

Revision 2

@ ECHELON®

C o r p o r a t i o n

078-0191-01B

Echelon, LON, LonTalk, LonBuilder, NodeBuilder, Neuron,
LonManager, LONMARK, LONWORKS, 3120, and 3150 are registered
trademarks of Echelon Corporation. LonMaker, ShortStack, and i.LON
are trademarks of Echelon Corporation.

Other brand and product names are trademarks or registered
trademarks of their respective holders.

Neuron Chips, Serial LonTalk Adapters, and other OEM Products were
not designed for use in equipment or systems which involve danger to
human health or safety or a risk of property damage and Echelon
assumes no responsibility or liability for use of these products in such
applications.

Parts manufactured by vendors other than Echelon and referenced in
this document have been described for illustrative purposes only, and
may not have been tested by Echelon. It is the responsibility of the
customer to determine the suitability of these parts for each application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR
ANY PARTICULAR PURPOSE, NONINFRINGEMENT, AND THEIR
EQUIVALENTS.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
written permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©2001-2002 by Echelon Corporation.

Echelon Corporation
www.echelon.com

Contents

1 Gizmo 4 Overview 1-1
 Introduction 1-2
 Audience 1-4
 Content 1-4
 Related Documentation 1-4

2 Gizmo 4 Hardware and Electrical Specifications 2-1
 Gizmo 4 Component Placement 2-2

Gizmo 4 Power Supply 2-3
PIC, Display, Clock, and A/D Converter 2-3
Push Buttons 2-4
D/A Converter and Loop Back D/A to A/D Mode 2-4
LED1 and LED2 2-4
Quadrature Encoder 2-4

 Gizmo 4 Block Diagram 2-5
 Gizmo 4 Electrical Specifications 2-6

3 Gizmo 4 Jumper and Connector Descriptions 3-1
 Gizmo 4 Connectors 3-2
 J1 I/O Connector 3-2
 J2 Control Module I/O Connector 3-3
 J3 Signal Routing Connector 3-4
 J4 Prototype I/O Connector 3-5
 J5 Control Module Network Connector 3-5
 J6 Analog Output Connector 3-6
 J7 Analog Input Connector 3-6
 J8 Digital I/O Connector 3-7
 J9 Digital I/O Connector 3-7
 J10 and J12 Power Supply Connectors 3-8
 J11 Network Connector 3-8

Gizmo 4 User's Guide iii

 Gizmo 4 Jumpers 3-8
 JP7 D/A 1 to A/D 1 Loop-Back Mode 3-8
 JP8 D/A 2 to A/D 2 Loop-Back Mode 3-9
 JP12 Gizmo 4 Power Supply Source Selection 3-9
 JP13 Piezo Speaker Select 3-9
 Optional Gizmo 4 Connectors and Jumpers 3-9
 J13 PIC Programming Connector 3-9
 J16 Unused PIC I/O Connector 3-10
 JP10 PIC Stand Alone Mode Select 3-10
 JP11 D/A Stand Alone Mode Select 3-10
 JP14 PIC Reset Enable 3-10
 JP17 SPI Stand Alone Mode Select 3-10

4 Gizmo 4 Software 4-1
 Getting Started 4-2
 Macros in Gizmo4.h 4-3
 GIZMO_DISPLAY_* 4-3
 GIZMOPIC_CS_DELAY 4-3
 USE_FREQUENCY 4-3
 USE_QUADRATURE 4-4
 Types 4-4

tGizmoNote 4-4
tGizmoTone 4-5

 tGizmoToneLength 4-5
 Functions 4-6
 GizmoBuzz() 4-6
 GizmoClearDisplay() 4-6
 GizmoDefineCharacter() 4-6
 GizmoDisplayChar() 4-7
 GizmoDisplayDate() 4-7
 GizmoDisplayFormattedNumber() 4-8
 GizmoDisplayNumber() 4-8
 GizmoDisplayString() 4-9
 GizmoDisplayTemperature() 4-9
 GizmoDisplayTime() 4-10
 GizmoGetTime() 4-10
 GizmoPlayTune() 4-10
 GizmoReadAnalog() 4-11
 GizmoReadTemperature() 4-11
 GizmoReset() 4-11
 GizmoRTC() 4-11
 GizmoSetLed() 4-11
 GizmoSetTime() 4-12
 GizmoWriteAnalog() 4-12

 Echelon iv

 I/O Objects 4-12
 LEDs and Quadrature Input 4-12
 Neurowire 4-13
 Push Buttons 4-13
 Error Management 4-13
 Communicating Directly with the Gizmo 4 4-14
 Communicating with the I/O Wired to the Neuron Chip 4-15
 Push Buttons 4-15
 LEDs 4-15
 Quadrature Encoder 4-15
 Piezo Speaker 4-16
 I/O Controlled by the PIC 4-16
 Register Tables 4-17

 Appendix A Creating a Custom Character A-1
 Custom Character Example A-2

 Appendix B Gizmo 4 Character Set B-1
 Character Set B-2

Gizmo 4 User's Guide v

 Echelon vi

Gizmo 4 Overview

The Gizmo 4 I/O Board is a LONWORKS® product that can be used as a
prototyping, testing, and learning tool for the LonBuilder® or
NodeBuilder® Development Tool and other LONWORKS products.
With minor hardware modification, the Gizmo 4 board can also be used
as a test or training platform for the ShortStack Developer's Kit.

Gizmo 4 User’s Guide 1-1

Introduction
The Gizmo 4 I/O Board is a collection of I/O devices that you can use with the
LTM-10A Platform or an embedded control module for developing prototype devices
and I/O circuits, developing special-purpose devices for testing, running the
NodeBuilder examples, or learning more about the LONWORKS platform. The
following figure illustrates the Gizmo 4 plugged into the LTM-10A Platform.

2

Gizmo 4 Plugged-into LTM-10A Platform

You can also plug a TP/FT-10 or TP/FT-10F Control Module into the Gizmo 4 to
create a self-contained LONWORKS device. This requires separate purchase of the
TP/FT-10 or TP/FT-10F Control Module. The following figure illustrates this
configuration.

1- Introduction

Gizmo 4 with a TP/FT-10F Flash Control Module

The Gizmo 4 includes the following I/O devices:

�� 4 row x 20 character LCD display

�� 2 10-bit resolution analog inputs with screw terminal connector

�� 2 8-bit resolution analog outputs with screw terminal connector

�� 2 digital inputs with screw terminal connector and pushbutton inputs

�� 2 digital outputs with screw terminal connector and LED outputs

�� Digital shaft encoder (quadrature encoder)

�� Piezoelectric speaker

�� Real-time clock

�� Temperature sensor

The Gizmo 4 also includes a prototyping area that you can use to add your own
hardware prototypes, or to extend the hardware on the Gizmo 4 board.

A Gizmo 4 library is included with the NodeBuilder software that provides easy-to-
use high-level functions for accessing the display, analog I/O, piezo speaker, real-time
clock, and temperature sensor. The Gizmo 4 library is also available in the Echelon
Developer's Toolbox at www.echelon.com/toolbox.

Gizmo 4 User’s Guide 1-3

Audience
This document describes how to use the Gizmo 4 hardware and the example
application programs. Multi-device application examples are included to help you get
started.

Content
This manual provides detailed hardware specifications as well as a description of the
Gizmo 4 library.

The examples contain sample source code to demonstrate a variety of I/O objects
supported by Neuron C and the Gizmo 4. The examples are designed to support
several different types of LONWORKS applications.

Related Documentation
The following Echelon publications are suggested for additional information:

• LonBuilder User Guide (078-0001-01)

• NodeBuilder User Guide (078-0141-01)

• Neuron C Programmer’s Guide (078-0002-01)

• Neuron C Reference Guide (078-0140-01)

1-4 Introduction

Gizmo 4 Hardware and Electrical

Specifications

This chapter provides schematics and diagrams for the Gizmo 4
hardware and circuitry. It also provides the electrical specifications for
the Gizmo 4.

Gizmo 4 User’s Guide 2-1

Gizmo 4 Component Placement

Power
9-30VDC 20 Pin Ribbon

Cable

Lon
Network

Service

J1

J3

J4

J2

J6

J11
J10 J12

JP12

+5 F1

Reset

BR1

U2

LED4

SW4
LED3

SW3
Yellow

1 2

18

A to Proto
B to Fm Module
C to Gizmo

0 1 2 3 4 5 6 7 8 9 10 S R 5 G G

GREEN
LED

GREEN
LED

SW2 IO_7

Tep

PIC

Piezo

SW1 IO_6
QUADRATURE

An 1
Gnd
An2
Gnd

Ao 1
Gnd
Ao 2
Gnd

IO_0
GND
IO_1
GND

IO_6
GND
IO_7
GND

J7

J6

J9

J8

J16

J6 JP7 JP8 JP9
J1

LED2
IO_1

C19

C6

2

R1

D8

D9
R10

R11

32

C16

C7

R22

LED1
IO_0

P0 17 P13

7

D6

R3

R4

R31

7 X1
14

C15
R27C12

X2
C13

C26

R35 R36R37

C27

R33
R34

R8 R9

J15

U6

P1

SW5

1

J13

1

U2

GND

+5

12345678912345678912
1234567891234 5678912
12345678912345678912
12345678912345678912

F2 L1

C4

C3

JP14

JP8

JP7

JP10

JP11

JP17

U3
Temp
Sensor

LED 5

JP2

JP3

JP1

JP4

C1

F1

JP5

JP6

JP9

0 1 2 3 4 5 6 7 8 9 10 S R 5

JP13

Note: Jumper
blocks as
shipped

2-2 Gizmo 4 Hardware and Electrical Specifications

Gizmo 4 Power Supply

You can supply power to the Gizmo 4 board using any of the following methods:

�� +5V input to the I/O connector at J1. You will use this method if you are
connecting the Gizmo 4 board to an LTM-10A Platform. The JP12 Power
Source Jumper must be set to J1.

�� 9-30VDC input to the Screw Terminal Power connector at J10. You will use
this method if you have installed a TP/FT-10 or TP/FT-10F Control Module on
the Gizmo 4 board and you are connecting the Gizmo 4 board to a 9-30VDC
power supply with flying-lead output. The JP12 Power Source Jumper must
be set to J10.

�� 9-30VDC input to the Power connector at J12. You will use this method if
you have installed a TP/FT-10 or TP/FT-10F Control Module on the Gizmo 4
board and you are connecting the Gizmo 4 board to a 9-30VDC power supply
with 2.1mm connector output. The JP12 Power Source jumper must be set to
J10.

The Gizmo 4 requires under 50ma of power. If you are using the Gizmo 4 with a
control module, the Power Supply Source jumper needs to be installed in JP12 to
select between external 9-30 volts from either J10 or J12. For power from J10 or J12,
locate a jumper between center pin and top pin.

If you are using the Gizmo 4 with an LTM-10A or LonBuilder Emulator, they will
provide power to the Gizmo 4. First connect the J1 jumper from center pin to bottom
pin. Power is supplied through the ribbon cable to header J1, pins 19 and 20.

Not including the control module and any external hardware that you add to the Gizmo 4
board, the power supply current required for the Gizmo 4 board is as follows:

J1 +5VDC @ 12ma
J10 or J12 +9VDC @ 23ma, +30VDC @ 10ma

PIC, Display, Clock, and A/D Converter
The Gizmo 4 board includes a Microchip PIC16F877 microcontroller. This chip
manages the LCD display, has an on-board 10 bit A/D, and performs the real-time
clock function in software. The Neuron Chip interfaces to the PIC via the SPI port
and can use Neurowire I/O to communicate to the PIC. You can reprogram the PIC
by downloading new code through the header pins on J13. With minor hardware
modification to the Gizmo 4 board, you can install a ShortStack Module on the Gizmo
4 board and reprogram the PIC with a ShortStack application.

The A/D within the PIC is accessed through connector J7, which connects to the PIC
An0 and An1 inputs. The PIC An2 input has a National Semiconductor LM34
temperature sensor attached. This sensor changes 1mv per degree C. The PIC
performs the calculations and gives the Neuron Chip access to both Celcius and
Fahrenheit readings.

Gizmo 4 User’s Guide 2-3

Push Buttons
There are two push buttons of the Gizmo 4 that can be connected to the Neuron Chip
I/O pins. Button SW1 connects to IO7 and SW2 connects to IO6. In addition, both
buttons are connected to input pins RB2 and RB3 of the PIC, which are only used in
the test mode.

The other two buttons on the Gizmo 4 are the SW3 Neuron Chip service input and
SW4 Neuron Chip reset input. You can connect the SW4 button to the PIC reset
input by adding a jumper at JP14. Note that JP14 will reset PIC TRC when SW4 is
pressed.

D/A Converter and Loop-back D/A to A/D Mode
There is a Maxim MAX522 dual 8 bit D/A converter that provides two 8-bit analog
outputs. The Neuron Chip uses the SPI port to communicate to the D/A converter,
with IO3 as the chip enable pin.

You can loop the output of the D/A converter back to the input of the A/D converter
for testing or running examples. To do this, place jumpers in JP7 and JP8. This is
the same as if wires were connected between D/A Analog Output Connector J6 to A/D
Analog Input Connector J7. You can insert an analog delay in the loop-back by insert
jumpers at JP6 and JP9. This adds a 200µf capacitor to the loop-back connection.

LED1 and LED2
There are two ouput LEDs. LED1 is connected to Neuron Chip IO0 and LED2 is
connected to Neuron Chip IO1. IO0 is also connected to the piezo speaker. If you
want to drive the LED, but not the piezo, remove jumper JP13. If you choose to drive
the piezo, the LED will always come on.

You can access the IO0 and IO1 outputs through the J8 DOut Connector.

Quadrature Encoder

There is a quadrature shaft encoder connected to IO4 and IO5 of the Neuron Chip.
This encoder is a detent type and increments in counts of two. The encoder pulls the
input pins to ground when turning, so the Neuron Chips internal pull-up resistors
must be enabled to use the encoder.

2-4 Gizmo 4 Hardware and Electrical Specifications

Gizmo 4 Block Diagram

J14

JP7, JP8
Analog

Analog
Output

Digital
Output

Digital
Input

Analog
InputTemperature Sensor

In for Test Mode

RS
E

WR
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

JP13

J8

IO0
Gnd
IO1
Gnd

X2

X1

SW2

J9 J9

IO6
Gnd
IO7
Gnd

Q1
+5

LD1

J3- A

J13

J7

J6

SW1

SW3

SW4

Q2 LD2
+5

JP10

4 Mhz

32Khz
T1OSI
T1OSO

OS1
OS2

Aout 1
Gnd
Aout 2
Gnd

LCD 20 X 4 (L203400J000

IO8
IO9
IO3

IO0

IO1

IO6
IO7
IO4
IO5

IO8
IO9
IO10
IO2

 Reset

Service

Piezo
Quadrature

An 1
Gnd
An2
Gnd

MAX522CPE

PIC16F87704L 44 Pin PLCC

OUTA

OUTB

 REF U2

SCLK
DIN
CS

LM34
RB3
RB2
RB1
RB0

RB5

AN0
AN1
AN2

SCK
SDI
SDO
SS

RE2/CS
RE0/RD
RE1/W

R
RD0
RD1
RD2
RD3
RD4
RD5
RD6

 MCLK

B7
B6

Gizmo 4 User’s Guide 2-5

Gizmo 4 Electrical Specifications

Con. Function Symbol Pins Min Max Max
J10 Input Power Supply VDD 1-2 9 VDC 30VDC 25 ma
J12 Input Power Supply VDD 1-2 9 VDC 30VDC 25 ma
J1 Input Power Supply VDD 19 4.75 5.5 15 ma
J6 Output Aout1 - Aout 2 1 - 3 0.2 VDD -.8 1 ma
J7 Input Ain 1 – Ain 2 1 - 3 0 VDD + .5 20 ua
J8 Input IO0 – IO1 0 VDD + .5 10 ua
J9 Output IO6 – IO7 0.2 VDD-.2 20 ma sink
J9 Output IO6 – IO7 0.2 VDD-.2 1 ma source
J1 Input IO0 – IO1 1 - 2 0 VDD + .5 10 ua
J1 Input IO2 – IO3 3 - 4 0 VDD + .5 1 ua
J1 Output IO4 – IO5 5 - 6 0.2 VDD-.2 10 ua
J1 Output IO6 – IO7 7 – 8 0.2 VDD-.2 10 ua
J1 Input IO8 – IO9 9 -10 0 VDD + .5 1 ua
J1 Output IO10 11 0.2 VDD-.2 1 ma
J1 Input/Output Service 15 0 VDD + .5 10ma
J1 Input/Output Reset 16 0 VDD + .5 10ua

2-6 Gizmo 4 Hardware and Electrical Specifications

Gizmo 4 Jumper and Connector

Descriptions

This chapter provides connector and jumper descriptions for the Gizmo
4 I/O Board.

Gizmo 4 User’s Guide 3-1

Gizmo 4 Connectors
This section describes the Gizmo 4 connectors.

J1 I/O Connector
The J1 I/O connector interfaces to an LTM-10A Platform or compatible device. Pin 19
is the optional +5VDC power supply input.

 Table 3.1 J1 2x10 Pin Header for Ribbon Cable

Pin Name * Default Function (See note below)
1 IO0 Input to Piezo & LED 1
2 IO1 Input to LED 2
3 IO2 Input to PIC Chip Select
4 IO3 Input to D/A Chip Select
5 IO4 Output from Quadrature encoder
6 IO5 Output from Quadrature encoder
7 IO6 Output Switch SW2 Normally High
8 IO7 Output Switch SW1 Normally High
9 IO8 Input to PIC and D/A SCLK
10 IO9 Input to PIC and D/A Data In
11 IO10 Output from PIC and D/A Data Out
12
13
14
15 Service Output from Switch SW4
16 Reset Output from Switch SW3
17
18
19 VDD + 5VDC Input
20 GND Ground

Note: This description works only if jumpers are installed between the B and C rows in
connector J3.

3-2 Jumper and Connector Descriptions

J2 Control Module I/O Connector
The J2 Control Module I/O connector is an 18-pin connector for interfacing a
TP/FT-10 or TP/FT-10F Control Module to the Gizmo 4. You cannot use the J1 I/O
connector when a control module is inserted.

 Table 3.2 J2 2x18-Pin Control Module I/O Connector

Pin Name Function
1 N.C.
2 IO0 Neuron Chip IO0
3 GND Ground
4 IO1 Neuron Chip IO1
5 GND Ground
6 IO2 Neuron Chip IO2
7 GND Ground
8 IO3 Neuron Chip IO3
9 Reset Reset Output
10 IO4 Neuron Chip IO4
11 IO5 Neuron Chip IO5
12 VDD +5 volts Output
13 IO6 Neuron Chip IO6
14 IO9 Neuron Chip IO9
15 IO7 Neuron Chip IO7
16 IO10 Neuron Chip IO10
17 IO8 Neuron chip IO8
18 Service Service Output

Gizmo 4 User’s Guide 3-3

J3 Signal Routing Connector
The J3 Signal Routing connector is used to connect the Neuron Chip I/O pins from
the J1 I/O Connector or the J2 Control Module I/O Connector to either the Gizmo 4
I/O components or the Gizmo 4 prototype area. Row A is connected to the
prototyping area. Row B is connected to both the J1 I/O Connector and J2 Control
Module I/O Connector. Row C is connected to the Gizmo 4 I/O components. Place a
jumper across pins B and C to connect a Neuron Chip I/O signal to the on-board
circuitry. Place a jumper across pins B and A to connect a Neuron Chip I/O signal to
the prototype area on the Gizmo 4 board. There is a separate set of pins for each I/O
signal.

 Table 3.3 J3 3 x 14 Pin Header to Select Neuron Chip Source

Pin Pin Pin Name Function
A* B** C***
1 1 1 IO0 Input to Piezo & LED 1
2 2 2 IO1 Input to LED 2
3 3 3 IO2 Input to PIC Chip Select
4 4 4 IO3 Input to D/A Chip Select
5 5 5 IO4 Output from Quadrature Encoder
6 6 6 IO5 Output from Quadrature Encoder
7 7 7 IO6 Output Switch SW2 Normally High
8 8 8 IO7 Output Switch SW1 Normally High
9 9 9 IO8 Input to PIC and D/A SCLK
10 10 10 IO9 Input to PIC and D/A Data In
11 11 11 IO10 Output from PIC and D/A Data Out
12 12 12 Service Service Input
13 13 13 Reset Reset Input
14 14 14 VDD +5VDC Output

Notes:

* Column A connects to the prototype area
** Column B connects to both the J1 I/O Connector and the J2 Control

Module I/O Connector
*** Column C connects to the Gizmo 4 I/O components

3-4 Jumper and Connector Descriptions

J4 Prototype I/O Connector
The J4 Prototype I/O connector connects to the A-side of the J3 connector and can be
used for connecting components in the prototype area to the Neuron Chip I/O pins.

 Table 3.4 J4 1x16-Pin Header for Prototype Area

Pin Name Function
1 IO0 Input to Piezo & LED 1
2 IO1 Input to LED 2
3 IO2 Input to PIC Chip Select
4 IO3 Input to D/A Chip Select
5 IO4 Output from Quadrature Encoder
6 IO5 Output from Quadrature Encoder
7 IO6 Output Switch SW2 Normally High
8 IO7 Output Switch SW1 Normally High
9 IO8 Input to PIC and D/A SCLK
10 IO9 Input to PIC and D/A Data In
11 IO10 Output from PIC and D/A Data Out
12 Service Service Input
13 Reset Reset Input
14 VDD +5VDC Output
15 GND Ground
16 GND Ground

J5 Control Module Network Connector
The J5 Control Module Network connector is a 6-pin connector for interfacing a
TP/FT-10 or TP/FT-10F Control Module to the Gizmo 4. You cannot use the J1 I/O
Connector with a control module inserted.

 Table 3.5 J5 1x6-Pin Control Module Network Connector

Pin Name Function
1 N.C No Connection
2 N.C No Connection
3 Net A Connects to J11 LONWORKS

Network Connector
4 Net B Connects to J11 LONWORKS

Network Connector
5 N.C No Connection
6 N.C No Connection

Gizmo 4 User’s Guide 3-5

J6 Analog Output Connector
The J6 Analog Output connector provides the Aout1 analog output of the 8-bit Maxim
MAX522 D/A converter. Send an 8-bit value to the D/A converter to produce a 0 to 5
volt output in 20mv increments. The serial interface to the MAX522 is compatible
with Microwire, SPI, or Neuron Neurowire.

To send an output to the D/A converter, send two 8-bit values, where the first is the
command value and the second is the data value. Part of the command value is the
address of the specific D/A converter. The two address registers are as follows:

 Analog Out 1 0x21
 Analog Out 2 0x22

 Table 3.6 J6 1x4-Pin Connector for Analog Output

Pin Name Function Specifications
1 Aout 1 Output from MAX 522 D/A Output A 0 to 4.99 Volts / 256Bits
2 GND Ground
3 Aout 2 Output from MAX 522 D/A Output B 0 to 4.99 Volts / 256Bits
4 GND Ground

J7 Analog Input Connector
The J7 Analog Input connector provides the Ain1 analog input to the 10-bit A/D
converter of the16F877 PIC processor. The input voltage range is determined by the
reference voltage, which is set at 5 volts. The A/D resolution is 10-bits or 1024
divided by the total reference voltage. The A/D samples at a 200�s rate. The
resulting 2-byte value is stored at a PIC memory location. The serial interface to the
16F877 PIC is compatible with Microwire, SPI, or Neuron Neurowire. Read the
following locations to access to the resulting A/D samples:

 Analog In 1 0x07 LSB
 0x08 MSB
 Analog Out 2 0x09 LSB
 0x10 MSB

 Table 3.7 J7 1x4-Pin Connector for Analog Input

Pin Name Function Specifications
1 AIn 1 Analog Input 0 to 5 volts
2 GND Ground
3 AIn 2 Analog Input 0 to 5 volts
4 GND Ground

3-6 Jumper and Connector Descriptions

J8 Digital I/O Connector
The J8 Digital I/O connector provides ESD-protected Neuron IO0 and IO1 signals.
These signals are typically configured as digital outputs, but they can be configured
as either output or input signals. PNP transistors are connected to IO0 and IO1 to
drive LED1 and LED2. The base of the transistors is referenced to +5 through a 5K�
resistor with a 10K� pull-up, pulling the base low turns on the respective transistor.

 Table 3.8 J8 1x4-Pin Connector for Digital Output

Pin Name Function Specifications
1 IO0 Digital Output from Neuron Chip 0 to 5 volts
2 GND Ground
3 IO1 Digital Output from Neuron Chip 0 to 5 volts
4 GND Ground

J9 Digital I/O Connector
The J9 Digital I/O connector provides ESD-protected Neuron IO6 and IO7 signals.
These I/O signals are typically configured as digital inputs and each has an on-board
switch connected to ground. IO6 connects with switch SW1 and IO7 connects with
switch SW2. Each signal line has a 10K� pull-up resistor for reference. The Neuron
Chip can configure IO6 and IO7 as outputs; however, in this mode, the 100� series
protection resistance must be taken into consideration. Also, remember that pressing
either SW1 or SW2 will force the output low.

 Table 3.9 J9 1x4 Pin Connector for Digital Input

Pin Name Function Specification
1 IO6 SW1 Digital Input from Neuron

Chip
0 – 5 volts, 100K� impedance

2 GND Ground
3 IO7 SW2 Digital Input from Neuron

Chips
0 – 5 volts, 100K� impedance

4 GND Ground

Gizmo 4 User’s Guide 3-7

J10 and J12 Power Supply Connectors
The J10 and J12 Power Supply connectors are connected in parallel and either can be
used to provide standalone power to the Gizmo 4. These connectors are not used
when the Gizmo 4 is powered from the J1 I/O Connector. J10 is a screw-terminal
connector and J12 is a plug connector. The board contains a bridge rectifier allowing
for positive and negative polarity to be connected to either post. Jumper JP12 allows
for selection of power sources between J10 and J12 or the +5 volt source coming
through the ribbon cable to J1.

 Table 3.10 J10 – J12 1x2-Pin Power Supply Connectors

Pin Name Function Specification
1 ConnA Input Power Source 9-30 Volt DC
2 ConnB Input Power Source 9-30 Volts DC

Note: If your prototype area draws more than 100ma, reduce the DC input voltage to 9 volts.
This reduces the heat from the linear regulator if the Gizmo 4 is powered via J10 or J12.

J11 Network Connector
The J11 Network connector is the LONWORKS Network Connector for a TP/FT-10 or
TP/FT-10F Control Module, if one is inserted in the Gizmo 4. J11 is routed from the
J5 Control Module Network Connector. The Gizmo 4 does not contain any additional
protection circuitry for the network.

 Table 3.11 J11 1x2-Pin Network Connector

Pin Name Function Specification
1 Net A Network A interface Limited to the Transceiver Type
2 Net B Network B interface Limited to the Transceiver Type

Gizmo 4 Jumpers
The four jumpers on the Gizmo 4 are described in the following sections.

JP7 D/A 1 to A/D 1 Loop-Back Mode
The JP7 D/A 1 to A/D 1 Loop-Back Mode jumper enables a loop-back connection
between the D/A 1 analog output and the A/D 1 analog input with optional delay.
Insert a jumper between pins 1 and 2 to connect the Aout1 analog output to the Ain1
analog input with no delay. Insert a jumper between pins 2 and 3 to insert RC-delay
circuit in the loop-back path using a 1M� series resistor and 220�F capacitor to
ground.

3-8 Jumper and Connector Descriptions

JP8 D/A 2 to A/D 2 Loop-Back Mode
The JP8 D/A 1 to A/D 1 Loop-Back Mode jumper enables a loop-back connection
between the D/A 2 analog output and the A/D 2 analog input with optional delay.
Insert a jumper between pins 1 and 2 to connect the Aout1 analog output to the Ain1
analog input with no delay. Insert a jumper between pins 2 and 3 to insert RC-delay
circuit in the loop-back path using a 1M� series resistor and 220�F capacitor to
ground.

JP12 Gizmo 4 Power Supply Source Selection
The JP12 Gizmo 4 Power Supply Source Selection selects the Gizmo 4 power supply
source selection. You can choose between the +5VDC input on J1 I/O Connector or
the 9 – 30VDC input from the J10 and J12 Power Supply Connectors. Select the J1
input if you are attaching the Gizmo 4 to an LTM-10 Platform. Select the J10/J12
input if you have inserted a TP/FT-10 or TP/FT-10F Control Module.

JP13 Piezo Speaker Select
The JP 13 Piezo Speaker Select jumper enables the Gizmo 4 Piezo speaker.

Optional Gizmo 4 Connectors and Jumpers

There are optional connectors and jumpers included on the Gizmo 4. These are not
factory installed, but you can install headers or jumpers at these locations, or solder
in wire connections for the jumpers.

J13 PIC Programming Connector
The J13 PIC Programming Connector is used to reprogram the PIC processor. Pin 1
of J13 is the programming control pin and is also the PIC reset input. If a jumper is
installed in JP14, the PIC reset is also connected to the Neuron Chip reset pin.
When the programmer is downloading or reading the PIC, this pin will go to 13 volts.
To protect the Neuron Chip’s reset pin from damage, the JP14 jumper must be
removed when programming. If J13 is not populated you need to solder a 5-pin
header in place to use the programming option.

 Table 3.12 J13 PIC Programming

Pin Name Function Specification
1 VPP/Reset +13VDC programming input or Active Low

Reset
0 to 13VDC

2 VDD +5 Supply Input 5 volts
3 GND Ground
4 B7/PGD Programmer Data In or IOB7
5 B6/PGC Programmer Clock or IOB6

Gizmo 4 User’s Guide 3-9

J16 Unused PIC I/O Connector
The J16 Unused PIC I/O Connector provides access to PIC I/O pins that are not used
by the I/O components on the Gizmo 4. You will have to reprogram the PIC to use
these pins. Additional I/O and programming information is available from the
PIC16F877 data sheet. If J16 is not populated you need to solder a 7-pin header in
place to used the additional PIC I/O.

 Table 3.13 J16 PIC Programming Pin

Pin Name Function
1 GND Ground
2 IOB1
3 IOB0
4 IOC2
5 IOA4
6 IOA2
7 VDD +5VDC

JP10 PIC Stand Alone Mode Select
The JP10 PIC Stand Alone Mode Select jumper enables the PIC processor to run
stand alone. The jumper is connected to the PIC’s IOB5 input pins. This jumper is
used for factory testing of the Gizmo 4 board.

JP11 D/A Stand Alone Mode Select
The JP11 D/A Stand Alone Mode Select jumper enables the PIC processor to take
control of the D/A chip select line. This jumper is used for factory testing of the
Gizmo 4 board.

JP14 PIC Reset Enable
The JP14 PIC Reset Enable jumper connects the SW4 Reset button to the PIC
processor reset pin. The SW4 button is also connected to the Neuron Chip reset pin.
The JP14 jumper must be removed when you are programming the PIC. A 13VDC
input is applied to the PIC reset pin when programming. This 13VDC input will
damage the Neuron Chip. To prevent this, be sure to disconnect the JP14 jumper
when programming the PIC processor. JP14 cuses PIC RTC to reset.

JP17 SPI Stand Alone Mode Select
The JP17 SPI Stand Alone Mode Select jumper routes the SPI signal to either the
PIC or D/A converter. This jumper is used for factory testing of the Gizmo 4 board.

3-10 Jumper and Connector Descriptions

Gizmo 4 Software

This chapter describes the Gizmo 4 library. This library provides
utility functions for using the I/O components on the Gizmo 4 board. It
is included with the NodeBuilder Development Tool (starting with
Release 3), and is also available in the Echelon Developer’s Toolbox at
www.echelon.com/toolbox. The NodeBuilder Development Tool
includes additional programming examples for the Gizmo 4 that use
the Gizmo 4 library.

Gizmo 4 User’s Guide 4-1

Getting Started

The Gizmo 4 library consists of source code for functions that access the I/O
components on the Gizmo 4 board. The library is provided as a C header file that you
must include in the source code for any Neuron C application that uses the library.
You will compile this file, called gizmo4.h, as part of your application using the
NodeBuilder or LonBuilder software.

To use the Gizmo 4 library in a Neuron C application using the NodeBuilder tool,
follow these steps.

1. Create a new NodeBuilder device template.

2. Open the template’s settings and add the following to the include search path
field:

$LonWorks$\NodeBuilder\Gizmo4

This is the default location. If it was changed at installation, specify the exact
location of the Gizmo 4 library files.

You also can specify the path in the NodeBuilder Project Preferences window.
Select Use project include path in the device template to use the project path.

If you have additional entries in the include search path, separate the multiple
entries with a semicolon.

3. Open the Neuron C code for you’re application and insert the following
statement:

#include “gizmo4.h”

4. Find the when (reset) task, or create one. Add the following statement to the
task:

GizmoReset();

5. To clear the display on start-up add the following statement after the
GizmoReset() call:

GizmoClearDisplay();

4-2 Gizmo 4 Software

Macros in Gizmo4.h

The following macros are defined by the Gizmo 4 library:

GIZMO_DISPLAY_*
GIZMOPIC_CS_DELAY
USE_FREQUENCY
USE_QUADRATURE

These macros are defined in the following sections.

GIZMO_DISPLAY_*

This macro displays dimension and related properties, as specified.

#define GIZMO_DISPLAY_ROWS 4
#define GIZMO_DISPLAY_COLUMNS 20
#define GIZMO_DISPLAY_TABWIDTH 5
#define GIZMO_DISPLAY_SIZE (GIZMO_DISPLAY_ROWS *
 GIZMO_DISPLAY_COLUMNS)

GIZMOPIC_CS_DELAY

The PIC processor on the Gizmo 4 requires a delay between activation of the chip
select line and the transmission of the first data bit. The GIZMOPIC_CS_DELAY
macro is used by the library functions to implement this pause.

By default, the Gizmo 4 library does not implement a delay because a delay is not
required when running on a Neuron Chip with an input clock of 10MHz or less. If
your target hardware platform needs the delay, remove the "//" from the following
statement to enable the delay.

#define GIZMOPIC_CS_DELAY //scaled_delay(25ul)

USE_FREQUENCY

The USE_FREQUENCY macro allows you enable the piezo speaker in order to play
simple tunes.

LED1 and the piezo speaker share the IO0 I/O pin. Because the speaker requires a
frequency output, the LED also must be driven by a frequency output when using the
speaker. LED1 will always be on when using frequency output because the LED is
driven with an active low signal and the frequency output model always returns to
low when shut off.

To enable use of LED1, the default is to use the pulsewidth model at 610 Hz. This
allows the piezo speaker to make noise at this frequency, with a duty cycle of 50%.

Gizmo 4 User’s Guide 4-3

This also allows the LED to be turned on (pulsewidth at 0%) and off (pulsewidth at
100%). However, you cannot play tunes on the speaker.

By default, USE_FREQUENCY is not defined. This gives you full control over LED1,
but you cannot play tunes on the piezo speaker.

To enable tunes and disable use of LED1, uncomment the following statement in
Gizmo4.h:

#define USE_FREQUENCY

USE_QUADRATURE
The second LED uses the IO1 pin and uses a Neuron C bit output. This causes LED2
to be brighter that LED1 which uses a frequency or pulsewidth output model. If you
want LED2 to be the same brightness as LED1, you can change LED2 to use the
same pulsewidth or frequency model as LED1. However, you cannot use a
pulsewidth output on LED2 if you are using the quadrature input on IO4 and IO5
since both types of I/O require the same timer/counter.

By default, a USE_QUADRATURE macro is defined that enables quadrature input from
the shaft encoder, and enables bit output to LED2. This will, by default, make LED2
slightly brighter than LED1.

To disable quadrature input and enable either pulsewidth or frequency output to
LED2, comment out the following macro in Gizmo4.h:

#define USE_QUADRATURE

Use the GizmoSetLed() function to control the LEDs since it takes into account the
output model defined for the selected LED.

Types
The following types are defined by the Gizmo 4 library if USE_FREQUENCY is defined:

tGizmoNote
tGizmoTone
tGizmoToneLength

These types are defined in the following sections.

tGizmoNote
The tGizmoNote type is used to specify a note to the GizmoPlayNote() function. A
note consists of tone and length values defined in a tGizmoNote structure. See
GizmoPlayNote() for more information.

4-4 Gizmo 4 Software

tGizmoTone

The tGizmoTone type is used to specify a tone (a note of sound) for the piezo
speaker, or to specify a control value for the GizmoPlayTune() function. The
following macros can be used to assign any of the tones in an octave to a tGizmoTone
value:
define GizmoToneC 9579ul
define GizmoToneCs 9058ul
define GizmoToneD 8532ul
define GizmoToneDs 8065ul
define GizmoToneE 7599ul
define GizmoToneF 7184ul
define GizmoToneFs 6775ul
define GizmoToneG 6394ul
define GizmoToneGs 6039ul
define GizmoToneA 5682ul
define GizmoToneAs 5376ul
define GizmoToneB 5071ul

The constants are defined assuming a clock modifier of 0. You can change the octave
by multiplying or dividing the values by 2.

The following control values are used to control the GizmoPlayTune() function:

define GizmoTonePause 0ul // an important 'tone', too
define GizmoToneEnd 1ul // end of melody marker
define GizmoToneMarker 2ul // use this to set a repeat
 // marker in the melody
define GizmoToneRewind 3ul // go to the last known
 // GizmoToneMarker - this causes
 // an endless loop
define GizmoToneDaCapo 4ul // go to the last known marker
 position, but only do so once

tGizmoToneLength
The tGizmoToneLength type is used to define the duration of a tone in hundreds of
a second. This is an enumeration type that defines the following enumeration
constants:
GizmoNoteEight = 2,

 GizmoNoteQuarter = 4,
 GizmoNoteHalf = 8,
 GizmoNoteFull = 16

Gizmo 4 User’s Guide 4-5

Functions
The following functions are used by the Gizmo 4.

GizmoBuzz()
GizmoClearDisplay()
GizmoDefineCharacter()
GizmoDisplayCharacter()
GizmoDisplayChar()
GizmoDisplayDate()
GizmoDisplayFormattedNumber()
GizmoDisplayString()
GizmoDisplayTemperature()
GizmoDisplayTime()
GizmoGetTune()
GizmoPlayTune()
GizmoReadAnalog()
GizmoReadTemperature()
GizmoReset()
GizmoRTC()
GizmoSetLed()
GizmoSetTime()
GizmoWriteAnalog()

GizmoBuzz()
void GizmoBuzz(boolean bOn);

bOn Turns the buzzer on if TRUE..

The GizmoBuzz() function controls the piezo speaker. The frequency of the sound
produced will be about 610Hz if the pulsewidth model is in use, or 840 Hz
(GizmoToneA) if the frequency model is in use. See also GizmoPlayNote().

GizmoClearDisplay()
void GizmoClearDisplay(void);

The GizmoClearDisplay()clears the LCD display. This function does not disable
automatic time, data, or temperature display. You must disable those display
functions prior to calling GizmoClearDisplay() to completely clear the display.

GizmoDefineCharacter()
void GizmoDefineCharacter(unsigned code,

 unsigned char *const pData);

code Character to define, between 0 and 7..

pData Pointer to an array of 8 bytes defining the character.

4-6 Gizmo 4 Software

The GizmoDefineCharacter() function defines up to eight (8) graphic characters,
using ASCII codes 0x00 to 0x07. Each call to GizmoDefineCharacter() redefines
one character, indicated by code. The character generator uses a 5x8 dot matrix font
where the first byte shown is the one at the top right-hand corner of the display. The
least significant bit is shown at the right edge of the display. For textual data, the
lowest line for each character should remain blank (0x00) or reserved for the tail of a
character. Semigraphical characters are free to use the entire area. For example,
character matrix data { 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F, 0x1F } represents
a 'black' rectangle, and matrix data { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }
produces a character with a thin line at the rightmost edge. A re-defined character
with code 0x00 can not be displayed using the GizmoDisplayString() function,
use GizmoDisplayCharacter() instead.

GizmoDisplayChar()
void GizmoDisplayChar(unsigned xPos, unsigned yPos, char cChar);

xPos Column number, between 0 and 19.

yPos Row number, between 0 and 3.

cChar The character to be displayed.

The GizmoDisplayChar() function displays a single character at the position
specified by xPos, yPos. See Appendix B for a list of the characters that can be
displayed with the GizmoDispalyChar() function. You can also create up to eight
custom characters using the GizmoDefineChar() function.

GizmoDisplayDate()
void GizmoDisplayDate(unsigned xPos, unsigned yPos, boolean
 bEnable);

xPos Column number, between 0 and 19.

yPos Row number, between 0 and 3.

bEnable Enables automatic display.

The GizmoDisplayDate() functions starts or stops continuous display of the
current date. To enable continuous diplay, set bEnable to TRUE and specify a
starting position using xPos and yPos. There can only be one field for this display,
you cannot display the date in two locations simultaneously. To disable continuous
display, set bEnable to FALSE. The xPos and yPos arguments are ignored when
disabling the display.

Gizmo 4 User’s Guide 4-7

GizmoDisplayFormattedNumber()
Void GizmoDisplayFormattedNumber(unsigned xPos, unsigned yPos,
 long lNumber, unsigned uBase,
 unsigned uField, unsigned
 uPoint char cNeutral);

(Note: the lNumber entry is a lower case “L” – it is not a number one.)

xPos Column number, between 0 and 19.

yPos Row number, between 0 and 3.

lNumber The number to be displayed. (This is a lowercase “L” and not a one.)

uBase The displayed number base, from base 2 to 16.

uField The total number of characters to display

uPoint The position of the decimal point within the field, from the left (0 for
none)

cNeutral Fill character for unused characters.

The GizmoDisplayFormattedNumber() function displays lNumber at the position
specified by xPos, yPos. The formatting is for the following parameters:

The number is positioned on the rightmost edge of the field, the field is being filled up
with ‘cNeutral’ to the left, if needed.

The display number is considered unsigned, and no decimal point will be inserted if
the base is different than 10. A series of asterisks is shown if the field is too small for
the formatted data. Note a prefix or postfix to indicate the base is not inserted.

GizmoDisplayNumber()
void GizmoDisplayNumber(unsigned xPos, unsigned yPos, long
 1Number);

xPos Column number, between 0 and 19.

yPos Row number, between 0 and 3.

lNumber The number to be displayed.

The GizmoDisplayNumber() function displays 1Number at the position specified by
xPos, yPos, using decimal formatting. See also GizmoDisplayFormattedNumber().

4-8 Gizmo 4 Software

GizmoDisplayString()
void GizmoDisplayString (unsigned xPos, unsigned yPos, const
 char *pString);

xPos Column number, between 0 and 19.

yPos Row number, between 0 and 3.

pString Pointer to a string to be displayed.

The GizmoDisplayString() function displays the zero-terminated string specified
by pString at the position specified by xPos, yPos, using decimal formatting. See
Appendix B for a list of the characters that can be displayed with the
GizmoDisplayString() function. GizmoDisplayString() handles the following non-
printable characters:

\t tab (see GizmoDisplayTabwidth)

\r go to beginning of current line

\n newline

For example, to start a new line from the leftmost column, enter the following
sequence \n\r or \r\n.

GizmoDisplayTemperature()

void GizmoDisplayTemperature(unsigned xPos, unsigned yPos,
 boolean bEnable);

xPos Column number, between 0 and 19.

yPos Row number, between 0 and 3.

bEnable Enables automatic display.

The GizmoDisplayTemperature() functions starts or stops continuous display of
the current temperature. To enable continuous diplay, set bEnable to TRUE and
specify a starting position using xPos and yPos. There can only be one field for this
display, you cannot display the temperature in two locations simultaneously. To
disable continuous display, set bEnable to FALSE. The xPos and yPos arguments
are ignored when disabling the display.

The temperature is always displayed in Fahrenheit. Use the
GizmoReadTemperature() and GizmoDisplay*() functions for alternative units
and formatting.

Gizmo 4 User’s Guide 4-9

GizmoDisplayTime()
void GizmoDisplayTime(unsigned xPos, unsigned yPos, boolean
 bEnable);

xPos Column number, between 0 and 19.

yPos Row number, between 0 and 3.

bEnable Enables automatic display.

The GizmoDisplayTime) functions starts or stops continuous display of the
current time. To enable continuous diplay, set bEnable to TRUE and specify a
starting position using xPos and yPos. There can only be one field for this display,
you cannot display the time in two locations simultaneously. To disable continuous
display, set bEnable to FALSE. The xPos and yPos arguments are ignored when
disabling the display.

GizmoGetTime()
void GizmoGetTime (SNVT_time_stamp *pTime);

pTime Pointer to a time value.

The GizmoGetTime() function reads the current time from the Gizmo 4.

GizmoPlayTune()
void GizmoPlayTune(const tGizmoNote *pNote);

pNote A pointer to an array of notes. See the definitions of tGizmoNote,
tGizmoTone, tGizmoToneLength in the Types section.

The GizmoPlayTune() function plays a composition consisting of a series of notes,
sounds, and durations. The USE_FREQUENCY macro must be defined. Be sure to
include a GizmoToneEnd or GizmoToneRewind marker in your melody. The entire
tune memory must be valid for the duration of the tune. Because there is
background processing required to play your tune, the GizmoPlayTune() function
cannot be used from within a when(offline) task. You can use this function from
within a when(reset) or when(wink) task, but only if you have configured the
device and it is online.

4-10 Gizmo 4 Software

GizmoReadAnalog()
unsigned long GizmoReadAnalog(unsigned channel);

channel The A/D converter channel; either 0 or 1.

The GizmoReadAnalog() function reads analog data. The function returns a value
of 0..1000 (for 100%).

GizmoReadTemperature()
signed long GizmoReadTemperature(Boolean bFahrenheit,

 Boolean bUseFixed);

bFahrenheit Returns a Fahrenheit temperature if TRUE; Celcius temperature if
FALSE..

bUseFixed Returns a scaled fixed point value if TRUE; or integer temperature if
FALSE.

The GizmoReadTemperature() function reads the current temperature. The PIC
controller returns the temperature with a resolution of 0.5 C/F. This function can
return two possible data formats, an integer temperature (in either Fahrenheit or
Celcius), or a fixed point value with a precision of 0.5 C/F. The fixed point format is
chosen by the second, Boolean, parameter (bUseFixed), otherwise the value is
rounded to the nearest integer. Note that GizmoReadTemperature(FALSE, TRUE)
returns data that is compatible with SNVT_temp.

GizmoReset()
void GizmoReset(void);

The GizmoReset() function initialize the Gizmo 4 library and the Gizmo 4 I/O
interface. This function should be called from within your when task (reset) .

GizmoRTC()
void GizmoRtc(Boolean bStart);

bStart Starts the real-time clock if TRUE.

The GizmoRTC() function starts or stops the real-time clock.

GizmoSetLed()
void GizmoSetLed(unsigned channel, boolean bOn);

channel The LED number; 0 for LED1 or 1.for LED2

bOn The value to set. TRUE turns the LED on.

Gizmo 4 User’s Guide 4-11

The GizmoSetLed()function turns LEDs on or off. If a tune is playing when you
attempt to turn the LED off, the function will not complete and the frequency output
will be stopped.

GizmoSetTime()
void GizmoSetTime(const SNVT_time_stamp *pTime);

pTime Pointer to a time value.

The GizmoSetTime() sets the clock in the Gizmo 4 to the time specified by pTime.

GizmoWriteAnalog()
void GizmoWriteAnalog(unsigned channel, unsigned long Data);

channel The A/D converter channel; either 0 or 1.

Data The value to write, between 0.and 1000 (for 0..100%).

The GizmoWriteAnalog() function writes a data value to the D/A converter,
producing an analog output.

I/O Objects
This section describes the Gizmo 4 library I/O objects..

LEDs and Quadrature Input
There are two LEDs: LED1 and LED2. They may be declared as pulsewidth,
frequency, or bit outputs depending on the settings specified by the USE_FREQUENCY
and USE_QUADRATURE macros. There is an optional quadrature input for the rotary
shaft encoder. These are defined as follows:

#ifdef USE_FREQUENCY
 IO_0 output frequency clock(0) ioPiezzo = 1;
#else
 IO_0 output pulsewidth short invert clock(5) ioPiezzo = 1;
#endif // use_frequency

#define ioLed1 ioPiezzo

#ifdef USE_QUADRATURE
 IO_1 output bit ioLed2 = 1;

 // quadrature input
 IO_4 input quadrature ioWheel;

4-12 Gizmo 4 Software

#else
ifdef USE_FREQUENCY
 IO_1 output frequency clock(0) ioLed2 = 1;
else
 IO_1 output pulsewidth short invert clock(5) ioLed2 = 1;
endif // use_frequency
#endif // use_quadrature

Neurowire
Neurowire I/O is used for the A/D converter, D/A converter, real-time clock, and
display drivers.

Neurowire requires pins IO8 through IO10, plus chip selects on IO2 and IO3.

// Neurowire (SPI) declarations
IO_8 neurowire master select(IO_2) ioPIC;
IO_2 output bit ioPICCS = 1; // ~CS for PIC, initially unselected

IO_8 neurowire master select (IO_3) ioDAC;
IO_3 output bit ioDACCS = 1; // ~CS for DAC, initially unselected

Push Buttons
The two push buttons are connected to IO6 and IO7. SW1 connects to IO6 and SW2
connects to IO7.

// pushbuttons:
IO_6 input bit ioButton1; // the one next to LED1
IO_7 input bit ioButton2; // the one next to LED2

Error Management
The Gizmo 4 library returns errors using the GizmoLastError global variable which
is declared with the tGizmoError type. You can watch this variable in the
NodeBuilder debugger.

Error reporting is enabled by the _DEBUG macro, which is defined for NodeBuilder
development targets. If you create a NodeBuilder release target, the _DEBUG macro
is not defined, and the Gizmo 4 error reporting mechanism is disabled.

Use the GIZMOSETERROR() macro to set an error code, and use
GIZMOSETERROR(geNone) to reset the GizmoLastError variable once an error
condition has been resolved. If your code evaluates GizmoLastError, you should
compile this code conditionally based on the existence of the _DEBUG macro.

See also GzCommon.nc for a definition of the GIZMOASSERT macros, which are used
by the Gizmo*() functions for parameter validation in the debug targets.

Gizmo 4 User’s Guide 4-13

tGizmoError:

typedef enum
{
 geNone = 0,
 geBadParameter, // invalid channel number, etc
 geBadPointer, // NULL pointer given but not acceptable
 geBadCoordinates, // x/y display positioning values invalid
 geClipped, // data was clipped at display edge
 geOutOfRange, // data was out of range (WriteAnalog?)
} tGizmoError;

tGizmoLastError:

#ifdef _DEBUG
 extern tGizmoError GizmoLastError;
#endif // def. _debug

GIZMOSETERROR:

#ifdef _DEBUG
define GIZMOSETERROR(code) GizmoLastError = code
#else
define GIZMOSETERROR(code)
#endif // def. _debug

Communicating Directly with the Gizmo 4
You can communicate directly with the Gizmo 4 library. This is typically not
required if you are using the Gizmo 4 library. This section describes the hardware
interface to the Gizmo 4 if you are maintaining or enhancing the Gizmo 4 library.

The Gizmo 4 contains two types of I/O components for use with the Neuron Chip; the
I/O components directly available to the Neuron Chip’s I/O pins, and the I/O
components available via the PIC processor on the Gizmo 4.

The I/O components directly wired to the Neuron Chip include the following:

�� Two push buttons

�� Two LEDs

�� Quadrature encoder

�� Piezzo speaker

�� One D/A converter with two D/A Channels

The I/Os available through the PIC include:

�� 4x20 character LCD

�� One A/D converter with two A/D channels

4-14 Gizmo 4 Software

�� One temperature A/D channel

�� One real-time clock

Communicating with the I/O Wired to the Neuron Chip
The following code is provided for example purposes only. You may need to alter
variables or names in your own environment.

Push Buttons
The push buttons are connected directly to IO6 and IO7 of the Neuron Chip. They
are low asserting switches.

IO_6 input bit switch1;

when(io_changes(switch1))
{
 if (input_value == 0)
 // Switch released
 else
 // Switch pushed
}

LEDs
The LEDs are low asserting and are connected to IO0 and IO1.

IO0 output bit LED1;

io_out(LED1, 0); //On

io_out(LED1, 1); //Off

Quadrature Encoder
The quadrature encoder generates pairs of pulses on two I/O lines. This happens as
it is turned. The quadrature input determines positive and negative direction based
on the ordering of the pulses. The quadrature encoder is on IO4 and IO5.

IO_4 input quadrature ioQuad;

when(io_update_occurs(ioQuad))
{
 static int position;
 position += input_value;
}

Gizmo 4 User’s Guide 4-15

Piezo Speaker
The piezo speaker shares its I/O connections with LED1. It is connected to IO0.

IO0 output frequency ioBuzz;

….

io_out(ioBuzz, 2500); //Output a 1KHz sound

I/O Controlled by the PIC
The PIC directly handles control of the I/O that is connected to it. It provides an SPI
interface with which the Neuron Chip can read or write to these I/O components.
Within the PIC is a series of 128 registers corresponding to the various I/O
components connected to the PIC.

To read the value of a register, use the Neurowire IO model to exchange a series of
bits with the PIC. The Neurowire interface uses IO8 through IO10 of the Neuron
Chip. The chip-select line for the PIC is connected to IO2.

The first bit (MSB of the register byte) tells the PIC that you are reading or writing
to the register. The following 7 bits specify the register to read or write. The
remaining bits are a buffer to hold the data that is being read or written.

4-16 Gizmo 4 Software

Example 1: Read 16-bits of data from register 0x05 (temperature in degrees
Fahrenheit):

IO8 neurowire select(IO_2) ioPIC;

byte buff[3];
long temperature;

buff[0] = 0x05 | 0x80; //0x05 is the register, 0x80 sets the read bit

io_in(ioPIC, buff, 24);

temperature = buff[1] << 8; //bits 8-9 of the temp
temperature |= buff[2]; //bits 0-7 of the temp

Example 2: Write a line of text to the LCD Display:

byte buff[21];

buff[0] = 0x10; // Register 0x10 is the first char of the first line of
the display

memcpy(buff[1], “=======GIZMO4=======”, 20); //Copy the string into the
buffer

io_in(ioPIC, buff, 168); //io_in and io_out perform the same for the
Neurowire IO model

Register Tables
Table 4.1 includes a list of registers that can be written in the PIC.

Table 4.1 Register Descriptions to Write in the PIC

ADDRESS (HEX) REGISTER DESCRIPTION

01 Control Register
0B Analog Out A
0C Analog Out B
0D Enable User Graphic Character Mode
0E Write User Character

10 – 23 LCD Line 1 Character 1-20 (ASCII codes)
24 – 37 LCD Line 2 Character 1-20 (ASCII codes)
38 – 4B LCD Line 3 Character 1-20 (ASCII codes)
4C – 5F LCD Line 4 Character 1-20 (ASCII codes)

60 Time Auto Position
61 Date Auto Position
62 Temperature Auto Position
63 Analog In A Auto Position
64 Analog In B Auto Position

Gizmo 4 User’s Guide 4-17

Table 4.1 (Continued)

ADDRESS (HEX) REGISTER DESCRIPTION

65 Analog Out A Auto Position
66 Analog Out B Auto Position
68 Seconds register
69 Minutes register
6A Hours register
6B Days register
6C Weeks register
6D Years LSB register
6E Years MSB register

Table 4.2 includes a list of registers that can be read in the PIC.

Table 4.2 Register Descriptions to Read in the PIC

ADDRESS (HEX) REGISTER DESCRIPTION

81 Control Register
83 TemperatureC LSB (bits 0-7)
84 TemperatureC MSB (bits 8-9 => 0-1)
85 TemperatureF LSB (bits 0-7)
86 TemperatureF MSB (bits 8-9 => 0-1)
87 Analog In A LSB (bits 0-7)
88 Analog In A MSB (bits 8-9 => 0-1)
89 Analog In B LSB (bits 8-9 => 0-1)
8A Analog In B MSB (bits 8-9 => 0-1)

90 – A3 LCD Line 1 Character 1-20 (ASCII codes)
A4 – B7 LCD Line 2 Character 1-20 (ASCII codes)
B8 – CB LCD Line 3 Character 1-20 (ASCII codes)
CC – DF LCD Line 4 Character 1-20 (ASCII codes)

E8 Seconds register
E9 Minutes register
EA Hours register
EB Days register
EC Weeks register
ED Years LSB register
EE Years MSB register

Table 4.3 includes a list of registers that allow certain functions within the PIC to be
enabled or disabled.

Table 4.3 Registers to Allow PIC Functions to be Enabled/Disabled

ADDRESS (HEX) REGISTER DESCRIPTION

81 Control Register
83 TemperatureC LSB (bits 0-7)
84 TemperatureC MSB (bits 8-9 => 0-1)
85 TemperatureF LSB (bits 0-7)
86 TemperatureF MSB (bits 8-9 => 0-1)
87 Analog In A LSB (bits 0-7)
88 Analog In A MSB (bits 8-9 => 0-1)
89 Analog In B LSB (bits 8-9 => 0-1)

4-18 Gizmo 4 Software

 Table 4.3 (Continued)

ADDRESS (HEX) REGISTER DESCRIPTION

8A Analog In B MSB (bits 8-9 => 0-1)
90 – A3 LCD Line 1 Character 1-20 (ASCII codes)
A4 – B7 LCD Line 2 Character 1-20 (ASCII codes)
B8 – CB LCD Line 3 Character 1-20 (ASCII codes)
CC – DF LCD Line 4 Character 1-20 (ASCII codes)

E8 Seconds register
E9 Minutes register
EA Hours register
EB Days register
EC Weeks register
ED Years LSB register
EE Years MSB register

The following table provides notes about values being read or written from the PIC.

Table 4.4 Values Read or Written from the PIC

Control Register Always set bit 0 to high or the PIC will halt and require the Gizmo’s
power to be cycled.

Analog Outputs Analog output range is ~0-5VDC, scaled from values of
0-256, each value step is ~19-20mVdc.

Analog Inputs Analog input range is ~0-5VDC, scaled from values of
0-1024, each value step is ~5mVdc.

LCD registers The LCD displays standard ASCII characters and allows for user-
defined characters to be added (see Appendix A).

RTC The RTC’s base time is 00:00:00, January 1, 2001. All dates are in
reference to that point. For example, 10/31/2001 at 5:04:28pm
would be:
Year = 0; //still 2001
Months = 10;
Days = 31;
Hours = 17;
Minutes = 4;
Seconds = 28;

AutoPosition The AutoPosition registers are for instructing the PIC to
automatically display the given I/O value on the LCD display.
Following the register in the buffer, one or two bytes should
determine where to display the data.

Byte 1: 0 to turn off display, 1-4 for the row to display on
Byte 2: the character (1-20) where the display will start

The second bytes is not specified when turning the display off.

Gizmo 4 User’s Guide 4-19

4-20 Gizmo 4 Software

Creating a Custom Character

This appendix provides you with information to create custom
characters. This information assumes that you are not using the
functions in the Gizmo 4 (GizmoDefineCharacter).

Gizmo 4 User’s Guide A-1

Custom Character Example

With the Gizmo 4 library, you can build up to eight new graphical characters and
store them in the PIC with a display address from 00 to 07. The graphical display is
in a 5 x 7 dot matrix with a bottom row available for an underline or cursor. To
create the new character, build it in an array. The following example shows the
creation of the letter “A.”

 // Test for User Character Graphic Mode.
 // User can develop up to 8 user characters

 unsigned char userchar0[8] = // Assigned address 0
 {0x0E, //XXX.
 0x11, // ...X...X
 0x11, // ...X...X
 0x11, // ...X...X
 0x1F, // ...XXXXX
 0x11, // ...X...X
 0x11, // ...X...X
 0x00 // (underline)
 };

To send the character to the PIC, use the following code.

int i;
byte buff[2];
int charnum;

charnum = 0;

for(i = 0; i < 8; i++)
{

buff[0] = 0x0D;
buff[1] = (charnum << 3) ; //Tell it which char to edit
buff[1] += i; // Tell it which line we are editing
io_out(ioPIC, buff, 16); //send it to the PIC

buff[0] = 0x0E;
buff[1] = userchar0[i]; //Send the raw data to the PIC
io_out(ioPIC, buff, 16);

}

A-2 Creating a Custom Character

Gizmo 4 Character Set

This appendix lists the standard character set included with the
Gizmo 4.

Gizmo 4 User’s Guide B-1

Character Set
The following table lists the characters that you can display using the
GizmoDisplayChar() and GizmoDisplayString() functions. You can redefine
the first eight characters using the GizmoDefineChar() function.

B-2 Gizmo 4 Character Set

	Gizmo 4 User's Guide
	Contents

	Gizmo 4 Overview
	Introduction
	Audience
	Content
	Related Documentation

	Gizmo 4 Hardware and Electrical Specifications
	Gizmo 4 Component Placement
	Gizmo 4 Power Supply
	PIC, Display, Clock, and A/D Converter
	Push Buttons
	D/A Converter and Loop-back D/A to A/D Mode
	LED1 and LED2
	Quadrature Encoder
	Gizmo 4 Block Diagram
	Gizmo 4 Electrical Specifications

	Gizmo 4 Jumper and Connector Descriptions
	Gizmo 4 Connectors
	J1 I/O Connector
	J2 Control Module I/O Connector
	J3 Signal Routing Connector
	J4 Prototype I/O Connector
	J5 Control Module Network Connector
	J6 Analog Output Connector
	J7 Analog Input Connector
	J8 Digital I/O Connector
	J9 Digital I/O Connector
	J10 and J12 Power Supply Connectors
	J11 Network Connector

	Gizmo 4 Jumpers
	JP7 D/A 1 to A/D 1 Loop-Back Mode
	JP8 D/A 2 to A/D 2 Loop-Back Mode
	JP12 Gizmo 4 Power Supply Source Selection
	JP13 Piezo Speaker Select

	Optional Gizmo 4 Connectors and Jumpers
	J13 PIC Programming Connector
	J16 Unused PIC I/O Connector
	JP10 PIC Stand Alone Mode Select
	JP11 D/A Stand Alone Mode Select
	JP14 PIC Reset Enable
	JP17 SPI Stand Alone Mode Select

	Gizmo 4 Software
	Getting Started
	Macros in Gizmo4.h
	GIZMO_DISPLAY_*
	GIZMOPIC_CS_DELAY
	USE_FREQUENCY
	USE_QUADRATURE

	Types
	tGizmoNote
	tGizmoTone
	tGizmoToneLength

	Functions
	GizmoBuzz()
	GizmoClearDisplay()
	GizmoDefineCharacter()
	GizmoDisplayChar()
	GizmoDisplayDate()
	GizmoDisplayFormattedNumber()
	GizmoDisplayNumber()
	GizmoDisplayString()
	GizmoDisplayTemperature()
	GizmoDisplayTime()
	GizmoGetTime()
	GizmoPlayTune()
	GizmoReadAnalog()
	GizmoReadTemperature()
	GizmoReset()
	GizmoRTC()
	GizmoSetLed()
	GizmoSetTime()
	GizmoWriteAnalog()

	I/O Objects
	LEDs and Quadrature Input
	Neurowire
	Push Buttons

	Error Management
	Communicating Directly with the Gizmo 4
	Communicating with the I/O Wired to the Neuron Chip
	Push Buttons
	LEDs
	Quadrature Encoder
	Piezo Speaker
	I/O Controlled by the PIC
	Register Tables

	Appendix A -- Creating a Custom Character
	Custom Character Example

	Appendix B -- Gizmo 4 Character Set
	Character Set

