
i.LON® 100 e3 Programmers
Reference

@®

0 7 8 - 0 2 5 0 - 0 1 E

Echelon, LONWORKS, i.LON, Neuron, LONMARK, LNS, the
Echelon logo, and the LONMARK logo are registered
trademarks of Echelon Corporation. LonScanner is a
trademark of Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed
for use in equipment or systems which involve danger to
human health or safety or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2002-2006 by Echelon Corporation.

Echelon Corporation
www.echelon.com

i.LON 100 e3 Programmer’s Reference i

Table Of Contents
1 Introduction to the i.LON 100 SOAP/XML Interface ... 1-1
1.1 About This Document .. 1-1
1.2 Programming Samples .. 1-2
1.3 Getting Started .. 1-2
1.4 i.LON 100 Version 3.0 SOAP/XML Interface Upgrades.. 1-3

1.4.1 Modified SOAP Applications and Functions.. 1-3
1.4.2 Changes to SOAP Message Formats .. 1-6

2 SOAP Messages and the i.LON 100 WSDL File... 2-1
2.1 i.LON 100 WSDL File.. 2-1
2.2 Security... 2-1
2.3 Formats of SOAP Messages .. 2-2

2.3.1 Input Messages .. 2-2
2.3.1.1 SOAP Envelope ... 2-3
2.3.1.2 SOAP Body .. 2-3

2.3.2 Response Message ... 2-4
2.3.2.1 SOAP Header .. 2-5
2.3.2.2 SOAP Body .. 2-6

3 i.LON 100 Applications and the SOAP/XML Interface .. 3-1
3.1 Overview of i.LON 100 Applications... 3-1
3.2 i.LON 100 XML Configuration Files... 3-2

3.2.1 Modifying the XML Configuration Files .. 3-3
3.3 i.LON 100 SOAP Functions... 3-3
3.4 i.LON 100 Resource Files .. 3-7

3.4.1 LonMark Standard Network Variable Type (SNVT) Device Resource Files......... 3-7
3.4.2 Standard Configuration Property Type (SCPT) Device Resource Files................. 3-8
3.4.3 User Network Variable Type (UNVT) Device Resource Files 3-8
3.4.4 User Configuration Property Type (UCPT) Device Resource Files........................ 3-8

3.5 Data Formatting .. 3-10
3.6 List, Get, Set and Delete Functions.. 3-11

3.6.1 List Functions .. 3-11
3.6.2 Get Functions... 3-11
3.6.3 Set Functions ... 3-11
3.6.4 Delete Functions .. 3-12

3.7 Performance Issues .. 3-13
3.8 Getting Started .. 3-14
4 Data Server .. 4-1
4.1 Data Server XML Files.. 4-4

4.1.1 dp_NVL.xml ... 4-5
4.1.2 dp_NVC.xml ... 4-7

4.2 Creating and Modifying the Data Server XML Files... 4-8
4.2.1 Data Server SOAP Interface... 4-8

4.2.1.1 DataServer_List .. 4-10
4.2.1.2 DataServer_Get... 4-12
4.2.1.3 DataServer_Set ... 4-18
4.2.1.4 DataServer_Read .. 4-20
4.2.1.5 DataServer_Write ... 4-26
4.2.1.6 DataServer_ResetPriority .. 4-30
4.2.1.7 DataServer_Delete.. 4-31

ii i.LON 100 e3 Programmer’s Reference

5 Data Loggers .. 5-1
5.1 DataLogger.xml.. 5-1
5.2 Creating and Modifying the dataLogger.xml File.. 5-4

5.2.1 DataLogger SOAP Interface ... 5-4
5.2.1.1 DataLogger_List.. 5-5
5.2.1.2 DataLogger_Get .. 5-6
5.2.1.3 DataLogger_Set... 5-11
5.2.1.4 DataLogger_Read.. 5-13
5.2.1.5 DataLogger_Clear ... 5-19
5.2.1.6 DataLogger_Delete ... 5-21

6 Alarm Generator .. 6-1
6.1 AlarmGenerator.xml.. 6-2
6.2 Creating and Modifying the alarmGenerator.xml File ... 6-3

6.2.1 Alarm Generator SOAP Interface... 6-3
6.2.1.1 AlarmGenerator_List.. 6-4
6.2.1.2 AlarmGenerator_Get .. 6-5
6.2.1.3 AlarmGenerator_Set... 6-16
6.2.1.4 AlarmGenerator_Delete ... 6-17

7 Alarm Notifier .. 7-1
7.1 AlarmNotifier.xml.. 7-2
7.2 Creating and Modifying the alarmNotifier.xml File.. 7-5

7.2.1 Alarm Notifier SOAP Interface... 7-5
7.2.1.1 AlarmNotifier_List.. 7-7
7.2.1.2 AlarmNotifier_Get .. 7-8
7.2.1.3 AlarmNotifier_Set... 7-21
7.2.1.4 AlarmNotifier_Read.. 7-22
7.2.1.5 AlarmNotifier_Write... 7-28
7.2.1.6 AlarmNotifier_Clear ... 7-31
7.2.1.7 AlarmNotifier_Delete.. 7-33

8 Analog Function Block... 8-1
8.1 AnalogFB.xml... 8-1
8.2 Creating and Modifying the analogFB.xml File .. 8-3

8.2.1 Analog Function Block SOAP Interface ... 8-3
8.2.1.1 AnalogFB_List... 8-4
8.2.1.2 AnalogFB_Get ... 8-5
8.2.1.3 AnalogFB_Set.. 8-14
8.2.1.4 AnalogFB_Delete .. 8-15

9 Event Scheduler... 9-1
9.1 EventScheduler.xml... 9-2
9.2 Creating and Modifying the eventScheduler.xml File... 9-5

9.2.1 Event Scheduler SOAP Interface ... 9-5
9.2.1.1 EventScheduler_List... 9-6
9.2.1.2 EventScheduler_Get ... 9-7
9.2.1.3 EventScheduler_Set.. 9-15
9.2.1.4 EventScheduler_Delete .. 9-17

10 Event Calendar .. 10-1
10.1 EventCalendar.xml .. 10-1
10.2 Creating and Modifying the eventCalendar.xml File.. 10-3

i.LON 100 e3 Programmer’s Reference iii

10.2.1 Event Calendar SOAP Interface .. 10-3
10.2.1.1 EventCalendar_List.. 10-4
10.2.1.2 EventCalendar_Get .. 10-5
10.2.1.3 EventCalendar_Set ... 10-14
10.2.1.4 EventCalendar_Delete.. 10-16

11 Type Translator ... 11-1
11.1 TypeTranslator.xml ... 11-1
11.2 Creating and Modifying the typeTranslator.xml File ... 11-3

11.2.1 Type Translator SOAP Interface.. 11-3
11.2.1.1 TypeTranslator_List ... 11-4
11.2.1.2 TypeTranslator_Get.. 11-5
11.2.1.3 TypeTranslator_Set .. 11-13
11.2.1.4 TypeTranslator_Delete ... 11-14

12 Type Translator Rules ... 12-1
12.1 Type Translator Rule XML Files .. 12-1
12.2 Creating and Modifying the Type Translator Rule XML Files................................. 12-3

12.2.1 Type Translator Rule SOAP Interface... 12-3
12.2.1.1 TypeTranslator_List_Rule.. 12-4
12.2.1.2 TypeTranslator_Get_Rule .. 12-5
12.2.1.3 TypeTranslator_Set_Rule... 12-12
12.2.1.4 TypeTranslator_Delete_Rule ... 12-14

13 Using the SOAP Interface as a Web Service... 13-1
13.1 Referencing the WSDL File... 13-1
13.2 Instantiating and Initializing the Web Service.. 13-3

13.2.1 Instantiating the Web Service In Visual Basic .NET 13-3
13.2.2 Instantiating the Web Service in Visual C# .NET .. 13-4

13.3 Calling Web Services Methods.. 13-4
13.3.1 Writing Data Point Values ... 13-5

13.3.1.1 Visual Basic .NET Example ... 13-5
13.3.1.2 Visual C# .NET Example.. 13-5

13.3.2 Reading Data Point Values... 13-6
13.3.2.1 Visual Basic .NET... 13-6
13.3.2.2 Visual C# .NET ... 13-6

13.3.3 Resulting Code Summary ... 13-7
13.3.3.1 Writing Data Point Values ... 13-7
13.3.3.2 Reading Data Point Values .. 13-8

13.3.4 Accepting a Web Binding From an i.LON100 Server 13-9
13.3.4.1 Sample Code in Visual Basic .NET.. 13-13

14 Manually Modifying an XML Configuration File ... 14-1
14.1 Creating an XML File .. 14-1
14.2 Modifying an XML File.. 14-1
14.3 Copying XML Files Between i.LON 100s... 14-2

iv i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 1-1

1 Introduction to the i.LON 100 SOAP/XML Interface
The i.LON 100 server contains a powerful microprocessor with a real-time, multi-tasking
operating system that manages its various applications. These applications include
alarming, scheduling, data logging and network variable type translation. Generally, you
will configure these applications using the i.LON 100 Configuration Software, as described in
the i.LON 100 e3 User’s Guide. The i.LON 100 e3 User’s Guide provides instructions to
follow when configuring the i.LON 100 applications with the i.LON 100 Configuration Plug-
In and the i.LON 100 Web pages, as well as general information on the diffferent i.LON 100
applications, and guidelines to follow when using these applications.

You can also use the SOAP (Simple Object Access Protocol) / XML (Extensible Markup
Language) interface provided with the i.LON 100 server to configure these applications.
XML is a universal format used to deliver data through structured documents over the Web.
It allows developers to store data for any application in a standard, consistent way. SOAP is
an interface that provides a mechanism for different applications and devices to
communicate with each other over the Internet, regardless of platform, by sending SOAP
messages to each other. SOAP relies on XML to define the format and contents of its
messages.

The configuration of each i.LON 100 application is stored in an XML file. The i.LON 100
server reads these files during its boot process, and sets the operating parameters of each
application based on the configuration data contained in the XML file for that application.

The i.LON 100 server includes a set of SOAP functions that you can use to create and
manage the configuration of each application. Each time you invoke any of these functions, a
SOAP message is sent to the i.LON 100 server. The content of the SOAP message is based on
the input you supply to the function. The i.LON 100 server reads the contents of the
message, writes the contents of the message to the applicable XML file, and adjusts the
operating parameters of its applications accordingly. All of this occurs while the i.LON 100
server is operating.

It is important to note that the XML files described in this document store the configurations
of the i.LON 100 applications. They do not store the data generated by these applications.
The real-time data generated by the i.LON 100 server's applications is stored in RAM and
log data are stored on the flash disk.

However, this does not mean that application configuration is the only task you can perform
with the i.LON 100 SOAP/XML interface. The SOAP/XML interface also includes functions
you can use to access, read and analyze the data generated by the i.LON 100 applications.
And so you can use the SOAP/XML interface not only to configure the various applications of
the i.LON 100, but to monitor them as well.

1.1 About This Document
This document describes the XML files that store the configurations of the various i.LON 100
applications, and the SOAP functions you can use with each application. The SOAP
interface provided with the i.LON 100 server conforms to the SOAP 1.1 proposed Technical
Recommendation:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

1-2 i.LON 100 e3 Programmer’s Reference

This document also describes how to configure the i.LON 100 applications by manually
creating and modifying the XML configuration files. Once you have created the XML files,
you can download them to the i.LON 100 server via FTP. The i.LON 100 server will read the
downloaded files and adjust its operating parameters accordingly the next time it is rebooted.

You can create or modify the files using any XML editor or ASCII text editor. This document
provides examples you can use when creating the XML configuration files for your i.LON 100
server, and instructions to follow when downloading these files to the i.LON 100. The XML
files used by the i.LON 100 applications conform to the XML 1.0 Technical Recommendation:

http://www.w3.org/TR/2000/REC-xml-20001006

Echelon strongly recommends that you use the SOAP interface to configure the applications
of your i.LON 100 server. The i.LON 100 server performs error-checking on all data written
in a SOAP message, so that invalid data will not be written to any of the XML files. The
i.LON 100 server will not perform error-checking on any XML files downloaded to it via FTP,
and so manually editing the XML files may cause errors during the boot process.
Additionally, you can send SOAP messages to the i.LON 100 server while it is operating, and
the i.LON 100 server will update the XML files affected by the SOAP messages without
requiring a reboot.

You may find the information in this document that pertains to manually creating and
managing XML files useful if you are using several i.LON 100 servers, and would like to use
the same configuration on each one. In that case, you could configure one of the i.LON 100
servers, copy its XML files, and download them to the appropriate directories of the other
i.LON 100 servers to obtain the same configuration in all of them. For more information on
how to download XML configuration files, see Copying XML Files Between i.LON 100s on
page 14-2.

1.2 Programming Samples
This document includes programming samples written in Microsoft® Visual Basic .NET®
and Visual C# .NET to illustrate concepts described in this manual. To make these samples
more easily understood, they have been simplified. Error checking has been removed, and in
some cases, the examples are only fragments that may not compile without errors or
warnings.

1.3 Getting Started
You should review Chapters 2 and 3 before proceeding to the rest of this document and
learning about the functions and applications of the SOAP/XML interface. Chapter 2, SOAP
Messages and the i.LON 100 WSDL File, describes the WSDL file which defines the i.LON
100 SOAP/XML interface. Chapter 3, i.LON 100 Applications and the SOAP/XML Interface,
provides an overview of the i.LON 100 applications and includes a roadmap to follow when
configuring those applications with a SOAP application.

If you are upgrading to version 3.0 of the SOAP/XML interface, you should review the next
section, i.LON 100 Version 3.0 SOAP/XML Interface Upgrades, before proceeding. This
section lists the changes that have been made to the SOAP/XML interface for version 3.0.

http://www.w3.org/TR/2000/REC-xml-20001006

i.LON 100 e3 Programmer’s Reference 1-3

1.4 i.LON 100 Version 3.0 SOAP/XML Interface Upgrades
This section provides an overview of the changes made to the SOAP/XML interface for
version 3.0. This includes the following:

• Modified SOAP Applications and Functions

• Changes to SOAP Message Formats

When reviewing these sections, you should note that version 3.0 provides complete
compatibility with version 1.1 of the SOAP/XML interface. An i.LON 100 using version 3.0
software will accept and respond to SOAP messages sent by applications written with
version 1.1 of the SOAP/XML interface just as an i.LON 100 using version 1.1 software
would. Version 1.0 SOAP messages are no longer supported. You should update to version
1.1 or 3.0 if your application uses the version 1.0 SOAP/XML interface.

In this manual, the i.LON e2 release is often referred to by the name used in the SOAP
namespace, which is '1.1'. Likewise, the i.LON e3 release is often referred to by the name
used in the SOAP namespace, which is '3.0'. For more information on the SOAP namespace,
see chapter 2 of this document.

NOTE: The SOAP/XML interface has not been modified for version 3.01 of the i.LON 100
software. Therefore, an i.LON 100 server running the version 3.01 software will use the
version 3.0 WSDL file, and you will reference the version 3.0 WSDL file when creating SOAP
applications for i.LON 100 servers that are running the version 3.01 software. This is
described in Chapter 13, Using the SOAP Interface as a Web Service.

1.4.1 Modified SOAP Applications and Functions
Table 1 lists the functions and properties that have been modified for version 3.0 of the
SOAP/XML interface, and lists functions that have been added to the SOAP/XML interface
for version 3.0. Detailed explanations of these modifications are included later in the
document.

You should also be aware that all function names have been modified for this release to
contain an underscore after the functional block name. For example, the DataLoggerRead
function has been renamed DataLogger_Read and the AlarmNotifierSet function has been
renamed AlarmNotifier_Set.

Table 1 i.LON 100 Version 3.0 SOAP/XML Interface Modifications

Function Description of Change For More Information,
See…

AlarmGenerator_Get
AlarmGenerator_Set

The formats of the <SCPTalrmIhbT>,
<UCPTalarmSetTime>, and <UCPTalarmClrTime>
properties have changed. The values for these
properties are now entered in seconds, as opposed to
the X:X:X:X.XXX (DAYS

:HOURS:MINUTES:SECONDS.MILLISECONDS) format
used in versions 1.0 and 1.1.

Alarm Generator on
page 6-1.

1-4 i.LON 100 e3 Programmer’s Reference

Function Description of Change For More Information,
See…

AlarmNotifier_Get
AlarmNotifer_Set

In version 1.1 of the SOAP/XML interface, the
AlarmNotifier_Get and AlarmNotifier_Set functions
included a <UCPTalarmFlags> property that
contained a string of boolean values indicating how
updates to a data point should be recorded into the
alarm logs.

In version 3.0, the <UCPTalarmFlags> property has
been replaced by an <AlarmFlags> element. The
<AlarmFlags> element contains several properties,
one for each boolean included in the original
<UCPTalarmFlags> property.

Alarm Notifier on page
7-1.

AlarmNotifier_Read The output returned by the AlarmNotifier_Read
function for each data point now includes both the
<UCPTpriority> property, which represents the
priority assigned to the data point in the Data
Server, and the <UCPTalarmPriority2> property,
which represents the priority used by the Alarm
Notifier to update the value of the data point.
Previous versions of the SOAP/XML interface only
included the <UCPTpriority> property.

In addition, the output returned by the function no
longer includes the <UCPTalarmFlags> property.

In version 1.1 of the SOAP/XML interface, each
entry in a log file contained a
<UCPTlogSourceAddress> property indicating the
Subnet and Node ID of the device that caused the
alarm. In version 3.0, the
<UCPTlogSourceAddress> property has been
replaced by the <LogSourceAddress> element, which
contains two sub-properties that return the Subnet
ID and the Node ID.

Alarm Notifier on page
7-1.

DataLogger_Read In version 1.1 of the SOAP/XML interface, each
entry in a log file contained a
<UCPTlogSourceAddress> property indicating the
Subnet and Node ID of the device containing the
data point the log entry was for.

In version 3.0, the <UCPTlogSourceAddress>
property has been replaced by the
<LogSourceAddress> element, which contains two
sub-properties that return the Subnet ID and the
Node ID.

Data Loggers on page
5-1.

i.LON 100 e3 Programmer’s Reference 1-5

Function Description of Change For More Information,
See…

DataServer_List
DataServer_Get
DataServer_Set
DataServer_Delete
DataServer_Read
DataServer_Write

The format of the input data you supply to the Data
Server functions has changed for Release 3.0, so that
that bus type names such as NVL and NVC are not
used in the names of the XML elements used to
identify data points. The names of all XML
elements are now generic, so that data points of all
types can be handled with the same interface.

In addition, the format used to define preset value
definitions for each data point has been changed.
See the description of the <ValueDef> element in
Chapter 4 for details.

The DataServer_Write function also now includes an
optional <UCPTformatDescription> property. This
property indicates how the UCPTvalue property
should be unformatted by the i.LON 100 server.
Thus, if the UCPTformatDescription of the Data
Point being written to is SNVT_temp_f#US, and the
DataServer_Write message includes a
UCPTformatDescription property with the value
SNVT_temp_f#SI, the value will be first
unformatted using Celsius, before being written to
the Data Point, even though the format of the Data
Point is normally in Farenheit.

Data Server on page 4-
1.

DataLogger_Get
DataLogger_Set

The <UCPTlogFormat> property specifes how the
log files generated by a Data Logger will be stored.
This property now includes an additional value you
can use: LF_COMPRESSED. You can use this value
to save the historical log files genreated by the Data
Logger as text files in compressed format (.gz file
extension), saving flash memory space on the i.LON
100 server.

Data Loggers on page
5-1.

EventCalendar_Get
EventCalendar_Set

In version 1.1 of the SOAP/XML interface, the
<UCPTscheduleEffectivePeriod> property specified
the dates that an exception applied to. In version
3.0, this has been replaced by the
<ScheduleEffectPeriod> element for ease of use. The
element contains several properties you can use to
define the time period an exception applies to.

In addition, the <UCPTexceptionSchedule> has been
replaced by an <ExceptionSchedule> element that
contains several properties you can use to define the
exact days that an exception applies to.

Event Calendar on
page 10-1

1-6 i.LON 100 e3 Programmer’s Reference

Function Description of Change For More Information,
See…

EventScheduler_Get
EventScheduler_Set

In version 1.1 of the SOAP/XML interface, the
<UCPTscheduleEffectivePeriod> property specified
the dates that an Event Scheduler applied to. In
version 3.0, this has been replaced by a
<ScheduleEffectPeriod> element that contains
several properties you can use to define the time
period an exception applies to. In addition, the
<UCPTweekdays> property has been replaced by a
<Weekdays> element containing a separate property
for each day of the week you can use to indicate
whether the schedule applies to that day.

Finally, the <UCPTscheduleTime> property, which
was used to specify when an event should occur, has
been renamed<UCPTtime> and now allows you to
specify times in hours, minutes and seconds.

Event Scheduler on
page 9-1

1.4.2 Changes to SOAP Message Formats
In versions 1.0 and 1.1 of the SOAP/XML interface, the SOAP messages were required to be
sent in encoded XML format, and the type of every parameter in the WSDL file was thus
specified as string. In version 3.0, this is no longer the case. Now, all functions of the
SOAP/XML interface receive and send data using complex types, which are defined directly
in the WSDL file.

This should be beneficial to your development, as you are no longer required to convert the
standard XML defined in the WSDL file and shown in this document into encoded format
before calling a SOAP function. As a result of this change, the input supplied to the SOAP
functions no longer needs to be provided as a single string of encoded XML inside the <Data>
parameter. Rather, the input can be supplied as a series of XML elements (referred to in this
document as input parameters) specified in the WSDL file. Depending on the environment
for your XML Web Service application, the WSDL file can be used to provide a native object
interface, where the objects resemble the XML complex type structures of the WSDL file.
For example, a Get message in the 3.0 SOAP interface will now take as input, an array of
objects, and the names of the properties, such as UCPTindex, will use the native types of the
environment such as signed integers, double precision floating point numbers, and strings.

Similarly, the SOAP response messages no longer return a single <Result> parameter
containing all the data returned by the function. Instead, the response messages return the
appropriate data as a series of XML elements (referred to in this document as output
parameters). Again, depending on the WSDL parsing capabilities of your tool, the return
parameters of the functions exposed within your programming environment will return
native objects which resemble the XML complex type structures of the WSDL file.

In addition, the response messages for each function have changed so that all response
messages include information describing any errors that occurred when the function was
called. This includes how many errors were encountered, and in most cases, descriptions of
the errors that occurred.

For more information on these changes, see Formats of SOAP Messages on page 2-2.

i.LON 100 e3 Programmer’s Reference 2-1

2 SOAP Messages and the i.LON 100 WSDL File
This chapter contains general information about the SOAP/XML interface you will need to
know before using the SOAP functions described in this manual. It includes the following
major topics:

• i.LON 100 WSDL File. An overview of the i.LON 100 WSDL file, which defines the
SOAP/XML interface. When writing applications to use the SOAP interface, some tools
can import this file and automatically build a class structure for sending and receiving
each message.

• Security. An overview of the security features provided by the i.LON 100 for SOAP
applications.

• Formats of SOAP Messages. As described in Chapter 1, a SOAP message is sent to the
i.LON 100 server each time you invoke any of the functions described in this document.
This section describes the formats that must be used for all SOAP messages that are
sent to and from the i.LON 100 server.

2.1 i.LON 100 WSDL File
Each i.LON 100 server includes a WSDL (Web Service Description Language) file. This file
defines the i.LON 100 SOAP/XML interface, and contains all the information an application
will require to use the SOAP/XML interface. When writing applications to use the SOAP
interface, some tools can import the WSDL file and automatically build a class structure for
sending and receiving each message. The WSDL file is compatible with numerous
programming development environments, such as Microsoft Visual Studio .NET ®.

See Chapter 13, Using the SOAP Interface as a Web Service, for more detailed information
on using the WSDL file as a web service. Chapter 13 contains step-by-step instructions you
can follow when you reference the version 3.0 WSDL file with a Microsoft Visual Basic .NET
project.

2.2 Security
You can add a basic level of security to the i.LON 100 SOAP/XML interface with the i.LON
100 Web Server Security and Parameters utility. Use this utility to add password protection
to all web content served by the i.LON 100. Basic Access Authentication is the security
mechanism used by the i.LON 100 web server for HTTP transactions. Basic Access
Authentication is described by the IETF in RFC 2617:

http://www.ietf.org/rfc/rfc2617.txt

If you want all SOAP messages sent to your i.LON 100 to be authenticated, use the i.LON
100 Web Server Security and Parameters utility to password protect the i.LON 100 SOAP
endpoint at this path: /WSDL/iLON100.WSDL.

A user name and password will then be required each time a SOAP message is sent to the
i.LON 100 server. Since SOAP uses HTTP as a transport, you can use the user name and
password pair for an entire HTTP session. As a result, you can use a single user name and
password to authenticate access to Web pages that send or receive multiple SOAP messages.
If a SOAP message is sent to the i.LON 100 that does not contain the correct user name and

http://www.ietf.org/rfc/rfc2617.txt

2-2 i.LON 100 e3 Programmer’s Reference

password, it will be ignored. For instructions on using the i.LON Web Server Security and
Parameters utility, see Appendix D of the i.LON 100 e3 User’s Guide.

To protect FTP access to the XML configuration files, the i.LON 100 requires a user name
and password for every FTP session. This username and password default to “ilon”, and can
be re-defined with the i.LON 100 Security Web Page. The i.LON 100 e3 User’s Guide
describes how to use this page.

2.3 Formats of SOAP Messages
As described in Chapter 1, a SOAP message is sent to the i.LON 100 server each time you
invoke a SOAP function. The content of the SOAP message, and the effect it has on the
i.LON 100 server, is based on the input you supply to the function. The i.LON 100 server
reads the contents of the message, and adjusts its operating parameters of its applications
accordingly. It also returns a response message describing the status or configuration of the
modified application.

This section describes the basic format of the SOAP messages that are sent to the i.LON 100
server when you invoke any of the functions described in this manual. It also describes the
formats of the response SOAP messages that are returned by these functions.

NOTE: All SOAP messages sent to and from the i.LON 100 server must adhere to the UTF-8
encoding standard. This is indicated by the <?xml version="1.0" encoding="utf-8" ?> tag
included in each SOAP message, as shown in the following sections. However, this restriction
is not enforced by the i.LON 100 software. As a result, the i.LON 100 server will accept
SOAP messages that do not adhere to the UTF-8 encoding standard without throwing an
error, which may result in invalid configuration data being written to your i.LON 100 server.
To avoid this, you should program your application to ensure that all SOAP messages adhere
to the UTF-8 encoding standard. For more information on the UTF-8 encoding standard, see
http://www.ietf.org/rfc/rfc3629.txt.

2.3.1 Input Messages
The following represents the basic format of the SOAP messages that are sent to the i.LON
100 server when you invoke any of the functions described in this manual. The sections
following this sample describe each part of the SOAP message.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <FunctionName xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/">
 <Parameter1>Parameter1Value</Parameter1>
 <Parameter2>Parameter2Value</Parameter2>
 ...
 </FunctionName>
 </soap:Body>

</soap:Envelope>

http://www.ietf.org/rfc/rfc3629.txt

i.LON 100 e3 Programmer’s Reference 2-3

2.3.1.1 SOAP Envelope
The SOAP envelope is the highest level of a SOAP message. The SOAP envelope for any
message sent to the i.LON 100 server must conform to the W3C SOAP 1.1 proposed
Technical Recommendation:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

The SOAP envelope portion of the sample input message shown above includes the following:
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 ...
</soap:Envelope>

You will notice that the fourth line of this example includes the symbol “...” This is
where the portion of the message known as the SOAP body would be. The SOAP body is
described in the following section.

2.3.1.2 SOAP Body
The SOAP body contains general information about the SOAP message, and contains the
data that is passed to the function as input. The SOAP body conforms to the W3C SOAP 1.1
proposed Technical Recommendation mentioned previously in this chapter.

The SOAP body of the sample input message shown above includes the following:

 <soap:Body>
 <FunctionName xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/">
 <Parameter1>Parameter1Value</Parameter1>
 <Parameter2>Parameter2Value</Parameter2>
 ...
 </FunctionName>

 </soap:Body>

The name of the function that was invoked is passed as part of the SOAP body, where the
string FunctionName is shown in the example. In order to use the features included in
version 3.0, the version 3.0 namespace URI must be included as an attribute of the function
name element. The i.LON 100 namespace URI for version 3.0 of the SOAP interface is:

http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/

By passing this Namespace URI in the input messages, the tool transmits version and
platform compatibility information to the target server. In this way, a version 3.0 i.LON 100
server could accept a version 1.1 SOAP message, and recognize from the namespace that it is
a version 1.1 SOAP message. It would then process the message as though it were a version
1.1 i.LON 100 server. As a result, all applications written for version 3.0 of the SOAP/XML
interface are compatible with version 1.1 of the SOAP/XML interface. Version 1.0 SOAP
messages are no longer supported. You should update to version 1.1 or 3.0 if your
application uses the version 1.0 SOAP/XML interface.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/

2-4 i.LON 100 e3 Programmer’s Reference

The i.LON 100 server will return the Namespace URI in all of the response messages it
sends, so that a tool can use the Namespace identifier to check the version and platform of
the SOAP interface.

2.3.1.2.1 Input Parameters

The above example shows two child elements within the <FunctionName> element called
<Parameter1> and <Parameter2>. These are referred to as the function’s “input
parameters.“ The input parameters represent the input that you will supply when you
invoke any of the functions described in this manual.

All the functions of the SOAP/XML interface require XML as input, and most tools will
expose the inputs to these functions as objects. When a function is called, the tool will
convert the objects into XML to be inserted into the SOAP message where <Parameter1> and
<Parameter2> are shown above, and the SOAP message will be constructed and sent.

The input parameters you will supply as input to each function varies depending on several
functions. In the example above, two elements are supplied as input. However, when
calling a function to configure the i.LON 100 server, the input you supply varies depending
on which function you are using and which application you are writing to. Or, when you are
reading data from the i.LON 100 server, the input you supply varies depending on what sort
of data you want to see. The description of each SOAP function in this document includes an
XML sample you could supply to the function, and a description of how the XML sample was
constructed to achieve a certain result.

2.3.2 Response Message
The following represents the basic format of the SOAP response messages returned by the
i.LON 100 server when you call any of the functions described in this document.

<?xml version="1.0" encoding="utf-8" ?>
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/">
 <p:UCPTtimeStamp>2005-02-02T11:30:15.220+01:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>030000066f02</p:UCPTuniqueId>
 <p:UCPTipAddress>172.25.143.222</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2005-02-02T11:31:41Z</p:UCPTlastUpdate>
 <p:UCPTvalueFormat>VF_DP_FORMAT</p:UCPTvalueFormat>
 </p:messageProperties>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <FunctionNameResponse xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/">
 <Parameter1>Parameter1Value</Parameter1>
 <Parameter2>Parameter2Value</Parameter2>
 ...
 </FunctionNameResponse>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

There are two major differences between the input messages sent to the i.LON 100 and the
response messages returned by the i.LON 100: the inclusion of a SOAP header between the
SOAP envelope and SOAP body, and the information that is included in the SOAP body.
These differences are described in the following sections.

i.LON 100 e3 Programmer’s Reference 2-5

2.3.2.1 SOAP Header
The SOAP/XML interface includes a SOAP header in all response messages. The SOAP
header section of each response message is the first child element of the SOAP envelope, and
is shown below:

 <SOAP-ENV:Header>
 <p:messageProperties xmlns:p="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/">
 <p:UCPTtimeStamp>2005-02-02T11:30:15.220+01:00</p:UCPTtimeStamp>
 <p:UCPTuniqueId>030000066f02</p:UCPTuniqueId>
 <p:UCPTipAddress>172.25.143.222</p:UCPTipAddress>
 <p:UCPTport>80</p:UCPTport>
 <p:UCPTlastUpdate>2005-02-02T11:31:41Z</p:UCPTlastUpdate>
 <p:UCPTvalueFormat>VF_RAW_HEX</p:UCPTvalueFormat>
 </p:messageProperties>
 </SOAP-ENV:Header>

The SOAP header contains general information about the message, and can be used to
identify the i.LON 100 server that sent it. This section is also tightly controlled by the W3C
standards mentioned previously in this chapter. Every element in a SOAP header, and all
immediate child elements, must be namespace qualified. Therefore, each user defined
element contains a namespace prefix and a path to the unique Echelon Namespace.

The SOAP header consists of a complex type with six fields describing different properties of
the message:

• <UCPTtimeStamp>: This field contains a time stamp indicating when the message was
sent. Per the ISO 8601 standard, the timestamp is in local time, with appended time
zone indicators to denote the difference between local time and UTC. For more
information on this format, see Local Times and Coordinated Universal Time on page 5-
14.

• <UCPTuniqueId>: This field contains the Neuron® ID of the i.LON 100 server, which is
the third Neuron ID in the i.LON 100 server’s block of addresses.

• <UCPTipAddress>: This field contains the IP address of the i.LON 100 server that sent
the SOAP message.

• <UCPTport>: This field contains the HTTP port specifier for the i.LON 100 server.

• <UCPTlastUpdate>: This field contains a timestamp indicating the last time the
configuration of any of the applications of the i.LON 100 server was modified. After a
reboot, the timestamp is set to match the reboot time. Per the ISO 8601 standard, the
timestamp is in local time, with appended time zone indicators to denote the difference
between local time and UTC. For more information on this format, see Local Times and
Coordinated Universal Time on page 5-14.

• <UCPTvalueFormat>. This optional field is added to the SOAP header by the i.LON
100 server when a DataServer_Write request is made for a Web connection originating
from the i.LON 100 server. This parameter indicates the format of the data carried in
that message. The possible values for this field are VF_DP_FORMAT, which indicates
that the data uses the UCPTformatDescription of the data point to format the
UCPTvalue field, or VF_RAW_HEX, which indicates that the data will be formatted as
raw hexadecimal data.

2-6 i.LON 100 e3 Programmer’s Reference

2.3.2.2 SOAP Body
The SOAP body for response messages contains the data requested by the input message for
functions used to read data from the i.LON 100 server, such as DataLogger_Read or
AlarmNotifier_Read. Or, it contains information confirming that an application instance
has been added to or removed from the i.LON 100, for other functions such as
DataServer_Set or AlarmNotifier_Delete.

The above example shows two child elements within the <FunctionName> element of the
SOAP bosy called <Parameter1> and <Parameter2>, just like the sample input message
earlier in the chapter. These are referred to as the functions “output parameters.“ The
output parameters represent the information that will be returned you invoke any of the
functions described in this manual.

The information that will be returned within these output parameters varies, depending on
the function you are using. For example, the ouput parameters could merely indicate that
the SOAP message was received and processed by the i.LON 100 server, they could contain
data extracted from an Event Scheduler or a Data Logger, or they could contain the
configuration of an application on the i.LON 100 server. The description of each function
included in this document includes an XML sample that could be returned by the function,
and information to help you interpret the contents of the output parameters.

2.3.2.2.1 Fault Response Data

The SOAP body in the response for every function in the SOAP/XML interface contains
information indicating whether any errors occurred when implementing the call to the
function. This section describes how to interpret this data. To understand how to do so, you
should consider the example SOAP body below. This shows the SOAP body returned by the
DataLogger_Set function for an input message that requested that three Data Loggers be
modified.

<SOAP-ENV:Body>
 <DataLogger_Set_Response xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/">
 <iLONDataLogger>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Log>
 <UCPTindex>0</UCPTindex>
 </Log>
 <Log>
 <UCPTindex>1</UCPTindex>
 </Log>
 <Log>
 <UCPTindex>2</UCPTindex>
 </Log>
 </iLONDataLogger>
 </DataLogger_Set_Response>
</SOAP-ENV:Body>

Note the inclusion of the <UCPTfaultCount> property within the output parameters
returned by the function. This indicates how many errors occurred when the call to the
function was made. If this property is set to 0, then no errors occurred. The three <Log>
elements indicate that the three Data Loggers were successfully modified (the
DataLogger_Set function is described in more detail in Chapter 5 of this document).

If this property is not set to 0, then the value indicates how many errors occurred during the
call to the function. For example, the output parameters shown above indicate that the call

i.LON 100 e3 Programmer’s Reference 2-7

to DataLogger_Set successfully modified three Data Loggers. If the i.LON server had not
been able to modify any of the three Data Loggers, the <UCPTfaultCount> property would be
incremented to reflect that, and the <Log> element for the failed Data Logger would be
modified to describe why the Data Logger could not be modified.

For example, if the i.LON 100 failed to modify the first and third Data Loggers specified in
the call to DataLogger_Set, the SOAP body would appear as follows:

<SOAP-ENV:Body>
 <DataLogger_Set_Response xmlns="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/">
 <iLONDataLogger>
 <UCPTfaultCount>2</UCPTfaultCount>
 <Log>
 <UCPTindex>0</UCPTindex>
 <faultcode>11</faultcode>
 <faultstring xml:lang="en-US">Format error: UCPTlogType = 'test'</faultstring>
 </Log>
 <Log>
 <UCPTindex>1</UCPTindex>
 </Log>
 <Log>
 <UCPTindex>2</UCPTindex>
 <faultcode>11</faultcode>
 <faultstring xml:lang="en-US">Format error: UCPTlogType = 'test'</faultstring>
 </Log>
 </iLONDataLogger>
 </DataLogger_Set_Response>
</SOAP-ENV:Body>

Note that the value of the <UCPTfaultCount> property has been incremented to 2, and the
<Log> elements for the first and third DataLoggers have been updated to include
<faultCode> and <faultString> elements describing the errors that occurred. The next
section, Fault Codes, describes the fault codes that can be returned. The SOAP/XML
interface uses these techniques to report errors for any function used to create, modify or
write to an application on the i.LON 100 server. This includes all Set and Delete functions,
as well as the DataLogger_Clear, AlarmNotifier_Clear, DataServer_Write and
DataServer_ResetPriority functions.

2.3.2.2.2 Fault Codes

Table 2 lists the error codes and messages that the i.LON 100 SOAP interface may return.

Table 2 SOAP Error Codes

Error Code Error Message

0 No Error

1 Unknown function call.

2 Parameter error. For example, the input you supplied to the function does not
contain valid data, or no data was supplied to the function.

3 XML/Parser Error.

4 Tag missing.

2-8 i.LON 100 e3 Programmer’s Reference

Error Code Error Message

5 Index missing

6 Index not found

7 Index invalid.

The index number you supplied to the function is greater than the maximum or less
than the minimum allowed by the application. The allowable range of index
numbers in the i.LON 100 is 0-32,767.

8 Can’t create. This error may occur when you attempt to create a data point.

9 Can’t delete. This error may occur when you attempt to delete a data point.

10 Can’t set. This error may occur when attempting to modify the configuration of an
existing item in the i.LON 100. For example, when attempting to write to the
configuration of a data point.

11 Format Error

12 Command failed

13 The data point name referenced in the call to the function does not use the supplied
index number.

14 Data point name not found in the i.LON 100 Data Server.

15 No Data

16 Field name not found. This will occur when attempting to read, write or set a data
point that is structure, and you reference a structure field that does not exist.

i.LON 100 e3 Programmer’s Reference 3-1

3 i.LON 100 Applications and the SOAP/XML Interface
This chapter provides an overview of the applications supported by the i.LON 100, and of
how you can use the SOAP/XML interface to configure these applications and use the data
they generate. This chapter includes the following major sections:

• Overview of i.LON 100 Applications. This section provides a description of each of the
applications that the i.LON 100 server supports.

• i.LON 100 XML Configuration Files. The configuration of each i.LON 100 application is
stored in an XML file. This section lists those XML files, and indicates where they are
stored on the i.LON 100 server.

• i.LON 100 SOAP Functions. Each i.LON 100 application includes a set of SOAP
functions that can be used to configure that application. This section lists and describes
the functions provided for each application, and references where each function is
described in more detail in this document. It also provides information you will require
when constructing the input to be supplied to each function.

• i.LON 100 Resource Files. The i.LON 100 resource files contain information you will
need when using the SOAP functions. This section describes how to use the resource
files.

• List, Get, Set and Delete Functions. When reviewing the i.LON 100 SOAP Functions
section, you will notice that each application has separate List, Get, Set and Delete
functions. Together, these functions form a symmetric interface that you may find useful
when programming your SOAP applications. This section describes how you might do so.

• Performance Issues. This section lists performance issues you should consider when
using the SOAP/XML interface.

• Getting Started. This section provides a roadmap to follow when configuring the i.LON
100 server’s applications. The most important part of this roadmap is that you must
configure the i.LON 100 Data Server before configuring any other applications.

3.1 Overview of i.LON 100 Applications
You need to configure the i.LON 100 Data Server and create the data points you need to
manage your control network before you configure the rest of the applications on the i.LON
100 server. Chapter 4 of this document describes how to create data points and how to
configure the i.LON 100 Data Server with the SOAP/XML interface. Once you have built the
Data Server, you can use the SOAP/XML interface to configure the following i.LON 100
applications:

• Data Logging – You can configure the i.LON 100 server to record updates to the data
points on your network by creating Data Loggers. Each Data Logger will have its own
log file, which will contain log entries for each of the updates to the data points it is
monitoring. These logs can be downloaded and read using the Internet File Transfer
Protocol (FTP), or retrieved using the DataLogger_Read SOAP function. Table 3
provides a brief description of DataLogger_Read and the other functions you can use to
create and manage your Data Loggers. These functions are described in Chapter 5 of
this document.

• Alarming – You can configure the i.LON 100 server to trigger alarms based on the
values and statuses of the data points in your control network. The i.LON 100 server
can be configured to update any data point in the LONWORKS

® network, log the

3-2 i.LON 100 e3 Programmer’s Reference

conditions to one or more data logs, or send out emails notifying recipients of the alarms
and the conditions that triggered them. Alarms can be configured to shut off
automatically when certain conditions are met, or they can be configured to require
manual clearance. You will create Alarm Generators and Alarm Notifiers to manage
these alarming tasks. Table 3 provides a brief description of the functions you can use to
do so. These functions are described in detail in Chapters 6 and 7 of this document.

• Analog Function Blocks – You can use the Analog Function Block application to perform
statistical operations on the values of any of the data points in your network. Table 3
provides a brief description of the functions you can use to do so. These functions are
described in detail in Chapter 8 of this document.

• Scheduling – The i.LON 100 server can be used to create daily and weekly schedules, as
well as exception schedules and override schedules. These schedules can drive the
inputs to data points bound to any LONWORKS ,M-Bus or MODBUS device. You can
create Event Schedulers and Event Calendars to manage these tasks. Table 3 provides a
brief description of the functions you can use to do so. These functions are described in
detail in Chapters 9 and 10 of this document.

• Type Translation – You can use the Type Translator application to translate data from
one network variable data type to another. You will need to create Type Translators,
and optionally Type Translator Rules, to translate your data. Table 3 provides a brief
description of the functions you can use to do so. These functions are described in detail
in Chapters 11 and 12 of this document.

3.2 i.LON 100 XML Configuration Files
As described in Chapter 1, the configurations of each i.LON 100 application is stored in an
XML file. You will use the following XML files to configure the applications of your i.LON
100:

/root/config/software/alarmGenerator.xml

/root/config/software/alarmNotifier.xml

/root/config/software/analogFB.xml

/root/config/software/eventCalendar.xml

/root/config/software/eventScheduler.xml

/root/config/software/dataLogger.xml

/root/config/software/typeTranslator.xml

/root/config/software/dataServer/DP_NVL.xml

/root/config/software/dataServer/DP_NVC.xml

The /root/config/software directory includes a sub-directory called TranslatorRules,
which contains several XML files you can use when configuring your Type Translators.

NOTE: The /root/config/software directory also contains a file called RNI.xml, which
contains configuration data used by the i.LON 100 remote network interface (RNI), and a file
called LSPA.xml, which contains configuration data used when the i.LON 100 server
connects to the LonScanner™ Protocol Analyzer. There is no SOAP interface for these
applications, and you should not manually edit the RNI.xml or LSPA.xml files. You can
configure the RNI application using the i.LON 100 Web pages. For more information on this,

i.LON 100 e3 Programmer’s Reference 3-3

see the i.LON 100 e3 User’s Guide. For more information on the LonScanner Protocol
Analyzer, see the LonScanner Protocol Analyer User’s Guide.

3.2.1 Modifying the XML Configuration Files
Each application inludes a Set function. You can use the Set function to create and write to
the applicable XML file. The i.LON 100 server will modify the XML file, and the operating
parameters of the associated application, each time it receives a Set message. The next
section, i.LON 100 SOAP Functions, lists the other functions that can be used with each
application.

As an alternative to using SOAP, you can modify the files manually using an ASCII-text or
XML editor, and then download them to the i.LON 100 server via FTP. Echelon does not
recommend this, as you will need to reboot the i.LON 100 server for it to read the
downloaded files, and the i.LON 100 will not perform error-checking on the downloaded XML
files.

Chapters 4-12 of this document describe the content of each of the i.LON 100 XML
configuration files, the applications they support, and the SOAP functions you can use to
manage them in detail. Review the rest of this chapter before proceeding to any of Chapters
4-12, as it provides background information you will need when you use the SOAP/XML
interface.

3.3 i.LON 100 SOAP Functions
Each of the XML files listed in the previous section will contain elements and properties that
define the configuration of an i.LON 100 application, and the configuration of the items or
instances that have been added to that application. For example, the alarmGenerator.xml
file defines the global configuration properties associated with the Alarm Generator
application, as well as the configuration of each Alarm Generator that you have added to the
i.LON 100 server.

Table 3 provides an overview of the the functions you can use to write to these XML files,
create the i.LON 100 Data Server, configure the applications of your i.LON 100, and read the
data that your applications generate. It is highly critical that you review the rest of this
chapter before using these functions. This chapter provides background information on the
SOAP interface you will need when reading the rest of this document.

3-4 i.LON 100 e3 Programmer’s Reference

Table 3 i.LON 100 SOAP Functions

Function Names Description

DataServer_List
DataServer_Get
DataServer_Set
DataServer_Delete
DataServer_Read
DataServer_Write
DataServer_ResetPriority

Use the DataServer_List function to return the index number, name, and
location of each data point that you have added to the i.LON 100 Data Server.
You can use the DataServer_Get function to return the configuration of any of
these data points.

Use the DataServer_Set function to add data points to the i.LON 100 Data
Server, or to update the configuration of the data points that are already in the
Data Server.

Use the DataServer_Read and DataServer_Write functions to read and write to
the current values of any of the data points in the network. Use the
DataPointResetPriority function to reset the priority of any of these data points.
Use the DataServer_Delete function to delete any data point.

For more information on these functions, see Data Server on page 4-1.

DataLogger_List
DataLogger_Get
DataLogger_Set
DataLogger_Read
DataLogger_Clear
DataLogger_Delete

Use the DataLogger_List function to return the index number, last update time,
description, and functional block name of each Data Logger that you have added
to the i.LON 100. You can use the DataLogger_Get function to return the
configuration of any of these Data Loggers.

Use the DataLogger_Set function to add new Data Loggers to the i.LON 100
server, or to overwrite the configuration of existing Data Loggers. Use the
DataLogger_Delete function to remove Data Loggers from the i.LON 100 server.

Use the DataLogger_Read function to read data from the log files generated by
your Data Loggers. Use the DataLogger_Clear function to remove data from the
log files.

For more information on these functions, see Data Loggers on page 5-1.

AlarmGenerator_List
AlarmGenerator_Get
AlarmGenerator_Set
AlarmGenerator_Delete

Use the AlarmGenerator_List function to return the index number, last update
time, description, and functional block name of each Alarm Generator that you
have added to the i.LON 100 server. You can use the AlarmGenerator_Get
function to return the configuration of any of these Alarm Generators.

Use the AlarmGenerator_Set function to add new Alarm Generators to the
i.LON 100 server, or to overwrite the configuration of existing Alarm Generators.
Use the AlarmGenerator_Delete function to remove Alarm Generators from the
i.LON 100 server.

For more information on these functions, see Alarm Generator on page 6-1.

i.LON 100 e3 Programmer’s Reference 3-5

Function Names Description

AlarmNotifier_List
AlarmNotifier_Get
AlarmNotifier_Set
AlarmNotifier_Delete
AlarmNotifier_Read
AlarmNotifier_Write
AlarmNotifier_Clear

Use the AlarmNotifier_List function to return the index number, last update
time, description, and functional block name of each Alarm Notifier that you
have added to the i.LON 100 server. You can use the AlarmNotifier_Get function
to return the configuration of any of these Alarm Notifiers.

Use the AlarmNotifier_Set function to add new Alarm Notifiers to the i.LON 100
server, or to overwrite the configuration of existing Alarm Notifiers. Use the
AlarmNotifier_Delete function to remove Alarm Notifiers from the i.LON 100
server.

Use the AlarmNotifier_Read function to read the log files generated by your
Alarm Notifiers. Use the AlarmNotifier_Write function to comment on and
acknowledge the entries in the log files. Use the Alarm NotifierClear function to
remove entries from the log files.

For more information on these functions, see Alarm Notifier on page 7-1.

AnalogFB_List
AnalogFB_Get
AnalogFB_Set
AnalogFB_Delete

Use the AnalogFB_List function to return the index number, last update time,
description, and functional block name of each Analog Function Block that you
have added to the i.LON 100 server. You can use the AnalogFB_Get function to
return the configuration of any of these Analog Function Blocks.

Use the AnalogFB_Set function to add new Analog Function Blocks to the i.LON
100 server, or to overwrite the configuration of existing Analog Function Blocks.
Use the AnalogFB_Delete function to remove Analog Function Blocks from the
i.LON 100 server.

For more information on these functions, see Analog Function Block on page 8-1

EventScheduler_List
EventScheduler_Get
EventScheduler_Set
EventScheduler_Delete

Use the EventScheduler_List function to return the index number, last update
time, description, and functional block name of each Event Scheduler that you
have added to the i.LON 100 server. You can use the EventScheduler_Get
function to return the configuration of any of these Event Schedulers.

Use the EventScheduler_Set function to add new Event Schedulers to the i.LON
100 server, or to overwrite the configuration of existing Event Schedulers. Use
the EventScheduler_Delete function to remove Event Schedulers from the i.LON
100 server.

For more information on these functions, see Event Scheduler on page 9-1.

3-6 i.LON 100 e3 Programmer’s Reference

Function Names Description

EventCalendar_List
EventCalendar_Get
EventCalendar_Set
EventCalendar_Delete

Use the EventCalendar_List function to return the index number, last update
time, description, and functional block name of each Event Calendar that you
have added to the i.LON 100 server. You can use the EventCalendar_Get
function to return the configuration of any of these Event Calendars.

Use the EventCalendar_Set function to add new Event Calendars to the i.LON
100 server, or to overwrite the configuration of existing Event Calendars. Use
the EventCalendar_Delete function to remove Event Calendars from the i.LON
100 server.

For more information on these functions, see Event Calendar on page 10-1.

TypeTranslator_List
TypeTranslator_Get
TypeTranslator_Set
TypeTranslator_Delete

Use the TypeTranslator_List function to return the index number, last update
time, description, and functional block name of each Type Translator that you
have added to the i.LON 100 server. You can use the TypeTranslator_Get
function to return the configuration of any of these Type Translators.

Use the TypeTranslator_Set function to add new Type Translators to the i.LON
100 server, or to overwrite the configuration of existing Type Translators. Use
the TypeTranslator_Delete function to remove Type Translators from the i.LON
100 server.

For more information on these functions, see Type Translator on page 11-1.

TypeTranslator_List_Rule
TypeTranslator_Get_Rule
TypeTranslator_Set_Rule
TypeTranslator_Delete_Rule

Use the TypeTranslator_List_Rule function to return the index number, last
update time, description, and functional block name of each Type Translator
Rule that you have added to the i.LON 100 server. You can use the
TypeTranslator_Get_Rule function to return the configuration of any of these
Type Translator Rules.

Use the TypeTranslator_Set_Rule function to add new Type Translator Rules to
the i.LON 100 server, or to overwrite the configuration of existing Type
Translator Rules. Use the TypeTranslator_Delete_Rule function to remove Type
Translator Rules from the i.LON 100 server.

For more information on these functions, see Type Translator Rules on page 12-
1.

i.LON 100 e3 Programmer’s Reference 3-7

3.4 i.LON 100 Resource Files
There are many configuration properties you can configure using the SOAP functions
described in this document. This document provides a general description of each property,
and other information you will need when configuring each one, such as minimum and
maximum values for scalar properties, and maximum string lengths for string properties.
This information is also contained in the i.LON 100 resource files. In order to successfully
send a SOAP message to the i.LON 100 server, all data in the message must be formatted as
described in this document and in the resource files.

The i.LON 100 resource files are added to the LNS resource file catalog by the i.LON 100
Configuration Software installation utility, but they also exist locally on the i.LON 100
server. In fact, like LNS, the i.LON 100 server maintains a catalog of resource files to use
when formatting data in SOAP messages, network variable updates, and web tag data from
the i.LON 100 web server.

You can use the Node Builder Resource Editor, which is included on the i.LON 100
Installation CD, to create new resource files for your own custom data point types and
formats. Note that when creating custom resource files on a PC, it is common to organize the
files into subdirectories such as:

C:\LonWorks\Types\User\MyCompany\MyResourceFiles.*

However, when adding these files to the i.LON you must FTP them to the following location:

/root/lonworks/types/MyResourceFiles.*

You only need to FTP your own custom resource files to the i.LON server. If the name of
your file set is "MyResourceFiles", then you must copy every file which starts with the name
"MyResourceFiles". After you have copied these files to the i.LON server you must reboot to
be able to use the new type definitions and formats. During boot the i.LON server reads the
resource files in this directory and updates its local catalog accordingly.

3.4.1 LonMark Standard Network Variable Type (SNVT) Device
Resource Files

SNVT device resource files describe the data structures within LonMark® SNVTs, and the
formats used to display SNVT data. On the i.LON 100 server, you can find these files in the
directory /root/lonworks/types. They are named STANDARD.ENU, STANDARD.TYP,
STANDARD.FMT, and STANDARD.FPT.

The default format for a SNVT is its native format, as described in STANDARD.FMT. When
you add a data point to the i.LON 100 server, you will assign that data point a format type. If
a specific SNVT format is desired for a particular data point, the <UCPTformatDescription>
of that data point must be set to the name of that SNVT format. For example:

<UCPTformatDescription>SNVT_temp_f</UCPTformatDescription>

The <UCPTformatDescription> property is described in more detail in Chapter 4, Data
Server. You can browse the entire SNVT device resource files online at
http://types.lonmark.org.

http://types.lonmark.org/

3-8 i.LON 100 e3 Programmer’s Reference

3.4.2 Standard Configuration Property Type (SCPT) Device Resource
Files

This is a set of files that describes the data structures within SCPTs, and also describes the
formats used to display SCPT data. On the i.LON 100 server, these files can be found in the
directory /root/lonworks/types directory. These files are named STANDARD.ENU,
STANDARD.TYP, STANDARD.FMT and STANDARD.FPT.

Many configuration properties that are used by the i.LON 100 applications are based on the
SCPTs defined in these files. The information provided in this document, and in the SCPT
resource files, will help you determine what values to assign to the SCPTs referenced by the
i.LON 100.

You can browse the entire SCPT device resource files online at http://types.lonmark.org.

3.4.3 User Network Variable Type (UNVT) Device Resource Files
Device manufacturers create UNVT device resource files to describe non-standard,
manufacturer specific network variables. Using the same mechanisms as the standard
resource files, these files describe how to format data from a particular manufacturer's
device. On the i.LON 100 server, you can find all device resource files in the
/root/lonworks/types directory.

To specify UNVT formats a fully qualified format name is required as follows:

#<progID>[<selector>].<format name>

In this syntax, the “#”, “[“, “]” and “.” characters are literal characters. A hex byte string (in
the “RAW_HEX_PACKED” format described below) represents the program ID. The selector is
a one-digit string. It represents a filter that indicates relevant parts of the program ID, and
may be one of the following:

0 - Standard

1 - Device Class

2 - Device Class and Usage

3 - Manufacturer

4 - Manufacturer and Device Class

5 - Manufacturer, Device Class, and Device Subclass

6 - Manufacturer, Device Class, Device Subclass, and Device Model

The format name syntax is similar to that used for SNVT types, except that the type name
starts with “UNVT” instead of “SNVT”. For example:

#800001128000000[4].UNVT_date_event

3.4.4 User Configuration Property Type (UCPT) Device Resource
Files

This is a set of files that describes the data structures within UCPTs and also describes the
formats used to display UCPT data. On the i.LON 100 server, these files may be found in

http://types.lonmark.org/

i.LON 100 e3 Programmer’s Reference 3-9

the directory /root/lonworks/types, and are named BAS_Controller.ENU,
BAS_Controller.TYP, BAS_Controller.FMT and BAS_Controller.FPT.

Echelon added these UCPTs for configuration properties used by i.LON 100 applications that
have no SCPT definition. You can browse the UCPT resource files online at
http://types.echelon.com.

http://types.echelon.com/

3-10 i.LON 100 e3 Programmer’s Reference

3.5 Data Formatting
In order to keep the i.LON SOAP/XML interface neutral across regions, most of the rules for
formatting data, which would normally be changeable in LNS®, are not changeable on the
i.LON 100 server. The one exception is the support of measurement system locale which was
introduced in version 1.1 of the SOAP/XML interface. The following list describes the various
regional settings used by the i.LON 100 SOAP / XML interface:

Decimal Symbol – Always period "."

Precision – Single floats always use 7 digits of precision, including digits before and after the
decimal point. Double floats always use 14 digits of precision. For the rest of the base types,
precision is determined by the type definition

Digit Grouping Symbol – Always comma ","

Digit Grouping – Always in the form "123,456,789"

Negative Sign Symbol – Always the minus sign "-"

Negative Number Format – Always "-1.1"; negative symbol in front, and no space between
the symbol and the number

List Separators – If the format uses the localized list separator symbol verticle bar "|", the
i.LON 100 will replace it with comma ",". However, if you define a new type in the
NodeBuilder Resource Editor which is a structure, array or union, the default list separator
is space " ". The localized list separator must be explicitly specified in the format.

Measurement System – The i.LON 100 server does not use localization settings for
measurement system. The measurement system used to display a formatted value is
determined by the UCPTformatDescription property of the data point. For example, if you
have a data point whose format is defined as SNVT_temp_f#US, then the UCPTvalue
written to the DataServer_Read SOAP message will be in Farenheit. If that data point is an
input to the AlarmGenerator, then the format of a property which specifies a comparison
value, a delta or an offset like UCPThighLimit2Offset will also be in US units when you read
it with the AlarmGenerator_Get function. Furthermore, you must use US units when setting
the property with the AlarmGenerator_Set function. You should note that the value stored in
the XML file will always be in SI units so that XML files may be shared between i.LON 100
servers. The rule used by the applications is that the format of the primary data point for
the application instance determines the format of measurement system dependent
properties, like offsets, comparison values and deltas.

i.LON 100 e3 Programmer’s Reference 3-11

3.6 List, Get, Set and Delete Functions
The SOAP interface for each i.LON 100 application contains a List function, a Get function, a
Set function, and a Delete function. Together, these functions make up a symmetric
interface. You can use the response from the List command as the input to the Get command.
You can use the response from the Get command as the input to the Set command. This
section provides an overview of this feature, and describes how you can take advantage of it
when using the SOAP interface.

3.6.1 List Functions
Use the List function to retrieve a list of all items created for an application. For example,
the AlarmGenerator_List function returns a list containing the index number, description,
last update time and functional block name of each Alarm Generator that you have added to
the i.LON 100 server, with custom SOAP applications or with the i.LON 100 Configuration
Software. Similarly, the DataLogger_List function returns a list containing the index
number, last update time, description and functional block name of each Data Logger that
you have added to the i.LON 100 server.

3.6.2 Get Functions
Use the Get function to retrieve the configuration of any items or instances that you have
added to an application. For example, you would use the AlarmGenerator_Get function to
retrieve the configuration of an Alarm Generator. Or, you would use DataLogger_Get to
retrieve the configuration of a Data Logger. You must reference the item whose configuration
is to be retrieved by its index number, which is defined when the item is created.

Now, consider a scenario where you have used the AlarmGenerator_List function to retrieve
a list containing the index number of each Alarm Generator that has been added to the
i.LON 100. You could use the list as the input for the AlarmGenerator_Get function. The
AlarmGenerator_Get function would return the configuration of all the items included in the
list.

You can also use the Get function to retrieve the configuration of a single item, by supplying
the index number assigned to the item when it was created as input.

3.6.3 Set Functions
You can use the Set function to write to each of the XML files described in the previous
section. When you invoke the Set function for an application for the first time, the associated
XML file will be created in the /root/config/software directory of the i.LON 100 server, if it
has not already been created. All data defined in the input passed to the function will be
added to the XML file. Following this, you can use the Set function to add more data to the
XML file, or to overwrite existing data.

For example, the first time an application invokes the AlarmGenerator_Set function, the
alarmGenerator.xml file will be created in the /root/config/software directory of the
i.LON 100 server (if it has not already been created by another application). The file will
contain an element for each Alarm Generator defined in the input passed to the function, as
well as the global configuration properties defined in the input passed to the function.

3-12 i.LON 100 e3 Programmer’s Reference

After its initial invocation, you can use the AlarmGenerator_Set function to overwrite the
values of the global properties defined for the Alarm Generator application. You can also use
it to add new Alarm Generators to the XML file, or to overwrite the configuration of exisiting
Alarm Generators.

Each time you create an Alarm Generator (or any item or instance of an i.LON 100
application) using the Set method, the item will be assigned an index number. You will use
that index number to identify that Alarm Generator when writing to its configuration later,
or when referencing it from other functions.

When using the Set function to create an item such as an Alarm Generator, you shoud
consider using output supplied by the corresponding Get function as the basis for your input.
The following procedure describes how you might do so using the Alarm Generator functions.
You could use this algorithm when programming any of the i.LON 100 applications.

1) Invoke the AlarmGenerator_List function to generate a list of Alarm Generators that
have been added to the i.LON 100. This list includes the index number of each Alarm
Generator.

2) Invoke the AlarmGenerator_Get function, using the list returned by the
AlarmGenerator_List function as the input. The function will return the configuration of
each Alarm Generator included in the list output.

3) Review the output from step 2, and choose an Alarm Generator to serve as your “default”
Alarm Generator. The AlarmGenerator_Get output for this Alarm Generator will serve
as the basis for the next Alarm Generator you create. Modify the values of each property
in the response returned by AlarmGenerator_Get to match the configuration you want
for the new Alarm Generator. This will be more efficient than building the input for the
Set function from scratch.

NOTE: You must increment the index number assigned to the Alarm Generator, or
remove the index number property from the input created in this step, when using this
algorithm. Otherwise, the next step of this procedure will overwrite the configuration of
the default Alarm Generator you have chosen. Chapters 4-12 describe this in more detail.

4) Invoke the AlarmGenerator_Set function, using the modified response from Step 3 as
input. The new item is successfully created, without recreating an input that defines an
entire Alarm Generator configuration from scratch, and with minimal risk of format
errors. Chapters 4-12 will clarify the benefits of this algorithm.

3.6.4 Delete Functions
Use the Delete functions to delete items from an application. For example, use the
AlarmGenerator_Delete function to delete an Alarm Generator. Or, use the
DataServer_Delete function to delete a data point.

You must reference the item to be deleted by its index number in the input you supply to the
function.

i.LON 100 e3 Programmer’s Reference 3-13

3.7 Performance Issues
The i.LON 100 server contains 32 MB of RAM, which allows for complicated application
configurations and extensive network use. However, even with this amount of memory, it is
still possible for very high levels of network traffic to the i.LON 100 server, especially using
the SOAP interface, to eventually exhaust its memory. This could result in delays in network
access of the i.LON 100 server, performance problems for the i.LON 100 applications, or in
the worst case even a reboot of the i.LON 100 server.

If your i.LON 100 server exhibits some of these symptoms, you should consider reducing the
level of network traffic to it. The following numbers are guidelines that apply to the use of
the i.LON 100 server’s SOAP interface. While they are not absolute limits or guarantees of
performance, they may be helpful to follow when attempting to manage the i.LON 100
server’s network traffic load or troubleshoot a performance problem.

As a result, you should follow these guidelines when programming SOAP applications:

• Limit the number of data points referenced in a single Get or Read message to no more
than 100. For more information, see Chapter 4, Data Server.

• Limit the number of alarm log records read in a single message to no more than 100. For
more information on reading alarm log records, see AlarmNotifier_Read on page 7-22.

• Limit the number of data log records read in a single message to no more than 150. For
more information on reading data log records, see DataLogger_Read on page 5-13.

• If the combined XML file sizes for a given application exceed 100 KB, do not try to read
all the configuration data for that application in a single Get message. This could
potentially happen with the Event Scheduler application if all of its functional blocks
were used, or possibly with the Alarm Notifier application.

• Do not send a request message larger than 100 KB. Some possible examples of this might
be defining more than 100 NVL points in the Data Server in a single message with
DataServer_Set, or writing to 40 Alarm Notifiers in a single message with
AlarmNotifier_Set.

• Limit the number of simultaneous SOAP clients to no more than the number of web
tasks specified in the WebParams.dat file on the i.LON 100 server. The default for this
number is five.

3-14 i.LON 100 e3 Programmer’s Reference

3.8 Getting Started
Chapters 4-12 of this document provide more detailed information on the various
applications of the i.LON 100 server, and describe the SOAP functions you can use to
configure them. You should review Chapter 4 before attempting to program any of the i.LON
100 applications. This chapter introduces and describes the i.LON 100 Data Server, which
manages the data points you will use to control your network. It describes each type of data
point, and lists the different ways you can create these data points and add them to the Data
Server.

Once you have created your data points and built the i.LON 100 Data Server, you will be
able to reference those data points when configuring the various applications of the i.LON
100. Chapters 4-12 describe the applications of the i.LON 100, and the SOAP functions you
can use to configure each one.

i.LON 100 e3 Programmer’s Reference 4-1

4 Data Server
The i.LON 100 server uses the concept of a data point to map logical names to i.LON 100
system variables, network variables defined on the i.LON 100 LonTalk interface, and
explicitly addressed network variables. This paradigm can be extended to handle data from
other types of control networks as drivers for these buses become available.

Data points provide the i.LON 100 applications and Web server with a generic, open way to
handle any piece of information in any type of network, such as the current value of a
network variable in an LNS-managed network, or an explicit message in a closed LONWORKS
system. This document describes how to use two kinds of data points:

• NVL data points for network variables that are local to the i.LON 100.

• NVC data points for i.LON 100 system variables that maintain constant values.

The i.LON 100 Data Server handles all the details of these data point that are required by
the various applications of the i.LON 100 server, such as how often a data point should be
polled, its default value, its heartbeat, its current status, and its current value.

At the DataServer layer, all data points have the same set of properties, regardless of the
network or device each data point is local to. This is made possible by the drivers that exist
for each data point type, which handle communication between the Data Server and the
network each data point is local to.

Use a standard network management tool for the particular data point type to configure each
driver on the i.LON 100 server. For example, you could use an LNS-based network
management tool to configure the NVL points on the i.LON 100 server. This layer of
abstraction between the drivers and the DataServer provides a mechanism for all i.LON 100
applications to use data points of all types in the same way.

The Data Server also ensures that the configuration, status and value of each data point
recognized by the tools you can use to configure the i.LON 100 server remain synchronized
with each other, and within the device each data point is local to. The tools you can use to
configure the i.LON 100 server include include custom SOAP applications, LONMAKER, and
the i.LON 100 Configuration Software. Figure 4.1 shows the relationship between the i.LON
100 Data Server and the different tools you can use to configure the i.LON 100 applications.

4-2 i.LON 100 e3 Programmer’s Reference

i.LON 100
Data Server

i.LON 100 Applications:
Alarm Notifier

Alarm Generator
Data Logger

Analog Function Block
Event Scheduler
Event Calendar
Type Translator

Web Binder

External
Network
Devices

Cus tom
Applications

Using the i.LON
100 SOAP/XML

Interface

The i.LON 100 applications poll
the Data Server for NVE,

MODBUS and MBus data point
values and information.

NVE DRIVER
The NVE driver exists to manage

communication between the i.LON 100
Data Server and the various external

devices installed on the same netw ork as
the the i.LON 100.

i.LON 100
Configuration

Softw are

LONMAKER

The various applications of the
i.LON 100 can be configured

using the i.LON 100 configuration
software and LONMAKER, as well

as the SOAP/XML interface:

i.LON 100

NVE Data Points

NVE Data Points

Meter
Devices

MBus/MODBUS Drivers
The MBus and MODBUS drivers exist to
manage communication betw een the
i.LON 100 Data Server and the various

meter and MODBUS devices installed on
the same netw ork as the i.LON 100.

MBus Data Points

MBus/MODBUS Data Points

MODBUS
Devices

MODBUS Data Poin

Figure 4.1 Data Server

NOTE: Figure 4.1 shows NVE, Mbus and MODBUS data points. You can create and
configure these data points with the i.LON 100 Web pages, as described in the i.LON 100 e3
User’s Guide.

Two of the most important properties in the Data Server for any data point are the
<UCPTpointStatus> and <UCPTvalue> properties. The <UCPTpointStatus> property
represents the current status of the data point. The <UCPTvalue> property represents the
current value of the data point. The Data Server updates these properties in real time, and
they are very useful to many i.LON 100 applications.

For example, you could set up an Alarm Generator that will update the <UCPTpointStatus>
of a data point to an alarm condition each time the <UCPTvalue> of that data point reaches
a certain level. You could then set up an Alarm Notifier that will send out an alarm
notification each time the <UCPTpointStatus> of the data point is updated to that condition.
These applications are described in more detail later in this document.

A data point list is generated for each data point when it is created and added to the i.LON
100 Data Server. Once you have created the data points for your i.LON 100 and them to the

i.LON 100 e3 Programmer’s Reference 4-3

Data Server, you can reference these data points when using i.LON 100 applications such as
the Analog Function Block, Event Scheduler, Event Calendar, Type Translator, Alarm
Generator, and Alarm Notifier. When any of these applications reference a data point, that
application is added to the data point list for the data point, and the application will be
notified each time the data point is updated. In this fashion, each application has current
access to all the network information pertaining to the data points it is using.

This chapter describes how to create data points and add them to the Data Server.

NOTE: Echelon recommends that you restrict all networks to a maximum of 800 data points.

4-4 i.LON 100 e3 Programmer’s Reference

4.1 Data Server XML Files
The /root/config/software/dataserver directory of your i.LON 100 server contains several XML
files that will store the configuration of the data points in your Data Server. Table 4
describes these XML files.

Table 4 Data Server XML Files

File Name Description

dp_NVL.xml When you use the LonMaker tool to create a local network variable on the
i.LON 100 server, a corresponding NVL data point is automatically added
to the Data Server. Its configuration can then be modified using the SOAP
interface or the i.LON 100 Configuration Software, and it can be referenced
from the i.LON 100 applications.

The dp_NVL.xml file stores the configurations of the NVL data points in
your Data Server. This file contains an entry for each static, dynamically
created data point that has been added to the Data Server.

NOTE: NVL data point must always be created using LONMAKER.

dp_NVC.xml This file contains an entry for each NVC data point that has been added to
the Data Server. An NVC data point represents a network variable that
maintains a constant value.

These data points can be created with the DataServer_Set function, which
is described later in this chapter, or with the i.LON 100 Configuration
Software.

The following sections provide examples of each of these files. Guidelines and instructions to
follow when modifying these files, manually or with the SOAP interface, follow the examples.

i.LON 100 e3 Programmer’s Reference 4-5

4.1.1 dp_NVL.xml
The dp_NVL.xml file is created automatically the first time the i.LON 100 server boots. It
will contain a <DP> element for each static NV on the device. The properties contained
within these elements define the configuration of an NVL data point, and are described later
in this chapter. Each time you use the LonMaker tool to create a dynamic network variable
for the i.LON 100 server, an <NVL> element for the associated data point will be added to
this file.

You can modify a data point's configuration after it has been added to the i.LON 100 server
by manually editing this XML file, or by using the DataServer_Set function. The sections
following the example XML files provide guidelines and instructions to follow when doing so.

The following represents a sample dp_NVL.xml file for an i.LON 100 with four NVL data
points.

<iLONDataServer>
<DPType>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <UCPTlastUpdate>2002-07-03T10:46:54Z</UCPTlastUpdate>
 <UCPTlifeTime>0</UCPTlifeTime>
 <UCPTindex>1</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoAlarmFlag2</UCPTpointName>
 <UCPTlocation>iLON</UCPTlocation>
 <UCPTdescription />
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>
 <UCPTdpSize>2</UCPTdpSize>
 <UCPTbaseType>BT_STRUCT</UCPTbaseType>
 <UCPTunit>% of full level state code</UCPTunit>
 <UCPTdirection>DIR_OUT</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>
 <UCPTdefOutput>0.0 -1</UCPTdefOutput>

 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings>
</DP>

 <DP>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviLevAlarm</UCPTpointName>
 <UCPTlocation>iLON</UCPTlocation>
 <UCPTdescription />
 <UCPTformatDescription>SNVT_alarm</UCPTformatDescription>
 <UCPTdpSize>29</UCPTdpSize>
 <UCPTbaseType>BT_STRUCT</UCPTbaseType>
 <UCPTunit></UCPTunit>
 <UCPTdirection>DIR_IN</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>
 <UCPTdefOutput>0 0 0 0 </UCPTdefOutput>

4-6 i.LON 100 e3 Programmer’s Reference

 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings
 </DP>
 <DP>

 <UCPTindex>2</UCPTindex>
 <UCPTpointName>NVL_nvoDlClear</UCPTpointName>
 <UCPTlocation>iLON</UCPTlocation>
 <UCPTdescription />
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>
 <UCPTdpSize>2</UCPTdpSize>
 <UCPTbaseType>BT_STRUCT</UCPTbaseType>
 <UCPTunit>% of full level state code</UCPTunit>
 <UCPTdirection>DIR_OUT</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>
 <UCPTdefOutput>0.0 -1</UCPTdefOutput>

 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings>
 </DP>
 <DP>

 <UCPTindex>3</UCPTindex>
 <UCPTpointName>NVL_nviDeviceAlarm</UCPTpointName>
 <UCPTlocation>iLON</UCPTlocation>
 <UCPTdescription></UCPTdescription>
 <UCPTformatDescription>SNVT_alarm_2</UCPTformatDescription>
 <UCPTdpSize>31</UCPTdpSize>
 <UCPTbaseType>BT_STRUCT</UCPTbaseType>
 <UCPTunit />
 <UCPTdirection>DIR_IN</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>

 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings
 </DP>

 </DPType>
</iLONDataServer>

i.LON 100 e3 Programmer’s Reference 4-7

4.1.2 dp_NVC.xml
The dp_NVC.xml file contains a list of <DP> elements, one for each NVC data point that you
have added to the Data Server. An NVC data point represents an i.LON 100 system variable
that maintains a constant value. Each <DP> element defines the configuration of an
associated NVC data point. The properties that must be defined within each <DP> element
define the configuration of an NVC data point, and are described later in this chapter.

The following represents a sample dp_NVC.xml file for an i.LON 100 with two NVC data
points. You can add NVC data points to the Data Server using the DataServer_Set function,
or by manually editing the XML file. The sections following the example XML files provide
instructions and guidelines to follow when doing so.

<iLONDataServer>
<DPType>
<SCPTobjMajVer>3</SCPTobjMajVer>
<SCPTobjMinVer>0</SCPTobjMinVer>
<UCPTcurrentConfig>3.0</UCPTcurrentConfig>
<UCPTlastUpdate>2002-07-03T10:46:54Z</UCPTlastUpdate>
<UCPTlifeTime>0</UCPTlifeTime>
<UCPTindex>0</UCPTindex>

 <UCPTname>NVC</UCPTname>
 <DP>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVC_nviConstant</UCPTpointName>
 <UCPTlocation />
 <UCPTdescription>Reference temperature</UCPTdescription>
 <UCPTformatDescription>SNVT_temp_p</UCPTformatDescription>
 <UCPTdpSize>2</UCPTdpSize>
 <UCPTunit>deg C</UCPTunit>
 <UCPTdirection>DIR_IN</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>20.0</SCPTmaxRcvTime>
 <UCPTdefOutput>0.00</UCPTdefOutput>

 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings>
 </DP>
 <DP>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVC_nviTemp</UCPTpointName>
 <UCPTlocation />
 <UCPTdescription>SNVT_temp_f</UCPTdescription>
 <UCPTformatDescription>SNVT_temp_f</UCPTformatDescription>
 <UCPTdpSize>4</UCPTdpSize>
 <UCPTunit></UCPTunit>
 <UCPTdirection>DIR_IN</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>30.0</SCPTmaxRcvTime>
 <UCPTdefOutput>0</UCPTdefOutput>

 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings>
 </DP>
 </DPType>

 </iLONDataServer>

4-8 i.LON 100 e3 Programmer’s Reference

4.2 Creating and Modifying the Data Server XML Files
The i.LON 100 generates all of the Data Server configuration files the first time it boots. The
dp_NVL.xml file will contain a <DP> element for each static NV on the device that has been
created with LONMAKER. New NVL data points will be added to the dp_NVL.xml file
automatically when you createmore local network variables with the LonMaker tool. The
dpP_NVC.xml file will not contain any data point entries the first time the i.LON 100 boots.

You can use the DataServer_Set function to add new NVC data points to the Data Server
and to the dp_NVC.XMl file. You can also use DataServer_Set to modify the configuration of
existing NVL and NVC data points in the Data Server. The following section, Data Server
SOAP Interface, describes how to use DataServer_Set and the other SOAP functions
provided for use with the Data Server.

You can manage the Data Server XML files manually using an XML text editor, and
download them to the /root/config/software/dataServer directory of the i.LON 100
server via FTP. Echelon does not recommend this, as the i.LON 100 server will require a
reboot to read the configuration of the downloaded XML files. Additionally, the i.LON 100
server performs error checking on all SOAP messages it receives before writing to the XML
files. It will not perform error checking on any XML files you download via FTP, and so the
application may not boot properly.

However, if you plan to create or modify any XML files manually, you should review the rest
of this chapter first. This chapter describes the elements and properties in the Data Server
configuration files that define each data point’s configuration. For instructions on creating or
modifying an XML file manually, see Manually Modifying an XML Configuration File on
page 14-1.

4.2.1 Data Server SOAP Interface
The SOAP interface for the Data Server application includes seven functions. Table 5 lists
and describes these functions. For more information, see the sections following Table 5.

Table 5 Data Server SOAP Functions

Function Description

DataServer_List Use this function to list the index number, name and location of
each data point that you have added to the Data Server. For
more information, see DataServer_List on page 4-10.

DataServer_Get Use this function to return the configuration of a data point. For
more information, see DataServer_Get on page 4-12.

DataServer_Set Use this function to create an NVC data point and add it to the
Data Server, or to modify the configuration of an existing NVL
or NVC data point. For more information, see DataServer_Set on
page 4-18.

DataServer_Read Use this function to read the current value of a data point, or a
group of data points. For more information, see
DataServer_Read on page 4-20.

i.LON 100 e3 Programmer’s Reference 4-9

Function Description

DataServer_Write Use this function to write to the value of a data point, or a group
of data points. For more information, see DataServer_Write on
page 4-26.

DataServer_ResetPriority Use this function to reset the priority level assigned to a data
point. For more information, see DataServer_ResetPriority on
page 4-27.

DataServer_Delete Use this function to remove a data point from the Data Server.
For more information, see DataServer_Delete on page 4-31.

4-10 i.LON 100 e3 Programmer’s Reference

4.2.1.1 DataServer_List
Use the DataServer_List function to retrieve a list of data points that you have added to the
i.LON 100 Data Server. Use the properties described in Table 6 as the input parameters for
the function to specify a subset of data points to be included in the list. You can also call the
function without specifying any input parameters. In this case, the list returned by the
function would include every data point on the i.LON 100.

Table 6 DataServer_List Input Properties

Parameter Description

<DPType> Use the <DPType> element to specify the type of data point you want
to see. The <DPType> element contains a <UCPTname> property.
Enter NVL or NVC here to specify the type of data point to be
returned.

<UCPTsetting> Optional. Enter a string of 16 comma-separated Boolean values. This
string will be compared to the <UCPTsettings> string defined for
each data point of the specified data point type. If at least one set bit
in this string matches the <UCPTsettings> string defined for a data
point, then that data point will be included in the list returned by the
function.

The <UCPTsettings> property for a data point is defined when it is
added to the Data Server, and can be written to with the
DataServer_Set function, which is described later in this chapter.

<UCPTstartIndex> Enter the index number of the first data point to be listed in the
return string.

<UCPTcount> Enter the maximum number of data points to be included in the
return string.

The example below requests that the function return a list of up to 50 NVL data points,
starting with index number 0. The function returns a <DPType> element that contains
global information about the data point type requested in the list. The <DPType> element
begins with the following global elements:

• <SCPTobjMajVer> and <SCPTobjMinVer>. The major and minor build version numbers
the Data Server application is using.

• <UCPTcurrentConfig>. The namespace version used the last time the DataServer_Set
function called.

• <UCPTlastUpdate>. A timestamp indicating the last time the Data Server was written
to. This timestamp is expressed in UTC format, as per the ISO 8601 standard.

• <UCPTlifeTime>. This property defines how old (in seconds) the value of a data
point of the specified type can be before the Data Server retrieves a new data value
from the driver when an application requests the value of a given data point. If this
parameter is set to 0, the values of the data points will be copied from the i.LON 100
Data Server when an application requests them, and no update will be requested
from the driver. If this parameter is set to a positive value, the i.LON 100 Data
Server will poll the driver for the current value of a data point each time an

i.LON 100 e3 Programmer’s Reference 4-11

application requests it, and the time interval defined by the property has expired.
The interval resets each time the value of a data point is retrieved. By default this
value is 0 for NVL data points, and 0 NVC data points. You can change this value
by manually modifying it in the dp_NVL.xml or dp_NVC.xml configuration files.
Note that you can also temporarily override this value each time you call the
DataServer_Read function. See the DataServer_Read section later in this chapter for
more information on this.

• <UCPTindex>. The index number used by the data point type.

• <UCPTname>. This specifies the type of data point included in the list. This
should match the type specified in the input supplied to the function.

The ouput parameters also include a <DP> element for each data point meeting the selection
criteria defined in the function’s input. This example shows 2 data points, although the
output could have included <DP> elements for up to 50 data points. The next section,
DataServer_Get, describes the properties included in each of these elements.

You could use the list of data point elements returned by this function as input for the
DataServer_Get function. The function would then return the configuration of each data
point included in the list.

Input
Parameters

<iLONDataServer>
 <DPType>
 <UCPTname>NVL</UCPTname>
 </DPType>
 <UCPTsetting>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsetting>
 <UCPTstartIndex>0</UCPTstartIndex>
 <UCPTcount>50</UCPTcount>
</iLONDataServer>

Output
Parameters

<iLONDataServer>
 <DPType>
 <SCPTobjMajVer>3</SCPTobjMajVer>

<SCPTobjMinVer>0</SCPTobjMinVer>
<UCPTcurrentConfig>3.0</UCPTcurrentConfig>
<UCPTlastUpdate>2004-12-21T12:31:05Z</UCPTlastUpdate>
<UCPTlifeTime>0</UCPTlifeTime>
<UCPTindex>1</UCPTindex>
<UCPTname>NVL</UCPTname>
<DP>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvi01Switch</UCPTpointName>
 <UCPTlocation>Light Kitchen</UCPTlocation>
</DP>
<DP>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nvo03Lamp</UCPTpointName>
 <UCPTlocation>Third Floor</UCPTlocation>
</DP>

 <DPType>
</iLONDataServer>

4-12 i.LON 100 e3 Programmer’s Reference

4.2.1.2 DataServer_Get
You can use the DataServer_Get function to retrieve the configuration of any data point that
you have added to the i.LON 100 Data Server. The input parameters you supply to the
function will include one or more <DPType> elements. Each <DPType> element includes a
<UCPTname> property that you can use to specify the type of data point to be returned (i.e.
NVL or NVC), as well as any number of <DP> child elements you can use to identify the data
points whose configurations are to be returned. You must reference the specific data point to
be returned by its index number (UCPTindex) or its name (UCPTpointName) within each
<DP> element, as shown in the example below.

You can request the configurations of any mixture of NVL or NVC data points in a single call
to DataServer_Get by supplying two <DPType> elements: one for the NVL data points and
one for the NVC data points. The following example requests that the configuration of two
NVL data points be returned.

NOTE: You should not attempt to retrieve the configuration of more than 100 data points
with a single call to this function.

Input Parameters <iLONDataServer>
 <DPType>

<UCPTname>NVL</UCPTname>
<DP>
 <UCPTindex>0</UCPTindex>
</DP>
<DP>
 <UCPTpointName> NVL_nvoSwitch</UCPTpointName>
</DP>

 </DPType>
</iLONDataServer>

Output
Parameters

<iLONDataServer>
 <DPType>
 <UCPTlastUpdate>2004-12-21T12:31:05Z</UCPTlastUpdate>
 <UCPTlifeTime>0</UCPTlifeTime>
 <UCPTindex>1</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviRequest</UCPTpointName>
 <UCPTlocation>MainBuilding\SecondFloor\Light</UCPTlocation>
 <UCPTdescription>Light switch</UCPTdescription>
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>
 <UCPTdpSize>6</UCPTdpSize>
 <UCPTbaseType>BT_STRUCT</UCPTbaseType>
 <UCPTunit></UCPTunit>
 <UCPTdirection>DIR_IN</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>
 <UCPTdefOutput>100.0 1</UCPTdefOutput>
 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings>

<ValueDef>
 <UCPTindex>0</UCPTindex>
 <UCPTname>OnValue</UCPTname>
 <UCPTvalue>100.0 1</UCPTvalue>
</ValueDef>

i.LON 100 e3 Programmer’s Reference 4-13

<ValueDef>
 <UCPTindex>1</UCPTindex>
 <UCPTname>OffValue</UCPTname>

 <UCPTvalue>100.0 0</UCPTvalue>
</ValueDef>
 </DP>
 <DP>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nvoSwitch</UCPTpointName>
 <UCPTlocation>MainBuilding\FirstFloor\Light</UCPTlocation>
 <UCPTdescription>Light switch</UCPTdescription>
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>
 <UCPTdpSize>6</UCPTdpSize>
 <UCPTbaseType>BT_STRUCT</UCPTbaseType>
 <UCPTunit></UCPTunit>
 <UCPTdirection>DIR_OUT</UCPTdirection>
 <SCPTmaxSendTime>0.0</SCPTmaxSendTime>
 <SCPTminSendTime>0.0</SCPTminSendTime>
 <SCPTmaxRcvTime>0.0</SCPTmaxRcvTime>
 <UCPTdefOutput>100.0 1</UCPTdefOutput>
 <UCPTsettings>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</UCPTsettings>

<ValueDef>
 <UCPTindex>0</UCPTindex>
 <UCPTname>OnValue</UCPTname>
 <UCPTvalue>100.0 1</UCPTvalue>
</ValueDef>
<ValueDef>
 <UCPTindex>1</UCPTindex>
 <UCPTname>OffValue</UCPTname>

 <UCPTvalue>100.0 0</UCPTvalue>
 </ValueDef>
 </DP>
 </DPType>
</iLONDataServer>

The DataServer_Get function returns a <DP> element for each data point referenced in the
input parameters you supplied to the function. The properties included within each <DP>
element are initially defined when the data point is added to the DataServer. You can write
to them with the DataServer_Set function. Table 7 describes these properties.

For more information on the DataServer_Set function, see DataServer_Set on page 4-18.

Table 7 DataServer_Get Output properties

Property Description

<UCPTindex> The index number assigned to a data point must be in the range
0-32767. As mentioned earlier, you can use the DataServer_Set
function to create a new NVC data point, or to modify an
existing NVL or NVC data point. If you do not specify an index
number in the input you supply to DataServer_Set, the function
will create a new data point using the first available index
number.

If you specify an index number that is already being used, the
function will overwrite the configuration of the data point using
that index number with the settings defined in the input
parameters.

4-14 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTpointName> The name of a data point can be a maximum of 31 characters
long, and must begin with the following prefixes:

• NVL_ for an NVL data point

• NVC_ for an NVC data point

Once you have added a data point to the Data Server, you can
not change its <UCPTpointName>. The <UCPTpointName>
property for all data points must be unique, and must not
contain any spaces.

Note: The names assigned to NVL data points in the Data
Server follow the naming convention NVL_[NAME], where
[NAME] represents the progammatic name assigned to the NV
when it was created with LONMAKER. You can determine the
progammatic name of a network variable in LONMAKER by
right-clicking it and selecting Properties.

<UCPTlocation> An alphanumeric string of up to 128 characters that describes
the location of the data point. This field is user-defined, and may
be useful when organizing your data points by physical location
or device.

<UCPTdescription> A description of the data point. This can be a maximum of 127
characters long.

<UCPTformatDescription> The format description of the data point. This determines many
factors about the data point, including the type of values it
takes, and its base type. This could be any standard (SNVT)
format type included in the i.LON 100 resource files, or any
user-defined (UNVT) format type included in resource files
uploaded to the i.LON 100. For more information on the i.LON
100 resource files, see i.LON 100 Resource Files on page 3-7.

The SNVT format types included in the i.LON 100 resource files
are also listed and described in the SNVT Master List, which
can be downloaded as a PDF by selecting the Documentation
link on Echelon’s Support Web site:

http://www.echelon.com/support

<UCPTunit> Unit text. This property is a string up to 227 characters long
that describes the units the value of a data point is measured in.
It should be filled in based on the network variable type
assigned to the data point.

A default value will be assigned to this property, if a unit for the
network variable type chosen for the data point exists in the
i.LON 100 resource files.

http://www.echelon.com/support

i.LON 100 e3 Programmer’s Reference 4-15

Property Description

<UCPTbaseType> This read-only property is assigned to the data point
automatically, and is based on the point’s
<UCPTformatDescription>. It defines the base type of the data
point, as defined in the base_type_t enumeration in the
BAS_Controller resource files for the i.LON 100 server.

<UCPTdpSize> Read-only. The size of the data point. This is determined based
on the <UCPTformatDescription> selected for the data point.

<SCPTmaxSendTime> This property applies to output data points. It defines the
maximum amount of time that may elapse before the data point
is updated on the network, if it is set to a non-zero value.

For example, if a SNVT_temp value data point is changing by
one degree every 10 seconds and this property is set to two
seconds, the i.LON 100 server will update the value of the data
point on the network every two seconds, even though the value
of the data point is not changing more than once every 10
seconds. The receiver can use this output as a heartbeat. The
receiver will know something is wrong if he or she does not
receive an update every two seconds.

<SCPTminSendTime> This property applies to output data points, and defines the
minimum amount of time that may elapse between data point
updates if it set to a non-zero value.

For example, if a SNVT_temp value data point is changing by
one degree every half second and this value is set to two seconds,
the data point will only be updated every two seconds with the
latest value, even though the value changes more frequently
than that.

<SCPTmaxRcvTime> This property is used to control the maximum time that can
elapse after an update to a bound network input, before another
update occurs. If this period elapses without an update, the
<UCPTpointStatus> of the data point will be updated to
AL_OFFLINE. You could create an Alarm Notifier to trigger an
alarm notification when this happens. For more information on
Alarm Notifiers, see Chapter 7, Alarm Notifier.

The valid range for this property is any value between 0.0 sec
and 6,553.4 seconds. Setting <SCPTmaxRcvTime> to the
default value of 0.0 disables the receive failure mechanism.

4-16 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTdefOutput> Optional. The value to be assigned to this data point after a
power-up of the device or during an override of the functional
block.

For external data points and devices that operate as slaves,
Echelon does not recommend that you define this property, as
the value entered here will be sent to the external device after a
power-on.

NOTE: You can use DataServer_Set to change this value in the
Data Server. However, you must program your application to
enforce the new value, as the i.LON 100 server will continue to
enforce the default value taken from the resource files.

<UCPTminValue> Optional. This value is initially taken from the i.LON 100
resource files, if it exists for the data point type selected. This
value represents the minimum value the data point can be
updated to.

NOTE: You can use DataServer_Set to change this limit in the
Data Server. However, you must program your application to
enforce the new limit, as the i.LON 100 server will continue to
enforce the limit taken from the resource files.

<UCPTmaxValue> Optional. This value is initially taken from the i.LON 100
resource files, if it exists for the data point type selected. This
value represents the maximum value the data point can be
updated to.

NOTE: You can use DataServer_Set to change this limit in the
Data Server. However, you must program your application to
enforce the new limit, as the i.LON 100 server will continue to
enforce the limit taken from the resource files.

<UCPTinvalidValue> Optional. The invalid value for the data point. If the data point
is updated to this value, the <UCPTpointStatus> of the data
point will be set to AL_VALUE_INVALID. The status will be
returned to a normal condition as soon as the value is set to a
valid value again. A default value will be assigned to the
<UCPTinvalidValue> property based on the
<UCPTformatDescription> selected, if an invalid value is
defined for the selected format in the resource files.

You could create an Alarm Notifier to trigger an alarm
notification when an invalid value is written to a data point and
the data point's status is updated to AL_VALUE_INVALID. For
more information on Alarm Notifiers, see Chapter 7, Alarm
Notifier.

i.LON 100 e3 Programmer’s Reference 4-17

Property Description

<UCPTsettings> A string of 16 comma-separated Boolean values. You could use
these flags to determine access rights to the data point with your
application.

You can optionally specify a <UCPTsetting> string when you
call the DataServer_List function. This string will be compared
to this property for each data point. If any bits in either string
match, DataServer_List will include the data point in its output.
If no bits match, it will not include the data point. You could use
this feature to restrict which users can view and access to
certain data points.

<ValueDef> The <ValueDef> elements specify preset value definitions that
can be assigned to the data point. You can use these preset
values to update the value of the data point when other i.LON
100 applications such as the Event Scheduler or the Alarm
Notifier reference them.

Each <ValueDef> element includes three properties:

• <UCPTindex>. The index value assigned to the preset.

• <UCPTname>. The name of the preset. You will use this
name when referencing the preset value with other
applications.

• <UCPTvalue>. The value the data point should be
assigned to when this preset is used. The values entered here
must be in valid format, as defined by the network variable
type assigned to the data point.

The sample output parameters shown in this section define two
preset value definitions for each data point: OnValue and
OffValue.

4-18 i.LON 100 e3 Programmer’s Reference

4.2.1.3 DataServer_Set
Use the DataServer_Set function to overwrite the configuration of an NVL or NVC data
point, or to create an NVC data point and add it to the Data Server. The input parameters
you supply to the function will include one or more <DPType> elements. Each <DPType>
element includes a <UCPTname> property that specifies the type of data point (i.e. NVL or
NVC) to be created or modified, as well as a <DP> child element for each data point to be
created or modified by the function.

Each <DP> child element includes a series of properties that define the configuration of the
new (or modified) data point within the Data Server. This set of properties is the same,
whether you are creating a new data point or modifying an existing data point. The previous
section, DataServer_Get, describes these properties in detail.

It is important to realize that when you modify an existing data point with the
DataServer_Set function, any optional properties such as <UCTPminValue>,
<UCPTmaxValue>, <UCPTdefOutput> and <UCPTinvalidValue> not specified in the input
to the function will be erased. Old values will not be carried over, so you must fill in every
property, or make sure that the data point is linked to a template defining the values any of
these properties, when writing to an existing data point. Otherwise, these properties will be
set to a null value.

The example below writes to the configuration of an NVL data point using index value 200.
You could modify the example to write to more NVL data points by adding more <DP>
elements and changing the property values as you desire. Or, you could add an additional
<DPType> element to create or write NVC data points.

NOTE: You can create or write to multiple data points with a single call to DataServer_Set.
However, you should not attempt to create or write to more than 100 data points with a
single call to this function. Additionally, to optimize the memory available to the i.LON 100
server, you should not have more than 800 data points in your network at any time.

i.LON 100 e3 Programmer’s Reference 4-19

Input
Parameters

<iLONDataServer>
 <DPType>

 <UCPTindex>2</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTindex>200</UCPTindex>
 <UCPTpointName> NVL_nvo01Switch</UCPTpointName>
 <UCPTlocation>Light Kitchen</UCPTlocation>
 <UCPTdescription>Lamp Kitchen 230V; 100W</UCPTdescription>
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>
 <UCPTbaseType>BT_STRUCT</UCPTbaseType>
 <UCPTunit>State, %</UCPTunit>
 <UCPTdirection>DIR_IN</UCPTdirection>
 <SCPTmaxSendTime>60</SCPTmaxSendTime>
 <SCPTminSendTime>10</SCPTminSendTime>
 <SCPTdefOutput>100.0 1</SCPTdefOutput>
 <UCPTminValue>0.0 0</UCPTminValue>
 <UCPTmaxValue>100.0 1</UCPTmaxValue>
 <UCPTinvalidValue>0.0 -1</UCPTinvalidValue>
 <UCPTsettings>1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1</UCPTsettings>

 <ValueDef>
 <UCPTindex>0</UCPTindex>
 <UCPTname>OnValue</UCPTname>
 <UCPTvalue>100.0 1</UCPTvalue>
 </ValueDef>
 <ValueDef>
 <UCPTindex>1</UCPTindex>
 <UCPTname>OffValue</UCPTname>
 <UCPTvalue>100.0 0</UCPTvalue>
 </ValueDef>
 <ValueDef>
 <UCPTindex>2</UCPTindex>
 <UCPTname>StdbyValue</UCPTname>
 <UCPTvalue>50.0 1</UCPTvalue>
 </ValueDef>
 <ValueDef>
 <UCPTindex>3</UCPTindex>
 <UCPTname>DefaultValue</UCPTname>
 <UCPTvalue>0.0 0</UCPTvalue>

 </ValueDef>
 </DP>
 </DPType>
</iLONDataServer>

Output
Parameters

<iLONDataServer>
 <UCPTfaultCount>0</UCPTfaultCount>
 <DPType>
 <UCPTindex>2</UCPTindex>

<UCPTname>NVL</UCPTname>
<DP>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName> NVL_nvo01Switch</UCPTpointName>
</DP>

 </DPType>
</iLONDataServer>

4-20 i.LON 100 e3 Programmer’s Reference

4.2.1.4 DataServer_Read
You can use the DataServer_Read function to read the value and status of any data point
that you have added to the Data Server. There are two ways to reference the data points
whose values and statuses are to be returned:

• You can reference each data point to be read by its index number or name in the input
you supply to the function. If the specified data point is a structure, you can specify the
field whose value is to be returned below. For more information on this, and an example
set of input parameters you could use, see the Requesting Data Points by Name and
Index section.

• You can reference a group of data points to be returned by the data point type, and by
the last time the data points were updated. For more information on this, and an
example set of input parameters you could use, see the Requesting Data Points by Type
and Last Update Time section.

The DataServer_Read function will return a list of elements, one for each data point
referenced by the input you supplied to the function. Each of these elements contains the
current values of a group of properties and attributes associated with the referenced data
point. This includes the value and the priority level currently assigned to the data point. This
is described in more detail in the in the DataServer_Read Output section later in this
chapter.

4.2.1.4.1 Requesting Data Points by Name and Index

You can reference the data points to be returned by their index numbers or names in the
input you supply to the function. This may be useful if you only need to request information
for a small number of data points. You should not attempt to read more than 100 data points
with a single call to this function.

The input parameters you supply to the function will include one or more <DPType>
elements. Each <DPType> element includes a <UCPTname> property that specifies the type
of data point (i.e. NVL or NVC) to be read, as well as any number of <DP> child elements
identifying the data points to be read. You must reference the specific data point to be
returned by its index number (UCPTindex) or its name (UCPTpointName) within each <DP>
element, as shown in the example below. If the specified data point is a structure, you can
specify the field whose value is to be read by filling in the <UCPTfield> property.

The following example requests that information for two data points be returned. Table 9
later in this chapter describes the properties returned by the function for each data point.

NOTE: Some of the <DP> elements shown in this example include the optional
<UCPTlifeTime> property. This defines how old the value of a data point can be, in seconds,
before the Data Server retrieves a new data value from the driver when an application
requests its value. If the property is set to 0, the values of the data points will be copied from
the i.LON 100 Data Server when an application requests them, and no update will be
requested from the applicable driver. If this parameter is set to a positive value, the i.LON
100 Data Server will poll the driver for the current value of a data point each time an
application requests it, and the time interval defined by the property has expired. You can
temporarily override the value of the <UCPTlifeTime> property stored in the i.LON 100
Data Server by passing it in to the DataServer_Read message. In doing so, you can
determine whether or not the values of the data points you are reading will be polled for this

i.LON 100 e3 Programmer’s Reference 4-21

message. This may be useful if you are creating an application to monitor a device such as a
thermometer, and do not necessarily need a current value. Set the property to 0, or any value
greater than the current poll rate, if you do not want the values of the data points polled for
this message.

Input
Parameters

<iLONDataServer>
 <DPType>

<UCPTindex>1</UCPTindex>
<UCPTname>NVL</UCPTname>
<DP>
 <UCPTindex>0</UCPTindex>
</DP>
<DP>
 <UCPTpointName>NVL_nvo03Switch</UCPTpointName>
</DP>

 </DPType>
 <DPType>

<UCPTindex>0</UCPTindex>
<UCPTname>NVC</UCPTname>
<DP>
 <UCPTindex>9</UCPTindex>
 <UCPTfieldName>state</UCPTfieldName>
 <UCPTlifeTime>2</UCPTlifeTime>
</DP>

 </DPType>
</iLONDataServer>

4-22 i.LON 100 e3 Programmer’s Reference

4.2.1.4.2 Requesting Data Points by Type and Last Update Time

You can also reference the data points to be returned by their type and time of last update.
This may be useful if you want to see which data points were updated during a certain time
period, or if you want to read the values of all data points of a certain type.

Table 8 DataServer_Read Input Properties
Property

Description

<DPType> Use the <DPType> element to specify the type of data point you want to
see. The <DPType> element contains a <UCPTname> property. Enter
NVL or NVC here to specify the type of data point to be returned.

<UCPTstart>
<UCPTstop> Use these fields to specify a range for the last update time to the data

points that will be returned by the function. Both parameters are
optional.

If you only specify a start time, the function will only return the data
points whose value or status has been updated since the time specified.
This is useful when an application only requires the latest updates of
data points, and based on the activity of the data points requested, it
can reduce the size of the response SOAP message.

If you specify a start and stop time only data points whose last update
time is between this interval will be returned by the function. If you only
specify a stop time only data points whose last update time occurs before
the stop time will be returned by the function.

If you do not enter a start or stop time, the function will return all data
points requested, up to the count specified.

The <UCPTstart> and <UCPTstop> properties must be entered as
timestamps in local time, with an appended time zone indicator that
denotes the difference between local time and UTC. For more
information on this format, see Local Times and Coordinated Universal
Time on page 5-14.

<UCPTcount>
Use this field to specify the maximum number of data point entries the
function will return. If this property is not filled in, the function will
return all data points requested, or data points whose last update
occurred within the interval defined by the <UCPTstart> and
<UCPTstop> properties.

NOTE: You should not attempt to read more than 100 data points with a
single call to this function.

The following example requests that information for NVL data points updated in July of
2001 be returned. Because the <UCPTcount> property is set to 20, the function will return
information for no more than 20 data points.

i.LON 100 e3 Programmer’s Reference 4-23

The information contained in the output parameters for each data point is described in the
next section of this chapter, DataServer_Read Output.

Input
Parameters

<iLONDataServer>
 <DPType>
 <UCPTname>NVL</UCPTname>
 </DPType>
 <UCPTstart>2001-07-01T00:00:01.000+00:00</UCPTstart>
 <UCPTstop>2001-07-31T23:59:59.999+00:00</UCPTstop>
 <UCPTcount>20</UCPTcount>
</iLONDataServer>

4.2.1.4.3 DataServer_Read Output

The function returns a <DP> element for each data point referenced in the input parameters
you supplied to the function.

Output
Parameter

<iLONDataServer>
 <UCPTfaultCount>0</UCPTfaultCount>
 <DPType>
 <UCPTindex>1</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvo01Switch</UCPTpointName>

<UCPTpointUpdateTime>2001-07-24T01:47:22.000+01:00</UCPTpointUpdateTime>
<UCPTvalue>0.0 0</UCPTvalue>
<UCPTvalueDef>OffValue</UCPTvalueDef>
<UCPTunit>% of full level,state code</UCPTunit>
<UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>

 <UCPTpriority>250</UCPTpriority>
 </DP>
 <DP>
 <UCPTindex>10</UCPTindex>
 <UCPTpointName>NVL_nvo03Switch</UCPTpointName>

<UCPTpointUpdateTime>2001-07-24T01:47:22.000+01:00</UCPTpointUpdateTime>
<UCPTvalue>33.0 0</UCPTvalue>
<UCPTunit>% of full level,state code</UCPTunit>
<UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>

 <UCPTpriority>250</UCPTpriority>
 </DP>
 <DP>
 <UCPTindex>9</UCPTindex>
 <UCPTpointName>NVL_nvo02Switch</UCPTpointName>
 <UCPTfieldName>state</UCPTfieldName>

<UCPTpointUpdateTime>2001-07-24T01:47:22.000+01:00</UCPTpointUpdateTime>
<UCPTvalue>1</UCPTvalue>
<UCPTunit>state code</UCPTunit>
<UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>
<UCPTpriority>250</UCPTpriority>

 </DP>
 </DPType>
</iLONDataServer>

The following table describes the properties that are included in each of <DP> element.

4-24 i.LON 100 e3 Programmer’s Reference

Table 9 DataServer_Read Output Properties

Property Description

<UCPTindex> The index number assigned to the data point.

<UCPTpointName> The name of the data point.

<UCPTfieldName> If the value of a field was requested, this property contains the
name of the field.

<UCPTpointUpdateTime> A timestamp indicating the last time the value of the data point
was updated. This timestamp is expressed in local time, with an
appended time zone indicator that indicates the difference
between local time and Coordinated Universal Time (UTC). UTC
is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight
in Greenwich England, which lies on the zero longitudinal
meridian. Universal time is based on a 24 hour clock, therefore,
an afternoon hour such as 4 pm UTC would be expressed as 16:00
UTC. The timestamp uses the following format:

[YYYY-MM-DD]T[HH:MM:SS.MSS]+/-[HH:MM]

The first segment of the timestamp [YYYY-MM-DD] represents
the date. The second segment (T[HH:MM:SS.MSS]) of the
timestamp represents the local time, expressed in hours, minutes,
seconds and milliseconds. The third segment (+/-[HH:MM])
represents the difference between the local time listed in the
second segment and UTC. This segment begins with a + or a -.
The + indicates that the local time is ahead of UTC, the - indicates
the local time is behind UTC. Consider the following example:

2002-08-13T10:24:37.111+02:00

This timestamp indicates a local date and time of 10:24 AM and
37.111 seconds, on August 13, 2002. Because the third part of the
segment reads +02:00, we know the local time here is 2 hours
ahead of UTC.

<UCPTvalue> The current value of the data point.

<UCPTvalueDef> The value definition currently being used by the data point. Value
definitions represent preset values. They can be created with the
i.LON 100 Configuration Software, or the DataServer_Set
function. You can use these value definitions to update the value
of the data point other i.LON 100 applications such as the Event
Scheduler or the Alarm Notifier reference it.

<UCPTunit> Unit type. This property is configured based on the network
variable type of the data point.

i.LON 100 e3 Programmer’s Reference 4-25

Property Description

<UCPTpointStatus> The current status of the data point. This can be used when
setting up Alarm Generators and Alarm Notifiers with the i.LON
100 server. For more information on these applications, see
Chapter 6, Alarm Generator, and Chapter 7, Alarm Notifier.

<UCPTpriority> The priority level currently assigned to the data point (0-255). The
priority level of a data point determines which applications have
write access to it. You can modify the value of this property with
the DataServer_Write or DataServer_ResetPriority functions.

For more information on priority levels, see Data Point Values
and Priority Levels on page 4-27.

4-26 i.LON 100 e3 Programmer’s Reference

4.2.1.5 DataServer_Write
A data point's value and priority level are initially set when the data point is added to the
Data Server. The value is set to the value established for the <UCPTdefOutput> property for
the data point, and the priority defaults to the lowest priority level (255).

You can write to a data point’s current value and priority level with the DataServer_Write
function. The input parameters you supply to this function will include one or more
<DPType> elements. Each <DPType> element includes a <UCPTname> property that
specifies the type of data point (i.e. NVL) to be written to with the function, as well as any
number of <DP> child elements identifying the data points to be written to. You must
reference the specific data point to be written to by its index number (UCPTindex) or its
name (UCPTpointName) within each <DP> element, as shown in the example below. You
can specify the value to be written to the data point by adding a <UCPTvalue> property or a
<UCPTvalueDef> property to the <DP> element. If you want to specify the actual value, use
the <UCPTvalue> property. If you want to assign a preset value to the data point, use the
<UCPTvalueDef> property. If you pass in both the <UCPTvalue> and the <UCPTvalueDef>
property, the <UCPTvalueDef> property will be used to determine the value to assign to the
data point, unless it references an invalid value, in which case the <UCPTvalue> property
will be used to determine the value to assign to the data point.

If the specified data point is a structure, you can specify the field whose value is to be written
by filling in the <UCPTfield> property. In this case, you may also want to fill in the
<UCPTpropagate> property. If you assign the default value 1 to this property, the change
you make to the data point will be propagated to the network. If you assign value 0 to this
property, the change will be made in the i.LON 100 Data Server, but it will not be
propagated over the LONWORKS network. This may be useful if you are writing to the
different fields of a structure within a call to DataServer_Write, and do not want to update
the structure over the network until all fields have been written by the function.

The priority level specified for each data point is set by the <UCPTpriority> property. You
can enter a value between 0-255 as the priority, where 0 represents the highest priority level
and 255 represents the lowest priority level. The priority level you specify must be higher
than (or equal to) the priority level used by the last application to write to the data point. If it
is not, the data point will not be successfully updated. For more information on priority
levels, see Data Point Values and Priority Levels on page 4-27.

You can write to the value of the data point using either a value definition (UCPTvalueDef),
or an actual value (UCPTvalue). The example below shows both of these options. You should
not attempt to write to more than 100 data points with a single call to this function.

You can optionally add the <UCPTformatDescription> property to each <DP> element. This
property indicates how the UCPTvalue property should be unformatted by the i.LON 100
server. Thus, if the UCPTformatDescription of the Data Point being written to is
SNVT_temp_f#US, and the DataServer_Write message includes a UCPTformatDescription
property with the value SNVT_temp_f#SI, the value will be first unformatted using Celsius,
before being written to the Data Point, even though the format of the Data Point is normally
in Farenheit.

The following example set of input parameters writes to three NVL data points. You could
write to more NVL data points by adding more <DP> elements. As NVC data points retain
constant values, you cannot write to them with this function.

i.LON 100 e3 Programmer’s Reference 4-27

Input
Parameters

<iLONDataServer>
 <DPType>
 <UCPTindex>1</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTpointName>NVL_nvo01Switch</UCPTpointName>
 <UCPTformatDescription>SNVT_temp_f#SI</UCPTformatDescription>
 <UCPTvalueDef>OffValue</UCPTvalueDef>
 <UCPTpriority>25</UCPTpriority>
 </DP>
 <DP>

 <UCPTpointName>NVL_nvo02Switch</UCPTpointName>
 <UCPTfieldName>state</UCPTfieldName>
 <UCPTvalue>1</UCPTvalue>
 <UCPTpriority>50</UCPTpriority>
 <UCPTpropagate>0</UCPTpropagate>

 </DP>
 <DP>
 <UCPTindex>5</UCPTindex>
 <UCPTfieldName>state</UCPTfieldName>
 <UCPTvalue>1</UCPTvalue>
 <UCPTpriority>50</UCPTpriority>
 <UCPTpropagate>0</UCPTpropagate>
 </DP>
 </DPType>
</iLONDataServer>

Output
Parameters

<iLONDataServer>
 <UCPTfaultCount>0</UCPTfaultCount>
 <DPType>
 <UCPTindex>1</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTpointName>NVL_nvo01Switch</UCPTpointName>
 </DP>
 <DP>

 <UCPTpointName>NVL_nvo02Switch</UCPTpointName>
 <UCPTfieldName>state</UCPTfieldName>

 </DP>
 <DP>
 <UCPTindex>5</UCPTindex>
 <UCPTfieldName>state</UCPTfieldName>
 </DP>
 </DPType>
</iLONDataServer>

4.2.1.5.1 Data Point Values and Priority Levels

As described earlier in this section, the DataServer_Write function requires you to specify a
priority level when writing to a data point. In order to successfully update the value of the
data point, you must specify a priority level that is greater than or equal to the priority level
used by the last application to write to the data point.

For example, consider a scenario where a SOAP application uses the DataServer_Write
function to write to the value of a data point called NVL_nvoValue. Assume that the last
application to write to the value of NVL_nvoValue used priority level 75 when it updated the
data point. In that case, the current application must use a priority value between 0 and 75
(inclusive) to successfully write a new value to the data point.

Data point priority levels allow you to give some applications precedence over others when
more than one application might attempt to update the same data point. Table 10 depicts a

4-28 i.LON 100 e3 Programmer’s Reference

series of events where various applications write to the value of a single data point. For each
event, the priority level used is listed, as well as a description of whether or not the update
was successful, and why. This should help you understand how you can use data point
priority levels to determine which applications will be given precedence when updating the
value of a data point.

Table 10 Data Point Priority Levels and Values

Event Priority Level
Assigned

Result of Operation

Power-Up 255 The value of the data point is updated
successfully.

Event Scheduler Updates
Data Point

240 The value of the data point is updated
successfully, as the priority used by the Event
Scheduler is greater than that assigned to the data
point during power-up.

Custom Application
Invokes DataServer_Write

75 The value of the data point is updated
successfully, as the priority used in the call to
DataServer_Write is greater than that assigned to
the data point by the Event Scheduler.

Event Scheduler Updates
Data Point

240 The value of the data point is not updated
successfully, as the priority used by the Event
Scheduler is less than that used by the last
application to update the data point.

Custom Application
Invokes
DataServer_ResetPriority

255 The custom application invokes the
DataServer_ResetPriority function to reset the
priority level assigned to the data point. This does
not result in a change in the data point’s value,
but the priority level assigned to the data point is
reset to 255, the lowest priority. At this point, all
applications will be able to write to the data point.

Event Scheduler Updates
Data Point

240 The Event Scheduler successfully updates the
value of the data point, as the priority level used
here (240) is greater than that assigned to the
data point by the DataServer_ResetPriority
function.

4.2.1.5.2 DataServer_Write and the Web Binder Application

You can use the Web Binder application to create connections that allow direct data
exchange over a TCP/IP network between two i.LON 100 servers, or between an i.LON 100
server and any Web server that can communicate via SOAP messaging such as Apache or
IIS. You can configure the Web Binder using the built-in Web pages included with the i.LON
100 server, as described in the i.LON 100 e3 User’s Guide.

i.LON 100 e3 Programmer’s Reference 4-29

Once the WebBinder has been configured, the i.LON 100 server will send a
DataServer_Write SOAP message for each update of a source data point to the destination
server. Thus, to create an application on the Web server to receive WebBinder updates from
the i.LON 100 server, you only need to implement the DataServer_Write method. You
should note that an application which can receive the DataServer_Write message from the
i.LON 100 server differs from an application that would use all of the other methods
described in this manual in that it must be a "server-side" application rather than a client
application.

You can find an example if such a server-side WebBinder application on Echelon’s website at:

http://www.echelon.com/ilon

http://www.echelon.com/ilon

4-30 i.LON 100 e3 Programmer’s Reference

4.2.1.6 DataServer_ResetPriority
You can use the DataServer_ResetPriority function to reset the priority of a data point to
255, the lowest priority.

The input parameters you supply to this function will include one or more <DPType>
elements. Each <DPType> element includes a <UCPTname> property that specifies the type
of data point to be reset with the function, as well as any number of <DP> child elements
identifying the data points to be reset. You must reference the specific data point to be reset
by its index number (UCPTindex) or its name (UCPTpointName) within each <DP> element,
as shown in the example below.

This functions resets the priority level assigned to each data point referenced in the input
parameters to 255, the lowest priority. Once the priority level assigned to a data point has
been reset to 255, all applications will be able to write to the value of that data point.

The priority level specified in the input must be a higher priority than the current priority
assigned to the data point for it to be reset. For more information on priority levels, see Data
Point Values and Priority Levels on page 4-27.

NOTE: You should not attempt to reset more than 100 data points with a single call to this
function.

The following example sets the priority of two NVL data points to 250. You could reset more
NVL data points by adding more <DP> elements. As NVC data points retain constant
values, you should not need to reset their priority with this function.

Input Parameters <iLONDataServer>
 <DPType>

<UCPTname>NVL</UCPTname>
<DP>
 <UCPTindex>9</UCPTindex>
 <UCPTpriority>250</UCPTpriority>
</DP>
<DP>
 <UCPTpointName>NVL_nvo02Switch</UCPTpointName>
 <UCPTpriority>250</UCPTpriority>
</DP>

 </DPType>
</iLONDataServer>

Output Parameters <iLONDataServer>
 <UCPTfaultCount>0</UCPTfaultCount>
 <DPType>

<UCPTindex>1</UCPTindex>
<UCPTname>NVL</UCPTname>
<DP>
 <UCPTindex>9</UCPTindex>
 <UCPTpointName>NVL_nvo01Switch</UCPTpointName>
</DP>
<DP>
 <UCPTindex>15</UCPTindex>
 <UCPTpointName>NVL_nvo02Switch</UCPTpointName>
</DP>

 </DPType>
</iLONDataServer>

i.LON 100 e3 Programmer’s Reference 4-31

4.2.1.7 DataServer_Delete
You can use the DataServer_Delete function to remove a data point from the Data Server.
The input parameters you supply to this function will include one or more <DPType>
elements. Each <DPType> element includes a <UCPTname> property that specifies the type
of data point (i.e NVL or NVC) to be deleted with the function, as well as any number of
<DP> child elements identifying the data points to be deleted. You must reference the
specific data point to be deleted by its index number (UCPTindex) or its name
(UCPTpointName) within each <DP> element, as shown in the example below.

The deletion of NVL data points requires two steps. NVL data points must be deleted from
LONMAKER before they are deleted with this function. When you delete a local NV using
LONMAKER, the status of the associated NVL data point in the Data Server will be set to
AL_ERROR. In version 1.0 of the SOAP/XML interface, the index number of the associated
NVL data point was also increased by 5000 to prevent errors from occurring when other
applications attempt to reference the deleted data point before it is removed from the Data
Server. In versions 1.1 and 3.0, the incrementation of the index is no longer necessary.

NOTE: You should not attempt to delete more than 100 data points with a single call to this
function.

The following example removes two NVL data points. You could remove more NVL data
points by adding more <DP> elements. You could also remove NVC data points in the same
call to the function by adding an additional <DPType> element.

Input Parameters <iLONDataServer>
<DPType>
 <UCPTindex>1</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTindex>0</UCPTindex>
 </DP>
 <DP>
 <UCPTpointName>NVL_nvo_003</UCPTpointName>
 </DP>
</DPType>

</iLONDataServer>

Output Parameters <iLONDataServer>
 <UCPTfaultCount>0</UCPTfaultCount>

<DPType>
 <UCPTindex>1</UCPTindex>
 <UCPTname>NVL</UCPTname>
 <DP>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvo01Switch</UCPTpointName>
 </DP>
 <DP>
 <UCPTindex>38</UCPTindex>
 <UCPTpointName>NVL_nvo_003</UCPTpointName>
 </DP>
</DPType>

</iLONDataServer>

4-32 i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 5-1

5 Data Loggers
You can use Data Loggers to monitor activity on your network. Each Data Logger will record
updates to a group of user-specified data points into a log file. The information recorded for
each update includes the value and status that the data point was updated to.

Each i.LON 100 server supports up to ten Data Loggers. The log files for each Data Logger
are stored in the /root/Data directory of the i.LON 100 server with the file name logX, where
X represents the index number assigned to the Data Logger.

You can create two kinds of Data Loggers: historical Data Loggers, and circular Data
Loggers. A historical Data Logger stops recording data point updates when its log file
becomes full. A circular Data Logger removes the records for older updates when its log file is
full, and new updates occur. The Data Logger can save either type of log file in an ASCII-text
(.csv file extension) or binary (.dat file extension) format. You can optionally store the
ASCII-text files in compressed format to save flash memory on the i.LON 100 server.

You can specify the minimum amount of time that must elapse, and the minimum change in
value required, between log entries for each data point your Data Logger is monitoring.
When an update to a data point is logged, a subsequent update for that data point will not be
logged until the minimum time period specified for the data point has elapsed, and the
minimum value change specified for the data point has been met. If an input data points is
updated more than once before the minimum time period has elapsed after a log entry has
been recorded, the older values will be discarded. Only the most recent update will be
recorded by the Data Logger when the minimum time period elapses. This allows you to
throttle the data entry into a log.

You can also define a threhold level for each Data Logger. The threshold level represents a
percentage. When the Data Logger’s log file consumes this percentage of the memory space
allocated to it, the Data Logger will enunciate that it is time to upload the log, and clear out
some of the data. The Data Logger makes this enunciation by updating the Data Logger’s
alarm data point (called NVL_nvoDlLevAlarm[X], where X represents the index number
assigned to the Data Logger) to the status AL_ALM_CONDITION. This feature may be
useful when working with historical Data Loggers, which are disabled when they become
full. You could create an Alarm Notifier to trigger an alarm notification when a log becomes
full. For more information on Alarm Notifiers, see Chapter 7 of this document.

You can access the data in a log file by manually opening the log file, or by using the
DataLogger_Read SOAP function. You can clear data from a log using the DataLogger_Clear
function, or by sending an update to the data point NVL_nviDlClear[X], where X represents
the index number of the Data Logger to be affected. This is described in more detail later in
the chapter.

5.1 DataLogger.xml
The dataLogger.xml file stores the configurations of each Data Logger that you have added to
the i.LON 100. Each Data Logger is signified by a <Log> element in the XML file. The
configuration properties contained in each <Log> element define the configuration of a Data
Logger, and are described later in this chapter.

5-2 i.LON 100 e3 Programmer’s Reference

You can create newData Loggers using the DataLogger_Set SOAP function, or by manually
editing the dataLogger.xml file. The sections following this example provide instructions and
guidelines to follow when doing so.

The following represents a sample dataLogger.xml file for an i.LON 100 with three defined
Data Loggers.

<?xml version="1.0" ?>
 <iLONDataLogger>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Log>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-02-12T14:36:51Z</UCPTlastUpdate>
 <UCPTdescription>Data Logger 0</UCPTdescription>
 <UCPTlogType>LT_CIRCULAR</UCPTlogType>
 <UCPTlogSize>100</UCPTlogSize>
 <UCPTlogFormat>LF_BINARY</UCPTlogFormat>
 <UCPTlogLevelAlarm>0.0</UCPTlogLevelAlarm>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviWHTot1</UCPTpointName>
 <UCPTlogMinDeltaTime>0.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>0</UCPTpollRate>

 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviWHTot2</UCPTpointName>

 <UCPTlogMinDeltaTime>0.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>0</UCPTpollRate>

 </Point>
 </Log>
 <Log>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-02-12T14:41:15Z</UCPTlastUpdate>
 <UCPTdescription>Data Logger 1</UCPTdescription>
 <UCPTlogType>LT_HISTORICAL</UCPTlogType>
 <UCPTlogSize>10</UCPTlogSize>
 <UCPTlogFormat>LF_TEXT</UCPTlogFormat>
 <UCPTlogLevelAlarm>30.0</UCPTlogLevelAlarm>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviDLTemp_f</UCPTpointName>
 <UCPTlogMinDeltaTime>0.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>0</UCPTpollRate>

 </Point>
 </Log>
 <Log>
 <UCPTindex>2</UCPTindex>
 <UCPTlastUpdate>2029-06-18T07:10:12Z</UCPTlastUpdate>
 <UCPTdescription>Data Logger 2</UCPTdescription>
 <UCPTlogType>LT_HISTORICAL</UCPTlogType>
 <UCPTlogSize>100</UCPTlogSize>

i.LON 100 e3 Programmer’s Reference 5-3

 <UCPTlogFormat>LF_TEXT</UCPTlogFormat>
 <UCPTlogLevelAlarm>30.0</UCPTlogLevelAlarm>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_AI_Analog</UCPTpointName>
 <UCPTlogMinDeltaTime>10.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>10</UCPTpollRate>

 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviWeekend</UCPTpointName>
 <UCPTlogMinDeltaTime>10.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>10</UCPTpollRate>

 </Point>
 <Point>
 <UCPTindex>2</UCPTindex>
 <UCPTpointName>NVL_nvoWeekday</UCPTpointName>
 <UCPTlogMinDeltaTime>10.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>10</UCPTpollRate>

 </Point>
 </Log>

 </iLONDataLogger>

5-4 i.LON 100 e3 Programmer’s Reference

5.2 Creating and Modifying the dataLogger.xml File
You can create and modify the dataLogger.xml file with the DataLogger_Set SOAP function.
The following section, DataLogger SOAP Interface, describes how to use DataLogger_Set and
the other SOAP functions provided for the Data Logger application.

Alternatively, you can create and modify the dataLogger.xml file manually and download it
to the i.LON 100 server via FTP. Echelon does not recommend this, as the i.LON 100 server
will require a reboot to read the configuration of the downloaded file. Additionally, the i.LON
100 server performs error checking on all SOAP messages it receives before writing to the
XML file. It will not perform error checking on any XML files you download via FTP, and
thus the application may not boot properly.

However, if you plan to create and manage the dataLogger.xml file manually, you should
review the rest of this chapter first, as it describes the elements and properties in the XML
file that define each Data Logger’s configuration. For instructions on creating or modifying
an XML file manually, see Manually Modifying an XML Configuration File on page 14-1.

5.2.1 DataLogger SOAP Interface
The SOAP interface for the Data Logger application includes six functions. Table 11 lists and
describes these functions. For more information on each function, see the sections following
Table 11.

Table 11 DataLogger SOAP Functions

Function Description

DataLogger_List Use this function to generate a list of the Data Loggers that you have
added to the i.LON 100 server. For more information, see
DataLogger_List on page 5-5.

DataLogger_Get Use this function to retrieve the configuration of any Data Logger that
you have added to the i.LON 100 server. For more information, see
DataLogger_Get on page 5-6.

DataLogger_Set Use this function to create a new Data Logger, or to overwrite the
configuration of an existing Data Logger. For more information, see
DataLogger_Set on page 5-11

DataLogger_Read Use this function to read some, or all, of the log entries a Data Logger
has recorded. For more information, see DataLogger_Read on page 5-13.

DataLogger_Clear Use this function to remove some, or all, of the log entries a Data Logger
has recorded from its log file. For more information, see
DataLogger_Clear on page 5-19.

DataLogger_Delete Use this function to delete a Data Logger. For more information, see
DataLogger_Delete on page 5-20.

i.LON 100 e3 Programmer’s Reference 5-5

5.2.1.1 DataLogger_List
Use the DataLogger_List function to retrieve a list of the Data Loggers that you have added
to the i.LON 100 server. The DataLogger_List function takes an empty string as its input, as
shown in the example below.

The function returns the major and minor build version numbers that the Data Logger
application is using, as well as the namespace version used the last time DataLogger_Set
was called. The function’s output also includes a <Log> element for each Data Logger that
you have added to the i.LON 100. The next section, DataLogger_Get, describes the properties
included in each of these elements.

You could use the list of <Log> elements returned by this function as input for the
DataLogger_Get function. The DataLogger_Get function would then return the configuration
of each Data Logger included in the list.

Input Parameters Empty String

Output Parameters <iLONDataLogger>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Log>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-12-21T12:31:00Z</UCPTlastUpdate>
 <UCPTdescription>Light first Floor</UCPTdescription>
 <UCPTfbName>Data Logger- 0</UCPTfbName>
 </Log>
 <Log>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-12-21T12:31:01Z</UCPTlastUpdate>
 <UCPTdescription>Energy data</UCPTdescription>
 <UCPTfbName>Data Logger- 1</UCPTfbName>
 </Log>
 <Log>
 <UCPTindex>2</UCPTindex>
 <UCPTlastUpdate>2002-12-21T12:31:02Z</UCPTlastUpdate>
 <UCPTdescription>Light second Floor</UCPTdescription>
 <UCPTfbName>Data Logger- 2</UCPTfbName>
 </Log>
</iLONDataLogger>

5-6 i.LON 100 e3 Programmer’s Reference

5.2.1.2 DataLogger_Get
You can use the DataLogger_Get function to retrieve the configuration of any Data Logger
that you have added to the i.LON 100. You must reference the Data Logger whose
configuration is to be returned by its index number in the input you supply to the function,
as shown in the example below.

Input Parameters <iLONDataLogger>

 <Log>
 <UCPTindex>0</UCPTindex>
 </Log>
</iLONDataLogger>

Output Parameters <iLONDataLogger>
 <Log>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-02-12T14:36:51Z</UCPTlastUpdate>
 <UCPTdescription>Temperature monitor</UCPTdescription>
 <UCPTfbName>Data Logger- 0</UCPTfbName>
 <UCPTlogType>LT_CIRCULAR</UCPTlogType>
 <UCPTlogSize>100</UCPTlogSize>
 <UCPTlogFormat>LF_BINARY</UCPTlogFormat>
 <UCPTlogLevelAlarm>0.0</UCPTlogLevelAlarm>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviWHTot1</UCPTpointName>
 <UCPTlogMinDeltaTime>0.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>0</UCPTpollRate>
 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviWHTot2</UCPTpointName>
 <UCPTlogMinDeltaTime>0.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>0</UCPTpollRate>
 </Point>
 </Log>
</iLONDataLogger>

The function returns a <Log> element for each Data Logger referenced in the input
parameters supplied to the function. The properties included in each element are initially
defined when the Data Logger is created. You can write to them with the DataLogger_Set
function. Table 12 describes these properties.

For more information on the DataLogger_Set function, see DataLogger_Set on page 5-11.

i.LON 100 e3 Programmer’s Reference 5-7

Table 12 DataLogger_Get Output Properties

Property Description

<UCPTindex> The index number assigned to the Data Logger must be in the range of 0-32,767.
As mentioned earlier, you can use the DataLogger_Set function to create a new
Data Logger, or to modify an existing Data Logger. If you do not specify an index
number in the input you supply to DataLogger_Set, the function will create a
new Data Logger using the first available index number.

If you specify an index number that is already being used, the function will
overwrite the configuration of the Data Logger using that index number with the
settings defined in the input parameters.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Data Logger was
updated. This timestamp uses the following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents the date the
configuration of the Data Logger was last updated. The second segment
(THH:MM:SS) represents the time of day the configuration of the Data Logger
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as Greenwich
Meridian Time (GMT). Zero (0) hours UTC is midnight in Greenwich England,
which lies on the zero longitudinal meridian. Universal time is based on a 24
hour clock, therefore, an afternoon hour such as 4 pm UTC would expressed as
16:00 UTC. The Z appended to the timestamp indicates that it is in UTC.

For example, 2002-08-15T10:13:13Z indicates a UTC time of 10:13:13 AM on
August 15, 2002.

<UCPTfbName> The functional block name assigned to the Data Logger in LONMAKER. You can
write to this property, but each time you use the i.LON 100 Configuration
Software to view the Data Logger, it will be reset to match the functional block
name defined in LONMAKER.

<UCPTdescription> A user-defined description of the Data Logger. This can be a maximum of 227
characters long.

<UCPTlogType> Either LT_HISTORICAL or LT_CIRCULAR. This indicates whether the log is a
historical or circular. A historical data log stops recording data point updates
when it is full. A circular data log removes older values when the log is full and it
receives new updates.

<UCPTlogSize> The amount of memory allocated to the log file, in kilobytes. The total size of the
log files for all Data Loggers (and Alarm Notifiers) on the i.LON 100 server can
not exceed the size of the flash memory stored in the i.LON 100 server. The
i.LON 100 server will stop writing to the log files when it only has 256 Kb of
flash memory remaining.

5-8 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTlogFormat> Either LF_TEXT, LF_BINARY or LF_COMPRESSED. This property indicates
whether the log file the Data Logger creates will be an ASCII-text formatted .csv
file (LF_TEXT), or use a proprietary binary format (LF_BINARY).

As of version 3.0, this property includes an additional value you can use:
LF_COMPRESSED. You can use this value to save the log files genreated by the
Data Logger as an ASCII-text file in compressed format (.gz file extension),
saving flash memory space on the i.LON 100 server. All you need to do is extract
the .csv file from the .gz file to view the log file. You can extract the file with the
decompress console command, as described in Appendix C of the i.LON 100 e3
User’s Guide.

<UCPTlogLevelAlarm> Enter a value between 0.0 and 100.0. The default value is 0.0. This value
represents a percentage. When the volume of the Data Logger reaches this
percentage, the status of the output data point for the Data Logger will be
updated to the condition AL_ALM_CONDITION. The output data point for each
Data Logger is called NVL_nvoDlLevAlarm[X], where X represents the index
number assigned to the Data Logger. For example, if you enter 30.0 here, the
data point would be updated when the log file has consumed 30% of the space
allocated to it.

You could create an Alarm Notifier to trigger an alarm notification each time one
of your Data Loggers reaches this level. For more information on this, see
Chapter 7, Alarm Notifier.

You can determine the current log level of a Data Logger using the
DataLogger_Read funtion, or by using the DataLogger_Read function to read the
value field of the NVL_nviDlStatus[X] data point, where X represents the index
number assigned to the Data Logger. The value assigned to the data point
represents the percentage of the Data Logger’s log file that has been used.

You can clear out a log file using the DataLogger_Clear function, or by updating
the value assigned to NVL_nviDlClear[X], where X represents the index number
assigned to the Data Logger. The value field you assign the data point when you
update it reflects how much of the total log size will be cleared. For example, if
your log is 50% full (out of 100kB), and you update the value of the data point to
"30.0 1", then the application would go to the beginning of the log and clear out
the first 30% of the log (in this case, 30K).

<Point> The data points the Data Logger will record updates for are defined by a list of
<Point> elements.

When any of the data points defined by these elements are updated, the Data
Logger will record the updates into its log file. There are several properties you
need to configure within each <Point> element that determine when an update
to that data point will be logged. For descriptions of these properties, see Table
13 below.

A Data Logger can record updates for as many data points as you want.

i.LON 100 e3 Programmer’s Reference 5-9

The data points a Data Logger monitors are defined by a list of <Point> elements. Table 13
describes the properties that should be defined within each <Point> element.

Table 13 DataLogger_Get <Point> Element Properties

Property Description

<UCPTpointName> The name of the data point to be monitored by the Data Logger,
as defined in the i.LON 100 Data Server.

<UCPTlogMinDeltaTime> The minimum amount of time, in seconds, that must pass
between log entries for the data point. All updates will be logged
if this value is 0.0, or not defined.

This property has a maximum value of 214,748,364.0 seconds.
The default is 0.0 seconds.

<UCPTlogMinDeltaValue> This property applies to scalar data points only. Specify the
change in value required for an entry to the log to be made. For
example, if this property is set to 30.0, the value of the data
point being monitored must change by at least 30.0 during an
update for the change to be recorded by the Data Logger. All
updates are logged if this value is 0.0, or not defined.

This property has minimum and maximum floating point values
of +/-3.402823466e+038.

NOTE: If the format type used by the data point being
monitored is SNVT_temp_p#US or SNVT_temp#US, then the
value of this property returned by the DataLogger_Get function
will be displayed using the SNVT_temp_f#US_diff format type.
This rule applies to all formats that use the #US specifier.

5-10 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTpollRate> The poll rate for the Data Logger can be between 0 and
214,748,364.0 seconds. The Data Logger will check for updates
to the data point at this interval. Echelon recommends that you
set this to a value greater than or equal to the value specified for
the <UCPTlogMinDeltaTime> property if you do not want to poll
data before updates to the log are possible.

If you use the default poll rate of 0 seconds, the Data Logger will
record each updates to the data points it is monitoring into the
log, assuming that the time period defined by the
<UCPTlogMinDeltaTime> property has elapsed and the change
in value specified by the <UCPTlogMinDeltaValue> property
has been met.

You should note that other i.LON 100 applications may cause
the Data Server to poll this data point’s value as well. The poll
rate specified by these applications should be compatible with
each other. For example, if an Alarm Generator is polling a data
point every 15 seconds, and the Data Logger is polling that data
point every 10 seconds, then the Data Server will have to poll
the value of the data point every five seconds to ensure that each
application gets a current value for each poll.

It is important to note this as you set poll rates for various
applications, as you may end up causing more polls than is
efficient on your network. For example, if an Alarm Generator is
polling a data point every 9 seconds and a Data Logger is polling
a data point every 10 seconds, the Data Server would have to
poll the data point every second to ensure that each application
polls for a current value. This may create a significant amount of
undesrired traffic.

i.LON 100 e3 Programmer’s Reference 5-11

5.2.1.3 DataLogger_Set
Use the DataLogger_Set function to create new Data Loggers, or to overwrite the
configuration of existing Data Loggers. The Data Loggers to be created or written to are
signified by a list of <Log> elements in the input parameters supplied to the function. The
properties you must define within each <Log> element are the same, whether you are
creating a new Data Logger or modifying an existing Data Logger. The previous section,
DataLogger_Get, describes these properties.

NOTE: When modifying an existing Data Logger, any optional properties left out of the input
will be erased. Old values will not be carried over, so you must fill in every property when
writing to a Data Logger, even if you are not changing all of the values.

The first invocation of the DataLogger_Set function will generate the dataLogger.xml file in
the /root/Config/Software directory of the i.LON 100 server, if the file does not already
exist.

When creating or modifying a Data Logger with DataLogger_Set, you may want to use
output from the DataLogger_Get function as the basis for your input. You would then only
need to modify the values of each property to match the new configuration you want, as
opposed to re-creating an entire string like the one shown below.

The following example creates a Data Logger that records all updates for two data points,
one named NVL_nviWHTot1 and the other named NVL_nviWHTot2.

Input Parameters <iLONDataLogger>
 <Log>
 <UCPTdescription>Data Logger 1</UCPTdescription>
 <UCPTfbName></UCPTfbName>
 <UCPTlogType>LT_CIRCULAR</UCPTlogType>
 <UCPTlogSize>100</UCPTlogSize>
 <UCPTlogFormat>LF_BINARY</UCPTlogFormat>
 <UCPTlogLevelAlarm>0.0</UCPTlogLevelAlarm>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviWHTot1</UCPTpointName>
 <UCPTlogMinDeltaTime>0.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>0.0</UCPTpollRate>
 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviWHTot2</UCPTpointName>
 <UCPTlogMinDeltaTime>0.0</UCPTlogMinDeltaTime>
 <UCPTlogMinDeltaValue>0</UCPTlogMinDeltaValue>
 <UCPTpollRate>0</UCPTpollRate>
 </Point>
 </Log>
 </iLONDataLogger>

5-12 i.LON 100 e3 Programmer’s Reference

Output Parameters <iLONDataLogger>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Log>
 <UCPTindex>3</UCPTindex>
 </Log>
</iLONDataLogger>

i.LON 100 e3 Programmer’s Reference 5-13

5.2.1.4 DataLogger_Read
Use the DataLogger_Read function to retrieve the entries in the log files generated by your
Data Loggers. You can specify which log entries the function will return by filling the
properties described in Table 14 into the input you supply to the function.

Table 14 DataLogger_Read Input Properties

Property Description

<UCPTindex>
The index number of the Data Logger to return log entries for.

<UCPTpointName>
The name of the data point for which log entries are to be returned. If
you do not fill in this property, the function will return log entries for
all data points the Data Logger is monitoring.

<UCPTcount>
Use this field to specify the maximum number of log entries the
function will return. If you do not fill in this property, the function will
return all log entries for the applicable data point (or data points) that
were logged during the interval defined by the <UCPTstart> and
<UCPTstop> properties.

NOTE: You should not attempt to read more than 150 log entries with
a single call to this function.

5-14 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTstart>
<UCPTstop> Use these fields to specify a time interval for the log entries to be

returned. You can specify a start and stop time, or just a stop time.

If you specify a start and stop time and the number of log entries
during this interval exceeds the maximum defined by the
<UCPTcount> property, the function will return the first group of log
entries recorded during the interval.

If you only specify a start time, the function will return entries from
the log starting at the start time until it reaches the end of the log file,
or until it has returned the maximum number of entries (as defined by
the <UCPTcount> property).

If you only specify a stop time and the number of log entries during this
interval exceeds the maximum defined by the <UCPTcount> property,
the function will return the group of entries from the stop time going
backwards in the log until the maximum number of log entries have
been returned. If the <UCPTcount> property was not defined, the
function will return all log entries in the log, going backward from the
stop time. This may be useful for applications that need to read the
newest information logged.

If you do not enter a start or stop time, the function will return all log
entries for the applicable data points, up to the maximum.

You must enter the <UCPTstart> and <UCPTstop> properties as
timestamps in local time, with appended time zone indicators to denote
the difference between local time and UTC. For more information on
this format, see Local Times and Coordinated Universal Time on page
5-14.

5.2.1.4.1 Local Times and Coordinated Universal Time
The timestamps for the <UCPTstart> and <UCPTstop> properties conform to the ISO 8601
standard. They are expressed in local time, with appended time zone indicators that show
the relationship to the Coordinated Universal Time (UTC).

UTC is an international time standard and is the current term for what was commonly
referred to as Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight in
Greenwich England, which lies on the zero longitudinal meridian. Universal time is based on
a 24 hour clock, therefore, afternoon hours such as 4 pm UTC are expressed as 16:00 UTC.
The timestamp uses the following format:

[YYYY-MM-DD]T[HH:MM:SS.MSS]+/-[HH:MM]

The first segment of the timestamp [YYYY-MM-DD] represents the date. The second
segment (T[HH:MM:SS.MSS]) of the timestamp represents the local time, expressed in
hours, minutes, seconds and milliseconds.

The third segment of the timestamp (+/-[HH:MM]) represents the difference between the
local time listed in the second segment and UTC. This segment begins with a + or a -. The +
indicates that the local time is ahead of UTC, and the - indicates the local time is behind

i.LON 100 e3 Programmer’s Reference 5-15

UTC. If the local time matches UTC, the third segment will be replaced by the letter Z.
Consider the following example:

2002-08-13T10:24:37.111+02:00

This timestamp indicates a local date and time of 10:24 AM and 37.111 seconds, on August
13, 2002. Because the third part of the segment reads +02:00, we know the local time here is
2 hours ahead of UTC.

5.2.1.4.2 Sample SOAP Message

The following example returns a list of up to three log entries made by the Data Logger with
index number 2 between 1/27/2002 02:00 and 11/28/2002 14:30:00 for the NVL_nviDlCount2
data point.

Input
Parameters

<iLONDataLogger>
 <Log>
 <UCPTindex>2</UCPTindex>
 <UCPTpointName>NVL_nviDlCount2</UCPTpointName>
 <UCPTstart>2002-01-27T02:00:00.000+01:00</UCPTstart>
 <UCPTstop>2002-11-28T04:30:00.000+01:00</UCPTstop>
 <UCPTcount>3</UCPTcount>
 </Log>
</iLONDataLogger>

5-16 i.LON 100 e3 Programmer’s Reference

Output
Parameters

<iLONDataLogger>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Log>
 <UCPTindex>2</UCPTindex>
 <UCPTfileName>/root/data/log2.dat</UCPTfileName>
 <UCPTstart>2002-08-29T10:30:11.000-07:00</UCPTstart>
 <UCPTstop>2002-08-29T14:34:20.000-07:00</UCPTstop>
 <UCPTlastEvent>2003-08-29T14:34:20.000-07:00</UCPTlastEvent>
 <UCPTlogLevel>8.5</UCPTlogLevel>
 <UCPTtotalCount>57</UCPTtotalCount>
 <Element>
 <UCPTpointName>NVL_nviDlCount2</UCPTpointName>
 <UCPTlocation>iLON100</UCPTlocation>
 <LogSourceAddress>

 <UCPTsubnet>0</UCPTsubnet>
 <UCPTnodeID>0</UCPTnodeID>

 </LogSourceAddress>
 <UCPTlogTime>2002-08-29T10:30:11.000-07:00</UCPTlogTime>
 <UCPTvalue>0</UCPTvalue>
 <UCPTunit>units (delta)</UCPTunit>
 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>12</UCPTpriority>
 </Element>
 <Element>
 <UCPTpointName>NVL_nviDlCount2</UCPTpointName>
 <UCPTlocation>iLON100</UCPTlocation>
 <LogSourceAddress>

 <UCPTsubnet>1</UCPTsubnet>
 <UCPTnodeID>3</UCPTnodeID>

 </LogSourceAddress>
 <UCPTlogTime>2002-08-29T10:31:00.000-07:00</UCPTlogTime>
 <UCPTvalue>5</UCPTvalue>
 <UCPTunit>units (delta)</UCPTunit>
 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>12</UCPTpriority>
 </Element>
 <Element>
 <UCPTpointName>NVL_nviDlCount2</UCPTpointName>
 <UCPTlocation>iLON100</UCPTlocation>
 <LogSourceAddress>

 <UCPTsubnet>2</UCPTsubnet>
 <UCPTnodeID>4</UCPTnodeID>

 </LogSourceAddress>
 <UCPTlogTime>2002-08-29T10:32:00.000-07:00</UCPTlogTime>
 <UCPTvalue>20</UCPTvalue>
 <UCPTunit>units (delta)</UCPTunit>
 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>
 <UCPTpriority>12</UCPTpriority>
 </Element>
 </Log>
</iLONDataLogger>

The DataLogger_Read function includes several global properties at the beginning of the
output parameters. These properties provide information about the Data Logger and the log
file the entries were read from. Table 15 describes these properties.

i.LON 100 e3 Programmer’s Reference 5-17

Table 15 DataLogger_Read Global Output Properties

Property Description

<UCPTindex> The index number assigned the Data Logger.

<UCPTfileName> The name of the log file the Data Logger is using.

<UCPTstart>

<UCPTstop>

These properties represent timestamps indicating the log times of
the first and last log entries in the log file. The timestamps are
shown in local time, with appended time zone indicators showing
the difference between local time and UTC. For more information
on this, see Local Times and Coordinated Universal Time on page
5-14.

<UCPTlastEvent> This property contains a timestamp indicating the last time an
entry in the log file was deleted with the DataLogger_Clear
function, or the last time an entry in the log was modified with the
DataLoggerWrite function. The timestamp is displayed in local
time, with an appended time zone indicator that indicates the
difference between local time and UTC. For more information on
this, see Local Times and Coordinated Universal Time on page 5-
14.

<UCPTlogLevel> The volume of the log file that has been consumed, as a
percentage. For example, the value 90.0 indicates that the log is
90% full.

<UCPTtotalCount> This property contains the total number of entries contained in the
data log read by the function.

The function also returns an <Element> element describing each log entry that met the
selection criteria you defined in the input parameters. Table 16 describes the properties
listed within each of these elements.

Table 16 DataLogger Read <Element> Properties

Property Description

<UCPTpointName> The name of the data point updated.

<LogSourceAddress>

The <LogSourceAddress> element contains two properties: the
<UCPTsubnet> property, which returns the Subnet ID of the
device containing the data point the log entry is for, and the
<UCPTnodeID> property, which contains the device’s Node ID.

<UCPTlogTime> A timestamp indicating the time that the log entry was made.
This timestamp is shown in local time, with an appended time
zone indicator showing the difference between local time and
UTC. For more information on this, see Local Times and
Coordinated Universal Time on page 5-14.

5-18 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTvalueDef> Indicates the value definition currently being used by the data
point. Value defintions are strings that represent preset values.
They are created when a data point is added to the Data Server.
For more information on this, see Chapter 4, Data Server.

This property will be returned empty if the data point was not
using a value definition after the update.

<UCPTvalue> The value the data point was updated to.

<UCPTunit> The unit type of the data point.

<UCPTpointStatus> The status the data point was updated to.

<UCPTpriority> The priority level currently assigned to the data point.

i.LON 100 e3 Programmer’s Reference 5-19

5.2.1.5 DataLogger_Clear
You can use the DataLogger_Clear function to remove log entries from a Data Logger’s log
file. You can specify which Data Logger is to be affected, and which log entries will be
removed, by configuring the properties described in Table 17 into the input parameters you
supply to the function.

NOTE: This function only deletes the log entries. You can delete the Data Logger itself with
the DataLogger_Delete function.

Table 17 DataLogger_Clear Input Properties

Parameter Description

<UCPTindex>
The index number of the Data Logger to be affected.

<UCPTpointName>
The name of the data point whose log entries are to be deleted. If you
do not fill in this property, the function will delete log entries for all
data points that the Data Logger is monitoring.

<UCPTcount>
Use this property to specify the maximum number of log entries the
function will delete. If you do not fill in this property, the function will
delete all log entries for the applicable data point, or data points, that
occurred within the interval defined by the <UCPTstart> and
<UCPTstop> properties.

<UCPTstart>
<UCPTstop> Use these fields to specify a time interval for the log entries to be

deleted. You can specify a start and stop time, or just a stop time.

If you specify a start and stop time and the number of log entries
during this interval exceeds the count entered, the function will delete
the first group of log entries recorded during the interval.

If you only specify a stop time and the number of log entries before this
time exceeds the count entered, the function will delete the first group
of log entries recorded before the stop time.

If you do not enter a start or stop time, the function will delete all log
entries for the applicable data points, up to the maximum.

You must enter the <UCPTstart> and <UCPTstop> properties as
timestamps in local time, with appended time zone indicators to denote
the difference between local time and UTC. For more information on
this format, see Local Times and Coordinated Universal Time on page
5-14.

The following call to DataLogger_Clear deletes up to 200 log entries for data point
NVL_nviDlCount2. These entries must have occurred between 1/27/2002 and 11/28/2002
(both at one hour ahead of UTC) to be deleted.

5-20 i.LON 100 e3 Programmer’s Reference

Input Parameters <iLONDataLogger>
 <Log>
 <UCPTindex>2</UCPTindex>
 <UCPTpointName>NVL_nviDlCount2</UCPTpointName>
 <UCPTstart>2002-01-27T00:00:00.000+01:00</UCPTstart>
 <UCPTstop>2002-11-28T00:00:00.000+01:00</UCPTstop>
 <UCPTcount>200</UCPTcount>
 </Log>
</iLONDataLogger>

Output Parameter <iLONDataLogger>
 <Log>
 <UCPTindex>2</UCPTindex>
 <UCPTfileName>/root/data/log2.dat</UCPTfileName>
 <UCPTstart>2002-08-29T10:32:00.000-07:00</UCPTstart>
 <UCPTstop>2002-08-29T14:34:20.000-07:00</UCPTstop>
 <UCPTlogLevel>8.5</UCPTlogLevel>
 </Log>
</iLONDataLogger>

The DataLogger_Clear function includes several properties in the output parameters. These
properties provide information about the Data Logger and the log file affected by the
function. Table 18 describes these properties.

Table 18 DataLogger_Read Output Properties

Property Description

<UCPTindex> The index number assigned to the Data Logger.

<UCPTfileName> The name of the log file the Data Logger is using.

<UCPTstart>

<UCPTstop>

These properties represent timestamps indicating the log times of
the first and last log entries in the log file. The timestamps are
shown in local time, with appended time zone indicators showing
the difference between local time and UTC. For more information
on this, see Local Times and Coordinated Universal Time on page
5-14.

<UCPTlogLevel> The volume of the log file that has been consumed, as a
percentage. For example, the value 90.0 indicates that the log is
90% full.

i.LON 100 e3 Programmer’s Reference 5-21

5.2.1.6 DataLogger_Delete
You can use the DataLogger_Delete function to delete a Data Logger. You must reference the
Data Logger to be deleted by its index number in the input you supply to the function, as in
the example below.

Input Parameters <iLONDataLogger>
 <Log>
 <UCPTindex>0</UCPTindex>
 </Log>
</iLONDataLogger>

Output Parameters <iLONDataLogger>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Log>
 <UCPTindex>0</UCPTindex>
 </Log>
</iLONDataLogger>

5-22 i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 6-1

6 Alarm Generator
Use the Alarm Generator application to generate alarms based on the values of the data
points in your network. Each time you create an Alarm Generator, you will select an input
data point and a compare data point. The Alarm Generator will compare the values of these
data points each time either one is updated. You will select the function the Alarm Generator
will use to make the comparison. If the result of the comparison is true, an alarm will be
generated, and the status (UCPTpointStatus) of the input data point will be updated to an
alarm condition.

For example, you could select GreaterThan as the comparison function. The Alarm Generator
would generate an alarm each time either data point is updated, and the value of the input
data point is greater than the value of the compare data point. The Alarm Generator
application includes many other comparison functions like this, such as Less Than, Less
Than or Equal, Greater Than or Equal, Equal, and Null. Each comparison function is
described in detail later in the chapter.

The Alarm Generator application also includes a comparison function called Limits. When
you select this comparison function, you will specify four offset limits for the Alarm
Generator. The four offset limits allow you to generate alarms based on how much the value
of the input data point exceeds, or is exceeded by, the value of the compare data point. If the
compare or input data points are updated, and the difference between their values exceeds
any of the offset limits, an alarm will be generated.

You will define a hysteresis level for each alarm offset limit when you use the Limits
comparison function. After an alarm has been generated based on an offset limit, the value of
the input data point must return to the hysteresis level defined for that offset limit before
the alarm clears, and before another alarm can be generated based on that offset limit. As a
result, the Alarm Generator will not generate an additional alarm each time the input data
point is updated after it reaches an alarm condition, but before it has returned to a normal
condition. The relationship between the offset values, hysteresis levels, and alarm data
points is described in more detail in the following sections.

All of the comparison functions have features like this that will allow you to throttle alarm
generation. You can specifiy an interval (UCPTalarmSetTime) that must elapse between
alarm generations for a data point. You can also define an interval (UCPTalarmClrTime)
that must elapse after an alarm has returned to normal status before that alarm will be
cleared. These features prevent the Alarm Generator from triggering multiple alarms each
time the input data point reaches an alarm condition.

You can optionally select up to two alarm data points for each Alarm Generator, one of type
SNVT_alarm and one of type SNVT_alarm2. The <UCPTpointStatus> of these data points,
and of the input data point, will be updated to an alarm condition each time the Alarm
Generator generates an alarm. The alarm data points are described in more detail later in
the chapter.

You can use the Alarm Notifier application to generate e-mail messages when the alarm and
input data points are updated to alarm conditions. For more information on this, see Chapter
7, Alarm Notifier.

6-2 i.LON 100 e3 Programmer’s Reference

6.1 AlarmGenerator.xml
The alarmGenerator.xml file stores the configuration of the Alarm Generators that you have
added to the i.LON 100. Each Alarm Generator is signified by an <Alarm> element in the
XML file.

You can create new Alarm Generators using the AlarmGenerator_Set SOAP function, or by
manually editing the alarmGenerator.xml file, and rebooting the i.LON 100. The sections
following this example provide instructions and guidelines to follow when doing so.

The following represents a sample alarmGenerator.xml file for an i.LON 100 with one
defined Alarm Generator.

<?xml version="1.0" ?>
 <iLONAlarmGenerator>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Alarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-06-20T12:37:53Z</UCPTlastUpdate>
 <UCPTdescription>Heating Control</UCPTdescription>
 <UCPTfbName>Alarm Generator- 0</UCPTfbName>
 <SCPTalrmIhbT>30.000000</SCPTalrmIhbT>
 <UCPTalarmPriority>PR_LEVEL_1</UCPTalarmPriority>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 <UCPTpollRate>0</UCPTpollRate>
 <UCPTalarm2Description>none</UCPTalarm2Description>
 <InputDataPoint>
 <UCPTpointName>NVL_DataValueA1</UCPTpointName>

 </InputDataPoint>
 <CompareDataPoint>
 <UCPTpointName>NVL_CompareValueA1</UCPTpointName>

 </CompareDataPoint>
 <AlarmDataPoint>
 <UCPTpointName>NVL_AlarmGenOut1</UCPTpointName>

 </AlarmDataPoint>
 <Alarm2DataPoint>
 <UCPTpointName>NVL_AlarmGenOut2</UCPTpointName>

 </Alarm2DataPoint>
 <UCPTcompFunction>FN_LIMIT</UCPTcompFunction>
 <UCPTalarmSetTime>30.000000</UCPTalarmSetTime>
 <UCPTalarmClrTime>45.000000</UCPTalarmClrTime>
 <UCPTlowLimit1Offset>5.0</UCPTlowLimit1Offset>
 <UCPTlowLimit2Offset>5.0</UCPTlowLimit2Offset>
 <UCPThighLimit1Offset>5.0</UCPThighLimit1Offset>
 <UCPThighLimit2Offset>5.0</UCPThighLimit2Offset>
 <SCPThystHigh1>50.00</SCPThystHigh1>
 <SCPThystHigh2>75.00</SCPThystHigh2>
 <SCPThystLow1>50.00</SCPThystLow1>
 <SCPThystLow2>75.00</SCPThystLow2>

 </Alarm>
 </iLONAlarmGenerator>

i.LON 100 e3 Programmer’s Reference 6-3

6.2 Creating and Modifying the alarmGenerator.xml File
You can create and modify the alarmGenerator.xml file with the AlarmGenerator_Set SOAP
function. The following section, Alarm Generator SOAP Interface, describes how to use
AlarmGenerator_Set, and the other SOAP functions provided for the Alarm Generator
application.

Alternatively, you can create and modify the alarmGenerator.xml file manually using an
XML editor, and download the file to the i.LON 100 server via FTP. Echelon does not
recommend this, as the i.LON 100 server will require a reboot to read the configuration of
the downloaded file. Additionally, the i.LON 100 server performs error checking on all SOAP
messages it receives before writing to the XML file. It will not perform error checking on any
XML files you download via FTP, and thus the application may not boot properly.

However, if you plan to create and manage the XML file manually, you should review the
rest of this chapter first, as it describes the elements and properties in the XML file that
define each Alarm Generator’s configuration. For instructions on creating or modifying an
XML file manually, see Manually Modifying an XML Configuration File on 14-1.

6.2.1 Alarm Generator SOAP Interface
The SOAP interface for the Alarm Generator application includes four functions. Table 19
lists and describes these functions. For more information, see the sections following Table 19.

Table 19 Alarm Generator SOAP Functions

Function Description

AlarmGenerator_List Use this function to generate a list of the Alarm Generators that
you have added to the i.LON 100 server. For more information, see
AlarmGenerator_List on page 6-4.

AlarmGenerator_Get Use this function to retrieve the configuration of an Alarm
Generator. For more information, see AlarmGenerator_Get on page
6-5.

AlarmGenerator_Set Use this function to create a new Alarm Generator, or to overwrite
the configuration of an exisiting Alarm Generator. For more
information, see AlarmGenerator_Set on page 6-16.

AlarmGenerator_Delet
e

Use this function to delete an Alarm Generator. For more
information, see AlarmGenerator_Delete on page 6-17.

6-4 i.LON 100 e3 Programmer’s Reference

6.2.1.1 AlarmGenerator_List
Use the AlarmGenerator_List function to retrieve a list of the Alarm Generators that you
have added to the i.LON 100 server. The AlarmGenerator_List function takes an empty
string as its input, as shown in the example below.

The function returns the the major and minor build version numbers that the Alarm
Generator application is using in its output, as well as the namespace version used the last
time the AlarmGenerator_Set function was called. The output also includes an <Alarm>
element for each Alarm Generator that you have added to the i.LON 100 server. The next
section, AlarmGenerator_Get, describes the properties included in each <Alarm> element.

You could use the list of <Alarm> elements returned by this function as input for the
AlarmGenerator_Get function. The AlarmGenerator_Get function would then return the
configuration of every Alarm Generator included in the list.

Input
Parameters

Empty String

Output
Parameters

<iLONAlarmGenerator>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Alarm>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Light Control</UCPTdescription>
 <UCPTfbName>Alarm Generator- 0</UCPTfbName>
 <UCPTlastUpdate>2002-06-20T12:37:05Z</UCPTlastUpdate>
 </Alarm>
 <Alarm>
 <UCPTindex>1</UCPTindex>
 <UCPTdescription> Heating Control </UCPTdescription>
 <UCPTfbName> Alarm Generator- 1</UCPTfbName>
 <UCPTlastUpdate>2002-06-25T18:45:18Z </UCPTlastUpdate>
 </Alarm>
</iLONAlarmGenerator>

i.LON 100 e3 Programmer’s Reference 6-5

6.2.1.2 AlarmGenerator_Get
You can use the AlarmGenerator_Get function to retrieve the configuration of any Alarm
Generator that you have added to the i.LON 100 server. You must reference the Alarm
Generator whose configuration is to be retrieved by its index number in the input
parameters you supply to the function, as in the example below.

Input Parameters <iLONAlarmGenerator>
 <Alarm>
 <UCPTindex>1</UCPTindex>
 </Alarm>
</iLONAlarmGenerator>

Output Parameters <iLONAlarmGenerator>
 <Alarm>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2004-05-14T19:21:39Z</UCPTlastUpdate>
 <UCPTdescription>Heating Controller</UCPTdescription>
 <UCPTfbName>Alarm Generator- 1</UCPTfbName>
 <SCPTalrmIhbT>45.000000</SCPTalrmIhbT>
 <UCPTalarmPriority>PR_LEVEL_1</UCPTalarmPriority>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 <UCPTpollRate>0.0</UCPTpollRate>
 <UCPTalarm2Description>none</UCPTalarm2Description>
 <InputDataPoint>
 <UCPTpointName>NVL_nviTemp0</UCPTpointName>
 </InputDataPoint>
 <CompareDataPoint>
 <UCPTpointName>NVL_nviTemp1</UCPTpointName>
 </CompareDataPoint>
 <AlarmDataPoint>
 <UCPTpointName>NVL_nvoAlarm0</UCPTpointName>
 </AlarmDataPoint>
 <Alarm2DataPoint>
 <UCPTpointName>NVL_nvoAlarm2</UCPTpointName>
 </Alarm2DataPoint>
 <UCPTcompFunction>FN_LIMIT</UCPTcompFunction>
 <UCPTalarmSetTime>30.000000</UCPTalarmSetTime>
 <UCPTalarmClrTime>45.000000</UCPTalarmClrTime>
 <UCPTlowLimit1Offset>4.0</UCPTlowLimit1Offset>
 <UCPTlowLimit2Offset>8.0</UCPTlowLimit2Offset>
 <UCPThighLimit1Offset>4.0</UCPThighLimit1Offset>
 <UCPThighLimit2Offset>8.0</UCPThighLimit2Offset>
 <SCPThystHigh1>2.0</SCPThystHigh1>
 <SCPThystHigh2>2.0</SCPThystHigh2>
 <SCPThystLow1>2.0</SCPThystLow1>
 <SCPThystLow2>2.0</SCPThystLow2>
 </Alarm>
</iLONAlarmGenerator>

The function returns an <Alarm> element for each Alarm Generator referenced in the input
parameters. The properties contained within each <Alarm> element are initially defined
when you create the Alarm Generator. You can write to them with the AlarmGenerator_Set
function. Table 20 describes these properties.

6-6 i.LON 100 e3 Programmer’s Reference

When creating or writing to an Alarm Generator with the AlarmGenerator_Set function, all
properties are mandatory unless otherwise noted. For more information on the
AlarmGenerator_Set function, see AlarmGenerator_Set on page 6-16.

Table 20 AlarmGenerator_Get Output Properties

Property Description

<UCPTindex> The index number assigned to the Alarm Generator must be in the range of
0-32,767. As mentioned earlier, you can use the AlarmGenerator_Set
function to create a new Alarm Generator, or to modify an existing Alarm
Generator. If you do not specify an index number in the input you supply to
AlarmGenerator_Set, the function will create a new Alarm Generator
using the first available index number.

If you specify an index number that is already being used, the function will
overwrite the configuration of the Alarm Generator using that index
number with the settings defined in the input.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Alarm
Generator was updated. This timestamp uses the following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents the date
the configuration of the Alarm Generator was last updated. The second
segment (THH:MM:SS) represents the time of day the configuration of the
Alarm Generator was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as Greenwich
Meridian Time (GMT). Zero (0) hours UTC is midnight in Greenwich
England, which lies on the zero longitudinal meridian. Universal time is
based on a 24 hour clock, therefore, an afternoon hour such as 4 pm UTC
would expressed as 16:00 UTC. The Z appended to the timestamp indicates
that it is in UTC.

For example, 2002-08-15T10:13:13Z indicates a UTC time of 10:13:13 AM
on August 15, 2002.

<UCPTfbName> The functional block name assigned to the Alarm Generator in LONMAKER.
You can write to this property, but each time you use the i.LON 100
Configuration Software to view the Alarm Generator, it will be reset to
match the functional block name defined in LONMAKER.

<UCPTdescription> Optional. A user-defined description of the Alarm Generator. This can be a
maximum of 227 characters long.

<SCPTalrmIhbT> The time period for which alarm generation is to be inhibited after the
application is enabled. This period must be entered in seconds, as a double
precision floating point value.

i.LON 100 e3 Programmer’s Reference 6-7

Property Description

<UCPTalarmPriority> Specifies the alarm priority that will be reported in the priority_level field
of the alarm data points for the Alarm Generator. The alarm priority is
independent of the alarm type. For a list of valid alarm priorities, see
Alarm Priority Levels on page 6-11.

<UCPTpollOnResetDelay> The time period to wait after enabling or starting the application before
polling the value of the input data point. This field has a range of 0.0-
6553.0 seconds.

When the default value of 0.0 seconds is used, the Alarm Generator will
resume polling the input data point at the interval specified by the
<UCPTpollRate> property immediately after a reset.

<UCPTpollRate> The poll rate for the input and compare data points, in seconds. When this
value is greater than 0, the Alarm Generator will poll the values of the
input and compare data points each time this interval expires. This field
has a range of 0-214,748,364 seconds.

When this value is 0, the Alarm Generator will not poll the value of the
input and compare data points, and will only check for alarm conditons
when it receives event-driven updates to the data points.

You should note that other i.LON 100 applications may cause the Data
Server to poll this data point’s value as well. The poll rate specified by
these applications should be compatible with each other. For example, if an
Alarm Generator is polling a data point every 15 seconds, and the Data
Logger is polling that data point every 10 seconds, then the Data Server
will have to poll the value of the data point every five seconds to ensure
that each application gets a current value for each poll.

It is important to note this as you set poll rates for various applications, as
you may end up causing more polls than is efficient on your network. For
example, if an Alarm Generator is polling a data point every 9 seconds and
a Data Logger is polling a data point every 10 seconds, the Data Server
would have to poll the data point every second to ensure that each
application polls for a current value. This may create a significant amount
of undesired traffic.

<UCPTalarm2Description> Optional. Enter the description field of the SNVT_alarm2 data point
selected for the Alarm Generator. This data point can be selected by
defining the <Alarm2DataPoint> property. This description could include
the value that increased and caused the alarm, an alarm or error code
defined by the manufacturer, or the alarm limit. This can be a maximum of
22 characters long, and will be inserted in the description field of the
SNVT_alarm2 data point each time an alarm is generated.

6-8 i.LON 100 e3 Programmer’s Reference

Property Description

<InputDataPoint> The input data point for this Alarm Generator. The data point must be
referenced by its <UCPTpointName>.

Each time this data point is updated, its value will be compared to the
value of the compare data point using the comparison function defined by
the <UCPTcompFunction> property. If the result of the comparison is
True, an alarm will be generated.

The <UCPTpointSatus> of this data point will be updated to the status
AL_ALM_CONDITION when an alarm is generated, unless the
<UCPTcompFunction> selected for the Alarm Generator is FN_LIMIT. In
this case, the status will be updated to any of four alarm statuses, based on
the offset limit that caused the alarm. For more information on this, see
Hysteresis Levels and Offset Limits on page 6-13.

You can register the input data point with the Alarm Notifier application
to generate alarm notifications and e-mail messages each time it is
updated to an alarm status. For more information on this, see Alarm
Notifier on page 7-1.

<CompareDataPoint> The compare data point for this Alarm Generator. The data point must be
referenced by the <UCPTpointName> assigned to it in the Data Server,
and must use the same format type as the input data point. The value of
this data point will be compared to the value of the input data point each
time either point is updated.

Use an NVC data point as the compare data point if you want your alarm
generator to generate alarms based on a constant value configured through
software, as opposed to a live value taken from the network.

i.LON 100 e3 Programmer’s Reference 6-9

Property Description

<AlarmDataPoint>

<Alarm2DataPoint>

Optional. These properties define the Alarm Generator’s alarm data points.
Each data point must be referenced by the <UCPTpointName> assigned to
it in the Data Server. The data point chosen for the <AlarmDataPoint>
must use the format type SNVT_alarm. The data point chosen for the
<Alarm2DataPoint> must use the format type SNVT_alarm2.

Use a SNVT_alarm data point if your system can handle this LonMark
standard type for alarming. Use a SNVT_alarm2 data point if your system
will require the additional information you can provide with the
<UCPTalarm2Description> property. If your system can directly access the
<UCPTpointStatus> property of the input data point, you may not need to
use alarm data points, as your Alarm Generators will update the input
data point to an alarm status each time they generate an alarm. You can
read this property from a data point with the DataPointRead or
DataServer_Read functions.

The <UCPTpointSatus> of the alarm data points will be updated to the
status AL_ALM_CONDITION when an alarm is generated, unless the
<UCPTcompFunction> is FN_LIMIT. In this case, the status will be
updated to any of four alarm statuses, based on the offset limit that caused
the alarm. For more information on this, see Hysteresis Levels and Offset
Limits on page 6-13.

You can register these alarm data points with the Alarm Notifier
application to generate alarm notifications and e-mail messages each time
they are updated to an alarm status. For more information on this, see
Alarm Notifier on page 7-1.

<UCPTcompFunction> Specifies the function that the Alarm Generator will use to compare the
values of the input data point and the compare data point. For descriptions
of the comparison functions you can use, see Comparison Functions on
page 6-12.

<UCPTalarmSetTime> Specifies the time period an alarm condition must exist before the Alarm
Generator will consider it a valid alarm and generate an alarm. The time
period must be entered in seconds, as a double precision floating point
value.

<UCPTalarmClrTime> Specifies the time period to wait after the condition that caused an alarm
has returned to normal status before the alarm will be cleared. The time
period must be entered in seconds, as a double precision floating point
value.

6-10 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTlowLimit1Offset>

<UCPTlowLimit2Offset>

<UCPThighLimit1Offset>

<UCPThighLimit2Offset>

Enter a scalar value for each of these properties. These values will be used
as the offset limits for the Alarm Generator when the
<UCPTcompFunction> property is set to FN_LIMIT. In this case, alarms
will be generated when any of the following conditions are true:

• Value of Input Data Point> Value of Compare Data Point +highLimit1Offset

• Value of Input Data Point > Value of Compare Data Point +highLimit2Offset

• Value of Input Data Point < Value of Compare Data Point – lowLimit1Offset

• Value of Input Data Point < Value of Compare Data Point – lowLimit2Offset

The value entered for <UCPThighLimit2Offset> must be greater than that
entered for <UCPThighLimit1Offset>, and the value entered for
<UCPTlowLimit2Offset> must be less than that entered for
<UCPTlowLimit1Offset>. The default value for each property is 0. If any of
these properties are left empty, they will not be used to check for alarm
conditions. When you set these properties, you must also set the
corresponding hysteresis properties, which are described later in the table.

Each alarm condition caused by the offset properties will cause the
<UCPTpointStatus> of the input data and alarm data points to be set to a
different status. For more information on this, see see Hysteresis Levels
and Offset Limits on page 6-13.

NOTE: If you use the AlarmGenerator_Get function to return the
configuration of an Alarm Generator whose input or compare data points
use the format type SNVT_temp_p#US or SNVT_temp#US, then the
values of these properties will be displayed using the SNVT_temp_f#US
format. This rule applies to all formats that use the #US specifier.

i.LON 100 e3 Programmer’s Reference 6-11

Property Description

<SCPThystHigh1>

<SCPThystHigh2>

<SCPThystLow1>

<SCPThystLow2>

When an alarm occurs based on one of the offest limits described above, the
value of the input data point must reach the hysteresis value for that limit
before the alarm can be cleared, and another alarm can be generated based
on that offset limit.

This allows you to set up an Alarm Generator that will trigger an alarm
once each time the value of the input data point reaches a certain level, as
opposed to multiple times (which would occur each time the data point was
updated and its value remained within the range specified by the offset
limit).

Enter a scalar value for each of these properties. These values define the
hysteresis level that will be used for each alarm offset limit. For a more
detailed description of the hysteresis fields and how they relate to the
offset limit values, see Hysteresis Levels and Offset Limits on page 6-13.

If you use the i.LON 100 Configuration Software to modify the
configuration of an Alarm Generator after creating it with the SOAP/XML
interface, all four hysteresis properties will be reset to the value chosen for
<SCPThystHigh1>.

NOTE: If you use the AlarmGenerator_Get function to return the
configuration of an Alarm Generator whose input data point uses the
format type SNVT_temp_p#US or SNVT_temp#US, then the values of
these properties will be displayed using the SNVT_temp_f#US format. This
rule applies to all formats that use the #US specifier.

6.2.1.2.1 Alarm Priority Levels

You can select a priority level for the Alarm Generator by filling in the
<UCPTalarmPriority> property. When doing so, you must reference each priority level with
the identifier listed in Table 21.

Each time an Alarm Generator generates an alarm, the priority_level field of the alarm data
points chosen for the Alarm Generator will be updates to the priority level chosen here.

Table 21 Alarm Priority Levels

Identifier Notes

PR_LEVEL_0 Lowest alarm priority level

PR_LEVEL_1

PR_LEVEL_2

PR_LEVEL_3 Highest alarm priority level

PR_1 Life Safety Fire Alarms

6-12 i.LON 100 e3 Programmer’s Reference

Identifier Notes

PR_2 Property Safety Fire Alarms

PR_3 Fire Supervisory Alarm

PR_4 Fire Trouble/Fault (Display)

PR_6 Fire Pre-Alarm, HVAC Critical Equipment Alarm

PR_8 HVAC Alarms (BACnet Priority 8)

PR_10 HVAC Critical Equipment RTN, Fire RTN (Display)

PR_16 HVAC RTN (lowest priority)

PR_NUL Value not available

6.2.1.2.2 Comparison Functions

Table 22 describes the comparison functions an Alarm Generator can use when comparing
the values of the input and compare data points. You can select a comparison function for the
Alarm Generator by filling in the <UCPTcompFunction> property. When doing so, you must
reference each comparison function with the identifier strings listed in Table 22.

Table 22 Comparison Functions

Identifier Description

FN_GT Greater than. In this case, an alarm will be generated if the input value is
greater than the compare value.

FN_LT Less than. In this case, an alarm will be generated if the input value is less
than the compare value.

FN_GE Greater than or equal. In this case, an alarm will be generated if the input
value is greater than or equal to the compare value.

FN_LE Less than or equal. In this case, an alarm will be generated if the input value
is less than or equal to the compare value.

FN_EQ Equal. In this case, an alarm will be generated if the input value is equal to
the compare value.

FN_NE Not equal. In this case, an alarm will be generated if the input value is not
equal to the compare value.

FN_LIMIT Compare against the limits defined by the high and low limit offset fields.
For more information on how these limits are used, see Hysteresis Levels
and Offset Limits on page 6-13.

i.LON 100 e3 Programmer’s Reference 6-13

Different comparison functions should be used for different data point types, depending on
the <UCPTbaseType> of the data point. Table 23 lists the different data point base types,
and the comparison functions you can use with them.

Table 23 Base Types and Comparison Functions

Base Type Valid <UCPTcompFunction>

BT_UNKNOWN, BT_ENUM, BT_ARRAY,
BT_STRUCT, BT_UNION, BT_BITFIELD

FN_EQ, FN_NE

BT_SIGNED_CHAR, BT_UNSIGNED_CHAR,
BT_SIGNED_SHORT, BT_UNSIGNED_SHORT,
BT_SIGNED_LONG, BT_UNSIGNED_LONG,
BT_FLOAT, BT_SIGNED_QUAD,
BT_UNSIGNED_QUAD, BT_DOUBLE

FN_GT, FN_LT, FN_GE,
FN_LE, FN_EQ, FN_NE,
FN_LIMIT

You can make inequality comparisons between SNVT_switch (BT_STRUCT) data points, or
between SNVT_lev_disc (BT_ENUM) data points. Table 24 lists the <UCPTcompFunction>
identifiers you could use for these special comparisons. A description of how these
comparisons are made follows Table 24.

Table 24 Exceptions to Base Types and Comparison Functions

SNVT Valid <UCPTcompFunction>

SNVT_switch FN_GT, FN_LT, FN_GE, FN_LE, FN_EQ, FN_NE

SNVT_lev_disc FN_GT, FN_LT, FN_GE, FN_LE, FN_EQ, FN_NE

Comparisons made with SNVT_switch data points are enumeration-based comparisons
based on the value field of the SNVT_switch. If the value field is between 0.5 and 100.0, the
SNVT_switch is considered ON and that will be the basis of the comparison. If the value field
is between 0.0 and 0.4, the SNVT_switch will be considered OFF. In this way you could
compare SNVT_switch data points. For example, if the input data point was ON, the
compare data point was OFF, and the comparison function selected was FN_GT, the
comparison would return True because ON is considered greater than OFF.

This is also true for SNVT_lev_disc data points, which take five enumerations: OFF, LOW,
MEDIUM, HIGH, and ON. If the input data point was LOW, the compare data point was
HIGH and the comparison function was FN_GT, the function would return False, because
LOW is not greater than HIGH.

6.2.1.2.3 Hysteresis Levels and Offset Limits

The four offset limit properties are named <UCPTlowLimit1Offset>,
<UCPTlowLimit2Offset>, <UCPThighLimit1Offset>, and <UCPThighLimit2Offset>. The
Alarm Generator will use these offsets to determine if an alarm condition exists when the
<UCPTcompFunction> selected for the Alarm Generator is FN_LIMIT.

Table 25 lists the four offset limits, and the condition set that causes each one to generate an
alarm. It also lists the status that the <UCPTpointStatus> of the input and alarm data
points will be updated to when an alarm is generated based on each offset limit in the Alarm
Status column.

6-14 i.LON 100 e3 Programmer’s Reference

Table 25 Hysteresis Levels and Offset Limits

Offset Limit Alarm Generated When.... Alarm Status

<UCPThighLimit1Offset> Input Value>Compare Value + UCPThighLimit1Offset AL_HIGH_LMT_ALM1

<UCPThighLimit2Offset> Input Value>Compare Value + UCPThighLimit2Offset AL_HIGH_LMT_ALM2

<UCPTlowLimit1Offset> Input Value<Compare Value – UCPTlowLimit1Offset AL_LOW_LMT_ALM1

<UCPTlowLimit2Offset> Input Value<Compare Value – UCPTlowLimit2Offset AL_LOW_LMT_ALM2

Each time an alarm is generated based on any of these offset limits, the value of the input
data point must return to a value inside the hysteresis range for that limit, and the time
period specified by the <UCPTclrTime> property must elapse, before the alarm is cleared.
Only then could another alarm be generated based on that offset limit.

The Alarm Generator’s hysteresis levels determine the value the input data point must
return to for each alarm condition to be cleared. Table 26 describes how these levels are
calculated for each of the offset limits listed above.

Table 26 Alarm Generator Hysteresis Levels

Offset Limit Causing
Alarm

Alarm Cleared When...

<UCPThighLimit1Offset> Input Value<=Comp Value+ UCPThighLimit1Offset – SCPThysHigh1

<UCPThighLimit2Offset> Input Value<=Comp Value+ UCPThighLimit2Offset – SCPThysHigh2

<UCPTlowLimit1Offset> Input Value>= Compare Value – UCPTlowLimit1Offset + SCPThysLow1

<UCPTlowLimit2Offset> Input Value>= Compare Value – UCPTlowLimit2Offset + SCPThysLow2

When an alarm is cleared, the data point is updated to the next lowest alarm level. For
example, when an AL_LOW_LMT_ALM_2 alarm is cleared, the data point is updated to
AL_LOW_LMT_ALM_1. When that condition clears, the data point is updated to
AL_NO_CONDITION.

Table 27 describes this process in more detail.

Table 27 Alarm Statuses

Event Input Data Point Status Comments

Value of input data point is normal. AL_NO_CONDITION No alarm condition.

Value of input data point goes above
first level (UCPThighLimit1Offset).

AL_HIGH_LMT_ALM1 Updated to the first alarm condition.

Value of input data point goes above
second level
(UCPThighLimit2Offset).

AL_HIGH_LMT_ALM2 Updated to the second, and more severe,
alarm condition.

i.LON 100 e3 Programmer’s Reference 6-15

Event Input Data Point Status Comments

Value of input data point goes below
hysteresis level for the second alarm
condition.

AL_HIGH_LMT_ALM1 Updated back to the first alarm condition,
as the data point has not yet reached the
hysteresis level for that condition.

Value of input data point goes below
hysterisis level for the first alarm
condition.

AL_NO_CONDITION Updated back to normal status.

Figure 6.1 depicts the four different alarm conditions, as well as the corresponding hysteresis
levels that must be reached to clear the alarms generated for each condition, in a line chart.

Please note that Figure 6.1 uses enumerations to label the hysteresis levels the input value
must reach for each alarm status to be cleared. For example, AL_HIGH_LMT_CLR_2
represents the value necessary to clear the AL_HIGH_LMT_ALM_2 alarm status.
AL_HIGH_LMT_CLR_1 represents the value necessary to clear the AL_HIGH_LMT_ALM_1
alarm status. The data points in your network will not be updated to these statuses at any
time.

 AL_HIGH_LMT_ALM_2
CompValue +
UCPThighLimit2Offset=
AL_HIGH_LMT_ALM2

 CompValue +
UCPThighLimit2Offset

 - SCPThystHigh2
 AL_HIGH_LMT_CLR_2 **

 AL_HIGH_LMT_ALM_1

CompValue +
UCPThighLimit1Offset=
AL_HIGH_LMT_ALM1

 CompValue +
UCPThighLimit1Offset

- SCPThystHigh1
 AL_NO_CONDITION

AL_HIGH_LMT_CLR_1 **

CompValue AL_LOW_LMT_CLR_1 **

Input Value
 CompValue –

UCPTlowLimit1Offset
+SCPThystLow1

 AL_LOW_LMT_ALM_1
CompValue -
UCPTlowLimit1Offset=
AL_LOW_LMT_ALM1

AL_LOW_LMT_CLR_2 **

 CompValue –

UCPTlowLimit2Offset
+SCPThystLow2

CompValue -
UCPTLowLimit2Offset=
AL_LOW_LMT_ALM2

AL_LOW_LMT_ALM_2

Figure 6.1 Hysteresis Levels and Offset Limits

6-16 i.LON 100 e3 Programmer’s Reference

6.2.1.3 AlarmGenerator_Set
You can use the AlarmGenerator_Set function to create a new Alarm Generator, or to
overwrite the configuration of an existing Alarm Generator. You can create up to 40 Alarm
Generators per i.LON 100 server.

The Alarm Generators to be created or written to by the function are signified by a list of
<Alarm> elements in the input parameters you supply to the function. The properties that
you must define within each <Alarm> element are the same, whether you are creating a new
Alarm Generator or modifying an existing Alarm Generator. The previous section,
AlarmGenerator_Get, describes these properties.

NOTE: When modifying an existing Alarm Generator, any optional properties such as
<AlarmDataPoint> and <Alarm2DataPoint> that are left out of the input will be erased. Old
values will not be carried over, so you must fill in every property when writing to an Alarm
Generator, even if you are not changing all of the values.

The first invocation of the AlarmGenerator_Set function will generate the
alarmGenerator.xml file in the /root/Config/software directory of the i.LON 100 server,
if the file does not already exist.

When creating or modifying an Alarm Generator with AlarmGenerator_Set, you may want to
use output from AlarmGenerator_Get as the basis for your input. You would then only need
to modify the values of each property to match the new configuration you want, as opposed to
re-creating an entire string like the one shown below.

The following example uses the AlarmGenerator_Set function to create a new Alarm
Generator that uses a data point called NVL_DataValueAG1 as its input data point.

Input
Parameters

<iLONAlarmGenerator>
 <Alarm>

<UCPTindex></UCPTindex>
<UCPTdescription>Alarm Generator 1</UCPTdescription>
<UCPTfbName></UCPTfbName>
<SCPTalrmIhbT>50.000000</SCPTalrmIhbT>
<UCPTalarmPriority>PR_LEVEL_1</UCPTalarmPriority>
<UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
<UCPTpollRate>0.0</UCPTpollRate>
<UCPTalarm2Description>none</UCPTalarm2Description>
<InputDataPoint>
 <UCPTpointName>NVL_DataValueAG1</UCPTpointName>
</InputDataPoint>
<CompareDataPoint>
 <UCPTpointName>NVL_CompareValueAG1</UCPTpointName>
</CompareDataPoint>
<AlarmDataPoint>
 <UCPTpointName>NVL_AlarmGenOut1</UCPTpointName>
</AlarmDataPoint>
<Alarm2DataPoint>
 <UCPTpointName></UCPTpointName>
</Alarm2DataPoint>
<UCPTcompFunction>FN_LIMIT</UCPTcompFunction>
<UCPTalarmSetTime>30.000000</UCPTalarmSetTime>
<UCPTalarmClrTime>45.000000</UCPTalarmClrTime>
<UCPTlowLimit1Offset>5.0</UCPTlowLimit1Offset>

i.LON 100 e3 Programmer’s Reference 6-17

<UCPTlowLimit2Offset>5.0</UCPTlowLimit2Offset>
<UCPThighLimit1Offset>5.0</UCPThighLimit1Offset>
<UCPThighLimit2Offset>5.0</UCPThighLimit2Offset>
<SCPThystHigh1>50.00</SCPThystHigh1>
<SCPThystHigh2>75.00</SCPThystHigh2>
<SCPThystLow1>50.00</SCPThystLow1>
<SCPThystLow2>75.00</SCPThystLow2>

 </Alarm>
</iLONAlarmGenerator>

Output
Parameters

<iLONAlarmGenerator>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Alarm>

 <UCPTindex>2</UCPTindex>
 </Alarm>
</iLONAlarmGenerator>

6.2.1.4 AlarmGenerator_Delete
You can use the AlarmGenerator_Delete function to delete an Alarm Generator. You must
reference the Alarm Generator to be deleted by its index number in the input you supply to
the function, as in the example below.

Input
Parameters

<iLONAlarmGenerator>
 <Alarm>
 <UCPTindex>1</UCPTindex>
 </Alarm>
</iLONAlarmGenerator>

Output
Parameters

<iLONAlarmGenerator>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Alarm>
 <UCPTindex>1</UCPTindex>
 </Alarm>
</iLONAlarmGenerator>

6-18 i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 7-1

7 Alarm Notifier
Use the Alarm Notifier application to log user-defined alarm conditons, and to generate e-
mail messages and data point updates each time an alarm condition occurs. This section
provides an overview of how Alarm Notifiers work, including how you can define alarm
conditions and program your Alarm Notifiers to respond to them.

User-Defined Alarm Conditions

When you create an Alarm Notifier, you will specify a group of input data points. The Alarm
Notifier will read the status of these data points each time they are updated to determine if
they have reached alarm conditions. The statuses that the Alarm Notfiier will consider alarm
conditions are user-defined. You will define these conditions by creating active and passive
alarm conditon sets for the Alarm Notifier.

For each condition set you create, you will select an alarm type (active or passive) and a point
status. Each time an input data point is updated and its <UCPTpointStatus> matches the
selected status, an alarm notification will occur. If it is generated based on a status assigned
to an active alarm conditon set, it is considered an active alarm. If it is generated based on a
staus assigned to a passive condition set, it is considered a passive alarm. You can create as
many active and passive alarm condition sets as you like per Alarm Notifier.

There are several scenarios you could consider when creating Alarm Notifiers. For example,
you could set up Alarm Notifiers to generate alarm notifications based on the statuses of the
data points updated by your Alarm Generators. For more information on Alarm Generators,
see Chapter 6, Alarm Generator.

You may also recall from Chapter 5 that some data points exist in the Data Server to monitor
the amount of memory that a Data Logger’s log file has consumed. You could set up an
Alarm Notfier to generate alarm notifications when a log file becomes full.

Alarm Destinations

You will create destinations for your Alarm Notifiers. These destinations determine how the
Alarm Notifier will respond when an alarm occurs. You can create as many active and
passive destination sets as you like per Alarm Notifier. The passive destination will be used
when a passive alarm notification occurs, and the active destinations are used when an
active alarm notification occurs.

For each destination, you can specify an output data point. This data point will be updated
each time an alarm notification occurs and uses that particular destination. You can also
specify an e-mail profile for each destination. The e-mail profile will cause an e-mail to be
sent to an address of your choice each time the destination is used. The next section provides
more information on e-mail profiles.

You can create e-mail profiles and assign these profiles to the destination sets you have
created for your Alarm Notifier. Each e-mail profile contains an e-mail address. When a
destination using an e-mail profile is used, an e-mail will be sent to the address defined for
that profile.

You can specify the message text, subject heading, and attachment to be included with each
e-mail. E-mail profiles allow you to notify different people when different alarms occur. This

7-2 i.LON 100 e3 Programmer’s Reference

is useful if different groups of people need to receive notifications about the various alarm
conditions that might occur on your network.

Auto-Generated Log Files

Each Alarm Notifier will generate its own log file. It will add an entry to this log file each
time it generates an alarm notification. You can find these log files in the /root/AlarmLog
directory of the i.LON 100 server. These files are named histlogX, where X represents the
index number assigned to the Alarm Notifier when it was created. An Alarm Notifier will not
generate a log file until it has generated an alarm notification.

In addition, the Alarm Notifier application generates a summary log that summarizes the log
entries made by all the Alarm Notifiers that were classified as active alarms. This file is
called sumlog0, and can also be found in the /root/AlarmLog directory of your i.LON 100
server.

You can create the log files in either a text format (.csv) or binary format (.dat). You will
establish this when you create your Alarm Notifiers. You can read these log files by opening
the log files via an FTP session, or by using the AlarmNotifier_Read function. You can use
the Alarm NotifierWrite function to acknowklede and comment on the alarm notifications
stored in the log files.

7.1 AlarmNotifier.xml
The alarmNotifier.xml file stores the configuration of the Alarm Notifiers that you have
added to the i.LON 100 server. You can create up to 40 Alarm Notifiers per i.LON 100
server. Each Alarm Notifier is signified by an <Alarm> element in the XML file.

You can create Alarm Notifiers with the AlarmNotifier_Set SOAP function, or by manually
editing the alarmNotifier.xml file and downloading it to the i.LON 100 server via FTP. The
sections following this example provide instructions and guidelines to assist you when doing
so.

The following represents a sample alarmNotifier.xml file for an i.LON 100 server with one
defined Alarm Notifier. This Alarm Notifier generates alarm notifications based on the
status of the data point NVL_nvoLevelAlarm. This data point monitors the log level of a
Data Logger. As you may recall from Chapter 5, this data point will be set to the alarm
condition AL_ALM_CONDITION when the volume of the Data Logger reaches its pre-
defined log level.

The Alarm Notifier defined by the example below triggers an alarm notification when this
occurs, and updates the value of the NVL_nviDlClear data point to 100.0 1. The update to
NVL_nviDlClear will clear out the Data Logger’s log file. So, the Alarm Notifier defined by
the XML file below monitors the log level of a Data Logger, and empties the Data Logger’s
log file when it becomes full.

<?xml version="1.0" encoding="utf-8" ?>
<iLONAlarmNotifier>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Alarm>
 <UCPTindex>0</UCPTindex>

i.LON 100 e3 Programmer’s Reference 7-3

 <UCPTlastUpdate>2005-10-25T01:52:23Z</UCPTlastUpdate>
 <UCPTdescription>Monitors the level</UCPTdescription>
 <UCPTfbName>Alarm Notifier- 1</UCPTfbName>
 <SCPTdelayTime>0.0</SCPTdelayTime>
 <UCPTsumLogSize>100</UCPTsumLogSize>
 <UCPThistLogSize>100</UCPThistLogSize>
 <UCPTlogFormat>LF_BINARY</UCPTlogFormat>
 <UCPTemailAggregTime>10</UCPTemailAggregTime>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoLevelAlarm</UCPTpointName>
 <AlarmFlags>
 <UCPTlogEnable>1</UCPTlogEnable>
 <UCPTinvisible>0</UCPTinvisible>
 <UCPTclearRequired>0</UCPTclearRequired>
 <UCPTackRequired>0</UCPTackRequired>
 <UCPTdisabled>0</UCPTdisabled>
 <UCPTcovEnabled>0</UCPTcovEnabled>
 </AlarmFlags>
 <UCPTalarmGroup>1</UCPTalarmGroup>
 <UCPTalarmPriority2>7</UCPTalarmPriority2>
 <UCPTdescription>log level logger 1</UCPTdescription>
 </Point>
 <Mail>
 <UCPTindex>0</UCPTindex>
 <UCPTemailNickName>Joerg</UCPTemailNickName>
 <UCPTemailAddress>js@nova</UCPTemailAddress>
 <UCPTemailFormat>occured %dy/%dm </UCPTemailFormat>
 <UCPTemailSubject>Nofifier1: %ad</UCPTemailSubject>
 <UCPTemailAttachment>/root/Data/log1.csv</UCPTemailAttachment>
 </Mail>
 <ActiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>1</UCPTlevel>
 <UCPTalarmText>Log 30 percent full</UCPTalarmText>
 <UCPTalarmCondition>AL_ALM_CONDITION</UCPTalarmCondition>
 </ActiveAlarm>
 <PassiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>255</UCPTlevel>
 <UCPTalarmText>Normal Condition</UCPTalarmText>
 <UCPTalarmCondition>AL_NO_CONDITION</UCPTalarmCondition>
 </PassiveAlarm>
 <AlarmDest>
 <UCPTindex>0</UCPTindex>
 <ActiveDest>
 <UCPTemailNickName>Joerg</UCPTemailNickName>
 <UCPTpointName>NVL_nvoDlClear</UCPTpointName>
 <UCPTpointValue>100.0 1</UCPTpointValue>
 <UCPTminLevel>2</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest>
 <UCPTemailNickName>Joerg</UCPTemailNickName>
 <UCPTpointName>NVL_nvoDlClear</UCPTpointName>
 <UCPTpointValue>0.0 0</UCPTpointValue>

7-4 i.LON 100 e3 Programmer’s Reference

 <UCPTminLevel>0</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </PassiveDest>
 </AlarmDest>
 </Alarm>
</iLONAlarmNotifier>

i.LON 100 e3 Programmer’s Reference 7-5

7.2 Creating and Modifying the alarmNotifier.xml File
You can create and manage the alarmNotifier.xml file with the AlarmNotifier_Set SOAP
function. The following section, Alarm Notifier SOAP Interface, describes how to use
AlarmNotifier_Set and the other SOAP functions provided for the Alarm Notifier application.

Alternatively, you can create and manage the alarmNotifier.xml file manually with an XML
editor and download it to the i.LON 100 server via FTP. Echelon does not recommend this, as
the i.LON 100 server will require a reboot to read the configuration of the downloaded file.
Additionally, the i.LON 100 server performs error checking on all SOAP messages it receives
before writing to the XML file. It will not perform error checking on any XML files you
download via FTP, and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first,
as it describes the elements and properties in the XML file that define each Alarm Notifier’s
configuration. For instructions on creating or modifying an XML file manually, see Manually
Modifying an XML Configuration File on page 14-1.

7.2.1 Alarm Notifier SOAP Interface
The SOAP interface for the Alarm Notifier application includes seven functions. Table 28
lists and describes these functions. For more information on each function, see the sections
following Table 28.

Table 28 Alarm Notifier SOAP Functions

Function Description

AlarmNotifier_List Use this function to generate a list of the Alarm Notifiers that you
have added to the i.LON 100 server. For more information, see
AlarmNotifier_List on page 7-7.

AlarmNotifier_Get Use this function to return the configuration of an Alarm Notifier. For
more information, see AlarmNotifier_Get on page 7-8.

AlarmNotifier_Set Use this function to create an Alarm Notifier, or to overwrite the
configuration of an exisiting Alarm Notifier. For more information, see
AlarmNotifier_Set on page 7-21.

AlarmNotifier_Read Each time an Alarm Notifier causes an alarm notification, it will
record a log entry for that notification. Use this function to retrieve
the log entries that an Alarm Notifier has recorded. For more
information, see AlarmNotifier_Read on page 7-22.

AlarmNotifier_Write Use this function to acknowledge an alarm notification, or group of
alarm log notifications, made by the Alarm Notifier. You optionally
insert comments into the log entry for each alarm notification with
this function. For more information, see AlarmNotifier_Write on page
7-28.

7-6 i.LON 100 e3 Programmer’s Reference

Function Description

AlarmNotifier_Clear Use this function to clear log entries from an Alarm Notifier’s log file.
For more information, see AlarmNotifier_Clear on page 7-31.

AlarmNotifier_Delete Use this function to delete an Alarm Notifier. For more information,
see AlarmNotifier_Delete on page 7-33.

i.LON 100 e3 Programmer’s Reference 7-7

7.2.1.1 AlarmNotifier_List
Use the AlarmNotifier_List function to retrieve a list of the Alarm Notifiers that you have
added to the i.LON 100. The AlarmNotifier_List function takes an empty string as its input,
as shown in the example below.

The function returns the major and minor build version numbers that the Alarm Notifier
application is using, as well as the namespace version used the last time the
AlarmNotifier_Set function was called. The output parameters also include an <Alarm>
element for each Alarm Notifier that you have added to the i.LON 100 server. The next
section, AlarmNotifier_Get, describes the properties that are included in each of these
elements.

You could use the list of <Alarm> elements returned by this function as input for the
AlarmNotifier_Get function. The AlarmNotifier_Get function would then return the
configuration of each Alarm Notifier included in the list.

Input
Parameters

Empty String

Output
Parameters

<iLONAlarmNotifier>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Alarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2005-10-25T01:52:23Z</UCPTlastUpdate>
 <UCPTdescription>Monitors the level</UCPTdescription>
 <UCPTfbName>Alarm Notifier- 0</UCPTfbName>
 </Alarm>
 <Alarm>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2005-10-25T01:52:23Z</UCPTlastUpdate>
 <UCPTdescription>Temperature alarm</UCPTdescription>
 <UCPTfbName>Alarm Notifier- 1</UCPTfbName>
 </Alarm>
</iLONAlarmNotifier>

7-8 i.LON 100 e3 Programmer’s Reference

7.2.1.2 AlarmNotifier_Get
You can use the AlarmNotifier_Get function to return the configuration of any Alarm
Notifier that you have added to the i.LON 100 server. You must reference the Alarm Notifier
whose configuration is to be returned by its index number in the input you supply to the
function, as in the example below.

Input
Parameters

<iLONAlarmNotifier>
 <Alarm>
 <UCPTindex>0</UCPTindex>
 </Alarm>
</iLONAlarmNotifier>

Output
Parameters

<iLONAlarmNotifier>
 <Alarm>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2005-10-25T01:52:23Z</UCPTlastUpdate>
 <UCPTdescription>Temperature alarm</UCPTdescription>
 <UCPTfbName>Alarm Notifier- 1</UCPTfbName>
 <SCPTdelayTime>0.0</SCPTdelayTime>
 <UCPTsumLogSize>100</UCPTsumLogSize>
 <UCPThistLogSize>100</UCPThistLogSize>
 <UCPTlogFormat>LF_TEXT</UCPTlogFormat>
 <UCPTemailAggregTime>10</UCPTemailAggregTime>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_AlarmGenIn1</UCPTpointName>
 <AlarmFlags>
 <UCPTlogEnable>1</UCPTlogEnable>
 <UCPTinvisible>0</UCPTinvisible>
 <UCPTclearRequired>0</UCPTclearRequired>
 <UCPTackRequired>0</UCPTackRequired>
 <UCPTdisabled>0</UCPTdisabled>
 <UCPTcovEnabled>0</UCPTcovEnabled>
 </AlarmFlags>
 <UCPTalarmGroup>0</UCPTalarmGroup>
 <UCPTalarmPriority2>1</UCPTalarmPriority2>
 <UCPTdescription></UCPTdescription>
 </Point>
 <Mail>
 <UCPTindex>0</UCPTindex>
 <UCPTemailNickName>Joerg</UCPTemailNickName>
 <UCPTemailAddress>js@nova</UCPTemailAddress>
 <UCPTemailFormat>occured%dy/%dm/%dd</UCPTemailFormat>
 <UCPTemailSubject>Alarm Nofifier1: %ad</UCPTemailSubject>
 <UCPTemailAttachment>/root/Data/log1.csv</UCPTemailAttachment>
 </Mail>
 <ActiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>1</UCPTlevel>
 <UCPTalarmText>Alarm (Binary)</UCPTalarmText>
 <UCPTalarmCondition>AL_ALM_CONDITION</UCPTalarmCondition>
 </ActiveAlarm>

i.LON 100 e3 Programmer’s Reference 7-9

 <ActiveAlarm>
 <UCPTindex>1</UCPTindex>
 <UCPTlevel>2</UCPTlevel>
 <UCPTalarmText>Alarm (Binary) offline</UCPTalarmText>
 <UCPTalarmCondition>AL_OFFLINE</UCPTalarmCondition>
 </ActiveAlarm>
 <PassiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>255</UCPTlevel>
 <UCPTalarmText>Normal Condition</UCPTalarmText>
 <UCPTalarmCondition>AL_NO_CONDITION</UCPTalarmCondition>
 <UCPTalarmCondition>AL_NUL</UCPTalarmCondition>
 </PassiveAlarm>
 <AlarmDest>
 <UCPTindex>0</UCPTindex>
 <UCPTdestEnable>NVL_nviWeekday</UCPTdestEnable>
 <ActiveDest>
 <UCPTpointName>NVL_nvoAlarmFlag1</UCPTpointName>
 <UCPTpointValue>77.0 1</UCPTpointValue>
 <UCPTminLevel>1</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest>
 <UCPTpointName>NVL_nvoAlarmFlag1</UCPTpointName>
 <UCPTpointValue>MEDIUM</UCPTpointValue>
 <UCPTminLevel>0</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </PassiveDest>
 </AlarmDest>
 <AlarmDest>
 <UCPTindex>1</UCPTindex>
 <UCPTdestEnable>NVL_nviWeekend</UCPTdestEnable>
 <ActiveDest>
 <UCPTemailNickName>Joerg</UCPTemailNickName>
 <UCPTpointName>NVL_nvoAlarmFlag1</UCPTpointName>
 <UCPTpointValue>100.0 1</UCPTpointValue>
 <UCPTminLevel>2</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest>
 <UCPTpointName>NVL_nvoAlarmFlag1</UCPTpointName>
 <UCPTpointValue>Off Value</UCPTpointValue>
 <UCPTminLevel>255</UCPTminLevel>
 <UCPTmaxLevel>255</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </PassiveDest>
 </AlarmDest>
 </Alarm>
</iLONAlarmNotifier>

The function returns an <Alarm> element for each Alarm Notifier referenced in the input
parameters you supplied to the function. The properties included in each element are

7-10 i.LON 100 e3 Programmer’s Reference

initially defined when the Alarm Notifier is created. You can write to them using the
AlarmNotifier_Set function. Table 29 describes these properties.

For more information on the AlarmNotifier_Set function, see AlarmNotifier_Set on page 7-
21.

Table 29 AlarmNotifier_Get Output Properties

Property Description

<UCPTindex> The index number assigned to the Alarm Notifier must be in the range 0-
32,767. As mentioned earlier, you can use the AlarmNotifier_Set function
to create a new Alarm Notifier, or to modify an existing Alarm Notifier. If
you do not specify an index number in the input you supply to
AlarmNotifier_Set, the function will create a new Alarm Notifier using
the first available index number.

If you specify an index number that is already being used, the function
will overwrite the configuration of the Alarm Notifier using that index
number with the settings defined in the input parameters.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Alarm
Notifier was updated. This timestamp uses the following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents the date
the configuration of the Alarm Notifier was last updated. The second
segment (THH:MM:SS) represents the time of day the configuration of
the Alarm Notifier was last updated, in UTC (Coordinated Universal
Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight in
Greenwich England, which lies on the zero longitudinal meridian.
Universal time is based on a 24 hour clock, therefore, an afternoon hour
such as 4 pm UTC would expressed as 16:00 UTC. The Z appended to the
timestamp indicates that it is in UTC.

For example, 2002-08-15T10:13:13Z indicates a UTC time of 10:13:13 AM
on August 15, 2002.

<UCPTdescription> A user-defined description of the Alarm Notifier. This can be a maximum
of 227 characters.

<UCPTfbName> The functional block name assigned to the Alarm Notifier in LONMAKER.
You can write to this property, but each time you use the i.LON 100
Configuration Software to view the Alarm Notifier, it will be reset to
match the functional block name defined in LONMAKER.

i.LON 100 e3 Programmer’s Reference 7-11

Property Description

<SCPTdelayTime> The minimum time (in seconds) that must pass after this Alarm Notifier
has logged an alarm notification before the e-mail profiles for the Alarm
Notifier can be used, or the output data points for this Alarm Notifier can
be updated.

This property defaults to 0.

<UCPTsumLogSize> The size of the summary alarm log file, in kilobytes. The summary alarm
log includes records for all current acknowledged and unacknowledged
alarms.

Please note that the total size of the log files for all Alarm Notifiers (and
Data Loggers) on the i.LON 100 server can not exceed the size of the
flash memory stored in the i.LON 100 server. The i.LON 100 server will
stop writing to the log files when it only has 256 Kb of flash memory
remaining.

<UCPThistLogSize> The size of the historical alarm log file, in kilobytes. The historical alarm
log contains a record for any acknowledged alarm. Each record includes
the description, acknowledgment time and comment entered for the
alarm.

Please note that the total size of the log files for all Alarm Notifiers (and
Data Loggers) on the i.LON 100 server can not exceed the size of the
flash memory stored in the i.LON 100 server. The i.LON 100 server will
stop writing to the log files when it only has 256 Kb of flash memory
remaining.

<UCPTlogFormat> Either LF_BINARY or LF_TEXT. This property determines whether the
log file will be generated as a binary file, or as a text file.

<UCPTemailAggregTime> The time, in milliseconds, to wait after an alarm occurs before using the
email profiles defined for the Alarm Notifier. This may be useful if you
want to prevent multiple e-mails from being sent to the same address at
the same time.

The default value used if you do not define this property is 0. The
maximum value is 65,535 milliseconds.

NOTE: The <UCPTemailAggregTime> counter resets every time an
alarm occurs. Therefore, if multiple alarms occur before the aggregation
period expires, the emails for those alarms will be merged and sent as a
single email notification. The i.LON 100 server will send the email
automatically after 100 alarms have been merged. This may be useful if
multiple alarms occur within a few moments of each other, but you
should take it into consideration before setting this property to a high
value.

7-12 i.LON 100 e3 Programmer’s Reference

Property Description

<Point> An alarm notification will occur each time any of the input data points
defined for an Alarm Notifier are updated, and the data point’s
<UCPTpointStatus> matches the status defined for any of the Alarm
Notifier’s active or passive alarm condition sets. You can specify as many
input data points as you like per Alarm Notifier.

The input data points for an Alarm Notifier are signified by a list of
<Point> elements. For a description of the properties that must be
defined within each <Point> element, see Input Data Points on page 7-
13. You can specify as many input data points as you want for each
Alarm Notifier.

<Mail> An e-mail profile contains an e-mail address, message text, subject
heading, and an attachment file. An e-mail message with the subject
heading, message text and attachment will be sent to the address
provided each time the e-mail profile is used.

You will reference these e-mail profiles when you set up the Alarm
Notifier’s active and passive alarm destination sets. You can create as
many e-mail profiles as you want for each Alarm Notifier, but each alarm
destination can reference only one e-mail profile.

The e-mail profiles for an Alarm Notifier are signified by a list of <Mail>
elements. For a description of the properties that must be defined within
each <Mail> element, see E-mail Profiles on page 7-15.

<ActiveAlarm> If the input data point is updated and matches the conditions defined by
any of the active alarm condition sets, it is considered an active alarm. In
this case, the Alarm Notifier will use its active destinations. You can
create as many active alarm condition sets as you want per Alarm
Notifier.

The active alarm condition sets for an Alarm Notifier are signified by a
list of <ActiveAlarm> elements. For a description of the properties that
must be defined within each <ActiveAlarm> element, see Active and
Passive Alarm Conditions on page 7-17.

<PassiveAlarm> If the input data point is updated and matches the conditions defined by
any of the passive alarm condition sets, it is considered a passive alarm.
In this case, the Alarm Notifier will use its passive destinations. You can
create as many passive alarm condition sets as you want per Alarm
Notifier.

The passive alarm condition sets for an Alarm Notifier are signified by a
list of <PassiveAlarm> elements. For a description of the properties that
must be defined within each <PassiveAlarm> element, see Active and
Passive Alarm Conditions on page 7-17.

i.LON 100 e3 Programmer’s Reference 7-13

Property Description

<AlarmDest> Each <AlarmDest> element defines a group of active and passive alarm
destinations the Alarm Notifier will use. The active destinations are
signified by a list of <ActiveDest> child elements within the
<AlarmDest> element. The passive destinations are signified by a list of
<PassiveDest> child elements within the <AlarmDest> element. For a
description of the properties that must be defined within each of these
child elements, see Active and Passive Alarm Destinations on page 7-19.

Each <AlarmDest> element also contains 2 global elements: its index
number (UCPTindex), and its enable data point (UCPTdestEnable). The
<UCPTdestEnable> property is optional. You can reference a
SNVT_Switch data point by its name (UCPTpointName) here. The
<AlarmDest> will then be enabled when that data point is set to 100.0 1,
or disabled if that data point is set to 0.0 0. You could set this data point
with a LONWORKS switch, or with the Event Scheduler application.

This allows you to enable or disable an Alarm Notifier’s destination sets
under different circumstances.

7.2.1.2.1 Input Data Points

The following table describes the properties that you must define within each <Point>
element. As described in the previous section, each <Point> element defines an input data
point for the Alarm Notifier. Each time any of the input data points are updated, the Alarm
Notifier will check if it has reached an alarm condition.

If an input data point is updated and meets an active or passive alarm condition, then an
alarm notification will be loggeed, and the applicable passive or active alarm destinations
will be used.

Table 30 Input Data Point Properties

Property Description

<UCPTindex> The index number to be used within the Alarm Generator application for this
data point. This does not have to match the index number assigned to the data
point in the i.LON 100 Data Server.

<UCPTpointName> The name of the data point, as defined in the i.LON 100 Data Server.

7-14 i.LON 100 e3 Programmer’s Reference

Property Description

<AlarmFlags> This element contains seven properties that determine what information will be
stored in the Alarm History and Alarm Summary Logs for this data point. The
meanings of each sub-property in the string are described below:

<UCPTlogEnable>: When this property is set to 0, each new alarm will be
recorded in the Alarm History Log when it initially occurs. No further entries
will be recorded into the log for the alarm. When this property is set to 1, each
new alarm will be recorded in the Alarm History Log when it initially occurs,
and additional entries in the Alarm History Log will be added each time the
status of the alarm changes. For example, an additional entry would be added for
an alarm when it is acknowledged or cleared.

<UCPTinvisible>: When this property is set to 0, alarm notifications for this data
point will be recorded in the Alarm Summary Log. When this property is set to 1,
log entries for the data point will not be recorded in the Alarm Summary Log.

<UCPTclearRequired>: When this property is set to 0, the log entries for this
data point will be automatically removed from the Alarm Summary Log when
the alarm associated with the entry is acknowledged, or the alarm changes to a
passive condition. You can acknowledge an alarm with the AlarmNotifier_Write
function. When this property is set to 1, you will need to clear all log entries from
the Alarm Summary Log manually with the AlarmNotifier_Write function.

Note that the <UCPTcovEnabled> property must be set to 0 to record log entries
for the data point into the summary log.

<UCPTackRequired>: When this property is set to 1, all log entries made by the
Alarm Notifier for this data point must be manually acknowlegded with the
AlarmNotifier_Write function. When this property is set to 0, each alarm
triggered by the Alarm Notifier for this data point will be automatically
acknowledged. In this case, they will not be recorded in the Alarm Summary Log
if the <UCPTclearRequired> property is set to 0.

Note that the <UCPTcovEnabled> property must be set to 0 to record log entries
for the data point into the summary log.

<UCPTdisabled>: Set this property to 1 to disable the recording of log entries for
the data point.

<UCPTcovEnabled>: When this property is set to 0, log entries for all changes in
the alarm status this data point will be stored in the Alarm Summary Log. When
this property is set to 1, only the most recent change in the data point’s alarm
status will be logged by the Alarm Notifier in the Alarm Summary Log.

The default value for all of these properties is 0.

<UCPTalarmGroup> The group number for alarm notifications caused by this data point. You can use
group numbers to categorize alarms. Alarm groups can be numbered from 1 to
127.

i.LON 100 e3 Programmer’s Reference 7-15

Property Description

<UCPTalarmPriority2> The priority level to be assigned to the data point when it reaches an alarm
condition. This must be an integer between 0 (high priority) and 255 (low
priority). You can use priority levels to sort the alarms with the summary log
view, or with the i.LON 100 Web pages.

The default value is 0. For more information on priority levels and how you can
use them, see Data Point Values and Priority Levels on page 4-27.

<UCPTdescription> A user-defined description of the alarm condition for this data point. This can be
a maximum of 201 characters long.

7.2.1.2.2 E-mail Profiles

Table 31 describes the properties that you must define within each <Mail> element. As
described previously in this chapter, each <Mail> element defines an e-mail profile for the
Alarm Notifier.

You will reference these e-mail profiles when creating the active and passive destinations for
your Alarm Notifier. An e-mail will be sent to the e-mail address specified for the profile each
time any of the destinations that reference the profile are used. For more information on the
active and passive alarm destination sets, see Active and Passive Alarm Destinations on
page 7-19.

Table 31 E-mail Profile Properties

Property Description

<UCPTindex> The index number of the e-mail profile.

<UCPTemailNickName> The name of the e-mail profile. You will use this name to reference the e-
mail profile when setting up active and passive alarm destinations. It
can be a maximum of 31 characters long.

<UCPTemailAddress> The e-mail address for this profile. An e-mail will be sent to this address
each time the profile is used. The address can be a maximum of 1024
characters long.

<UCPTemailFormat> The message text e-mails sent by this profile will contain, as a string.
The SOAP interface provides a group of macro arguments that can be
used to automatically insert information about the alarm into the
message. For example:

%al occurred at %dy / %dm/ %dd %pn and reached the level of %va.

For a description of the macro arguments you can use, see Table 32.
This message can be a maximum of 4096 characters long.

<UCPTemailSubject> The subject of the e-mails sent for this profile. This can be a maximum of
1024 characters long.

7-16 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTemailAttachment> The path of the attachment file that will be sent with the e-mails this
profile sends. This must be an i.LON 100-based path. For example:
/root/Data/log1.csv.

The path can be a maximum of 1024 characters long.

Table 32 lists the macro arguments you can use to fill in the <UCPTemail Format> property
within each mail element.

Table 32 Macro Arguments

Macro Argument Description

%al Alarm type. This is the current status (UCPTpointStatus) of the
data point that caused the alarm.

%at Alarm type number. This is the integer value that maps to
the point status (UCPTpointStatus) that defines the alarm type.

%dm The month the alarm occurred, as an integer between 1 and 12.

%dd The day the alarm occurred, as an integer between 1 and 31.

%dy The year the alarm occurred, as a 4-digit integer, e.g. 1997.

%dt The date the alarm occurred, expressed in the following format:
YYYY-MM-DD

For example:
2002-30-10

%gr Alarm group number. This is determined by the
<UCPTalarmGroup> property assigned to the data point that
caused the alarm within the Alarm Notifier.

%lm Alarm limit. This is the value limit the input data point exceeded
to be updated to its current alarm status by the Alarm Generator
application. If no Alarm Generator is being used with the input
data point, this will return 0.

%ls Alarm location string. This is the text stored in the
<UCPTlocation> property of the data point that caused the alarm.

%ob The index number assigned to the data point that caused the
alarm in the i.LON 100 Data Server.

%pr The priority of the alarm.

%ps Percent sign (“%”).

i.LON 100 e3 Programmer’s Reference 7-17

Macro Argument Description

%s1 One second delay for paging strings. This causes a one second
delay in the writing of the e-mail.

%si SNVT ID of the data point that caused the alarm.

%t1 The hour the alarm occurred, in 12-hour format. For example, this
would return 10 for an alarm that occurred at 10:00 AM or 10:00
PM.

%t2 The hour the alarm occurred, in 24-hour format. For example, this
would return 16 for an alarm that occurred at 4 PM.

%ta Returns “A” for alarms that occurred in the morning, or “P” for
alarms that occurred in the afternoon.

%tm The minute that the alarm occurred.

%ts The second that the alarm occurred.

%th The millisecond that the alarm occurred.

%ti The time that the alarm occurred, expressed in the following
format: HH:MM:SS

For example, 08:12:22 indicates an alarm time of 8 AM, 12
minutes and 22 seconds.

%va The current value of the data point that caused the alarm.

%ad The alarm description. This is taken from the alarm description
(UCPTdescription) defined for the data point that caused the
alarm in the Alarm Notifier.

%pn The name of the data point that caused the alarm.

%dp Description of the data point that caused the alarm. This is taken
from the description (UCPTdescription) of the data point that
caused the alarm in the Data Server.

%ua

The unit type of the data point that caused the alarm. This is
taken from the <UCPTunit> property of the data point that caused
the alarm, unless that data point is a SNVT_alarm or
SNVT_alarm2. In those cases, this macro returns a blank string.

%nl Linefeed. Enter this macro to insert a carriage return into your e-
mail.

7.2.1.2.3 Active and Passive Alarm Conditions

7-18 i.LON 100 e3 Programmer’s Reference

Table 33 describes the properties that you must define within each <ActiveAlarm> and
<PassiveAlarm> element. As described earlier in this chapter, each of these elements defines
an active or passive alarm condition for the Alarm Notifier.

If an input data point is updated and meets the conditions defined for any of the active
condition sets, it will be considered an active alarm, and the active alarm destinations will be
used for the alarm notification. If an input data point is updated and meets the conditions
defined for any of the passive condition sets, it will be considered an passive alarm, and the
passive alarm destinations will be used for the alarm notification.

The next section, Active and Passive Alarm Destinations, describes how you can define the
active and passive destinations for an Alarm Notifier.

Table 33 Active and Passive Alarm Conditions Properties

Property Description

<UCPTindex> The index number of the alarm condition.

<UCPTlevel> Enter an alarm level for the condition set, in the range 0-255. The
level assigned to a condition will determine which alarm
destinations will be used when an alarm occurs that is based on
that condition set.

For each alarm destination you create, you will specify a range of
levels. For example, you could set up one destination for the alarm
conditions using levels 0-125, and another for the alarm conditions
using levels 126-255. Alarm conditions assigned levels 0-125 would
use the first destination, and alarm conditions assigned level 126-
255 would use the second destination.

NOTE: If you use the i.LON 100 Configuration Software to modify
the configuration of an Alarm Notifier after creating it with the
SOAP/XML interface, and the <UCPTlevel> property had been set
to a value greater than 1, the <UCPTlevel> property will be reset to
0.

<UCPTalarmText> The user-defined text will be used to describe the alarm condition in
the Alarm Notifier’s log file. This can be a maximum of 201
characters long.

i.LON 100 e3 Programmer’s Reference 7-19

Property Description

<UCPTalarmCondition> Specify one or more alarm types for this condition. If the status
(UCPTpointStatus) of an input data point is updated and matches
any of these types, then the alarm will be declared active or passive,
depending on the conditon type. The valid alarm type identifiers are:

AL_VALUE_INVALID, AL_CONSTANT, AL_OFFLINE, AL_NUL,
AL_NO_CONDITION, AL_TOT_SVC_ALM_1.
AL_TOT_SVC_ALM_2, AL_TOT_SVC_ALM_3,
AL_LOW_LMT_CLR_1, AL_LOW_LMT_CLR_2,
AL_HIGH_LMT_CLR_1, AL_HIGH_LMT_CLR_2,
AL_LOW_LMT_ALM_1, AL_LOW_LMT_ALM_2,
AL_HIGH_LMT_ALM_1, AL_HIGH_LMT_ALM_2, AL_FIR_ALM,
AL_FIR_PRE_ALM, AL_FIR_TRBL, AL_FIR_SUPV,
AL_FIR_TEST_ALM, AL_FIR_TEST_PRE_ALM,
AL_FIR_ENVCOMP_MAX, AL_FIR_MONITOR_COND,
AL_FIR_MAINT_ALERT

You should consider using less severe conditions, such as
AL_VALUE_INVALID or AL_OFFLINE, for your passive conditions,
and more severe conditions such as AL_HIGH_LMT_ALM_1 for
your active conditons.

7.2.1.2.4 Active and Passive Alarm Destinations

You can define one or more <AlarmDest> elements per Alarm Notifier. These elements
define the active and passive destinations for the Alarm Notifier.

You can optionally fill in the <UCPTdestEnable> property for each <AlarmDest> element.
You can reference a SNVT_Switch data point by its <UCPTpointName> with this property.
The <AlarmDest> will enabled if that data point is set to 100.0 1, or disabled if that data
point is set to 0.0 0. You can set this data point with a LONWORKS switch or with the Event
Scheduler application. In this fashion, you can enable or disable destination sets as you like.

Every <AlarmDest> should contain zero or one <ActiveDest> and zero or one <PassiveDest>
elements. Table 34 describes the properties you must define for each <ActiveDest> and
<PassiveDest> element. Each <ActiveDest> element defines an active destination for the
Alarm Notifier. Each <PassiveDest> element defines a passive destination for the alarm
notifier.

The active destinations for an Alarm Notifier are used when the input data point is updated,
and meets the conditions defined by any of the Alarm Notifier’s active conditions. The
passive destinations for an Alarm Notifier are used when the input data point is updated,
and meets any of the conditions defined by the Alarm Notifier’s passive conditions.

7-20 i.LON 100 e3 Programmer’s Reference

Table 34 Active and Passive Destination Properties

Property Description

<UCPTemailNickName> This optional property contains an e-mail nickname, as defined for
an e-mail profile created for the Alarm Notifier. The e-mail profile to
be used each time an alarm notification uses this destination.

<UCPTpointName> The name of the output data point that will be updated when the
active destination is used, and the e-mail for the alarm notification
has been sent.

If you want to create a destination that will automatically update
the data point during an alarm notification without waiting for the
e-mail to be sent, do not fill in the <UCPTemailNickName>
property.

<UCPTpointValue> The value, or value definition, that the output data point for the
destination set will be updated to and the e-mail has been sent
successfully by the Alarm Notifier.

Value definitions are user-defined strings representing actual
values. They can be added to a data point using the DataServer_Set
function.

<UCPTminLevel> The minimum alarm level required for this destination to be used.
The alarm level for an alarm notification is determined by the value
assigned to the <UCPTlevel> property for of condition set that
caused it.

<UCPTmaxLevel> The maximum alarm level required for this destination to be used.
The alarm level for an alarm notification is determined by the value
assigned to the <UCPTlevel> property of the condition set that
caused it.

<UCPTnackDelay> The delay, in minutes, to wait for an alarm to be acknowledged
before sending an e-mail to the e-mail profile for the destination. If
the alarm is not acknowledged before this time expires, the e-mail
profile will be used.

The default value used if this property is not set is 0. In this case,
the e-mail profile will be used as soon as the alarm occurs. The
maximum is 65,535.

i.LON 100 e3 Programmer’s Reference 7-21

7.2.1.3 AlarmNotifier_Set
Use the AlarmNotifier_Set function to create new Alarm Notifiers, or to overwrite the
configuration of exisiting Alarm Notifiers. The Alarm Notifiers to be created or written to are
signified by a list of <Alarm> elements in the input you supply to the function. The
properties that you must define within each <Alarm> element are the same, whether you are
creating a new Alarm Notifier or modifying an existing Alarm Notifier. The previous section,
AlarmNotifier_Get, describes these properties.

NOTE: When modifying an existing Alarm Notifier, any optional properties left out of the
input will be erased. Old values will not be carried over, so you must fill in every property
when writing to an Alarm Notifier, even if you are not changing all of the values.

You can create up to 40 Alarm Notifiers per i.LON 100 server. The first invocation of the
AlarmNotifier_Set function will generate the alarmNotifier.xml file in the
/root/config/software/Driver directory of your i.LON 100 server, if it does not already exist.

When creating or modifying an Alarm Notifier with AlarmNotifier_Set, you may want to use
output from AlarmNotifier_Get as the basis for your input parameters. You would then only
need to modify the values of each property to match the new configuration you want, as
opposed to re-creating an entire string like the one shown below, to generate your input.

The example below creates an Alarm Notifier that uses NVL_nviRequest as its input data
point. This Alarm Notifier includes one e-mail profile that it can use each time an alarm
notification occurs. It also has two ouput data points that can be updated when alarm
notifications occur. Several factors determine which of the data points will be updated when
the Alarm Notifier logs an alarm, including the status the input data point is updated to and
the alarm level assigned to the alarm condition set.

Input
Parameters

<iLONAlarmNotifier>
 <Alarm>
 <UCPTindex>9</UCPTindex>
 <UCPTdescription>Temperature Sensor Device</UCPTdescription>
 <UCPTfbName>Alarm Notifier- 9</UCPTfbName>
 <SCPTdelayTime>0.0</SCPTdelayTime>
 <UCPTsumLogSize>100</UCPTsumLogSize>
 <UCPThistLogSize>100</UCPThistLogSize>
 <UCPTlogFormat>LF_BINARY</UCPTlogFormat>
 <UCPTemailAggregTime>10</UCPTemailAggregTime>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviRequest</UCPTpointName>
 <AlarmFlags>
 <UCPTlogEnable>1</UCPTlogEnable>
 <UCPTinvisible>0</UCPTinvisible>
 <UCPTclearRequired>0</UCPTclearRequired>
 <UCPTackRequired>0</UCPTackRequired>
 <UCPTdisabled>0</UCPTdisabled>
 <UCPTcovEnabled>0</UCPTcovEnabled>
 </AlarmFlags>
 <UCPTalarmGroup>1</UCPTalarmGroup>
 <UCPTpriority>7</UCPTpriority>
 <UCPTdescription></UCPTdescription>
 </Point>
 <Mail>

7-22 i.LON 100 e3 Programmer’s Reference

 <UCPTindex>0</UCPTindex>
 <UCPTemailNickName>Headquarters</UCPTemailNickName>
 <UCPTemailAddress>js@nova</UCPTemailAddress>
 <UCPTemailFormat>%al occured at %dy/%dm/%dd %pn </UCPTemailFormat>
 <UCPTemailSubject>Alarm Notifier 3: %ad</UCPTemailSubject>
 <UCPTemailAttachment>/root/Data/log1.csv</UCPTemailAttachment>
 </Mail>
 <ActiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>1</UCPTlevel>
 <UCPTalarmText>Log 30 percent full</UCPTalarmText>
 <UCPTactAlarmType>AL_ALM_CONDITION</UCPTactAlarmType>
 </ActiveAlarm>
 <PassiveAlarm>
 <UCPTindex>0</UCPTindex>
 <UCPTlevel>255</UCPTlevel>
 <UCPTalarmText>Normal Condition</UCPTalarmText>
 <UCPTpasAlarmType>AL_NUL</UCPTpasAlarmType>
 </PassiveAlarm>
 <AlarmDest>
 <UCPTindex>0</UCPTindex>
 <UCPTdestEnable>NVL_nviWeekday</UCPTdestEnable>
 <ActiveDest>
 <UCPTindex>0</UCPTindex>
 <UCPTemailNickName>Headquarters</UCPTemailNickName>
 <UCPTpointName>NVL_nvoDlClear</UCPTpointName>
 <UCPTpointValue>100.0 1</UCPTpointValue>
 <UCPTminLevel>2</UCPTminLevel>
 <UCPTmaxLevel>0</UCPTmaxLevel>
 <UCPTnackDelay>0</UCPTnackDelay>
 </ActiveDest>
 <PassiveDest>
 <UCPTindex>0</UCPTindex>
 <UCPTemailNickName>Headquarters</UCPTemailNickName>
 <UCPTpointName>NVL_nvoDlClear</UCPTpointName>
 <UCPTpointValue>0.0 0</UCPTpointValue>
 </PassiveDest>
 </AlarmDest>
 </Alarm>
</iLONAlarmNotifier>

Output
Parameters

<iLONAlarmNotifier>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Alarm>
 <UCPTindex>9</UCPTindex>
 </Alarm>
</iLONAlarmNotifier>

7.2.1.4 AlarmNotifier_Read
Each time an Alarm Notifier causes an alarm notification, it will record an entry for that
notification into its log file. You can use the AlarmNotifier_Read function to retrieve some or
all of the log entries that an Alarm Notifier has recorded. You must reference the Alarm
Notifier to return log entries for by its index number in the input you supply to the function.

You can specify which log entries the function will return by filling the properties described
in Table 35 into the input you supplu to the function. If you do not fill the properties

i.LON 100 e3 Programmer’s Reference 7-23

described in Table 35 into the input, all the entries in the log will be returned. Note that you
should not attempt to return more than 100 log entries with a single call to this function.

NOTE: You can find the log files in the /root/AlarmLog directory of the i.LON 100 server.
These files are named histlogX, where X represents the index number assigned to the Alarm
Notifier when it was created. An Alarm Notifier will not generate a log file until it has
generated an alarm notification.

Table 35 AlarmNotifier_Read Input Properties

Parameter Description

<UCPTpointName> Enter the name of the data point you want to see log entries for. Leave this
property blank to see log entries for all data points the Alarm Notifier is
monitoring.

<UCPTalarmLog> Enter HISTORICAL to return the contents of the Alarm History Log, which
contains a log entry for every alarm notification made by the Alarm Notifier. Enter
SUMMARY to return the contents of the Alarm Summary Log, which contains an
entry for every active alarm notification made by the Alarm Notifier. It may only
contain the most recent entry into the log, depending on how the <UCPTflags>
property was defined for the Alarm Notifier when it was created.

<UCPTcount> Use this field to specify the maximum number of log entries the function will
return. If this property is not filled in, the function will return all log entries for
the applicable data point, or data points, that occurred within the interval defined
by the <UCPTstart> and <UCPTstop> properties.

NOTE: You should not attempt to read more than 100 log entries with a single call
to this function.

7-24 i.LON 100 e3 Programmer’s Reference

Parameter Description

<UCPTstart>
<UCPTstop> Use these fields to specify a range for the log time of the entries that will be

returned by the function. You can specify a start and stop time, or just a stop time.
When reading the Alarm History Log, these fields indicate a range for the log time
of the entries in the log, which is stored for each entry in the <UCPTlogTime>
property. When reading the Alarm Summary Log, these fields indicate a range for
the alarm time of the entries in the log, which is stored for each entry in the
<UCPTalarmTime> property.

If you specify a start and stop time and the number of log entries during this
interval exceeds the maximum defined by the <UCPTcount> property, the function
will return the first group of log entries recorded during the interval.

If you only specify a start time, the function will return entries from the log
starting at the start time until it reaches the end of the log file, or until it has
returned the maximum number of entries (as defined by the <UCPTcount>
property).

If you only specify a stop time and the number of log entries during this interval
exceeds the maximum defined by the <UCPTcount> property, the function will
return the group of entries from the stop time going backwards in the log until the
maximum number of log entries have been returned. If the <UCPTcount>
property was not defined, the function will return all log entries in the log, going
backward from the stop time. This may be useful for applications that need to read
the newest information logged.

If you do not enter a start or stop time, the function will return all log entries for
the applicable data points, up to the maximum.

You must enter the <UCPTstart> and <UCPTstop> properties as timestamps in
local time, with appended time zone indicators to denote the difference between
local time and UTC. For more information on this format, see Local Times and
Coordinated Universal Time on page 5-14.The <UCPTstart> and <UCPTstop>
properties must be entered as timestamps in local time, with an appended time
zone indicator that denotes the difference between local time and UTC. For more
information on this format, see Local Times and Coordinated Universal Time on
page 5-14.

The following call to the AlarmNotifier_Read function returns all log entries for data point
NVL_AlarmGenIn1 the Alarm Notifier using index number 0 for alarms that were logged
between 1-1-02 and 7-4-03. This call will return up to 200 log entries.

i.LON 100 e3 Programmer’s Reference 7-25

Input Parameters <iLONAlarmNotifier>
 <AlarmLog>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName> NVL_AlarmGenIn1</UCPTpointName>
 <UCPTalarmLog>HISTORICAL</UCPTalarmLog>
 <UCPTstart>2002-01-01T00:00:00.000+01:00</UCPTstart>
 <UCPTstop>2002-09-04T23:59:59.000+01:00</UCPTstop>
 <UCPTcount>5</UCPTcount>
 </AlarmLog>
</iLONAlarmNotifier>

Output Parameters <iLONAlarmNotifier>
 <UCPTfaultCount>0</UCPTfaultCount>
 <AlarmLog>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName> NVL_AlarmGenIn1</UCPTpointName>
 <UCPTalarmLog>SUMMARY</UCPTalarmLog>
 <UCPTfileName>/root/AlarmLog/sumlog0.dat</UCPTfileName>
 <UCPTstart>2001-01-01T00:00:00.000+01:00</UCPTstart>
 <UCPTstop>2003-07-04T23:59:59.000+01:00</UCPTstop>
 <UCPTlastEvent>2001-2-31T23:59:59.566+01:00</UCPTlastEvent>
 <UCPTlogLevel>20.5</UCPTlogLevel>
 <UCPTtotalCount>154</UCPTtotalCount>
 <Element>
 <UCPTlogTime>2002-07-03T10:47:51.000+01:00</UCPTlogTime>
 <UCPTalarmTime>2002-05-05T1:12:15.000+01:00</UCPTalarmTime>
 <UCPTpointName>NVL_AlarmGenIn1</UCPTpointName>
 <LogSourceAddress>

 <UCPTsubnet>0</UCPTsubnet>
 <UCPTnodeID>0</UCPTnodeID>

 </LogSourceAddress>
 <UCPTlocation>iLON</UCPTlocation>
 <UCPTalarmText>Normal Condition</UCPTalarmText>
 <UCPTpriority>1</UCPTpriority>
 <UCPTalarmPriority2>23</UCPTalarmPriority2>
 <UCPTalarmGroup>0</UCPTalarmGroup>
 <UCPTvalue>0.000000</UCPTvalue>
 <UCPTvalueDef></UCPTvalueDef>
 <UCPTunit></UCPTunit>
 <UCPTalarmType>PASSIVE</UCPTalarmType>
 <UCPTpointStatus>AL_NO_CONDITION</UCPTpointStatus>
 <UCPTalarmStatus>NACK</UCPTalarmStatus>
 <UCPTuserName>ilon</UCPTuserName>
 <UCPTdescription>Alarm Notifier Entry</UCPTdescription>
 </Element>
 </AlarmLog>
</iLONAlarmNotifier>

The output parameters include a series of properties for the Alarm Notifier referenced in the
input supplied to the function. These properties provide information about the Alarm
Notifier and the log file the entries were read from. Table 36 describes these properties.

Table 36 AlarmNotifier_Read Global Properties

Properties Description

<UCPTindex> The index number assigned to the Alarm Notifier.

7-26 i.LON 100 e3 Programmer’s Reference

Properties Description

<UCPTalarmLog> The type of log requested (either HISTORICAL or SUMMARY).

<UCPTfileName> The name of the log file the Alarm Notifier is using.

<UCPTstart>

<UCPTstop>

When reading the Alarm History Log, these properties contain
timestamps indicating the log time of the first and last entries in
the log file. When reading the Alarm Summary Log, these
properties contain timestamps indicating the alarm time of the
first and last entries in the log file. The order of the entries
returned by the function will be sorted by log time for the Alarm
History Log, and by alarm time for the Alarm Summary Log.

These timestamps are displayed in local time, with appended time
zone indicators that indicate the difference between local time and
UTC. For more information on this, see Local Times and
Coordinated Universal Time on page 5-14.

<UCPTlastEvent> This property contains a timestamp indicating the last time an
entry in the log file was deleted with the AlarmNotifier_Clear
function, or the last time an entry in the log was modified with the
AlarmNotifier_Write function. The timestamp is displayed in local
time, with an appended time zone indicator that indicates the
difference between local time and UTC. For more information on
this, see Local Times and Coordinated Universal Time on page 5-
14.

<UCPTlogLevel> The log level of the Alarm Notifier’s log file. This indicates the
percentage of the log file’s volume that has been filled. For
example, the value 20.5 indicates that the log is 20.5% full.

<UCPTtotalCount> This property contains the total number of entries contained in the
alarm log read by the function.

The function also returns an <Element> element for each log entry that meets the criteria
defined in the input parameters. Table 37 describes the properties that are listed within each
<Element> element.

Table 37 AlarmNotifier_Read Output Properties

Property Description

<UCPTlogTime> A timestamp indicating the time that the log entry was made.
This timestamp is displayed in local time, with an appended
time zone indicator indicating the difference between local time
and UTC. For more information on this format, see Local Times
and Coordinated Universal Time on page 5-14.

i.LON 100 e3 Programmer’s Reference 7-27

Property Description

<UCPTalarmTime> A timestamp indicating the time that the alarm occurred. This
timestamp is displayed in local time, with an appended time
zone indicator indicating the difference between local time and
UTC.For more information on this format, see Local Times and
Coordinated Universal Time on page 5-14.

<UCPTpointName> The name of the data point that caused the alarm notification.

<LogSourceAddress> The <LogSourceAddress> element contains two properties: the
<UCPTsubnet> property, which returns the Subnet ID of the
device containing the data point that caused the alarm, and the
<UCPTnodeID> property, which contains the device’s Node ID.

<UCPTlocation> The location of the data point.

<UCPTalarmText> The alarm text for the alarm. This text can be specified for an
Alarm Notifier using the AlarmNotifier_Set function.

<UCPTpriority> The priority level assigned to the data point that caused the
alarm in the i.LON 100 Data Server. The priority level is an
integer between 0 (high priority) and 255 (low priority). You can
use this priority level to sort the alarms with the summary log
view, or with the i.LON 100 Web pages.

<UCPTalarmPriority2> The priority level that the Alarm Notifier application is using to
update the value of the data point. The Alarm Notifier will only
successfully update the value of the data point if it is using a
priority level higher than (or equal to) the priority assigned to
the data point in the Data Server.

<UCPTalarmGroup> The alarm group of the alarm. This may be useful when sorting
alarms.

<UCPTvalue> The value of the data point that caused the alarm notification.

<UCPTvalueDef> The value definition being used by the data point. Values
definitions are strings representing preset values. They can be
established when a data point is added to the Data Server. If
this property does not appear, then the data point is not
currently using a value definition. For more information on
value definitions, see Chapter 4, Data Server.

<UCPTunit> The unit type defined for the data point that caused the alarm.

<UCPTalarmType> ACTIVE or PASSIVE. This indicates whether the alarm was an
active or passive alarm. The conditions that determine whether
an alarm is active or passive are defined when the Alarm
Notifier is created. For more information, see Active and Passive
Alarm Conditions on page 7-17.

7-28 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTpointStatus> The status of the data point that caused the alarm notification.
For information on how you can determine which point statuses
cause alarm notifications, see Active and Passive Alarm
Conditions Properties on page 7-18.

<UCPTalarmStatus> The status of the alarm. This can be AUTO_ACK or
MANUAL_ACK for an acknowlegded alarm that has not been
removed from the active alarms list, AUTO_CLEAR or
MANUAL_CLEAR for an alarm that has been acknowledged but
not removed from the active alarm list, and NACK for an alarm
that has not yet been acknowledged.

You can clear or acknowledge alarms manually with the
AlarmNotifier_Clear function. For more information, see
AlarmNotifier_Clear on page 7-31.

Alarms may be cleared or acknowledged automatically
depending on how the <UCPTflags> property was defined for the
Alarm Notifier when it was created.

<UCPTuserName> The name of the user who acknowledged the alarm. Alarms can
be acknowledged with the AlarmNotifier_Write function.

<UCPTdescription> The comment entered into the log entry for the log. You can
enter comments into the log with the AlarmNotifier_Write
function.

7.2.1.5 AlarmNotifier_Write
You can use the AlarmNotifier_Write function to acknowledge, or comment on, an log entry
for an Alarm Notifier. Table 38 describes the properties you can define in the input
parameters you supply to the function to acknowledge an alarm.

Table 38 AlarmNotifier_Write Input Properties

Property Description

<UCPTindex> The index number of the Alarm Notifier that generated the alarm
you want to acknowledge or comment on.

<UCPTpointName> The name of the data point that caused the alarm.

<UCPTalarmTime> A timestamp indicating the time that the alarm occurred. You must
enter this timestamp in local time, with an appended time zone
indicator that shows the difference between local time and UTC. For
more information on this format, see Local Times and Coordinated
Universal Time on page 5-14.

<UCPTuserName> The user name of the person acknowledging the alarm. This will be
logged in the log file. This can be a maximum of 31 characters long.

i.LON 100 e3 Programmer’s Reference 7-29

Property Description

<UCPTdescription> Enter a comment to be recorded in the log file entry for this alarm.
This can be a maximum of 227 characters long.

<UCPTalarmStatus> You can select one of four parameters to change the alarm status
entered in the log:

• MANUAL_CLEAR : Alarm will be acknowledged and removed
from the active list.

• MANUAL_ACK: Alarm will be acknowledged, but not removed
from the active list.

• NACK: Alarm will not be acknowledged or removed from the
active list. However, the comment entered for the <UCPTcomment>
property will be entered into the log.

• AUTO_ACK: If the status of an alarm reads AUTO_ACK, it
indicates that the alarm was automatically acknowledged by the
Alarm Notifier when it occurred. You can cause an Alarm Notifier to
automatically acknowledge all alarms for a data point by setting
<UCPTackRequired> property for the data point to 1 when you
create your Alarm Notifier with AlarmNotifier_Set. You can still
enter comments for the log file using this function if an alarm was
automatically acknowledged. For more information on the
<UCPTakRequired> property, see Input Data Points on page 7-13.

The following example acknowledges an alarm caused by the NVL_AlarmGenIn1 data point.

Input
Parameters

<iLONAlarmNotifier>
 <AlarmLog>
 <UCPTindex>0</UCPTindex>
 <Element>
 <UCPTpointName>NVL_AlarmGenIn1</UCPTpointName>
 <UCPTalarmTime>2002-01-01 Z1:05:03.000+01:00</UCPTalarmTime>
 <UCPTuserName>Ben Ross</UCPTuserName>
 <UCPTdescription>I’ll fix it this evening</UCPTdescription>
 <UCPTalarmStatus>MANUAL_ACK</UCPTalarmStatus>
 </Element>
 </AlarmLog>
</iLONAlarmNotifier>

Output
Parameters

<iLONAlarmNotifier>
 <UCPTfaultCount>0</UCPTfaultCount>
 <AlarmLog>
 <UCPTindex>0</UCPTindex>
 <UCPTalarmLog>SUMMARY</UCPTalarmLog>
 <UCPTfileName>/root/AlarmLog/sumlog0.csv</UCPTfileName>
 <UCPTstart>2001-01-01Z1:05:03.000+01:00</UCPTstart>
 <UCPTstop>2003-01-01Z1:05:03.000+01:00</UCPTstop>
 <UCPTlogLevel>0.5</UCPTlogLevel>
 </AlarmLog>
</iLONAlarmNotifier>

Table 39 describes the output properties returned by the AlarmNotifier_Write function.

7-30 i.LON 100 e3 Programmer’s Reference

Table 39 AlarmNotifier_Write Output Properties

Property Description

<UCPTindex> The index number of the Alarm Notifier affected by the function.

<UCPTalarmLog> The type of log file affected by the function: SUMMARY or
HISTORICAL.

<UCPTfileName> The name and path of the log file affected by the function.

<UCPTstart>

<UCPTstop>

The <UCPTstart> and <UCPTstop> properties indicate the time
the alarm time of the first and last entries in the log file. These
timestamps are shown in local time, with appended time zone
indicators that indicate the difference between local time and
UTC. For more information on this format, see Local Times and
Coordinated Universal Time on page 5-14.

<UCPTlogLevel> The volume of the log file currently being used. For example, the
value 20.5 indicates that the log file is 20.5% full.

i.LON 100 e3 Programmer’s Reference 7-31

7.2.1.6 AlarmNotifier_Clear
Use the AlarmNotifier_Clear function to clear a group of log entries from an Alarm Notifier
log file. This function only deletes the log entries. You can delete the Alarm Notifier itself
with the AlarmNotifier_Delete function.

You can specify which alarm entries are to be cleared out by filling the properties described
in Table 40 into the input you supply to the function. If you do not fill in these properties, the
entire alarm log will be cleared.

Table 40 AlarmNotifier_Clear Input Properties

Parameter Description

<UCPTindex> The index number of the Alarm Notifier to be affected.

<UCPTpointName> The name of the data point whose log entries are to be deleted. If no
data point name is specified, log entries for all data points will be
deleted.

<UCPTcount> Use this field to specify the maximum number of log entries the function
will delete. If you do not fill in this property, all log entries for the
applicable data point (or data points) will be cleared.

<UCPTstart>

<UCPTstop>

Use these fields to specify a time range for the alarm time of each log
entry to be deleted. You can specify a start and stop time, or just a stop
time.

If you specify a start and stop time and the number of log entries during
this interval exceeds the count entered, the function will clear out the
first group of log entries recorded during that interval.

If you only specify a stop time and the number of log entries before that
time exceeds the count entered, the function will clear out the first
group of log entries that recorded during that interval.

If you do not enter a start or stop time, the function will clear out all log
entries for the applicable data points, up to the maximum.

You must enter these properties as timestamps in local time, with
appended time zone indicators that denote the difference between local
time and UTC. For more information on this format, see Local Times
and Coordinated Universal Time on page 5-14.

The following call to the AlarmNotifier_Clear function deletes all log entries for data point
NVL_nviBgtVa from the Alarm Notifier with index number 0 that occurred between
1/31/2001 at 14:30 and 2/28/2001 at 14:30. Since the count entered is 200, it will delete the
first 200 log entries if the total log entries for the time span selected exceeds 200.

7-32 i.LON 100 e3 Programmer’s Reference

Input
Parameters

<iLONAlarmNotifier>
 <AlarmLog>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviBgtVa</UCPTpointName>
 <UCPTstart>2001-01-31T14:30:00.000+03:00</UCPTstart>
 <UCPTstop>2001-02-28T14:30:00.000+03:00</UCPTstop>
 <UCPTcount>200</UCPTcount>
 </AlarmLog>
</iLONAlarmNotifier>

Output
Parameters

<iLONAlarmNotifier>
 <UCPTfaultCount>0</UCPTfaultCount>
 <AlarmLog>
 <UCPTindex>0</UCPTindex>
 <UCPTalarmLog>SUMMARY</UCPTalarmLog>
 <UCPTfileName>/root/AlarmLog/sumlog0.dat</UCPTfileName>
 <UCPTstart>2001-01-31T14:30:00.000+03:00<UCPTstart>
 <UCPTstop>2001-02-31T14:29:59.000+03:00<UCPTstop>
 <UCPTlogLevel>20.5</UCPTlogLevel>
 </AlarmLog>
</iLONAlarmNotifier>

Table 41 describes the properties returned by the AlarmNotifier_Clear function.

Table 41 AlarmNotifier_Clear Output Properties

Property Description

<UCPTindex> The index number of the Alarm Notifier affected by the function.

<UCPTalarmLog> The type of log file affected by the function: SUMMARY or
HISTORICAL.

<UCPTfileName> The name and path of the log file affected by the function.

<UCPTstart>

<UCPTstop>

The <UCPTstart> and <UCPTstop> properties indicate the alarm
times of the first and last log entries deleted by the function.
These properties are displayed as timestamps in local time, with
appended time zone indicators that indicate the difference
between local time and UTC. For more information on this format,
see Local Times and Coordinated Universal Time on page 5-14.

<UCPTlogLevel> The volume of the log file currently being used. For example, the
value 20.5 indicates that the log file is 20.5% full.

i.LON 100 e3 Programmer’s Reference 7-33

7.2.1.7 AlarmNotifier_Delete
You can use the AlarmNotifier_Delete function to delete an Alarm Notifier. You must
reference the Alarm Notifier to be deleted by its index number in the input you supply to the
function, as in the example below.

Input Parameters <iLONAlarmNotifier>
 <Alarm>
 <UCPTindex>9</UCPTindex>
 </Alarm>
</iLONAlarmNotifier>

Output Parameters <iLONAlarmNotifier>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Alarm>
 <UCPTindex>9</UCPTindex>
 </Alarm>
</iLONAlarmNotifier>

7-34 i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 8-1

8 Analog Function Block
You can use Analog Function Blocks to perform a variety of statistical operations on the
values of the data points in your network, and store the result of each operation in an output
data point. You can perform these operations on as many input data points as you like per
Analog Function Block. The operations you can perform on them include determining the
average value of the input data points, the maximum value of the input data points, the
minimum value of the input data points, the sum of the input data point values, and several
others. Each operation is described in detail later in this chapter.

You can also select a comparison function as your operation. In this case, the Analog
Function Block will compare the value of all the input data points to the value of a data point
selected as the compare data point. You can choose from a variety of comparisons that an
Analog Function Block can perform between the data points, including Greater Than, Less
Than, and Equal To. The Analog Function Block will compare the values of the compare and
input data point using that comparison, and update the output data point to a True or False
value based on the result of that comparison.

If you are using a comparison function, and your Analog Function Block has multiple input
data points, you can specify a percentage. If that percentage of the comparisons between the
input and compare data points returns True, the output data point will be set to True.
Otherwise, it will be set to False.

For example, consider a case where an Analog Function Block has five input data points and
is using Greater Than as the comparison function. Assume that the percentage is set to 50%.
If the value of the 50% (at least three) of the input data points is greater than the value of
the compare data point, the output data point will be set to True. Otherwise, it will be set to
False.

The Analog Function Block will perform the operation you have selected for it each time any
of its input data points are updated, or at a timed interval you specify. You could use these
calculated values as a part of a control system or to monitor alarm conditions based on
multiple inputs.

8.1 AnalogFB.xml
The analogFB.xml file stores the configuration of the Analog Function Blocks that you have
added to the i.LON 100 server. You can create up to 20 Analog Function Blocks on your
i.LON 100 server.

Each Analog Function Block is signified by an <AnalogFB> element in the XML file. You can
create Analog Function Blocks with the AnalogFB_Set function, or by manually editing the
analogFB.xml file and downloading it to the i.LON 100 server via FTP. The sections
following this example provide instructions and guidelines to assist you when doing so.

The following represents a sample analogFB.xml file for an i.LON 100 server with one
defined Analog Function Block. This Analog Function Block determines the maximum value
of the value field of two data points, NVL_nviClaValue_1 and NVL_nviClaValue_2, and
stores that value in the value field of a data point called NVL_nvoClsValue_1.

8-2 i.LON 100 e3 Programmer’s Reference

<?xml version="1.0" ?>
 <iLONAnalogFB>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <AnalogFB>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-06-02T09:16:36Z</UCPTlastUpdate>
 <UCPTdescription>Bielefeld</UCPTdescription>
 <UCPTfbName>Analog Fn Block- 0</UCPTfbName>
 <UCPTcompFunction>FN_GT</UCPTcompFunction>
 <UCPTmajorityValue>100</UCPTmajorityValue>
 <UCPTtrueThreshold />
 <UCPToutputFunction>FN_MAX</UCPToutputFunction>
 <SCPTminRnge>10.0</SCPTminRnge>
 <SCPTmaxRnge>80.0</SCPTmaxRnge>
 <UCPTcalculationInterval>0.0</UCPTcalculationInterval>
 <SCPTovrBehave>OV_DEFAULT</SCPTovrBehave>
 <SCPTovrValue>0</SCPTovrValue>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 <InputDataPoint>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviClaValue_1</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>

 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviClaValue_2</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>

 </Point>
 </InputDataPoint>
 <CompareDataPoint>
 <UCPTpointName>NVL_nvoClsValue_2</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>

 </CompareDataPoint>
 <OutputDataPoint>
 <UCPTpointName>NVL_nvoClsValue_1</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>

 </OutputDataPoint>
 </AnalogFB>

 </iLONAnalogFB>

i.LON 100 e3 Programmer’s Reference 8-3

8.2 Creating and Modifying the analogFB.xml File
You can create and modify the analogFB.xml configuration file with the AnalogFB_Set SOAP
function. The following section, Analog Function Block SOAP Interface, describes how to use
the AnalogFB_Set function and the other SOAP functions provided for the Analog Function
Block application.

Alternatively, you can create and modify the analogFB.xml file manually with an XML editor
and download it to the i.LON 100 server via FTP. Echelon does not recommend this, as the
i.LON 100 server will require a reboot to read the configuration of the downloaded file.
Additionally, the i.LON 100 server performs error checking on all SOAP messages it receives
before writing to the XML file. It will not perform error checking on any XML files you
download via FTP, and thus the application may not boot properly.

However, if you plan to create the XML file manually, you should review the rest of this
chapter first, as it describes the elements and properties in the XML file that define each
Alarm Notifier’s configuration. For instructions on creating or modifying an XML file
manually, see Manually Modifying an XML Configuration File on page 14-1.

8.2.1 Analog Function Block SOAP Interface
The SOAP interface for the Analog Function Block application includes four functions. Table
42 lists and describes these functions. For more information on each function, see the
sections following Table 42.

Table 42 Analog Function Block

Function Description

AnalogFB_List Use this function to generate a list of the Analog Function Blocks
that you have added to the i.LON 100 server. For more information,
see AnalogFB_List on page 8-4.

AnalogFB_Get Use this function to return the configuration of an Analog Function
Block. For more information, see AnalogFB_Get on page 8-5.

AnalogFB_Set Use this function to create an Analog Function Block, or to overwrite
the configuration of an existing Analog Function Block. For more
information, see AnalogFB_Set on page 8-14.

AnalogFB_Delete Use this function to delete an Analog Function Block. For more
information, see AnalogFB_Delete on page 8-15.

8-4 i.LON 100 e3 Programmer’s Reference

8.2.1.1 AnalogFB_List
Use the AnalogFB_List function to retrieve a list of the Analog Function Blocks that you
have added to the i.LON 100 server. The AnalogFB_List function takes an empty string as
its input, as shwon in the example below.

The function returns the major and minor build version numbers that the Analog Function
Block application is using, as well as the namespace version used the last time the
AnalogFB_Set function was called. The output parameters also include an <AnalogFB>
element for each Analog Function Block that you have added to the i.LON 100 server. The
next section, AnalogFB_Get, describes the properties included in each of these elements.

You could use the list of <AnalogFB> elements returned by this function as input for the
AnalogFB_Get function. The AnalogFB_Get function would then return the configuration of
each Analog Function Block included in the list.

Input
Parameters

Empty String

Output
Parameters

<iLONAnalogFB>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <AnalogFB>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-06-02T19:16:36Z</UCPTlastUpdate>
 <UCPTdescription>Maximum Temperature</UCPTdescription>
 <UCPTfbName>Analog Fn Block- 0</UCPTfbName>
 </AnalogFB>
 <AnalogFB>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-06-26T10:10:55Z</UCPTlastUpdate>
 <UCPTdescription>Average Temperature</UCPTdescription>
 <UCPTfbName>Analog Fn Block - 1</UCPTfbName>
 </AnalogFB>
</iLONAnalogFB>

i.LON 100 e3 Programmer’s Reference 8-5

8.2.1.2 AnalogFB_Get
You can use the AnalogFB_Get function to retrieve the configuration of any Analog Function
Block that you have added to the i.LON 100 server. You must reference the Analog Function
Block whose configuration is to be displayed by its index number in the input you supply to
the function, as in the example below.

Input
Parameters

<iLONAnalogFB>
 <AnalogFB>
 <UCPTindex>1</UCPTindex>
 </AnalogFB>
</iLONAnalogFB>

Output
Parameters

<iLONAnalogFB>
 <AnalogFB>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-06-02T09:06:36Z</UCPTlastUpdate>
 <UCPTdescription>Maximum Temperature</UCPTdescription>
 <UCPTfbName>Analog Fn Block- 1</UCPTfbName>
 <UCPTcompFunction>FN_GT</UCPTcompFunction>
 <UCPTmajorityValue>100</UCPTmajorityValue>
 <UCPTtrueThreshold></UCPTtrueThreshold>
 <UCPToutputFunction>FN_MAX</UCPToutputFunction>
 <SCPTminRnge>10.0</SCPTminRnge>
 <SCPTmaxRnge>80.0</SCPTmaxRnge>
 <UCPTcalculationInterval>0.0</UCPTcalculationInterval>
 <SCPTovrBehave>OV_DEFAULT</SCPTovrBehave>
 <SCPTovrValue>0</SCPTovrValue>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 <InputDataPoint>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviClaValue_1</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>
 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviClaValue_2</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>
 </Point>
 </InputDataPoint>
 <CompareDataPoint>
 <UCPTpointName>NVL_nvoClsValue_2</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>
 </CompareDataPoint>
 <OutputDataPoint>
 <UCPTpointName>NVL_nvoClsValue_1</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 </OutputDataPoint>
 </AnalogFB>
</iLONAnalogFB>

The function returns an <AnalogFB> element for each Analog Function Block referenced in
the input parameters. The properties included in each <AnalogFB> element are initially

8-6 i.LON 100 e3 Programmer’s Reference

defined when the Analog Function Block is created. You can write to them with the
AnalogFB_Set function. Table 43 describes these properties.

For more information on the AnalogFB_Set function, see AnalogFB_Set on page 8-14.

Table 43 AnalogFB_Get Output Properties

Property Description

<UCPTindex> The index number assigned to the Analog Function Block must be in the
range 0-32,767. As mentioned earlier, you can use the AnalogFB_Set
function to create a new Analog Function Block, or to modify an existing
Analog Function Block. If you do not specify an index number in the input
you supply to AnalogFB_Set, the function will create a new Analog
Function Block using the first available index number.

If you specify an index number that is already being used, the function will
overwrite the configuration of the Analog Function Block using that index
number with the settings defined in the input parameters.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Analog
Function Block was updated. This timestamp uses the following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents the date
the configuration of the Analog Function Block was last updated. The
second segment (THH:MM:SS) represents the time of day the configuration
of the Analog Function Block was last updated, in UTC (Coordinated
Universal Time).

UTC is the current term for what was commonly referred to as Greenwich
Meridian Time (GMT). Zero (0) hours UTC is midnight in Greenwich
England, which lies on the zero longitudinal meridian. Universal time is
based on a 24 hour clock, therefore, an afternoon hour such as 4 pm UTC
would expressed as 16:00 UTC. The Z appended to the timestamp indicates
that it is in UTC.

For example, 2002-08-15T10:13:13Z indicates a UTC time of 10:13:13 AM
on August 15, 2002.

<UCPTdescription> A description of the Analog Function Block. This can be a maximum of 227
characters long.

<UCPTfbName> The functional block name assigned to the Analog Function Block in
LONMAKER. You can write to this property, but each time you use the
i.LON 100 Configuration Software to view the Analog Function Block, it
will be reset to match the functional block name defined in LONMAKER.

i.LON 100 e3 Programmer’s Reference 8-7

Property Description

<UCPTcompFunction> This property defines the comparison function the Analog Function Block
will use to compare the values of the compare data point and the input
data points. This function will only be used if the <UCPToutputFunction>
property is set to FN_COMPARE, FN_OR or FN_AND, and if the
<UCPTtrueThreshold> property is not defined. These properties are
described later in the table.

When this function is used, the output data point will be updated to a True
or False value depending on the results of the comparisons made with this
function. If more than one input data point is defined for the Analog
Function Block, you can specify a percentage with the
<UCPTmajorityValue> property. If that percentage of the input data
points return True, the output data point will be updated to True.
Otherwise, it will be updated to False. The <UCPTmajorityValue>
property is described in more detail later in this table.

For descriptions of the comparison functions you can use with your Analog
Function Block, see Comparison Functions on page 8-10.

<UCPTmajorityValue> The percentage of input data points whose comparison result with the
compare data point (or with the value of the <UCPTtrueThreshold>
property, if it is defined) must be True in order for the output data point is
set to True. The comparison to be performed between the input and
compare data point values is determined by the <UCPTcompFunction>
selected.

For example, if this field is set to 30.0, 30% of the input data points must
return True in order for the output data point to be set to True. This field
has a range of 0.0 to 100.0.

<UCPTtrueThreshold> This property specifies the compare value to be used with the input data
point when the comparison function selected for the Analog Function Block
is FN_OR, FN_AND or FN_COMPARE. This property will only be used if
the input data point(s) uses a scalar or enumeration value. This property
can not be used if any of the input data point use the format type
SNVT_switch.

If this property is not defined, all the comparisons will made with the value
of the compare data point. You can select a compare data point by filling in
the <CompareDataPoint> element, which is described later in the table.

Scenarios that may assist you in understanding how to use this property
follow the Comparison Functions section on page 8-10.

8-8 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPToutputFunction> The output function for the Analog Function Block. This determines the
operation the Analog Function Block will perform each time its data points
are updated, and how the value of the Analog Function Block’s output data
point will be determined.

For descriptions of the output functions you can use with your Analog
Function Block, see Output Functions on page 8-10.

<SCPTminRnge> The minimum value that the output data point can be assigned.

<SCPTmaxRnge> The maximum value that the output data point can be assigned.

<UCPTcalculationInterval> The delay, in seconds (0.0 to 6553.0), that must elapse between updates to
the Analog Function Block’s output data point. This may be useful if you
have multiple input data points, as setting a long interval here could cause
the Analog Function Block to only update the output data point when all
inputs have been received. If you use the default value of 0.0, the the
Analog Function Block will update the output data point each time any of
the input data points are updated.

<SCPTovrBehave> A value to define the behavior of the output data point when an override
request is received for the Analog Function Block. The valid range for this
property is any value within the defined limits of SNVT_override. Enter
OV_SPECIFIED to assign the output data point an override value when
this occurs. You can specify the value to be used by filling in the
<SCPTovrValue> property.

If you do not fill in this property, the application will maintain its last
setting when an override occurs.

<SCPTovrValue> The value the output data point will be assigned when it is overridden, and
the <SCPTovrBehave> property is set to OV_SPECIFIED.

<UCPTpollOnResetDelay> The delay, in seconds, the Analog Function Block wait after a reset before
polling the values of the input data points. When this value is 0, the
Analog Function Block will resume polling the input data points at the rate
specified by the <UCPTpollRate> property after a reset.

This field has a range of 0.0-6553.0.

i.LON 100 e3 Programmer’s Reference 8-9

Property Description

<InputDataPoint> You can specify as many input data points as you want per Analog
Function Block. The input data points for an Analog Function Block are
defined by a list of <InputDataPoint> elements.

For each element, you must specify an index number to be used within the
Analog Function Block (UCPTindex), the name of the data point
(UCPTpointName), and the interval to use when polling the data point’s
value (UCPTpollRate). The poll rate must be specified as an integer
between 0-6553. If the input data point is a structure, you must also
specify the name of the field to use when performing comparisons with the
data point (UCPTfieldName).

The value of the selected field for each input data point will be used to
generate a value for the output data point. This value assigned to the
output data point will vary, depending on the output function
(UCPToutputFunction) selected for the Analog Function Block.

NOTE: You should note that other i.LON 100 applications may cause the
Data Server to poll this data point’s value as well. The poll rate specified
by these applications should be compatible with each other. For example, if
an Analog Function Block is polling a data point every 15 seconds, and the
Data Logger is polling that data point every 10 seconds, then the Data
Server will have to poll the value of the data point every five seconds to
ensure that each application gets a current value for each poll.

It is important to note this as you set poll rates for various applications, as
you may end up causing more polls than is efficient on your network. For
example, if an Analog Function Block is polling a data point every 9
seconds and a Data Logger is polling a data point every 10 seconds, the
Data Server would have to poll the data point every second to ensure that
each application polls for a current value. This may create a significant
amount of undesired traffic.

<CompareDataPoint> This element defines the compare data point this Analog Function Block
will use.

You must specify the name of the data point (UCPTpointName), the name
of the field to use when making comparisons with the data point
(UCPTfieldName) if it is a structure, and the interval to use when polling
the data point’s value (UCPTpollRate).

The value of this data point will be compared to the value of each input
data point when the output function selected for the Analog Function Block
is FN_COMPARE, FN_AND or FN_OR. The comparison to perform is
determined by the <UCPTcompFunction> property, and the result of this
comparison will be stored in the output data point.

This value will not be used in comparisons if the <UCPTtrueThreshold>
property is defined.

8-10 i.LON 100 e3 Programmer’s Reference

Property Description

<OutputDataPoint> This element defines the output data point for this function block.

You must specify the <UCPTpointName> assigned to the output data point
within this element. The value of this data point will be updated with the
result of each comparison or statistical operation that the Analog Function
Block performs.

8.2.1.2.1 Output Functions

Table 44 lists and describes the output functions you can use to fill in the
<UCPToutputFunction> property. You must reference each function by the identifier listed
in the table.

The function selected here determines the value that the Analog Function Block will assign
to the output data point.

Table 44 Output Function Identifiers

Identifier Value Assigned To The Output Data Point

FN_MAX Maximum value of all input data points.

FN_MIN Minimum value of all input data points.

FN_SUM The sum of the values of all input data points.

FN_AVERAGE The average of the values of the input data points.

FN_COMPARE The result of the last comparison between the input data point(s) and the
compare data point (or the value assigned to the <UCPTtrueThreshold>
property, if it is defined). If this is selected, you must also select a comparison
function by filling in the <UCPTcompFunction> property.

For an example of how you could use this function, see FN_COMPARE
Example on page 8-13.

FN_AND This function reports True when all the input data points are True. The
definition of a True input depends on the data point type. If the input type is
SNVT_switch, the input is True if the value and state fields are non-zero. If the
input type is a structure other than SNVT_switch, the Boolean threshold is
undefined, and FN_AND should not be used.

If the input data point(s) type is a scalar or enumeration value, the function
reports True if all the comparisons made by the comparison function for the
analog function block are True. For an example of how you could use the
FN_AND output function in this way, see FN_AND Example on page 8-11.

i.LON 100 e3 Programmer’s Reference 8-11

Identifier Value Assigned To The Output Data Point

FN_OR This function reports True when any of the input data points are True. The
definition of a True input depends on the data point type. If the input type is
SNVT_switch, the input is True if the state and value fields are non-zero. If
the input type is a structure other than SNVT_switch, the Boolean threshold is
undefined, and FN_OR should not be used.

If the input data point(s) type is a scalar or enumeration value, the function
reports True if any of the comparisons made by the comparison function for the
analog function block are True. For an example of how you could use the
FN_OR function in this way, see FN_OR Example on page 8-12.

8.2.1.2.2 Comparison Functions

Table 45 lists and describes the comparison functions you can use to fill in the
<UCPTcompFunction> property. You must reference each function by the identifier listed in
the table.

Table 45 Comparison Function Identifiers

Identifier Description

FN_GT Greater than. Returns True if the value of the input data point is greater than that
of the compare data point (or the value assigned to the <UCPTtrueThreshold>
property, if it is defined).

FN_LT Less than. Returns True if the value of the input data point is less than that of the
compare data point (or the value assigned to the <UCPTtrueThreshold> property,
if it is defined).

FN_GE Greater than or equal to. Returns True if the value of the input data point is
greater than or equal to that of the compare data point (or the value assigned to
the <UCPTtrueThreshold> property, if it is defined).

FN_LE Less than or equal to. Returns True if the value of the input data point is less
than or equal to that of the compare data point (or the value assigned to the
<UCPTtrueThreshold> property, if it is defined).

FN_EQ Equal. Returns True if the value of the input data point is equal to that of the
compare data point (or the value assigned to the <UCPTtrueThreshold> property,
if it is defined).

FN_NE Not equal. Returns True if the value of the input data point is not equal to that of
the compare data point (or the value assigned to the <UCPTtrueThreshold>
property, if it is defined).

8.2.1.2.3 FN_AND Example
<UCPToutputFunction>: FN_AND
<UCPTcompFunction>: FN_GT

8-12 i.LON 100 e3 Programmer’s Reference

In this example, there are four input data points and one compare data point, all of the type
SNVT_count. There is one output data point, of the type SNVT_Switch.

Because the output function is FN_AND, the comparisons made with all the input data
points must return True in order for the output data point to be set to True. The comparison
function is FN_GT, so the value of each input data point must be greater than the value of
the compare data point, or the <UCPTtrueThreshold> value if it is defined, for this to
happen. If the <UCPTtrueThreshold> property is defined, then the value of the compare data
point is not used in the comparison.

Table 46 lists several case scenarios that show when these functions might would evaluate to
True (100.0 1).

Table 46 FN_AND Examples
Input 1 Input

2
Input
3

Input
4

Value of Compare Data
Point

UCPTtrueThreshold Output

9 11 12 13 Does not matter since
<UCPTtrueThreshold> is

defined.

10 0.0 0

20 30 40 50 Does not matter since
<UCPTtrueThreshold> is

defined.

10 100.0 1

20 30 40 50 35 EMPTY 0.0 0
70 80 40 50 35 EMPTY 100.0 1

8.2.1.2.4 FN_OR Example
<UCPToutputFunction>: FN_OR
<UCPTcompFunction>: FN_LT

In this example, there are four input data points and one compare data point, all of the type
SNVT_count. There is one output data point, of the type SNVT_switch.

Because the output function is FN_OR, and the comparison function is FN_LT, one of the
values of the data inputs must be less than the value of the compare data point, or the
<UCPTtrueThreshold> value if it is defined, for the output data point to be set to True. If the
<UCPTtrueThreshold> property is defined, then value of the compare data point is not used
in the comparison.

Table 47 lists several case scenarios that show when these two functions might evaluate to
True (100.0 1).

Table 47 FN_OR Examples
Input
1

Input
2

Input
3

Input
4

Value of Compare Data
Point

UCPTtrueThreshold Output

9 11 12 13 Does not matter since
<UCPTtrueThreshold> is

defined.

10 100.0 1

20 30 40 50 15 EMPTY 0.0 0
20 30 40 50 25 EMPTY 100.0 1
20 30 40 50 35 EMPTY 100.0 1

i.LON 100 e3 Programmer’s Reference 8-13

8.2.1.2.5 FN_COMPARE Example
<UCPToutputFunction>: FN_COMPARE
<UCPTcompFunction>: FN_EQ
<UCPTmajorityValue>: 100

In this example, there are four input data points and one compare data point, all of the type
SNVT_count. There is one output data point, of the type SNVT_switch.

Because the <UCPTmajorityValue> is set to 100, all comparisons made between the input
and compare data points must return True in order for the output data point to be set to
True. The comparison function selected is FN_EQ, so this means the values of the input data
points must match the value of the compare data point, or the <UCPTtrueThreshold>
property if it is defined, for this to happen. If the <UCPTtrueThreshold> is defined then the
value of the compare data point is not used in the comparison.

Table 48 lists several case scenarios that show when these two functions might evaluate to
True.

Table 48 FN_COMPARE Examples
Input
1

Input
2

Input
3

Input
4

Value of Compare Data
Point

UCPTtrueThreshold Output

50 30 50 50 Does not matter since
<UCPTtrueThreshold> is

defined.

40 0.0 0

40 40 40 40 Does not matter since
<UCPTtrueThreshold> is

defined.

40 100.0 1

50 50 50 50 50 EMPTY 100.0 1
50 50 50 49 50 EMPTY 0.0 0

8-14 i.LON 100 e3 Programmer’s Reference

8.2.1.3 AnalogFB_Set
Use the AnalogFB_Set function to create new Analog Function Blocks, or to overwrite the
configuration of existing Analog Function Blocks. The Analog Function Blocks to be created
or written to are signified by a list of <AnalogFB> elements in the input you supply to the
function. The properties that you must define within each <AnalogFB> element are the
same, whether you are creating a new Analog Function Block or modifying an existing
Analog Function Block. The previous section, AnalogFB_Get, describes these properties.

NOTE: When modifying an existing Analog Function Block, any optional properties left out
of the input will be erased. Old values will not be carried over, so you must fill in every
property when writing to an Analog Function Block, even if you are not changing all of the
values.

You can create up to 20 Analog Function Blocks per i.LON 100 server. The AnalogFB_Set
function will generate the analogFB.xml file in the /root/config/software directory of
your i.LON 100, if the file does not already exist.

When creating or modifying an Analog Function Block with AnalogFB_Set, you may want to
use output from AnalogFB_Get as the basis for your input. You would then only need to
modify the values of each property to match the new configuration you want, as opposed to
re-creating an entire string like the one shown below, to generate your input.

The example below uses the AnalogFB_Set function to create an Analog Function Block that
calculates the maximum of the value fields of two input data points, NVL_nviClaValue1 and
NVL_nviClaValue2, and stores the result in NVL_nviClaValue1.

Input Parameters <iLONAnalogFB>

 <AnalogFB>
 <UCPTindex></UCPTindex>
 <UCPTdescription>Bielefeld AFB 1</UCPTdescription>
 <UCPTfbName></UCPTfbName>
 <UCPTcompFunction>FN_GT</UCPTcompFunction>
 <UCPTmajorityValue>100</UCPTmajorityValue>
 <UCPTtrueThreshold></UCPTtrueThreshold>
 <UCPToutputFunction>FN_MAX</UCPToutputFunction>
 <SCPTminRnge>10.0</SCPTminRnge>
 <SCPTmaxRnge>80.0</SCPTmaxRnge>
 <UCPTcalculationInterval>0.0</UCPTcalculationInterval>
 <SCPTovrBehave>OV_DEFAULT</SCPTovrBehave>
 <SCPTovrValue>0</SCPTovrValue>
 <UCPTpollOnResetDelay>0.0</UCPTpollOnResetDelay>
 <InputDataPoint>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviClaValue_1</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>
 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviClaValue_2</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>
 </Point>
 </InputDataPoint>

i.LON 100 e3 Programmer’s Reference 8-15

 <CompareDataPoint>
 <UCPTpointName>NVL_nvoClsValue_2</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 <UCPTpollRate>0</UCPTpollRate>
 </CompareDataPoint>
 <OutputDataPoint>
 <UCPTpointName>NVL_nvoClsValue_1</UCPTpointName>
 <UCPTfieldName>value</UCPTfieldName>
 </OutputDataPoint>
 </AnalogFB>
</iLONAnalogFB>

Output Parameters <iLONAnalogFB>
 <UCPTfaultCount>0</UCPTfaultCount>
 <AnalogFB>
 <UCPTindex>1</UCPTindex>
 </AnalogFB>
</iLONAnalogFB>

8.2.1.4 AnalogFB_Delete
You can use the AnalogFB_Delete function to delete an Analog Function Block. You must
reference the Analog Function Block to be deleted by its index number in the input you
supply to the function, as in the example below.

Input Parameters <iLON100AnalogFB>
<AnalogFB>
 <UCPTindex>1</UCPTindex>
</AnalogFB>

</iLON100AnalogFB>

Output Parameters <iLON100AnalogFB>
 <UCPTfaultCount>0</UCPTfaultCount>

<AnalogFB>
 <UCPTindex>1</UCPTindex>
</AnalogFB>

</iLON100AnalogFB>

8-16 i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 9-1

9 Event Scheduler
You can use the Event Scheduler application to schedule periodic updates to the data points
in your network. You will select a data point, or group of data points, for each Event
Scheduler you create. These data points will be updated to specific values on the dates and
times that the Event Scheduler is effective. The dates and times that the Event Scheduler is
active, as well as the values the Event Scheduler will update the data points to, are
completely user-defined. This section provides an overview of how this works.

Day-Based Schedules

For each event schedule, you will create up to seven day-based schedules. Each day-based
schedule will apply to certain days of the week. For example, you could set up one day-based
schedule that is active Monday through Friday, and another that is active Saturday and
Sunday. Or, you could set up a separate day-based schedule for each day of the week.

You will define a series of day-time values for each schedule, meaning that you will be
allowed to specify what value you want your data points to be assigned at any given time
during the days that the schedule is active. For example, you could create an Event
Scheduler that sets a SNVT_switch data point to on (100.0 1) at 8:00 and off (0.0 0) at 17:00
on wekdays Monday through Friday, and leaves the data point set to off on Saturday and
Sunday.

Date-Based Schedules

In addition, you can create date-based exceptions for each Event Scheduler. These exceptions
will allow you to select specific dates which require a unique schedule, such as holidays, and
assign them a schedule that is different than any of the the day-based schedules. You will be
able to set up a separate set of day-time values for each exception. This allows you to specify
what value you want your data points to use on each exception date at any given time, and
gives you complete flexibility when creating an Event Scheduler.

The date-based exceptions must be created with the Event Calendar application. This is
described in Chapter 10, Event Calendar.

Data Points

The Event Scheduler application allows the integrator to dynamically select data points of
any standard or user defined network variable type to be updated by an Event Scheduler.
These outputs should be bound to network devices that require activation on a scheduled
interval. The data points must be created and added to the Data Server before they are used
by the Event Scheduler application. For more information on this, see Data Server on page 4-
1.

Refreshing Exceptions

As mentioned earlier, you will use the Event Calendar application to create the exception
points that define the date-based schedules for your Event Schedulers. Chapter 10 describes
this procedure. The exceptions you create are stored in an exception list (a list of exceptions
in UNVT_date_event format) that is stored within the Node Object. The Node Object
maintains the exception list, and it receives this list via the NVL_nviDateEvent point.

9-2 i.LON 100 e3 Programmer’s Reference

All Event Schedulers on the i.LON 100 server read the exception list from the local
NodeObject internally (not with a binding), and as a result only use current exception
configurations. By default, the data points of the NodeObject and the local Calendar are
configured in a loop, so that this exception list comes from the local Calendar object via an
internal binding between the NVL_nvoEcDateEvent output of the Calendar, and the
NVL_nviDateEvent input of the NodeObject.

After a restart, the Event Scheduler recalculates the last Event Scheduler operation. It also
sets the data point NVL_nvoDateResync to “100.0 1”, and then to “0.0 0”, which updates the
i.LON 100 exception list. You can set the value of NVL_nvoDateResync to “100.0 1” with the
DataPointWrite or DataServer_Write function at any time to refresh the exception list
manually. The data point NVL_nviEcResync of the Event Calendar will be internally bound
to NVL_nvoDateResync if no external binding is created. However, the Scheduler pulses the
NodeObject NV to ensure that the NodeObject always has an up-to-date Exception list, so
this should not be necessary.

9.1 EventScheduler.xml
The eventScheduler.xml file stores the configuration of the Event Schedulers that you have
added to the i.LON 100 server.

Each Event Scheduler is signified by a <Schedule> element in the XML file. You can create
Event Schedulers with the EventScheduler_Set function, or by manually editing the XML
file and then downloading it to the i.LON 100 server via FTP. The sections following this
example provide instructions and guidelines to assist you when doing so.

The following represents a sample eventScheduler.xml file for an i.LON 100 server with one
defined Event Scheduler.

<?xml version="1.0" ?>
 <iLONEventScheduler>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-06-26T11:10:34Z</UCPTlastUpdate>
 <UCPTdescription>Office Building Control Event Scheduler</UCPTdescription>
 <UCPTfbName>Scheduler- 1</UCPTfbName>

 <ScheduleEffectivePeriod>
 <StartDate>2002-01-01</StartDate>
 <EndDate>2006-12-31</EndDate>

 </ScheduleEffectivePeriod>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoWeekday</UCPTpointName>
 <SCPTdelayTime>0.0</SCPTdelayTime>

 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nvoWeekend</UCPTpointName>
 <SCPTdelayTime>0.0</SCPTdelayTime>

 </Point>
 <DayBased>
 <UCPTindex>0</UCPTindex>

i.LON 100 e3 Programmer’s Reference 9-3

 <UCPTdescription>Weekday</UCPTdescription>
 <UCPTpriority>240</UCPTpriority>

 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>1</UCPTwednesday>
 <UCPTthursday>1</UCPTthursday>
 <UCPTfriday>1</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>

 </Weekdays>
 <DayTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>WEEKDAY</UCPTscheduleValue>
 <UCPTtime>1:00:00</UCPTtime>

 </DayTimeVal>
 </DayBased>
 <DayBased>
 <UCPTindex>1</UCPTindex>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>240</UCPTpriority>

 <Weekdays>
 <UCPTsunday>1</UCPTsunday>
 <UCPTmonday>0</UCPTmonday>
 <UCPTtuesday>0</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>
 <UCPTsaturday>1</UCPTsaturday>

 </Weekdays>
 <DayTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>100.0 1</UCPTscheduleValue>
 <UCPTtime >12:30:00</UCPTtime >

 </DayTimeVal>
 <DayTimeVal>
 <UCPTindex>1</UCPTindex>
 <UCPTscheduleValue>0.0 0</UCPTscheduleValue>
 <UCPTtime>10:30:00</UCPTtime >

 </DayTimeVal>
 </DayBased>
 <DateBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Datumbasierend</UCPTdescription>
 <UCPTpriority>25</UCPTpriority>
 <DateTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>OnValue</UCPTscheduleValue>
 <UCPTtime>14:00:00</UCPTtime >

 </DateTimeVal>
 <DateTimeVal>
 <UCPTindex>1</UCPTindex>
 <UCPTscheduleValue>Off</UCPTscheduleValue>
 <UCPTtime>15:30:00</UCPTtime>

 </DateTimeVal>
 <Exception>
 <UCPTindex>0</UCPTindex>

9-4 i.LON 100 e3 Programmer’s Reference

 <UCPTexceptionName>Holiday</UCPTexceptionName>
 </Exception>

 </DateBased>
 </Schedule>

</iLONEventScheduler>

i.LON 100 e3 Programmer’s Reference 9-5

9.2 Creating and Modifying the eventScheduler.xml File
You can create and modify the eventScheduler.xml file with the EventScheduler_Set SOAP
function. The following section, Event Scheduler SOAP Interface, describes how to use
EventScheduler_Set and the other Event Scheduler SOAP functions.

Alternatively, you can create and modify the eventScheduler.xml file manually with an XML
editor, and download it to the i.LON 100 server via FTP. Echelon does not recommend this,
as the i.LON 100 server will require a reboot to read the configuration of the downloaded file.
Additionally, the i.LON 100 server performs error checking on all SOAP messages it receives
before writing to the XML file. It will not perform error checking on any XML files you
download via FTP, and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first,
as it describes the elements and properties in the XML file that define each Event Scheduler.
For instructions on creating or modifying an XML file manually, see Manually Modifying an
XML Configuration File on page 14-1.

9.2.1 Event Scheduler SOAP Interface
The SOAP interface for the Event Scheduler application includes four functions. Table 49
lists and describes these functions. See the sections following Table 49 for more information
on each function.

Table 49 Event Scheduler SOAP Functions

Function Description

EventScheduler_List Use this function to retrieve a list of the Event Schedulers that
you have added to the i.LON 100 server. For more information, see
EventScheduler_List on page 9-6.

EventScheduler_Get Use this function to retrieve the configuration of an Event
Scheduler. For more information, see EventScheduler_Get on page
9-7.

EventScheduler_Set Use this function to create an Event Scheduler, or to modify an
existing Event Scheduler. For more information, see
EventScheduler_Set on page 9-15.

EventScheduler_Delete Use this function to delete an Event Scheduler. For more
information, see EventScheduler_Delete on page 9-17.

9-6 i.LON 100 e3 Programmer’s Reference

9.2.1.1 EventScheduler_List
Use the EventScheduler_List function to retrieve a list of the Event Schedulers that you
have added to the i.LON 100 server. The EventScheduler_List function takes an empty
string as its input, as shown in the example below.

The function the major and minor build version numbers that the Event Scheduler
application is using, as well as the namespace version used the last time the
EventScheduler_Set function was called. The output parameters also include a <Schedule>
element for each Event Scheduler that you have added to the i.LON 100 server. The next
section, EventScheduler_Get, describes the properties included in each of these elements.

You could use the list of <Schedule> elements returned by this function as input for the
EventScheduler_Get function. The EventScheduler_Get function would then return the
configuration of every Event Scheduler included in the list.

Input
Parameters

Empty String

Output
Parameters

<iLONEventScheduler>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Schedule>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-06-20T12:37:10Z</UCPTlastUpdate>
 <UCPTdescription>Office Building</UCPTdescription>
 <UCPTfbName>Scheduler- 0</UCPTfbName>
 </Schedule>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-06-26T11:10:34Z</UCPTlastUpdate>
 <UCPTdescription>Kitchen Schedule</UCPTdescription>
 <UCPTfbName>Scheduler- 1</UCPTfbName>
 </Schedule>
 <Schedule>
 <UCPTindex>2</UCPTindex>
 <UCPTlastUpdate>2002-06-20T12:37:11Z</UCPTlastUpdate>
 <UCPTdescription>Basement Schedule</UCPTdescription>
 <UCPTfbName>Scheduler- 2</UCPTfbName>
 </Schedule>
</iLONEventScheduler>

i.LON 100 e3 Programmer’s Reference 9-7

9.2.1.2 EventScheduler_Get
You can use the EventScheduler_Get function to return the configuration of any Event
Scheduler that you have added to the i.LON 100 server. You must reference the Event
Scheduler whose configuration is to be returned by its index number in the input you supply
to the function, as in the example below.

Input
Parameters

<iLONEventScheduler>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 </Schedule>
</iLONEventScheduler>

Output
Parameters

<iLONEventScheduler>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-08-26T11:10:34Z</UCPTlastUpdate>
 <UCPTdescription>Kitchen Schedule</UCPTdescription>
 <UCPTfbName>Scheduler- 1</UCPTfbName>
 <ScheduleEffectivePeriod>
 <StartDate>2002-01-01</StartDate>
 <EndDate>2006-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoWeekday</UCPTpointName>
 <SCPTdelayTime>0.0</SCPTdelayTime>
 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nvoWeekend</UCPTpointName>
 <SCPTdelayTime>2.0</SCPTdelayTime>
 </Point>
 <DayBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Weekday</UCPTdescription>
 <UCPTpriority>240</UCPTpriority>
 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>1</UCPTwednesday>
 <UCPTthursday>1</UCPTthursday>
 <UCPTfriday>1</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>
 </Weekdays>
 <DayTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>WEEKDAY</UCPTscheduleValue>
 <UCPTtime>1:00:00</UCPTtime>
 </DayTimeVal>
 </DayBased>
 <DayBased>
 <UCPTindex>1</UCPTindex>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>240</UCPTpriority>
 <Weekdays>
 <UCPTsunday>1</UCPTsunday>
 <UCPTmonday>0</UCPTmonday>

9-8 i.LON 100 e3 Programmer’s Reference

 <UCPTtuesday>0</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>
 <UCPTsaturday>1</UCPTsaturday>
 </Weekdays>
 <DayTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>100.0 1</UCPTscheduleValue>
 <UCPTtime>12:30:00</UCPTtime>
 </DayTimeVal>
 <DayTimeVal>
 <UCPTindex>1</UCPTindex>
 <UCPTscheduleValue>0.0 0</UCPTscheduleValue>
 <UCPTtime>10:30:00</UCPTtime>
 </DayTimeVal>
 </DayBased>
 <DateBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Datumbasierend</UCPTdescription>
 <UCPTpriority>25</UCPTpriority>
 <DateTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>OnValue</UCPTscheduleValue>
 <UCPTtime>14:00:00</UCPTtime>
 </DateTimeVal>
 <DateTimeVal>
 <UCPTindex>1</UCPTindex>
 <UCPTscheduleValue>OffValue</UCPTscheduleValue>
 <UCPTtime>15:30:00</UCPTtime>
 </DateTimeVal>
 <Exception>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>Holiday</UCPTexceptionName>
 </Exception>
 </DateBased>
 </Schedule>
</iLONEventScheduler>

The function returns a <Schedule> element for each Event Scheduler referenced in the input
parameters. The properties included in each <Schedule> element are initially defined when
the Event Scheduler is created. You can write to them with the EventCalendar_Set function.
Table 50 describes these properties.

i.LON 100 e3 Programmer’s Reference 9-9

Table 50 EventScheduler_Get Output Properties

Property Description

<UCPTindex> The index number assigned to the Event Scheduler must be in the
range 0-32,767. As mentioned earlier, you can use the
EventScheduler_Set function to create a new Event Scheduler, or
to modify an existing Event Scheduler. If you do not specify an
index number in the input you supply to EventScheduler_Set, the
function will create a new Event Scheduler using the first
available index number.

If you specify an index number that is already being used, the
function will overwrite the configuration of the Event Scheduler
using that index number with the settings defined in the input
parameters.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the
Event Scheduler was written to. This timestamp uses the
following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents
the date the configuration of the Event Scheduler was last
updated. The second segment (THH:MM:SS) represents the time
of day the configuration of the Event Scheduler was last updated,
in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight
in Greenwich England, which lies on the zero longitudinal
meridian. Universal time is based on a 24 hour clock, therefore, an
afternoon hour such as 4 pm UTC would expressed as 16:00 UTC.
The Z appended to the timestamp indicates that it is in UTC.

For example, 2002-08-15T10:13:13Z indicates a UTC time of
10:13:13 AM on August 15, 2002.

<UCPTfbName> The functional block name assigned to the Event Scheduler in
LONMAKER. You can write to this property, but each time you use
the i.LON 100 Configuration Software to view the Event
Scheduler, it will be reset to match the functional block name
defined in LONMAKER.

<UCPTdescription> A user-defined description of the Event Scheduler. This can be a
maximum of 227 characters long.

9-10 i.LON 100 e3 Programmer’s Reference

Property Description

<ScheduleEffectivePeriod> The <ScheduleEffectivePeriod> element contains two properties
that define the dates that the Event Scheduler applies to. The
<StartDate> property defines the start date, and the <EndDate>
property defines the end date.

You must fill each property in using the following format:

YYYY-MM-DD

If the start date is undefined (0000-00-00), it means any date up to
and including the end date. If the end date is undefined, it means
any date from the start date. If both are undefined, it means the
Event Scheduler is always active. The default value for both
properties is 0000-00-00.

NOTE: If you use the i.LON 100 Configuration Software to modify
the configuration of an Event Scheduler after creating it with the
SOAP/XML interface, any date entered that is before 1/1/1970 will
be reset to 1/1/1970. Any date entered that is after 12/31/2037 will
be reset to 12/31/2037.

<Point> The data points that will be updated by the Event Scheduler are
defined by a list of <Point> elements.

For each <Point> element, you must enter the name
(UCPTpointName) of the data point to be updated. In addition,
you should fill in the delay time (SCPTdelayTime) property for
each data point. This integer value represents the period of time,
in seconds, that must elapse before this data point is updated
based on a DayBased or DateBased schedule point. This allows
you to stagger the updating of your data points, which may be
advisable if an Event Scheduler scheduler is to update multiple
data points at the same time.

NOTE: If a SNVT_tod_event data point is used, it will only be
updated if its value (current_state of next_state) has changed. If a
heartbeat (UNVTminSendTime) is defined for the
SNVT_tod_event data point, the time_to_next_state will be
decreased with every heartbeat.

<DayBased> Each Event Scheduler can have up to seven day-based schedules.
These are schedules that operate based on the current day of the
week. This may be useful when setting up a schedule that requires
different update times for different days of the week, e.g.
weekends and weekdays.

The day-based schedules for your Event Scheduler are defined by
a list of <DayBased> elements. For a detailed description of how to
configure each <DayBased> element, see Creating a Day-Based
Schedule on page 9-11.

i.LON 100 e3 Programmer’s Reference 9-11

Property Description

<DateBased> Each Event Scheduler can have one date-based schedule. You will
reference the schedule exceptions created with the Event Calendar
application to create this date-based schedule.

The <DateBased> element defines the date-based schedule. For a
detailed description of how to configure the properties and
elements that define the <DateBased> element, see Creating a
Date-Based Schedule on page 9-13.

9.2.1.2.1 Creating a Day-Based Schedule

Table 51 lists and describes the properties that should be defined within each <DayBased>
element.

Table 51 Day Based Schedule Properties

Property Description

<UCPTindex> The index number of the day-based schedule.

<UCPTdescription> A user-defined description of the day-based schedule. This description
can be up to 227 characters long.

<UCPTpriority> The priority assigned to the schedule, from 0 (highest priority) to 255
(lowest priority). The priority chosen here must be greater than or
equal to the current priority level assigned to a data point when the
Event Scheduler attempts to update that data point. If it is not, the
data point will not be updated successfully.

For a more detailed description of data point priority levels, see Data
Point Values and Priority Levels on page 4-27.

<Weekdays> The <Weekdays> element contains seven propertied, one for each day
of the week. If you set the property for a day to 1, this day-based
schedule will be active on that day. Otherwise, it will be inactive. For
example, to create a day-based schedule that is active on Monday and
Tuesday, use the following <Weekdays> element:

<Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>

 <UCPTsaturday>0</UCPTsaturday>
</Weekdays>

9-12 i.LON 100 e3 Programmer’s Reference

Property Description

<DayTimeVal> The update events for each day-based schedule are signified by a list of
<DayTimeVal> elements. Each update event will be used on the days
that this day-based schedule is active.

For each <DayTimeVal> element, you must enter a value, or select a
value definition defined for the data points the Event Scheduler is
updating, as the <UCPTscheduleValue> property. You can define
value definitions for each data point with the DataServer_Set function.
For more information, see DataServer_Set on page 4-10.

You will also enter the local time (UCPTtime), which defines the time
of day when the data points selected for your Event Scheduler will be
updated to the value specified for the <UCPTscheduleValue> property.
This time must be entered in 24-hour format, e.g. 15:30:00 represents
3:30:00 PM.

NOTE: The Event Scheduler application supports a maximum of 1024
update events per i.LON 100 server. As a result, the total number of
<DayTimeVal> and <DateTimeVal> elements defined in the i.LON 100
server cannot exceed 1024.

Now, consider the <DayBased> element in the sample output shown at the beginning of this
section. That day-based schedule section is effective on Saturday and Sunday of the date
range specified by the <UCPTscheduleEffectivePeriod> property. At 3:40 AM on every
Saturday and Sunday, it updates all data points selected for the Event Scheduler to their ON
value. At 6:40 PM, it updates these data points to their OFF value. This assumes that the
priority level assigned to the data point being updated is between 240 and 255.

<DayBased>
 <UCPTindex></UCPTindex>
 <UCPTdescription>Weekend</UCPTdescription>
 <UCPTpriority>240</UCPTpriority>
 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>
 <UCPTwednesday>0</UCPTwednesday>
 <UCPTthursday>0</UCPTthursday>
 <UCPTfriday>0</UCPTfriday>

 <UCPTsaturday>0</UCPTsaturday>
 </Weekdays>
 <DayTimeVal>
 <UCPTindex></UCPTindex>
 <UCPTscheduleValue>ON</UCPTscheduleValue>
 <UCPTtime>03:40:00</UCPTtime>
 </DayTimeVal>
 <DayTimeVal>
 <UCPTindex></UCPTindex>
 <UCPTscheduleValue>OFF</UCPTscheduleValue>
 <UCPTtime>18:40:00</UCPtime>

 </DayTimeVal>
</DayBased>

i.LON 100 e3 Programmer’s Reference 9-13

9.2.1.2.2 Creating a Date-Based Schedule

Table 52 lists and describes the properties that should be defined within each <DateBased>
element.

Table 52 Date-Based Schedule Properties

Property Description

<UCPTindex> The index number for the date-based schedule.

<UCPTdescription> A user-defined description of the date-based schedule. This description
can be up to 227 characters long.

<UCPTpriority> The priority to be assigned the schedule, from 0 (highest priority) to
255 (lowest priority). The priority chosen here must be greater than or
equal to the priority assigned to the data point when the Event
Scheduler attempts to update the data point. If it is not, the data point
will not be updated successfully. For a more detailed description of
data point priority levels, see Data Point Values and Priority Levels on
page 4-27.

<Exception> The exceptions for the date-based schedule specify the dates on which
the date-based schedule will be active. These exceptions are signified
by a list of <Exception> elements. Each exception must be referenced
by its name (UCPTexceptionName).

You will define the name of an exception and the dates is applies to
when you create it with the Event Calendar application. For more
information on this, seeEvent Calendar on page 12-1.

<DateTimeVal> The update events for each date-based schedule are signified by a list
of <DateTimeVal> elements. Each update event will be used on the
days that this date-based schedule is active.

For each <DateTimeVal> element, you must enter a value, or select a
value definition defined for the data points the Event Scheduler is
updating, as the <UCPTscheduleValue> property. You can define
value definitions for each data point with the DataServer_Set function.
For more information, see DataServer_Set on page 4-10.

You will also enter the local time (UCPTtime), which defines the time
of day when the data points selected for your Event Scheduler will be
updated to the value specified for the <UCPTscheduleValue> property.
This time must be entered in 24-hour format, e.g. 16:30:00 represents
4:30:00 PM.

NOTE: The Event Scheduler application supports a maximum of 1024
update events per i.LON 100 server. As a result, the total number of
<DayTimeVal> and <DateTimeVal> elements defined in the i.LON 100
server cannot exceed 1024.

Now, consider the <DateBased> element in the sample output shown at the beginning of this
section. That date-based schedule section is effective on the dates assigned to the Holiday

9-14 i.LON 100 e3 Programmer’s Reference

and Christmas calendar exceptions. At 3:40 AM on every date these exceptions apply to, the
data points affected by this function are updated to their BYPASS values. At 11:00 PM on
every date these exceptions apply to, the data points affected by this function are updated to
their OFF values. This assumes that the priority level assigned to the data point being
updated is between 112 and 255.

<DateBased>

 <UCPTindex></UCPTindex>
 <UCPTpriority>112</UCPTpriority>
 <UCPTdescription>Exception</UCPTdescription>
 <Exception>
 <UCPTindex></UCPTindex>
 <UCPTexeptionName>Holiday</UCPTexeptionName>
 </Exception>
 <Exception>
 <UCPTindex></UCPTindex>
 <UCPTexeptionName>Christmas</UCPTexeptionName>
 </Exception>
 <DateTimeVal>
 <UCPTindex></UCPTindex>

 <UCPTscheduleValue>BYPASS</UCPTscheduleValue>
 <UCPTtime>03:40:00</UCPTtime>
 </DateTimeVal>
 <DateTimeVal>
 <UCPTindex></UCPTindex>
 <UCPTscheduleValue>OFF</UCPTscheduleValue>
 <UCPTtime>23:00:00</UCPTtime>
 </DateTimeVal>

</DateBased>

i.LON 100 e3 Programmer’s Reference 9-15

9.2.1.3 EventScheduler_Set
You can use the EventScheduler_Set function to create new Event Schedulers, or to
overwrite the configuration of existing Event Schedulers. The Event Schedulers to be created
or written to are signified by a list of <Schedule> elements in the input you supply to the
function. The properties you must define within each <Schedule> element are the same,
whether you are creating a new Event Scheduler or modifying an existing Event Scheduler.
The previous section, EventScheduler_Get, describes these properties.

NOTE: When modifying an existing Event Scheduler, any optional properties left out of the
input will be erased. Old values will not be carried over, so you should fill in every property
when writing to an Event Scheduler, even if you are not changing all of the values.

When creating or modifying an Event Scheduler with this function, you may want to use
output from EventScheduler_Get as the basis for your input. You would then only need to
modify the values of each property to match the new configuration you want, as opposed to
re-creating an entire string like the one shown below, to generate your input.

You can create up to 40 Event Schedulers per i.LON 100 server. The EventScheduler_Set
function will generate the eventScheduler.xml file in the /root/config/software
directory of your i.LON 100 server, if the file does not already exist.

The example below creates an Event Scheduler that will update two data points,
NVL_nvoWeekend and NVL_nvoWeekday. It inlcudes two day-based schedules, one that
applies to weekdays and one that applies to weekends. It also includes a date-based schedule
that references a schedule exception created for holidays.

Input
Parameters

<iLONEventScheduler>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-08-26T11:10:34Z</UCPTlastUpdate>
 <UCPTdescription>Kitchen Schedule</UCPTdescription>
 <UCPTfbName>Scheduler- 1</UCPTfbName>
 <ScheduleEffectivePeriod>
 <StartDate>2002-01-01</StartDate>
 <EndDate>2006-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <Point>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoWeekday</UCPTpointName>
 <SCPTdelayTime>0.0</SCPTdelayTime>
 </Point>
 <Point>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nvoWeekend</UCPTpointName>
 <SCPTdelayTime>2.0</SCPTdelayTime>
 </Point>
 <DayBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Weekday</UCPTdescription>
 <UCPTpriority>240</UCPTpriority>
 <Weekdays>
 <UCPTsunday>0</UCPTsunday>
 <UCPTmonday>1</UCPTmonday>
 <UCPTtuesday>1</UCPTtuesday>

9-16 i.LON 100 e3 Programmer’s Reference

 <UCPTwednesday>1</UCPTwednesday>
 <UCPTthursday>1</UCPTthursday>
 <UCPTfriday>1</UCPTfriday>
 <UCPTsaturday>0</UCPTsaturday>
 </Weekdays>
 <DayTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>WEEKDAY</UCPTscheduleValue>
 <UCPTtime>1:00:00</UCPTtime>
 </DayTimeVal>
 </DayBased>
 <DateBased>
 <UCPTindex>0</UCPTindex>
 <UCPTdescription>Datumbasierend</UCPTdescription>
 <UCPTpriority>25</UCPTpriority>
 <DateTimeVal>
 <UCPTindex>0</UCPTindex>
 <UCPTscheduleValue>OnValue</UCPTscheduleValue>
 <UCPTtime>14:00:00</UCPTtime>
 </DateTimeVal>
 <DateTimeVal>
 <UCPTindex>1</UCPTindex>
 <UCPTscheduleValue>OffValue</UCPTscheduleValue>
 <UCPTtime>15:30:00</UCPTtime>
 </DateTimeVal>
 <Exception>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>Holiday</UCPTexceptionName>
 </Exception>
 </DateBased>
 </Schedule>
</iLONEventScheduler>

Output
Parameters

<iLONEventScheduler>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 </Schedule>
</iLONEventScheduler>

i.LON 100 e3 Programmer’s Reference 9-17

9.2.1.4 EventScheduler_Delete
You can use the EventScheduler_Delete function to delete an Event Scheduler. You must
reference the Event Scheduler to be deleted by its index number in the input you supply to
the function, as shown in the example below. You can delete more than one Event Scheduler
with a single call to EventScheduler_Delete, if desired.

The following example deletes two Event Schedulers, one using index value 0 and one using
index value 1.

Input Parameters <iLONEventScheduler>
 <Schedule>
 <UCPTindex>0</UCPTindex>
 </Schedule>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 </Schedule>
</iLONEventScheduler>

Output Parameters <iLONEventScheduler>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Schedule>
 <UCPTindex>0</UCPTindex>
 </Schedule>
 <Schedule>
 <UCPTindex>1</UCPTindex>
 </Schedule>
</iLONEventScheduler>

9-18 i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 10-1

10 Event Calendar
Use the Event Calendar application to define the exceptions that you will reference when
creating the date-based schedules for your Event Schedulers. Each exception you create
represents a date, or a group of dates. When you reference an exception in an Event
Scheduler, you will be able to assign the dates for that exception a unique schedule. This
may be useful when creating an Event Scheduler that requires different schedules for
holidays than regular weekdays, or during different seasons of the year.

This chapter describes how to create exceptions with the Event Calendar application.
Chapter 9, Event Scheduler, describes how to create an Event Scheduler and reference the
exceptions you create.

You can create daily exceptions as one-time exceptions, or exceptions that will be repeated
annually. The i.LON 100 server supports one active Event Calendar, with up to 256 schedule
exceptions.

When an Event Scheduler references an exception point, the Event Calendar application
supplies the dates an exception point references to the Node Object using the data point
NVL_nvoEcDateEvent. The Event Scheduler then reads this exception list from the local
Node Object. The information contained in the exception list includes when the exception is
valid, and when the exception will recur.

Whenever an exception is modified with the functions described in this chapter, all
exceptions in the Event Calendar are recalculated and copied to the NVL_nvoEcDateEvent
data point as a series of updates. By default, the NVL_nvoEcDateEvent data point of the
Event Calendar and the NVL_nviDateEvent data point of the Node Object are internally
bound, so that no network traffic is generated. Thus, the update from the Event Calendar is
passed to the local Node Object, and all the Event Schedulers will read the updated exception
list from the local Node Object.

In this fashion, each Event Scheduler will always have up-to-date definitions of the
exceptions it references. To force all exceptions to be recalculated and copied to the
NVL_nvoEcDateEvent data point, you may update the NVL_nviEcDateResync data point
(which will be internally bound to the NVL_nvoDateResync data point of the Node Object if
no external binding is created) with a value of "100.0 1".

10.1 EventCalendar.xml
The eventCalendar.xml file stores the configuration of the Event Calendars that you have
added to the i.LON 100 server. You can create multiple Event Calendars with up to 256
exceptions per i.LON 100 server. However, the i.LON 100 server supports only one active
Event Calendar at a time. The active Event Calendar must use index number 0.

Each defined Event Calendar is signified by a <Calendar> element in the XML file. You can
create event Calendars with the EventCalendar_Set function, or by manually editing the
eventCalendar.xml file and downloading it to the i.LON 100 server via FTP. The sections
following this example provide instructions and guidelines to assist you when doing so.

The following represents a sample eventCalendar.xml file for an i.LON 100 server with an
Event Calendar that has an exception named Holiday with exception schedules defined for
Christmas and the Fourth of July.

10-2 i.LON 100 e3 Programmer’s Reference

<?xml version="1.0" ?>
 <iLONEventCalendar>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Calendar>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-06-26T10:44:27Z</UCPTlastUpdate>
 <UCPTdescription>Floor</UCPTdescription>
 <UCPTfbName>Calendar 1</UCPTfbName>

 <ScheduleEffectivePeriod>
 <StartDate>1999-01-01</StartDate>
 <EndDate>2006-12-31</EndDate>

 </ScheduleEffectivePeriod>
 <Exceptions>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>Holiday</UCPTexceptionName>
 <UCPTtemporary>0</UCPTtemporary>

 <ExceptionSchedule>
 <StartDate>
 <UCPTdate>2000-12-24</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2000-12-26</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay>DY_NUL</UCPTschedDay>
 <UCPTschedMonth>MN_NUL</UCPTschedMonth>

 </ExceptionSchedule>
 <ExceptionSchedule>
 <StartDate>
 <UCPTdate>2000-7-03</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2000-07-05</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay>DY_NUL</UCPTschedDay>
 <UCPTschedMonth>MN_NUL</UCPTschedMonth>
 </ExceptionSchedule>

</Exceptions>
 </Calendar>

 </iLONEventCalendar>

i.LON 100 e3 Programmer’s Reference 10-3

10.2 Creating and Modifying the eventCalendar.xml File
You can create and modify the eventCalendar.xml file with the EventCalendar_Set SOAP
function. The following section, Event Calendar SOAP Interface, describes how to use the
EventCalendar_Set function and the other SOAP functions provided for the Event Calendar
application.

Alternatively, you can create and modify the eventCalendar.xml file manually with an XML
editor, and download it to the i.LON 100 server via FTP. Echelon does not recommend this,
as the i.LON 100 server will require a reboot to read the configuration of the downloaded file.
Additionally, the i.LON 100 server performs error checking on all SOAP messages it receives
before writing to the XML file. It will not perform error checking on any XML files you
download via FTP, and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first,
as it describes the elements and properties in the XML file that define each Event Calendar.
For instructions on creating or modifying an XML file manually, see Manually Modifying an
XML Configuration File on page 14-1.

10.2.1 Event Calendar SOAP Interface
The SOAP interface for the Event Calendar application includes four functions. Table 53 lists
and describes these functions. For more information on any of these functions, see the
sections following Table 53.

Table 53 Event Calendar SOAP Interface

Function Description

EventCalendar_List Use this function to retrieve a list of the Event Calendars that you
have added to the i.LON 100 server. For more information, see
EventCalendar_List on page 10-4.

EventCalendar_Get Use this function to retrieve the configuration of any Event
Calendar that you have added to the i.LON 100 server. For more
information, see EventCalendar_Get on page 10-5.

EventCalendar_Set Use this function to create an Event Calendar, or to overwrite the
configuration of an existing Event Calendar. For more information,
see EventCalendar_Set on page 10-14.

EventCalendar_Delete Use this function to delete an Event Calendar. For more
information, see EventCalendar_Delete on page 10-16.

10-4 i.LON 100 e3 Programmer’s Reference

10.2.1.1 EventCalendar_List
Use the EventCalendar_List function to retrieve a list of the Event Calendars that you have
added to the i.LON 100 server. The EventCalendar_List function takes an empty string as
its input, as shown in the example below.

The function returns the major and minor build version numbers that the Event Calendar
application is using, as well as the namespace version used the last time the
EventCalendar_Set function was called. The ouput parameters also include a <Calendar>
element for each Event Calendar that you have added to the i.LON 100 server. The next
section, EventCalendar_Get, describes the properties included in each of these elements.

You could use the list of <Calendar> elements returned by this function as the input for the
EventCalendar_Get function. The EventCalendar_Get function will then return the
configuration of each Event Calendar included in the list.

Input
Parameters

Empty String

Output
Parameters

<iLONEventCalendar>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <Calendar>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-06-26T10:38:48Z</UCPTlastUpdate>
 <UCPTdescription>Floor</UCPTdescription>
 <UCPTfbName>Calendar- 1</UCPTfbName>
 </Calendar>
</iLONEventCalendar>

i.LON 100 e3 Programmer’s Reference 10-5

10.2.1.2 EventCalendar_Get
You can use the EventCalendar_Get function to return the configuration of any Event
Calendar that you have added to the i.LON 100 server. You must reference the Event
Calendar whose configuration is to be returned by its index number in the input you supply
to this function, as shown in the example below.

Input
Parameters

<iLONEventCalendar>
 <Calendar>
 <UCPTindex>0</UCPTindex>
 </Calendar>
</iLONEventCalendar>

Output
Parameters

<iLONEventCalendar>
 <Calendar>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2001-06-21T20:53:21Z</UCPTlastUpdate>
 <UCPTdescription>Floor</UCPTdescription>
 <UCPTfbName>Calendar 1</UCPTfbName>
 <ScheduleEffectivePeriod>
 <StartDate>1999-01-01</StartDate>
 <EndDate>2006-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <Exceptions>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>Easter</UCPTexceptionName>
 <UCPTtemporary>0</UCPTtemporary>
 <ExceptionSchedule>
 <StartDate>
 <UCPTdate>2000-04-05</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2000-04-07</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay>DY_NUL</UCPTschedDay>
 <UCPTschedMonth>MN_NUL</UCPTschedMonth>
 </ExceptionSchedule>
 </Exceptions>
 </Calendar>
</iLONEventCalendar>

The function returns a <Calendar> element for each Event Calendar referenced in the input
parameters. The properties included in each of these elements are initially defined when the
Event Calendar is created. You can write to them with the EventCalendar_Set function.
Table 54 describes these properties.

10-6 i.LON 100 e3 Programmer’s Reference

Table 54 EventCalendar_Get Output Properties

Property Description

<UCPTindex> The index number assigned to the Event Calendar must be in the range
of 0-32,767. As mentioned earlier, you can use the EventCalendar_Set
function to create a new Event Calendar, or to modify an existing Event
Calendar. If you do not specify an index number in the input you supply
to EventCalendar_Set, the function will create a new Event Calendar
using the first available index number.

If you specify an index number that is already being used, the function
will overwrite the configuration of the Event Calendar using that index
number with the settings defined in the input parameters.

NOTE: The i.LON 100 supports one active Event Calendar at a time. The
active Event Calendar must use index number 0.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Event
Calendar was updated. This timestamp uses the following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents the date
the configuration of the Event Calendar was last updated. The second
segment (THH:MM:SS) represents the time of day the configuration of
the Event Calendar was last updated, in UTC (Coordinated Universal
Time).

UTC is the current term for what was commonly referred to as
Greenwich Meridian Time (GMT). Zero (0) hours UTC is midnight in
Greenwich England, which lies on the zero longitudinal meridian.
Universal time is based on a 24 hour clock, therefore, an afternoon hour
such as 4 pm UTC would expressed as 16:00 UTC. The Z appended to the
timestamp indicates that it is in UTC.

<UCPTdescription> A description of the Event Calendar. This can be a maximum of 227
characters long.

<UCPTfbName> The functional block name assigned to the Event Calendar in
LONMAKER. You can write to this field, but each time you use the i.LON
100 Configuration Software to view the Event Calendar, this property
will be reset to match the functional block name defined in LONMAKER.

i.LON 100 e3 Programmer’s Reference 10-7

Property Description

<ScheduleEffectivePeriod> The <ScheduleEffectivePeriod> element contains two properties that
define the dates that the Event Calendar applies to. The <StartDate>
property defines the start date, and the <EndDate> property defines the
end date. You must fill each property in using the following format:

YYYY-MM-DD

If the start date is undefined (0000-00-00), it means any date up to and
including the end date. If the end date is undefined, it means any date
from the start date. If both are undefined, it means the Event Calendar
is always active. The default value for both properties is 0000-00-00.

NOTE: If you use the i.LON 100 Configuration Software to modify the
configuration of an Event Calendar after creating it with the SOAP/XML
interface, any date entered that is before 1/1/1970 will be reset to
1/1/1970. Any date entered that is after 12/31/2037 will be reset to
12/31/2037.

<Exceptions> You can specify the dates that the Event Calendar applies to by creating
exceptions. The exceptions that have been created for an Event Calendar
are signified by a series of <Exceptions> elements. Each <Exceptions>
element contains a group of <ExceptionSchedule> child elements, each of
which defines the exception. You can create up to 256 exceptions per
calendar.

The ability to create multiple <ExceptionSchedule> elements allows you
to create groups of exceptions that can be applied to a schedule together.
For example, you may want to create a group of exceptions to apply to
the first floor of a building, and another group of exceptions to apply to
the second floor. In this case, you could specify two <Exceptions>
elements, one for each floor.

For a description of how to configure the properties you must define
within each <Exceptions> element, see the next section, Creating an
Exception.

10.2.1.2.1 Creating an Exception

The exception points for an Event Calendar are defined by a series of <Exceptions> elements.
Table 55 describes the properties that must be defined within each <Exceptions> element.

Table 55 Exception Point Properties

Property Description

<UCPTindex> The index number assigned to the exception.

<UCPTexceptionName> The name of the exception. This can be a maximum of 27 characters long.
You will use this to reference the exception point from the Event
Scheduler application.

10-8 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTtemporary> Either 0 or 1. If 0, this exception will be repeated anually. If 1, this will
be a temporary exception. In this case, it will be removed from the Event
Calendar, and any Event Schedulers referencing the exception, after the
first time it is referenced.

<ExceptionSchedule> The <ExceptionSchedule> element contains a series of child elements
and properties that define the dates that the exception applies to. These
are described in the next section, Defining Exception Dates.

10.2.1.2.1.1 Defining Exception Dates

The <ExceptionSchedule> element contains a series of child elements and properties that
define the dates that the Event Calendar is active. This includes the following:

1. The <StartDate> and <EndDate> child elements each contain 4 properties that define
the start and end dates for the exception: <UCPTdate>, <UCPTyearMask>,
<UCPTmonthMask>, and <UCPTdayMask>.

Use the <UCPTdate> properties within each child element to set the start and end
dates, as appropriate. When setting these proeprties, use the following format:
YYYY-MM-DD

Use the <UCPTyearMask>, <UCPTmonthMask>, and <UCPTdayMask> properties to
indicate whether the exception will apply to all days within the range specified by the
start and end dates, or to specific patterns of days within that range. You can set the
appropriate property to DW_NUL to apply the exception to the days, months, or years
specified by the date range, or to DW_WILDCARD to apply the exception to all days,
months or years. Consider the following example:

 <StartDate>
 <UCPTdate>2000-04-05</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2000-04-07</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>

The <UCPTyearMask> property in both elements is set to DW_WILDCARD, so the
exception applies to all years, not just the ones specified by the start and stop dates.
The other properties are set to DW_NUL, so the exception applies to the days and
months specified by the start and stop dates. Thus, the exception applies to April 5th
through 7th, every year.

Consider a case where you needed to create an exception to apply to the first ten days
of every month, year after year. You could do so by supplying the following
<StartDate> and <EndDate> elements. In this example, the <UCPTyearMask> and
<UCPTmonthMask> properties are set to DW_WILDCARD, so the years and months

i.LON 100 e3 Programmer’s Reference 10-9

specified in the start and stop dates are ignored. The <UCPTdayMask> property is
set to DW_NUL, so the days specified (1 through 10) are used.

 <StartDate>
 <UCPTdate>2000-01-01</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2000-01-10</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_WILDCARD</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>

2. <UCPTschedDay> property. Use this property to specify which days of the month the
exception will be valid during the interval specified by the <StartDate> and <EndDate>
elements. For example, you could specify every third day during the interval, every
fourth day, etc. Table 56 lists and defines the identifers you can use for the DAY_T field.

3. <UCPTschedMonth> property. Use this property to specify which months the exception
will be valid during the interval specified by the <StartDate> and <EndDate> elements.
For example, you could configure the exception to occur to every second month, or every
third month. Table 57 lists and defines the identifiers you can use for the MONTH_T
field.

NOTE: If you use the i.LON 100 Configuration Software to modify the configuration of an
Event Calendar after creating it with the SOAP/XML interface, any date entered that is
before 1/1/1970 will be reset to 1/1/1970. Any date entered that is after 12/31/2037 will be
reset to 12/31/2037.

Table 56 lists and describes the identifiers you can use to fill in the DAY_T field of the
<UCPTexceptionSchedule> property. The exception point will active on the days specified by
this property.

NOTE: If you use the i.LON 100 Configuration Software to modify the configuration of an
Event Calendar after creating it with the SOAP/XML interface, the Configuration Software
will automatically reset the Event Calendar to use the DAY_LAST_SECOND_DAY
identifier.

Table 56 DAY_T Identifiers

Identifier Description

DY_LAST_DAY_OF_MONTH Last day of month

DY_LAST_SECOND_DAY Second-to-last day of the month.

DY_LAST_THIRD_DAY Third-to-last day of the month

NOTE: There are many other identifiers that use the DY_LAST_XXX_DAY format
described by the last three identifiers. XXX represents an integer specifying the exact day to
use, in the range of 4-30. For example, you could enter the identifer DY_LAST_20_DAY to
have the exception occur on the 20th to last day of each month the exception applies to.

10-10 i.LON 100 e3 Programmer’s Reference

Identifier Description

DY_LAST_30_DAY 30th to last day of the month

DY_FIRST_SUN First Sunday of each month

DY_FIRST_MON First Monday of each month

DY_SECOND_MON Second Monday of each month

DY_THIRD_MON Third Monday of each month

DY_FOURTH_MON Fourth Monday of each month

DY_FIFTH_MON Fifth Monday of each month

DY_FIRST_SAT First Saturday of month

DY_SECOND_SUN Second Sunday of each month

DY_SECOND_MON Second Monday of each month

DY_SECOND_TUES Second Monday of each month

DY_SECOND_WED Second Tuesday of each month

DY_SECOND_THURS Second Wednesday of each month

DY_SECOND_FRI Second Friday of each month

DY_SECOND_SAT Second Saturday of each month

DY_THIRD_SUN Third Sunday of each month

DY_THIRD_MON Third Monday of each month

DY_THIRD_TUES Third Monday of each month

DY_THIRD_WED Third Tuesday of each month

DY_THIRD_THURS Third Wednesday of each month

DY_THIRD_FRI Third Friday of each month

DY_THIRD_SAT Third Saturday of each month

DY_FOURTH_SUN Fourth Sunday of each month

DY_FOURTH_MON Fourth Monday of each month

DY_FOURTH_TUES Fourth Monday of each month

i.LON 100 e3 Programmer’s Reference 10-11

Identifier Description

DY_FOURTH_WED Fourth Tuesday of each month

DY_FOURTH_THURS Fourth Wednesday of each month

DY_FOURTH_FRI Fourth Friday of each month

DY_FOURTH_SAT Fourth Saturday of each month

DY _FIFTH_SUN Fifth Sunday of each month

DY_FIFTH_MON Fifth Monday of each month

DY_FIFTH_TUES Fifth Tuesday of each month

DY_FIFTH_WED Fifth Wednesday of each month

DY_FIFTH_THURS Fifth Thursday of each month

DY_FIFTH_FRI Fifth Friday of each month

DY_FIFTH_SAT Fifth Saturday of each month

DY_LAST_SUN Last Sunday of each month

DY_LAST_MON Last Monday of each month

DY_LAST_TUES Last Tuesday of each month

DY_LAST_WED Last Wednesday of each month

DY_LAST_THURS Last Thursday of each month

DY_LAST_FRI Last Friday or each month

DY_LAST_SAT Last Saturday of each month

DY_EVERY_SUN Every Sunday of the date interval.

DY_EVERY_MON Every Monday of the date interval.

DY_EVERY_TUES Every Tuesday of the date interval.

DY_EVERY_WED Every Wednesday of the date interval.

DY_EVERY_THURS Every Thursday of the date interval.

DY_EVERY_FRI Every Friday of the date interval.

DY_EVERY_SAT Every Saturday of date interval

10-12 i.LON 100 e3 Programmer’s Reference

Identifier Description

DY_EVERY_SECOND_DAY Every second day of date interval

DY_EVERY_THIRD_DAY Every third day of date interval

DY_EVERY_FOURTH_DAY Every fourth day of the date interval

DY_EVERY_FIFTH_DAY Every fifth day of the date interval

DY_EVERY_SIXTH_DAY Every sixth day of the date interval

DY_NUL Value not available

Table 57 lists and describes the identifiers you can use to fill in the MONTH_T field of the
<UCPTexceptionSchedule> property. The calendar will be active during the months specified
by this property.

Table 57 MONTH_T Identifiers

Identifier Description

MN_JAN January

MN_FEB February

MN_MAR March

MN_APR April

MN_MAY May

MN_JUN June

MN_JUL July

MN_AUG August

MN_SEP September

MN_OCT October

MN_NOV November

MN_DEC December

MN_EVERY_MONTH Every month during the interval the Event Calendar is
active.

MN_EVERY_2_MONTHS Every other month during the interval the Event
Calendar is active.

i.LON 100 e3 Programmer’s Reference 10-13

Identifier Description

MN_QUARTERLY Every third month during the interval the Event
Calendar is active.

MN_EVERY_4_MONTHS Every fourth month during the interval the Event
Calendar is active.

MN_EVERY_5_MONTHS Every fifth month during the interval the Event Calendar
is active.

MN_EVERY_6_MONTHS Every sixth month during the interval the Event
Calendar is active.

MN_EVERY_7_MONTHS Every seventh month during the interval the Event
Calendar is active.

MN_EVERY_8_MONTHS Every eighth month during the interval the Event
Calendar is active.

MN_EVERY_9_MONTHS Every ninth month during the interval the Event
Calendar is active.

MN_EVERY_10_MONTHS Every tenth month during the interval the Event
Calendar is active.

MN_EVERY_11_MONTHS Every eleventh month during the interval the Event
Calendar is active.

MN_NUL Value not available. If this is choosen, the Event
Calendar will use every month.

10-14 i.LON 100 e3 Programmer’s Reference

10.2.1.3 EventCalendar_Set
You can use the EventCalendar_Set function to create new Event Calendars, or to overwrite
the configuration of existing Event Calendars. The Event Calendars to be created or written
to are signified by a list of <Calendar> elements in the input you supply to the function. The
properties you must define within each <Calendar> element are the same, whether you are
creating a new Event Calendar or modifying an existing Event Calendar. The previous
section, EventCalendar_Get, describes these properties.

NOTE: When modifying an existing Event Calendar, any optional properties left out of the
input will be erased. Old values will not be carried over, so you must fill in every property
when writing to an Event Calendar, even if you are not changing all of the values.

You can create multiple Event Calendars per i.LON 100 server. However, the i.LON 100 can
only support one active Event Calendar at a time. The Event Calendar that is assigned index
number 0 will be the active Event Calendar.

When creating or modifying an Event Calendar with EventCalendar_Set, it may be useful to
use output from the EventCalendar_Get function as the basis for your input. You would then
only need to modify the values of each property to match the new configuration you want, as
opposed to re-creating an entire string like the one shown below, to generate your input.

The EventCalendar_Set function will generate the eventCalendar.xml file in the
/root/config/software directory of your i.LON 100 server, if the file does not already
exist.

The following example call to the EventCalendar_Set function creates an Event Calendar
with two recurring exception dates: 4/11 and 4/12.

i.LON 100 e3 Programmer’s Reference 10-15

Input
Parameters

<iLONEventCalendar>
 <Calendar>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2001-06-21T20:53:21Z</UCPTlastUpdate>
 <UCPTdescription>Floor</UCPTdescription>
 <UCPTfbName>Calendar 1</UCPTfbName>
 <ScheduleEffectivePeriod>
 <StartDate>1999-01-01</StartDate>
 <EndDate>2006-12-31</EndDate>
 </ScheduleEffectivePeriod>
 <Exceptions>
 <UCPTindex>0</UCPTindex>
 <UCPTexceptionName>Easter</UCPTexceptionName>
 <UCPTtemporary>0</UCPTtemporary>
 <ExceptionSchedule>
 <StartDate>
 <UCPTdate>2000-04-05</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </StartDate>
 <EndDate>
 <UCPTdate>2000-04-07</UCPTdate>
 <UCPTyearMask>DW_WILDCARD</UCPTyearMask>
 <UCPTmonthMask>DW_NUL</UCPTmonthMask>
 <UCPTdayMask>DW_NUL</UCPTdayMask>
 </EndDate>
 <UCPTschedDay>DY_NUL</UCPTschedDay>
 <UCPTschedMonth>MN_NUL</UCPTschedMonth>
 </ExceptionSchedule>
 </Exceptions>
 </Calendar>
</iLONEventCalendar>

Output
Parameters

<iLONEventCalendar>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Calendar>
 <UCPTindex>0</UCPTindex>
 </Calendar>
</iLONEventCalendar>

10-16 i.LON 100 e3 Programmer’s Reference

10.2.1.4 EventCalendar_Delete
You can use the EventCalendar_Delete function to delete an Event Calendar. You must
reference the Event Calendar to be deleted by its index number in the input you supply to
the function, as in the example below.

Input Parameters <iLONEventCalendar>

 <Calendar>
 <UCPTindex>0</UCPTindex>
 </Calendar>
 <Calendar>
 <UCPTindex>223</UCPTindex>
 </Calendar>
</iLONEventCalendar>

Output Parameters <iLONEventCalendar>
 <UCPTfaultCount>0</UCPTfaultCount>
 <Calendar>
 <UCPTindex>0</UCPTindex>
 </Calendar>
 <Calendar>
 <UCPTindex>223</UCPTindex>
 </Calendar>
</iLONEventCalendar>

i.LON 100 e3 Programmer’s Reference 11-1

11 Type Translator
You can use Type Translators to convert data points from one network variable type to
another. This may be useful when comparing data points from different vendors that use
different types, and are not compatible with each other.

When creating a Type Translator, you will choose a Type Translator Rule. The Type
Translator Rule defines the network variable type of the data points the Type Translator will
take as input, and the network variable type it will convert these data points to. The Type
Translator Rule define the scaling factors, case structures for handling enumerations and
fields within structures, and offsets that will be used to determine the value to assign the
output data point.

The i.LON 100 software includes nine pre-defined Type Translator Rules. Each one is
described in detail later in this chapter. It is also possible to perform translations without
using a Type Translator Rule. This is possible when converting data from one scalar type to
another where no offset or multipliers are required, and when converting one type to another
with the same format description.

You can convert multiple input data points to a single output data point type, or you can
convert a single input data point to multiple output data points of different types using Type
Translators.

You can optionally create your own Type Translator Rules, or modify the Type Translator
Rules provided with the i.LON 100 software, using the TypeTranslator_Rule SOAP
functions. For more information on creating Type Translator Rules, or on modifying the Type
Translator Rules provided with the i.LON 100 software, see Type Translator Rules on page
12-1.

In addition, you will specify one or more input data points, and one or more output data
points. The network variable type of each data point will vary, depending on the Type
Translator Rule selected. When any of the input data points are updated, the Type
Translator will read the values of the input data points and assign new values to the output
data points, based on the values it reads and the Type Translator Rule selected.

11.1 TypeTranslator.xml
The typeTranslator.xml file stores the configuration of all Type Translators you have added
to the i.LON 100.

Each defined Type Translator is signified by a <TypeTranslator> element in the XML file.
You can create additional Type Translators using the TypeTranslator_Set function, or by
manually editing the XML file and downloading it to the i.LON 100 server via FTP. The
sections following this example provide instructions and guidelines to follow when doing so.

The following represents a sample typeTranslator.xml file for an i.LON 100 server with three
defined Type Translators.

11-2 i.LON 100 e3 Programmer’s Reference

<?xml version="1.0" ?>
 <iLONTypeTranslator>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <TypeTranslator>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-05-14T12:42:54Z</UCPTlastUpdate>
 <UCPTdescription>Translator For SNVT_Lev_Disc</UCPTdescription>
 <UCPTfbName>Type Translator- 1</UCPTfbName>
 <UCPTtranslatorRule>SNVT_lev_disc_TO_SNVT_switch</UCPTtranslatorRule>
 <SCPTdelayTime>0.0</SCPTdelayTime>
 <InDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviTransLevDisc</UCPTpointName>

 </InDataPoint>
 <OutDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoTransSwitch</UCPTpointName>

 </OutDataPoint>
 </TypeTranslator>
 <TypeTranslator>
 <UCPTindex>2</UCPTindex>
 <UCPTlastUpdate>2002-05-29T04:27:43Z</UCPTlastUpdate>
 <UCPTdescription></UCPTdescription>
 <UCPTfbName>Type Translator- 2</UCPTfbName>
 <UCPTtranslatorRule />
 <SCPTdelayTime>0.0</SCPTdelayTime>
 <InDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviTransTemp_f</UCPTpointName>

 </InDataPoint>
 <OutDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoTransTemp_p</UCPTpointName>

 </OutDataPoint>
 </TypeTranslator>
 <TypeTranslator>
 <UCPTindex>3</UCPTindex>
 <UCPTlastUpdate>2002-05-14T12:42:54Z</UCPTlastUpdate>
 <UCPTdescription></UCPTdescription>
 <UCPTfbName>Type Translator- 3</UCPTfbName>
 <UCPTtranslatorRule></UCPTtranslatorRule>
 <SCPTdelayTime>0.0</SCPTdelayTime>
<InDataPoint>
<UCPTindex>0</UCPTindex>
<UCPTpointName>NVL_nviTransTemp_p</UCPTpointName>

</InDataPoint>
<OutDataPoint>
<UCPTindex>0</UCPTindex>
<UCPTpointName>NVL_nvoTransTemp_f</UCPTpointName>

</OutDataPoint>
 </TypeTranslator>

 </iLONTypeTranslator>

i.LON 100 e3 Programmer’s Reference 11-3

11.2 Creating and Modifying the typeTranslator.xml File
You can create and modify the typeTranslator.xml file with the TypeTranslator_Set SOAP
function. The following section, Type Translator SOAP Interface, describes how to use
TypeTranslator_Set and the other SOAP functions provided for the Type Translator
application.

Alternatively, you can create and modify the .xml file manually with an XML editor, and
download it to the i.LON 100 server via FTP. Echelon does not recommend this, as the i.LON
100 server will require a reboot to read the configuration of the downloaded file. Additionally,
the i.LON 100 server performs error checking on all SOAP messages it receives before
writing to the XML file. It will not perform error checking on any XML files you download via
FTP, and thus the application may not boot properly.

If you plan to create the XML file manually, you should review the rest of this chapter first,
as it describes the elements and properties in the XML file that define each Type Translator.
For instructions on creating or modifying an XML file manually, see Manually Modifying an
XML Configuration File on page 14-1.

11.2.1 Type Translator SOAP Interface
The SOAP interface for the Type Translator application includes four functions. Table 58
lists and describes these functions. For more information on any of these functions, see the
sections following Table 58.

Table 58 Type Translator SOAP Functions

Function Description

TypeTranslator_List Use this function to retrieve a list of the Type Translators that you
have added to the i.LON 100 server. For more information, see
TypeTranslator_List on page 11-4.

TypeTranslator_Get Use this function to retrieve the configuration of any Type
Translator that you have added to the i.LON 100 server. For more
information, see TypeTranslator_Get on page 11-5.

TypeTranslator_Set Use this function to create a Type Translator, or to modify an
existing Type Translator. For more information, see
TypeTranslator_Set on page 11-13.

TypeTranslator_Delete Use this function to delete a Type Translator. For more
information, see TypeTranslator_Delete on page 11-14.

11-4 i.LON 100 e3 Programmer’s Reference

11.2.1.1 TypeTranslator_List
Use the TypeTranslator_List function to retrieve a list of the Type Translators that you have
added to the i.LON 100 server. The TypeTranslator_List function takes an empty string as
its input, as shown in the example below.

The function returns the major and minor build version numbers that the Type Translator
application is using, as well as the namespace version used the last time the
TypeTranslator_Set function was called. The output parameters also include a
<TypeTranslator> element for each Type Translator that you have added to the i.LON 100.
The next section, TypeTranslator_Get, describes the properties included in each of these
elements.

You could use the list of <TypeTranslator> elements as input for the TypeTranslator_Get
function. The TypeTranslator_Get function would then return the configuration of each Type
Translator included in the list.

Input
Parameters

Empty String

Output
Parameters

<iLONTypeTranslator>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <TypeTranslator>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-05-15T09:29:20Z</UCPTlastUpdate>
 <UCPTdescription>Digital</UCPTdescription>
 <UCPTfbName>Type Translator- 0</UCPTfbName>
 </TypeTranslator>
 <TypeTranslator>
 <UCPTindex>1</UCPTindex>
 <UCPTlastUpdate>2002-05-14T12:42:54Z</UCPTlastUpdate>
 <UCPTdescription>Temperature</UCPTdescription>
 <UCPTfbName>Type Translator- 1</UCPTfbName>
 </TypeTranslator>
 <TypeTranslator>
 <UCPTindex>2</UCPTindex>
 <UCPTlastUpdate>2002-05-29T04:27:43Z</UCPTlastUpdate>
 <UCPTdescription>Energy</UCPTdescription>
 <UCPTfbName>Type Translator- 2</UCPTfbName>
 </TypeTranslator>
 <TypeTranslator>
 <UCPTindex>3</UCPTindex>
 <UCPTlastUpdate>2002-05-14T12:42:54Z</UCPTlastUpdate>
 <UCPTdescription>Lighting</UCPTdescription>
 <UCPTfbName>Type Translator- 3</UCPTfbName>
 </TypeTranslator>
</iLONTypeTranslator>

i.LON 100 e3 Programmer’s Reference 11-5

11.2.1.2 TypeTranslator_Get
You can use the TypeTranslator_Get function to retrieve the configuration of any Type
Translator that you have added to the i.LON 100 server. You must reference the Type
Translator whose configuration is to be returned by its index number in the input you supply
to the function, as in the example below.

Input
Parameters

<iLONTypeTranslator>
<TypeTranslator>
 <UCPTindex>0</UCPTindex>
</TypeTranslator>

</iLONTypeTranslator>

Output
Parameters

<iLONTypeTranslator>
 <TypeTranslator>
 <UCPTindex>0</UCPTindex>
 <UCPTlastUpdate>2002-05-15T09:29:20Z</UCPTlastUpdate>
 <UCPTdescription>Translator For Two TimeStamp</UCPTdescription>
 <UCPTfbName>Type Translator- 0</UCPTfbName>
 <UCPTtranslatorRule>2xTimeStamp_to_TimeStamp</UCPTtranslatorRule>
 <SCPTdelayTime>67.0</SCPTdelayTime>
 <InDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviSchedTimeSet</UCPTpointName>
 </InDataPoint>
 <InDataPoint>
 <UCPTindex>1</UCPTindex>
 <UCPTpointName>NVL_nviRtTimeDate</UCPTpointName>
 </InDataPoint>
 <OutDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoTimeSet1</UCPTpointName>
 </OutDataPoint>
 </TypeTranslator>

</iLONTypeTranslator>

The function returns one <TypeTranslator> element for each Type Translator referenced in
the input parameters. The properties contained within each of these elements are defined
when the Type Translator is created. You can write to them with the TypeTranslator_Set
function. Table 59 describes these properties.

Table 59 TypeTranslator_Get Output Properties

Property Description

<UCPTindex> The index number assigned to the Type Translator must be in the range 0-32,767.
As mentioned earlier, you can use the TypeTranslator_Set function to create a new
Type Translator, or to modify an existing Type Translator. If you do not specify an
index number in the input you supply to TypeTranslator_Set, the function will
create a new Type Translator using the first available index number.

If you specify an index number that is already being used, the function will
overwrite the configuration of the Type Translator using that index number with
the settings defined in the input parameters.

11-6 i.LON 100 e3 Programmer’s Reference

Property Description

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Type Translator was
updated. This timestamp uses the following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents the date the
configuration of the Type Translator was last updated. The second segment
(THH:MM:SS) represents the time of day the configuration of the Type Translator
was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as Greenwich
Meridian Time (GMT). Zero (0) hours UTC is midnight in Greenwich England,
which lies on the zero longitudinal meridian. Universal time is based on a 24 hour
clock, therefore, an afternoon hour such as 4 pm UTC would expressed as 16:00
UTC. The Z appended to the timestamp indicates that it is in UTC.

<UCPTdescription> A user-defined description of the Type Translator. This can be a maximum of 227
characters.

<UCPTfbName> The functional block name assigned to the Type Translator in LONMAKER. You can
write to this property, but each time you use the i.LON 100 Configuration
Software to view the Type Translator, it will be reset to match the functional block
name defined in LONMAKER.

<UCPTTranslatorRule> The name of the Type Translator Rule that this Type Translator will use. This
determines the network variable type of the data points the Type Translator will
take as input, and the network variable type that these data points will be
translated to. It also determines the value to be assigned to the output data
point(s) after the translation.

The input and output data points you select for a Type Translator must use the
network variable types specified by the Type Translator Rule.

The sections immediately following this table describe the Type Translator Rules
included with the i.LON 100 software, the identifiers you can use to reference
them, and the input and output data point types you can use with them. You can
also use the SOAP interface to create your own Type Translator Rules. For more
information on this, see Chapter 12, Type Translator Rules.

If no translator rule is specified, then the Type Translator will convert the input
data point specified for the Type Translator to the format type of the output data
point specified for the Type Translator (e.g. scalar to scalar translation with no
offset and no constant, or enumeration to enumeration). In this case, the value of
the output data point will be updated with the value of the input data point each
time a translation is made.

i.LON 100 e3 Programmer’s Reference 11-7

Property Description

<SCPTdelayTime> This property specifies the time period to wait after any one of the Type
Translator’s input data points are updated before a translation will be performed,
in seconds. You might consider setting this to a value greater than 0 if the Type
Translator will translate multiple data points. That way, translations may only
occur after most or all of the input data points have been updated. The translation
will reflect any other data point updates that occur during the delay interval.

If this property is set to 0, the Type Translator will perform a translation each
time any of the input data points are updated.

<InDataPoint> The data point, or data points, the Type Translator will translate are signified by a
list of <InDataPoint> elements. Each <InDataPoint> element contains two
properties: <UCPTpointName> and <UCPTindex>.

Use the <UCPTpointName> property to reference the name of the input data
point, as defined in the i.LON 100 Data Server. Use the <UCPTindex> property to
assign that data point an index number within the Type Translator, if the Type
Translator takes multiple input data points.

The sections following this table describe the Type Translator Rules provided with
the i.LON 100 software, and the format types that each rule requires for the input
data points.

<OutDataPoint> The output data point(s) that will store the translated input data point. These data
points are signified by a list of <InDataPoint> elements. Each <InDataPoint>
element contains two properties: <UCPTpointName> and <UCPTindex>.

Use the <UCPTpointName> property to reference the name of the output data
point, as defined in the i.LON 100 Data Server. Use the <UCPTindex> property to
assign that data point an index number within the Type Translator, if the Type
Translator generates multiple output data points.

The sections following this table describe the Type Translator Rules provided with
the i.LON 100 software, and the format types that each rule requires for the
output data points.

11.2.1.2.1 Type Translator Rules

The following sections list the identifiers you can use to fill in the <UCPTtranslatorRule>
property when creating a Type Translator. They also provide descriptions of the Type
Translator Rules these identifiers reference, and of the network variable types of the input
and output data points you must use with each rule.

You can find the XML files that store the configuration of these Type Translator Rules in the
/root/config/Software/TranslatorRules directory of the i.LON 100 server.

11.2.1.2.1.1 16xSNVT_switch_TO_SNVT_state

Use this Type Translator Rule to convert up to 16 input data points of type SNVT_switch
into an output data point of type SNVT_state. The value of the state field of each of the

11-8 i.LON 100 e3 Programmer’s Reference

SNVT_switch input data points will be assigned to a field in the SNVT_state output data
point.

The SNVT_state output data point is defined by the <OutDataPoint> element in the input
supplied to the function. This element must contain the <UCPTpointName> of the
SNVT_state data point that is to store the Type Translator’s output.

The 16 SNVT_switch data points to be translated are defined by a list of <InDataPoint>
elements. Each element must contain two properties: <UCPTpointName> and
<UCPTindex>. The <UCPTpointName> must identify a SNVT_switch data point. The
<UCPTindex> must be in the range 0-15.

The value of the state field of each input data points will be read and stored in bitX of the
output data point, where X represents the <UCPTindex> selected for the input data point.
For example, the state field of the data point assigned index number 0 in the Type
Translator would be stored in Bit0 of the output SNVT_state data point. Or, the state field of
the data point assigned index number 8 would be stored in Bit7 of the output SNVT_state
data point.

If any of the index numbers for the input data points are not used (meaning that less than 16
data points were supplied to the Type Translator), then the corresponding field in the output
data point will be assigned a value of 0.

11.2.1.2.1.2 SNVT_lev_disc_TO_SNVT_occupancy

Use this Type Translator Rule to translate an input data point of type SNVT_lev_disc to an
output data point of type SNVT_occupancy. When you use this rule, you must reference the
SNVT_lev_disc data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element. You must reference the SNVT_occupancy data point to store the
result of the translation by its <UCPTpointName> in the <OutDataPoint> element.

Each time a type translation is made, the Type Translator will assign the SNVT_occupancy
output data point an enumeration value based on the enumeration assigned to the input
data point. The enumeration values assigned to the output data point follow the rules
described in Table 60.

Table 60 SNVT_lev_disc_TO_SNVT_occupancy

If the Input SNVT_lev_disc Data Point Is..... Then the SNVT_occupancy Output Data Point
Will Be Set To...

ST_NUL OC_NUL

ST_OFF OC_UNOCCUPIED

ST_ON OC_OCCUPIED

ST_HIGH OC_BYPASS

ST_LOW OC_STANDY

ST_MED OC_STANDY

i.LON 100 e3 Programmer’s Reference 11-9

11.2.1.2.1.3 SNVT_lev_disc_TO_SNVT_switch

Use this Type Translator Rule to translate an input data point of type SNVT_lev_disc to an
output data point of type SNVT_switch. When you use this rule, you must reference the
SNVT_lev_disc data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element. You must reference the SNVT_switch data point to store the result
of the translation by its <UCPTpointName> in the <OutDataPoint> element.

Each time a translation is made, the Type Translator will assign the SNVT_switch output
data point a value that is based on the enumeration currently assigned to the input data
point. The values assigned to the output data point follow the rules described in Table 61.

Table 61 SNVT_lev_disc_TO_SNVT_switch

If the Input SNVT_lev_disc Data Point Is..... Then the SNVT_switch Output Data Point Will
Be Set To...

ST_NUL 0xff 0

ST_OFF 0.0 0

ST_ON 100.0 1

ST_HIGH 75.0 1

ST_LOW 50.0 1

ST_MED 25.0 1

11.2.1.2.1.4 SNVT_occupancy_TO_SNVT_setting

Use this Type Translator Rule to translate an input data point of type SNVT_occupancy to
an output data point of type SNVT_setting. When you use this rule, you must reference the
SNVT_occupancy data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element. You must reference the SNVT_setting data point that will store the
result of the translation by its <UCPTpointName> in the <OutDataPoint> element.

Each time a translation is made, the three fields of the SNVT_setting data point (function,
rotation, setting) will be assigned different values based on enumeration currently assigned
to the input data point. These values assigned to these fields follow the rules described in
Table 62.

Table 62 SNVT_occupancy_TO_SNVT_setting

Then the SNVT_setting Output Field Values Will Be Set To… If the SNVT_occupancy Input
Data Point Is….

function Setting Rotation

OC_NUL SET_NUL 0 0.0

OC_UNOCCUPIED SET_STATE 60 -80.01

OC_OCCUPIED SET_STATE 100 80.24

11-10 i.LON 100 e3 Programmer’s Reference

OC_BYPASS SET_STATE 100.0 80.24

OC_STANDBY SET_STATE 60.2 -40.0

11.2.1.2.1.5 SNVT_scene_TO_SNVT_setting

Use this Type Translator Rule to translate an input data point of type SNVT_scene to an
output data point of type SNVT_setting. When you use this rule, you must reference the
SNVT_scene data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element. You must reference the SNVT_setting data point to store the result
of the translation by its <UCPTpointName> in the <OutDataPoint> element.

Each time a translation is made, the three fields of the SNVT_setting data output point
(function, rotation, setting) will be assigned different values based on the values of the
function and scene_number fields of the SNVT_scene data point. The values assigned to the
fields of the output data point follow the rules described in Table 63.

Table 63 SNVT_scene_TO_SNVT_setting

If the SNVT_scene Input Field Values
Are….

Then the SNVT_setting Output Field Values Are….

function scene_number function setting Rotation

SC_RECALL 0 SET_STATE 0 0

SC_RECALL 1 SET_STATE 25 0

SC_RECALL 2 SET_STATE 50 0

SC_RECALL 3 SET_STATE 75 0

SC_RECALL >3 SET_NUL 100 0

SC_NUL N/A SET_NUL 100 0

11.2.1.2.1.6 SNVT_scene_TO_SNVT_switch

Use this Type Translator Rule to translate an input data point of type SNVT_scene to an
output data point of type SNVT_switch. When you use this rule, you must reference the
SNVT_scene data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element. You must reference the SNVT_switch data point to store the result
of the translation by its <UCPTpointName> in the <OutDataPoint> element.

Each time a translation is made, the SNVT_switch output data point will be assigned a value
and state based on the values assigned to the function and scene_number fields of the
SNVT_scene input data point. The value assigned to the output data point follow the rules
described in Table 64.

Table 64 SNVT_scene to SNVT_switch

If the SNVT_scene Input Field Values Are.... Then the SNVT_switch Output Data Point Will Be Set
To

i.LON 100 e3 Programmer’s Reference 11-11

If the SNVT_scene Input Field Values Are....

function scene_number

SC_NUL N/A* 0.0 0

SC_RECALL 1 25.0 1

SC_RECALL 2 50.0 1

SC_RECALL 3 75.0 1

SC_RECALL >3 100.0 1

SC_RECALL 255 0.0 0

*If the input function is SC_NUL and the input scene_number is 0, the value of the output data point
will not be modified.

11.2.1.2.1.7 SNVT_setting_TO_SNVT_switch

Use this Type Translator Rule to translate an input data point of type SNVT_setting to an
output data point of type SNVT_switch. When you use this rule, you must reference the
SNVT_setting input data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element. You must reference the SNVT_switch data point to store the result
of the translation by its <UCPTpointName> in the <OutDataPoint> element.

Each time a translation is made, the SNVT_switch output data point will be assigned a value
based on the values assigned to the function and setting fields of the SNVT_setting input
data point. The value assigned to the output data point follow the rules described in Table
65.

Table 65 SNVT_setting_TO_SNVT_switch

If the SNVT_setting Input Field Values Are....

Function Setting

Then the SNVT_switch Output Data Point Will Be Set
To...

SET_STATE >100.0 0xFF 0

SET_STATE <=100.0 (setting value) 0

SET_NUL N/A 0xFF 0

11.2.1.2.1.8 SNVT_state_TO_16xSNVT_switch

Use this Type Translator Rule to translate a data point of type SNVT_state to multiple
output data points of type SNVT_switch. When you use this rule, you must reference the
SNVT_state input data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element.

The 16 SNVT_switch data points to store the result of the translation are signified by a list of
<InDataPoint> elements in the input parameters. Each element must contain two properties:

11-12 i.LON 100 e3 Programmer’s Reference

<UCPTpointName> and <UCPTindex>. The <UCPTpointName> must identify a
SNVT_switch data point. The <UCPTindex> must be in the range 0-15.

Each output data point will be assigned a value based on its index number, and the value of
the corresponding field in the input data point. For example, the output data point using
index number 0 within the Type Translator will be assigned a value based on Bit0 of the
input data point. The output data point using index number 7 within the Type Translator
will be assigned a value based on Bit6 of the input data point, and so on.

If the value of a BitX field is 0, then the applicable SNVT_switch data point will be assigned
the value 0.0 0. If the value of a BitX field is 1, then the applicable SNVT_switch data point
will be assigned the value 100.0 1.

11.2.1.2.1.9 SNVT_switch_TO_SNVT_lev_disc

Use this Type Translator Rule to translate an input data point of type SNVT_switch to an
output data point of type SNVT_lev_disc. When you use this rule, you must reference the
SNVT_switch input data point that is to be translated by its <UCPTpointName> in the
<InDataPoint> element. You must reference the SNVT_lev_disc data point to store the result
of the translation by its <UCPTpointName> in the <OutDataPoint> element.

The SNVT_lev_disc output data point will be assigned an enumeration based on the value of
the state and value fields of the input data point each time a translation is made. The value
assigned to the output data point follow the rules described in Table 66.

Table 66 SNVT_switch_TO_SNVT_lev_disc

If the SNVT_switch Input Field Values Are....

State Value

Then the SNVT_lev_disc Output Data Point Will Be Set
To...

0 N/A ST_OFF

1 0.0 ST_OFF

1 1.0-25.0 ST_LOW

1 26.0-50.0 ST_MED

1 51.0-75.0 ST_HIGH

1 76.0-100.0 ST_ON

1 >100.0 ST_NUL

i.LON 100 e3 Programmer’s Reference 11-13

11.2.1.3 TypeTranslator_Set
You can use the TypeTranslator_Set function to create new Type Translators, or to overwrite
the configuration of existing Type Translators. The Type Translators to be created or written
to are signified by a list of <TypeTranslator> elements in the input supplied to the function.
The properties you must define within each of these elements are the same, whether you are
creating a new Type Translator or modifying an existing Type Translator. The previous
section, TypeTranslator_Get, describes these properties.

NOTE: When modifying an existing Type Translator, any optional properties left out of the
input will be erased. Old values will not be carried over, so you must fill in every property
when writing to a Type Translator, even if you are not changing all of the values.

When creating or modifying a Type Translator with TypeTranslator_Set, you may want to
use output from TypeTranslator_Get as the basis for your input. You would then only need to
modify the values of each property to match the new configuration you want, as opposed to
re-creating an entire string like the one shown below, to generate your input.

The first invocation of the TypeTranslator_Set function will generate the typeTranslator.xml
file in the /root/config/software directory of your i.LON 100 server, if the file does not
already exist.

The following uses the TypeTranslator_Set function to create a Type Translator that uses the
Type Translator Rule “SNVT_switch_TO_SNVT_lev_disc” to translate the data point
NVL_nviTTswitch, and store the result of the translation in the data point NVL_nvoLevDisc.
Because the “SNVT_switch_TO_SNVT_lev_disc” rule is being used, NVL_nviTTswitch must
be a SNVT_switch data point and NVL_nvoLevDisc must be a SNVT_lev_disc data point.
The input and output data point types that must be used with the other Type Translator
Rules provided with the i.LON 100 software are listed in the previous section,
TypeTranslator_Get.

Input
Parameters

<iLONTypeTranslator>
 <TypeTranslator>
 <UCPTindex></UCPTindex>

 <UCPTdescription>Translator For SNVT_switch</UCPTdescription>
 <UCPTfbName></UCPTfbName>
 <UCPTtranslatorRule>SNVT_switch_TO_SNVT_lev_disc</UCPTtranslatorRule>
 <SCPTdelayTime>0.0</SCPTdelayTime>
 <InDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nviTTswitch</UCPTpointName>
 </InDataPoint>
 <OutDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTpointName>NVL_nvoLevDisc</UCPTpointName>
 </OutDataPoint>
 </TypeTranslator>

</iLONTypeTranslator>

11-14 i.LON 100 e3 Programmer’s Reference

Output
Parameters

<iLONTypeTranslator>
 <UCPTfaultCount>0</UCPTfaultCount>
 <TypeTranslator>
 <UCPTindex>7</UCPTindex>
 </TypeTranslator>
</iLONTypeTranslator>

11.2.1.4 TypeTranslator_Delete
You can use the TypeTranslator_Delete function to delete a Type Translator. You must
reference the Type Translator to be deleted by its index number in the input you supply to
the function, as in the example below.

Input Parameters <iLONTypeTranslator>
 <TypeTranslator>

 <UCPTindex>0</UCPTindex>
 </TypeTranslator>
</iLONTypeTranslator>

Output
Parameters

<iLONTypeTranslator>
 <UCPTfaultCount>0</UCPTfaultCount>
 <TypeTranslator>
 <UCPTindex>0</UCPTindex>
 </TypeTranslator>
</iLONTypeTranslator>

i.LON 100 e3 Programmer’s Reference 12-1

12 Type Translator Rules
You can use the Type Translator Rule SOAP functions to create additional Type Translator
Rules for the i.LON 100 server, or to modify the Type Translator Rules provided with the
i.LON 100 software. Each Type Translator Rule defines the network variable type of the data
points a Type Translator will take as input, and the network variable type these data points
will be translated to. In addition, they define the factors that are required to determine the
value to be assigned to the output data point during a translation, such as scaling, offsets,
and case structures to handle enumerations and fields within structures. This section
provides an overview of how this works.

A Type Translator referencing a Type Translator Rule will specify input data points
matching the input network variable types for that rule, and output data points matching
the output types for that rule. The values of the input data points will then be translated and
stored in the output data points each time any of the input data points are updated.

If an input data point is a structure, you can specify which field(s) in the input data point is
to be translated. Similarly, if the output data point is a structure, you can specify which
field(s) the result of a translation is to be stored in. Using these features, you can configure a
Type Translator Rule to convert multiple input data points into a single output data point, or
a single input data point into multiple output data points.

You can optionally create case structures that define the logic for a translation. For example,
if the input data point has a scalar value and the output data point is an enumeration, you
could set up a case structure to map ranges of scalar values to different enumerations for the
output data point. Alternatively, you could set up case rules to map the various enumeration
values an input data point to scalar values, or to different enumeration values, for an output
data point.

This chapter describes how to create a Type Translator Rule. Once you have created a Type
Translator Rule, you can reference it from a Type Translator. For more information on the
Type Translator application and how to create a Type Translator, see Chapter 11, Type
Translator.

12.1 Type Translator Rule XML Files
The configuration of each Type Translator Rule defined for the i.LON 100 server will be
stored in an XML file in the /root/config/Software/TranslatorRules directory of the
i.LON 100 server. All files in this directory are read during boot, and valid rules are made
available to the Type Translator application. By default, this directory contains several XML
files that you can use with your Type Translators. Chapter 11 introduces the Type
Translator Rules defined by these files, and describes how to use them with a Type
Translator.

This chapter describes how to use the SOAP interface to create a new Type Translator Rule,
or to modify an exisiting Type Translator Rule.

The following sample shows the XML file that stores the configuration of a Type Translator
Rule called 2xSwitch_to_Switch. This Type Translator Rule takes 2 SNVT_switch data
points as input. It stores the state field of the first input data point, and the value field of the
second input data point, in the output data point, which is also a SNVT_switch data point.

12-2 i.LON 100 e3 Programmer’s Reference

<TypeTranslatorRule>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTlastUpdate>2002-04-05T11:12:26Z</UCPTlastUpdate>
 <UCPTdescription>Test</UCPTdescription>
 <UCPTtranslatorRule>2xSwitch_to_Switch</UCPTtranslatorRule>
 <InDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>

 </InDataPoint>
 <InDataPoint>
 <UCPTindex>1</UCPTindex>
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>

 </InDataPoint>
 <OutDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTformatDescription>SNVT_switch</UCPTformatDescription>

 </OutDataPoint>
 <Case>
 <UCPTindex>0</UCPTindex>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTfieldNameIn><UCPTfieldNameIn>
 <UCPTcompFct>FN_NUL</UCPTcompFct>
 <UCPTcompValue>0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTfieldNameIn>state</UCPTfieldNameIn>
 <UCPTcompFct>FN_NUL</UCPTcompFct>
 <UCPTcompValue>0</UCPTcompValue>
 <UCPTmultiplier>1</UCPTmultiplier>
 <UCPTconstant>0</UCPTconstant>
 <UCPTindexOut>0</UCPTindexOut>
 <UCPTfieldNameOut>state</UCPTfieldNameOut>

 </Rule>
 <Rule>
 <UCPTindex>1</UCPTindex>
 <UCPTindexIn>1</UCPTindexIn>
 <UCPTfieldNameIn>value</UCPTfieldNameIn>
 <UCPTcompFct>FN_NUL</UCPTcompFct>
 <UCPTcompValue>0</UCPTcompValue>
 <UCPTmultiplier>1</UCPTmultiplier>
 <UCPTconstant>0</UCPTconstant>
 <UCPTindexOut>0</UCPTindexOut>
 <UCPTfieldNameOut>value</UCPTfieldNameOut>

 </Rule>
 </Case>

 </TypeTranslatorRule>

i.LON 100 e3 Programmer’s Reference 12-3

12.2 Creating and Modifying the Type Translator Rule XML Files
You can create and modify the XML files for your Type Translator Rules with the
TypeTranslator_Set_Rule function. The following section, Type Translator Rule SOAP
Interface, describes how to use TypeTranslator_Set_Rule and the other SOAP functions
provided for use with Type Translator Rules.

Alternatively, you can create the XML files for your Type Translator Rules manually, with
an XML editor, and download them to the i.LON 100 server via FTP sessions. Echelon does
not recommend this, as the i.LON 100 server will require a reboot to read the configuration
of the downloaded file. Additionally, the i.LON 100 server performs error checking on all
SOAP messages it receives before writing to the file. It will not perform error checking on
any XML files you download via FTP, and thus the application may not boot properly.

However, if you plan to create and manage the XML files for your Type Translator Rules
manually, you should review the rest of this chapter first, as it describes the elements and
properties that define each Type Translator Rule. For instructions on creating or modifying
an XML file manually, see Manually Modifying an XML Configuration File on page 14-1.

12.2.1 Type Translator Rule SOAP Interface
The SOAP interface for the Type Translator Rule application includes four functions. Table
67 lists and describes these functions. For more information on any of these functions, see
the sections following Table 67.

Table 67 Type Translator Rule SOAP Functions

Function Description

TypeTranslator_List_Rule Use this function to retrieve a list of the Type Translators
Rules that you have added to the i.LON 100 server. For more
information, see TypeTranslator_List_Rule on page 12-4.

TypeTranslator_Get_Rule Use this function to retrieve the configuration of any Type
Translator Rule that you have added to the i.LON 100 server.
For more information, see TypeTranslator_Get_Rule on page
12-5.

TypeTranslator_Set_Rule Use this function to create a Type Translator Rule, or to
overwrite the configuration of an existing Type Translator
Rule. For more information, see TypeTranslator_Set_Rule on
page 12-12.

TypeTranslator_Delete_Rule Use this function to delete a Type Translator Rule. For more
information, see TypeTranslator_Delete_Rule on page 12-14.

12-4 i.LON 100 e3 Programmer’s Reference

12.2.1.1 TypeTranslator_List_Rule
Use the TypeTranslator_List_Rule function to retrieve a list of the Type Translator Rules
that you have added to the i.LON 100 server. The TypeTranslator_List_Rule function takes
an empty string as its input, as shown in the example below.

The function returns the major and minor build version numbers that the Type Translator
Rule application is using, as well as the namespace version used the last time the
TypeTranslator_Set_Rule function was called. The output parameters also include a
<TypeTranslatorRule> element for each rule that you have added to the i.LON 100. The next
section, TypeTranslator_Get_Rule, describes the properties included in each of these
elements.

You could use the list of <TypeTranslatorRule> elements returned by this function as input
for the TypeTranslator_Get_Rule function. The TypeTranslator_Get_Rule function would
then return the complete configuration of each Type Translator Rule included in the list.

Input
Parameters

Empty String

Output
Parameters

<iLONTypeTranslatorRule>
 <SCPTobjMajVer>3</SCPTobjMajVer>
 <SCPTobjMinVer>0</SCPTobjMinVer>
 <UCPTcurrentConfig>3.0</UCPTcurrentConfig>
 <TypeTranslatorRule>
 <UCPTindex>7</UCPTindex>
 <UCPTlastUpdate>2002-01-30T16:32:26Z</UCPTlastUpdate>
 <UCPTtranslatorRule>SNVT_state_TO_16xswitch</UCPTtranslatorRule>
 <UCPTdescription>Converts SNVT_state to 16 SNVT_switch </UCPTdescription>
 </TypeTranslatorRule>
 <TypeTranslatorRule>
 <UCPTindex>8</UCPTindex>
 <UCPTlastUpdate>2002-01-30T16:32:26Z</UCPTlastUpdate>
 <UCPTtranslatorRule>SNVT_switch_TO_SNVT_lev_disc</UCPTtranslatorRule>
 <UCPTdescription>Converts SNVT_switch to SNVT_lev_disc</UCPTdescription>
 </TypeTranslatorRule>
 <TypeTranslatorRule>
 <UCPTindex>9</UCPTindex>
 <UCPTlastUpdate>2002-05-22T09:33:44Z</UCPTlastUpdate>
 <UCPTtranslatorRule>2xTimeStamp_to_TimeStamp</UCPTtranslatorRule>
 <UCPTdescription>Test</UCPTdescription>
 </TypeTranslatorRule>
 <TypeTranslatorRule>
 <UCPTindex>10</UCPTindex>
 <UCPTlastUpdate>2002-01-30T16:32:26Z</UCPTlastUpdate>
 <UCPTtranslatorRule>Limit_SNVT_count_f</UCPTtranslatorRule>
 <UCPTdescription>Sets SNVT_count_f to 0 when increased</UCPTdescription>
 </TypeTranslatorRule>
</iLONTypeTranslatorRule>

i.LON 100 e3 Programmer’s Reference 12-5

12.2.1.2 TypeTranslator_Get_Rule
You can use the TypeTranslator_Get_Rule function to return the configuration of any Type
Translator Rule that you have added to the i.LON 100 server. You must reference the Type
Translator Rule whose configuration is to be returned by its index number in the input you
supply to the function, as in the example below.

Input
Parameters

<iLONTypeTranslatorRule>
 <TypeTranslatorRule>
 <UCPTindex>10</UCPTindex>
 </TypeTranslatorRule>
</iLONTypeTranslatorRule>

Output
Parameters

<iLONTypeTranslatorRule>
 <TypeTranslatorRule>
 <UCPTindex>10</UCPTindex>
 <UCPTlastUpdate>2004-05-26T01:10:35Z</UCPTlastUpdate>
 <UCPTdescription>Adds five degrees to the temperature</UCPTdescription>
 <UCPTtranslatorRule>temp_add05</UCPTtranslatorRule>
 <InDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTformatDescription>SNVT_temp_f</UCPTformatDescription>
 </InDataPoint>
 <OutDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTformatDescription>SNVT_temp_f</UCPTformatDescription>
 </OutDataPoint>
 <Case>
 <UCPTindex>0</UCPTindex>
 <UCPTfieldNameIn></UCPTfieldNameIn>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTcompFunction>FN_NUL</UCPTcompFunction>
 <UCPTcompValue>0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTfieldNameIn></UCPTfieldNameIn>
 <UCPTindexOut>0</UCPTindexOut>
 <UCPTfieldNameOut></UCPTfieldNameOut>
 <UCPTcompFunction>FN_NUL</UCPTcompFunction>
 <UCPTcompValue>0</UCPTcompValue>
 <UCPTmultiplier>1</UCPTmultiplier>
 <UCPTconstant>5.0</UCPTconstant>
 </Rule>
 </Case>
 </TypeTranslatorRule>

</iLONTypeTranslatorRule>

The function returns one <Rule> element for each Type Translator Rule referenced in the
input parameters. The properties and elements contained within each <Rule> element are
defined when the Type Translator Rule is created. You can write to them using the
TypeTranslator_Set_Rule function. Table 68 describes these properties.

12-6 i.LON 100 e3 Programmer’s Reference

Table 68 TypeTranslator_Get_Rule Properties

Property Description

<UCPTindex> The index number assigned to the Type Translator Rule must be in the range 0-
32,767. As mentioned earlier, you can use the TypeTranslator_Set_Rule function
to create a new Type Translator Rule, or to modify an existing Type Translator
Rule. If you do not specify an index number in the input you supply to
TypeTranslator_Set_Rule, the function will create a new Type Translator Rule
using the first available index number.

If you specify an index number that is already being used, the function will
overwrite the configuration of the Type Translator Rule using that index
number with the settings defined in the input parameters.

<UCPTlastUpdate> A timestamp indicating the last time the configuration of the Type Translator
Rule was updated. This timestamp uses the following format:

YYYY-MM-DDTHH:MM:SSZ

The first segment of the time stamp (YYYY-MM-DD) represents the date the
configuration of the Type Translator Rule was last updated. The second segment
(THH:MM:SS) represents the time of day the configuration of the Type
Translator Rule was last updated, in UTC (Coordinated Universal Time).

UTC is the current term for what was commonly referred to as Greenwich
Meridian Time (GMT). Zero (0) hours UTC is midnight in Greenwich England,
which lies on the zero longitudinal meridian. Universal time is based on a 24
hour clock, therefore, an afternoon hour such as 4 pm UTC would expressed as
16:00 UTC. The Z appended to the timestamp indicates that it is in UTC.

<UCPTdescription> A description of the Type Translator Rule. This can be a maximum of 227
characters long.

<UCPTtranslatorRule> The name of the Type Translator Rule. The XML file created for this Type
Translator Rule will use this as its file name. For example, the XML file for the
rule defined in the sample input shown above would be: temp_add05.xml.

The name can be a maximum of 65 characters long. You will use it to reference
the rule when creating a Type Translator with the TypeTranslator_Set function.
For more information on the TypeTranslator_Set function, see Chapter 11, Type
Translator.

The following characters are restricted:
/ \ : * ? “ < > * |

i.LON 100 e3 Programmer’s Reference 12-7

Property Description

<InDataPoint> You can define the network variable types a Type Translator Rule accepts as
input with a series of <InDataPoint> elements. Each <InDataPoint> element
must contain two properties: <UCPTindex> and <UCPTformatDescription>.

Use the <UCPTformatDescription> property to define the network variable type.
Use the <UCPTindex> to assign that type an index number to be used within
the Type Translator Rule.

When you create a Type Translator to use a rule, you will define an input data
point, or a group of input data points, and assign each data point an index
number. The <UCPTformatDescription> of each data point must match the
<UCPTformatDescription> of the <InDataPoint> element using the same index
number within the Type Translator Rule. Otherwise, an error may occur during
translation.

<OutDataPoint> You can define the network variable types a Type Translator Rule will translate
its input to with a series of <OutDataPoint> elements. Each <OutDataPoint>
element must contain two properties: <UCPTindex> and
<UCPTformatDescription>.

Use the <UCPTformatDescription> property to define the network variable type.
Use the <UCPTindex> to assign that type an index number to be used within
the Type Translator Rule.

When you create a Type Translator that uses a rule, you will define an output
data point, or a group of output data points, and assign each data point an index
number. The <UCPTformatDescription> of each data point must match the
<UCPTformatDescription> of the <InDataPoint> element using the same index
number within the Type Translator Rule. Otherwise, an error may occur during
translation.

<Case> The input and output network variable types for a Type Translator Rule are
defined by a series of <InDataPoint> and <OutDataPoint> elements. You can
create case structures to determine the values that will be assigned to the
output data points when translations are made. This may be useful when
converting scalar values to enumerations, and vice versa. The case structures for
a Type Translator Rule are defined by a list of <Case> elements.

For more information on case structures, see the next section, Creating a Case
Structure.

12.2.1.2.1 Creating a Case Structure

You can create case structures for each Type Translator Rule that define the set of
operations that will be performed when a Type Translator using that rule makes a
translation. Each case structure includes several global elements, and a series of case rules.
The case rules are signified by a list of <Rule> elements. You can use these rules to establish
the value that will be assigned to the data point that the Type Translator Rule generates as
output.

12-8 i.LON 100 e3 Programmer’s Reference

Before the operations defined by the case rules are performed, the Type Translator Rule will
use its global elements to compare the value of an input data point (and field, where
applicable) to a value of your choice. You will select a comparison function with which the
comparison is to be made.

If the result of the operation is True, each of the case rules defined for the case structure will
be used. If the result is False, the case rules will not be used. These comparisons are meant
to give you flexibility when setting up your case structures.

For example, consider a case where the input data point for a Type Translator Rule uses the
format type SNVT_occupancy. You could set up one case structure to be used when the data
point is set to OC_OCCUPIED. You could set up another case structure to be used when the
data point is set to OC_UNOCCUPIED. Each structure could have a different set of case
rules that will be used to assign the output data point, or data points, a different value.

NOTE: If none of the case structures for a Type Translator Rule evaluate to True, the data
point will be updated during the translation. However, its value will not change.

Table 69 describes the global elements you will fill in to define the comparison that will be
performed. These elements must be inserted at the top of the case structure, before the
<Rule> elements.

Table 69 Case Structure Global Properties

Property Description

<UCPTindex>

The index number of the case structure.

<UCPTfieldNameIn> If the input data point to be used in the comparison for this case
structure is a structure, enter the name of the field whose value
is to be used in the comparison. Leave this property empty if the
input data point is not a structure.

<UCPTindexIn> The index number of the input data point whose value you want
to be used in the comparison, as defined within the
<InDataPoint> elements of the Type Translator Rule.

<UCPTcompFunction>

<UCPTcompValue>

Select a comparison function (UCPTcompFunction) and compare
value (UCPTcompValue) for the case element. Table 70 lists and
describes the comparison functions that can be used to fill in the
<UCPTcompFunction> property.

The value of the input data point, or input data point field,
selected for the case structrure will be compared to the compare
value using the selected comparison function. If the result of this
comparison is True, the case rules defined for the case structure
will be used.

For more information information on case rules, see Case Rules
on page 12-9.

i.LON 100 e3 Programmer’s Reference 12-9

Table 70 lists and describes the comparison functions that can be used to fill in the
<UCPTcompFunction> property. Each function must be referenced by the identifier string
listed in the table.

Table 70 Comparison Function Identifiers

Identifier Description

FN_GT Greater than. Returns True if the value of the input data point is greater than that
of the compare data point.

FN_LT Less than. Returns True if the value of the input data point is less than that of the
compare data point.

FN_GE Greater than or equal to. Returns True if the value of the input data point is
greater than or equal to that of the compare data point.

FN_LE Less than or equal to. Returns True if the value of the input data point is less than
or equal to that of the compare data point.

FN_EQ Equal. Returns True if the value of the input data point is equal to that of the
compare data point.

FN_NE Not equal. Returns True if the value of the input data point is not equal to that of
the compare data point.

FN_NUL Null. Returns True for all values of the input. Use this if you want the case rules
for a structure to be used each time there is a translation.

12.2.1.2.1.1 Case Rules

You can use case rules to determine the value(s) to be assigned to the output data point(s)
when a Type Translator Rule is used. If the output data point is a structure, you can create
case rules to determine the value that will be assigned to each field in the structure.

For each case rule, you will specify an input data point (and a field name if the input data
point is a structure) to determine the input value. You will also specify a compare value and
a comparison function. The input value will be compared to the compare value using the
specified comparison function. If the result of the comparison is True, the operation defined
by the case rule will be performed. If the result of the comparison is False, the operation will
not be performed and the value of the output data point (or field) will not change.

Consider a Type Translator Rule that converts a SNVT_scene data point into a SNVT_switch
data point. You could create a case rule to assign the value or state fields of the
SNVT_switch data point a value based on scene_number of the SNVT_scene data point. For
example, you could assign the SNVT_switch data point the value 100.0 1 if the
scene_number is less than 2, or 0.0 if it is greater than 2. You can create as many case rules
as you want per case structure, so you can plan on as many contingencies as you like.

Each case rule is defined by a <Rule> element. Table 71 describes the properties that should
be filled in within each <Rule> element to define each case rule.

12-10 i.LON 100 e3 Programmer’s Reference

Table 71 Case Rule Properties

Property Description

<UCPTindex>

The index number of the case rule.

NOTE: If more than one case rule attempts to assign a value to
the same data point or data point field, the case rule listed last in
the XML file will take precedence.

<UCPTindexIn> The index number of the input data point you want the case rule
to use, as defined within the <InDataPoint> elements of the Type
Translator Rule. The value of this data point will be compared to
the <UCPTcompValue> selected for the case rule using the
comparison function defined by the <UCPTcompFunction>
property.

If the result of the comparison is True, the case rule will modify
the value of the input data point using the operations
determined by the <UCPTmultiplier> and <UCPTconstant>
properties, and assign the resulting value to the output data
point chosen for the case rule.

<UCPTfieldNameIn> If the input data point for this Type Translator Rule is a
structure, enter the name of the field from which the input value
for the case rule should be taken. This can be a maximum of 31
characters.

Leave this property blank if the input data point is not a
structure.

<UCPTindexOut> The index number of the output data point to store the value
calculated by this case rule, as defined within the
<OutDataPoint> elements of the Type Translator Rule.

<UCPTfieldNameOut> If the output data point chosen for this case rule is a structure,
enter the name of the field in the output data point to store the
result of this calculation. This can be a maximum of 31
characters.

Leave this property blank if the output data point is not a
structure.

i.LON 100 e3 Programmer’s Reference 12-11

Property Description

<UCPTcompFunction>

<UCPTcompValue>

Select a comparison function (UCPTcompFunction) and
comparison value (UCPTcompValue) for the case rule. The
<UCPTcompValue> selected must use the same value format as
the input data point, or field, selected for the case rule. Table 70
lists and describes the comparison functions you can use to fill in
the <UCPTcompFunction> property.

The value of the input data point, or input data point field, will
be compared to the compare value using the compare function
selected here. If the result of the comparison is True, the
operation defined by the <UCPTmultiplier> and
<UCPTconstant> properties will be performed. If the result of
the comparison is False, the operation will not be performed and
the value of the output data point (or field) will not change.

<UCPTmultiplier> If the output data point, or data point field, takes a numeric
value as its value type, enter a numeric value here. The Type
Translator will multiply the value of the input data point, or
data point field, for the case rule by this number and store the
resulting value in the output data point (field) if the comparison
for the case rule evaluates as True. You can use the
<UCPTconstant> field to add a sum to this value after the
multiplication has been performed.

If the output data point takes an enumeration as its value, leave
this property empty.

<UCPTconstant> If the output data point, or data point field, takes an
enumeration as its value type, enter the enumeration the output
data point is to be assigned when the comparison for the case
rule evaluates to True.

If the output data point, or data point field, takes a numeric
value as its value type, enter a numeric value here. The Type
Translator will be add this to the value of the input data point, or
data point field, for the case rule and store the resulting sum in
the output data point (field). This Type Translator will perform
this operation after the multiplication operation defined by the
<UCPTmultiplier> property is performed.

12-12 i.LON 100 e3 Programmer’s Reference

12.2.1.3 TypeTranslator_Set_Rule
Use the TypeTranslator_Set_Rule function to create a new Type Translator Rule, or to
overwrite the configuration of an exisiting Type Translator Rule. Each time you use this
function to create a new Type Translator Rule, an XML file for that rule will be generated in
the /root/config/software/TranslatorRules directory of your i.LON 100 server.
Once the file has been generated, you can reference the rule when creating a Type
Translator, as described in Chapter 11.

The previous section, TypeTranslator_Get_Rule, describes the properties and elements you
can use to define each Type Translator Rule.

The following example uses the TypeTranslator_Set_Rule function to create a Type
Translator Rule defintion that will convert data points of type SNVT_lev_disc to data points
of type SNVT_switch. The rule takes a single data point as input, and returns a single data
point as output.

NOTE: Type Translator Rules created with the TypeTranslator_Set_Rule function are not
supported by the i.LON 100 Configuration Software.

Input
Parameters

<iLONTypeTranslatorRule>
 <TypeTranslatorRule>
 <UCPTindex></UCPTindex>
 <UCPTdescription>Converts SNVT_lev_disc to SNVT_occupancy </UCPTdescription>
 <UCPTtranslatorRule>SNVT_lev_disc_TO_SNVT_occupancy</UCPTtranslatorRule>
 <InDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTformatDescription>SNVT_lev_disc</UCPTformatDescription>
 </InDataPoint>
 <OutDataPoint>
 <UCPTindex>0</UCPTindex>
 <UCPTformatDescription>SNVT_occupancy</UCPTformatDescription>
 </OutDataPoint>
 <Case>
 <UCPTindex>0</UCPTindex>
 <UCPTfieldNameIn></UCPTfieldNameIn>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTcompFunction>FN_NUL</UCPTcompFunction>
 <UCPTcompValue>0</UCPTcompValue>
 <Rule>
 <UCPTindex>0</UCPTindex>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTfieldNameIn></UCPTfieldNameIn>
 <UCPTindexOut>0</UCPTindexOut>
 <UCPTfieldNameOut></UCPTfieldNameOut>
 <UCPTcompFunction>FN_EQ</UCPTcompFunction>
 <UCPTcompValue>ST_NUL</UCPTcompValue>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant>OC_NUL</UCPTconstant>
 </Rule>
 <Rule>
 <UCPTindex>1</UCPTindex>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTfieldNameIn></UCPTfieldNameIn>
 <UCPTindexOut>0</UCPTindexOut>
 <UCPTfieldNameOut></UCPTfieldNameOut>

i.LON 100 e3 Programmer’s Reference 12-13

 <UCPTcompFunction>FN_EQ</UCPTcompFunction>
 <UCPTcompValue>ST_OFF</UCPTcompValue>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant>OC_UNOCCUPIED</UCPTconstant>
 </Rule>
 <Rule>
 <UCPTindex>2</UCPTindex>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTfieldNameIn></UCPTfieldNameIn>
 <UCPTindexOut>0</UCPTindexOut>
 <UCPTfieldNameOut></UCPTfieldNameOut>
 <UCPTcompFunction>FN_EQ</UCPTcompFunction>
 <UCPTcompValue>ST_ON</UCPTcompValue>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant>OC_OCCUPIED</UCPTconstant>
 </Rule>
 <Rule>
 <UCPTindex>3</UCPTindex>
 <UCPTindexIn>0</UCPTindexIn>
 <UCPTfieldNameIn></UCPTfieldNameIn>
 <UCPTindexOut>0</UCPTindexOut>
 <UCPTfieldNameOut></UCPTfieldNameOut>
 <UCPTcompFunction>FN_EQ</UCPTcompFunction>
 <UCPTcompValue>ST_HIGH</UCPTcompValue>
 <UCPTmultiplier>0</UCPTmultiplier>
 <UCPTconstant>OC_BYPASS</UCPTconstant>
 </Rule>
 </Case>
 </TypeTranslatorRule>
</iLONTypeTranslatorRule>

Output
Parameters

<iLONTypeTranslatorRule>
 <UCPTfaultCount>0</UCPTfaultCount>
 <TypeTranslatorRule>
 <UCPTindex>13</UCPTindex>
 </TypeTranslatorRule>
</iLONTypeTranslatorRule>

12-14 i.LON 100 e3 Programmer’s Reference

12.2.1.4 TypeTranslator_Delete_Rule
You can use the TypeTranslator_Delete_Rule function to delete a Type Translator Rule. You
must reference the Type Translator Rule to be deleted by its index number in the input you
supply to the function, as in the example below.

Input
Parameters

<iLONTypeTranslatorRule>
 <TypeTranslatorRule>
 <UCPTindex>10</UCPTindex>
 </TypeTranslatorRule>
</iLONTypeTranslatorRule>

Output
Parameters

<iLONTypeTranslatorRule>
 <UCPTfaultCount>0</UCPTfaultCount>
 <TypeTranslatorRule>
 <UCPTindex>10</UCPTindex>
 </TypeTranslatorRule>
</iLONTypeTranslatorRule>

i.LON 100 e3 Programmer’s Reference 13-1

13 Using the SOAP Interface as a Web Service
This chapter assumes that you have some familiarity with Web services programming, and
that you are using the Microsoft Visual Studio .NET development environment. All sample
code in this chapter is written in Visual Basic .NET and Visual C# .NET. However, you can
use any development tool that is able to call standard Web services with the i.LON 100
SOAP/XML interface.

13.1 Referencing the WSDL File
You can use the SOAP interface as a Web reference with Microsoft Visual Studio .NET, and
create an application to modify the configuration of your i.LON 100 server. Some
development tools can import the i.LON 100 WSDL file and automatically build a class
structure for sending and receiving each message. The following procedure describes how to
do so using Visual Studio .NET.

1. Open the Microsoft Visual Studio .NET development environment.

2. From the File menu, select New > Project. The dialog shown in Figure
13.1 opens.

Figure 13.1 Create Windows Application

3. Enter a name, select a location and project type for the project, and then

click OK.

13-2 i.LON 100 e3 Programmer’s Reference

4. In order to take advantage of the latest features of the i.LON 100
SOAP/XML interface, add a Web reference to the version 3.0 i.LON 100
WSDL file to your project. From the Project menu, select Add Web
Reference. This opens the Add Web Reference window.

Figure 13.2 Add Web Reference Window

5. Enter the following in the URL box at the top of the window:

http://[ilon100 ipaddress]/WSDL/v3.0/iLON100.WSDL

[ilon 100 ipaddress] represents the IP address assigned to the i.LON 100
server you want the application to reference.

NOTE: The version 1.1 WSDL is still available on the i.LON 100 e3
server. However, the example code in this chapter uses methods that are
only available on the version 3.0 WSDL file. You should refer to the
sample code in Chapter 14 of the i.LON 100 e2 Internet Server
Programmer’s Reference if you plan on using the version 1.1 WSDL file

6. Click Go, and then enter a name for the Web reference in the Web
Reference Name box. In Figure 13.2, the name chosen is “ilonWebRef.”
You will use this name when you instantiate the Web services object,
because this will become a name for the proxy class that will be generated
automatically by Visual Studio .NET. This is described in more detail in
the next section.

i.LON 100 e3 Programmer’s Reference 13-3

7. Click Add Reference. The new Web reference will appear in the list of
references in the Solution Explorer, as shown in Figure 13.3.

Figure 13.3 Solution Explorer

13.2 Instantiating and Initializing the Web Service
Before using the functions of the SOAP/XML interface, you must instantiate the Web service
object that was referenced in the previous section from within your application. This section
contains programming samples written in Visual Basic .NET and Visual C# .NET that
demonstrate how to do so. For simplicity, the programming samples include all the code
required to instantiate the Web service within a single function. This function, for example,
could be an event handler for a button click event. You can instantiate the Web service in
any routine, although you should generally consider doing this in an initialization routine.

Once you have instantiated the Web service object, you have to set the Web service’s URL.
This is also known as the SOAP endpoint, EndPointURL, or Service endpoint, depending on
which development tool you are using. This is the destination on the i.LON 100 server where
SOAP messages from your application will be sent.

In addition, if you have password-protected the WSDL file on the i.LON 100 server with the
i.LON 100 Web Server Security and Parameters utility , your application needs to specify the
correct user ID and password to successfully send SOAP messages to the i.LON 100 server.
You can perform this task after you instantiate the Web service, as shown below. See the
i.LON 100 e3 User’s Guide for more information on the i.LON 100 Web Server Security and
Parameters utility.

13.2.1 Instantiating the Web Service In Visual Basic .NET
The following example shows how to instantiate the Web service in Visual Basic . NET:

' Instantiate the Web service object.
Dim myilon As ilonWebRef.iLON100 = New ilonWebRef.iLON100

' Obtain the URL of the Web service on i.LON 100 server.
' Then replace the local address portion of the URL with the IP address
' of the i.LON 100 server, so that the application can connect to
' the Web service when running on other computers. In the

13-4 i.LON 100 e3 Programmer’s Reference

' following statement, the i.LON 100 server’s IP address is
' 10.3.0.84.
myilon.Url = myilon.Url.Replace("localhost", "10.3.0.84")

' You can optionally change the timeout value.
' The default value is 100000 msec (100 seconds).
' You could set it to 10000 msec (10 seconds) so your application will
' timeout and close if it cannot connect to the i.LON 100 server.
myilon.Timeout = 10000

' If you want to use SOAP authentication, add the following lines.
' Otherwise, you can omit these lines.
' In the code below, user ID is “user” and password is “pwd”

myilon.Credentials = New System.Net.NetworkCredential("user", "pwd")
myilon.PreAuthenticate = True

13.2.2 Instantiating the Web Service in Visual C# .NET
The following example shows how to instantiate the Web service in Visual C# . NET:

// Instantiate the Web service object.
ilonWebRef.iLON100 myilon = new ilonWebRef.iLON100();

// Obtain the URL of the Web service on the i.LON 100 server.
// Then replace the local address portion of the URL with the IP
// address of the i.LON 100 server, so that the application can
// connect to the Web service when running on other computers.
// In the following statement, the i.LON 100 server’s IP address
// is 10.3.0.84.
myilon.Url = myilon.Url.Replace("localhost", "10.3.0.84");

// Although it is not necessary, you can change the timeout value.
// The default value is 100000 msec (100 seconds).
// You could set it to 10000 msec (10 seconds) so your application will
// timeout and close if it cannot connect to the i.LON server.
myilon.Timeout = 10000;

// If you want to use SOAP authentication, add the following lines.
// Otherwise, you can omit these lines.
// In the code below, user ID is “user” and password is “pwd”
myilon.Credentials = new System.Net.NetworkCredential("user", "pwd");
myilon.PreAuthenticate = true;

13.3 Calling Web Services Methods
The following examples demonstrate how to use the complex object types provided with the
SOAP/XML interface to read and write data point values with the DataServer_Read and
DataServer_Write functions, and how to write server side code to accept a Web Binder
connection from an i.LON100 server and retrieve a file attachment.

i.LON 100 e3 Programmer’s Reference 13-5

13.3.1 Writing Data Point Values
The following examples writes the value “100.0 1” to the SNVT_switch NVL data point called
NVL_nviClaValue_1, which is the relay in the i.LON 100 server. You can execute this code
after you have instantiated the Web services object, as described in the previous section.

13.3.1.1 Visual Basic .NET Example
' Declare the parameter to pass it to DataServer_Write method
Dim dsReadInfo As New ilonWebRef.DS_ReadInfo

' Instantiate the member object (array)
dsReadInfo.DPType = New ilonWebRef.DS_DPInfo(1) {}
dsReadInfo.DPType(0) = New ilonWebRef.DS_DPInfo

' Specify “NVL” as the <UCPTname> property
dsReadInfo.DPType(0).UCPTname = "NVL"

' Instantiate the member object (array)
dsReadInfo.DPType(0).DP = New ilonWebRef.DS_DPInfoDP(1) {}
dsReadInfo.DPType(0).DP(0) = New ilonWebRef.DS_DPInfoDP

' Specify the data point name
dsReadInfo.DPType(0).DP(0).UCPTpointName = "NVL_nviClaValue_1"

' Specify the value to be written to the data point
dsReadInfo.DPType(0).DP(0).UCPTvalue = New ilonWebRef.E_LonString
dsReadInfo.DPType(0).DP(0).UCPTvalue.Value = “100.0 1”

' Invoke DataServer_Write
myilon.DataServer_Write(dsReadInfo.DPType)

13.3.1.2 Visual C# .NET Example
// Declare the parameter to pass it to DataServer_Write method
ilonWebRef.DS_ReadInfo dsReadInfo = new ilonWebRef.DS_ReadInfo();

// Instantiate the member object (array)
dsReadInfo.DPType = new ilonWebRef.DS_DPInfo[1];
dsReadInfo.DPType[0] = new ilonWebRef.DS_DPInfo();

// Specify “NVL” as the <UCPTname> property
dsReadInfo.DPType[0].UCPTname = "NVL";

// Instantiate the member object (array)
dsReadInfo.DPType[0].DP = new ilonWebRef.DS_DPInfoDP[1];
dsReadInfo.DPType[0].DP[0] = new ilonWebRef.DS_DPInfoDP();

// Specify the data point name
dsReadInfo.DPType[0].DP[0].UCPTpointName = "NVL_nviClaValue_1";

// Specify the value to be written to the point
dsReadInfo.DPType[0].DP[0].UCPTvalue = new ilonWebRef.E_LonString();
dsReadInfo.DPType[0].DP[0].UCPTvalue.Value = "100.0 1";

// Invoke DataServer_Write
myilon.DataServer_Write(dsReadInfo.DPType);

13-6 i.LON 100 e3 Programmer’s Reference

13.3.2 Reading Data Point Values
The following examples read the value of the data point NVL_nviClaValue_1, and display it
in a text box.

13.3.2.1 Visual Basic .NET
' Declare the parameter to pass to DataServer_Read method
Dim dsRead As New ilonWebRef.DS_Read

' Instantiate the member object (array)
dsRead.DPType = New ilonWebRef.DS_ReadDPType(1) {}
dsRead.DPType(0) = New ilonWebRef.DS_ReadDPType

' Specify “NVL” as the <UCPTname> property
dsRead.DPType(0).UCPTname = "NVL"

' Instantiate the member object (array)
dsRead.DPType(0).DP = New ilonWebRef.DS_ReadDPTypeDP(1) {}
dsRead.DPType(0).DP(0) = New ilonWebRef.DS_ReadDPTypeDP

' Specify the data point name
dsRead.DPType(0).DP(0).UCPTpointName = "NVL_nviClaValue_1"

' Declare the parameter to receive returned value from the method
Dim dsReadInfo As New ilonWebRef.DS_ReadInfo

' Invoke DataServer_Read
dsReadInfo = myilon.DataServer_Read(dsRead)

' Display the value of the point in a text box
TextBox.Text = dsReadInfo.DPType(0).DP(0).UCPTvalue.Value

13.3.2.2 Visual C# .NET
// Declare the parameter to pass it to DataServer_Read method
ilon100.DS_Read dsRead = new ilonWebRef.DS_Read();

// Instantiate the member object (array)
dsRead.DPType = new ilonWebRef.DS_ReadDPType[1];
dsRead.DPType[0] = new ilonWebRef.DS_ReadDPType();

// Specify “NVL” as the <UCPTname> property
dsRead.DPType[0].UCPTname = "NVL";

// Instantiate the member object (array)
dsRead.DPType[0].DP = new ilonWebRef.DS_ReadDPTypeDP[1];
dsRead.DPType[0].DP[0] = new ilonWebRef.DS_ReadDPTypeDP();

// Specify the data point name
dsRead.DPType[0].DP[0].UCPTpointName = "NVL_nviClaValue_1";

// Invoke DataServer_Read and set the returned value
ilonWebRef.DS_ReadInfo dsReadInfo = myilon.DataServer_Read(dsRead);

// Display the value of the point in a text box

i.LON 100 e3 Programmer’s Reference 13-7

textBox.Text = dsReadInfo.DPType[0].DP[0].UCPTvalue.Value;

13.3.3 Resulting Code Summary
This section contains consolidated versions of the code examples shown in the previous
section, from declaration of the Web service to the invoking of the methods (without
comments), to SOAP authentication. Echelon recommends that you add exception handling
to your applications whenever possible. You could copy and past the following code snippet
to one of your blank functions to test the application.

13.3.3.1 Writing Data Point Values

13.3.3.1.1 Visual Basic .NET
Try
 Dim myilon As ilonWebRef.iLON100 = New ilonWebRef.iLON100
 myilon.Url = myilon.Url.Replace("localhost", "10.3.0.84")
 myilon.Timeout = 10000

 Dim dsReadInfo As New ilonWebRef.DS_ReadInfo
 dsReadInfo.DPType = New ilonWebRef.DS_DPInfo(1) {}

 dsReadInfo.DPType(0) = New ilonWebRef.DS_DPInfo
 dsReadInfo.DPType(0).UCPTname = "NVL"

 dsReadInfo.DPType(0).DP = New ilonWebRef.DS_DPInfoDP(1) {}
 dsReadInfo.DPType(0).DP(0) = New ilonWebRef.DS_DPInfoDP
 dsReadInfo.DPType(0).DP(0).UCPTpointName = "NVL_nviClaValue_1"

 dsReadInfo.DPType(0).DP(0).UCPTvalue = New ilonWebRef.E_LonString
 dsReadInfo.DPType(0).DP(0).UCPTvalue.Value = “100.0 1”

 myilon.DataServer_Write(dsReadInfo.DPType)

Catch ex As Exception
 MsgBox(ex.Message)
End Try

13.3.3.1.2 Visual C# .NET
try
{
 ilonWebRef.iLON100 myilon = new ilonWebRef.iLON100();
 myilon.Url = myilon.Url.Replace("localhost", "10.3.0.84");
 myilon.Timeout = 10000;

ilonWebRef.DS_ReadInfo dsReadInfo = new ilonWebRef.DS_ReadInfo();

 dsReadInfo.DPType = new ilonWebRef.DS_DPInfo[1];
 dsReadInfo.DPType[0] = new ilonWebRef.DS_DPInfo();
 dsReadInfo.DPType[0].UCPTname = "NVL";

 dsReadInfo.DPType[0].DP = new ilonWebRef.DS_DPInfoDP[1];
 dsReadInfo.DPType[0].DP[0] = new ilonWebRef.DS_DPInfoDP();
 dsReadInfo.DPType[0].DP[0].UCPTpointName = "NVL_nviClaValue_1";

13-8 i.LON 100 e3 Programmer’s Reference

 dsReadInfo.DPType[0].DP[0].UCPTvalue = new
ilonWebRef.E_LonString();
 dsReadInfo.DPType[0].DP[0].UCPTvalue.Value = "100.0 1";

 myilon.DataServer_Write(dsReadInfo.DPType);
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

13.3.3.2 Reading Data Point Values

13.3.3.2.1 Visual Basic .NET
Try
 Dim myilon As ilonWebRef.iLON100 = New ilonWebRef.iLON100
 myilon.Url = myilon.Url.Replace("localhost", "10.3.0.84")
 myilon.Timeout = 10000

 Dim dsRead As New ilonWebRef.DS_Read

 dsRead.DPType = New ilonWebRef.DS_ReadDPType(1) {}
 dsRead.DPType(0) = New ilonWebRef.DS_ReadDPType
 dsRead.DPType(0).UCPTname = "NVL"

 dsRead.DPType(0).DP = New ilonWebRef.DS_ReadDPTypeDP(1) {}
 dsRead.DPType(0).DP(0) = New ilonWebRef.DS_ReadDPTypeDP
 dsRead.DPType(0).DP(0).UCPTpointName = "NVL_nviClaValue_1"

 Dim dsReadInfo As New ilonWebRef.DS_ReadInfo
 dsReadInfo = myilon.DataServer_Read(dsRead)

 TextBox2.Text = dsReadInfo.DPType(0).DP(0).UCPTvalue.Value

Catch ex As Exception
 MsgBox(ex.Message)
End Try

13.3.3.2.2 Visual C# .NET
try
{
 ilonWebRef.iLON100 myilon = new ilonWebRef.iLON100();
 myilon.Url = myilon.Url.Replace("localhost", "10.3.0.84");
 myilon.Timeout = 10000;

 ilonWebRef.DS_Read dsRead = new ilonWebRef.DS_Read();

 dsRead.DPType = new ilonWebRef.DS_ReadDPType[1];
 dsRead.DPType[0] = new ilonWebRef.DS_ReadDPType();
 dsRead.DPType[0].UCPTname = "NVL";

 dsRead.DPType[0].DP = new ilonWebRef.DS_ReadDPTypeDP[1];

i.LON 100 e3 Programmer’s Reference 13-9

 dsRead.DPType[0].DP[0] = new ilonWebRef.DS_ReadDPTypeDP();
 dsRead.DPType[0].DP[0].UCPTpointName = "NVL_nviClaValue_1";

 ilonWebRef.DS_ReadInfo dsReadInfo =
myilon.DataServer_Read(dsRead);
 textBox2.Text = dsReadInfo.DPType[0].DP[0].UCPTvalue.Value;
}
catch (Exception ex)
{
 MessageBox.Show(ex.Message);
}

13.3.4 Accepting a Web Binding From an i.LON100 Server
To create a Web connection between the i.LON 100 server and your Web server, you need to
expose a Web service on your server. This section describes how to do so with Microsoft
Visual Studio .NET 2003. You need to configure IIS (Web server) on your PC so that it can
serve the Web service that you are going to write in the following section. This section
assumes you are familiar with IIS configuration and Web server administration.

NOTE: In order for your .NET application to support Web connection file attachment, you
must download the Web Services Enhancements 2.0 Add-On from Microsoft’s Web site at
msdn.microsoft.com and install it on your computer.

To create a Web Binding, follow these steps:

1. Create a proxy class with the wsdl.exe Web services description language
tool. Click Start > Programs > Microsoft Visual Studio .NET 2003 >
Visual Studio .NET > – Visual Studio .NET 2003 Command Prompt to
launch the command prompt.

NOTE: If you are not running Visual Studio .NET, you can download the
wsdl.exe file from Microsoft’s Web site at msdn.microsoft.com to use this
example with another development environment.

2. Execute the following command:
wsdl.exe /server http://<IPAddressOfiLON>/wsdl/v3.0/ilon100.wsdl

<IPAddressOfiLON> represents the IP address assigned to your i.LON
100 server.

3. A file called iLON100.cs will be generated by this command. You will use
it later, after you create a new Web service project. You can optionally
specify other languages such as Visual Basic .NET. See the MSDN
documentation for more information on this command.

4. Create a new Web service project using ASP .NET Web Service. The
sample code provided within this procedure uses Visual C# .NET.
Sample code written in VB .NET is provided at the end of this section.

5. Add a reference to the following component called
Microsoft.Web.Services2.dll. To do so, right click on References and select
Add References. Open the .NET tab, select Microsoft.Web.Services2.dll
and then click OK.

http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://<ipaddressofilon>/wsdl/v3.0/ilon100.wsdl

13-10 i.LON 100 e3 Programmer’s Reference

Figure 13.4 Add Reference Dialog

6. Add the iLON100.cs proxy class to the project. You might want to copy
the file to the same folder as your source code for this project is located.
Right-click on the solution, select Add > Add Existing Item from the
shortcut menu, and then select the iLON100.cs file. This allows you to
use the complex soap types that the DataServer_Write function uses.

7. Write the code for web service. You can simply copy paste the following
code snippet into the public class Service1 :
System.Web.Services.WebService.

public messageProperties messagePropertiesValue;

[WebMethod]
[System.Web.Services.Protocols.SoapHeaderAttribute("messagePropertiesValue",
Direction=System.Web.Services.Protocols.SoapHeaderDirection.InOut)]
[System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://wsdl.echelon
.com/web_services_ns/ilon100/v3.0/action/DataServer_Write",
RequestNamespace="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message/
",
ResponseNamespace="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message
/", Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
[return: System.Xml.Serialization.XmlElementAttribute("iLONDataServer")]

public void
DataServer_Write([System.Xml.Serialization.XmlArrayItemAttribute("DPType",
IsNullable=false)] DS_DPInfo[] iLONDataServer)
{
System.Diagnostics.Trace.WriteLine("Got message from : " +
messagePropertiesValue.UCPTipAddress);
System.Diagnostics.Trace.WriteLine("Value of the point is: " +
iLONDataServer[0].DP[0].UCPTvalue.Value);

// Handle the attachment file.
SoapContext ctxt = RequestSoapContext.Current;

if(ctxt != null)

i.LON 100 e3 Programmer’s Reference 13-11

{
 // If there is an attachment file….
 if(ctxt.Attachments.Count > 0)
 {
 System.Diagnostics.Trace.WriteLine("attachment-id: " +
 ctxt.Attachments[0].Id);
 if(ctxt.Attachments[0].ContentType == "text/plain" ||
 ctxt.Attachments[0].ContentType == "text/xml")
 {
 string strattachment;
 System.IO.StreamReader attachmentstream

= new System.IO.StreamReader(ctxt.Attachments[0].Stream);

 // Read the attachment file to the end
 strattachment = attachmentstream.ReadToEnd();
 attachmentstream.Close();

 // Write the contents of the file to output window in debug mode
 System.Diagnostics.Trace.WriteLine(strattachment);
 }
 }
}
}

8. Add the following lines at using (or Imports in VB .NET). Otherwise,
you will not be able to build the project. For C#, add:

using Microsoft.Web.Services2;

For VB .NET, add:

Imports Microsoft.Web.Services2

9. Before you run the application, you need to change web.config file. You
can open web.config file from the Solution Explorer. Add the following
snippet at the top of the <configuration> element.

 <configSections>
 <section name="microsoft.web.services2"
type="Microsoft.Web.Services2.Configuration.WebServicesConfiguration,
Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />
 </configSections>

 <microsoft.web.services2>
 <diagnostics>
 <detailedErrors enabled="false" />
 </diagnostics>
 </microsoft.web.services2>

10. Add the following under <system.web>.

 <webServices>
 <soapExtensionTypes>
 <add type="Microsoft.Web.Services2.WebServicesExtension,
Microsoft.Web.Services2, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" priority="1" group="0" />
 </soapExtensionTypes>
 </webServices>

13-12 i.LON 100 e3 Programmer’s Reference

11. Your server side code is now ready to accept Web binder calls from the
i.LON 100 server. You should now add your server as a destination to the
i.LON 100 Web Binder with the Configure – Web Binder Web page.

If your PC’s IP address is 192.168.1.100 and you are exposing your Web
service with the namespace of WebBinder/Service1.asmx, then you should
fill in the Enter a New IP or Hostname and SOAP Path properties as
shown in Figure 13.5 when you add the destination with the New Server
properties window.

See Chapter 2 of the i.LON 100 e3 User’s Guide for more information on
the Configure – Web Binder Web page.

Figure 13.5 Configure Web Binder Web Page

With this configuration, if you point to
http://192.168.1.100/WebBinder/Service1.asmx from any PC with a Web
browser, you can open the test Web page for Service1, where
DataServer_Write is the available Web service. The i.LON 100 server will
consume this Web service when it makes Web binder calls.

12. Select a data point on the i.LON server as a source, select ***Target Data
Point*** as the destination data point under your server and click Add
Bindings. See Chapter 2 of the i.LON 100 e3 User’s Guide for more
information on these tasks.

13. Go back to your .NET project, put a break point on the first line in
DataServer_Write web service, and run the project in debug mode. When
you change the value of the source data point you selected in step 12,
your server side code’s break point should be hit.

14. Attach a text based file attachment such as event log to the Web
connection, and run the server side code in debug mode again. You can
see the contents of the file as a text stream in the output window of the
debugger as you step through the code.

http://192.168.1.100/WebBinder/Service1.asmx

i.LON 100 e3 Programmer’s Reference 13-13

13.3.4.1 Sample Code in Visual Basic .NET
The following Visual Basic .NET code sample performs the same tasks as Visual C# .NET
sample shown in the previous section.

Imports Microsoft.Web.Services2

Public messagePropertiesValue As messageProperties

<System.Web.Services.Protocols.SoapHeaderAttribute("messagePropertiesValue",
Direction:=System.Web.Services.Protocols.SoapHeaderDirection.InOut), _
System.Web.Services.WebMethodAttribute(), _
System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://wsdl.echelon.
com/web_services_ns/ilon100/v3.0/action/DataServer_Write",
RequestNamespace:="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/message
/",
ResponseNamespace:="http://wsdl.echelon.com/web_services_ns/ilon100/v3.0/messag
e/", Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _

Public Function
DataServer_Write(<System.Xml.Serialization.XmlArrayItemAttribute("DPType",
IsNullable:=False)> ByVal iLONDataServer() As DS_DPInfo) As
<System.Xml.Serialization.XmlElementAttribute("iLONDataServer")> DS_ResultId

 System.Diagnostics.Trace.WriteLine("Got message from " +
messagePropertiesValue.UCPTipAddress)
 System.Diagnostics.Trace.WriteLine("Value of the point is " +
iLONDataServer(0).DP(0).UCPTvalue.Value)

 If Not Nothing Is RequestSoapContext.Current Then
 ' Any attachment file?
 If 0 < RequestSoapContext.Current.Attachments.Count Then
 System.Diagnostics.Trace.WriteLine("Attachment-Id: " +
RequestSoapContext.Current.Attachments(0).Id)

 If ("text/plain" =
RequestSoapContext.Current.Attachments(0).ContentType) Or ("text/xml" =
RequestSoapContext.Current.Attachments(0).ContentType) Then
 Dim strAttachment As String
 Dim attachmentStream As System.IO.StreamReader

 attachmentStream
= New System.IO.StreamReader(RequestSoapContext.Current.Attachments(0).Stream)

 ' Read the attachment file to the end
 strAttachment = attachmentStream.ReadToEnd()
 attachmentStream.Close()

 ' Write the contents of the file to output window in debug mode
 System.Diagnostics.Trace.WriteLine(strAttachment)
 End If
 End If
 End If
End Function

13-14 i.LON 100 e3 Programmer’s Reference

i.LON 100 e3 Programmer’s Reference 14-1

14 Manually Modifying an XML Configuration File
You can create and manage the XML configuration files of your i.LON 100 server manually,
or with the i.LON 100 SOAP interface. This section describes how to create an XML file and
download it into the proper directory of the i.LON 100, and how to access an XML file that
has already been created, modify it, and download it back to the i.LON 100 server.

Echelon strongly recommends that you use the SOAP interface to manage the XML
configuration files. The i.LON 100 server performs error-checking on all data written in a
SOAP message, so that invalid data is not written to any of the XML files. The i.LON 100
server will not perform error-checking on any XML files downloaded to it via FTP, and so
manually editing the XML files may cause boot errors.

Additionally, SOAP messages can be sent to the i.LON 100 while it is operating, and the
XML files affected by the SOAP messages will be updated without requiring a reboot. If you
manually edit the XML files using the procedures described in this chapter, you will need to
reboot the i.LON 100 server.

14.1 Creating an XML File
The following procedure describes how to create an XML file, and add it to the configuration
directory of the i.LON 100 server:

1. Create the XML file following the guidelines provided in this manual. The documentation
for each application describes the format the XML file must be created with, and describes
the properties you must define in each XML file.

Be sure to save the file using the file names provided in this document. You should use a text
editor such as Microsoft® XML Notepad to create your XML file.

2. Use an FTP client application to open an FTP session to the i.LON 100 server. You can
connect to the i.LON 100 server by specifying either its IP address or its hostname.

The default user name and password for the i.LON 100 server is ilon.

3. Insert the XML file in the applicable directory. Most of the XML files described in this
document belong in the /root/config/software directory. Refer to the documentation of each
application in this manual for more information.

4. Close the FTP session and reboot the i.LON 100 server. When the i.LON 100 server
reboots, it will read the new XML files and adjust its configuration accordingly.

14.2 Modifying an XML File
The following procedure describes how to access an XML file that has already been added to
the i.LON 100 server, and how to modify it:

1. Use an FTP client application to open an FTP session to the i.LON 100. You can connect to
the i.LON 100 server by specifying either its IP address or its hostname.

The default user name and password for the i.LON 100 is ilon.

14-2 i.LON 100 e3 Programmer’s Reference

2. Access the directory of the XML file you want to modify. Most of the XML files described in
this document can be found in the /root/config/software directory of the i.LON 100 server.
Refer to the documentation of each application in this manual for more specific information.

3. Open the XML file you want to modify using Microsoft XML Notepad or any other text
editor. Modify the XML file as you like, but be sure that the format of the XML file remains
intact.

4. Save the XML file and return it to the directory you took it from. Close the FTP session.

5. Reboot the i.LON 100 server. When the i.LON 100 server reboots, it will read the modified
XML file and adjust its configuration accordingly.

14.3 Copying XML Files Between i.LON 100s
You can copy the configuration of an i.LON 100 application into a different i.LON 100 server
using FTP as well. When moving XML configuration files from one i.LON 100 to another, you
must ensure that the data point names referenced in the files being copied correspond to the
data points on the target i.LON 100 server.

If this is not the case, you must either modify references to data point names to match
existing data point names on the target i.LON 100, or add data points to the target i.LON
100 server which have names that match those in the XML files being copied. In some cases
this is not a problem. For example, the eventCalendar.xml file does not contain references to
any data point names. Therefore, that file can be copied from one i.LON 100 server to
another without modification. The same is true for Type Translator rule configuration files.

However, for most applications you must change the names. For example, in the
alarmGenerator.xml file, you must verify the <UCPTpointName> property for the following
elements before copying the XML file to the target i.LON 100 server: <InputDataPoint>,
<CompareDataPoint>, <AlarmDataPoint> and <Alarm2DataPoint>.

This procedure describes how to copy an XML file from one i.LON 100 server to another:

1. Use an FTP client application to open an FTP session to the i.LON 100 server containing
the XML file, or files, you want to copy. You can connect to the i.LON 100 server by
specifying either its IP address or its hostname.

The default user name and password for the i.LON 100 server is ilon.

2. Access the directory of the XML file you want to copy. Most of the XML files described in
this document can be found in the /root/config/software directory of the i.LON 100 server.
Refer to the documentation of each application in this manual for more specific information.

3. Open the XML file you want to modify using Microsoft XML Notepad or any other text
editor. Save it locally, and close the FTP session.

4. Use an FTP client application to open an FTP session to the second i.LON 100 server. The
default user name and password for the i.LON 100 server is ilon.

5. Access the directory of the XML file you are going to copy into the i.LON 100 server. Most
of the XML files described in this document can be found in the /root/config/software
directory of the i.LON 100 server. Refer to the documentation of each application in this
manual for more specific information.

i.LON 100 e3 Programmer’s Reference 14-3

6. Insert the XML file saved in step 3 into the appropriate directory of the i.LON 100 server.

7. Reboot the i.LON 100 server. When the reboot completes, it will read the new XML file
and adjust its configuration accordingly.

www.echelon.com

	Introduction to the i.LON 100 SOAP/XML Interface
	About This Document
	Programming Samples
	Getting Started
	i.LON 100 Version 3.0 SOAP/XML Interface Upgrades
	Modified SOAP Applications and Functions
	Changes to SOAP Message Formats

	SOAP Messages and the i.LON 100 WSDL File
	i.LON 100 WSDL File
	Security
	Formats of SOAP Messages
	Input Messages
	SOAP Envelope
	SOAP Body
	Input Parameters

	Response Message
	SOAP Header
	SOAP Body
	Fault Response Data
	Fault Codes

	i.LON 100 Applications and the SOAP/XML Interface
	Overview of i.LON 100 Applications
	i.LON 100 XML Configuration Files
	Modifying the XML Configuration Files

	i.LON 100 SOAP Functions
	i.LON 100 Resource Files
	LonMark Standard Network Variable Type (SNVT) Device Resource Files
	Standard Configuration Property Type (SCPT) Device Resource Files
	User Network Variable Type (UNVT) Device Resource Files
	User Configuration Property Type (UCPT) Device Resource Files

	Data Formatting
	List, Get, Set and Delete Functions
	List Functions
	Get Functions
	Set Functions
	Delete Functions

	Performance Issues
	Getting Started

	Data Server
	Data Server XML Files
	dp_NVL.xml
	dp_NVC.xml

	Creating and Modifying the Data Server XML Files
	Data Server SOAP Interface
	DataServer_List
	DataServer_Get
	DataServer_Set
	DataServer_Read
	Requesting Data Points by Name and Index
	Requesting Data Points by Type and Last Update Time
	DataServer_Read Output

	DataServer_Write
	Data Point Values and Priority Levels
	DataServer_Write and the Web Binder Application

	DataServer_ResetPriority
	DataServer_Delete

	Data Loggers
	DataLogger.xml
	Creating and Modifying the dataLogger.xml File
	DataLogger SOAP Interface
	DataLogger_List
	DataLogger_Get
	DataLogger_Set
	DataLogger_Read
	Local Times and Coordinated Universal Time
	Sample SOAP Message

	DataLogger_Clear
	DataLogger_Delete

	Alarm Generator
	AlarmGenerator.xml
	Creating and Modifying the alarmGenerator.xml File
	Alarm Generator SOAP Interface
	AlarmGenerator_List
	AlarmGenerator_Get
	Alarm Priority Levels
	Comparison Functions
	Hysteresis Levels and Offset Limits

	AlarmGenerator_Set
	AlarmGenerator_Delete

	Alarm Notifier
	AlarmNotifier.xml
	Creating and Modifying the alarmNotifier.xml File
	Alarm Notifier SOAP Interface
	AlarmNotifier_List
	AlarmNotifier_Get
	Input Data Points
	E-mail Profiles
	Active and Passive Alarm Conditions
	Active and Passive Alarm Destinations

	AlarmNotifier_Set
	AlarmNotifier_Read
	AlarmNotifier_Write
	AlarmNotifier_Clear
	AlarmNotifier_Delete

	Analog Function Block
	AnalogFB.xml
	Creating and Modifying the analogFB.xml File
	Analog Function Block SOAP Interface
	AnalogFB_List
	AnalogFB_Get
	Output Functions
	Comparison Functions
	FN_AND Example
	FN_OR Example
	FN_COMPARE Example

	AnalogFB_Set
	AnalogFB_Delete

	Event Scheduler
	EventScheduler.xml
	Creating and Modifying the eventScheduler.xml File
	Event Scheduler SOAP Interface
	EventScheduler_List
	EventScheduler_Get
	Creating a Day-Based Schedule
	Creating a Date-Based Schedule

	EventScheduler_Set
	EventScheduler_Delete

	Event Calendar
	EventCalendar.xml
	Creating and Modifying the eventCalendar.xml File
	Event Calendar SOAP Interface
	EventCalendar_List
	EventCalendar_Get
	Creating an Exception

	EventCalendar_Set
	EventCalendar_Delete

	Type Translator
	TypeTranslator.xml
	Creating and Modifying the typeTranslator.xml File
	Type Translator SOAP Interface
	TypeTranslator_List
	TypeTranslator_Get
	Type Translator Rules

	TypeTranslator_Set
	TypeTranslator_Delete

	Type Translator Rules
	Type Translator Rule XML Files
	Creating and Modifying the Type Translator Rule XML Files
	Type Translator Rule SOAP Interface
	TypeTranslator_List_Rule
	TypeTranslator_Get_Rule
	Creating a Case Structure

	TypeTranslator_Set_Rule
	TypeTranslator_Delete_Rule

	Using the SOAP Interface as a Web Service
	Referencing the WSDL File
	Instantiating and Initializing the Web Service
	Instantiating the Web Service In Visual Basic .NET
	Instantiating the Web Service in Visual C# .NET

	Calling Web Services Methods
	Writing Data Point Values
	Visual Basic .NET Example
	Visual C# .NET Example

	Reading Data Point Values
	Visual Basic .NET
	Visual C# .NET

	Resulting Code Summary
	Writing Data Point Values
	Visual Basic .NET
	Visual C# .NET

	Reading Data Point Values
	Visual Basic .NET
	Visual C# .NET

	Accepting a Web Binding From an i.LON100 Server
	Sample Code in Visual Basic .NET

	Manually Modifying an XML Configuration File
	Creating an XML File
	Modifying an XML File
	Copying XML Files Between i.LON 100s

	SOAPcover.pdf
	Introduction to the i.LON 100 SOAP/XML Interface
	About This Document
	Programming Samples
	Getting Started
	i.LON 100 Version 3.0 SOAP/XML Interface Upgrades

	SOAP Messages and the i.LON 100 WSDL File
	i.LON 100 WSDL File
	Security
	Formats of SOAP Messages
	
	SOAP Envelope
	SOAP Body
	SOAP Header
	SOAP Body

	i.LON 100 Applications and the SOAP/XML Interface
	Overview of i.LON 100 Applications
	i.LON 100 XML Configuration Files
	i.LON 100 SOAP Functions
	i.LON 100 Resource Files
	Data Formatting
	List, Get, Set and Delete Functions
	Performance Issues
	Getting Started

	Data Server
	Data Server XML Files
	Creating and Modifying the Data Server XML Files
	
	DataServer_List
	DataServer_Get
	DataServer_Set
	DataServer_Read
	DataServer_Write
	DataServer_ResetPriority
	DataServer_Delete

	Data Loggers
	DataLogger.xml
	Creating and Modifying the dataLogger.xml File
	
	DataLogger_List
	DataLogger_Get
	DataLogger_Set
	DataLogger_Read
	DataLogger_Clear
	DataLogger_Delete

	Alarm Generator
	AlarmGenerator.xml
	Creating and Modifying the alarmGenerator.xml File
	
	AlarmGenerator_List
	AlarmGenerator_Get
	AlarmGenerator_Set
	AlarmGenerator_Delete

	Alarm Notifier
	AlarmNotifier.xml
	Creating and Modifying the alarmNotifier.xml File
	
	AlarmNotifier_List
	AlarmNotifier_Get
	AlarmNotifier_Set
	AlarmNotifier_Read
	AlarmNotifier_Write
	AlarmNotifier_Clear
	AlarmNotifier_Delete

	Analog Function Block
	AnalogFB.xml
	Creating and Modifying the analogFB.xml File
	
	AnalogFB_List
	AnalogFB_Get
	AnalogFB_Set
	AnalogFB_Delete

	Event Scheduler
	EventScheduler.xml
	Creating and Modifying the eventScheduler.xml File
	
	EventScheduler_List
	EventScheduler_Get
	EventScheduler_Set
	EventScheduler_Delete

	Event Calendar
	EventCalendar.xml
	Creating and Modifying the eventCalendar.xml File
	
	EventCalendar_List
	EventCalendar_Get
	EventCalendar_Set
	EventCalendar_Delete

	Type Translator
	TypeTranslator.xml
	Creating and Modifying the typeTranslator.xml File
	
	TypeTranslator_List
	TypeTranslator_Get
	TypeTranslator_Set
	TypeTranslator_Delete

	Type Translator Rules
	Type Translator Rule XML Files
	Creating and Modifying the Type Translator Rule XML Files
	
	TypeTranslator_List_Rule
	TypeTranslator_Get_Rule
	TypeTranslator_Set_Rule
	TypeTranslator_Delete_Rule

	Using the SOAP Interface as a Web Service
	Referencing the WSDL File
	Programming Samples
	
	Visual Basic .NET Example
	Visual C# .NET Example

	Manually Modifying an XML Configuration File
	Creating an XML File
	Modifying an XML File
	Copying XML Files Between i.LON 100s

	SOAPcover.pdf
	Introduction to the i.LON 100 SOAP/XML Interface
	About This Document
	Programming Samples
	Getting Started
	i.LON 100 Version 3.0 SOAP/XML Interface Upgrades

	SOAP Messages and the i.LON 100 WSDL File
	i.LON 100 WSDL File
	Security
	Formats of SOAP Messages
	
	SOAP Envelope
	SOAP Body
	SOAP Header
	SOAP Body

	i.LON 100 Applications and the SOAP/XML Interface
	Overview of i.LON 100 Applications
	i.LON 100 XML Configuration Files
	i.LON 100 SOAP Functions
	i.LON 100 Resource Files
	Data Formatting
	List, Get, Set and Delete Functions
	Performance Issues
	Getting Started

	Data Server
	Data Server XML Files
	Creating and Modifying the Data Server XML Files
	
	DataServer_List
	DataServer_Get
	DataServer_Set
	DataServer_Read
	DataServer_Write
	DataServer_ResetPriority
	DataServer_Delete

	Data Loggers
	DataLogger.xml
	Creating and Modifying the dataLogger.xml File
	
	DataLogger_List
	DataLogger_Get
	DataLogger_Set
	DataLogger_Read
	DataLogger_Clear
	DataLogger_Delete

	Alarm Generator
	AlarmGenerator.xml
	Creating and Modifying the alarmGenerator.xml File
	
	AlarmGenerator_List
	AlarmGenerator_Get
	AlarmGenerator_Set
	AlarmGenerator_Delete

	Alarm Notifier
	AlarmNotifier.xml
	Creating and Modifying the alarmNotifier.xml File
	
	AlarmNotifier_List
	AlarmNotifier_Get
	AlarmNotifier_Set
	AlarmNotifier_Read
	AlarmNotifier_Write
	AlarmNotifier_Clear
	AlarmNotifier_Delete

	Analog Function Block
	AnalogFB.xml
	Creating and Modifying the analogFB.xml File
	
	AnalogFB_List
	AnalogFB_Get
	AnalogFB_Set
	AnalogFB_Delete

	Event Scheduler
	EventScheduler.xml
	Creating and Modifying the eventScheduler.xml File
	
	EventScheduler_List
	EventScheduler_Get
	EventScheduler_Set
	EventScheduler_Delete

	Event Calendar
	EventCalendar.xml
	Creating and Modifying the eventCalendar.xml File
	
	EventCalendar_List
	EventCalendar_Get
	EventCalendar_Set
	EventCalendar_Delete

	Type Translator
	TypeTranslator.xml
	Creating and Modifying the typeTranslator.xml File
	
	TypeTranslator_List
	TypeTranslator_Get
	TypeTranslator_Set
	TypeTranslator_Delete

	Type Translator Rules
	Type Translator Rule XML Files
	Creating and Modifying the Type Translator Rule XML Files
	
	TypeTranslator_List_Rule
	TypeTranslator_Get_Rule
	TypeTranslator_Set_Rule
	TypeTranslator_Delete_Rule

	Using the SOAP Interface as a Web Service
	Referencing the WSDL File
	Programming Samples
	
	Visual Basic .NET Example
	Visual C# .NET Example

	Manually Modifying an XML Configuration File
	Creating an XML File
	Modifying an XML File
	Copying XML Files Between i.LON 100s

