLDV Programmer’s Guide iii

Welcome
This document describes Echelon’s OpenLDV™ Release 4.0 Network Driver and
Software Development Kit (SDK). The OpenLDV driver is an open driver for
Microsoft® Windows® operating systems that enables Windows applications to
send and receive low-level ISO/IEC 14908-1 messages through compatible
Echelon and third-party network interfaces. The OpenLDV SDK provides
example source code that demonstrates how to use the OpenLDV driver.
Supported network interfaces include local network interfaces (such as the
Echelon U10 or U20 USB Network Interface, PCC-10 PC Card, PCLTA-21 PC
LonTalk® Adapter), and Internet-enabled network interfaces (such as the
Echelon SmartServer and i.LON® 600 IP-852 Router).

The OpenLDV driver includes an extensible remote network interface (RNI)
component, called xDriver. The OpenLDV driver uses xDriver to connect an
OpenLDV application, such as an LNS® Server, to remote LONWORKS® networks.
This document describes how to configure and extend xDriver, including
descriptions of the software tools that you use to configure and extend xDriver,
and provides programming samples.

The OpenLDV SDK provides a low-level application programming interface (API)
for network applications. For most LONWORKS application developers, using
Echelon’s LNS Network Operating System software provides an interface to the
OpenLDV driver that is easier to use and that significantly reduces the time
required to develop LONWORKS applications and tools for Windows environments.
Network tools that use LNS software generally have much higher performance
than those that use only the OpenLDV API. You can find out more about LNS
software on Echelon’s Web site at www.echelon.com/lns. Contact Echelon Sales
at www.echelon.com/sales if you would like assistance in determining whether
you should develop your network tools with LNS software or with the OpenLDV
API.

Programming with the OpenLDV API requires knowledge of the ISO/IEC 14908-
1 Control Network Protocol. Echelon’s implementation of the ISO/IEC 14908
Control Network Protocol is called the LonTalk protocol. Echelon has
implementations of the LonTalk protocol in several product offerings, including
the Neuron firmware, LNS Server, i.LON 600 IP-852 Router, and SmartServer
Energy Managers. This document refers to the ISO/IEC 14908 Control Network
Protocol as the “LonTalk protocol”, although other interoperable implementations
exist.

Audience
This guide is intended for software developers creating OpenLDV applications for
use with OpenLDV compatible network interface products. Readers of this guide
should be familiar with LONWORKS technology.

This guide is also intended for software developers creating xDriver extensions.
Programming samples in this document are written in C++ and Microsoft® Visual
Basic® .NET. However, extensions for xDriver can be written in any language
that supports Component Object Model (COM) components or ActiveX® controls.

Developers of xDriver extensions should have programming experience in such a
language, as well as familiarity with LONWORKS technology and COM concepts.

http://www.echelon.com/lns
http://www.echelon.com/sales

iv

Examples
Throughout this guide, C++, Visual Basic, and other language programming
samples are used to illustrate concepts. To make these samples more easily
understood, they have been simplified. Error checking has generally been
removed, and in some cases, the examples are only fragments that might not
compile without errors or warnings.

Related Documentation
The following manuals are available from the Echelon Web site
(www.echelon.com) and provide additional information that can help you develop
LONWORKS and LNS applications:

• Introduction to the LONWORKS Platform (078-0391-01B). This manual
provides an introduction to the ISO/IEC 14908 (ANSI/CEA-709.1 and
EN14908) Control Network Protocol, and provides a high-level
introduction to LONWORKS networks and the tools and components that
are used for developing, installing, operating, and maintaining them.

• LNS Programmer's Guide (078-0177-01F). This manual describes how to
write powerful LNS applications, and how to get those applications to
market quickly.

All of the Echelon documentation is available in Adobe PDF format. To view the
PDF files, you must have a current version of the Adobe Reader, which you can
download from Adobe at: get.adobe.com/reader.

In addition to the Echelon documentation, the following specification can help
you develop LONWORKS and LNS applications:

• International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC) standard ISO/IEC 14908 Control
Network Protocol

You can purchase copies of ISO standards from the Information Handling
Services (IHS) Global page at: global.ihs.com.

http://www.echelon.com/
http://get.adobe.com/reader/
http://global.ihs.com/

OpenLDV Programmer’s Guide v

Table of Contents
Welcome ... iii
Audience .. iii
Examples ... iv
Related Documentation .. iv

Chapter 1. Introduction ... 1
Introduction to OpenLDV Networking ... 2

Client Applications .. 3
OpenLDV Driver .. 3
Network Interfaces .. 4

Installing the OpenLDV Software .. 5
Hardware and Software Requirements.. 5
Downloading the OpenLDV Software .. 5
Installing the OpenLDV Driver .. 6
Installing the OpenLDV SDK ... 6

Getting Started with the OpenLDV Driver .. 7
Getting Started with the xDriver Component ... 8

Chapter 2. Using the OpenLDV API ... 9
Introduction to OpenLDV Programming .. 10
OpenLDV Application Architecture .. 11

Application Layer .. 12
Presentation Layer .. 13

Overview of the OpenLDV API ... 13
Referencing the OpenLDV Component .. 14
Using Multiple Threads or Multiple Processes 14

The OpenLDV API ... 15
Working with Devices and Drivers ... 16
Using the OpenLDV API ... 17
ldv_close() ... 18
ldv_free_device_info() .. 18
ldv_free_driver_info() .. 19
ldv_free_matching_devices() ... 20
ldv_get_device_info() ... 20
ldv_get_driver_info() .. 21
ldv_get_matching_devices() .. 22
ldv_get_version .. 22
ldv_locate_sicb() ... 23
ldv_open() ... 24
ldv_open_cap().. 25
ldv_read() ... 27
ldv_register_event() ... 29
ldv_set_device_info() .. 30
ldv_set_driver_info() .. 31
ldv_write() .. 32
ldv_xlate_device_name() ... 33
ldvx_open() ... 34
ldvx_register_window() ... 36
ldvx_shutdown() ... 37

Structures and Enumerations for the Device API 37
LDVDeviceInfo Structure ... 37
LDVDevices Structure... 38

vi

LdvCombineFlags Enumeration ... 39
LdvDeviceCaps Enumeration ... 40

Structures and Enumerations for the Driver API 42
LDVDriverInfo Structure .. 42
LdvDriverID Enumeration ... 43
LdvDriverType Enumeration ... 44

Windows Messages for Session Notifications ... 44
OpenLDV API Return Codes ... 45
Example: A Simple OpenLDV Application .. 52

Chapter 3. Sending/Receiving Messages with the OpenLDV API 57
Constructing Messages .. 58
Application Buffer Structure ... 58

Layer 2 Buffer Structure ... 61
Application Layer Header .. 61
Layer 2 Header .. 61
NPDU ... 61
CRC .. 62

Layer 5 Buffer Structure ... 62
Application Layer Header .. 62
Message Header .. 62
Network Address ... 67
Message Data .. 73

Sending Messages to the Network Interface 75
Receiving Messages from the Network Interface 75

Using the Network Interface Command Interface 76
Downlink Commands .. 76
Uplink Commands ... 77
Immediate Commands .. 77
Network Interface Commands .. 77

Chapter 4. The OpenLDV Developer Example .. 89
Overview ... 90
Common Definitions .. 90
COpenLDVapi and COpenLDVtrace .. 90
COpenLDVni, Message Pumps, and Message Dispatchers 90
Toolkits and User Interface ... 91
Developer Example Diagram .. 92

Chapter 5. Using the xDriver Default Profile .. 93
Configuring an xDriver Profile.. 94
LNS Applications for xDriver .. 98

Chapter 6. Extending xDriver .. 99
Extending xDriver .. 100
xDriver Sessions ... 100

Downlink Sessions ... 100
Uplink Sessions ... 104
Session Control Object .. 108

Authentication Key Handling ... 111
Setting the Current Authentication Key ... 111
Changing the Current Authentication Key 112

Creating a Custom Lookup Extension in C++ ... 113
Create a New Visual Studio Project ... 114
Add a COM Object ... 116

OpenLDV Programmer’s Guide vii

Implement the ILdvxLookup Interface .. 119
Add the Extension to the Component Category 121
Build and Register the COM Server .. 121
Create a Custom xDriver Profile .. 122
Test the Lookup Extension ... 124
Optional Steps ... 124

Creating a Custom Lookup Extension in Visual Basic 125
Create a New Visual Studio Project ... 125
Add a Reference to the xDriver Type Library 127
Add a COM Class ... 127
Delete the Project Default Class ... 128
Import xDriver Types to Your System Namespace 129
Implement the ILdvxLookup Interface .. 129
Build and Register the Lookup Extension ... 130
Create a Custom xDriver Profile .. 130
Test the Lookup Extension ... 132

Sample Lookup Extension Component ... 132
xDriver Profiles .. 134

Starting the Connection Broker ... 135

Chapter 7. LNS Programming with xDriver .. 137
Downlink Sample Applications ... 138

Opening a Single Remote Network With xDriver 138
Opening Multiple Remote Networks for Downlink 139

Uplink Sample Application ... 142

Appendix A. Custom Network Interfaces.. 147
Overview ... 148
Working with a Custom Network Interface ... 148
Windows Registry Entries ... 150

Appendix B. LNS Methods and Events for xDriver Support 153
xDriver Methods and Events ... 154

AcceptIncomingSession ... 154
BeginIncomingSessionEvents ... 155
EndIncomingSessionEvents.. 155
NetworkInterfaces.Item() ... 156
OnIncomingSessionEvent ... 157
ReleasePendingUpdates .. 158

Appendix C. Custom Lookup Extension Programming 161
Overview ... 162
ILdvxConfigure Interface .. 162

SetInstance Method ... 162
SetOptions Method .. 163

ILdvxLookup Interface .. 164
DownlinkLookup Method .. 164
UpdateLookup Method .. 165
UplinkLookup Method .. 165

ILdvxSCO Interface ... 166
GetAdditionalDownlinkPacketHeader Method 167
GetAdditionalDownlinkPacketTrailer Method 167
GetAuthenticationFlag Method .. 168
GetCurrentAuthenticationKey Method ... 168
GetDownlinkKey Method .. 169

viii

GetEncryptionType Method .. 170
GetLNSNetworkName Method .. 170
GetNextAuthenticationKey Method ... 171
GetSessionControlObjectID Method .. 171
GetUplinkKey Method .. 172
SetAdditionalDownlinkPacketHeader Method 172
SetAdditionalDownlinkPacketTrailer Method 173
SetAuthenticationFlag Method .. 173
SetCurrentAuthenticationKey Method .. 174
SetDownlinkKey Method .. 175
SetEncryptionType Method .. 175
SetLNSNetworkName Method ... 176
SetNextAuthenticationKey Method ... 177
SetUplinkKey Method ... 178

ILdvxSCO_TCP Interface .. 178
GetRemoteTCPAddress Method ... 179
GetRemoteTCPPort Method ... 179
SetRemoteTCPAddress Method ... 180
SetRemoteTCPPort Method .. 180

ILdvxSCO2 Interface ... 181
GetNeuronID Method .. 181

Index ... 183

OpenLDV Programmer’s Guide 1

1

Introduction

This chapter introduces the OpenLDV driver and how you
can use it to send and receive LonTalk messages through
any OpenLDV compatible network interface.
This chapter also introduces the xDriver component.

2 Introduction

Introduction to OpenLDV Networking
The OpenLDV driver allows a Windows application to communicate with a
LONWORKS network through a locally attached network interface or a remote
network interface. Figure 1 shows the basic components for communicating
with a LONWORKS network:

• One or more OpenLDV client applications (for example, an LNS Server
with one or more LNS clients, the Echelon LonScanner™ Protocol
Analyzer, or some other client that does not use an LNS Server), which
use the OpenLDV API

• The OpenLDV driver

• One or more local network interfaces, which use a Windows device driver
provided with the network interface

• One or more remote network interfaces (usually Internet enabled), which
use the xDriver component of the OpenLDV driver

OpenLDV Driver

Your
LNS

Application

Your
OpenLDV
Application

LonScanner
Protocol
Analyzer

Windows
Device
Drivers

OpenLDV Client Applications
Using the OpenLDV API

SLTA

PCC-10 PCLTA-22

U10 or U20

xDriver
Component

i.LON 10

i.LON 100 i.LON 600

SmartServer

Remote
Network Interfaces

Local
Network Interfaces

Figure 1. OpenLDV Programming Model

OpenLDV Programmer’s Guide 3

Client Applications
OpenLDV applications, such as the LNS Server and the LonScanner Protocol
Analyzer, use the OpenLDV application programming interface (API) to
communicate with LONWORKS network interfaces.

Echelon’s LNS software provides a high-level interface to LONWORKS networks
that simplifies managing network interfaces. The LNS software is a powerful,
flexible network management platform you can use with high-performance
Layer-2 or Layer-5 network interfaces, as well as with IP-852 routers (such as
the i.LON 600 or SmartServer). The LNS Server provides a wide variety of
network management and monitor and control services, and allows multiple
client access to the same network interface.

For most customers, choosing the LNS software platform will result in a high-
quality application that can be developed more quickly, requiring less knowledge
of low-level details, than with other network management platforms, including
the OpenLDV platform. However, the OpenLDV API provides a low-level
interface for writing Windows based LONWORKS software for use with
LONWORKS network interfaces.

You can use the OpenLDV API to write your own application that sends and
receives messages through LONWORKS network interfaces, using either a
LonTalk Layer 2 or Layer 5 interface. These messages can initialize and
terminate communications with the network interface, retrieve incoming
messages, or transmit outgoing messages. See Chapter 2, Using the OpenLDV
API, on page 9, and Chapter 3, Sending and Receiving Messages with the
OpenLDV API, on page 57, for information about these topics.

OpenLDV Driver
You can use the OpenLDV runtime with network management or monitoring and
control applications. For example, for a self-installed system with fixed network
addresses, you can use the OpenLDV API to create an application that sends
messages to test the devices on your network. This diagnostic application could
periodically send request messages to devices in the system to check their status.
You can also use the OpenLDV API to create a data logging application to
monitor and retrieve network variable values from the various devices on your
network.

The OpenLDV 4.0 driver and API are backward-compatible with previous
versions of the driver and the API (but see Hardware and Software Requirements
on page 5 for the OpenLDV 4.0 requirements, which differ from those of prior
releases).

To develop an OpenLDV application, you must understand LonTalk message
formats and network interface state management. You also need to be able to
manage low-level LonTalk messaging details, such as LonTalk reference IDs.
Chapters 3 and 4 of this document describe some of the LonTalk message formats
that you can use with the OpenLDV API. In addition, the section Message
Header on page 62 includes some discussion of LonTalk reference IDs. See the
ISO/IEC 14908 Control Network Protocol specification for detailed information
about the LonTalk protocol.

4 Introduction

Network Interfaces
A local network interface (one that is physically connected to the computer
running the OpenLDV driver) uses its own Windows device driver. Echelon and
third parties provide a number of network interface products; see the specific
documentation about the network interface for more information.

You can also develop your own custom OpenLDV compatible local network
interface. To make your network interface compatible with the OpenLDV driver,
you must also develop a Windows device driver for it; see Appendix A, Custom
Network Interfaces, on page 147, for additional information about working with a
custom network interface.

A remote network interface (one that is connected to the computer through an IP
network, typically the Internet) uses the xDriver component of the OpenLDV
driver as a virtual device driver. The xDriver component is an extensible
network driver that uses IP to establish connections between OpenLDV
applications and network interfaces (such as an Echelon SmartServer).

xDriver can provide authenticated connections from an OpenLDV application to
hundreds or even thousands of remote LONWORKS networks through RNI devices
(such as a SmartServer). As shown in Figure 2, the OpenLDV application
accesses the SmartServer, and the LONWORKS channel that the SmartServer is
connected to, through an IP connection.

TCP/IP

LonWorks Channel

LonWorks Channel

LonWorks Devices

LonWorks Devices

OpenLDV Application
with xDriver

Figure 2. An OpenLDV Application Using xDriver to Manage LonWorks Devices

You configure the xDrvier component with an xDriver profile. An xDriver profile
is a set of configuration parameters that determines how xDriver manages

OpenLDV Programmer’s Guide 5

connections with a group of remote networks. For example, you could have
hundreds of remote networks, each of which has a SmartServer attached. At
your service center, your monitoring tool could use the OpenLDV driver to listen
for session requests from these networks and send messages to remote devices.

The OpenLDV driver includes a default xDriver profile. You can use the default
xDriver profile for your OpenLDV applications, or you can use the xDriver Profile
Editor to create a custom xDriver profile for your OpenLDV applications; see
Chapter 5, Using the xDriver Default Profile, on page 93.

You can configure each xDriver profile to provide your application with
information identifying the network interface that has requested a network
session. Thus, you can program your application to quickly identify the source of
the session request, and respond to a variety of different alarm conditions. See
Configuring an xDriver Profile on page 94 for more information about the xDriver
profile.

Installing the OpenLDV Software
The following sections describe the requirements for downloading the OpenLDV
software, installing it, and using the OpenLDV software.

Hardware and Software Requirements
To install and use the OpenLDV 4.0 software, your computer must meet the
following minimum requirements, in addition to those imposed by your operating
system:

• 512 MB RAM (or the Windows operating system minimum requirement)

• Microsoft Windows 7 (32-bit or 64-bit), Windows Server 2008 R2 (64-bit),
Windows Vista® (32-bit), Windows Server 2003 (32-bit), or Windows XP
SP3

• Microsoft .NET Framework 3.5 SP1

• 50 MB of available hard-disk space

• 1024x768 screen resolution

Downloading the OpenLDV Software
You can download the OpenLDV driver and SDK from Echelon’s Web site at
www.echelon.com/downloads.

The OpenLDV driver installer (OpenLDV400.exe) installs the OpenLDV driver,
the LONWORKS Interfaces application in the Windows Control Panel, and the
xDriver Profile Editor.

You can incorporate the OpenLDV driver installer into your OpenLDV
application’s installation, either as a standalone component that your end-users
will install, or as a component that your overall software installer will install.
The OpenLDV runtime installer is based on Microsoft Installer 3.1. If the
computer onto which you are installing the OpenLDV driver uses an older
version of Microsoft Installer, the OpenLDV driver installation will update the
computer to use version 3.1.

http://www.echelon.com/downloads

6 Introduction

See the OpenLDV 4.0 ReadMe document for updates to the OpenLDV driver
documentation.

To develop an OpenLDV application or xDriver extension, install the OpenLDV
SDK (OpenLDV400-SDK.exe) in addition to the OpenLDV driver. The
OpenLDV SDK contains documentation, source files, and several examples,
which you can use when developing your own OpenLDV application or xDriver
extension.

See the OpenLDV SDK 4.0 ReadMe document for updates to the OpenLDV SDK
documentation.

Installing the OpenLDV Driver
To install and use the OpenLDV driver, perform the following steps:

1. Download the OpenLDV Driver OpenLDV400.exe file from Echelon’s
Web site at www.echelon.com/downloads.

2. Double-click the OpenLDV400.exe file to begin the OpenLDV driver
installation. The OpenLDV driver installer window opens.

3. Follow the installation dialogs to install the OpenLDV driver onto your
computer.

If you are using a SmartServer or i.LON network interface:

1. Use the LONWORKS Interfaces application in the Windows Control Panel
to specify the IP network addresses of the SmartServer or i.LON network
interface. See the online help for the LONWORKS Interfaces application
for information about how to use it.

2. If you are using a SmartServer or i.LON network interface and you are
developing a custom xDriver profile, use the xDriver Profile Editor in the
OpenLDV program folder to configure an xDriver profile for use with
your OpenLDV application. For more information on the xDriver Profile
Editor, see Chapter 5, Using the xDriver Default Profile, on page 93.

3. See the installation instructions for your network interface for any
additional instructions for configuring the network interface.

Installing the OpenLDV SDK
To install and use the OpenLDV SDK, perform the following steps:

1. Download and install the OpenLDV driver, as described in Installing the
OpenLDV Driver.

2. Download the OpenLDV SDK OpenLDV400-SDK.exe file from
Echelon’s Web site at www.echelon.com/downloads.

3. Double-click the OpenLDV400-SDK.exe file to begin the OpenLDV SDK
installation. The OpenLDV SDK installer window opens.

4. Follow the installation dialogs to install the OpenLDV SDK onto your
computer.

5. You can now use the OpenLDV SDK to write applications that use the
OpenLDV API or create xDriver extensions. For information about the
OpenLDV API, see Chapter 2, Using the OpenLDV API, on page 9. For

http://www.echelon.com/downloads
http://www.echelon.com/downloads

OpenLDV Programmer’s Guide 7

information about xDriver extensions, see Chapter 6, Extending xDriver,
on page 99.

Getting Started with the OpenLDV Driver
An OpenLDV application can use a Layer 2 network interface or a Layer 5
network interface:

• Layer 2 Network Interface – A network interface that communicates at
Layer 2 of the LonTalk protocol. This type of interface transports
LonTalk packets without processing them, and does not filter by network
address. It is typically used for applications that implement layers 3
through 7 of the LonTalk protocol, such as an LNS Server, and is also
used for protocol analyzers that log and display network traffic.
Implementing layers 3 through 7 on a Windows computer, rather than in
the Neuron core or other processor of a local network interface, can
provide significantly higher performance. For example, the LNS Server
includes an implementation of layers 3 through 7 that provides
significantly higher performance when used with a Layer 2 network
interface.

• Layer 5 Network Interface – A network interface that communicates at
Layer 5 of the LonTalk protocol. This type of interface transports
incoming LonTalk packets that are addressed to the network interface,
and transports outgoing packets that are addressed to other devices. It is
typically used for remote network interfaces (such as a SmartServer or an
i.LON network interface) because these interfaces typically implement
layers 3 through 5 on a high performance processor within the network
interface, and it allows an uplink session to be initiated when the host
receives a particular message addressed to it. This type of interface
requires handling of NI resources, such as reference IDs, at a software
layer above the OpenLDV layer. For example, the LNS Server manages
NI resources when used with a Layer 5 network interface.

A typical OpenLDV application uses Layer 5 interfaces so that it need not
implement layer 3-5.

You can use the LONWORKS Interfaces application in the Windows Control Panel
to determine if your network interface provides a Layer 2 or Layer 5 image or
supports switching between Layer 2 and Layer 5:

• Echelon U10 and U20 USB Network Interfaces can operate as either a
Layer 2 or Layer 5 interface, switchable within an OpenLDV application

• Remote Network Interfaces (SmartServer or i.LON) can be configured to
operate as a Layer 5 interface or as a read-only Layer 2 interface (for use
with protocol analyzers, such as the LonScanner Protocol Analyzer)

• IP-852 devices always operate as Layer 2 interfaces, as defined by the
ISO/IEC 14908-4 standard

For PCC-10, PCLTA-20, or PCLTA-21 network interfaces, Table 1 on page 8 lists
the application image that you can select to operate at either Layer 2 or Layer 5,
as needed. See the documentation for your network interface for additional
information.

8 Introduction

Table 1. NI Application Settings

Network
Interface

NI Application Setting for
Layer 2 Image

NI Application Setting for
Layer 5 Image

PCC-10 PCC10VNI NSIPCC

PCLTA-20 PCL10VNI NSIPCLTA

PCLTA-21 PCLTA21VNI PCLTA21NSI

The LONWORKS Interfaces application is installed with the OpenLDV driver.

For additional information about developing an OpenLDV application, see the
following chapters:

• Chapter 2, Using the OpenLDV API, on page 9. This chapter describes
each function that is included in the OpenLDV API. It also defines
guidelines for writing applications that use the OpenLDV API to access
multiple network interfaces.

• Chapter 3, Sending and Receiving Messages with the OpenLDV API, on
page 57. You can use the ldv_write() and ldv_read() functions
described in Chapter 2 to send and receive message commands through a
network interface. This chapter describes the various network interface
commands that your OpenLDV application can send and receive with
these functions, as well as the application buffer structure for each type
of message.

• Chapter 4, The OpenLDV Developer Example, on page 89. This chapter
introduces the OpenLDV Developer Example, which is installed with the
OpenLDV SDK. It describes various classes implemented in the
OpenLDV Developer Example. In addition to reviewing the code, you
should also review the code comments in the example.

Getting Started with the xDriver Component
The xDriver component is included with the OpenLDV driver. xDriver supports
scalable access to many network interfaces. The default xDriver implementation
uses a Lookup component that uses the Windows Registry to store a database
containing the information that it requires to connect to each device. For small-
scale deployments, the Windows Registry is an efficient information store for the
xDriver database.

However, for larger deployments (more than 50 network interfaces), you can
improve performance by extending the default xDriver component to use a
database as your information store.

If you do not plan to extend the default xDriver component to use a database, you
can begin using the default xDriver component, as described in Chapter 5, Using
the xDriver Default Profile, on page 93.

If you plan to extend the default xDriver component, see Chapter 6, Extending
xDriver, on page 99. Most developers will not need to extend xDriver.

OpenLDV Programmer’s Guide 9

2

Using the OpenLDV API

This chapter describes the OpenLDV API functions and types,
including the input and output parameters associated with each
function, and the return codes returned by each function.

10 Using the OpenLDV API

Introduction to OpenLDV Programming
An application that uses the OpenLDV API is called an OpenLDV application.
The communications protocol used for OpenLDV applications is the ISO/IEC
14908-1 (ANSI/CEA 709.1-B and EN14908.1) Control Network Protocol. This
protocol is an international standard seven-layer protocol that has been
optimized for control applications, and is based on the Open Systems
Interconnection (OSI) Basic Reference Model (the OSI Model, ISO standard 7498-
1). The OSI Model describes computer network communications through the
seven abstract layers described in Table 2. The implementation of these layers
in a LONWORKS device provides standardized interconnectivity for devices within
a LONWORKS network.

Table 2. LONWORKS Network Protocol Layers

OSI Layer Purpose Services Provided

7 Application Application compatibility Network configuration, self-installation,
network diagnostics, file transfer,
application configuration, application
specification, alarms, data logging,
scheduling

6 Presentation Data interpretation Network variables, application messages,
foreign frame transmission

5 Session Control Request/response, authentication

4 Transport End-to-end
communication reliability

Acknowledged and unacknowledged
message delivery, common ordering,
duplicate detection

3 Network Destination addressing Unicast and multicast addressing,
routers

2 Data Link Media access and framing Framing, data encoding, CRC error
checking, predictive carrier sense
multiple access (CSMA), collision
avoidance, priority, collision detection

1 Physical Electrical interconnect Media-specific interfaces and modulation
schemes

Echelon’s implementation of the ISO/IEC 14908 Control Network Protocol is
called the LonTalk protocol. Echelon has implementations of the LonTalk
protocol in several product offerings, including the Neuron firmware, LNS
Server, SmartServers, and various network interfaces. This document refers to
the ISO/IEC 14908-1 Control Network Protocol as the “LonTalk protocol”,
although other interoperable implementations exist.

An OpenLDV application can work with Layer 2 network interfaces, Layer 5
network interfaces, or LonScanner Protocol Analyzer interfaces. Figure 3 shows

OpenLDV Programmer’s Guide 11

the seven layers of the OSI Model and which OSI layers a Layer 2 or Layer 5
network interface handles.

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Layer 5
Network
Interface

Layer 2
Network
Interface

Figure 3. Network Interfaces and the Seven Layers of the OSI Model

A Layer 2 network interface handles only the first two layers of the OSI Model,
and thus only sends and receives network packets; an application must
implement the rest of the ISO/IEC 14908-1 protocol to communicate with the
network.

A LonScanner Protocol Analyzer uses a Layer 2 network interface. The
LonScanner Protocol Analyzer implements the rest of the ISO/IEC 14908-1
protocol to communicate with and analyze the network.

A Layer 5 network interface handles the first five layers of the OSI Model, and
thus not only sends and receives network packets, but also implements layers 1
through 5 of the ISO/IEC 14908-1 protocol to communicate with the network.

Most OpenLDV applications use Layer 5 network interfaces so that they need not
implement Layers 3 to 5 of the ISO/IEC 14908-1 protocol.

OpenLDV Application Architecture
The OpenLDV application architecture also uses the OSI Model, and provides a
programming framework for communicating with the network, as shown in
Figure 4 on page 12.

12 Using the OpenLDV API

Application Layer

OpenLDV API

Presentation Layer

OpenLDV Application

OpenLDV Driver (Ldv32.dll)

SLTA
 Link Layer

PCLTA
Link Layer

PCC
Link Layer

USB
Link Layer

SLTA-10 PCLTA-10
PCLTA-20 PCC-10 U10

U20

LONWORKS Network

xDriver
Link Layer

SmartServer
i.LON

Interfaces
Compatible

with
OpenLDV

API

OpenLDV
Interface

and Driver
Software

OpenLDV
Application

Figure 4. OpenLDV Application Architecture

An OpenLDV application implements the application and presentation layers,
and uses the OpenLDV API (with the OpenLDV driver, Ldv32.dll) as an
interface layer to communicate with a network interface. The network interfaces
communicate with the LONWORKS network. Although the figure shows Echelon
network interfaces, most third-party network interfaces can also use the
OpenLDV driver.

An OpenLDV application that uses the OpenLDV API can establish downlink
connections (session initiation from the application to the local or remote network
interface), and it can accept uplink session requests (session initiation from the
remote network interface, using the xDriver Broker service, to the application).

Application Layer
The application layer is responsible for sending data to the LONWORKS network
through output network variables and outgoing application messages, and
receiving LONWORKS network data through input network variables and
incoming application messages. Typically, the bulk of an OpenLDV application’s
code is at the application layer.

OpenLDV Programmer’s Guide 13

The OpenLDV API does not include an application layer. However, the
OpenLDV Developer Example demonstrates how to integrate an application
layer (which dispatches incoming messages to an application-specific message
dispatcher) with the OpenLDV API. For more information about the OpenLDV
Developer Example and the message dispatcher it employs, see Chapter 4, The
OpenLDV Developer Example, on page 89.

Presentation Layer
The presentation layer is responsible for translating messages between the lower
layers, providing an easier-to-use presentation format used by the application
layer. For example, all incoming network variable update messages from a
network interface are recognized by this layer, updating the application’s
network variable values and notifying the application layer of the change.

The presentation layer can also manage network management messages and
diagnostics services, such as the responses to Query SI network management
commands (see Receiving Messages from the Network Interface on page 75).

The OpenLDV API does not include a presentation layer. However, the
OpenLDV Developer Example demonstrates how to integrate a presentation
layer with the OpenLDV API. The OpenLDV Developer Example also includes
code that handles several network management commands and diagnostics.

Overview of the OpenLDV API
The OpenLDV API is implemented by a 32-bit C DLL that is compatible with
both 64- and 32-bit versions of Windows. All data types defined for the API
assume a 32-bit compiler; for example, pointers reference 32-bit addresses, each
enum is a 32-bit type, size_t is an unsigned 32-bit type, and so on. The
OpenLDV header file, ldv32.h, includes the following type definitions for native
data types, rather than using compiler-dependent types:

 typedef void* PVOID;
 typedef short SHORT; /* signed 16-bit */
 typedef long LONG; /* signed 32-bit */
 typedef unsigned char BYTE; /* unsigned 8-bit */
 typedef unsigned short WORD; /* unsigned 16-bit */
 typedef unsigned long DWORD; /* unsigned 32-bit */
 typedef char* LPSTR;
 typedef const char* LPCSTR;
 typedef void* HANDLE;

Each function of the OpenLDV API uses extern “C” and __stdcall calling
conventions.

An alternative to the OpenLDV API is the COpenLDVapi class provided with
the OpenLDV developer example described in Chapter 4. This class provides a
COM interface with thread-safe, synchronized, access to downlink messages
(ldv_write()). The same interface also implements a reader thread,
COpenLDVreader, which queries uplink messages (ldv_read()) and supplies
data to a protected queue. The COpenLDVapi::Read() function queries that
queue, thereby providing coordinated access to both uplink and downlink
messages.

14 Using the OpenLDV API

Referencing the OpenLDV Component
You can develop applications that use the OpenLDV API with any Windows
application development environment that supports the use of standard Windows
DLL components and (for xDriver Extensions) COM components. Echelon has
tested the OpenLDV software with Microsoft Visual Studio 2008, using the
Microsoft Visual C++®, Visual C#®, and Visual Basic® components.

To develop an applicatikon with the OpenLDV API, first install the OpenLDV
driver and the OpenLDV SDK. During the installation, the ldv32.h and
ldv32.lib files are copied to the LONWORKS \OpenLDV SDK\Include and
\OpenLDV SDK\Lib folders.

To develop your OpenLDV application, include the ldv32.h header file in your
application and link it with the ldv32.lib library. See your development
environment’s documentation for information about linking to external libraries.
End users of your OpenLDV application do not need to install any of the files
included in the OpenLDV SDK; they need only install the OpenLDV driver.

The OpenLDV SDK includes the OpenLDV Developer Example, which uses many
of the functions described in this chapter. To compile and debug the OpenLDV
Developer Example, install Microsoft Visual Studio 2008 (or later), with the
Microsoft Visual C++ component. The example application is available from the
Examples & Tutorials folder in the Echelon OpenLDV 4.0 SDK program
folder; it is also installed as a ZIP file to the \LonWorks\OpenLDV
SDK\SourceArchive folder. The OpenLDV Developer Example contains
numerous helpful comments. See Chapter 4, The OpenLDV Developer Example,
on page 89, for a description of the architecture of the OpenLDV Developer
Example and of the different classes that it contains.

Using Multiple Threads or Multiple Processes
The OpenLDV software supports communication with multiple network
interfaces at the same time, with the following restrictions:

1. A single process can access multiple network interfaces simultaneously.
However, a single process should access a network interface with at most
one writer thread and one reader thread. You must program your
application to enforce this restriction, because it is not enforced by the
OpenLDV software. See the OpenLDV Developer Example for a
demonstration of the proper use of separate reader and writer threads.

2. Multiple processes cannot access the same network interface
simultaneously. Attempts to access the same network interface by more
than one process result in the LDVX_ACCESS_DENIED failure code
from the ldv_open() functions.

3. The SmartServer and i.LON network interfaces allow a single session at
a time. If you attempt to open such a network interface while another
session is active (usually from another computer), the call to ldv_open()
might initially appear to have succeeded (the connection is established in
the background). However, when you call ldv_read() or ldv_write() to
read or write a message to the network interface, the functions return the
LDVX_READ_FAILED or LDVX_WRITE_FAILED return codes,
which indicate that the session has failed. See ldv_open() on page 24 for
more information.

OpenLDV Programmer’s Guide 15

The OpenLDV API
This section describes the functions included in the OpenLDV API. Table 3
summarizes these functions. See Structures and Enumerations for the Driver
API on page 42 for descriptions of the structures and enumerations used by the
OpenLDV API. See OpenLDV API Return Codes on page 44 for descriptions of
the return codes.

Table 3. OpenLDV API Functions

Function Description

Added in
OpenLDV
Version

ldv_close() Closes an open session. 1.0

ldv_free_device_info() Releases the resources allocated by a
call to ldv_get_device_info() or
ldv_get_matching_devices().

2.0

ldv_free_driver_info() Releases the resources allocated by a
call to ldv_get_driver_info().

2.0

ldv_free_matching_devices() Releases the resources allocated by a
call to
ldv_get_matching_devices().

2.0

ldv_get_device_info() Retrieves information about a
LONWORKS interface device.

2.0

ldv_get_driver_info() Retrieves information about a
LONWORKS interface device driver
class.

2.0

ldv_get_matching_devices() Retrieves information about the
LONWORKS interface devices that
match a set of capabilities.

2.0

ldv_get_version() Retrieves the version number of the
OpenLDV API.

1.0

ldv_locate_sicb() Locates the SICB portion of the data
within an LdvEx (or SICB)
formatted message, if present.

2.0

ldv_open() Opens a network interface device. 1.0

ldv_open_cap() An extended version of ldv_open()
and ldvx_open() that additionally
allows the caller to request specific
capabilities for the device.

2.0

16 Using the OpenLDV API

Function Description

Added in
OpenLDV
Version

ldv_read() Reads a message from an open
session.

1.0

ldv_register_event() Registers a Windows Event object to
receive notification of the
availability of new messages.

1.0

ldv_set_device_info() Creates or modifies the information
about a LONWORKS interface device.

2.0

ldv_set_driver_info() Creates or modifies the information
about a LONWORKS interface device
driver class.

2.0

ldv_write() Writes a message to an open session. 1.0

ldv_xlate_device_name() Translates a device’s logical name to
its physical name, that is, from the
device’s LONWORKS name (such as
“LON1”) to its Windows device name
(such as “\\.\LON1.0”).

1.0

ldvx_open() Opens a network interface device,
registers a Windows HWND object
for receiving session change
notifications.

1.0

ldvx_register_window() Registers a Windows HWND object
for receiving session change
notifications.

1.0

ldvx_shutdown() Cleanly shuts down OpenLDV and
xDriver subsystem.

1.0

Working with Devices and Drivers
The OpenLDV API includes a number of functions that assist in working with
devices and device drivers, for example:

• The ldv_get_driver_info() function allows you to identify the device
driver for a particular device. With this function, an application could
display a list of devices associated with a specific device driver.

• The ldv_get_device_info() function allows you to retrieve device
information (such as the transceiver ID of the Smart Transceiver or
Neuron Chip). For example, the transceiver ID allows an application to
determine appropriate timer and channel settings for the device based on
the available hardware.

OpenLDV Programmer’s Guide 17

• The ldv_set_device_info() function allows you to modify certain
information for a device.

• The ldv_get_matching_devices() function allows you retrieve a list of
devices that match a specified set of capabilities. For example, you can
determine which devices operate at Layer 2 or Layer 5, you can
determine which devices are IP-852 devices or channels, or you can
determine which devices are protocol analyzers.

• The ldv_free_device_info(), ldv_free_driver_info(), and
ldv_free_matching_devices() functions release resources allocated by
the ldv_get_device_info(), ldv_get_driver_info(), and
ldv_get_matching_devices() functions.

• The ldv_open_cap() function allows you to open a device with a specified
capability enabled, if the capability is supported by the device. For
example, you could open a U10 USB network interface with Layer 2
operation or with Layer 5 operation. However, only local devices and
static xDriver RNI devices that use the default xDriver lookup extension
can supply their device capabilities. xDriver RNIs that use a custom
lookup extension are either not available or report as having unknown
capabilities.

See The OpenLDV API on page 15 for a description of these functions and the
rest of the OpenLDV functions.

Using the OpenLDV API
The basic code flow for an OpenLDV application includes the following four
functions, which comprise the basis of all OpenLDV applications:

• ldv_open()

• ldv_read()

• ldv_write()

• ldv_close()

An application can call the ldv_read() and ldv_write() functions in any order,
and at any time after opening the network interface, but before closing the
network interface.

The following sections describe each of the API functions in detail. The syntax
for each function includes a table that describes the following information:

• Each parameter required for the function. The parameter data type does
not appear in the table, but is shown in the syntax for the function.

• The direction for each parameter:

o Input: Input parameters provide data to the OpenLDV function.
You must supply an appropriate value for each input parameter.

o Output: Output parameters provide data to your application
from the OpenLDV function. You must supply an appropriately
sized variable or buffer for each output parameter.

• A description of each parameter.

18 Using the OpenLDV API

See Structures and Enumerations for the Driver API on page 42 for descriptions
of the structures and enumerations used by the OpenLDV API. See OpenLDV
API Return Codes on page 44 for descriptions of the return codes.

ldv_close()
Call this function to close a network interface that has been previously opened
with the ldv_open() function.

Syntax
LDVCode ldv_close(
 LdvHandle handle
)

Table 4. ldv_close() Parameters

Parameter Direction Description

handle

Input The network interface to be closed. This value was returned
as the handle parameter when you opened the network
interface with one of the open functions (ldv_open(),
ldv_open_cap(), or ldvx_open()).

Remarks
Use this function to close an OpenLDV session and end communication between
your application and the network interface involved in the session. This function
also frees any resources assigned to the network interface and the handle
assigned to the session. This function returns LDV_OK if the network interface
is successfully closed; if so, other processes on your computer can access the
network interface.

Each successful ldv_open(), ldv_open_cap(), or ldvx_open() call (including
nested ones) must have a matching ldv_close() call. The OpenLDV driver does
not close a network interface until the last ldv_close() function is called. See
also ldvx_shutdown() on page 37.

If you attempt to close a network interface that has not been previously opened,
or has already been closed, the LDV_NOT_OPEN code is returned. If the
handle parameter is not valid, the LDV_INVALID_DEVICE_ID code is
returned.

Recommendation: Add a delay of at least one second before you call the
ldv_open() function after calling ldv_close() for a particular network interface.

ldv_free_device_info()
Call this function to release resources allocated by the ldv_get_device_info()
function.

OpenLDV Programmer’s Guide 19

Syntax
LDVCode ldv_free_device_info(
 const LDVDeviceInfo* pDeviceInfo
)

Table 5. ldv_free_device_info() Parameters

Parameter Direction Description

pDeviceInfo Input A pointer to an LDVDeviceInfo structure (that was
returned by the ldv_get_device_info() function) to be freed.

Remarks
Use this function to release resources allocated by the ldv_get_driver_info()
function. This function returns LDV_OK if the resources are successfully
released.

See Structures and Enumerations for the Device API on page 37 for a description
of the LDVDeviceInfo structure.

ldv_free_driver_info()
Call this function to release resources allocated by the ldv_get_driver_info()
function.

Syntax
LDVCode ldv_free_driver_info(
 LDVDriverInfo* pDriverInfo
)

Table 6. ldv_free_driver_info() Parameters

Parameter Direction Description

pDriverInfo Input A pointer to an LDVDriverInfo structure (that was
returned by the ldv_get_driver_info() function) to be freed.

Remarks
Use this function to release resources allocated by the ldv_get_driver_info()
function. This function returns LDV_OK if the resources are successfully
released.

See Structures and Enumerations for the Driver API on page 42 for a description
of the LDVDriverInfo structure.

20 Using the OpenLDV API

ldv_free_matching_devices()
Call this function to release resources allocated by the
ldv_get_matching_devices() function.

Syntax
LDVCode ldv_free_matching_devices(
 LDVDevices* pDevices
)

Table 7. ldv_free_matching_devices() Parameters

Parameter Direction Description

pDevices Input A pointer to an LDVDevices structure (that was returned
by the ldv_get_matching_devices() function) to be freed.

Remarks
Use this function to release resources allocated by the
ldv_get_matching_devices() function. This function returns LDV_OK if the
resources are successfully released.

See Structures and Enumerations for the Device API on page 37 for a description
of the LDVDevices structure.

ldv_get_device_info()
Call this function to retrieve device information about a LONWORKS interface
device.

Syntax
LDVCode ldv_get_device_info(
 LPCSTR szDevice,
 const LDVDeviceInfo** ppDeviceInfo
)

Table 8. ldv_get_device_info() Parameters

Parameter Direction Description

szDevice

Input The name of the LONWORKS interface device for which you
are requesting information.

ppDeviceInfo Output A pointer to an LDVDeviceInfo pointer that receives the
information of the requested device.

OpenLDV Programmer’s Guide 21

Remarks
Use this function to retrieve device information about a LONWORKS interface
device. This function returns LDV_OK if the device information is successfully
retrieved. After you retrieve the device information and no longer need it, you
must free the device information resources by calling the
ldv_free_device_info() function.

The contents of the returned structure is constant (read-only) and cannot be
modified.

See Structures and Enumerations for the Device API on page 37 for a description
of the LDVDeviceInfo structure.

ldv_get_driver_info()
Call this function to retrieve driver information about a LONWORKS interface
device driver.

Syntax
LDVCode ldv_get_driver_info(
 LDVDriverID nDriverId,
 LDVDriverInfo** ppDriverInfo
)

Table 9. ldv_get_driver_info() Parameters

Parameter Direction Description

nDriverId Input The driver ID of the driver for which you are requesting
information.

ppDriverInfo Output A pointer to an LDVDriverInfo pointer that receives the
information of the requested driver.

Remarks
Use this function to retrieve driver information about a LONWORKS interface
device driver. This function returns LDV_OK if the driver information is
successfully retrieved. After you retrieve the driver information and no longer
need it, you must free the driver information resources by calling the
ldv_free_driver_info() function.

The contents of the returned structure should be treated as constant (read-only)
and cannot be modified.

See Structures and Enumerations for the Driver API on page 42 for a description
of the LDVDriverID enumeration values and the LDVDriverInfo structure.

22 Using the OpenLDV API

ldv_get_matching_devices()
Call this function to retrieve information about all LONWORKS interface devices
that match a set of capabilities.

Syntax
LDVCode ldv_get_matching_devices(
 LDVDeviceCaps nCaps,
 LDVCombineFlags nCombine,
 LDVDevices* pDevices
)

Table 10. ldv_get_matching_devices() Parameters

Parameter Direction Description

nCaps Input An LDVDeviceCaps value for the device capabilities to
match.

nCombine Input The criterion for how the match should be performed. The
criterion is a bitwise combination of one of the
LdvCombineFlags values.

pDevices Output A pointer to an LDVDevices structure for the devices whose
capabilities match those requested.

Remarks
Use this function to retrieve information about all LONWORKS interface devices
that match a specified set of device capabilities. This function returns LDV_OK
if the device information is successfully retrieved. After you retrieve the device
information, you must free the device information resources by calling the
ldv_free_matching_devices() function. Do not call the
ldv_free_device_info() function for each retrieved device.

The contents of the returned structure should be treated as constant (read-only)
and cannot be modified.

See Structures and Enumerations for the Device API on page 37 for a description
of the LDVDevices and LDVDeviceCaps structures and the
LdvCombineFlags enumeration.

ldv_get_version
Call this function to read the version number of the OpenLDV driver.

Syntax
LPCSTR ldv_get_version(
 VOID
)

OpenLDV Programmer’s Guide 23

Remarks
This function returns a string for the version number of the OpenLDV driver
being used:

• OpenLDV 1.0 5.308.09

• OpenLDV/LNS 5.320.122

• OpenLDV 2.0 5.321.034

• OpenLDV 2.1 5.322.002

• OpenLDV 3.3 5.330.036

• OpenLDV 3.4 5.340.016

• OpenLDV 4.0 5.400.102

ldv_locate_sicb()
Call this function to locate the serial interface control block (SICB) portion of the
data within an LdvEx (or SICB) formatted message, if present.

Syntax
LDVCode ldv_locate_sicb(
 PVOID pData,
 WORD nDataLen,
 WORD* pnSicbOff,
 WORD* pnSicbLen
)

Table 11. ldv_locate_sicb() Parameters

Parameter Direction Description

pData Input A pointer to a buffer containing an LdvEx (or SICB)
message.

nDataLen Input The length of the buffer containing the LdvEx (or SICB)
message.

pnSicbOff Output A pointer to a variable to receive the offset (in bytes) of the
start of the SICB portion of the specified message.

pnSicbLen Output A pointer to a variable to receive the length (in bytes) of the
SICB portion of the specified message.

Remarks
Use this function to locate the SICB portion of the data within an LdvEx (or
SICB) formatted message, if present. Data processed by most OpenLDV
functions use the SICB format; data processed by the ldv_open_cap() function
can request to use the extended LdvEx format (which includes the SICB data,

24 Using the OpenLDV API

along with other data, such as timestamp data, that could be useful for some
applications). See Application Buffer Structure on page 58 for a description of the
SICB and LdvEx formats.

This function returns LDV_OK if the SICB data could be located and returned.
If an LdvEx packet does not contain an SICB message, the error
LDV_NOT_FOUND is returned. If the packet is not well formed (for example,
too short), the error LDV_INVALID_DATA_FORMAT is returned.

This function accepts either LdvEx or SICB formatted messages. For an SICB
formatted message, this function returns a zero offset and a decoded length.

ldv_open()
Call this function to establish communications between your application and a
network interface. This function returns a unique handle that you can provide to
the other OpenLDV functions to identify this network session.

Syntax
LDVCode ldv_open(
 LPCSTR id,
 LdvHandle* handle
)

Table 12. ldv_open() Parameters

Parameter Direction Description

id Input The network interface with which to establish
communication. For example, “LON1” could be used to
identify a U10, PCLTA-10, or PCLTA-21 network interface.
Or, “X.Default.1MainStreet” could be used to identify a
SmartServer that will be opened through xDriver.

handle Output A pointer to a variable that receives a handle which you can
use to identify the network interface with the other
OpenLDV functions. This handle is valid only if the function
returns LDV_OK. Note that zero is a valid handle.

Remarks
This function returns LDV_OK if the network interface is successfully opened.
In this case, the function also returns a handle that you can use to identify the
network interface with the other OpenLDV functions. To close the session with
the network interface, use the ldv_close() function.

Each successful ldv_open(), ldv_open_cap(), or ldvx_open() call (including
nested ones) must have a matching ldv_close() call.

For local network interfaces, after the ldv_open() function returns the LDV_OK
success code, the network interface device has been initialized (see below for
information about remote network interfaces). For some network interface types,

OpenLDV Programmer’s Guide 25

the network interface enters an initial quiet mode (flush state) after a reset. To
start using such a network interface, the OpenLDV application must cancel the
quiet mode with the niFLUSH_CANCEL immediate network interface
command. For more information about immediate commands, see Immediate
Commands on page 77.

The OpenLDV API clears old data from internal buffers during processing of the
ldv_open() function before retrieving new data. Thus, your application does not
need to perform this task.

For xDriver-based remote network interfaces that use the xDriver default lookup
extension, the name specified as the id parameter should match an entry created
for a device with the LONWORKS Interfaces application in the Windows Control
Panel. See Chapter 5, Using the xDriver Default Profile, on page 93, for more
information. For xDriver-based remote network interfaces that use a custom
(non-default) xDriver profile with a custom lookup extension, the name specified
as the id parameter must exist in the custom database. See Chapter 6,
Extending xDriver, on page 99, for more information.

If you do not specify a valid network interface name as the id parameter when
you call this function, or if the network interface referenced by the id parameter
cannot be found, the LDV_INVALID_DEVICE_ID or
LDVX_INVALID_XDRIVER return code is returned.

Each network interface can only be part of one OpenLDV session at a time on a
particular computer. If you call this function for a network interface that is being
used by another process on your computer, the function will fail, and the
LDV_ACCESS_DENIED return code is returned.

If you use xDriver to open a remote network interface while a remote client on
another computer is using it, the call to ldv_open() might initially appear to
succeed. However, when you call ldv_read() or ldv_write() to read or write a
message to the network interface later, the LDVX_READ_FAILED or
LDVX_WRITE_FAILED failure code is returned, indicating that the session has
failed. The timing of the failure depends on the setting of the Synchronous
Timeout field of the xDriver profile that is handling the session. For more
information about xDriver profiles, see xDriver Profiles on page 134.

ldv_open_cap()
Call this function to establish communications between your application and a
network interface. Additionally, you can request an operational mode for the
network interface so that it opens in the specified mode. This function returns a
unique handle that you can provide to the other OpenLDV functions to identify
this instance of the network interface.

Syntax
LDVCode ldv_open_cap(
 LPCSTR szDevice,
 LdvHandle* pHandle,
 LDVDeviceCaps nDeviceCaps,
 HWND hWnd,
 LONG tag
)

26 Using the OpenLDV API

Table 13. ldv_open_cap() Parameters

Parameter Direction Description

szDevice Input The network interface with which to establish
communication. For example, “LON1” could be used to
identify a U10, PCLTA-10, or PCLTA-21 network interface.
Or, “X.Default.1MainStreet” could be used to identify a
SmartServer that will be opened through xDriver.

pHandle Output A pointer to a variable that you can use to identify the
network interface with the other OpenLDV functions. This
handle is valid only if the function returns LDV_OK.

nDeviceCaps Input The requested operational mode for the network interface.
For example, a USB network interface can be opened as a
Layer 2 or a Layer 5 network interface by specifying the
appropriate LDVDeviceCaps value (LDV_DEVCAP_L2 or
LDV_DEVCAP_L5).

hWnd Input The Windows handle for the session state change or
attachment notification messages, where available (for
example, from an xDriver device or a USB network
interface).

If NULL, no notification messages are sent.

tag Input Correlates notification messages with sessions. This tag is
supplied as the LPARAM parameter of all session state
change messages.

Remarks
This function is an extended version of the ldv_open() and ldvx_open()
functions that additionally allows you to request the operational mode in which
to open the specified device. If supported by the network interface, this function
allows you to request Layer 2 or Layer 5 operational mode, or request that
communications with the device (the ldv_read() and ldv_write() functions) use
the SICB format or the extended LdvEx format (which includes the SICB data).
See Application Buffer Structure on page 58 for a description of the SICB and
LdvEx formats.

This function returns LDV_OK if the network interface is successfully opened.
In this case, the function also returns a handle that you can use to identify the
network interface with the other OpenLDV functions. Use the ldv_close()
function to close the session with the network interface.

If the device does not support the requested capability, the error
LDV_CAPABILITY_NOT_SUPPORTED is returned, and the device is not
opened. Note that remote network interfaces (RNIs) are Layer 5 only. Protocol
analyzer usage (supported by SmartServers and i.LON 600 RNI devices) is
similar to Layer 2 (but receive-only). IP-852 channels cannot be opened by an
OpenLDV application.

OpenLDV Programmer’s Guide 27

For local network interfaces, after the ldv_open_cap() function returns the
LDV_OK success code, the network interface device has been initialized (see
below for information about remote network interfaces). For some network
interface types, the network interface enters an initial quiet mode (flush state)
after reset. To start using the network interface, the OpenLDV application must
cancel the quiet mode with the niFLUSH_CANCEL immediate network
interface command. For more information about immediate commands, see
Immediate Commands on page 77.

Each successful ldv_open(), ldv_open_cap(), or ldvx_open() call (including
nested ones) must have a matching ldv_close() call.

For xDriver-based remote network interfaces that use the xDriver default lookup
extension, the name specified as the szDevice parameter should match an entry
created for a device with the LONWORKS Interfaces application in the Windows
Control Panel. See Chapter 5, Using the xDriver Default Profile, on page 93, for
more information. For xDriver-based remote network interfaces that use a
custom (non-default) xDriver profile with a custom lookup extension, the name
specified as the id parameter must exist in the custom database. See Chapter 6,
Extending xDriver, on page 99, for more information.

If you do not specify a valid network interface name as the szDevice parameter
when you call this function, or if the network interface referenced by the szDevice
parameter cannot be found, the LDV_INVALID_DEVICE_ID or
LDVX_INVALID_XDRIVER return code is returned.

Each network interface can only be part of one OpenLDV session at a time on a
particular computer. If you call this function for a network interface that is being
used by another process on your computer, the function will fail, and the
LDV_ACCESS_DENIED return code is returned.

If you use xDriver to open a remote network interface while a remote client on
another computer is using it, the call to ldv_open_cap() might initially appear
to succeed. However, when you call ldv_read() or ldv_write() to read or write a
message to the network interface later, the LDVX_READ_FAILED or
LDVX_WRITE_FAILED failure code is returned, indicating that the session has
failed. The timing of the failure depends on the setting of the Synchronous
Timeout field of the xDriver profile that is handling the session, as well as the
setting of the TcpMaxConnectRetransmissions parameter on the computer
that is running the application. For more information about xDriver profiles, see
xDriver Profiles on page 134.

ldv_read()
Call this function to read an uplink message from a network interface.

Syntax
LDVCode ldv_read(
 LdvHandle handle,
 PVOID msg_p,
 SHORT len
)

28 Using the OpenLDV API

Table 14. ldv_read() Parameters

Parameter Direction Description

handle

Input The network interface device to be read. This value was
returned as the handle parameter when you opened the
network interface with one of the open functions
(ldv_open(), ldv_open_cap(), or ldvx_open()).

msg_p Output A pointer to a buffer allocated by your application that will
receive the next uplink message. You must provide a
sufficiently large buffer to receive each message. The length
of this buffer is specified by the len parameter.

For information about the different uplink messages you
might read with this function, and descriptions of the
application buffer structure that each one uses, see Chapter
3, Sending and Receiving Messages with the OpenLDV API,
on page 57.

len Input The length of the application buffer to receive the message,
in bytes.

For communications that use the SICB format, the
maximum length of a message is 257 bytes. When possible,
use a buffer length of at least 257 bytes. For
communications that use the LdvEx format, allocate
additional buffer space.

Remarks
All messages from a network interface are buffered by the OpenLDV runtime
until a client application reads them with this function. You can program your
application to poll the network interface for incoming messages by periodically
calling this function. The function returns LDV_OK when it has successfully
read a message from the network interface, or returns LDV_NO_MSG_AVAIL if
no messages are currently available. Alternatively, you can use the
ldv_register_event() function to set up an event to signal the receipt of each
new message. For each poll loop within your application, you should call the
ldv_read() function until you receive LDV_NO_MSG_AVAIL.

Most incoming messages will be responses to prior requests or unsolicited
messages (such as network variable updates or application messages). Although
incoming messages are buffered, the OpenLDV application must process these
messages and provide suitable responses to the LONWORKS network, in a timely
fashion. The acceptable duration for providing these responses depends on the
arrival rate of messages from the network, the number of buffers in the network
interface driver involved, and the speed and current processing load of the
computer running the application. Therefore, the OpenLDV application must
process all incoming messages promptly, and with high priority.

The ldv_read() function returns LDV_INVALID_BUF_LEN if the specified
buffer is too small to contain the next incoming message. In this case, allocate a
larger buffer to receive the message, and call the function again, specifying a
larger value for the len input parameter. For communications that use the SICB

OpenLDV Programmer’s Guide 29

format, the maximum length of a message is 257 bytes, and so you should use a
buffer length of at least 257 bytes to guarantee that any message can be buffered.
If your device uses the LdvEx format, you must allocate additional buffer space.

If the handle parameter is not valid, the LDV_INVALID_DEVICE_ID code is
returned. If the network interface referenced by the handle parameter has not
been opened by your process, then the LDV_NOT_OPEN code is returned if the
handle references a local network interface. If the handle references a failed
remote network interface, or if the session has failed, the
LDVX_READ_FAILED code is returned.

ldv_register_event()
Call this function to register a Windows event object to be signaled whenever a
message is available to be read from a network interface.

Syntax
LDVCode ldv_register_event(
 LdvHandle handle,
 HANDLE event
)

Table 15. ldv_register_event() Parameters

Parameter Direction Description

handle

Input The network interface device that will cause the Windows
event object to be signaled. This value was returned as the
handle parameter when you opened the network interface
with one of the open functions (ldv_open(),
ldv_open_cap(), or ldvx_open()).

event Input The Windows event object to be signaled each time a
message is received. You can use the Windows
CreateEvent() and CloseHandle() functions to create and
destroy a Windows event object suitable for use with the
ldv_register_event() function.

Remarks
Use this function to register for notification of incoming messages from the
network interface. When the network interface receives a message, the Windows
event object referenced by the event parameter is signaled.

This event signals the availability of one or more messages to be read. When the
Windows event object is signaled, the OpenLDV application should call the
ldv_read() function repeatedly until all available uplink messages have been
read.

30 Using the OpenLDV API

To de-register a current event and register a new event, call
ldv_register_event()with a new event parameter. You can also call the
ldv_register_event() function and specify NULL as the event parameter to
disable event notifications for a network interface.

If the handle parameter is not valid, the LDV_INVALID_DEVICE_ID code is
returned. If the network interface referenced by the handle parameter is not
open, then the LDV_NOT_OPEN code is returned. If the function fails to
register the Windows event object, the LDVX_REGISTER_FAILED code is
returned.

ldv_set_device_info()
Call this function to create or modify the information for a specified LONWORKS
interface device. Applications that configure network interfaces (such as the
Echelon LONWORKS Interfaces control panel application) can use this function.

Syntax
LDVCode ldv_set_device_info(
 LPCSTR szDevice,
 const LDVDeviceInfo* pDeviceInfo
)

Table 16. ldv_set_device_info() Parameters

Parameter Direction Description

szDevice Input The name of the LONWORKS interface device that you are
creating or modifying.

pDeviceInfo Input A pointer to an LDVDeviceInfo structure that contains the
information for the created or modified device.

Remarks
Use this function to create or modify information for a LONWORKS interface
device. This function returns LDV_OK if the device information is successfully
updated. Otherwise, it returns a failure code (such as
LDV_DEVICE_INFO_INVALID).

Before you call this function, you must initialize the LDVDeviceInfo structure:

• Set the size field equal to the size of the LDVDeviceInfo structure.

• The driver field is ignored by this function. Use the driverId field to
specify the driver for the device.

• The name field is ignored by this function. The logical name of the device
is read only and cannot be modified by this function.

• Set the physName field to the physical name of the new device, or set it to
NULL or an empty string if the physical device name is not to be
modified. For a custom network interface that uses a Windows driver,

OpenLDV Programmer’s Guide 31

specify the Windows device path, for example, \\.\MYLON1.0. See
Appendix A, Custom Network Interfaces, on page147, for more
information about custom network interfaces.

• Set the desc field to the description of the new device, or set it to NULL
or an empty string if the device description is not to be modified.

• Set the caps and capsMask fields according to the capabilities of the
device.

• Set the transId field to the transceiver ID for the device.

• Set the driverId field to an LdvDriverID value that corresponds to the
driver ID of the device that you are creating or modifying, or set it to
-1 if the driver ID is not to be modified.

See Structures and Enumerations for the Device API on page 37 for a description
of the LDVDeviceInfo structure. See Structures and Enumerations for the
Driver API on page 42 for a description of the LDVDriverID enumeration
values.

To modify individual fields (read-modify-write) for an existing device, perform the
following steps:

1. Retrieve the current information using the ldv_get_device_info()
function.

2. Allocate and initialize a new LDVDeviceInfo structure.

3. Copy unchanging fields from the old structure into the new. For strings
that are not being modified, set them to NULL.

4. Set the fields to be changed in the new structure.

5. Call the ldv_set_device_info() function.

6. Deallocate the new structure.

7. Release the old resources by calling the ldv_free_device_info() function.

See Working with a Custom Network Interface on page 148 for an example of how
to use this function.

ldv_set_driver_info()
Call this function to create or modify the information for a specified LONWORKS
interface device driver.

Syntax
LDVCode ldv_set_driver_info(
 LDVDriverID nDriverId,
 const LDVDriverInfo* pDriverInfo
)

32 Using the OpenLDV API

Table 17. ldv_set_driver_info() Parameters

Parameter Direction Description

nDriverId Input The driver ID of the driver that you are creating or
modifying.

pDriverInfo Input A pointer to an LDVDriverInfo structure that contains the
information for the created or modified driver.

Remarks
Use this function to create or modify information for a LONWORKS interface
device driver. This function returns LDV_OK if the driver information is
successfully updated. Otherwise, it returns a failure code (such as
LDV_DRIVER_INFO_INVALID, LDV_DRIVER_UPDATE_FAILED, or
LDV_STD_DRIVER_TYPE_READ_ONLY).

Before you call this function, you must initialize the LDVDriverInfo structure:

• Set the size field equal to the size of the LDVDriverInfo structure.

• The id field is ignored by this function. The driver ID is read only, and
cannot be modified using this function.

• Set the type field to an LdvDriverType value that corresponds to the
new driver type, or set it to -1 if the driver type is not to be modified. The
driver type is read-only for standard driver IDs, and cannot be modified
using this function; however, non-standard drivers can have their driver
type set.

• Set the name field to the name of the new driver type, or set it to NULL
or an empty string if the driver name is not to be modified.

• Set the desc field to the description of the new driver type, or set it to
NULL or an empty string if the driver description is not to be modified.

See Structures and Enumerations for the Driver API on page 42 for a description
of the LDVDriverID enumeration values and the LDVDriverInfo structure.

See Working with a Custom Network Interface on page 148 for an example of how
to use this function.

ldv_write()
Call this function to write a message to the network interface, or to send a
message through the network interface to a device on the network.

Syntax
LDVCode ldv_write(
 LdvHandle handle,
 PVOID msg_p,
 SHORT len
)

OpenLDV Programmer’s Guide 33

Table 18. ldv_write() Parameters

Parameter Direction Description

handle

Input The LONWORKS interface device to be written. This value
was returned as the handle parameter when you opened the
network interface with one of the open functions
(ldv_open(), ldv_open_cap(), or ldvx_open()).

msg_p Input A pointer to a buffer that contains the message to be written
to the network interface.

For information about the different message commands that
you can send with this function, and descriptions of the
application buffer structure that each one requires, see
Chapter 3, Sending and Receiving Messages with the
OpenLDV API, on page 57.

len Input The length of the message to be written. This length might
not match the length of buffer referenced by the msg_p
parameter. The len parameter should reflect how many
bytes will be written to the network interface, and should
therefore be less than or equal to the length of the buffer
referenced by the msg_p parameter.

Remarks
This function returns LDV_OK if the message is successfully written to the
network interface.

If the handle parameter is not valid, the LDV_INVALID_DEVICE_ID code is
returned. If the network interface referenced by the handle parameter is not
open, then the LDV_NOT_OPEN code is returned if it is a local network
interface. If it is a remote network interface, the LDVX_WRITE_FAILED code
is returned.

Be sure to use the message format (SICB or LdvEx) that corresponds to the
format specified when the network interface was opened.

ldv_xlate_device_name()
Call this function to retrieves the physical name of the Windows device that is
associated with a (logical) network interface name.

Legacy device drivers (for example, for PCC-10 or PCLTA-21 network interfaces)
can use the translated name to access the driver directly. In general, however,
using the translated name is not recommended.

34 Using the OpenLDV API

Syntax
LDVCode ldv_xlate_device_name(
 LPCSTR device_name,
 LPSTR driver_name,
 int* driver_name_len
)

Table 19. ldv_xlate_device_name() Parameters

Parameter Direction Description

device_name Input The name of the network interface.

driver_name Output A pointer to a buffer to receive the physical name.

driver_name_len Input

Output

A pointer to the length of the buffer that will receive the
physical name.

On return, set to the length of the returned name.

Remarks
This function returns LDV_OK if the physical name for the network interface is
successfully retrieved.

ldvx_open()
Call this function to establish communications between your application and a
network interface. This function also registers a Windows HWND object for
receiving session state change notifications and returns a unique handle that you
can provide to the other OpenLDV functions to identify this instance of the
network interface.

Syntax
LDVCode ldvx_open(
 LPCSTR id,
 LdvHandle* handle,
 HWND hWnd,
 LONG tag
)

OpenLDV Programmer’s Guide 35

Table 20. ldvx_open() Parameters

Parameter Direction Description

id Input The LONWORKS interface device with which to establish
communication. For example, “LON1” could be used to
identify a U10, PCLTA-10, or PCLTA-21 network interface.
Or, “X.Default.1MainStreet” could be used to identify a
SmartServer that will be opened through xDriver.

handle Output A pointer to a variable that you can use to identify the
network interface with the other OpenLDV functions. This
handle is valid only if the function returns LDV_OK.

hWnd Input The Windows handle for the session state change or
attachment notification messages, where available (for
example, from an xDriver device or a USB network
interface).

If NULL, no notification messages are sent.

See Windows Messages for Session Notifications on page 44.

tag Input Correlates notification messages with sessions. This tag is
supplied as the LPARAM parameter of all session state
change messages.

Remarks
This function is an extended version of the ldv_open() function that additionally
allows you to specify a Windows handle and tag for session state change or
attachment notificatgion messages. This function returns LDV_OK if the
network interface is successfully opened. In this case, the function also returns a
handle that you can use to identify the network interface with the other
OpenLDV functions. You can use the ldv_close() function to close the session
with the network interface.

For local network interfaces, after the ldvx_open() function returns the
LDV_OK success code, the network interface device has been initialized (see
below for information about remote network interfaces). For some network
interface types, the network interface enters an initial quiet mode (flush state)
after reset. To start using the network interface, the OpenLDV application must
cancel the flush state with the niFLUSH_CANCEL immediate network
interface command. For more information about immediate commands, see
Immediate Commands on page 77.

Each successful ldv_open(), ldv_open_cap(), or ldvx_open() call (including
nested ones) must have a matching ldv_close() call.

For xDriver-based remote network interfaces that use the default xDriver lookup
extension, the name specified as the id parameter must match an entry created
for a device with the LONWORKS Interfaces application in the Windows Control
Panel. See Chapter 5, Using the xDriver Default Profile, on page 93, for more

36 Using the OpenLDV API

information. If you do not specify a valid network interface name as the id
parameter when you call this function, or if the network interface referenced by
the id parameter cannot be found, the LDV_INVALID_DEVICE_ID or
LDVX_INVALID_XDRIVER return code is returned.

Each network interface can only be part of one OpenLDV session at a time on a
particular computer. If you call this function for a network interface that is being
used by another process on your computer, the function will fail, and the
LDV_ACCESS_DENIED return code is returned.

If you use xDriver to open a remote network interface while a remote client on
another computer is using it, the call to ldvx_open() might initially appear to
succeed. However, when you call ldv_read() or ldv_write() to read or write a
message to the network interface later, the LDVX_READ_FAILED or
LDVX_WRITE_FAILED failure code is returned, indicating that the session has
failed. The timing of the failure depends on the setting of the Synchronous
Timeout field of the xDriver profile that is handling the session, as well as the
setting of the TcpMaxConnectRetransmissions parameter on the computer
that is running the application. For more information about xDriver profiles, see
xDriver Profiles on page 134.

ldvx_register_window()
Call this function to register a Windows HWND object for receiving session
change notifications.

Syntax
LDVCode ldvx_register_window(
 LdvHandle handle,
 HWND hWnd,
 LONG tag
)

Table 21. ldvx_register_window() Parameters

Parameter Direction Description

handle

Input The session handle for the network interface. This value
was returned as the handle parameter when you opened the
network interface with one of the open functions
(ldv_open(), ldv_open_cap(), or ldvx_open()).

hWnd Input The Windows handle for the session state change or
attachment notification messages, where available (for
example, from an xDriver device or a USB network
interface). This handle replaces any previously set handle
(such as one from one of the open functions).

If NULL, OpenLDV stops sending notifications.

See Windows Messages for Session Notifications on page 44.

OpenLDV Programmer’s Guide 37

Parameter Direction Description

tag Input Correlates notification messages with sessions. This tag is
supplied as the LPARAM parameter of all session state
change messages.

Remarks
Use this function to register a Windows HWND object for receiving session
change notifications. This handle is the same as that passed to one of the open
functions (ldv_open(), ldv_open_cap(), or ldvx_open()).

ldvx_shutdown()
Call this function to cleanly shut down the OpenLDV driver before exiting your
application.

Syntax
LPCSTR LDVAPI ldvx_shutdown(
 VOID
)

Remarks
Call this function once before allowing the application to exit to avoid delays on
shutdown. After you call this function, you cannot access the OpenLDV driver
again.

Structures and Enumerations for the Device API
This section describes the structures and enumerations defined for the OpenLDV
device API.

LDVDeviceInfo Structure
The device API functions refer to the LDVDeviceInfo structured data type:

typedef struct LDVDeviceInfo
{
 DWORD size;
 const LDVDriverInfo* driver;
 LPCSTR name;
 LPCSTR physName;
 LPCSTR desc;
 LDVDeviceCaps caps;
 LDVDeviceCaps capsMask;
 BYTE transId;
 LDVDriverID driverId;
} LDVDeviceInfo;

38 Using the OpenLDV API

/* (read-only) */
typedef const LDVDeviceInfo* LDVDeviceInfoPtr;

The LDVDeviceInfo structure contains information that describes a specific
LONWORKS interface device (identified by its name). Table 22 describes the
LDVDeviceInfo structure’s fields.

Table 22. LDVDeviceInfo Structure

Field Description

size The size (in bytes) of this structure. This field must be set
before calling any of the set functions that pass this structure as
a parameter.

driver A pointer to a driver information object that describe the driver
for the device. See the LDVDriverInfo in Structures and
Enumerations for the Driver API on page 42.

Ignored by the ldv_set_device_info() function.

name A string that contains the name of the logical device.

physName A string that contains the name of the physical device, if
applicable. If not applicable, returns the logical name.

desc A string that contains the description of the device driver, if
available.

caps A combination of LDVDeviceCaps values that describes the
capabilities of this device, where known. See LDVDeviceCaps
in Table 25.

capsMask A combination of LDVDeviceCaps values that describes which
of the capability bits are valid. See LDVDeviceCaps in Table
25.

transId The transceiver ID of the device, if known.

A value of -1 signifies “unknown” or “don’t change”.

driverId The device driver ID of the associated driver. See LdvDriverID
in Table 27.

See the following functions for their use of this structure: ldv_get_device_info()
on page 20, ldv_set_device_info() on page 30, and ldv_free_device_info() on page
18.

LDVDevices Structure
The device API functions refer to the LDVDevices structured data type:

OpenLDV Programmer’s Guide 39

typedef struct LDVDevices
{
 DWORD nInfos;
 LDVDeviceInfoPtr* pInfos;

} LDVDevices;

The LDVDevices structure contains information that describes a set of
LONWORKS interface devices. Table 23 describes the LDVDevices structure’s
fields.

Table 23. LDVDevices Structure

Field Description

nInfos The number of Device Info pointers in the array.

pInfos An array of Device Info pointers. See LDVDeviceInfo Structure
on page 37 for information about the LDVDeviceInfo structure.

See the following functions for their use of this structure:
ldv_get_matching_devices() on page 22 and ldv_free_matching_devices() on page
20.

LdvCombineFlags Enumeration
Table 24 describes the enumerated values for the LdvCombineFlags device
capability combination flags. The device capability combination flags specify how
multiple bits are combined when determining device capability support.

Table 24. OpenLDV Device Capability Combination Flags (LdvCombineFlags)

Driver Type
Numeric
Value Description

LDV_COMBINE_DEFINITELY_ALL 0 All of the specified capabilities must
definitely exist

LDV_COMBINE_POSSIBLY_ALL 1 All of the specified capabilities must
possibly exist

LDV_COMBINE_DEFINITELY_ANY 2 Any of the specified capabilities must
definitely exist

LDV_COMBINE_POSSIBLY_ANY 3 Any of the specified capabilities must
possibly exist

The two enumeration values *_ALL specify an AND of the device capabilities,
whereas the two *_ANY values specify an OR of the device capabilities.

See the ldv_free_matching_devices() function on page 20 for its use of this
enumeration.

Example: To return all devices that are currently defined as protocol analyzers,
use the ldv_get_matching_devices() function:

40 Using the OpenLDV API

1. Set the nCaps to LDV_DEVCAP_PA to specify protocol analyzer
capability.

2. Set nCombine to LDV_COMBINE_DEFINITELY_ALL (or
LDV_COMBINE_DEFINITELY_ANY) to specify that the function
should return all devices that definitely are defined as protocol analyzers.

If you want the function to return all devices that are definitely protocol
analyzers along with devices that might be protocol analyzers (devices
with multiple capabilities), specify LDV_COMBINE_POSSIBLY_ALL
(or LDV_COMBINE_POSSIBLY_ANY).

3. Prepare the pDevices output buffer for the returned results.
LDVCode rc = ldv_get_matching_devices(
 LDV_DEVCAP_PA,
 LDV_COMBINE_DEFINITELY_ALL,
 *myPA_List);

LdvDeviceCaps Enumeration
Table 25 describes the enumerated values for the LdvDeviceCaps device
capabilities, which describes the capabilities of a LONWORKS interface device.
These constants can be OR’ed together for LONWORKS interface devices that
support multiple capabilities.

See ldv_open_cap() on page 25 for information about how to specify device
capabilities.

Table 25. OpenLDV Device Capabilities (LdvDeviceCaps)

Device Capability
Numeric
Value Description

LDV_DEVCAP_UNKNOWN 0x00000000 An unknown device, or a
device whose capabilities
cannot be determined

LDV_DEVCAP_L5 0x00000001 The device can operate as a
Layer 5 network interface.

LDV_DEVCAP_L2 0x00000002 The device can operate as a
Layer 2 network interface.

LDV_DEVCAP_LWIP 0x00000010 The device can operate as an
IP-852 device or channel.

These types of devices are
implemented within the LNS
Server and cannot be opened
using the OpenLDV API.

LDV_DEVCAP_PA 0x00000020 The device can operate as a
protocol analyzer interface.

OpenLDV Programmer’s Guide 41

Device Capability
Numeric
Value Description

LDV_DEVCAP_XDRIVER 0x00000040 The device is an xDriver-based
device.

The network interface is
physically remote from the
host computer.

LDV_DEVCAP_SICB 0x00000100 The device uses SICB-
formatted packets.

LDV_DEVCAP_LDVEX 0x00000200 The device uses LdvEx-
formatted packets.

LDV_DEVCAP_NOSTATUS 0x00000800 The device does not support
the niSTATUS command.

LDV_DEVCAP_SWITCHABLE 0x00001000 The device can switch between
operations as a Layer 5 or a
Layer 2 network interface.

LDV_DEVCAP_ATTACHABLE 0x00002000 The device can be attached or
detached from the host
computer, for example, by
connecting to or disconnecting
from a USB hub.

You can receive attachment
and detachment notifications
for this device by registering a
Windows handle using the
ldvx_register_window()
function.

LDV_DEVCAP_CURRENTLY_L5 0x00010000 The device is currently
operating as a Layer 5
network interface.

LDV_DEVCAP_CURRENTLY_L2 0x00020000 The device is currently
operating as a Layer 2
network interface.

LDV_DEVCAP_CURRENTLY_ATTACHED 0x20000000 The device is currently
attached to the host computer.

This capability applies to
devices that can be physically
removed and maintain their
device entries remain. Such
devices include U10 and U20
USB network interfaces.

42 Using the OpenLDV API

Device Capability
Numeric
Value Description

LDV_DEVCAP_CURRENTLY_AVAILABLE 0x40000000 The device is currently not in
use by any process on this
computer. If it is not is use by
another computer, the device
is available for use.

Structures and Enumerations for the Driver API
This section describes the structure and enumerations defined for the OpenLDV
driver API.

LDVDriverInfo Structure
The driver API functions refer to the LDVDriverInfo structured data type:

typedef struct LDVDriverInfo
{
 DWORD size;
 LDVDriverID id;
 LDVDriverType type;
 LPCSTR name;
 LPCSTR desc;
} LDVDriverInfo;

/* (read-only) */
typedef const LDVDriverInfo* LDVDriverInfoPtr;

The LDVDriverInfo structure contains information that describes a specific
LONWORKS interface device driver (identified by its driver ID). Table 26
describes the LDVDriverInfo structure’s fields.

Table 26. LDVDriverInfo Structure

Field Description

size The size (in bytes) of this structure. This field must be set
before calling any of the set functions that pass this structure as
a parameter.

id The LONWORKS interface device driver ID. See LdvDriverID
Enumeration on page 43.

type The device driver type. See LdvDriverType Enumeration on
page 44.

name A string that contains the name of the device driver.

desc A string that contains the description of the device driver, if
available.

OpenLDV Programmer’s Guide 43

See the following functions for their use of this structure: ldv_get_driver_info()
on page 21, ldv_set_driver_info() on page 31, and ldv_free_driver_info() on page
19.

LdvDriverID Enumeration
Table 27 describes the enumerated values for the LdvDriverID driver identifier
(ID). The driver ID describes the driver class of an associated network interface.

LdvDriverID enumeration values less than 127 define Echelon network
interfaces. To define your own network interface type, use an enumeration value
greater than 128.

Table 27. OpenLDV Driver Identifier (LdvDriverID)

Driver ID
Numeric
Value Description

LDV_DRIVERID_UNKNOWN 0 An unknown network interface type, or a
type that cannot be determined

LDV_DRIVERID_ILON 1 An undetermined i.LON Ethernet Adapter

LDV_DRIVERID_ILON10 2 An i.LON 10 Ethernet Adapter

LDV_DRIVERID_ILON100 3 A SmartServer or i.LON 100 Internet
Server

LDV_DRIVERID_ILON600 4 An i.LON 600 IP-852 Router

LDV_DRIVERID_LWIP 5 An IP-852 device or channel implemented
by an LNS Server

LDV_DRIVERID_USBLTA 6 A U10 or U20 USB Network Interface

LDV_DRIVERID_SLTA10 7 An SLTA-10 Serial LonTalk Adapter

LDV_DRIVERID_PCC10 8 A PCC-10 PC Card Network Interface

LDV_DRIVERID_PCLTA10 9 A PCLTA-10 PC LonTalk Adapter

LDV_DRIVERID_PCLTA20 10 A PCLTA-20/SMX PCI Network Interface

LDV_DRIVERID_PCLTA21 11 A PCLTA-21 PCI Network Interface

LDV_DRIVERID_TA 12 A turnaround channel

LDV_DRIVERID_RNISIM 13 A remote network interface (RNI)
simulator

LDV_DRIVERID_STD_MAX 127 The maximum enumeration value for
Echelon network interface types

44 Using the OpenLDV API

LdvDriverType Enumeration
Table 28 describes the enumerated values for the LdvDriverType driver type.
The driver type describes the driver type of an associated network interface.

LdvDriverType enumeration values less than 127 define types of Echelon
network interface drivers. To define your own network interface type, use an
enumeration value greater than 128.

Table 28. OpenLDV Driver Type (LdvDriverType)

Driver Type
Numeric
Value Description

LDV_DRIVERTYPE_UNKNOWN 0 An unknown network interface type, or a
type that cannot be determined

LDV_DRIVERTYPE_LNI 1 A local network interface driver
(Windows)

LDV_DRIVERTYPE_RNI 2 A remote network interface driver
(xDriver)

LDV_DRIVERTYPE_USB 3 A USB LonTalk Adapter driver

LDV_DRIVERTYPE_STD_MAX 127 The maximum enumeration value for
Echelon network interface types

Windows Messages for Session Notifications
Table 29 describes the defined values for the Windows messages for session
change notifications used by the ldvx_open() and ldvx_register_window()
functions.

Table 29. Windows Messages for Session Change Notifications

Message Definition Value

LDVX_WM_CLOSED LDVX_APP + 0 34408

LDVX_WM_CONNECTING LDVX_APP + 1 34409

LDVX_WM_ESTABLISHED LDVX_APP + 2 34410

LDVX_WM_FAILED LDVX_APP + 3 34411

LDVX_WM_DETACHED LDVX_APP + 4 34412

LDVX_WM_ATTACHED LDVX_APP + 5 34413

Note: LDVX_APP is defined as 34408 (WM_APP + 1640).

OpenLDV Programmer’s Guide 45

OpenLDV API Return Codes
Table 30 describes the return codes that can be returned by the OpenLDV API
functions. These codes are defined in the LDVCode enumeration.

Table 30. OpenLDV Return Codes

Return Code
Numeric
Value Description

LDV_OK 0 The operation completed
successfully.

LDV_NOT_FOUND 1 This code is returned if you
call any of the open functions
to open a LONWORKS interface
device, but you do not specify
a valid device name as the id
parameter, or the device
referenced by the id
parameter cannot be found.

This code is also returned for
the ldv_locate_sicb()
function if an LdvEX packet
does not contain an SICB
message.

LDV_ALREADY_OPEN 2 This return code is obsolete.

LDV_NOT_OPEN 3 The LONWORKS interface
device is not open. This code is
returned if you use the
ldv_read() or ldv_write()
functions to read or write a
message to a network
interface device, or if you use
the ldv_close() function to
close a session with a network
interface, and the network
interface has not yet been
opened with the ldv_open()
function (or the network
interface has already been
closed).

46 Using the OpenLDV API

Return Code
Numeric
Value Description

LDV_DEVICE_ERR 4 This code is returned if a
function fails to execute as a
result of a failure to
communicate with the
network driver. Call
ldv_close() to close the
network interface and release
the resources assigned to the
network driver. Then, re-open
the network interface with one
of the open functions.

LDV_INVALID_DEVICE_ID 5 This code is returned if you
specify an invalid device name
when opening a LONWORKS
interface device with one of
the open functions, or an
invalid handle when using any
of the other OpenLDV
functions. Ensure that the id
input parameter for the name
of the device is valid.

LDV_NO_MSG_AVAIL 6 No message is available to be
read. This code is returned if
you call ldv_read(), and there
are no uplink messages from
the network interface that
have not yet been read. You
can use the
ldv_register_event()
function to receive notification
events when messages are
available to be read from the
network interface.

LDV_NO_BUFF_AVAIL 7 No buffer is available. This
code is returned if you call
ldv_write(), and there is no
available buffer on the local
network interface to which to
write the message. Wait until
a buffer becomes available and
try writing the message again.

OpenLDV Programmer’s Guide 47

Return Code
Numeric
Value Description

LDV_NO_RESOURCES 8 No resources are available.
This code is returned if the
OpenLDV API has assigned
too many session handles, or if
the computer running your
application has memory
allocation problems. Close
any non-essential processes
running on your computer and
try the operation again.

LDV_INVALID_BUF_LEN 9 This code is returned if you
call ldv_read() to read a
message from a LONWORKS
interface device, and the
specified buffer is not big
enough to contain the next
incoming message. Allocate a
larger buffer to receive the
message and then call
ldv_read() again with a
larger value for the len input
parameter. The message
remains as the next incoming
message until you successfully
read it with the ldv_read()
function.

Recommendation: Allocate
a buffer of at least 257 bytes
(the maximum size of an SICB
format incoming message)
each time you call ldv_read().
If your device uses the LdvEx
format, you must allocate
additional buffer space.

LDV_NOT_ENABLED 10 This return code is obsolete.

LDVX_INITIALIZATION_FAILED 11 The remote network interface
(RNI) could not be initialized.
Generally, this code is
returned if there are
configuration problems on the
network interface that you are
opening or on the computer
that is running your
application.

48 Using the OpenLDV API

Return Code
Numeric
Value Description

LDVX_OPEN_FAILED 12 The remote network interface
(RNI) could not be opened.

LDVX_CLOSE_FAILED 13 The remote network interface
(RNI) could not be closed.

LDVX_READ_FAILED 14 The application failed to read
the message as a result of a
generic failure during the call
to ldv_read(). If you
encounter this return code
persistently, close the current
session and start a new one,
because the current session
might have failed.

LDVX_WRITE_FAILED 15 The application failed to write
the message as a result of a
generic failure during the call
to ldv_write(). If you
encounter this return code
persistently, close the current
session and start a new one,
because the current session
might have failed.

LDVX_REGISTER_FAILED 16 The application failed to
register the Windows event
object for event notification.

OpenLDV Programmer’s Guide 49

Return Code
Numeric
Value Description

LDVX_INVALID_XDRIVER 17 This code is returned if you
attempt to open an xDriver
LONWORKS interface device
with the ldv_open() function,
and the xDriver lookup
extension component fails to
find that network interface.

For devices that use the
default profile, use the
LONWORKS Interfaces
application in the Windows
Control Panel to verify that
the network interface
referenced by the id
parameter exists. For
information about lookup
extension components, see
Appendix C, Custom Lookup
Extension Component
Programming, on page 161.

LDVX_DEBUG_FAILED 18 This return code is reserved.

LDVX_ACCESS_DENIED 19 This code is returned if you
call ldv_open() to initialize a
LONWORKS interface device
that is already opened by
another process on your
computer. OpenLDV does not
support concurrent access to
network interfaces between
multiple processes on the
same computer. For more
information on this, see Using
Multiple Threads or Multiple
Processes on page 14.

LDV_CAPABLE_DEVICE_NOT_FOUND 20 No OpenLDV LONWORKS
interface device was found for
the
ldv_get_matching_devices()
or ldv_open_cap() function.

LDV_NO_MORE_CAPABLE_DEVICES 21 No additional OpenLDV
devices were found for the
ldv_get_matching_devices()
function.

50 Using the OpenLDV API

Return Code
Numeric
Value Description

LDV_CAPABILITY_NOT_SUPPORTED 22 The capability specified for the
ldv_open_cap() function is
not supported by the device.

LDV_INVALID_DRIVER_INFO 23 The driver information
specified for the
ldv_set_driver_info()
function is not valid.

LDV_INVALID_DEVICE_INFO 24 The device information
specified for the
ldv_set_device_info()
function is not valid.

LDV_DEVICE_IN_USE 25 The device is in use and
cannot be opened with any of
the open functions.

LDV_NOT_IMPLEMENTED 26 The OpenLDV interface is not
implemented on the
LONWORKS interface device
being opened.

LDV_INVALID_PARAMETER 27 An invalid parameter was
specified.

LDV_INVALID_DRIVER_ID 28 The driver identifier is not
valid.

LDV_INVALID_DATA_FORMAT 29 This code is returned for the
ldv_locate_sicb() function if
the data packet is not well
formed (for example, too
short).

LDV_INTERNAL_ERROR 30 The OpenLDV API
experienced in an internal
error. Contact Echelon
Support.

LDV_EXCEPTION 31 The OpenLDV API
experienced in an internal
error. Contact Echelon
Support.

LDV_DRIVER_UPDATE_FAILED 32 The driver information
specified for the
ldv_set_driver_info()
function could not be updated.

OpenLDV Programmer’s Guide 51

Return Code
Numeric
Value Description

LDV_DEVICE_UPDATE_FAILED 33 The device information
specified for the
ldv_set_device_info()
function could not be updated.

LDV_STD_DRIVER_TYPE_READ_ONLY 34 The driver information
specified for the
ldv_set_driver_info()
function could not be updated
because the driver type is read
only.

LDV_OUTPUT_BUFFER_SIZE_MISMATCH 40 Output buffer sizes (for both
priority and non-priority
buffers) must be the same.

Applies to APP/NET buffers
on the network interface.

LDV_INVALID_BUFFER_PARAMETER 41 The specified buffer parameter
is not valid (for example, the
specified size is too large).

Applies to APP/NET buffers
on the network interface.

LDV_INVALID_BUFFER_COUNT 42 The specified buffer count is
not valid.

Applies to APP/NET buffers
on the network interface.

LDV_PRIORITY_BUFFER_COUNT_MISMATCH 43 All priority buffers must have
the same count. For example,
if one of the priority output
buffer counts is zero, then
both must be zero.

Applies to APP/NET buffers
on the network interface.

LDV_BUFFER_SIZE_TOO_SMALL 44 The specified buffer size is too
small to support subsequent
buffer configuration changes.

Applies to APP/NET buffers
on the network interface.

52 Using the OpenLDV API

Return Code
Numeric
Value Description

LDV_BUFFER_CONFIGURATION_TOO_LARGE 45 The specified buffer
configuration is too large to fit
in the available space.

Applies to APP/NET buffers
on the network interface.

LDV_WARNING_APP_BUFFER_SIZE_MISMATCH 46 Warning message that the
buffer size mismatch might
cause problems.

Applies to APP/NET buffers
on the network interface.

Example: A Simple OpenLDV Application
The following code sample shows a very simple OpenLDV application that works
with an Echelon USB Network Interface. In this example, the application
performs the following tasks:

1. Opens the network interface

2. Writes a Query Status command to the interface to retrieve the
interface’s current state; from the current state, extracts the network
interface’s error log and prints a message

3. Reads the response to the Query Status command

4. Closes the network interface

5. Shuts down the OpenLDV driver

A real application would perform the same basic set of tasks, but typically for
additional devices beyond just the network interface. Also, a real application
would query the local device database to determine which network interface to
use; this example simply uses LON1. An application might also define the
network address for the network interface and for network devices; this example
uses local network addressing.

This example uses definitions found in the OpenLDVdefinitions.h header file,
which is included with the OpenLDV Developer Example; see Chapter 4, The
OpenLDV Developer Example, on page 89. It also includes the NetMgmt.h
header file, which is installed to the LONWORKS \NeuronC\Include directory
with the NodeBuilder FX Developer’s Kit or the Mini FX Evaluation Kit.

// Include Windows header file
#include <windows.h>

// Include OpenLDV header file
#include “ldv32.h”

// Include Neuron C Network Management header file
// (contains definition for ND_query_status_response)
#include “netmgmt.h”

OpenLDV Programmer’s Guide 53

// Include the header file from the OpenLDV API Example
// (contains definitions for ExpMsgHdr, ExpAppBuffer, niNTQ, niNETMGMT)
#include "OpenLdvDefinitions.h"

// Define Network Management commands
// from ISO/IEC 14908 Control Networking Protocol spec
#define LonNdQueryStatus 0x51 // Query Status command
#define LonNdQueryStatusSuccess 0x31 // Success Response for Query Status

//
// Variable Definitions
//

// Handle for Windows event calls
HANDLE hEvent = NULL;

// Return code for ldv_* calls.
LDVCode rc = LDV_OK; // Assume OK result

// Handle used for ldv_* calls. -1 (minus 1) if not valid.
short m_OpenLdvHandle;

// Flag to signal whether it’s Ok to work with the network interface
Bool ldvCmdOk = TRUE; // Assume OK result

// Input and output buffers:
ExpAppBuffer m_msgIn; // Incoming message buffer
ExpAppBuffer m_msgOut; // Outgoing message buffer

// Size of the message to send
short msgsize = sizeof(m_msgOut.data.code);

//
// Set Up Windows Event
//
hEvent = CreateEvent(NULL, FALSE, TRUE, NULL);

//
// Application Code
//

// Open the network interface; assume LON1
rc = ldv_open(“LON1”, &m_OpenLdvHandle);

if (rc != LDV_OK) {
 m_OpenLdvHandle = -1; // Mark handle invalid
 ldvCmdOk = FALSE; // Don’t try to work with the network interface
 printf(“Could not open the network interface.\n”);
}
else {
 // Register Windows event with this network interface
 rc = ldv_register_event(m_OpenLdvHandle, hEvent);

 if (rc != LDV_OK) {
 ldvCmdOk = FALSE; // Don’t try to work with the network interface
 printf(“Could not register an event for the network interface.\n”);
 }
 else {
 ldvCmdOk = TRUE; // Ok to work with the network interface
 }
}

54 Using the OpenLDV API

if (ldvCmdOk) {

 // Build message to send to NI
 m_msgOut.ni_hdr.q.queue = niNTQ;
 m_msgOut.ni_hdr.q.q_cmd = niNETMGMT;
 m_msgOut.ni_hdr.q.length = sizeof(ExpMsgHdr) + sizeof(ExplicitAddr) +
 msgSize;
 m_msgOut.msg_hdr.exp.tag = 1; // Assume message tag 1
 m_msgOut.msg_hdr.exp.auth = 0;
 m_msgOut.msg_hdr.exp.response = 1; // Make it a response
 m_msgOut.msg_hdr.exp.st = 3; // Make it a REQUEST
 m_msgOut.msg_hdr.exp.pool = 0; // Must be zero
 m_msgOut.msg_hdr.exp.alt_path = 0; // Use default path
 m_msgOut.msg_hdr.exp.addr_mode = 0; // Implicit addressing
 m_msgOut.msg_hdr.exp.cmpl_code = 0; // MSG_NOT_COMPL
 m_msgOut.msg_hdr.exp.path = 0; // Use primary path
 m_msgOut.msg_hdr.exp.priority = 0;
 m_msgOut.msg_hdr.exp.length = msgSize;
 m_msgOut.addr.snd.lc = NI_LOCAL;
 m_msgOut.data.code = LonNdQueryStatus;
 // Omitting “m_msgOut.data.data” because Query Status command has no data

 // Write query status command to the network interface
 rc = ldv_write(m_OpenLdvHandle, m_msgOut, offsetof(ExpAppBuffer, code) +
 msgSize);

 if (rc != LDV_OK) {
 ldvCmdOk = FALSE; // Don’t try to read from the network interface
 printf(“Could not write to network interface.\n”);
 }
 else {
 ldvCmdOk = TRUE; // Ok to read from the network interface
 }
}

if (ldvCmdOk) {
 // Wait for network interface event
 WaitForSingleObject (hEvent, 1000); // Wait 1 second

 // Read response to query status command
 rc = ldv_read(m_OpenLdvHandle, &m_msgIn, sizeof(m_msgIn));

 if (rc != LDV_OK) {
 printf(“Could not read from network interface.\n”);
 }
 else {
 // Read return code from the LonNdQueryStatus command
 if (m_msgIn.data.code == LonNdQueryStatusSuccess) {
 // Success response from Query Status command;
 // Read error log as something interesting to do
 BYTE errLog = (ND_query_status_response *)(&m_msgIn.data.data)->
 error_log;
 if (errLog == 0) printf(“No error in network interface.\n”);
 else printf(“Network interface error was: %d\n”, errLog);
 }
 else {
 // Failure response from Query Status command; do something else
 printf(“Failure response from Query Status cmd: %d\n”,m_msgIn.data.code);
 }
 }
}

OpenLDV Programmer’s Guide 55

// Perform the following tasks regardless of ldvCmdOk value:

// Deregister event for NI
ldv_register_event(m_OpenLdvHandle, NULL);

// Close the network interface
rc = ldv_close(m_OpenLdvHandle);

if (rc != LDV_OK) {
 printf(“Could not close network interface.\n”);
}
else {
 m_OpenLdvHandle = -1; // Mark handle invalid
}

Close(hEvent); // Close the event

ldvx_shutdown(); // Cleanly shutdown the OpenLDV driver

OpenLDV Programmer’s Guide 57

3

Sending and Receiving Messages
with the OpenLDV API

This chapter describes the network interface message commands that
your OpenLDV application can send and receive through a network
interface, as well as the application buffer structure that each type of
message requires.

58 Sending and Receiving Messages with the OpenLDV API

Constructing Messages
You can construct outgoing messages for OpenLDV application using application
buffer structures, and send that data to the network interface using the
ldv_write() function. Use the ldv_read() function to retrieve data from the
network interface, using the same application buffer structures. The following
section describes the application buffer structure.

The OpenLDVdefinitions.h header file contains example code that defines the
formats of these application buffer structures for Layer 5 devices. This header
file is included with the OpenLDV Developer Example; see Chapter 4, The
OpenLDV Developer Example, on page 89.

The ldv_read() and ldv_write() functions take a msg_p parameter, which is a
pointer to a buffer for the data that is to be received or sent. These functions also
take a len parameter, which specifies the size (in bytes) of the buffer or data to
write. See The OpenLDV API on page 15 for a description of these functions.

Application Buffer Structure
Figure 5 on page 59 shows the application buffer structures used by OpenLDV
LONWORKS interface devices. All OpenLDV LONWORKS interface devices support
the serial interface control block (SICB) buffer format. Some LONWORKS
interface devices also support an extended (LdvEx) buffer format. You can use
the ldv_open_cap() function to specify which format to use; see ldv_open_cap()
on page 25.

The SICB buffer format begins with a simple header, the Network Interface
Header. The structure of this header depends on the type of command being
processed:

• For commands that use a message queue, the header includes 4 bits for
the queue type, four bits for the command, and a byte for the length of
the payload.

• For commands that do not use a message queue (such as the immediate
commands), the header includes a byte for the command and a byte for
the length of the payload.

For some commands, the value of the length byte can be zero. An optional,
variable-length data field (as indicated by the header’s length byte) follows the
header.

The LdvEx buffer format encapsulates the SICB format; it adds extra timestamp
information and extended data (where applicable; this extended data is not
interpreted by the OpenLDV software). Unless specifically stated, an
“application buffer” refers to the SICB format buffer.

OpenLDV Programmer’s Guide 59

Extended Header

Extended Data Type

Extended Data Version

Extended Data

BF

Packet Size

Flags

Extended Header Size

Absolute Timestamp
In Seconds

Absolute Timestamp
In Milliseconds

Differential Timestamp
In Microseconds

SICB

Timestamps

Header

SICB

Extension

Command

Length N

Data[0]

Data[1]

Data[N-1]

Data
Payload

NI Header
Queue Command

Buffer Structure for
Commands That Do Not Use

a Message Queue

Buffer Structure for
Commands That Use

a Message Queue

Length N

Data[0]

Data[1]

Data[N-1]

Data
Payload

NI Header

LdvEx Buffer
Format

SICB Buffer
Formats

Figure 5. Application Buffer High-Level Structure

For commands that use a message queue, the queue bits in the SICB buffer
indicate the path by which an incoming message was received, or by which an
outgoing message should leave the network interface. For example, an outgoing
message can use the standard, non-priority, output queue or the priority output
queue. Likewise, an incoming message might be received as a response to a
pending request, or it might be a normal incoming message. See Network
Interface Commands on page 77 for a description of the queue and command-code
values.

The OpenLDV Developer Example contains relevant data type definitions,
constants, and enumerations for messaging using the SICB buffer. The complete

60 Sending and Receiving Messages with the OpenLDV API

SICB application buffer structure is defined as a structure of type ExpAppBuffer
in the OpenLDVdefinitions.h header file.

Some immediate commands use only the first byte of the SICB buffer—the cmd
field—of the application buffer, with no data payload. Other immediate
commands also include a data payload.

All other downlink and uplink message commands use the complete SICB
application buffer structure, as shown in Figure 6. The following sections
describe the application buffer structures.

Queue

Length

ExpMsgHdr

SendAddrDtl

or

RcvAddrDtl

or

RespAddrDtl

Command

UnprocessedNV

or

ExplicitMsg

Length

Application Layer
Header
Size=2

Message Header
Size=3

Network Address
Size=11

Message Data
Size=variable

Queue

Length

Layer 2 Header

NPDU

Command

CRC

Length

Application Layer Header
Size=2
Layer 2 Header
Size=1

Network Protocol Data Unit
Size=variable

CRC
Size=2

Layer 5 Buffer StructureLayer 2 Buffer Structure

Figure 6. SICB Application Buffer Detailed Structure
As described in Getting Started with the OpenLDV Driver on page 7, an
OpenLDV application can use a Layer 2 network interface or a Layer 5 network
interface:

• Layer 2 Network Interface – A network interface that communicates at
Layer 2 of the LonTalk protocol. This type of interface transports
LonTalk packets without processing them, and does not filter by network
address.

• Layer 5 Network Interface – A network interface that communicates at
Layer 5 of the LonTalk protocol. This type of interface transports
incoming LonTalk packets that are addressed to the network interface,
and transports outgoing packets that are addressed to other devices.

OpenLDV Programmer’s Guide 61

Layer 2 Buffer Structure
The following sections provide an overview of the Layer 2 buffer structure shown
in Figure 6. Bit transmission order within a byte is “most significant first”,
meaning that the most significant bit is transmitted first. Byte transmission
order is also “most significant first”, meaning that the most significant byte of a
field is transmitted first.
A Layer 2 network interface uses the Layer 2 buffer structure for most messages.
However, local network management messages use the Layer 5 buffer structure,
regardless of which layer the network interface uses for network messages.
For a more complete description of the Layer 2 buffer structure, see the
ISO/IEC 14908-1 Interconnection of information technology equipment –
Control Network Protocol - Part 1: Protocol Stack.

Application Layer Header
The application layer header contains the network interface command (and
queue) and a byte that indicates the length of the rest of the message. The most
significant nibble of the network interface command contains the command code
(for example, niCOMM for network messages), and the least significant nibble
contains the queue code, if any. These nibbles combine to form the
command/queue byte, which is the network interface command.

An OpenLDV application sends these commands using the ldv_write() function,
and receives them using the ldv_read() function. See Network Interface
Commands on page 76 for a description of the network interface commands.

Layer 2 Header
The Layer 2 header is a single byte that includes the following fields:

• A 1-bit field to specify the priority of the data packet. 0 = Normal; 1 =
Priority.

• A 1-bit field to specify the channel to use, primary or alternate. This field
allows transceivers that have the ability to transmit on two different
channels and receive on either one, without the need to instruct the
transceiver to explicitly receive on a specific channel. The transport layer
sets this bit.

• A 6-bit unsigned field (≥ 0) to specify the channel backlog increment to be
generated as a result of delivering this packet. The backlog represents
the number of messages that the packet shall cause to be generated upon
reception. This value is used by the Smart Transceiver or Neuron Chip
MAC algorithm.

NPDU
The Network Protocol Data Unit (NPDU) encapsulates the physical packet data.
The NPDU includes the following fields:

• Protocol version (2 bits)
• Physical packet type (2 bits)
• Address format (2 bits)

62 Sending and Receiving Messages with the OpenLDV API

• Domain length (2 bits)
• Data (variable length, depending on the packet type and the data)

CRC
The cyclic redundancy check (CRC) is computed over the NPDU and the Layer 2
Header. The CRC is generated using the ITU-T (CCITT) CRC-16 standard
polynomial. When the link layer receives a packet with a CRC error, or a packet
that is less than 8 bytes in length, a transmission error statistic is incremented; if
a packet is received that is too long for the input buffer, or if there are no input
buffers, the missed packet statistic is incremented.

Layer 5 Buffer Structure
The following sections describe the Layer 5 buffer structure shown in Figure 6.
Bit transmission order within a byte is “most significant first”, meaning that the
most significant bit is transmitted first. Byte transmission order is also “most
significant first”, meaning that the most significant byte of a field is transmitted
first.
For a more complete description of the Layer 5 buffer structure, see the ISO/IEC
14908-1 Interconnection of information technology equipment – Control Network
Protocol - Part 1: Protocol Stack.

Application Layer Header
The application layer header contains the network interface command (and
queue) and a byte that indicates the length of the rest of the message. The most
significant nibble of the network interface command contains the command code
(niCOMM for network messages or niNETMGMT for local network interfaces
messages), and the least significant nibble contains the queue code. These
nibbles combine to form the command/queue byte, which is the network interface
command.

An OpenLDV application sends these commands using the ldv_write() function,
and receives them using the ldv_read() function. The OpenLDV Developer
Example contains an example implementation of a network interface API. You
can use the NiSendMsgWait() and NiSendResponse() functions, included as
part of this example API, to send enqueued commands more conveniently. You
can also use the application-specific message dispatcher, also implemented as
part of the OpenLDV Developer Example, to receive these messages.

See Network Interface Commands on page 76 for a description of the network
interface commands.

Message Header
The message header describes the various attributes of the LonTalk message
contained in the data field. The message header field is defined by the union of
two structures:

• ExpMsgHdr — for sending and receiving explicit messages that are not
processed by the network interface

OpenLDV Programmer’s Guide 63

• NetVarHdr — for sending and receiving network variables that are
processed by the network interface

ExpMsgHdr
7 6 5 4 3 2 1 0

msgtype service type auth tag

Priority Path compl code addr
mode alt path pool resp

 length

msgtype

The msgtype field is set to 0 for the ExpMsgHdr.

service type

The service type field contains one of the following values, depending on
which LonTalk protocol messaging service is to be used for delivery of the
message:

• ACKD (0) for the acknowledged messaging service

• UNACKD_RPT (1) for the repeated messaged service

• UNACKD (2) for the unacknowledged messaging service

• REQUEST (3) for the request/response messaging service

auth

The auth field is set to 1 for a downlink message (sent to a network interface)
if the receiver must authenticate the message using LonTalk authentication.
A network interfaces might require authentication for local network
management commands.

It is set to 1 for an uplink message (read from a network interface) if the
message has been authenticated by the network interface.

If authentication is not enabled on the network interface, this field should be
set to 0.

tag

The OpenLDV application uses the tag field for a downlink message (sent to a
network interface) to correlate returned responses and completion events.
For explicitly addressed messages (those that use the full 3-layer address),
you can segt the tag to any value in the range 0-14, and the same value is
returned with the corresponding responses and completion events. In this
case, the tag is also known as the reference ID. For a downlink implicitly
addressed message (one that specifies an entry in the address table), the tag
field is used as an index into the address table of the Smart Transceiver or
Neuron Chip in the network interface to indicate the destination address of
the message. For more information about the address table, see the ISO/IEC
14908-1 protocol specification.

64 Sending and Receiving Messages with the OpenLDV API

For an uplink message (read from a network interface), the tag field indicates
the index into the receive transaction database for acknowledged, repeated
and request messages. When an OpenLDV application generates a response
to an uplink request message, it must save the tag value from the request,
and set the same tag value in the downlink response message.

priority

The priority field is set to indicate a message delivered with priority media
access, either uplink or downlink. When an OpenLDV application generates
a response to an uplink request message, it must save the priority attribute
from the request, and sets the response with the same priority. If the
network interface is configured without priority buffers, and a priority
request is received, the OpenLDV application sets the priority bit in the
response, but sends the response in a non-priority buffer.

path

The path field is set to 1 if the message should use the alternate path, and 0
if it should use the primary path. This feature is enabled only if the alternate
path bit is set. Alternate path is a feature of certain special-purpose mode
LONWORKS transceivers, such as power line (PL) transceivers.

completion code

The completion code field is set for an uplink completion event. Completion
code events are returned to the OpenLDV application for every downlink
(niCOMM) network message sent:

• The MSG_SUCCEEDS (1) value indicates that the message was
successfully delivered.

• The MSG_FAILS (2) value indicates that the message failed to be
delivered.

• Set the completion code field to MSG_NOT_COMPL (0) for
application layer buffers that are not completion events.

Messages sent to the network driver with the niNETMGMT network
interface command do not have associated completion events.

address mode

Set the address mode bit to 1 for an explicitly addressed downlink message,
and specify the network address field as a SendAddrDtl structure (see
SendAddrDtl on page 67).

Set the address mode field to 0 for an implicitly addressed downlink message,
in which case the network address field is ignored, although it must be
present. In this case, use the tag field as the index into the address table of
the Smart Transceiver or Neuron Chip in the network interface for the
destination address. For more information about the address table, see the
ISO/IEC 14908-1 protocol specification.

Set the address mode to 0 for downlink responses to uplink request messages
and network variable polls.

The address mode bit is ignored for local network management
(niNETMGMT) messages.

OpenLDV Programmer’s Guide 65

alternate path

If the alternate path bit is set, the message is delivered on the path specified
in the path bit, otherwise it is delivered on the default path.

pool

Set the pool bit to 0 for a downlink message.

response

Set the response bit to 1 for a downlink response message, and 0 otherwise. If
it is set for an uplink message, the message is a response to a previously sent
request.

length

The length field in the message header is distinct from the length field in the
application layer header. The length field the message header indicates the
number of bytes for the message data.

NetVarHdr
7 6 5 4 3 2 1 0

msgtype poll resvd tag

Priority Path compl code addr
mode trnarnd pool resp

 length

msgtype

The msgtype field is set to 1 for the NetVarHdr.

poll

The poll field is set to 1 for a network variable poll message. For other
network variable messages, it is set to 0 (zero).

reserved

The NetVarHdr includes two bits that are reserved for future use. Set this
field to 0 for downlink messages.

tag

The OpenLDV application uses the tag field for a downlink message (sent to a
network interface) to correlate returned responses and completion events.
For explicitly addressed messages, the tag can be set to any value in the
range 0-14, and the same value is returned with the corresponding responses
and completion events. In this case, the tag is also known as the reference
ID. For a downlink implicitly addressed message, the tag field is used as an
index into the address table of the Smart Transceiver or Neuron Chip in the
network interface to indicate the destination address of the message. For
more information about the address table, see the ISO/IEC 14908-1 protocol
specification.

For an uplink message (read from a network interface), the tag field indicates
the index into the receive transaction database for acknowledged, repeated

66 Sending and Receiving Messages with the OpenLDV API

and request messages. When the OpenLDV application generates a response
to an uplink request message, it must save the tag value from the request,
and return the same tag value in the downlink response message.

priority

The priority field is set to indicate a message delivered with priority media
access, either uplink or downlink. When the OpenLDV application generates
a response to an uplink request message, it saves the priority attribute from
the request, and returns the response with the same priority. If the network
interface is configured without priority buffers, and a priority request is
received, the OpenLDV application sets the priority bit in the response, but
sends the response in a non-priority buffer.

path

The path field is set to 1 if the message should use the alternate path, and 0
(zero) if it should use the primary path. This feature is enabled only if the
alternate path bit is set. Alternate path is a feature of certain special-
purpose mode LONWORKS transceivers.

completion code

The completion code field is set for an uplink completion event. Completion
code events are returned to the OpenLDV application for every downlink
(niCOMM) network message sent:

• The MSG_SUCCEEDS (1) value indicates that the message was
successfully delivered.

• The MSG_FAILS (2) value indicates that the message failed to be
delivered.

• Set the completion code field to MSG_NOT_COMPL (0) for
application layer buffers that are not completion events.

Messages sent to the network driver with the niNETMGMT network
interface command do not have associated completion events.

address mode

Set the address mode bit to 1 for an explicitly addressed downlink message,
and specify the network address field as a SendAddrDtl structure (see
SendAddrDtl on page 67).

Set the address mode field to 0 for an implicitly addressed downlink message,
in which case the network address field is ignored, although it must be
present. In this case, the tag field is used as the index into the address table
of the Smart Transceiver or Neuron Chip in the network interface for the
destination address. For more information about the address table, see the
ISO/IEC 14908-1 protocol specification.

Set the address mode to 0 for downlink responses to uplink request messages
and network variable polls.

The address mode bit is ignored for local network management
(niNETMGMT) messages.

OpenLDV Programmer’s Guide 67

turnaround

If the turnaround bit is set, the message is a turnaround message, that is, a
message sent from one network variable to another network variable on the
same device.

pool

Set the pool bit should 0 for a downlink message.

response

Set the response bit to 1 for a downlink response message, and 0 otherwise. If
it is set for an uplink message, the message is a response to a previously sent
request.

length

The length field in the message header is distinct from the length field in the
application layer header. The length field the message header indicates the
number of bytes for the message data.

Network Address
The network address specifies the address for network (niCOMM) messages,
which includes application messages as well as network variable messages. The
network address is not used for local (niNETMGMT) messages or for implicitly
addressed downlink messages, but it must be present in the application buffer.
The type definition for ExplicitAddr is a union of three structures, depending on
the type of message buffer. For more information about address modes and the
corresponding structures, see the ISO/IEC 14908-1 protocol specification.

The OpenLDV Developer Example also contains an example definition of the
related structures in the OpenLDVdefinitions.h header file.

SendAddrDtl
This structure is used for a downlink, explicitly addressed message, and contains
the destination address of the downlink message in one of four formats,
depending on the address mode. The address modes for sending explicitly
addressed messages are broadcast, group, subnet/node, Neuron ID, local, and
implicit. The SendAddrDtl formats for downlink messages sent using each of
these address modes are displayed below.

68 Sending and Receiving Messages with the OpenLDV API

msb lsb

Format

SendAddrDtl
Destination Address For Broadcast

Addressing

0

Domain

tx_timer

Retryrpt_timer

Subnet

Reserved

Destimation
Address

0 0 0 0 0 1 1

Backlog

msb lsb

Format

SendAddrDtl
Destination Address For Group

Addressing

Size1

Domain Member

tx_timer

Retryrpt_timer

Group

Reserved

Destimation
Address

OpenLDV Programmer’s Guide 69

msb lsb

Format

SendAddrDtl
Destination Address For Subnet/Node

Addressing

0

Domain Node

tx_timer

Retryrpt_timer

Subnet

Reserved

Destimation
Address

0 0 0 0 0 0 1

msb lsb

Format

SendAddrDtl
Destination Address For Neuron ID

Addressing

0

Domain

tx_timer

Retryrpt_timer

Subnet

Neuron ID

Destimation
Address

0 0 0 0 0 1 0

70 Sending and Receiving Messages with the OpenLDV API

0 1 1 1 1 1 1 1

msb lsb

Format

Reserved

SendAddrDtl
Destination Address For Local

Addressing

Destination
Address

0 1 1 1 1 1 1 0

msb lsb

Format

Reserved

SendAddrDtl
Destination Address For Implicit

Addressing

Destination
Address

msg_tag

RcvAddrDtl
This structure is used for uplink messages addressed to the network interface
and intended for the OpenLDV application. The structure contains the source
address of the device sending the message and the destination address of the
uplink message in one of four formats, depending on the address mode. The
address modes for received addresses are broadcast, group, subnet/node, and
Neuron ID. The RcvAddrDtl structures for uplink messages sent using each of
these address modes are displayed below.

OpenLDV Programmer’s Guide 71

msb lsb

Format

RcvAddrDtl
Received Address For Broadcast

Addressing

Domain

Node

Subnet

Reserved

Source
Address

0 0 0 0 0 0flex_domain

Destination
Address

Subnet

msb lsb

Format

RcvAddrDtl
Received Address For Group Addressing

Domain

Node

Subnet

Reserved

Source
Address

0 0 0 0 0 1flex_domain

Destination
Address

Group

72 Sending and Receiving Messages with the OpenLDV API

msb lsb

Format

RcvAddrDtl
Received Address For Subnet/Node

Addressing

Domain

Node

Subnet

Reserved

Source
Address

0 0 0 0 1 0flex_domain

Destination
Address

Subnet

Node

msb lsb

Format

RcvAddrDtl
Received Address For Neuron ID

Addressing

Domain

Node

Subnet

Neuron ID

Source
Address

0 0 0 0 1 1flex_domain

Destination
Address

Subnet

Reserved

RespAddrDtl
This structure is used for an uplink message in response to a previous downlink
request. This field contains the source address of the device sending the response
and the destination address of the uplink message in one of two formats,
depending on the address mode. The address modes for received responses are
group and subnet/node. The RespAddrDtl structures for response messages
sent using each of these address modes are displayed below.

OpenLDV Programmer’s Guide 73

msb lsb

Format

RespAddrDtl
Response Address For Group

Addressing

Domain

Node

Subnet

Reserved

Source
Address

flex_domain

Destination
Address

Subnet

Node

0

Group

Member

msb lsb

Format

RespAddrDtl
Response Address For Subnet/Node

Addressing

Domain

Node

Subnet

Reserved

Source
Address

flex_domain

Destination
Address

Subnet

Node

1

1

Message Data
The data field contains the application data to be transferred within a message.
The format depends on the type of message, and is defined by either the
UnprocessedNV or ExplicitMsg structures.

74 Sending and Receiving Messages with the OpenLDV API

UnprocessedNV
7 6 5 4 3 2 1 0

1 dir NV selector hi

 NV selector lo

 NV data

Depending on the context, this form of the data field is used for network-variable
update messages, poll messages, poll responses, or completion events. A
network-variable update message or a poll response contains 1-31 bytes of
network-variable data. A network-variable poll request message or a completion
event contains no data, only the selector in the first two bytes.

Set the direction bit to 1 for polling an output network variable, and 0 for
updating or polling an input network variable.

An OpenLDV application that sends a downlink network-variable message must
retrieve the appropriate network variable selector from its network variable
configuration table or alias table. Similarly, when an uplink network-variable
message arrives, the OpenLDV application looks up the network variable selector
from the message in its network variable configuration table or alias table to
determine which network variable was addressed.

For more information about network variable configuration, messages, and alias
tables, see the ISO/IEC 14908-1 protocol specification.

ExplicitMsg
7 6 5 4 3 2 1 0

0 Message code

 Message code

Depending on the context, this form of the data field is used for downlink
messages, uplink messages, or completion events. A downlink or uplink message
contains 0-228 bytes of data. A completion event contains only the message code
and the first byte of the data. Message codes for non-response messages are
allocated as listed in Table 31.

Table 31. Message Codes for Application Messages

Message Type Message Codes (Hex)

User application message 00 .. 2F

Standard application message 30 .. 3E

Responder offline 3F

Foreign message 40 .. 4E

OpenLDV Programmer’s Guide 75

Message Type Message Codes (Hex)

Foreign responder offline 4F

Network diagnostic message 50 .. 5F

Network management message 60 .. 73

Router configuration message
(not used by the network interface)

74 .. 7C

Network management escape code 7D

Router far side escape code
(not used by the network interface)

7E

Service pin message 7F

Sending Messages to the Network Interface
Some messages can be sent to the network interface itself. For example, the
NM_update_domain (0x63) message can be sent to the network interface using
the niNETMGMT network interface command. This message sets the network
address (domain ID, subnet ID and node ID) used by the network interface.

Some network interfaces require authentication for local network management
commands. Thus, you should always set the auth bit of the ExpMsgHdr to 1 for
local network management commands. See ExpMsgHdr on page 63 for
information about the message header.

Receiving Messages from the Network Interface
Incoming application, foreign frame, and network variable messages are passed
unchanged to the OpenLDV application. Most network management messages
received are handled by the network interface itself. However, the network
management messages listed in Table 32 can be passed to the OpenLDV
application, which must respond appropriately. See the ISO/IEC 14908-1
protocol specification for information about these network management and
diagnostics messages.

The OpenLDV Developer Example contains an example framework for
recognizing and processing these messages.

Table 32. Network Management Messages Passed to the OpenLDV Application

Message Code Comments

Query NV Config 0x68 OpenLDV application should respond with data from the
network variable configuration table or alias table.

Update NV Config 0x6B OpenLDV application should write its own network variable
configuration or alias table, respectively.

76 Sending and Receiving Messages with the OpenLDV API

Message Code Comments

Set Node Mode 0x6C On-line and off-line only. OpenLDV application should send
corresponding immediate command (niONLINE or
niOFFLINE) to the network interface.

Wink 0x70 OpenLDV application should indicate receipt of message to user,
or handles a request to manage its self-documentation data.

Query SI 0x72 OpenLDV application should respond with self-identification and
self-documentation data.

NV Fetch 0x73 OpenLDV application should respond with network variable
data.

Using the Network Interface Command Interface
The following sections describe the OpenLDV command interface.

Downlink Commands
A downlink command is a message sent to a network interface from an OpenLDV
application with the ldv_write() function:

• The OpenLDV application sends application messages, network
management and diagnostics messages, network variable updates, and
network variable poll requests on the network through the network
interface using the niCOMM network interface command.

• The OpenLDV application also sends messages to the OpenLDV interface
that it generates in response to uplink request messages, including
responses to uplink network variable poll messages.

• The OpenLDV application sends messages to the OpenLDV interface in
response to certain uplink network management messages that it
receives for processing.

There are two categories of downlink communication:

• Immediate commands do not require an application output buffer in the
network interface, and are used to control the operation of the network
interface itself. Immediate commands are sent with all queue selection
bits cleared.

• Local network management commands are used to configure and control
the Smart Transceiver or Neuron Chip that is part of the network
interface. They are sent with the niNETMGMT network interface
command, and are not sent on the LONWORKS network.

Commands for Layer 5 devices that can be used with a specified queue include
niCOMM for messages sent to the network, and niNETMGMT for local network
management operation messages sent to the network interface. Local network
management messages use the Layer 5 buffer structure, regardless of which
layer the network interface uses for network messages.

OpenLDV Programmer’s Guide 77

Uplink Commands
An uplink command is a message read from a network interface by an OpenLDV
application with the ldv_read() function:

• The OpenLDV interface passes certain network management messages to
the OpenLDV application for processing.

• The network interface passes uplink application messages, network
variable updates, and network variable poll requests to the OpenLDV
interface when they are received from the network.

• The network interface also passes completion events to the OpenLDV
interface at the conclusion of every downlink message initiated with the
niCOMM network interface command. If the downlink message was a
request message, the network driver also passes up any responses it
might have received from the network.

• Layer 2 network interfaces send error codes for physical packet errors.

There are two classes of uplink communication:

• Immediate commands are sent to the OpenLDV application by the
network interface to indicate the current operational status of the
network interface.

• Local network management responses are sent to the OpenLDV
application when it issues a local network management request to the
network interface.

Commands for Layer 5 devices that can be used with a specified queue include
niCOMM for messages received from the network, and niNETMGMT for local
network management operation messages received from the network interface.
Local network management messages use the Layer 5 buffer structure,
regardless of which layer the network interface uses for network messages.

Immediate Commands
Immediate commands can be sent to the OpenLDV interface using the
ldv_write() function, and received using the ldv_read() function. Most
immediate commands are just two bytes long. This includes a command byte
followed by a trailing zero, which indicates there is no data payload for the
command. However, some commands, such as niXDRVESC (xDriver escape
command), do require a data payload.

The OpenLDV Developer Example also includes an example implementation of a
network interface API. The NiSendImmediate() function, which is part of this
example API, can be used to send immediate commands.

Network Interface Commands
Table 33 on page 78 lists the network interface commands. Unless specifically
described otherwise, the commands in the table apply to Layer 5 network
interfaces only.

The command names listed in the table are suggestions; for the Layer 5 device
commands, they are defined in the OpenLDV Developer Example by the

78 Sending and Receiving Messages with the OpenLDV API

enumeration type definition NI_QueueCmd used in the field NI_Hdr.q.q_cmd of
the application layer header, and the queue codes are defined by the enumeration
type definition NI_Queue used in the field NI_Hdr.q.queue. The OpenLDV
Developer Example contains a utility function, COpenLDVni::msgHdrInit(),
that computes the correct value for the command/queue byte based on the
address type (local or remote), the service type, and the priority attribute of the
message.

Literals for the supported immediate commands are defined in the OpenLDV
Developer Example by the enumeration type definition NI_NoQueueCmd used
in the field NI_Hdr.q of the application layer header.

Table 33. Network Interface Commands

Network Interface
Command Value Direction Description

niL2_INCOMING 0x1A Uplink Specifies a Layer 2 incoming
packet.

niL2_INC_M1 0x1B Uplink Specifies a Layer 2 Mode 1
incoming packet.

niL2_INC_M2 0x1C Uplink Specifies a Layer 2 Mode 2
incoming packet.

niCOMM + niTQ 0x12 Downlink Used for downlink non-priority
messages using acknowledged,
request and repeated services. For
Layer 2 devices, also used for
unacknowledged messages.

This command specifies niCOMM
(for messages sent to and received
from the network) as the queue
value and niTQ as the command
value.

Applies to Layer 2 or Layer 5
devices. The command format is
different for Layer 2 and Layer 5.

OpenLDV Programmer’s Guide 79

Network Interface
Command Value Direction Description

niCOMM + niTQ_P 0x13 Downlink Used for downlink priority
messages using acknowledged,
request and repeated services. For
Layer 2 devices, also used for
unacknowledged messages.

This command specifies niCOMM
(for messages sent to and received
from the network) as the queue
value and niTQ_P as the command
value.

Applies to Layer 2 or Layer 5
devices. The command format is
different for Layer 2 and Layer 5.

niCOMM + niNTQ 0x14 Downlink Used for downlink non-priority
messages using unacknowledged
service, as well as responses.

This command specifies niCOMM
(for messages sent to and received
from the network) as the queue
value and niNTQ as the command
value.

niCOMM + niNTQ_P 0x15 Downlink Used for downlink priority
messages using unacknowledged
service, as well as responses.

This command specifies niCOMM
(for messages sent to and received
from the network) as the queue
value and niNTQ_P as the
command value.

niCOMM + niRESPONSE 0x16 Uplink Used for uplink response messages
and completion codes.

This command specifies niCOMM
(for messages sent to and received
from the network) as the queue
value and niRESPONSE as the
command value.

80 Sending and Receiving Messages with the OpenLDV API

Network Interface
Command Value Direction Description

niCOMM + niINCOMING 0x18 Uplink Used for uplink messages received
from the network or the network
interface.

This command specifies niCOMM
(for messages sent to and received
from the network) as the queue
value and niINCOMING as the
command value.

niNETMGMT + niTQ 0x22 Downlink Used for downlink non-priority
messages using acknowledged,
request and repeated services. Also
used for a Layer 2 network
interface to issue a local network
management command.

This command specifies
niNETMGMT (for messages sent
to and received from the network
interface) as the queue value and
niTQ as the command value.

niNETMGMT + niTQ_P 0x23 Downlink Used for downlink priority
messages using acknowledged,
request and repeated services. Also
used for a Layer 2 network
interface to issue a local network
management command.

This command specifies
niNETMGMT (for messages sent
to and received from the network
interface) as the queue value and
niTQ_P as the command value.

niNETMGMT + niNTQ 0x24 Downlink Used for downlink non-priority
messages using unacknowledged
service, as well as responses. Also
used for a Layer 2 network
interface to issue a local network
management command.

This command specifies
niNETMGMT (for messages sent
to and received from the network
interface) as the queue value and
niNTQ as the command value.

OpenLDV Programmer’s Guide 81

Network Interface
Command Value Direction Description

niNETMGMT + niNTQ_P 0x25 Downlink Used for downlink priority
messages using unacknowledged
service, as well as responses. Also
used for a Layer 2 network
interface to issue a local network
management command.

This command specifies
niNETMGMT (for messages sent
to and received from the network
interface) as the queue value and
niNTQ_P as the command value.

niNETMGMT + niRESPONSE 0x26 Uplink Used for uplink response messages
and completion codes. Also used by
a Layer 2 network interface to
respond to a local network
management command.

This command specifies
niNETMGMT (for messages sent
to and received from the network
interface) as the queue value and
niRESPONSE as the command
value.

niNETMGMT + niINCOMING 0x28 Uplink Used for uplink messages received
from the network or the network
interface.

This command specifies
niNETMGMT (for messages sent
to and received from the network
interface) as the queue value and
niINCOMING as the command
value.

niL2_PKT_TIMEOUT 0x30 Uplink Specifies a timeout error condition
for a Layer 2 network interface.

niL2_PKT_CRC 0x31 Uplink Specifies a CRC error condition for
a Layer 2 network interface.

niL2_PKT_LONG 0x32 Uplink Specifies a “Packet Too Long” error
condition for a Layer 2 network
interface.

niL2_PRE_LONG 0x33 Uplink Specifies a “Preamble Too Long”
error condition for a Layer 2
network interface.

82 Sending and Receiving Messages with the OpenLDV API

Network Interface
Command Value Direction Description

niL2_PRE_SHORT 0x34 Uplink Specifies a “Preamble Too Short”
error condition for a Layer 2
network interface.

niL2_PKT_SHORT 0x35 Uplink Specifies a “Packet Too Short” error
condition for a Layer 2 network
interface.

niL2_FREQ_RPT 0x40 Uplink Specifies an incoming frequency
report from a Layer 2 network
interface.

niRESET 0x50 Uplink

Downlink

Uplink: Specifies that the network
interface has executed a hardware
or software reset.

Downlink: Requests a reset of the
network interface.

Applies to both Layer 2 and Layer 5
network interfaces.

niFLUSH_CANCEL 0x60 Downlink Requests that the network interface
cancel any flush operation posted
with the niFLUSH command or
caused by device reset.

The OpenLDV application must
issue this command after a
successful completion of the
ldv_open() function.

You can use the NiInit() function,
which is part of the OpenLDV
Developer Example to open a
connection to a network interface
more conveniently.

niFLUSH_COMPLETE 0x60 Uplink Specifies that a flush operation
posted with the niFLUSH
command has completed.

OpenLDV Programmer’s Guide 83

Network Interface
Command Value Direction Description

niONLINE 0x70 Downlink Requests that the network interface
set its online flag and enter the
online state.

The OpenLDV application must
send this command whenever it
goes online.

Generally, the OpenLDV
application receives an uplink
network management message from
a network management tool or
plug-in requesting that the
application go online and send the
niONLINE command. The uplink
message is a standard Set Node
Mode network management
command (message code 0x6C) with
mode set to ONLINE.

niOFFLINE 0x80 Downlink Requests that the network interface
clear its online flag and enter the
offline state.

The OpenLDV application must
send this command whenever it
goes offline.

Generally, the OpenLDV
application receives an uplink
network management message from
a network management tool or
plug-in requesting that the
application go offline and send the
niOFFLINE command. The uplink
message is a standard Set Node
Mode network management
command (message code 0x6C) with
mode set to OFFLINE.

84 Sending and Receiving Messages with the OpenLDV API

Network Interface
Command Value Direction Description

niFLUSH 0x90 Downlink Requests that the network interface
enter quiet mode (the FLUSH
state), which causes it to send any
pending downlink messages.

After all pending downlink
messages are completed, the
network interface responds with the
niFLUSH_COMPLETE command.

No further downlink messages can
be processed until the OpenLDV
application cancels the flush state
with the niFLUSH_CANCEL
command.

niFLUSH_IGN 0xA0 Downlink Obsolete.

niSLEEP 0xB0 Downlink Obsolete.

niLAYER 0xE5 Downlink

Uplink

Sets the top-most protocol layer
processed by the network interface.

This command is used only for
network interfaces that support
switching between a Layer 2 and a
Layer 5 interface, such as the
Echelon U10 and U20 USB
Network Interfaces.

This message can contain a single-
byte data payload to specify the top-
most protocol layer for the network
interface:

• 0 specifies Layer 5

• 1 specifies Layer 2

If no data payload is included, the
network interface responds with
two bytes: 0xE5 followed by 0 (if
the interface is operating as a Layer
5 network interface) or 1 (if the
interface is operating as a Layer 2
network interface).

OpenLDV Programmer’s Guide 85

Network Interface
Command Value Direction Description

niSERVICE 0xE6 Downlink Requests that the network interface
send a service pin message. This
command has the same effect as
activating the device’s service pin.

Some network interfaces might not
support this command.

niXDRVESC

0xEF Uplink

Downlink

This command applies to xDriver
network interfaces only.

This message must contain a data
payload in addition to the command
and length bytes. The first byte of
the data field denotes an xDriver-
specific command; see Table 34.

For information about other
immediate commands that are
specific to a particular network
interface, see the documentation for
that network interface. For
example, the Power Line SLTA
Adapter and Power Line PSG/3
User’s Guide contains descriptions
of commands specific to the
SLTA/PSG interface products that
can be used to control dial-up
connections through a modem.

Table 34 on page 86 describes the xDriver-specific commands that you can use
with the niXDRVESC immediate command. The niXDRVESC immediate
command is described in Table 33 above.

86 Sending and Receiving Messages with the OpenLDV API

Table 34. xDriver Specific Commands

xDriver Command Description

LDVX_NICMD_ENCRYPTION_ON_SEND=0x02 Use this command to enable RC4
encryption on the IP connection to
the RNI for all subsequent
messages sent to the network
interface. All subsequent messages
are encrypted until the
LDVX_NICMD_ENCRYPTION_
OFF_SEND command is sent, or
the session is terminated.

This command is ignored if
encryption has already been
enabled.

The xDriver subsystem determines
if the network interface supports
RC4 encryption. If it does not, this
command is silently ignored.

LDVX_NICMD_ENCRYPTION_OFF_SEND=0x03 Use this command to disable RC4
encryption on the IP connection to
the RNI for all subsequent
messages sent to the network
interface.

This command is ignored if
encryption has already been
disabled.

LDVX_NICMD_ENCRYPTION_ON_RECEIVE=0x04 Use this command to enable RC4
encryption on the IP connection to
the RNI for all subsequent
messages sent from the network
interface. All subsequent messages
are encrypted until the
LDVX_NICMD_ENCRYPTION_
OFF_RECEIVE command is sent,
or the session is terminated.

This command is ignored if
encryption has already been
enabled.

The xDriver subsystem determines
if the network interface supports
RC4 encryption. If it does not, this
command is silently ignored.

OpenLDV Programmer’s Guide 87

xDriver Command Description

LDVX_NICMD_ENCRYPTION_OFF_RECEIVE=0x05 Use this command to disable RC4
encryption on the IP connection to
the RNI for all subsequent
messages sent from the network
interface.

This command is ignored if
encryption has already been
disabled.

OpenLDV Programmer’s Guide 89

4

The OpenLDV Developer Example

This chapter describes the OpenLDV Developer Example
introduced with OpenLDV Release 2.1, and describes the
various classes implemented in the example.

90 The OpenLDV Developer Example

Overview
The OpenLDV Developer Example is an example application that uses the
OpenLDV API. The example application is available from the Examples &
Tutorials folder in the Echelon OpenLDV 4.0 SDK program folder.

The example application is also installed as a ZIP file in the LONWORKS
\OpenLDV SDK\SourceArchive folder on your computer. The ZIP file is
named LdvApiExamplesSource_vn.nn.nnn.ZIP, where the n.nn.nnn
represents the version and build number for the OpenLDV release.

The OpenLDV Developer Example is a simple dialog-based Windows application
written in C++ with Microsoft Foundation Classes (MFC). It is distributed in
Microsoft Visual Studio 2008 project format. The example illustrates how a
Windows application can access the OpenLDV API, and demonstrates a wide
range of simple to complex network operations.

The example application contains comments that should assist you when
reviewing the code. This chapter describes the structure of the example
application and the different classes that it contains.

Common Definitions
The OpenLDV API functions are specified in the ldv32.h header file. The
OpenLDV Developer Example provides additional definitions of constants,
enumerations, and aggregated types in the OpenLDVdefinitions.h header file.
These definitions are used throughout the remainder of the example application.

COpenLDVapi and COpenLDVtrace
The example application implements a COpenLDVapi class to wrap the
OpenLDV API functions. The COpenLDVapi class provides a simple interface
through four methods: Open, Close, Read, and Write.

This class provides thread-safe, synchronized, access to downlink messages
(ldv_write()), and implements a reader thread COpenLDVreader, which reads
uplink messages (ldv_read()) and supplies data to a protected queue. The
COpenLDVapi::Read() function reads that queue, thereby providing
coordinated access to both uplink and downlink messages.

The example application also implements a COpenLDVtrace class. This class
illustrates how an OpenLDV application can provide hooks for debugging or
tracing into the low-level portion of the OpenLDV application. The example
implementation provides a packet dump of all incoming and outgoing packets.

The related header files, OpenLDVapi.h and OpenLDVtrace.h, contain details
about these classes and their usage.

COpenLDVni, Message Pumps, and Message
Dispatchers

The COpenLDVni class implements the core functions of a network interface
API. The functions included in this class are NiInit(), NiSendMsgWait(),

OpenLDV Programmer’s Guide 91

NiSendImmediate(), NiGetNextResponse(), NiSendResponse(), NiClose(),
and NiEncryption().

The OpenLDVni.h header file contains details about this class and its usage.

The COpenLDVni class also implements and controls a worker thread,
COpenLDVmessagePump. This thread operates as a message pump, receiving
and dispatching uplink messages from the COpenLDVapi class.

To dispatch an incoming message, a message dispatcher decodes the message,
takes appropriate action local to the OpenLDV application, and responds
accordingly to the network. For example, the incoming message might describe
an update to an input network variable. The message dispatcher for the
application receiving this message must recognize the message as a network-
variable update message, and route the new network-variable data to the
relevant application storage. Other message types might also cause interaction
with the network. For example, the application might receive a network-variable
fetch message. In this case, the dispatcher must obtain the current value of the
network variable in question, and report the value to the network by constructing
an appropriate response message.

The message pump thread in this example application uses the functions
provided by the COpenLDVni and COpenLDVapi classes to retrieve and
dispatch messages. These messages are sent using an NiDispatch method. The
COpenLDVni class specifies, but does not implement, such a NiDispatch
method. Therefore, the COpenLDVni class is an abstract C++ class.

The OpenLDV Developer Example implements an example for an application-
specific message dispatcher (COpenLDVexampleDispatcher), derived from
the COpenLDVni class, which implements the NiDispatch method.

The example dispatcher implements handlers for a variety of messages, including
handlers for selected network management and diagnostics messages such as
HandleQuerySnvt, HandleSetNodeMode, or HandleServicePin.

You can use the COpenLDVexampleDispatcher class as an example for your
OpenLDV application, but you must adapt and rewrite the dispatcher for the
application.

The OpenLDVexampleDispatcher.h header file and the
OpenLDVexampleDispatcher.cpp implementation file contain comments
that describe the details of the implementation.

Toolkits and User Interface
The OpenLDV Developer Example provides a simple user interface based on a
single dialog. The OpenLDV ExampleDlg.cpp implementation file contains
event handlers related to that user interface, such as the various click-event
handlers related to buttons. The same COpenLDV ExampleDlg class also
provides example instantiation of the above classes.

For most operations, however, the dialog uses the COpenLDVtools class as a
toolkit. This class provides a simple interface that implements selected
operations such as QueryDomain, LeaveDomain, or UpdateDomain. The
COpenLDvtools class also implements a FindDevices() function that
demonstrates the implementation of multi-transaction sequences within the
context of this framework.

92 The OpenLDV Developer Example

 Developer Example Diagram
Figure 7 shows the hierarchy of the classes described in this chapter.

ldv32.dll ldv_open, ldv_close, ldv_read, ldv_write,
ldv_register_event

COpenLDVapi Open, Close, Read, Write,
RegisterEvent, UnregisterEvent

COpenLDVreader

Start, Stop, Pause

PQueue<>

push, front, pop

COpenLDVtrace Open, Close, Read, Write,
RegisterEvent, UnregisterEvent

COpenLDVni NiInit, NiClose, NiSendMsgWait, NiSendResponse,
NiSendImmediate, …

NiPauseMessagePump, NiContinueMessagePump
NiDispatch

COpenLDVmessagePump

Start, Stop, Pause

COpenLDVexampleDispatcher

NiDispatch

COpenLDVtools

QueryDomain, LeaveDomain, ...

ldv_register_event ::SetEvent

(Un-)RegisterEvent ::SetEvent

NiDispatch

Ap
pl

ic
at

io
n-

sp
ec

ifi
c

im
pl

em
en

ta
tio

n
an

d
ex

te
ns

io
ns

O
pe

nL
D

V
ex

te
nd

ed
 fr

am
ew

or
k

an
d

ne
tw

or
k

in
te

rfa
ce

 A
PI

O
pe

nL
D

V
ba

se
 fu

nc
tio

ns

Ab
st

ra
ct

 c
la

ss
(N

iD
is

pa
tc

h
is

 p
ur

e
vi

rtu
al

)
O

ve
rri

di
ng

vi
rtu

al
s

in
C

O
pe

nL
D

Va
pi

Figure 7. OpenLDV Developer Example Class Hierarchy

OpenLDV Programmer’s Guide 93

5

Using the xDriver Default Profile

This chapter describes how to use the xDriver default
profile. It also describes how to use the LONWORKS
Interfaces application in the Windows Control Panel to
configure an xDriver profile and build an xDriver database
into the Windows Registry.

94 Using the xDriver Default Profile

Configuring an xDriver Profile
You can edit an xDriver profile to configure a number of parameters that impact
how xDriver handles uplink and downlink sessions, including the automatic
reconnection settings. Most applications will use the xDriver default profile.

You can use the automatic reconnection feature to cause xDriver to attempt
reconnection when sessions that use the default profile are terminated as a result
of power outages, network interface failures, or other communications failures.
With automatic reconnection enabled, xDriver attempts reconnection until a
failed session has been successfully reestablished, or until a predefined time
period expires.

To edit an xDriver profile, perform the following steps:

1. Open the Windows Control Panel and double-click the LONWORKS
Interfaces icon to open the LONWORKS Interfaces application, as shown in
Figure 8. The left-hand device pane shows all of the currently defined
devices.

See the LONWORKS Interfaces online help for a complete description of
the user interface.

Figure 8. LONWORKS Interfaces Application

2. From the main window, select an RNI Interface, then select Settings →
Edit Profile to open the Properties dialog, shown in Figure 9 on page
95.

OpenLDV Programmer’s Guide 95

Figure 9. xDriver Profile General Tab

You can edit the description of the xDriver profile by modifying the text
in the Profile Description box in the General tab. You can also click
Restore Default Values at any time to restore the default factory
settings for the xDriver default profile.

3. Select the Downlink Sessions tab to configure how the profile manages
downlink sessions, as shown in Figure 10 on page 96. A downlink
session is an xDriver connection that is initiated by an OpenLDV
application.

96 Using the xDriver Default Profile

Figure 10. xDriver Profile Downlink Sessions Tab

4. Select the Uplink Sessions tab to configure how xDriver manages
uplink sessions, as shown in Figure 11. An uplink session is an xDriver
connection that is initiated when an RNI requests connection to the
OpenLDV application.

Figure 11. xDriver Profile Uplink Sessions Tab

OpenLDV Programmer’s Guide 97

For xDriver to receive these requests for connection, the xDriver
Connection Broker must be running. For information about starting the
Connection Broker, see Starting the Connection Broker on page 135.

To enable uplink sessions, select the Enable Uplink Sessions checkbox,
configure the rest of the fields on the tab, and click OK to save your
changes.

5. Select the Protocol Options tab to configure protocol options for
xDriver, as shown in Figure 12.

Figure 12. xDriver Profile Protocol Options Tab

6. Select the Recovery Options tab to set the recovery options for xDriver,
as shown in Figure 13 on page 98.

98 Using the xDriver Default Profile

Figure 13. xDriver Profile Recovery Options Tab

You can configure xDriver to automatically attempt reconnection when
xDriver sessions that are broken as a result of some unexpected
communications failure. Select the Enable Recovery checkbox and
configure the rest of the fields on the Recovery Options tab to enable the
automatic reconnection feature.

7. Click OK to save the configuration changes and return to LONWORKS
Interfaces application main window.

LNS Applications for xDriver
After you have created Registry entries for your RNIs and configured the default
xDriver profile to meet your requirements, you can begin using OpenLDV and
LNS applications, such as the LonMaker Integration Tool, to connect the LNS
Server to your RNIs. For more information about the LonMaker Integration Tool,
see the LonMaker User’s Guide.

Alternatively, you can begin creating your own OpenLDV or LNS applications for
xDriver. Chapter 7, LNS Programming with xDriver, on page 137, provides
sample programs that can assist you when creating these applications.

OpenLDV Programmer’s Guide 99

6

Extending xDriver

You can extend xDriver by creating custom xDriver lookup
extension components, and additional xDriver profiles. This
chapter describes why you might need to extend xDriver,
and how to extend it.
Most OpenLDV developers will not need to extend xDriver.

100 Extending xDriver

Extending xDriver
The OpenLDV driver software includes the LONWORKS Interfaces application,
which you can use to create entries in the Windows Registry for each of your
RNIs. Each entry stores the lookup information that xDriver requires to connect
to one of your RNIs. The default xDriver lookup extension component supplies a
COM method that xDriver calls to retrieve this information from the Windows
Registry whenever an xDriver connection to an RNI is initiated. The information
is then used by xDriver to fully establish the connection.

If you plan to store information for many different RNIs (for example, more than
50), you can improve performance and scalability by using a database
management system (DBMS) to store this lookup information, rather than using
the Windows Registry. A DBMS provides higher capacity, reliable backup and
recovery, faster and more flexible database querying, and security. In addition, a
database can be shared by several computers, whereas the Windows Registry is
local to a single computer.

If you use a DBMS, you must:

• Replace the default xDriver implementation with a custom lookup
extension component. This custom component retrieves the information
that xDriver needs to initiate connections from the DBMS.

• Create an xDriver profile to use the custom lookup extension component.
An xDriver profile represents a set of configuration parameters that
determines how xDriver manages a given connection.

The following gsections describe how the lookup extension component and the
xDriver Session Control Object (SCO) interact when an xDriver connection is
initiated.

xDriver Sessions
An xDriver session involves a single connection between an RNI and an
OpenLDV application. A session begins when a request for connection from the
OpenLDV application to an RNI is made (a downlink session), or when a request
for connection from an RNI to the OpenLDV application is made (an uplink
session). When either request is made, xDriver creates a dedicated SCO for the
session. The SCO must be filled in by the xDriver lookup extension component
with the information that xDriver needs to establish the connection.

The following sections describe how the SCO is filled in, and how it is used to
initiate a connection.

Downlink Sessions
An xDriver session is considered a downlink session if the connection is initiated
by an OpenLDV application. The OpenLDV application accesses the RNI as
though it were opening any other type of network interface.

For an LNS client, if you use a custom lookup extension component, each RNI
only appears in the NetworkInterfaces collection object during a session that
involves that RNI. The network interface name to use is passed to LNS as part

OpenLDV Programmer’s Guide 101

of the downlink lookup key. Chapter 7, LNS Programming with xDriver, on page
137, provides programming samples that illustrate this behavior.

Figure 14 shows the application flow for a downlink session.

User Application xDriver Manager

Database

Lookup Extension
1

6

2

4

3

5

x.Profile.RNI

Figure 14. Downlink Session

The application flow for a downlink session includes the following steps (see
Figure 14):

1. When the OpenLDV application initiates the connection, the xDriver
manager initializes an SCO for the session, and adds the downlink lookup
key (derived from the network interface name of the RNI) into the SCO.

2. The SCO is then passed to the lookup extension component.

3. The lookup extension component extracts the downlink lookup key from
the SCO, and uses it to access the database record for the specified RNI.
The lookup extension component then retrieves additional information
from the database (such as authentication flag, authentication keys, and
IP address and port number of the RNI) to fill in the SCO with the
information required to establish the connection.

For more information about the SCO and the information it stores, see
Session Control Object on 108. For sample programs that initiate
downlink xDriver sessions, see Chapter 7, LNS Programming with
xDriver, on page 137.

4. The connection is established and the authentication key is used to
validate the connection, if authentication is enabled.

5. If the authentication is successful, packets are exchanged in both
directions. For more information about authentication, see
Authentication Key Handling on page 111.

6. The OpenLDV application performs any required network operations.

102 Extending xDriver

Figure 15 on page 103 shows the flow of events that occur when a downlink
session is initiated within the session-initiating LNS application and the lookup
extension component.

OpenLDV Programmer’s Guide 103

Call ObjectServer.open()

Does the network
exist?

Get the network from Local network collection

Add the network to the network collectionNo

Call myNetwork.open()

Open System Object.

Set NetworkServiceDevice.NetworkInterface to desired xDriver
networkInterface e.g. “x.[profileName].[DownlinkLookupKey]”

Code ILdvxConfigure.SetInstance() to return S_OK
(This optional method is fired once in the lifetime of an Instance)

Code ILdvxConfigure.SetOptions() to return S_OK
(This optional method is fired once in the lifetime of an Instance)

Code ILdvxLookup.DownlinkLookup() to:
Call xSCO.GetDownlinkKey()

Do an external database query using the retrieved DownlinkKey
If (query Result = NULL) then

Exit by returning an appropriate COM error i.e. E_HANDLE
Else

Call xSCO.SetAuthenticationFlag([Recommended: True]|[False])
Call xSCO.SetCurrentAuthenticationKey([a])
Call xSCO.SetNextAuthenticationKey(a|b)

Define ILdvxSCO_TCPPtr pxSCO_TCP(pxSCO)
Call xSCO_TCP.SetRemoteTCPAddress("x.x.x.x")

Call xSCO_TCP.SetRemoteTCPPort(n)
return S_OK

Do Network and Monitoring Task(s)

If Not myNetwork.IsOpenIndependent Then Close System Object

If Not myNetwork.IsOpenIndependent Then myNetwork.close()
Else myNetwork.CloseIndependent()

Other networks to
open?

Call ObjectServer.close()

No

Define network to be opened Typical Downlink Scenario

Open network in Local or
serverIndependant mode?

Local

Yes

Yes

Indp. Get network from MyVNI network collection

Call myNetwork.OpenIndependent()

xD
riv

er
 L

oo
ku

p
Ex

te
ns

io
n

C
om

po
ne

nt

xDriver Lookup Extension Component called.

Figure 15. Typical Downlink Session for LNS Server

104 Extending xDriver

The events shown in Figure 15 that occur within the LNS application represent
a typical LNS application that opens a downlink session. Your application can
vary from these steps.

In addition, the events that occur within the lookup extension component in the
flow chart represent the minimal tasks that a lookup extension component must
perform during a downlink session. This flow chart refers to the methods that
you can use when programming your custom lookup extension component. For
more information about these methods, see Appendix C, Custom Lookup
Extension Component Programming, on page 161.

Uplink Sessions
An xDriver session is considered an uplink session if an RNI initiates the session
by requesting a connection to an OpenLDV application. This request for
connection is usually caused when the RNI receives a message with a qualifying
message code.

For xDriver to receive the request, the xDriver Connection Broker must be
running. For information about the xDriver Connection Broker, see Starting the
Connection Broker on page 135.

There must also be at least one xDriver profile with uplink session handling
enabled for xDriver to receive the uplink session request. You can use the
OpenLDV xDriver Profile Editor to create an xDriver profile that has uplink
session handling enabled. Using the Profile Editor, you can assign the profile a
port, which the Connection Broker uses to listen for uplink session requests. The
profile handles all uplink session requests on that port. For more information
about xDriver profiles and the xDriver Profile Editor, see xDriver Profiles on page
134.

Figure 16 shows the application flow for a downlink session.

User Application

7

x.Profile.RNI

Lookup ExtensionConnection Broker

OpenLDV
Application

1

3

2

6

4 5

Database

SmartServer

SmartServer

Figure 16. Uplink Session Overview
The application flow for an uplink session includes the following steps (see
Figure 16):

1. An RNI (for example, a SmartServer) requests an uplink session. When
the request for connection is made, the Connection Broker receives an

OpenLDV Programmer’s Guide 105

identification message from the RNI that requested the uplink session.
From this message, the Connection Broker obtains the uplink lookup key
for the RNI. The SCO for the session is then initialized, and the uplink
lookup key is inserted into the SCO.

For RNIs that use a modem to connect to the LNS Server, you can create
a listener application that uses the Windows Remote Access Service
(RAS) to handle the modem communications with the RNI. This
application then passes the uplink request to the Connection Broker. See
the Microsoft Developer Network (MSDN) library for more information
about Windows RAS programming.

2. The lookup extension component extracts the downlink lookup key from
the SCO, and uses it to access the database record for the specified RNI.
The lookup extension component then retrieves additional information
from the database (such as authentication flag, authentication keys, and
IP address and port number of the RNI) to fill in the SCO with the
information required to establish the connection.

For more information about the SCO and the information it stores, see
Session Control Object on page 108. For sample programs that initiate
downlink xDriver sessions, see Chapter 7, LNS Programming with
xDriver, on page 137.

3. If the authentication flag indicates that authentication is enabled for the
session, the xDriver protocol engine uses the authentication keys in the
SCO to verify the identity of the request for connection. The xDriver
protocol engine handles authentication, and all other message
handshaking, when a connection between an LNS Server and an RNI is
initiated.

If authentication fails, the connection is terminated. If authentication
succeeds, the following steps occur. For more information about
authentication, see Authentication Key Handling on page 111.

4. The Connection Broker service creates an entry for the network that
requested the uplink session in the System.NetworkInterfaces
collection.

5. The Connection Broker service sends a message to the OpenLDV
application.

6. If the OpenLDV application is an LNS Server, the LNS Server causes the
OnIncomingSessionEvent event to be fired in an LNS application that
is programmed to listen for and manage uplink session requests. The
application can then accept or reject the session using the
AcceptIncomingSession method. These methods are available within
LNS for use with xDriver. For more information, see Appendix B, LNS
Methods and Events for xDriver, on page 153.

If the application rejects the session, the session is terminated
immediately. If it accepts the session, the connection is established, and
packets are exchanged in both directions. The LNS application must be
running, and must have registered for the uplink session listener event,
to receive the uplink session notification. For a sample application that
listens for and manages uplink sessions, see Uplink Sample Application

106 Extending xDriver

on page 142.

You can also use the xDriver Profile Editor to specify a command to run
each time that the listener port for that profile receives an uplink session.
If you use an LNS Server as the OpenLDV application, the LNS Server
provides an enhanced interface for LNS applications.

7. If you are using an LNS Server, after the connection is established, the
LNS application can open the remote network interface that requested
the connection, enable the monitor set and monitor points for the
network, receive the monitor point update event that caused the uplink
session request, and handle the event. The monitor set and monitor
points can then be closed, followed by closing the network itself.

The LNS API provides a method to allow the withholding of monitor
point update events while an uplink session is started. This method
ensures that monitor point update events sent after a network requests
an uplink session, but before the network and its monitor set are opened
by an LNS application, are not lost, so that the user will receive the
monitor point update event that caused the uplink session. For more
information about this method, see ReleasePendingUpdates on page 158.
This feature is only supported by LNS listener applications; it is not
supported by command-line initiated uplink event handlers.

A network interface can reset after receiving and acknowledging (at OSI
Layer 2) an alarm event, but before the event has been propagated to the
LNS Server, which causes the event to be lost. To prevent this loss, your
LNS applications must send monitor point update alarm events for your
RNIs to the LNS Server to resend each monitor point update event
persistently to the LNS Server until receipt of those events is confirmed.
This technique results in reliable performance, and ensures that no
monitor point update events are lost before they are processed by the
LNS application.

You must program your LNS application to process uplink request
messages, and provide suitable responses to the LONWORKS network, in a
timely fashion. Timely responses are particularly critical when you are
using a SmartServer and the uplink is delivered over PPP, and the PPP
profile (connection) is exclusively set up for your SmartServer. Other
SmartServer applications cannot use the PPP link until the LNS
application terminates the xDriver. During this time, SmartServer Web
connections and alarm notifications that are configured to use a different
PPP profile (connection) fail.

Figure 17 on page 107 shows the flow of events that occur during an uplink
session within the LNS application that receives the uplink session request and
the lookup extension component.

OpenLDV Programmer’s Guide 107

Call ObjectServer.open()

Accept
Incoming Call?

Get network from Local network collection

Yes

Call myNetwork.open()

Open System Object

Set NetworkServiceDevice.NetworkInterface to
above received IntfName a) networkInterface i.e

“x.[profileName].[IntfName]”

Do network and monitoring task

Close MonitorSet(s)

Call myNetwork.CloseIndependent()

Open network in Local or
serverIndependant mode?

Close ObjectServer

Typical Uplink Scenario
Call BeginIncomingSessionEvents(myProfile)

a) OnIncomingSessionEvent(profileName, netName, IntfName, Tag)
arrives (IntfName = x.myProfile.RNI_name)

Code ILdvxConfigure.SetInstance() to: return S_OK
(This optional method is fired once in the lifetime of an Instance)

Code ILdvxConfigure.SetOptions() to: return S_OK
(This optional method is fired once in the lifetime of an Instance)

Code ILdvxLookup.UplinkLookup() to:
Call xSCO.GetUplinkKey()

Do an external database query using the retrieved UplinkKey
If (query Result = NULL) then

Exit by Returning an appropriate COM error e.g. E_ERROR
Else

Call xSCO.SetAuthenticationFlag([Recommended: True]|[False])
Call xSCO.SetCurrentAuthenticationKey(a)
Call xSCO.SetNextAuthenticationKey(a|[b])
Call xSCO.SetDownlinkKey("RNI_0001")

Call xSCO.SetLNSNetworkName(“myNetworkName”)
return S_OK

xD
riv

er
 L

oo
ku

p
Ex

te
sn

io
n

C
om

po
ne

nt

AcceptIncomingSession(tag, false, false)
Tag from a)

AcceptIncomingSession(tag, true,true) Tag from a)

No

Local

Get network from MyVNI network collectionIndp.

Wait for another
uplink?

No

Open MonitorSet(s)

Do Monitoring Task(s)

Call EndIncomingSessionEvents(myProfile)

ReleasePendingUpdates()

Call ReleasePendingUpdates()

Call myNetwork.OpenIndependent()

Open MonitorSet(s).

Close MonitorSet(s)

Close System Object

Close Network

Uplink session event received, lookup extension launched.

Figure 17. Uplink Session for an LNS Application

108 Extending xDriver

The events shown in Figure 17 that occur within the LNS application represent
a typical LNS application that registers for uplink session event handling. Your
application can vary from these steps.

In addition, the events that occur within the lookup extension component in the
flow chart represent the minimal tasks that a lookup extension component must
perform during an uplink session. This flow chart refers to the methods that you
can use when programming your custom lookup extension component. For more
information about these methods, see Appendix C, Custom Lookup Extension
Component Programming, on page 161.

Session Control Object
The SCO is created at the beginning of an xDriver session. During its creation,
the lookup key of the RNI involved in the session is filled into the SCO. The SCO
is then passed to the lookup extension component, which extracts the lookup key
from the SCO and uses it to access the xDriver database. The lookup extension
component then fills in the rest of the SCO with additional information required
to initiate the connection.

Table 35 describes the fields that are filled into the SCO, and how the lookup
extension uses them. If you use a database management system as your xDriver
database, you must create a custom lookup extension component to access the
database and fill in the SCO fields described in Table 35.

Creating a Custom Lookup Extension in C++ on page 113 and Creating a Custom
Lookup Extension in Visual Basic on page 125 describe how to create the
framework for a custom lookup extension component using Microsoft Visual
Studio 2008. Appendix C, Custom Lookup Extension Component Programming,
on page 161, describes the xDriver methods that you can use to read and write to
each of these SCO fields. The appendix also contains field type constraints to be
used when creating a custom database table.

The lookup extension component has read/write access to all of the fields in
Table 35, and the lookup extension component is required to set each field
unless otherwise noted.

Table 35. Session Control Object

Field Description

Session Control Object ID The SCO ID is a unique, read-only, 32-bit field that is filled in
when the SCO is created, before the first call to the lookup
extension. It can be used to identify the SCO.

Downlink Lookup Key The downlink lookup key is an ASCII string (105 characters
maximum) that is used by the lookup extension component to
access the xDriver database. This field is specified as part of the
network interface name for an RNI. For more information about
the xDriver network interface naming convention, see Downlink
Sample Applications on page 138.

This field is specified in the network interface name of the RNI
during a downlink session, and is read-only during downlinks.
This field must be filled in during uplink sessions.

OpenLDV Programmer’s Guide 109

Field Description

Uplink Lookup Key The uplink lookup key is an ASCII string (105 characters
maximum) passed to the lookup extension component by the RNI
during an uplink session. It is used by the lookup extension to
access the database record for the RNI that requested the uplink
session, so that the lookup extension component can fill in the rest
of the fields into the SCO. For a SmartServer or i.LON 600, the
uplink lookup key uses the following naming convention:

[Hostname].[DNS Suffix]

[Hostname] represents the hostname assigned to the SmartServer
or i.LON 600 during its configuration. [DNS Suffix] is optional,
and represents the DNS suffix or domain name assigned to the
SmartServer or i.LON 600 during its configuration.

For example, if the hostname for an SmartServer or i.LON 600 is
“myiLON” and the DNS suffix is “xyz.com”, the uplink key would
be “myiLON.xyz.com”.

This field is read-only during uplink sessions, and can be
optionally filled in during downlink sessions. You can set the
downlink key to match the uplink key.

Authentication Flag This Boolean flag specifies whether authentication between the
OpenLDV application and the RNI is enabled for the session. This
field is always set to true for the SmartServer and i.LON 600.

Current Authentication
Key

If the authentication flag is enabled, this field represents the
authentication key to be used for the session. This authentication
key must match the MD5 authentication key supplied to the RNI
during its configuration. Using an MD5 authentication key
prevents the OpenLDV application or the RNI from responding to
unauthorized messages during an xDriver session.

The authentication key must be entered as a 32-character
hexadecimal string representing a 128-bit MD5 key. For example:

0102030405060708090A0B0C0D0E0F10

Setting the authentication key to all 0s causes xDriver to use the
pre-defined, default factory authentication key for the RNI. The
default factory authentication key is not secure.

For more information about how the lookup extension component
handles authentication, see Authentication Key Handling on page
111.

110 Extending xDriver

Field Description

Next Authentication Key This field represents the next authentication key to be used by the
RNI. The next authentication key is usually the same as the
current authentication key. The authentication key must be
entered as a 32-character hexadecimal string representing a 128-
bit MD5 key. For example:

0102030405060708090A0B0C0D0E0F10

You can initiate a change to the authentication key used by the
RNI by changing this field to a value different than the current
authentication key. The authentication key configured into the
RNI will then be updated to match this field.

Setting this field to all 0s causes xDriver to use the default
authentication key as the next key for the RNI. The default
factory authentication key is not secure.

When no change to the current authentication key is desired, this
key must be the same as the current authentication key. For more
information about how the lookup extension component handles
authentication, see Authentication Key Handling on page 111.

LNS Network Name The name of the LNS network to be opened. This field is optional,
and only used if an LNS Server is the client and the session is an
uplink session, because the network name is specified manually
within the LNS application in a downlink session. For an example
of such an application, see Opening a Single Remote Network With
xDriver on page 138. The LNS network name can be a maximum
of 85 characters.

Additional Downlink
Packet Header

Additional Downlink
Packet Trailer

These fields are not required under most circumstances, and are
only applicable to downlink sessions. They can be used to specify
a series of bytes to be prepended or appended to every packet sent
during a downlink session if there is an intermediate proxy
between the OpenLDV application and the RNI. These bytes can
be used to provide routing information that the proxy might
require.

When you configure an xDriver profile that uses these properties,
you might also need to select Send Routing Packet, which causes
xDriver to send the proxy a null packet (with the header and
trailer bytes specified here) when the connection is established.
This selection provides the proxy with the information that it
requires to route the connection properly. For more information,
see xDriver Profiles on page 134.

Encryption Type The type of encryption used by the RNI. Currently, xDriver
supports RC4 encryption only. Selected packets are encrypted
using an RC4 encryption algorithm if this option is selected.

OpenLDV Programmer’s Guide 111

Field Description

Remote TCP Address The TCP/IP address of the RNI to which to connect. For an uplink
session, this field is read-only. The remote TCP address must be
specified in the form x.x.x.x, where x represents an integer
between 0 and 255. A DNS-resolvable hostname can also be
specified for this field.

Remote TCP Port The port number that the RNI uses for incoming connections from
the OpenLDV application. For an uplink session, this field is
read-only. Valid port numbers are 1 to 65535.

Authentication Key Handling
Authentication key handling is an essential part of any lookup extension
component. Your custom lookup extension component must fill the
authentication key fields into the SCO, and properly handle changes to the
authentication key fields. Figure 18 shows a high-level view of authentication
key handling. The figure shows a sample authentication key (ABCD) that does
not use the required format.

RNI Device
Authentication Key: ABCD xDriver Connection External Database

xDriver Lookup Extension
Component Accesses
External Database and

Returns Current
Authentication Key

LNS Server with xDriver

Authentication Key
Handling

Figure 18. Authentication Key Handling

Note: This section refers to the methods that you can use when programming
your custom lookup extension component. For more information about these
methods, see Appendix C, Custom Lookup Extension Component Programming,
on page 161.

Setting the Current Authentication Key
When an xDriver session is initiated, the lookup extension component must
access the database, extract the authentication flag for the RNI from the
database, and fill it into the SCO using the SetAuthenticationFlag method. If
the authentication flag is True, indicating that authentication is currently
enabled, the lookup extension component must also extract the current MD5
authentication key for the RNI from the database, and fill it into the SCO using
the SetCurrentAuthenticationKey method. The authentication key must be a

112 Extending xDriver

unique, 32-character hexadecimal string representing the 128-bit MD5 key that
is used by the RNI.

The xDriver lookup interface includes the SetNextAuthenticationKey()
method, which fills the next authentication key to be used by the RNI into the
SCO. If no change the authentication key used by the RNI is desired, the next
authentication key must be the same as the current authentication key. This
field must be filled in immediately after the current authentication key is filled
in.

After these SCO fields are filled in, the xDriver protocol engine generates a 128-
bit digest based on the current authentication key; this digest is sent as part of
every message to the RNI at the other end of the connection. The digest is
extracted by the RNI and compared to a digest produced by the authentication
key configured into the RNI. If the two digests match, then the two keys must
match and the authentication succeeds.

The current and next authentication keys filled into the SCO must match the
authentication key configured into the RNI. You can fill in an authentication key
of all 0s to use the pre-defined, default factory authentication key for the RNI as
the current authentication key. The default factory authentication key is not
secure.

Changing the Current Authentication Key
You can use the SetNextAuthenticationKey method from your lookup
extension component to change the authentication key within an RNI by filling a
next authentication key into the SCO that is different from the current
authentication key. This method initiates an incremental change to the
authentication key that is configured into the RNI, so that it will end up with the
key specified as the Next Authentication Key as its authentication key.

After this change is complete, xDriver calls the UpdateLookup method in the
lookup extension component to acknowledge the change to the RNI’s
authentication key. The lookup extension component muts implement an update
to the database from the UpdateLookup method, so that the new current value
of the authentication key is recorded in the database, and the current
authentication key in the database matches the key in the RNI. The current and
next authentication keys must always be stored in the database, and can only be
updated when the UpdateLookup method is called.

Table 36 on page 113 describes the flow of events that occurs when the next
authentication key field is used to update the authentication key of an RNI. In
this example, the lookup extension fills different MD5 authentication keys into
the current authentication key and next authentication key fields into the SCO.
The table uses a sample authentication key (such as ABCD) that does not use the
required format.

OpenLDV Programmer’s Guide 113

Table 36. Changing Authentication Keys

Phase One, Lookup Extension Component Is Called

Initially, the current authentication key must match the authentication key configured into the RNI for
the connection to be established. The authentication key fields start with the following values:

RNI Authentication Key ABCD

SCO Current Authentication Key ABCD

SCO Next Authentication Key EFGH

Current Authentication Key in the Database ABCD

Next Authentication Key in the Database EFGH

Phase Two, RNI’s Key Updated

Because the current and next authentication keys filled into the SCO differ, the authentication key
configured into the RNI is incremented so that it matches the next authentication key (EFGH). In
addition, the current authentication key stored in the SCO is updated to match the next authentication
key. The authentication key fields now have the following values:

RNI Authentication Key EFGH

SCO Current Authentication Key EFGH

SCO Next Authentication Key EFGH

Current Authentication Key in the Database ABCD

Next Authentication Key in the Database EFGH

Phase Three, Update Lookup Method Called

The UpdateLookup method is called after the authentication key configured into the RNI, and the
current authentication key in the SCO, have been changed. This method must update the database so
that it is updated with the new values of the current authentication key and the next authentication
key from the SCO. The current and next authentication keys must always be stored in the database,
and can be updated only when the UpdateLookup method is called.

The next time there is a session with this RNI, the lookup extension will fill in the proper value for the
current authentication key. After update lookup has been called, the authentication key fields should
have the following values:

RNI Authentication Key EFGH

SCO Current Authentication Key EFGH

SCO Next Authentication Key EFGH

Current Authentication Key in the Database EFGH

Next Authentication Key in the Database EFGH

Creating a Custom Lookup Extension in C++
This section describes the procedure for creating the framework for a custom
lookup extension component in C++ using Microsoft Visual Studio 2008. Use a
similar procedure for Microsoft Visual Studio 2010, or later releases.

114 Extending xDriver

Prerequisite: You must install the OpenLDV 4.0 SDK and Microsoft Visual
Studio 2008 SP1 (or later).

Important: If you use the sample project source files in your new project, you
must rename the GUIDs in the .IDL and .RGS files.

To create the framework for a custom lookup extension component using
Microsoft Visual Studio 2008, perform the following tasks:

1. Start Microsoft Visual Studio

2. Create a new project using the Active Template Library (ATL)

3. Add a COM Object

4. Implement the ILdvxLookup interface

5. Add the lookup extension to the xDriver Lookup Component category

6. Build and register the COM server

7. Create a custom xDriver profile

8. Test the lookup extension

9. Rebuild and re-register the COM server

10. Retest the lookup extension

11. Optionally, add implemented ILdvxLookup interfaces to the sample
component’s type library

12. Optionally, add additional private methods or properties to the
ISampleLookupCsv interface

The following sections describe these tasks in more detail.

Create a New Visual Studio Project
From the Visual Studio main window, select File → New → Project to open the
New Project dialog, as shown in Figure 19 on page 115.

OpenLDV Programmer’s Guide 115

Figure 19. Visual Studio New Project Dialog

In the New Project dialog:

• Expand the C++ category and select ATL as the project template

• Specify the version of the .NET Framework to use

• Specify a name and location for the project

• Specify a name and location for the solution

You can use any project location for development. Install the completed custom
lookup extension component in the LONWORKS \xDriver\Components
\CompanyName\Lookup folder when you distribute the DLL for your
application.

Click OK to open the ATL Project Wizard.

From the Application Settings page of the ATL Project Wizard, select Dynamic-
link library (DLL) for the server type, as shown in Figure 20 on page 116. You
can use other server types, but a DLL is likely to provide the best performance.

116 Extending xDriver

Figure 20. Visual Studio ATL Project Wizard

Click Finish to close the ATL Project Wizard and create the project.

Add a COM Object
From the Visual Studio main window, select Project → Add Class to open the
Add Class dialog, as shown in Figure 21 on page 117.

OpenLDV Programmer’s Guide 117

Figure 21. Visual Studio Add Class Dialog

From the Add Class dialog, select the ATL category, select the ATL Simple
Object template, and click Add to open the ATL Simple Object Wizard, as shown
in Figure 22 on page 118.

118 Extending xDriver

Figure 22. Visual Studio ATL Simple Object Wizard – Names Page

From the ATL Simple Object Wizard Names page, enter a name for the lookup
extension component in the Short Name text box and fill in the rest of the fields
as required. None of these fields should begin with “xDriver.” In addition, the
short name should not match the project name (see Create a New Visual Studio
Project on page 114). The COM interface is your automation interface, and is not
used by xDriver.

The program ID should not match the program ID for any other lookup or COM
component on your computer, or on any computer on which the application will
be installed, because it will be used by the Profile Editor to identify the lookup
extension component.

Recommendation: Specify the program ID using the following naming
convention:

[Company Name].Lookup.[Type]

where [Company Name] represents the name of your company and [Type]
represents the type of database this lookup extension component uses. For
example: “MyCompany.Lookup.ODBC”.

OpenLDV Programmer’s Guide 119

From the ATL Simple Object Wizard, select the Options page, as shown in
Figure 23.

Figure 23. Visual Studio ATL Simple Object Wizard – Options Page

For optimal performance, select Free as the threading model. This model
requires that your extension be multithread safe, and allows your component to
directly access other xDriver extension components.

Click Finish to close the ATL Simple Object Wizard and create the object.

Implement the ILdvxLookup Interface
From the Visual Studio main window, open the class view window (View →
Class View). From the class view, right-click CSampleLookupCsv and select
Add → Implement Interface to open the Implement Interface wizard, as
shown in Figure 24 on page 120.

120 Extending xDriver

Figure 24. Visual Studio Implement Interface Wizard

Within the Implement Interface wizard, select Echelon OpenLDV xDriver 1.0
Type Library from the Available type libraries dropdown listbox. For the
Implement interface from radio button, specify either Registry or File. If
you specify File, specify \LonWorks\bin\Ldvx.tlb for the Location.

For your custom lookup extension component, implement the following
interfaces:

• ILdvxLookup

• ILdvxConfigure (optional)

Within the SampleLookupCsv.h header file, implement the methods for
ILdvxLookup and ILdvxConfigure. That is, replace the return E_NOTIMPL
stub code with your own extension-specific code. You code must return COM
success or failure codes to xDriver. See the xDriver Lookup Example (Start →
All Programs → Echelon OpenLDV 4.0 SDK → Examples & Tutorials) for
example implementations.

 // ILdvxConfigure Methods
public:
 STDMETHOD(SetInstance)(BSTR instance)
 {
 return E_NOTIMPL;

OpenLDV Programmer’s Guide 121

 }
 STDMETHOD(SetOptions)(BSTR options)
 {
 return E_NOTIMPL;
 }

 // ILdvxLookup Methods
public:
 STDMETHOD(DownlinkLookup)(ILdvxSCO * xSCO)
 {
 return E_NOTIMPL;
 }
 STDMETHOD(UplinkLookup)(ILdvxSCO * xSCO)
 {
 return E_NOTIMPL;
 }
 STDMETHOD(UpdateLookup)(ILdvxSCO * xSCO)
 {
 return E_NOTIMPL;
 }
};

Add the Extension to the Component Category
To allow the OpenLDV xDriver Profile Wizard (and other xDriver-related tools)
to display your custom lookup extension, you must register the lookup extension
as belonging to the xDriver Lookup Component Category:

1. Add the following lines to your component’s header file (after
END_COM_MAP()in SampleLookupCsv.h):

 // COM component category map
 // (CATID_LdvxLookup is defined in LdvxTypes.h)
 BEGIN_CATEGORY_MAP(CSampleLookupCsv)
 IMPLEMENTED_CATEGORY(CATID_LdvxLookup)
 END_CATEGORY_MAP()

2. Add the following line at the top of your component’s header file:
 #include "LdvxTypes.h"

3. Add the directory that contains the LdvxTypes.h header file
(LONWORKS \OpenLDV SDK\Include) to your project’s include path
(select Project → ProjectName Properties to open the project’s
properties dialog, expand Configuration Properties, expand C/C++,
select General, then add the path to the Additional Include
Directories field).

Build and Register the COM Server
Select Build → Build SampleLookup to build the SampleLookup part of the
solution.

Note: For Windows operating systems that include User Account Control
(Windows 7 or Windows Vista), if you do not run Visual Studio with elevated
permissions (for example, as an Administrator), you will likely see the following
error message during registration:

122 Extending xDriver

Project : error PRJ0050: Failed to register output. Please
try enabling Per-user Redirection or register the component
from a command prompt with elevated permissions.

Start an elevated command shell (right-click the Visual Studio 2008 Command
Prompt shortcut and select Run as administrator), change to the folder that
contains your built DLL, and run the following command:

REGSVR32 SampleLookup.dll

Create a Custom xDriver Profile
Use the OpenLDV xDriver Profile Editor to create a custom xDriver profile for
your custom xDriver lookup extension.

1. Select Start → Echelon OpenLDV 4.0 SDK → Developer Utilities →
xDriver Profile Editor to open the OpenLDV xDriver Profile Editor.

2. Click Add to open the New Profile dialog, as shown in Figure 25.

Figure 25. xDriver Profile Editor New Profile Dialog

3. Enter a profile name (“Sample” for this example) in the Profile Name
field.

4. Click OK to close the New Profile dialog.

5. For the General tab of the OpenLDV xDriver Profile Properties dialog for
the new profile, enter a description in the Profile Description text box, as
shown in Figure 26 on page 123.

OpenLDV Programmer’s Guide 123

Figure 26. OpenLDV xDriver Profile Properties – General Tab

6. For the Lookup tab of the OpenLDV xDriver Profile Properties dialog for
the new profile, select the newly built profile from the Extension Name
dropdown listbox, as shown in Figure 27 on page 124.

124 Extending xDriver

Figure 27. OpenLDV xDriver Profile Properties – Lookup Tab

7. Make any other changes that are appropriate for your custom profile, and
click OK to accept the changes and close the dialog.

Test the Lookup Extension
Create an RNI for your custom xDriver lookup extension, and give it a name like
“X.Sample.DownlinkKey”. Use an OpenLDV client program to open the RNI for
the custom extension to see calls for the following methods:

• ILdvxConfigure::SetInstance

• ILdvxConfigure::SetOptions

• ILdvxLookup::DownlinkLookup

Note: Until these methods are implemented (see Implement the ILdvxLookup
Interface on page 119), the default E_NOTIMPL return status will cause the
startup sequence to fail.

Optional Steps
The following steps are optional:

• Add implemented ILdvxLookup interfaces to the sample component’s
type library; add the following to the library section of
SampleLookup.idl:

importlib("Ldvx.tlb"); // TLB must be in PATH
interface ILdvxLookup; // add to coclass SampleLookupCsv

OpenLDV Programmer’s Guide 125

interface ILdvxConfigure; // add to coclass SampleLookupCsv

• Add additional private methods and properties to your
ISampleLookupCsv interface, or remove it if it is not used.

Creating a Custom Lookup Extension in Visual
Basic

This section describes the procedure for creating the framework for a custom
lookup extension component in Visual Basic using Microsoft Visual Studio 2008.
Use a similar procedure for Microsoft Visual Studio 2010, or later releases.

Prerequisite: You must install the OpenLDV 4.0 SDK and Microsoft Visual
Studio 2008 SP1 (or later).

To create the framework for a custom lookup extension component using
Microsoft Visual Studio 2008, perform the following tasks:

1. Start Microsoft Visual Studio

2. Create a new Class Library project

3. Add a reference to the Echelon OpenLDV xDriver 1.0 Type Library

4. Add a COM class

5. Delete the default project class, Class1.vb

6. Import xDriver types to your System namespace

7. Implement the ILdvxLookup interface

8. Build and register the COM server

9. Create a custom xDriver profile

10. Test the lookup extension

11. Rebuild and re-register the COM Server

12. Retest the lookup extension

13. Optionally, add implemented ILdvxLookup interfaces to the sample
component’s type library

14. Optionally, add additional private methods or properties to the
ISampleLookupCsv interface

The following sections describe these tasks in more detail.

Create a New Visual Studio Project
From the Visual Studio main window, select File → New → Project to open the
New Project dialog, as shown in Figure 28 on page 126.

126 Extending xDriver

Figure 28. Visual Studio New Project Dialog

In the New Project dialog:

• Expand the Visual Basic category and select Class Library as the
project template

• Specify the version of the .NET Framework to use

• Specify a name and location for the project

• Specify a name and location for the solution

You can use any project location for development. Install the completed custom
lookup extension component in the LONWORKS \xDriver\Components
\CompanyName\Lookup folder when you distribute the DLL for your
application.

The project name should not match the project name for any other lookup or
COM component on your computer, or on any computer on which the application
will be installed, because it will be used by the Profile Editor to identify the
lookup extension component.

Recommendation: Specify the project name using the following naming
convention:

[Company Name]Lookup[Type]

where [Company Name] represents the name of your company and [Type]
represents the type of database this lookup extension component uses. For
example: “MyCompanyLookupODBC”.

OpenLDV Programmer’s Guide 127

Click OK to create the project.

Add a Reference to the xDriver Type Library
From the Visual Studio main window, select Project → Add Reference to open
the Add Reference dialog. Select the COM tab, as shown in Figure 29.

Figure 29. Visual Studio Add Reference Dialog

From the COM tab, select Echelon OpenLDV xDriver 1.0 Type Library and
click OK to add the reference.

Add a COM Class
From the Visual Studio main window, select Project → Add Class to open the
Add New Item dialog, as shown in Figure 30 on page 128.

128 Extending xDriver

Figure 30. Visual Studio Add New Item Dialog

Select COM Class as the template. This template generates the proper GUIDs
and the required New Sub method for your project. If you copy the sample files
to use as a base for your project, you must change the GUIDs.

Recommendation: Use the name Lookup[Database Type] as the name of the
class, where [Database Type] represents the type of database management
system you are using. You can use this name with the xDriver Profile Editor to
identify the lookup extension component.

Delete the Project Default Class
Use the Solution Explorer to delete the Class1.vb file, the class that was initially
created with the project. Right-click Class1.vb and select Delete, as shown in
Figure 31 on page 129.

OpenLDV Programmer’s Guide 129

Figure 31. Delete Class1.vb

Import xDriver Types to Your System Namespace
Add the following lines to the beginning of your source code (LookupCSV.vb, in
this example):

Imports LdvxLib
Imports LdvxLib.LdvxEncryption
Imports LdvxLib.LdvxResult

These statements add the properties, methods, and types of the Echelon
OpenLDV xDriver 1.0 Type Library (see Add a Reference to the xDriver Type
Library on page 127) to the System namespace of your project.

Implement the ILdvxLookup Interface
Add the following lines of code at the beginning of your class:

Implements ILdvxConfigure
Implements ILdvxLookup

These statements specify the interfaces that will be implemented in your lookup
extension. The ILdvxConfigure interface is optional.

Select View → Object Browser to open the Object Browser. Expand
Interop.LdvxLib to see the methods associated with each RNI, as shown in
Figure 32 on page 130.

130 Extending xDriver

Figure 32. Visual Studio Object Browser View

Your class must implement the DownlinkLookup, UpdateLookup, and
UplinkLookup members of the ILdvxLookup interface. You can optionally
also implement the SetIntance and SetOptions members of the
ILdvxConfigure interface.

You can now begin coding your lookup extension component. See Appendix C,
Custom Lookup Extension Component Programming, on page 161, for more
information about custom lookup extension component programming. This
appendix contains descriptions of the methods that you can use to program your
custom lookup extension component.

Build and Register the Lookup Extension
Select Build → Build SampleLookupVB to build the SampleLookupVB part of
the solution.

Note: For Windows operating systems that include User Account Control
(Windows Vista or Windows 7), if you do not run Visual Studio with elevated
permissions (for example, as an Administrator), you will likely see the following
error message during registration:

Project : error PRJ0050: Failed to register output. Please
try enabling Per-user Redirection or register the component
from a command prompt with elevated permissions.

Start an elevated command shell (right-click the Visual Studio 2008 Command
Prompt shortcut and select Run as administrator), change to the folder that
contains your built DLL, and run the following command:

REGSVR32 SampleLookup.dll

Create a Custom xDriver Profile
Use the OpenLDV xDriver Profile Editor to create a custom xDriver profile for
your custom xDriver lookup extension.

1. Select Start → Echelon OpenLDV 4.0 SDK → Developer Utilities →
xDriver Profile Editor to open the OpenLDV xDriver Profile Editor.

OpenLDV Programmer’s Guide 131

2. Click Add to open the New Profile dialog, as shown in Figure 33.

Figure 33. xDriver Profile Editor New Profile Dialog

3. Enter a profile name (“Sample” for this example) in the Profile Name
field.

4. Click OK to close the New Profile dialog.

5. For the General tab of the OpenLDV xDriver Profile Properties dialog for
the new profile, enter a description in the Profile Description text box, as
shown in Figure 34.

Figure 34. OpenLDV xDriver Profile Properties – General Tab

132 Extending xDriver

6. For the Lookup tab of the OpenLDV xDriver Profile Properties dialog for
the new profile, select the newly built profile from the Extension Name
dropdown listbox, as shown in Figure 35.

Figure 35. OpenLDV xDriver Profile Properties – Lookup Tab

7. Make any other changes that are appropriate for your custom profile, and
click OK to accept the changes and close the dialog.

Test the Lookup Extension
Create an RNI for your custom xDriver lookup extension, and give it a name like
“X.Sample.DownlinkKey”. Use an OpenLDV client program to open the RNI for
the custom extension to see calls for the following methods:

• ILdvxConfigure::SetInstance

• ILdvxConfigure::SetOptions

• ILdvxLookup::DownlinkLookup

Note: Until these methods are implemented (see Implement the ILdvxLookup
Interface on page 129), the default E_NOTIMPL return status will cause the
startup sequence to fail.

Sample Lookup Extension Component
The SampleLookupCsv.cpp program is an xDriver lookup extension written in
C++. The SampleLookupVBNet.vb program is an xDriver lookup extension
Component written in Microsoft Visual Basic .NET. You can find these samples
in the LonWorks Data Path folder:

OpenLDV Programmer’s Guide 133

• Windows Vista or Windows 7: \Users\Public\Documents
\LonWorks\OpenLDV SDK\xDriver API Examples

• Windows XP: \Documents and Settings\All Users\Documents
\LonWorks\OpenLDV SDK\xDriver API Examples

The example applications are also installed as a ZIP file in the LONWORKS
\OpenLDV SDK\SourceArchive folder on your computer. The ZIP file is
named xDriverApiExamplesSource_vn.nn.nnn.ZIP file (where n.nn.nnn
represent the current version and build of the OpenLDV SDK).

The C++ sample program uses a comma-separated variable (CSV) file as its
database to store the SCO information for the lookup extension. Because the
database is a CSV file, the sample program uses standard file I/O methods for
managing the database.

The Visual Basic sample program uses ADO.NET to connect to a database that
stores the information that the lookup extension must fill into the SCO each time
an xDriver connection is initiated. It retrieves this information from the
database using standard ADO techniques, and uses the properties and methods
of the xDriver type library to fill this information into the SCO.

ADO.NET can use either SQL or OLE connections to access a database. In
general, you use only one connection type to access your database, but this
sample is coded to implement either connection type on a per-session basis.
Comments are included within the programming sample to provide further
guidance.

If you are using an LNS Server, for a downlink session, the sample lookup
extension component is launched by an LNS application after the System object
for the remote network is opened. The New() function is called first. The
SetInstance and the SetOptions functions are called next to initialize the SCO
with any user-defined parameters. If parameters are not specified, predefined
defaults are used. The DownlinkLookup() function is then called by the
xDriver manager automatically, and the downlink lookup key is extracted from
the passed-in SCO. The downlink lookup key is used to locate the database record
for the RNI. The UpdateSCO() helper function, which extracts the required
fields from the located database record and fills them into the SCO, is then
called.

If you are using an LNS Server, for an uplink session, the sample lookup
extension component is launched when the uplink session request is received by
the LNS Server. The New() function is called first. The SetInstance and the
SetOptions functions are called next to initialize the SCO with user-defined
parameters. If parameters are not specified, predefined defaults are used. The
UplinkLookup() function is then called by the xDriver automatically, and the
uplink lookup key is extracted from the passed-in SCO. The uplink lookup key is
used to locate the database record for the RNI that has requested the uplink
session. The UpdateSCO() helper function, which extracts the required fields
from the located database record and fills them into the SCO, is then called.

The UpdateLookup function is called after the SCO has been filled in during an
xDriver session if the current and next authentication keys filled in differ, which
indicates that a change to the authentication key used by the RNI is required.
The UpdateLookup function must be coded to implement an update to the
xDriver database to reflect this change. The xDriver database must always store
the correct values of the current and next authentication keys for an RNI, and

134 Extending xDriver

these fields should only be updated from the UpdateLookup function. The
database configuration interface that you create must update these fields in a
guaranteed, safe manner. For more information about how the lookup extension
component handles authentication key changes, see Authentication Key Handling
on page 111.

After the SCO has been filled in and the UpdateLookup() method has been
called (if necessary), the OpenLDV application that launched the lookup
extension component can open the network, and perform whatever network
operations are desired.

The destructor, Finalize function, is called last. It is used to close the database
connection if it is still open. If an instance has not been defined, the destructor is
called following DownlinkLookup function. If an instance has been defined,
the destructor is called when the last object using the instance closes.

xDriver Profiles
After you finish programming your custom lookup extension component, you can
create an xDriver profile to use it. An xDriver profile represents a set of
configuration parameters that determines how xDriver manages sessions,
including:

• The port that xDriver uses to listen for uplink connection requests

• The port that xDriver uses to initiate downlink connections

• The lookup extension to use to look up RNIs

• A flag to enable xDriver automatic reconnection

If you enable automatic reconnection, xDriver attempts to reconnect any uplink
or downlink session that is broken as a result of some unexpected connection
failure. With automatic reconnection enabled, you can configure xDriver to
attempt reconnection as soon as it detects a failed session. xDriver attempts
reconnection until the session has been successfully reestablished or until a time
period that you define has expired.

The profile to be used for each session is determined on a session-by-session
basis. For a downlink session, the profile to use is specified in the network
interface name of the RNI. The network interface name for an RNI using
xDriver must use the following naming convention:

X.[Profile Name].[Downlink Lookup Key]

where [Profile Name] represents the name of the profile to use for the session and
[Downlink Lookup Key] represents the downlink lookup key that was assigned to
the RNI when it was added to the xDriver database. For sample programs that
use this naming convention, see Downlink Sample Applications on page 138.

For an uplink session, the request for connection arrives on a specific TCP port.
The xDriver profile using that port as its listener port handles the uplink session.
You can set the listener port that a profile should use with the OpenLDV xDriver
Profile Editor.

There are two ways to install profiles when you distribute your application:

• Install the profiles with permanent Registry entries that will never be
uninstalled or overwritten. This method has the disadvantage that re-

OpenLDV Programmer’s Guide 135

installing the software does not return the default values to these
profiles. However, the xDriver Profile Editor allows you to restore any
profile to its default value.

• Install your profiles with temporary Registry entries that are overwritten
each time the software is installed. In this case, the default values would
be restored each time the software is installed, and all changes that were
configured by the user since the last installation would be lost.

After you create a profile to use your custom lookup extension component and
(optionally) start the Connection Broker, you can begin using OpenLDV or LNS
applications (such as the LonMaker Integration Tool) to access the networks that
you will use with xDriver.

Alternatively, you can begin creating LNS applications that use xDriver. See
Chapter 7, LNS Programming with xDriver, on page 137, for programming
samples that can assist you in creating these new applications.

Starting the Connection Broker
The Connection Broker must be running for xDriver to receive uplink session
requests. However, it is not required for downlink sessions.

The Connection Broker automatically stops if there are no profiles with uplink
session handling enabled. In addition, the Connection Broker must be stopped
and restarted each time uplink session handling for a profile is enabled or
disabled.

The Connection Broker runs as an interactive service, which allows your
applications that use the Connection Broker to display relevant dialogs for user
interaction. However, any user dialogs are displayed in a separate Windows
desktop from the one the user is logged into, so that a user might not reply to
these dialogs. Thus, an uplink application should use an interface that does not
require user interaction.

To start the Connection Broker, perform the following tasks:

1. Open the Services administrative control panel applet:
Windows 7: Control Panel → System and Security → Administrative
Tools → Services
Windows XP: Control Panel → Administrative Tools → Services

2. Locate the entry for the Echelon xDriver Connection Broker, as
shown in Figure 36 on page 136.

136 Extending xDriver

Figure 36. Services Administrative Control Panel Applet

3. To start the Connection Broker, right-click Echelon xDriver
Connection Broker and select Start.

Important: You must have administrator privileges to start the
Connection Broker.

4. To enable the Connection Broker service permanently, right-click
Echelon xDriver Connection Broker and select Properties to open
the Echelon xDriver Connection Broker Properties dialog. From this
dialog, select Automatic from the Startup type dropdown listbox.
Then, click Start.

You can also start or stop the Connection Broker from a Windows Command
Prompt:
NET START LdvxBroker

NET STOP LdvxBroker

OpenLDV Programmer’s Guide 137

7

LNS Programming with xDriver

This chapter describes sample programs to assist you when
creating LNS applications to manage downlink and uplink
xDriver sessions.
Because LNS Server includes support for xDriver, you can
review these sample programs to understand that support
before creating your own LNS applications that use xDriver.

138 LNS Programming with xDriver

Downlink Sample Applications
LNS applications that manage downlink sessions operate like any other type of
network interface. However, the network interface name for an xDriver RNI
must use the following naming convention:

X.[Profile Name].[Downlink Lookup Key]

where [Profile Name] represents the name of the xDriver profile to be used in this
session and [Downlink Lookup Key] represents the downlink lookup key assigned
to the RNI when it was added to the xDriver database. xDriver network
interface names are not case-sensitive.

Example: If the downlink lookup key assigned to an RNI is “RNI-0001” and this
RNI uses the default profile, the network interface name to use for that device
would be “X.Default.RNI-0001”.

All physical local interfaces appear in the NetworkInterfaces collection.
However, xDriver RNIs that use custom lookup extension components do not
appear in the NetworkInterfaces collection until a session with that RNI has
been fully established. On the other hand, because the default xDriver lookup
extension uses the same part of Windows Registry that describes local network
interfaces, all configured RNIs assigned to the default profile appear in the LNS
NetworkInterfaces collection.

Even if a custom lookup extension is used, and the network interface does not
appear in the network interfaces collection, it is possible to open the appropriate
NetworkInterface object by name from the LNS Network Interfaces collection
using the NetworkInterfaces.Item(NetworkInterfaces As String) method.
For example:

NetworkInterfaces.Item(“X.Default.RNI-0001”)

See the second downlink programming sample on page 139.

Opening a Single Remote Network With xDriver
The following Visual Basic programming sample is an LNS application that
creates, opens, and closes a single remote network with xDriver.

At the completion of the function, the Object Server contains a new network
named “Network1” whose database is stored in “c:\Network1”, and a new
subsystem named “Subsystem1.” The network interface name used to access the
new network is “X.Default.RNI-0001.”

This sample demonstrates the use of the xDriver network interface naming
convention. Relevant comments are shown in bold.

Dim LcaOs As LcaObjectServer
Dim ActiveNetwork As LcaNetwork
Dim ActiveSystem As LcaSystem
Dim ActiveSubsystem As LcaSubsystem
Dim TempNetworkInterface As LcaNetworkInterface

Private Sub InitializeObjectServer()

'Initialize the global LNS database.
Set lcaOs.RemoteFlag = False
Set lcaOs.SingleUserMode = False

OpenLDV Programmer’s Guide 139

lcaOS.Open

'Add a new network object and open the
'network database. “Network1” represents the name
'of the network and “c:\Network1” represents the path to the
'network database.
Set ActiveNetwork = lcaOS.Networks.Add _
 ("Network1", "c:\Network1", True)
ActiveNetwork.Open

'Fetch the system from the network.
Set ActiveSystem = ActiveNetwork.Systems.Item(1)

'Select a network interface. Note the use of the xDriver naming
'convention in this line: X.[Profile Name].[Downlink Lookup Key]. Default
'represents the profile name to use. RNI-0001 represents the downlink
'lookup key for the RNI to be opened.
Set TempNetworkInterface _
= lcaOS.NetworkInterfaces.Item("X.Default.RNI-0001")
Set ActiveSystem.NetworkServiceDevice.NetworkInterface _
 = TempNetworkInterface

'Set up the LNS Server and open an xDriver downlink session by opening
'the System object.
ActiveSystem.Open

'Set the system into OnNet management mode.
ActiveSystem.MgmtMode = lcaOnNet

'Create a subsystem object to hold your AppDevice objects.
Set ActiveSubsystem = ActiveSystem.Subsystems.Add("Subsystem1")
'Any other code goes here.
ActiveSystem.Close
ActiveNetwork.Close
LcaOS.Close

End Sub

Opening Multiple Remote Networks for Downlink
The following Visual Basic sample program opens multiple remote networks
simultaneously. It uses xDriver to connect to two remote LONWORKS networks.

The information required to open each network (network name, xDriver profile
name, and the RNI lookup key) for this program is hard coded into the
application. Figure 37 on page 140 shows the form that was created for this
application.

140 LNS Programming with xDriver

Figure 37. Downlink Application Form

This application can open either of the two remote LONWORKS networks by
clicking the Open Network A and Open Network B buttons. After either
network has been opened, the applicable Close Network button becomes
enabled, so that a user can close the network. When both networks are opened at
the same time, each network is assigned its own xDriver network interface.

From this example, you should be able create your own application that uses
xDriver to open multiple remote networks simultaneously. For more information
on any of the LNS commands used in this sample program, see the LNS
Programmer’s Guide.

'Create variables to store the System and Network object for each network to be
'opened with this application. g_NetworkA and g_SystemA serve as the Network
'object and System object variables for Network A. g_NetworkB and g_SystemB
'serve as the Network object and System object variable for Network B.

Dim g_NetworkA As LcaNetwork
Dim g_NetworkB As LcaNetwork
Dim g_SystemA As LcaSystem
Dim g_SystemB As LcaSystem

'Private Sub OpenNetA_Click() is called when the user clicks the Open Network A
'button. This function disables the Open Network A button, so that a user
'cannot try to open Network A while it is already open. It also enables the
'Close Network A button so that the user can close the open network. Following
'this, the function opens the System and Network object for Network A.

Private Sub OpenNetA_Click()
 OpenNetA.Enabled = False 'Disable the Open Network A button.
 CloseNetA.Enabled = True 'Enable the Close Network A button.
 Dim netList As LcaNetworks
 Set netList = g_cOS.Networks 'Set netList as the Network objects

'collection.
 Set g_NetworkA = netList(1) 'Set g_NetworkA as the Network object for the

'first member of the Network objects
'collection. This value must be hard-coded and
'will vary depending on which network you want
'opened.

 g_NetworkA.Open 'Open network A.
 Dim NIs As LcaNetworkInterfaces 'Set NIs as the NetworkInterfaces
 Set NIs = g_cOS.NetworkInterfaces 'collection object.
 Dim curRNI As LcaNetworkInterface

OpenLDV Programmer’s Guide 141

 Set curRNI = NIs.Item("X.Default.RNI-0001")
'Set the variable curRNI as the
'network interface you want to open. Note the
'use of the xDriver naming convention here:
'X.[Profile Name].[Downlink Lookup Key].

 Dim SysList As LcaSystems 'Set Syslist as the System objects collection.
 Set SysList = g_NetworkA.Systems 'Set g_SystemA as the System object for
 Set g_SystemA = SysList(1) 'the network to be opened.
 Dim SysNSD As LcaNetworkServiceDevice
 Set SysNSD = g_SystemA.NetworkServiceDevice
 Set SysNSD.NetworkInterface = curRNI
 g_SystemA.Open
End Sub

'Private Sub CloseNetA_Click() is called when the user clicks the Close Network
'A button. In order for this to happen, the Network object and the System
'object for Network A must be closed. This function also re-enables the Open
'Network A button, so that Network A can be re-opened, and disables the Close
'Network A button, so that the application will not attempt to close a network
'that is not already closed.

Private Sub CloseNetA_Click()
 OpenNetA.Enabled = True 'Re-enable the Open Network A button.
 CloseNetA.Enabled = False 'Disable the Close Network A button.
 g_SystemA.Close 'Close the System object for network A.
 g_NetworkA.Close 'Close the Network object for network A.
End Sub

'Private Sub OpenNetB_Click() is called when the user clicks the Open Network B
'button. This function first disables the Open Network B button, so that a
'user cannot try to open Network B while it is already open. It also enables
'the Close Network B button, so that the user can close the open network.
'Following this, the function opens the System and Network object for Network
'B. Please see the OpenNetA_Click()function for comments that describe each
'line of code in this function.

Private Sub OpenNetB_Click()
 OpenNetB.Enabled = False
 CloseNetB.Enabled = True
 Dim netList As LcaNetworks
 Set netList = g_cOS.Networks
 Set g_NetworkB = netList(2)
 g_NetworkB.Open
 Dim NIs As LcaNetworkInterfaces
 Set NIs = g_cOS.NetworkInterfaces
 Dim curRNI As LcaNetworkInterface
 Set curRNI = NIs.Item("X.Default.RNI-0002")
 Dim SysList As LcaSystems
 Set SysList = g_NetworkB.Systems
 Set g_SystemB = SysList(1)
 Dim SysNSD As LcaNetworkServiceDevice
 Set SysNSD = g_SystemB.NetworkServiceDevice
 Set SysNSD.NetworkInterface = curRNI
 g_SystemB.Open
End Sub

'Private Sub CloseNetB_Click() is called when the user clicks the Close
'Network B button. In order for this to happen, the Network object and the
'System object for Network B must be closed. This function also re-enables
'the Open Network B button, so that Network B can be re-opened, and disables
'the Close Network B button, so that the application will not attempt to close
'a network that is already closed. Please see the CloseNetA_Click()
'function for comments that describe each line of code in this section.

142 LNS Programming with xDriver

Private Sub CloseNetB_Click()
 OpenNetB.Enabled = True
 CloseNetB.Enabled = False
 g_SystemB.Close
 g_NetworkB.Close
End Sub

'Private Sub Form_Load() is called when the form Load event occurs.
Private Sub Form_Load()
 g_cOS.RemoteFlag = False 'Set the application access mode to local.
 g_cOS.SingleUserMode = False 'Allow multiple applications to access LNS

'server.
 g_cOS.Open 'Open the Object Server.
 CloseNetA.Enabled = False 'Disable the Close Network buttons, so that a
 CloseNetB.Enabled = False 'cannot try to close a network before it has
 'been opened.
End Sub

Private Sub Form_Unload(Cancel As Integer)
 G_cOS.Close 'Close the object server.
End Sub

Uplink Sample Application
The following Visual Basic sample program is a listener application that
manages uplink sessions between the LNS Server and multiple RNIs. This
application first registers for uplink session event handling, and uses a timer
control to check when uplink session requests are received. When the timer
control discovers that a request for uplink session has been received, the
application opens the network that has requested the session. Thus, the
application can run without user interaction, other than starting and stopping
the application.

This sample program uses several events and methods within the LNS Server for
use with xDriver. For additional information, see Appendix B, LNS Methods and
Events for xDriver, on page 153.

In the Form_Initialize() function, the application registers for uplink session
event handling by calling the BeginIncomingSessionEvent function. The
OnIncomingSessionEvent event is fired each time an uplink session event is
received. This event handler is called m_cOS_OnIncomingSessionEvent in
this application, because the instance of the LNS Server for this application is
named m_cOS.

The uplink session is accepted or rejected by calling the
AcceptIncomingSession method from the
m_cOS_OnIncomingSessionEvent event handler. If the session is accepted,
the name of the network that requested the uplink session is stored in a global
variable. This variable is used to open the network. This application also sets
the DoPostponeUpdates flag to True when it calls the
AcceptIncomingSession method. All monitor-point updates are then withheld
until the ReleasePendingUpdates method is called. Your application can
receive the monitor-point update event that caused the uplink session request.

The network should not be opened from the event handler, so the
OnIncomingSession event sets a flag to True to indicate that an uplink session
request has been received. This flag causes the StartButton_Click() function to

OpenLDV Programmer’s Guide 143

be called from the Timer1_Timer() function after the next timer control interval
expires. The StartButton_Click() function opens the network that requested
connection in independent mode, and enables monitoring of the network variable
monitor set for that network. It also calls the ReleasePendingUpdates method
to release the monitor-point update events that have been withheld since the
session began.

The application then receives the monitor-point update event that caused the
uplink session request (for example, an alarm). Upon receiving a monitor-point
update event, the m_cOS_OnNvMonitorPointUpdateEvent() function is
called automatically. This function saves all information associated with the
monitor-point update event publicly, and sets a flag to True to indicate that a
monitor-point update has been received. This flag causes the
DisplayMP_Click() function to be called from the Timer1_Timer() function
after the next timer control interval expires, eliminating the need for any calls
from within the event handler. The DisplayMP_Click() function displays all
information saved for the monitor-point update event. It also sets a flag to True
to end the current uplink session.

When this flag is True, the StopButton_Click() function is called from the
Timer1_Timer() function after the next timer control interval expires. The
StopButton_Click() function disables the monitor point and monitor set for the
open network, and the network is closed. The application continues to listen for
requests for connection, and handles them in this fashion, until the application is
closed.

Important: A network interface could reset after receiving an alarm event, but
before the event has been propagated to the LNS Server, causing the event to be
lost. To prevent this loss, your applications must resend each monitor-point
update at short intervals until receipt of that event is confirmed, especially for
alarm applications. This technique results in reliable performance, and ensures
that no monitor point update events are lost before they are processed by the
LNS application.

For more information about any of the LNS commands used in this programming
sample, see the LNS Programmer’s Guide.

Dim m_cCurNet As LcaNetwork
Dim m_cMyVni As LcaAppDevice
Dim m_cMS As LcaMonitorSet
Dim m_gDP As LcaDataPoint
Dim m_gbInMP As Boolean 'Use the monitor point update event
 'flag to track whether a monitor point
 'update event has been received.
Dim m_gbInUplinkOpen As Boolean 'Use the uplink open flag to track
 'whether an uplink session is currently
 'being handled by the application.
Dim m_gbInUplinkClose As Boolean 'Use the uplink close flag to track
 'whether the most recent uplink session
 'handled by the application has been
 'closed.
Dim m_szIncomingNetName As String 'This variable will be used to store
 'the network name of a network
 'requesting connection to the LNS
 'server.

Private Sub Form_Initialize()
 ExitButton.Enabled = True 'Enable the Exit button.
 m_cOS.RemoteFlag = False 'Set the application access mode to

144 LNS Programming with xDriver

 'local.
 m_cOS.SingleUserMode = False 'Allow multiple applications to access
 'the LNS Server.
 m_cOS.Open 'Open the LNS Server.
 m_cOS.BeginIncomingSessionEvents ("Default") 'Register the application
 'for uplink session event handling.
 'After this, each time the listener
 'port assigned to default profile
 'receives an uplink session request,
 'the m_cOS_OnIncomingSessionEvent event
 'will be fired.
 m_gbInMP = False 'Set the monitor point update event
 'flag to False until a monitor point
 'update event is received.
 m_gbInUplinkOpen = False 'Set the uplink open and uplink close
 m_gbInUplinkClose = False 'flags to False until an uplink
 'session begins.

 Timer1.Interval = 100 'Set the interval for invocation of the
 'timer control function to 100
 'milliseconds, or an interval of your
 'choice.
End Sub

'The m_cOS_OnIncomingSessionEvent function is invoked each time an uplink
'session request is received, as long as the application has registered for
'uplink session handling by invoking the BeginIncomingSessionEvents method.
'This function stores the name of the calling network in the variable
'm_szIncomingNetName and sets the uplink 'open flag to True.

Private Sub m_cOS_OnIncomingSessionEvent(ByVal XDriverProfileName As String, _
 ByVal NetName As String, ByVal IntfName As String, ByVal Tag As Long)
 If m_gbInUplinkOpen = False & XDriverProfileName = "Default" Then
 Timer1.Enabled = False 'Disable the timer while processing the
 'uplink. Start of critical section. The
 'network cannot be opened from the
 'event handler.
m_cOS.AcceptIncomingSession Tag, True, True 'Accept the uplink. The
 'DoPostponeUpdates flag is set to True, which
 'means that all monitor point updates for the
 'network will be withheld until the
 'ReleasePendingUpdates method is called.
m_szIncomingNetName = NetName 'Store the name of the network that has
 'requested connection in the variable
 'm_szIncomingNetName. This will be used to
 'open the network later.
m_gbInUplinkOpen = True 'Set the uplink open flag to True. This will
 'cause the Timer1_Timer() function to invoke
 'the StartButton_Click() function after the
 'next timer interval expires.
 Timer1.Enabled = True 'Re-enable the timer. End of critical section.
 Else
 m_cOS.AcceptIncomingSession Tag, False, False 'Reject the uplink session

'if there is another uplink session open.
 End If
End Sub

'The m_cOS_OnNvMonitorPointUpdateEvent function is called when a monitor
'point update for an open network has been received. This function saves all
'information associated with the update so that it can be displayed by the
'DisplayMP_Click() function.

Private Sub m_cOS_OnNvMonitorPointUpdateEvent(ByVal MonitorPoint As Object, _

OpenLDV Programmer’s Guide 145

ByVal DataPoint As Object, ByVal srcaddr As Object)
 Dim src_addr As LcaSourceAddress
 Set src_addr = srcaddr 'Store the calling network address source in
 'the variable src_addr.
 X1 = src_addr.NodeId 'Store the node ID reporting the event in the
 'variable X1.
 X2 = src_addr.SubnetId 'Store the subnet ID in the variable X2.
 Set m_gMP = MonitorPoint 'Store the monitor point for the event in

'variable m_gMP.
 Set m_gDP = DataPoint 'Store the data point for the event in

'variable m_gDP.
 TextStatus = TextStatus + vbCrLf + "OnNvMonitorPointUpdateEvent" 'The

'monitor point update event has been received
'and all data has been saved.

 m_gbInMP = True 'Set the monitor point update event flag to
'True. This will cause the Timer1_Timer()
'function to invoke the DisplayMP_Click()
'function after the next timer interval,
'which will display the information saved for
'this monitor point update event.

End Sub

'The StartButton_Click() function is invoked by the Timer1_Timer() function
'when the uplink session open flag is true (this flag is set True by the
'm_cOS_OnIncomingSession function whenever an uplink session is started). 'This
function opens the network in independent mode, and enables the 'monitoring of
the network variable monitor set for the network.

Private Sub StartButton_Click()
 On Error GoTo do_err1
 Dim m_cNets As LcaNetworks
 Set m_cNets = m_cOS.VNINetworks
 Set m_cCurNet = m_cNets.Item(m_szIncomingNetName) 'Use m_cCurNet as the
 'Network Object.
 m_cCurNet.OpenIndependent 'Open the network in independent mode.
 Set m_cMyVni = m_cCurNet.MyVNI
 Dim m_cMSs As LcaMonitorSets
 Set m_cMSs = m_cMyVni.MonitorSets
 Set m_cMS = m_cMSs.Item(1) 'Enable the monitor set for the network.
 m_cMS.Open True, True
 m_cMyVni.ReleasePendingUpdates() 'Release all pending monitor point
 'update events that occurred after the
 'session began and before the monitor
 'set was opened.
 ExitButton.Enabled = False 'Disable the Exit button while the network and

'monitor set are open.
 GoTo do_done
do_err1:
 Debug.Print Err.Description
do_done:
End Sub

'The DisplayMP_Click() function is invoked by the Timer1_Timer() function 'when
the monitor point update event flag is true (this flag is set True by the
'm_cOS_OnNvMonitorPointUpdateEvent function whenever a monitor point update
'event is received). It displays some of the information saved for the monitor
'point update received in the text box of the form for this project.
Private Sub DisplayMP_Click()
 TextStatus = TextStatus + vbCrLf + ":: '" + m_gMP.Name _
 + "'" + vbCrLf + ":: tag := " + CStr(m_gMP.Tag) + vbCrLf _
 + ":: " + m_gDP.FormattedValue 'The application used all of the
 'data saved from the monitor point update

146 LNS Programming with xDriver

 'event and will now close the monitor points
 'and the network.
 m_gbInUplinkClose = True 'Set the uplink close flag to True.
End Sub

'Private Sub StopButton_Click() closes all monitor points, monitor sets, and
'networks. It also re-enables the Exit button so that the user can close the
'application when he wants.

Private Sub StopButton_Click()
 m_cMS.Close 'Close monitor set.
 m_cCurNet.CloseIndependent 'Close the open network.
 ExitButton.Enabled = True 'Re-enable the Exit button since the network
 'is closed.
End Sub

'The ExitButton_Click() function closes the application. Before doing so, it
'invokes the EndIncomingSessionEvents method so that it will stop receiving
'incoming session events, and closes the object server.
Private Sub ExitButton_Click()
 m_cOS.EndIncomingSessionEvents ("Default") 'Stop receiving incoming
 'session events.
 m_cOS.Close 'Close the Object Server.
 End 'End the program.
End Sub

'The Timer1_Timer() function is invoked automatically by the function each
'time the timer control interval expires. This function uses flags to
'determine if an uplink session is open, or if a monitor point update event has
'been received, and acts accordingly.

Private Sub Timer1_Timer()
 If m_gbInMP Then 'If monitor point update event flag is True:
 m_gbInMP = False 'First, set the flag to False.
 DisplayMP_Click 'Then, invoke DisplayMP_Click(). This
 End If 'displays all data for the update event.

 If m_gbInUplinkOpen Then 'If the uplink open flag is True:
 m_gbInUplinkOpen = False 'Set the flag back to False.
 StartButton_Click 'Then, invoke StartButton_Click()
 End If 'to process the request for uplink.

 If m_gbInUplinkClose Then 'If the uplink close flag is True:
 m_gbInUplinkClose = False 'Set the flag back to False.
 StopButton_Click 'Then, invoke StopButton_Click() to
 End If 'close the open network.
End Sub

OpenLDV Programmer’s Guide 147

A

Custom Network Interfaces

This appendix provides high-level guidance for working with
a custom network interface that can work with the
OpenLDV driver.

148 Custom Network Interface

Overview
Echelon and other manufacturers provide a wide selection of network interfaces
for different LONWORKS channel types and for various computer requirements.
You can also create a custom OpenLDV compatible network interface.

Figure 38 shows a simplified view of how a custom network interface
communicates with an application:

• When a user uses a custom network interface for the first time or installs
custom network interface software, Windows installs the device driver
for the network interface and updates the Windows registry. In
addition, a custom network interface might use additional software for
device configuration (for example, you can use the LONWORKS Interfaces
application in the Windows Control Panel to configure Echelon devices).

• The application uses the OpenLDV API to communicate with both the
network interface and the LONWORKS network. For example, the
application calls the ldv_open() function to open the custom network
interface for communications.

• The OpenLDV API uses the entries in the Windows registry to map the
custom network interface’s logical name (what is presented to the user or
the application) to the physical device name (what is presented to the
device driver). This mapping is done whenever the custom network
interface is opened for communications.

Device
Driver

OpenLDV API

Application

Windows
Registry

Windows Computer

Custom Network Interface

To LONWORKS Network

Figure 38. A Custom Network Interface Communicates with an Application
This appendix describes how you can integrate a custom network interface driver
with the OpenLDV driver so that it is accessible from any OpenLDV application.
It does not describe how to develop the custom network interface hardware or
how to write the Windows device driver for the custom network interface.

Working with a Custom Network Interface
To make a custom Windows device driver accessible through the OpenLDV
interface, the driver must be a kernel-mode Windows Driver Foundation (or
Windows Driver Model) driver that provides standard create, read, write, and

OpenLDV Programmer’s Guide 149

close calls. The OpenLDV driver calls these driver functions to interact with the
custom network interface.

You can create an OpenLDV application that manages the custom network
interfaces supported by your custom Windows driver, similar to the Echelon
LONWORKS Interfaces application. The OpenLDV application should perform the
following basic tasks:

1. Create an LDVDriverInfo object:

a. Set the size equal to the struct size.

b. Set the id to any unused value > 127. Values less than 127 are
reserved for Echelon use.

c. Set the type to LDV_DRIVER_TYPE_LNI. This value specifies a
Windows device driver.

d. Set the name to a suitable name for your driver.

e. Set the desc to a suitable description for your driver.

LDVDriverInfo myDriver =
{ (DWORD)sizeof(LDVDriverInfo),
 (LDVDriverID)myDriverID,
 (LDVDriverType)LDV_DRIVER_TYPE_LNI,
 (LPCSTR)myDriverName,
 (LPCSTR)myDriverDesc
};

2. Call the ldv_set_driver_info() function:

LDVCode rc = ldv_set_driver_info(
 myDriver.id,
 *myDriver);

3. Create devices that use this driver.

4. Create an LDVDeviceInfo object:

a. Set the size equal to the struct size.

b. Set the driver to NULL. This parameter is ignored for the
ldv_set_device_info() function.

c. Set the name to a suitable name for your device. The name must
be unique for the computer. The name must not begin with “X.”
(that naming convention is reserved for xDriver devices). The
name can follow the “LON1” naming convention, but you must
ensure that no naming conflicts arise.

d. Set physName to a suitable physical name (matching the name
specified in your Windows driver) for the device. This name must
follow the Windows \\.\name.0 format. You can match the
physName parameter with the name parameter.

e. Set the desc to a suitable description for your device.

f. Set the caps to suitable capabilities for your device. For
example, your custom network interface might operate as a Layer
5 device and use the SICB data format, so you specify a logical

150 Custom Network Interface

OR of the LDV_DEVCAP_L5 and LDV_DEVCAP_SICB
enumeration values.

g. Set the capsMask to suitable current capabilities of the device.
When creating the device, you generally set this parameter to the
same values as the caps parameter.

h. Set the transId to the transceiver ID of the custom network
interface, as appropriate.

i. Set the driverId to the driver specified in the
ldv_set_driver_info() function in step 2 on page 149.

LDVDeviceInfo myDevice =
{ (DWORD)sizeof(LDVDeviceInfo),
 (LDVDriverInfo)NULL,
 (LPCSTR)myDeviceName,
 (LPCSTR)myDevicePhysName,
 (LDVDeviceCaps)LDV_DEVCAP_L5 | LDV_DEVCAP_SICB,
 (LDVDeviceCaps)LDV_DEVCAP_L5 | LDV_DEVCAP_SICB,
 (BYTE)myTransID,
 (LDVDriverID)myDriver
};

5. Call the ldv_set_device_info() function:

LDVCode rc = ldv_set_device_info(
 myDevice.name,
 *myDevice);

After completing these steps, OpenLDV applications can use the other OpenLDV
API functions to communicate with the custom network interface.

Windows Registry Entries
The installation program for the custom network interface must create a subkey
for the device driver within the \HKEY_LOCAL_MACHINE
\SOFTWARE\LonWorks\DeviceDrivers Windows registry path. The name
of this subkey must be the logical name for the custom network interface; this
logical name is what is displayed to the user (for example, within the LONWORKS
Interfaces Control Panel application) or to the application. You can use any
name that identifies the custom network interface, or you can follow the legacy
“LON1” naming convention.

Within the custom network interface’s subkey, you must create the following
registry entry:

• Value name — device name

• Data type — REG_SZ (a string value)

• Value — The custom network interface’s physical device name, as set by
Windows for the device driver, with the format \\.\name.0

You must ensure that the value for the device name matches the logical name
that you assign for the device.

Example: If the installed device driver for the custom network interface is
assigned the physical device name \\.\MyCustomLON1.0, then the logical name

OpenLDV Programmer’s Guide 151

for the custom network interface should be “MyCustomLON1”. The subkey for
the device within the registry should also have the name “MyCustomLON1”.
Figure 39 and Figure 40 show these example registry entries.

Figure 39. The MyCustomLON1 Registry Key

Figure 40. The device name Registry Value

OpenLDV Programmer’s Guide 153

B

LNS Methods and Events for
xDriver Support

This appendix describes the methods and events that are
included with LNS Server for use with xDriver. You use
these methods and events when creating LNS applications
to initiate and manage xDriver sessions.

154 LNS Methods and Events for xDriver Support

xDriver Methods and Events
This appendix describes the LNS methods and events you use when creating an
application to manage xDriver sessions. To use these methods and events, you
must install the LNS Application Developer’s Kit. Within a COM application,
add a reference to the LNS Object Server. See Chapter 4, “Programming an LNS
Application” in the LNS® Programmer’s Guide or the LNS Application
Developer’s Kit help for more information.

For a sample program that uses these methods and events, see Uplink Sample
Application on page 142.

AcceptIncomingSession
Applies to: Object Server object

Call this method to accept or reject an incoming uplink session request.

Syntax
objServer.AcceptIncomingSession tag, acceptUplink, postponeUpdates

Table 37. AcceptIncomingSession Parameters

Element Description

tag The Tag element is passed to the OnIncomingSessionEvent event
when the uplink session is received. It should then be used by the
AcceptIncomingSession method to identify the xDriver session
when it is accepted or rejected.

acceptUplink A True or False value. Use True to accept the session, or False to
reject it.

postponeUpdates A True or False value. Use True to hold off all monitor-point update
events while the uplink session is being opened. In this case, withheld
monitor-point updates must be released by calling the
ReleasePendingUpdates method. For more information, see
ReleasePendingUpdates on page 158.

If False, all monitor-point update events that occur while the session
is being initialized are lost.

This feature is only supported by LNS listener applications. It is not
supported by command-line initiated uplink event handlers.

Remarks
Use the AcceptIncomingSession method to accept or reject an uplink session
request after the OnIncomingSessionEvent event has fired.

If an uplink session request is rejected, the session is terminated. If the uplink
session request is neither accepted nor rejected before the session establishment
time-out period for the profile handling the session expires, it is rejected

OpenLDV Programmer’s Guide 155

automatically. The session establishment time for a profile can be configured
using the xDriver Profile Editor. For more information, see xDriver Profiles on
page 134.

BeginIncomingSessionEvents
Applies to: Object Server object

This method is used to register for incoming session event handling. The
application is then notified of incoming uplink session requests to the LNS
Server.

Syntax
objServer.BeginIncomingSessionEvents xDriverProfileName

Table 38. BeginIncomingSessionEvents Parameters

Element Description

xDriverProfileName xDriver profile name as a String (20 characters max). The application
is informed of incoming session requests that come in on the TCP
listener port assigned to the specified profile. You can use the
OpenLDV xDriver Profile Editor to enable a profile for incoming
session handling and assign it a listener port. For more information,
see xDriver Profiles on page 134.

Remarks
This method can be invoked multiple times per application if you want to use
multiple profiles to listen for incoming session requests in a single application.
However, multiple applications cannot register for uplink session event handling
with the same profile simultaneously.

After an application has registered for incoming session handling with this
method, the OnIncomingSessionEvent event is fired each time a request for
connection is received. The application is then responsible for accepting or
rejecting all incoming uplink sessions. For more information on this event, see
OnIncomingSessionEvent on page 157.

EndIncomingSessionEvents
Applies to: Object Server object

This method is used to end uplink session event handling within an application.
It must be called before closing an application that has registered for uplink
session handling with the BeginIncomingSessionEvents Method, or when the
application should no longer be responsible for handling incoming sessions.

156 LNS Methods and Events for xDriver Support

Syntax
objServer.EndIncomingSessionEvents xDriverProfileName

Table 39. EndIncomingSessionEvents Parameters

Element Description

xDriverProfileName The name of the xDriver profile used in the call to
BeginIncomingSessionEvents.

Remarks
Call this method for each profile for which the BeginIncomingSessionsEvent
method was called before closing an application.

NetworkInterfaces.Item()
Applies to: NetworkInterfaces collection object

The Item property of the NetworkInterfaces collection object behaves
differently when the network interface being accessed is an xDriver network
interface.

Syntax
retrievedObject = collObject.Item(index)

retrievedObject = collObject.Item(stringExpression)

Table 40. NetworkInterfaces.Item Parameters

Element Description

retrievedObject Object variable that stores the NetworkInterface item retrieved
from the NetworkInterfaces collection.

collObject The collection object to be acted on.

index A Long type specifying the ordinal index of the object to retrieve.

OpenLDV Programmer’s Guide 157

Element Description

stringExpression A string type specifying the name of the object to retrieve. For
xDriver network interfaces, the network interface name of the RNI
can be a maximum of 128 characters long, and must be specified using
the following naming convention:

X.[ProfileName].[Downlink Lookup Key]

where [ProfileName] represents the name of the xDriver profile that
manages the connection to the RNI and [Downlink Lookup Key]
represents the downlink lookup key assigned to the RNI in the
xDriver database. For example, if the xDriver profile name is
myProfile and the downlink lookup key is RNI-0001, the network
interface name would be:

X.myProfile.RNI-0001

For information about using this method with non-xDriver network
interfaces, see the LNS Object Server Reference online help.

Remarks
All local interfaces appear in the NetworkInterfaces collection. However,
xDriver RNIs that use custom lookup extension components do not appear in the
NetworkInterfaces collection until a session with that RNI has been fully
established. On the other hand, because the default xDriver lookup extension
uses the Windows Registry, all configured RNIs appear in the LNS
NetworkInterfaces collection. For other lookup extension implementations, it
is possible to create the appropriate NetworkInterface object by name from the
LNS NetworkInterfaces collection object using the NetworkInterfaces.Item
method.

For sample programs that use this method with xDriver networks, see Downlink
Sample Applications on page 138.

OnIncomingSessionEvent
Applies to: Object Server object

This event is fired whenever a request for connection to the LNS Server is
received, as long as the application has registered for uplink session event
handling with the BeginIncomingSessionEvents method.

Syntax
OnIncomingSessionEvent(xDriverProfileName, netName, intfName, tag)

Table 41. OnIncomingSessionEvent Parameters

Element Description

xDriverProfileName This string identifies the profile that is using the TCP listener port for
this session. This name can be useful in an application that registers
for uplink session event handling with multiple xDriver profiles.

158 LNS Methods and Events for xDriver Support

Element Description

netName A string that represents the LNS network name of the network that
requested the session.

intfName A string that represents the network interface name of the network
that requested the session.

tag This value must be used when the AcceptIncomingSession method
is called to accept or reject the session.

Remarks
After an uplink session request has been received and this event has fired, use
the AcceptIncomingSession method to accept or reject the request. The Tag
element passed to this event is used by the AcceptIncomingSession method to
identify the xDriver session. The other elements can be used to open the network
if the incoming session is accepted.

Important: Do not open the network within the event handler. Instead, signal
your main thread to open the network by posting a message or using a timer.

ReleasePendingUpdates
Applies to: Application device object

Call this method to release monitor-point update events withheld after the
PostponeUpdates field in the AcceptIncomingSession method is set to True.

Syntax
appDevice.ReleasePendingUpdates

Table 42. ReleasePendingUpdates Parameters

Element Description

appDevice The AppDevice object being acted upon.

Remarks
The AcceptIncomingSession method includes a PostponeUpdates parameter.
If this parameter is set to True when a session is accepted, monitor-point
updates for the network involved in this session are withheld until this method is
called. Withholding the updates ensures that no monitor-point update events are
lost before the network that requested the uplink session is opened, and that the
application receives the monitor-point update event that caused the uplink
session request.

The ReleasePendingUpdates method must be called after the monitor set for
the remote network involved in the session is enabled. For an example of this,
see Uplink Sample Application on page 142.

OpenLDV Programmer’s Guide 159

Recommendation: Open the network in server-independent mode when you
plan to use this method, because using this method in server-dependent mode
could disrupt network management operations. If you are not operating in
server-independent mode and you call this method, an exception is thrown.
However, the monitor-point update events are released.

OpenLDV Programmer’s Guide 161

C

Custom Lookup Extension
Component Programming

This appendix describes the interfaces and methods that
your custom lookup extension component can use or must
implement.

162 Custom Lookup Extension Component Programming

Overview
This appendix describes the interfaces and methods that your custom lookup
extension component can use or must implement:

• Implement

o ILdvxConfigure (optional)

o ILdvxLookup (required)

• Use

o ILdvxSCO

o ILdvxSCO2

o ILdvxSCO_TCP

A lookup extension component must implement ILdvxLookup, and can
optionally implement ILdvxConfigure. During its operation, the lookup
extension component calls methods of the ILdvxSCO, ILdvxSCO2, and
ILdvxSCO_TCP interfaces. Types and error codes used by the RNIs are
declared in the LdvxTypes.h and LdvxResult.h header files, or in the Ldvx.tlb
type library.

The SampleLookupCsv.cpp and SampleLookupVBNet.vb sample lookup
extension components use the methods described in this chapter. See Sample
Lookup Extension Component on page 132 for more information about these
examples.

ILdvxConfigure Interface
This configuration interface is an optional interface implemented by an xDriver
lookup extension component. It defines methods that are used to pass
configuration information (instance name and options) to the lookup extension
component at instantiation.

SetInstance Method
Applies to: xDriver Lookup Extension Component

This method is passed the instance name of the lookup extension component for a
session. Typically, each profile has its own instance of a lookup extension
component.

Profiles can be configured to share an instance of an xDriver lookup extension
component by using the same instance name, which allows a single xDriver
lookup extension component to be shared by multiple profiles. The instance
name itself can be used as a key internally. You can set the lookup instance to be
used by a given xDriver profile with the OpenLDV xDriver Profile Editor. For
more information, see xDriver Profiles on page 134.

OpenLDV Programmer’s Guide 163

Syntax
C++ STDMETHOD(SetInstance)(BSTR instance)

Visual Basic Sub SetInstance(ByVal instance As String)

Table 43. SetInstance Parameters

Parameter Description

instance Name of the lookup extension instance. Defaults to the profile name,
if not configured in the profile.

Returns
Standard xDriver LdvxResult (HRESULT) describing the result of the call.

SetOptions Method
Applies to: xDriver Lookup Extension Component

This method passes an arbitrary options string from the profile to the xDriver
lookup extension component. For example, this string can specify a database
path or a dial-up-networking prefix, depending on the needs of a custom
extension.

You can set the lookup options string to be used by a given xDriver profile with
the OpenLDV xDriver Profile Editor. For more information, see see xDriver
Profiles on page 134.

Syntax
C++ STDMETHOD(SetOptions)(BSTR options)

Visual Basic Sub SetOptions(ByVal options As String)

Table 44. SetOptions Parameters

Parameter Description

options Arbitrary options string (defaults to empty string).

Returns
Standard xDriver LdvxResult (HRESULT) describing the result of the call.

164 Custom Lookup Extension Component Programming

ILdvxLookup Interface
The lookup interface is the primary interface implemented by an xDriver lookup
extension component. It defines the methods that are used to look up session
parameters in your xDriver database.

DownlinkLookup Method
Applies to: xDriver Lookup Extension Component

This method is called by xDriver when a downlink session is initiated. It is
passed a pointer to the xDriver Session Control Object (SCO) for the session. The
SCO contains the downlink lookup key to be looked up. This lookup key comes
from the network interface name of the RNI being opened. For example, in the
"X.Custom.Location-123" NetworkInterface name, the downlink key is "Location-
123".

It is the responsibility of the xDriver lookup extension to extract the downlink
lookup key from the SCO, use it to access its xDriver database, and retrieve the
authentication and TCP parameters to be used by the rest of the xDriver
framework. Then, the lookup extension component must fill in the corresponding
fields of the SCO, including the Authentication Flag, Current Authentication
Key, Next Authentication Key, Additional Downlink Packet Header (optional),
Additional Downlink Packet Trailer (optional), Encryption Type, Remote TCP
Address, and Remote TCP Port. This information is used by xDriver to complete
the session establishment.

The ILdvxSCO interface provides methods that you can use to obtain the
downlink lookup key and fill in the SCO fields. For more information, see
ILdvxSCO Interface on page 166.

Syntax
C++ STDMETHOD(DownlinkLookup)(ILdvxSCO * xSCO)

Visual Basic Sub DownlinkLookup(ByVal xSCO As LdvxLib.ILdvxSCO)

Table 45. DownlinkLookup Parameters

Parameter Description

xSCO Pointer to the SCO object that contains the downlink key to be looked
up. The DownlinkLookup implementation should fill the required
fields into the SCO.

Returns
Standard xDriver LdvxResult (HRESULT) describing the result of the call. The
result is typically LDVX_S_OK (see LdvxResult). If the specified downlink key
is not recognized, the lookup extension component must return the error code

OpenLDV Programmer’s Guide 165

E_HANDLE, LDVX_E_INVALID_DOWNLINK_KEY, or
LDVX_E_LOOKUP_FAILURE.

UpdateLookup Method
Applies to: xDriver Lookup Extension Component

This method is called by xDriver upon the completion of a change to a session
authentication key by xDriver. The lookup extension component must implement
an update to its database from this method, so that it stores the new values of the
current authentication key and the next authentication key from the SCO. These
fields can only be updated from the UpdateLookup method.

For more information about authentication key handling, see Authentication Key
Handling on page 111.

Syntax
C++ STDMETHOD(UpdateLookup)(ILdvxSCO * xSCO)

Visual Basic Sub UpdateLookup(ByVal xSCO As LdvxLib.ILdvxSCO)

Table 46. UpdateLookup Parameters

Parameter Description

xSCO Pointer to the Session Control Object that contains the new
authentication keys.

Returns
Standard xDriver LdvxResult (HRESULT) describing the result of the call.

UplinkLookup Method
Applies to: xDriver Lookup Extension Component

This method is called by xDriver when an uplink session is initiated. It is passed
a pointer to the xDriver Session Control Object (SCO) for the session. The SCO
contains the uplink lookup key passed in by the RNI.

It is the responsibility of the xDriver lookup extension to extract this lookup key
from the SCO, use it to access its xDriver database, and retrieve the
authentication and network parameters to be used by the rest of the xDriver
framework. Then, the lookup extension component must fill in the corresponding
fields of the SCO, including the Authentication Flag, Current Authentication
Key, Next Authentication Key, LNS Network Name, Downlink Key, and
Encryption Type. This information is then used by xDriver to complete the
session establishment.

166 Custom Lookup Extension Component Programming

The ILdvxSCO interface provides methods that you can use to obtain the uplink
lookup key and fill in the SCO fields. For more information, see ILdvxSCO
Interface on page 166.

Syntax
C++ STDMETHOD(UplinkLookup)(ILdvxSCO * xSCO)

Visual Basic Sub UplinkLookup(ByVal xSCO As LdvxLib.ILdvxSCO)

Table 47. UplinkLookup Parameters

Parameter Description

xSCO Interface to the SCO object. This element contains the uplink key to
be looked up. The UplinkLookup implementation must fill in the
required SCO fields.

Returns
Standard xDriver LdvxResult (HRESULT) describing the result of the call. The
result is typically LDVX_S_OK (see LdvxResult). If the specified uplink key is
not recognized, the lookup extension component must return the error code
E_HANDLE, LDVX_E_INVALID_UPLINK_KEY, or
LDVX_E_LOOKUP_FAILURE.

ILdvxSCO Interface
The Session Control Object interface is one of the main interfaces to the xDriver
Session Control Object (SCO). It provides methods that are used by user
extensions to access and assign values to the common fields of the SCO. For a
description of these fields, see Session Control Object on page 108.

These methods are called from the UplinkLookup, DownlinkLookup, and
UpdateLookup methods. Table 48 lists the access that the lookup extension
component has to each SCO field from these methods.

Table 48. SCO Fields

Field Name

Called From

DownlinkLookup UplinkLookup UpdateLookup

Session Control Object ID Read Only Read Only Read Only

Authentication Flag Read/Write Read/Write Read Only

LNS Network Name Read/Write Read/Write Read Only

Downlink Key Read Only Read/Write Read Only

OpenLDV Programmer’s Guide 167

Field Name

Called From

DownlinkLookup UplinkLookup UpdateLookup

Uplink Key Read/Write Read Only Read Only

Current Authentication Key Read/Write Read/Write Read Only

Next Authentication Key Read/Write Read/Write Read Only

Additional Downlink Packet
Header

Read/Write Read/Write Read Only

Additional Downlink Packet
Trailer

Read/Write Read/Write Read Only

GetAdditionalDownlinkPacketHeader Method
Applies to: Session Control Object

This method obtains any additional bytes that are pre-pended to the packet
headers sent during a downlink session.

Syntax
C++ STDMETHOD(GetAdditionalDownlinkPacketHeader)(BSTR * hexBytes)

Visual Basic Function GetAdditionalDownlinkPacketHeader() As String

Table 49. GetAdditionalDownlinkPacketHeader Parameters

Parameter Description

hexBytes String to contain returned bytes.

Returns
Hexadecimal string containing the bytes to be pre-pended, two characters per
byte.

GetAdditionalDownlinkPacketTrailer Method
Applies to: Session Control Object

This method obtains any additional bytes that are being appended to the packet
trailers sent during a downlink session.

168 Custom Lookup Extension Component Programming

Syntax
C++ STDMETHOD(GetAdditionalDownlinkPacketTrailer)(BSTR * hexBytes)

Visual Basic Function GetAdditionalDownlinkPacketTrailer() As String

Table 50. GetAdditionalDownlinkPacketHeader Parameters

Parameter Description

hexBytes String to contain returned bytes.

Returns
Hexadecimal string containing the bytes to be appended, two characters per byte.

GetAuthenticationFlag Method
Applies to: Session Control Object

This method obtains the flag that determines whether the xDriver protocol
engine is to use link authentication with an MD5 per-packet digest. This field is
always true for a SmartServer or i.LON 600.

Syntax
C++ STDMETHOD(GetAuthenticationFlag)(VARIANT_BOOL * bAuth)

Visual Basic Function GetAuthenticationFlag() As Boolean

Table 51. GetAuthenticationFlag Parameters

Parameter Description

bAuth Boolean variable that stores the return data.

Returns
xDriver authentication state as Boolean. If True, the xDriver protocol engine
generates and validates link-level authentication. If False, the xDriver protocol
engine neither generates nor validates link-level authentication.

GetCurrentAuthenticationKey Method
Applies to: Session Control Object

This method obtains the current xDriver authentication key.

OpenLDV Programmer’s Guide 169

Syntax
C++ STDMETHOD(GetCurrentAuthenticationKey)(BSTR * authKey)

Visual Basic Function GetCurrentAuthenticationKey() As String

Table 52. GetCurrentAuthenticationKey Parameters

Parameter Description

authKey String variable that stores the return data.

Returns
Current authentication key for the RNI, as a 32-character hexadecimal string
representing a 128-bit MD5 authentication key.

GetDownlinkKey Method
Applies to: Session Control Object

This method obtains the downlink lookup key. This key comes from the network
interface name that is specified in the LNS application. For example, in the
"X.Default.Location-123" network interface name, the downlink lookup key is
"Location-123". It is the responsibility of the lookup extension component to map
this key to the database, and then fill the authentication and TCP parameters to
be used by the rest of the xDriver framework into the SCO in the
DownlinkLookup method.

For more information about the DownlinkLookup method, see DownlinkLookup
on page 164.

Syntax
C++ STDMETHOD(GetDownlinkKey)(BSTR * dnKey)

Visual Basic Function GetDownlinkKey() As String

Table 53. GetDownlinkKey Parameters

Parameter Description

dnKey Variable (String) that stores the return value.

Returns
The downlink lookup key of the RNI as a string.

170 Custom Lookup Extension Component Programming

GetEncryptionType Method
Applies to: Session Control Object

This method obtains the type of encryption that the xDriver protocol engine is
using when sending encrypted data packets for this session.

Syntax
C++ STDMETHOD(GetEncryptionType)(LdvxEncryption * nType)

Visual Basic Function GetEncryptionType() As LdvxLib.LdvxEncryption

Table 54. GetEncryptionType Parameters

Parameter Description

nType String variable that stores the return data.

Returns
Encryption type being used for the session.

GetLNSNetworkName Method
Applies to: Session Control Object

This method obtains the LNS network name. It is only used when the OpenLDV
application is an LNS Server. This name is only available if the LNS network
name has been set using the SetLNSNetworkName method.

Syntax
C++ STDMETHOD(GetLNSNetworkName)(BSTR * lnsNetwork)

Visual Basic Function GetLNSNetworkName() As String

Table 55. GetLNSNetworkName Parameters

Parameter Description

lnsNetwork Variable (String) that stores the return value.

Returns
The name of the LNS network associated with the RNI as a String.

OpenLDV Programmer’s Guide 171

GetNextAuthenticationKey Method
Applies to: Session Control Object

This method obtains the next xDriver authentication key.

Syntax
C++ STDMETHOD(GetNextAuthenticationKey)(BSTR * authKey)

Visual Basic Function GetNextAuthenticationKey() As String

Table 56. GetNextAuthenticationKey Parameters

Parameter Description

authKey String variable that stores the return data.

Returns
The next authentication key for the RNI, as a 32-character hexadecimal string
representing a 128-bit MD5 authentication key.

GetSessionControlObjectID Method
Applies to: Session Control Object

This method obtains the SCO ID. The SCO ID can be used as a key to store
information related to an xDriver session in external memory. You could allocate
a block of memory for these fields, and tag that block of memory with the SCO
ID. You would then program your lookup extension component to find and
retrieve this memory block using the SCO ID.

Syntax
C++ STDMETHOD(GetSessionControlObjectID)(long * nSCOID)

Visual Basic Function GetSessionControlObjectID() As Integer

Table 57. GetSessionControlObjectID Parameters

Parameter Description

nSCOID Variable (Long) that stores the SCO ID.

Returns
32-bit Session Control Object ID as Long.

172 Custom Lookup Extension Component Programming

GetUplinkKey Method
Applies to: Session Control Object

This method obtains the xDriver uplink lookup key. This key comes from the
RNI identifier that is passed to xDriver during an uplink session, and is filled
into the SCO automatically. It is the responsibility of the lookup extension
component to map this key to the authentication and LNS network parameters to
be used by the rest of the xDriver framework, and fill them into the SCO from the
UplinkLookup function.

For more information on the UplinkLookup function, see UplinkLookup on page
165.

Syntax
C++ STDMETHOD(GetUplinkKey)(BSTR * upKey)

Visual Basic Function GetUplinkKey() As String

Table 58. GetUplinkKey Parameters

Parameter Description

upKey Variable (String) that stores the return value.

Returns
The uplink lookup key of the RNI as a string.

SetAdditionalDownlinkPacketHeader Method
Applies to: Session Control Object

This method sets any additional bytes to pre-pend to the packet header sent
during a downlink session. Normally this field is an empty string (the default).
However, it can be used to specify a series of bytes that are pre-pended to every
packet used in a downlink session if there is an intermediate proxy between the
OpenLDV application and the RNI. These bytes can be used to provide routing
information the proxy might require.

Syntax
C++ STDMETHOD(SetAdditionalDownlinkPacketHeader)(BSTR hexBytes)

Visual Basic Sub SetAdditionalDownlinkPacketHeader(ByVal hexBytes As String)

OpenLDV Programmer’s Guide 173

Table 59. SetAdditionalDownlinkPacketHeader Parameters

Parameter Description

hexBytes Hexadecimal string containing the bytes to be pre-pended, as pairs of
hexadecimal digits. For example: 0B0C0D0E0F10.

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if field is presently read-only. Table 48 on page 166 lists
each SCO field, along with when these fields are read-only.

SetAdditionalDownlinkPacketTrailer Method
Applies to: Session Control Object

This method sets any additional bytes to append to every packet trailer sent
during a downlink session. Normally this field is an empty string (the default).
Developers of lookup extensions can set this field to specify a series of bytes that
are to be appended to the end of every packet used in a downlink session if there
is an intermediate proxy between the OpenLDV application and the RNI. These
bytes can be used to provide routing information the proxy might require.

Syntax
C++ STDMETHOD(SetAdditionalDownlinkPacketTrailer)(BSTR hexBytes)

Visual Basic Sub SetAdditionalDownlinkPacketTrailer(ByVal hexBytes As String)

Table 60. SetAdditionalDownlinkPacketTrailer Parameters

Parameter Description

hexBytes Hexadecimal string containing the bytes to be appended, as pairs of
hexadecimal digits. For example: 0B0C0D0E0F10.

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if the field is presently read-only. Table 48 on page 166
lists each SCO field, along with when these fields are read-only.

SetAuthenticationFlag Method
Applies to: Session Control Object

This method sets the flag that determines whether xDriver should use link
authentication with an MD5 per-packet digest for the session. The lookup
extension component sets this value depending on the RNI used.

174 Custom Lookup Extension Component Programming

For more information about how the xDriver lookup extension component
handles authentication, see Authentication Key Handling on page 111.

Syntax
C++ STDMETHOD(SetAuthenticationFlag)(VARIANT_BOOL bAuth)

Visual Basic Sub SetAuthenticationFlag(ByVal bAuth As Boolean)

Table 61. SetAuthenticationFlag Parameters

Parameter Description

bAuth Authentication state as Boolean. If True, the xDriver
protocol engine generates and validates link-level authentication. If
False, the xDriver protocol engine neither generates nor validates
link-level authentication.

Always True for a SmartServer or i.LON 600.

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if the field is currently read-only. Table 48 on page 166
lists each SCO field, along with when these fields are read-only.

SetCurrentAuthenticationKey Method
Applies to: Session Control Object

This method sets the current xDriver authentication key. It is the responsibility
of the lookup extension component to map the downlink or uplink lookup key to
this authentication key, which is then used by xDriver to validate the connection.
The current authentication key must match the MD5 authentication key
configured into the RNI. For more information about how the lookup extension
component should handle authentication, see Authentication Key Handling on
page 111.

Setting an invalid current authentication key causes loss of contact with the RNI,
because an xDriver session cannot be started with an invalid authentication key.

Syntax
C++ STDMETHOD(SetCurrentAuthenticationKey)(BSTR authKey)

Visual Basic Sub SetCurrentAuthenticationKey(ByVal authKey As String)

OpenLDV Programmer’s Guide 175

Table 62. SetCurrentAuthenticationKey Parameters

Parameter Description

authKey xDriver authentication key for this session, as a 32-character
hexadecimal string representing a 128-bit authentication key. The
authentication key must be entered as a 32-character hexadecimal
string representing a 128-bit MD5 key. For example:

0102030405060708090A0B0C0D0E0F10

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if field is presently read-only. Table 48 on page 166 lists
each SCO field, along with when these fields are read-only.

SetDownlinkKey Method
Applies to: Session Control Object

This method sets the downlink lookup key. xDriver sets this value automatically
during a downlink session, and the lookup extension component should be
programmed to fill it into the SCO during an uplink session.

Syntax
C++ STDMETHOD(SetDownlinkKey)(BSTR dnKey)

Visual Basic Sub SetDownlinkKey(ByVal dnKey As String)

Table 63. SetDownlinkKey Parameters

Parameter Description

dnKey The downlink lookup key of the RNI, as a String (a maximum of 105
characters).

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if the field is currently read-only. Table 48 on page 166
lists each SCO field, along with when these fields are read-only.

SetEncryptionType Method
Applies to: Session Control Object

This method sets the encryption type that xDriver should use when sending
encrypted data packets to an RNI. The xDriver lookup extension component

176 Custom Lookup Extension Component Programming

must set this value appropriately depending on the RNI used. The default value
is LDVX_ENCRYPTION_AUTO.

Syntax
C++ STDMETHOD(SetEncryptionType)(LdvxEncryption nType)

Visual Basic Sub SetEncryptionType(ByVal nType As LdvxLib.LdvxEncryption)

Table 64. SetEncryptionType Parameters

Parameter Description

nType Encryption type. The xDriver type library includes the following
encryption identifiers:

• LDVX_ENCRYPTION_AUTO

• LDVX_ENCRYPTION_BEST

• LDVX_ENCRYPTION_NONE

• LDVX_ENCRYPTION_RC4

It is currently required that you use the
LDVX_ENCRYPTION_AUTO identifier.

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if the field is currently read-only. Table 48 on page 166
lists each SCO field, along with when these fields are read-only.

SetLNSNetworkName Method
Applies to: Session Control Object

This method sets the LNS network name. It is only used when the OpenLDV
application is an LNS Server. The lookup extension component must map the
uplink key to the appropriate record in its xDriver database, extract the LNS
network name for that RNI from the database, and fill it into the SCO using this
method. For a downlink session, the LNS network name is specified manually
within the LNS application and is not required.

Syntax
C++ STDMETHOD(SetLNSNetworkName)(BSTR lnsNetwork)

Visual Basic Sub SetLNSNetworkName(ByVal lnsNetwork As String)

OpenLDV Programmer’s Guide 177

Table 65. SetLNSNetworkName Parameters

Parameter Description

lnsNetwork LNS network name as String (a maximum 85 characters).

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if field is currently read-only. Table 48 on page 166 lists
each SCO field, along with when these fields are read-only.

SetNextAuthenticationKey Method
Applies to: Session Control Object

This method specifies the next xDriver authentication key to be used for the
session. When no change to the current authentication key is desired, this key
must be set the same as the current authentication key.

Changing this field causes the authentication key of the RNI to be incrementally
updated with the new value of this field. After this change is complete, the
UpdateLookup method is called. For more information about the
UpdateLookup method, see UpdateLookup on page 165. For more information
about how the lookup extension component should handle authentication, see
Authentication Key Handling on page 111.

Syntax
C++ STDMETHOD(SetNextAuthenticationKey)(BSTR authKey)

Visual Basic Sub SetNextAuthenticationKey(ByVal authKey As String)

Table 66. SetNextAuthenticationKey Parameters

Parameter Description

authKey The next authentication key for this session, as a 32-character
hexadecimal string representing a 128-bit authentication key. The
authentication key must be entered as a 32-character hexadecimal
string representing a 128-bit MD5 key. For example:

0102030405060708090A0B0C0D0E0F10

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if the field is presently read-only. Table 48 on page 166
lists each SCO field, along with when these fields are read-only.

178 Custom Lookup Extension Component Programming

SetUplinkKey Method
Applies to: Session Control Object

This method sets the uplink lookup key. This unique key comes from the ASCII
RNI identifier passed to xDriver during an uplink session and is filled into the
SCO automatically. Therefore it is not required that you fill the uplink key into
the SCO.

Syntax
C++ STDMETHOD(SetUplinkKey)(BSTR upKey)

Visual Basic Sub SetUplinkKey(ByVal upKey As String)

Table 67. SetUplinkKey Parameters

Parameter Description

upKey Uplink lookup key of the RNI as a String (105 characters maximum).

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if the field is currently read-only. Table 48 on page 166
lists each SCO field, along with when these fields are read-only.

ILdvxSCO_TCP Interface
The SCO_TCP interface is one of the interfaces to the Session Control Object. It
provides properties and methods used by user extensions to access and assign
values to the TCP-based fields of the xDriver Session Control Object.

This interface applies to the same object as the ILdvxSCO interface, and can be
accessed using standard COM techniques.

The methods included in this interface can be called from the UplinkLookup,
DownlinkLookup, and UpdateLookup methods. Table 68 lists the access
that the lookup extension component has to each SCO_TCP field from each of
these methods.

Table 68. SCO_TCP Fields

Field Name

Called From

DownlinkLookup UplinkLookup UpdateLookup

Remote TCP Address Read/Write Read Only Read Only

Remote TCP Port Read/Write Read Only Read Only

OpenLDV Programmer’s Guide 179

GetRemoteTCPAddress Method
Applies to: Session Control Object

This method obtains the remote TCP address of the RNI for the xDriver session.
For an uplink session, the remote TCP address is filled into the SCO
automatically. You could use this method to check that the remote TCP address
filled into the SCO is valid by comparing the address that this method returns
against the address stored in the database.

Syntax
C++ STDMETHOD(GetRemoteTCPAddress)(BSTR * tcpAddress)

Visual Basic Function GetRemoteTCPAddress() As String

Table 69. GetRemoteTCPAddress Parameters

Parameter Description

tcpAddress String variable that stores the return data.

Returns
The remote TCP address that the RNI is using, as a dotted decimal string or as a
hostname.

GetRemoteTCPPort Method
Applies to: Session Control Object

This method obtains the remote TCP port that the RNIs involved in the xDriver
session use to receive packets. For an uplink session, the remote TCP port
number is filled into the SCO automatically. You could use this method to check
that the remote TCP port filled into the SCO is valid by comparing it against the
port expected to be stored in the database if static outbound RNI addresses are
used.

Syntax
C++ STDMETHOD(GetRemoteTCPPort)(short * tcpPort)

Visual Basic Function GetRemoteTCPPort() As Short

180 Custom Lookup Extension Component Programming

Table 70. GetRemoteTCPPort Parameters

Parameter Description

tcpPort Integer variable that stores the return data.

Returns
The remote TCP port number of the RNI as an Integer.

SetRemoteTCPAddress Method
Applies to: Session Control Object

This method sets the remote TCP address of the RNI. For a downlink session, it
is the responsibility of the xDriver lookup extension to map the downlink lookup
key to the database, extract the TCP address from the database, and fill it into
the SCO using this method.

For an uplink session, the remote TCP address is filled in to the SCO
automatically by the Connection Broker.

Syntax
C++ STDMETHOD(SetRemoteTCPAddress)(BSTR tcpAddress)

Visual Basic Sub SetRemoteTCPAddress(ByVal tcpAddress As String)

Table 71. SetRemoteTCPAddress Parameters

Parameter Description

tcpAddress The remote TCP Address used to connect to the
RNI as a dotted decimal IP address, or as a hostname. If an IP
address is used, it must be entered in the form x.x.x.x, where x
represents an integer between 0 and 255.

Returns
Standard COM HRESULT describing the result of the call. Returns
LdvxLib.LdvxResult.E_ACCESSDENIED if the field is currently read-only.
Table 68 on page 178 lists each SCO_TCP field, along with when these fields
are read-only.

SetRemoteTCPPort Method
Applies to: Session Control Object

OpenLDV Programmer’s Guide 181

This method sets the remote TCP port that the RNI at the other end of the
connection uses to receive connections from the LNS Server. For a downlink
session, it is the responsibility of the xDriver lookup extension to map the
downlink lookup key to the database, extract the remote TCP port from the
database, and fill it into the SCO using this method.

Syntax
C++ STDMETHOD(SetRemoteTCPPort)(short tcpPort)

Visual Basic Function GetRemoteTCPPort() As Short

Table 72. SetRemoteTCPPort Parameters

Parameter Description

tcpPort Remote TCP port number that the RNI uses to receive connections
from the LNS Server on as an integer. Must be in the range 1 - 65535.

Recommendation: Use port 1024 or higher.

Returns
Standard COM HRESULT describing the result of the call. Returns
E_ACCESS_DENIED if the field is currently read-only. Table 68 on page 178
lists each SCO_TCP field, along with when these fields are read-only.

ILdvxSCO2 Interface
The SCO2 interface is one of the interfaces to the Session Control Object. It
provides additional properties and methods for user extensions.

GetNeuronID Method
Applies to: Session Control Object

This method gets the Neuron ID of the RNI.

Syntax
C++ STDMETHOD(GetNeuronID)(BSTR * nNeuronID)

Visual Basic Function GetNeuronID() As String

182 Custom Lookup Extension Component Programming

Table 73. GetNeuronID Parameters

Parameter Description

nNeuronID String variable that stores the return data.

Returns
String representation of the 48-bit hexadecimal Neuron ID.

OpenLDV Programmer’s Guide 183

Index

A
AcceptIncomingSession, 154
ANSI/CEA 709.1-B, 10
API

devices and drivers, 16
enumerations, 37, 42
example application, 52
functions. See functions
overview, 15
return codes, 45
sending/receiving messages, 57
structures, 37, 42

application buffer structure, 58
application layer, 12
application layer header

layer 2, 61
layer 5, 62

architecture, 11
authentication, xDriver, 111

B
BeginIncomingSessionEvents, 155
buffer structure

layer 2, 61
layer 5, 62
overview, 58

C
command

downlink, 76
immediate, 77
network interface, 77
uplink, 77
xDriver, 85

component, referencing, 14
Connection Broker, 135
control network protocol, 10
custom lookup extension

C++, 113
Visual Basic, 125

D
developer example, 90
downlink

command, 76
LNS sample application, 138
xDriver session, 100

DownlinkLookup, 164
downloading, 5

E
EN 14908.1, 10
EndIncomingSessionEvents, 155
enumerations

LdvCombineFlags, 39
LdvDeviceCaps, 40
LdvDriverID, 43
LdvDriverType, 44

event
BeginIncomingSessionEvents, 155
EndIncomingSessionEvents, 155
OnIncomingSessionEvent, 157

example, 90
ExplicitMsg, 74
ExpMsgHdr, 63

F
functions

ldv_close(), 18
ldv_free_device_info(), 18
ldv_free_driver_info(), 19
ldv_free_matching_devices(), 20
ldv_get_device_info(), 20
ldv_get_driver_info(), 21
ldv_get_matching_devices(), 22
ldv_get_version(), 22
ldv_locate_sicb(), 23
ldv_open(), 24
ldv_open_cap(), 25
ldv_read(), 27
ldv_register_event(), 29
ldv_set_device_info(), 30
ldv_set_driver_info(), 31
ldv_write(), 32
ldv_xlate_device_name(), 33
ldvx_open(), 34
ldvx_register_window(), 36
ldvx_shutdown(), 37

G
GetAdditionalDownlinkPacketHeader, 167
GetAuthenticationFlag, 168
GetCurrentAuthenticationKey, 168
GetDownlinkKey, 169
GetEncryptionType, 170
GetLNSNetworkName, 170
GetNeuronID, 181
GetNextAuthenticationKey, 171
GetRemoteTCPAddress, 179

184 Index

GetRemoteTCPPort, 179
GetSessionControlObjectID, 171
GetUplinkKey, 172

H
hardware requirements, 5
header file (ldv32.h), 13
host application architecture, 11

I
ILdvxConfigure interface, 162
ILdvxLookup interface, 164
ILdvxSCO interface, 166
ILdvxSCO_TCP interface, 178
ILdvxSCO2 interface, 181
immediate command, 77
installing, 6
interface

ILdvxConfigure, 162
ILdvxLookup, 164
ILdvxSCO, 166
ILdvxSCO_TCP, 178
ILdvxSCO2, 181

ISO 7498-1, 10
ISO/IEC 14908, 10

L
layer 2

buffer structure, 61
CRC, 62
header, 61
NPDU, 61

layer 5
buffer structure, 62
message data, 73
message header, 62
network address, 67

ldv_close(), 18
ldv_free_device_info(), 18
ldv_free_driver_info(), 19
ldv_free_matching_devices(), 20
ldv_get_device_info(), 20
ldv_get_driver_info(), 21
ldv_get_matching_devices(), 22
ldv_get_version(), 22
ldv_locate_sicb(), 23
ldv_open(), 24
ldv_open_cap(), 25
ldv_read(), 27
ldv_register_event(), 29
ldv_set_device_info(), 30
ldv_set_driver_info(), 31
ldv_write(), 32
ldv_xlate_device_name(), 33
ldv32.h header file, 13
LdvCombineFlags enumeration, 39

LdvDeviceCaps enumeration, 40
LDVDeviceInfo structure, 37
LDVDevices structure, 38
LdvDriverID enumeration, 43
LDVDriverInfo structure, 42
LdvDriverType enumeration, 44
LdvEx, 58
LDVX_* macros, 44
ldvx_open(), 34
ldvx_register_window(), 36
ldvx_shutdown(), 37
LNS methods and events for xDriver, 154
LNS sample application, 138, 142
LonTalk protocol, 10
LonWorks network, 10
lookup extension

custom, C++, 113
custom, Visual Basic, 125
sample, 132

M
message data, 73
message header, 62
messages, sending/receiving, 57
method

AcceptIncomingSession, 154
DownlinkLookup, 164
GetAdditionalDownlinkPacketHeader, 167
GetAuthenticationFlag, 168
GetCurrentAuthenticationKey, 168
GetDownlinkKey, 169
GetEncryptionType, 170
GetLNSNetworkName, 170
GetNeuronID, 181
GetNextAuthenticationKey, 171
GetRemoteTCPAddress, 179
GetRemoteTCPPort, 179
GetSessionControlObjectID, 171
GetUplinkKey, 172
ReleasePendingUpdates, 158
SetAdditionalDownlinkPacketHeader, 172
SetAdditionalDownlinkPacketTrailer, 173
SetAuthenticationFlag, 173
SetCurrentAuthenticationKey, 174
SetDownlinkKey, 175
SetEncryptionType, 175
SetInstance, 162
SetLNSNetworkName, 176
SetNextAuthenticationKey, 177
SetOptions, 163
SetRemoteTCPAddress, 180
SetRemoteTCPPort, 180
SetUplinkKey, 178
UpdateLookup, 165
UplinkLookup, 165

multiple threads, 14

OpenLDV Programmer’s Guide 185

N
NetVarHdr, 65
network address, 67
network interface

application settings, 7
command interface, 76
custom, 148
receiving messages from, 75
sending messages to, 75

network interface command, 77
Network Protocol Data Unit (NPDU), 61
NetworkInterfaces.Item(), 156
NPDU, 61

O
OnIncomingSessionEvent, 157
OpenLDV API, 15
OpenLDV Developer Example, 90
OSI Model, 10

P
presentation layer, 13
processes, multiple, 14
profile, 94, 134
property, NetworkInterfaces.Item(), 156

R
RcvAddrDtl, 70
referencing a component, 14
ReleasePendingUpdates, 158
requirements, hardware and software, 5
RespAddrDtl, 72
return codes, 45
runtime, installing, 6

S
SCO, 108
SDK, installing, 6
SendAddrDtl, 67
serial interface control block (SICB), 58
Session Control Object, 108
session notification messages, macros, 44

SetAdditionalDownlinkPacketHeader, 172
SetAdditionalDownlinkPacketTrailer, 173
SetAuthenticationFlag, 173
SetCurrentAuthenticationKey, 174
SetDownlinkKey, 175
SetEncryptionType, 175
SetInstance, 162
SetLNSNetworkName, 176
SetNextAuthenticationKey, 177
SetOptions, 163
SetRemoteTCPAddress, 180
SetRemoteTCPPort, 180
SetUplinkKey, 178
SICB, 58
software requirements, 5
structures

LDVDeviceInfo, 37
LDVDevices, 38
LDVDriverInfo, 42

T
threads, multiple, 14
typedefs, 13

U
UnprocessedNV, 74
UpdateLookup, 165
uplink

command, 77
LNS sample application, 142
xDriver session, 104

UplinkLookup, 165

X
xDriver

authentication, 111
Connection Broker, 135
downlink session, 100
extending, 100
LNS methods and events, 154
profile, 94, 134
SCO, 108
uplink session, 104

www.echelon.com

	Welcome
	Audience
	Examples
	Related Documentation
	1. Introduction
	Introduction to OpenLDV Networking
	Client Applications
	OpenLDV Driver
	Network Interfaces

	Installing the OpenLDV Software
	Hardware and Software Requirements
	Downloading the OpenLDV Software
	Installing the OpenLDV Driver
	Installing the OpenLDV SDK

	Getting Started with the OpenLDV Driver
	Getting Started with the xDriver Component

	2. Using the OpenLDV API
	Introduction to OpenLDV Programming
	OpenLDV Application Architecture
	Application Layer
	Presentation Layer

	Overview of the OpenLDV API
	Referencing the OpenLDV Component
	Using Multiple Threads or Multiple Processes

	The OpenLDV API
	Working with Devices and Drivers
	Using the OpenLDV API
	ldv_close()
	ldv_free_device_info()
	ldv_free_driver_info()
	ldv_free_matching_devices()
	ldv_get_device_info()
	ldv_get_driver_info()
	ldv_get_matching_devices()
	ldv_get_version
	ldv_locate_sicb()
	ldv_open()
	ldv_open_cap()
	ldv_read()
	ldv_register_event()
	ldv_set_device_info()
	ldv_set_driver_info()
	ldv_write()
	ldv_xlate_device_name()
	ldvx_open()
	ldvx_register_window()
	ldvx_shutdown()

	Structures and Enumerations for the Device API
	LDVDeviceInfo Structure
	LDVDevices Structure
	LdvCombineFlags Enumeration
	LdvDeviceCaps Enumeration

	Structures and Enumerations for the Driver API
	LDVDriverInfo Structure
	LdvDriverID Enumeration
	LdvDriverType Enumeration

	Windows Messages for Session Notifications
	OpenLDV API Return Codes
	Example: A Simple OpenLDV Application

	3. Sending and Receiving Messages with the OpenLDV API
	Constructing Messages
	Application Buffer Structure
	Layer 2 Buffer Structure
	Layer 5 Buffer Structure
	ExpMsgHdr
	NetVarHdr
	SendAddrDtl
	RcvAddrDtl
	RespAddrDtl
	UnprocessedNV
	ExplicitMsg

	Sending Messages to the Network Interface
	Receiving Messages from the Network Interface

	Using the Network Interface Command Interface
	Downlink Commands
	Uplink Commands
	Immediate Commands
	Network Interface Commands

	4. The OpenLDV Developer Example
	Overview
	Common Definitions
	COpenLDVapi and COpenLDVtrace
	COpenLDVni, Message Pumps, and Message Dispatchers
	Toolkits and User Interface
	 Developer Example Diagram

	5. Using the xDriver Default Profile
	Configuring an xDriver Profile
	LNS Applications for xDriver

	Extending xDriver
	Extending xDriver
	xDriver Sessions
	Downlink Sessions
	Uplink Sessions
	Session Control Object

	Authentication Key Handling
	Setting the Current Authentication Key
	Changing the Current Authentication Key

	Creating a Custom Lookup Extension in C++
	Create a New Visual Studio Project
	Add a COM Object
	Implement the ILdvxLookup Interface
	Add the Extension to the Component Category
	Build and Register the COM Server
	Create a Custom xDriver Profile
	Test the Lookup Extension
	Optional Steps

	Creating a Custom Lookup Extension in Visual Basic
	Create a New Visual Studio Project
	Add a Reference to the xDriver Type Library
	Add a COM Class
	Delete the Project Default Class
	Import xDriver Types to Your System Namespace
	Implement the ILdvxLookup Interface
	Build and Register the Lookup Extension
	Create a Custom xDriver Profile
	Test the Lookup Extension

	Sample Lookup Extension Component
	xDriver Profiles
	Starting the Connection Broker

	7. LNS Programming with xDriver
	Downlink Sample Applications
	Opening a Single Remote Network With xDriver
	Opening Multiple Remote Networks for Downlink

	Uplink Sample Application

	A. Custom Network Interfaces
	Overview
	Working with a Custom Network Interface
	Windows Registry Entries

	B. LNS Methods and Events for xDriver Support
	xDriver Methods and Events
	AcceptIncomingSession
	BeginIncomingSessionEvents
	EndIncomingSessionEvents
	NetworkInterfaces.Item()
	OnIncomingSessionEvent
	ReleasePendingUpdates

	C. Custom Lookup Extension Component Programming
	Overview
	ILdvxConfigure Interface
	SetInstance Method
	SetOptions Method

	ILdvxLookup Interface
	DownlinkLookup Method
	UpdateLookup Method
	UplinkLookup Method

	ILdvxSCO Interface
	GetAdditionalDownlinkPacketHeader Method
	GetAdditionalDownlinkPacketTrailer Method
	GetAuthenticationFlag Method
	GetCurrentAuthenticationKey Method
	GetDownlinkKey Method
	GetEncryptionType Method
	GetLNSNetworkName Method
	GetNextAuthenticationKey Method
	GetSessionControlObjectID Method
	GetUplinkKey Method
	SetAdditionalDownlinkPacketHeader Method
	SetAdditionalDownlinkPacketTrailer Method
	SetAuthenticationFlag Method
	SetCurrentAuthenticationKey Method
	SetDownlinkKey Method
	SetEncryptionType Method
	SetLNSNetworkName Method
	SetNextAuthenticationKey Method
	SetUplinkKey Method

	ILdvxSCO_TCP Interface
	GetRemoteTCPAddress Method
	GetRemoteTCPPort Method
	SetRemoteTCPAddress Method
	SetRemoteTCPPort Method

	ILdvxSCO2 Interface
	GetNeuronID Method

	Index

